

A/73432589.5/3005005-0000343244

UNITED STATES DISTRICT COURT
DISTRICT OF MASSACHUSETTS

RED BEND LTD. and
RED BEND SOFTWARE INC.,

Plaintiffs,
v.

GOOGLE INC.,

Defendant.

CIVIL ACTION
NO. 09-cv-11813

GOOGLE INC.,

Counterclaim-Plaintiff,
v.

RED BEND LTD. and
RED BEND SOFTWARE INC.,

Counterclaim-Defendants.

GOOGLE INC.’S CLAIM CONSTRUCTION BRIEF

Red Bend Software, Inc. et al v. Google Doc. 93

Dockets.Justia.com

http://dockets.justia.com/docket/massachusetts/madce/1:2009cv11813/125212/
http://docs.justia.com/cases/federal/district-courts/massachusetts/madce/1:2009cv11813/125212/93/
http://dockets.justia.com/

 - i -
A/73432589.5/3005005-0000343244

TABLE OF CONTENTS
Page

I. INTRODUCTION ... 1

II. STATEMENT OF FACTS .. 2
A. The Asserted Claims .. 2

B. The Alleged Invention ... 4

1. The Disclosure of the ‘552 patent.. 4

2. The Prosecution History. ... 8

III. THE LAW OF CLAIM CONSTRUCTION.. 10

IV. THE PROPER CONSTRUCTION OF THE DISPUTED TERMS 12
A. “invariant references” (all asserted claims) ... 12

B. “compact difference result” (all asserted claims) .. 14

C. “executable program” (claims 8, 12, 21 and 25) ... 15

D. “data table” (claims 42, 46, 55 and 59).. 17

E. “modified old program” &“modified new program” (claims 8, 12, 21 &
25); “modified old data table” & “modified new data table” (claims 42, 46,
55 & 59) ... 18

V. CONCLUSION.. 20

 - i -
A/73432589.5/3005005-0000343244

TABLE OF AUTHORITIES
Page(s)

CASES

C.R. Bard, Inc. v. U.S. Surgical Corp.,
388 F.3d 858 (Fed. Cir. 2004)..13

Digital Biometrics, Inc. v. Identix, Inc.,
149 F.3d 1335 (Fed. Cir. 1998)..12, 13, 16, 20

Honeywell Int’l, Inc. v. ITT Indus., Inc.,
452 F.3d 1312 (Fed. Cir. 2006)..12, 13, 16, 20

Intellicall v. Phonometrics,
952 F.2d 1384 (Fed. Cir. 1992)..11

Johnson Worldwide Associates, Inc. v. Zebco Corp.,
175 F.3d 985 (Fed. Cir. 1999)..11

Lizardtech, Inc. v. Earth Resource Mapping, Inc.,
424 F.3d 1336 (Fed. Cir. 2005)..15

Markman v. Westview Instruments, Inc.,
52 F.3d 967 (Fed. Cir. 1995)..10, 11

Pharmacia & Upjohn Co. v. Mylan Pharmaceuticals Inc.,
170 F.3d 1373 (Fed. Cir. 1999).. passim

Phillips v. AWH Corp.,
415 F.3d 1303 (Fed. Cir. 2005) (en banc)..10, 11, 17, 18

SciMed Life Sys. v. Advanced Cardiovascular Sys.,
242 F.3d 1337 (Fed. Cir. 2001)..12, 13, 16, 20

Southwall Techs., Inc. v. Cardinal IG Co.,
54 F.3d 1570 (Fed. Cir. 1995)..11, 18

Teleflex, Inc. v. Ficosa North America Corp.,
299 F.3d 1313 (Fed. Cir. 2002)..11, 17

Vitronics Corp. v. Conceptronic, Inc.,
90 F.3d 1576 (Fed. Cir. 1996)..11

STATUTES

35 U.S.C. § 112..15

 - ii -
A/73432589.5/3005005-0000343244

OTHER AUTHORITIES

MERRIAM-WEBSTER’S ONLINE DICTIONARY ...8

MICROSOFT COMPUTER DICTIONARY ...10, 16

WEBSTER’S NEW WORLD COMPUTER DICTIONARY ...10, 16

 - 1 -
A/73432589.5/3005005-0000343244

I. INTRODUCTION

Red Bend’s U.S. Patent No. 6,546,552 (“the ‘552 patent”) covers a specific approach to

creating software patches that can be used to update software programs. Sharon Peleg, the

named inventor of the ‘552 patent, set out to address the well known problem of overly large

software patches. The technique that he eventually settled on involves a particular way of

processing the new and old executable programs to make modified versions of each in which

references become “invariant” if they changed only due to the deletion or insertion of program

instructions. The references that become invariant in the modified new and old executable

programs are then eliminated from the difference result. This, the ‘552 patent claims, makes the

difference result smaller than in prior art.

Peleg did not invent any and every way of making difference results relatively more

compact than those found in the prior art. Rather, Peleg’s particular technique of making

references invariant and then eliminating them is the invention—according to the ‘552 patent

itself, the prosecution history, Red Bend’s opening preliminary injunction paper, Red Bend’s

expert, Google’s expert, and the even according to the testimony of the inventor himself.

The parties’ disagreement about the scope of the ‘552 patent animates their disagreement

over the meaning of five claim terms:

1. “invariant references”;

2. “compact difference result”;

3. “data table”;

4. “executable program”; and

5. the related terms “modified old data table,” “modified old program,” “modified

new data table, and “modified new program.”

