

UNITED STATES DISTRICT COURT

DISTRICT OF MASSACHUSETTS

CIVIL ACTION NO. 17-10274-RGS

TYPEMOCK, LTD.

v.

TELERIK, INC.

MEMORANDUM AND ORDER ON
CLAIM CONSTRUCTION

August 31, 2018

STEARNS, D.J .

 Plaintiff Typemock, Ltd., accuses defendant Telerik, Inc., of infringing

United States Patents Nos. 8,352,923 (the ’923 patent), and 9,251,041 (the

’041 patent). Before the court are the parties’ br iefs on claim construction.

The court received technical tutorials and heard argument, pursuant to

Markm an v. W estv iew Instrum ents, Inc., 517 U.S. 370 (1996), on August

30, 2018.

THE ASSERTED PATENTS

 Both the ’923 and the ’041 patents are entitled “method and system for

isolating software components,” and list Eli Lopian as the sole inventor.1 The

1 Mr. Lopian gave a technical tutorial at the August 30, 2018 Markm an

hearing.

Case 1:17-cv-10274-RGS Document 92 Filed 08/31/18 Page 1 of 31

Typemock, Ltd. v. Telerik Inc. Doc. 92

Dockets.Justia.com

https://dockets.justia.com/docket/massachusetts/madce/1:2017cv10274/186931/
https://docs.justia.com/cases/federal/district-courts/massachusetts/madce/1:2017cv10274/186931/92/
https://dockets.justia.com/

2

’923 patent was issued on January 8, 2013. The ’041 patent, issued on

February 2, 2016, is a continuation of the ’923 patent, and shares the same

specification.

 The asserted patents are directed to improvements in the field of

software validation.

Validating software is a complex problem that grows
exponentially as the complexity of the software grows. Even a
small mistake in the software can cause a large financial cost. In
order to cut down on these costs, software companies test each
software component as they are developed or during interim
stages of development.

’923 patent, col. 1, ll. 32-37. At the time of the invention of the asserted

patents, methods existed to validate software by isolating and testing

individual software components.

In order to isolate the components, there is a need to design the
program that utilizes the software components in such a way that
the components can be changed. This is part of a pattern called
Inversion of Control or Dependency Injection. For example
when validating that software behaves correctly on the 29th of
February, there is a need to change the computer system’s date
before running the test. This is not always possible (due to
security means) or wanted (it may disturb other applications).
The method used today to verify this is by wrapping the system
call to get the current date with a new class. This class may have
the ability to return a fake date when required. This may allow
injecting the fake date into the code being tested for, and enable
validating the code under the required conditions. There are
many cases where isolating the code base and injecting fake data
are required.

Id. col. 1, ll. 52-63.

Case 1:17-cv-10274-RGS Document 92 Filed 08/31/18 Page 2 of 31

3

In more complex cases, validation may require “faking a complete set

of API’s [(application programming interface)] (for example: faking sending

an email).” Id. col. 2, l. 6. To do so,

there is a need to build a framework that enables isolating the
complete API set. This means that the code may now have to
support creating and calling two different components. One way
to do this is to use the Abstract Factory Pattern. Using this
pattern, the production code should never create the object (that
needs to be faked for tests). Instead of creating the object, the
Factory is asked to create the object, and the code calls the
methods of the object that the factory created. The factory can
then choose what object to create: a real one or a fake one. This
requires using an interface that both clients (real and fake) need
to implement. It also requires creating a complex mechanism
that may allow the factory to choose what object to create and
how to do so. This is done mainly through configuration files
although it can be done in code too.

Id. col. 2, ll. 7-21.

 To utilize these methods for validation, code must be designed to be

testable. Legacy code may not be designed to permit the insertion of fake

objects, and rewriting legacy code may be too costly or time-consuming.

Designing code to be testable may also add constraints to the code that are

not compatible with production code. “For example, the code may be

required to implement hooks that enable changing the actual object to a fake

one. This hook can lead to misuse and hard-to-debug code, as it is intended

for testing but it is in the production code.” Id. col. 2, ll. 46-49.

Case 1:17-cv-10274-RGS Document 92 Filed 08/31/18 Page 3 of 31

4

 The asserted patents disclose systems and methods of software

validation that, through the use of a mock framework, do not require the

design for testability.

A mock framework 110 may dynamically create a fake object that
implements the same interface of the real object (the same
interface that is created using the Abstract Factory), and has the
ability to define the behavior of the object and to validate the
arguments passed to the object.

Id. col. 2, ll. 30-35.

[C]ertain embodiments of the invention add code that is inserted
or weaved 107 into the production code base 106 (FIG. 1) that is
being tested. The added code may enable hooking fake or mock
objects into the production code by calling the [m]ock framework
110. This framework can decide to return a fake object. The
framework may also be able to validate and change the
arguments passed into the method.

Id. col. 2, ll. 58-64.

 Claim 1 of the ’923 patent is a representative system claim.

