

UNITED STATES DISTRICT COURT
DISTRICT OF MASSACHUSETTS

)
DATATERN, INC.,)
)
 Plaintiff,)
) Civil Action No.
 v.) 11-11970-FDS
)
MIRCROSTRATEGY, INC., et al.,)
)
 Defendants.)
)

MEMORANDUM AND ORDER
ON CLAIM CONSTRUCTION

SAYLOR, J.

This is a patent dispute concerning U.S. Patent No. 6,101,502, which claims a method for

interfacing between two popular computerized data-storage systems: object-oriented software

applications and relational databases. Plaintiff DataTern, Inc. asserts a claim of patent

infringement against defendant MicroStrategy, Inc. and a number of its customers. The parties

have agreed that the liability of the customer defendants turns on the liability of MicroStrategy.

The litigation is now at the claim construction stage. The parties agree on the

construction of one term, “object oriented software application,” and dispute the construction of

six terms: (1) “class,” (2) “object,” (3) “object model,” (4) “interface object,” (5) “runtime

engine,” and (6) “a map of at least some relationships between schema in the database and the

selected object model.”

I. Background

A. Factual Background

DataTern is the owner of U.S. Patent No. 6,101,502 (the “’502 patent”). The inventors of

DataTern, Inc. v. Blazent, Inc. et al Doc. 204

Dockets.Justia.com

https://dockets.justia.com/docket/massachusetts/madce/1:2011cv11970/140068/
https://docs.justia.com/cases/federal/district-courts/massachusetts/madce/1:2011cv11970/140068/204/
https://dockets.justia.com/

2

the ’502 patent filed for the patent on September 25, 1998, claiming priority to provisional

application number 60/069,157 filed on December 9, 1997. On November 10, 1999, the United

States Patent and Trademark Office (“PTO”) rejected the patent’s claims as having been

anticipated by Patent No. 5,627,979 (Chang et al.). On February 9, 2000, the inventors

successfully distinguished Chang by amending Claims 1 and 10, which led the PTO to issue the

patent on August 8, 2000.1

The invention claimed in the ’502 patent facilitates interaction between two popular

systems for organizing computerized data: object-oriented software applications and relational

databases. (Cohen Dec. ¶ 13). Object-oriented software applications encapsulate information in

a collection of discrete “objects” that correspond to “classes,” which define the type of object.

(Id. ¶ 20). For example, an object-oriented software application for a human-resources

department might contain the class “employee,” which corresponds to objects representing

particular employees such as “Jane Brown.” The object might contain attributes concerning

Jane’s employment, such as her wage rate and scheduled hours. Relational databases organize

information into rows and columns, with each column representing an attribute and each row

representing an instance of those attributes. (Id. ¶ 29). To use the same example, the database

would display a table with columns containing information about employees’ wages and hours,

and rows representing a particular employee, such as Jane. The so-called “object-relational

mismatch” arises because of different assumptions and approaches underlying the two systems.

(Id. ¶ 35).

1 In 2007, the PTO reexamined the ’502 patent following a request by a third party for inter partes

reexamination. Initially, the PTO rejected the claims as being anticipated or rendered obvious by Chang, then
confirmed the patentability of the original Claims 1–18 and allowed new Claims 19–44 in 2009.

3

The ’502 patent addresses the mismatch by generating intermediaries to translate between

the systems, making the interaction easier and more reliable. (Id. ¶ 42–43). Representative

Claim 1 describes four distinct steps the invention employs: (1) selecting an object model, (2)

generating a map, (3) using the map to create at least one interface object, and (4) accessing data

from the relational database via a runtime engine. ’502 patent col. 7–8 ll. 51–3.

Defendant MicroStrategy manufactures and sells products that DataTern contends

infringe on the ’502 patent. DataTern contends that the infringement extends to MicroStrategy’s

customers, at least some of whom are consolidated defendants in this case.

B. Procedural Background

Between November 7 and December 14, 2011, DataTern brought ten actions in this court

relating to infringement of the ’502 patent. Those actions were consolidated on January 4, 2013.

Meanwhile, the ’502 patent was also the subject of litigation in the United States District

Court for the Southern District of New York. That litigation involved DataTern, but not

MicroStrategy. On August 24, 2012, the New York court issued a memorandum and order on

claim construction concerning two consolidated cases, Microsoft Corp. v. DataTern, Inc., No.

11-cv-02365-KBF (S.D.N.Y. filed Apr. 7, 2011, and SAP et al v. DataTern, Inc., No. 11-cv-

02648-KBF (S.D.N.Y. filed Apr. 18, 2011). Microsoft Corp. v. DataTern, Inc., 2012 WL

3682915, at *10 (S.D.N.Y. Aug. 24, 2012) (“Microsoft I”). Among other things, the court

construed certain terms in the ’502 patent, including the terms “to create at least one interface

object” and “object model.” Thereafter, DataTern conceded noninfringement based on the

court’s construction of the claim terms and the court entered summary judgment. DataTern

appealed.

On February 7, 2013, based on the concession by DataTern that MicroStrategy could not

4

be held to have infringed the ’502 patent based on the Microsoft I court’s construction of “create

at least one interface object,” this Court granted summary judgment to MicroStrategy. (Docket

No. 108). DataTern also appealed that judgment.

On May 5, 2014, the Federal Circuit upheld the Microsoft I court’s judgment of non-

infringement. Microsoft Corp. v. DataTern, Inc., 755 F.3d 899, 909 (Fed. Cir. 2014) (“Microsoft

II”). In so doing, it upheld the New York district court’s determination that the term “object

model” included classes. Id. It did not, however, review the district court’s construction of “to

create at least one interface object,” as that proved unnecessary to render its decision. Id. at 908–

909.

On December 19, 2014, the Federal Circuit vacated this Court’s order of summary

judgment, finding that the New York court’s construction of the term “to create at least one

interface object” (which this Court had essentially adopted) was incorrect. DataTern, Inc. v.

Epicor Software Corp., 599 F. App'x 948, 954-55 (Fed. Cir. 2014). It construed the term “to

create at least one interface object” to mean “to instantiate at least one interface object from a

class.” Id. The Federal Circuit remanded the case to this Court for further proceedings. Id. at

955.

On February 11, 2015, MicroStrategy filed two separate motions for summary judgment,

one on the basis of invalidity for non-patentable subject matter and the other on the basis of non-

infringement. On September 4, 2015, the Court denied both motions.

The action is now at the claim construction stage. On September 26, 2016, the Court

held a Markman hearing on the six disputed claim terms.

II. Legal Standard

The construction of claim terms is a question of law. Markman v. Westview Instruments,

5

517 U.S. 370, 372 (1996) (“[T]he construction of a patent, including terms of art within its claim,

is exclusively within the province of the court.”).

In Phillips v. AWH Corp., 415 F.3d 1303 (Fed. Cir. 2005) (en banc), the Federal Circuit

clarified the proper approach to claim construction and set forth principles for determining the

hierarchy and weight of the definitional sources that give a patent its meaning. The guiding

principle of construction is “the meaning that the term would have to a person of ordinary skill in

the art in question at the time of . . . the effective filing date of the patent application.” Id. at

1313. Courts thus seek clarification of meaning in “the words of the claims themselves, the

remainder of the specification, the prosecution history, and extrinsic evidence concerning

relevant scientific principles, the meaning of technical terms, and the state of the art.” Id. at

1314 (quoting Innova/Pure Water, Inc. v. Safari Water Filtration Sys., 381 F.3d 1111, 1116

(Fed. Cir. 2004)).