See Ex. A (chart summarizing disputed and stipulated claim constructions).1 Their differing

1 As noted in Exhibit A the parties agree on the proper construction of the following claim terms:
“old executable program” and “said old program”; “old data table”; “reference”; and “reference

(Footnote Continued on Next Page.)

 - 2 -
A/73432589.5/3005005-0000343244

constructions present three broad issues:

• Do the claims require that references made invariant be eliminated from the

difference result as described in the specification and prosecution history?

• Do all claims require an executable program given the applicants’ amendment of

the clams and arguments made in order to overcome the Examiner’s rejection of

the claims as invalid in light of the prior art?

• Must the modified old/new programs/data tables be a version of the original

executable program/data table with the invariant references inserted, as described

in the intrinsic record, or does the claim language extend to programs and data

tables modified in ways not described in the specification or prosecution history?

As detailed below, Google’s proposed constructions are consistent with the claims themselves,

the specification and the prosecution history. Google respectfully urges the Court to adopt them.

II. STATEMENT OF FACTS

A. The Asserted Claims

Red Bend alleges that Google’s Courgette software infringes claims 8-12, 21-25, 28-34,

42-46, 55-60, and 62-67 of the ‘552 patent. These 34 asserted claims fall into several categories

pertaining to the generation of a “compact difference result” (independent claims 8, 21 42 and

55), its storage on a storage medium (dependent claims 11, 24, 28, 45, 58 and 62), its

transmission (dependent claims 9, 10, 22, 23, 29, 30-34, 43, 44, 56, 57, 60, 63, and 64-67), and

the use of the claimed “compact difference result” to update software (independent claims 12,

25, 46 and 59). All disputed claim terms appear in the independent claims.

Claim 8 is representative of the server-side2 claims:

(Footnote Continued from Previous Page.)

entries.” Unless otherwise indicated, all referenced exhibits are attached to the Declaration of
Susan Baker Manning In Support of Google Inc.’s Claim Construction Brief.
2 Although the claims do not require that the “compact difference result” be created or stored on
a “server,” the parties have used “server-side” as a convenient shorthand for the claims directed

(Footnote Continued on Next Page.)

 - 3 -
A/73432589.5/3005005-0000343244

8. A method for generating a compact difference result between an
old executable program and a new executable program; each
program including reference entries that contain reference that
refer to other entries in the program; the method comprising the
steps of:

(a) generating a modified old program utilizing at least said old
program;

(b) generating a modified new program utilizing at least said new
program, said modified old program and modified new program
have at least the following characteristics:

(i) substantially each reference in an entry in said old program that
is different than corresponding entry in said new program due to
delete/insert modifications that form part of the transition between
said old program and new program are reflected as invariant
references in the corresponding entries in said modified old and
modified new programs;

(c) generating said compact difference result utilizing at least said
modified new program and modified old program.

‘Ex. B at claim 8 (emphasis added to disputed claim terms). Claim 42 is identical except that

every reference to an “executable program” or “program” in claim 8 is replaced by the term

“data table” in claim 42. Similarly, the only difference between claims 21 and 55 is the change

from “executable program” or “program” in claim 21 to “data table” in claim 55. System claims

21 and 55 correspond, respectively, to method claims 8 and 42 in that each claims a system

capable of performing the corresponding method, and does so in language identical to the

method claim. As Red Bend and its expert have previously conceded, all four independent

server-side claims are substantively identical. See, e.g., Memorandum in Support of Plaintiffs’

Motion for a Preliminary Injunction at 9 (Dkt. 9); Declaration of Stephen A. Edwards in Support

of Plaintiffs’ Motion at ¶ 25 (Dkt. 9, Attachment No. 4).

(Footnote Continued from Previous Page.)

to the generation of the “compact difference result” (independent claims 8, 21 42 and 55).
Similarly, and consistent with the terminology of the specification, they have used “client-side”
as a shorthand for the claims directed to the use of the “compact difference result” to update
software (independent claims 12, 25, 46 and 59). See Ex. B at 1:21-46 (discussing the updating
of an old program “installed at a remote client site”).

 - 4 -
A/73432589.5/3005005-0000343244

The independent client-side claims (claims 12, 25, 46 and 59) each pertain to the

updating of an “old executable program” on the remote client computer using a previously-

generated “compact difference result.”

12. A method for performing an update in an old executable
program so as to generate a new executable program; each
program including reference entries that contain reference that
refer to other entries in the program; the method comprising the
steps of:

(a) receiving data that includes a compact difference result; said
compact difference result was generated utilizing a modified old
program and a modified new program;

(b) generating a modified old program utilizing at least said old
program;

(c) reconstituting a modified new program utilizing directly or
indirectly at least said modified old program and said compact
difference result; said modified old program and modified new
program have at least the following characteristics:

(i) substantially each reference in an entry in said old program that
is different than corresponding entry in said new program due to
delete/inset modifications that form part of the transition between
said old program and new program are reflected as invariant
references in the corresponding entries in said modified old and
modified new programs;

(d) reconstituting said new program utilizing directly or indirectly
at least said compact difference result and said modified new
program.

Ex. B at claim 12 (emphasis added). Like the server-side claims, the client-side claims are

identical in most respects. Claims 12 and 46 are method claims, while claims 25 and 59 are

parallel system claims. Claims 12 and 25 recite an “executable program,” while claims 46 and

59 recite a “data table.”