1. A software testing system operative to test a software
application comprising a plurality of software components, at
least some of which are coupled in a utilizing-utilized
relationship the system comprising:

a processor and memory;

computational apparatus for at least partially isolating,

from within the software application, at least one
coupled software component which performs a given
function by introducing, prior to execution, code
elements for runtime access of application points
associated with the at least one coupled software
component, wherein at least one code element

Case 1:17-cv-10274-RGS Document 92 Filed 08/31/18 Page 4 of 31

5

associated with the at least one coupled software
component provides access control between utilizing-
utilized software components;

computational apparatus for testing the software

application by imposing a fake behavior on the at least
one coupled software component, wherein imposing
includes removing or replacing an expected behavior of
the at least one coupled software component during
runtime; and

wherein the at least one code element is operative to query

said computational apparatus for testing.

 Claim 9 of the ’041 patent is a representative method claim.

9. A software testing method for testing a software
application comprising a plurality of software components, at
least some of which are coupled, said method comprising:

at least partially isolating from within the software
application, by use of a computational apparatus
running a testing application, during runtime, at least
one coupled software component which performs a
given function by introducing into the software
application, prior to execution of the software
application, code elements for runtime access of
application points associated with the at least one
coupled software component, such that at least one of
the introduced code elements provides the testing
application access between utilizing-utilized software
components during runtime; and

testing, by use of the computational apparatus running the

testing application, the software application by
imposing a fake behavior on the at least one coupled
software component, wherein imposing behavior
includes removing or replacing an expected behavior of
the at least one coupled software component, during

Case 1:17-cv-10274-RGS Document 92 Filed 08/31/18 Page 5 of 31

6

runtime, by use of the access provided by the at least
one of the introduced code elements.

 Typemock alleges infringement of claims 4, 9, 11, 14, 24-26, 28, 34, 39,

41, 44, and 48 of the ’923 patent, and claims 4 and 16 of the ’041 patent.

Having considered the submitted record, the court adopts the parties’

agreement (as reflected by the stipulation filed on August 29, 2018 (Dkt #

90), and statements made during the Markm an hearing), that the terms

“coupled,” “utilizing-utilized relationship/ software component,” “an

associated behavior inducing message,” “expected behavior,” “software

component,” “impose[ing] a fake behavior,” “during runtime,”2 and “at least

one expectation is generating by recording an actual call” are to be given their

plain and ordinary meaning. For reasons that will be stated, the court rejects

the parties’ proposed construction of “said set.” In addition, the following

claim terms remain in dispute:

• “computational apparatus . . .”/ “apparatus . . .” (claims 1, 30, 32, 48 of
the ’923 patent, claim 9 of the ’041 patent)
 • “first processor . . .”/ “second processor . . .” (claim 1 of the ’041 patent)
 • “code elements” (claims 1, 30 of the ’923 patent, claim 9 of the ’041
patent)

 • “access controlling code external of the software application” (claims
9, 39 of the ’923 patent)

2 Specifically, the plain and ordinary meaning acceptable to both

parties is “during the time period the software application is running.”

Case 1:17-cv-10274-RGS Document 92 Filed 08/31/18 Page 6 of 31

7

 • “at least partially isolate/ ing” (claims 1, 18, 30 of the ’923 patent, claims
1, 9 of the ’041 patent)

• “application points” (claims 1, 30 of the ’923 patent, claims 1, 9 of the
’041 patent)

• “introducing, prior to execution” / introducing into the software
application, prior to execution of the software application” (claims 1,
30 of the ’923 patent, claims 1, 9 of the ’041 patent)

• “without dependency injection” (claim 30 of the ’923 patent)

DISCUSSION

 Claim construction is a matter of law. See Markm an, 517 U.S. at

388-389. Claim terms are generally given the ordinary and customary

meaning that would be ascribed by a person of ordinary skill in the art in

question at the time of the invention.3 Phillips v. AW H Corp., 415 F.3d

3 The parties largely agree on the level of ordinary skill in the art.

Telerik’s expert Professor Alessandro Orso opines that a person of ordinary
skill in the art is one who possesses “a bachelor’s degree in computer science,
computer engineering, or the equivalent, and 1-3 years of industry
experience, and/ or an advanced degree in computer science or a related
field.” Orso Decl. (Dkt # 61-3) ¶ 12. Typemock’s expert Professor Benjamin
Goldberg suggests, and this court agrees, that “because practicing the
claimed invention involves writing code that interacts with virtual machines
(such as the .NET common language runtime), profilers, and/ or debuggers,
to change the behavior of an executing program, one of skill would have
experience in ‘systems-level’ programming – that is going beneath the usual
interaction with a piece of software to alter how the software itself is executed
by modifying underlying structures in the software system.” Goldberg Decl.
(Dkt # 74-1) ¶ 14.

Case 1:17-cv-10274-RGS Document 92 Filed 08/31/18 Page 7 of 31

8

1303, 1312-1313 (Fed. Cir. 2005) (en banc) (citations omitted). In

determin ing how a person of ordinary skill in the art would have

understood the claim terms, the court looks to the specification of the

patent, its prosecution history, and where appropriate, extr insic evidence

such as dictionaries, treatises, or expert testimony. Id. at 1315-1317.

Ultimately, “[t]he construction that stays true to the claim language and

most naturally aligns with the patent’s description of the invention will be,

in the end, the correct construction.” Id. at 1316 (citation omitted).

“apparatus” / “processor” / “code” term s

 Teler ik contends that the “apparatus,” “processor,” and “code” terms

constitute means-plus-functions language subject to analysis under 35

U.S.C. § 112, para. 6. Because in Teler ik’s view the specification does not

describe sufficient structure to perform the recited functions, it follows

that the terms are indefin ite and the related claims invalid. Typemock, for

its part, maintains that the terms recite structure, or in the alternative if

the terms are analyzed under section 112, para. 6, the specification

discloses structure sufficient to perform the disclosed functions.

