EXHIBIT 2

${ }^{(12)}$ United States Patent
Ciaramella et al.
(10) Patent No.: US 10,702,600 B1
(45) Date of Patent:

Jul. 7, 2020
(54) BETACORONAVIRUS MRNA VACCINE
(71) Applicant: ModernaTX, Inc., Cambridge, MA (US)
(72) Inventors: Giuseppe Ciaramella, Sudbury, MA (US); Sunny Himansu, Winchester, MA (US)
(73) Assignee: ModernaTX, Inc., Cambridge, MA (US)
(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
(21) Appl. No.: 16/805,587
(22) Filed: Feb. 28, 2020

Related U.S. Application Data

(63) Continuation of application No. $16 / 368,270$, filed on Mar. 28, 2019, which is a continuation of application No. 16/040,981, filed on Jul. 20, 2018, now Pat. No. $10,272,150$, which is a continuation of application No. 15/674,599, filed on Aug. 11, 2017, now Pat. No. $10,064,934$, which is a continuation of application No. PCT/US2016/058327, filed on Oct. 21, 2016.
(60) Provisional application No. 62/247,362, filed on Oct. 28, 2015, provisional application No. 62/247,394, filed on Oct. 28, 2015, provisional application No. $62 / 247,483$, filed on Oct. 28, 2015, provisional application No. 62/247,297, filed on Oct. 28, 2015, provisional application No. 62/244,802, filed on Oct. 22, 2015, provisional application No. 62/244,946, filed on Oct. 22, 2015, provisional application No. $62 / 244,813$, filed on Oct. 22, 2015, provisional application No. 62/244,837, filed on Oct. 22, 2015, provisional application No. 62/245,031, filed on Oct. 22, 2015.
(51) Int. Cl.

A61P 11/00	(2006.01)
A61K 39/12	(2006.01)
A61K 39/215	(2006.01)
A61K 39/155	(2006.01)
C07K 16/10	(2006.01)
A61K $39 / 00$	(2006.01)

(52) U.S. Cl.

CPC A61K 39/155 (2013.01); A61K 39/12
(2013.01); A61K 39/215 (2013.01); A61P 11/00 (2018.01); C07K 16/10 (2013.01); C07K $16 / 1027$ (2013.01); A61K 2039/53 (2013.01); A61K 2039/55511 (2013.01); A61K 2039/55555 (2013.01); A61K 2039/6018 (2013.01); A61K 2039/70 (2013.01); C07K 2317/76 (2013.01); C12N 2760/18034 (2013.01); C12N 2760118334 (2013.01); C12N

2760/18434 (2013.01); C12N $2760 / 18534$ (2013.01); C12N $2760 / 18634$ (2013.01); C12N $2770 / 20034$ (2013.01); Y02A 50/381 (2018.01); Y02A 50/39 (2018.01)
(58) Field of Classification Search None
See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS

3,906,092	A	$9 / 1975$	Hilleman et al.
4,790,987	A	$12 / 1988$	Compans et al.
5,169,628	A	$12 / 1992$	Wathen
$5,427,782$	A	$6 / 1995$	Compans et al.
6,225,091	B 1	$5 / 2001$	Klein et al.
$6,500,419$	B 1	$12 / 2002$	Hone et al.
$6,514,948$	B 1	$2 / 2003$	Raz et al.
$7,001,890$	B 1	$2 / 2006$	Wagner et al.
$7,208,161$	B 1	$4 / 2007$	Murphy et al.
$7,449,324$	B 2	$11 / 2008$	Fouchier et al.
$7,531,342$	B 2	$5 / 2009$	Fouchier et al.
$7,671,186$	B 2	$3 / 2010$	Klein et al.
$7,704,720$	B 2	$4 / 2010$	Tang et al.
$8,217,016$	B 2	$7 / 2012$	Hoerr et al.
$8,252,289$	B 2	$8 / 2012$	Eleouët et al.
$8,710,200$	B 2	$4 / 2014$	Schrum et al.
$8,72,341$	B 2	$5 / 2014$	Fouchier et al.
$8,734,853$	B 2	$5 / 2014$	Sood et al.
$8,754,062$	B 2	$6 / 2014$	De Fougerolles et al.
$8,82,663$	B 2	$9 / 2014$	Schrum et al.
$8,841,433$	B 2	$9 / 2014$	Fouchier et al.
$8,889,146$	B 2	$11 / 2014$	Blais et al.
$8,927,206$	B 2	$1 / 2015$	De Jong et al.
$8,999,380$	B 2	$4 / 2015$	Bancel et al.
$9,192,661$	B 2	$11 / 2015$	Jain et al.
$9,221,891$	B 2	$12 / 2015$	Bancel et al.
$9,283,287$	B 2	$3 / 2016$	Bancel et al.
$9,303,079$	B 2	$4 / 2016$	Bancel et al.
$9,376,726$	B 2	$6 / 2016$	Fouchier et al.
$9,464,124$	B 2	$10 / 2016$	Bancel et al.
$9,512,456$	B 2	$12 / 2016$	Wang et al.
$9,567,653$	B 2	$2 / 2017$	Fouchier et al.
$9,597,380$	B 2	$3 / 2017$	Chakraborty et al.
		(Continued	

FOREIGN PATENT DOCUMENTS

CA	2473135	$6 / 2003$
EP	1026253	$8 / 2000$

(Continued)

OTHER PUBLICATIONS

U.S. Appl. No. 16/036,318, filed Jul. 16, 2018, Ciaramella et al. (Continued)

Primary Examiner - Nicole Kinsey White
(74) Attorney, Agent, or Firm - Wolf, Greenfield \& Sacks, P.C.

(57)

ABSTRACT

The disclosure relates to respiratory virus ribonucleic acid (RNA) vaccines and combination vaccines, as well as methods of using the vaccines and compositions comprising the vaccines.

26 Claims, 24 Drawing Sheets
Specification includes a Sequence Listing.

References Cited

U.S. PATENT DOCUMENTS

9,623,095	B2	4/2017	Kallen et al.
9,669,089	B2	6/2017	Thess et al.
9,790,531	B2	10/2017	Wang et al
9,868,691	B2	1/2018	Benenato et al.
9,872,900	B2	1/2018	Ciaramella et al.
9,937,196	B2	4/2018	Jain et al.
10,064,934	B2	9/2018	Ciaramella et al.
10,064,935	B2	9/2018	Ciaramella et al.
10,124,055	B2	11/2018	Ciaramella et al.
10,207,010	B2	2/2019	Besin et al.
10,273,269	B2	4/2019	Ciaramella
10,449,244	B2	10/2019	Ciaramella et al.
10,465,190	B1	11/2019	Chen et al.
10,493,143	B2	12/2019	Ciaramella et al.
10,526,629	B2	1/2020	Rabideau et al.
2003/0092653	A1	5/2003	Kisich et al.
2003/0232061	A1	12/2003	Fouchier et al.
2004/0005545	A1	1/2004	Fouchier et al.
2004/0096451	A1	5/2004	Young et al.
2005/0032730	A1	2/2005	Von Der Mulbe et al.
2005/0059624	A1	3/2005	Hoerr et al.
2005/0250723	A1	11/2005	Hoerr et al.
2006/0002958	A1	1/2006	Naylor et al.
2006/0172003	A1	8/2006	Meers et al.
2006/0228367	A1	10/2006	Ulbrandt et al.
2007/0280929	A1	12/2007	Hoerr et al.
2008/0025944	A1	1/2008	Hoerr et al.
2008/0171711	A1	7/2008	Hoerr et al.
2009/0123529	A1	5/2009	Xiaomao
2009/0162395	A1	6/2009	Crowe et al.
2010/0203076	A1	8/2010	Fotin-Mleczek et al.
2010/0239608	A1	9/2010	Von Der Mulbe et al.
2010/0272747	A1	10/2010	Chow et al.
2010/0291156	A1	11/2010	Barner et al.
2010/0305196	A1	12/2010	Probst et al.
2011/0135645	A1	6/2011	Williamson et al.
2011/0250225	A1	10/2011	Fotin-Mleczek et al.
2011/0269950	A1	11/2011	Von Der Mulbe et al.
2012/0009221	A1	1/2012	Hoerr et al.
2012/0045471	A1	2/2012	Haller et al.
2012/0219573	A1	8/2012	Baumhof et al.
2013/0022538	A1	1/2013	Rossi
2013/0078281	A1	3/2013	He et al.
2013/0102034	A1	4/2013	Schrum et al.
2013/0121988	A1	5/2013	Hoerr et al.
2013/0142818	A1	6/2013	Baumhof et al.
2013/0183355	A1	7/2013	Jain et al.
2013/0195867	A1	8/2013	Hoerr et al.
2013/0195967	A1	8/2013	Guild et al.
2013/0195969	A1	8/2013	Geall et al.
2013/0202684	A1	8/2013	Geall et al.
2013/0243848	A1	9/2013	Lobovkina et al.
2013/0245103	A1	9/2013	de Fougerolles et al.
2013/0259923	A1	10/2013	Bancel et al.
2013/0266640	A1	10/2013	De Fougerolles et al.
2013/0295043	A1	11/2013	Kallen et al.
2013/0336998	A1	12/2013	Kallen et al.
2014/0024076	A1	1/2014	Tang et al.
2014/0037660	A1	2/2014	Folin-Mleczek et al.
2014/0147432	A1	5/2014	Bancel et al.
2014/0148502	A1	5/2014	Bancel et al.
2014/0193482	A1	7/2014	Bancel et al.
2014/0206752	A1	7/2014	Afeyan et al.
2014/0271829	A1	9/2014	Lilja et al.
2014/0370497	A1	12/2014	Fouchier et al.
2014/0378538	A1	12/2014	Bancel
2015/0051268	A1	2/2015	Bancel et al.
2015/0093413	A1	4/2015	Thess et al.
2015/0126589	A1	5/2015	Geiger et al.
2015/0141499	A1	5/2015	Bancel et al.
2015/0307542	A1	10/2015	Roy et al.
2015/0315541	A1	11/2015	Bancel et al.
2015/0335728	A1	11/2015	Wong et al.
2016/0024141	A1	1/2016	Issa et al.
2016/0032273	A1	2/2016	Shahrokh et al.

2016/0038612 Al	2/2016	Hoge et al.
2016/0039884 Al	2/2016	Li et al.
2016/0151474 Al	6/2016	Kallen et al.
2016/0271272 Al	9/2016	Bancel et al.
2016/0317647 Al	11/2016	Ciaramella et al.
2016/0331828 A1	11/2016	Ciaramella et al.
2017/0065675 Al	3/2017	Bancel et al.
2017/0130255 Al	5/2017	Wang et al.
2017/0202979 Al	7/2017	Chakraborty et al
2017/0340724 Al	11/2017	Ciaramella et al.
2018/0000953 Al	1/2018	Almarsson et al.
2018/0002393 Al	1/2018	Bancel et al.
2018/0008694 Al	1/2018	Ciaramella et al.
2018/0028645 Al	2/2018	Ciaramella et al.
2018/0028664 Al	2/2018	Besin et al.
2018/0237849 Al	8/2018	Thompson
2018/0243225 Al	8/2018	Ciaramella
2018/0243230 Al	8/2018	Smith
2018/0271970 Al	9/2018	Ciaramella et al.
2018/0273977 A1	9/2018	Mousavi et al.
2018/0274009 Al	9/2018	Marquardt et al.
2018/0280496 Al	10/2018	Ciaramella et al.
2018/0289792 Al	10/2018	Ciaramella et al.
2018/0303929 Al	10/2018	Ciaramella et al.
2018/0311336 Al	11/2018	Ciaramella et al.
2018/0318409 Al	11/2018	Valiante et al.
2018/0363019 Al	12/2018	Hoge
2019/0002890 Al	1/2019	Martini et al.
2019/0008938 Al	1/2019	Ciaramella et al.
2019/0099481 Al	4/2019	Ciaramella et al.
2019/0192646 A1	6/2019	Cohen et al.
2019/0192653 Al	6/2019	Hoge et al.
2019/0275170 Al	9/2019	Benenato et al.
2019/0314493 Al	10/2019	Ciaramella et al.
2019/0336595 Al	11/2019	Ciaramella
2019/0351040 Al	11/2019	Valiante et al.
2020/0030432 Al	1/2020	Ciaramella et al.
2020/0032274 Al	1/2020	Mauger et al.
2020/0038499 Al	2/2020	Narayanan et al.
2020/0054737 Al	2/2020	Ciaramella et al.

FOREIGN PATENT DOCUMENTS

EP	1083232	2/2005
EP	1905844 A2	2/2008
EP	2548960 Al	1/2013
WO	WO 1987/005326 A1	9/1987
WO	WO 1990/11092	10/1990
WO	WO 1993/14778	8/1993
WO	WO 1995/24485	9/1995
WO	WO 1995/26204	10/1995
WO	WO 1995/33835	12/1995
WO	WO 1998/058956	12/1998
WO	WO 1999/33982	7/1999
WO	WO 2003/072720 A2	9/2003
WO	WO 2004/076645 A1	9/2004
WO	WO 2005/009346	2/2005
WO	WO 2006/056027 A1	6/2006
WO	WO 2006/071903	7/2006
WO	WO 2006/095259	9/2006
WO	WO 2007/038862 A1	4/2007
WO	WO 2007/095976 A2	8/2007
WO	WO 2008/052770 A2	5/2008
WO	WO 2009/030254 A1	3/2009
WO	WO 2009/030481 A1	3/2009
WO	WO 2009/095226	8/2009
WO	WO 2009/127230 A1	10/2009
WO	WO 2010/037408 A1	4/2010
WO	WO 2010/037539 A1	4/2010
WO	WO 2010/042877 A1	4/2010
WO	WO 2010/054406 A1	5/2010
WO	WO 2010/088927 A1	8/2010
WO	WO 2010/149743 A2	12/2010
WO	WO 2011/005799 A2	1/2011
WO	WO 2011/026641 A9	3/2011
WO	WO 2011/068810 A1	6/2011
WO	WO 2011/069529 A1	$6 / 2011$
WO	WO 2011/069586 A1	6/2011
WO	WO 2011/144358 A1	11/2011

References Cited

FOREIGN PATENT DOCUMENTS

O	30 A1	2/2012
WO	WO 2012/019780 A1	2/2012
WO	WO 2012/116714 A1	9/2012
WO	WO 2012/116715 A1	9/2012
WO	WO 2012/116810 A1	9/2012
WO	WO 2012/116811 A1	9/2012
WO	WO 2013/055905 Al	4/2013
WO	WO 2013/090186 A1	6/2013
WO	WO 2013/102203 A1	7/2013
WO	WO 2013/120628 A1	8/2013
WO	WO 2013/120629 A1	8/2013
WO	WO 2013/185069 A1	12/2013
WO	WO 2014/089486 A1	6/2014
WO	WO 2014/152027 Al	9/2014
WO	WO 2014/152774 A1	9/2014
WO	WO 2014/152940 A1	9/2014
WO	WO 2014/160243 A1	10/2014
WO	WO 2015/024668 A2	2/2015
WO	WO 2015/101414 A2	7/2015
WO	WO 2015/101415 A1	7/2015
WO	WO 2015/130584 A2	9/2015
WO	WO 2016/103238	6/2016
WO	WO 2016/164762 A1	10/2016
WO	WO 2016/201377 Al	12/2016
WO	WO 2017/015457 A1	1/2017
WO	WO 2017/015463 A1	1/2017
WO	WO 2017/019935 A1	2/2017
WO	WO 2017/020026 A1	2/2017
WO	WO 2017/062513 A1	4/2017
WO	WO 2017/066789 A1	4/2017
WO	WO 2017/070601 Al	4/2017
WO	WO 2017/070616 A1	4/2017
WO	WO 2017/070618 A1	4/2017
WO	WO 2017/070620 A1	4/2017
WO	WO 2017/070622 A1	4/2017
WO	WO 2017/070623 A1	4/2017
WO	WO 2017/201340 A1	11/2017
WO	WO 2017/201342 A1	11/2017
WO	WO 2017/201347 A1	11/2017
WO	WO 2017/201349 A1	11/2017
WO	WO 2018/053209 A1	3/2018
WO	WO 2018/075980 A1	4/2018
WO	WO 2018/081459 A1	5/2018
WO	WO 2018/081462 A1	5/2018
WO	WO 2018/089851 A1	5/2018
WO	WO 2018/107088 A1	6/2018
WO	WO 2018/111967 A1	6/2018
WO	WO 2018/144082 Al	8/2018
WO	WO 2018/144778 A1	8/2018
WO	WO 2018/151816 A1	8/2018
WO	WO 2018/170245 Al	9/2018
WO	WO 2018/170256 A1	9/2018
WO	WO 2018/170260 A1	9/2018
WO	WO 2018/170270 Al	9/2018
WO	WO 2018/170347 A1	9/2018
WO	WO 2018/175783 A1	9/2018
WO	WO 2018/187590 A2	10/2018
WO	WO 2018/200737 Al	11/2018
WO	WO 2018/232355 A1	12/2018
WO	WO 2018/232357 A1	12/2018
WO	WO 2019/036670 Al	2/2019
WO	WO 2019/036682 A1	2/2019
WO	WO 2019/036683 A1	2/2019
WO	WO 2019/036685 A1	2/2019
WO	WO 2019/103993 A1	5/2019
WO	WO 2019/148101 A1	8/2019
WO	WO 2020/006242 A1	1/2020

OTHER PUBLICATIONS

U.S. Appl. No. 16/048,154, filed Jul. 27, 2018, Ciaramella et al. U.S. Appl. No. 16/144,394, filed Sep. 27, 2018, Ciaramella et al. U.S. Appl. No. 90/014,395, filed Oct. 24, 2019, Ciaramella et al. U.S. Appl. No. 15/748,773, filed Jan. 30, 2018, Ciaramella et al.
U.S. Appl. No. 15/753,293, filed Feb. 17, 2018, Smith.
U.S. Appl. No. 15/753,297, filed Feb. 17, 2018, Thompson.
U.S. Appl. No. 15/748,782, filed Jan. 30, 2018, Mousavi et al.
U.S. Appl. No. 15/767,587, filed Apr. 11, 2018, Ciaramella.
U.S. Appl. No. 16/450,882, filed Jun. 24, 2019, Ciaramella.
U.S. Appl. No. 15/767,600, filed Apr. 11, 2018, Ciaramella et al. U.S. Appl. No. 15/769,710, filed Apr. 19, 2018, Ciaramella et al. U.S. Appl. No. 15/767,609, filed Apr. 11, 2018, Ciaramella et al. U.S. Appl. No. 15/767,613, filed Apr. 11, 2018, Ciaramella et al. U.S. Appl. No. 15/767,618, filed Apr. 11, 2018, Ciaramella et al.
U.S. Appl. No. 16/136,503, filed Sep. 20, 2018, Ciaramella et al. U.S. Appl. No. 15/746,286, filed Jan. 19, 2018, Ciaramella et al.
U.S. Appl. No. 16/009,880, filed Jun. 15, 2018, Ciaramella et al.
U.S. Appl. No. 15/981,762, filed May 16, 2018, Bancel et al.
U.S. Appl. No. 16/582,621, filed Sep. 25, 2019, Chen et al.
U.S. Appl. No. 16/599,661, filed Oct. 11, 2019, Besin et al.
U.S. Appl. No. 16/001,786, filed Jun. 6, 2018, Hoge et al.
U.S. Appl. No. 16/333,330, filed Mar. 14, 2019, Hoge et al.
U.S. Appl. No. 16/389,545, filed Apr. 19, 2019, Ciaramella et al.
U.S. Appl. No. 16/368,270, filed Mar. 28, 2019, Ciaramella et al. U.S. Appl. No. 16/468,838, filed Jun. 12, 2019, Miracco.
U.S. Appl. No. 16/001,765, filed Jun. 6, 2018, Marquardt et al.
U.S. Appl. No. 16/348,943, filed May 10, 2019, Ciaramella.
U.S. Appl. No. 16/467,142, filed Jun. 6, 2019, Ciaramella et al.
U.S. Appl. No. 16/603,111, filed Oct. 4, 2019, Brito et al.
U.S. Appl. No. 16/482,844, filed Aug. 1, 2019, Valiante et al.
U.S. Appl. No. 16/496,135, filed Sep. 20, 2019, Narayanan et al. U.S. Appl. No. 16/483,012, filed Aug. 1, 2019, Mauger et al.
U.S. Appl. No. 16/657,122, filed Oct. 18, 2019, Rabideau et al.
U.S. Appl. No. 16/362,366, filed Mar. 22, 2019, Ciaramella.
U.S. Appl. No. 16/493,986, filed Sep. 13, 2019, Ciaramella et al.
U.S. Appl. No. 16/494,130, filed Sep. 13, 2019, Ciaramella et al.
U.S. Appl. No. 16/494,103, filed Sep. 13, 2019, Ciaramella et al.
U.S. Appl. No. 16/494,162, filed Sep. 13, 2019, Ciaramella.
U.S. Appl. No. 16/494,988, filed Sep. 17, 2019, Ciaramella et al.
U.S. Appl. No. 16/639,265, filed Feb. 14, 2020, Issa et al.
U.S. Appl. No. 16/639,305, filed Feb. 14, 2020, Issa et al.
U.S. Appl. No. 16/302,607, filed Nov. 16, 2018, Benenato et al.
U.S. Appl. No. 16/623,069, filed Dec. 16, 2019, Hoge et al.
U.S. Appl. No. 16/639,403, filed Feb. 14, 2002, Hoge et al.
U.S. Appl. No. 16/131,793, filed Sep. 14, 2018, Ciaramella et al.
U.S. Appl. No. 16/608,451, filed Oct. 25, 2019, Ciaramella et al.
U.S. Appl. No. 16/788,182, filed Feb. 11, 2020, Panther et al.
U.S. Appl. No. 16/794,318, filed Feb. 19, 2020, Mauger et al.

PCT/U82016/058327, Jun. 29, 2017, International Search Report and Written Opinion.
[No Author Listed], "Messenger RNA", Internet: Wikipedia. Jun. 19, 2013, XP002699196, Retrieved from the Internet: URL: http:// en.wikipedia.org/wiki/Messenger RNA.
Archer, S.J., Induction of a T-cell specific antigen on bone marrow lymphocytes with thymus RNA. Immunology. Jan. 1978;34(1):1239.

Ashley, D.M. et al., Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J Exp Med. Oct. 6, 1997; 186(7): 1177-82.
Bettinger, T. et al., Peptide-mediated RNA delivery: a novel approach for enhanced transfection of primary and post-mitotic cells. Nucleic Acids Res. Sep. 15, 2001;29(18):3882-91.
Bogers et al., Potent immune responses in rhesus macaques induced by nonviral delivery of a self-amplifying RNA vaccine expressing HIV type 1 envelope with a cationic nanoemulsion.J Infect Dis. Mar. 15, 2015;211(6):947-55. doi: 10.1093/infdis/jiu522. Epub Sep. 18, 2014.
Bonehill, A., et al., Single-step antigen loading and activation of dendritic cells by mRNA electroporation for the purpose of therapeutic vaccination in melanoma patients. Clin Cancer Res. May 2009; 15(10): 3366-3375.
Bose, S. et al., Role of nucleolin in human parainfluenza virus type 3 infection of human lung epithelial cells. J Viral. Aug. 2004;78(15):8146-58.
Conry, R.M. et al., Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res. Apr. 1, 1995;55 (7):1397-1400.

References Cited

OTHER PUBLICATIONS

Dahlman, James E. et al., In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight, Nature Nanotechnology, 2014, No. vol. \#, pp. 1-8.
Diken et al., Current Developments in Actively Personalized Cancer Vaccination with a Focus on RNA as the Drug Format. Prog Tumor Res. 2015;42:44-54. doi: 10.1159/000437184. Epub Sep. 4, 2015. Review.
Fleeton et al., Self-replicative RNA vaccines elicit protection against influenza A virus, respiratory syncytial virus, and a tickborne encephalitis virus. J Infect Dis. May 1, 2001;183(9): 1395-8. Epub Mar. 30, 2001.
Geall et al., Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci U S A. Sep. 4, 2012;109(36):14604-9. doi:10. 1073/pnas. 1209367109. Epub Aug. 20, 2012.
GenBank Accession No. AHX22069. First seen on NCBI on May 14, 2014.
Gilboa, E. et al., Cancer immunotherapy with mRNA-transfected dendritic cells. Immunol Rev. Jun. 2004;199:251-63.
Greer et al., Long-term protection in hamsters against human parainfluenza virus type 3 following mucosal or combinations of mucosal and systemic immunizations with chimeric alphavirusbased replicon particles. Scand J Immunol. Dec. 2007;66(6):64553. Epub Oct. 17, 2007.

Hecker, J.G. et al., Non-Viral DNA and mRNA Gene Delivery to the CNS Pre-Operatively for Neuroprotection and Following Neurotrauma. Molecular Therapy. 2004; 9, S258-S258.
Heiser, A. et al., Induction of polyclonal prostate cancer-specific CTL using dendritic cells transfected with amplified tumor RNA. J lmmunol. Mar. 1, 2001; 166(5):2953-60.
Heyes et al., Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. J Control Release. Oct. 3, 2005;107(2):276-87.
Hoerr, I. et al., in vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. EurJ lmmunol. Jan. 2000;30(1):1-7.
Hoerr, I. et al., Stabilized Messenger RNA (RNActiveTM) as a Tool for Innovative Gene Delivery. Tissue Engineering. Apr. 2007; 13(4): 865-925.
Hoerr, More than a messenger: A new class of drugs-mRNA-based therapeutics. Genetic Engineering \& Biotechnology News. Jun. 18, 2013. $\mathrm{http} / /$ www.genengnews.com/gen-articles/more-than-a-messenger-a-new-class-of-drugs-mrna-based-therapeutics/4916/ [last accessed Mar. 25, 2016].
Holtkamp, S. et al., Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood. Dec. 15, 2006;108(13):4009-17.
Jirikowski, G.F., et al., Reversal of diabetes insipidus in Brattleboro Rats: Intrahypothalamic injection of vasopressin mRNA. Science. Feb. 1992; 255(5047): 996-998.
Kallen et al, A development that may evolve into a revolution in medicine: mRNA as the basis for novel, nucleotide-based vaccines and drugs. Ther Adv Vaccines. Jan. 2014;2(1):10-31. doi: 10.1177/ 2051013613508729.

Kallen et al., A novel, disruptive vaccination technology: selfadjuvanted RNActive(${ }^{(R)}$) vaccines. Hum Vaccin Immunother. Oct. 2013;9(10):2263-76. doi: 10.4161/hv.25181. Epub Jun. 4, 2013. Review.
Kalra et al., Virosomes: As a Drug Delivery Carrier. American Journal of Advanced Drug Delivery. 2013;1:29-35.
Kanapathipillai, et al., Nanoparticle targeting of anti-cancer drugs that alter intracellular signaling or influence the tumor microenvironment, Adv. Drug Deliv. Rev. (2014), , pp. 1-12.
Kariko, K., et al., Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA, Nucleic Acids Research, Oxford University Press, GB, vol. 39, No. 21, Sep. 2, 2011 (Sep. 2, 2011), e142. doi: 10.1093/nar/gkr695. Epub Sep. 2, 2011.

Kauffman et al., Optimization of Lipid Nanoparticle Formulations for mRNA Delivery in Vivo with Fractional Factorial and Definitive Screening Designs. Nano Lett. Nov. 11, 2015;15(11):7300-6. doi: 10.1021/acs.nanolett.5b02497. Epub Oct. 20, 2015.

Kisich et al., Antimycobacterial agent based on mRNA encoding human beta-defensin 2 enables primary macrophages to restrict growth of Mycobacterium tuberculosis.Infect Immun. Apr. 2001;69(4):2692-9.
Kozielski et al., Bioreducible cationic polymer-based nanoparticles for efficient and environmentally triggered cytoplasmic siRNA delivery to primary human brain cancer cells. ACS Nano. Apr. 22, 2014;8(4):3232-41. doi: 10.1021/nn500704t. Epub Apr. 3, 2014.
Kreiter, S., et al., Intranodal vaccination with naked antigenencoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res. 2010; 70: 9031-9040.
Kreiter, S., et al., Tumor vaccination using messenger RNA: prospects of a future therapy. Curr Opinion in lmmun. Jun. 2011; 23(3): 399-406.
Kuhn, A.N., et al., mRNA as a versatile tool for exogenous protein expression. Current Gene Therapy. Oct. 2012; 12 (5): 347-361.
Leitner, W.W. et al., DNA and RNA-based vaccines: principles, progress and prospects. Vaccine. Dec. 10, 1999;18 (9-10):765-77.
Li, L. et al., Overcoming obstacles to develop effective and safe siRNA therapeutics. Expert Opin Biol Ther. May 2009; 9(5): 609-19.
Lorenzi, J.C., et al., Intranasal vaccination with messenger RNA as a new approach in gene therapy: Use against tuberculosis. BMC Biotechnol. Oct. 2010; 10(77): 1-11.
Mockey et al., mRNA-based cancer vaccine: prevention of B16 melanoma progression and metastasis by systemic injection of MART1 mRNA histidylated lipopolyplexes, Cancer Gene Therapy, 2007, 14, pp. 802-814.
Magini et al., Self-Amplifying mRNA Vaccines Expressing Multiple Conserved Influenza Antigens Confer Protection against Homologous and Heterosubtypic Viral Challenge. PLoS One. Aug. 15, 2016;11(8):e0161193. doi: 10.1371/journal.pone.0161193. eCollection 2016.
Martinon, F. et al., Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. EurJ Immunol. Jul. 1993;23(7):1719-22.
Midoux et al., Lipid-based mRNA vaccine delivery systems. Expert Rev Vaccines. Feb. 2015;14(2):221-34. doi: 10.1586/14760584. 2015.986104. Epub Dec. 26, 2014. Review.

Mitchell, DA et al., RNA transfected dendritic cells as cancer vaccines. Curr Opin Mal Ther. Apr. 2000;2(2):176-81.
Mitchell, DA et al., RNA-transfected dendritic cells in cancer immunotherapy. J Clin Invest. Nov. 2000;106 (9):1065-9.
Muller, M.R. et al., Transfection of dendritic cells with RNA induces CD4- and COB-mediated T cell immunity against breast carcinomas and reveals the immunodominance of presented T cell epitopes. J lmmunol. Jun. 15, 2003;170(12):5892-6.
Narayanan et al., Interplay between viruses and host mRNA degradation. Biochim Biophys Acta. Jun.-Jul. 2013; 1829(6-7):732-41. doi: $10.1016 / \mathrm{j}$.bbagrm.2012.12.003. Epub Dec. 26, 2012.
Petsch et al., Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat Biotechnol. Dec. 2012;30(12):1210-6. doi: 10.1038/nbt.2436. Epub Nov. 25, 2012.

Phua et al., Mesenger RNA (mRNA) nanoparticle tumour vaccination. Nanoscale. Jul. 21, 2014;6(14):7715-29. dsoi: 10.1039/ c4nr01346h. Review.
Pulford, B., et al., Liposome-siRNA-peptide complexes cross the blood-brain barrier and significantly decrease $\operatorname{PrP}{ }^{\prime} \mathrm{C}$ on neuronal cells and PrP'RES in infected cell cultures. PLoS One. 201 O; 5(6): e11085.
Rabinovich, P.M., et al., Synthetic messenger RNA as a tool for gene therapy. Hum. Gene Ther. Oct. 2006; 17: 1027-1035.
Rittig et al., Intradermal vaccinations with RNA coding for TAA generate $\mathrm{CD} 8+$ and CD4+ immune responses and induce clinical benefit in vaccinated patients. Mol Ther. May 2011;19(5):990-9. doi: $10.1038 / \mathrm{mt}$.2010.289. Epub Dec. 28, 2010.

References Cited

OTHER PUBLICATIONS

Sahin et al., mRNA-based therapeutics-developing a new class of drugs. Nat Rev Drug Discov. Oct. 2014;13(10):759-80. doi: 10.1038/ nrd4278. Epub Sep. 19, 2014.
Schmitt, W.E. et al., In vitro induction of a bladder cancer-specific T-cell response by mRNA-transfected dendritic cells. J Cancer Res Clin Oncol. 2001 ;127(3):203-6.
Schott, J.W., et al., Viral and non-viral approaches for transient delivery of mRNA and proteins. Current Gene Ther. 2011; 11 (5): 382-398.
Segura, J., et al., Monitoring gene therapy by external imaging of mRNA: Pilot study on murine erythropoietin. Ther Drug Monit. Oct. 2007; 29(5): 612-8.
Smits, E., et al., RNA-based gene transfer for adult stem cells and T cells. Leukemia. 2004; 18: 1898-1902.
Sohn, R.L., et al., In-vivo particle mediated delivery of mRNA to mammalian tissues: ballistic and biological effects. Wound Rep and Regen. Jul.-Aug. 2001; 287-296.
Strong, V.T. et al., Incorporation of beta-globin untranslated regions into a Sindbis virus vector for augmentation of heterologous mRNA expression. Gene Ther. Jun. 1997;4(6):624-7.

Sullenger, BA et al., Emerging clinical applications of RNA. Nature. Jul. 11, 2002;418(6894):252-8.
Tavernier, G., et al., mRNA as gene therapeutic: How to control protein expression. J. of Controlled Release. Mar. 2011; 150(3): 238-247.
Teufel, R. et al., Human peripheral blood mononuclear cells transfected with messenger RNA stimulate antigen-specific cytotoxic T-lymphocytes in vitro. Cell Mol Life Sci. Aug. 2005;62(15):1755-62.
Thess et al., Sequence-engineered mRNA Without Chemical Nucleoside Modifications Enables an Effective Protein Therapy in Large Animals. Mol Ther. Sep. 2015;23(9):1456-64. doi: 10.1038/mt. 2015. 103. Epub Jun. 8, 2015.

Wang et al., Systemic delivery of modified mRNA encoding herpes simplex virus 1 thymidine kinase for targeted cancer gene therapy. Mol Ther. Feb. 2013;21(2):358-67. doi: 10.1038/mt.2012.250. Epub Dec. 11, 2012.
Wong et al., An mRNA vaccine for influenza. Nat Biotechnol. Dec. 2012;30(12):1202-4. doi: 10.1038/nbt.2439.
Yamamoto et al., Current prospects for mRNA gene delivery, European Journal of Pharmaceutics and Biopharmaceutics 71 (2009) 484-489.
Zhou, W.Z. et al., RNA melanoma vaccine: induction of antitumor immunity by human glycoprotein 100 mRNA immunization. Hum Gene Ther. Nov. 1, 1999;10(16):2719-24.
RSV

\rightarrow PBS
-10 -
$-2 u g$

Fig. 4

Media only
HMPV virus
Con-A

Media only
\square Con-A

Fig. 9A

Fig. 9B

Fig. 10

HMPV neutralization antibody titers in cotton rats

Fig. 12

Fig. 13

Fig. 14

Fig. 15
PIV3 serum neutralizing antibody titers

Zโ̄า IN甘d \%09

Fig. 16
Cotton rat lung histopathology

Fig. 17

Fig. 18

Day
Fig. 19A
MERS viral load-Nose \& Throat - Day 4 post challenge

Fig. 19B

Fig. 19C

Lung Pool
Fig. 20A
MERS-CoV RNA loads in lungs

Fig. 21
MERS neutralizing antibody titer

(607) 090ヨ

BETACORONAVIRUS MRNA VACCINE

RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 16/368,270, filed Mar. 28, 2019, which is a continuation of Ser. No. 16/040,981, filed Jul. 20, 2018, now U.S. Pat. No. 10,272,150, which is a continuation of U.S. application Ser. No. 15/674,599, filed Aug. 11, 2017, now U.S. Pat. No. $10,064,934$, which is a continuation of International application number PCT/US2016/058327, filed Oct. 21, 2016, which claims the benefit under 35 U.S.C. § 119(e) of U.S. provisional application No. 62/244,802, filed Oct. 22, 2015, U.S. provisional application No. 62/247,297, filed Oct. 28, 2015, U.S. provisional application No. 62/244,946, filed Oct. 22, 2015, U.S. provisional application No. 62/247,362, filed Oct. 28, 2015, U.S. provisional application No. 62/244, 813, filed Oct. 22, 2015, U.S. provisional application No. 62/247,394, filed Oct. 28, 2015, U.S. provisional application No. 62/244,837, filed Oct. 22, 2015, U.S. provisional application No. $62 / 247,483$, filed Oct. 28, 2015, and U.S. provisional application No. 62/245,031, filed Oct. 22, 2015, each of which is incorporated by reference herein in its entirety.

BACKGROUND

Respiratory disease is a medical term that encompasses pathological conditions affecting the organs and tissues that make gas exchange possible in higher organisms, and includes conditions of the upper respiratory tract, trachea, bronchi, bronchioles, alveoli, pleura and pleural cavity, and the nerves and muscles of breathing. Respiratory diseases range from mild and self-limiting, such as the common cold, to life-threatening entities like bacterial pneumonia, pulmonary embolism, acute asthma and lung cancer. Respiratory disease is a common and significant cause of illness and death around the world. In the US, approximately 1 billion "common colds" occur each year. Respiratory conditions are among the most frequent reasons for hospital stays among children.

The human metapneumovirus (hMPV) is a negativesense, single-stranded RNA virus of the genus Pneumovirinae and of the family Paramyxoviridae and is closely related to the avian metapneumovirus (AMPV) subgroup C. It was isolated for the first time in 2001 in the Netherlands by using the RAP-PCR (RNA arbitrarily primed PCR) technique for identification of unknown viruses growing in cultured cells. hPMV is second only to RSV as an important cause of viral lower respiratory tract illness (LRI) in young children. The seasonal epidemiology of hMPV appears to be similar to that of RSV, but the incidence of infection and illness appears to be substantially lower.

Parainfluenza virus type 3 (PIV3), like hMPV, is also a negative-sense, single-stranded sense RNA virus of the genus Pneumovirinae and of the family Paramyxoviridae and is a major cause of ubiquitous acute respiratory infections of infancy and early childhood. Its incidence peaks around 4-12 months of age, and the virus is responsible for $3-10 \%$ of hospitalizations, mainly for bronchiolitis and pneumonia. PIV3 can be fatal, and in some instances is associated with neurologic diseases, such as febrile seizures. It can also result in airway remodeling, a significant cause of morbidity. In developing regions of the world, infants and young children are at the highest risk of mortality, either from primary PIV3 viral infection or a secondary consequences, such as bacterial infections. Human parainfluenza viruses (hPIV) types 1, 2 and 3 (hPIV1, hPIV2 and hPIV3,
respectively), also like hMPV, are second only to RSV as important causes of viral LRI in young children.

RSV, too, is a negative-sense, single-stranded RNA virus of the genus Pneumovirinae and of the family Paramyxoviridae. Symptoms in adults typically resemble a sinus infection or the common cold, although the infection may be asymptomatic. In older adults (e.g., >60 years), RSV infection may progress to bronchiolitis or pneumonia. Symptoms in children are often more severe, including bronchiolitis and pneumonia. It is estimated that in the United States, most children are infected with RSV by the age of three. The RSV virion consists of an internal nucleocapsid comprised of the viral RNA bound to nucleoprotein (N), phosphoprotein (P), and large polymerase protein (L). The nucleocapsid is surrounded by matrix protein (M) and is encapsulated by a lipid bilayer into which the viral fusion (F) and attachment (G) proteins as well as the small hydrophobic protein (SH) are incorporated. The viral genome also encodes two nonstructural proteins (NS1 and NS2), which inhibit type I interferon activity as well as the M-2 protein.
The continuing health problems associated with hMPV, PIV3 and RSV are of concern internationally, reinforcing the importance of developing effective and safe vaccine candidates against these virus.