B. The Alleged Invention

1. The Disclosure of the ‘552 patent.

The ‘552 patent teaches a very specific way of reducing the size of difference results. It

had been known for many years prior to the ‘552 patent that it was inefficient to update installed

software by providing an entirely new version of the software every time there was any change,

 - 5 -
A/73432589.5/3005005-0000343244

no matter how small, vis-à-vis a previous software version. See, e.g., Ex. B at 1:26-50; see also

Ex. L at 1:32-37 (“Patching is an old technology, going back decades. Generally, patch files

include a series of instructions specifying how a new version of a file can be assembled from

snippets of data from an old version of the file, together with insertions of new data.”). It was

widely recognized that it was efficient to send a “patch” that contained just the changes between

the new and old software versions, and use this to update the old program. Ex. B at 1:26-1:50.

Long before the ‘552 patent, there were a number of difference generators available that could

analyze new and old software versions, identify the differences between them, and create a

difference result (or “diff”) showing those differences.

According to the ‘552 patent specification, prior techniques all contained a fundamental

flaw in their handling of “reference entries”—that is, computer software instructions “which, by

nature, specify a target address (reference) as an integral part of the command.” Ex. B at 1:67-

2:2. For example, in the instruction “move 11” at address 5 in the “old program,” 11 is a

reference entry. After new instructions (shown in green) are inserted, this becomes “move 13” in

the “new program” below, with 13 being the new reference entry.

Addresses
Shift

Certain
reference
addresses
shift

 - 6 -
A/73432589.5/3005005-0000343244

The problem with reference entries is that the simple insertion or deletion of instructions

in a program, will result in a “ripple effect” of references that change only because other aspects

of the program changed. Ex. B at 2:4-9; see also Ex. C at RedBend0000150; Ex. D at 14;

. This may result in an

“inflated” difference result that contains not only the inserted or deleted section, but also

includes all of the references entries altered due to the ripple effect. See Ex. B. at 1:59-2:19. For

example, if new instructions are inserted after address 1 to create an updated program, ideally

only the newly inserted instructions would have to be included in the difference result.

However, what actually happens is that the address values associated with reference entries also

change. In the prior art this resulted in their unnecessary inclusion in the difference result. Id. at

1:59-2:9. This is analogous to a redline of a document. If an author adds (or deletes) a single

section heading to a document, all subsequent section headings are renumbered. Furthermore,

any references to those renumbered section headings in the text also change even though only a

single section heading has been added or deleted. According to the ‘552 patent, prior techniques

would send the new heading and all changed references. See, e.g., Ex. B at 3:36-46.

The ‘552 patent is directed to a particular solution for the problem of difference results

that become “inflated” due to delete/insert modifications in a new program. Id. at 3:31-35. The

‘552 patent describes a specific technique for only sending what was deleted or inserted (e.g., the

new heading itself) in the patch, and excluding all references that change only due to the ripple

effect.

The present invention is based on the observation that the relatively
large size of the difference result stems from the alterations of
reference in reference entries as a result of other newly inserted
entries (and/or entries that were deleted).

On the basis of this observation, the invention aims at generating a
modified old program and a modified new program, wherein the
difference in references in corresponding entries in said new and
old programs as explained above, will be reflected as invariant
entries in the modified old and new programs. The net effect is
that the invariant reference entries (between the modified old
program and the modified new program), will not appear in the
difference result, thereby reducing its size as compared to a

 - 7 -
A/73432589.5/3005005-0000343244

conventional difference result obtained by using hitherto known
techniques.

Id. at 3:36-46 (Summary of Invention) (emphasis added). Elsewhere in the specification, the

applicant explained that shifts due to insertions are “neutralize[d]” with invariant references

“with the obvious consequence that they are not reflected in the difference result, thus keeping

the latter relatively compact.” Id. at 9:66-10:15.

The first step in eliminating the invariant references from a difference result, and thus

making it “compact,” is to identify those references that change only as the result of delete/insert

modifications. Ex. B at 3:53-54. One then creates modified versions of the old and new

programs in which substantially each such reference is replaced with an “invariant reference”—

invariant in that it is the same in the modified old program and in the modified new program. Id.

at 3:31-46 & 9:66-10:15; see also Ex. C at RedBend0000150. This is the only modification

taught, and the old and new programs are otherwise unchanged from their original, executable

form. Ex. B at 3:53-62, 4:8-19 & 12:11-28; Ex. C at RedBend0000151, RedBend0000173.

This replacement of references that change due to delete/insert modifications with

invariant references makes them invisible to the difference generator. In essence, the invariant

references trick the difference generator into thinking that certain references have not changed

when in fact they have. For example, “move 11” in the old program became “move 13” in the

Invariant
references
replace
references
changed due to
delete/insert
modifications

 - 8 -
A/73432589.5/3005005-0000343244

new program. In both of the modified versions of the old and new programs, these are replaced

with “goto IR-3”, with IR-3 being the invariant reference. Because the invariant references fool

the difference generator into believing that the underlying references have not changed,

references that change only as the result of delete/insert modifications are not included in the

difference result. This elimination of references that change only as the result of delete/insert

modifications makes the difference result smaller—or, in the language of the claims, makes it a

“compact difference result.” See, e.g., Ex. B at claim 8, 3:36-46, 9:66-10:15.

