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I, Stephen A. Edwards, declare as follows:

1 Introduction

Counsel for RED BEND LTD. and RED BEND SOFTWARE INC. (“Red1.

Bend”) have asked me to investigate whether Google Inc.’s (“Google”) compres-

sion algorithm “Courgette” infringes the claims of Red Bend’s U.S. Patent No.

6,545,552 (the “’552 Patent”) that are currently being asserted in this case. In

particular, Red Bend’s counsel has asked me to focus on claims 8, 21, 42, and 55

(“the relevant claims”) of the ’552 Patent that are infringed by Courgette and the

use of the Courgette executable and source code by others outside Google.

This declaration is intended as a rebuttal to Walker and as a supplement to my2.

earlier declaration in this case (dated November 17, 2009). Since that time, I have

been presented with many additional documents, including the expert declaration

of Martin G. Walker (“Walker”), Google Inc.’s Opposition to Red Bend’s Motion

for a Preliminary Injunction (“the opposition”), U.S. Patent No. 5,481,713 (“Wet-

more”), and numerous

documents from Stephen R. Adams (“Adams”), who appears to be Courgette’s

main developer, and other internal Google documents. I have also undertaken

additional analysis of the Courgette source code and performed additional exper-

iments.

I appreciate the detailed analysis Dr. Walker has done of Courgette and the3.

’552 patent and I broadly agree with his understanding of the operation of both

inventions. Yet he and I come to very different conclusions largely because we

interpret the claim language differently. This document is largely concerned with

why I believe his interpretation is flawed.

I continue to find that under what I consider to be the correct definitions of4.

terms (see the claim construction chart, Exhibit A), Courgette infringes on the

relevant claims either literally or by equivalents. Furthermore, I disagree with the

assertion that the ’552 Patent is invalid. In particular, I find it neither anticipated

nor obvious. Below, I discuss the reasoning for my conclusions.
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2 Claim Construction

Exhibit A is an annotated version of the claim construction from my declara-5.

tion, which includes notes on how my constructions differ from those in Walker’s

Exhibit D. I discuss these differences in detail below.

2.1 Data Table

I reject Walker’s construction that a “data table [...] cannot be source or other6.

symbolic code” [Walker, Exhibit D–1] because it would cause the preferred em-

bodiment in the specification of the ’552 Patent to fall outside the scope of that

patent. Such constructions make no sense to me, and indeed, counsel has informed

me that “[s]uch an interpretation is rarely, if ever, correct.”1

Many of the data tables mentioned in the preferred embodiment of the ’5527.

Patent would not be data tables if Walker’s construction were adopted. While I

agree that the data tables input to the invention in the ’552 Patent are not intended

to contain high-level language source code (the subject of much prior art), Walker

reads too much into a paragraph of the ’552 file history and asserts that data tables

may not have any “symbolic code.” The ’552 Patent does not impose this con-

straint; the preferred embodiment actually modifies certain data tables to contain

symbolic entries.

In construing data tables as never containing source or symbolic code, Walker8.

relies on a part of the ’552 Patent file history, the relevant page of which I attach as

Exhibit B (RedBend0000151). Here, the examiner is comparing the application

with Okuzumi et al., which deals exclusively with differences between versions

of source code. To emphasize that the ’552 invention is different, the applicant

writes

In extracting diff2 between 2 versions of executable files as defined in

amended Claim 1, there is no source involved, and neither statements,

1Vitronics Corp. v. Conceptronic, Inc., 90 F.3d 1576, 1583 (Fed. Cir. 1996)
2“diff” is shorthand for “difference result”
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Figure 1: The preferred embodiment of

the ’552 patent uses symbolic code: this

shows label list L1 and table P′1 from FIG.

2A of the ’552 Patent. P1 contains sym-

bolic code because the numbers in P1 are

symbols, e.g., “2” refers to entry 5 be-

cause “2” appears in location 5 of L1.

nor any textual or other symbolic representation of the program even

exist. [RedBend0000151, ¶3]

The applicant was only trying to convince the examiner that his invention9.

did not start from source code, not that it avoided all forms of symbolic rep-

resentation throughout its operation. Consistent with this, the applicant’s only

amendment was to add “executable” to the “program” claims (8 and 21) [Exhibit

B: RedBend0000160–3] to satisfy the examiner. Neither the data table claims

(claims 42 and 55) nor the specification of the patent—including the glossary—

were amended.

While Walker and I agree that the starting point for the ’552 Patent is exe-10.

cutable code, Walker’s construction insists that all data tables not contain symbols,

which is not true of the preferred embodiment. In the preferred embodiment, the

references in intermediate programs/data tables are often symbolic and thus not

executable.

The table P′1 created in the preferred embodiment of the ’552 Patent employs11.

symbolic references. As shown in Figure 1, the references have been replaced by

index numbers (1, 2, etc.). The actual destination of such a reference comes from

consulting the label table L1, e.g., the first reference in P′1 is 2. Because entry 5
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of L1 has the value 2, this reference is referring to entry 5 of table P′1. Thus, the

value 2 symbolizes 5 and table P′1 contains symbolic code.

2.2 Modified Data Tables and Programs

Walker construes “modified old and new programs and data tables” as “[a]12.

version of the actual program or data table in its original executable form, with

certain portions replaced.” [Walker, Exhibit D–1] but this is vague and impre-

cise and inconsistent with the ’552 patent, which does not require these to be “in

original form.”

Again, Walker seems to be relying on the paragraph in the ’552 file history13.

I mentioned above, but this paragraph is only referring to the initial input to the

invention and not to any intermediate steps.

His restriction of “in executable form” is vague and imprecise. During his14.

deposition, Walker switched to the phrase “in executable format” and said that

this meant it “had to look like an executable program”:

Q. So it’s your view that the modified program or the modified data

table, depending on which claim we’re looking at—in either case, that

thing that is the modified program or modified data table has to also

be executable?

A. No, I didn’t say that. I said it had to be in executable format. Had to

look like an executable program, just as the examples we were going

through before the lunch break were in executable program. [sic]

Q. So you—it is not your opinion that the modified versions have to

actually be executable?

A. That’s correct.

Q. But they have to be in executable format?

A. Right. [Walker Deposition, p. 116]

I find Walker’s explanation that something “had to look like an executable15.
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program” unhelpful since “look” usually refers to something’s appearance and

data structures do not “look” like anything until someone chooses to draw them

in a particular way.

In any case “in executable form” or “in executable format” is so vague that just16.

about anything can be argued to be (or not to be) in executable form, rendering

the construction effectively meaningless to a Computer Scientist.

2.3 Invariant References

Walker’s construction for “invariant references” as “excluded from the differ-17.

ence result” [Walker, Exhibit D–1] is overly narrow, although Courgette would

still infringe under this construction.

Walker and I agree that one of the central observations in the ’552 Patent is18.

that a large number of differences between two versions of an executable program

are due to changes in the values of references due to the insertion or deletion of

entries (e.g., code):

[A]pplying a known [...] file difference utility to an old program and

a new program normally results in a relatively large amount of data,

even if the modifications that were introduced to the old program [...]

are very few. The present invention is based on the observation that

the relatively large size of the difference result stems from the al-

terations of reference in reference entries as a result of other newly

inserted entries (and/or entries that were deleted). [’552 Patent, 3:27–

35]

It then explains how “invariant references” are the key trick in ameliorating19.

this problem:

On the basis of this observation, the invention aims at generating a

modified old program and a modified new program, wherein the dif-

ference in references in corresponding entries in said new and old

programs [...] will be reflected as invariant entries in the modified old
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and new programs. The net effect is that [these] invariant reference

entries [...] will not appear in the difference result [...] [’552 Patent,

3:36–47, emphasis mine]

However, from this, Walker narrows his construction of “invariant references”20.

to be “[v]alues made the same in the modified old and new programs (or data

tables) for corresponding reference entries so that the reference addresses are ex-

cluded from the difference result” [Walker, Exhibit D–1].

While it is true that the reference addresses for such invariant references are21.

excluded from the difference result in the preferred embodiment of the ’552 Patent,

such a narrow construction makes no sense. If the applicant had intended “invari-

ant references” to mean this, I would expect him to have defined them as such in

the glossary or added additional language to the claims.

Instead, the applicant wrote the above paragraph to explain why invariant ref-22.

erences are useful in the context of his invention, not to limit the scope of his

invention.

To emphasize this point further, the applicant explains earlier in the file his-23.

tory that with existing binary difference utilities, “to simply reflect all the changed

references when computing a difference, one must include them all,” but that in

his invention, ”such a need is reduced or eliminated,” [’552 file history, Red-

Bend0000150] i.e., the references are not always excluded.

2.4 Executable Program

I did not feel it was necessary to construe the term “executable program” in24.

my first declaration because I did not believe it would be in dispute, but have since

found issue with the construction Walker proposes in his declaration.

Walker construes “executable program” to be25.

A program comprising machine language instructions and correspond-

ing bytes of data used by the program that are ready to be run on a

computer, excluding source or other symbolic code. [Walker, Exhibit

D–1]
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The “excluding source” clause is redundant; source never comprises machine26.

language instructions, so to say this is unnecessary.

More troubling, executables often do include symbolic code, including those27.

in Microsoft’s Portable Executable file format (see §3.1). Thus to construe “exe-

cutable program” as “excluding other symbolic code” would contradict the stan-

dard definition of “executable” adopted by the industry and contradicts the de-

scription in the ’552 patent of “a relocation table attached to executable programs”

[’552 Patent, 2:66], which I would consider to contain symbolic code.

3 The Operation of Courgette

When I prepared my first declaration, I relied partially on the source, but pri-28.

marily on some Google webpages3 explaining the operation of Courgette, which

indicated Courgette met the limitations of the relevant claims and thus infringed.

My assumption was that these descriptions were accurate, and this has proved cor-

rect: while analyzing the source code and its operation, I have found nothing that

contradicts these web pages. However, because Google raised many objections

and Walker’s description of Courgette contains numerous errors and erroneous

statements, I describe Courgette’s operation in detail here.

3.1 The Windows Portable Executable Format

Courgette can accept, but does not require, input programs in Microsoft’s29.

Portable Executable (“PE”) format. When other files are supplied, Courgette re-

verts to using a variant of the BSDiff algorithm to produce patches.

A PE file contains different kinds of data. Perhaps most important are mem-30.

ory images for a program’s code and data, which can often be mapped directly

into memory, i.e., without modification. Pietrek4 explains “[l]oading [a PE file]

3http://blog.chromium.org/2009/07/smaller-is-faster-and-safer-too.html, credited to Stephen

Adams, and http://dev.chromium.org/developers/design-documents/software-updates-courgette
4I take many of these details from Matt Pietrek, An In-Depth Look into the Win32 Portable

Executable File Format, Microsoft’s MSDN Magazine, February and March 2002.
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executable into memory [...] is primarily a matter of mapping certain ranges of a

PE file into the address space.”

But a typical PE file contains data in addition to an in-memory image of the31.

code. In particular, it contains multiple sections: the “.text” section contains exe-

cutable code; “.rdata” holds read-only data, such as strings; “.data” contains ini-

tialized data that can be written, such as the initial contents of arrays; and the

“.reloc” section contains “base relocations”: instructions for modifying the code

should it need to be loaded at a different address.

The base relocation section amounts to a list of numbers that identify all the32.

absolute references in the code. The loader, if it needs to relocate the code, goes

to the point in the code given by each base relocation entry and, to the 32-bit

reference address it finds there, adds an offset equal to the difference between the

desired destination of the code and its default destination. The loader ignores the

base relocation section if the code is to be loaded at its default address.

A PE file contains many symbols.5 The section names are strings (e.g., “text”)33.

and the Imports Table consists of a list of imported executables (typically other PE

files—dynamically linked libraries or “DLLs”) and for each imported executable,

a list of symbols (names) to be imported.

3.2 Disassembly

Walker and I agree that “Courgette begins by inputting an old and new pro-34.

gram and then parses the programs to create unique data structures apparently

developed by Google to represent each program.” [Walker, ¶ 36]. Courgette rep-

resents both the old and new programs first as AssemblyProgram objects (defined

in assembly_program.h), which are generated by the ParseWin32X86PE method6.

Figure 2 shows a comment in the Courgette source explaining how this data struc-

5Oddly, under Walker’s definition of “executable program,” which “excludes source or other

symbolic code,” the Windows Portable Executable file format would not be executable.
6ParseWin32X86PE [disassembler.cc:404] calls Disassemble [disassembler.cc:68], which calls

ParseAbs32Relocs [disassembler.cc:89], ParseRel32RelocsFromSections [disassembler.cc:107],

and finally ParseFile [disassembler.cc:232].
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ture is used.

An AssemblyProgram object contains a vector of simple instructions, which I35.

list in Figure 3, and two hash tables7linking addresses in the code to Label objects,

which consist of an address (reference) and an index value. (Figure 2)

The disassembly step identifies two types of references: “Abs32,” which are36.

32-bit absolute memory addresses, and “Rel32,” which are 32-bit numbers which

refer to memory addresses relative to the program counter of the processor.

Walker and I agree that “Courgette recognizes all absolute addresses.” [Walker,37.

¶ 34] It does so by interpreting the contents of base relocation section as addresses

to every absolute 32-bit reference in the code segment.8

Courgette uses a heuristic to identify the Rel32 references—see Figure 4.38.

These references are not part of the base relocation table because they do not need

to change if the code is relocated; if the code is relocated, the program counter is

changed accordingly and the relative references remain valid.

This is a heuristic because it may mis-identify a piece of data as a Rel32. Be-39.

cause it does not attempt to determine whether the bytes it is considering are at

the beginning of an instruction, it may identify bytes within an instruction that

happen to follow these patterns. I feel this is a reasonable heuristic: such mis-

identification may make the final difference result a little larger, but it is very dif-

ficult to identify which bytes start instructions.

3.3 The Adjustment Step

Once Courgette parses the old and new programs, their indexes are re-arranged940.

to make them similar using a so-called “adjustment method” (Figure 12). A com-

7A hash table is a kind of dictionary: it provides a way to connect “words” to “definitions”

(here, addresses and labels).
8To obtain the location of each “Abs32” reference, ParseAbs32Relocs [disassembler.cc:89]

calls ParseRelocs [image_info.cc:348], which returns the base relocation section as vector of ad-

dresses.
9technically permuted
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// A Label is a symbolic reference to an address. Unlike a conventional
// assembly language, we always know the address. The address will later be
// stored in a table and the Label will be replaced with the index into the
// table.
class Label {
public:
static const int kNoIndex = -1;
Label() : rva_(0), index_(kNoIndex) {}
explicit Label(RVA rva) : rva_(rva), index_(kNoIndex) {}
RVA rva_; // Address referred to by the label.
int index_; // Index of address in address table, kNoIndex until assigned.