A. The Words of the Claim

The claim construction analysis normally begins with the claims themselves.2 The claims

of a patent “define the invention to which the patentee is entitled the right to exclude.” Phillips,

415 F.3d at 1312 (citing Innova, 381 F.3d at 1115).

A court may construe a claim term to have its plain meaning when such a construction

2 In Phillips, the Federal Circuit discredited the practice of starting the claim construction analysis with

broad definitions found in dictionaries and other extrinsic sources:

[I]f the district court starts with the broad dictionary definition . . . and fails to fully appreciate how
the specification implicitly limits that definition, the error will systematically cause the construction
of the claim to be unduly expansive. The risk of systematic overbreadth is greatly reduced if the
court instead focuses at the outset on how the patentee used the claim term in the claims,
specification, and prosecution history, rather than starting with a broad definition and whittling it
down.

415 F.3d at 1321. Of course, if no special meaning is apparent after reviewing the intrinsic evidence, claim
construction might then “involve[] little more than the application of the widely accepted meaning of commonly
understood words.” Id. at 1314.

6

resolves a dispute between the parties. See O2 Micro Int’l Ltd. v. Beyond Innovation Tech. Co.,

521 F.3d 1351, 1361 (Fed. Cir. 2008); see also U.S. Surgical Corp. v. Ethicon, Inc., 103 F.3d

1554, 1568 (Fed. Cir. 1997) (“Claim construction is a matter of resolution of disputed meanings

and technical scope, to clarify and when necessary to explain what the patentee covered by the

claims, . . . [but] is not an obligatory exercise in redundancy.”).

In some instances, it is the arrangement of the disputed term in the claims that is

dispositive. “This court’s cases provide numerous . . . examples in which the use of a term

within the claim provides a firm basis for construing the term.” Phillips, 415 F.3d at 1314. For

example, because claim terms are normally used consistently throughout the patent, the meaning

of a term in one claim is likely the meaning of that same term in another. Id. In addition, “the

presence of a dependent claim that adds a particular limitation gives rise to a presumption that

the limitation in question is not present in the independent claim.” Id. at 1315.

B. The Specification

“The claims, of course, do not stand alone.” Id. at 1315. Rather, “they are part of a fully

integrated written instrument, consisting principally of a specification that concludes with the

claims.” Id. (citations and quotations omitted). For that reason, the specification must always be

consulted to determine a claim’s intended meaning. The specification “is always highly relevant

to the claim construction analysis. Usually, it is dispositive; it is the single best guide to the

meaning of a disputed term.” Id. (quoting Vitronics Corp. v. Conceptronic, Inc., 90 F.3d 1576,

1582 (Fed. Cir. 1996)).

“In general, the scope and outer boundary of claims is set by the patentee’s description of

his invention.” On Demand Mach. Corp. v. Ingram Indus., 442 F.3d 1331, 1338 (Fed. Cir.

2006); see also Phillips, 415 F.3d at 1315–17 (“[T]he interpretation to be given a term can only

7

be determined and confirmed with a full understanding of what the inventors actually invented

and intended to envelop with the claim.”) (quoting Renishaw, 158 F.3d at 1250). “[T]he

specification may reveal a special definition given to a claim term by the patentee that differs

from the meaning it would otherwise possess.” Phillips, 415 F.3d at 1316. It may also reveal

“an intentional disclaimer, or disavowal, of claim scope by the inventor.” Id. Therefore, the

claims are to be construed in a way that makes them consistent with, and no broader than, the

invention disclosed in the specification. On Demand, 442 F.3d at 1340 (“[C]laims cannot be of

broader scope than the invention that is set forth in the specification.”); Phillips, 415 F.3d at

1316 (“[C]laims must be construed so as to be consistent with the specification, of which they

are a part.”) (quoting Merck & Co. v. Teva Pharms. USA, Inc., 347 F.3d 1367, 1371

(Fed.Cir.2003)).

Nevertheless, courts must be careful to “us[e] the specification [only] to interpret the

meaning of a claim” and not to “import[] limitations from the specification into the claim.” Id. at

1323. A patent’s “claims, not specification embodiments, define the scope of patent protection.”

Kara Tech. Inc. v. Stamps.com Inc., 582 F.3d 1341, 1348 (Fed. Cir. 2009); see also Martek

Biosciences Corp. v. Nutrinova, Inc., 579 F.3d 1363, 1381 (Fed. Cir. 2009) (“[E]mbodiments

appearing in the written description will not be used to limit claim language that has broader

effect.”). “In particular, we have expressly rejected the contention that if a patent describes only

a single embodiment, the claims of the patent must be construed as being limited to that

embodiment.” Phillips, 415 F.3d at 1323. This is “because persons of ordinary skill in the art

rarely would confine their definitions of terms to the exact representations depicted in the

embodiments.” Id.

Although this distinction “can be a difficult one to apply in practice[,] . . . the line

8

between construing terms and importing limitations can be discerned with reasonable certainty

and predictability if the court’s focus remains on understanding how a person of ordinary skill in

the art would understand the claim terms.” Id. “The construction that stays true to the claim

language and most naturally aligns with the patent's description of the invention will be, in the

end, the correct construction.” Id. at 1316 (quoting Renishaw PLC v. Marposs Societa’ per

Azioni, 158 F.3d 1243, 1250 (Fed. Cir. 1998)).

C. The Prosecution History

After the specification and the claims themselves, the prosecution history is the next best

indicator of term meaning. The prosecution history consists of the complete record of the

proceedings before the PTO and includes the prior art cited during the examination of the patent.

Id. at 1317. “Like the specification, the prosecution history provides evidence of how the PTO

and the inventor understood the patent.” Id. “[T]he prosecution history can often inform the

meaning of the claim language by demonstrating how the inventor understood the invention and

whether the inventor limited the invention in the course of prosecution, making the claim scope

narrower than it would otherwise be.” Id. (citing Vitronics, 90 F.3d at 1582–83).

However, “because the prosecution history represents an ongoing negotiation between

the PTO and the applicant, rather than the final product of that negotiation, it often lacks the

clarity of the specification and thus is less useful for claim construction purposes.” Id. As a

result, courts generally require that “a patent applicant . . . clearly and unambiguously express

surrender of [a] subject matter” to disavow claim scope during prosecution. Voda v. Cordis

Corp., 536 F.3d 1311, 1321 (Fed. Cir. 2008) (quoting Sorensen v. Int’l Trade Comm’n, 427 F.3d

1375, 1378 (Fed. Cir. 2005)).

9

D. Extrinsic Sources

Extrinsic evidence consists of “all evidence external to the patent and prosecution history,

including expert and inventor testimony, dictionaries, and learned treatises.” Phillips, 415 F.3d

at 1317 (quoting Markman, 52 F.3d at 980). It “can help educate the court regarding the field of

the invention and can help the court determine what a person of ordinary skill in the art would

understand claim terms to mean.” Id. at 1319. However, extrinsic evidence suffers from a

number of defects, including its independence from the patent, potential bias, and varying

relevance. Id. at 1318–19. Such evidence is therefore “unlikely to result in a reliable

interpretation of patent claim scope unless considered in the context of the intrinsic evidence,”

and courts may consider, or reject, such evidence at their discretion. Id. at 1319.

III. Analysis

The disputed terms occur throughout the ’502 patent, but all appear in representative

Claim 1. Claim 1 states as follows:

1. A method for interfacing an object oriented software application with a relational
database, comprising the steps of:

selecting an object model;

generating a map of at least some relationships between schema in the database
and the selected object model;

employing the map to create at least one interface object associated with an object
corresponding to a class associated with the object oriented software application;
and

utilizing a runtime engine which invokes said at least one interface object with the
object oriented application to access data from the relational database.

(emphasis added).