“[A] patent is invalid for indefiniteness if its claims, read in light of the

specification delineating the patent, and the prosecution history, fail to

inform, with reasonable certainty, those skilled in the art about the scope of

Case 1:17-cv-10274-RGS Document 92 Filed 08/31/18 Page 8 of 31

9

the invention.” Nautilus, Inc. v. Biosig Instrum ents, Inc., 134 S. Ct. 2120,

2124 (2014). Like other invalidity defenses, indefiniteness must be proven

by clear and convincing evidence. Biosig Instrum ents, Inc. v. Nautilus, Inc.,

783 F.3d 1374, 1377 (Fed. Cir. 2015).

Under 35 U.S.C. § 112, para. 6,

[a]n element in a claim for a combination may be expressed as a
means or step for performing a specified function without the
recital of structure, material, or acts in support thereof, and such
claim shall be construed to cover the corresponding structure,
material, or acts described in the specification and equivalents
thereof.

Section 112 permits purely functional claiming if the scope of the claim

language at issue is “restrict[ed] . . . to the structure disclosed in the

specification and equivalents thereof.” Greenberg v. Ethicon Endo-

Surgery , Inc., 91 F.3d 1580, 1582 (Fed. Cir. 1996). In identifying means-

plus-function terms, the absence of the signal word “means” creates a

rebuttable presumption that section 112, para. 6 does not apply. Advanced

Ground Info. Sys., Inc. v. Life360, Inc., 830 F.3d 1341, 1347 (Fed. Cir.

2016), citing W illiam son v. Citrix Online, LLC, 792 F.3d 1339, 1348 (Fed.

Cir. 2015).

The standard is whether the words of the claim are understood
by persons of ordinary skill in the art to have a sufficiently
definite meaning as the name for structure. Greenberg, 91 F.3d
at 1583. When a claim term lacks the word “means,” the
presumption can be overcome and § 112, para. 6 will apply if the

Case 1:17-cv-10274-RGS Document 92 Filed 08/31/18 Page 9 of 31

10

challenger demonstrates that the claim term fails to “recite
sufficiently definite structure” or else recites “function without
reciting sufficient structure for performing that function.” W atts
[v. SL System s, Inc.] , 232 F.3d [877,] 880 [(Fed. Cir. 2000)].

W illiam son, 792 F.3d at 1349 (Fed. Cir. 2015).4

 Although the disputed claims do not utilize the signal word “means,”

Telerik argues that “apparatus,” “processor,” and “code” are nonce words

that effectively serve the same place-holding purpose.

Generic terms such as “mechanism,” “ element,” “ device,” and
other nonce words that reflect nothing more than verbal
constructs may be used in a claim in a manner that is tantamount
to using the word “means” because they “typically do not connote
sufficiently definite structure” and therefore may invoke § 112,
para. 6.

Id. at 1350 (citation omitted). The determination of whether a limitation

triggers section 112, para. 6 “must be made under the traditional claim

construction principles, on an element-by-element basis, and in light of

evidence intrinsic and extrinsic to the asserted patents.” Zeroclick, LLC v.

Apple Inc., 891 F.3d 1003, 1007 (Fed. Cir. 2018). This entails an examination

of each disputed term.

4 In William son, the Federal Circuit overruled a line of cases

characterizing as “strong” the presumption that a limitation without the
phrase “means” does not fall under section 112. Id.

Case 1:17-cv-10274-RGS Document 92 Filed 08/31/18 Page 10 of 31

11

• “com putational apparatus . . .” / “apparatus . . .”

Telerik argues, and Typemock does not dispute, that the word

“apparatus,” as used in the asserted patents, is consistent with its common

understanding as “a set of materials or equipment designed for a particular

use.” W ebster’s Tenth Collegiate Dictionary (2000); see also W ebster’s II

New College Dictionary (2001) (apparatus is “the totality of means by which

a designated function is performed or a specific task executed”). As

described in the specification, the term “apparatus” designates a computer

implementation of the invention, and does not refer to a particular structure.

See ’923 patent, col. 3, ll. 19-32 (“The apparatus of the present invention may

include . . . machine readable memory containing or otherwise storing a

program of instructions which, when executed by the machine, implements

some or all of the apparatus, methods, features and functionalities of the

invention shown and described herein[,] . . . a program as above which may

be written in any conventional programming language, and optionally a

machine for executing the program such as but not limited to a general

purpose computer which may optionally be configured or activated in

accordance with the teachings of the present invention.”) . As such,

Case 1:17-cv-10274-RGS Document 92 Filed 08/31/18 Page 11 of 31

12

“apparatus” and “computational apparatus”5 are “non-structural generic

placeholder[s].” See Manual for Patent Examining Procedures (MPEP)

§ 2181; see also Orso Decl. ¶¶ 14, 19.

The inquiry, however, does not end here. A claim element that uses a

generic term may still avoid a section 112, para. 6 construction “if , in addition

to the [generic] word [] and the functional language, the claim recites

sufficient structure for performing the described functions in their entirety.”