};

// An AssemblyProgram is the result of disassembling an executable file.
//
// * The disassembler creates labels in the AssemblyProgram and emits
// ’Instructions’.
// * The disassembler then calls DefaultAssignIndexes to assign
// addresses to positions in the address tables.
// * [Optional step]
// * At this point the AssemblyProgram can be converted into an
// EncodedProgram and serialized to an output stream.
// * Later, the EncodedProgram can be deserialized and assembled into
// the original file.
//
// The optional step is to modify the AssemblyProgram. One form of modification
// is to assign indexes in such a way as to make the EncodedProgram for this
// AssemblyProgram look more like the EncodedProgram for some other
// AssemblyProgram. The modification process should call UnassignIndexes, do
// its own assignment, and then call AssignRemainingIndexes to ensure all
// indexes are assigned.
class AssemblyProgram {
// [method declarations]

private:
uint64 image_base_; // Desired or mandated base address of image.

std::vector<Instruction*> instructions_; // All the instructions in program.

// These are lookup maps to find the label associated with a given address.
RVAToLabel rel32_labels_;
RVAToLabel abs32_labels_;

};

Figure 2: Excerpts from assembly_program.h (Goog–00028077–79)
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Origin <rva> sets the current disassembly address

MakeRelocs generates a base relocation table

Byte <value> emits a single byte literal

Rel32 <label> emits a Rel32-encoded reference from a Label object

Abs32 <label> emits an Abs32-encoded reference from a Label object

Figure 3: Instructions in an AssemblyProgram [assembly_program.cc]

ment in the Courgette code explains the purpose of this: see Figure 5. Once a PE

file is parsed, Disassemble [disassembler.cc:81] calls DefaultAssignIndexes [as-

sembly_program.cc:187] to assign indexes to labels (references in the program)

in a simple increasing order.

This simple-minded mechanism for assigning index numbers is correct but41.

may produce a larger-than-needed difference result because indexes that should

correspond between the two programs may not. Adams recognized this and de-

veloped at least two adjustment methods to try to fix this problem.

Exhibit G and Exhibit H illustrate the effect of the adjustment step. Com-42.

pare the index streams of the three programs: those in the old program and new

program before adjustment have some similarities, but differ in many places. I

highlighted in yellow the index values that differ. After adjustment, however, the

streams in the new program are much closer to those in the old program.

Exhibit I, which I generated from Walker’s exemplar, shows the effect of the43.

adjustment step even more clearly: every one of the indexes shown in the “Rel32”

stream is different in the new program before adjustment; after adjustment, only

two still differ. These probably do not correspond.

The Courgette source actually contains three adjustment methods: a “null”44.

method, which leave the indexes unchanged [adjustment_method.cc:38]; a “trie”

method, which performs some sort of graph matching [adjustment_method.cc:582];

15



// Heuristic discovery of rel32 locations in instruction stream: are the

// next few bytes the start of an instruction containing a rel32

// addressing mode?

const uint8* rel32 = NULL;

if (p + 5 < end_pointer) {

if (*p == 0xE8 || *p == 0xE9) { // jmp rel32 and call rel32

rel32 = p + 1;

}

}

if (p + 6 < end_pointer) {

if (*p == 0x0F && (*(p+1) & 0xF0) == 0x80) { // Jcc long form

if (p[1] != 0x8A && p[1] != 0x8B) // JPE/JPO unlikely

rel32 = p + 2;

}

}

Figure 4: Courgette’s algorithm for locating rel32 references in the code. It identi-

fies sixteen patterns: E8, E9, 0F80,..., 0F89, 0F8C,..., 0F8F. [disassembler.cc:182–

198] These are the opcodes for CALL, JMP, and Jcc, each with 32- or 16-bit

relative offsets—see the Intel opcode map (Exhibit C) and Figure 15.

and a “shingle” method [adjustment_method_2.cc:1250], which is the method

used by default. In my declaration, I had mis-identified the “trie” method as the

one in use. Both the “trie” and “shingle” methods attempt to do the same thing

(both adjustment_method.cc and adjustment_method_2.cc contain the comment

in Figure 5) and it is clear the code is designed to make it easy to switch among

them (Figure 6).
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// The purpose of adjustment is to assign indexes to Labels of a program ’p’ to

// make the sequence of indexes similar to a ’model’ program ’m’. Labels

// themselves don’t have enough information to do this job, so we work with a

// LabelInfo surrogate for each label.

Figure 5: A comment explaining the purpose of Courgette’s adjustment step. [ap-

pears twice: adjustment_method.cc:46 and adjustment_method_2.cc:187]

3.4 The Encoded Program

Courgette transforms each AssemblyProgram object10 into an EncodedPro-45.

gram,11 which consists of eight vectors. Walker describes this in ¶ 40 of his

declaration and gets it largely correct. An EncodedProgram object consists pri-

marily of eight vectors that, together, are ultimately used to reconstruct the vector

of executable code bytes and the base relocation table. I describe the contents of

these vectors in Figure 11.

The two address vectors are created by iterating through both hash tables of46.

labels in a AssemblyProgram object. For each label (which consists of an address

and an index) the procedure inserts the address into the vector at the location given

by its index. [assembly_program.cc:306–307]

To create the other vectors, the Encode method iterates through the Assem-47.

blyProgram’s instructions [assembly_program.cc:310–342], which have a nearly

one-to-one correspondence to those in an EncodedProgram. The one excep-

tion: sequences of Byte instructions are coalesced into single Copy instructions.

[encoded_program.cc:185–217]

3.4.1 Experiments

To understand the contents of these vectors, I created two versions of a small48.

10The old program is encoded first, then the new program is adjusted, and finally the adjusted

new program is encoded [win32_x86_generator.h:77–99].
11Encode [assembly_program.cc] calls Encode [assembly_program.cc:302], which does the ac-

tual conversion.
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// Factory methods for making adjusters.

// Returns the adjustment method used in production.

static AdjustmentMethod* MakeProductionAdjustmentMethod() {

return MakeShingleAdjustmentMethod();

}

// Returns and adjustment method that makes no adjustments.

static AdjustmentMethod* MakeNullAdjustmentMethod();

// Returns the original adjustment method.

static AdjustmentMethod* MakeTrieAdjustmentMethod();

// Returns the new shingle tiling adjustment method.

static AdjustmentMethod* MakeShingleAdjustmentMethod();

Figure 6: Code that selects an adjustment method. The author made it easy to

select among them by changing what MakeProductionAdjustmentMethod calls.

program (Exhibit E), compiled them into DLLs using Microsoft’s Visual Studio

2008 Express, and ran Courgette on the resulting PE files. To simplify the exam-

ple, I made only a small change: the insertion of a single “printf” call in the baz()

function. Exhibit F shows the result of disassembling the old and new versions of

the baz() function.12 The code for the new program makes one additional call to

printf function.

Exhibit G shows an excerpt from the beginning of the encoded program vec-49.

tors for the old version of this program, the new version of the program before

adjustment, and the new version of the program after adjustment.13 In these ta-

12I used a version of the freely available objdump program adapted to work with PE files and

manually added comments.
13To obtain these, I added a vector printing function patterned after the AssembleTo function

[encoded_program.cc:356–482]. I added an additional encode step to Courgette to produce the

“new program before adjustment” vectors; Courgette normally does not bother to encode this
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// Write the base-128 digits in little-endian order. All except the last digit

// have the high bit set to indicate more digits.

inline uint8* Varint::Encode32(uint8* destination, uint32 value) {

while (value >= 128) {

*(destination++) = value | 128;

value = value >> 7;

}

*(destination++) = value;

return destination;

}

Figure 7: Courgette uses this algorithm to represent 32-bit numbers in fewer bytes.

E.g., the 32-bit number “00002318” is represented as “4698,” saving two bytes.

[streams.cc:115]

bles, the “RVA” column indicates where the bytes will be placed in memory (it is

not a vector); the “OP” column shows abbreviated opcodes; the “Bytes” column

shows either bytes from the copy_bytes vector (“..” indicates bytes were elided

for clarity), or bytes that would be generated by the Abs32 or Rel32 operations

(in parentheses). Thus, the Bytes column lists all the data forming the executable

program code. The “A32 Ind” and “R32 Ind” columns show the indexes in the

abs32_ix and rel32_ix vectors, and “Origin” shows the addresses in the origins

vector. Not shown in these tables for clarity are the two address vectors; their

effect appears in parentheses in the “Bytes” column.

I also reproduced Walker’s experiment on vectors; Exhibit I shows an excerpt50.

from the beginning of the vectors for the example program in Walker’s declaration.

The “Old Program” vectors in Exhibit I correspond to those in Walker’s Exhibit K,

although I print the origin numbers in hexadecimal.

Perhaps to de-emphasize the effect of the adjustment step, Walker only showed51.

vectors for one version of the program; Courgette actually produces two sets of

vectors internally: one for the old program and one for the adjusted new pro-

version of the program; the adjustment step works on its antecedent.
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// Serializes a vector, using delta coding followed by Varint32 coding.

void WriteU32Delta(const std::vector<uint32>& set, SinkStream* buffer) {

size_t count = set.size();

buffer->WriteVarint32(count);

uint32 prev = 0;

for (size_t i = 0; i < count; ++i) {

uint32 current = set[i];

uint32 delta = current - prev;

buffer->WriteVarint32(delta);

prev = current;

}

}

Figure 8: Courgette uses this algorithm to delta-encode the Abs32 and Rel32

address streams. As a result, only the first address ever appears verbatim in the

output stream. [encoded_program.cc]

42 43 90 93 103

42 1 47 3 10

Figure 9: An example of delta encoding, which Courgette uses to encode the

two address streams in the encoded program. The sequence of numbers above

the line is transformed into the sequence below the line by taking the difference

between each pair. When the input sequence is closely spaced, the deltas tend

to be small. Note that only the initial “42” above the line appears in the delta-

encoded sequence.
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// Binary assembly language operations.

enum OP {

ORIGIN, // ORIGIN <rva> - set address for subsequent assembly.

COPY, // COPY <count> <bytes> - copy bytes to output.

COPY1, // COPY1 <byte> - same as COPY 1 <byte>.

REL32, // REL32 <index> - emit rel32 encoded reference to address at

// address table offset <index>

ABS32, // ABS32 <index> - emit abs32 encoded reference to address at

// address table offset <index>

MAKE_BASE_RELOCATION_TABLE, // Emit base relocation table blocks.

OP_LAST

};

// Binary assembly language tables.

uint64 image_base_;

std::vector<RVA> rel32_rva_;

std::vector<RVA> abs32_rva_;

std::vector<OP> ops_;

std::vector<RVA> origins_;

std::vector<int> copy_counts_;

std::vector<uint8> copy_bytes_;

std::vector<uint32> rel32_ix_;

std::vector<uint32> abs32_ix_;

// Table of the addresses containing abs32 relocations; computed during

// assembly, used to generate base relocation table.

std::vector<uint32> abs32_relocs_;

Figure 10: Highlights from EncodedProgram showing definitions for the opcodes

and the eight streams. [encoded_program.h:57–88]
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ops : a sequence of instructions for reconstructing the program’s code stream

ORIGIN sets the current code generation address to the next address in the
origin vector

COPY takes the next count from the copy_counts vector and copy that
many bytes from the copy_bytes vector into the code.

COPY1 copies a single byte from the copy_bytes vector into the code.

REL32 takes the next index from the rel32_ix vector, call it i, and uses it to
fetch the ith address from the rel32_rva vector. It subtracts this from
the current RVA plus four and writes the four-byte result into the code
vector. [encoded_program.cc:414]

ABS32 takes the next index from the abs32_ix vector, call it i, and uses it
to fetch the ith address from the abs32_rva vector. It adds the current
value of image_base to this address and writes the four-byte result into
the code.

MAKE_BASE_RELOCATION_TABLE reminds Courgette to generate
a base relocation table

OP_LAST terminates the reconstruction process

copy_counts : indicates to COPY how many bytes to copy

copy_bytes : holds the bytes for COPY and COPY1 to copy into the code

rel32_ix : from which REL32 takes indexes

abs32_ix : from which ABS32 takes indexes

rel32_rva : from which REL32 takes addresses based on an index. These are
unique addresses within the program (i.e., no duplicates).

abs32_rva : from which ABS32 takes addresses based on an index. These are
unique addresses within the program (i.e., no duplicates).

origins : indicates to ORIGIN the starting address of later code

Figure 11: A description of the vectors in the EncodedProgram object
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// Adjust is called in win32_x86_generator.h:91

Status adjust_status = Adjust(*old_program, new_program);

// Adjust is defined in adjustment_method.cc:698

Status Adjust(const AssemblyProgram& model, AssemblyProgram* program) {

AdjustmentMethod* method = AdjustmentMethod::MakeProductionAdjustmentMethod();

bool ok = method->Adjust(model, program);

method->Destroy();

if (ok)

return C_OK;

else

return C_ADJUSTMENT_FAILED;

}

Figure 12: Courgette performs the adjustment step by supplying both the old and

new programs to an adjustment method.

gram.14

3.5 Delta Encoding and BSDiff

Once Courgette has parsed, adjusted, and encoded the old and new programs,52.

it writes the encoded old and new programs to streams and runs the BSDiff al-

gorithm on them.15 The Courgette source tree includes a modified copy of the

BSDiff source.

Along with other data, Courgette packs the eight vectors from the two encoded53.

programs into single stream to be passed to the BSDiff algorithm. It treats each of

the eight vectors slightly differently, according to their type. Most are encoded as

a count followed by numbers; both the count and following numbers are expressed

as a sequence of base-128 digits encoded in bytes whose high bit is set if there are

14The old program is encoded first [win32_x86_generator.h:77], then the adjusted new program

[win32_x86_generator.h:99].
15The BSDiff algorithm is described in an unpublished paper: Colin Percival, Naïve differences

of executable code, http://www.daemonology.net/bsdiff/, 2003.
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more digits. Figure 7 shows the code.

Courgette treats the address vectors differently: before using the above-mentioned54.

byte encoding, it delta-encodes the addresses, meaning that it only stores the dif-

ferences between numbers rather than the numbers themselves. Figure 8 shows

this code; Figure 9 shows an example.

4 Courgette Infringes the ’552 Patent

I find that Google’s use of Courgette infringes the ’552 Patent literally, and if55.

not literally, by equivalents, because it contains all the limitations of the relevant

claims (e.g., Claim 42, which I reproduce in Figure 13). That is, I find it generates

a compact difference result between data tables that contain reference entries that

refer to other entries in the table, generates modified and old and new data tables

in which substantially each reference entry in the old table that is different because

of delete/insert modifications is invariant, and that it finally generates a compact

difference result using the old and new tables.

My understanding is that one can infringe a Patent’s claims either literally or56.

by equivalents. Literal infringement requires that the accused system or method

contain all the limitations of the claim exactly or inherently. My understanding is

that a claim is infringed under the doctrine of equivalents if the accused system

or method contains only insubstantial changes from the claims’ limitations and/or

performs substantially the same function, in substantially the same way, to achieve

substantially the same result.

In this section, I present one way Google’s use of Courgette contains the lim-57.

itations of the claim. My understanding is that infringement requires at least one

such finding, but not necessarily only one.

4.1 Executable Programs; Compact Different Results; Reference Entries

I do not believe there is a dispute over whether Courgette contains the lim-58.

itations of the preamble (“A method for generating...”). Nevertheless, I present

my reasoning below. First, Walker and I agree that Courgette generates compact

difference results between executable programs:
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42. A method for generating a compact difference result between an old data

table and a new data table; each data table including reference entries that contain

reference that refer to other entries in the data table; the method comprising the

steps of:

(a) generating a modified old data table utilizing at least said old data table;

(b) generating a modified new data table utilizing at least said new data table,

said modified old data table and modified new data table have at least the

following characteristics:

(i) substantially each reference in an entry in said old data table that is

different than [the] corresponding entry in said new data table due to

delete/insert modifications that form part of the transition between said

old data table and new data table are reflected as invariant references

in the corresponding entries in said modified old and modified new

data tables;

(c) generating said compact difference result utilizing at least said modified new

data table and modified old data table.