The parties’ proposed constructions of the disputed terms are as follows:

 Plaintiff’s Proposed Defendant’s Proposed

10

Construction Construction
“Object oriented
software
application”

software application organized as
a collection of classes

software application organized as
a collection of classes

“Object model” a template with a predetermined,
standardized structure that has
classes

a template with a predetermined
standardized structure both
relating to an object-oriented
software application and including
object classes and inheritance
relationships among classes

“A map of at least
some relationships
between schema in
the database and
the selected object
model”

no construction needed a declarative structure that
describes at least one association
between the objects and attributes
of an object model and/or tables,
rows, and/or columns in the
database classes

“Interface object” interface objects “act as
intermediaries between the object
oriented application and the
relational database”

an object, which is not part of or
generated by the object oriented
software application, that provides
a connection between the object
oriented software application and
the runtime engine, and that
accesses data from the database in
accordance with the map

“Object” an entity comprising one or more
attribute values (i.e., data) and/or
behaviors (i.e., functionality)

an entity comprising attribute
values (i.e., data) and methods
(i.e., functionality) that can act on
said attribute values and that
accesses data from the database in
accordance with the map

“Class” a definition that specifies one or
more attributes and/or behaviors of
objects

a definition that specifies attributes
and behavior of objects, and from
which objects can be instantiated

“Runtime engine” software that the object oriented
software application uses to access
the relational database

software that (i) the object oriented
software application depends on to
run, (ii) must be running to
execute the object oriented
software application, (iii) uses the
map in its processing, and (iv) is
not part of the object oriented
software application

A. “Object Oriented Software Application”

 Plaintiff’s Proposed
Construction

Defendant’s Proposed
Construction

11

“Object oriented
software
application”

software application organized as
a collection of classes

software application organized as
a collection of classes

The parties have agreed as to the construction of “object oriented software application.”

Accordingly, the Court will adopt the agreed-upon construction of “software application

organized as a collection of classes.”

B. “Class”

 Plaintiff’s Proposed
Construction

Defendant’s Proposed
Construction

“Class” a definition that specifies one or
more attributes and/or behaviors of
objects

a definition that specifies attributes
and behavior of objects, and from
which objects can be instantiated

MicroStrategy’s proposed definition mirrors the definition to which DataTern stipulated

in Microsoft I. MicroStrategy contends that DataTern should be judicially estopped from

advancing a different construction from the one to which it stipulated in Microsoft I. In the

alternative, it contends that its narrower definition is correct on the merits. The Court will

address those arguments in turn.

1. Judicial Estoppel

MicroStrategy first contends that DataTern should be judicially estopped from advancing

a definition of “class” that is inconsistent with the definition to which it stipulated in Microsoft I.

2012 WL 3682915, at *4. In that proceeding, DataTern stipulated that “class” meant “a

definition that specifies attributes and behavior of objects, and from which objects can be

instantiated.” Id.

Judicial estoppel is an equitable doctrine that prevents a party from assuming contrary

legal positions across judicial proceedings “simply because [its] interests have changed.” New

Hampshire v. Maine, 532 U.S. 742, 749 (2001). Although not an exhaustive test, at least three

12

conditions must be satisfied for the doctrine to apply: (1) the earlier and later positions must be

“clearly inconsistent”; (2) the party to be estopped “must have succeeded in persuading a court to

accept the earlier position”; and (3) the party to be estopped “must stand to derive an unfair

advantage if the new position is accepted by the court.” RFF Family P'ship, LP v. Ross, 814

F.3d 520, 528 (1st Cir. 2016) (quotations omitted). Here, MicroStrategy has demonstrated that

the first two elements have been satisfied. It has not, however, demonstrated that DataTern

would stand to derive an unfair advantage if the Court adopts the new construction.

First, the constructions advanced by DataTern in the prior and current litigation are

“clearly inconsistent.” DataTern attempts to reconcile that facial inconsistency by stating that it

originally stipulated to the meaning of “class” only “as the term appears in the claims.” Pl.

Rebuttal Brief at 14; see also id., Ex. M at 2 (stating that the “agreed construction” applied to

claims 1, 2, 7, 10, 11, and 16). Both the Microsoft I and Microsoft II courts found that the term

“object model” necessarily includes classes. See Microsoft I, 2012 WL 3682915, at *6,

Microsoft II, 755 F.3d at 909. DataTern contends that the stipulated definition does not apply to

those courts’ importation of the definition of “class” to the definition of “object model.”

However, the Microsoft I court adopted the disputed definition of “object model” as comprising

“classes” concurrently with accepting the stipulated definition of “class.” Microsoft I, 2012 WL

3682915, at *6. Similarly, the Microsoft II court approved the Microsoft I court’s construction of

“object model” as comprising “classes” and acknowledged that DataTern was “bound” by its

stipulated construction. Microsoft II, 755 F.3d at 909. Therefore, both courts construed “object

model” to comprise “classes” with the understanding that a “class” was defined according to

DataTern’s stipulated definition. The courts did not limit the application of the “class” definition

to certain terms. Here, too, DataTern cannot circumscribe this definition only to the

13

circumstances that benefit it.

Second, it is plain that DataTern persuaded the earlier court to accept its position. In

Microsoft I, DataTern advanced a particular definition, and the court adopted that definition.

Thus, DataTern “succeeded in persuading a court to accept the earlier position.” RFF Family

P'ship, LP, 814 F.3d at 528. The fact that DataTern lost in that proceeding on other grounds is

not relevant to whether it succeeded on this issue. DataTern contends that the Microsoft I court

rejected its definition because it stated that the “intrinsic evidence suggests that classes need not

always include behaviors.” Microsoft I, 2012 WL 3682915, at *6. It offers further support for

that proposition by pointing to language in the Microsoft II decision in which the Federal Circuit

stated that the stipulated definition is “a narrower construction of classes than that required by

the ’502 patent.” Microsoft II , 755 F.3d at 909. Although DataTern characterizes these

statements as holdings, they are not essential to the judgment in either case, and are better

labeled dicta adopted without the benefit of full briefing. The issue was not before those courts,

because DataTern not only did not challenge SAP’s definition of “class,” but also stipulated to a

definition that included behaviors. The Microsoft I court accepted that stipulated definition. See

Microsoft I, 2012 WL 3682915, at *4. Dicta expressing doubt about the wisdom of the

stipulation cannot alter that fact. Accordingly, DataTern succeeded in persuading the earlier

court to accept its position.

Despite satisfying the first two prongs of the judicial estoppel test, MicroStrategy has not

demonstrated that DataTern stands to derive an “unfair advantage” if its new definition is

accepted by this Court. First, it is relevant that DataTern did not espouse its original position

adversely to MicroStrategy. See Davis v. Wakelee, 156 U.S. 680, 689–90 (1895) (finding that a

party may not advance inconsistent positions in different legal proceedings “especially if it be to

14

the prejudice of the party who has acquiesced in the position formerly taken by him.”). The

earlier proceeding was brought against a third party, SAP. SAP is not a party to this lawsuit and

will experience no obvious prejudice as a result of DataTern’s changed position. Second,

although DataTern received the benefit the court’s acceptance of its stipulated definition, it did

not receive that benefit to the loss of its adversary. Instead, both DataTern and SAP presumably

benefitted from the court’s construction, because they agreed to the construction. Because of the

non-adversarial posture of the issue, the stipulated definition was not closely examined by either

the Microsoft I or the Microsoft II courts, and both courts, as DataTern points out, expressed

some doubt about whether it was correct. Here, finding a definition of “class” that is inconsistent

with the parties’ unexamined, stipulated definition does not undermine the “integrity of the

judicial process” in the same way or to the same extent that finding an inconsistent definition

would were the original definition adopted after an adversarial process. New Hampshire v.

Maine, 532 U.S. 742, 749 (2001).

Under these circumstances, it would not unfairly prejudice MicroStrategy to decide this

question on the merits, nor would it extend an unfair advantage to DataTern. Accordingly, the

Court does not find that DataTern is judicially estopped from advancing a definition inconsistent

with the one to which it stipulated in Microsoft I.

