Red Bend Software, Inc. et al v. Google Doc. 97 Att. 5

EXRHIBIT 4

Dockets.Justia.com

http://dockets.justia.com/docket/massachusetts/madce/1:2009cv11813/125212/
http://docs.justia.com/cases/federal/district-courts/massachusetts/madce/1:2009cv11813/125212/97/5.html
http://dockets.justia.com/

United States Patent [
Miller

US005832520A

5,832,520
Nov. 3, 1998

[(11] Patent Number:
451 Date of Patent:

[54] AUTOMATIC FILE DIFFERENCING AND
UPDATING SYSTEM
[75] Inventor: William A. Miller, Gualala, Calif.

[73] Assignee: Miller, Call, Plauck and Miller,
Portola Valley, Calif.

[21] Appl. No.: 754,486
[22] Filed: Nov. 22, 1996
[51] It CLE oo GO6F 17/30
[52] US. Clo .o 707/203
[58] Field of Search ..o 707/203
[56] References Cited
U.S. PATENT DOCUMENTS
5,278,979 1/1994 Foster et al. .c.coceeeerenuevcnuccne 707/203
5,418,945 5/1995 Carter et al. .oooeveeveererveeriennennes 707/8
5,604,853 2/1997 Nagashima 707/540
5,623,656 4/1997 LYONS .covvriviiviniiniiiiieninne 707/10
5,644,709 7/1997 AUSHID ..c..covvvevveriecreiirineene 395/187.01

OTHER PUBLICATIONS

Cormen, et al., Infroduction to Algorithms, The MIT Press
(1990).

Pocket Soft, Inc., White Paper re .RTPatch Professional
Binary Update System, from the World Wide Web (http:/
www.pocketsoft.com) (Nov. 14, 1996).

“Comparing and Merging Files”, from the World Wide Web
(Jun. 8, 1996).

Primary Examiner—Wayne Amsbury
Attorney, Agent, or Firm—ITownsend and Townsend and
Crew LLP

[57] ABSTRACT

A method and file structure for generating an efficient
difference files from and old file and a new file so that a
difference file can be transmitted to a second computer
system where the difference file and a duplicate of the old
file can quickly be used to create a copy of the new file is
disclosed. A differencing process compares an old file and a
new file to generate a difference file in which the old file is
used as a database of byte strings. The differencing process
reads strings of data from the new file, searches for the
existence of those strings in the old file, and notes the
locations in the old file in which strings in the new file are
found and stores in a difference file an indication of the
location where a matching string is found and an indication
of the length. A specific file structure for the difference file
is disclosed.

28 Claims, 13 Drawing Sheets

START BUILD OF THE
RAW DIFF FILE

INITIALIZE P_OLD AND P_NEW | T2
TO THE BEGINNING OF EACH
FILE

A 4

SEARGH THE OLD FILE FOR -4
THE STRING AT THE CURRENT |
POSITION IN THE NEW FILE
(SEE FIG. 5B).

CREATE COPY T8
COMMAND AND INSERT

DETERMINE WHETHER
A COPY, INSERT OR INSERT/COPY
OPERATION WILL BE PERFORMED
(AND THE COUNT
AND POSITION
INFORMATION).

A

INTO RAW DIFF FILE

l

UPDATE STATISTICS T12
FOR COUNT AND
POSITION BITS
REQUIRED FOR THIS
COPY

*T”

YES

O NO = SEARCH HAS ALREADY

T10

CREATE INSERT COMMAND
AND INSERT INTO RAW DIFF
FILE

RETURNED THE NEXT COPY
AFTER AN INSERT

b 4

d16
L < ENDOFFILE? >

YES

RAW DIFF FILE IS
COMPLETE

5,832,520

Sheet 1 of 13

Nov. 3, 1998

U.S. Patent

e o — —— —— — — — — —— ——

DIFFERENCING
PROCESS
v

100~ |
30

5

COMMUNICATION
PATH

REVISION
_—1 PROCESS

200

DUPLICATE OF
OLD FILE

FIG. 1

U.S. Patent Nov. 3, 1998 Sheet 2 of 13 5,832,520
105
INDEX
OLD FILE >
BUILDER Ts|
16
/104/‘ 106
SEARCH
ENGINE
RAW
20

DIFFERENCE

FILE

ISI
A
0ISD 113
BUILDER
10r//
A
COMMAND 1o
ENCODE
102
COUNT
ENCODE
108"

FINAL
DIFFERENCE
FILE

FIG. 2

U.S. Patent

Nov. 3, 1998 Sheet 3 of 13 5,832,520
START THE DIFFIT S2
PROCESS
INPUT OLD FILE AND NEW |—.S4
FILE

FORM CHECKSUMS FOR | —~S56

OLD FILE AND NEW FILE
BUILD THE TSI (TEXT STRING | S§10
INDEX) STRUCTURE FOR THE

OLD FILE

\ 4

INCLUDING A SEQUENCE OF COPY
COMMANDS, INSERT COMMANDS AND
INSERTION STRINGS

BUILD THE RAW DIFF (DIFFERENCE) FILE

S§12

A

BUILD THE OISD (OPTIMIZED INSERTION
STRING DATABASE). THE OISD IS A
DATABASE OF INSERTION STRINGS WITH

CERTAIN REDUNDANT STRINGS REMOVED.

A

ENCODE THE COMMAND SEQUENCE FROM
THE RAW DIFFERENCE FILE AND PLACE IT
IN THE DIFFERENCE FILE.

v

APPEND THE (HUFFMAN) COMMAND
DECODE TREES AND THE INITIAL COMMAND
STATE TO THE DIFFERENCE FILE.

v

APPEND THE OPTIMIZED INSERTION TEXT
STRINGS (FROM THE OISD) TO THE
DIFFERENCE FILE

S14

S16

S17

K\S18

A 4
ADD A HEADER TO THE DIFF FILE WHICH

CONTAINS CHECKSUMS AND OTHER
INFORMATION ABOUT THE OLD, NEW AND |
DIFF FILES.

A

AND ADD TO THE HEADER. THE DIFF FILE IS

FORM THE CHECKSUM FOR THE DIFF FILE

NOW COMPLETE. OPTIONALLY COMPRESS

THE DIFFERENCE FILE.

DIFFIT PROCESS
COMPLETED

(}_\824

FIG. 3

—

S20

S22

U.S. Patent

AN EXAMPLE
OF AN
UNSORTED
TSI

AN EXAMPLE
OF A
SORTED TSI

Nov. 3, 1998

FOUR BYTES OF THE OLD
FILE DATA STARTING AT THE

-

OFFSET.

Sheet 4 of 13

5,832,520

BYTE OFFSET INTO THE OLD
FILE (FIELD IS 2,3 OR 4 BYTES
LONG DEPENDING UPON OLD

\ FILE SIZE).
11223344 108 000000 109 }1 06
22334455 000001
33445566 000002
OADF3452 N-4
> DF345278 N-3
/ (N IS THE OLD FILE
LAST FOUR BYTES IN THE LENGTH)
FILE.
00000000 OF3538
. 00000000 003780
00000001 13BC73D
FFFFFFFE 003827
FFFFFFFF 183F56

FIG. 4A

U.S. Patent Nov. 3, 1998 Sheet 5 of 13 5,832,520

115 OLD FILE STRING
— STARTING AT
HASH POSITION SHOWN
FUNCTION
PRODUCES 108 (HASH CHAIN TABLE) 10 @orue
POINTER INTO
THE NASH HEAD CORRESPONDS TO=
TABLE CORRESPONDS TO

1 23b\ £ R
NULL POINTER |CORRESPONDSTQ I

107 (HASH HEAD TABLE) l

127 - :
b\ CORRESPONDS TO X
T <
\\\ CORRESPONDé TO X
13167 |

NULL l

FIG. 4B

U.S. Patent Nov. 3, 1998 Sheet 6 of 13 5,832,520

START BUILD OF THE
RAW DIFF FILE

A

INITIALIZE P_OLD AND P_NEW /Tz
TO THE BEGINNING OF EACH
FILE

A

SEARCH THE OLD FILE FOR T4
THE STRING AT THE CURRENT [
POSITION IN THE NEW FILE
(SEE FIG. 5B).

h 4

DETERMINE WHETHER
A COPY, INSERT OR INSERT/COPY
OPERATION WILL BE PERFORMED
(AND THE COUNT
AND POSITION
INFORMATION).

INSERT—

NO
T10
Yy CREATE INSERT COMMAND
CREATE COPY T8 AND INSERT Fl"l*go RAW DIFF
COMMAND AND INSERT |«
INTO RAW DIFF FILE

h 4
UPDATE STATISTICS L T12

NO NO = SEARCH HAS ALREADY

FOR COUNT AND RETURNED THE NEXT COPY
POSITION BITS AFTER AN INSERT
REQUIRED FOR THIS
COPY

T14

YES

[./~ RAWDIFFFILEIS 1\, I
" compere /)

FIG. 5A

U.S. Patent Nov. 3, 1998 Sheet 7 of 13 5,832,520

START SEARCH T18
INITIALIZE INSERT
COUNTER TO ZERQ
| 1

T20

N BYTE
STRING AT P_OLD
AND P_NEW

T25

FIND LENGTH [4—YES

-

MATCH?
4
USE THE TSI OR T 0
SEQUENTIALLY
INSERT COUN SEARCH THE OLD FILE
=07 FOR ALL MATCHING
YES STRINGS LONGER
THAN X BYTES
l T35 NO
RETURN LENGTH OF
STRING WITH "COPY
IMMEDIATE" STATUS T55
MATCHING
T8S A 4 YES STRINGS NO
RETURN LENGTH OF FOUND?
INSERT AND COPY, WITH T58
"INSERT AND COPY [— KEEP THE LENGTH
(IMMEDIATE OR NEW
POSITION)" STATUS AND LOCATION OF | T60 INCREMENT THE
THE LONGEST STRING INSERT LENGTH
FOUND COUNTER AND OLD |
P FILE AND NEW FILE
POINTERS
< CALCULATE THE COPY T62
COST AND INSERT COST
A 4
RETURN FROM SEARCH
FUNCTION
T90
Y
ATTEMPT
RESYNCHRONIZATION M
INCREMENT POINTERS, ADD [
8 TO INSERT COST. T64

INSERT COST

< COPY COST? YES o

INO
IGNORE
RESYNCHRONIZATION |T68
|| ANDUSE ORIGINAL
A | "INSERT AND COPY FROM

NEW POSITION"
PARAMETERS

DID Z BYTES
MATCH?