Despite decades of research, no vaccines currently exist (Sato and Wright, Pediatr. Infect. Dis. J. 2008; 27(10 Supp1): S123-5). Recombinant technology, however, has been used to target the formation of vaccines for hPIV-1, 2 and 3 serotypes, for example, and has taken the form of several live-attenuated intranasal vaccines. Two vaccines in particular were found to be immunogenic and well tolerated against hPIV-3 in phase I trials. hPIV1 and hPIV2 vaccine candidates remain less advanced (Durbin and Karron, Clinical infectious diseases: an official publication of the Infectious Diseases Society of America 2003; 37(12):1668-77).

Measles virus (MeV), like hMPV, PIV3 and RSV, is a negative-sense, single-stranded RNA virus that is the cause of measles, an infection of the respiratory system. MeV is of the genus Morbillivirus within the family Paramyxoviridae. Humans are the natural hosts of the virus; no animal reservoirs are known to exist. Symptoms of measles include fever, cough, runny nose, red eyes and a generalized, maculopapular, erythematous rash. The virus is highly contagious and is spread by coughing

In additional to hMPV, PIV, RSV and MeV, betacoronaviruses are known to cause respiratory illnesses. Betacoronaviruses (BetaCoVs) are one of four genera of coronaviruses of the subfamily Coronavirinae in the family Coronaviridae, of the order Nidovirales. They are enveloped, positive-sense, single-stranded RNA viruses of zoonotic origin. The coronavirus genera are each composed of varying viral lineages, with the betacoronavirus genus containing four such lineages. The BetaCoVs of the greatest clinical importance concerning humans are OC43 and HKU1 of the A lineage, SARS-CoV of the B lineage, and MERS-CoV of the C lineage. MERS-CoV is the first betacoronavirus belonging to lineage C that is known to infect humans.
The Middle East respiratory syndrome coronavirus (MERS-CoV), or EMC/2012 (HCoV-EMC/2012), initially referred to as novel coronavirus 2012 or simply novel coronavirus, was first reported in 2012 after genome sequencing of a virus isolated from sputum samples from a person who fell ill during a 2012 outbreak of a new flu. As of July 2015, MERS-CoV cases have been reported in over 21 countries. The outbreaks of MERS-CoV have raised
serious concerns world-wide, reinforcing the importance of developing effective and safe vaccine candidates against MERS-CoV.

Severe acute respiratory syndrome (SARS) emerged in China in 2002 and spread to other countries before brought under control. Because of a concern for reemergence or a deliberate release of the SARS coronavirus, vaccine development was initiated.

Deoxyribonucleic acid (DNA) vaccination is one technique used to stimulate humoral and cellular immune responses to foreign antigens, such as hMPV antigens and/or PIV antigens and/or RSV antigens. The direct injection of genetically engineered DNA (e.g., naked plasmid DNA) into a living host results in a small number of its cells directly producing an antigen, resulting in a protective immunological response. With this technique, however, comes potential problems, including the possibility of insertional mutagenesis, which could lead to the activation of oncogenes or the inhibition of tumor suppressor genes.

SUMMARY

Provided herein are ribonucleic acid (RNA) vaccines that build on the knowledge that RNA (e.g., messenger RNA (mRNA)) can safely direct the body's cellular machinery to produce nearly any protein of interest, from native proteins to antibodies and other entirely novel protein constructs that can have therapeutic activity inside and outside of cells. The RNA (e.g., mRNA) vaccines of the present disclosure may be used to induce a balanced immune response against hMPV, PIV, RSV, MeV, and/or BetaCoV (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1), or any combination of two or more of the foregoing viruses, comprising both cellular and humoral immunity, without risking the possibility of insertional mutagenesis, for example. hMPV, PIV, RSV, MeV, BetaCoV (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, $\mathrm{HCoV}-\mathrm{NH}$ and HCoV-HKU1) and combinations thereof are referred to herein as "respiratory viruses." Thus, the term "respiratory virus RNA vaccines" encompasses hMPV RNA vaccines, PIV RNA vaccines, RSV RNA vaccines, MeV RNA vaccines, BetaCoV RNA vaccines, and any combination of two or more of hMPV RNA vaccines, PIV RNA vaccines, RSV RNA vaccines, MeV RNA vaccines, and BetaCoV RNA vaccines.

The RNA (e.g., mRNA) vaccines may be utilized in various settings depending on the prevalence of the infection or the degree or level of unmet medical need. The RNA (e.g. mRNA) vaccines may be utilized to treat and/or prevent a hMPV, PIV, RSV, MeV, a BetaCoV (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH, HCoV-HKU1), or any combination of two or more of the foregoing viruses, of various genotypes, strains, and isolates. The RNA (e.g., mRNA) vaccines have superior properties in that they produce much larger antibody titers and produce responses earlier than commercially available anti-viral therapeutic treatments. While not wishing to be bound by theory, it is believed that the RNA (e.g., mRNA) vaccines, as mRNA polynucleotides, are better designed to produce the appropriate protein conformation upon translation as the RNA (e.g., mRNA) vaccines co-opt natural cellular machinery. Unlike traditional vaccines, which are manufactured ex vivo and may trigger unwanted cellular responses, RNA (e.g., mRNA) vaccines are presented to the cellular system in a more native fashion.

In some aspects the invention is a respiratory virus vaccine, comprising at least one RNA polynucleotide having an open reading frame encoding at least one respiratory virus antigenic polypeptide, formulated in a cationic lipid nanoparticle.

Surprisingly, in some aspects, it has also been shown that efficacy of mRNA vaccines can be significantly enhanced when combined with a flagellin adjuvant, in particular, when one or more antigen-encoding mRNAs is combined with an mRNA encoding flagellin.

RNA (e.g., mRNA) vaccines combined with the flagellin adjuvant (e.g., mRNA-encoded flagellin adjuvant) have superior properties in that they may produce much larger antibody titers and produce responses earlier than commercially available vaccine formulations. While not wishing to be bound by theory, it is believed that the RNA (e.g., mRNA) vaccines, for example, as mRNA polynucleotides, are better designed to produce the appropriate protein conformation upon translation, for both the antigen and the adjuvant, as the RNA (e.g., mRNA) vaccines co-opt natural cellular machinery. Unlike traditional vaccines, which are manufactured ex vivo and may trigger unwanted cellular responses, RNA (e.g., mRNA) vaccines are presented to the cellular system in a more native fashion.

Some embodiments of the present disclosure provide RNA (e.g., mRNA) vaccines that include at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one antigenic polypeptide or an immunogenic fragment thereof (e.g., an immunogenic fragment capable of inducing an immune response to the antigenic polypeptide) and at least one RNA (e.g., mRNA polynucleotide) having an open reading frame encoding a flagellin adjuvant.
In some embodiments, at least one flagellin polypeptide (e.g., encoded flagellin polypeptide) is a flagellin protein. In some embodiments, at least one flagellin polypeptide (e.g., encoded flagellin polypeptide) is an immunogenic flagellin fragment. In some embodiments, at least one flagellin polypeptide and at least one antigenic polypeptide are encoded by a single RNA (e.g., mRNA) polynucleotide. In other embodiments, at least one flagellin polypeptide and at least one antigenic polypeptide are each encoded by a different RNA polynucleotide.
In some embodiments at least one flagellin polypeptide has at least 80%, at least 85%, at least 90%, or at least 95% identity to a flagellin polypeptide having a sequence identified by any one of SEQ ID NO: 54-56.

Provided herein, in some embodiments, is a ribonucleic acid (RNA) (e.g., mRNA) vaccine, comprising at least one (e.g., at least $2,3,4$ or 5) RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one (e.g., at least 2, 3, 4 or 5) hMPV, PIV, RSV, MeV, or a BetaCoV (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH, HCoV-HKU1) antigenic polypeptide, or any combination of two or more of the foregoing antigenic polypeptides. Herein, use of the term "antigenic polypeptide" encompasses immunogenic fragments of the antigenic polypeptide (an immunogenic fragment that is induces (or is capable of inducing) an immune response to hMPV, PIV, RSV, MeV, or a BetaCoV), unless otherwise stated.

Also provided herein, in some embodiments, is a RNA (e.g., mRNA) vaccine comprising at least one (e.g., at least 2, 3, 4 or 5) RNA polynucleotide having an open reading frame encoding at least one (e.g., at least 2, 3, 4 or 5) hMPV, PIV, RSV, MeV, and/or a BetaCoV (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63,

HCoV-NL, HCoV-NH, HCoV-HKU1) antigenic polypeptide or an immunogenic fragment thereof, linked to a signal peptide.

Further provided herein, in some embodiments, is a nucleic acid (e.g., DNA) encoding at least one (e.g., at least 2, 3, 4 or 5) hMPV, PIV, RSV, MeV, and/or a BetaCoV (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH, HCoV-HKU1) RNA (e.g., mRNA) polynucleotide.

Further still, provided herein, in some embodiments, is a method of inducing an immune response in a subject, the method comprising administering to the subject a vaccine comprising at least one (e.g., at least 2, 3, 4 or 5) RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one (e.g., at least $2,3,4$ or 5) hMPV, PIV, RSV, MeV, and/or a BetaCoV (e.g., MERS-CoV, SARSCoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH, HCoV-HKU1) antigenic polypeptide, or any combination of two or more of the foregoing antigenic polypeptides.

hMPV/PIV3/RSV

In some embodiments, a RNA (e.g., mRNA) vaccine comprises at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one hMPV, PIV3 or RSV antigenic polypeptide. In some embodiments, at least one antigenic polypeptide is a hMPV, PIV3 or RSV polyprotein. In some embodiments, at least one antigenic polypeptide is major surface glycoprotein G or an immunogenic fragment thereof. In some embodiments, at least one antigenic polypeptide is Fusion (F) glycoprotein (e.g., Fusion glycoprotein F0, F1 or F2) or an immunogenic fragment thereof. In some embodiments, at least one antigenic polypeptide is major surface glycoprotein G or an immunogenic fragment thereof and F glycoprotein or an immunogenic fragment thereof. In some embodiments, the antigenic polypeptide is nucleoprotein (N) or an immunogenic fragment thereof, phosphoprotein (P) or an immunogenic fragment thereof, large polymerase protein (L) or an immunogenic fragment thereof, matrix protein (M) or an immunogenic fragment thereof, small hydrophobic protein (SH) or an immunogenic fragment thereof nonstructural protein1 (NS1) or an immunogenic fragment thereof, or nonstructural protein 2 (NS2) and an immunogenic fragment thereof.

In some embodiments, at least one hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 (Table 3; see also amino acid sequences of Table 4). In some embodiments, the amino acid sequence of the hMPV antigenic polypeptide is, or is a fragment of, or is a homolog or variant having at least 80% (e.g., $85 \%, 90 \%, 95 \%, 98 \%, 99 \%$) identity to, the amino acid sequence identified by any one of SEQ ID NO: 5-8 (Table 3; see also amino acid sequences of Table 4).

In some embodiments, at least one hMPV antigenic polypeptide is encoded by a nucleic acid sequence identified by any one of SEQ ID NO: 1-4 (Table 2).

In some embodiments, at least one hMPV RNA (e.g., mRNA) polynucleotide is encoded by a nucleic acid sequence, or a fragment of a nucleotide sequence, identified by any one of SEQ ID NO: 1-4 (Table 2). In some embodiments, at least one hMPV RNA (e.g., mRNA) polynucleotide comprises a nucleic acid sequence, or a fragment of a nucleotide sequence, identified by any one of SEQ ID NO: 57-60 (Table 2).

In some embodiments, at least one antigenic polypeptide is obtained from hMPV strain CAN98-75 (CAN75) or the hMPV strain CAN97-83 (CAN83).

In some embodiments, at least one PIV3 antigenic polypeptide comprises hemagglutinin-neuraminidase, Fusion (F) glycoprotein, matrix protein (M), nucleocapsid protein (N), viral replicase (L), non-structural V protein, or an immunogenic fragment thereof.

In some embodiments, at least one PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 (Table 6; see also amino acid sequences of Table 7). In some embodiments, the amino acid sequence of the PIV3 antigenic polypeptide is, or is a fragment of, or is a homolog or variant having at least 80% (e.g., $85 \%, 90 \%, 95 \%, 98 \%, 99 \%$) identity to, the amino acid sequence identified by any one of SEQ ID NO: 12-13 (Table 6 ; see also amino acid sequences of Table 7).

In some embodiments, at least one PIV3 antigenic polypeptide is encoded by a nucleic acid sequence identified by any one of SEQ ID NO: 9-12 (Table 5; see also nucleic acid sequences of Table 7).
In some embodiments, at least one PIV3 RNA (e.g., mRNA) polynucleotide is encoded by a nucleic acid sequence, or a fragment of a nucleotide sequence, identified by any one of SEQ ID NO: 9-12 (Table 5; see also nucleic acid sequences of Table 7). In some embodiments, at least one PIV3 RNA (e.g., mRNA) polynucleotide comprises a nucleic acid sequence, or a fragment of a nucleotide sequence, identified by any one of SEQ ID NO: 61-64 (Table 5).

In some embodiments, at least one antigenic polypeptide is obtained from PIV3 strain HPIV3/Homo sapiens/PER/ FLA4815/2008.

In some embodiments, at least one RSV antigenic polypeptide comprises at least one antigenic polypeptide that comprises glycoprotein G, glycoprotein F, or an immunogenic fragment thereof. In some embodiments, at least one RSV antigenic polypeptide comprises at least one antigenic polypeptide that comprises glycoprotein F and at least one or at least two antigenic polypeptide selected from G, M, N, P, L, SH, M2, NS1 and NS2.

MeV
In some embodiments, a RNA (e.g., mRNA) vaccine comprises at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one MeV antigenic polypeptide. In some embodiments, at least one antigenic polypeptide is a hemagglutinin (HA) protein or an immunogenic fragment thereof. The HA protein may be from MeV strain D3 or B8, for example. In some embodiments, at least one antigenic polypeptide is a Fusion (F) protein or an immunogenic fragment thereof. The F protein may be from MeV strain D3 or B8, for example. In some embodiments, a MeV RNA (e.g., mRNA) vaccines comprises a least one RNA polynucleotide encoding a HA protein and a F protein. The HA and F proteins may be from MeV strain D3 or B8, for example.

In some embodiments, at least one MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 (Table 14). In some embodiments, the amino acid sequence of the MeV antigenic polypeptide is, or is a fragment of, or is a homolog or variant having at least 80% (e.g., $85 \%, 90 \%, 95 \%, 98 \%, 99 \%$) identity to, the amino acid sequence identified by any one of SEQ ID NO: 47-50 (Table 14).

In some embodiments, at least one MeV antigenic polypeptide is encoded by a nucleic acid sequence of SEQ ID NO: 35-46 (Table 13).
In some embodiments, at least one MeV RNA (e.g., mRNA) polynucleotide is encoded by a nucleic acid sequence, or a fragment of a nucleotide sequence, identified
by any one of SEQ ID NO: 35-46 (Table 13). In some embodiments, at least one MeV RNA (e.g., mRNA) polynucleotide comprises a nucleic acid sequence, or a fragment of a nucleotide sequence, identified by any one of SEQ ID NO: 69-80 (Table 13).

In some embodiments, at least one antigenic polypeptide is obtained from MeV strain B3/B3.1, C2, D4, D6, D7, D8, G3, H1, Moraten, Rubeovax, MVi/New Jersey.USA/45.05, MVi/Texas.USA/4.07, AIK-C, MVi/New York.USA/26.09/ 3, MVi/California.USA/16.03, MVi/Virginia.USA/15.09, MVi/California.USA/8.04, or MVi/Pennsylvania.USA/ 20.09 .

BetaCoV

In some embodiments, a RNA (e.g., mRNA) vaccine comprises at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one BetaCoV antigenic polypeptide. In some embodiments, the BetaCoV is MERS-CoV. In some embodiments, the BetaCoV is SARS-CoV. In some embodiments, the BetaCoV is HCoVOC43. In some embodiments, the BetaCoV is HCoV-229E. In some embodiments, the BetaCoV is HCoV-NL63. In some embodiments, the BetaCoV is HCoV-HKU1. In some embodiments, at least one antigenic polypeptide is a betacoronavirus structural protein. For example, a betacoronavirus structural protein may be spike protein (S), envelope protein (E), nucleocapsid protein (N), membrane protein (M) or an immunogenic fragment thereof. In some embodiments, a betacoronavirus structural protein is a spike protein (S). In some embodiments, a betacoronavirus structural protein is a S 1 subunit or a S 2 subunit of spike protein (S) or an immunogenic fragment thereof.

BetaCoV RNA (e.g., mRNA) polynucleotides of the vaccines provided herein may encode viral protein components of betacoronaviruses, for example, accessory proteins, replicase proteins and the like are encompassed by the present disclosure. RNA (e.g., mRNA) vaccines may include RNA polynucleotides encoding at least one accessory protein (e.g., protein 3, protein $4 a$, protein $4 b$, protein 5), at least one replicase protein (e.g., protein 1a, protein 1b), or a combination of at least one accessory protein and at least one replicase protein. The present disclosure also encompasses RNA (e.g., mRNA) vaccines comprising RNA (e.g., mRNA) polynucleotides encoding an accessory protein and/or a replicase protein in combination with at least one structural protein. Due to their surface expression properties, vaccines featuring RNA polynucleotides encoding structural proteins are believed to have preferred immunogenic activity and, hence, may be most suitable for use in the vaccines of the present disclosure.

Some embodiments of the present disclosure provide betacoronavirus (e.g., MERS-CoV, SARS-CoV, HCoVOC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH, HCoV-HKU1 or a combination thereof) vaccines that include at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one betacoronavirus (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH, HCoVHKU1) antigenic polypeptide. Also provided herein are pan-betacoronavirus vaccines. Thus, a betacoronavirus vaccine comprising a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding any one, two, three or four of MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, and HCoV-HKU1, for example, may be effective against any one of, any combination of, or all of, MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E,

HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1. Other betacoronaviruses are encompassed by the present disclosure.

In some embodiments, at least one antigenic polypeptide is a MERS-CoV structural protein. For example, a MERSCoV structural protein may be spike protein (S), envelope protein (E), nucleocapsid protein (N), membrane protein (M) or an immunogenic fragment thereof. In some embodiments, the MERS-CoV structural protein is a spike protein (S) (see, e.g., Coleman C M et al. Vaccine 2014; 32:3169-74, incorporated herein by reference). In some embodiments, the MERS-CoV structural protein is a S1 subunit or a S2 subunit of spike protein (S) or an immunogenic fragment thereof (Li J et al. Viral Immunol 2013; 26(2):126-32; He Y et al. Biochem Biophys Res Commun 2004; 324(2):773-81, each of which is incorporated herein by reference).

In some embodiments, at least one MERS-CoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-28 or 33 (Table 11). In some embodiments, the amino acid sequence of the MERS-CoV antigenic polypeptide is, or is a fragment of, or is a homolog or variant having at least 80% (e.g., $85 \%, 90 \%, 95 \%, 98 \%$, 99%) identity to, the amino acid sequence identified by any one of SEQ ID NO: 24-28 or 33 (Table 11).

In some embodiments, at least one MERS-CoV antigenic polypeptide is encoded by a nucleic acid sequence identified by any one of SEQ ID NO: 20-23 (Table 10).

In some embodiments, at least one MERS-CoV RNA (e.g., mRNA) polynucleotide is encoded by a nucleic acid sequence, or a fragment of a nucleotide sequence, identified by any one of SEQ ID NO: 20-23 (Table 10). In some embodiments, at least one MERS-CoV RNA (e.g., mRNA) polynucleotide comprises a nucleic acid sequence, or a fragment of a nucleotide sequence, identified by any one of SEQ ID NO: 65-68 (Table 10).

In some embodiments, at least one antigenic polypeptide is obtained from MERS-CoV strain Riyadh_14_2013, 2cEMC/2012, or Hasa_1_2013.
In some embodiments, at least one antigenic polypeptide is a SARS-CoV structural protein. For example, a SARSCoV structural protein may be spike protein (S), envelope protein (E), nucleocapsid protein (N), membrane protein (M) or an immunogenic fragment thereof. In some embodiments, the SARS-CoV structural protein is a spike protein (S). In some embodiments, the SARS-CoV structural protein is a S1 subunit or a S2 subunit of spike protein (S) or an immunogenic fragment thereof.

In some embodiments, at least one SARS-CoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 29, 32 or 34 (Table 11). In some embodiments, the amino acid sequence of the SARS-CoV antigenic polypeptide is, or is a fragment of, or is a homolog or variant having at least 80% (e.g., $85 \%, 90 \%, 95 \%, 98 \%$, 99%) identity to, the amino acid sequence identified by any one of SEQ ID NO: 29, 32 or 34 (Table 11).
In some embodiments, at least one antigenic polypeptide is a $\mathrm{HCoV}-\mathrm{OC} 43$ structural protein. For example, a $\mathrm{HCoV}-$ OC43 structural protein may be spike protein (S), envelope protein (E), nucleocapsid protein (N), membrane protein (M) or an immunogenic fragment thereof. In some embodiments, the HCoV-OC43 structural protein is a spike protein (S). In some embodiments, the HCoV-OC43 structural protein is a S1 subunit or a S2 subunit of spike protein (S) or an immunogenic fragment thereof.

In some embodiments, at least one $\mathrm{HCoV}-\mathrm{OC} 43$ antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 30 (Table 11). In some embodi-
ments, the amino acid sequence of the HCoV-OC43 antigenic polypeptide is, or is a fragment of, or is a homolog or variant having at least 80% (e.g., $85 \%, 90 \%, 95 \%, 98 \%$, 99%) identity to, the amino acid sequence identified by any one of SEQ ID NO: 30 (Table 11).

In some embodiments, an antigenic polypeptide is a HCoV-HKU1 structural protein. For example, a HCoVHKU1 structural protein may be spike protein (S), envelope protein (E), nucleocapsid protein (N), membrane protein (M) or an immunogenic fragment thereof. In some embodiments, the HCoV-HKU1 structural protein is a spike protein (S). In some embodiments, the HCoV-HKU1 structural protein is a S 1 subunit or a S2 subunit of spike protein (S) or an immunogenic fragment thereof.

In some embodiments, at least one HCoV-HKU1 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 31 (Table 11). In some embodiments, the amino acid sequence of the HCoV-HKU1 antigenic polypeptide is, or is a fragment of, or is a homolog or variant having at least 80% (e.g., $85 \%, 90 \%, 95 \%, 98 \%$, 99%) identity to, the amino acid sequence identified by any one of SEQ ID NO: 31 (Table 11).

In some embodiments, an open reading frame of a RNA (e.g., mRNA) vaccine is codon-optimized. In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide having an amino acid sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, or 47-50 (Tables $3,6,11$ and 14 ; see also amino acid sequences of Tables 4, 7, 12 and 15) and is codon optimized mRNA.

In some embodiments, a RNA (e.g., mRNA) vaccine further comprising an adjuvant.

Tables 4, 7, 12 and 15 provide National Center for Biotechnology Information (NCBI) accession numbers of interest. It should be understood that the phrase "an amino acid sequence of Tables $4,7,12$ and 15 " refers to an amino acid sequence identified by one or more NCBI accession numbers listed in Tables 4, 7, 12 and 15. Each of the amino acid sequences, and variants having greater than 95% identity or greater than 98% identity to each of the amino acid sequences encompassed by the accession numbers of Tables 4, 7, 12 and 15 are included within the constructs (polynucleotides/polypeptides) of the present disclosure.

In some embodiments, at least one mRNA polynucleotide is encoded by a nucleic acid having a sequence identified by any one of SEQ ID NO: 1-4, 9-12, 20-23, or 35-46 (Tables 2, 5, 10 and 13 ; see also nucleic acid sequences of Table 7) and having less than 80% identity to wild-type mRNA sequence. In some embodiments, at least one mRNA polynucleotide is encoded by a nucleic acid having a sequence identified by any one of SEQ ID NO: 1-4, 9-12, 20-23, or 35-46 (Tables 2, 5, 10 and 13; see also nucleic acid sequences of Table 7) and having less than $75 \%, 85 \%$ or 95% identity to a wild-type mRNA sequence. In some embodiments, at least one mRNA polynucleotide is encoded by a nucleic acid having a sequence identified by any one of SEQ ID NO: 1-4, 9-12, 20-23, or 35-46 (Tables 2, 5, 10 and 13; see also nucleic acid sequences of Table 7) and having less than $50-80 \%, 60-80 \%, 40-80 \%, 30-80 \%, 70-80 \%$, $75-80 \%$ or $78-80 \%$ identity to wild-type mRNA sequence. In some embodiments, at least one mRNA polynucleotide is encoded by a nucleic acid having a sequence identified by any one of SEQ ID NO: 1-4, 9-12, 20-23, or 35-46 (Tables 2,5,10 and 13; see also nucleic acid sequences of Table 7) and having less than $40-85 \%, 50-85 \%, 60-85 \%, 30-85 \%$, $70-85 \%, 75-85 \%$ or $80-85 \%$ identity to wild-type mRNA sequence. In some embodiments, at least one mRNA polynucleotide is encoded by a nucleic acid having a sequence
identified by any one of SEQ ID NO: 1-4, 9-12, 20-23, or 35-46 (Tables 2, 5, 10 and 13; see also nucleic acid sequences of Table 7) and having less than $40-90 \%, 50-90 \%$, $60-90 \%, 30-90 \%, 70-90 \%, 75-90 \%, 80-90 \%$, or $85-90 \%$ identity to wild-type mRNA sequence.
In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide having an amino acid sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, or 47-50 (Tables 3, 6, 11 and 14; see also amino acid sequences of Tables 4, 7, 12 and 15) and having at least 80% (e.g., $85 \%, 90 \%, 95 \%, 98 \%, 99 \%$) identity to wild-type mRNA sequence, but does not include wild-type mRNA sequence.
In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide having an amino acid sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, or 47-50 (Tables 3, 6, 11 and 14; see also amino acid sequences of Tables $4,7,12$ and 15) and has less than $95 \%, 90 \%, 85 \%, 80 \%$ or 75% identity to wild-type mRNA sequence.
In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide having an amino acid sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, or 47-50 (Tables 3, 6, 11 and 14; see also amino acid sequences of Tables 4, 7, 12 and 15) and has $30-80 \%, 40-80 \%, 50-80 \%, 60-80 \%, 70-80 \%, 75-80 \%$ or $78-80 \%$, $30-85 \%, 40-85 \%, 50-805 \%, 60-85 \%, 70-85 \%$, $75-85 \%$ or $78-85 \%, 30-90 \%, 40-90 \%$, $50-90 \%, 60-90 \%$, $70-90 \%, 75-90 \%, 80-90 \%$ or $85-90 \%$ identity to wild-type mRNA sequence.
In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide having at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, or 47-50 (Tables 3, 6, 11 and 14; see also amino acid sequences of Tables 4, 7, 12 and 15). In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide having $95 \%-99 \%$ identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, or 47-50 (Tables 3, 6,11 and 14 ; see also amino acid sequences of Tables 4, 7, 12 and 15).

In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide having at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, or 47-50 (Tables 3, 6, 11 and 14; see also amino acid sequences of Tables 4, 7, 12 and 15) and having membrane fusion activity. In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide having $95 \%-99 \%$ identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, or 47-50 (Tables 3, 6, 11 and 14 ; see also amino acid sequences of Tables $4,7,12$ and 15) and having membrane fusion activity.

In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide (e.g., at least one hMPV antigenic polypeptide, at least one PIV3 antigenic polypeptide, at least one RSV antigenic polypeptide, at least one MeV antigenic polypeptide, or at least one BetaCoV antigenic polypeptide, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic polypeptides) that attaches to cell receptors.

In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide (e.g., at least one
hMPV antigenic polypeptide, at least one PIV3 antigenic polypeptide, at least one RSV antigenic polypeptide, at least one MeV antigenic polypeptide, or at least one BetaCoV antigenic polypeptide, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic polypeptides) that causes fusion of viral and cellular membranes.

In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide (e.g., at least one hMPV antigenic polypeptide, at least one PIV3 antigenic

polypeptide, at least one RSV antigenic polypeptide, at least one MeV antigenic polypeptide, or at least one BetaCoV antigenic polypeptide, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic polypeptides) that is responsible for binding of the virus to a cell being infected.

Some embodiments of the present disclosure provide a vaccine that includes at least one ribonucleic acid (RNA) (e.g., mRNA) polynucleotide having an open reading frame encoding at least one antigenic polypeptide (e.g., at least one hMPV antigenic polypeptide, at least one PIV3 antigenic polypeptide, at least one RSV antigenic polypeptide, at least one MeV antigenic polypeptide, or at least one BetaCoV antigenic polypeptide, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic polypeptides), at least one 5^{\prime} terminal cap and at least one chemical modification, formulated within a lipid nanoparticle.

In some embodiments, a 5^{\prime} terminal cap is $7 \mathrm{mG}\left(5^{\prime}\right) \mathrm{ppp}$ (5') $\mathrm{N} / \mathrm{mpNp}$.

In some embodiments, at least one chemical modification is selected from pseudouridine, N1-methylpseudouridine, N1-ethylpseudouridine, 2 -thiouridine, 4 '-thiouridine, 5-methylcytosine, $\quad 5$-methyluridine, $\quad 2$-thio-1-methyl-1-deaza-pseudouridine, $\quad 2$-thio-1-methyl-pseudouridine, 2-thio-5-aza-uridine, 2-thio-dihydropseudouridine, 2-thiodihydrouridine, 2 -thio-pseudouridine, 4-methoxy-2-thiopseudouridine, 4-methoxy-pseudouridine, 4-thio-1-methylpseudouridine, $\quad 4$-thio-pseudouridine, $\quad 5$-aza-uridine, dihydropseudouridine, 5 -methoxyuridine and 2^{\prime}-O-methyl uridine. In some embodiments, the chemical modification is in the 5-position of the uracil. In some embodiments, the chemical modification is a N1-methylpseudouridine. In some embodiments, the chemical modification is a N1-ethylpseudouridine.

In some embodiments, a lipid nanoparticle comprises a cationic lipid, a PEG-modified lipid, a sterol and a noncationic lipid. In some embodiments, a cationic lipid is an ionizable cationic lipid and the non-cationic lipid is a neutral lipid, and the sterol is a cholesterol. In some embodiments,
a cationic lipid is selected from the group consisting of 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), (12Z,15Z)—N,N-dimethyl-2-nonylhenicosa-12,15-dien-1amine (L608), and N,N-dimethyl-1-[(1S,2R)-2-octylcyclo-propyl]heptadecan-8-amine (L530).

In some embodiments, the lipid is (L608). In some embodiments, the lipid is
(L608)

In some embodiments, a lipid nanoparticle comprises compounds of Formula (I) and/or Formula (II), discussed below.
In some embodiments, a repiratory virus RNA (e.g., mRNA) vaccine is formulated in a lipid nanoparticle that comprises a compound selected from Compounds $3,18,20$, $25,26,29,30,60,108-112$ and 122 , described below.

Some embodiments of the present disclosure provide a vaccine that includes at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one antigenic polypeptide (e.g., at least one hMPV antigenic polypeptide, at least one PIV3 antigenic polypeptide, at least one RSV antigenic polypeptide, at least one MeV antigenic polypeptide, or at least one BetaCoV antigenic polypeptide, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic polypeptides), wherein at least 80% (e.g., $85 \%, 90 \%, 95 \%, 98 \%, 99 \%$) of the uracil in the open reading frame have a chemical modification, optionally wherein the vaccine is formulated in a lipid nanoparticle (e.g., a lipid nanoparticle comprises a cationic lipid, a PEG-modified lipid, a sterol and a non-cationic lipid).

In some embodiments, 100% of the uracil in the open reading frame have a chemical modification. In some embodiments, a chemical modification is in the 5-position of the uracil. In some embodiments, a chemical modification is a N1-methyl pseudouridine. In some embodiments, 100% of the uracil in the open reading frame have a N1-methyl pseudouridine in the 5 -position of the uracil.

In some embodiments, an open reading frame of a RNA (e.g., mRNA) polynucleotide encodes at least two antigenic polypeptides (e.g., at least two hMPV antigenic polypeptides, at least two PIV3 antigenic polypeptides, at least two

RSV antigenic polypeptides, at least two MeV antigenic polypeptides, or at least two BetaCoV antigenic polypeptides, e.g., selected from MERS-CoV, SARS-CoV, HCoVOC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic polypeptides). In some embodiments, the open reading frame encodes at least five or at least ten antigenic polypeptides. In some embodiments, the open reading frame encodes at least 100 antigenic polypeptides. In some embodiments, the open reading frame encodes 2-100 antigenic polypeptides.

In some embodiments, a vaccine comprises at least two RNA (e.g., mRNA) polynucleotides, each having an open reading frame encoding at least one antigenic polypeptide (e.g., at least one hMPV antigenic polypeptide, at least one PIV3 antigenic polypeptide, at least one RSV antigenic polypeptide, at least one MeV antigenic polypeptide, or at least one BetaCoV antigenic polypeptide, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic polypeptides). In some embodiments, the vaccine comprises at least five or at least ten RNA (e.g., mRNA) polynucleotides, each having an open reading frame encoding at least one antigenic polypeptide or an immunogenic fragment thereof. In some embodiments, the vaccine comprises at least 100 RNA (e.g., mRNA) polynucleotides, each having an open reading frame encoding at least one antigenic polypeptide. In some embodiments, the vaccine comprises 2-100 RNA (e.g., mRNA) polynucleotides, each having an open reading frame encoding at least one antigenic polypeptide.

In some embodiments, at least one antigenic polypeptide (e.g., at least one hMPV antigenic polypeptide, at least one PIV3 antigenic polypeptide, at least one RSV antigenic polypeptide, at least one MeV antigenic polypeptide, or at least one BetaCoV antigenic polypeptide, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic polypeptides) is fused to a signal peptide. In some embodiments, the signal peptide is selected from: a HuIgGk signal peptide (METPAQLLFLLLLWLPDTTG; SEQ ID NO: 15); IgE heavy chain epsilon-1 signal peptide (MDWTWILFLVAAATRVHS; SEQ ID NO: 16); Japanese encephalitis PRM signal sequence (MLGSNSGQRVVFTILLLLVAPAYS; SEQ ID NO: 17), VSVg protein signal sequence (MKCLLYLAFLFIGVNCA; SEQ ID NO: 18) and Japanese encephalitis JEV signal sequence (MWLVSLAIVTACAGA; SEQ ID NO: 19).

In some embodiments, the signal peptide is fused to the N-terminus of at least one antigenic polypeptide. In some embodiments, a signal peptide is fused to the C-terminus of at least one antigenic polypeptide.

In some embodiments, at least one antigenic polypeptide (e.g., at least one hMPV antigenic polypeptide, at least one PIV3 antigenic polypeptide, at least one RSV antigenic polypeptide, at least one MeV antigenic polypeptide, or at least one BetaCoV antigenic polypeptide, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic polypeptides) comprises a mutated N -linked glycosylation site.

Also provided herein is a RNA (e.g., mRNA) vaccine of any one of the foregoing paragraphs (e.g., a hMPV vaccine, a PIV3 vaccine, a RSV vaccine, a MeV vaccine, or a

BetaCoV vaccine, e.g., selected from MERS-CoV, SARSCoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing vaccines), formulated in a nanoparticle (e.g., a lipid nanoparticle).

In some embodiments, the nanoparticle has a mean diameter of $50-200 \mathrm{~nm}$. In some embodiments, the nanoparticle is a lipid nanoparticle. In some embodiments, the lipid nanoparticle comprises a cationic lipid, a PEG-modified lipid, a sterol and a non-cationic lipid. In some embodiments, the lipid nanoparticle comprises a molar ratio of about $20-60 \%$ cationic lipid, $0.5-15 \%$ PEG-modified lipid, $25-55 \%$ sterol, and 25% non-cationic lipid. In some embodiments, the cationic lipid is an ionizable cationic lipid and the non-cationic lipid is a neutral lipid, and the sterol is a cholesterol. In some embodiments, the cationic lipid is selected from 2,2-dilinoleyl-4-dimethylaminoethy1-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319).

In some embodiments, a lipid nanoparticle comprises compounds of Formula (I) and/or Formula (II), as discussed below.

In some embodiments, a lipid nanoparticle comprises Compounds $3,18,20,25,26,29,30,60,108-112$, or 122 , as discussed below.

In some embodiments, the nanoparticle has a polydispersity value of less than 0.4 (e.g., less than $0.3,0.2$ or 0.1).

In some embodiments, the nanoparticle has a net neutral charge at a neutral pH value.

In some embodiments, the respiratory virus vaccine is multivalent.
Some embodiments of the present disclosure provide methods of inducing an antigen specific immune response in a subject, comprising administering to the subject any of the RNA (e.g., mRNA) vaccine as provided herein in an amount effective to produce an antigen-specific immune response. In some embodiments, the RNA (e.g., mRNA) vaccine is a hMPV vaccine, a PIV3 vaccine, a RSV vaccine, a MeV vaccine, or a BetaCoV vaccine, e.g., selected from MERSCoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, $\mathrm{HCoV}-\mathrm{NL}, \mathrm{HCoV}-\mathrm{NH}$ and $\mathrm{HCoV}-\mathrm{HKU} 1$ vaccines. In some embodiments, the RNA (e.g., mRNA) vaccine is a combination vaccine comprising a combination of any two or more of the foregoing vaccines.

In some embodiments, an antigen-specific immune response comprises a T cell response or a B cell response.
In some embodiments, a method of producing an antigen-
specific immune response comprises administering to a subject a single dose (no booster dose) of a RNA (e.g., mRNA) vaccine of the present disclosure. In some embodiments, the RNA (e.g., mRNA) vaccine is a hMPV vaccine, a PIV3 vaccine, a RSV vaccine, a MeV vaccine, or a BetaCoV vaccine, e.g., selected from MERS-CoV, SARSCoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, $\mathrm{HCoV}-\mathrm{NH}$ and HCoV-HKU1 vaccines. In some embodiments, the RNA (e.g., mRNA) vaccine is a combination vaccine comprising a combination of any two or more of the foregoing vaccines.
In some embodiments, a method further comprises administering to the subject a second (booster) dose of a RNA (e.g., mRNA) vaccine. Additional doses of a RNA (e.g., mRNA) vaccine may be administered.

In some embodiments, the subjects exhibit a seroconversion rate of at least 80% (e.g., at least 85%, at least 90%, or at least 95%) following the first dose or the second (booster)
dose of the vaccine. Seroconversion is the time period during which a specific antibody develops and becomes detectable in the blood. After seroconversion has occurred, a virus can be detected in blood tests for the antibody. During an infection or immunization, antigens enter the blood, and the immune system begins to produce antibodies in response. Before seroconversion, the antigen itself may or may not be detectable, but antibodies are considered absent. During seroconversion, antibodies are present but not yet detectable. Any time after seroconversion, the antibodies can be detected in the blood, indicating a prior or current infection.