TriMed, Inc. v. Stryker Corp., 514 F.3d 1256, 1259 (Fed. Cir. 2008); see also

Sage Prods., Inc. v. Devon Indus., Inc., 126 F.3d 1420, 1427-1428 (Fed. Cir.

1997) (“[W] here a claim recites a function, but then goes on to elaborate

sufficient structure, material, or acts within the claim itself to perform

entirely the recited function, the claim is not in means-plus-function

format.”). “Sufficient structure exists when the claim language specifies the

exact structure that performs the functions in question without need to

resort to other portions of the specification or extrinsic evidence for an

adequate understanding of the structure.” TriMed, 514 F.3d at 1259-1260.

5 The mere recitation of “computer” in addition to “apparatus” does not

provide sufficient structure. See Aristocrat Techs. Australia Pty Ltd. v. Int’l
Gam e Tech., 521 F.3d 1328, 1333 (Fed. Cir. 2008) (“In cases involving a
computer-implemented invention in which the inventor has invoked means-
plus-function claiming, this court has consistently required that the
structure disclosed in the specification be more than simply a general
purpose computer or microprocessor.”).

Case 1:17-cv-10274-RGS Document 92 Filed 08/31/18 Page 12 of 31

13

Where, as here, the patent claims a computer-implemented invention, “the

disclosed structure is not the general purpose computer, but rather the

special purpose computer programmed to perform the disclosed

algorithm.” W MS Gam ing, Inc. v. Int’l Gam e Tech., 184 F.3d 1339, 1349

(Fed. Cir. 1999).

 With the foregoing in mind, Typemock contends that the claim

language describing the “computational apparatus” and “apparatus” terms

supplies the necessary structure by disclosing an algorithm to perform the

stated function. In claim 1 of the ’923 patent, for example, each

“computational apparatus” term is followed by a for phrase and then by a by

phrase.

• computational apparatus for at least partially isolating, from w ithin
the softw are application, at least one coupled softw are com ponent
w hich perform s a given function by introducing, prior to execution,
code elements for runtime access of application points associated with
the at least one coupled software component, wherein at least one code
element associated with the at least one coupled software component
provides access control between utilizing-utilized software
components

 • computational apparatus for testing the softw are application by
imposing a fake behavior on the at least one coupled software
component, wherein imposing includes removing or replacing an
expected behavior of the at least one coupled software component
during runtime

According to Typemock, the for phrase states the function performed by the

element, whereas the by phrase sets out the algorithm that performs the

Case 1:17-cv-10274-RGS Document 92 Filed 08/31/18 Page 13 of 31

14

function. See Goldberg Decl. ¶¶ 15-16; 19-20. Telerik’s expert, on the other

hand, includes the by phrase (or a portion thereof) as part of the function

performed by the claim elements. See Orso Decl. at 4 n.2.

Typemock has the better of the battle of the prepositions. While “for”

indicates a purpose or goal, see W ebster’s Tenth Collegiate Dictionary, “by”

signals agency or instrumentality, id. The specification also supports

Typemock’s reading of the claim language. With respect to the

“computational apparatus for at least partially isolating” claim element,

figure 1 of the patent “is a simplified functional block diagram of a softw are

isolation system” ’923 patent, col. 4, ll.9-10 (emphasis added). The

isolation function of the system may be accomplished by adding “hooking

code” to the “production code” to be tested.

The weaver 104 is responsible for inserting the added hooking
code into the production code base 106. In each method of the
production code the weaver 104 may insert a small piece of code
107 that calls the Mock framework 110 which then decides
whether to call the original code or to fake the call .

Id. col. 4, ll. 15-20. The specification further discloses “[a]nother method to

isolate code and to insert fake objects [] by changing the metadata tables.”

Id. col. 5, ll. 33-34 (emphasis added).

Each call to a method is defined as call <entry in method table>.
Each entry in the method table has the name of the method its
type (which is actually an <entry in the type table>) and other
information. Each entry in the type table has the name of the

Case 1:17-cv-10274-RGS Document 92 Filed 08/31/18 Page 14 of 31

15

type and the assembly that it is defined in (which is an <entry in
the assembly table>). By switching these entries, for example the
assembly of the <type> and its <name> all calls to a method can
be redirected to a mocked object.

Id. col. 5, ll. 34-42.

 Likewise, for the “computational apparatus for testing” claim element,

the specification explains that testing is accomplished through the “[t]he test

code 108 call[ing] the Mock framework 110 in order to change the behavior

of the production code. Here the test can setup what to fake, how to validate

the arguments that are passed, what to return instead of the original code

and when to fail the test.” Id. col. 4, ll. 25-29.

In response, Telerik first argues that the structure of the

“computational apparatus” terms cannot be a computer programmed to

implement the specified algorithm because the claims already include a

“processor.” A “processor” in the computer arts is commonly understood to

refer to the component of a computer that executes software instructions and

performs computations. See Egenera, Inc. v. Cisco Sys., Inc., 2018 WL

717342, at *3 n.4 (D. Mass. Feb. 5, 2018) (consulting technical dictionary

definitions of “processor”); see also ’923 patent, col. 2, l. 65 – col. 3, l. 14

(describing processor consistent with its commonly understood meaning).

There is no conflict in, and indeed it is typical, for a computer system to be

equipped with a processor and software for performing specific tasks.