IGNORE THE ORIGINAL | 10y YES
"INSERT AND COPY x
|| FROMNEW POSITION", | FIND THE LENGTH | T75
AND USE THE "INSERT [OF THE MATCH
AND COPY IMMEDIATE"
PARAMETERS

FIG. 5B

U.S. Patent

Nov. 3, 1998

START CREATE COPY
COMMAND

W4

OF COPY >127
BYTES?

NO
A 4

W6

COPY COMMAND BYTE
EQUALS THE LENGTH

y

W8

APPEND THE POSITION

Sheet 8 of 13

w10

5,832,520

CREATE LONG COUNT (SET THE FIRST

BYTE TO ZERO, APPEND THE LENGTH,

USING LONGFIELDWIDTH NUMBER OF
BYTES)

BYTES

v

W12

APPEND THE COMMAND TO THE RAW DIFF
FILE (SEE FIG. 6C FOR COPY COMMAND

FORMAT)

y
END OF CREATE COPY
W14 (COMMAND)

FIG. 6A

START CREATE INSERT
COMMAND

W44

LENGTH
OF INSERT > 127
BYTES?

NO
4

W46

INSERT COMMAND BYTE
EQUALS THE LENGTH +
0X380

W50

CREATE LONG COUNT (SET
THE FIRST BYTE TO 0X80,
APPEND THE LENGTH, USING
LONGFIELDWIDTH NUMBER OF
BYTES)

YES-»

A

W43

APPEND THE TEXT TO
BE INSERTED

v

W52

APPEND THE COMMAND TO THE RAW DIFF
FILE (SEE FIG. 6D FOR INSERT COMMAND

FORMAT)

W54

END OF CREATE INSERT
COMMAND

FIG. 6B

U.S. Patent Nov. 3, 1998 Sheet 9 of 13 5,832,520
COPY COMMAND FORMATS

1ST BYTE # OF BYTES = LONGFIELDWIDTH

SHORT COUNT COPY
OMMALIZLD LENGTHos 7 0XXXXXXX [OLD FILE POSITION |

(XXXXXXX = NORMALIZED LENGTH OF THE COPY)

OF BYTES = # OF BYTES =
1STBYTE LONGFIELDWIDTH LONGFIELDWIDTH
LONG COUNT COPY
(NORMALIZED LENGTH>127) l 00000000 I OLD FILE POSITION COPY LENGTH
FIG. 6C

INSERT COMMAND FORMATS

1STBYTE # OF BYTES = LENGTH OF INSERTION TEXT

SHORT COUNT INSERT , TXXXXXXX I INSERT TEXT l
(NORMALIZED LENGTH<=127)

(XXXXXXX = NORMALIZED LENGTH OF THE INSERT)

OF BYTES = # OF BYTES = LENGTH OF
1ST BYTE LONGFIELDWIDTH INSERTION TEXT
LONG COUNT INSERT [M45600000 [INSERT LENGTH INSERT TEXT
(NORMALIZED LENGTH>127)

FIG. 6D

/?OO

-0
Q

U.S. Patent

YES

y

Nov. 3, 1998 Sheet 10 of 13
U2 END
(OPTIMIZED INSERTION STRING (OISD COMPLETED)
DATABASE) 3
Y FOR ANY INSERT COMMAND
SEARCH THE RAW DIFF FILE FOR INSERT |)4 CODE INDICATING POINTER
COMMANDS AND COPY STRING LENGTH NOT RESOLVED, REPLACE THE
AND A POINTER TO INSERTION STRING POINTER WITH AN OISD
INDEX (IS1) OFFSET
y
USING THE COMPLETED IS, U10
CHECK THE LENGTH OF EACH
STRING OF INSERTION TEXT [YES MORE S| ENTRIES?
(START AT THE FIRST STRING)
= U12 U26 | UPDATE STATISTICS
M,,‘IL,ETJ(:‘T,:;ERT FOR COUNT BITS
INSERT
NO
x REPLACE THE FIRST BYTE
GET THE STRING FROM THE RAW | 1J14 U24, | OF THE INSERTION TEXT IN
DIFF FILE AND SEQUENTIALLY THE RAW DIFF FILE WITH
SEARCH THE EXISTING OISD FOR THE COMMAND CODE FOR
THE STRING U(1 . THAT INSERT COMMAND
A

u16

STRING
FOUND IN THE
QIsD?

NO
\ 4

USE THE ISI TO SEARCH THE
INSERT STRINGS IN THE RAW
DIFF FILE AFTER THE CURRENT
STRING

u20

FOUND AS PART O
ANOTHER INSERT STRING

ADD THE STRING TO THE OISD
AND SET COMMAND CODE TO ICP
(INSERT AT THE CURRENT

uU18

CHANGE THE ISI POINTER
TO AN OFFSET INTO THE
OISD WHERE THE STRING g
IS LOCATED AND SET
COMMAND CODE TO IMP

U32
[

CHANGE THE IS1 POINTER TO
POINT TO THE BEGINNING OF
OTHER ISI ENTRY WITH AN
OFFSET INDICATING THE
START OF THE INCLUDED
STRING AND SET COMMAND
CODE TO IMP (POINTER NOT

RESOLVED)

POSITION)

FIG. 7A

5,832,520

U30

U.S. Patent Nov. 3, 1998 Sheet 11 of 13 5,832,520

ISI (INSERTION STRING INDEX) PRIOR
TO BUILDING OISD

v

. 'S
i i
=) [a] =)
= =
25 S8 iB
g - o - o =
Zz r
PE = F§ F§ =
hE o IS| GROWS LE B GE &
73 14 =z [[b4
i DOWN Lo & kg &
4 —
| 6z = | |62 2 162, &
MEMORY essce \ N\ r /
FIRST INSERT
MO?IISREERC':TENT COMMAND
COMMAND SECOND INSERT
COMMAND
FIG. 7B

ISI (INSERTION STRING INDEX)
DURING BUILDING OF OISD

m 9 :
2o
o= % e or
oISD @ F‘j os @ @ x
[o Z =% O —~
oz < OW [o -] o)
O T x O =0 'J_Z w T
SE 5 Wewo £ KFE © 8 E
THE OISD GROWS UP nE 2 ZWES 0 A% 2 Q
[T | z L L = -
|L72C5BD44893FF47890 ®® @ @ ®0ee |52 |~ | ehe TEZ5 /5,52 il
K/__/L[_/ P A
ISI GROWS |
DOWN INSERT ‘ SECOND
COMMAND N ' INSERT
COMMAND
THIRD INSERT
COMMAND FIRST
INSERT
FIG. 7C COMMAND
REPLACE FIRST BYTE OF
THE INSERTION TEXT
STRING WITH THE
COMMAND CODE.
INSERTION INSERTION INSERTION
TEXT TEXT TEXT
,ccl ic1 | 2 | STRING l CC| Ic2 3, STRING |CC| '°3| 4] STRING |®®e®®
CC = COPY COMMANDS IC = INSERT COMMANDS ENDS HERE

RAW DIFF FILE DURING CONSTRUCTION OF OISD

FIG. 7D

U.S. Patent Nov. 3, 1998 Sheet 12 of 13 5,832,520

ENCODED COMMAND.
SEQUENCE OISD (INSERTION
HUFFMAN INITIAL
TEXT)
DECODE = COMMAND
HEADER| TREES | STATE | CCPICP CCP CMP IMP CCP CMP CMP @ @ ®[36749BC3DF67 @@ @ @ l

T T

THE OPTIMIZED INSERTION

MINIMIZED
COMMANDS STRING DATABASE
FIG. 8A
NEXT STATE
CcCP CMP ICP IMP
ccP 1 * 0
M

CURRENT CMP 1 0 10
STATE IcP 0/10* 1"

IMP 0/10* 1

CcCpP
(FOLLOWED BY

10 0 11
@ = PRESENT STATE
(PRESENT COMMAND INTERPRETATION)

o /x\ = COMMAND CODE THAT TRANSITIONS
TO THE NEXT STATE

NOTES:

FIG. 8B

U.S. Patent

Nov. 3, 1998

405 (

Sheet 13 of 13

START REVIT PROCESS

-

408|

DECOMPRESS DIFFERENCE FILE]

410

VALIDATE CHECKSUMS OF OLD AND DIFF
FILES

v

5,832,520

415 UNPACK HUFFMAN DECODE TREES
425| INITIALIZE POINTERS
UNPACK FIRST COMMAND AND INITIALIZE
430 STATE MACHINE
710 435 .
UNPACK NEXT N
T’ COMMAND » DECODE THE COMMAND TYPE
ccp CMP ICP IMP
500 550 600 650
DECODE LENGTH DECODE LENGTH DECODE LENGTH DECODE LENGTH
COUNT COUNT COUNT COUNT
560 $ { 660
UNPACK NEW COPY UNPACK NEW INSERT
POSITION OFFSET POSITION OFFSET

COPY "LENGTH
COUNT" BYTES FROM
P_OLD FILE TO P_NEW

AND ADJUST
POINTERS

COPY "LENGTH

COUNT" BYTES FROM
NEW COPY POSITION
IN OLD FILE TO P_NEW
AND ADJUST

POINTERS

WAS LAST
COMMAND CCP
FOLLOWED BY ICP?