2. The Prosecution History.

Red Bend filed the application that issued as the ‘552 patent on August 18, 1999. Ex. B

On October 2, 2001, the Patent and Trademark Office issued an office action in which it rejected

all claims as anticipated by each of two Japanese publications: JP 404242829A to Okuzumi, et

al. and JP 05091550A to Kenji, et al. See Ex. C at RedBend0000128-135.; see also Ex. G

(Okuzumi) & Ex. H (Kenji).

In response, the inventor amended claims 8, 12, 21 and 25, among others, to explicitly

recite an “executable program,” rather than merely a “program,” and distinguished the invention

on the basis of its manipulation of executable programs, as opposed to source or symbolic

programs. Ex. C. at RedBend0000144-163. The applicant specifically argued that whereas

Okuzumi concerns “source” programs—i.e., programs as they exist in a human writable and

readable programming language, or source code—“the present invention . . . defines an

executable program.” Id. at RedBend0000151 (emphasis added).3 The applicant specifically

3 An executable program causes a computer “to perform indicated tasks according to encoded
instructions.” See Merriam-Webster’s Online Dictionary, http://www.merriam-
webster.com/dictionary/executable (last visited July 15, 2010). The instructions of a program are
executed directly by a computer’s central processing unit. The files in which executable
programs are stored are termed “binary files” or “binaries” because they encode instructions in
the binary format used by the CPU, that is, 1s and 0s. In order to create an executable program, a
programmer writes software code (sometimes called “source code”) in a programming language
or other symbolic form (such as assembly language), and then processes the code using a
compiler. The compiler process may involve several intermediate steps, such as the creation of
object files, but the ultimate output is the creation of a single executable program file containing

(Footnote Continued on Next Page.)

 - 9 -
A/73432589.5/3005005-0000343244

stated that, unlike Okuzumi, the claimed invention generates the difference result from

executables:

In extracting [a] diff between 2 versions of executable files . . .
there is no source involved, and neither statements, nor any textual
or other symbolic representation of the program even exist.”

Ex. C at RedBend0000151 (emphasis added). The applicant also distinguished Okuzumi as

relying on an auxiliary “order table” that “directs to source and not to [an] executable program.”

Id. at RedBend0000152.

Although the applicant’s discussion of Okuzumi focused on claim 1 of the ‘552 patent,

the applicant explicitly adopted each of these arguments as to all of the claims Red Bend new

asserts. See Ex. C at RedBend0000149 (“Since the Examiner’s detailed reasoning refers to

Claim 1, the following, arguments focus on Claim 1, and will later apply to the other Claims,

mutatis mutandis.”); id. at RedBend0000152-53 (adopting “executable” arguments made as to

claim 1 for claims 8 and 21). The applicant distinguished the independent “data table” claims 42

and 56 on the same grounds:

Claims 35 to 68 are basically similar to claims 1 to 34,
respectively, except for the fact that they recite data table instead
of executable program. Data table is discussed on page 4, line 9 of
the application and do not embrace source code as in Okuzumi. It
is accordingly submitted that Claims … 42-44 [and] 55-57 are not
anticipated by Okuzumi for the reasons discussed in detail above
with reference to claims 1 to 3, 8-10. . . and 21-23.

Id. at RedBend0000154 (emphasis added). Likewise, the applicant distinguished all of the

independent client-side claims the same grounds as the server-side claims. Id. at

RedBend0000154-55.

The PTO issued a notice of allowance in August 2002. Id. at RedBend0000165-68. In

(Footnote Continued from Previous Page.)

1s and 0s, often termed a “binary,” “executable,” or “program”. Source code and other human-
readable forms are considered symbolic, as distinct from the binary code required of executables.
Walker Decl. ¶ 20.

 - 10 -
A/73432589.5/3005005-0000343244

doing so, the Examiner noted that U.S. Patent No. 5,832,520 to Miller was “[t]he closest prior art

reference of record currently” and that Miller teaches all of the elements other than “generating a

modified new file and using the modified new file and the modified old file to generate the

difference result.” Id. at RedBend0000166; see also Ex. I (Miller). In response, Red Bend

denied that “Miller creates modified old programs in the sense of the invention,” as the Examiner

had indicated. Id. at RedBend0000173-74 (emphasis added). Red Bend argued that Miller did

not disclose a “modified old program” because Miller teaches the creation of “an index or hash

table.” Id. at RedBend0000173.4 Red Bend described the “index or hash table” as “auxiliary

data [] created in addition to the old file and in contrast to the invention[.]” Id. (emphasis

added). Red Bend emphasized that, according to Miller, the creation of auxiliary data was not

essential, whereas “the generation of modified old programs or modified old data table [sic]

(depending on the aspects of the invention), is an obligatory step for the generation of the

compact difference result.” Id. at RedBend0000174. The Examiner disagreed with Red Bend’s

description of Miller. Id. at RedBend0000175-77. The ‘552 patent issued on April 8, 2003.

III. THE LAW OF CLAIM CONSTRUCTION

“It is a bedrock principle of patent law that the claims of a patent define the invention to

which the patentee is entitled the right to exclude.” Phillips v. AWH Corp., 415 F.3d 1303, 1312

(Fed. Cir. 2005) (en banc). Claim construction is a question of law for the court alone.