In some embodiments, a RNA (e.g., mRNA) vaccine is administered to a subject by intradermal or intramuscular injection.

Some embodiments, of the present disclosure provide methods of inducing an antigen specific immune response in a subject, including administering to a subject a RNA (e.g., mRNA) vaccine in an effective amount to produce an antigen specific immune response in a subject. Antigenspecific immune responses in a subject may be determined, in some embodiments, by assaying for antibody titer (for titer of an antibody that binds to a hMPV, PIV3, RSV, MeV and/or BetaCoV antigenic polypeptide) following administration to the subject of any of the RNA (e.g., mRNA) vaccines of the present disclosure. In some embodiments, the anti-antigenic polypeptide antibody titer produced in the subject is increased by at least $1 \log$ relative to a control. In some embodiments, the anti-antigenic polypeptide antibody titer produced in the subject is increased by 1-3 log relative to a control.

In some embodiments, the anti-antigenic polypeptide antibody titer produced in a subject is increased at least 2 times relative to a control. In some embodiments, the anti-antigenic polypeptide antibody titer produced in the subject is increased at least 5 times relative to a control. In some embodiments, the anti-antigenic polypeptide antibody titer produced in the subject is increased at least 10 times relative to a control. In some embodiments, the anti-antigenic polypeptide antibody titer produced in the subject is increased 2-10 times relative to a control.

In some embodiments, the control is an anti-antigenic polypeptide antibody titer produced in a subject who has not been administered a RNA (e.g., mRNA) vaccine of the present disclosure. In some embodiments, the control is an anti-antigenic polypeptide antibody titer produced in a subject who has been administered a live attenuated or inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine (see, e.g., Ren J. et al. J of Gen. Virol. 2015; 96: 1515-1520), or wherein the control is an anti-antigenic polypeptide antibody titer produced in a subject who has been administered a recombinant or purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine. In some embodiments, the control is an anti-antigenic polypeptide antibody titer produced in a subject who has been administered a hMPV, PIV3, RSV, MeV and/or BetaCoV virus-like particle (VLP) vaccine (see, e.g., Cox R G et al., J Virol. 2014 June; 88(11): 6368-6379).

A RNA (e.g., mRNA) vaccine of the present disclosure is administered to a subject in an effective amount (an amount effective to induce an immune response). In some embodiments, the effective amount is a dose equivalent to an at least 2 -fold, at least 4 -fold, at least 10 -fold, at least 100 -fold, at least 1000 -fold reduction in the standard of care dose of a recombinant hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine, wherein the anti-antigenic polypeptide antibody titer produced in the subject is equivalent to an
anti-antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine, a purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine, a live attenuated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine, an inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine, or a hMPV, PIV3, RSV, MeV and/or BetaCoV VLP vaccine. In some embodiments, the effective amount is a dose equivalent to 2-1000-fold reduction in the standard of care dose of a recombinant hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine, wherein the anti-antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine, a purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine, a live attenuated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine, an inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine, or a hMPV, PIV3, RSV, MeV and/or BetaCoV VLP vaccine.

In some embodiments, the control is an anti-antigenic polypeptide antibody titer produced in a subject who has been administered a virus-like particle (VLP) vaccine comprising structural proteins of hMPV, PIV3, RSV, MeV and/or BetaCoV.

In some embodiments, the RNA (e.g., mRNA) vaccine is formulated in an effective amount to produce an antigen specific immune response in a subject.

In some embodiments, the effective amount is a total dose of $25 \mu \mathrm{~g}$ to $1000 \mu \mathrm{~g}$, or $50 \mu \mathrm{~g}$ to $1000 \mu \mathrm{~g}$. In some embodiments, the effective amount is a total dose of $100 \mu \mathrm{~g}$. In some embodiments, the effective amount is a dose of 25 $\mu \mathrm{g}$ administered to the subject a total of two times. In some embodiments, the effective amount is a dose of $100 \mu \mathrm{~g}$ administered to the subject a total of two times. In some embodiments, the effective amount is a dose of $400 \mu \mathrm{~g}$ administered to the subject a total of two times. In some embodiments, the effective amount is a dose of $500 \mu \mathrm{~g}$ administered to the subject a total of two times.

In some embodiments, the efficacy (or effectiveness) of a RNA (e.g., mRNA) vaccine is greater than 60%. In some embodiments, the RNA (e.g., mRNA) polynucleotide of the vaccine at least one hMPV antigenic polypeptide, at least one PIV3 antigenic polypeptide, at least one RSV antigenic polypeptide, at least one MeV antigenic polypeptide, at least one BetaCoV antigenic polypeptide, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic polypeptides.

Vaccine efficacy may be assessed using standard analyses (see, e.g., Weinberg et al., J Infect Dis. 2010 Jun. 1; 201(11):1607-10). For example, vaccine efficacy may be measured by double-blind, randomized, clinical controlled trials. Vaccine efficacy may be expressed as a proportionate reduction in disease attack rate (AR) between the unvaccinated (ARU) and vaccinated (ARV) study cohorts and can be calculated from the relative risk (RR) of disease among the vaccinated group with use of the following formulas:

```
Efficacy=(ARU-ARV)/ARUx100; and
Efficacy=(1-RR)\times100.
```

Likewise, vaccine effectiveness may be assessed using standard analyses (see, e.g., Weinberg et al., J Infect Dis. 2010 Jun. 1; 201(11):1607-10). Vaccine effectiveness is an
assessment of how a vaccine (which may have already proven to have high vaccine efficacy) reduces disease in a population. This measure can assess the net balance of benefits and adverse effects of a vaccination program, not just the vaccine itself, under natural field conditions rather than in a controlled clinical trial. Vaccine effectiveness is proportional to vaccine efficacy (potency) but is also affected by how well target groups in the population are immunized, as well as by other non-vaccine-related factors that influence the 'real-world' outcomes of hospitalizations, ambulatory visits, or costs. For example, a retrospective case control analysis may be used, in which the rates of vaccination among a set of infected cases and appropriate controls are compared. Vaccine effectiveness may be expressed as a rate difference, with use of the odds ratio (OR) for developing infection despite vaccination:

Effectiveness=(1-OR) $\times 100$.

In some embodiments, the efficacy (or effectiveness) of a RNA (e.g., mRNA) vaccine is at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, or at least 90%.

In some embodiments, the vaccine immunizes the subject against hMPV, PIV3, RSV, MeV, BetaCoV (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1), or any combination of two or more of the foregoing viruses for up to 2 years. In some embodiments, the vaccine immunizes the subject against hMPV, PIV3, RSV, MeV, BetaCoV (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1), or any combination of two or more of the foregoing viruses for more than 2 years, more than 3 years, more than 4 years, or for 5-10 years.

In some embodiments, the subject is about 5 years old or younger. For example, the subject may be between the ages of about 1 year and about 5 years (e.g., about 1, 2, 3, 5 or 5 years), or between the ages of about 6 months and about 1 year (e.g., about $6,7,8,9,10,11$ or 12 months). In some embodiments, the subject is about 12 months or younger (e.g., 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 months or 1 month). In some embodiments, the subject is about 6 months or younger.

In some embodiments, the subject was born full term (e.g., about 37-42 weeks). In some embodiments, the subject was born prematurely, for example, at about 36 weeks of gestation or earlier (e.g., about 36, 35, 34, 33, 32, 31, 30, 29, $28,27,26$ or 25 weeks). For example, the subject may have been born at about 32 weeks of gestation or earlier. In some embodiments, the subject was born prematurely between about 32 weeks and about 36 weeks of gestation. In such subjects, a RNA (e.g., mRNA) vaccine may be administered later in life, for example, at the age of about 6 months to about 5 years, or older.

In some embodiments, the subject is pregnant (e.g., in the first, second or third trimester) when administered an RNA (e.g., mRNA) vaccine. Viruses such as hMPV, PIV3 and RSV causes infections of the lower respiratory tract, mainly in infants and young children. One-third of RSV related deaths, for example, occur in the first year of life, with 99 percent of these deaths occurring in low-resource countries. It's so widespread in the United States that nearly all children become infected with the virus before their second birthdays. Thus, the present disclosure provides RNA (e.g., mRNA) vaccines for maternal immunization to improve mother-to-child transmission of protection against the virus.

In some embodiments, the subject is a young adult between the ages of about 20 years and about 50 years (e.g., about $20,25,30,35,40,45$ or 50 years old).

In some embodiments, the subject is an elderly subject about 60 years old, about 70 years old, or older (e.g., about $60,65,70,75,80,85$ or 90 years old).
In some embodiments, the subject is has a chronic pulmonary disease (e.g., chronic obstructive pulmonary disease (COPD) or asthma). Two forms of COPD include chronic bronchitis, which involves a long-term cough with mucus, and emphysema, which involves damage to the lungs over time. Thus, a subject administered a RNA (e.g., mRNA) vaccine may have chronic bronchitis or emphysema.

In some embodiments, the subject has been exposed to hMPV, PIV3, RSV, MeV, BetaCoV (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1), or any combination of two or more of the foregoing viruses; the subject is infected with hMPV, PIV3, RSV, MeV, BetaCoV (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1), or any combination of two or more of the foregoing viruses; or subject is at risk of infection by hMPV, PIV3, RSV, MeV, BetaCoV (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1), or any combination of two or more of the foregoing viruses.

In some embodiments, the subject is immunocompromised (has an impaired immune system, e.g., has an immune disorder or autoimmune disorder).
In some embodiments the nucleic acid vaccines described herein are chemically modified. In other embodiments the nucleic acid vaccines are unmodified.

Yet other aspects provide compositions for and methods of vaccinating a subject comprising administering to the subject a nucleic acid vaccine comprising one or more RNA polynucleotides having an open reading frame encoding a first respiratory virus antigenic polypeptide, wherein the RNA polynucleotide does not include a stabilization element, and wherein an adjuvant is not coformulated or co-administered with the vaccine.

In other aspects the invention is a composition for or method of vaccinating a subject comprising administering to the subject a nucleic acid vaccine comprising one or more RNA polynucleotides having an open reading frame encoding a first antigenic polypeptide wherein a dosage of between $10 \mu \mathrm{~g} / \mathrm{kg}$ and $400 \mu \mathrm{~g} / \mathrm{kg}$ of the nucleic acid vaccine is administered to the subject. In some embodiments the dosage of the RNA polynucleotide is $1-5 \mu \mathrm{~g}, 5-10 \mu \mathrm{~g}, 10-15$ $\mu \mathrm{g}, 15-20 \mu \mathrm{~g}, 10-25 \mu \mathrm{~g}, 20-25 \mu \mathrm{~g}, 20-50 \mu \mathrm{~g}, 30-50 \mu \mathrm{~g}, 40-50$ $\mu \mathrm{g}, 40-60 \mu \mathrm{~g}, 60-80 \mu \mathrm{~g}, 60-100 \mu \mathrm{~g}, 50-100 \mu \mathrm{~g}, 80-120 \mu \mathrm{~g}$, $40-120 \mu \mathrm{~g}, 40-150 \mu \mathrm{~g}, 50-150 \mu \mathrm{~g}, 50-200 \mu \mathrm{~g}, 80-200 \mu \mathrm{~g}$, $100-200 \mu \mathrm{~g}, 120-250 \mu \mathrm{~g}, 150-250 \mu \mathrm{~g}, 180-280 \mu \mathrm{~g}, 200-300$ $\mu \mathrm{g}, 50-300 \mu \mathrm{~g}, 80-300 \mu \mathrm{~g}, 100-300 \mu \mathrm{~g}, 40-300 \mu \mathrm{~g}, 50-350$ $\mu \mathrm{g}, 100-350 \mu \mathrm{~g}, 200-350 \mu \mathrm{~g}, 300-350 \mu \mathrm{~g}, 320-400 \mu \mathrm{~g}$, $40-380 \mu \mathrm{~g}, 40-100 \mu \mathrm{~g}, 100-400 \mu \mathrm{~g}, 200-400 \mu \mathrm{~g}$, or $300-400$ $\mu \mathrm{g}$ per dose. In some embodiments, the nucleic acid vaccine is administered to the subject by intradermal or intramuscular injection. In some embodiments, the nucleic acid vaccine is administered to the subject on day zero. In some embodiments, a second dose of the nucleic acid vaccine is administered to the subject on day twenty one.

In some embodiments, a dosage of 25 micrograms of the RNA polynucleotide is included in the nucleic acid vaccine administered to the subject. In some embodiments, a dosage of 100 micrograms of the RNA polynucleotide is included in the nucleic acid vaccine administered to the subject. In some
embodiments, a dosage of 50 micrograms of the RNA polynucleotide is included in the nucleic acid vaccine administered to the subject. In some embodiments, a dosage of 75 micrograms of the RNA polynucleotide is included in the nucleic acid vaccine administered to the subject. In some embodiments, a dosage of 150 micrograms of the RNA polynucleotide is included in the nucleic acid vaccine administered to the subject. In some embodiments, a dosage of 400 micrograms of the RNA polynucleotide is included in the nucleic acid vaccine administered to the subject. In some embodiments, a dosage of 200 micrograms of the RNA polynucleotide is included in the nucleic acid vaccine administered to the subject. In some embodiments, the RNA polynucleotide accumulates at a 100 fold higher level in the local lymph node in comparison with the distal lymph node. In other embodiments the nucleic acid vaccine is chemically modified and in other embodiments the nucleic acid vaccine is not chemically modified.

Aspects of the invention provide a nucleic acid vaccine comprising one or more RNA polynucleotides having an open reading frame encoding a first antigenic polypeptide, wherein the RNA polynucleotide does not include a stabilization element, and a pharmaceutically acceptable carrier or excipient, wherein an adjuvant is not included in the vaccine. In some embodiments, the stabilization element is a histone stem-loop. In some embodiments, the stabilization element is a nucleic acid sequence having increased GC content relative to wild type sequence.

Aspects of the invention provide nucleic acid vaccines comprising one or more RNA polynucleotides having an open reading frame encoding a first antigenic polypeptide, wherein the RNA polynucleotide is present in the formulation for in vivo administration to a host, which confers an antibody titer superior to the criterion for seroprotection for the first antigen for an acceptable percentage of human subjects. In some embodiments, the antibody titer produced by the mRNA vaccines of the invention is a neutralizing antibody titer. In some embodiments the neutralizing antibody titer is greater than a protein vaccine. In other embodiments the neutralizing antibody titer produced by the mRNA vaccines of the invention is greater than an adjuvanted protein vaccine. In yet other embodiments the neutralizing antibody titer produced by the mRNA vaccines of the invention is $1,000-10,000,1,200-10,000,1,400-10,000$, $1,500-10,000,1,000-5,000,1,000-4,000,1,800-10,000$, $2000-10,000,2,000-5,000,2,000-3,000,2,000-4,000,3,000-$ $5,000,3,000-4,000$, or $2,000-2,500$. A neutralization titer is typically expressed as the highest serum dilution required to achieve a 50% reduction in the number of plaques.

Also provided are nucleic acid vaccines comprising one or more RNA polynucleotides having an open reading frame encoding a first antigenic polypeptide, wherein the RNA polynucleotide is present in a formulation for in vivo administration to a host for eliciting a longer lasting high antibody titer than an antibody titer elicited by an mRNA vaccine having a stabilizing element or formulated with an adjuvant and encoding the first antigenic polypeptide. In some embodiments, the RNA polynucleotide is formulated to produce a neutralizing antibodies within one week of a single administration. In some embodiments, the adjuvant is selected from a cationic peptide and an immunostimulatory nucleic acid. In some embodiments, the cationic peptide is protamine.

Aspects provide nucleic acid vaccines comprising one or more RNA polynucleotides having an open reading frame comprising at least one chemical modification or optionally no nucleotide modification, the open reading frame encod-
ing a first antigenic polypeptide, wherein the RNA polynucleotide is present in the formulation for in vivo administration to a host such that the level of antigen expression in the host significantly exceeds a level of antigen expression produced by an mRNA vaccine having a stabilizing element or formulated with an adjuvant and encoding the first antigenic polypeptide.

Other aspects provide nucleic acid vaccines comprising one or more RNA polynucleotides having an open reading frame comprising at least one chemical modification or optionally no nucleotide modification, the open reading frame encoding a first antigenic polypeptide, wherein the vaccine has at least 10 fold less RNA polynucleotide than is required for an unmodified mRNA vaccine to produce an equivalent antibody titer. In some embodiments, the RNA polynucleotide is present in a dosage of $25-100$ micrograms.
Aspects of the invention also provide a unit of use vaccine, comprising between 10 ug and 400 ug of one or more RNA polynucleotides having an open reading frame comprising at least one chemical modification or optionally no nucleotide modification, the open reading frame encoding a first antigenic polypeptide, and a pharmaceutically acceptable carrier or excipient, formulated for delivery to a human subject. In some embodiments, the vaccine further comprises a cationic lipid nanoparticle.

Aspects of the invention provide methods of creating, maintaining or restoring antigenic memory to a respiratory virus strain in an individual or population of individuals comprising administering to said individual or population an antigenic memory booster nucleic acid vaccine comprising (a) at least one RNA polynucleotide, said polynucleotide comprising at least one chemical modification or optionally no nucleotide modification and two or more codon-optimized open reading frames, said open reading frames encoding a set of reference antigenic polypeptides, and (b) optionally a pharmaceutically acceptable carrier or excipient. In some embodiments, the vaccine is administered to the individual via a route selected from the group consisting of intramuscular administration, intradermal administration and subcutaneous administration. In some embodiments, the administering step comprises contacting a muscle tissue of the subject with a device suitable for injection of the composition. In some embodiments, the administering step comprises contacting a muscle tissue of the subject with a device suitable for injection of the composition in combination with electroporation.
Aspects of the invention provide methods of vaccinating a subject comprising administering to the subject a single dosage of between $25 \mathrm{ug} / \mathrm{kg}$ and $400 \mathrm{ug} / \mathrm{kg}$ of a nucleic acid vaccine comprising one or more RNA polynucleotides having an open reading frame encoding a first antigenic polypeptide in an effective amount to vaccinate the subject.

Other aspects provide nucleic acid vaccines comprising one or more RNA polynucleotides having an open reading frame comprising at least one chemical modification, the open reading frame encoding a first antigenic polypeptide, wherein the vaccine has at least 10 fold less RNA polynucleotide than is required for an unmodified mRNA vaccine to produce an equivalent antibody titer. In some embodiments, the RNA polynucleotide is present in a dosage of 25-100 micrograms.

Other aspects provide nucleic acid vaccines comprising an LNP formulated RNA polynucleotide having an open reading frame comprising no nucleotide modifications (unmodified), the open reading frame encoding a first antigenic polypeptide, wherein the vaccine has at least 10 fold less RNA polynucleotide than is required for an unmodified
mRNA vaccine not formulated in a LNP to produce an equivalent antibody titer. In some embodiments, the RNA polynucleotide is present in a dosage of $25-100$ micrograms.

The data presented in the Examples demonstrate significant enhanced immune responses using the formulations of the invention. Both chemically modified and unmodified RNA vaccines are useful according to the invention. Surprisingly, in contrast to prior art reports that it was preferable to use chemically unmodified mRNA formulated in a carrier for the production of vaccines, it is described herein that chemically modified mRNA-LNP vaccines required a much lower effective mRNA dose than unmodified mRNA, i.e., tenfold less than unmodified mRNA when formulated in carriers other than LNP. Both the chemically modified and unmodified RNA vaccines of the invention produce better immune responses than mRNA vaccines formulated in a different lipid carrier.

In other aspects the invention encompasses a method of treating an elderly subject age 60 years or older comprising administering to the subject a nucleic acid vaccine comprising one or more RNA polynucleotides having an open reading frame encoding a respiratory virus antigenic polypeptide in an effective amount to vaccinate the subject.

In other aspects the invention encompasses a method of treating a young subject age 17 years or younger comprising administering to the subject a nucleic acid vaccine comprising one or more RNA polynucleotides having an open reading frame encoding a respiratory virus antigenic polypeptide in an effective amount to vaccinate the subject.

In other aspects the invention encompasses a method of treating an adult subject comprising administering to the subject a nucleic acid vaccine comprising one or more RNA polynucleotides having an open reading frame encoding a respiratory virus antigenic polypeptide in an effective amount to vaccinate the subject.

In some aspects the invention is a method of vaccinating a subject with a combination vaccine including at least two nucleic acid sequences encoding respiratory antigens wherein the dosage for the vaccine is a combined therapeutic dosage wherein the dosage of each individual nucleic acid encoding an antigen is a sub therapeutic dosage. In some embodiments, the combined dosage is 25 micrograms of the RNA polynucleotide in the nucleic acid vaccine administered to the subject. In some embodiments, the combined dosage is 100 micrograms of the RNA polynucleotide in the nucleic acid vaccine administered to the subject. In some embodiments the combined dosage is 50 micrograms of the RNA polynucleotide in the nucleic acid vaccine administered to the subject. In some embodiments, the combined dosage is 75 micrograms of the RNA polynucleotide in the nucleic acid vaccine administered to the subject. In some embodiments, the combined dosage is 150 micrograms of the RNA polynucleotide in the nucleic acid vaccine administered to the subject. In some embodiments, the combined dosage is 400 micrograms of the RNA polynucleotide in the nucleic acid vaccine administered to the subject. In some embodiments, the sub therapeutic dosage of each individual nucleic acid encoding an antigen is $1,2,3,4,5,6,7,8,9$, $10,11,12,13,14,15,16,17,18,19$, or 20 micrograms. In other embodiments the nucleic acid vaccine is chemically modified and in other embodiments the nucleic acid vaccine is not chemically modified.

The RNA polynucleotide is one of SEQ ID NO: 1-4, 9-12, 20-23, 35-46, 57-61, and 64-80 and includes at least one chemical modification. In other embodiments the RNA polynucleotide is one of SEQ ID NO: 1-4, 9-12, 20-23, $35-46,57-61$, and 64-80 and does not include any nucleotide
modifications, or is unmodified. In yet other embodiments the at least one RNA polynucleotide encodes an antigenic protein of any of SEQ ID NO: 5-8, 12-13, 24-34, and 47-50 and includes at least one chemical modification. In other embodiments the RNA polynucleotide encodes an antigenic protein of any of SEQ ID NO: 5-8, 12-13, 24-34, and 47-50 and does not include any nucleotide modifications, or is unmodified.

In preferred aspects, vaccines of the invention (e.g., LNP-encapsulated mRNA vaccines) produce prophylacti-cally- and/or therapeutically-efficacious levels, concentrations and/or titers of antigen-specific antibodies in the blood or serum of a vaccinated subject. As defined herein, the term antibody titer refers to the amount of antigen-specific antibody produces in s subject, e.g., a human subject. In exemplary embodiments, antibody titer is expressed as the inverse of the greatest dilution (in a serial dilution) that still gives a positive result. In exemplary embodiments, antibody titer is determined or measured by enzyme-linked immunosorbent assay (ELISA). In exemplary embodiments, antibody titer is determined or measured by neutralization assay, e.g., by microneutralization assay. In certain aspects, antibody titer measurement is expressed as a ratio, such as 1:40, 1:100, etc. In exemplary embodiments of the invention, an efficacious vaccine produces an antibody titer of greater than $1: 40$, greater that $1: 100$, greater than $1: 400$, greater than $1: 1000$, greater than 1:2000, greater than 1:3000, greater than 1:4000, greater than 1:500, greater than 1:6000, greater than 1:7500, greater than $1: 10000$. In exemplary embodiments, the antibody titer is produced or reached by 10 days following vaccination, by 20 days following vaccination, by 30 days following vaccination, by 40 days following vaccination, or by 50 or more days following vaccination. In exemplary embodiments, the titer is produced or reached following a single dose of vaccine administered to the subject. In other embodiments, the titer is produced or reached following multiple doses, e.g., following a first and a second dose (e.g., a booster dose.) In exemplary aspects of the invention, antigen-specific antibodies are measured in units of $\mu \mathrm{g} / \mathrm{ml}$ or are measured in units of IU/L (International Units per liter) or $\mathrm{mIU} / \mathrm{ml}$ (milli International Units per ml). In exemplary embodiments of the invention, an efficacious vaccine produces $>0.5 \mu \mathrm{~g} / \mathrm{ml},>0.1 \mu \mathrm{~g} / \mathrm{ml},>0.2 \mu \mathrm{~g} / \mathrm{ml},>0.35$ $\mu \mathrm{g} / \mathrm{ml},>0.5 \mu \mathrm{~g} / \mathrm{ml},>1 \mu \mathrm{~g} / \mathrm{ml},>2 \mu \mathrm{~g} / \mathrm{ml},>5 \mu \mathrm{~g} / \mathrm{ml}$ or >10 $\mu \mathrm{g} / \mathrm{ml}$. In exemplary embodiments of the invention, an efficacious vaccine produces $>10 \mathrm{mIU} / \mathrm{ml},>20 \mathrm{mIU} / \mathrm{ml},>50$ $\mathrm{mIU} / \mathrm{ml},>100 \mathrm{mIU} / \mathrm{ml},>200 \mathrm{mIU} / \mathrm{ml},>500 \mathrm{mIU} / \mathrm{ml}$ or $>1000 \mathrm{mIU} / \mathrm{ml}$. In exemplary embodiments, the antibody level or concentration is produced or reached by 10 days following vaccination, by 20 days following vaccination, by 30 days following vaccination, by 40 days following vaccination, or by 50 or more days following vaccination. In exemplary embodiments, the level or concentration is produced or reached following a single dose of vaccine administered to the subject. In other embodiments, the level or concentration is produced or reached following multiple doses, e.g., following a first and a second dose (e.g., a booster dose.) In exemplary embodiments, antibody level or concentration is determined or measured by enzyme-linked immunosorbent assay (ELISA). In exemplary embodiments, antibody level or concentration is determined or measured by neutralization assay, e.g., by microneutralization assay.

The details of various embodiments of the disclosure are set forth in the description below. Other features, objects,
and advantages of the disclosure will be apparent from the description and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages will be apparent from the following description of particular embodiments of the disclosure, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of various embodiments of the disclosure.

FIG. 1 shows a schematic of one example of a RNA (e.g. mRNA) vaccine construct of the present disclosure. The construct depicts a human metapneumovirus and human respiratory syncytial virus full length fusion protein obtained from wild-type strains (The Journal of General Virology. 2008; 89(Pt 12):3113-3118, incorporated herein by reference).

FIGS. 2A-2C are graphs showing the levels of anti-hMPV fusion protein-specific antibodies in the serum of mice immunized with hMPV mRNA vaccines on day 0 (FIG. 2A), day 14 (FIG. 2B) and day 35 (FIG. 2C) post immunization. The mice were immunized with a single dose ($2 \mu \mathrm{~g}$ or $10 \mu \mathrm{~g}$) on day 0 and were given a boost dose ($2 \mu \mathrm{~g}$ or $10 \mu \mathrm{~g}$) on day 21. hMPV fusion protein-specific antibodies were detected at up to 1:10000 dilution of serum on day 35 for both doses.

FIGS. 3A-3C are graphs showing the result of IgG isotyping in the serum of mice immunized with hMPV mRNA vaccines. The levels of hMPV fusion protein-specific IgG2a (FIG. 3A) and IgG1 (FIG. 3B) antibodies in the serum are measured by ELISA. FIG. 3C shows that hMPV fusion protein mRNA vaccine induced a mixed Th1/Th2 cytokine response with a Th1 bias.

FIG. 4 is a graph showing in vitro neutralization of a hMPV B2 strain (TN/91-316) using the sera of mice immunized with a mRNA vaccine encoding hMPV fusion protein. Mouse serum obtained from mice receiving a $10 \mu \mathrm{~g}$ or a 2 $\mu \mathrm{g}$ dose contained hMPV-neutralizing antibodies.

FIGS. 5A-5C are graphs showing a Th1 cytokine response induced by a hMPV fusion peptide pool (15 -mers- 50 (overlap)) in splenocytes isolated from mice immunized with the hMPV mRNA vaccines. Virus-free media was used as a negative control and Concanavalin A (ConA, a positive control for splenocyte stimulation) was included. The cytokines tested included IFN- γ (FIG. 5A), IL-2 (FIG. 5B) and IL12 (FIG. 5C).

FIGS. 6A-6E are graphs showing the Th2 cytokine response induced by a hMPV fusion peptide pool (15 -mers50) in splenocytes isolated from mice immunized with the hMPV mRNA vaccines. Virus-free media was used as a negative control and Concanavalin A was also included. The cytokines tested included IL-10 (FIG. 6A), TNF- α (FIG. 6B), IL4 (FIG. 6C), IL-5 (FIG. 6D) and IL-6 (FIG. 6E).

FIGS. 7A-7C are graphs showing the Th1 response induced by inactivated hMPV virus in splenocytes isolated from mice immunized with hMPV mRNA vaccines. Virusfree media was used as a negative control and Concanavalin A was included. The cytokines tested included IFN- γ (FIG. 7A), IL-2 (FIG. 7B) and IL12 (FIG. 7C).

FIGS. 8A-8E are graphs showing the Th2 response induced by inactivated hMPV virus in splenocytes isolated from mice immunized with the hMPV mRNA vaccines. Virus-free media was used as a negative control and Concanavalin A was included. The cytokines tested include

IL-10 (FIG. 8A), TNF- α (FIG. 8B), IL4 (FIG. 8C), IL-5 (FIG. 8D) and IL-6 (FIG. 8E).

FIGS. 9A-9B are graphs showing the results of cotton rat challenge experiments. Two different doses of the hMPV mRNA vaccines were used ($2 \mu \mathrm{~g}$ or $10 \mu \mathrm{~g}$ doses) to immunize the cotton rats before challenge. The hMPV mRNA vaccines reduced the viral titer in the lung and nose of the cotton rat, with the $10 \mu \mathrm{~g}$ dose being more effective in reducing viral titer. Use of a $10 \mu \mathrm{~g}$ dose resulted in 100% protection in the lung and a $\sim 2 \log$ reduction in nose viral titer. Use of a 2μ g dose resulted in a $1 \log$ reduction in lung vital titer and no reduction in nose viral titer. The vaccine was administered on Day 0 , and a boost was administered on Day 21.

FIG. 10 is a graph showing the lung histopathology of cotton rats that received hMPV mRNA vaccines. Pathology associated with vaccine-enhanced disease was not observed in immunized groups.
FIG. 11 is a graph showing hMPV neutralization antibody titers in cotton rats that received hMPV mRNA vaccines (2 $\mu \mathrm{g}$ or $10 \mu \mathrm{~g}$ doses) on days 35 and 42 post immunization.

FIG. 12 is a graph showing the lung and nose viral load in cotton rats challenged with a hMPV/A2 strain after immunization with the indicated mRNA vaccines (hMPV mRNA vaccine or hMPV/PIV mRNA combination vaccine). Vaccinated cotton rats showed reduced lung and nose viral loads after challenge, compared to control.

FIG. 13 is a graph showing the lung and nose viral load in cotton rats challenged with PIV3 strain after immunization with indicated mRNA vaccines (PIV mRNA vaccine or hMPV/PIV combination vaccine). Vaccinated cotton rats showed reduced lung and nose viral loads after challenge, compared to control.

FIG. 14 is a graph showing hMPV neutralizing antibody titers in cotton rats that received different dosages of hMPV mRNA vaccines or hMPV/PIV combination mRNA vaccines on day 42 post immunization. The dosages of the vaccine are indicated in Table 9.

FIG. 15 is a graph showing PIV3 neutralizing antibody titers in cotton rats that received different dosages of PIV mRNA vaccines or hMPV/PIV combination mRNA vaccines on day 42 post immunization. The dosages of the vaccine are indicated in Table 9.
FIG. 16 is a graph showing the lung histopathology score of cotton rats immunized with hMPV mRNA vaccines, PIV mRNA vaccines or hMPV/PIV combination mRNA vaccines as indicated in Table 9. Low occurrence of alevolitis and interstitial pneumonia was observed, indicating no anti-body-dependent enhancement (ADE) of hMPV associated diseases.

FIG. 17 is a graph showing the reciprocal MERS-CoV neutralizing antibody titers in mice immunized with betacoronavirus mRNA vaccine encoding the MERS-CoV fulllength Spike protein, on days $0,21,42$, and 56 post immunization.

FIG. 18 is a graph showing the reciprocal MERS-CoV neutralizing antibody titers in mice immunized with betacoronavirus mRNA vaccine encoding either the MERS-CoV full-length Spike protein, or the S2 subunit of the Spike protein. The full length spike protein induced a stronger immune response compared to the S 2 subunit alone.

FIGS. 19A-19C are graphs showing the viral load in the nose and throat, the bronchoalveolar lavage (BAL), or the lungs of New Zealand white rabbits 4 days post challenge with MERS-CoV. The New Zealand white rabbits were immunized with one 20μ g-dose (on day 0) or two 20 $\mu \mathrm{g}$-doses (on day 0 and 21) of MERS-CoV mRNA vaccine
encoding the full-length Spike protein before challenge. FIG. 19A shows that two doses of MERS-CoV mRNA vaccine resulted in a $3 \log$ reduction of viral load in the nose and led to complete protection in the throat of the New Zealand white rabbits. FIG. 19B shows that two doses of MERS-CoV mRNA vaccine resulted in a 4 log reduction of viral load in the BAL of the New Zealand white rabbits. FIG. 19C show one dose of MERS-CoV mRNA vaccine resulted in a $2 \log$ reduction of viral load, while two doses of MERS-CoV mRNA vaccine resulted in an over 4 log reduction of viral load in the lungs of the New Zealand white rabbits.

FIGS. 20A-20B are images and graphs showing viral load or replicating virus detected by PCR in the lungs of New Zealand white rabbits 4 days post challenge with MERSCoV . The New Zealand white rabbits were immunized with a single $20 \mu \mathrm{~g}$ dose (on day 0 , Group 1a) of MERS-CoV mRNA vaccine encoding the full-length Spike protein, two $20 \mu \mathrm{~g}$ doses (on day 0 and 21, Group 1b) of MERS-CoV mRNA vaccine encoding the full-length Spike protein, or placebo (Group 2) before challenge. FIG. 20A shows that two doses of $20 \mu \mathrm{~g}$ a MERS-CoV mRNA vaccine reduced over 99% (2 log) of viruses in the lungs of New Zealand white rabbits. FIG. 20B shows that the group of New Zealand white rabbits that received 2 doses of $20 \mu \mathrm{~g}$ MERSCoV mRNA vaccine did not have any detectable replicating MERS-CoV virus in their lungs.

FIG. 21 is a graph showing the MERS-CoV neutralizing antibody titers in New Zealand white rabbits immunized with MERS-CoV mRNA vaccine encoding the full-length Spike protein. Immunization of the in New Zealand white rabbits were carried out as described in FIGS. 21A-21C. The results show that two doses of $20 \mu \mathrm{~g}$ MERS-CoV mRNA vaccine induced a significant amount of neutralizing antibodies against MERS-CoV (EC_{50} between $500-1000$). The MERS-CoV mRNA vaccine induced antibody titer is 3-5 fold better than any other vaccines tested in the same model.

DETAILED DESCRIPTION

The present disclosure provides, in some embodiments, vaccines that comprise RNA (e.g., mRNA) polynucleotides encoding a human metapneumovirus (hMPV) antigenic polypeptide, a parainfluenza virus type 3 (PIV3) antigenic polypeptide, a respiratory syncytial virus (RSV) antigenic polypeptide, a measles virus (MeV) antigenic polypeptide, or a betacoronavirus antigenic polypeptide (e.g., Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV, human coronavirus (HCoV)-OC43, HCoV229E, HCoV-NL63, HCoV-NL, HCoV-NH (New Haven) and HCoV-HKU1) (see, e.g., Esper F. et al. Emerging Infectious Diseases, 12(5), 2006; and Pyrc K. et al. Journal of Virology, 81(7):3051-57, 2007, the contents of each of which is here incorporated by reference in their entirety). The present disclosure also provides, in some embodiments, combination vaccines that comprise at least one RNA (e.g., mRNA) polynucleotide encoding at least two antigenic polypeptides selected from hMPV antigenic polypeptides, PIV3 antigenic polypeptides, RSV antigenic polypeptides, MeV antigenic polypeptides and BetaCoV antigenic polypeptides. Also provided herein are methods of administering the RNA (e.g., mRNA) vaccines, methods of producing the RNA (e.g., mRNA) vaccines, compositions (e.g., pharmaceutical compositions) comprising the RNA (e.g., mRNA) vaccines, and nucleic acids (e.g., DNA) encoding the RNA
(e.g., mRNA) vaccines. In some embodiments, a RNA (e.g., mRNA) vaccine comprises an adjuvant, such as a flagellin adjuvant, as provided herein.

The RNA (e.g., mRNA) vaccines (e.g., hMPV, PIV3, RSV, MeV, BetaCoV RNA vaccines and combinations thereof), in some embodiments, may be used to induce a balanced immune response, comprising both cellular and humoral immunity, without many of the risks associated with DNA vaccination.

The entire contents of International Application No. PCT/ US2015/02740 is incorporated herein by reference.

Human Metapneumovirus (hMPV)

hMPV shares substantial homology with respiratory syncytial virus (RSV) in its surface glycoproteins. hMPV fusion protein (F) is related to other paramyxovirus fusion proteins and appears to have homologous regions that may have similar functions. The hMPV fusion protein amino acid sequence contains features characteristic of other paramyxovirus F proteins, including a putative cleavage site and potential N-linked glycosylation sites. Paramyxovirus fusion proteins are synthesized as inactive precursors (F0) that are cleaved by host cell proteases into the biologically fusion-active F1 and F2 domains (see, e.g., Cseke G. et al. Journal of Virology 2007; 81(2):698-707, incorporated herein by reference). hMPV has one putative cleavage site, in contrast to the two sites established for RSV F, and only shares 34% amino acid sequence identity with RSV F. F2 is extracellular and disulfide linked to F1. Fusion proteins are type I glycoproteins existing as trimers, with two 4-3 heptad repeat domains at the N - and C-terminal regions of the protein (HR1 and HR2), which form coiled-coil alphahelices. These coiled coils become apposed in an antiparallel fashion when the protein undergoes a conformational change into the fusogenic state. There is a hydrophobic fusion peptide N proximal to the N -terminal heptad repeat, which is thought to insert into the target cell membrane, while the association of the heptad repeats brings the transmembrane domain into close proximity, inducing membrane fusion (see, e.g., Baker, K A et al. Mol. Cell 1999; 3:309319). This mechanism has been proposed for a number of different viruses, including RSV, influenza virus, and human immunodeficiency virus. Fusion proteins are major antigenic determinants for all known paramyxoviruses and for other viruses that possess similar fusion proteins such as human immunodeficiency virus, influenza virus, and Ebola virus.

In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding hMPV fusion protein (F). In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding a F1 or F2 subunit of a hMPV F protein. In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding hMPV glycoprotein (G). In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding hMPV matrix protein (M). In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding hMPV phosphoprotein (P). In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding hMPV nucleoprotein (N). In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding hMPV SH protein (SH).

In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein, M protein, P protein, N protein and SH protein.

In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and G protein. In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and M protein. In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and P protein.

In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and N protein. In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and SH protein.