Figure 13: (Independent) Claim 42 of the ’552 Patent. The other relevant claims

differ by using of “program” for “data table” and “system” for “method.”
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It is undisputed that the Courgette code as it exists today creates com-

pact difference results only16 for executable programs written for the

Intel x86 instruction set and stored in the Windows PE executable file

format. [Walker, ¶ 74]

Walker also does not appear to dispute that the data tables contain references59.

that refer to other entries in the data tables.

Generally, machine instructions of the type described by Dr. Edwards

may include several types of memory references. One type, explicitly

discussed by Dr. Edwards is references to other executable instruc-

tions. [Walker, ¶ 13]

In particular, Courgette recognizes all absolute addresses but only cer-

tain relative addresses that are used as references. [Walker, ¶ 34]

4.2 Modified Old and New Data Tables

The ’552 Patent’s limitation on “generating a modified old data table utilizing60.

at least said data table” is deliberately broad and can be found throughout Cour-

gette (just about any data derived from the old PE file would qualify). However, I

will say for this analysis that the “AssemblyProgram” version of the old program,

which I described in §3.2, is the modified old data table: it is derived from the old

PE file.

Similarly, for this section, I say the modified new data table is the “Assem-61.

blyProgram” version of the new program after adjustment. It is derived by taking

the parsed version of the new PE file and adjusting it (Figure 12). Thus, it is

generated “utilizing at least said new data table.”

4.3 “Substantially Each Reference”

Walker argues that Courgette does not consider substantially each relevant62.

16Actually it is disputed: “only” is incorrect here. When given non-PE files, Courgette com-

pares them using BSDiff. Since BSDiff produces smaller difference results than using techniques

available before the ’552 patent, it can be said to produce “compact difference results.”
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...each reference in an entry in said old data table...

...that is different than [the] corresponding entry in said new data table...

Not substantial s
...due to delete/insert modifications...

Figure 14: A visualization of the limitations of the “substantially each reference...”

sentence of Claim 42 of the ’552 Patent (the other relevant claims have equivalent

language). For something to infringe, all except for some not “substantial” num-

ber of references that are different “due to delete/insert modifications” must be

“reflected as invariant.” The dashed rectangle represents all references “reflected

as invariant” in the old and new tables. Provided this is true, the limitations re-

main met regardless of how many additional references, if any, are reflected (the

portion of the dashed rectangle outside the innermost box).

reference as defined in part (b) (i) of the relevant claims. But I find Courgette does

meet this limitation for a wide variety of reasons, including my understanding

of “substantially” as an engineering term, a detailed analysis of the source code

that found the few references Courgette leaves undetected are rarely relevant, and

finally experiments that quantify how rarely Courgette leaves relevant references

undetected.

First, I find it helpful to draw a diagram to illustrate the limitations of this63.

60-word sentence fragment. Its objective is to precisely specify which references

need to be “reflected as invariant” in the modified old and new data tables. I

drew the diagram in Figure 14 to illustrate how it does this. First, it is placing a

constraint only on references in the old data table; the outermost box represents

such references.
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Next, it says to only consider those “that [are] different than [the] correspond-64.

ing entry in said new data table,” i.e., if the corresponding entries are not different

(the same), they do not need to be “reflected as invariant references.” The second-

innermost box represents this set.

Finally, it says to only consider those that are different “due to delete/insert65.

modifications that form part of the transition between said old data table and new

data table.” The innermost box—a subset of the other two boxes—represents this.

Thus, to meet these limitations, Courgette must “reflect as invariant” “sub-66.

stantially each” of the references in the innermost box. To meet these limitations,

Courgette must do at least this, but it may do more than this. In particular, it is free

to “reflect as invariant” as many references outside the innermost box in Figure 14

as it wishes and still meet the limitations. I drew the dashed rectangle in Figure 14

larger than the innermost box to illustrate this.

4.3.1 “Due to Delete/Insert Modifications”

Walker reads “due to delete/insert modifications” and erroneously concludes67.

[T]he above claim element17 requires looking for any references that

are different due to insert/delete modifications. [Walker, ¶ 47]

Had the applicant of the ’552 patent meant an invention must look for such68.

references, he would have included this as an explicit limitation. I would have

expected much different language in the claims, perhaps a step that “identifies

differences due to delete/insert modifications.” The ’552 patent includes no such

language in any form, and for good reason. The applicant recognized that reducing

differences due to delete/insert modifications was at the center of the invention,

but did not limit his claims to a particular mechanism for identifying them, if at

all.

4.3.2 “Substantially Each” as an Engineering Term

Whether Courgette meets the limitations of “substantially each,” hinges in part69.

17He is referring to part (b) (i), which begins “substantially each reference...” [Walker, ¶ 45]
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on the phrase itself, which the applicant surely chose because it was imprecise.18

I consider it highly relevant that he chose to use it instead of a precise term such

as “all,” “half,” or “90%.” If any of those captured the essence of the invention,

no doubt the application would have used them.

While in certain algorithms it is necessary to consider exactly all of something70.

to be considered “correct,” other algorithms are free to over- or under-count things

without affecting the correctness of the algorithm; the quality of the result may

suffer. For example, if a spelling algorithm ugnored fhe wirst retter uf iach vord,

you would consider it simply incorrect. However, if an algorithm designed to

produce small diffs produced 101 still-correct bytes instead of the ideal 100-byte

result, but did so in 1/10th the time, you would probably consider that acceptable.

Software engineers make such tradeoffs all the time. Algorithms usually have71.

separate correctness and quality dimensions; programmers strive to produce cor-

rect algorithms that produce the highest-quality results within the available re-

sources such as programmer or processor time. Usually a programmer will reach

a point of diminishing returns, where additional effort can still improve the algo-

rithm, but the effort required is not worth the slight improvement it would produce.

Differencing algorithms such as that described in the ’552 patent have this72.

character: while they ultimately must produce a byte-for-byte identical new pro-

gram, they have many choices about exactly which diff to produce. Thus, I believe

the author of the ’552 Patent had in mind something like “consider enough refer-

ences to produce a good-quality result, but do not waste time trying to identify all

of them” when he wrote “substantially each.”

The author of Courgette also appears to have understood such tradeoffs. He73.

calls his Rel32 identification algorithm “heuristic”19 (Figure 4)

18I also consider it relevant that the patent examiner could have objected to such language but

did not.
19In Computer Science, a heuristic produces good results in practice but is not mathematically

guaranteed to produce the best possible.
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74.

4.3.3 Courgette Considers Most Instructions With References

As I mentioned above, I do not believe counting the number of instructions75.

in the instruction set whose references Courgette treats as invariant is the right

metric for evaluating the limitations of “substantially each,” but Walker does. Be-

sides being simply the wrong thing to do, Walker is sloppy in his analysis and

accounting.

The Intel architecture’s instruction set is perhaps the largest ever produced.76.

Walker appears to have been intimidated by it:

Q. What did you use to look up these [Intel] instruction types?

A. Let’s see. So there’s—I looked at a listing on the Web of the—

that listed the instructions. You know, it started for the—it was a

Wikipedia article.

Q. Is there some sort of definitive place one could go to identify what

the instructions are in the x86 instruction set?

A. Well, I would have thought that the—Intel would provide a refer-

ence, but the Intel reference for this is 300 pages or something20 long,

and it’s pretty intractable to come up with a list of instructions, so I

used these alternative sources. [Walker deposition, p. 133]

I attach as Exhibit C the “opcode map” Intel provides as a guide for decoding77.

instructions. Intel uses variable-length instructions that can range from one to at

20The definitive reference from Intel, the Intel Architecture Software Developer’s Manual con-

sists of three volumes. The second, which describes the instruction set, is actually 854 pages.
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least fifteen bytes. While a complete discussion of Intel instruction encoding is

outside the scope of this document, it is worth understanding this table.

The core of most Intel instructions is a one- or two-byte opcode; the opcode78.

map in Exhibit C is the key to interpreting these. For example, to decode an

instruction with the opcode “E8,” go to the the row marked “E” on the One-byte

Opcode Map and find the column marked “8.” The cell there is labeled “CALL

Jv,” which means it is a procedure call that contains a “relative offset to be added

to the instruction pointer register” (p. A–2 of Exhibit C) that can be a “[w]ord

or doubleword, depending on operand-size attribute” (p. A–3). In most PE files,

the operand size is 32 bits by default; the operand size can be set to 16 bits if the

opcode is preceded by the operand size prefix “66.”

First, Walker and I agree that “Courgette recognizes all absolute addresses”79.

[Walker, ¶ 34] so Courgette considers all data instructions that contain absolute

references. No data instruction in the Intel architecture uses an instruction-pointer-

relative addressing mode, so Courgette considers all the relevant data instructions.

Many control-transfer instructions contain relative references that refer to other80.

instructions and thus are at issue when considering the limitations of the “substan-

tially each reference” language. I list these instructions and how Courgette treats

them in Figure 15.

From Figure 15, Courgette considers fourteen distinct “Jcc long” instructions.81.

In his declaration Walker miscounts them: “Jcc (conditional jump) includes ap-

proximately 30 sub instructions of which Courgette recognizes most but not all”

[Walker, footnote 1 in ¶ 34] but corrected his understanding during his deposition

with a little help:

Q. Where did the—you get the number approximately 30 sub instruc-

tions from in that footnote?

A. I looked up a list of the Jcc instructions and I counted them.

[...]

Q. So [the code in disassembler.cc] would detect 0F80 through [0F8F]?
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Instruction Opcodes Courgette’s Treatment

Jcc short 70–7F Not considered; rarely change due to in-

sert/delete modifications.

Jcc long 0F80–0F8F Considers all but JPE (0F8A) and JPO

(0F8B) (Figure 4).

CALL E8 Considered (Figure 4).

JMP near E9 Considered (Figure 4).

JMP short EB Not considered; rarely changes.

LOOP/E/NE short E0–E2 Not considered; rarely change.

JCXZ short E3 Not considered; rarely changes.

Figure 15: Control transfer instructions in the Intel Architecture that contain rel-

ative references. Courgette considers all but those that rarely change due to in-

sert/delete operations.

A. Yes.

Q. How many opcodes would that be?

A. That would be 16.

Q. Okay. And then it excludes two?

A. Excludes two.

Q. So then it would detect 14 opcodes?

A. Yes, but we don’t—there’s—that’s correct. [Walker deposition,

pp. 136,138]

Courgette deliberately ignores the JPE and JPO instructions (0F8A and 0F8B)82.

because they occur very rarely in compiler-generated code. Courgette’s author

acknowledges as much in the comment in Figure 4, and Walker agreed with it

during his deposition:
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Q. How often does JPE and JPO appear in a typical Windows exe-

cutable file compiled from C?

A. I think the comment is it’s unlikely, and I agree with the comment.

[Walker Deposition, p. 136]

JPE and JPO are “conditional branch on (odd or even) parity21” and cannot83.

be expressed directly in any high-level language I know of, including C and C++.

They are accessible from assembly language, but such usage is rare, generally re-

stricted to libraries, and probably would rarely change “due to delete/insert modi-

fications.”

Courgette does ignore short jumps (70–7F, EB), LOOP instructions (E0–E2),84.

and JCXZ (E3), but does so while still reflecting as invariant “substantially each

reference...due to delete/insert modifications” because the offsets in these instruc-

tions rarely change due to delete/insert modifications.

The opcodes that Courgette ignores each use a (signed) 8-bit displacement as a85.

reference, meaning that each of these instructions is restricted to only transferring

control forward 127 bytes or backward 128 bytes: at most about 127 instructions,

and usually far fewer. Compilers generally use such short-distance control transfer

instructions for loops and if statements, provided the code within these statements

consumes fewer than 127 bytes.

Such short relative references only change if an delete/insert operation occurs86.

between the instruction and its target and thus do not tend to form a substantial

fraction of all the references that change due to delete/insert modifications. In

particular, they do not usually exhibit the behavior identified in the ’552 Patent as

being the central problem:

In fact, insertion of only one new entry may result in the plurality

of altered reference entries which will naturally be reflected in the

21The parity of a machine word is the number of 1’s it contains. Parity tests are sometimes used

to verify the integrity of data.
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difference result and obviously will inflate its volume. [’552 patent,

2:6–9]

Only when a group of short relative reference entries send control across the87.

same insertion/deletion point can a single such point alter a plurality of references.

While this can happen, the number of relative references that are affected tends

to be small (in normal code, I would expect at most ten short relative references

to change due to a single insert/delete operation; the pathological worst case22 is

only about 128) compared to the total number of references in a large program (in

the 100s of thousands).

In other words, short relative references behave very differently than absolute88.

references or even long-range relative references. A single insert/delete can affect

as many as all the absolute or long-range relative references, half of all of them

in the program on average (this is certainly substantial); a single insert/delete usu-

ally changes ten or fewer short-range relative references (which would not be a

substantial portion of the 100s of thousands of references in a large program).23

I believe all of this explains why Adams did not consider Rel8 references in89.

his code: he did not feel it was worth the effort to identify and handle them. It

would have been technically straightforward for him to introduce an additional

“Rel8” stream in the encoded program and identify them using a heuristic dis-

covery procedure similar to his algorithm for identifying Rel32 references. I can

only assume he understood this was possible yet not worth his time because the

improvement would not have been substantial.

22This occurs when you insert a byte in the middle of a (nonsensical) sequence of short branch

instructions that all send control across the insertion point. All of these would have to change,

but there are at most 128 of them because that all that could “fit” within the space of an 8-bit

displacement. I would never expect to see such a code sequence in a real program.
23In fact, the impact of of short relative references relative to long-range references shrinks as

the program grows because delete/insert operations can affect proportionately fewer of the short

relative references.
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4.3.4 Experiments Suggest Very Few Rel8 References Go Undetected

As described above, I believe the (Rel8) relative references Courgette does90.

not detect do not constitute a substantial portion of the references that are dif-

ferent “due to delete/insert modifications.” I performed some experiments to try

to quantify this further. Exhibit L lists my results. Courgette routinely leaves

undetected less than 1%—often much less—of all references that changed due

to delete/insert modifications—not a substantial number. Below, I describe these

experiments.

For a particular run of Courgette, I wanted to compare the number of cor-91.

responding Rel8 references that changed due to delete/insert modifications that

Courgette leaves undetected to the total number of corresponding references that

changed due to delete/insert operations. I decided to go looking for this informa-

tion in the patch stream generated by BSDiff since every change to the program

must be accounted for there. Furthermore, Courgette feeds programs to BSDiff in

the eight-vector form (§3.4), so I interpreted the BSDiff stream as such an encoded

program.

First, I went looking for changed references that Courgette leaves undetected.92.

We know that Courgette detects all the Abs32 references and most of the Rel32

references (§4.3.3), so Courgette only leaves the Rel8 references undetected. These

would not be treated as invariant and hence will appear in the difference result. I

went looking for data that could be opcodes for control-flow instructions with

short (one-byte or “rel8”) relative references. Courgette ignores these opcodes

(Figure 15).