Markman v. Westview Instruments, Inc., 52 F.3d 967, 970-71 (Fed. Cir. 1995). “The best source

4 In computer science, a hash table is a data structure (i.e., a way of storing and organizing data)
that maps identifying values, known as keys (e.g., a person’s name) to their associated values
(e.g., their telephone number). One example would be a table in which the key is a person’s
name and hash table associates this key with the person’s telephone number. A hash table is a
type of index. Walker Decl. ¶ 26; see also Ex. J (WEBSTER’S NEW WORLD COMPUTER
DICTIONARY) at 170 (“hash table”: “a table of hash values that provides rapid access to data
records . . . [t]he has function uniquely identifies each record, and the hash table includes
pointers to each record.”); Ex. K (MICROSOFT COMPUTER DICTIONARY) at 247 (“hash”: “To be
mapped to a numerical function . . . [h]ashing is used to convert an identifier or key . . . into a
value for the location of the corresponding data in a structure, such as a table.”).

 - 11 -
A/73432589.5/3005005-0000343244

for understanding a technical term is the specification from which it arose, informed, as needed,

by the prosecution history.” Phillips, 415 F.3d at 1315 (internal quotations omitted); see also

Vitronics Corp. v. Conceptronic, Inc., 90 F.3d 1576, 1583 (Fed. Cir. 1996) (the specification “is

the single best guide to the meaning of a disputed term”); Markman, 52 F.3d at 979 (“A patent’s

claims must be read in view of the specification, of which they are a part.”).

Courts presume that claim terms mean what they say, as understood by a person of

ordinary skill in the relevant art.5 Phillips, 415 F.3d at 1313; Johnson Worldwide Associates,

Inc. v. Zebco Corp., 175 F.3d 985, 989 (Fed. Cir. 1999). The presumption of ordinary meaning

may be overcome where the applicant redefined or limited a claim term. One way this can be

done is through specific definitions set forth in the specification, such as the Glossary definitions

found in the ‘552 patent, or in the prosecution history. Phillips, 415 F.3d at 1316 (special

definitions or intentional disclaimers of claim scope in the specification are “regarded as

dispositive” of claim term meaning); Intellicall v. Phonometrics, 952 F.2d 1384, 1388 (Fed. Cir.

1992) (“an inventor [may] choose[] to be his own lexicographer”).

An applicant can affect the scope of his or her claims through statements made during

prosecution “redefining the term or by characterizing the invention in the intrinsic record using

words or expressions of manifest exclusion or restriction, representing a clear disavowal of claim

scope.” Teleflex, Inc. v. Ficosa North America Corp., 299 F.3d 1313, 1327 (Fed. Cir. 2002).

Such statements are binding. Id.; Phillips, 415 F.3d at 1317; Southwall Techs., Inc. v. Cardinal

IG Co., 54 F.3d 1570, 1576 (Fed. Cir. 1995) (“The prosecution history limits the interpretation of

claim terms so as to exclude any interpretation that was disclaimed during prosecution. . . .

Claims may not be construed one way in order to obtain their allowance and in a different way

5 Here, the parties agree that a person of ordinary skill in the art is someone with a bachelor of
science degree in computer science (or an equivalent), who has approximately two years of
software development experience, and some understanding of how source code is converted to
machine instructions that can be executed by a computer. Walker Decl. ¶ 8.

 - 12 -
A/73432589.5/3005005-0000343244

against accused infringers.”) (citations omitted). Global comments in the prosecution history

“made to distinguish the applicants’ ‘claimed invention’ from the prior art” limit all claims of

patent. Digital Biometrics, Inc. v. Identix, Inc., 149 F.3d 1335, 1347 (Fed. Cir. 1998); see also

Honeywell Int’l, Inc. v. ITT Indus., Inc., 452 F.3d 1312, 1318 (Fed. Cir. 2006) (construing claim

term to include feature characterized as “this invention” or “the present invention”); SciMed Life

Sys. v. Advanced Cardiovascular Sys., 242 F.3d 1337, 1343 (Fed. Cir. 2001) (construing term to

include feature characterized as “the present invention”); Pharmacia & Upjohn Co. v. Mylan

Pharmaceuticals Inc., 170 F.3d 1373, 1378 (Fed. Cir. 1999) (“key feature of the present

invention” statement during prosecution surrendered scope).

IV. THE PROPER CONSTRUCTION OF THE DISPUTED TERMS

A. “invariant references” (all asserted claims)

Google Claim Construction Red Bend Claim Construction
“invariant references”: values made the
same in the modified old and new programs
(or data tables) for corresponding reference
entries so that the reference addresses are
excluded from the difference result.

“invariant references”: values made the
same.

According to the language of every claim, invariant references are inserted into the

modified old and modified new programs in place of reference addresses that have changed due

to delete/insert modifications.

said modified old program and modified new program have at least
the following characteristics:

(i) substantially each reference in an entry in said old program that
is different than corresponding entry in said new program due to
delete/inset modifications that form part of the transition between
said old program and new program are reflected as invariant
references in the corresponding entries in said modified old and
modified new programs

See, e.g., Ex. B at claim 8(b)(i) (server-side) & claim 12(c)(i) (client-side). The replacement of

these references with invariant references is essential; only by having a one-to-one, invariant

relationship between the reference in the modified old program and the corresponding reference

 - 13 -
A/73432589.5/3005005-0000343244

in the modified new program can the invention to ensure that the invariant references entries are

not included in the difference result. The applicant specifically states in the Summary of

Invention that this is his solution—and his only solution—to the problem he sought to address.