2. Merits

Turning to the merits, the parties dispute the necessity of including both “attributes” and

“behaviors” in the construction of “class,” and the inclusion of the phrase “from which objects

may be instantiated.”

a. Behavior and Instantiation

As it has been argued, there is no practical difference between the necessity of “behavior”

15

and the inclusion of the phrase “from which objects can be instantiated.” MicroStrategy

contends that the term “class” must specify “behavior,” because all classes must have at least one

method: the constructor method. That is, all classes must be able to construct, or instantiate,

objects, and therefore behavior is inherent in the definition of class.

Some basic background on the term “class” in the context of object-oriented

programming is required. As described above, object-oriented programs organize data into

discrete units, called “objects.” See Cohen Dec. ¶ 20. Individual objects are defined by the

“classes” to which they belong. See id. ¶ 22. A given class, such as “employee,” specifies the

attributes and behaviors associated with the class, such as “name” and “assign a new project.”

See id. The term “class” has been variously analogized to a blueprint, a factory, or a cookie

cutter. See id. ¶ 24; Microsoft I, 2012 WL 3682915, at *4. Just as a blueprint guides the

construction of buildings, a factory makes goods, and a cookie cutter cuts cookies, the ultimate

purpose of a class is to instantiate objects. Toward this end, classes also permit “inheritance”

relationships in which a sub-class inherits all the traits of another class and specifies new

attributes or behaviors. See Cohen Dec. ¶ 23. For example, “hourly worker” and “salaried

worker” classes might inherit attributes and behaviors from the “employee” class, but add traits

specific to those sub-classes. Id.

The term “class” appears repeatedly throughout the claims in the ’502 patent. Most

importantly, independent claims 1 and 10 refer to the term. Those claims state:

1. A method for interfacing an object oriented software application with a
relational database, comprising the steps of:

selecting an object model;

generating a map of at least some relationships between schema in the
database and the selected object model;

employing the map to create at least one interface object associated with
an object corresponding to a class associated with the object oriented

16

software application; and

utilizing a runtime engine which invokes said at least one interface object
with the object oriented application to access data from the relational
database;

10. A computer program fixed on a computer-readable medium and adapted to
operate on a computer to provide access to a relational database for an object
oriented software application, comprising:

a mapping routine that generates a map of at least some relationships
between schema in the database and a selected object model;

a code generator that employs said map to create at least one interface
object associated with an object corresponding to a class associated with
the object oriented software application

a runtime engine that invokes said at least one interface object to access data
from the relational database.

’502 patent col. 7-8 ll. 53–23 (emphasis added). As described in the claims of the ’502 patent, a

“class” corresponds to an “object,” which in turn is associated with “interface objects.” The ’502

patent repeatedly refers to objects as “instances” of classes. See ’502 patent col. 2 l. 55; id. col. 4

l. 12, 32–33, 39–40, 58–59, 60–61; id. col. 6 ll. 26–27; id. col. 7 ll. 14, 28. The parties’ experts

agree that objects are “instances” of classes. See Cohen Dec. ¶22; McGoveran Dec. ¶ 25. In the

context of claims 1 and 10, a class is not the inert entity that DataTern posits.3 Instead, the plain

meaning of these claims is that classes correspond with objects by instantiating them. It follows

that the classes claimed in the ’502 patent must include behavior because they instantiate objects.

3 At oral argument and briefly in a footnote in its third and final submission on claim construction,

DataTern drew attention to the patent’s reference to so-called “abstract classes” in the detailed description of the
invention, as support for the proposition that classes need not instantiate objects. Pl. Post-Hearing Brief at 5 n.3;
’502 patent col. 6 ll. 9–11. That argument was not raised in DataTern’s initial or responsive claim construction
briefs. Raising the argument at this late stage did not give MicroStrategy fair opportunity to respond, because the
argument was submitted in written form concurrently with MicroStrategy’s final brief. Accordingly, the Court finds
that DataTern has waived the argument. In any event, although the Court does not have the benefit of full briefing,
it appears incorrect on the merits. It is true that abstract classes do not directly instantiate objects. McGoveran Dec.
¶ 30. Instead, they form the basis of inheritance relationships that are passed on to generated “concrete” classes,
which in turn instantiate objects. Id. The abstract class referred to in Figures 5 and 6, OOBase, is capable of
instantiating objects indirectly by passing on information to OObject, which in turn instantiates objects. Id. ll. 9-30;
fig. 5–6. OOBase also clearly contains a method, “GetAttrPtr.” Id. fig. 6. Although this reference to abstract
classes suggests that not all classes need instantiate objects directly, it does not undermine the finding that the
“classes” described in the patent claims, which “correspond” to objects, instantiate those objects.

17

DataTern further contends that other intrinsic evidence supports a finding that objects

need not have behaviors. DataTern points to Figure 3 of the patent, which depicts “a block

diagram of an object model.” ’502 patent col. 2 l. 18; id. fig. 3. Figure 3 represents four

classes—CPerson, CDepartment, CProject, and CEmployee—which include a list of attributes,

but do not include behaviors:

Id. fig. 3. DataTern contends that based on this diagram, the intrinsic evidence supports a

finding that “class” need not include behaviors, because the classes depicted do not include them.

As further support, DataTern cites language from Microsoft II that interprets this diagram to

disclose an “object model with classes and attributes of those classes,” but not mentioning

behaviors. Microsoft II, 755 F.3d at 909. DataTern also points to language from Microsoft I in

which the court interpreted the diagram, concluding that “[t]he intrinsic evidence suggests that

classes need not always include behaviors.” Microsoft I, 2012 WL 3682915, at *6. Again, those

statements were made without the benefit of full briefing on this issue, because DataTern

stipulated to a definition of class that included MicroStrategy’s proposed limitations.

The court can only use a specification “to interpret the meaning of a claim.” Phillips, 415

18

F. 3d at 1323. The patent’s “claims, not [its] specification embodiments, define the scope of

patent protection.” Kara Tech., 582 F.3d at 1348. Figure 3 does not purport to be an exhaustive

depiction of a class. Indeed, the purpose of the diagram is not to represent a “class” at all, but

instead, to represent a “block diagram of an object model.” ’502 patent col. 2 l. 18. In other

areas of the patent, block diagrams are explicitly underinclusive. For example, Figure 5

represents the class OObject, but does not depict any behaviors associated with this class. ’502

patent fig. 5. In contrast, Figure 6 provides a more detailed depiction of OObject, which includes

behaviors:

Figure 5 Depiction of OObject Figure 6 Depiction of OObject

’502 patent fig. 5–6. That discrepancy is strong evidence that the block diagrams contained in

the patent are, in at least some respects, non–exhaustive. The Court does not find that the

omission of behaviors in the classes depicted in Figure 3 contradicts the language of the patent’s

claim, which includes repeated and consistent reference to their corresponding objects. In the

context of the ’502 patent claims, classes instantiate objects, so it follows that the term comprises

behavior.

b. Attributes

Again, whether a class must contain “attributes,” or simply may contain them, has to be

determined within the context of the purpose and claims of the ’502 patent. The purpose of the

19

’502 patent is to “interfac[e] object oriented software applications with relational databases.”

’502 patent col. 1 ll. 23–24. Again and again, the patent instructs that it facilitates interfacing

between the class or object attributes and values in a relational database.4 DataTern’s own expert

states that the “’502 patent is concerned with mapping attributes between an object model and a

database schema” Cohen Dec. ¶ 15. If a class did not contain attributes, there would be

nothing to map. The only definition of “class” consistent with the patent’s claims and purpose is

one that requires the presence of attributes.5

3. Conclusion

For the foregoing reasons, the term “class” will be construed to mean “a definition that

specifies attributes and behavior of objects, and from which objects can be instantiated.”