In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding G protein and M protein. In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding G protein and P protein. In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding G protein and N protein. In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding G protein and SH protein.

In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and M protein. In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and P protein. In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and N protein. In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and SH protein.

A hMPV vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one hMPV antigenic polypeptide identified by any one of SEQ ID NO: 5-8 (Table 3; see also amino acid sequences of Table 4).

A hMPV vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide encoded by a nucleic acid (e.g., DNA) identified by any one of SEQ ID NO: 1-4 (Table 2).

The present disclosure is not limited by a particular strain of hMPV. The strain of hMPV used in a vaccine may be any strain of hMPV. Non-limiting examples of strains of hMPV for use as provide herein include the CAN98-75 (CAN75) and the CAN97-83 (CAN83) hMPV strains (Skiadopoulos M H et al. J Virol. 20014; 78(13)6927-37, incorporated herein by reference), a hMPV A1, A2, B1 or B2 strain (see, e.g., de Graaf M et al. The Journal of General Virology 2008; 89:975-83; Peret T C T et al. The Journal of Infectious Disease 2002; 185:1660-63, incorporated herein by reference), a hMPV isolate TN/92-4 (e.g., SEQ ID NO: 1 and 5), a hMPV isolate NL/1/99 (e.g., SEQ ID NO: 2 and 6), or a hMPV isolate PER/CFI0497/2010/B (e.g., SEQ ID NO: 3 and 7).

In some embodiments, at least one hMPV antigenic polypeptide is obtained from a hMPV A1, A2, B1 or B2 strain (see, e.g., de Graaf M et al. The Journal of General

Virology 2008; 89:975-83; Peret T C T et al. The Journal of Infectious Disease 2002; 185:1660-63, incorporated herein by reference). In some embodiments, at least one antigenic polypeptide is obtained from the CAN98-75 (CAN75) hMPV strain. In some embodiments, at least one antigenic polypeptide is obtained from the CAN97-83 (CAN83) hMPV strain. In some embodiments, at least one antigenic polypeptide is obtained from hMPV isolate TN/92-4 (e.g., SEQ ID NO: 1 and 5). In some embodiments, at least one antigenic polypeptide is obtained from hMPV isolate NL/1/ 99 (e.g., SEQ ID NO: 2 and 6). In some embodiments, at least one antigenic polypeptide is obtained from hMPV isolate PER/CFI0497/2010/B (e.g., SEQ ID NO: 3 and 7).
In some embodiments, hMPV vaccines comprise RNA (e.g., mRNA) polynucleotides encoding a hMPV antigenic polypeptides having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with hMPV F protein and having F protein activity.
A protein is considered to have F protein activity if, for example, the protein acts to fuse the viral envelope and host cell plasma membrane, mediates viral entry into a host cell via an interaction with arginine-glycine-aspartate RGDbinding integrins, or a combination thereof (see, e.g., Cox R G et al. J Virol. 2012; 88(22):12148-60, incorporated herein by reference).

In some embodiments, hMPV vaccines comprise RNA (e.g., mRNA) polynucleotides encoding hMPV antigenic polypeptides having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with hMPV G protein and having G protein activity.

A protein is considered to have G protein activity if, for example, the protein acts to modulate (e.g., inhibit) hMPVinduced cellular (immune) responses (see, e.g., Bao X et al. PLoS Pathog. 2008; 4(5):e1000077, incorporated herein by reference).

Human Parainfluenza Virus Type 3 (PIV3)

Parainfluenza viruses belong to the family Paramyxoviridae. These are enveloped viruses with a negative-sense single-stranded RNA genome. Parainfluenza viruses belong to the subfamily Paramyxoviridae, which is subdivided into three genera: Respirovirus (PIV-1, PIV-3, and Sendai virus (SeV)), Rubulavirus (PIV-2, PIV-4 and mumps virus) and Morbillivirus (measles virus, rinderpest virus and canine distemper virus (CDV)). Their genome, a ~ 15500 nucleo-tide-long negative-sense RNA molecule, encodes two envelope glycoproteins, the hemagglutinin-neuraminidase (HN), the fusion protein (F or F0), which is cleaved into F1 and F2 subunits, a matrix protein (M), a nucleocapsid protein (N) and several nonstructural proteins including the viral replicase (L). All parainfluenza viruses, except for PIV-1, express a non-structural V protein that blocks IFN signaling in the infected cell and acts therefore as a virulence factor (see, e.g., Nishio M et al. J Virol. 2008; 82(13):6130-38).

PIV3 hemagglutinin-neuraminidase (HN), a structural protein, is found on the viral envelope, where it is necessary for attachment and cell entry. It recognizes and binds to sialic acid-containing receptors on the host cell's surface. As a neuroaminidase, HN removes sialic acid from virus particles, preventing self-aggregation of the virus, and promoting the efficient spread of the virus. Furthermore, HN promotes the activity of the fusion (F or F 0) protein, contributing to the penetration of the host cell's surface.

PIV3 fusion protein (PIV3 F) is located on the viral envelope, where it facilitates the viral fusion and cell entry. The F protein is initially inactive, but proteolytic cleavage leads to its active forms, F1 and F2, which are linked by disulfide bonds. This occurs when the HN protein binds its
receptor on the host cell's surface. During early phases of infection, the F glycoprotein mediates penetration of the host cell by fusion of the viral envelope to the plasma membrane. In later stages of the infection, the F protein facilitates the fusion of the infected cells with neighboring uninfected cells, which leads to the formation of a syncytium and spread of the infection.

PIV3 matrix protein (M) is found within the viral envelope and assists with viral assembly. It interacts with the nucleocapsid and envelope glycoproteins, where it facilitates the budding of progeny viruses through its interactions with specific sites on the cytoplasmic tail of the viral glycoproteins and nucleocapsid. It also plays a role in transporting viral components to the budding site.

PIV3 phosphoprotein (P) and PIV3 large polymerase protein (L) are found in the nucleocapsid where they form part of the RNA polymerase complex. The L protein, a viral RNA-dependent RNA polymerase, facilitates genomic transcription, while the host cell's ribosomes translate the viral mRNA into viral proteins.

PIV3 V is a non-structural protein that blocks IFN signaling in the infected cell, therefore acting as a virulence factor.

PIV3 nucleoprotein (N) encapsidates the genome in a ratio of 1 N per 6 ribonucleotides, protecting it from nucleases. The nucleocapsid (NC) has a helical structure.

The encapsidated genomic RNA is termed the NC and serves as template for transcription and replication. During replication, encapsidation by PIV3 N is coupled to RNA synthesis and all replicative products are resistant to nucleases. PIV3 N homo-multimerizes to form the nucleocapsid and binds to viral genomic RNA. PIV3 N binds the P protein and thereby positions the polymerase on the template.

In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding PIV3 fusion protein (F). In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding a F1 or F2 subunit of a PIV3 F protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding PIV3 hemagglutinin-neuraminidase (HN) (see, e.g., van Wyke Coelingh K L et al. J Virol. 1987; 61(5):1473-77, incorporated herein by reference). In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding PIV3 matrix protein (M). In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding PIV3 phosphoprotein (P). In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding PIV3 nucleoprotein (N).

In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, HN protein, M protein, P protein, and N protein.

In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and HN protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and M protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and P protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and N protein.

In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HN protein and M protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HN protein and P protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HN protein and N protein.

In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, HN protein and M protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, HN protein and P protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, HN protein and N protein.

A PIV3 vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one PIV3 antigenic polypeptide identified by any one of SEQ ID NO: 12-13 (Table 6; see also amino acid sequences of Table 7).

A PIV3 vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide encoded by a nucleic acid (e.g., DNA) identified by any one of SEQ ID NO: 9-12 (Table 5; see also nucleic acid sequences of Table 7).
The present disclosure is not limited by a particular strain of PIV3. The strain of PIV3 used in a vaccine may be any strain of PIV3. A non-limiting example of a strain of PIV3 for use as provide herein includes HPIV3/Homo sapiens/ PER/FLA4815/2008.

In some embodiments, PIV3 vaccines comprise RNA (e.g., mRNA) polynucleotides encoding a PIV3 antigenic polypeptides having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with PIV3 F protein and having F protein activity.

In some embodiments, PIV3 vaccines comprise RNA (e.g., mRNA) polynucleotides encoding PIV3 antigenic polypeptides having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with PIV3 hemagglu-tinin-neuraminidase (HN) and having hemagglutininneuraminidase activity.

A protein is considered to have hemagglutinin-neuraminidase activity if, for example, it is capable of both receptor binding and receptor cleaving. Such proteins are major surface glycoproteins that have functional sites for cell attachment and for neuraminidase activity. They are able to cause red blood cells to agglutinate and to cleave the glycosidic linkages of neuraminic acids, so they have the potential to both bind a potential host cell and then release the cell if necessary, for example, to prevent self-aggregation of the virus.

In some embodiments, PIV3 vaccines comprise RNA (e.g., mRNA) polynucleotides encoding PIV3 antigenic polypeptides having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with PIV3 HN, F (e.g., F, F1 or F2), M, N, L or V and having HN, F (e.g., F, F1 or F2), M, N, L or V activity, respectively. Respiratory Syncytial Virus (RSV)
RSV is a negative-sense, single-stranded RNA virus of the genus Pneumovirinae. The virus is present in at least two antigenic subgroups, known as Group A and Group B, primarily resulting from differences in the surface G glycoproteins. Two RSV surface glycoproteins-G and F-mediate attachment with and attachment to cells of the respiratory epithelium. F surface glycoproteins mediate coalescence of neighboring cells. This results in the forma-
tion of syncytial cells. RSV is the most common cause of bronchiolitis. Most infected adults develop mild cold-like symptoms such as congestion, low-grade fever, and wheezing. Infants and small children may suffer more severe symptoms such as bronchiolitis and pneumonia. The disease may be transmitted among humans via contact with respiratory secretions.

The genome of RSV encodes at least three surface glycoproteins, including F, G, and SH, four nucleocapsid proteins, including L, P, N, and M2, and one matrix protein, M. Glycoprotein F directs viral penetration by fusion between the virion and the host membrane. Glycoprotein G is a type II transmembrane glycoprotein and is the major attachment protein. SH is a short integral membrane protein. Matrix protein M is found in the inner layer of the lipid bilayer and assists virion formation. Nucleocapsid proteins L, P, N, and M2 modulate replication and transcription of the RSV genome. It is thought that glycoprotein G tethers and stabilizes the virus particle at the surface of bronchial epithelial cells, while glycoprotein F interacts with cellular glycosaminoglycans to mediate fusion and delivery of the RSV virion contents into the host cell (Krzyzaniak M A et al. PLoS Pathog 2013; 9(4)).

In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding G protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding L protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding P protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding N protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding M2 protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding M protein.

In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein, L protein, P protein, N protein, M2 protein and M protein.

In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and G protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and L protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and P protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and N protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and M2 protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and M protein.

In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding G protein and L protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding G protein and P protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide
encoding G protein and N protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding G protein and M2 protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding G protein and M protein.

In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and L protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and P protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and N protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and M2 protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and M protein.

The present disclosure is not limited by a particular strain of RSV. The strain of RSV used in a vaccine may be any strain of RSV.
In some embodiments, RSV vaccines comprise RNA (e.g., mRNA) polynucleotides encoding a RSV antigenic polypeptides having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with RSV F protein and having F protein activity.
In some embodiments, RSV vaccines comprise RNA (e.g., mRNA) polynucleotides encoding RSV antigenic polypeptides having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with RSV G protein and having G protein activity.

A protein is considered to have G protein activity if, for example, the protein acts to modulate (e.g., inhibit) hMPVinduced cellular (immune) responses (see, e.g., Bao X et al. PLoS Pathog. 2008; 4(5):e1000077, incorporated herein by reference).
Measles Virus (MeV) Molecular epidemiologic investigations and virologic surveillance contribute notably to the control and prevention of measles. Nearly half of measlesrelated deaths worldwide occur in India, yet virologic surveillance data are incomplete for many regions of the country. Previous studies have documented the presence of measles virus genotypes D4, D7, and D8 in India, and genotypes D5, D9, D11, H1, and G3 have been detected in neighboring countries. Recently, MeV genotype B 3 was detected in India (Kuttiatt V S et al. Emerg Infect Dis. 2014; 20(10): 1764-66).

The glycoprotein complex of paramyxoviruses mediates receptor binding and membrane fusion. In particular, the MeV fusion (F) protein executes membrane fusion, after receptor binding by the hemagglutinin (HA) protein (Muhlebach M D et al. Journal of Virology 2008; 82(22):11437-45). The MeV P gene codes for three proteins: P , an essential polymerase cofactor, and V and C , which have multiple functions but are not strictly required for viral propagation in cultured cells. V shares the amino-terminal domain with P but has a zinc-binding carboxyl-terminal domain, whereas C is translated from an overlapping reading frame. The MeV C protein is an infectivity factor. During replication, the P protein binds incoming monomeric nucleocapsid (N) proteins with its amino-terminal domain and positions them for assembly into the nascent ribonucleocapsid. The P protein amino-terminal domain is natively unfolded (Deveaux P et al. Journal of Virology 2004; 78(21): 11632-40).

In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HA protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding P protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding V protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding C protein.

In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HA protein, F protein, P protein, V protein and C protein.

In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HA protein and F protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HA protein and P protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HA protein and V protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HA protein and C protein.
some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and P protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and V protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and C protein.

In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HA protein, F protein and P protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HA protein, F protein and V protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HA protein, F protein and C protein.

In some embodiments, MeV vaccines comprise RNA (e.g., mRNA) encoding a MeV antigenic polypeptide having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with MeV HA protein and having MeV HA protein activity.

In some embodiments, MeV vaccines comprise RNA (e.g., mRNA) encoding a MeV antigenic polypeptide having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with MeV F protein and having MeV F protein activity.

A protein is considered to have HA protein activity if the protein mediates receptor binding and/or membrane fusion. MeV F protein executes membrane fusion, after receptor binding by the MeV HA protein.

A MeV vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one MeV antigenic polypeptide identified by any one of SEQ ID NO: 47-50 (Table 14; see also amino acid sequences of Table 15).

A MeV vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide identified by any one of SEQ ID NO: 37, 40, 43, 46 (Table 13).

A MeV vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide encoded by a nucleic acid (e.g., DNA) identified by any one of SEQ ID NO: 35, $36,38,39,41,42,44$ and 45 (Table 13).

The present disclosure is not limited by a particular strain of MeV . The strain of MeV used in a vaccine may be any strain of MeV . Non-limiting examples of strains of MeV for use as provide herein include $\mathrm{B} 3 / \mathrm{B} 3.1, \mathrm{C} 2, \mathrm{D} 4, \mathrm{D} 6, \mathrm{D} 7, \mathrm{D} 8$, G3, H1, Moraten, Rubeovax, MVi/New Jersey.USA/45.05, MVi/Texas.USA/4.07, AIK-C, MVi/New York.USA/26.09/ 3, MVi/California.USA/16.03, MVi/Virginia.USA/15.09, MVi/California.USA/8.04, and MVi/Pennsylvania.USA/ 20.09.

MeV proteins may be from MeV genotype $\mathrm{D} 4, \mathrm{D} 5$, D7, D8, D9, D11, H1, G3 or B3. In some embodiments, a MeV HA protein or a MeV F protein is from MeV genotype D8. In some embodiments, a MeV HA protein or a MeV F protein is from MeV genotype B 3 .
Betacoronaviruses (BetaCoV)
MERS-CoV. MERS-CoV is a positive-sense, singlestranded RNA virus of the genus Betacoronavirus. The genomes are phylogenetically classified into two clades, clade A and clade B. It has a strong tropism for non-ciliated bronchial epithelial cells, evades the innate immune response and antagonizes interferon (IFN) production in infected cells. Dipeptyl peptidase 4 (DDP4, also known as CD26) has been identified as a functional cellular receptor for MERS-CoV. Its enzymatic activity is not required for infection, although its amino acid sequence is highly conserved across species and is expressed in the human bronchial epithelium and kidneys. Most infected individuals develop severe acute respiratory illnesses, including fever, cough, and shortness of breath, and the virus can be fatal. The disease may be transmitted among humans, generally among those in close contact.

The genome of MERS-CoV encodes at least four unique accessory proteins, such as $3,4 \mathrm{a}, 4 \mathrm{~b}$ and 5 , two replicase proteins (open reading frame 1 a and 1 b), and four major structural proteins, including spike (S), envelope (E), nucleocapsid (N), and membrane (M) proteins (Almazan F et al. MBio 2013; 4(5):e00650-13). The accessory proteins play nonessential roles in MERS-CoV replication, but they are likely structural proteins or interferon antagonists, modulating in vivo replication efficiency and/or pathogenesis, as in the case of SARS-CoV (Almazan F et al. MBio 2013; 4(5):e00650-13; Totura A L et al. Curr Opin Virol 2012; 2(3):264-75; Scobey T et al. Proc Natl Acad Sci USA 2013; 110(40):16157-62). The other proteins of MERS-CoV maintain different functions in virus replication. The E protein, for example, involves in virulence, and deleting the E-coding gene results in replication-competent and propa-gation-defective viruses or attenuated viruses (Almazan F et al. MBio 2013; 4(5): $\mathrm{e} 00650-13$). The S protein is particularly essential in mediating virus binding to cells expressing receptor dipeptidyl peptidase-4 (DPP4) through receptorbinding domain (RBD) in the S 1 subunit, whereas the S 2 subunit subsequently mediates virus entry via fusion of the virus and target cell membranes (Li F. J Virol 2015; 89(4): 1954-64; Raj V S et al. Nature 2013; 495(7440):251-4).
In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding the S1 subunit of the S protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding the S 2 subunit of the S
protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding E protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding N protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding M protein.

In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2), E protein, N protein and M protein.

In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2) and E protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2) and N protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2) and M protein.

In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2), E protein and M protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S 2), E protein and N protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S , S1 and/or S2), M protein and N protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding E protein, M protein and N protein.

A MERS-CoV vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one MERS-CoV antigenic polypeptide identified by any one of SEQ ID NO: 24-38 or 33 (Table 11; see also amino acid sequences of Table 12).

A MERS-CoV vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide encoded by a nucleic acid (e.g., DNA) identified by any one of SEQ ID NO: 20-23 (Table 10).

The present disclosure is not limited by a particular strain of MERS-CoV. The strain of MERS-CoV used in a vaccine may be any strain of MERS-CoV. Non-limiting examples of strains of MERS-CoV for use as provide herein include Riyadh_14_2013, and 2cEMC/2012, Hasa_1_2013.

SARS-CoV. The genome of SARS-CoV includes of a single, positive-strand RNA that is approximately 29,700 nucleotides long. The overall genome organization of SARS-CoV is similar to that of other coronaviruses. The reference genome includes 13 genes, which encode at least 14 proteins. Two large overlapping reading frames (ORFs) encompass 71% of the genome. The remainder has 12 potential ORFs, including genes for structural proteins S (spike), E (small envelope), M (membrane), and N (nucleocapsid). Other potential ORFs code for unique putative SARS-CoV-specific polypeptides that lack obvious sequence similarity to known proteins. A detailed analysis of the SARS-CoV genome has been published in J Mol Biol 2003; 331: 991-1004.

In some embodiments, a SARS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2), E protein, N protein and M protein.

In some embodiments, a SARS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2) and E protein. In some embodiments, a SARS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2) and N protein. In some embodiments, a SARS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2) and M protein.

In some embodiments, a SARS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2), E protein and M protein. In some embodiments, a SARS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2), E protein and N protein. In some embodiments, a SARS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein ($\mathrm{S}, \mathrm{S} 1$ and/or S 2), M protein and N protein. In some embodiments, a SARS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding E protein, M protein and N protein.
A SARS-CoV vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one SARS-CoV antigenic polypeptide identified by any one of SEQ ID NO: 29,32 or 34 (Table 11; see also amino acid sequences of Table 12).

The present disclosure is not limited by a particular strain of SARS-CoV. The strain of SARS-CoV used in a vaccine may be any strain of SARS-CoV.

HCoV-OC43.
Human coronavirus OC43 is an enveloped, positivesense, single-stranded RNA virus in the species Betacoro-navirus-1 (genus Betacoronavirus, subfamily Coronavirinae, family Coronaviridae, order Nidovirales). Four HCoVOC43 genotypes (A to D), have been identified with genotype D most likely arising from recombination. The complete genome sequencing of two genotype C and D strains and bootscan analysis shows recombination events between genotypes B and C in the generation of genotype D . Of 29 strains identified, none belong to the more ancient genotype A. Along with HCoV-229E, a species in the Alphacoronavirus genus, $\mathrm{HCoV}-\mathrm{OC} 43$ are among the known viruses that cause the common cold. Both viruses can cause severe lower respiratory tract infections, including pneumonia in infants, the elderly, and immunocompromised individuals such as those undergoing chemotherapy and those with HIV-AIDS.

HCoV-HKU1.
Human coronavirus HKU1 (HCoV-H KU 1) is a positivesense, single-stranded RNA virus with the HE gene, which distinguishes it as a group 2, or betacoronavirus. It was discovered in January 2005 in two patients in Hong Kong. The genome of HCoV-HKU1 is a 29,926 -nucleotide, polyadenylated RNA. The GC content is 32%, the lowest among all known coronaviruses. The genome organization is the same as that of other group II coronaviruses, with the characteristic gene order $1 \mathrm{a}, \mathrm{lb}, \mathrm{HE}, \mathrm{S}, \mathrm{E}, \mathrm{M}$, and N . Furthermore, accessory protein genes are present between the S and E genes (ORF4) and at the position of the N gene (ORF8). The TRS is presumably located within the AAUCUAAAC sequence, which precedes each ORF except E. As in sialodacryoadenitis virus and mouse hepatitis virus (MHV), translation of the E protein possibly occurs via an internal ribosomal entry site. The 3^{\prime} untranslated region contains a predicted stem-loop structure immediately down-
stream of the N ORF (nucleotide position 29647 to 29711). Further downstream, a pseudoknot structure is present at nucleotide position 29708 to 29760 . Both RNA structures are conserved in group II coronaviruses and are critical for virus replication.

HCoV-NL63.
The RNA genome of human coronavirus NL63 (HCoVNL63) is 27,553 nucleotides, with a poly(A) tail (FIG. 1). With a GC content of 34%, HCoV-NL63 has one of the lowest GC contents of the coronaviruses, for which GC content ranges from 32 to 42%. Untranslated regions of 286 and 287 nucleotides are present at the 5^{\prime} and 3^{\prime} termini, respectively. Genes predicted to encode the S, E, M, and N proteins are found in the 3 ' part of the HCoV-NL63 genome. The HE gene, which is present in some group II coronaviruses, is absent, and there is only a single, monocistronic accessory protein ORF (ORF3) located between the S and E genes. Subgenomic mRNAs are generated for all ORFs (S, ORF3, E, M, and N), and the core sequence of the TRS of HCoV-NL63 is defined as AACUAAA. This sequence is situated upstream of every ORF except for the E ORF, which contains the suboptimal core sequence AACUAUA. Interestingly, a 13-nucleotide sequence with perfect homology to the leader sequence is situated upstream of the suboptimal E TRS. Annealing of this 13 -nucleotide sequence to the leader sequence may act as a compensatory mechanism for the disturbed leader-TRS/body-TRS interaction.

HCoV-229E.
Human coronavirus 229 E ($\mathrm{HCoV}-229 \mathrm{E}$) is a singlestranded, positive-sense, RNA virus species in the Alphacoronavirus genus of the subfamily Coronavirinae, in the family Coronaviridae, of the order Nidovirales. Along with Human coronavirus OC43, it is responsible for the common cold. HCoV-NL63 and HCoV-229E are two of the four human coronaviruses that circulate worldwide. These two viruses are unique in their relationship towards each other. Phylogenetically, the viruses are more closely related to each other than to any other human coronavirus, yet they only share 65% sequence identity. Moreover, the viruses use different receptors to enter their target cell. HCoV-NL63 is associated with croup in children, whereas all signs suggest that the virus probably causes the common cold in healthy adults. HCoV-229E is a proven common cold virus in healthy adults, so it is probable that both viruses induce comparable symptoms in adults, even though their mode of infection differs (HCoV-NL63 and HCoV-229E are two of the four human coronaviruses that circulate worldwide. These two viruses are unique in their relationship towards each other. Phylogenetically, the viruses are more closely related to each other than to any other human coronavirus, yet they only share 65% sequence identity. Moreover, the viruses use different receptors to enter their target cell. HCoV-NL63 is associated with croup in children, whereas all signs suggest that the virus probably causes the common cold in healthy adults. $\mathrm{HCoV}-229 \mathrm{E}$ is a proven common cold virus in healthy adults, so it is probable that both viruses induce comparable symptoms in adults, even though their mode of infection differs (Dijkman R. et al. J Formos Med Assoc. 2009 April; 108(4):270-9, the contents of which is incorporated herein by reference in their entirety). Combination Vaccines

Embodiments of the present disclosure also provide combination RNA (e.g., mRNA) vaccines. A "combination RNA (e.g., mRNA) vaccine" of the present disclosure refers to a vaccine comprising at least one (e.g., at least $2,3,4$, or 5) RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a combination of any two or more (or all of)
antigenic polypeptides selected from hMPV antigenic polypeptides, PIV3 antigenic polypeptides, RSV antigenic polypeptides, MeV antigenic polypeptides, and BetaCoV antigenic polypeptides (e.g., selected from MERS-CoV, SARSCoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a PIV3 antigenic polypeptide, a RSV antigenic polypeptide, a MeV antigenic polypeptide, and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide and a PIV3 antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide and a RSV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide and a MeV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide and a BetaCoV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a PIV3 antigenic polypeptide and a RSV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a PIV3 antigenic polypeptide and a MeV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a PIV3 antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a RSV antigenic polypeptide and a MeV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a RSV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a MeV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).
In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a PIV3 antigenic polypeptide, a RSV antigenic polypeptide and a MeV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide
encoding a hMPV antigenic polypeptide, a PIV3 antigenic polypeptide, a RSV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a PIV3 antigenic polypeptide, a MeV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a RSV antigenic polypeptide, a MeV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a PIV3 antigenic polypeptide, a RSV antigenic polypeptide, a MeV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a PIV3 antigenic polypeptide and a RSV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a PIV3 antigenic polypeptide and a MeV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a PIV3 antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43 HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1)

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a RSV antigenic polypeptide and a MeV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a RSV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a MeV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a PIV3 antigenic polypeptide, a RSV antigenic polypeptide and a MeV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a PIV3 antigenic polypeptide, a RSV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g.,
selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a RSV antigenic polypeptide, a MeV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).
Other combination respiratory virus RNA (e.g., mRNA) vaccines are encompassed by the present disclosure.

It has been discovered that the mRNA vaccines described herein are superior to current vaccines in several ways. First, the lipid nanoparticle (LNP) delivery is superior to other formulations including a protamine base approach described in the literature and no additional adjuvants are to be necessary. The use of LNPs enables the effective delivery of chemically modified or unmodified mRNA vaccines. Additionally it has been demonstrated herein that both modified and unmodified LNP formulated mRNA vaccines were superior to conventional vaccines by a significant degree. In some embodiments the mRNA vaccines of the invention are superior to conventional vaccines by a factor of at least 10 fold, 20 fold, 40 fold, 50 fold, 100 fold, 500 fold or 1,000 fold.

Although attempts have been made to produce functional RNA vaccines, including mRNA vaccines and self-replicating RNA vaccines, the therapeutic efficacy of these RNA vaccines have not yet been fully established. Quite surprisingly, the inventors have discovered, according to aspects of the invention a class of formulations for delivering mRNA vaccines in vivo that results in significantly enhanced, and in many respects synergistic, immune responses including enhanced antigen generation and functional antibody production with neutralization capability. These results can be achieved even when significantly lower doses of the mRNA are administered in comparison with mRNA doses used in other classes of lipid based formulations. The formulations of the invention have demonstrated significant unexpected in vivo immune responses sufficient to establish the efficacy of functional mRNA vaccines as prophylactic and therapeutic agents. Additionally, self-replicating RNA vaccines rely on viral replication pathways to deliver enough RNA to a cell to produce an immunogenic response. The formulations of the invention do not require viral replication to produce enough protein to result in a strong immune response. Thus, the mRNA of the invention are not self-replicating RNA and do not include components necessary for viral replication.

The invention involves, in some aspects, the surprising finding that lipid nanoparticle (LNP) formulations significantly enhance the effectiveness of mRNA vaccines, including chemically modified and unmodified mRNA vaccines. The efficacy of mRNA vaccines formulated in LNP was examined in vivo using several distinct antigens. The results presented herein demonstrate the unexpected superior efficacy of the mRNA vaccines formulated in LNP over other commercially available vaccines.
In addition to providing an enhanced immune response, the formulations of the invention generate a more rapid immune response with fewer doses of antigen than other vaccines tested. The mRNA-LNP formulations of the invention also produce quantitatively and qualitatively better immune responses than vaccines formulated in a different carriers.

The data described herein demonstrate that the formulations of the invention produced significant unexpected
improvements over existing antigen vaccines. Additionally, the mRNA-LNP formulations of the invention are superior to other vaccines even when the dose of mRNA is lower than other vaccines. Mice immunized with either $10 \mu \mathrm{~g}$ or $2 \mu \mathrm{~g}$ doses of an hMPV fusion protein mRNA LNP vaccine or a PIV3 mRNA LNP vaccine produced neutralizing antibodies which for instance, successfully neutralized the hMPV B2 virus. A $10 \mu \mathrm{~g}$ dose of mRNA vaccine protected 100% of mice from lethal challenge and drastically reduced the viral titer after challenge ($\sim 2 \log$ reduction).

Two $20 \mu \mathrm{~g}$ doses of MERS-CoV mRNA LNP vaccine significantly reduced viral load and induced significant amount of neutralizing antibodies against MERS-CoV (ECso between 500-1000). The MERS-CoV mRNA vaccine induced antibody titer was $3-5$ fold better than any other vaccines tested in the same model.

The LNP used in the studies described herein has been used previously to deliver siRNA in various animal models as well as in humans. In view of the observations made in association with the siRNA delivery of LNP formulations, the fact that LNP is useful in vaccines is quite surprising. It has been observed that therapeutic delivery of siRNA formulated in LNP causes an undesirable inflammatory response associated with a transient IgM response, typically leading to a reduction in antigen production and a compromised immune response. In contrast to the findings observed with siRNA, the LNP-mRNA formulations of the invention are demonstrated herein to generate enhanced IgG levels, sufficient for prophylactic and therapeutic methods rather than transient IgM responses.
Nucleic Acids/Polynucleotides
Respiratory virus vaccines, as provided herein, comprise at least one (one or more) ribonucleic acid (RNA) (e.g., mRNA) polynucleotide having an open reading frame encoding at least one antigenic polypeptide selected from hMPV, PIV3, RSV, MeV and BetaCoV (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1) antigenic polypeptides. The term "nucleic acid" includes any compound and/or substance that comprises a polymer of nucleotides (nucleotide monomer). These polymers are referred to as polynucleotides. Thus, the terms "nucleic acid" and "polynucleotide" are used interchangeably.

Nucleic acids may be or may include, for example, ribonucleic acids (RNAs), deoxyribonucleic acids (DNAs), threose nucleic acids (TNAs), glycol nucleic acids (GNAs), peptide nucleic acids (PNAs), locked nucleic acids (LNAs, including LNA having a β-D-ribo configuration, α-LNA having an α-L-ribo configuration (a diastereomer of LNA), 2^{\prime}-amino-LNA having a 2^{\prime}-amino functionalization, and 2^{\prime}-amino- α-LNA having a 2^{\prime}-amino functionalization), ethylene nucleic acids (ENA), cyclohexenyl nucleic acids (CeNA) or chimeras or combinations thereof.

In some embodiments, polynucleotides of the present disclosure function as messenger RNA (mRNA). "Messenger RNA" (mRNA) refers to any polynucleotide that encodes a (at least one) polypeptide (a naturally-occurring, non-naturally-occurring, or modified polymer of amino acids) and can be translated to produce the encoded polypeptide in vitro, in vivo, in situ or ex vivo. The skilled artisan will appreciate that, except where otherwise noted, polynucleotide sequences set forth in the instant application will recite " T "s in a representative DNA sequence but where the sequence represents RNA (e.g., mRNA), the "T"s would be substituted for "U"s. Thus, any of the RNA polynucleotides encoded by a DNA identified by a particular sequence identification number may also comprise the corresponding

RNA (e.g., mRNA) sequence encoded by the DNA, where each "T" of the DNA sequence is substituted with "U."
The basic components of an mRNA molecule typically include at least one coding region, a 5^{\prime} untranslated region (UTR), a 3' UTR, a 5^{\prime} cap and a poly-A tail. Polynucleotides of the present disclosure may function as mRNA but can be distinguished from wild-type mRNA in their functional and/or structural design features, which serve to overcome existing problems of effective polypeptide expression using nucleic-acid based therapeutics.

In some embodiments, a RNA polynucleotide of an RNA (e.g., mRNA) vaccine encodes 2-10, 2-9, 2-8, 2-7, 2-6, 2-5, 2-4, 2-3, 3-10, 3-9, 3-8, 3-7, 3-6, 3-5, 3-4, 4-10, 4-9, 4-8, 4-7, $4-6,4-5,5-10,5-9,5-8,5-7,5-6,6-10,6-9,6-8,6-7,7-10$, $7-9,7-8,8-10,8-9$ or $9-10$ antigenic polypeptides. In some embodiments, a RNA (e.g., mRNA) polynucleotide of a respiratory virus vaccine encodes at least $10,20,30,40,50$, $60,70,80,90$ or 100 antigenic polypeptides. In some embodiments, a RNA (e.g., mRNA) polynucleotide of a respiratory virus vaccine encodes at least 100 or at least 200 antigenic polypeptides. In some embodiments, a RNA polynucleotide of an respiratory virus vaccine encodes 1-10, 5-15, 10-20, 15-25, 20-30, 25-35, 30-40, 35-45, 40-50, 1-50, 1-100, 2-50 or 2-100 antigenic polypeptides.

Polynucleotides of the present disclosure, in some embodiments, are codon optimized. Codon optimization methods are known in the art and may be used as provided herein. Codon optimization, in some embodiments, may be used to match codon frequencies in target and host organisms to ensure proper folding; bias GC content to increase mRNA stability or reduce secondary structures; minimize tandem repeat codons or base runs that may impair gene construction or expression; customize transcriptional and translational control regions; insert or remove protein trafficking sequences; remove/add post translation modification sites in encoded protein (e.g. glycosylation sites); add, remove or shuffle protein domains; insert or delete restriction sites; modify ribosome binding sites and mRNA degradation sites; adjust translational rates to allow the various domains of the protein to fold properly; or to reduce or eliminate problem secondary structures within the polynucleotide. Codon optimization tools, algorithms and services are known in the art - non-limiting examples include services from GeneArt (Life Technologies), DNA2.0 (Menlo Park Calif.) and/or proprietary methods. In some embodiments, the open reading frame (ORF) sequence is optimized using optimization algorithms.
In some embodiments, a codon optimized sequence shares less than 95% sequence identity, less than 90% sequence identity, less than 85% sequence identity, less than 80% sequence identity, or less than 75% sequence identity to a naturally-occurring or wild-type sequence (e.g., a natu-rally-occurring or wild-type mRNA sequence encoding a polypeptide or protein of interest (e.g., an antigenic protein or antigenic polypeptide)).

In some embodiments, a codon-optimized sequence shares between 65% and 85% (e.g., between about 67% and about 85%, or between about 67% and about 80%) sequence identity to a naturally-occurring sequence or a wild-type sequence (e.g., a naturally-occurring or wild-type mRNA sequence encoding a polypeptide or protein of interest (e.g., an antigenic protein or polypeptide)). In some embodiments, a codon-optimized sequence shares between 65% and 75%, or about 80% sequence identity to a naturally-occurring sequence or wild-type sequence (e.g., a naturally-occurring
or wild-type mRNA sequence encoding a polypeptide or protein of interest (e.g., an antigenic protein or polypeptide)).

In some embodiments a codon-optimized RNA (e.g., mRNA) may, for instance, be one in which the levels of G/C are enhanced. The G/C-content of nucleic acid molecules may influence the stability of the RNA. RNA having an increased amount of guanine (G) and/or cytosine (C) residues may be functionally more stable than nucleic acids containing a large amount of adenine (A) and thymine (T) or uracil (U) nucleotides. WO02/098443 discloses a pharmaceutical composition containing an mRNA stabilized by sequence modifications in the translated region. Due to the degeneracy of the genetic code, the modifications work by substituting existing codons for those that promote greater RNA stability without changing the resulting amino acid. The approach is limited to coding regions of the RNA. Antigens/Antigenic Polypeptides

In some embodiments, an antigenic polypeptide (e.g., a hMPV, PIV3, RSV, MeV or BetaCoV antigenic polypeptide) is longer than 25 amino acids and shorter than 50 amino acids. Polypeptides include gene products, naturally occurring polypeptides, synthetic polypeptides, homologs, orthologs, paralogs, fragments and other equivalents, variants, and analogs of the foregoing. A polypeptide may be a single molecule or may be a multi-molecular complex such as a dimer, trimer or tetramer. Polypeptides may also comprise single chain polypeptides or multichain polypeptides, such as antibodies or insulin, and may be associated or linked to each other. Most commonly, disulfide linkages are found in multichain polypeptides. The term "polypeptide" may also apply to amino acid polymers in which at least one amino acid residue is an artificial chemical analogue of a corresponding naturally-occurring amino acid.

A "polypeptide variant" is a molecule that differs in its amino acid sequence relative to a native sequence or a reference sequence. Amino acid sequence variants may possess substitutions, deletions, insertions, or a combination of any two or three of the foregoing, at certain positions within the amino acid sequence, as compared to a native sequence or a reference sequence. Ordinarily, variants possess at least 50% identity to a native sequence or a reference sequence. In some embodiments, variants share at least 80% identity or at least 90% identity with a native sequence or a reference sequence.

In some embodiments "variant mimics" are provided. A "variant mimic" contains at least one amino acid that would mimic an activated sequence. For example, glutamate may serve as a mimic for phosphoro-threonine and/or phosphoroserine. Alternatively, variant mimics may result in deactivation or in an inactivated product containing the mimic. For example, phenylalanine may act as an inactivating substitution for tyrosine, or alanine may act as an inactivating substitution for serine.
"Orthologs" refers to genes in different species that evolved from a common ancestral gene by speciation. Normally, orthologs retain the same function in the course of evolution. Identification of orthologs is important for reliable prediction of gene function in newly sequenced genomes.
"Analogs" is meant to include polypeptide variants that differ by one or more amino acid alterations, for example, substitutions, additions or deletions of amino acid residues that still maintain one or more of the properties of the parent or starting polypeptide.

The present disclosure provides several types of compositions that are polynucleotide or polypeptide based, includ-
ing variants and derivatives. These include, for example, substitutional, insertional, deletion and covalent variants and derivatives. The term "derivative" is synonymous with the term "variant" and generally refers to a molecule that has been modified and/or changed in any way relative to a reference molecule or a starting molecule.