Id. at 3:36-46 (“The net effect is that the invariant reference entries (between the modified old

program and the modified new program), will not appear in the difference result, thereby

reducing its size as compared to a conventional difference result obtained by using hitherto

known techniques.”) (emphasis added).6 The applicant reiterated elsewhere in the specification

that “it is accordingly an object of the invention” that shifts due to deletions and insertions are

“neutralized” with invariant references, “with the obvious consequence that they are not

reflected in the difference result, thus keeping the latter relatively compact.” Id. at 9:66-10:15

(emphasis added). The applicant made the same point in the prosecution history in order to

overcome the rejection of the claims. Ex. C at RedBend0000150 (“In accordance with the

present application such a need is reduced or eliminated, and what is required, is just to send the

first few modified bytes. . . . The modification is effected in such a way that the references

become “invariant” (see [‘552 patent at 3:36-46]) thereby reducing the diff result and rendering it

compact.”). Digital, 149 F.3d at 1347 (characterizations of “the invention” are limiting);

Honeywell, 452 F.3d at 1318; SciMed, 242 F.3d at 1343; Pharmacia, 170 F.3d at 1378.

6 Red Bend and its expert relied this same portion of the specification as summarizing the
invention in its preliminary injunction briefing. Memo. in Support of Plaintiffs’ Motion for a
Preliminary Injunction (Dkt. 9) at 6; Declaration of Stephen A. Edwards in Support of Plaintiffs’
Motion (Dkt. 9, Attachment No. 4) at ¶¶ 16-17. Google’s expert agreed. See Declaration of
Martin G. Walker in Support of Google Inc.’s Opposition to Motion for Preliminary Injunction at
¶¶ 15-18. See also C.R. Bard, Inc. v. U.S. Surgical Corp., 388 F.3d 858, 864 (Fed. Cir. 2004)
(limiting statements describing the invention as a whole are “more likely to be found in certain
sections of the specification, such as the Summary of Invention”).

 - 14 -
A/73432589.5/3005005-0000343244

In light of the claims themselves, the key teachings of the specification, and the

applicants description of the invention during prosecution, “invariant references” should be

construed as “values made the same in the modified old and new programs (or data tables) for

corresponding reference entries so that the reference addresses are excluded from the difference

result.” Walker Decl. ¶ 29.

B. “compact difference result” (all asserted claims)

Google Claim Construction Red Bend Claim Construction
“compact difference result”: a difference
result in which references that have changed
due to delete/insert modifications do not
appear.

“compact difference result”: a difference
result of a smaller size as compared to a
conventional difference result (obtained by
using techniques in existence prior to the
invention of the patent-in-suit) in which the
need to reflect changes to references due to
delete/insert modifications is reduced or
eliminated.

As discussed above, the key to the invention of the ‘552 patent is the elimination of

references that change only due to delete/insert modifications from the claimed “compact

difference result.” Ex. B at 3:36-46 (“invariant reference entries … will not appear in the

difference result”) & 9:66-10:15 (shifts due to deletions and insertions “are not reflected in the

difference result”); Ex. C at RedBend0000150 (difference result smaller due to elimination of

invariant reference entries). The elimination of that unnecessary data is the very thing that

makes the difference result “compact,” and provides the “significantly smaller volumes of

difference results between old programs and new programs” that the inventor was trying to

achieve. Ex. B at 2:18-20. This is the only way of making difference results “compact”

 - 15 -
A/73432589.5/3005005-0000343244

disclosed in the ‘552 patent.

 To construe the claims not to cover the very heart of Peleg’s approach to

difference results would unmoor the claims from the teachings of the patent and render them

invalid. See, e.g., Lizardtech, Inc. v. Earth Resource Mapping, Inc., 424 F.3d 1336, 1344 (Fed.

Cir. 2005) (claims construed to be broader than the single compression process disclosed in the

specification were invalid for failure to meet the written description and enablement

requirements of 35 U.S.C. § 112).

For these reasons, and the reasons discussed with respect to “invariant references,” the

term “compact difference result” should be construed as “a difference result in which references

that have changed due to delete/insert modifications do not appear.”7 Walker Decl. ¶ 26.

C. “executable program” (claims 8, 12, 21 and 25)

Google Claim Construction Red Bend Claim Construction
“executable program”: a program comprising
machine language instructions and
corresponding bytes of data used by the
program that are ready to be run on a
computer, excluding source or other symbolic
code.

“executable program”: a program comprising
machine language instructions and
corresponding bytes of data used by the
program that are ready to be run on a
computer.

In Glossary section of the ‘552 patent, the inventor specified that an “executable

program” is “a loaded program in machine-memory” or “an executable-file.” Ex. B at 2:61-65.

The entries of an “executable program” are “individual machine instructions of the program or

the individual data elements used by the program” and are therefore ready to be loaded and run

by a computer. Id. These Glossary statements are consistent with the ordinary meaning of

“executable program.” Persons of ordinary skill in the art understand that an “executable

7 The parties agree that a “difference result” is “data representative of the difference between an
old program (or data table) and a new program (or data table) used to carry out an update of the
old program.” See Ex. A.

 - 16 -
A/73432589.5/3005005-0000343244

program” does not include source or other symbolic code that cannot be run on a computer.

Walker Decl. ¶ 20. See also Ex. J (WEBSTER’S NEW WORLD COMPUTER DICTIONARY) at 134

(“executable program”: “A program that is ready to run on a given computer. For a program to

be executable, it first must be translated, usually by a compiler, into the machine language of a

particular computer.”); Ex. K (MICROSOFT COMPUTER DICTIONARY) at 200 (“executable

program”: “A program that can be run.