To the portion of BSDiff that reconstructs the instruction stream, I added code93.

that looks for modified rel8 references. Specifically, in each change region24 in

the new program, I look for an opcode with a rel8 offset (70–7F, E0–E2, and EB)

24BSDiff’s difference results consists of a series of instructions about how to change the old file

into the new. Each instruction describes a “change region” that copies a series of bytes from the

old file into the new file with modification.
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that was also there in the old program25 followed by a changed (rel8) reference.

This is a heuristic algorithm similar to that used in Courgette: if I find a byte with

the right value, I assume it is an opcode. Of course the byte might be data that

just happens to look like an opcode, so my accounting is generous—I will always

report more changed rel8 references than there actually are; never fewer.

Next, I tried to determine the total number of corresponding references that94.

are different due to delete/insert modifications. Here, I collected statistics by ob-

serving how BSDiff reconstructs the index streams. I wrote code that counted,

for each index BSDiff corrects, whether it was (1) copied from elsewhere in the

index vector, and therefore certainly a corresponding entry found by the adjust

step; or (2) modified by BSDiff, suggesting that while it probably corresponded,

Courgette’s adjust step may not have been able to correct it.

We are only interested in corresponding references that are different, so I95.

added code that counted all the indexes whose associated address did not change

between the old and new program. None of the indexes’ addresses would change

if Courgette were fed identical old and new programs; based on the observations

in the ’552 patent, we expect small changes will lead to very few indexes with

unchanged addresses because even a single delete/insert modification can force a

change in many references.

I combine these four numbers to estimate the total number of references that96.

Courgette should reflect as invariant: the sum of corresponding indexes, those

indexes that probably correspond but changed for some reason, and the rel8 refer-

ences that changed. From this, I subtract the indexes with unchanged addresses,

which obviously cannot be due to delete/insert modification.

Exhibit L shows the result of my experiments. In addition to comparing97.

my tiny “reva” program to “revb” Exhibit E and “setup1.exe” to “setup2.exe” in

the Courgette distribution, I also downloaded twelve incremental releases of the

Chrome browser, extracted the main “Chrome.dll” from them, and ran compar-

25If this opcode were added to the new program, there was no corresponding instruction in the

old program with a reference that could have changed so I do not count it.
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isons between various pairs.

The two “Results” columns list the total number of relevant references and98.

what percentage of relevant rel8 references Courgette did not detect. This frac-

tion is generally quite small (1% or lower for successive Chrome releases), but

larger for the bigger jumps, which necessarily involve more changes. From this,

I again conclude that the fraction of undetected relevant (rel8) references is not

substantial.26

4.4 “Reflected as Invariant References”

The claim insists that “substantially each reference...[is] reflected as [an] in-99.

variant reference.” Courgette’s adjustment step is designed to do exactly this and

thus meets the limitations of the claim.

Courgette parses PE files and disassembles them into AssemblyProgram ob-100.

jects, each of which contains an instruction stream that contains symbolic ref-

erences (§3.2). Each of these references (a Label object; Figure 2) consists of

an index and the address to which the index refers. Courgette’s adjustment step

then permutes the indexes of the new program to make them similar to the old

one. The index vectors from Walker’s example program (Exhibit I) illustrate this

clearly: before adjustment, all of the indexes at the beginning of the Rel32 vector

do not match those in the old program; after adjustment, only two different ones

remain in this part of the vector.

Courgette performs the adjustment step to make the index vectors similar so101.

that when they are later run through BSDiff, their differences are smaller. When

they are made invariant, their values do not appear in BSDiff’s output stream, i.e.,

“[t]he net effect is that [these] invariant reference entries [...] will not appear in

26I believe the test cases I ran for this series of experiments are representative: I would expect

Courgette to behave similarly when given most other programs and hence will still infringe either

literally or by equivalents. Specifically, Courgette will still perform substantially the same function

(i.e., generate a compact difference result starting from old and new executable programs) in sub-

stantially the same way (by generating modified old and new data table with the relevant references

reflected as invariant) to obtain substantially the same result (a compact difference result.)
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the difference result [...]” [’552 Patent, 3:36–47]

As I mentioned in §2.3, Walker uses this language from the ’552 patent to102.

erroneously conclude that the reference addresses from invariant references must

be excluded from the difference result [Walker, Exhibit D–1]. I disagree with this

construction but even if the court adopts it, Courgette would still reflect substan-

tially each reference as invariant because most addresses do not appear in Cour-

gette’s difference result. This is because the address vectors are delta-encoded

§3.5. In particular, only the first address in each vector could appear; the rest are

represented as differences. Adams understood this (Exhibit D).

4.5 “Generating Said Compact Difference Result”

Courgette meets the final limitation of Claim 42 because it generates “said103.

compact difference result utilizing at least said modified new program and mod-

ified old program.” It encodes both the modified old program and modified (ad-

justed) new program (AssemblyProgram objects—see §4.2), transforms them into

streams, then runs BSDiff on the result (§3.5).

BSDiff generates compact difference results because it produces smaller re-104.

sults than existing tools at the time of the ’552 patent.27

5 Courgette Could Be Applied to Other Instruction Sets

In my earlier declaration, I stated that the code in Courgette “is written such105.

that it is easily adaptable to processing executable files for other platforms, such

as those found in mobile devices.” [Edwards Decl, ¶ 24]. Walker called that

statement “wrong” [Walker, ¶ 74] because Courgette uses the base relocation table

of the PE format and heuristics for identifying certain Intel opcodes, but neither

of these are especially unique. Other executable formats contain information like

the base relocation table and in any case, its contents can be guessed at much like

Courgette guesses the location of the Rel32 offsets currently. Furthermore, it is

easy to apply similar heuristics to other instruction sets. Brian Bershad, Adams’s

27Colin Percival, Naïve differences of executable code, http://www.daemonology.net/bsdiff/,

2003.
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boss, holds a patent that points out analyzing code for reduced instruction set

computers, such as the ARM processor common in mobile devices, is quite a bit

easier than analyzing the Intel instruction set. (Exhibit N, 1:64–2:1)

106.

107.

108.

109.

I agree with the above. In fact it is easy for a person of ordinary skill110.
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in the art, given any processor’s instruction set, to come up with a fairly good

set of reference entries that should be made invariant because the set of reference

entries does not have to be precise: missing a few or including things that are not

references merely affects the quality of the result, not its correctness. In particu-

lar, one simple technique, which is nearly instruction-set-agnostic, is to treat as a

reference any group of bytes that could conceivably be a reference. This will, of

course, over-count references, but will probably miss few and still lead to compact

difference results.

6 Wetmore’s Invention

Wetmore30 describes “A method and apparatus for generating patching re-111.

sources in an information processing system having operating instructions on a

Read Only Memory Device.” [Wetmore, abstract] This is already a substantial

departure from the ’552 Patent, which is “[a] method for generating a compact

difference result between an old program and a new program.” [’552 Patent, ab-

stract] Red Bend goes to some length to explain their product, which practices the

’552 Patent, does not perform “patching.” (see Exhibit M) So it is not at all clear

that someone considering how to generate compact difference results between

program revisions would even think to consult Wetmore.

Wetmore’s focus on Read-Only Memory31 (“ROM”) is an enormous departure112.

from the ’552 patent. The contents of ROM, as the name suggests, can only

be written once, typically when the chip is manufactured, but read many times.

ROM holds its contents indefinitely and is therefore available immediately after a

computer is powered on. Wetmore explains he is targeting systems that “provide

as much operating system functionality into ROM as possible. This has the desired

effect of freeing up RAM for application programs. This approach is used for the

operating system for the Apple Macintosh family of computers.” [Wetmore 1:29–

34] As of 2010, the role of system ROM has been largely supplanted by Flash

30Russ Wetmore et al. “Method and Apparatus for Patching Code Residing on a Read Only

Memory Device,” U.S. Patent No. 5,481,713, Jan. 2, 1996.
31The Wetmore patent mentions ROM over 100 times,
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memory, which is non-volatile32 like ROM, but is capable of changing its own

contents many times.

Wetmore’s independent claims all make it clear that his invention is limited to113.

a ROM implementation:

1. A method for applying patches to code residing on a Read Only

Memory (ROM) device [...]

7. In an information processing system having a random access mem-

ory (RAM) device and a first version of operating software stored in

a vectorized Read Only Memory (ROM) device [...]

11. A method for generating patch resource files for a plurality of

previous versions of operating software based on a new version of

operating software, wherein said new version of operating software is

stored in a storage device, wherein each of said plurality of previous

versions of operating software is stored in a vectorized Read Only

Memory (ROM) device [...]

16. A method for updating a first operating software stored in a read

only memory (ROM) device [...] [Wetmore 12:22–15:58]

Wetmore even defines “patching” in his context with respect to ROM, a con-114.

cept absent from the ’552 patent:

The term patching is used to describe the process for creating and in-

stalling patches to the ROM that add functionality or fix bugs. [Wet-

more 10:9–12]

Wetmore does mention that his invention would apply to systems that use115.

Flash memory, but only if the code therein was “static”:

32preserves its contents even when powered down
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It should be noted that the fact that this code is to reside on ROM is

not meant to limit the scope of the present invention. Any system that

utilizes “static” code on, for example “FLASH” memory magnetic or

optical disk media or other storage devices, could be utilized without

causing departure from the spirit and scope of the present invention.

[Wetmore 5:3–9]

This seems like a contradiction to me since Flash is not static by design and116.

suggests to me the applicant was unfamiliar with Flash memory technology, which

is consistent.33 In 1993, when Wetmore was filed, Flash memory technology was

relatively new, uncommon, and fairly expensive.

Because ROM cannot be altered once it leaves the factory, there are stringent117.

constraints on how it can be “patched.” Wetmore’s solution is to “vectorize” the

code in ROM before any patches are released and insist that any code that wishes

to use ROM routines (including any code in the ROM itself) first consult a “vector

table” to determine if a patched version of the resource that should be used instead

was placed in normal memory.34

6.1 Wetmore’s Vectorization Process

Wetmore’s vectorization process does not start with an executable. Instead,118.

he makes it clear that he starts with symbolic information from a group of object

files:

First, the source files are compiled (in the case of a high level lan-

guage) or assembled (in the case of assembler language source) to

create object files [...]. The object files are then vectorized to create

vectorized object files [...]. It is significant that only the object files

are modified. The source files are not touched. Object files contain a

series of defined records, each one containing specific items such as

33He also wrote “FLASH” in all caps and in quotes, which is very non-standard usage since it

never was an acronym.
34i.e., Random Access Memory (“RAM”), which can be altered.
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the object code for a routine, the name of a routine, external reference

from one routine to another, or comments. In object files the refer-

ences to other routines have not been resolved. Therefore object files

are an ideal place to alter the code without modifying the source code

files. [Wetmore 6:48–60]

Only after this “vectorization” does Wetmore teach creating an executable:119.

The object files are then linked together to create the final binary val-

ues which will be written to ROM [...]. This is performed through

a traditional linkage editing step. Finally, after the object files have

been “linked” together to create the final binaries, the ROM image is

created [...] [Wetmore 6:63–67]

6.2 Wetmore’s Patches

Wetmore writes,120.

A patch resource is comprised of a plurality of entries, each of which

defines a vector table address, an offset into the vector table and the

routine to be inserted. By comparing routines between the ROM ver-

sions, routines which are different or new are identified. These rou-

tines will become patch resource entries. [Wetmore, abstract]

This is another enormous departure from the ’552 patent, whose difference121.

results are at the granularity of entries in a data table (e.g., bytes), and not routines,

which are rarely under, say, 100 bytes.

7 Wetmore Does Not Anticipate the ’552 Patent

I am informed by counsel for Red Bend that for a claimed invention to be122.

anticipated, each claim limitation must expressly or inherently be disclosed in a

single prior art reference arranged as in the claim.35 “The prior art reference must

35Net Moneyin, Inc. v. Verisign, Inc., 545 F.3d 1359, 1371 (Fed. Cir. 2008) (citations omitted)
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clearly and unequivocally disclose the claimed invention or direct those skilled in

the art to the invention without any need for picking, choosing, and combining

various disclosures not directly related to each other by the teachings of the cited

reference.”36 A difference between the prior art reference and claimed invention,

however slight, invokes the question of obviousness, not anticipation.37

I am further informed by counsel that “anticipation by inherent disclosure is123.

appropriate only when the reference discloses prior art that must necessarily in-

clude the unstated limitation.”38

7.1 Wetmore Does Not Start From An Executable Program

I find Wetmore does not anticipate Claim 839 of the ’552 Patent because I124.

cannot find the limitations of its preamble in Wetmore, i.e.,

A method for generating a compact difference result between an old

executable program and a new executable program [’552 Patent, 16:19–

21]

Wetmore is clear that his preferred embodiment utilizes “object files,” which125.

are not executable. Walker agreed with this during his deposition:40

Q. Okay. Well, what does [Wetmore] disclose is in the content of an

object file in the section that we’re referring to now?

A. “Object files contain a series of defined records, each one contain-

ing specific items such as [the] object code for a routine, the name of a

36Id., citing In re Arkley, 455 F.2d 586, 587
37Net Moneyin at 1371
38Transclean Corp. v. Bridgewood Services Inc., 290 F.3d 1364, 1373 (Fed. Cir. 2002) (empha-

sis in original) (citation omitted)
39A similar argument applies to Claim 21.
40Walker had misconstrued my equating of “object code” with “executable” in my declaration

as extending to “object files.” [Walker, ¶ 66] He appears to correct himself here and now agrees

that object files are not the same as executables.
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routine, external reference from one routine to another, or comments.”

[Wetmore, 6:54–57]

Q. Would such an object file as described there be executable?

A. This file would not be executable until a linker touched it and

loaded it into memory. [Walker Deposition, p. 209]

In fact, Wetmore’s invention relies on being able to enter into the compilation126.

process before an executable is generated so that it can understand and modify the

(non-executable) object files. To emphasize this point, he writes “object files are

an ideal place to alter the code without modifying the source code files” [Wetmore

6:59–60]

Walker, during his deposition, claimed Wetmore suggested vectorizing an ex-127.

ecutable, in particular a static program that is to be installed in ROM,41 but I find

this reading inconsistent because Wetmore makes it very clear that his vectoriza-

tion process starts from object files. I discussed this in more detail in §6.1.

7.2 Wetmore Does Not Generate A Compact Difference Result

I find Wetmore does not anticipate any of the relevant claims of the ’552 Patent128.

because they each speak of a “method” or “system” for “generating a compact dif-

ference result,” and Wetmore does not generate a compact difference result. This

is because we have construed, and Google agrees, that the proper construction for

“compact difference result” is “a difference result of a smaller size as compared

to a conventional difference result obtained by using techniques in existence prior

to the invention of the patent-in-suit” and Wetmore’s invention tends to generate

much larger patches than existing difference tools would. Thus Wetmore creates

a difference result, but it is not compact.

The key reason Wetmore’s patches are larger than those from existing differ-129.

ence tools is that Wetmore’s patches are performed at the granularity of routines

whereas existing difference tools, such as Coppieters42 work at the granularity of

41He cited Wetmore, 5:18–21.
42Kris Coppieters, “A Cross-Platform Binary Diff,” Dr. Dobb’s Journal, May 1995.
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bytes. This means that if a single byte of a routine changes, Wetmore considers

the entire routine different and includes all the code of that routine in the patch.