As such, polynucleotides encoding peptides or polypeptides containing substitutions, insertions and/or additions, deletions and covalent modifications with respect to reference sequences, in particular the polypeptide sequences disclosed herein, are included within the scope of this disclosure. For example, sequence tags or amino acids, such as one or more lysines, can be added to peptide sequences (e.g., at the N -terminal or C-terminal ends). Sequence tags can be used for peptide detection, purification or localization. Lysines can be used to increase peptide solubility or to allow for biotinylation. Alternatively, amino acid residues located at the carboxy and amino terminal regions of the amino acid sequence of a peptide or protein may optionally be deleted providing for truncated sequences. Certain amino acids (e.g., C -terminal residues or N -terminal residues) alternatively may be deleted depending on the use of the sequence, as for example, expression of the sequence as part of a larger sequence that is soluble, or linked to a solid support.
"Substitutional variants" when referring to polypeptides are those that have at least one amino acid residue in a native or starting sequence removed and a different amino acid inserted in its place at the same position. Substitutions may be single, where only one amino acid in the molecule has been substituted, or they may be multiple, where two or more (e.g., 3, 4 or 5) amino acids have been substituted in the same molecule.

As used herein the term "conservative amino acid substitution" refers to the substitution of an amino acid that is normally present in the sequence with a different amino acid of similar size, charge, or polarity. Examples of conservative substitutions include the substitution of a non-polar (hydrophobic) residue such as isoleucine, valine and leucine for another non-polar residue. Likewise, examples of conservative substitutions include the substitution of one polar (hydrophilic) residue for another such as between arginine and lysine, between glutamine and asparagine, and between glycine and serine. Additionally, the substitution of a basic residue such as lysine, arginine or histidine for another, or the substitution of one acidic residue such as aspartic acid or glutamic acid for another acidic residue are additional examples of conservative substitutions. Examples of nonconservative substitutions include the substitution of a nonpolar (hydrophobic) amino acid residue such as isoleucine, valine, leucine, alanine, methionine for a polar (hydrophilic) residue such as cysteine, glutamine, glutamic acid or lysine and/or a polar residue for a non-polar residue.
"Features" when referring to polypeptide or polynucleotide are defined as distinct amino acid sequence-based or nucleotide-based components of a molecule respectively. Features of the polypeptides encoded by the polynucleotides include surface manifestations, local conformational shape, folds, loops, half-loops, domains, half-domains, sites, termini and any combination(s) thereof.

As used herein when referring to polypeptides the term "domain" refers to a motif of a polypeptide having one or more identifiable structural or functional characteristics or properties (e.g., binding capacity, serving as a site for protein-protein interactions).
As used herein when referring to polypeptides the terms "site" as it pertains to amino acid based embodiments is used
synonymously with "amino acid residue" and "amino acid side chain." As used herein when referring to polynucleotides the terms "site" as it pertains to nucleotide based embodiments is used synonymously with "nucleotide." A site represents a position within a peptide or polypeptide or polynucleotide that may be modified, manipulated, altered, derivatized or varied within the polypeptide-based or poly-nucleotide-based molecules.

As used herein the terms "termini" or "terminus" when referring to polypeptides or polynucleotides refers to an extremity of a polypeptide or polynucleotide respectively. Such extremity is not limited only to the first or final site of the polypeptide or polynucleotide but may include additional amino acids or nucleotides in the terminal regions. Polypeptide-based molecules may be characterized as having both an N-terminus (terminated by an amino acid with a free amino group (NH2)) and a C-terminus (terminated by an amino acid with a free carboxyl group (COOH)). Proteins are in some cases made up of multiple polypeptide chains brought together by disulfide bonds or by non-covalent forces (multimers, oligomers). These proteins have multiple N - and C-termini. Alternatively, the termini of the polypeptides may be modified such that they begin or end, as the case may be, with a non-polypeptide based moiety such as an organic conjugate.

As recognized by those skilled in the art, protein fragments, functional protein domains, and homologous proteins are also considered to be within the scope of polypeptides of interest. For example, provided herein is any protein fragment (meaning a polypeptide sequence at least one amino acid residue shorter than a reference polypeptide sequence but otherwise identical) of a reference protein having a length of $10,20,30,40,50,60,70,80,90,100$ or longer than 100 amino acids. In another example, any protein that includes a stretch of $20,30,40,50$, or 100 (contiguous) amino acids that are $40 \%, 50 \%, 60 \%, 70 \%, 80 \%, 90 \%, 95 \%$, or 100% identical to any of the sequences described herein can be utilized in accordance with the disclosure. In some embodiments, a polypeptide includes $2,3,4,5,6,7,8,9,10$, or more mutations as shown in any of the sequences provided herein or referenced herein. In another example, any protein that includes a stretch of $20,30,40,50$, or 100 amino acids that are greater than $80 \%, 90 \%, 95 \%$, or 100% identical to any of the sequences described herein, wherein the protein has a stretch of $5,10,15,20,25$, or 30 amino acids that are less than $80 \%, 75 \%, 70 \%, 65 \%$ to 60% identical to any of the sequences described herein can be utilized in accordance with the disclosure

Polypeptide or polynucleotide molecules of the present disclosure may share a certain degree of sequence similarity or identity with the reference molecules (e.g., reference polypeptides or reference polynucleotides), for example, with art-described molecules (e.g., engineered or designed molecules or wild-type molecules). The term "identity," as known in the art, refers to a relationship between the sequences of two or more polypeptides or polynucleotides, as determined by comparing the sequences. In the art, identity also means the degree of sequence relatedness between two sequences as determined by the number of matches between strings of two or more amino acid residues or nucleic acid residues. Identity measures the percent of identical matches between the smaller of two or more sequences with gap alignments (if any) addressed by a particular mathematical model or computer program (e.g., "algorithms"). Identity of related peptides can be readily calculated by known methods. "\% identity" as it applies to polypeptide or polynucleotide sequences is defined as the
percentage of residues (amino acid residues or nucleic acid residues) in the candidate amino acid or nucleic acid sequence that are identical with the residues in the amino acid sequence or nucleic acid sequence of a second sequence after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent identity. Methods and computer programs for the alignment are well known in the art. Identity depends on a calculation of percent identity but may differ in value due to gaps and penalties introduced in the calculation. Generally, variants of a particular polynucleotide or polypeptide have at least $40 \%, 45 \%, 50 \%, 55 \%$, $60 \%, 65 \%, 70 \%, 75 \%, 80 \%, 85 \%, 90 \%, 91 \%, 92 \%, 93 \%$, $94 \%, 95 \%, 96 \%, 97 \%, 98 \%, 99 \%$ but less than 100% sequence identity to that particular reference polynucleotide or polypeptide as determined by sequence alignment programs and parameters described herein and known to those skilled in the art. Such tools for alignment include those of the BLAST suite (Stephen F. Altschul, et al. (1997)." Gapped BLAST and PSI-BLAST: a new generation of protein database search programs," Nucleic Acids Res. 25:3389-3402). Another popular local alignment technique is based on the Smith-Waterman algorithm (Smith, T. F. \& Waterman, M. S. (1981) "Identification of common molecular subsequences." J. Mol. Biol. 147:195-197). A general global alignment technique based on dynamic programming is the Needleman-Wunsch algorithm (Needleman, S. B. \& Wunsch, C. D. (1970) "A general method applicable to the search for similarities in the amino acid sequences of two proteins." J. Mol. Biol. 48:443-453). More recently, a Fast Optimal Global Sequence Alignment Algorithm (FOGSAA) was developed that purportedly produces global alignment of nucleotide and protein sequences faster than other optimal global alignment methods, including the Needleman-Wunsch algorithm. Other tools are described herein, specifically in the definition of "identity" below.

As used herein, the term "homology" refers to the overall relatedness between polymeric molecules, e.g. between nucleic acid molecules (e.g. DNA molecules and/or RNA molecules) and/or between polypeptide molecules. Polymeric molecules (e.g. nucleic acid molecules (e.g. DNA molecules and/or RNA molecules) and/or polypeptide molecules) that share a threshold level of similarity or identity determined by alignment of matching residues are termed homologous. Homology is a qualitative term that describes a relationship between molecules and can be based upon the quantitative similarity or identity. Similarity or identity is a quantitative term that defines the degree of sequence match between two compared sequences. In some embodiments, polymeric molecules are considered to be "homologous" to one another if their sequences are at least $25 \%, 30 \%, 35 \%$, $40 \%, 45 \%, 50 \%, 55 \%, 60 \%, 65 \%, 70 \%, 75 \%, 80 \%, 85 \%$, $90 \%, 95 \%$, or 99% identical or similar. The term "homologous" necessarily refers to a comparison between at least two sequences (polynucleotide or polypeptide sequences). Two polynucleotide sequences are considered homologous if the polypeptides they encode are at least $50 \%, 60 \%, 70 \%$, $80 \%, 90 \%, 95 \%$, or even 99% for at least one stretch of at least 20 amino acids. In some embodiments, homologous polynucleotide sequences are characterized by the ability to encode a stretch of at least $4-5$ uniquely specified amino acids. For polynucleotide sequences less than 60 nucleotides in length, homology is determined by the ability to encode a stretch of at least $4-5$ uniquely specified amino acids. Two protein sequences are considered homologous if the proteins are at least $50 \%, 60 \%, 70 \%, 80 \%$, or 90% identical for at least one stretch of at least 20 amino acids.

Homology implies that the compared sequences diverged in evolution from a common origin. The term "homolog" refers to a first amino acid sequence or nucleic acid sequence (e.g., gene (DNA or RNA) or protein sequence) that is related to a second amino acid sequence or nucleic acid sequence by descent from a common ancestral sequence. The term "homolog" may apply to the relationship between genes and/or proteins separated by the event of speciation or to the relationship between genes and/or proteins separated by the event of genetic duplication. "Orthologs" are genes (or proteins) in different species that evolved from a common ancestral gene (or protein) by speciation. Typically, orthologs retain the same function in the course of evolution. "Paralogs" are genes (or proteins) related by duplication within a genome. Orthologs retain the same function in the course of evolution, whereas paralogs evolve new functions, even if these are related to the original one.

The term "identity" refers to the overall relatedness between polymeric molecules, for example, between polynucleotide molecules (e.g. DNA molecules and/or RNA molecules) and/or between polypeptide molecules. Calculation of the percent identity of two polynucleic acid sequences, for example, can be performed by aligning the two sequences for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second nucleic acid sequences for optimal alignment and nonidentical sequences can be disregarded for comparison purposes). In certain embodiments, the length of a sequence aligned for comparison purposes is at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or 100% of the length of the reference sequence. The nucleotides at corresponding nucleotide positions are then compared. When a position in the first sequence is occupied by the same nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which needs to be introduced for optimal alignment of the two sequences. The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. For example, the percent identity between two nucleic acid sequences can be determined using methods such as those described in Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; Computer Analysis of Sequence Data, Part I, Griffin, A. M., and Griffin, H. G., eds., Humana Press, New Jersey, 1994; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991; each of which is incorporated herein by reference. For example, the percent identity between two nucleic acid sequences can be determined using the algorithm of Meyers and Miller (CABIOS, 1989, 4:11-17), which has been incorporated into the ALIGN program (version 2.0) using a PAM 120 weight residue table, a gap length penalty of 12 and a gap penalty of 4 . The percent identity between two nucleic acid sequences can, alternatively, be determined using the GAP program in the GCG software package using an NWSgapdna.CMP matrix. Methods commonly employed to determine percent identity between sequences include, but are not limited to those disclosed in Carillo, H., and Lipman, D., SIAM J Applied Math., 48:1073 (1988); incorporated herein by reference.

Techniques for determining identity are codified in publicly available computer programs. Exemplary computer software to determine homology between two sequences include, but are not limited to, GCG program package, Devereux, J., et al., Nucleic Acids Research, 12(1), 387 (1984)), BLASTP, BLASTN, and FASTA Altschul, S. F. et al., J. Molec. Biol., 215, 403 (1990)).

Multiprotein and Multicomponent Vaccines

The present disclosure encompasses respiratory virus vaccines comprising multiple RNA (e.g., mRNA) polynucleotides, each encoding a single antigenic polypeptide, as well as respiratory virus vaccines comprising a single RNA polynucleotide encoding more than one antigenic polypeptide (e.g., as a fusion polypeptide). Thus, a vaccine composition comprising a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a first antigenic polypeptide and a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a second antigenic polypeptide encompasses (a) vaccines that comprise a first RNA polynucleotide encoding a first antigenic polypeptide and a second RNA polynucleotide encoding a second antigenic polypeptide, and (b) vaccines that comprise a single RNA polynucleotide encoding a first and second antigenic polypeptide (e.g., as a fusion polypeptide). RNA (e.g., mRNA) vaccines of the present disclosure, in some embodiments, comprise 2-10 (e.g., 2, 3, 4, 5, 6, 7, 8,9 or 10), or more, RNA polynucleotides having an open reading frame, each of which encodes a different antigenic polypeptide (or a single RNA polynucleotide encoding 2-10, or more, different antigenic polypeptides). The antigenic polypeptides may be selected from hMPV, PIV3, RSV, MEV and BetaCoV (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1) antigenic polypeptides.

In some embodiments, a respiratory virus vaccine comprises a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a viral capsid protein, a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a viral premembrane/membrane protein, and a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a viral envelope protein. In some embodiments, a respiratory virus vaccine comprises a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a viral fusion (F) protein and a RNA polynucleotide having an open reading frame encoding a viral major surface glycoprotein (G protein). In some embodiments, a vaccine comprises a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a viral F protein. In some embodiments, a vaccine comprises a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a viral G protein. In some embodiments, a vaccine comprises a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a HN protein.
In some embodiments, a multicomponent vaccine comprises at least one RNA (e.g., mRNA) polynucleotide encoding at least one antigenic polypeptide fused to a signal peptide (e.g., any one of SEQ ID NO: 15-19). The signal peptide may be fused at the N -terminus or the C -terminus of an antigenic polypeptide. An antigenic polypeptide fused to a signal peptide may be selected from hMPV, PIV3, RSV, MEV and BetaCoV (e.g., selected from MERS-CoV, SARSCoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1) antigenic polypeptides. Signal Peptides
In some embodiments, antigenic polypeptides encoded by respiratory virus RNA (e.g., mRNA) polynucleotides comprise a signal peptide. Signal peptides, comprising the

N-terminal 15-60 amino acids of proteins, are typically needed for the translocation across the membrane on the secretory pathway and, thus, universally control the entry of most proteins both in eukaryotes and prokaryotes to the secretory pathway. Signal peptides generally include three regions: an N-terminal region of differing length, which usually comprises positively charged amino acids; a hydrophobic region; and a short carboxy-terminal peptide region. In eukaryotes, the signal peptide of a nascent precursor protein (pre-protein) directs the ribosome to the rough endoplasmic reticulum (ER) membrane and initiates the transport of the growing peptide chain across it for processing. ER processing produces mature proteins, wherein the signal peptide is cleaved from precursor proteins, typically by a ER-resident signal peptidase of the host cell, or they remain uncleaved and function as a membrane anchor. A signal peptide may also facilitate the targeting of the protein to the cell membrane. The signal peptide, however, is not responsible for the final destination of the mature protein Secretory proteins devoid of additional address tags in their sequence are by default secreted to the external environment. During recent years, a more advanced view of signal peptides has evolved, showing that the functions and immunodominance of certain signal peptides are much more versatile than previously anticipated.

Respiratory virus vaccines of the present disclosure may comprise, for example, RNA (e.g., mRNA) polynucleotides encoding an artificial signal peptide, wherein the signal peptide coding sequence is operably linked to and is in frame with the coding sequence of the antigenic polypeptide. Thus, respiratory virus vaccines of the present disclosure, in some embodiments, produce an antigenic polypeptide comprising an antigenic polypeptide (e.g., hMPV, PIV3, RSV, MeV or BetaCoV) fused to a signal peptide. In some embodiments, a signal peptide is fused to the N -terminus of the antigenic polypeptide. In some embodiments, a signal peptide is fused to the C-terminus of the antigenic polypeptide.

In some embodiments, the signal peptide fused to the antigenic polypeptide is an artificial signal peptide. In some embodiments, an artificial signal peptide fused to the antigenic polypeptide encoded by the RNA (e.g., mRNA) vaccine is obtained from an immunoglobulin protein, e.g., an IgE signal peptide or an IgG signal peptide. In some embodiments, a signal peptide fused to the antigenic polypeptide encoded by a RNA (e.g., mRNA) vaccine is an Ig heavy chain epsilon-1 signal peptide (IgE HC SP) having the sequence of: MDWTWILFLVAAATRVHS (SEQ ID NO: 16). In some embodiments, a signal peptide fused to the antigenic polypeptide encoded by the (e.g., mRNA) RNA (e.g., mRNA) vaccine is an IgGk chain V-III region HAH signal peptide (IgGk SP) having the sequence of METPAQLLFLLLLWLPDTTG (SEQ ID NO: 15). In some embodiments, the signal peptide is selected from: Japanese encephalitis PRM signal sequence (MLGSNSGQRVVFTILLLLVAPAYS; SEQ ID NO: 17), VSVg protein signal sequence (MKCLLYLAFLFIGVNCA; SEQ ID NO: 18) and Japanese encephalitis JEV signal sequence (MWLVSLAIVTACAGA; SEQ ID NO: 19).

In some embodiments, the antigenic polypeptide encoded by a RNA (e.g., mRNA) vaccine comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, 47-50 or 54-56 (Tables 3, 6, 11, 14 or 17; see also amino acid sequences of Tables $4,7,12$ or 15) fused to a signal peptide identified by any one of SEQ ID NO: 15-19 (Table 8). The examples disclosed herein are not meant to be limiting and any signal peptide that is known in the art to facilitate targeting of a protein to ER for processing and/or
targeting of a protein to the cell membrane may be used in accordance with the present disclosure.

A signal peptide may have a length of 15-60 amino acids. For example, a signal peptide may have a length of 15,16 , $17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32$, $33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48$, $49,50,51,52,53,54,55,56,57,58,59$, or 60 amino acids. In some embodiments, a signal peptide has a length of $20-60,25-60,30-60,35-60,40-60,45-60,50-60$, $55-60$, $15-55,20-55,25-55,30-55,35-55,40-55,45-55,50-55$, $15-50,20-50,25-50,30-50,35-50,40-50,45-50,15-45$, $20-45,25-45,30-45,35-45,40-45,15-40,20-40$, 25-40, $30-40,35-40,15-35,20-35,25-35,30-35,15-30,20-30$, 25-30, 15-25, 20-25, or 15-20 amino acids.

A signal peptide is typically cleaved from the nascent polypeptide at the cleavage junction during ER processing. The mature antigenic polypeptide produce by a respiratory virus RNA (e.g., mRNA) vaccine of the present disclosure typically does not comprise a signal peptide.

Chemical Modifications

Respiratory virus vaccines of the present disclosure, in some embodiments, comprise at least RNA (e.g. mRNA) polynucleotide having an open reading frame encoding at least one antigenic polypeptide that comprises at least one chemical modification.
The terms "chemical modification" and "chemically modified" refer to modification with respect to adenosine (A), guanosine (G), uridine (U), thymidine (T) or cytidine (C) ribonucleosides or deoxyribnucleosides in at least one of their position, pattern, percent or population. Generally, these terms do not refer to the ribonucleotide modifications in naturally occurring 5^{\prime}-terminal mRNA cap moieties. With respect to a polypeptide, the term "modification" refers to a modification relative to the canonical set 20 amino acids. Polypeptides, as provided herein, are also considered "modified" of they contain amino acid substitutions, insertions or a combination of substitutions and insertions.
Polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides), in some embodiments, comprise various (more than one) different modifications. In some embodiments, a particular region of a polynucleotide contains one, two or more (optionally different) nucleoside or nucleotide modifications. In some embodiments, a modified RNA polynucleotide (e.g., a modified mRNA polynucleotide), introduced to a cell or organism, exhibits reduced degradation in the cell or organism, respectively, relative to an unmodified polynucleotide. In some embodiments, a modified RNA polynucleotide (e.g., a modified mRNA polynucleotide), introduced into a cell or organism, may exhibit reduced immunogenicity in the cell or organism, respectively (e.g., a reduced innate response).

Modifications of polynucleotides include, without limitation, those described herein. Polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) may comprise modifications that are naturally-occurring, non-natu-rally-occurring or the polynucleotide may comprise a combination of naturally-occurring and non-naturally-occurring modifications. Polynucleotides may include any useful modification, for example, of a sugar, a nucleobase, or an internucleoside linkage (e.g., to a linking phosphate, to a phosphodiester linkage or to the phosphodiester backbone).
Polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides), in some embodiments, comprise non-natural modified nucleotides that are introduced during synthesis or post-synthesis of the polynucleotides to achieve desired functions or properties. The modifications may be present on an internucleotide linkages, purine or pyrimidine
bases, or sugars. The modification may be introduced with chemical synthesis or with a polymerase enzyme at the terminal of a chain or anywhere else in the chain. Any of the regions of a polynucleotide may be chemically modified.

The present disclosure provides for modified nucleosides and nucleotides of a polynucleotide (e.g., RNA polynucleotides, such as mRNA polynucleotides). A "nucleoside" refers to a compound containing a sugar molecule (e.g., a pentose or ribose) or a derivative thereof in combination with an organic base (e.g., a purine or pyrimidine) or a derivative thereof (also referred to herein as "nucleobase"). A nucleotide" refers to a nucleoside, including a phosphate group. Modified nucleotides may by synthesized by any useful method, such as, for example, chemically, enzymatically, or recombinantly, to include one or more modified or non-natural nucleosides. Polynucleotides may comprise a region or regions of linked nucleosides. Such regions may have variable backbone linkages. The linkages may be standard phosphdioester linkages, in which case the polynucleotides would comprise regions of nucleotides.

Modified nucleotide base pairing encompasses not only the standard adenosine-thymine, adenosine-uracil, or guanosine-cytosine base pairs, but also base pairs formed between nucleotides and/or modified nucleotides comprising non-standard or modified bases, wherein the arrangement of hydrogen bond donors and hydrogen bond acceptors permits hydrogen bonding between a non-standard base and a standard base or between two complementary non-standard base structures. One example of such non-standard base pairing is the base pairing between the modified nucleotide inosine and adenine, cytosine or uracil. Any combination of base/sugar or linker may be incorporated into polynucleotides of the present disclosure.

Modifications of polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) that are useful in the vaccines of the present disclosure include, but are not limited to the following: 2-methylthio-N6-(cis-hydroxyisopentenyl)adenosine; 2-methylthio-N6-methyladenosine; 2-methylthio-N6-threonyl carbamoyladenosine; N6-glycinylcarbamoyladenosine; N6-isopentenyladenosine; N6-methyladenosine; N6-threonylcarbamoyladenosine; 1,2'-O-dimethyladenosine; 1 -methyladenosine; 2^{\prime}-O-methyladenosine; 2^{\prime}-O-ribosyladenosine (phosphate); 2-methyladenosine; 2-methylthio-N6 isopentenyladenosine; 2-meth-ylthio-N6-hydroxynorvalyl carbamoyladenosine; 2^{\prime}-Omethyladenosine; 2^{\prime}-O-ribosyladenosine (phosphate); Isopentenyladenosine; N6-(cis-hydroxyisopentenyl)adenosine; N6,2'-O-dimethyladenosine; N6,2'-O-dimethyladenosine; N6,N6,2'-O-trimethyladenosine; N6,N6-dimethyladenosine;

N6-acetyladenosine; N6-hydroxynorvalylcarbamoyladenosine; N6-methyl-N6threonylcarbamoyladenosine; 2-methyladenosine; 2-meth-ylthio-N6-isopentenyladenosine; 7-deaza-adenosine; N1-methyl-adenosine; N6, N6 (dimethyl)adenine; N6-cis-hydroxy-isopentenyl-adenosine; α-thio-adenosine; 2 (amino)adenine; 2 (aminopropyl)adenine; 2 (methylthio) N6 (isopentenyl)adenine; 2-(alkyl)adenine; 2-(aminoalkyl)adenine; 2-(aminopropyl)adenine; 2-(halo)adenine; 2-(halo) adenine; $\quad 2$-(propyl)adenine; $\quad 2$ '-Amino- 2 '-deoxy-ATP; 2'-Azido-2'-deoxy-ATP; 2'-Deoxy-2'-a-aminoadenosine TP; 2^{\prime}-Deoxy- 2^{\prime}-a-azidoadenosine TP; 6 (alkyl)adenine; 6 (methyl)adenine; 6-(alkyl)adenine; 6-(methyl)adenine; 7 (deaza)adenine; 8 (alkenyl)adenine; 8 (alkynyl)adenine; 8 (amino)adenine; 8 (thioalkyl)adenine; 8-(alkenyl)adenine; 8-(alkyl)adenine; 8-(alkynyl)adenine; 8-(amino)adenine; 8 -(halo)adenine; 8 -(hydroxyl)adenine; 8 -(thioalkyl)adenine; 8 -(thiol)adenine; 8 -azido-adenosine; aza adenine; deaza
adenine; N6 (methyl)adenine; N6-(isopentyl)adenine; 7-deaza-8-aza-adenosine; 7-methyladenine; 1-Deazaadenosine TP; 2'Fluoro-N6-Bz-deoxyadenosine TP; 2'-OMe-2-Amino-ATP; 2'O-methyl-N6-Bz-deoxyadenosine TP; 2'-aEthynyladenosine TP; 2-aminoadenine; 2-Aminoadenosine TP; 2-Amino-ATP; 2'-a-Trifluoromethyladenosine TP; 2-Azidoadenosine TP; 2'-b-Ethynyladenosine TP; 2-Bromoadenosine TP; 2'-b-Trifluoromethyladenosine TP; 2-Chloroadenosine TP; 2'-Deoxy-2', 2'-difluoroadenosine TP; 2'-Deoxy-2'-a-mercaptoadenosine TP; 2'-Deoxy-2'-athiomethoxyadenosine TP; 2'-Deoxy- 2^{\prime}-b-aminoadenosine TP; 2'-Deoxy-2'-b-azidoadenosine TP; 2'-Deoxy-2'-b-bromoadenosine TP; 2^{\prime}-Deoxy- 2^{\prime}-b-chloroadenosine TP; 2^{\prime}-De-oxy-2'-b-fluoroadenosine TP; 2^{\prime}-Deoxy- 2^{\prime}-b-iodoadenosine TP; 2'-Deoxy-2'-b-mercaptoadenosine TP; 2'-Deoxy-2'-bthiomethoxyadenosine TP; 2-Fluoroadenosine TP; 2-lodoadenosine TP; 2-Mercaptoadenosine TP; 2-methoxy-adenine; 2-methylthio-adenine; 2-Trifluoromethyladenosine TP; 3-Deaza-3-bromoadenosine TP; 3-Deaza-3-chloroadenosine TP; 3-Deaza-3-fluoroadenosine TP; 3-Deaza-3-iodoadenosine TP; 3-Deazaadenosine TP; 4'-Azidoadenosine TP; 4'-Carbocyclic adenosine TP; 4'-Ethynyladenosine TP; 5'-Homo-adenosine TP; 8-Aza-ATP; 8-bromo-adenosine TP; 8-Trifluoromethyladenosine TP; 9-Deazaadenosine TP; 2-aminopurine; 7-deaza-2,6-diaminopurine; 7-deaza-8-aza-2,6-diaminopurine; 7-deaza-8-aza-2-aminopurine; 2,6-diaminopurine; 7-deaza-8-aza-adenine, 7-deaza-2-aminopurine; 2-thiocytidine; 3-methylcytidine; 5-formylcytidine; 5-hydroxymethylcytidine; 5-methylcytidine; N4-acetylcytidine; 2^{\prime}-O-methylcytidine; 2^{\prime}-O-methylcytidine; 5,2'-O-dimethylcytidine; 5 -formyl-2'-O-methylcytidine; Lysidine; $\mathrm{N} 4,2^{\prime}$-O-dimethylcytidine; N 4 -acetyl-2'-O-methylcytidine; N4-methylcytidine; N4,N4-Dimethyl-2'-OMe-Cytidine TP; 4-methylcytidine; 5-aza-cytidine; Pseudo-iso-cytidine; pyr-rolo-cytidine; α-thio-cytidine; 2-(thio)cytosine; 2'-Amino-2'-deoxy-CTP; 2'-Azido-2'-deoxy-CTP; 2'-Deoxy-2'-aaminocytidine TP; 2'-Deoxy-2'-a-azidocytidine TP; 3 (deaza) 5 (aza)cytosine; 3 (methyl)cytosine; 3-(alkyl)cytosine; 3-(deaza) 5 (aza)cytosine; 3-(methyl)cytidine; 4,2'-Odimethylcytidine; 5 (halo)cytosine; 5 (methyl)cytosine; 5 (propynyl)cytosine; 5 (trifluoromethyl)cytosine; 5-(alkyl) cytosine; 5-(alkynyl)cytosine; 5-(halo)cytosine; 5-(propynyl)cytosine; 5 -(trifluoromethyl)cytosine; 5-bromo-cytidine; 5 -iodo-cytidine; 5-propynyl cytosine; 6-(azo)cytosine; 6-aza-cytidine; aza cytosine; deaza cytosine; N4 (acetyl) cytosine; 1-methyl-1-deaza-pseudoisocytidine; 1-methylpseudoisocytidine; 2-methoxy-5-methyl-cytidine; 2-methoxy-cytidine; 2-thio-5-methyl-cytidine; 4-methoxy-1-methyl-pseudoisocytidine; 4-methoxy-pseudoisocytidine; 4-thio-1-methyl-1-deaza-pseudoisocytidine; 4-thio-1-methyl-pseudoisocytidine; 4-thio-pseudoisocytidine; 5-azazebularine; 5-methyl-zebularine; pyrrolo-pseudoisocytidine; Zebularine; (E)-5-(2-Bromo-vinyl)cytidine TP; 2,2'-an-hydro-cytidine TP hydrochloride; 2^{2} Fluor-N4-Bz-cytidine TP; 2'Fluoro-N4-Acetyl-cytidine TP; 2'-O-Methyl-N4-Acetyl-cytidine TP; 2'O-methyl-N4-Bz-cytidine TP; 2^{\prime}-aEthynylcytidine TP; 2'-a-Trifluoromethylcytidine TP; 2'-bEthynylcytidine TP; 2'-b-Trifluoromethylcytidine TP; 2'-Deoxy-2', 2'-difluorocytidine TP; 2'-Deoxy-2'-a-mercaptocytidine TP; 2'-Deoxy-2'-a-thiomethoxycytidine TP; 2^{\prime}-Deoxy-2'-b-aminocytidine TP; 2'-Deoxy- 2^{\prime}-b-azidocytidine TP; 2'-Deoxy-2'-b-bromocytidine TP; 2'-Deoxy-2'-bchlorocytidine TP; 2^{\prime}-Deoxy- 2^{\prime}-b-fluorocytidine TP; 2^{\prime}-De-oxy-2'-b-iodocytidine TP; 2'-Deoxy-2'-b-mercaptocytidine TP; 2'-Deoxy-2'-b-thiomethoxycytidine TP; 2'-O-Methyl-5-(1-propynyl)cytidine TP; 3^{\prime}-Ethynylcytidine TP; 4^{\prime}-Azidocytidine TP; 4'-Carbocyclic cytidine TP; 4'-Ethynylcytidine