COPY "LENGTH
COUNT" BYTES FROM
P_IT TO P_NEW AND
ADJUST POINTERS

COPY "LENGTH
COUNT" BYTES FROM
NEW INSERT
POSITION TO P_NEW
AND ADJUST

POINTERS

AVE ALL TH
COMMANDS IN THE
DIFF FILE BEEN
EXECUTED?

YES

VALIDATE CHECKSUM
FOR THE COMPLETED
NEW FILE.

NEW FILE

FIG. 9

800

850
RECONSTRUCTION IS
COMPLETED.

5,832,520

1

AUTOMATIC FILE DIFFERENCING AND
UPDATING SYSTEM

BACKGROUND OF THE INVENTION

This application claims the benefit of a provisional appli-
cation Ser. No. 60/021,457, filed Jul. 3, 1996 now pending
filed with a source code appendix consisting of 22 pages.
The appendix contains program source code in the C++
programming language for software modules that embody
aspects of the current invention.

The present invention relates to the field of data files used
by computers. More specifically, the present invention
relates to a system for creating, updating or revising large
computer files by using only a small file containing indica-
tions of the differences between the large computer files and
a preexisting computer file.

The present invention is motivated in part by changes that
have been occurring in the personal computer industry over
the last several years. Increases in performance and
decreases in cost have led to a proliferation of computer
equipment in homes and offices. This computer equipment
has in turn spawned a burgeoning market for software
modules that cause the equipment to operate in a desired
manner. In recent years, the software modules have become
larger and larger as the price of computer memory and the
storage space needed to hold these software modules have
become cheaper and cheaper. This has allowed for the
development and sale of far more complex executable
program codes to accomplish various functions such as word
processing, spreadsheets, multimedia or any other use for a
computer. In addition to executable files, more and more
complex text and multimedia files, as well as database files,
are commonly being used and distributed or archived in
home and office computer systems.

These large files are distributed from software manufac-
turers to users via a number of different means, including
being preloaded on a computer’s hard drive before the
computer is purchased, being shipped on a fixed medium
such as a floppy disk or CD ROM, or being distributed
through a transmission medium such as a dial-up telephone
service, a BBS, or the Internet.

It is the nature of computer software and other large files
that it is often desirable to update or revise files in order to
correct errors or add features. Sometimes these revisions
may be relatively minor, involving changes in only a small
percentage of the data that makes up the file.

One obstacle to the frequent revision of large computer
files by a manufacturer is the cost of delivering the updated
file to the user. If an entire new revised file must be
delivered, the amount of data can be substantial. Large files
typically are as large as ten million characters (10
Megabytes) or larger. Distribution of such files on floppy
disk can require a relatively large amount of disk space.
Distribution of such large files over a medium such as the
Internet can take an undesirably long time from the point of
view of the customer and can consume a large amount of
server resources from the point of view of the file provider.

One solution to the problem of distributing large com-
puter files is use of compression. A number of standard
compression algorithms are in existence and are commonly
used today. These algorithms typically achieve compression
of a large executable file down to between 40% to 60% of
its original file size and can compress some types of text files
even further, thereby reducing the transaction costs of ship-
ping the file. However, for very large computer files or
collections of files, even a compressed file reduced to 40%
still represents a substantial transmission cost.

10

15

20

25

30

35

40

45

50

55

60

65

2

Another method useful for transmitting updated files is
using a technique known as a differencing program or
comparator program to compare an old file to a new revised
file in order to determine how the files differ. One such file
system is distributed as part of the GNU UNIX-like oper-
ating system through tools referred to as diff and patch and
described in standard GNU documentation. The described
system discusses a way to use a differencing program to
generate a patch file, and then using that patch file in
combination with the old file to generate a newly revised
file. While the GNU revision system has some applications
within the UNIX-like operating system within which it was
developed, it has not been generalizable in the new envi-
ronment of personal computer systems. The most commonly
available versions of the system are limited to text files, and
achieve only limited compression. These programs cannot
effectively handle files where a number of fairly complex
changes have occurred, such as a number of block moves or
random shuffling of text strings. These programs also do not
produce the smallest patch file possible.

What is needed is a method and system for generating a
difference file from an old file and a new file, where that
difference file indicates, in minimal number of bytes,
changes between the old file and the new file. The needed
system would allow users to then transmit the difference file
to a second computer system or to a backup or archive
storage system (system 2), and to use that difference file and
the old file along with a decoding process to generate a
newly revised file. The difference file could also be stored
locally, allowing a number of versions of the same file to be
saved without duplicating redundant information. Ideally,
the difference file would be the smallest possible difference
file, achieving compression density of perhaps 10% or less
of the original file, even with a moderate number of changes
between the two files.

SUMMARY OF THE INVENTION

The present invention comprises a software system with
several components, a method, and a file structure for
generating very efficient difference files (sometimes abbre-
viated DIFF file) from an old file and a new file so that a
difference file can be transmitted to a second computer
system where the difference file and a duplicate of the old
file can quickly be used to create a copy of the new file,
duplicating the new file as it existed on the first computer
system. The difference file could also be stored locally to the
first computer system, allowing the new file to be duplicated
from the old file without storing the new file.

According to the present invention, a differencing process
on a first computer system compares an old file and a new
file to generate a difference file. In this process, the old file
is used essentially as a database of byte strings. The differ-
encing process reads strings of data from the new file and
searches for the existence of those strings in the old file. The
differencing process notes the locations in the old file in
which strings in the new file are found and stores in a
difference file an indication of the location where a matching
string is found and an indication of the length of the
matching string found in the old file. This information is
stored in the difference file in a copy command. When the
differencing process encounters strings of characters in the
new file that are not found in the old file, the differencing
process adds those strings to an insert database and adds an
indication in the difference file of the location in the insert
database where the strings can be found and the length of the
string. This location and length are stored in an insert
command.

5,832,520

3

According to a specific embodiment of the invention, the
differencing process, upon opening the old file, creates an
index (or hash table) of all of the character strings of
predetermined length found in the old file, along with the
locations at which those character strings were found, in
order to facilitate searching for character strings from the
new file. According to a further embodiment, the index (or
hash table) is created only if the differencing process detects
that there is sufficient memory on the first computer to hold
the index.

The present invention also comprises a file structure for
the difference file that allows the difference file to hold
information from which to construct a copy of the new file
using a duplicate of the old file while occupying the least
number of bytes. According to specific embodiments, this
difference file is built in a multistep process to minimize the
size of the difference file.

The method according to the invention attempts to mini-
mize the size of the difference file by a variety of techniques,
any group of which may be incorporated into specific
embodiments. According to a specific embodiment, the
entire old file, rather than a limited portion of the data, is
used as a database. This helps produce a smaller difference
file by potentially finding more data to copy from the old file.
In general, as much data as possible is copied from the old
file, unless it takes fewer bits to insert the data. Copying data
from the old file requires only a command code, whereas
inserting data requires a command, plus the actual insertion
data. The invention makes decisions about whether to copy
or insert data by using a search algorithm that can do the
following: use a “current positions” pointer into the old file
for copying data, which eliminates an explicit position field
if data can be copied from the current position; favor
copying from the “current position™ in the old file; search the
entire old file for data not found at the “current position” and
if the data is found elsewhere in the old file, copy from that
position (unless it “costs more” than inserting enough data
to allow the next copy from the “current position”); and
insert data if a copy was not chosen.

According to an embodiment, the length of the minimum
data string searched for in the old file is selected as “N” bytes
and is dependent on where the data is copied from. The copy
from current position command uses a shorter minimum
data string than copy from another position because it has
been encoded to require fewer bits.

According to further embodiments, commands and count
fields of the difference file are encoded. Commands may be
encoded using a “state machine”, where certain commands
are implied by the sequence of previous commands, and
count fields may be encoded with a “cascaded” count field
method. Huffman encoding of smaller count values may be
employed to further reduce the difference file size, and
counts larger than the Huffman-encoded counts use three
progressively larger count fields. The length of these larger
count fields is variable for each command type, and is
modified based on statistics gathered during the construction
of each individual difference file.

According to further embodiments, all command, count
and position fields are “bit-packed” to eliminate unused
“filler” bits, and redundant data strings are removed from the
insertion data before being appended to the difference file.
The entire minimized difference file (minimized by the
techniques mentioned above) may be finally compressed
(using a “well-known” compression algorithm-like “zip”-or
proprietary compression technique) to reduce the file size.

According to an embodiment of the invention, execution
time of the differencing step is important only in that the

10

15

20

25

30

35

40

45

50

55

60

65

4

difference method should not take an unreasonable time to
execute (overnight may be OK in many cases). An index or
hash table may be used to speed searching, but is not
necessary for the differencing process (and will not be built
if sufficient memory is unavailable).