This is not sloppiness on the part of Wetmore; the restrictions comes from the

use of ROM: once control is passed to a ROM routine, it cannot be made to jump

out from an arbitrary point to execute modified code. Instead, any routine with

any change—no matter how small that change—must be placed in RAM and thus

form part of the difference result.

By contrast, Coppieters strives to work with “chunks” in the 20–80 byte range,130.

which he tries to match between old and new files. The generated diff file consists

of a series of instructions that either copy chunks from the original file (perhaps to

a new location) or insert new chunks included in the diff.43 Since such chunks are

generally much smaller than routines (which I expect to be in the 100s or 1000s

of bytes), modifying a single byte in a routine would result in a diff roughly the

size of a chunk; Wetmore’s patch would include the whole routine.

Thus, Wetmore neither describes a diff nor the creation of one that would131.

inherently be smaller than Coppieters, and so does not generate a “compact dif-

ference result” as we have construed the term.

8 The ’552 Patent is Not Obvious

I find the ’552 Patent would not have been obvious under 35 U.S.C. § 103132.

because it would not have been obvious at the time to a person of ordinary skill in

the art. There are many arguments against it being obvious to such a person, some

of which I list below.

8.1 It Would Be Difficult to Transform Wetmore to ’552

One consideration in deciding whether a new thing is non-obvious relative to133.

an older thing is how challenging it would be to transform the old into the new.

Below, I consider transforming Wetmore into the claimed inventions of the ’552

Patent and conclude it would actually be very challenging and not at all obvious.

43From the source code for BinDiff: ftp://66.77.27.238/sourcecode/ddj/1995/9505.zip
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Wetmore’s invention targets ROM-based systems and inherits many limita-134.

tions from that: its reliance on modifying the program before it is made exe-

cutable, the coarseness of operating on a per-routine basis, the impossibility of

inserting changes into the ROM code, and the difficulty of sending control back

and forth between ROM and RAM.

It would not be obvious to a person of ordinary skill in the art how to adapt an135.

algorithm designed to work in such an environment to one in which the program

was assumed to be in memory that could easily be changed. Even less obvious

would be how to transform it to operate efficiently at the instruction level instead

of the routine level.44

It is clear Wetmore targets his invention to a setting with ROM; the the ’552136.

patent does not mention ROM and would not work in a context with ROM. The

’552 patent’s assumption about how to apply the difference result it produces in-

herently assumes that the patched program resides in memory that can be modi-

fied. I feel making this jump would also be non-obvious.

Since the ’552 Patent starts from an executable and Wetmore requires object137.

files with precise symbolic, reference information, any technique would have to

start by transforming an executable back to object files to apply Wetmore.

8.1.1 Leaving a Vectorized Executable as the Final Result

A vectorized program is executable, so one approach to transforming Wetmore138.

into the inventions of the ’552 Patent would be to leave the vectorized program

running on the client. This technique would involve

1. Exactly disassembling the old and new executables since any mistakes made

here would result in a non-operational final vectorized program. This is ex-

tremely difficult because it may not make mistakes like Courgette’s heuristic

disassembler.45

44Wetmore’s preferred embodiment includes a very simple matching algorithm that simply de-

cides if routines are absolutely identical or have changed. The ’552 patent is much more subtle.
45There is an extensive literature on trying to perform such “reverse compilation.” It is costly

and can only be performed under certain restrictive conditions.
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2. Vectorize the old and new programs’ object files, this time using not just

routine entry points but substantially all references. This would result in

an enormous executable with a very large vector table to match as most

programs consist of only a handful of sequential instructions followed by

a control-transfer instruction, which would lead to a large number of refer-

ences that would need to be vectorized.

3. Perform a diff on the old and new vectorized programs as Wetmore suggests.

The result may not be especially compact since it would include the new

vector table.

On the client side, the vectorized executable would be enormous and slow be-139.

cause every label would be vectorized. Wetmore teaches away from this, observ-

ing that vectored code has potential efficiency issues and should be used carefully

(Wetmore 5:63–64)

Furthermore, Wetmore teaches simply adding his patches to RAM since ROM140.

cannot be changed, so the memory on the client side will hold both the old version

of the program as well as the patches.

8.1.2 Exactly Recovering the New Executable

An alternative to having a large, slow executable on the client would be to141.

exactly reconstruct the new executable program on the client side. This, too, is

challenging, for it would involve

1. Approximately disassembling the old and new executables to turn them into

object files. Making mistakes here is not critical since they can be corrected

later, although it will affect the patch size.

2. Vectorizing the old and new programs from their object files, again using

substantially all references.

3. Performing a diff between the vectorized old and new programs.

4. Applying the resulting diff to the old vectorized executable.
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5. Undoing the vectorization from this patched old vectorized executable, which

will almost certainly deviate from the new executable. Wetmore says noth-

ing about how to undo vectorization; I consider this to be not at all obvious.

6. Generating a second diff between the unvectorized patched old executable

and the new executable to capture any mistakes made in the whole process.

7. On the client side, disassembling the old executable

8. Vectorizing the old executable

9. Applying the first diff to the old vectorized executable

10. Unvectorizing the patched, vectorized old executable

11. Applying the second patch to it to obtain, finally the new executable on the

client.

8.2

142.

143.
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8.3

144.

145.

8.4 The Inventor of BSDiff Respects the ’552 Patent

Colin Percival, inventor of the BSDiff algorithm, briefly mentions the ’552146.

Patent in his thesis49 and treats it with respect:

What remains is the problem of encoding the second-order changes

identified. As noted before, platform-specific information can make

this task much easier; one approach [the ’552 Patent] involving com-

plete disassembly of the executables into assembly language removes

these second-order differences completely, since upon re-assembly,

the new addresses are used. [Percival Thesis, p. 39]

Percival does not treat every patent with respect, so if he thought it was ob-147.

vious, I doubt he would have written the above. By contrast, on the page in his

bibliography with the ’552 Patent, Percival writes about a different patent,

We are surprised that this patent [US 6,496,974] was granted, given

that it does not appear to cover any methods not previously pub-

lished in [Hunt et al., “Delta algorithms: an empirical analysis,” ACM

49Colin Percival, Matching with Mismatches and Assorted Applications, University of Oxford,

2006.
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Trans. on Software Engineering and Methodology, 7(2):192–214,

1998. [Percival Thesis, p. 73]

8.5 Website Comments

I have seen many Internet postings from people outside Google praising the re-148.

lease of Courgette in open-source form (e.g., GRB–4020). If it were obvious, peo-

ple would ignore it (most released open-source software does not garner praise).

8.6 Red Bend’s vRapidMobile Product Practices the ’552 Patent

I have been informed by counsel that one factor to consider in the analysis of149.

“obviousness” is whether the patented technology is commercially successful. My

understanding is that Red Bend’s vRapidMobile software practices one or more

claims of the ’552 Patent and is a commercial success (Exhibit P).

I have examined the source code of the vRapidMobile (rev. 6.1.7.18) soft-150.

ware and found that meets at least the limitations of Claim 42 of the ’552 Patent.

In particular, it begins with old and new data tables containing references (two

executable programs), reflects at least “substantially each” of these as invariant

references, and uses these two tables to generate a compact difference result. I

have also been informed that this code has been used more-or-less unchanged

in many earlier revisions of the software, including those when the product was

named “vCurrentMobile” and thus users of these products have been practicing

the relevant claims of the ’552 Patent as well.

9 Non-Party Use

Since my first declaration, it has come to my attention that numerous non-151.

parties have downloaded and made use of Courgette. I have seen clear evidence

that a developer of the “splayer” media player downloaded Courgette, compiled

it, ran it to conduct experiments, incorporated the Courgette source into the source

for splayer (RedBend–00011078–82), enabled the splayer executable to run Cour-

gette (RedBend–11094–97), and distributed executables containing Courgette code,

effectively enabling other non-parties to practice the claims of the ’552 Patent.

51



I have seen strong evidence that another party had downloaded and used Cour-152.

gette to run experiments comparing the operation of Courgette to “deltarpm,” an-

other binary diff tool (RedBend–0010682). In doing so, this party would have had

to practice at least one claim of the ’552 Patent.

I declare under penalty of perjury under the laws of the United States of Amer-

ica that the foregoing is true and correct and that this declaration was executed on

March 24, 2010 in New York, New York by

Stephen A. Edwards
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Annotated Claim Construction
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Red Bend v. Google

U.S. Patent No. 6,546,552 Claim Construction

Term Definition Notes

Data Table A table of entries, where an entry is an

addressable unit within the data table.

An executable program is one example

of a data table.

§2.1 and ’552 patent glossary: 2:33–

36, 2:61–63. Walker construes a data

table to “not be other symbolic code”

but the “modified old data table” of the

’552 patent is symbolic.

Address A number which is uniquely assigned

to a single entry by which that entry is

accessed.

’552 patent 2:37–38. Walker contends

no definition is necessary.

Compact

difference

result

A difference result of a smaller size as

compared to a conventional difference

result obtained by using techniques in

existence prior to the invention of the

patent-in-suit.

’552 patent 3:30–46, 14:5–14. Walker

accepts this definition.

Old data

table

A data table (or portion of a data table)

that is to be updated.

Glossary of ’552 patent 2:51–54, 2:61–

63

Reference Part of the data appearing in an entry

in the data table which is used to refer

to some other entry from the same data

table. A reference can be either an ad-

dress or a number used to compute an

address.

Glossary of ’552 patent 2:42–45.

Walker’s construction for this term also

improperly included the ’552 patent’s

definition of “reference entry.”

Reference

entry

An addressable unit containing data

that includes a reference.

Glossary of ’552 patent 2:35–36, 2:46–

47. Walker’s construction deviates

from the glossary and does not apply

to claims referring to data tables.



Modified

old data

table

A data table generated using the old

data table.

§2.2 and ’552 patent claims 42, 55.

Walker construes both old and new

modified data tables as “a version of

the actual program or data table in its

original executable form,” yet this can-

not be correct because the modified old

and new data tables in the preferred

embodiment of the ’552 patent are not

in executable form.

Modified

new data

table

A data table generated using the new

data table.

’552 patent claims. See above.

Invariant Unvarying, invariable, constant. Random House Webster’s Unabridged

Dictionary (2nd ed. 1998)

Invariant

references

References that are the same. §2.3 and ’552 patent 10:10–15. From

this text, Walker also construes these to

mean “so that the reference addresses

are excluded from the difference re-

sult,” but again, this is not true in

the preferred embodiment of the ’552

patent.

Executable

program

A program comprising machine lan-

guage instructions and corresponding

bytes of data used by the program that

are ready to be run on a computer.

This is most of Walker’s definition.

§2.4
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APPENDIX A
OPCODE MAP

The opcode tables in this chapter are provided to aid in interpreting Intel Architecture object
code. The instructions are divided into three encoding groups: 1-byte opcode encodings, 2-byte
opcode encodings, and escape (floating-point) encodings. The 1- and 2-byte opcode encodings
are used to encode integer, system, MMX™ technology, and Streaming SIMD Extensions. The
opcode maps for these instructions are given in Table A-2 through A-6. Section A.2.1., “One-
Byte Opcode Instructions” through Section A.2.5., “Opcode Extensions For One- And Two-byte
Opcodes” give instructions for interpreting 1- and 2-byte opcode maps. The escape encodings
are used to encode floating-point instructions. The opcode maps for these instructions are given
in Table A-7 through A-22. Section A.2.6., “Escape Opcode Instructions” gives instructions for
interpreting the escape opcode maps.

The opcode tables in this section aid in interpreting Pentium® processor object code. Use the
four high-order bits of the opcode as an index to a row of the opcode table; use the four low-
order bits as an index to a column of the table. If the opcode is 0FH, refer to the 2-byte opcode
table and use the second byte of the opcode to index the rows and columns of that table.

The escape (ESC) opcode tables for floating-point instructions identify the eight high-order bits
of the opcode at the top of each page. If the accompanying ModR/M byte is in the range 00H
through BFH, bits 3 through 5 identified along the top row of the third table on each page, along
with the REG bits of the ModR/M, determine the opcode. ModR/M bytes outside the range 00H
through BFH are mapped by the bottom two tables on each page.

Refer to Chapter 2, Instruction Format for detailed information on the ModR/M byte, register
values, and the various addressing forms. 

A.1. KEY TO ABBREVIATIONS

Operands are identified by a two-character code of the form Zz. The first character, an uppercase
letter, specifies the addressing method; the second character, a lowercase letter, specifies the
type of operand.

A.1.1. Codes for Addressing Method

The following abbreviations are used for addressing methods:

A Direct address. The instruction has no ModR/M byte; the address of the operand is en-
coded in the instruction; and no base register, index register, or scaling factor can be
applied (for example, far JMP (EA)).

C The reg field of the ModR/M byte selects a control register (for example, 
MOV (0F20, 0F22)).
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D The reg field of the ModR/M byte selects a debug register (for example, 
MOV (0F21,0F23)).

E A ModR/M byte follows the opcode and specifies the operand. The operand is either a
general-purpose register or a memory address. If it is a memory address, the address is
computed from a segment register and any of the following values: a base register, an
index register, a scaling factor, a displacement.

F EFLAGS Register.

G The reg field of the ModR/M byte selects a general register (for example, AX (000)).

I Immediate data. The operand value is encoded in subsequent bytes of the instruction.

J The instruction contains a relative offset to be added to the instruction pointer register
(for example, JMP (0E9), LOOP).

M The ModR/M byte may refer only to memory (for example, BOUND, LES, LDS, LSS,
LFS, LGS, CMPXCHG8B).

O The instruction has no ModR/M byte; the offset of the operand is coded as a word or
double word (depending on address size attribute) in the instruction. No base register,
index register, or scaling factor can be applied (for example, MOV (A0–A3)).

P The reg field of the ModR/M byte selects a packed quadword MMX™ technology reg-
ister.

Q A ModR/M byte follows the opcode and specifies the operand. The operand is either
an MMX™ technology register or a memory address. If it is a memory address, the ad-
dress is computed from a segment register and any of the following values: a base reg-
ister, an index register, a scaling factor, and a displacement.

R The mod field of the ModR/M byte may refer only to a general register (for example,
MOV (0F20-0F24, 0F26)).

S The reg field of the ModR/M byte selects a segment register (for example, MOV
(8C,8E)).

T The reg field of the ModR/M byte selects a test register (for example, MOV
(0F24,0F26)).

V The reg field of the ModR/M byte selects a packed SIMD floating-point register.

W An ModR/M byte follows the opcode and specifies the operand. The operand is either
a SIMD floating-point register or a memory address. If it is a memory address, the ad-
dress is computed from a segment register and any of the following values: a base reg-
ister, an index register, a scaling factor, and a displacement

X Memory addressed by the DS:SI register pair (for example, MOVS, CMPS, OUTS, or
LODS).