TP; 5-(1-Propynyl)ara-cytidine TP; 5-(2-Chloro-phenyl)-2thiocytidine TP; 5-(4-Amino-phenyl)-2-thiocytidine TP; 5-Aminoallyl-CTP; 5-Cyanocytidine TP; 5-Ethynylara-cytidine TP; 5-Ethynylcytidine TP; 5'-Homo-cytidine TP; 5-Methoxycytidine TP; 5-Trifluoromethyl-Cytidine TP; N4-Amino-cytidine TP; N4-Benzoyl-cytidine TP; Pseudoisocytidine; 7-methylguanosine; $\mathrm{N} 2,2^{\prime}$-O-dimethylguanosine; N2-methylguanosine; Wyosine; 1,2'-O-dimethylguanosine; 1 -methylguanosine; 2^{\prime}-O-methylguanosine; 2^{\prime}-O-ribosylguanosine (phosphate); 2^{\prime}-O-methylguanosine; 2^{\prime}-O-ribosylguanosine (phosphate); 7-aminomethyl-7deazaguanosine; 7-cyano-7-deazaguanosine; Archaeosine; Methylwyosine; N2,7-dimethylguanosine; N2,N2,2'-Otrimethylguanosine; N2,N2,7-trimethylguanosine; N2,N2dimethylguanosine; N2,7,2'-O-trimethylguanosine; 6-thioguanosine; $\quad 7$-deaza-guanosine; $\quad 8$-oxo-guanosine; N1-methyl-guanosine; α-thio-guanosine; 2 (propyl)guanine; 2-(alkyl)guanine; 2'-Amino-2'-deoxy-GTP; 2'-Azido-2'-de-oxy-GTP; 2^{\prime}-Deoxy- 2^{\prime}-a-aminoguanosine TP; 2'-Deoxy-2'-a-azidoguanosine TP; 6 (methyl)guanine; 6-(alkyl)guanine; 6-(methyl)guanine; 6-methyl-guanosine; 7 (alkyl)guanine; 7 (deaza)guanine; 7 (methyl)guanine; 7-(alkyl)guanine; 7-(deaza)guanine; 7-(methyl)guanine; 8 (alkyl)guanine; 8 (alkynyl)guanine; 8 (halo)guanine; 8 (thioalkyl)guanine; 8 -(alkenyl)guanine; 8-(alkyl)guanine; 8-(alkynyl)guanine; 8 -(amino)guanine; 8 -(halo)guanine; 8-(hydroxyl)guanine; 8 -(thioalkyl)guanine; 8 -(thiol)guanine; aza guanine; deaza guanine; N (methyl)guanine; N -(methyl)guanine; 1-methyl-6-thio-guanosine; 6 -methoxy-guanosine; 6-thio-7-deaza-8-aza-guanosine; 6-thio-7-deaza-guanosine; 6-thio-7-methylguanosine; $\quad 7$-deaza- 8 -aza-guanosine; 7 -methyl-8-oxoguanosine; N2,N2-dimethyl-6-thio-guanosine; N2-methyl-6-thio-guanosine; 1-Me-GTP; 2'Fluoro-N2-isobutylguanosine TP; 2'O-methyl-N2-isobutyl-guanosine TP; 2'-aEthynylguanosine TP; 2'-a-Trifluoromethylguanosine TP; 2'-b-Ethynylguanosine TP; 2'-b-Trifluoromethylguanosine TP; 2'-Deoxy-2', 2'-difluoroguanosine TP; 2'-Deoxy-2'-amercaptoguanosine TP; 2^{\prime}-Deoxy- 2^{\prime}-a-thiomethoxyguanosine TP; 2^{\prime}-Deoxy-2'-b-aminoguanosine TP; 2^{\prime}-Deoxy- 2^{\prime}-bazidoguanosine TP; 2'-Deoxy-2'-b-bromoguanosine TP; 2'-Deoxy-2'-b-chloroguanosine TP; 2'-Deoxy-2'-b-fluoroguanosine TP; 2^{\prime}-Deoxy- 2^{\prime}-b-iodoguanosine TP; 2^{\prime}-De-oxy-2'-b-mercaptoguanosine TP; 2'-Deoxy-2'-b-thiomethoxyguanosine TP; 4'-Azidoguanosine TP; 4'-Carbocyclic guanosine TP; 4'-Ethynylguanosine TP; 5'-Homo-guanosine TP; 8-bromo-guanosine TP; 9-Deazaguanosine TP; N 2 -isobutyl-guanosine TP; 1-methylinosine; Inosine; $\quad 1,2^{\prime}$-O-dimethylinosine; $\quad 2^{\prime}$-O-methylinosine; 7-methylinosine; 2'-O-methylinosine; Epoxyqueuosine; galactosyl-queuosine; Mannosylqueuosine; Queuosine; allyamino-thymidine; aza thymidine; deaza thymidine; deoxy-thymidine; $\quad 2^{\prime}$-O-methyluridine; $\quad 2$-thiouridine; 3-methyluridine; 5-carboxymethyluridine; 5-hydroxyuridine; 5-methyluridine; 5 -taurinomethyl-2-thiouridine; 5 -taurinomethyluridine; Dihydrouridine; Pseudouridine; (3-(3-amino-3-carboxypropyl)uridine; 1-methyl-3-(3-amino-5carboxypropyl)pseudouridine; 1-methylpseduouridine; 1-methyl-pseudouridine; 2^{\prime}-O-methyluridine; 2^{\prime}-O-methylpseudouridine; 2'-O-methyluridine; 2-thio-2'-O-methyluridine; 3-(3-amino-3-carboxypropyl)uridine; 3,2'-O-dimethyluridine; 3-Methyl-pseudo-Uridine TP; 4-thiouridine; 5 -(carboxyhydroxymethyl)uridine; 5-(carboxyhydroxymethyl)uridine methyl ester; 5,2'-O-dimethyluridine; 5,6 -di-hydro-uridine; 5-aminomethyl-2-thiouridine; 5-carbamoyl-methyl-2'-O-methyluridine; $\quad 5$-carbamoylmethyluridine; 5-carboxyhydroxymethyluridine; 5-carboxyhydroxymethyluridine methyl ester; 5-carboxymethylaminomethyl-2'-O-
methyluridine; 5-carboxymethylaminomethyl-2-thiouridine; 5-carboxymethylaminomethyl-2-thiouridine; 5-carboxymethylaminomethyluridine; 5-carboxymethylaminomethyluridine; 5-Carbamoylmethyluridine TP; 5-methoxycarbonylmethyl-2'-O-methyluridine; 5-methoxy-carbonylmethyl-2-thiouridine; 5-methoxycarbonylmethyluridine; 5-methoxyuridine; 5-methyl-2-thiouridine; 5-meth-ylaminomethyl-2-selenouridine; 5-methylaminomethyl-2thiouridine; 5 -methylaminomethyluridine; 5-Methyldihydrouridine; 5-Oxyacetic acid-Uridine TP; 5-Oxyacetic acid-methyl ester-Uridine TP; N1-methyl-pseudo-uridine; uridine 5 -oxyacetic acid; uridine 5 -oxyacetic acid methyl ester; 3-(3-Amino-3-carboxypropyl)-Uridine TP; 5-(iso-Pentenylaminomethyl)-2-thiouridine TP; 5-(iso-Pentenylaminomethyl)-2'-O-methyluridine TP; 5-(iso-Pentenylaminomethyl)uridine TP; 5-propynyl uracil; α-hhio-uridine; 1 (aminoalkylamino-carbonylethylenyl)-2 (thio)-pseudouracil; 1 (aminoalkylaminocarbonylethyl-enyl)-2,4-(dithio)pseudouracil; 1 (aminoalkylaminocarbo-nylethylenyl)-4 (thio)pseudouracil; (aminoalkylaminocarbonylethylenyl)-pseudouracil; 1 (aminocarbonylethylenyl)-2(thio)-pseudouracil; 1 (amin-ocarbonylethylenyl)-2,4-(dithio)pseudouracil; 1 (aminocar-bonylethylenyl)-4 (thio)pseudouracil; 1 (aminocarbonyleth-ylenyl)-pseudouracil; 1 substituted 2(thio)-pseudouracil; 1 substituted 2,4-(dithio)pseudouracil; 1 substituted 4 (thio) pseudouracil; 1 substituted pseudouracil; 1-(aminoalky-lamino-carbonylethylenyl)-2-(thio)-pseudouracil;
1-Methyl-3-(3-amino-3-carboxypropyl) pseudouridine TP; 1-Methyl-3-(3-amino-3-carboxypropyl)pseudo-UTP; 1-Methyl-pseudo-UTP; 2 (thio)pseudouracil; 2^{\prime} deoxy uridine; 2^{\prime} fluorouridine; 2-(thio)uracil; 2,4-(dithio)psuedouracil; 2^{\prime} methyl, 2^{\prime} 'amino, 2^{\prime} azido, 2^{\prime} 'fluro-guanosine; 2'-Amino-2'-deoxy-UTP; 2'-Azido-2'-deoxy-UTP; 2^{\prime}-Azido-deoxyuridine TP; 2'-O-methylpseudouridine; 2^{\prime} deoxy uridine; 2^{\prime} fluorouridine; 2^{\prime}-Deoxy- 2^{\prime}-a-aminouridine TP; 2'-Deoxy-2'-a-azidouridine TP; 2-methylpseudouridine; 3 (3 amino-3 carboxypropyl)uracil; 4 (thio)pseudouracil; 4-(thio)pseudouracil; 4-(thio)uracil; 4-thiouracil; 5 (1,3-di-azole-1-alkyl)uracil; 5 (2-aminopropyl)uracil; 5 (aminoalkyl)uracil; 5 (dimethylaminoalkyl)uracil; 5 (guanidiniumalkyl)uracil; 5 (methoxycarbonylmethyl)-2-(thio)uracil; 5 (methoxycarbonyl-methyl)uracil; 5 (methyl) 2 (thio)uracil; 5 (methyl) 2,4 (dithio)uracil; 5 (methyl) 4 (thio)uracil; 5 (methylaminomethyl)-2 (thio)uracil; 5 (methylaminom-ethyl)-2,4 (dithio)uracil; 5 (methylaminomethyl)-4 (thio) uracil; 5 (propynyl)uracil; 5 (trifluoromethyl)uracil; 5-(2aminopropyl)uracil; $\quad 5$-(alkyl)-2-(thio)pseudouracil; 5-(alkyl)-2,4 (dithio)pseudouracil; 5-(alkyl)-4 (thio) pseudouracil; 5-(alkyl)pseudouracil; 5-(alkyl)uracil; 5-(alkynyl)uracil; 5-(allylamino)uracil; 5-(cyanoalkyl)uracil; 5-(dialkylaminoalkyl)uracil; 5-(dimethylaminoalkyl) uracil; 5-(guanidiniumalkyl)uracil; 5-(halo)uracil; 5-(1,3-di-azole-1-alkyl)uracil; 5-(methoxy)uracil; 5-(methoxycarbonylmethyl)-2-(thio)uracil; 5-(methoxycar-bonyl-methyl)uracil; 5-(methyl) 2(thio)uracil; 5-(methyl) 2,4 (dithio)uracil; 5-(methyl) 4 (thio)uracil; 5-(methyl)-2(thio)pseudouracil; 5-(methyl)-2,4 (dithio)pseudouracil; 5-(methyl)-4 (thio)pseudouracil; 5-(methyl)pseudouracil; 5-(methylaminomethyl)-2 (thio)uracil; 5-(methylaminom-ethyl)-2,4(dithio)uracil; 5-(methylaminomethyl)-4-(thio) uracil; 5-(propynyl)uracil; 5-(trifluoromethyl)uracil; 5-aminoally1-uridine; 5 -bromo-uridine; 5 -iodo-uridine; 5-uracil; 6 (azo)uracil; 6-(azo)uracil; 6-aza-uridine; ally-amino-uracil; aza uracil; deaza uracil; N3 (methyl)uracil; Pseudo-UTP-1-2-ethanoic acid; Pseudouracil; 4-Thio-pseudo-UTP; 1-carboxymethyl-pseudouridine; 1-methyl-1-
deaza-pseudouridine; 1-propynyl-uridine; 1-taurinomethyl-1-methyl-uridine; $\quad 1$-taurinomethyl-4-thio-uridine; 1-taurinomethyl-pseudouridine; 2-methoxy-4-thio-pseudouridine; 2-thio-1-methyl-1-deaza-pseudouridine; 2-thio-1-methyl-pseudouridine; 2-thio-5-aza-uridine; 2-thio-dihydropseudouridine; 2-thio-dihydrouridine; 2-thiopseudouridine; 4-methoxy-2-thio-pseudouridine; 4-methoxy-pseudouridine; 4-thio-1-methyl-pseudouridine; 4-thio-pseudouridine; 5-aza-uridine; Dihydropseudouridine;
(\pm) 1-(2-Hydroxypropyl)pseudouridine TP; (2R)-1-(2-Hydroxypropyl)pseudouridine TP; (2S)-1-(2-Hydroxypropyl) pseudouridine TP; (E)-5-(2-Bromo-vinyl)ara-uridine TP; (E)-5-(2-Bromo-vinyl)uridine TP; (Z)-5-(2-Bromo-vinyl) ara-uridine TP; (Z)-5-(2-Bromo-vinyl)uridine TP; 1-(2,2,2-Trifluoroethyl)-pseudo-UTP; 1-(2,2,3,3,3-Pentafluoropropyl)pseudouridine TP; 1-(2,2-Diethoxyethyl)pseudouridine TP; 1-(2,4,6-Trimethylbenzyl)pseudouridine TP; 1-(2,4,6-Trimethyl-benzyl)pseudo-UTP; 1-(2,4,6-Trimethyl-phenyl) pseudo-UTP; 1-(2-Amino-2-carboxyethyl)pseudo-UTP; 1-(2-Amino-ethyl)pseudo-UTP; 1-(2-Hydroxyethyl) pseudouridine TP; 1-(2-Methoxyethyl)pseudouridine TP; 1-(3,4-Bis-trifluoromethoxybenzyl)pseudouridine TP; 1-(3, 4-Dimethoxybenzyl)pseudouridine TP; 1-(3-Amino-3-car-boxypropyl)pseudo-UTP; 1-(3-Amino-propyl)pseudo-UTP; 1-(3-Cyclopropyl-prop-2-ynyl)pseudouridine TP; 1-(4-Amino-4-carboxybutyl)pseudo-UTP; 1-(4-Amino-benzyl) pseudo-UTP; 1-(4-Amino-butyl)pseudo-UTP; 1-(4-Amino-phenyl)pseudo-UTP; 1-(4-Azidobenzyl)pseudouridine TP; 1-(4-Bromobenzyl)pseudouridine TP; 1-(4-Chlorobenzyl) pseudouridine TP; 1-(4-Fluorobenzyl)pseudouridine TP; 1-(4-Iodobenzyl)pseudouridine TP; 1-(4-Methanesulfonylbenzyl)pseudouridine TP; 1-(4-Methoxybenzyl)pseudouridine TP; 1-(4-Methoxy-benzyl)pseudo-UTP; 1-(4-Methoxy-phenyl)pseudo-UTP; 1-(4-Methylbenzyl)pseudouridine TP; 1-(4-Methyl-benzyl)pseudo-UTP; 1-(4-Nitrobenzyl) pseudouridine TP; 1-(4-Nitro-benzyl)pseudo-UTP; 1(4-Ni-tro-phenyl)pseudo-UTP; 1-(4-Thiomethoxybenzyl) pseudouridine TP; 1-(4-Trifluoromethoxybenzyl) pseudouridine TP; 1-(4-Trifluoromethylbenzyl) pseudouridine TP; 1-(5-Amino-pentyl)pseudo-UTP; 1-(6-Amino-hexyl)pseudo-UTP; 1,6-Dimethyl-pseudo-UTP; 1-[3-(2-\{2-[2-(2-Aminoethoxy)-ethoxy]-ethoxy\}-ethoxy)propionyl]pseudouridine TP; 1-\{3-[2-(2-Aminoethoxy)-ethoxy]-propionyl $\}$ pseudouridine TP; 1-Acetylpseudouridine TP; 1-Alkyl-6-(1-propynyl)-pseudo-UTP; 1-Alkyl-6-(2-propynyl)-pseudo-UTP; 1-Alkyl-6-allyl-pseudo-UTP; 1-Alkyl-6-ethynyl-pseudo-UTP; 1-Alkyl-6-homoallyl-pseudo-UTP; 1-Alkyl-6-vinyl-pseudo-UTP; 1-Allylpseudouridine TP; 1-Aminomethyl-pseudo-UTP; 1-Benzoylpseudouridine TP; 1-Benzyloxymethylpseudouridine TP; 1-Benzyl-pseudo-UTP; 1-Biotinyl-PEG2-pseudouridine TP; 1-Biotinylpseudouridine TP; 1-Butyl-pseudo-UTP; 1-Cyanomethylpseudouridine TP; 1-Cyclobutylmethyl-pseudoUTP; 1-Cyclobutyl-pseudo-UTP; 1-Cycloheptylmethyl-pseudo-UTP; 1-Cycloheptyl-pseudo-UTP; 1-Cyclohexylmethyl-pseudo-UTP; 1-Cyclohexyl-pseudoUTP; 1-Cyclooctylmethyl-pseudo-UTP; 1-Cyclooctyl-pseudo-UTP; 1-Cyclopentylmethyl-pseudo-UTP; 1-Cyclo-pentyl-pseudo-UTP; 1-Cyclopropylmethyl-pseudo-UTP; 1-Cyclopropyl-pseudo-UTP; 1-Ethyl-pseudo-UTP; 1-Hexyl-pseudo-UTP; 1-Homoallylpseudouridine TP; 1-Hydroxymethylpseudouridine TP; 1-iso-propyl-pseudoUTP; 1-Me-2-thio-pseudo-UTP; 1-Me-4-thio-pseudo-UTP; 1-Me-alpha-thio-pseudo-UTP; 1-Methanesulfonylmethylpseudouridine TP; 1-Methoxymethylpseudouridine TP; 1-Methyl-6-(2,2,2-Trifluoroethyl)pseudo-UTP; 1-Methyl-6-(4-morpholino)-pseudo-UTP;

1-Methyl-6-(4-thiomor-
pholino)-pseudo-UTP; 1-Methyl-6-(substituted phenyl) pseudo-UTP; 1-Methyl-6-amino-pseudo-UTP; 1-Methyl-6-azido-pseudo-UTP; 1-Methyl-6-bromo-pseudo-UTP; 1-Methyl-6-butyl-pseudo-UTP; 1-Methyl-6-chloro-pseudoUTP; 1-Methyl-6-cyano-pseudo-UTP; 1-Methyl-6-dimeth-ylamino-pseudo-UTP; 1-Methyl-6-ethoxy-pseudo-UTP; 1-Methyl-6-ethylcarboxylate-pseudo-UTP; 1-Methyl-6-ethyl-pseudo-UTP; 1-Methyl-6-fluoro-pseudo-UTP; 1-Methyl-6-formyl-pseudo-UTP; 1-Methyl-6-hy-droxyamino-pseudo-UTP; 1-Methyl-6-hydroxy-pseudoUTP; 1-Methyl-6-iodo-pseudo-UTP; 1-Methyl-6-iso-pro-pyl-pseudo-UTP; 1-Methyl-6-methoxy-pseudo-UTP; 1-Methyl-6-methylamino-pseudo-UTP; 1-Methyl-6-phenyl-pseudo-UTP; 1-Methyl-6-propyl-pseudo-UTP; 1-Methyl-6-tert-butyl-pseudo-UTP; 1-Methyl-6-trifluoromethoxy-pseudo-UTP; 1-Methyl-6-trifluoromethyl-pseudo-UTP; 1-Morpholinomethylpseudouridine TP; 1-Pentyl-pseudoUTP; 1-Phenyl-pseudo-UTP; 1-Pivaloylpseudouridine TP; 1-Propargylpseudouridine TP; 1-Propyl-pseudo-UTP; 1-propynyl-pseudouridine; 1-p-tolyl-pseudo-UTP; 1-tert-Butyl-pseudo-UTP; 1-Thiomethoxymethylpseudouridine TP; 1-Thiomorpholinomethylpseudouridine TP; 1-Trifluoroacetylpseudouridine TP; 1-Trifluoromethyl-pseudo-UTP; 1-Vinylpseudouridine TP; 2,2'-anhydro-uridine TP; 2'-bromo-deoxyuridine TP; 2'-F-5-Methyl-2'-deoxy-UTP; 2^{\prime}-OMe-5-Me-UTP; 2^{\prime}-OMe-pseudo-UTP; 2^{\prime}-a-Ethynyluridine TP; 2^{\prime}-a-Trifluoromethyluridine TP; 2^{\prime}-b-Ethynyluridine TP; 2^{\prime}-b-Trifluoromethyluridine TP; 2^{\prime}-Deoxy- $2^{\prime}, 2^{\prime}$-difluorouridine TP; 2'-Deoxy-2'-a-mercaptouridine TP; 2^{\prime}-Deoxy- 2^{\prime}-a-thiomethoxyuridine TP; 2^{\prime}-Deoxy- 2^{\prime}-b-aminouridine TP; 2^{\prime}-Deoxy- 2^{\prime}-b-azidouridine TP; 2^{\prime}-Deoxy- 2^{\prime}-bbromouridine TP; 2^{\prime}-Deoxy- 2^{\prime}-b-chlorouridine TP; 2^{\prime}-De-oxy-2'-b-fluorouridine TP; 2'-Deoxy-2'-b-iodouridine TP; 2^{\prime}-Deoxy-2'-b-mercaptouridine TP; 2'-Deoxy-2'-b-thiomethoxyuridine TP; 2-methoxy-4-thio-uridine; 2-methoxyuridine; 2'-O-Methyl-5-(1-propynyl)uridine TP; 3-Alkyl-pseudo-UTP; 4'-Azidouridine TP; 4'-Carbocyclic uridine TP; 4'-Ethynyluridine TP; 5-(1-Propynyl)ara-uridine TP; 5-(2-Furanyl)uridine TP; 5-Cyanouridine TP; 5-Dimethylaminouridine TP; 5'-Homo-uridine TP; 5-iodo-2'-fluoro-deoxyuridine TP; 5-Phenylethynyluridine TP; 5-Tri-deuteromethyl-6-deuterouridine TP; 5-TrifluoromethylUridine TP; 5-Vinylarauridine TP; 6-(2,2,2-Trifluoroethyl)-pseudo-UTP; 6-(4-Morpholino)-pseudo-UTP; 6-(4-Thiomorpholino)-pseudo-UTP; 6-(Substituted-Phenyl)-pseudo-UTP; 6-Amino-pseudo-UTP; 6-Azido-pseudo-UTP; 6-Bromo-pseudo-UTP; 6-Butyl-pseudo-UTP; 6-Chloro-pseudo-UTP; 6-Cyano-pseudo-UTP; 6-Dimethylamino-pseudo-UTP; 6-Ethoxy-pseudo-UTP; 6-Ethylcarboxylate-pseudo-UTP; 6-Ethyl-pseudo-UTP; 6-Fluoro-pseudo-UTP; 6-Formyl-pseudo-UTP; 6-Hydroxyamino-pseudo-UTP; 6-Hydroxy-pseudo-UTP; 6-Iodo-pseudo-UTP; 6-iso-Pro-pyl-pseudo-UTP; 6-Methoxy-pseudo-UTP; 6-Methyl-amino-pseudo-UTP; 6-Methyl-pseudo-UTP; 6-Phenyl-pseudo-UTP; 6-Phenyl-pseudo-UTP; 6-Propyl-pseudoUTP; 6-tert-Butyl-pseudo-UTP; 6-Trifluoromethoxy-pseudo-UTP; 6-Trifluoromethyl-pseudo-UTP; Alpha-thio-pseudo-UTP; Pseudouridine 1-(4-methylbenzenesulfonic acid) TP; Pseudouridine 1-(4-methylbenzoic acid) TP; Pseudouridine TP 1-[3-(2-ethoxy)]propionic acid; Pseudouridine TP 1-[3-\{2-(2-[2-(2-ethoxy)-ethoxy]-ethoxy)ethoxy $\}]$ propionic acid; Pseudouridine TP 1-[3-\{2-(2-[2-\{2 (2-ethoxy)-ethoxy $\}$-ethoxy]-ethoxy)-ethoxy $\}]$ propionic acid; Pseudouridine TP 1-[3-\{2-(2-[2-ethoxy]-ethoxy)ethoxy $\}]$ propionic acid; Pseudouridine TP 1-[3-\{2-(2-ethoxy)-ethoxy \}] propionic acid; Pseudouridine TP 1-methylphosphonic acid; Pseudouridine TP 1-methylphosphonic
acid diethyl ester; Pseudo-UTP-N1-3-propionic acid; Pseudo-UTP-N1-4-butanoic acid; Pseudo-UTP-N1-5-pentanoic acid; Pseudo-UTP-N1-6-hexanoic acid; Pseudo-UTP-N1-7-heptanoic acid; Pseudo-UTP-N1-methyl-p-benzoic acid; Pseudo-UTP-N1-p-benzoic acid; Wybutosine; Hydroxywybutosine; Isowyosine; Peroxywybutosine; undermodified hydroxywybutosine; 4-demethylwyosine; 2,6-(diamino)purine; 1-(aza)-2-(thio)-3-(aza)-phenoxazin-1-yl: 1,3-(diaza)-2-(oxo)-phenthiazin-1-yl; 1,3-(diaza)-2-(oxo)-phenoxazin-1-yl; 1,3,5-(triaza)-2,6-(dioxa)-naphthalene;2 (amino)purine; $2,4,5$-(trimethyl)phenyl;2' methyl, 2'amino, 2'azido, 2'fluro-cytidine; 2^{\prime} methyl, 2' amino, 2'azido, 2'fluro-adenine; 2^{\prime} 'methyl, 2^{\prime} 'amino, 2^{\prime} azido, 2^{\prime} 'flurouridine; 2^{\prime}-amino- 2^{\prime}-deoxyribose; 2-amino-6-Chloro-purine; 2-aza-inosinyl; 2'-azido-2'-deoxyribose; 2'fluoro-2'-deoxyribose; 2^{\prime}-fluoro-modified bases; 2^{\prime}-O-methyl-ribose; 2 -oxo7 -aminopyridopyrimidin-3-yl; 2-oxo-pyridopyrimidine-3yl; 2-pyridinone; 3 nitropyrrole; 3-(methyl)-7-(propynyl) isocarbostyrily1; 3-(methy1)isocarbostyrily1; 4-(fluoro)-6(methyl)benzimidazole; 4-(methyl)benzimidazole; 4-(methyl)indolyl; 4,6-(dimethyl)indolyl; 5 nitroindole; 5 substituted pyrimidines; 5-(methyl)isocarbostyrilyl; 5-nitroindole; 6-(aza)pyrimidine; 6-(azo)thymine; 6-(methyl)-7(aza)indolyl; 6-chloro-purine; 6-phenyl-pyrrolo-pyrimidin-2-on-3-yl; 7-(aminoalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phenthiazin-1-yl; 7-(aminoalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phenoxazin-1-yl; 7-(aminoalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenoxazin-1-yl; 7-(aminoalkylhydroxy)-1, 3-(diaza)-2-(oxo)-phenthiazin-1-yl;
7-(aminoalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenoxazin-1yl; 7-(aza)indolyl; 7-(guanidiniumalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phenoxazinl-yl; 7-(guanidiniumalkylhy-droxy)-1-(aza)-2-(thio)-3-(aza)-phenthiazin-1-yl;
7-(guanidiniumalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phe-noxazin-1-yl; 7-(guanidiniumalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenoxazin-1-yl; 7-(guanidiniumalkyl-hydroxy)-1,3-(diaza)-2-(oxo)-phenthiazin-1-yl;
7-(guanidiniumalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenox-azin-1-yl; 7-(propynyl)isocarbostyrilyl; 7-(propynyl)isocarbostyrilyl, propynyl-7-(aza)indoly1; 7-deaza-inosiny1; 7 -substituted 1 -(aza)-2-(thio)-3-(aza)-phenoxazin-1-yl; 7 -substituted 1,3-(diaza)-2-(oxo)-phenoxazin-1-yl; 9-(methyl)-imidizopyridinyl; Aminoindolyl; Anthracenyl; bis-ortho-(aminoalkylhydroxy)-6-phenyl-pyrrolo-pyrimi-din-2-on-3-yl; bis-ortho-substituted-6-phenyl-pyrrolo-py-rimidin-2-on-3-yl; Difluorotolyl; Hypoxanthine; Imidizopyridinyl; Inosinyl; Isocarbostyrilyl; Isoguanisine; N2-substituted purines; N6-methyl-2-amino-purine; N6-substituted purines; N-alkylated derivative; Napthalenyl; Nitrobenzimidazolyl; Nitroimidazolyl; Nitroindazolyl; Nitropyrazolyl; Nubularine; 06-substituted purines; O-alkylated derivative; ortho-(aminoalkylhydroxy)-6-phenyl-pyr-rolo-pyrimidin-2-on-3-yl; ortho-substituted-6-phenyl-pyr-rolo-pyrimidin-2-on-3-yl; Oxoformycin TP; para-(aminoalkylhydroxy)-6-phenyl-pyrrolo-pyrimidin-2-on-3yl; para-substituted-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl; Pentacenyl; Phenanthracenyl; Phenyl; propynyl-7-(aza)indolyl; Pyrenyl; pyridopyrimidin-3-yl; pyridopyrimidin-3-yl, 2-oxo-7-amino-pyridopyrimidin-3-yl; pyrrolo-pyrimidin-2-on-3-yl; Pyrrolopyrimidinyl; Pyrrolopyrizinyl; Stilbenzyl; substituted 1,2,4-triazoles; Tetracenyl; Tubercidine; Xanthine; Xanthosine-5'-TP; 2-thio-zebularine; 5-aza-2-thio-zebularine; 7-deaza-2-amino-purine; pyridin-4-one ribonucleoside; 2-Amino-riboside-TP; Formycin A TP; Formycin B TP; Pyrrolosine TP; 2'-OH-ara-adenosine TP; 2^{\prime}-OH-ara-cytidine TP; 2'-OH-ara-uridine TP; 2^{\prime} - OH -ara-
guanosine TP; 5-(2-carbomethoxyvinyl)uridine TP; and N6-(19-Amino-pentaoxanonadecyl)adenosine TP.

In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) include a combination of at least two (e.g., 2, 3, 4 or more) of the aforementioned modified nucleobases

In some embodiments, modified nucleobases in polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) are selected from the group consisting of pseudouridine (ψ), N1-methylpseudouridine ($\mathrm{m}^{1} \psi$), N1-ethylpseudouridine, 2 -thiouridine, 4 '-thiouridine, 5 -methylcyto sine, $\quad 2$-thio-1-methyl-1-deaza-pseudouridine, 2 -thio-1-methyl-pseudouridine, 2-thio-5-aza-uridine, 2-thio-dihydropseudouridine, 2 -thio-dihydrouridine, 2 -thio-pseudouridine, 4-methoxy-2-thio-pseudouridine, 4-methoxypseudouridine, $\quad 4$-thio-1-methy1-pseudouridine, 4-thiopseudouridine, 5 -aza-uridine, dihydropseudouridine, 5 -methoxyuridine and 2'-O-methyl uridine. In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) include a combination of at least two (e.g., 2, 3, 4 or more) of the aforementioned modified nucleobases.

In some embodiments, modified nucleobases in polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) are selected from the group consisting of 1-methyl-pseudouridine ($\mathrm{m}^{1} \psi$), 5-methoxy-uridine ($\mathrm{mo}^{5} \mathrm{U}$), 5 -methyl-cytidine ($\mathrm{m}^{5} \mathrm{C}$), pseudouridine (ψ), α-thio-guanosine and α-thio-adenosine. In some embodiments, polynucleotides includes a combination of at least two (e.g., 2, 3, 4 or more) of the aforementioned modified nucleobases.
In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise pseudouridine (v) and 5 -methyl-cytidine $\left(\mathrm{m}^{5} \mathrm{C}\right)$. In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise 1 -methylpseudouridine ($\mathrm{m}^{1} \psi$). In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise 1 -methyl-pseudouridine ($\mathrm{m}^{1} \psi$) and 5 -methyl-cytidine ($\mathrm{m}^{5} \mathrm{C}$). In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise 2 -thiouridine ($\mathrm{s}^{2} \mathrm{U}$). In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise 2 -thiouridine and 5 -methyl-cytidine ($\mathrm{m}^{5} \mathrm{C}$). In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise methoxy-uridine ($\mathrm{mo}^{5} \mathrm{U}$). In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise 5-methoxy-uridine ($\mathrm{mo}^{5} \mathrm{U}$) and 5-methyl-cytidine ($\mathrm{m}^{5} \mathrm{C}$). In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise 2^{\prime}-O-methyl uridine. In some embodiments polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise $2^{\prime}-\mathrm{O}-$ methyl uridine and 5 -methyl-cytidine $\left(\mathrm{m}^{5} \mathrm{C}\right)$. In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise N6-methyl-adenosine ($\mathrm{m}^{6} \mathrm{~A}$). In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise N6-methyl-adenosine ($\mathrm{m}^{6} \mathrm{~A}$) and 5-methyl-cytidine $\left(m^{5} C\right)$.
In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) are uniformly modified (e.g., fully modified, modified throughout the entire sequence) for a particular modification. For example, a polynucleotide can be uniformly modified with 5 -methylcytidine $\left(\mathrm{m}^{5} \mathrm{C}\right)$, meaning that all cytosine residues in the mRNA sequence are replaced with 5 -methyl-cytidine $\left(\mathrm{m}^{5} \mathrm{C}\right)$.

Similarly, a polynucleotide can be uniformly modified for any type of nucleoside residue present in the sequence by replacement with a modified residue such as those set forth above.

Exemplary nucleobases and nucleosides having a modified cytosine include N 4 -acetyl-cytidine (ac4C), 5-methylcytidine (m 5 C), 5 -halo-cytidine (e.g., 5 -iodo-cytidine), 5-hydroxymethyl-cytidine (hm5C), 1-methyl-pseudoisocytidine, 2-thio-cytidine (s2C), and 2-thio-5-methyl-cytidine.

In some embodiments, a modified nucleobase is a modified uridine. Exemplary nucleobases and In some embodiments, a modified nucleobase is a modified cytosine nucleosides having a modified uridine include 5-cyano uridine, and 4'-thio uridine.

In some embodiments, a modified nucleobase is a modified adenine. Exemplary nucleobases and nucleosides having a modified adenine include 7-deaza-adenine, 1-methyladenosine (m1A), 2-methyl-adenine (m2A), and N6-methyladenosine (m 6 A).

In some embodiments, a modified nucleobase is a modified guanine. Exemplary nucleobases and nucleosides having a modified guanine include inosine (I), 1-methyl-inosine (m 1 I), wyosine (imG), methylwyosine (mimG), 7-deazaguanosine, 7 -cyano-7-deaza-guanosine (preQO), 7 -amin-omethyl-7-deaza-guanosine (preQ1), 7 -methyl-guanosine (m 7 G), 1 -methyl-guanosine (mlG), 8 -oxo-guanosine, 7-methyl-8-oxo-guanosine.

The polynucleotides of the present disclosure may be partially or fully modified along the entire length of the molecule. For example, one or more or all or a given type of nucleotide (e.g., purine or pyrimidine, or any one or more or all of A, G, U, C) may be uniformly modified in a polynucleotide of the disclosure, or in a given predetermined sequence region thereof (e.g., in the mRNA including or excluding the polyA tail). In some embodiments, all nucleotides X in a polynucleotide of the present disclosure (or in a given sequence region thereof) are modified nucleotides, wherein X may any one of nucleotides A, G, U, C, or any one of the combinations $\mathrm{A}+\mathrm{G}, \mathrm{A}+\mathrm{U}, \mathrm{A}+\mathrm{C}, \mathrm{G}+\mathrm{U}, \mathrm{G}+\mathrm{C}, \mathrm{U}+\mathrm{C}$, $\mathrm{A}+\mathrm{G}+\mathrm{U}, \mathrm{A}+\mathrm{G}+\mathrm{C}, \mathrm{G}+\mathrm{U}+\mathrm{C}$ or $\mathrm{A}+\mathrm{G}+\mathrm{C}$.

The polynucleotide may contain from about 1% to about 100% modified nucleotides (either in relation to overall nucleotide content, or in relation to one or more types of nucleotide, i.e., any one or more of A, G, U or C) or any intervening percentage (e.g., from 1% to 20%, from 1% to 25%, from 1% to 50%, from 1% to 60%, from 1% to 70%, from 1% to 80%, from 1% to 90%, from 1% to 95%, from 10% to 20%, from 10% to 25%, from 10% to 50%, from 10% to 60%, from 10% to 70%, from 10% to 80%, from 10% to 90%, from 10% to 95%, from 10% to 100%, from 20% to 25%, from 20% to 50%, from 20% to 60%, from 20% to 70%, from 20% to 80%, from 20% to 90%, from 20% to 95%, from 20% to 100%, from 50% to 60%, from 50% to 70%, from 50% to 80%, from 50% to 90%, from 50% to 95%, from 50% to 100%, from 70% to 80%, from 70% to 90%, from 70% to 95%, from 70% to 100%, from 80% to 90%, from 80% to 95%, from 80% to 100%, from 90% to 95%, from 90% to 100%, and from 95% to 100%). Any remaining percentage is accounted for by the presence of unmodified $\mathrm{A}, \mathrm{G}, \mathrm{U}$, or C .

The polynucleotides may contain at a minimum 1% and at maximum 100% modified nucleotides, or any intervening percentage, such as at least 5% modified nucleotides, at least 10% modified nucleotides, at least 25% modified nucleotides, at least 50% modified nucleotides, at least 80% modified nucleotides, or at least 90% modified nucleotides. For example, the polynucleotides may contain a modified
pyrimidine such as a modified uracil or cytosine. In some embodiments, at least 5%, at least 10%, at least 25%, at least 50%, at least 80%, at least 90% or 100% of the uracil in the polynucleotide is replaced with a modified uracil (e.g., a 5 -substituted uracil). The modified uracil can be replaced by a compound having a single unique structure, or can be replaced by a plurality of compounds having different structures (e.g., 2, 3, 4 or more unique structures). n some embodiments, at least 5%, at least 10%, at least 25%, at least 50%, at least 80%, at least 90% or 100% of the cytosine in the polynucleotide is replaced with a modified cytosine (e.g., a 5 -substituted cytosine). The modified cytosine can be replaced by a compound having a single unique structure, or can be replaced by a plurality of compounds having different structures (e.g., 2, 3, 4 or more unique structures).
Thus, in some embodiments, the RNA (e.g., mRNA) vaccines comprise a 5^{\prime} UTR element, an optionally codon optimized open reading frame, and a $3^{\prime} U T R$ element, a poly(A) sequence and/or a polyadenylation signal wherein the RNA is not chemically modified.
In some embodiments, the modified nucleobase is a modified uracil. Exemplary nucleobases and nucleosides having a modified uracil include pseudouridine (ψ), pyridin4 -one ribonucleoside, 5 -aza-uridine, 6 -aza-uridine, 2 -thio5 -aza-uridine, 2 -thio-uridine ($\mathrm{s}^{2} \mathrm{U}$), 4-thio-uridine ($\mathrm{s}^{4} \mathrm{U}$), 4-thio-pseudouridine, 2-thio-pseudouridine, 5 -hydroxy-uridine (ho ${ }^{5} \mathrm{U}$), 5 -aminoallyl-uridine, 5 -halo-uridine (e.g., 5 -iodo-uridineor 5-bromo-uridine), 3-methyl-uridine ($\mathrm{m}^{3} \mathrm{U}$), 5 -methoxy-uridine $\left(\mathrm{mo}^{5} \mathrm{U}\right)$, uridine 5 -oxyacetic acid ($\mathrm{cmo}{ }^{5} \mathrm{U}$), uridine 5 -oxyacetic acid methyl ester ($\mathrm{mcmo}^{5} \mathrm{U}$), 5-carboxymethyl-uridine $\left(\mathrm{cm}^{5} \mathrm{U}\right), \quad 1$-carboxymethylpseudouridine, 5 -carboxyhydroxymethyl-uridine ($\mathrm{chm}^{5} \mathrm{U}$), 5-carboxyhydroxymethyl-uridine methyl ester ($\mathrm{mchm}^{5} \mathrm{U}$), 5 -methoxycarbonylmethyl-uridine ($\mathrm{mcm}^{5} \mathrm{U}$), 5-methoxy-carbonylmethyl-2-thio-uridine ($\mathrm{mcm}^{5} \mathrm{~s}^{2} \mathrm{U}$), 5-aminomethyl-2-thio-uridine $\quad\left(\mathrm{nm}^{5} \mathrm{~s}^{2} U\right), \quad 5$-methylaminomethyl-uridine ($\mathrm{mnm}^{5} \mathrm{U}$), \quad-methylaminomethyl-2-thio-uridine ($\mathrm{mnm}^{5} \mathrm{~s}^{2} \mathrm{U}$), $\quad 5$-methylaminomethyl-2-seleno-uridine ($\mathrm{mnm}^{5} \mathrm{se}^{2} \mathrm{U}$), 5-carbamoylmethyl-uridine ($\mathrm{ncm}^{5} \mathrm{U}$), 5-car-boxymethylaminomethyl-uridine ($\mathrm{cmnm}^{5} \mathrm{U}$), 5-carboxym-ethylaminomethyl-2-thio-uridine ($\mathrm{cmnm}^{5} \mathrm{~s}^{2} \mathrm{U}$), 5-propynyluridine, 1 -propynyl-pseudouridine, 5 -taurinomethyl-uridine ($\mathrm{mm}^{5} \mathrm{U}$), 1-taurinomethyl-pseudouridine, 5-taurinomethyl-2-thio-uridine $\left(\mathrm{m}^{5} \mathrm{~s}^{2} \mathrm{U}\right)$, 1-taurinomethyl-4-thio-pseudouridine, 5 -methyl-uridine ($\mathrm{m}^{5} \mathrm{U}$, i.e., having the nucleobase deoxythymine), 1-methyl-pseudouridine ($\mathrm{m}^{1} \psi$), 5 -methyl-2-thiouridine ($\mathrm{m} 5 \mathrm{~s}^{2} \mathrm{U}$), 1-methyl-4-thio-pseudouridine $\left(\mathrm{m}^{1} \mathrm{~s}^{4} \psi\right)$, 4-thio-1-methyl-pseudouridine, 3-methyl-pseudouridine ($\mathrm{m}^{3} \psi$), 2-thio-1-methyl-pseudouridine, 1-methyl-1-deazapseudouridine, 2 -thio-1-methyl-1-deaza-pseudouridine, dihydrouridine (D), dihydropseudouridine, 5,6-dihydrouridine, 5 -methyl-dihydrouridine ($\mathrm{m}^{5} \mathrm{D}$), 2-thio-dihydrouridine, 2 -thio-dihydropseudouridine, 2 -methoxy-uridine, 2-methoxy-4-thio-uridine, $\quad 4$-methoxy-pseudouridine, 4-methoxy-2-thio-pseudouridine, N1-methyl-pseudouridine, $\quad 3$-(3-amino-3-carboxypropyl)uridine (acp ${ }^{3} U$), 1-methyl-3-(3-amino-3-carboxypropyl)pseudouridine (acp ${ }^{3} \psi$), $\quad 5$-(isopentenylaminomethyl)uridine $\quad\left(\mathrm{inm}^{5} \mathrm{U}\right)$, 5-(isopentenylaminomethyl)-2-thio-uridine $\quad\left(\mathrm{inm}^{5} \mathrm{~s}^{2} U\right)$, α-thio-uridine, 2^{\prime}-O-methyl-uridine (Um), 5,2'-O-dimethyluridine (msUm), 2^{\prime}-O-methyl-pseudouridine (Wm), 2-thio-2^{\prime}-O-methyl-uridine ($\mathrm{s}^{2} \mathrm{Um}$), 5-methoxycarbonylmethyl-2'-O-methyl-uridine (mcm^{5} Um), \quad-carbamoylmethyl-2'-O-methyl-uridine ($\mathrm{ncm}^{5} \mathrm{Um}$), 5-carboxymethylaminomethyl-2^{\prime}-O-methyl-uridine ($\mathrm{cmnm}^{5} \mathrm{Um}$), 3,2'-O-dimethyl-uridine ($\mathrm{m}^{3} \mathrm{Um}$), and 5-(isopentenylaminomethyl)-2'-O-methyl-uridine ($\mathrm{inm}^{5} \mathrm{Um}$), 1-thio-uridine, deoxythymidine, 2^{\prime}-F-ara-
uridine, $\quad 2^{\prime}$-F-uridine, $\quad 2^{\prime}$-OH-ara-uridine, $\quad 5$-(2-carbomethoxyvinyl) uridine, and 5-[3-(1-E-propenylamino)] uridine.

In some embodiments, the modified nucleobase is a modified cytosine. Exemplary nucleobases and nucleosides having a modified cytosine include 5 -aza-cytidine, 6 -azacytidine, pseudoisocytidine, 3-methyl-cytidine ($\mathrm{m}^{3} \mathrm{C}$), N4-acetyl-cytidine $\quad\left(\mathrm{ac}^{4} \mathrm{C}\right), \quad 5$-formyl-cytidine $\quad\left(f^{5} \mathrm{C}\right)$, N4-methyl-cytidine $\left(\mathrm{m}^{4} \mathrm{C}\right)$, 5 -methyl-cytidine $\left(\mathrm{m}^{5} \mathrm{C}\right)$, 5 -halo-cytidine (e.g., 5-iodo-cytidine), 5-hydroxymethylcytidine ($\mathrm{hm}^{5} \mathrm{C}$), 1-methyl-pseudoisocytidine, pyrrolo-cytidine, pyrrolo-pseudoisocytidine, 2-thio-cytidine ($\mathrm{s}^{2} \mathrm{C}$), 2-thio-5-methyl-cytidine, 4-thio-pseudoisocytidine, 4-thio-1-methyl-pseudoisocytidine, 4-thio-1-methyl-1-deazapseudoisocytidine, 1-methyl-1-deaza-pseudoisocytidine, zebularine, 5 -aza-zebularine, 5 -methyl-zebularine, 5 -aza- 2 -thio-zebularine, 2-thio-zebularine, 2-methoxy-cytidine, 2 -methoxy-5-methyl-cytidine, 4 -methoxy-pseudoisocytidine, 4 -methoxy-1-methyl-pseudoisocytidine, lysidine $\left(\mathrm{k}_{2} \mathrm{C}\right)$, α-thio-cytidine, 2^{\prime}-O-methyl-cytidine (Cm), $5,2^{\prime}$-O-dimethyl-cytidine ($\mathrm{m}^{5} \mathrm{Cm}$), N4-acetyl-2'-O-methyl-cytidine ($\mathrm{ac}^{4} \mathrm{Cm}$), N4,2'-O-dimethyl-cytidine ($\mathrm{m}^{4} \mathrm{Cm}$), 5 -formyl-2'-O-methyl-cytidine ($\mathrm{f}^{5} \mathrm{Cm}$), N4,N4, 2^{\prime}-O-trimethyl-cytidine $\left(\mathrm{m}^{4} 2 \mathrm{Cm}\right)$, 1-thio-cytidine, 2^{2}-F-ara-cytidine, 2^{\prime}-F-cytidine, and $2^{\prime}-\mathrm{OH}$-ara-cytidine.