Case 1:17-cv-10274-RGS Document 92 Filed 08/31/18 Page 15 of 31

16

In addition, what Typemock identifies as an algorithm, Telerik

characterizes as a “merely functional description that fails to impart any

structure.” Telerik Second Reply (Dkt # 75) at 4 (emphasis in original). An

algorithm in the computer arts is a broad concept used “to identify a step-by-

step procedure for accomplishing a given result,” Typhoon Touch Techs., Inc.

v. Dell, Inc., 659 F.3d 1376, 1385 (Fed. Cir. 2011), and may be expressed

“in any understandable terms including as a mathematical
formula, in prose, or as a flow chart, or in any other manner that
provides sufficient structure.” Finisar [Corp. v. DirecTV Grp.] ,
523 F.3d [1323,] 1340 [(Fed. Cir. 2008)]. In Finisar the court
explained that the patent need only disclose sufficient structure
for a person of skill in the field to provide an operative software
program for the specified function. Id. “The amount of detail
required to be included in claims depends on the particular
invention and the prior art.” Shatterproof Glass Corp. v. Libbey-
Ow ens Ford Co., 758 F.2d 613, 624 (Fed. Cir. 1985).

Id. at 1385. “A description of the function in words may ‘disclose, at least to

the satisfaction of one of ordinary skill in the art, enough of an algorithm to

provide the necessary structure under § 112, ¶ 6.’” Id. at 1386, quoting

Finisar, 523 F.3d at 1340.

Absent evidence to the contrary,6 the court credits the opinion of

Typemock’s expert, Dr. Goldberg, that the claim language sufficiently

6 Because Typemock in its opening brief did not discuss the terms that

Telerik contends are indefinite, the court allowed Telerik’s request to submit
a second reply brief responding to Typemock’s arguments as to those terms.

Case 1:17-cv-10274-RGS Document 92 Filed 08/31/18 Page 16 of 31

17

informs a person of ordinary skill in the art of the algorithm to perform the

stated functions.

One of skill reading this [“ computational apparatus for at least
partially isolating . . .”] limitation would understand that,
although the function of the claimed computational apparatus is
at least partially isolating, from within the software application,
at least one coupled software component which performs a given
function, the structure supporting that function is explicitly
specified in the claim element This structure informs one of
skill of the algorithm for performing the isolating function on the
at least one software component, namely before the program
starts running, introduce code elements at application points for
the software component (which is coupled as part of a utilizing-
utilized pair of software components), such that at least one of
the code elements provides access control between the software
component and its partner in the utilizing-utilized pair. The
scope of this claim element is clear to a POSITA [(person of
ordinary skill in the art)].

Goldberg Decl. ¶¶ 15-16. Likewise,

one of skill can see that the [“computational apparatus for testing
. . .”] limitation provides both the function of the claimed
computational apparatus as well as the structure for the
apparatus. That is, the function testing the software application
is explicitly supported by the algorithmic structure, by imposing
a fake behavior on the at least one coupled software component,
wherein imposing includes removing or replacing an expected
behavior of the at least one coupled software component during
runtime. Although there are, of course, many ways to perform
the function of testing the software application, this claim
element recites only a particular way of doing so and in a manner
whose scope is clear to a POSITA.

See Dkt # 72. Telerik did not offer any additional opinions from Dr. Orso
with its second reply.

Case 1:17-cv-10274-RGS Document 92 Filed 08/31/18 Page 17 of 31

18

Id. ¶ 19. As Typemock’s counsel noted at the Markm an hearing, the fact that

the identical language is used to disclose the steps of a software testing

method in claim 50 of the ’923 patent also bolsters the conclusion that the

language sets out a cognizable algorithm. Because the claim language

discloses the algorithm to perform the stated function, the court finds that

the “computational apparatus” and “apparatus”7 terms are not subject to

analysis under 35 U.S.C. § 112, para. 6, and are therefore not indefinite.

• “first processor . . .” / “ second processor(s) . . .”

The terms “first processor” and “second processor(s)” appear in claim

1 of the ’041 patent: “a first processor functionally associated with a digital

memory, which digital memory stores processor executable software testing

code adopted to cause one or more second processors to: at least partially

isolate . . . and test”8 As noted supra, a “processor” is a term understood

7 The “computational apparatus” terms in claim 30 of the ’923 patent

and claim 9 of the ’041 patent may be similarly analyzed. The “apparatus”
terms of claims 32 and 48 of the ’923 patent depend on the “computational
apparatus for at least partially isolating” term of claim 30, and are directed
to the two implementations for introducing runtime access control code
disclosed in the specification and discussed, supra, by “adding access
controlling code” (claim 32) or by “modifying said meta-data to access
control code” (claim 48).

8 The parties agree that the first and second processors and separate

and distinct from each other. Joint Claim Construction Statement (Dkt # 76)
at 21-22.

Case 1:17-cv-10274-RGS Document 92 Filed 08/31/18 Page 18 of 31

19

in the art to denote a particular type of computer component, and therefore

supplies the necessary structure.9 That each of the “processor” terms is

further defined by its functionality does not alter this conclusion. See

Personalized Media Com m c’ns, LLC v. Int’l Trade Com m’n , 161 F.3d 696,

705 (Fed. Cir. 1998) (“[N] either the fact that a ‘detector’ is defined in terms of

its function, nor the fact that the term ‘detector’ does not connote a precise

physical structure in the minds of those of skill in the art detracts from the

definiteness of structure.”).