In this patent application, the present invention is
described with reference to specific embodiments. It will be
understood by anyone skilled in the programming art that
many variations on the basic system and method of the
present invention are possible within a computer environ-
ment. The invention therefore should not be construed as
limited except as provided in the attached claims.

For example, conventional computer systems today
encode data as a collection of two-state binary units known
at bits. Most current computers group these bits into 8-bit
groups known as bytes, also referred to as characters. A
sequence of bytes or characters is commonly referred to as
a string. These terms are used in accordance with their
accepted meaning in the art in this application, but it should
be understood that the techniques of the invention could be
used in different types of computing systems having differ-
ent means for encoding and organizing data.

Also, within the art, the terms “text” and “string” are
sometimes used in a particular way to describe computer
encoded alphanumeric data, and at other times these terms
are used very broadly to denote a sequence of data values
that could represent anything: text, a number, a piece of an
image, sound, etc. In the present description, these terms and
other terms used in the art are intended to be given their
broadest meaning.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram showing the general differenc-
ing and revision process according to the current invention.

FIG. 2 is a block diagram of a differencing process and its
components according to an embodiment of the invention.

FIG. 3 is a flow chart illustrating a method used by the
differencing processor according to the present invention.

FIG. 4A is a diagram of a Text String Index (TSI)
according to one embodiment of the present invention.

FIG. 4B is a diagram of a hash table TSI according to a
preferred embodiment of the present invention.

FIG. 5A is a flow chart illustrating a method used by the
differencing processor according to the present invention to
build the raw difference file.

FIG. 5B is a flow chart illustrating a method used by the
differencing processor to search for strings in the old file
according to the present invention.

FIGS. 6 A—6D show flow charts and command structures
illustrating copy and insert commands inserted into the raw
difference file according to the present invention.

FIGS. 7A-7D show a flow chart and index and file
structures illustrating creating the optimized insert string
database for including into the final difference file according
to the present invention.

FIGS. 8A-8B illustrate the file structure for the final
difference file and a state machine and command format for
command encoding in the final difference file according to
an embodiment of the present invention.

FIG. 9 is a flow chart showing the method of the revision
processor according to the current invention.

FIG. 10 shows a computer system incorporating the
invention.

5,832,520

5

DETAILED DESCRIPTION OF THE DRAWINGS
Overview

An overview of the process according to the invention is
illustrated in FIG. 1. FIG. 1 illustrates a first computer
system 1 and a second computer system 2 which commu-
nicate via a communication path 5. Both computer systems
1 and 2 can be any collection of computing devices oper-
ating together whatsoever as is known in the art. Computer
systems 1 and 2 can also refer to the same computer system,
or components within the same computer system. Commu-
nication path 5 may be any means by which a file can be
communicated between computer system 1 and computer
system 2, including a removable fixed medium such as a
floppy disk or CD ROM disk, or a communication medium
such as an interoffice network, a telephone line, a bus, or the
Internet. Path 5 also might encompass an electronic mail
message.

As shown in FIG. 1, computer system 1 includes an old
file 10, a new file 20, and a differencing processor 100 which
generates a difference file 30. New file 20 is generally
somewhat similar to old file 10, containing some changes in
data which reflect a revision of new file 20. Old file 10 and
new file 20 could be any collection of computer data
whatsoever, including an executable application program, an
operating system program, a text file, a spreadsheet or other
data file, an image file, or any other type of computer-
readable data.

Difference processor (DiffIt) 100 reads new file 20 and
compares it to old file 10 by a process described below.
Difference process 100 then stores indications of the data to
be copied from old file 10 or inserted from new file 20 into
difference file 30. According to the invention, when new file
20 is a revised version of old file 10, difference file 30 will
be substantially smaller than either new file 20 or old file 10,
in some cases, only ten percent or less than the size of new
file 20.

According to the invention, difference file 30 may then be
transmitted over path § to computer system 2 where a
revision process (RevIt) 200 reads a duplicate 15 of old file
10 and difference file 30 and creates a copy 25 of new file
20 on computer system 2. According to the invention, copy
25 (designated the New* file) is identical to new file 20
created on computer system 1.

Differencing Process Overview

FIG. 2 is a block diagram illustrating the process of
differencing process (DiffIt process) 100. DiffIt process 100
uses old file 10 and new file 20 to generate difference file 30.
An optional index builder 105 may be used to build a text
string index (TSI) 106 to speed building the difference file.

Search engine 104 reads strings of data from new file 20
and attempts to locate string matches in old file 10 for each
string found in new file 20. If an index 106 is present, it is
used by search engine 104 to increase searching speed.

When search engine 104 finds a match in old file 10 for
a string from new file 20, it indicates this by placing a copy
command into a raw difference file 31 (RawDiff). The copy
command includes an indication of where the string is found
in 10 and the length of the string. When search engine 104
does not find a match in old file 10 for a string from new file
20, it indicates this by placing an insert command into a raw
difference file 31 (RawDiff). The insert command includes
the text for the string that was not found in old file 10.

According to an embodiment of the invention, an opti-
mized insertion string database (OISD) engine 101 examines
the raw DIFF file 31 to create an OISD 110, using an
insertion string index 113. A command encoder 102 and a
count encoder 103 encode command codes and count fields
into the final difference file 30 which also includes OISD
110.

10

15

20

25

30

35

40

45

50

55

60

65

6

The details of the operation of the elements shown in FIG.
2 according to specific embodiments will now be described.
Differencing Process Flowchart

FIG. 3 is a detailed flow chart of the operation of
differencing processor 100. The process begins (S2) and old
file 10 and new file 20 are opened by the processor (S4).
Checksums are formed for both the old file and the new file
and are stored (S6). The processor then checks to see if there
is sufficient memory to create a text string index and if so a
text string index (TSI) is built (§10). A raw difference file is
created by searching for strings from the new file in the old
file, using the TSI if one was created (S12).

After the raw difference file is created, an Optimized
Insertion String Database (OISD) is generated from the
insertion text and commands in the raw difference file as
illustrated in FIGS. 7A, 7B, 7C and 7D (S14). The com-
mands in the raw difference file are encoded to minimize
their size (S16) by various possible encoding techniques
including a state-machine for command encoding and Huff-
man encoding for string length values. The encoded com-
mands are then placed in the final difference file (S16). The
Huffman decode tables and initial state of the command
decode state machine are then appended to the difference file
(S17) followed by the OISD (S18). A header is added to the
difference file containing the check sums and other infor-
mation about the old file, the new file and the difference file
(S20). Once the difference file is complete a checksum may
be formed for the completed difference file and that check-
sum added to the header (§22). This final difference file may
then be compressed using either a proprietary or publicly
available compression algorithm (S23). The differencing
process is then complete (S24).

Building the Text String Index

According to one embodiment, an index builder 105 may
be employed to create an index of the old file 10 prior to old
file 10 being searched for matching new file strings. FIGS.
4A and 4B illustrate two different examples of text string
index (TSI) 106 according to specific embodiments of the
invention. The Text String Index (TSI) is a data structure that
decreases the search time for text strings in the old file. The
TSI is an optional element of the present invention; search-
ing of the old file can take place without one. However,
searching will generally be faster if a TSI is created and
used.

FIG. 4A shows a very simple index table TSI and FIG. 4B
shows a more sophisticated hash table TSI. A hash table is
a preferred data structure for the TSI because the search
speed is improved and less memory is required. Also, the
memory size required for the hash table can be adjusted,
allowing improved search times even where only limited
memory is available.

A TSI as shown in FIG. 4A is constructed by creating a
four-byte entry 106 for each byte in old file 10. TSI entry 106
consists of two parts: a four-byte index 108 and a byte offset
109 into the old file 10. The four-byte index 108 according
to an embodiment is simply strings of bytes from old file 10.
For each byte position in old file 10, index 108 consists of
the four-byte string beginning at that byte position. For
every byte in old file 10, a separate four-byte entry is created.

Each entry 106 also includes an offset value 109 which is
an absolute indication of the position within old file 10
where the index string is located. After unsorted TSI 106 is
complete, according to the present invention, it may be
sorted according to index 108. The indexes 108 may contain
many duplicate values which are each included in the sorted
TSI. The sorted TSI shown in FIG. 4A may be further
reduced in size by eliminating duplicate index strings 108

5,832,520

7

and storing only one copy of index string 108 with multiple
positions 109. Once the sorted TSI 107 is complete, it may
be used as a simple look-up table to quickly determine the
positions within old file 10 of any four-byte string from new
file 20.

Building a TSI Hash Table

FIG. 4B is a diagram of a hash table implementation of
TSI 106 according to an alternative embodiment of the
invention. A hash table is a well-known type of data struc-
ture that can be used to speed the searching of a large file of
data. In the hash table shown in FIG. 4B, pointers to strings
of data in old file 10 are arranged according to the value
generated by hash function 115 when that function is applied
to the data in that string. Hash function 115 produces an
offset value into hash head table 107, where a pointer to a
pointer to the string is stored. After the hash table is filled,
a particular string can quickly be searched for by applying
the hash function to that string and using the value of the
hash function to retrieve a pointer to that string. The pointers
to strings that generate the same value when hash function
115 is applied to them are chained together so that when
strings are searched for, a chain of pointers to all of the
matching strings will be retrieved. Chains are created in hash
chain table 108 as described below.

One advantage of the hash table implementation is that
the structure can be modified to accommodate different
amounts of available memory for hash head table 107 by the
choice of hash function 115.

Both the hash head table 107 and hash chain table 108 can
hold a pointer to any entry in hash chain table 108 or to a
NULL value. This pointer is modified as the hash table is
filled in order to chain hash chain table entries together. As
shown in the figure, each hash chain table 108 entry is
permanently associated with a particular location in old file
10.