C. Object

 Plaintiff’s Proposed
Construction

Defendant’s Proposed
Construction

“Object” an entity comprising one or more
attribute values (i.e., data) and/or
behaviors (i.e., functionality).

an entity comprising attribute
values (i.e., data) and methods
(i.e., functionality) that can act on
said attribute values

As it did for its proposed construction of “class,” MicroStrategy advances a construction

of the term “object” that is consistent with the definition to which DataTern stipulated in

4 For example, the patent states as follows: “Mapping the object model to the relational database schema

includes mapping a class attribute to a table column, mapping a class attribute to a 1-1, 1-N, or N-N relationship,”
’502 patent col. 2 ll. 44–47; “mapping of a class attribute to a table column can be described,.” id. col. 2 ll. 49–50;
“the class attribute CPerson.name 26 maps to table column TPerson.name,” id. col. 2 ll. 53-54; and “Schema
relationships are mapped directly to object relationships, either in the form of object attributes or list attributes,” id.
col. 5 ll. 29–30. Claim 32 discloses “the method of Claim 1 wherein said utilizing is further defined as the object
oriented software application invoking at least one interface object to request data from the relational database
corresponding to at least one attribute of at least one object corresponding to a class associated with the object
oriented software application.” Id. col. 2 ll. 10–12.

5 Again, DataTern argues in a footnote in its post-hearing brief and at oral argument that the presence of a

“stateless” object in Claim 9 suggests that attributes are a potential but not necessary feature of classes. Pl. Post-
Hearing Brief at 5 n.2. Again, the Court finds that it has waived that argument by failing to advance it earlier in the
briefing.

20

Microsoft I. Again, MicroStrategy contends that DataTern should be judicially estopped from

advancing a contrary definition here. For the reasons described above, DataTern is not judicially

estopped from advancing an inconsistent definition, and the Court will reach the merits of the

dispute.

On the merits, the parties dispute the whether the term “object” must comprise methods

and attributes, and, if so, whether the methods must be able to act on the attributes.

1. Necessity of Methods and Attributes

As described, a “class” must contain attributes and behaviors. That analysis can be

applied with equal force to the construction of the term “object,” which is simply an instance of a

class.6 The parties agree that their arguments concerning the necessity of methods and attributes

in the definition of “object” rises and falls with their arguments concerning the necessity of

behaviors in the definition of “class.” See Pl. Claim Construction Brief at 24–25; Pl. Responsive

Brief at 4–5; Def. Claim Construction Brief at 19. Accordingly, the Court finds that an “object”

must comprise methods and attribute values.

2. Methods Can Act on Attributes

According to MicroStrategy, the concept of “encapsulation” requires that an object’s

methods can act on its attributes. The patent itself does not make reference to encapsulation, but

the experts for both sides refer to the concept. See Cohen Dec. ¶ 20; McGoveran Dec. ¶¶ 22, 24,

27, 42, 58, 63. McGoveran identifies encapsulation as a “defining principle” of object-oriented

programming that is the source of “[m]ost of the object relational impedance mismatch.”

McGoveran Dec. ¶¶ 22, 63. He states that an encapsulated object “prevents other objects from

accessing [all the data pertaining to it].” Id. ¶¶ 58. Similarly, Cohen states that data is

6 The parties agree that “behavior” in the definition of “class” is the same as “methods” in the proposed

definition of “object.” Cohen Dec. ¶ 20; McGoveran Dec. ¶ 25.

21

encapsulated in objects which are, in turn, “insulate[d]” from one another. Cohen Dec. ¶ 21.

MicroStrategy contends that because objects are encapsulated, the only way that

attributes can be changed or otherwise acted upon is through the methods of the object. See Pl.

Claim Construction Brief at 20. DataTern does not specifically refute that claim, instead relying

on the contention that because an object need not specify attributes or behavior, it follows that a

method need not act on an attribute. In fact, DataTern’s expert states that “[e]ach object

encapsulates a set of data and, often, a set of behaviors (sometimes known as “methods”) that

can operate on that data.” Cohen Dec. ¶ 20. Although Cohen does not concede that an object

must contain methods, this statement suggests that if an object does contain methods, those

methods act on the object’s attributes. Having found that an “object” within the context of the

’502 patent must contain methods, it now follows that those methods are capable of acting on the

object’s attributes.

3. Conclusion

For the foregoing reasons, the term “object” will be construed to mean “an entity

comprising attribute values (i.e., data) and methods (i.e., functionality) that can act on said

attribute values.”

D. Object Model

 Plaintiff’s Proposed
Construction

Defendant’s Proposed
Construction

“Object model” a template with a predetermined,
standardized structure that has
classes

a template with a predetermined
standardized structure both
relating to an object-oriented
software application and including
object classes and inheritance
relationships among classes

As with the terms “class” and “object,” MicroStrategy advances a definition that is

consistent with the definition found in Microsoft I, while DataTern advances a different

22

definition. However, unlike for the previously discussed terms, DataTern contested the

construction of “object model” in Microsoft I and Microsoft II, and those courts construed the

term adverse to DataTern. Only the Federal Circuit’s decision in Microsoft II is controlling here.

In Microsoft I, the district court found that an “object model” is “a template with a

predetermined standardized structure both relating to an object-oriented software application and

including object classes and inheritance relationships among classes.” Microsoft I, 2012 WL

3682915, at *6. DataTern appealed that finding, and the Federal Circuit affirmed the decision

insofar as the court required the term to include “classes.” See Microsoft II, 755 F.3d at 908 n.6

(“DataTern also challenges the district court's determination that object model requires

inheritance relationships among classes and that the object model be related to the object-

oriented software application. Because the requirement of classes is dispositive, we do not

address the other aspects of the court's claim construction of object model.”)

Although this court is not bound by the limitations placed on the term by the Microsoft I

court, the reasoning in Microsoft I is obviously instructive; indeed, precisely the same issue is

before the court. See, e.g., GeoTag, Inc. v. Fred’s, Inc., 2013 WL 2181166, at *6 (W.D. Tenn.

May 20, 2013) (finding that another district court’s claim construction is not binding, and that “it

may be appropriate to give deference to the previous court’s construction if the same terms are

relitigated”). Here, as there, there are two issues in dispute.7 First, the parties dispute whether an

“object model” is required to “relat[e] to an object-oriented software application.” Second, the

parties dispute whether the “object model” must include “inheritance relationships among

classes.”

7 The Court interprets the phrases “that has classes” and “including object classes” in the parties’ proposed

definitions to have substantially the same meaning.

23

1. Relationship to the Object-Oriented Software Application

The term “object model” appears in Claim 1 in the phrases “selecting an object model”

and “generating a map of at least some relationships between schema in the database and the

selected object model.” ’502 patent col. 7–8 ll. 53–4. The term also appears in Claim 10 in the

phrase “a mapping routine that generates a map of at least some relationships between schema in

the database and a selected object model.” Id. col. 8 ll. 24–37.

MicroStrategy contends that an “object model” must relate to an object-oriented software

application in order to reflect the scope of that term as it appears in the ’502 patent. See Def.

Claim Construction Brief at 28. It argues that without that limitation, the term “object model”

would be so broad as to encompass even Microsoft Excel spreadsheets. Id. DataTern responds

that MicroStrategy’s construction is not required by the terms of the patent. See Pl. Claim

Construction Brief at 15.

In Microsoft I, the court found that “the context of the patent is critical” in determining

whether an object model must relate to an object-oriented software application. Microsoft, 2012

WL 3682915, at *6. The court pointed to language in the abstract and summary of the invention

demonstrating that “the invention requires an object-oriented software application,” so “it is

appropriate to include that language in the construction of ‘object model.’” Id.; ’502 patent at

[57] (“The Database schema, object model and mapping are employed to provide interface

objects that are utilized by a runtime engine to facilitate access to the relational database by

object oriented software applications.”); ’502 patent col. 1 ll. 59–62. Based on that analysis of

the language and purpose of the ’502 patent, the court concluded that, in context, the object

model was limited “to one involving object-oriented software applications.” Microsoft I, 2012

WL 3682915, at *6.