Y Memory addressed by the ES:DI register pair (for example, MOVS, CMPS, INS,
STOS, or SCAS).
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A.1.2. Codes for Operand Type

The following abbreviations are used for operand types:

a Two one-word operands in memory or two double-word operands in memory, depend-
ing on operand-size attribute (used only by the BOUND instruction).

b Byte, regardless of operand-size attribute.

c Byte or word, depending on operand-size attribute.

d Doubleword, regardless of operand-size attribute.

dq Double-quadword, regardless of operand-size attribute.

p 32-bit or 48-bit pointer, depending on operand-size attribute.

pi Quadword MMX™ technology register (e.g. mm0)

ps 128-bit packed FP single-precision data.

q Quadword, regardless of operand-size attribute.

s 6-byte pseudo-descriptor.

ss Scalar element of a 128-bit packed FP single-precision data.

si Doubleword integer register (e.g., eax)

v Word or doubleword, depending on operand-size attribute.

w Word, regardless of operand-size attribute.

A.1.3. Register Codes

When an operand is a specific register encoded in the opcode, the register is identified by its
name (for example, AX, CL, or ESI). The name of the register indicates whether the register is
32, 16, or 8 bits wide. A register identifier of the form eXX is used when the width of the register
depends on the operand-size attribute. For example, eAX indicates that the AX register is used
when the operand-size attribute is 16, and the EAX register is used when the operand-size at-
tribute is 32.

A.2. OPCODE LOOK-UP EXAMPLES

This section provides several examples to demonstrate how the following opcode maps are used.
Refer to the introduction to Chapter 3, Instruction Set Reference, in the Intel Architecture Soft-
ware Developer’s Manual, Volume 2 for detailed information on the ModR/M byte, register val-
ues, and the various addressing forms. 
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A.2.1. One-Byte Opcode Instructions

The opcode maps for 1-byte opcodes are shown in Table A-2 and A-3. Looking at the 1-byte
opcode maps, the instruction and its operands can be determined from the hexadecimal opcode.
For example:

Opcode: 030500000000H

Opcode 030500000000H for an ADD instruction can be interpreted from the 1-byte opcode map
as follows. The first digit (0) of the opcode indicates the row, and the second digit (3) indicates
the column in the opcode map tables. The first operand (type Gv) indicates a general register
that is a word or doubleword depending on the operand-size attribute. The second operand (type
Ev) indicates that a ModR/M byte follows that specifies whether the operand is a word or dou-
bleword general-purpose register or a memory address. The ModR/M byte for this instruction is
05H, which indicates that a 32-bit displacement follows (00000000H). The reg/opcode portion
of the ModR/M byte (bits 3 through 5) is 000, indicating the EAX register. Thus, it can be de-
termined that the instruction for this opcode is ADD EAX, mem_op, and the offset of mem_op
is 00000000H.

Some 1- and 2-byte opcodes point to “group” numbers. These group numbers indicate that the
instruction uses the reg/opcode bits in the ModR/M byte as an opcode extension (refer to Section
A.2.5., “Opcode Extensions For One- And Two-byte Opcodes”).

A.2.2. Two-Byte Opcode Instructions

Instructions that begin with 0FH can be found in the two-byte opcode maps given in Table A-4
and A-5. The second opcode byte is used to reference a particular row and column in the tables.
For example, the opcode 0FA4050000000003H is located on the two-byte opcode map in row
A, column 4. This opcode indicates a SHLD instruction with the operands Ev, Gv, and Ib. These
operands are defined as follows:

Ev The ModR/M byte follows the opcode to specify a word or doubleword operand 

Gv The reg field of the ModR/M byte selects a general-purpose register

Ib Immediate data is encoded in the subsequent byte of the instruction.

The third byte is the ModR/M byte (05H). The mod and opcode/reg fields indicate that a 32-bit
displacement follows, located in the EAX register, and is the source.

The next part of the opcode is the 32-bit displacement for the destination memory operand
(00000000H), and finally the immediate byte representing the count of the shift (03H).

By this breakdown, it has been shown that this opcode represents the instruction:

SHLD DS:00000000H, EAX, 3

LSB address MSB address

03 05 00 00 00 00
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The next part of the SHLD opcode is the 32-bit displacement for the destination memory oper-
and (00000000H), which is followed by the immediate byte representing the count of the shift
(03H). By this breakdown, it has been shown that the opcode 0FA4050000000003H represents
the instruction: 

SHLD DS:00000000H, EAX, 3.

Lower case is used in the following tables to highlight the mnemonics added by MMX™ tech-
nology and Streaming SIMD Extensions.

A.2.3. Opcode Map Shading

Table A-2 contains notes on particular encodings. These notes are indicated in the following Op-
code Maps (Table A-2 through A-6) by superscripts.

For the One-byte Opcode Maps (Table A-2 through A-3), grey shading indicates instruction
groupings.

A.2.4. Opcode Map Notes

Table A-1 contains notes on particular encodings. These notes are indicated in the following Op-
code Maps (Table A-2 through A-6) by superscripts.

Table A-1.  Notes on Instruction Set Encoding Tables

Symbol Note

1A Bits 5, 4, and 3 of ModR/M byte used as an opcode extension (refer to Section A.2.5., 
“Opcode Extensions For One- And Two-byte Opcodes”).

1B These abbreviations are not actual mnemonics. When shifting by immediate shift counts, 
the PSHIMD mnemonic represents the PSLLD, PSRAD, and PSRLD instructions, 
PSHIMW represents the PSLLW, PSRAW, and PSRLW instructions, and PSHIMQ 
represents the PSLLQ and PSRLQ instructions. The instructions that shift by immediate 
counts are differentiated by ModR/M bytes (refer to Section A.2.5., “Opcode Extensions For 
One- And Two-byte Opcodes”).

1C Use the 0F0B opcode (UD2 instruction) or the 0FB9H opcode when deliberately trying to 
generate an invalid opcode exception (#UD).

1D Some instructions added in the Pentium® III processor may use the same two-byte opcode. 
If the instruction has variations, or the opcode represents different instructions, the ModR/M 
byte will be used to differentiate the instruction. For the value of the ModR/M byte needed 
to completely decode the instruction, see Table A-6. (These instructions include SFENCE, 
STMXCSR, LDMXCSR, FXRSTOR, and FXSAVE, as well as PREFETCH and its 
variations.)
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Table A-2.  One-byte Opcode Map (Left)

0 1 2 3 4 5 6 7

0
ADD PUSH

ES
POP
ES Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib eAX, Iv

1
ADC PUSH

SS 
POP
SSEb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib eAX, Iv

2
AND

SEG=ES DAA
Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib eAX, Iv

3
XOR

SEG=SS AAA
Eb, Gb Ev, Gv Gb, Eb Gb, Ev AL, Ib eAX, Iv

4
INC general register

eAX eCX eDX eBX eSP eBP eSI eDI

5
PUSH general register

eAX eCX eDX eBX eSP eBP eSI eDI 

6
PUSHA/
PUSHAD

POPA/
POPAD

BOUND
Gv, Ma

ARPL
Ew, Gw

SEG=FS SEG=GS
Opd
Size

Addr
Size

7
Jcc, Jb - Short-displacement jump on condition

O NO B/NAE/C NB/AE/NC Z/E NZ/NE BE/NA NBE/A

8
Immediate Grp 11A TEST XCHG 

Eb, Ib Ev, Iv  Ev, Ib Ev, Ib Eb, Gb Ev, Gv Eb, Gb Ev, Gv 

9 NOP 
XCHG word or double-word register with eAX

eCX eDX eBX eSP eBP eSI eDI 

A

MOV
MOVS/
MOVSB
Xb, Yb 

MOVS/
MOVSW/
MOVSD
Xv, Yv 

CMPS/
CMPSB
Xb, Yb 

CMPS/
CMPSW/
CMPSD
Xv, Yv

AL, Ob eAX, Ov Ob, AL Ov, eAX 

B
MOV immediate byte into byte register

AL CL DL BL AH CH DH BH 

C
Shift Grp 21A

RETN
Iw

RETN
LES

Gv, Mp
LDS

Gv, Mp 

Grp 111A - MOV

Eb, Ib Ev, Ib Eb, Ib Ev, Iv 

D
Shift Grp 21A

AAM
Ib

AAD
Ib

XLAT/
XLATB Eb, 1 Ev, 1 Eb, CL Ev, CL 

E
LOOPNE/
LOOPNZ

Jb 

LOOPE/
LOOPZ

Jb 

LOOP
Jb 

JCXZ/
JECXZ

Jb 

IN OUT

AL, Ib eAX, Ib Ib, AL Ib, eAX

F LOCK REPNE
REP/
REPE 

HLT CMC
Unary Grp 31A

Eb Ev
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Table A-3.  One-byte Opcode Map (Right)

GENERAL NOTE:

All blanks in the opcode maps A-2 and A-3 are reserved and should not be used. Do not depend on the
operation of these undefined opcodes.

8 9 A B C D E F

OR PUSH
CS 

2-byte
escape 0

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib eAX, Iv

SBB PUSH
DS 

POP
DS 1

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib eAX, Iv

SUB
SEG=CS DAS 2

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib eAX, Iv

CMP
SEG=DS AAS 3

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib eAX, Iv

DEC general register
4

eAX eCX eDX eBX eSP eBP eSI eDI 

POP into general register
5

eAX eCX eDX eBX eSP eBP eSI eDI 

PUSH
Iv

IMUL
Gv, Ev, Iv

PUSH
Ib

IMUL
Gv, Ev, Ib

INS/
INSB

Yb, DX

INS/
INSW/
INSD

Yv, DX

OUTS/
OUTSB
DX, Xb

OUTS/
OUTSW/
OUTSD
DX, Xv

6

Jcc, Jb- Short displacement jump on condition
7

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G 

MOV MOV
Ew, Sw 

LEA
Gv, M 

MOV
Sw, Ew 

POP
Ev 8

Eb, Gb Ev, Gv Gb, Eb Gv, Ev 

CBW/
CWDE

CWD/
CDQ

CALLF
Ap

FWAIT/
WAIT

PUSHF/
PUSHFD

Fv

POPF/
POPFD

Fv
SAHF LAHF 9

TEST STOS/
STOSB
Yb, AL 

STOS/
STOSW/
STOSD
Yv, eAX 

LODS/
LODSB
AL, Xb 

LODS/
LODSW/
LODSD
eAX, Xv

SCAS/
SCASB
AL, Yb

SCAS/
SCASW/
SCASD
eAX, Xv

A
AL, Ib eAX, Iv

MOV immediate word or double into word or double register
B

eAX eCX eDX eBX eSP eBP eSI eDI 

ENTER
Iw, Ib LEAVE RETF

Iw RETF INT
3 

INT
Ib INTO IRET C

ESC (Escape to coprocessor instruction set) D

CALL
Jv 

JMP IN OUT
Enear

JV
far
AP

short
Jb AL, DX eAX, DX DX, AL DX, eAX 

CLC STC CLI STI CLD STD
INC/DEC
Grp 41A

INC/DEC
Grp 51A F
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Table A-4.  Two-byte Opcode Map (Left) (First Byte is OFH)

GENERAL NOTE:

All blanks in the opcode maps A-4 and A-5 are reserved and should not be used. Do not depend on the
operation of these undefined opcodes.

0 1 2 3 4 5 6 7

0 Grp 61A Grp 71A LAR
Gv, Ew 

LSL
Gv, Ew 

 CLTS

1

movups
Vps, Wps

movss (F3)
Vss, Wss

movups
Wps, Vps

movss (F3)
Wss, Vss

movlps
Wq, Vq
movhlps
Vq, Vq

movlps
Vq, Wq

unpcklps
Vps, Wq

unpckhps
Vps, Wq

movhps
Vq, Wq
movlhps
Vq, Vq

movhps
Wq, Vq

2
MOV

Rd, Cd
MOV

Rd, Dd
MOV

Cd, Rd
MOV

Dd, Rd

3 WRMSR RDTSC  RDMSR RDPMC
SYSENTER SYSEXIT

4
CMOVcc, (Gv, Ev) - Conditional Move

O NO B/C/NAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

5
movmskps

Ed, Vps

sqrtps
Vps, Wps
sqrtss (F3)
Vss, Wss

rsqrtps
Vps, Wps

rsqrtss (F3)
Vss, Wss

rcpps
Vps, Wps
rcpss (F3)
Vss, Wss

andps
Vps, Wps

andnps
Vps, Wps

orps
Vps, Wps

xorps
Vps, Wps

6
punpcklbw

Pq, Qd
punpcklwd

Pq, Qd
punpckldq

Pq, Qd
packsswb

Pq, Qq
pcmpgtb
Pq, Qq

pcmpgtw
Pq, Qq

pcmpgtd
Pq, Qq

packuswb
Pq, Qq

7
pshufw

Pq, Qq, Ib
pshimw1B

Pq, Qq
(Grp 121A)

pshimd1B

Pq, Qq
(Grp 131A)

pshimq1B

Pq, Qq

(Grp 141A)

pcmpeqb
Pq, Qq

pcmpeqw
Pq, Qq

pcmpeqd
Pq, Qq emms

8
Jcc, Jv - Long-displacement jump on condition

O NO B/C/NAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

9
SETcc, Eb - Byte Set on condition

O NO B/C/NAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

A
PUSH

FS
POP
FS

CPUID
BT

Ev, Gv 
SHLD

Ev, Gv, Ib 
SHLD

Ev, Gv, CL 

B
CMPXCHG LSS

Mp 
BTR

Ev, Gv 
LFS
Mp 

LGS
Mp 

MOVZX

Eb, Gb Ev, Gv Gv, Eb Gv, Ew 

C
XADD
Eb, Gb

XADD
Ev, Gv

cmpps
Vps, Wps, b
cmpss (F3)

Vss, Wss, Ib

pinsrw
Pq, Ed, Ib

pextrw
Gd, Pq, Ib

shufps
Vps, Wps, Ib Grp 91A

D
psrlw

Pq, Qq
(Grp 121A)

psrld
Pq, Qq

(Grp 131A)

psrlq
Pq, Qq

(Grp 141A)

pmullw
Pq, Qq

pmovmskb
Gd, Pq

E
pavgb
Pq, Qq

psraw
Pq, Qq

(Grp 121A)

psrad
Pq, Qq

(Grp 131A)

pavgw
Pq, Qq

pmulhuw
Pq, Qq

pmulhw
Pq, Qq

movntq
Wq, Vq

F
psllw

Pq, Qq
(Grp 121A)

pslld
Pq, Qq

(Grp 131A)

psllq
Pq, Qq

(Grp 141A)

pmaddwd
Pq, Qq

psadbw
Pq, Qq

maskmovq
Ppi, Qpi
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Table A-5.  Two-byte Opcode Map (Right) (First Byte is OFH)