The hash table is filled before it is used for searching by
taking each byte in old file 10, in turn, as the start of an N
byte string and passing that string function 115. The size N
is set for the entire process and is determined empirically to
provide the highest efficiency. In a current preferred
embodiment, this string size is five bytes.

The process of filling the hash table to create pointer
chains may be best understood in relation to a particular
example shown as 131a in FIG. 4B. When the processing
reaches byte 1314 in the old file, hash function 115 is applied
to the five-byte string beginning at byte 131a to give an
offset value (in this example four) into hash head table 107.
The value at that offset is examined, and if it is NULL, a
pointer to an entry in hash chain table 108, in this case 1315,
is placed in head table 107. However, if the head table entry
is not NULL, as in this example, the value at that head table
entry is moved into the hash chain table at the location
corresponding to the examined byte (in this case 131b)
before a pointer to an entry in hash chain table 108, in this
case 1315, is placed in head table 107. In this way, a linked
list or chain grows as hash function values from old file 10
are computed.

Hash chain table 108 has as many entries as there are
bytes in old file 10 and each entry is wide enough to point
to any other entry plus a NULL. Thus 108 will be 2—4 times
larger than old file 10, because each entry in 108 is 2—4 bytes
wide.

Hash head table 107 has as many entries as necessary,
determined by offset values generated by hash function 115
and each entry is wide enough (2—4 bytes) to contain a
pointer into any entry in hash chain table 108. The length of
107 may vary and is determined by the amount of memory

10

15

20

25

30

35

40

45

50

55

60

65

8

available. If enough memory is available, the length of 107
is the largest prime number less than or equal to the number
of bytes in old file 10. If not enough memory is present, a
reduced-size hash head table is constructed with a length
equal to the largest prime number times the 107 entry width
that the available memory will allow. A reduced-size hash
head table will still offer increased search speed compared to
not using a TSI

Hash function 115 is selected to produce a total number of
unique values which match the size of head table 107. Hash
function 115 takes the five-byte string and produces a value
that is a valid offset into hash head table 107. Function 115
may be a number of different functions and is selected to
produce a number of different values equal to or less than the
available size of head table 107. A requirement of function
115 is that when given the same string, it produces the same
value. In general, 115 will map more than one five-byte
string to a particular hash head value.

Once the TSI is constructed, if one is used, the processing
of building the raw difference file by searching for strings in
the old file can begin.

Creating the Raw Difference File

FIG. 5A is a flow chart of the method of creating the raw
difference file according to an embodiment of the invention.
In general, creating the raw difference file involves search-
ing for strings of text from new file 20 in old file 10 (T4).
When a string is found, a location indication for that string
is placed in the raw difference file incorporated into a copy
command (T8). When a string is not found, the string data
itself must be placed in the raw difference file along with an
insert command (T10). Prior to beginning processing of the
files, pointers P__OLD and P_ NEW are initialized for the
two files (T2) and are updated throughout the process.

According to one embodiment, the search function always
returns a copy command after an insert command, thus if
there is no EOF after an insert (T16), a copy command (T8)
is appended to the raw difference file.

Searching for a String

FIG. 5B is a more detailed illustration of a search method
according to an embodiment of the invention. The goal of
the search is to find strings to copy from the old file in order
to create a reconstructed new file. In general, copy and insert
commands are selected in order to produce the smallest final
DIFF file. When choosing between multiple matches on a
new file string in the old file, the length of the strings
themselves and the length of the required copy or insert
commands are all considered.

In general, it is always “cheapest” in terms of code that
must be placed in the final DIFF file, to copy strings from the
current position of the old file. The current position in the old
file is marked by a pointer P__ OLD that always points to the
end of the last copy. According to specific embodiments, the
search code may try a number of variations of copy and
insert possibilities, compute the cost of each variation in
command and insertion text size and choose the one that is
expected to produce the smallest final DIFF file.

According to one embodiment of the invention, it is
assumed that there is very little limit to the computing
resources that can be devoted to creating the final difference
file, as this file will generally only be created once by the
distributor of the difference file, and that distributor can
generally afford to expend time and memory resources to
make the difference file as small as possible. Therefore, very
extensive processing may be allowed when creating the
difference file in order to minimize the difference file size.

The search method returns one of the following raw DIFF
command sequences each time it is called:

5,832,520

9

1) copy from current position

2) copy from another position

3) insert followed by a copy from the current position

4) insert followed by a copy from another position

5) insert only (Can happen at the end of the file).

Before the search function is called for the first time,
pointers are initialized to the beginning of the old and new
files (P_OLD and P_NEW). P_OLD is the current copy
position pointer in the old file and P NEW is the current
position pointer in the new file. The search process begins
when the search function is called from the Build Raw DIFF
File function and an insert counter is initialized to zero (T18)
for the current search. The X byte string at P__OLD in the
old file is compared with the X byte string at P NEW in the
new file (T20) (X in a current specific embodiment is set to
3 bytes, an empirically determined number). If the strings
match, then according to the invention a decision is imme-
diately made that a copy from the current position will be the
next command, preceded by an insert (T85) if there is any
insert text (T30) and the pointers are incremented and
comparison continues until the bytes are not equal (T25).
Thus, the length of the longest matching string at the current
position is found and the search function returns (T90).

If at T20 the strings do not match, then the best match at
any copy position in old file 10 is searched for, using a TSI
if one was created or otherwise performing a sequential
search (T40).

If no matching strings are found, an insert must be
performed: the insert counter and P__ OLD and P_ NEW are
incremented by 1 (T58) and then strings at the current
position are again compared (T20). This adds one byte to the
string that must be inserted from the new file because it was
not found in the old file. The path through T58 accumulates
bytes to be inserted one at a time using the insert length
counter until a suitable copy string is found, either a copy
immediate or a copy with offset, as explained below.

If at step TS5 one or more matching strings are found, a
comparison of bytes past the initial match is conducted and
the position and length of the longest matching string in the
old file that matches the string in the new file is retained
(T60). When a matching string is found in old file 10, the
two strings are followed, byte by byte, until the string text
from the new file no longer matches the string text from the
old file. The method has then found the longest continuous
match for that string, starting at that first position where the
string was found. According to one embodiment of the
invention, the method then looks for other matching strings
in the old file and follows each of them until there is not a
match. Generally, the longest matching string is kept and a
copy command is created and inserted in the raw DIFF file.
This copy command includes the location where the longest
matching string was found in the old file and the length of
that matching string. After the string to be included in the
copy command is identified, the pointers to the old and new
files are updated.

Calculating the Copy Cost Versus the Insert Cost

After the longest string is found, its copy cost is calculated
(T62) and compared to the cost of simply inserting the
string. The copy cost is the number of bits required to encode
this copy from an old file position other than the current
position (generally multiplied by two because it is likely that
for the next copy the current position will have to be
adjusted back to where the pointer was before the first
jump). The insert cost is the number of bits required for the
insert command plus the insert text.

The method may then attempt to resynchronize P NEW
and P__OLD (T64). Resynchronizing is defined as inserting

10

15

20

25

30

35

40

45

50

55

60

65

10

bytes one at a time, and incrementing P NEW and P__ OLD
in an attempt to line up the old and new files so a copy
immediate command can be used. Resynchronizing will
increase the insert cost each time a byte is inserted. If the
cost of inserting (resynchronizing) becomes greater than the
copy cost, the copy will be chosen and the resynchronization
attempt is abandoned. In files with relatively small changes,
resynchronizing is likely to produce copy immediate com-
mands for very long strings. P NEW and P_ OLD are
incremented and eight is added to the insert cost (the bit cost
of inserting one byte). The copy cost is compared to the
insert cost at step T66.

If the insert cost is greater than or equal to the copy cost,
the resynchronization is abandoned (T68). The “insert (with
length) and copy from a new position (with length)” param-
eters from before the resynchronization attempt are returned
(T85) to the Build Raw DIFF File function (T90) which
called the Search.

If at step T66 the insert cost is less than the copy cost, a
check is done to see if at least Z bytes match (T70). (Z is
currently set to 3 bytes, an empirically determined number).
If Z bytes did not match, the resynchronization attempt
continues at step T64.

If at step T70 Z bytes did match, resynchronization was
successful. The length of the matching string is determined
by incrementing the old and new file pointers and comparing
until a mismatch is found (T75). The length of the matching
string is saved. The original “insert and copy from a new
position” from before the resynchronization is abandoned
and the “insert and copy immediate” command will be used
(T80). The “insert (with length) and copy immediate (with
length)” parameters from after the resynchronization
attempt are returned (T85) to the Build Raw DIFF File
function (T90) which called the Search.

It should be noted that at step T8S the insert length could
be zero (from step T68). This would result in a copy from
another position command. Also, at the end of the file an
insert with no subsequent copy command may be returned
by step T85.

Searching for a String in the Old File Using a Hash Table

If a TSI is present, it is used to search for occurrences of
strings from new file 20 in old file 10. As in building the TSI,
the new file is processed by examining strings of the same
size used to build the TSI and looking up offset positions for
those strings.

When the TSI is built using a hash table, hash function
115 or an equivalent is applied to a string to produce an
offset into hash head table 107. If the entry at that offset in
hash head table 107 is a NULL, the string is not found
anywhere in the old file. Otherwise the entry in 107 is a
pointer into hash chain table 108. This offset corresponds to
the offset into the old file where an instance of the string
might be found. Since many different strings may hash to the
same entry in the hash head table, the old file string at the
offset must be checked for a match.