• “code elem ents for runtim e access”

Telerik contends that because the word “element” is commonly listed

among the terms that “typically do not connote sufficiently definite

structure,” Mass. Inst. of Tech. v. Abacus Softw are (MIT), 462 F.3d 1344,

1354 (Fed. Cir. 2006), the term “code elements” requires means-plus-

function treatment. In MIT, the court construed the term “colorant selection

mechanism” as a means-plus-function limitation because the term

“mechanism” was used as a synonym for “means,” that is, standing for “the

agency or means by which an effect is produced or a purpose is

accomplished.” Id., quoting The Random House W ebster’s Unabridged

9 Although Telerik argues that “processor” is a nonce word, Telerik’s

expert, Dr. Orso, does not opine that “processor” is generic. See Orso Decl.
¶¶ 16-17.

Case 1:17-cv-10274-RGS Document 92 Filed 08/31/18 Page 19 of 31

20

Dictionary (2d. ed. 1998). In so holding, the court noted that “the term

‘colorant selection,’ which modifies ‘mechanism’ here, is not defined in the

specification and has no dictionary definition, and there is no suggestion that

it has a generally understood meaning in the art.” Id.

While “colorant selection mechanism” as a matter of plain English

signifies a m echanism that perform s the function of selecting a colorant, in

contrast, “code elements,” most naturally parses as elem ents of code. Code

is not the function of the claimed elem ents. Rather, code is what constitutes

the elem ents. This conclusion is further bolstered by the fact that the claim

language specifies that the function of the “code elements” is “for runtime

access.”

In the computer arts, the term “code” has a definite structure that is

understandable to a person of ordinary skill in the art.

The term “computer code” suggests some kind of structure as
evidenced by the dictionary definitions provided by plaintiff. For
example, the Microsoft Press Com puter Dictionary defines
“code” as a

generic term for program instructions, used in two general
senses. The first sense refers to human-readable source
code, which is the instructions written by the programmer
in a programming language. The second refers to
executable machine code, which is the instructions of a
program that were converted from source code to
instructions that the computer can understand.

. . .

Case 1:17-cv-10274-RGS Document 92 Filed 08/31/18 Page 20 of 31

21

Importantly, numerous courts have found that the term “code”
connotes sufficient structure. See, e.g., Collaborative
Agreem ents, LLC v. Adobe Sys. Inc., 2015 WL 7753293, at *6
(N.D. Cal. Dec. 2, 2015) (“In this case, ‘code segment’ has some
structural meaning, as supported by the dictionary definition
tendered by Plaintiff; code segment is not a nonce
word.”); Sm artflash LLC v. Apple Inc., 2015 WL 4208754, at *3
(E.D. Tex. July 7, 2015) (“[T]he word ‘code’ refers to a particular
type of structure”); Affym etrix, Inc. v. Hyseq, Inc., 132 F.
Supp. 2d 1212, 1232 (N.D. Cal. 2001) (“‘[C]omputer code’ is not
a generic term, but rather recites structure that is understood by
those of skill in the art to be a type of device for accomplishing
the stated functions.”).

Am docs (Israel) Ltd. v. Openet Telecom , Inc., 2018 WL 1699429, at *16 (E.D.

Va. Apr. 6, 2018). Because “code” provides sufficient structure to the term

“code elements for access control,” the term is not a means-plus-function

term.10

“at least partially isolating”

 Telerik contends that this term is indefinite because it employs two

words of degree – “at least” and “partially,” and that the specification

provides no “objective boundaries” for defining these degree words. Interval

Licensing LLC v. AOL, Inc., 766 F.3d 1364, 1371 (Fed. Cir. 2014); see Orso

Decl. ¶ 26.

When a “word of degree” is used, the court must determine
whether the patent provides “some standard for measuring that

10 For the same reason, “access control code” is also not a means-plus-

function term.

Case 1:17-cv-10274-RGS Document 92 Filed 08/31/18 Page 21 of 31

22

degree.” Enzo Biochem [Inc. v. Applera Corp.], 599 F.3d [1325,]
1332 [(Fed. Cir. 2010)]; Seattle Box Co., Inc. v. Indus. Crating &
Packing, Inc., 731 F.2d 818, 826 (Fed. Cir. 1984). Recently, this
court explained: “[w]e do not understand the Supreme Court to
have implied in [Nautilus], and we do not hold today, that terms
of degree are inherently indefinite. Claim language employing
terms of degree has long been found definite where it provided
enough certainty to one of skill in the art when read in the context
of the invention.” Interval Licensing, 766 F.3d at 1370.
Moreover, when a claim limitation is defined in “purely
functional terms,” a determination of whether the limitation is
sufficiently definite is “highly dependent on context (e.g., the
disclosure in the specification and the knowledge of a person of
ordinary skill in the relevant art area).” Halli burton Energy
Servs., Inc. v. M-I LLC, 514 F.3d 1244, 1255 (Fed. Cir. 2008).

Biosig, 783 F.3d at 1378.