8 9 A B C D E F

INVD WBINVD
2-byte Illegal 

Opcodes
UD21C

0 

Prefetch1D

(Grp 161A)
1

movaps
Vps, Wps

movaps
Wps, Vps

cvtpi2ps
Vps, Qq

cvtsi2ss (F3)
Vss, Ed

movntps
Wps, Vps

cvttps2pi
Qq, Wps

cvttss2si (F3)
Gd, Wss

cvtps2pi
Qq, Wps

cvtss2si (F3)
Gd, Wss

ucomiss
Vss, Wss

comiss
Vps, Wps 2 

3 

CMOVcc(Gv, Ev) - Conditional Move 
4 

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

addps
Vps, Wps
addss (F3)
Vss, Wss

mulps
Vps, Wps
mulss (F3)
Vss, Wss

subps
Vps, Wps
subss (F3)
Vss, Wss

minps
Vps, Wps
minss (F3)
Vss, Wss

 divps
Vps, Wps
divss (F3)
Vss, Wss

maxps
Vps, Wps

maxss (F3)
Vss, Wss

5

punpckhbw
Pq, Qd

punpckhwd
Pq, Qd

punpckhdq
Pq, Qd

packssdw
Pq, Qd

movd
Pd, Ed

movq
Pq, Qq 6

MMX UD movd
Ed, Pd

movq
Qq, Pq 7

Jcc, Jv - Long-displacement jump on condi ion
8 

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

SETcc, Eb - Byte Set on condition
9 

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

PUSH
GS

POP
GS

RSM BTS
Ev, Gv 

SHRD
Ev, Gv, Ib 

SHRD
Ev, Gv, CL 

(Grp 151A)1D MUL
Gv, Ev 

A 

Grp 101A

Invalid 
Opcode1C

Grp 81A

Ev, Ib
BTC

Ev, Gv
BSF

Gv, Ev
BSR

Gv, Ev

MOVSX
B 

Gv, Eb Gv, Ew

BSWAP
C 

EAX ECX EDX EBX ESP EBP ESI EDI

psubusb
Pq, Qq

psubusw
Pq, Qq

pminub
Pq, Qq

pand
Pq, Qq

paddusb
Pq, Qq

paddusw
Pq, Qq

pmaxub
Pq, Qq

pandn
Pq, Qq D

psubsb
Pq, Qq

psubsw
Pq, Qq

pminsw
Pq, Qq

por
Pq, Qq

paddsb
Pq, Qq

paddsw
Pq, Qq

pmaxsw
Pq, Qq

pxor
Pq, Qq E

psubb
Pq, Qq

psubw
Pq, Qq

psubd
Pq, Qq

paddb
Pq, Qq

paddw
Pq, Qq

paddd
Pq, Qq F
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// reva.cpp

#include "stdafx.h"

#include "stdio.h"

int baz()

{

printf("In baz()\n");

return 72;

}

int bar()

{

printf("In bar()\n");

int b = baz();

return b + 10;

}

int foo()

{

printf("Hello World!");

int a = bar();

return a + 42;

}

// revb.cpp

#include "stdafx.h"

#include "stdio.h"

int baz()

{

printf("This is new code\n"); // INSERTED

printf("In baz()\n");

return 72;

}

int bar()

{

printf("In bar()\n");

int b = baz();

return b + 10;

}

int foo()

{

printf("Hello World!");

int a = bar();

return a + 42;

}



Exhibit F

Annotated disassembly of the old and new versions of the “baz” function

78



Old Version of baz() in “reva”

10011390: 55 push %ebp
10011391: 8b ec mov %esp,%ebp
10011393: 81 ec c0 00 00 00 sub $0xc0,%esp
10011399: 53 push %ebx
1001139a: 56 push %esi
1001139b: 57 push %edi
1001139c: 8d bd 40 ff ff ff lea -0xc0(%ebp),%edi
100113a2: b9 30 00 00 00 mov $0x30,%ecx
100113a7: b8 cc cc cc cc mov $0xcccccccc,%eax
100113ac: f3 ab rep stos %eax,%es:(%edi)
100113ae: 8b f4 mov %esp,%esi
100113b0: 68 3c 55 01 10 push $0x1001553c # "In baz()\n"
100113b5: ff 15 64 82 01 10 call *0x10018264 # printf
100113bb: 83 c4 04 add $0x4,%esp
100113be: 3b f4 cmp %esp,%esi
100113c0: e8 5d fd ff ff call 0x10011122 # __RTC_CheckEsp
100113c5: b8 48 00 00 00 mov $0x48,%eax # 72 decimal
100113ca: 5f pop %edi
100113cb: 5e pop %esi
100113cc: 5b pop %ebx
100113cd: 81 c4 c0 00 00 00 add $0xc0,%esp
100113d3: 3b ec cmp %esp,%ebp
100113d5: e8 48 fd ff ff call 0x10011122 # __RTC_CheckEsp
100113da: 8b e5 mov %ebp,%esp
100113dc: 5d pop %ebp
100113dd: c3 ret

New Version of baz() in “revb”

10011340: 55 push %ebp
10011341: 8b ec mov %esp,%ebp
10011343: 81 ec c0 00 00 00 sub $0xc0,%esp
10011349: 53 push %ebx
1001134a: 56 push %esi
1001134b: 57 push %edi
1001134c: 8d bd 40 ff ff ff lea -0xc0(%ebp),%edi
10011352: b9 30 00 00 00 mov $0x30,%ecx
10011357: b8 cc cc cc cc mov $0xcccccccc,%eax
1001135c: f3 ab rep stos %eax,%es:(%edi)
1001135e: 8b f4 mov %esp,%esi
10011360: 68 48 55 01 10 push $0x10015548 # "This is new code\n"
10011365: ff 15 64 82 01 10 call *0x10018264 # printf
1001136b: 83 c4 04 add $0x4,%esp
1001136e: 3b f4 cmp %esp,%esi
10011370: e8 ad fd ff ff call 0x10011122 # __RTC_CheckEsp
10011375: 8b f4 mov %esp,%esi
10011377: 68 3c 55 01 10 push $0x1001553c # "In baz()\n"
1001137c: ff 15 64 82 01 10 call *0x10018264 # printf
10011382: 83 c4 04 add $0x4,%esp
10011385: 3b f4 cmp %esp,%esi
10011387: e8 96 fd ff ff call 0x10011122 # __RTC_CheckEsp
1001138c: b8 48 00 00 00 mov $0x48,%eax # 72 decimal
10011391: 5f pop %edi
10011392: 5e pop %esi
10011393: 5b pop %ebx
10011394: 81 c4 c0 00 00 00 add $0xc0,%esp
1001139a: 3b ec cmp %esp,%ebp
1001139c: e8 81 fd ff ff call 0x10011122 # __RTC_CheckEsp
100113a1: 8b e5 mov %ebp,%esp
100113a3: 5d pop %ebp
100113a4: c3 ret



Exhibit G

EncodedPrograms for the old and new programs
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RVA OP Count Bytes A32 R32 Origin
Ind Ind

0 CPY 1024: 4D5A90..00
ORG 11000

11000 CPY 6: CCCCCC..E9
11006 R32 (000025CC) 130
1100A CP1 E9
1100B R32 (00000E41) 58
1100F CP1 E9
11010 R32 (00001A42) 91
11014 CP1 E9
11015 R32 (00002417) 117
11019 CP1 E9
1101A R32 (000025AC) 128
1101E CP1 E9
1101F R32 (000019FD) 89
11023 CP1 E9
11024 R32 (000025B4) 131
11028 CP1 E9
11029 R32 (00000313) 33
1102D CP1 E9
1102E R32 (000005BE) 42
11032 CP1 E9
11033 R32 (00000ED9) 63
11037 CP1 E9
11038 R32 (00000E04) 57
1103C CP1 E9
1103D R32 (0000257D) 126
11041 CP1 E9
11042 R32 (000025E4) 144
11046 CP1 E9
11047 R32 (00001CC5) 103
1104B CP1 E9
1104C R32 (000025FE) 150
11050 CP1 E9
11051 R32 (000023ED) 118
11055 CP1 E9
11056 R32 (000025D6) 145
1105A CP1 E9
1105B R32 (00001961) 87
1105F CP1 E9
11060 R32 (0000257E) 132
11064 CP1 E9
11065 R32 (00000E07) 59
11069 CP1 E9
1106A R32 (00001DC2) 106
1106E CP1 E9
1106F R32 (000023E1) 121

Old program

RVA OP Count Bytes A32 R32 Origin
Ind Ind

0 CPY 1024: 4D5A90..00
ORG 11000

11000 CPY 6: CCCCCC..E9
11006 R32 (000025DC) 130
1100A CP1 E9
1100B R32 (00001781) 76
1100F CP1 E9
11010 R32 (00001A52) 91
11014 CP1 E9
11015 R32 (00002427) 117
11019 CP1 E9
1101A R32 (000025BC) 128
1101E CP1 E9
1101F R32 (00001A0D) 89
11023 CP1 E9
11024 R32 (000025C4) 131
11028 CP1 E9
11029 R32 (00000473) 36
1102D CP1 E9
1102E R32 (0000056E) 40
11032 CP1 E9
11033 R32 (00001819) 81
11037 CP1 E9
11038 R32 (00001744) 75
1103C CP1 E9
1103D R32 (0000258D) 126
11041 CP1 E9
11042 R32 (000025F4) 144
11046 CP1 E9
11047 R32 (00001CD5) 103
1104B CP1 E9
1104C R32 (0000260E) 150
11050 CP1 E9
11051 R32 (000023FD) 118
11055 CP1 E9
11056 R32 (000025E6) 145
1105A CP1 E9
1105B R32 (00001971) 87
1105F CP1 E9
11060 R32 (0000258E) 132
11064 CP1 E9
11065 R32 (00001747) 77
11069 CP1 E9
1106A R32 (00001DD2) 106
1106E CP1 E9
1106F R32 (000023F1) 121

New program before adjustment

RVA OP Count Bytes A32 R32 Origin
Ind Ind

0 CPY 1024: 4D5A90..00
ORG 11000

11000 CPY 6: CCCCCC..E9
11006 R32 (000025DC) 130
1100A CP1 E9
1100B R32 (00001781) 58
1100F CP1 E9
11010 R32 (00001A52) 91
11014 CP1 E9
11015 R32 (00002427) 117
11019 CP1 E9
1101A R32 (000025BC) 128
1101E CP1 E9
1101F R32 (00001A0D) 89
11023 CP1 E9
11024 R32 (000025C4) 131
11028 CP1 E9
11029 R32 (00000473) 33
1102D CP1 E9
1102E R32 (0000056E) 42
11032 CP1 E9
11033 R32 (00001819) 63
11037 CP1 E9
11038 R32 (00001744) 57
1103C CP1 E9
1103D R32 (0000258D) 126
11041 CP1 E9
11042 R32 (000025F4) 144
11046 CP1 E9
11047 R32 (00001CD5) 103
1104B CP1 E9
1104C R32 (0000260E) 150
11050 CP1 E9
11051 R32 (000023FD) 118
11055 CP1 E9
11056 R32 (000025E6) 145
1105A CP1 E9
1105B R32 (00001971) 87
1105F CP1 E9
11060 R32 (0000258E) 132
11064 CP1 E9
11065 R32 (00001747) 59
11069 CP1 E9
1106A R32 (00001DD2) 106
1106E CP1 E9
1106F R32 (000023F1) 121

New program after adjustment



Exhibit H

EncodedPrograms for the modified “baz” and “foo” functions
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RVA OP Count Bytes A32 R32 Origin
Ind Ind

baz:

1119F CPY 530: CCCCCC..68
113B1 A32 (1001553C) 22
113B5 CPY 2: FF15
113B7 A32 (10018264) 173
113BB CPY 6: 83C404..E8
113C1 R32 (FFFFFD5D) 20
113C5 CPY 17: B84800..E8
113D6 R32 (FFFFFD48) 20
113DA CPY 71: 8BE55D..68

foo:

11453 CPY 62: 8BE55D..68
11491 A32 (10015554) 24
11495 CPY 2: FF15
11497 A32 (10018264) 173
1149B CPY 6: 83C404..E8
114A1 R32 (FFFFFC7D) 20
114A5 CP1 E8
114A6 R32 (FFFFFBD8) 8
114AA CPY 21: 8945F8..E8
114BF R32 (FFFFFC5F) 20
114C3 CPY 31: 8BE55D..3D

Old program

RVA OP Count Bytes A32 R32 Origin
Ind Ind

baz:

1119F CPY 450: CCCCCC..68
11361 A32 (10015548) 23
11365 CPY 2: FF15
11367 A32 (10018264) 174
1136B CPY 6: 83C404..E8
11371 R32 (FFFFFDAD) 20
11375 CPY 3: 8BF468
11378 A32 (1001553C) 22
1137C CPY 2: FF15
1137E A32 (10018264) 174
11382 CPY 6: 83C404..E8
11388 R32 (FFFFFD96) 20
1138C CPY 17: B84800..E8
1139D R32 (FFFFFD81) 20
113A1 CPY 64: 8BE55D..68

foo:

11413 CPY 62: 8BE55D..68
11451 A32 (1001556C) 25
11455 CPY 2: FF15
11457 A32 (10018264) 174
1145B CPY 6: 83C404..E8
11461 R32 (FFFFFCBD) 20
11465 CP1 E8
11466 R32 (FFFFFC18) 8
1146A CPY 21: 8945F8..E8
1147F R32 (FFFFFC9F) 20
11483 CPY 97: 8BE55D..25

New program before adjustment

RVA OP Count Bytes A32 R32 Origin
Ind Ind

baz:

1119F CPY 450: CCCCCC..68
11361 A32 (10015548) 22
11365 CPY 2: FF15
11367 A32 (10018264) 173
1136B CPY 6: 83C404..E8
11371 R32 (FFFFFDAD) 20
11375 CPY 3: 8BF468
11378 A32 (1001553C) 23
1137C CPY 2: FF15
1137E A32 (10018264) 173
11382 CPY 6: 83C404..E8
11388 R32 (FFFFFD96) 20
1138C CPY 17: B84800..E8
1139D R32 (FFFFFD81) 20
113A1 CPY 64: 8BE55D..68

foo:

11413 CPY 62: 8BE55D..68
11451 A32 (1001556C) 92
11455 CPY 2: FF15
11457 A32 (10018264) 173
1145B CPY 6: 83C404..E8
11461 R32 (FFFFFCBD) 20
11465 CP1 E8
11466 R32 (FFFFFC18) 8
1146A CPY 21: 8945F8..E8
1147F R32 (FFFFFC9F) 20
11483 CPY 97: 8BE55D..25

New program after adjustment



Exhibit I

An EncodedProgram from Walker’s Example
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RVA OP Count Bytes A32 R32 Origin
Ind Ind

0 CPY 1024: 4D5A90..00
ORG 11000

11000 CPY 6: CCCCCC..E9
11006 R32 (00001876) 85
1100A CP1 E9
1100B R32 (000026A7) 143
1100F CP1 E9
11010 R32 (0000042C) 38
11014 CP1 E9
11015 R32 (00000DC7) 57
11019 CP1 E9
1101A R32 (000003E2) 37
1101E CP1 E9
1101F R32 (00001973) 93
11023 CP1 E9
11024 R32 (000024C8) 127
11028 CP1 E9
11029 R32 (0000267D) 141
1102D CP1 E9
1102E R32 (0000192E) 91
11032 CP1 E9
11033 R32 (00002685) 144
11037 CP1 E9
11038 R32 (00000714) 47
1103C CP1 E9
1103D R32 (00000E5F) 62
11041 CP1 E9
11042 R32 (00000D8A) 56
11046 CP1 E9
11047 R32 (000018BB) 87
1104B CP1 E9
1104C R32 (0000264E) 139
11050 CP1 E9
11051 R32 (000026BB) 158
11055 CP1 E9
11056 R32 (00001AD6) 102
1105A CP1 E9
1105B R32 (0000267B) 149
1105F CP1 E9
11060 R32 (00001BEA) 106
11064 CP1 E9
11065 R32 (00001E6D) 113
11069 CP1 E9
1106A R32 (000026A8) 159
1106E CP1 E9
1106F R32 (00001A7D) 97