The method also checks if there is another entry in the
chain. If the entry at the offset in 108 is a NULL, there are
no more entries in the chain and the search is finished,
otherwise the entry is a pointer to the next entry in the hash
table, which is treated like the first offset in searching the old
file for the string. This chained list search continues until a
NULL is found. All strings found are followed to find the
longest matching string (T60).

Placing Copy and Insert Commands into Raw DIFF File

FIG. 6a is a flow chart illustrating creation of a copy
command in the raw DIFF file. According to a specific
embodiment of the invention, when a copy command is

5,832,520

11

created the method first checks to see if the normalized
length of the string to be copied is going to be greater than
a specified value, in a specific embodiment this value is 127
bytes (W4). If not, the copy command byte is set to equal the
length of the string to be copied (W6). If so, a long count is
created by setting the first byte to zero and appending the
length using a LongFieldWidth number of bytes (W10).

In either case, the position bytes are appended to the copy
command (W8), and the copy command is appended to the
raw DIFF file (W12) and the process ends (W14).

FIG. 6b is a flow chart illustrating creation of an insert
command in the raw DIFF file. According to a specific
embodiment of the invention the method first checks to see
if the length of the string to be inserted is greater than a
specified value, in a specific embodiment this value is 127
bytes (W44). If not, the insert command byte is set equal to
0x80 plus the insert byte length (W46). If the length of the
string to be inserted is greater than the specific embodiment
value of 127 bytes, a long count is created by setting the first
byte to 0x80 and appending the length of the insert string
(W50). The text to be inserted is then appended to the insert
command (W48), and the insert command is appended to the
raw DIFF file (W52) and the process ends (W54).

FIGS. 6C and 6D illustrate copy and insert command
formats in the raw difference file according to an embodi-
ment of the invention.

Creating the Optimized Insertion String Database (OISD)
NEEDS WORK

The raw difference file, once completed, contains pointers
(within the copy commands) to all strings in old file 10 that
are found in new file 20. It also contains the actual text for
any string in new file 20 that is not found anywhere in old
file 10. According to an embodiment of the invention, the
raw difference file is further processed to generate a final
difference file which is smaller than the raw DIFF file.
According to a further embodiment of the invention,
because the new file is no longer needed to construct the
difference file, the memory in which the new file had resided
is used for further processing.

Minimizing the raw difference file to create the final
difference file involves several important steps. In one step,
all insertion text within the raw difference file is gathered
together and indexed and optimized into an Optimized
Insertion string Database (OISD) and the insert commands
followed by text within the raw difference file are replaced
by pointers to strings in the OISD. In another step, com-
mands and string length counters in the raw difference file
are encoded to minimize the number of bits needed to store
them in the final difference file.

Construction of the OISD will be described first. The
OISD is used to eliminate redundancies in insertion string
text in the raw difference file that may occur when for
example, the same three-word string is inserted at many
different places. Conversion of the raw difference file into a
file including an OISD takes place in four primary steps:

1. Creating an insertion string index (ISI)

Creating an OISD

Resolving all pointers in the ISI to text in OISD
Using the raw difference file to construct insert com-
mands either from a current position in the OISD or
from an absolute position in the OISD and placing
those insert commands in the final DIFF file.

FIG. 7A1is a flow chart of the process of creating an OISD.
The raw difference file is searched for insert commands
(U4). Each insert command that is found is copied into an
insertion string index (ISI) as a string length and a pointer to
the string in the raw difference file.

2.
3.
4.

10

15

25

35

40

45

50

55

60

12

After the ISI is complete, each insert command is exam-
ined in turn. First, the length of the insert string is checked
(U10, U12), and if it is less than or equal to a particular
value, the minimum insert position length (empirically set to
a value of two in this embodiment), then the insert string is
copied into the OISD and a command code indicating an
“Insert at Current Position” (ICP) (U22) is placed into the
first byte of the insertion string in the raw difference file
(U24).

If the string length is greater than the minimum insert
position length, the entire insert string is retrieved from the
raw DIFF file and the existing strings in the OISD are
sequentially searched for the string (U14). If the string is
found in the OISD (U16), then the ISI pointer to the string
in the raw difference file is changed to an absolute offset into
the OISD and a command code indicating an “Insert at
Moved Position” (IMP) (U17) is placed into the first byte of
the insertion text for this insert in the raw difference file
(U24).

If the string is not found in the OISD then the ISI is used
to search for the insertion strings in the raw difference file
within strings not yet copied into the OISD (U18). If the
string is not found as part of another string in the raw
difference file (U20), then the string is copied into the OISD
and a command code indicating an “Insert at Current Posi-
tion” (ICP) (U22) is placed into the first byte of the insertion
text for this insert in the raw difference file (U24). If the
string is found as part of another string in the raw difference
file (U20), then the ISI pointer to the string in the raw
difference file is changed to point into the ISI entry for the
insert string which contains the present string (U32). An
offset into this string is placed in the ISI indicating where in
the second string the first string begins and a command code
indicating an “Insert at Moved Position (IMP)—not yet
resolved” (U32) is placed into the raw difference file (U24).
The ISI pointer created in U32 will be resolved into an offset
into the OISD in step U30, after all the insertion strings are
placed in the OISD. This method effectively eliminates
redundant strings by finding “strings within strings.”

FIG. 7B shows the structure of the insertion string index
(IS]) as it is being created but prior to construction of the
OISD. Initially, the ISI contains pointers to insertion text
strings in the raw DIFF file and the length of those strings.

FIG. 7C shows the structure of the insertion string index
(IS]) as it is being modified during construction of the OISD,
as described above in steps U20 and U32.

While constructing the OISD, three types of insert com-
mands are used to indicate where a text string is found. All
three types of insert commands are shown in FIG. 7C. It
should be noted that the “insert at Moved Position (IMP)
—not yet resolved” command is temporary, and changes to
an “Insert at Moved Position (IMP)” command when the
pointers in the ISI are resolved. During construction of the
new file, a “current position” insert pointer starts at the
beginning of the OISD and is moved when “insert from the
current position” commands are executed.

The first insert command is an insert from the current
position in the OISD. Only the string length is needed for
this command; the offset stored in the ISI for that string is
not used because the position within the OISD is known.

The second insert command is an insert from an offset into
the OISD. The length and offset for the string stored in the
ISI are used when creating the command for the final
difference file.

The third insert command is an insert from an offset into
a text string in the raw difference file that has not had its
insertion text moved into the OISD yet. The Offset field in

5,832,520

13

the ISI is changed to a pointer to (and offset into) the ISI
offset for the command containing the text string. These
pointers are “chained” if text strings are nested “n” levels
deep inside increasingly larger text strings.

During the final stage of command encoding (U34), the
multiple nested pointers and offsets in the raw DIFF file are
each resolved to single absolute offsets into the OISD.
The Final Difference File and Encoding Commands

FIG. 8A is a diagram showing the structure of the final
difference (DIFF) file according to an embodiment of the
invention. As shown in FIG. 8A, a final DIFF file contains
a header, a set of Huffman decode trees, an initial command
state to initialize the command state machine, an encoded
command sequence, and the optimized insertion string data-
base containing the insertion text. The final difference file is
constructed by moving through each command in the raw
difference file in sequence. For copy commands, the com-
mands are encoded according to the state machine and
encoding fields discussed below. For insert commands, all
pointers including nested and unresolved pointers into the
OISD are resolved into absolute pointers in the OISD and
the OISD is appended to the end of the final difference file.
For all commands, count values may be encoded as dis-
cussed below.

In the command section of the final DIFF file, there are
four possible commands: CCP (copy from the old file at
current old file position, P__OLD), CMP (copy move posi-
tion: copy from the old file at a specified absolute position
in the old file), ICP (insert from the OISD at the current
OISD position, P_T), and IMP (insert move position: insert
from the OISD at a specified absolute position).

Each of these commands may be represented as beginning
with two fields: a command encoding field (CE), which can
be from zero to two bits wide, and a Huffman encoded count
field (HE) which encodes one of twenty different values
representing counts associated with a command.

Each command also may contain up to three additional
fields: a short count field (SCF), a long count field (LCF),
and a huge count field (HCF). At least one of these three
fields is present when a count value that cannot fit into the
HE field must be stored along with a command. The SCF
field is only present if there is an escape code of zero in the
HE field, the LCF is only present if there is an escape code
in the SCF field, and the HCF is only present if there is an
escape code in the LCF field. Encoding of the count fields
is described more fully in the next section.

The CMP and IMP commands also include a mandatory
third field that contains an absolute offset (AO). In the case
of the CMP command, the absolute offset is into the old file,
and in the case of the IMP command, the absolute offset is
into the OISD. The AO width is set for CMP and IMP to be
wide enough to specify any position in the old file or in the
OISD respectively.

The four commands can be represented as shown below,
with fields that may not be present shown in square brackets:

CCP: CE HE [SCF] [LCF] [HCF]

CMP: CE HE [SCF] [LCF] [HCF] AO

ICP: CE HE [SCF] [LCF] [HCF]

IMP: CE HE [SCF] [LCF] [HCF] AO

FIG. 8B shows a state machine 220 which indicates how
the command fields (CE) are encoded according to one
specific embodiment of the invention. As can be seen in the
figure, commands are encoded using a no bit, one bit or two
bit encoding field, depending on which command they
immediately follow. Only one or two bits are required to
encode the commands, with the special case of CCP fol-
lowed by ICP requiring only one bit. The [SCF] [LCF]
[HCF] fields are encoded as described below.