 In ordinary English usage, “at least” signals “a range with a defined

lower limit,” Row par Pharm . Inc. v. Lornam ead Inc., 2014 WL 1259777, at

*11 (D. Ariz. Mar. 25, 2014), and Telerik does not offer evidence to the

contrary. “At least partially isolating” therefore means, as Typemock

maintains, “partially or fully isolating.” Unlike, for example, words of

proximity or terms requiring subjective judgment, isolating software

components is not susceptible to an infinite range of values. The

specification makes clear that an objective of the patented invention is to

single out a component of software to produce a certain fake behavior so as

to test the functionality of the software in the presence of that fake behavior.

See ’923 patent, col. 1, l. 56 - col 2, l. 21 (describing behaviors that may need

Case 1:17-cv-10274-RGS Document 92 Filed 08/31/18 Page 22 of 31

23

to be isolated and faked for validation, such as date, out of memory, or

sending an e-mail). A software component is fully isolated if the testing

system always diverts the call to the component by calling a mocked

component and returns the faked behavior. See id. col. 6, ll. 50-51 (“The

framework may also be instructed to always fake a method (this is the default

return).”). The specification provides examples of partial isolation where the

Mock framework “decides whether to call the original code or to fake the

call,” id. col. 4, ll. 19-20; “fake the next call or number of calls,” id. col. 6, ll.

50-52; or to “change[] the values of the parameters if required,” id. col. 4, ll.

64-65. Based on these disclosures, a person of ordinary skill in the art would

understand that “at least partially isolating” means “at a minimum, to

sometimes divert the call to the at least one coupled software component or

to call the at least one coupled software component with modified

parameters.”

“said set”

 The term “said set” appears in claim 4 of the ’923 patent, which is

dependent on claim 1. Claim 4 is directed to “[a] system according to claim

1 wherein said set comprises at least one utilizing software component which

accesses at least one data element belonging to its corresponding utilized

software component.” In its briefs, Telerik contended that because claim 1

Case 1:17-cv-10274-RGS Document 92 Filed 08/31/18 Page 23 of 31

24

does not disclose a “set” and recites numerous elements referencing software

components, a person of ordinary skill in the art would not be able to

ascertain the antecedent for “said set” and, therefore, the term is indefinite.

See Halliburton, 514 F.3d at 1249 (“We have also stated that a claim could

be indefinite if a term does not have proper antecedent basis where such

basis is not otherwise present by implication or the meaning is not

reasonably ascertainable.”). Prior to the Markm an hearing, Telerik

withdrew its indefiniteness argument and adopted Typemock’s proposed

construction of “those components that are coupled in a utilizing-utilized

relationship, as recited in Claim 1.”

 The court agrees with the parties that “said set” is not indefinite, but

disagrees with their proposed construction. The parties’ proposed

construction suggests that the antecedent of “said set” is found in the claim

1 preamble description of the software application to be tested: “a software

application comprising a plurality of software components, at least some of

which are coupled in a utilizing-utilized relationship.” While claim 4 further

details how a utilizing component interacts with its utilized component,

embellishing the preamble has no impact on the scope of the claimed

software testing system. That is, under the proposed reading, the

“computational apparatus for at least partially isolating,” and the

Case 1:17-cv-10274-RGS Document 92 Filed 08/31/18 Page 24 of 31

25

“computational apparatus for testing” are still operative on “at least one

coupled software component,” without any alteration to the scope of the “at

least one coupled software component.”

 Under the “presumption that each claim in a patent has a different

scope,” SunRace Roots Enter. Co. v. SRAM Corp., 336 F.3d 1298, 1302 (Fed.

Cir. 2003), “said set” most naturally references “the at least one coupled

software component.” This is also the common-sense reading based on the

claim language. First, the subject of claim 4 is “software component” in the

singular, whereas the preamble discloses coupled “software components” in

the plural. Second, consistent with “at least one,” “set” is commonly

understood as a “collection of one or more.” See Blue Calypso, Inc. v.

Groupon, Inc., 93 F. Supp. 3d 575, 601 (E.D. Tex. 2015) (consulting

dictionaries and mathematical references). Finally, as defined by the

preamble, a software component is “coupled” if it is in a utilizing-utilized

relationship. Claim 4 narrows the antecedent “at least one coupled software

component” to “at least one utilizing software component.”

 “application points”

 According to Telerik, because “application points” is neither defined in

the specification, nor a term of art understood by a person of ordinary skill,

it is indefinite. As demonstrated by the technical tutorial given by Telerik’s

Case 1:17-cv-10274-RGS Document 92 Filed 08/31/18 Page 25 of 31

26

counsel at the Markm an hearing, however, a person of ordinary skill in the

art would readily understand the term. Claim 1 of the ’923 patent states that

the “computational apparatus for at least partially isolating” “ introduce[s],

prior to execution, code elements for runtime access of application points

associated with the at least one coupled software component.” The

specification explains in one embodiment that “[i] n each method of the

production code the weaver 104 may insert a small piece of code 107 that

calls the Mock framework 110 which then decides whether to call the original

code or to fake the call.” ’923 patent, col. 4, ll. 17-20. The “application

points” to which the inserted code provides access is implicitly the point at

which (or immediately prior hereto) the software application calls the “at

least one coupled software component” – that is the point at which the

inserted code decides to call the original code or to fake the call. Therefore,

“application points associated with the at least one coupled software

component” are “the point(s) at or immediately prior to the call to the at least

one coupled software component.”11

11 Counsel for Typemock stated at the Markm an hearing that the

“application point” “is where the function is going to be called.”