The applicant’s statements to the PTO confirm that the “executable program” cannot

include source or other symbolic code. As noted above, the applicant amended claims 8, 12, 21

and 25 to recite an “executable program,” and thus overcame the Examiner’s rejection of all

claims in light of the Okuzumi reference. Ex. C at RedBend0000160-163 (showing

amendments); id. at RedBend0000151 (“the present invention . . . defines an executable

program”) (emphasis added); id. at RedBend0000151 (“In extracting [a] diff between 2 versions

of executable files . . . there is no source involved, and neither statements, nor any textual or

other symbolic representation of the program even exist.”) (emphasis added); Ex. D at 11-12

(“the claimed techniques are intended to operate on files after references have been resolved to

become numeric, as opposed to symbolic -- thereby permitting the techniques of the '552 Patent

to be applied to executable files and data tables”). These characterizations of “the invention” are

limiting. Digital, 149 F.3d at 1347; Honeywell, 452 F.3d at 1318; SciMed, 242 F.3d at 1343;

Pharmacia, 170 F.3d at 1378.

The ordinary meaning of “executable program,” the specification and the prosecution

history all require that source or other symbolic code be excluded. The Court should therefore

construe the claim term “executable program” as “a program comprising machine language

instructions and corresponding bytes of data used by the program that are ready to be run on a

computer, excluding source or other symbolic code.”

 - 17 -
A/73432589.5/3005005-0000343244

D. “data table” (claims 42, 46, 55 and 59)

Google Claim Construction Red Bend Claim Construction
“data table”: a table of entries, each of which
may have a different size. An executable
program is one example of a data table. It
cannot include source or other symbolic code.

“data table”: a table of entries, where an entry
is an addressable unit within the data table.
Each entry may have a different size. An
executable program is one example of a data
table.

As the applicant stated in the Glossary, a “data table” is “a table of entries, each [of

which] may have a different size.” Ex. B at 2:33-34. Also according to the Glossary, “a data

table can be an executable program.” Id. at 2:61. During prosecution, however, the applicant

successfully overcame the rejection of all claims by going further. In response to the Examiner’s

rejection of all claims, the applicant asserted not just that a “data table” could be an executable

program, but that the claims were allowable because the claimed “data table” “do[es] not

embrace source code as in Okuzumi.” Ex. C at RedBend0000154 (specifically asserting that

server-side “data table” claims 42, 55, and their dependents are allowable for the same reasons as

the executable program claims); id. at RedBend0000154-55 (same for client-side “data table”

claims 46, 59, and their dependents). 8 Thus, the applicant argued that—at least in the context of

software programs relevant to this case—the claimed “data table” must be an executable

program. Teleflex, 299 F.3d at 1327 (Fed. Cir. 2002); Phillips, 415 F.3d at 1317.

Put another way, both the Glossary definition and the applicant’s disclaimer during

prosecution must be given effect. The “data table” can be an executable program and, in the

context of software, cannot include source or other symbolic code. The applicant specifically

disclaimed a broader construction in order to obtain issuance of the patent. As with “executable

8 Red Bend conceded early in the case that all of the asserted independent server-side claims are
substantively identical, despite some variation in claim language. See Memorandum in Support
of Plaintiffs’ Motion for a Preliminary Injunction (Dkt. 9) at 9 & 11. Its expert’s declaration
testimony was that there was no material difference between “data table” and “executable
program.” Declaration of Stephen A. Edwards in Support of Plaintiffs’ Motion at ¶ 25 (Dkt. 9,
Attachment No. 4) (“I consider ‘executable program’ and ‘data table’ equivalent”) & Ex. A
thereto.

 - 18 -
A/73432589.5/3005005-0000343244

program,” this is the key point of disagreement between the parties regarding “data table,” and

here too Red Bend is bound by the prosecution history. Phillips, 415 F.3d at 1317; Southwall, 54

F.3d at 1576. “Data table” is therefore properly construed as “a table of entries, each of which

may have a different size. It cannot include source or other symbolic code. An executable

program is one example of a data table.”

E. “modified old program” &“modified new program” (claims 8, 12, 21 & 25);
“modified old data table” & “modified new data table” (claims 42, 46, 55 & 59)

Claim Term Google Claim Construction Red Bend Claim Construction
Modified old program An interim result, such as tables

or data structures, related to the
old data table.

Modified new program An interim result, such as tables
or data structures, related to the
old program.

Modified old data table An interim result, such as tables
or data structures, related to the
new data table.

Modified new data table

A version of the actual program
or data table in its original
executable form, with certain
portions replaced.

An interim result, such as tables
or data structures, related to the
new program.

The modified old and new programs/data tables claimed in the ‘552 patent are what the

claim language suggests they are: changed versions of the old and new programs/data tables.

The modified old and new programs/data tables are created from the original old and new

programs/data tables. The modification necessary for the invention to make a smaller difference

result, and the only modification disclosed anywhere in the patent is the insertion of invariant

references. Google’s proposed definition acknowledges that the claims start with old and new

executable programs/data tables and that the modified old and new programs/data tables are

essentially those old and new executable programs/data tables, but with references that changed

only due to delete/insert modifications replaced by invariant references.