10

15

20

25

30

35

40

45

50

55

60

65

14

Encoding Count Fields

Associated with every command is at least one count field
specifying the length of the string to be copied or inserted,
which may be encoded to further minimize the size of the
final difference file. According to an embodiment, for each
of the four command types, different count (string length)
frequency statistics for each different command type are
gathered during the construction of the raw difference file.
These statistics are used to select count value encodings that
will minimize the final difference file.

The smallest twenty normalized count values for each
command are used to construct a Huffman encoding table (or
tree) as is known in the art. The Huffman tree assigns the
smallest bit code to the most frequent count value.

Frequencies for values greater than the smallest twenty
normalized values are categorized by how many bits it takes
to encode them. Using these frequencies, the lengths of
[SCF] [LCF] [HCF] are selected to minimize the total
number of bits required to encode all the commands (for
each command type).

Each command type has a minimum number for its count
value based on the process used to construct the raw
difference file as discussed above. The minimum number for
CCP=3 (because that is the minimum size string looked for
in the old file), CMP=5 (because if the copy string is less
than S and insert command is selected), ICP=1, IMP=3.
These numbers are set before raw difference construction
and are empirically derived. Count values are always nor-
malized before being encoded in a count field with a
normalized count value having a minimum value of one.
This is accomplished by decrementing the count value by
the capacities of all leading count fields plus the minimum
count value, minus one.

Count encoding for any command type involves the same
process, with the only differences being the minimum count
values and the short, long and huge field widths, which may
be different for each command. Count encoding is per-
formed as follows:

1. The count value is decremented by the minimum count

value for that command minus one.

2. If the count value is less than or equal to the capacity
of the Huffman field, it is encoded in the Huffman field
and the process stops; otherwise, the Huffman escape
value is encoded in the Huffman field.

3. The count value is decremented by the capacity of the
Huffman field.

4. If the count value is less than or equal to the capacity
of the short field, it is encoded in the short field and the
process stops; otherwise, the short field escape value is
encoded in the short field.

5. The count value is decremented by the capacity of the
short field.

6. If the count value is less than or equal to the capacity
of the long field, it is encoded in the long field and the
process stops; otherwise, the long field escape value is
encoded in the long field.

7. The count value is decremented by the capacity of the
long field.

8. The count value is encoded in the huge field.

Building the Final Difference File

Once the command count statistics are processed to
determine the values of the Huffman tables and the widths
of the [SCF], [LCF], and [HCF] fields, the final difference
file is constructed by examining each command in the raw
difference file in order and using the command encoding
state machine shown in FIG. 8A to generate minimized

5,832,520

15

encodings for the commands, the Huffman trees and count
widths to encode count fields, and the ISI to resolve insertion
pointers. The first command(s) in the raw difference file set
the initial state of the encoding state machine. The starting
state is saved in the difference file to initialize the state
machine for decoding commands during the revision pro-
cess. The count for the first command is now encoded, using
up to the four available fields. If a pointer must be resolved
into the OISD, that is done.

According to one embodiment, after each command is
encoded, the encoded count bits and position field are
packed into the difference file. Packing refers to the tech-
nique of storing bits adjacent to one another with no inter-
mediate “filler” bits to make the data line up on even byte or
word boundaries.

After the first command is encoded, the next command(s)
in the raw difference file is retrieved, encoded using the
encoding state machine and packed into the difference file.
If this command was a CMP or IMP, the position field is then
also packed into the difference file. This process continues
until all the commands have been encoded and packed into
the difference file. For insert commands the count is
retrieved from the ISI. For the IMP insert command, the
offset into the OISD is also retrieved from the ISI.

File Revision

FIG. 9 is a flow chart illustrating the revision process
(Revlt) that occurs in computer system 2 according to the
invention. Old file 10 and difference file 30 will be present
in system 2, and according to the invention, a duplicate of
the new file will be constructed using these two files at
system 2. The Revlt reconstruction process extracts copy
and insert commands from the DIFF file. The RevIt process
executes these copy commands (copying data from the old
file to the new file) and insert commands (inserting data from
the insert database (OISD) into the new file) to produce the
new file. Data is copied and inserted in single or multiple
byte lengths, although other embodiments could use nonbyte
lengths. Huffman decoding tables in the DIFF file header are
used to decode the counts indicating the number of data
bytes to be copied or inserted.

The Revlt new file reconstruction process begins when
the RevIt program is explicitly or implicitly (via a self-
extracting execution file) invoked by a user or other program
(405). The difference file is decompressed using the inverse
of the compression function applied to the difference file in
S22 (FIG. 3). Checksums are computed for the old and DIFF
files (410). These old and diff checksum values are com-
pared to checksum values stored in the header area of the
DIFF file. If either of the old or diff checksums are not equal
to the checksum value stored in the header, the Revlt
reconstruction process is terminated with an appropriate
eITor message.

Next, the Huffman decoding tables are unpacked from the
DIFF file (415). The Huffman decoding tables are then
reconstructed. According to one embodiment, there are four
tables, one for each of the command types (CCP, CMP, ICP,
IMP). Also unpacked are the different values for the field
width lengths for each of the commands.

In step 425, pointers to the first new file location
(P_NEW), first insert table location in the DIFF file (P_IT),
and first command location in the DIFF file (P_ DIFF) are
initialized. Strings will be copied or inserted into the new file
at P NEW. Some insert database strings will be retrieved
starting at P__IT. Command bits from the difference file are
unpacked at P_ DIFF.

The first command in the DIFF file is unpacked at step
430 and is encoded in three bits to initialize the command

10

15

20

25

30

35

40

45

50

55

60

65

16

state machine. Subsequent commands are unpacked and
decoded as shown in the state machine in FIG. 8B.

Step 435 uses the command state machine to decode the
command and then transfers control to the proper one of four
command execution paths shown in FIG. 9. As described
above, the bit lengths of the short, long and huge count fields
(ShortWidth, LongWidth and HugeWidth) for each of the
four command types are contained in the DIFF file header
and are stored in memory during the Revlt process. The
short, long and huge count field bit lengths may be different
for each of the four command types and are separately
optimized for frequency of counts for command type for
each DIFF file created. The absolute offset field AO is set
separately for CMP and IMP commands and is set large
enough to give an absolute position to anywhere in the old
file or OISD respectively.

After step 435, Revlt processing begins similarly for each
of the four different commands, with the first step in each
case being to unpack the string length width to be copied. In
the general case, count decoding is performed as follows:

1. The count value is set to the minimum count value,
minus one.

2. If the encoded value of the Huffman field is not equal
to the Huffman escape value, it is added to the count
value and the process stops.

3. The count value is incremented by the capacity of the
Huffman field.

4. If the encoded value of the short field is not equal to the
short escape value, it is added to the count value and the
process stops.

5. The count value is incremented by the capacity of the
short field.

6. If the encoded value of the long field is not equal to the
long escape value, it is added to the count value and the
process stops.

7. The count value is incremented by the capacity of the
long field.

8. The count value is incremented by the number in the
huge filed and the process stops.

The specifics of this general case are illustrated to some
extent in the figure. For a CCP (copy from current position
command), control is transferred to step 500, where the
length count of the copy is determined by using the appro-
priate Huffman table, minimum count value, and short, long
and huge field widths for the CCP command, and following
the general count decoding process as previously described.

CCP command processing proceeds to 510, with the
determined length count number of bytes copied from the
old file, starting at P_ OLD, to the new file, starting at
P_NEW. P_ OLD is then incremented by the length count.
P__NEW is also incremented by the length count. This CCP
processing is then complete.

For a CMP (copy move position command), control is
transferred from step 435 to step 550. The Huffman table,
minimum count value, and short, long and huge field widths
for CMP are used and the length count is decoded as for a
CCP command. In step 560, the new copy absolute offset
(AO) position is unpacked with a standard field width as
found in the DIFF file header. In step 570, “length count”
number of bytes are copied from the old file, starting at the
AO, to the new file, starting at P_ NEW. The current position
pointer in the old file is then changed to AO plus the copy
length. P NEW is also incremented by the length count.

For an ICP (insert from current position command),
control is transferred from step 435 to step 600. The Huff-
man table, minimum count value, and short, long and huge

5,832,520

17

field widths for ICP are used and the length count is decoded
as for a CCP command. In step 610, “length count” number
of bytes are copied from the Insert Database (OISD) in the
DIFF file, starting at the current insert position pointer
(P_IT), to the new file, starting at P_ NEW. The current
insert position pointer in the DIFF file OISD is then incre-
mented by the length count. P NEW is also incremented by
the length count. P_ OLD is also incremented by the length
count.

For an IMP (insert move position command), control is
transferred to step 650 and the length count of the insert is
determined as for the previous commands using the Huff-
man table, minimum count value, and short, long and huge
field widths for the IMP command. In step 660, the new
insert absolute offset (AO) position is unpacked with a
standard field width as found in the DIFF file header. In step
670, “length count” number of bytes are copied from the
OISD, starting at the new insert position offset, to the new
file, starting at P_ NEW. P_ NEW is incremented by the
length count. P_ OLD is also incremented by the length
count.

In step 700, the command count is decremented. If the
command count is zero, the new file reconstruction is
complete and control is transferred to 800. Otherwise, more
commands must be processed. At 705, if the just finished
command is a CCP then it is immediately followed by an
ICP command and an immediate execution of the ICP
command routine (600) is performed without decoding the
next command. Otherwise, control is transferred to 710,
where the next command is unpacked and then decoded as
just described.