24

The Court finds the Microsoft I court’s interpretation of the term “object model”

persuasive. Accordingly, the term “object model” as used in the patent must relate to an object-

oriented software application.

2. Inheritance Relationships Among Classes

The Microsoft I court also concluded that an “object model” must include inheritance

relationships among classes. However, the court did not explain its reasoning for finding that

such a restriction applied. See Microsoft, 2012 WL 3682915, at *5-7.

DataTern contends that although the object model may specify inheritance relationships,

such relationships are not required by the patent. MicroStrategy responds that the only

embodiment of an object model in the patent, Figure 3, depicts inheritance relationships among

classes, and therefore object models must contain inheritance relationships. See ’502 patent fig.

3. However, “it is improper to read limitations from a preferred embodiment described in the

specification—even if it is the only embodiment—into the claims absent a clear indication in the

intrinsic record that the patentee intended the claims to be so limited.” Epicor, 599 F. App’x at

952 n.3 (quoting Liebel-Flarsheim Co. v. Medrad, Inc., 358 F.3d 898, 913 (Fed. Cir. 2004)).

The intrinsic evidence to which MicroStrategy points indicates that an object model may, but

need not, include inheritance relationships.

To the extent that Figure 3 creates an ambiguity, MicroStrategy has not demonstrated that

the extrinsic evidence supports the conclusion that an object model must contain inheritance

relationships. It has submitted extrinsic evidence suggesting that an object model must represent

“relationships” among classes. See Def. Ex. 29, James Rumbaugh et al., Object-Oriented

Modeling and Design (Prentice-Hall 1991) at 17; Def. Ex. 30, FireStar Software, Inc. v. Red

Hat, Inc., et al 2:06-cv-258, Joint Claim Construction and Prehearing Statement dated March 13,

25

2008 at 2 (“FireStar v. Redhat Jt. Claim Construction Stmt.”). DataTern, however, disputes that

the term “relationships” is coincident with the term “inheritance relationships.” See Cohen

Rebuttal Dec. ¶ 30. Indeed, MicroStrategy’s own expert refers to “relationships” between

classes that are not “inheritance relationships.” See McGoveran Dec. ¶ 26 (stating that a class

attribute may correspond to another class “creat[ing] a relationship between the class containing

the attribute and the class defining the attribute type.”); id. ¶ 34 (stating that an object model

describes “relationships among classes, especially inheritance” but not limiting those

relationships to inheritance relationships). The extrinsic evidence accordingly does not require

the conclusion that an object model must specifically include “inheritance relationships,” and the

Court will not read that limitation into the patent claims.

3. Conclusion

For the foregoing reasons, the term “object model” will be construed to mean “a template

with a predetermined standardized structure both relating to an object-oriented software

application and including object classes.”

E. Interface Object

 Plaintiff’s Proposed
Construction

Defendant’s Proposed
Construction

“Interface object” interface objects “act as
intermediaries between the object
oriented application and the
relational database.”

an object, which is not part of or
generated by the object oriented
software application, that provides
a connection between the object
oriented software application and
the runtime engine, and that
accesses data from the database in
accordance with the map

MicroStrategy advances a definition of “interface object” that is largely consistent with

the Microsoft I court’s construction, but adds restrictions derived from the patent claims and

specifications. See 2012 WL 3682915, at *7. DataTern proposes a construction that is

26

consistent with language that the Federal Circuit has used to describe the term. See DataTern,

Inc. v. Epicor, 599 Fed. Appx. at 950; Microsoft II, 755 F.3d at 907.

1. Litigation History

As with other terms, in defining “interface object” the Court does not write on a blank

slate. A brief review of the litigation history is warranted. In Microsoft I, the New York district

court construed the phrase “to create at least one interface object” to mean “to generate code for

at least one class and instantiate an object from that class, where the object is not part of or

generated by the object oriented application and is used to access the database.” See 2012 WL

3682915, at *8. Following the New York district court’s ruling, DataTern conceded in this case

that MicroStrategy’s product did not infringe if the term “create” meant “to generate code for at

least one class and instantiate an object from that class.” Docket No. 39. The Court entered

summary judgment of non-infringement based on DataTern’s concession. Id.

On appeal, the Federal Circuit determined that the Court had misconstrued the term “to

create at least one interface object.” DataTern, Inc. v. Epicor, 599 Fed. Appx. at 951. The

Federal Circuit found that the patent did not limit the creation of an interface object to the

generation of code, and construed the term to mean “to instantiate at least one interface object

from a class.” Id. However, it did not address the other limitations adopted by the New York

district court, including whether an “interface object” “is not part of or generated by the object

oriented application and is used to access the database.” See id. at 950 n.1. In the background

section of the court’s opinion, the Federal Circuit stated that “‘interface objects’ . . . act as

intermediaries between the object oriented application and the relational database.” Id. at 950.

That language is identical to language the Federal Circuit used to describe interface objects in the

background section of Microsoft II. 755 F.3d at 907.

27

2. “Not Part of or Generated by the Object Oriented Software
Application”

MicroStrategy seeks to limit the scope of “interface objects” only to those that are “not

part of or generated by the object oriented software application.8 The Microsoft I court accepted

that limitation. That court found that during the patent’s reexamination, the patentee “disclaimed

that interface objects were part of or generated by the object oriented application.” See Microsoft

I, 2012 WL 3682915 at *8. The court went on to examine the prosecution history: “In a

supplemental reply submitted in [the reexamination] proceeding, [the patentee] stated: ‘The

[prior art] user objects are not to be confused with the interface objects recited in Claim 1 of the

present patent, which interface objects are not part of nor generated by the object oriented

software application.’ This disclaimer is binding.” See id. (citations omitted); see also Docket

No. 131-21, Patentee Supp. Response, at 10–11.

This Court agrees with that analysis. Accordingly, the term “interface object” will be

construed to include the requirement that it is “not part of or generated by the object oriented

software application.”

3. “That Provides a Connection between the Object Oriented Software
Application and the Runtime Engine”

MicroStrategy contends that an “interface object” provides a connection to the runtime

engine based on the language of the claims and specifications. That limitation was not at issue in

Microsoft I.

The description of the invention in the patent states that “interface objects 20 are

employed by the object oriented software application 22 to access the relational database 16 via a

8 DataTern contends that the phrase should be omitted from the definition because “not part of” is

confusing and would not assist the trier of fact in understanding the term. See Docket No. 198, Pl. Post-Hearing
Brief, at 7. However, the patentee used that exact phrase to distinguish prior art, and DataTern itself used the phrase
to define “runtime engine” in Microsoft I. See Note 14, infra.

28

runtime engine 24.” ’502 patent col. 2 ll. 35–38. On its own, that sentence is somewhat

ambiguous. A fair reading of the sentence is that interface objects access the database via the

runtime engine. However, it could also be read to mean that the object oriented software

application accesses the database via the runtime engine without any intermediaries. In the

former case, interface objects provide the connection between the object oriented application and

the runtime engine, while in the latter they do not necessarily serve that function.

Although the language is ambiguous, standing alone, the patent provides further

guidance. The sentence in question refers to Figure 1, which “illustrates use of the map to

generate interface objects that are employed by a runtime engine and an object oriented software

application to access a relational database.” ’502 patent col. 2 ll. 13-16.

Figure 1 depicts two ways in which the runtime engine connects to the object oriented

application: through interface objects directly—via the pathway from 22 to 20 to 24—or through

interface objects indirectly by way of the code generator—via the pathway from 22 to 18 to 20 to

24. In either case, interface objects provide the connection.9 As MicroStrategy’s proposed

9 Notably, DataTern conceded as much in the Microsoft I proceeding, stating that “the invention makes the

connection via the runtime engine and the interface objects to pull the data that is needed for the object oriented
application from the relational database.” Docket No. 131-32, Microsoft Corporation, et al v. DataTern, Inc.,
Markman Hearing Transcript, July 30, 2012 at 27:19-23.