In some embodiments, the modified nucleobase is a modified adenine. Exemplary nucleobases and nucleosides having a modified adenine include 2 -amino-purine, 2 , 6 -diaminopurine, 2 -amino- 6 -halo-purine (e.g., 2-amino-6-chloro-purine), 6-halo-purine (e.g., 6-chloro-purine), 2 -amino-6-methyl-purine, 8 -azido-adenosine, 7 -deaza-adenine, 7-deaza-8-aza-adenine, 7-deaza-2-amino-purine, 7-deaza-8-aza-2-amino-purine, 7-deaza-2,6-diaminopurine, 7-deaza-8-aza-2,6-diaminopurine, $\quad 1$-methyl-adenosine $\left(\mathrm{m}^{1} \mathrm{~A}\right)$, 2-methyl-adenine ($\mathrm{m}^{2} \mathrm{~A}$), $\quad \mathrm{N} 6$-methyl-adenosine $\left(\mathrm{m}^{6} \mathrm{~A}\right), \quad 2$-methylthio-N6-methyl-adenosine $\quad\left(\mathrm{ms}^{2} \mathrm{~m}^{6} \mathrm{~A}\right)$, N6-isopentenyl-adenosine ($\mathrm{i}^{6} \mathrm{~A}$), 2-methylthio-N6-isopente-nyl-adenosine ($\mathrm{ms}^{2}{ }^{2} \mathrm{i}^{6} \mathrm{~A}$), N 6 -(cis-hydroxyisopentenyl)adenosine (io ${ }^{6}$ A), 2-methylthio-N6-(cis-hydroxyisopentenyl) adenosine $\left(\mathrm{ms}^{2} \mathrm{io}^{6} \mathrm{~A}\right)$, N6-glycinylcarbamoyl-adenosine ($\mathrm{g}^{6} \mathrm{~A}$), N6-threonylcarbamoyl-adenosine ($\mathrm{t}^{6} \mathrm{~A}$), N6-methyl-N6-threonylcarbamoyl-adenosine ($\mathrm{m}^{6} \mathrm{t} 6 \mathrm{~A}$), 2-methylthio-N6-threonylcarbamoyl-adenosine ($\mathrm{ms}^{2} \mathrm{~g}^{6} \mathrm{~A}$), N6,N6-dim-ethyl-adenosine ($\mathrm{m}^{5} 2 \mathrm{~A}$), N6-hydroxynorvalylcarbamoyladenosine $\quad\left(\mathrm{hn}^{6} \mathrm{~A}\right)$, 2-methylthio-N6-hydroxynorvalylcarbamoyl-adenosine $\left(\mathrm{ms}^{2} \mathrm{hn}^{6} \mathrm{~A}\right)$, N6-acetyl-adenosine ($\mathrm{ac}^{6} \mathrm{~A}$), 7-methyl-adenine, 2-methyl-thio-adenine, 2 -methoxy-adenine, α-thio-adenosine, 2^{\prime}-O-methyl-adenosine (Am), N6,2'-O-dimethyl-adenosine $\left(\mathrm{m}^{6} \mathrm{Am}\right)$, $\mathrm{N} 6, \mathrm{~N} 6,2^{\prime}$-O-trimethyl-adenosine ($\mathrm{m}^{6} 2 \mathrm{Am}$), 1, 2^{\prime} -O-dimethyl-adenosine ($\mathrm{m}^{1} \mathrm{Am}$), $\quad 2^{\prime}$-O-ribosyladenosine (phosphate) ($\operatorname{Ar}(\mathrm{p})$), 2-amino-N6-methyl-purine, 1-thio-adenosine, 8 -azido-adenosine, 2^{\prime}-F-ara-adenosine, 2^{\prime}-F-adenosine, $2^{\prime}-\mathrm{OH}$-ara-adenosine, and N6-(19-amino-pentaox-anonadecyl)-adenosine.

In some embodiments, the modified nucleobase is a modified guanine. Exemplary nucleobases and nucleosides having a modified guanine include inosine (I), 1-methylinosine ($\mathrm{m}^{1} \mathrm{I}$), wyosine (imG), methylwyosine (mimG), 4-demethyl-wyosine (imG-14), isowyosine (imG2), wybutosine ($y W$), peroxywybutosine ($\mathrm{o}_{2} \mathrm{yW}$), hydroxywybutosine (OhyW), undermodified hydroxywybutosine (OhyW*), 7-deaza-guanosine, queuosine (Q), epoxyqueuosine (oQ), galactosyl-queuosine (galQ), mannosyl-queuosine (manQ), 7-cyano-7-deaza-guanosine (preQ $), \quad 7$-aminomethyl-7-deaza-guanosine (preQ_{1}), archaeosine (G^{+}), 7-deaza-8-azaguanosine, 6-thio-guanosine, 6-thio-7-deaza-guanosine,

6-thio-7-deaza-8-aza-guanosine, 7-methyl-guanosine ($\mathrm{m}^{7} \mathrm{G}$), 6-thio-7-methyl-guanosine, $\quad 7$-methyl-inosine, 6-methoxy-guanosine, 1-methyl-guanosine (mG), N 2 -methyl-guanosine ($\mathrm{m}^{2} \mathrm{G}$), N2,N2-dimethyl-guanosine ($\mathrm{m}^{2} 2 \mathrm{G}$), N2,7-dimethyl-guanosine ($\mathrm{m}^{2,7} \mathrm{G}$), N2, N2,7-dim-ethyl-guanosine ($\mathrm{m}^{2,2,7} \mathrm{G}$), 8-oxo-guanosine, 7 -methyl-8-oxo-guanosine, 1-methyl-6-thio-guanosine, N2-methyl-6-thio-guanosine, N2,N2-dimethyl-6-thio-guanosine, α-thioguanosine, 2'-O-methyl-guanosine (Gm), N2-methyl-2'-O-methyl-guanosine ($\mathrm{m}^{2} \mathrm{Gm}$), N2,N2-dimethyl-2'-O-methylguanosine $\left(\mathrm{m}^{2} 2 \mathrm{Gm}\right), \quad 1$-methyl-2'-O-methyl-guanosine (mGm), N2,7-dimethyl-2'-O-methyl-guanosine ($\mathrm{m}^{2}{ }^{2} 7 \mathrm{Gm}$), 2^{\prime}-O-methyl-inosine (Im), 1, 2^{\prime}-O-dimethyl-inosine ($\mathrm{m}^{1} \mathrm{Im}$), 2^{\prime}-O-ribosylguanosine (phosphate) ($\mathrm{Gr}(\mathrm{p})$), 1-thio-guanosine, 06 -methyl-guanosine, 2^{\prime}-F-ara-guanosine, and 2^{\prime}-Fguanosine.
N-Linked Glycosylation Site Mutants
N -linked glycans of viral proteins play important roles in modulating the immune response. Glycans can be important for maintaining the appropriate antigenic conformations, shielding potential neutralization epitopes, and may alter the proteolytic susceptibility of proteins. Some viruses have putative N -linked glycosylation sites. Deletion or modification of an N -linked glycosylation site may enhance the immune response. Thus, the present disclosure provides, in some embodiments, RNA (e.g., mRNA) vaccines comprising nucleic acids (e.g., mRNA) encoding antigenic polypeptides that comprise a deletion or modification at one or more N -linked glycosylation sites.
In Vitro Transcription of RNA (e.g., mRNA)
Respiratory virus vaccines of the present disclosure comprise at least one RNA polynucleotide, such as a mRNA (e.g., modified mRNA). mRNA, for example, is transcribed in vitro from template DNA, referred to as an "in vitro transcription template." In some embodiments, an in vitro transcription template encodes a 5^{\prime} untranslated (UTR) region, contains an open reading frame, and encodes a 3^{\prime} UTR and a polyA tail. The particular nucleic acid sequence composition and length of an in vitro transcription template will depend on the mRNA encoded by the template.

A " 5 ' untranslated region" (5 'UTR) refers to a region of an mRNA that is directly upstream (i.e., 5^{\prime}) from the start codon (i.e., the first codon of an mRNA transcript translated by a ribosome) that does not encode a polypeptide.

A" 3 ' untranslated region" (3^{\prime} UTR) refers to a region of an mRNA that is directly downstream (i.e., 3^{\prime}) from the stop codon (i.e., the codon of an mRNA transcript that signals a termination of translation) that does not encode a polypeptide.

An "open reading frame" is a continuous stretch of DNA beginning with a start codon (e.g., methionine (ATG)), and ending with a stop codon (e.g., TAA, TAG or TGA) and encodes a polypeptide.
A "polyA tail" is a region of mRNA that is downstream, e.g., directly downstream (i.e., 3^{\prime}), from the 3^{\prime} UTR that contains multiple, consecutive adenosine monophosphates. A polyA tail may contain 10 to 300 adenosine monophosphates. For example, a polyA tail may contain 10, 20, 30, 40, $50,60,70,80,90,100,110,120,130,140,150,160,170$, $180,190,200,210,220,230,240,250,260,270,280,290$ or 300 adenosine monophosphates. In some embodiments, a polyA tail contains 50 to 250 adenosine monophosphates. In a relevant biological setting (e.g., in cells, in vivo) the poly(A) tail functions to protect mRNA from enzymatic degradation, e.g., in the cytoplasm, and aids in transcription termination, export of the mRNA from the nucleus and translation.

In some embodiments, a polynucleotide includes 200 to 3,000 nucleotides. For example, a polynucleotide may include 200 to 500,200 to 1000,200 to 1500,200 to 3000 , 500 to 1000,500 to 1500,500 to 2000,500 to 3000,1000 to 1500,1000 to 2000,1000 to 3000,1500 to 3000 , or 2000 to 3000 nucleotides. Flagellin Adjuvants

Flagellin is an approximately 500 amino acid monomeric protein that polymerizes to form the flagella associated with bacterial motion. Flagellin is expressed by a variety of flagellated bacteria (Salmonella typhimurium for example) as well as non-flagellated bacteria (such as Escherichia coli). Sensing of flagellin by cells of the innate immune system (dendritic cells, macrophages, etc.) is mediated by the Tolllike receptor 5 (TLR5) as well as by Nod-like receptors (NLRs) Ipaf and Naip5. TLRs and NLRs have been identified as playing a role in the activation of innate immune response and adaptive immune response. As such, flagellin provides an adjuvant effect in a vaccine.

The nucleotide and amino acid sequences encoding known flagellin polypeptides are publicly available in the NCBI GenBank database. The flagellin sequences from S.

Typhimurium, H. Pylori, V. Cholera, S. marcesens, S. flexneri, T. Pallidum, L. pneumophila, B. burgdorferei, C. difficile, R. meliloti, A. tumefaciens, R. lupini, B. clarridgeiae, P. Mirabilis, B. subtilus, L. monocytogenes, P. aeruginosa, and E. coli, among others are known.

A flagellin polypeptide, as used herein, refers to a full length flagellin protein, immunogenic fragments thereof, and peptides having at least 50% sequence identify to a flagellin protein or immunogenic fragments thereof. Exemplary flagellin proteins include flagellin from Salmonella typhi (UniPro Entry number: Q56086), Salmonella typhimurium (A0A0C9DG09), Salmonella enteritidis (AOAOC9BAB7), and Salmonella choleraesuis (Q6V2X8), and SEQ ID NO: 54-56 (Table 17). In some embodiments, the flagellin polypeptide has at least $60 \%, 70 \%, 75 \%, 80 \%$, $90 \%, 95 \%, 97 \%, 98 \%$, or 99% sequence identify to a flagellin protein or immunogenic fragments thereof.

In some embodiments, the flagellin polypeptide is an immunogenic fragment. An immunogenic fragment is a portion of a flagellin protein that provokes an immune response. In some embodiments, the immune response is a TLR5 immune response. An example of an immunogenic fragment is a flagellin protein in which all or a portion of a hinge region has been deleted or replaced with other amino acids. For example, an antigenic polypeptide may be inserted in the hinge region. Hinge regions are the hypervariable regions of a flagellin. Hinge regions of a flagellin are also referred to as "D3 domain or region, "propeller domain or region," "hypervariable domain or region" and "variable domain or region." "At least a portion of a hinge region," as used herein, refers to any part of the hinge region of the flagellin, or the entirety of the hinge region. In other embodiments an immunogenic fragment of flagellin is a 20, $25,30,35$, or 40 amino acid C-terminal fragment of flagellin.

The flagellin monomer is formed by domains D0 through D3. D0 and D1, which form the stem, are composed of tandem long alpha helices and are highly conserved among different bacteria. The D1 domain includes several stretches of amino acids that are useful for TLR5 activation. The entire D1 domain or one or more of the active regions within the domain are immunogenic fragments of flagellin. Examples of immunogenic regions within the D1 domain include residues 88-114 and residues 411-431 (in Salmonella typhimurium FliC flagellin. Within the 13 amino acids
in the 88-100 region, at least 6 substitutions are permitted between Salmonella flagellin and other flagellins that still preserve TLR5 activation. Thus, immunogenic fragments of flagellin include flagellin like sequences that activate TLR5 and contain a 13 amino acid motif that is 53% or more identical to the Salmonella sequence in 88-100 of FliC (LQRVRELAVQSAN; SEQ ID NO: 84).
In some embodiments, the RNA (e.g., mRNA) vaccine includes an RNA that encodes a fusion protein of flagellin and one or more antigenic polypeptides. A "fusion protein" as used herein, refers to a linking of two components of the construct. In some embodiments, a carboxy-terminus of the antigenic polypeptide is fused or linked to an amino terminus of the flagellin polypeptide. In other embodiments, an amino-terminus of the antigenic polypeptide is fused or linked to a carboxy-terminus of the flagellin polypeptide. The fusion protein may include, for example, one, two, three, four, five, six or more flagellin polypeptides linked to one, two, three, four, five, six or more antigenic polypeptides. When two or more flagellin polypeptides and/or two or more antigenic polypeptides are linked such a construct may be referred to as a "multimer."

Each of the components of a fusion protein may be directly linked to one another or they may be connected through a linker. For instance, the linker may be an amino acid linker. The amino acid linker encoded for by the RNA (e.g., mRNA) vaccine to link the components of the fusion protein may include, for instance, at least one member selected from the group consisting of a lysine residue, a glutamic acid residue, a serine residue and an arginine residue. In some embodiments the linker is 1-30, 1-25, 1-25, $5-10,5,15$, or 5-20 amino acids in length.
In other embodiments the RNA (e.g., mRNA) vaccine includes at least two separate RNA polynucleotides, one encoding one or more antigenic polypeptides and the other encoding the flagellin polypeptide. The at least two RNA polynucleotides may be co-formulated in a carrier such as a lipid nanoparticle.
Broad Spectrum RNA (e.g., mRNA) Vaccines
There may be situations where persons are at risk for infection with more than one strain of hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1). RNA (e.g., mRNA) therapeutic vaccines are particularly amenable to combination vaccination approaches due to a number of factors including, but not limited to, speed of manufacture, ability to rapidly tailor vaccines to accommodate perceived geographical threat, and the like. Moreover, because the vaccines utilize the human body to produce the antigenic protein, the vaccines are amenable to the production of larger, more complex antigenic proteins, allowing for proper folding, surface expression, antigen presentation, etc. in the human subject. To protect against more than one strain of hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1), a combination vaccine can be administered that includes RNA (e.g., mRNA) encoding at least one antigenic polypeptide protein (or antigenic portion thereof) of a first respiratory virus and further includes RNA encoding at least one antigenic polypeptide protein (or antigenic portion thereof) of a second respiratory virus. RNA (e.g., mRNA) can be co-formulated, for example, in a single lipid nanoparticle (LNP) or can be formulated in separate LNPs for co-administration.

Methods of Treatment
Provided herein are compositions (e.g., pharmaceutical compositions), methods, kits and reagents for prevention and/or treatment of respiratory diseases/infections in humans and other mammals. Respiratory virus RNA (e.g. mRNA) vaccines can be used as therapeutic or prophylactic agents, alone or in combination with other vaccine(s). They may be used in medicine to prevent and/or treat respiratory disease/infection. In exemplary aspects, the RNA (e.g., mRNA) vaccines of the present disclosure are used to provide prophylactic protection from hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, $\mathrm{HCoV}-\mathrm{NH}$ and/or HCoV-HKU1). Prophylactic protection from hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) can be achieved following administration of a RNA (e.g., mRNA) vaccine of the present disclosure. Respiratory virus RNA (e.g., mRNA) vaccines of the present disclosure may be used to treat or prevent viral "co-infections" containing two or more respiratory infections. Vaccines can be administered once, twice, three times, four times or more, but it is likely sufficient to administer the vaccine once (optionally followed by a single booster). It is possible, although less desirable, to administer the vaccine to an infected individual to achieve a therapeutic response. Dosing may need to be adjusted accordingly.

A method of eliciting an immune response in a subject against hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) is provided in aspects of the present disclosure. The method involves administering to the subject a respiratory virus RNA (e.g., mRNA) vaccine comprising at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoVOC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) antigenic polypeptide thereof, thereby inducing in the subject an immune response specific to hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) antigenic polypeptide or an immunogenic fragment thereof, wherein anti-antigenic polypeptide antibody titer in the subject is increased following vaccination relative to antiantigenic polypeptide antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoVHKU1). An "anti-antigenic polypeptide antibody" is a serum antibody the binds specifically to the antigenic polypeptide.

In some embodiments, a RNA (e.g., mRNA) vaccine (e.g., a hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1 RNA vaccine) capable of eliciting an immune response is administered intramuscularly via a composition including a compound according to Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (IIe) (e.g., Compound 3, 18, 20, 25, 26, 29, 30, $60,108-112$, or 122).

A prophylactically effective dose is a therapeutically effective dose that prevents infection with the virus at a clinically acceptable level. In some embodiments the therapeutically effective dose is a dose listed in a package insert
for the vaccine. A traditional vaccine, as used herein, refers to a vaccine other than the RNA (e.g., mRNA) vaccines of the present disclosure. For instance, a traditional vaccine includes but is not limited to live/attenuated microorganism vaccines, killed/inactivated microorganism vaccines, subunit vaccines, protein antigen vaccines, DNA vaccines, VLP vaccines, etc. In exemplary embodiments, a traditional vaccine is a vaccine that has achieved regulatory approval and/or is registered by a national drug regulatory body, for example the Food and Drug Administration (FDA) in the United States or the European Medicines Agency (EMA).
In some embodiments the anti-antigenic polypeptide antibody titer in the subject is increased $1 \log$ to $10 \log$ following vaccination relative to anti-antigenic polypeptide antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1).
In some embodiments the anti-antigenic polypeptide antibody titer in the subject is increased $1 \log , 2 \log , 3 \log , 5 \log$ or $10 \log$ following vaccination relative to anti-antigenic polypeptide antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1).

A method of eliciting an immune response in a subject against hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) is provided in other aspects of the disclosure. The method involves administering to the subject a respiratory virus RNA (e.g., mRNA) vaccine comprising at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoVOC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) antigenic polypeptide or an immunogenic fragment thereof, thereby inducing in the subject an immune response specific to hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) antigenic polypeptide or an immunogenic fragment thereof, wherein the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine against the hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) at 2 times to 100 times the dosage level relative to the RNA (e.g., mRNA) vaccine.

In some embodiments, the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at $2,3,4,5,10,50,100$ times the dosage level relative to the hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) RNA (e.g., mRNA) vaccine.
In some embodiments the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at $10-100$ times, or $100-1000$ times, the dosage level relative to the hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV,

HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) RNA (e.g., mRNA) vaccine.

In some embodiments the immune response is assessed by determining [protein] antibody titer in the subject.

Some aspects of the present disclosure provide a method of eliciting an immune response in a subject against a In some embodiments the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at $2,3,4,5,10,50,100$ times the dosage level relative to the hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoVOC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) RNA (e.g., mRNA) vaccine by administering to the subject a respiratory virus RNA (e.g., mRNA) vaccine comprising at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) antigenic polypeptide, thereby inducing in the subject an immune response specific to the antigenic polypeptide or an immunogenic fragment thereof, wherein the immune response in the subject is induced 2 days to 10 weeks earlier relative to an immune response induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against the hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1). In some embodiments, the immune response in the subject is induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine at 2 times to 100 times the dosage level relative to the RNA (e.g., mRNA) vaccine.

In some embodiments, the immune response in the subject is induced 2 days earlier, or 3 days earlier, relative to an immune response induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine.

In some embodiments the immune response in the subject is induced 1 week, 2 weeks, 3 weeks, 5 weeks, or 10 weeks earlier relative to an immune response induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine.

Also provided herein is a method of eliciting an immune response in a subject against hMPV, PIV 3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoVOC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) by administering to the subject a respiratory virus RNA (e.g., mRNA) vaccine having an open reading frame encoding a first antigenic polypeptide, wherein the RNA polynucleotide does not include a stabilization element, and wherein an adjuvant is not co-formulated or co-administered with the vaccine.
Therapeutic and Prophylactic Compositions
Provided herein are compositions (e.g., pharmaceutical compositions), methods, kits and reagents for prevention, treatment or diagnosis of hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoVOC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) in humans and other mammals, for example. Respiratory virus RNA (e.g. mRNA) vaccines can be used as therapeutic or prophylactic agents. They may be used in medicine to prevent and/or treat infectious disease. In some embodiments, the respiratory RNA (e.g., mRNA) vaccines of the present disclosure are used fin the priming of immune effector cells, for example, to activate peripheral
blood mononuclear cells (PBMCs) ex vivo, which are then infused (re-infused) into a subject.

In some embodiments, respiratory virus vaccine containing RNA (e.g., mRNA) polynucleotides as described herein can be administered to a subject (e.g., a mammalian subject, such as a human subject), and the RNA (e.g., mRNA) polynucleotides are translated in vivo to produce an antigenic polypeptide.

The respiratory virus RNA (e.g., mRNA) vaccines may be induced for translation of a polypeptide (e.g., antigen or immunogen) in a cell, tissue or organism. In some embodiments, such translation occurs in vivo, although such translation may occur ex vivo, in culture or in vitro. In some embodiments, the cell, tissue or organism is contacted with an effective amount of a composition containing a respiratory virus RNA (e.g., mRNA) vaccine that contains a polynucleotide that has at least one a translatable region encoding an antigenic polypeptide.

An "effective amount" of an respiratory virus RNA (e.g. mRNA) vaccine is provided based, at least in part, on the target tissue, target cell type, means of administration, physical characteristics of the polynucleotide (e.g., size, and extent of modified nucleosides) and other components of the vaccine, and other determinants. In general, an effective amount of the respiratory virus RNA (e.g., mRNA) vaccine composition provides an induced or boosted immune response as a function of antigen production in the cell, preferably more efficient than a composition containing a corresponding unmodified polynucleotide encoding the same antigen or a peptide antigen. Increased antigen production may be demonstrated by increased cell transfection (the percentage of cells transfected with the RNA, e.g., mRNA, vaccine), increased protein translation from the polynucleotide, decreased nucleic acid degradation (as demonstrated, for example, by increased duration of protein translation from a modified polynucleotide), or altered antigen specific immune response of the host cell.

In some embodiments, RNA (e.g. mRNA) vaccines (including polynucleotides their encoded polypeptides) in accordance with the present disclosure may be used for treatment of hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoVHKU1).

Respiratory RNA (e.g. mRNA) vaccines may be administered prophylactically or therapeutically as part of an active immunization scheme to healthy individuals or early in infection during the incubation phase or during active infection after onset of symptoms. In some embodiments, the amount of RNA (e.g., mRNA) vaccine of the present disclosure provided to a cell, a tissue or a subject may be an amount effective for immune prophylaxis.

Respiratory virus RNA (e.g. mRNA) vaccines may be administrated with other prophylactic or therapeutic compounds. As a non-limiting example, a prophylactic or therapeutic compound may be an adjuvant or a booster. As used herein, when referring to a prophylactic composition, such as a vaccine, the term "booster" refers to an extra administration of the prophylactic (vaccine) composition. A booster (or booster vaccine) may be given after an earlier administration of the prophylactic composition. The time of administration between the initial administration of the prophylactic composition and the booster may be, but is not limited to, 1 minute, 2 minutes, 3 minutes, 4 minutes, 5 minutes, 6 minutes, 7 minutes, 8 minutes, 9 minutes, 10 minutes, 15 minutes, 20 minutes 35 minutes, 40 minutes, 45 minutes, 50 minutes, 55 minutes, 1 hour, 2 hours, 3 hours, 4 hours, 5
hours, 6 hours, 7 hours, 8 hours, 9 hours, 10 hours, 11 hours, 12 hours, 13 hours, 14 hours, 15 hours, 16 hours, 17 hours, 18 hours, 19 hours, 20 hours, 21 hours, 22 hours, 23 hours, 1 day, 36 hours, 2 days, 3 days, 4 days, 5 days, 6 days, 1 week, 10 days, 2 weeks, 3 weeks, 1 month, 2 months, 3 months, 4 months, 5 months, 6 months, 7 months, 8 months, 9 months, 10 months, 11 months, 1 year, 18 months, 2 years, 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 11 years, 12 years, 13 years, 14 years, 15 years, 16 years, 17 years, 18 years, 19 years, 20 years, 25 years, 30 years, 35 years, 40 years, 45 years, 50 years, 55 years, 60 years, 65 years, 70 years, 75 years, 80 years, 85 years, 90 years, 95 years or more than 99 years. In some embodiments, the time of administration between the initial administration of the prophylactic composition and the booster may be, but is not limited to, 1 week, 2 weeks, 3 weeks, 1 month, 2 months, 3 months, 6 months or 1 year.

In some embodiments, respiratory virus RNA (e.g. mRNA) vaccines may be administered intramuscularly or intradermally, similarly to the administration of inactivated vaccines known in the art.

Respiratory virus RNA (e.g. mRNA) vaccines may be utilized in various settings depending on the prevalence of the infection or the degree or level of unmet medical need. As a non-limiting example, the RNA (e.g., mRNA) vaccines may be utilized to treat and/or prevent a variety of respiratory infections. RNA (e.g., mRNA) vaccines have superior properties in that they produce much larger antibody titers and produce responses early than commercially available anti-viral agents/compositions.

Provided herein are pharmaceutical compositions including respiratory virus RNA (e.g. mRNA) vaccines and RNA (e.g. mRNA) vaccine compositions and/or complexes optionally in combination with one or more pharmaceutically acceptable excipients.

Respiratory virus RNA (e.g. mRNA) vaccines may be formulated or administered alone or in conjunction with one or more other components. For instance, hMPV/PIV3/RSV RNA (e.g., mRNA) vaccines (vaccine compositions) may comprise other components including, but not limited to, adjuvants.

In some embodiments, respiratory virus (e.g. mRNA) vaccines do not include an adjuvant (they are adjuvant free).
Respiratory virus RNA (e.g. mRNA) vaccines may be formulated or administered in combination with one or more pharmaceutically-acceptable excipients. In some embodiments, vaccine compositions comprise at least one additional active substances, such as, for example, a therapeu-tically-active substance, a prophylactically-active substance, or a combination of both. Vaccine compositions may be sterile, pyrogen-free or both sterile and pyrogen-free. General considerations in the formulation and/or manufacture of pharmaceutical agents, such as vaccine compositions, may be found, for example, in Remington: The Science and Practice of Pharmacy 21st ed., Lippincott Williams \& Wilkins, 2005 (incorporated herein by reference in its entirety).

In some embodiments, respiratory virus RNA (e.g. mRNA) vaccines are administered to humans, human patients or subjects. For the purposes of the present disclosure, the phrase "active ingredient" generally refers to the RNA (e.g., mRNA) vaccines or the polynucleotides contained therein, for example, RNA polynucleotides (e.g., mRNA polynucleotides) encoding antigenic polypeptides.

Formulations of the respiratory virus vaccine compositions described herein may be prepared by any method known or hereafter developed in the art of pharmacology. In
general, such preparatory methods include the step of bringing the active ingredient (e.g., mRNA polynucleotide) into association with an excipient and/or one or more other accessory ingredients, and then, if necessary and/or desirable, dividing, shaping and/or packaging the product into a desired single- or multi-dose unit.

Relative amounts of the active ingredient, the pharmaceutically acceptable excipient, and/or any additional ingredients in a pharmaceutical composition in accordance with the disclosure will vary, depending upon the identity, size, and/or condition of the subject treated and further depending upon the route by which the composition is to be administered. By way of example, the composition may comprise between 0.1% and 100%, e.g., between 0.5 and 50%, between $1-30 \%$, between $5-80 \%$, at least 80% (w/w) active ingredient.

Respiratory virus RNA (e.g. mRNA) vaccines can be formulated using one or more excipients to: (1) increase stability; (2) increase cell transfection; (3) permit the sustained or delayed release (e.g., from a depot formulation); (4) alter the biodistribution (e.g., target to specific tissues or cell types); (5) increase the translation of encoded protein in vivo; and/or (6) alter the release profile of encoded protein (antigen) in vivo. In addition to traditional excipients such as any and all solvents, dispersion media, diluents, or other liquid vehicles, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, excipients can include, without limitation, lipidoids, liposomes, lipid nanoparticles, polymers, lipoplexes, core-shell nanoparticles, peptides, proteins, cells transfected with respiratory virus RNA (e.g. mRNA)vaccines (e.g., for transplantation into a subject), hyaluronidase, nanoparticle mimics and combinations thereof.
Stabilizing Elements
Naturally-occurring eukaryotic mRNA molecules have been found to contain stabilizing elements, including, but not limited to untranslated regions (UTR) at their 5^{\prime}-end ($5^{\prime} \mathrm{UTR}$) and/or at their 3^{\prime}-end ($3^{\prime} \mathrm{UTR}$), in addition to other structural features, such as a 5^{\prime}-cap structure or a 3'-poly(A) tail. Both the 5^{\prime} UTR and the 3^{\prime} UTR are typically transcribed from the genomic DNA and are elements of the premature mRNA. Characteristic structural features of mature mRNA, such as the 5^{\prime}-cap and the 3^{\prime}-poly(A) tail are usually added to the transcribed (premature) mRNA during mRNA processing. The 3^{\prime}-poly(A) tail is typically a stretch of adenine nucleotides added to the 3^{\prime}-end of the transcribed mRNA. It can comprise up to about 400 adenine nucleotides. In some embodiments the length of the $3^{\prime}-\mathrm{poly}(\mathrm{A})$ tail may be an essential element with respect to the stability of the individual mRNA.
In some embodiments the RNA (e.g., mRNA) vaccine may include one or more stabilizing elements. Stabilizing elements may include for instance a histone stem-loop. A stem-loop binding protein (SLBP), a 32 kDa protein has been identified. It is associated with the histone stem-loop at the 3 '-end of the histone messages in both the nucleus and the cytoplasm. Its expression level is regulated by the cell cycle; it peaks during the S-phase, when histone mRNA levels are also elevated. The protein has been shown to be essential for efficient 3^{\prime}-end processing of histone premRNA by the U7 snRNP. SLBP continues to be associated with the stem-loop after processing, and then stimulates the translation of mature histone mRNAs into histone proteins in the cytoplasm. The RNA binding domain of SLBP is conserved through metazoa and protozoa; its binding to the histone stem-loop depends on the structure of the loop. The
minimum binding site includes at least three nucleotides 5^{\prime} and two nucleotides 3^{\prime} relative to the stem-loop.

In some embodiments, the RNA (e.g., mRNA) vaccines include a coding region, at least one histone stem-loop, and optionally, a poly(A) sequence or polyadenylation signal. The poly(A) sequence or polyadenylation signal generally should enhance the expression level of the encoded protein. The encoded protein, in some embodiments, is not a histone protein, a reporter protein (e.g. Luciferase, GFP, EGFP, β-Galactosidase, EGFP), or a marker or selection protein (e.g. alpha-Globin, Galactokinase and Xanthine:guanine phosphoribosyl transferase (GPT)).

In some embodiments, the combination of a poly(A) sequence or polyadenylation signal and at least one histone stem-loop, even though both represent alternative mechanisms in nature, acts synergistically to increase the protein expression beyond the level observed with either of the individual elements. It has been found that the synergistic effect of the combination of $\operatorname{poly}(\mathrm{A})$ and at least one histone stem-loop does not depend on the order of the elements or the length of the poly(A) sequence.

In some embodiments, the RNA (e.g., mRNA) vaccine does not comprise a histone downstream element (HDE). "Histone downstream element" (HDE) includes a purinerich polynucleotide stretch of approximately 15 to 20 nucleotides 3^{\prime} of naturally occurring stem-loops, representing the binding site for the U7 snRNA, which is involved in processing of histone pre-mRNA into mature histone mRNA. Ideally, the inventive nucleic acid does not include an intron.

In some embodiments, the RNA (e.g., mRNA) vaccine may or may not contain a enhancer and/or promoter sequence, which may be modified or unmodified or which may be activated or inactivated. In some embodiments, the histone stem-loop is generally derived from histone genes, and includes an intramolecular base pairing of two neighbored partially or entirely reverse complementary sequences separated by a spacer, including (e.g., consisting of a short sequence, which forms the loop of the structure. The unpaired loop region is typically unable to base pair with either of the stem loop elements. It occurs more often in RNA, as is a key component of many RNA secondary structures, but may be present in single-stranded DNA as well. Stability of the stem-loop structure generally depends on the length, number of mismatches or bulges, and base composition of the paired region. In some embodiments, wobble base pairing (non-Watson-Crick base pairing) may result. In some embodiments, the at least one histone stemloop sequence comprises a length of 15 to 45 nucleotides.

In other embodiments the RNA (e.g., mRNA) vaccine may have one or more AU-rich sequences removed. These sequences, sometimes referred to as AURES are destabilizing sequences found in the 3^{\prime} UTR. The AURES may be removed from the RNA (e.g., mRNA) vaccines. Alternatively the AURES may remain in the RNA (e.g., mRNA) vaccine.
Nanoparticle Formulations
In some embodiments, respiratory virus RNA (e.g. mRNA) vaccines are formulated in a nanoparticle. In some embodiments, respiratory virus RNA (e.g. mRNA) vaccines are formulated in a lipid nanoparticle. In some embodiments, respiratory virus RNA (e.g. mRNA) vaccines are formulated in a lipid-polycation complex, referred to as a cationic lipid nanoparticle. As a non-limiting example, the polycation may include a cationic peptide or a polypeptide such as, but not limited to, polylysine, polyornithine and/or polyarginine. In some embodiments, respiratory virus RNA
(e.g., mRNA) vaccines are formulated in a lipid nanoparticle that includes a non-cationic lipid such as, but not limited to, cholesterol or dioleoyl phosphatidylethanolamine (DOPE).

A lipid nanoparticle formulation may be influenced by, but not limited to, the selection of the cationic lipid component, the degree of cationic lipid saturation, the nature of the PEGylation, ratio of all components and biophysical parameters such as size. In one example by Semple et al. (Nature Biotech. 2010 28:172-176), the lipid nanoparticle formulation is composed of 57.1% cationic lipid, 7.1% dipalmitoylphosphatidylcholine, 34.3% cholesterol, and 1.4% PEG-c-DMA. As another example, changing the composition of the cationic lipid can more effectively deliver siRNA to various antigen presenting cells (Basha et al. Mol Ther. 2011 19:2186-2200).
In some embodiments, lipid nanoparticle formulations may comprise 35 to 45% cationic lipid, 40% to 50% cationic lipid, 50% to 60% cationic lipid and/or 55% to 65% cationic lipid. In some embodiments, the ratio of lipid to RNA (e.g., mRNA) in lipid nanoparticles may be $5: 1$ to $20: 1,10: 1$ to 25:1, 15:1 to $30: 1$ and/or at least 30:1.

In some embodiments, the ratio of PEG in the lipid nanoparticle formulations may be increased or decreased and/or the carbon chain length of the PEG lipid may be modified from C14 to C18 to alter the pharmacokinetics and/or biodistribution of the lipid nanoparticle formulations. As a non-limiting example, lipid nanoparticle formulations may contain 0.5% to $3.0 \%, 1.0 \%$ to $3.5 \%, 1.5 \%$ to 4.0%, 2.0% to $4.5 \%, 2.5 \%$ to 5.0% and/or 3.0% to 6.0% of the lipid molar ratio of PEG-c-DOMG (R-3-[(ω-methoxy-poly(eth-yleneglycol)2000)carbamoy1)]-1,2-dimyristyloxypropy1-3amine) (also referred to herein as PEG-DOMG) as compared to the cationic lipid, DSPC and cholesterol. In some embodiments, the PEG-c-DOMG may be replaced with a PEG lipid such as, but not limited to, PEG-DSG (1,2-Distearoyl-snglycerol, methoxypolyethylene glycol), PEG-DMG (1,2-Dimyristoyl-sn-glycerol) and/or PEG-DPG (1,2-Dipalmi-toyl-sn-glycerol, methoxypolyethylene glycol). The cationic lipid may be selected from any lipid known in the art such as, but not limited to, DLin-MC3-DMA, DLin-DMA, C12200 and DLin-KC2-DMA.
In some embodiments, an respiratory virus RNA (e.g. mRNA) vaccine formulation is a nanoparticle that comprises at least one lipid. The lipid may be selected from, but is not limited to, DLin-DMA, DLin-K-DMA, 98N12-5, C12-200, DLin-MC3-DMA, DLin-KC2-DMA, DODMA, PLGA, PEG, PEG-DMG, PEGylated lipids and amino alcohol lipids. In some embodiments, the lipid may be a cationic lipid such as, but not limited to, DLin-DMA, DLin-D-DMA, DLin-MC3-DMA, DLin-KC2-DMA, DODMA and amino alcohol lipids.

The amino alcohol cationic lipid may be the lipids described in and/or made by the methods described in U.S. Patent Publication No. US20130150625, herein incorporated by reference in its entirety. As a non-limiting example, the cationic lipid may be 2 -amino-3-[(9Z,12Z)-octadeca-9, 12-dien-1-yloxy]-2-\{[(9Z,2Z)-octadeca-9,12-dien-1-yloxy] methyl\}propan-1-ol (Compound 1 in US20130150625); 2-amino-3-[(9Z)-octadec-9-en-1-yloxy]-2-\{[(9Z)-octadec-9-en-1-yloxy]methyl\}propan-1-ol (Compound 2 in US20130150625); 2 -amino-3-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]-2-[(octyloxy)methyl]propan-1-ol (Compound 3 in US20130150625); and 2-(dimethylamino)-3-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]-2-\{[(9Z, 12Z)-octadeca-9,12-dien-1-yloxy]methyl\}propan-1-ol (Compound 4 in US20130150625); or any pharmaceutically acceptable salt or stereoisomer thereof.

Lipid nanoparticle formulations typically comprise a lipid, in particular, an ionizable cationic lipid, for example, 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), or di((Z)-non-2-en-1-yl) 9-((4(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), and further comprise a neutral lipid, a sterol and a molecule capable of reducing particle aggregation, for example a PEG or PEG-modified lipid.