If at step 700 the command count is zero, then new file
reconstruction is complete and a checksum is generated
from the reconstructed new file. This checksum value is
compared with the expected new file checksum found in the
DIFF file header. If not equal, an error message or status will
be generated. Otherwise, the method process is complete
(850).

Computer Product Embodiments

The present invention may be embodied in a variety of
computer products as illustrated in FIG. 10. The invention
may be embodied as software running on a computer system
such as 900 and used to create difference files for a number
of purposes including shipping file revisions to other sites or
for archiving. When used for archiving, what is referred to
herein as the old file would actually be the file that would be
maintained on the computer system, while the difference file
would be archived in order to preserve previous versions of
the old file.

The present invention may also be embodied in a single
difference file stored on a computer storage media of any
type, such as disk 910. In such a case, the difference file may
be self-extracting, thus requiring no additional executable
code to create the revision file, or the difference file may
require additional computer code to extract.

The present invention has been illustrated and described
herein with reference to specific and preferred embodiments.
However, it should be recognized that variations may be
made. In particular, a number of optional processings have
been disclosed herein, but it should be understood that the
invention may be practiced either including or omitting
these optional steps. Furthermore, various method steps
have been described as occurring within a particular order,
but it should be understood that in many cases the order of
processing steps can be varied without varying the essential
nature of the invention. It is therefore not intended that the
invention be limited to the details disclosed herein, but
should be accorded the full scope of the claims and any
equivalents.

10

15

20

25

30

35

40

45

50

55

60

65

18

What is claimed is:
1. A method for generating a difference file comprising:

a) reading new file data strings from a new file;

b) searching an old file for the presence of old file data
strings matching said new file data strings;

¢) when a match is found, storing in said difference file an
indication of the position in said old file of said
matching strings, along with an indication of a copy
operation;

d) when no match is found, storing said new file data
string in a location where it will available to said
difference file and storing in said difference file an
indication of the location of said insert data along with
an indication of an insert operation;

¢) repeating steps a) through d) until all data in said new
file has been read and corresponding insert and copy
operations have been written into said difference file.

2. The method according to claim 1 wherein data strings
from said new file that are searched for in said old file have
a fixed and predetermined length greater than one.

3. The method according to claim 2 further comprising
establishing a pointer to a current position in said old file for
the purposes of minimizing the amount of position infor-
mation that must be stored with a copy operation when
copying from the current position.

4. The method according to claim 1 further comprising,
when a match is found, continuing to compare data from
said old file to said new file subsequent to said data string in
order to maximize the length of said matching string.

5. The method according to claim 4 wherein when a match
is found at a location different than the current position,
comparing the amount of data that will need to be stored in
said difference file for a copy operation versus an equivalent
insert operation and choosing the operation that results in the
smallest amount of data being included in said difference
file.

6. The method according to claim 1 wherein said search-
ing further comprises creating a text string index from said
old file if sufficient system memory exists and using said text
string index to quickly locate occurrences of said old file
data string in said new file.

7. The method according to claim 6 wherein said text
string index is implemented using a hash table and a hash
function.

8. The method according to claim 1 further comprising:

f) after said difference file is complete, gathering all new
file data stored in said difference into an optimized
insertion database in order to reduce redundancies in
inserted data.

9. The method according to claim 8 further comprising:

) encoding said indications of copy operations and insert
operations and position indications in order to reduce
the size of said final difference file.

10. The method according to claim 1 further comprising:

f) storing along with said difference file executable code
to perform file revision in order to allow said difference
file to be self-executing to generate a copy of said new
file from a copy of said old file.

11. The method according to claim 1 wherein said copy
operations and said insert operations are stored in said
difference file as commands, each comprising a plurality of
fields, said fields indicating the command type, the string
count, and the position where the string text is found.

12. The method according to claim 11 wherein there are
two copy commands and two insert commands having a
form:

5,832,520

19

CCP: CE HE [SCF] [LCF] [HCF]

CMP: CE HE [SCF] [LCF] [HCF] AO

ICP: CE HE [SCF] [LCF] [HCF]

IMP: CE HE [SCF] [LCF] [HCF] AO
with CCP indicating a copy from a current position pointer
in said old file, CMP indicating a copy from an offset
position in said old file, with ICP indicating a copy from a
current position pointer in an insert database IMP indicating
a copy from an offset position in said insert database, CE
being a field for encoding the command type, HE being a
field for indicating very short copy or insert string lengths,
[SCF], [LCF], [HCF] indicating a short count field, long
count field and huge count field respectively, and being
fields that are not present in all commands, and AO being an
address offset field.

13. The method according to claim 12 wherein said CE
field is determined by a state machine whose state is
determined by the previous command.

14. A computer program product comprising:

computer code that:

a) reads data strings from a new file;

b) searches an old file for the presence of old file data
strings matching said new file data strings;

¢) when a match is found, stores in a difference file an
indication of the position in said old file of said
matching strings, along with an indication of a copy
operation;

d) when no match is found, stores said new file data string
in an insert database and stores an indication of the
position of said insert data in said insert database along
with an indication of an insert operation;

¢) repeats steps a) through d) until all the data in said new
file has been examined and corresponding insert and
copy operations have been written into said difference
file; and

a computer-readable storage medium that stores said
computer code.

15. A method for producing a reconstituted file from an

existing file and a difference file comprising:

a) reading from said difference file commands indicating
data strings to be copied from said existing file into a
reconstituted file and data strings to be inserted from an
insert database in said difference file into said recon-
stituted file;

b) copying said data strings indicated from said existing
file into said reconstituted file; and

¢) inserting data strings indicated from said insert data-
base into said reconstituted file.

16. A method for supplying a revised computer file to a

user comprising the steps of:

on a first computer system, comparing a revised file to an
old file in order to generate a difference file, said
difference file being smaller than said revised file;

transferring said difference file to a second computer
system, said second computer system containing a copy
of said old file that matches the old file on said first
computer system; and

using said difference file and said old file on said second
computer system to generate a copy of said revised file
on said second computer system, said copy of said
revised file on said second computer system matching
said revised file on said first computer system.

17. The method according to claim 16 wherein said
difference file is transmitted from said first computer system
to said second computer system over a transmission
medium.

10

15

20

25

30

35

40

45

50

55

60

65

20

18. The method according to claim 16 wherein said
difference file is joined with an executable component at said
first computer system, allowing said difference file to be
self-extracting after transmission to said second computer
system.

19. A difference file for creating a revised file from an
existing file comprising:

a plurality of copy commands, each copy command
including either implicit or explicit position informa-
tion with reference to an existing file and including
copy string count data;

a plurality of insert commands for inserting data from an
insert database, each insert command including either
implicit or explicit position information with reference
to the insert database and including insert string count
data; and

an insert database.

20. A difference file according to claim 19, further com-
prising command decode trees for decoding said copy string
and insert string count data.

21. A difference file according to claim 19, further com-
prising an executable code unit for creating a revised file
from said insert database and said existing file.

22. Afile differencing system for creating a difference file
from an old file and a new file, said difference file containing
all the information necessary to generate said new file from
said old file, comprising:

means for opening an old file;

means for opening a new file;

an indexer for creating an index from said old file when
sufficient memory is detected;

a text string index for storing index fields from said old
file along with a position indication;

a sorter for sorting entries in said text string index;

a search engine for searching for strings of data from said
new file and looking up the position of those strings of
data in said old file; and

a command writer for assembling commands and data
into a raw difference file including strings of data from
said new file not found in said old file.

23. The device according to claim 22 further comprising:

an insert database builder for reading insert text found in
said raw difference file and creating an optimized
insertion database that eliminates most redundancies in
said insert data; and

a command encoder for encoding said assembled com-
mands and a count encoder for encoding count fields
associated with said commands.

24. A method for generating a difference file comprising:

a) reading a new file data string from a new file;

b) comparing said new file data string to an old file data
string at a current position in said old file and if the
strings match to at least a predetermined string length,
determining the length of the match and writing a copy
command, preceded by any accumulated insert data
with an insert command, into a difference file and
returning to step a;

¢) searching an old file for the presence of all old file data
strings matching said new file data string to at least a
predetermined length and returning the longest match-
ing string and storing in said difference file an indica-
tion of the position in said old file of said longest
matching string along with an indication of a copy
operation, preceded by any accumulated insert data
with an insert command,

5,832,520

21

d) when no match is found, accumulating one byte of
insert data, incrementing a pointer to a current position
in said new and old files, and returning to step a

¢) repeating steps a) through d) until all data in said new
file has been read and corresponding insert and copy
operations have been written into said difference file.
25. The method according to claim 24 wherein said
searching further comprises creating a hash table text string
index from said old file if sufficient system memory exists
and using said hash table text string index to quickly locate
occurrences of said old file data string in said new file.
26. The method according to claim 24 wherein when a
match is found at a location different than the current
position, comparing the amount of data that will need to be
stored in said difference file for a copy operation versus an
equivalent insert operation and choosing the operation that
results in the smallest amount of data being included in said
difference file.

10

15

22

27. The method according to claim 24 further comprising:

f) after finding a matching string at a position different
from the current position, attempting to resynchronize
the current position pointers in said old and new files by
accumulating insert bytes so that a copy from the
current position may be performed.

28. The method according to claim 24 further comprising:

f) after said difference file is complete, gathering all insert
data stored in said difference into an optimized inser-
tion database in order to reduce redundancies in
inserted data;

) encoding said indications of copy operations and insert
operations using a state machine, and encoding copy
and insert count indications using Huffman encoding in
order to reduce the size of a final difference file.