29

limitation is supported by the specification, and “most naturally aligns with the patent's

description of the invention,” it is the correct construction. Phillips, 415 F.3d at 1316 (quoting

Renishaw PLC v. Marposs Societa’ per Azioni, 158 F.3d 1243, 1250 (Fed. Cir. 1998)).

4. “That Accesses Data from the Database”

MicroStrategy contends that an interface object “accesses data from the database.” 10

Principally, it points to the claim terms in independent claims 1 and 10 as support for that

assertion. Claim 1 states that the runtime engine “invokes said at least one interface object with

the object oriented application to access data from the relational database,” ’502 patent col. 8 ll.

1–3, while Claim 10 states that the “runtime engine invokes said at least one interface object to

access data from the relational database,” id. col. 8, ll. 36–37. That language is consistent with

the patent description, which (as noted) states that “[t]he interface objects 20 are employed by

the object oriented software application 22 to access the relational database.” ’502 patent col. 2

ll. 35–37. According to the plain terms of the claims, interface objects access data from the

database.

DataTern’s position actually supports that finding. DataTern points to the same language

on which MicroStrategy relies in support of its contention that “interface object” should be

construed to mean “act as intermediaries between the object oriented application and the

relational database.” See Pl. Rebuttal Brief at 5–6. Again, DataTern’s language mirrors the

language the Federal Circuit used to describe interface objects in both Microsoft II and on appeal

in this case. Microsoft II, 755 F.3d at 907; DataTern, Inc. v. Epicor, 599 Fed. Appx. at 950. The

definition of “interface object” was not before the court in that case. However, in its background

10 The Microsoft I court accepted that an interface object “is used to access the database.” It did not

consider whether the interface objects “access data” from the database, or whether they access data “in accordance
with the map.” Although the Microsoft I court made a finding concerning that issue, it did not detail its reasons.

30

section describing the invention, the court stated that interface objects “act as intermediaries

between the object-oriented application and the relational database.” Id. That is doubtless true.

More specifically, the way that interface objects act as intermediaries, as DataTern concedes, is

that they are “used in the process of accessing data from the relational database.” Pl. Rebuttal

Brief at 5. That limitation is therefore consistent with the claims themselves and with the

Federal Circuit dicta, and the Court will adopt it.

5. “In Accordance with the Map”

MicroStrategy further contends that interface objects access data “in accordance with the

map.” No such language is contained in the claim terms. Instead the claims recite that the map

is “employ[ed]” in order to “create at least one interface object.” ’502 patent col. 7 ll. 59–60; id.

col. 8, ll. 32–33. The language stating that the map is “employed” to create interface objects is

broader than MicroStrategy’s proposed construction that interface objects access data “in

accordance with the map.” Furthermore, it does not necessarily follow that because the map is

used to create interface objects, the objects continue to act in accordance with it. The Court will

not read in a limitation that the claim terms do not require.

6. Conclusion

For the foregoing reasons, the term “interface object” will be construed to mean “an

object, which is not part of or generated by the object oriented software application, that provides

a connection between the object oriented software application and the runtime engine, and that

accesses data from the database.”

F. Runtime Engine

 Plaintiff’s Proposed
Construction

Defendant’s Proposed
Construction

“Runtime engine” software that the object oriented
software application uses to access

software that (i) the object oriented
software application depends on to

31

the relational database run, (ii) must be running to
execute the object oriented
software application, (iii) uses the
map in its processing, and (iv) is
not part of the object oriented
software application

MicroStrategy proposes a definition of “runtime engine” that is the same as the one

accepted by the Microsoft I court. Microsoft I, 2012 WL 3682915 at *9. DataTern contends that

its definition is consistent with the claim terms and specifications, and that MicroStrategy’s

definition misreads the prosecution history to improperly import limitations.

The prosecution history supports all four restrictions proposed by MicroStrategy.11

Among other things, the patentee distinguished Chang on the basis that the ’502 patent discloses

the use of a “runtime engine,” while Chang discloses the use of a “runtime environment.”

Docket No. 131–24, Patentee’s Response and Proposed Amendments at 15–16. The patentee

submitted the affidavit of Mark Eisner in support of that assertion, who described the difference

between the two concepts as follows:

An ‘engine’ has the meaning of a stand-alone service that enables a specific
application or application set to operate. An ‘environment’ connotes all of the
functionality generally available to run a general set of applications . . . The term
‘engine’ conveys a notion of an encapsulated block of functionality that enables or
helps an application to run.

Docket No. 131–25, Eisner Aff. at 3–4. Eisner went on to state that a runtime engine “connotes

a service that delivers specific functionality that will enable an application to run,” and that, in

the context of the patent, “the claimed runtime engine refers to a specific service, or block of

functionality, that operates during runtime execution of the object-oriented software application.”

11 The patent itself supports MicroStrategy’s proposed restriction (iii) (“uses the map in its processing”).

The description of the invention states that the runtime engine “uses the map 12 to drive its processing.” ’502 patent
col. 2 ll. 37–38.

32

Id. at 4. Based on that affidavit, the patent examiner agreed that the runtime environment of

Chang was distinct from the runtime engine disclosed in the ’502 patent. Docket No. 131-35, Ex

Parte Reexamination Communication Transmittal Form at 2. The examiner found further

support in a PCMAG.com reference that defined a runtime engine as “[s]oftware that certain

applications depend on to run in the computer. The runtime engine must be run . . . to execute.”

Id. at 8.12 In commenting on the examiner’s findings, the patentee submitted that it did “not

disagree with the Examiner’s indication that . . . the Eisner Affidavit is supported by the

PCMAC.com (sic) reference.” Docket No. 131-36, Patentee’s Comments on Reasons for

Patentability and/or Confirmation at 1–2.

 In an earlier filing, the patentee distinguished Henninger for “fail[ing] to teach ‘utilizing

a runtime engine’” that is “separated and abstracted from the software application.” Docket No.

131-21, Patentee’s Supplemental Response at 3–5. In support of that assertion, the patentee

pointed to an agreed-upon construction of “runtime engine” in prior litigation as “a dedicated

software routine, which uses the map in its processing, that accesses the relational database

during the time period during which the object oriented application is running.” Id. at 5.

The Microsoft I court considered the evidence described above in evaluating SAP’s

proposed definition of “runtime engine,” which is identical to the one advanced by

MicroStrategy here. See Microsoft I, 2012 WL 3682915 at *9. Based on the prosecution history,

the court found that the proper construction was the one proposed by SAP: “[s]oftware that (i)

the object oriented software application depends on to run, (ii) must be running to execute the

12 There are apparently words missing from the PCMAG.com reference provided to the Court. Docket No.

131-35 at 8.

33

object oriented software application, (iii) uses the map in its processing, and (iv) is not part of the

object oriented software application.” Id. 13

The prosecution history cited by MicroStrategy, which mirrors and expands upon the

prosecution history cited by the court in Microsoft I, strongly suggests that this Court should

adopt the limitations imposed by MicroStrategy’s definition. DataTern contends that

MicroStrategy and the Microsoft I court misread the prosecution history and that its definition

confuses a “runtime engine” with a “runtime environment.”14 However, the limitations imposed

on the term come directly from the file history and were used to distinguish prior art.

Accordingly, this court will follow the conclusion of the Microsoft I court. The term

“runtime engine” will be construed to mean “software that (i) the object oriented software

application depends on to run, (ii) must be running to execute the object oriented software

application, (iii) uses the map in its processing, and (iv) is not part of the object oriented software

application.”