Old program

RVA OP Count Bytes A32 R32 Origin
Ind Ind

0 CPY 1024: 4D5A90..00
ORG 11000

11000 CPY 6: CCCCCC..E9
11006 R32 (00001876) 80
1100A CP1 E9
1100B R32 (000026A7) 138
1100F CP1 E9
11010 R32 (0000276C) 160
11014 CP1 E9
11015 R32 (00000DC7) 52
11019 CP1 E9
1101A R32 (00002722) 159
1101E CP1 E9
1101F R32 (00001973) 88
11023 CP1 E9
11024 R32 (000024C8) 122
11028 CP1 E9
11029 R32 (0000267D) 136
1102D CP1 E9
1102E R32 (0000192E) 86
11032 CP1 E9
11033 R32 (00002685) 139
11037 CP1 E9
11038 R32 (00000714) 42
1103C CP1 E9
1103D R32 (00000E5F) 57
11041 CP1 E9
11042 R32 (00000D8A) 51
11046 CP1 E9
11047 R32 (000018BB) 82
1104B CP1 E9
1104C R32 (0000264E) 134
11050 CP1 E9
11051 R32 (000026BB) 153
11055 CP1 E9
11056 R32 (00001AD6) 97
1105A CP1 E9
1105B R32 (0000267B) 144
1105F CP1 E9
11060 R32 (00001BEA) 101
11064 CP1 E9
11065 R32 (00001E6D) 108
11069 CP1 E9
1106A R32 (000026A8) 154
1106E CP1 E9
1106F R32 (00001A7D) 92

New program before adjustment

RVA OP Count Bytes A32 R32 Origin
Ind Ind

0 CPY 1024: 4D5A90..00
ORG 11000

11000 CPY 6: CCCCCC..E9
11006 R32 (00001876) 85
1100A CP1 E9
1100B R32 (000026A7) 143
1100F CP1 E9
11010 R32 (0000276C) 43
11014 CP1 E9
11015 R32 (00000DC7) 57
11019 CP1 E9
1101A R32 (00002722) 42
1101E CP1 E9
1101F R32 (00001973) 93
11023 CP1 E9
11024 R32 (000024C8) 127
11028 CP1 E9
11029 R32 (0000267D) 141
1102D CP1 E9
1102E R32 (0000192E) 91
11032 CP1 E9
11033 R32 (00002685) 144
11037 CP1 E9
11038 R32 (00000714) 47
1103C CP1 E9
1103D R32 (00000E5F) 62
11041 CP1 E9
11042 R32 (00000D8A) 56
11046 CP1 E9
11047 R32 (000018BB) 87
1104B CP1 E9
1104C R32 (0000264E) 139
11050 CP1 E9
11051 R32 (000026BB) 158
11055 CP1 E9
11056 R32 (00001AD6) 102
1105A CP1 E9
1105B R32 (0000267B) 149
1105F CP1 E9
11060 R32 (00001BEA) 106
11064 CP1 E9
11065 R32 (00001E6D) 113
11069 CP1 E9
1106A R32 (000026A8) 159
1106E CP1 E9
1106F R32 (00001A7D) 97

New program after adjustment
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Exhibit L

Results of My Reference Accounting Experiments
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Abs/Rel32 References Rel8 Refs. Results

Revisions Corresp. Different Unchanged Changed Total Refs % Rel8
Compared Indexes Addresses Changed Del/Ins Undetected

Successive Chrome Releases
1.dll → 2.dll 582666 2339 480 499 585024 0.085
2.dll → 3.dll 557491 12677 680 7724 577212 1.338
3.dll → 4.dll 608555 3362 495 2152 613574 0.35
4.dll → 5.dll 608553 6447 499 2195 616696 0.355
5.dll → 6.dll 622528 1980 78495 148 546161 0.027
6.dll → 7.dll 617711 3943 692 3907 624869 0.625
7.dll → 8.dll 615004 7283 514 4425 626198 0.706
8.dll → 9.dll 653147 5393 511 2116 660145 0.32
9.dll → 10.dll 654225 8557 530 7119 669371 1.063
10.dll → 11.dll 677561 56 232899 17 444735 0.003
11.dll → 12.dll 667591 6275 555 2735 676046 0.404

Bigger Jumps Between Chrome Releases
1.dll → 12.dll 534454 22537 572 17308 573727 3.016
3.dll → 12.dll 571535 21074 553 15748 607804 2.59
6.dll → 12.dll 588311 17928 735 14011 619515 2.261
9.dll → 12.dll 649099 11146 548 9101 668798 1.36

Test Cases
reva.dll → revb.dll 499 6 280 2 227 0.881
setup1.exe → setup2.exe 21858 49 3366 13 18554 0.07

Abs/Rel32 References refers to reference entries treated by Courgette as indexes: Corresp. Indexes is the total number of indexes that moved in the index
vectors without changing value, i.e., those that the adjustment step found corresponded; Different are indexes that changed, but probably corresponded;
Unchanged Addresses are the number of indexes whose addresses did not change, i.e., corresponding, but not different. Rel8 Refs. Changed is the
number of suspected rel8 refs in the difference stream that changed due to insert/delete modification but went undetected. Total Changed Due Del/Ins is
the estimated number of all references that changed due to delete/insert modifications, that is, Abs/Rel32 references that corresponded plus those found to
be different less those with unchanged addresses (did not change) plus all changed rel8 references; % Rel8 Undetected is the percentage of undetected
Rel8 references that went undetected among all the corresponding references that changed. Part of the infringement question is whether these numbers are
“substantial.”



The PE files compared

Filename Source Size (bytes)

1.dll Chrome.dll from Chrome release 4.0.249.78 14,489,584
2.dll Chrome.dll from Chrome release 4.0.249.89 14,492,144
3.dll Chrome.dll from Chrome release 4.0.288.1 14,865,392
4.dll Chrome.dll from Chrome release 4.0.295.0 14,921,728
5.dll Chrome.dll from Chrome release 4.0.302.2 15,213,552
6.dll Chrome.dll from Chrome release 4.0.302.3 15,214,064
7.dll Chrome.dll from Chrome release 5.0.307.1 15,286,768
8.dll Chrome.dll from Chrome release 5.0.317.2 16,734,192
9.dll Chrome.dll from Chrome release 5.0.322.2 16,763,888
10.dll Chrome.dll from Chrome release 5.0.335.0 16,892,400
11.dll Chrome.dll from Chrome release 5.0.335.1 16,892,400
12.dll Chrome.dll from Chrome release 5.0.342.1 17,015,352

setup1.exe From Courgette distribution 967,168
setup2.exe From Courgette distribution 965,632

reva.dll My testcase 29,184
revb.dll My testcase 29,184

Chrome.dll extracted from Chrome releases downloaded from

http://www.filehippo.com/download_google_chrome/
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Excerpt from Red Bend’s “Principles of Updating Mobile Firmware Over-the-Air (FOTA)”
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5

There are three approaches to address the ripple effect: padding, patching and computational.

Padding — The firmware is split into several segments with extra spaces in between, called pads, which are designed 
to absorb some of the code shifts and reduce the ripple effect.

Patching — Complete portions such code procedures, which need to be modified, are completely disabled and their new 
version is appended to the firmware, completely avoiding the ripple effect.

Computational — This method removes the changed references out of the delta calculations and lets the receiving side 
to compute all these changes by itself.

From our experience and mainly from our customers’ experience over the last five years, it is evident that padding and patch-
ing are either not sufficient or not practical to implement. Padding require re-organization of the firmware on a per version 
process, wastes expensive memory on the handset, and its behavior remains unpredictable. Patching is not scaleable beyond 
one or two small updates. The computational approach, on the other hand, has been proven to provide optimum utilization 
of memory on the handset, a smaller delta package that utilizes less network bandwidth and storage space, and a simplified 
integration process.

Engineering Challenges on the Device

The challenge of delta-updating of mobile firmware is the update process on the device itself. While the generator running on 
a PC in the office can practically enjoy no resource limitations, the design of the update process on mobile devices must take 
into account the lack of any auxiliary data, lack of extra storage to be used as temporary buffers, lack of RAM in some cases 
and a much weaker CPU. Ineffective approaches could easily lead to conflicts between the various resources, and result in 
the “short blanket” effect – if you pull it from one side, the other side is left uncovered. 

<

<

<

Figure 2: �The “Ripple Effect” 
Many modified references significantly increase the variance between versions and significantly  
complicate update calculation & application
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Exhibit N

Excerpts from Brian Bershad’s patent, “Discovering code and data in a binary executable program”
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VisionMobile’s “100 Million Club”
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   tracking successful businesses in mobile

100 million club
    www.100millionclub.com Rev. 2

handsets shipped handsets installed base with software embedded (1)
sales % of handsets sold (2)

company product type HQ (million) 0 (%)

Applications (embedded)
QuickOffice Mobile Office suite enterprise apps USA 223 R N/A 0 0 0 0 0 0 0 0 0 0 1 1 1

Application environments

Adobe Flash/Flash Lite graphics runtime USA 1,200 R 43% 0 0 0 0 0 0 0 0 0 0 1 1 1
Aplix Jblend Java VM Japan 571 R 7% 0 0 0 0 0 0 0 0 0 0 1 1 1
Myriad Group Jbed Java VM Switzerland 348 R 6% 0 0 0 0 0 0 0 0 0 0 1 1 1

Browsers

ACCESS Netfront browser Japan 685 R 15% 0 0 0 0 0 0 0 0 0 0 1 1 1
Apple WebKit browser USA 170 E 10% 0 0 0 0 0 0 0 0 0 0 1 1 1
Myriad Group Browser browser Switzerland 2,020 R 16% 0 0 0 0 0 0 0 0 0 0 1 1 1
Opera Opera Mobile browser Norway 148 R 2% 0 0 0 0 0 0 0 0 0 0 1 1 1
Picsel File Viewer document viewer UK 230 R 8% 0 0 0 0 0 0 0 0 0 0 1 1 1

Middleware

Beatnik MobileBAE audio codecs USA 1,290 E 24% 0 0 0 0 0 0 0 0 0 0 1 1 1
BitFlash Mobile SVG graphics engine USA 434 R 4% 0 0 0 0 0 0 0 0 0 0 1 1 1
HI Corp Mascot Capsule 3D graphics engine Japan 530 E 7% 0 0 0 0 0 0 0 0 0 0 1 1 1
Ikivo SVG Player graphics engine Sweden 355 R 5% 0 0 0 0 0 0 0 0 0 0 1 1 1
Myriad Group Messaging client messaging middleware Switzerland 920 R 20% 0 0 0 0 0 0 0 0 0 0 1 1 1
Nuance VSuite speech recognition USA 320 R 10% 0 0 0 0 0 0 0 0 0 0 1 1 1
NXP Software LifeVibes MxMedia multimedia middleware Netherlands 610 R 13% 0 0 0 0 0 0 0 0 0 0 1 1 1
PacketVideo CORE video codecs USA 320 E 11% 0 0 0 0 0 0 0 0 0 0 1 1 1
Red Bend vRapid Mobile firmware update USA 550 R 14% 0 0 0 0 0 0 0 0 0 0 1 1 1
Rococo Impronto TLK Java library Ireland 150 R 3% 0 0 0 0 0 0 0 0 0 0 1 1 1
Scalado CAPS graphics engine Sweden 410 R 18% 0 0 0 0 0 0 0 0 0 0 1 1 1
TAT Kastor graphics engine Sweden 330 R 13% 0 0 0 0 0 0 0 0 0 0 1 1 1

Operating systems

ENEA OSE real-time OS Sweden 1,600 E 27% 0 0 0 0 0 0 0 0 0 0 1 1 1
Mentor Graphics Nucleus real-time OS USA 1,835 R 41% 0 0 0 0 0 0 0 0 0 0 1 1 1
Nokia S60 application framework Finland 236 R 6% 0 0 0 0 0 0 0 0 0 0 1 1 1
Nokia S40 operating system Finland 970 E 22% 0 0 0 0 0 0 0 0 0 0 1 1 1
Symbian Foundation Symbian OS operating system UK 293 R 6% 0 0 0 0 0 0 0 0 0 0 1 1 1
Open Kernel Labs OKL4 virtualisation software USA 300 R 9% 0 0 0 0 0 0 0 0 0 0 1 1 1
Qualcomm BREW application framework USA 560 E 6% 0 0 0 0 0 0 0 0 0 0 1 1 1

Input engines

Nuance T9/XT9 text input engine USA 4,450 R 63% 0 0 0 0 0 0 0 0 0 0 1 1 1
Nuance eZiText/eZiType text input engine USA 720 R 11% 0 0 0 0 0 0 0 0 0 0 1 1 1

Research notes Published in December 2009. Copyright VisionMobile. Some rights reserved.

knowledge. passion. innovation.

The 100 million club is the watchlist of  software 
companies whose products have been embedded 
on more than 100 million mobile (cellular) 
handsets.

Updated semi-annually, the 100 million club 
celebrates software businesses who have 
succeeded in establishing a significant share in the 
mobile handset market. 

Despite the apparent opportunity in the one-billion-
a-year handset market, very few software 
companies have managed to overcome the 
commercial and technical challenges inherent in 
the mobile industry. 

Based on our research, only 30 products from 24 
companies have shipped on more that 100 million 
handsets up to the first half of 2009. These figures 
underscore the complexity of the mobile market, at 
a time when over 7.5 billion handsets have shipped 
as of the end of H1 09.

The companies featured in our 100 million club 
develop and license embedded software for mass-
market phones, with products ranging from text 
input engines to application suites. These 
companies come from diverse backgrounds, with 
annual revenues ranging from $10 million to over 
$10 billion. Out of the 24 companies in our 100 
million club, 11 are US-based, 6 are headquartered 
in the Nordics and 3 in Japan.

For more analysis and insights on the 100 million 
club visit www.100millionclub.com or email us at 
info@visionmobile.com

About VisionMobile
VisionMobile is an industry analysis firm focusing in 
mobile software and services. We offer competitive 
landscape analysis, industry maps, on-site training 
and due diligence on under-the-radar market 
sectors.

See also: Industry Atlas, the visual who's who of 
the mobile industry spanning 1,100 vendors.

(1) Handset shipments refer to total licensed units, which have been pre-loaded on handsets shipped by the end of 1H09.
(2) The % of handsets sold refer to the penetration of each software product in the base of handsets sold during 1H09. 
(3) The sum of shipments for all 100 million club members is 22 Billion, whereas only 7.5 Billion have been sold up to  1H09. 
This indicates that more the three 100 million club members' products exist within the same device, on average.
(4) Our watchlist does not include ARM, InnoPath, Sony Ericsson JP, Sun's KVM and Tanla who did not disclose shipments.

sources: vendor data (R), VisionMobile estimates (E)

Licensed for use under a Creative Commons Attribution No Derivatives 3.0 license.
VisionMobile believes the statements contained in this document to be based upon 
information that we consider reliable at the time of publication.
The 100 million club is based on an original concept by Morten Grauballe.
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