The applicant emphasized to the Examiner that the modified old and new programs (or

data tables) remain in executable format after modification. In all claims, the compact difference

result is generated using the modified old program [or data table] and the modified new program

 - 19 -
A/73432589.5/3005005-0000343244

[or data table]. The applicant was explicit that the “diff” is “extract[ed] … between 2 versions of

executable files” and “there is no source involved, and neither statements, nor any textual or

other symbolic representation of the program even exist.” Ex. C at RedBend0000151. Later in

the same Response to Office Action, the applicant reiterated that “the present invention as

defined in amended claims 1 concern executable program as compared to source programs in

Okuzumi.” Id. at RedBend0000152. The applicant made the point a third time, by

distinguishing between the claimed invention and the “order table” of Okuzumi that “directs to

source and not to [an] executable program.” Id.; see also id. at RedBend0000153 (distinguishing

claim 8 from Okuzumi because “[i]t concerns executable programs, applying processing steps to

the references steps b(i)”); id. at RedBend0000154-55 (distinguishing all asserted claims from

Okuzumi on the same grounds).

As to the replacement of certain portions of the old and new programs, the applicant

made it clear that to “reflect[]” a reference as invariant is to replace it with an invariant

reference. Ex. B at 10:47-50 (“the desired invariant references are accomplished by generating

modified old and new programs wherein address references in entries are replaced by label

marks”); . Cf. Ex. B at 13:59-61 (new program is created on client

side by “replac[ing]” invariant references with the actual address reference).9

Consistent with the specification, the applicant specifically asserted during prosecution

that the claimed “modified old program [or data table]” and “modified new program [or data

table]” from which the “compact difference result” is generated contain replaced references and

9 The specification describes at length how to replace references (i.e., addresses) within certain
reference entries (e.g., jump instructions) of an old program P1 and a new program P2. Ex. B at
12:11-28 (“step e” describing “replacing” address references associated within certain reference
entries of a program with label marks) & Fig. 1. It also describes the modification process as one
of replacing references associated with certain reference entries (i.e., jump instructions) in a
program or data table with an invariant reference, such as a label mark. Id. at Abstract
(“replacing the reference of the entry by a distinct label mark, whereby a modified old [or new]
program is generated.”); 3:53-62; 4:8-19 (describing replacement of references in reference
entries to create the modification).

 - 20 -
A/73432589.5/3005005-0000343244

not new, auxiliary data such as indexes or tables. During prosecution, the applicant argued that

the Miller prior art patent cited by the Examiner does not “create modified old programs in the

sense of the invention.” Ex. C at RedBend0000173. The applicant was at pains to distinguish

between the claimed invention and Miller’s creation of an index or hash table. Id. “[A]ccording

to Miller, auxiliary data is created in addition to the old file and in contrast to the invention[.]”

Id. “Miller refers to generation of auxiliary index data structure. . . . Miller does not disclose the

generation of a modified old file “replacing the reference of said entry by distinct label mark”.

Id. at RedBend0000174 (paraphrasing claim 1). As noted in the Abstract, “[t]he method

includes the steps of scanning the old program and for each reference entry perform steps that

include replacing the reference of the entry by a distinct label mark, whereby a modified old

program is generated.” 10 Ex. B at Abstract (emphasis added); see also id. at 3:31-46 & 9:66-

10:15. Such characterizations of the invention are limiting. Digital, 149 F.3d at 1347;

Honeywell, 452 F.3d at 1318; SciMed, 242 F.3d at 1343; Pharmacia, 170 F.3d at 1378.

Google’s proposed construction of “modified old program [or data table” and “modified

new program [or data table]” as “a version of the actual program or data table in its original

executable form, with certain portions replaced” is consistent with both the claim language and

the plain import of the specification, and also with the applicant’s clear statements to the PTO

during prosecution.

V. CONCLUSION

For all of these reasons, Google respectfully requests that the Court adopt its proposed

constructions of the disputed claim terms.

10 Claim 1, for example, recites the steps of “replacing the reference of said entry by a distinct
label mark, whereby a modified old program is generated” and “replacing the reference of said
entry by a distinct label mark, whereby a modified new program is generated.” Although the
asserted claims to not contain a specific requirement that the invariant reference be a “label
mark,” both the specification and the prosecution history show that the patentee’s invention
involved the replacement of references with invariant references.

 - 21 -
A/73432589.5/3005005-0000343244

 Respectfully Submitted,

Dated: July 15, 2010 Google Inc.,

By its attorneys,

/s/ David M. Magee .
Jonathan M. Albano, Bar No. 013850
jonathan.albano@bingham.com,
David M. Magee, Bar No. 652399
david.magee@bingham.com
BINGHAM McCUTCHEN LLP
One Federal Street
Boston, MA 02110-1726
Telephone: 617.951.8000

 Susan Baker Manning (pro hac vice)

susan.manning@bingham.com,
Robert C. Bertin (pro hac vice)
r.bertin@bingham.com
Elizabeth Austern (pro hac vice)
elizabeth.austern@bingham.com
BINGHAM McCUTCHEN LLP
2020 K Street, NW
Washington, D.C. 20006-1806
Telephone: 202.373.6000

 William F. Abrams (pro hac vice)

william.abrams@bingham.com,
BINGHAM McCUTCHEN LLP
1900 University Avenue
East Palo Alto, CA 94303-2223
Telephone: 650.849.4400

Certificate of Service

I hereby certify that this document filed through the ECF system will be sent

electronically to the registered participants as identified on the Notice of Electronic Filing (NEF)
and paper copies will be sent to those indicated as non-registered participants, by federal express,
on July 15, 2010.

 /s/ David M. Magee

David M. Magee