Case 1:17-cv-10274-RGS Document 92 Filed 08/31/18 Page 26 of 31

27

 “introducing, prior to execution”

 Telerik proposes to limit “introducing” to “inserting into production

code.” As noted supra, the specification and claim disclose two methods of

introducing code, and one (changing the metadata table) does not require

insertion of code into the production code.

At the Markm an hearing counsel raised another issue – whether “prior

to execution” means prior to the execution of the software application

(Telerik’s position), or prior to the execution of the software component

(Typemock’s position). Telerik cites as support the fact that claim 1 of the

’041 patent explicitly recites “prior to execution of the software application.”

This language, however, leads to the opposite conclusion. Under the

principle of claim differentiation, because the “introducing, prior to

execution” term in claim 1 of the ’923 patent does not recite that it is “prior

to execution of the softw are application,” that limitation should not be read

into the claim. Thus, the court will adopt Typemock’s construction of

“introducing, prior to executing the at least one coupled software

component.”

 “w ithout dependency injection”

This term appears in claim 30 of the ’923 patent, which in part

discloses “computational apparatus for testing the software application by

Case 1:17-cv-10274-RGS Document 92 Filed 08/31/18 Page 27 of 31

28

removing or replacing a behavior of at least said at least partially isolated

coupled software component during runtime, without dependency

injection.” Telerik proposes the construction, “without relying on a provider

of some capability or resources being inserted,” while Typemock suggests

“without removing dependency from code under test and injecting it as input

instead.”

The specification discusses two related but different types of

“dependency injection.” First is the step of injecting a dependency.

Conventional Internet sources state that “Dependency Injection
describes the situation where one object uses a second object to
provide a particular capacity. For example, being passed a
database connection as an argument to the constructor instead
of creating one internally. The term [‘]Dependency injection[’] is
a misnomer, since it is not a dependency that is injected, rather
it is a provider of some capability or resource that is injected.”

’923 patent, col. 1, ll. 24-31.12 The second is a software design pattern.

Testing isolated software components gives better testing results
as the coverage of the tests is much higher and the complexity
does not grow exponentially. This is a basic requirement for
validating a software component. In order to isolate the
components, there is a need to design the program that utilizes
the software components in such a way that the components can
be changed. This is part of a pattern called Inversion of Control
or Dependency Injection.

12 At the Markm an hearing both parties pointed out that the

“conventional Internet resource” is the 2007 version of the Wikipedia article
on “dependency injection.”

Case 1:17-cv-10274-RGS Document 92 Filed 08/31/18 Page 28 of 31

29

’923 patent, col. 1, ll. 48-56.

Telerik contends by implication, and the court agrees, that the claim

term more accurately concerns the step of injecting a dependency, rather

than the overall design of the software (as Typemock suggests13). First, the

claim language surrounding the term discloses the operation of the testing

apparatus. Thus, the “without dependency injection” limitation more

naturally concerns an operation the testing apparatus is not to undertake,

rather than limiting the overall design of the software application to be

tested. This reading is echoed in unasserted claim 51, which employs the

parallel claim structure to also limit the functionality of the isolating

apparatus.

A system according to claim 50, said isolating comprising at least
partially isolating, from within the software application, at least
one coupled software component which performs a given
function, w ithout utilizing built-in byte code m odification
functionality, said testing comprising testing logic of at least said
at least partially isolated coupled software component, w ithout
dependency injection.

(emphasis added).

13 Typemock objects to Telerik’s suggestion that the patentee acted as

his own lexicographer and defined “dependency injection” in the discussion
of “conventional Internet resources.” The court does not understand that
discussion to reflect the patentee’s own definition of the term, but rather, his
understanding of how a person of ordinary skill in the art understood the
term at the time of the invention. The court also notes that Professor
Goldberg did not offer any opinions on this term in his declaration.

Case 1:17-cv-10274-RGS Document 92 Filed 08/31/18 Page 29 of 31

30

The court agrees with Typemock, however, that Telerik’s construction

– “without relying on a provider of some capability or resources being

inserted” – is too broad in that it prohibits such insertion generally.14 As the

term appears following the disclosure of the testing apparatus “removing or

replacing a behavior of at least said at least partially isolated coupled

software component during runtime” and precedes additional claim

language describing “said apparatus for testing,” the term logically serves as

a negative limitation on the operation of the testing apparatus. Consistent

with the specification’s disclosure that testing may be performed by passing

arguments to the target component, see ’923 patent col. 4, ll. 20-22 (“The

inserted code 107 can also modify the arguments passed to the production

method if required. This is handy for arguments passed by reference.”), the

court construes “without dependency injection” as “without passing an

object that provides some capability to said at least partially isolated coupled

software component.”

14 Typemock’s proposed construction does not clarify the meaning of

“without dependency injection” for a trier of fact, not in the least because it
does not offer any common sense understanding of the technical term
“dependency.”

Case 1:17-cv-10274-RGS Document 92 Filed 08/31/18 Page 30 of 31

31

ORDER

 The claim terms at issue will be construed for the jury and for all

other purposes in this lit igation in a manner consistent with the rulings of

the court.

 SO ORDERED.

 / s/ Richard G. Stearns
 _

 UNITED STATES DISTRICT J UDGE

Case 1:17-cv-10274-RGS Document 92 Filed 08/31/18 Page 31 of 31