G. A Map of at Least Some Relationships Between Schema in the Database and
the Selected Object Model

 Plaintiff’s Proposed

Construction
Defendant’s Proposed
Construction

13 The Microsoft I court concluded as follows: “[The] Eisner affidavit stated that the runtime

engine was not the ‘runtime environment’ referred to in the prior art reference. Eisner also stated that a
runtime engine ‘connotes a service that delivers specific functionality that will enable an application to
run,’ and that it ‘operates during runtime execution of the object-oriented application.’ The examiner
agreed with the distinction Eisner put forward and provided a definition of ‘runtime-engine” from
PCMAG.COM.’ . . . This definition states that runtime engine is ‘[s]oftware that certain applications
depend on to run in the computer’ and that ‘must be running . . . to execute’ the software application. The
Examiner made this definition part of the file wrapper and therefore intrinsic evidence.” Microsoft I, 2012
WL 3682915 at *9.

14 DataTern contends that the limitations imposed by MicroStrategy’s definition are “redundant and
confusing.” Pl. Claim Construction Brief at 21. For example, DataTern complains that MicroStrategy’s proposed
construction creates a new issue as to how one of skill in the art would determine that something is ‘not part of’ the
object oriented application. However, in Microsoft I, DataTern used almost this precise language in its proposed
construction. It proposed, “[s]oftware, which is not directly part of the object-oriented application, that the object
oriented application uses to access the relational database.” Microsoft I, 2012 WL 3682915 at *9. DataTern has
reprised the latter half of its previously favored definition before this Court, while abandoning the former half and
complaining that the language it used is confusing.

34

“A map of at least
some relationships
between schema in
the database and
the selected object
model”

no construction needed a declarative structure that
describes at least one association
between the objects and attributes
of an object model and/or tables,
rows, and/or columns in the
database classes

MicroStrategy proposes to construe the phrase “a map of at least some relationships

between schema in the database and the selected object model” consistently with limitations the

patentee used to distinguish prior art. DataTern contends that no additional construction is

needed. The parties dispute whether the term “map” in the context of the ’502 patent means a

“declarative structure.” The parties further dispute whether the phrase “between schema in the

database and the selected object model” requires further explanation.

1. “Map”

MicroStrategy contends that the only definition consistent with the prosecution history is

one that specifies that a “map” is a “declarative structure.” DataTern contends that the term

“map” needs no further construction and that “MicroStrategy’s construction only makes the

claim less clear and less precise.” Pl. Rebuttal Brief at 23.

The prosecution history supports the language that MicroStrategy now advances. During

reexamination, the patentee distinguished a prior art reference (Bapat) for failing “to teach the

step of ‘generating a map.’” Docket No. 131-18, Patentee Response and Proposed Amendment

at 19. The examiner stated that although Bapat had provided a “mechanism for mapping,” the

patentee distinguished that mechanism, stating that “Bapat provides no discussion or teaching for

actually generating a declarative structure that describes as least one association between the

objects and attributes in the object model and/or tables, rows, and/or columns in the database,

and only generally refers to mapping object instances to tables.” Id. Similarly, the patentee

distinguished Keller by stating that “Keller is contrary to the claimed invention, which generates

35

a map, creating a declarative structure that describes at least one association between the object

and attributes in the object model and/or tables, rows, and/or columns in the database. Keller

fails to teach this step.” Id. at 17.

Despite this history, DataTern suggests that the phrase “declarative structure” does not

provide any additional clarity to the term “map.” According to DataTern, even a sentence

constitutes a “declarative structure” because it both declares something and uses grammar as its

structure. However, that assertion appears to be belied by the prosecution history. Bapat also

disclosed a mechanism for mapping, but the patentee successfully distinguished the mapping in

Bapat from the mapping of the ’502 patent in part by stating that the ’502 patent taught a method

for generating a “declarative structure.” In addition, the McGoveran declaration suggests—and

DataTern does not direct the Court to any contrary evidence—that in the context of the patent a

declarative structure “must be realized as some form of metadata or data independent of program

code and not merely embedded in or realized as a procedural program.” McGoveran Rebuttal

Dec. ¶ 14.

The prosecution history is clear and consistent, and controls the resolution of this dispute.

“Claims may not be construed one way in order to obtain their allowance and in a different way

against accused infringers.” Southwall Techs., Inc. v. Cardinal IG Co., 54 F.3d 1570, 1576 (Fed.

Cir. 1995). DataTern is bound by the statements the patentee made to distinguish prior art.

Accordingly, in the context of the disputed phrase, a “map” is a “declarative structure.”

2. “Between Schema in the Database and the Selected Object Model”

DataTern contends that the phrase “between schema in the database and the selected

object model” requires no additional construction. In its initial briefs, MicroStrategy proposed a

construction that substantially mirrored the language used by the patentee during reexamination:

36

“between the objects and attributes of an object model and/or tables, rows, and/or columns in the

database.”15 In its responsive claim construction brief, MicroStrategy states that it would also be

amenable to a simpler construction that is substantially the same as the original construction, in

which the phrase is construed as “between the attributes of classes of an object model and

columns in the database schema.” Def. Responsive Brief at 15. As MicroStrategy notes, the

parties’ difference on this point appears to be one “of form rather than substance.” Id. at 14.

MicroStrategy’s revised proposed definition is consistent with the patent in some

respects, but it appears to be overly restrictive. The patent states that “[m]apping the object

model to the relational database schema includes mapping a class attribute to a table column,

mapping a class attribute to a 1-1, 1-N, or N-N relationship, and mapping class inheritance to

rows within a table or across tables.” 502 patent col. 2 ll. 44–48. By comparison,

MicroStrategy’s revised definition restricts this mapping to “between the attributes of classes of

an object model and columns in the database schema,” which does not encompass the mapping

of class inheritance to rows within a table.

Its original definition, “between the objects and attributes of an object model and/or

tables, rows, and/or columns in the database,” does not so restrict the application of the term.

That phrase, although not a model of clear prose, is consistent with the prosecution history as

detailed in the previous section. Therefore, the Court will adopt the phrase advanced by the

patentee during reexamination.

15 MicroStrategy’s proposed language differs from the patentee’s assertion during reexamination only with

respect to a preposition. The patentee used the phrase, “between the object and attributes in the object model and/or
tables, rows, and/or columns in the database,” while MicroStrategy uses the word “of” in place of “in.” Docket No.
131-18 at 18, 19.

37

3. Conclusion

For the foregoing reasons, the term “a map of at least some relationships between schema

in the database and the selected object model” will be construed to mean “a declarative structure

that describes at least one association between the objects and attributes of an object model

and/or tables, rows, and/or columns in the database.”

IV. Conclusion

For the foregoing reasons, the disputed claim terms are construed as follows:

1. the term “object oriented software application” means “software application

organized as a collection of classes;”

2. the term “class” means “a definition that specifies attributes and behavior of

objects, and from which objects can be instantiated;”

3. the term “object” means “an entity comprising attribute values (i.e., data) and

methods (i.e., functionality) that can act on said attribute values;”

4. the term “object model” means “a template with a predetermined standardized

structure both relating to an object-oriented software application and including

object classes;”

5. the term “interface object” means “an object, which is not part of or generated by

the object oriented software application, that provides a connection between the

object oriented software application and the runtime engine, and that accesses

data from the database;”

6. the term “runtime engine” means “software that (i) the object oriented software

application depends on to run, (ii) must be running to execute the object oriented

software application, (iii) uses the map in its processing, and (iv) is not part of the

38

object oriented software application”; and

7. the term “a map of at least some relationships between schema in the database and

the selected object model” means “a declarative structure that describes at least

one association between the objects and attributes of an object model and/or

tables, rows, and/or columns in the database.”

So Ordered.

 /s/ F. Dennis Saylor
 F. Dennis Saylor IV
Dated: February 7, 2017 United States District Judge