In some embodiments, a lipid nanoparticle formulation consists essentially of (i) at least one lipid selected from the group consisting of 2,2-dilinoleyl-4-dimethylaminoethyl-[1, 3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy) heptadecanedioate (L319); (ii) a neutral lipid selected from DSPC, DPPC, POPC, DOPE and SM; (iii) a sterol, e.g., cholesterol; and (iv) a PEG-lipid, e.g., PEG-DMG or PEGcDMA, in a molar ratio of $20-60 \%$ cationic lipid: $5-25 \%$ neutral lipid: $25-55 \%$ sterol; $0.5-15 \%$ PEG-lipid.

In some embodiments, a lipid nanoparticle formulation includes 25% to 75% on a molar basis of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), e.g., 35 to $65 \%, 45$ to $65 \%, 60 \%, 57.5 \%, 50 \%$ or 40% on a molar basis.

In some embodiments, a lipid nanoparticle formulation includes 0.5% to 15% on a molar basis of the neutral lipid, e.g., 3 to $12 \%, 5$ to 10% or $15 \%, 10 \%$, or 7.5% on a molar basis. Examples of neutral lipids include, without limitation, DSPC, POPC, DPPC, DOPE and SM. In some embodiments, the formulation includes 5% to 50% on a molar basis of the sterol (e.g., 15 to $45 \%, 20$ to $40 \%, 40 \%, 38.5 \%, 35 \%$, or 31% on a molar basis. A non-limiting example of a sterol is cholesterol. In some embodiments, a lipid nanoparticle formulation includes 0.5% to 20% on a molar basis of the PEG or PEG-modified lipid (e.g., 0.5 to $10 \%, 0.5$ to 5%, $1.5 \%, 0.5 \%, 1.5 \%, 3.5 \%$, or 5% on a molar basis. In some embodiments, a PEG or PEG modified lipid comprises a PEG molecule of an average molecular weight of $2,000 \mathrm{Da}$. In some embodiments, a PEG or PEG modified lipid comprises a PEG molecule of an average molecular weight of less than 2,000 , for example around $1,500 \mathrm{Da}$, around 1,000 Da, or around 500 Da . Non-limiting examples of PEGmodified lipids include PEG-distearoyl glycerol (PEGDMG) (also referred herein as PEG-C14 or C14-PEG), PEG-cDMA (further discussed in Reyes et al. J. Controlled Release, 107, 276-287 (2005) the contents of which are herein incorporated by reference in their entirety).

In some embodiments, lipid nanoparticle formulations include $25-75 \%$ of a cationic lipid selected from 2,2-dilino-leyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), $0.5-15 \%$ of the neutral lipid, $5-50 \%$ of the sterol, and $0.5-20 \%$ of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, lipid nanoparticle formulations include $35-65 \%$ of a cationic lipid selected from 2,2-dilino-leyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2DMA), dilinoley1-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), $3-12 \%$ of the neutral lipid, $15-45 \%$ of the sterol, and $0.5-10 \%$ of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, lipid nanoparticle formulations include $45-65 \%$ of a cationic lipid selected from 2,2-dilino-leyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and $\operatorname{di}((Z)$-non-2-en-1-yl) 9-((4(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), $5-10 \%$ of the neutral lipid, $25-40 \%$ of the sterol, and $0.5-10 \%$ of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, lipid nanoparticle formulations include 60% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 7.5% of the neutral lipid, 31% of the sterol, and 1.5% of the PEG or PEGmodified lipid on a molar basis.

In some embodiments, lipid nanoparticle formulations include 50% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 10\% of the neutral lipid, 38.5% of the sterol, and 1.5% of the PEG or PEGmodified lipid on a molar basis.

In some embodiments, lipid nanoparticle formulations include 50% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoley1-methyl-4-dimethylaminobutyrate (DLin-MC3DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 10\% of the neutral lipid, 35% of the sterol, 4.5% or 5% of the PEG or PEG-modified lipid, and 0.5% of the targeting lipid on a molar basis.

In some embodiments, lipid nanoparticle formulations include 40% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 15\% of the neutral lipid, 40% of the sterol, and 5% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, lipid nanoparticle formulations include 57.2% of a cationic lipid selected from 2,2-dilino-leyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and $\operatorname{di}((Z)$-non-2-en-1-yl) 9-((4(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 7.1% of the neutral lipid, 34.3% of the sterol, and 1.4% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, lipid nanoparticle formulations include 57.5% of a cationic lipid selected from the PEG lipid is PEG-cDMA (PEG-cDMA is further discussed in Reyes et al. (J. Controlled Release, 107, 276-287 (2005), the contents of which are herein incorporated by reference in their entirety), 7.5% of the neutral lipid, 31.5% of the sterol, and 3.5% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, lipid nanoparticle formulations consists essentially of a lipid mixture in molar ratios of $20-70 \%$ cationic lipid: $5-45 \%$ neutral lipid: $20-55 \%$ cholesterol: 0.5-15\% PEG-modified lipid. In some embodiments, lipid nanoparticle formulations consists essentially of a lipid mixture in a molar ratio of $20-60 \%$ cationic lipid: $5-25 \%$ neutral lipid: $25-55 \%$ cholesterol: $0.5-15 \%$ PEG-modified lipid.

In some embodiments, the molar lipid ratio is 50/10/38.5/ 1.5 ($\mathrm{mol} \%$ cationic lipid/neutral lipid, e.g., DSPC/Chol/ PEG-modified lipid, e.g., PEG-DMG, PEG-DSG or PEG-

DPG), 57.2/7.1134.3/1.4 (mol \% cationic lipid/neutral lipid, e.g., DPPC/Chol/PEG-modified lipid, e.g., PEG-cDMA), 40/15/40/5 (mol \% cationic lipid/neutral lipid, e.g., DSPC/ Chol/PEG-modified lipid, e.g., PEG-DMG), 50/10/35/4.5/ 0.5 (mol \% cationic lipid/neutral lipid, e.g., DSPC/Chol/ PEG-modified lipid, e.g., PEG-DSG), 50/10/35/5 (cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG), 40/10/40/10 (mol \% cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG or PEG-cDMA), 35/15/40/10 (mol \% cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG or PEG-cDMA) or 52/13/30/5 ($\mathrm{mol} \%$ cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG or PEG-cDMA).

Non-limiting examples of lipid nanoparticle compositions and methods of making them are described, for example, in Semple et al. (2010) Nat. Biotechnol. 28:172-176; Jayarama et al. (2012), Angew. Chem. Int. Ed., 51: 8529-8533; and Maier et al. (2013) Molecular Therapy 21, 1570-1578 (the contents of each of which are incorporated herein by reference in their entirety).

In some embodiments, lipid nanoparticle formulations may comprise a cationic lipid, a PEG lipid and a structural lipid and optionally comprise a non-cationic lipid. As a non-limiting example, a lipid nanoparticle may comprise $40-60 \%$ of cationic lipid, $5-15 \%$ of a non-cationic lipid, $1-2 \%$ of a PEG lipid and $30-50 \%$ of a structural lipid. As another non-limiting example, the lipid nanoparticle may comprise 50\% cationic lipid, 10% non-cationic lipid, 1.5% PEG lipid and 38.5% structural lipid. As yet another nonlimiting example, a lipid nanoparticle may comprise 55% cationic lipid, 10\% non-cationic lipid, 2.5\% PEG lipid and 32.5% structural lipid. In some embodiments, the cationic lipid may be any cationic lipid described herein such as, but not limited to, DLin-KC2-DMA, DLin-MC3-DMA and L319.

In some embodiments, the lipid nanoparticle formulations described herein may be 4 component lipid nanoparticles. The lipid nanoparticle may comprise a cationic lipid, a non-cationic lipid, a PEG lipid and a structural lipid. As a non-limiting example, the lipid nanoparticle may comprise $40-60 \%$ of cationic lipid, $5-15 \%$ of a non-cationic lipid, $1-2 \%$ of a PEG lipid and $30-50 \%$ of a structural lipid. As another non-limiting example, the lipid nanoparticle may comprise 50% cationic lipid, 10% non-cationic lipid, 1.5% PEG lipid and 38.5% structural lipid. As yet another nonlimiting example, the lipid nanoparticle may comprise 55% cationic lipid, 10% non-cationic lipid, 2.5\% PEG lipid and 32.5% structural lipid. In some embodiments, the cationic lipid may be any cationic lipid described herein such as, but not limited to, DLin-KC2-DMA, DLin-MC3-DMA and L319.

In some embodiments, the lipid nanoparticle formulations described herein may comprise a cationic lipid, a noncationic lipid, a PEG lipid and a structural lipid. As a non-limiting example, the lipid nanoparticle comprise 50% of the cationic lipid DLin-KC2-DMA, 10% of the noncationic lipid DSPC, 1.5% of the PEG lipid PEG-DOMG and 38.5% of the structural lipid cholesterol. As a nonlimiting example, the lipid nanoparticle comprise 50% of the cationic lipid DLin-MC3-DMA, 10% of the non-cationic lipid DSPC, 1.5% of the PEG lipid PEG-DOMG and 38.5% of the structural lipid cholesterol. As a non-limiting example, the lipid nanoparticle comprise 50% of the cationic lipid DLin-MC3-DMA, 10% of the non-cationic lipid DSPC, 1.5% of the PEG lipid PEG-DMG and 38.5% of the structural lipid cholesterol. As yet another non-limiting
example, the lipid nanoparticle comprise 55% of the cationic lipid L319, 10\% of the non-cationic lipid DSPC, 2.5% of the PEG lipid PEG-DMG and 32.5% of the structural lipid cholesterol.

Relative amounts of the active ingredient, the pharmaceutically acceptable excipient, and/or any additional ingredients in a vaccine composition may vary, depending upon the identity, size, and/or condition of the subject being treated and further depending upon the route by which the composition is to be administered. For example, the composition may comprise between 0.1% and $99 \%(w / w)$ of the active ingredient. By way of example, the composition may comprise between 0.1% and 100%, e.g., between 0.5 and 50%, between $1-30 \%$, between $5-80 \%$, at least 80% (w/w) active ingredient.

In some embodiments, the respiratory virus RNA (e.g. mRNA) vaccine composition may comprise the polynucleotide described herein, formulated in a lipid nanoparticle comprising MC3, Cholesterol, DSPC and PEG2000-DMG, the buffer trisodium citrate, sucrose and water for injection. As a non-limiting example, the composition comprises: 2.0 $\mathrm{mg} / \mathrm{mL}$ of drug substance (e.g., polynucleotides encoding H10N8 hMPV), $21.8 \mathrm{mg} / \mathrm{mL}$ of MC3, $10.1 \mathrm{mg} / \mathrm{mL}$ of cholesterol, $5.4 \mathrm{mg} / \mathrm{mL}$ of DSPC, $2.7 \mathrm{mg} / \mathrm{mL}$ of PEG2000DMG, $5.16 \mathrm{mg} / \mathrm{mL}$ of trisodium citrate, $71 \mathrm{mg} / \mathrm{mL}$ of sucrose and 1.0 mL of water for injection.

In some embodiments, a nanoparticle (e.g., a lipid nanoparticle) has a mean diameter of $10-500 \mathrm{~nm}, 20-400 \mathrm{~nm}$, $30-300 \mathrm{~nm}, 40-200 \mathrm{~nm}$. In some embodiments, a nanoparticle (e.g., a lipid nanoparticle) has a mean diameter of $50-150 \mathrm{~nm}, 50-200 \mathrm{~nm}, 80-100 \mathrm{~nm}$ or $80-200 \mathrm{~nm}$.
Liposomes, Lipoplexes, and Lipid Nanoparticles
The RNA (e.g., mRNA) vaccines of the disclosure can be formulated using one or more liposomes, lipoplexes, or lipid nanoparticles. In some embodiments, pharmaceutical compositions of RNA (e.g., mRNA) vaccines include liposomes. Liposomes are artificially-prepared vesicles which may primarily be composed of a lipid bilayer and may be used as a delivery vehicle for the administration of nutrients and pharmaceutical formulations. Liposomes can be of different sizes such as, but not limited to, a multilamellar vesicle (MLV) which may be hundreds of nanometers in diameter and may contain a series of concentric bilayers separated by narrow aqueous compartments, a small unicellular vesicle (SUV) which may be smaller than 50 nm in diameter, and a large unilamellar vesicle (LUV) which may be between 50 and 500 nm in diameter. Liposome design may include, but is not limited to, opsonins or ligands in order to improve the attachment of liposomes to unhealthy tissue or to activate events such as, but not limited to, endocytosis. Liposomes may contain a low or a high pH in order to improve the delivery of the pharmaceutical formulations.

The formation of liposomes may depend on the physicochemical characteristics such as, but not limited to, the pharmaceutical formulation entrapped and the liposomal ingredients, the nature of the medium in which the lipid vesicles are dispersed, the effective concentration of the entrapped substance and its potential toxicity, any additional processes involved during the application and/or delivery of the vesicles, the optimization size, polydispersity and the shelf-life of the vesicles for the intended application, and the batch-to-batch reproducibility and possibility of large-scale production of safe and efficient liposomal products.

In some embodiments, pharmaceutical compositions described herein may include, without limitation, liposomes such as those formed from 1,2-dioleyloxy-N,N-dimethylaminopropane (DODMA) liposomes, DiLa2 liposomes from

Marina Biotech (Bothell, Wash.), 1,2-dilinoleyloxy-3-dimethylaminopropane (DLin-DMA), 2,2-dilinoleyl-4-(2-dim-ethylaminoethyl)-[1,3]-dioxolane (DLin-KC2-DMA), and MC3 (US20100324120; herein incorporated by reference in its entirety) and liposomes which may deliver small molecule drugs such as, but not limited to, DOXIL® from Janssen Biotech, Inc. (Horsham, Pa.).

In some embodiments, pharmaceutical compositions described herein may include, without limitation, liposomes such as those formed from the synthesis of stabilized plas-mid-lipid particles (SPLP) or stabilized nucleic acid lipid particle (SNALP) that have been previously described and shown to be suitable for oligonucleotide delivery in vitro and in vivo (see Wheeler et al. Gene Therapy. 1999 6:271281; Zhang et al. Gene Therapy. 1999 6:1438-1447; Jeffs et al. Pharm Res. 2005 22:362-372; Morrissey et al., Nat Biotechnol. 2005 2:1002-1007; Zimmermann et al., Nature. 2006 441:111-114; Heyes et al. J Contr Rel. 2005 107:276287; Semple et al. Nature Biotech. 2010 28:172-176; Judge et al. J Clin Invest. 2009 119:661-673; deFougerolles Hum Gene Ther. 2008 19:125-132; U.S. Patent Publication No US20130122104; all of which are incorporated herein in their entireties). The original manufacture method by Wheeler et al. was a detergent dialysis method, which was later improved by Jeffs et al. and is referred to as the spontaneous vesicle formation method. The liposome formulations are composed of 3 to 4 lipid components in addition to the polynucleotide. As an example a liposome can contain, but is not limited to, 55% cholesterol, 20% disteroylphosphatidyl choline (DSPC), 10% PEG-S-DSG, and $15 \% \quad 1,2$-dioleyloxy-N,N-dimethylaminopropane (DODMA), as described by Jeffs et al. As another example, certain liposome formulations may contain, but are not limited to, 48\% cholesterol, 20\% DSPC, 2\% PEG-c-DMA, and 30% cationic lipid, where the cationic lipid can be 1,2-distearloxy-N,N-dimethylaminopropane (DSDMA), DODMA, DLin-DMA, or 1,2-dilinolenyloxy-3-dimethylaminopropane (DLenDMA), as described by Heyes et al.

In some embodiments, liposome formulations may comprise from about 25.0% cholesterol to about 40.0% cholesterol, from about 30.0% cholesterol to about 45.0% cholesterol, from about 35.0% cholesterol to about 50.0% cholesterol and/or from about 48.5% cholesterol to about 60% cholesterol. In some embodiments, formulations may comprise a percentage of cholesterol selected from the group consisting of $28.5 \%, 31.5 \%, 33.5 \%, 36.5 \%, 37.0 \%, 38.5 \%$, 39.0% and 43.5%. In some embodiments, formulations may comprise from about 5.0% to about 10.0% DSPC and/or from about 7.0% to about 15.0% DSPC.

In some embodiments, the RNA (e.g., mRNA) vaccine pharmaceutical compositions may be formulated in liposomes such as, but not limited to, DiLa2 liposomes (Marina Biotech, Bothell, Wash.), SMARTICLES® (Marina Biotech, Bothell, Wash.), neutral DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) based liposomes (e.g., siRNA delivery for ovarian cancer (Landen et al. Cancer Biology \& Therapy $20065(12) 1708-1713$); herein incorporated by reference in its entirety) and hyaluronan-coated liposomes (Quiet Therapeutics, Israel).

In some embodiments, the cationic lipid may be a low molecular weight cationic lipid such as those described in U.S. Patent Application No. 20130090372, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the RNA (e.g., mRNA) vaccines may be formulated in a lipid vesicle, which may have crosslinks between functionalized lipid bilayers.

In some embodiments, the RNA (e.g., mRNA) vaccines may be formulated in a lipid-polycation complex. The formation of the lipid-polycation complex may be accomplished by methods known in the art and/or as described in U.S. Pub. No. 20120178702, herein incorporated by reference in its entirety. As a non-limiting example, the polycation may include a cationic peptide or a polypeptide such as, but not limited to, polylysine, polyornithine and/or polyarginine. In some embodiments, the RNA (e.g., mRNA) vaccines may be formulated in a lipid-polycation complex, which may further include a non-cationic lipid such as, but not limited to, cholesterol or dioleoyl phosphatidylethanolamine (DOPE).
In some embodiments, the ratio of PEG in the lipid nanoparticle (LNP) formulations may be increased or decreased and/or the carbon chain length of the PEG lipid may be modified from C14 to C18 to alter the pharmacokinetics and/or biodistribution of the LNP formulations. As a non-limiting example, LNP formulations may contain from about 0.5% to about 3.0%, from about 1.0% to about 3.5%, from about 1.5% to about 4.0%, from about 2.0% to about 4.5%, from about 2.5% to about 5.0% and/or from about 3.0% to about 6.0% of the lipid molar ratio of PEG-cDOMG (R-3-[(ω-methoxy-poly(ethyleneglycol)2000)car-bamoyl)]-1,2-dimyristyloxypropyl-3-amine) (also referred to herein as PEG-DOMG) as compared to the cationic lipid, DSPC and cholesterol. In some embodiments, the PEG-cDOMG may be replaced with a PEG lipid such as, but not limited to, PEG-DSG (1,2-Distearoyl-sn-glycerol, methoxypolyethylene glycol), PEG-DMG (1,2-Dimyristoyl-sn-glycerol) and/or PEG-DPG (1,2-Dipalmitoyl-sn-glycerol, methoxypolyethylene glycol). The cationic lipid may be selected from any lipid known in the art such as, but not limited to, DLin-MC3-DMA, DLin-DMA, C12-200 and DLin-KC2-DMA.

In some embodiments, the RNA (e.g., mRNA) vaccines may be formulated in a lipid nanoparticle.

In some embodiments, the RNA (e.g., mRNA) vaccine formulation comprising the polynucleotide is a nanoparticle which may comprise at least one lipid. The lipid may be selected from, but is not limited to, DLin-DMA, DLin-KDMA, 98N12-5, C12-200, DLin-MC3-DMA, DLin-KC2DMA, DODMA, PLGA, PEG, PEG-DMG, PEGylated lipids and amino alcohol lipids. In another aspect, the lipid may be a cationic lipid such as, but not limited to, DLin-DMA, DLin-D-DMA, DLin-MC3-DMA, DLin-KC2-DMA, DODMA and amino alcohol lipids. The amino alcohol cationic lipid may be the lipids described in and/or made by the methods described in U.S. Patent Publication No. US20130150625, herein incorporated by reference in its entirety. As a non-limiting example, the cationic lipid may be 2-amino-3-[(9Z, 12Z)-octadeca-9,12-dien-1-yloxy]-2-\{ [(9Z,2Z)-octadeca-9,12-dien-1-yloxy]methyl\} propan-1-ol (Compound 1 in US20130150625); 2-amino-3-[(9Z)-octa-dec-9-en-1-yloxy]-2-\{[(9Z)-octadec-9-en-1-yloxy] methyl $\}$ propan-1-ol (Compound 2 in US20130150625); 2-amino-3-[(9Z, 12Z)-octadeca-9,12-dien-1-yloxy]-2-[(oc-tyloxy)methyl]propan-1-ol (Compound 3 in US20130150625); and 2-(dimethylamino)-3-[(9Z, 12Z)-oc-tadeca-9,12-dien-1-yloxy]-2-\{[(9Z, 12Z)-octadeca-9,12-dien-1-yloxy]methyl\}propan-1-ol (Compound 4 in US20130150625); or any pharmaceutically acceptable salt or stereoisomer thereof.

Lipid nanoparticle formulations typically comprise a lipid, in particular, an ionizable cationic lipid, for example, 2,2-dilinoleyl-4-dimethylaminoethy1-[1,3]-dioxolane
(DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobu-
tyrate (DLin-MC3-DMA), or di((Z)-non-2-en-1-yl) 9-((4(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), and further comprise a neutral lipid, a sterol and a molecule capable of reducing particle aggregation, for example a PEG or PEG-modified lipid.

In some embodiments, the lipid nanoparticle formulation consists essentially of (i) at least one lipid selected from the group consisting of 2,2-dilinoleyl-4-dimethylaminoethy1-[1, 3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy) heptadecanedioate (L319); (ii) a neutral lipid selected from DSPC, DPPC, POPC, DOPE and SM; (iii) a sterol, e.g., cholesterol; and (iv) a PEG-lipid, e.g., PEG-DMG or PEGcDMA, in a molar ratio of about $20-60 \%$ cationic lipid: 5-25\% neutral lipid: $25-55 \%$ sterol; $0.5-15 \%$ PEG-lipid.

In some embodiments, the formulation includes from about 25% to about 75% on a molar basis of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethy1-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), e.g., from about 35 to about 65%, from about 45 to about 65%, about 60%, about 57.5%, about 50% or about 40% on a molar basis.

In some embodiments, the formulation includes from about 0.5% to about 15% on a molar basis of the neutral lipid e.g., from about 3 to about 12%, from about 5 to about 10% or about 15%, about 10%, or about 7.5% on a molar basis. Examples of neutral lipids include, but are not limited to, DSPC, POPC, DPPC, DOPE and SM. In some embodiments, the formulation includes from about 5% to about 50% on a molar basis of the sterol (e.g., about 15 to about 45%, about 20 to about 40%, about 40%, about 38.5%, about 35%, or about 31% on a molar basis. An exemplary sterol is cholesterol. In some embodiments, the formulation includes from about 0.5% to about 20% on a molar basis of the PEG or PEG-modified lipid (e.g., about 0.5 to about 10%, about 0.5 to about 5%, about 1.5%, about 0.5%, about 1.5%, about 3.5%, or about 5% on a molar basis. In some embodiments, the PEG or PEG modified lipid comprises a PEG molecule of an average molecular weight of $2,000 \mathrm{Da}$. In other embodiments, the PEG or PEG modified lipid comprises a PEG molecule of an average molecular weight of less than 2,000 , for example around $1,500 \mathrm{Da}$, around $1,000 \mathrm{Da}$, or around 500 Da . Examples of PEG-modified lipids include, but are not limited to, PEG-distearoyl glycerol (PEG-DMG) (also referred herein as PEG-C14 or C14-PEG), PEGcDMA (further discussed in Reyes et al. J. Controlled Release, 107, 276-287 (2005) the contents of which are herein incorporated by reference in their entirety)

In some embodiments, the formulations of the present disclosure include $25-75 \%$ of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), $0.5-15 \%$ of the neutral lipid, $5-50 \%$ of the sterol, and $0.5-20 \%$ of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, the formulations of the present disclosure include $35-65 \%$ of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane
(DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), $3-12 \%$ of the neutral lipid, $15-45 \%$ of the sterol, and $0.5-10 \%$ of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, the formulations of the present disclosure include $45-65 \%$ of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), $5-10 \%$ of the neutral lipid, $25-40 \%$ of the sterol, and $0.5-10 \%$ of the PEG or PEG-modified lipid on a molar basis.
In some embodiments, the formulations of the present disclosure include about 60% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), about 7.5% of the neutral lipid, about 31% of the sterol, and about 1.5% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, the formulations of the present disclosure include about 50% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), about 10% of the neutral lipid, about 38.5% of the sterol, and about 1.5% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, the formulations of the present disclosure include about 50% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), about 10% of the neutral lipid, about 35% of the sterol, about 4.5% or about 5% of the PEG or PEG-modified lipid, and about 0.5% of the targeting lipid on a molar basis.

In some embodiments, the formulations of the present disclosure include about 40% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), about 15% of the neutral lipid, about 40% of the sterol, and about 5% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, the formulations of the present disclosure include about 57.2% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), about 7.1% of the neutral lipid, about 34.3% of the sterol, and about 1.4% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, the formulations of the present disclosure include about 57.5% of a cationic lipid selected from the PEG lipid is PEG-cDMA (PEG-cDMA is further discussed in Reyes et al. (J. Controlled Release, 107, 276287 (2005), the contents of which are herein incorporated by reference in their entirety), about 7.5% of the neutral lipid, about 31.5% of the sterol, and about 3.5% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, lipid nanoparticle formulation consists essentially of a lipid mixture in molar ratios of about 20-70\% cationic lipid: 5-45\% neutral lipid: 20-55\% cholesterol: 0.5-15\% PEG-modified lipid; more preferably in a molar ratio of about 20-60\% cationic lipid: 5-25\% neutral lipid: 25-55\% cholesterol: $0.5-15 \%$ PEG-modified lipid.

In some embodiments, the molar lipid ratio is approximately 50/10/38.5/1.5 (mol \% cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG, PEG-DSG or PEG-DPG), 57.2/7.1134.3/1.4 (mol \% cationic lipid/neutral lipid, e.g., DPPC/Chol/PEG-modified lipid, e.g., PEG-cDMA), 40/15/40/5 (mol \% cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEGDMG), 50/10/35/4.5/0.5 (mol \% cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DSG), 50/10/35/5 (cationic lipid/neutral lipid, e.g., DSPC/Chol/ PEG-modified lipid, e.g., PEG-DMG), 40/10/40/10 ($\mathrm{mol} \%$ cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG or PEG-cDMA), 35/15/40/10 (mol \% cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG or PEG-cDMA) or 52/13/30/5 (mol \% cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG or PEG-cDMA).

Examples of lipid nanoparticle compositions and methods of making same are described, for example, in Semple et al (2010) Nat. Biotechnol. 28:172-176; Jayarama et al. (2012), Angew. Chem. Int. Ed., 51: 8529-8533; and Maier et al. (2013) Molecular Therapy 21, 1570-1578 (the contents of each of which are incorporated herein by reference in their entirety).

In some embodiments, the lipid nanoparticle formulations described herein may comprise a cationic lipid, a PEG lipid and a structural lipid and optionally comprise a non-cationic lipid. As a non-limiting example, the lipid nanoparticle may comprise about $40-60 \%$ of cationic lipid, about $5-15 \%$ of a non-cationic lipid, about $1-2 \%$ of a PEG lipid and about $30-50 \%$ of a structural lipid. As another non-limiting example, the lipid nanoparticle may comprise about 50% cationic lipid, about 10% non-cationic lipid, about 1.5% PEG lipid and about 38.5% structural lipid. As yet another non-limiting example, the lipid nanoparticle may comprise about 55% cationic lipid, about 10% non-cationic lipid, about 2.5% PEG lipid and about 32.5% structural lipid. In some embodiments, the cationic lipid may be any cationic lipid described herein such as, but not limited to, DLin-KC2-DMA, DLin-MC3-DMA and L319.

In some embodiments, the lipid nanoparticle formulations described herein may be 4 component lipid nanoparticles. The lipid nanoparticle may comprise a cationic lipid, a non-cationic lipid, a PEG lipid and a structural lipid. As a non-limiting example, the lipid nanoparticle may comprise about $40-60 \%$ of cationic lipid, about $5-15 \%$ of a noncationic lipid, about 1-2\% of a PEG lipid and about 30-50\% of a structural lipid. As another non-limiting example, the lipid nanoparticle may comprise about 50% cationic lipid, about 10% non-cationic lipid, about 1.5% PEG lipid and about 38.5% structural lipid. As yet another non-limiting example, the lipid nanoparticle may comprise about 55% cationic lipid, about 10% non-cationic lipid, about 2.5% PEG lipid and about 32.5% structural lipid. In some embodiments, the cationic lipid may be any cationic lipid described herein such as, but not limited to, DLin-KC2-DMA, DLin-MC3-DMA and L319.

In some embodiments, the lipid nanoparticle formulations described herein may comprise a cationic lipid, a noncationic lipid, a PEG lipid and a structural lipid. As a non-limiting example, the lipid nanoparticle comprise about 50% of the cationic lipid DLin-KC2-DMA, about 10% of the non-cationic lipid DSPC, about 1.5% of the PEG lipid PEG-DOMG and about 38.5% of the structural lipid cholesterol. As a non-limiting example, the lipid nanoparticle comprise about 50% of the cationic lipid DLin-MC3-DMA, about 10% of the non-cationic lipid DSPC, about 1.5% of
the PEG lipid PEG-DOMG and about 38.5% of the structural lipid cholesterol. As a non-limiting example, the lipid nanoparticle comprise about 50% of the cationic lipid DLin-MC3-DMA, about 10% of the non-cationic lipid DSPC, about 1.5% of the PEG lipid PEG-DMG and about 38.5% of the structural lipid cholesterol. As yet another non-limiting example, the lipid nanoparticle comprise about 55% of the cationic lipid L319, about 10% of the non-cationic lipid DSPC, about 2.5% of the PEG lipid PEG-DMG and about 32.5% of the structural lipid cholesterol.

As a non-limiting example, the cationic lipid may be selected from (20Z,23Z)-N,N-dimethylnonacosa-20,23-dien-10-amine, $\quad(17 Z, 20 Z)$-N,N-dimemylhexacosa-17,20-dien-9-amine, $\quad(1 \mathrm{Z}, 19 \mathrm{Z})-\mathrm{N} 5 \mathrm{~N}$-dimethylpentacosa-16, 19-dien-8-amine, (13Z,16Z)-N,N-dimethyldocosa-13,16-dien-5-amine, (12Z, 15 Z$)$-N,N-dimethylhenicosa-12,15-dien-4-amine, (14Z, 17Z)-N,N-dimethyltricosa-14,17-dien-6-amine, (15Z, 18Z)-N,N-dimethyltetracosa-15,18-dien-7amine, (18Z,21Z)-N,N-dimethylheptacosa-18,21-dien-10amine, (15Z, 18Z)-N,N-dimethyltetracosa-15,18-dien-5amine, (14Z, 17Z)-N,N-dimethyltricosa-14,17-dien-4amine, (19Z,22Z)-N,N-dimeihyloctacosa-19,22-dien-9amine, (18Z,21 Z)-N,N-dimethylheptacosa-18,21-dien-8amine, (17Z,20Z)-N,N-dimethylhexacosa-17,20-dien-7amine, (16Z, 19Z)-N,N-dimethylpentacosa-16,19-dien-6amine, $\quad(22 \mathrm{Z}, 25 \mathrm{Z})$-N,N-dimethylhentriaconta-22,25-dien-10-amine, ($21 \mathrm{Z}, 24 \mathrm{Z}$)-N,N-dimethyltriaconta-21,24-dien-9amine, (18Z)-N,N-dimetylheptacos-18-en-10-amine, (17Z)-N,N-dimethylhexacos-17-en-9-amine, (19Z,22Z)-N,N-dimethyloctacosa-19,22-dien-7-amine, N,N-dimethylheptacosan-10-amine, $\quad(20 Z, 23 Z)$-N-ethyl-N-methylnonacosa-20,23-dien-10-amine, $\quad 1-[(11 \mathrm{Z}, 14 \mathrm{Z})$-1-nonylicosa-11,14-dien-1-yl] pyrrolidine, (20Z)-N,N-dimethylheptacos-20-en-10-amine, (15Z)-N,N-dimethyl eptacos-15-en-10-amine, (14Z)-N,N-dimethylnonacos-14-en-10-amine, (17Z)-N,N-dimethylnonacos-17-en-10-amine, (24Z)-N,N-dimethyltritriacont-24-en-10-amine, (20Z)-N,N-dimethylnonacos-20-en-10-amine, (22Z)-N,N-dimethylhen-triacont-22-en-10-amine, (16Z)-N,N-dimethylpentacos-16-en-8-amine, (12Z, 15Z)-N,N-dimethyl-2-nonylhenicosa-12, 15-dien-1-amine, (13Z, 16Z)-N,N-dimethyl-3-nonyldocosa-13,16-dien-1-amine, \quad N,N-dimethyl-1-[(1S,2R)-2octylcyclopropyl] eptadecan-8-amine, 1-[(1S,2R)-2-hexylcyclopropyl]-N,N-dimethylnonadecan-10-amine, N, N-dimethyl-1-[(1S,2R)-2-octylcyclopropyl]nonadecan-10-amine, $\quad \mathrm{N}, \mathrm{N}$-dimethyl-21-[(1S,2R)-2-octylcyclopropyl] henicosan-10-amine,N,N-dimethyl-1-[(1S,2S)-2-\{[(1R, 2R)-2-pentylcyclopropyl]methyl cyclopropyl]nonadecan-10-amine,N,N-dimethyl-1-[(1S,2R)-2-octylcyclopropyl] hexadecan-8-amine, $\quad \mathrm{N}, \mathrm{N}$-dimethyl-[(1R,2S)-2-undecylcyclopropyl]tetradecan-5-amine, N,N-dimethyl-3-\{7-[(1S,2R)-2-octylcyclopropyl]heptyl\} dodecan-1-amine, 1-[(1R,2S)-2-heptylcyclopropyl]-N,N-dimethyloctadecan-9-amine, 1-[(1S,2R)-2-decylcyclopropyl]-N,N-dimethyl-pentadecan-6-amine, N,N-dimethyl-1-[(1S,2R)-2-octylcy-clopropyl]pentadecan-8-amine, R-N,N-dimethyl-1-[(9Z, 12Z)-octadeca-9,12-dien-1-yloxy]-3-(octyloxy)propan-2amine, S-N,N-dimethyl-1-[(9Z, 12Z)-octadeca-9,12-dien-1-yloxy]-3-(octyloxy)propan-2-amine, $\quad 1-\{2-[(9 \mathrm{Z}, 12 \mathrm{Z})$-octa-deca-9,12-dien-1-yloxy]-1-[(octyloxy)methyl]
ethyl $\}$ pyrrolidine, (2S)-N,N-dimethyl-1-[(9Z, 12Z)-octadeca-9,12-dien-1-yloxy]-3-[(5Z)-oct-5-en-1-yloxy] propan-2-amine, 1-\{2-[(9Z, 12Z)-octadeca-9,12-dien-1-yloxy]-1-[(octyloxy)methyl]ethyl\}azetidine, (2S)-1-(hexyloxy)-N,N-dimethyl-3-[(9Z, 12Z)-octadeca-9,12-dien-1-yloxy]propan-2-amine, (2S)-1-(heptyloxy)-N,N-dimethyl-3-[(9Z, 12Z)-octadeca-9,12-dien-1-yloxy]propan-

2-amine, $\quad \mathrm{N}, \mathrm{N}$-dimethyl-1-(nonyloxy)-3-[(9Z, 12Z)-octadeca-9,12-dien-1-yloxy]propan-2-amine, N,N-dimethyl-1-[(9Z)-octadec-9-en-1-yloxy]-3-(octyloxy) propan-2-amine; (2S)-N,N-dimethyl-1-[(6Z,9Z, 12Z)-octadeca-6,9,12-trien-1-yloxy]-3-(octyloxy)propan-2amine, (2S)-1-[(11Z,14Z)-icosa-11,14-dien-1-yloxy]-N,N-dimethyl-3-(pentyloxy)propan-2-amine, (2S)-1-(hexyloxy)-3-[(11Z,14Z)-icosa-11,14-dien-1-yloxy]-N,N-
dimethylpropan-2-amine, 1-[(11Z,14Z)-icosa-11,14-dien-1-yloxy]-N,N-dimethyl-3-(octyloxy)propan-2-amine, 1-[(13Z, 16Z)-docosa-13,16-dien-1-yloxy]-N,N-dimethyl-3-(octyloxy)propan-2-amine, (2S)-1-[(13Z,16Z)-docosa-13, 16-dien-1-yloxy]-3-(hexyloxy)-N,N-dimethylpropan-2amine, (2S)-1-[(13Z)-docos-13-en-1-yloxy]-3-(hexyloxy)-N,N-dimethylpropan-2-amine, \quad 1-[(13Z)-docos-13-en-1-yloxy]-N,N-dimethyl-3-(octyloxy)propan-2-amine, 1-[(9Z)-hexadec-9-en-1-yloxy]-N,N-dimethyl-3-(octyloxy)propan-2-amine, (2R)-N,N-dimethyl-H(1-metoylo ctyl)oxy]-3[(9Z, 12Z)-octadeca-9,12-dien-1-yloxy]propan-2-amine, (2R)-1-[(3,7-dimethyloctyl)oxy]-N,N-dimethyl-3-[(9Z,
12Z)-octadeca-9,12-dien-1-yloxy]propan-2-amine, N,N-di-methyl-1-(octyloxy)-3-(\{8-[(1S,2S)-2-\{[(1R,2R)-2-pentyl-cyclopropyl]methyl\}cyclopropyl]octyl\}oxy)propan-2-
amine, N,N-dimethyl-1-\{[8-(2-oclylcyclopropyl)octyl] oxy\}-3-(octyloxy)propan-2-amine and (11E, 20Z,23Z)-N,N-dimethylnonacosa-11,20,2-trien-10-amine or a pharmaceutically acceptable salt or stereoisomer thereof.

In some embodiments, the LNP formulations of the RNA (e.g., mRNA) vaccines may contain PEG-c-DOMG at 3% lipid molar ratio. In some embodiments, the LNP formulations of the RNA (e.g., mRNA) vaccines may contain PEG-c-DOMG at 1.5% lipid molar ratio.

In some embodiments, the pharmaceutical compositions of the RNA (e.g., mRNA) vaccines may include at least one of the PEGylated lipids described in International Publication No. WO2012099755, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the LNP formulation may contain PEG-DMG 2000 (1,2-dimyristoyl-sn-glycero-3-phophoe-thanolamine-N-[methoxy(polyethylene glycol)-2000). In some embodiments, the LNP formulation may contain PEGDMG 2000, a cationic lipid known in the art and at least one other component. In some embodiments, the LNP formulation may contain PEG-DMG 2000, a cationic lipid known in the art, DSPC and cholesterol. As a non-limiting example, the LNP formulation may contain PEG-DMG 2000, DLinDMA, DSPC and cholesterol. As another non-limiting example the LNP formulation may contain PEG-DMG 2000, DLin-DMA, DSPC and cholesterol in a molar ratio of 2:40:10:48 (see e.g., Geall et al., Nonviral delivery of self-amplifying RNA (e.g., mRNA) vaccines, PNAS 2012; PMID: 22908294, the contents of each of which are herein incorporated by reference in their entirety).

The lipid nanoparticles described herein may be made in a sterile environment.

In some embodiments, the LNP formulation may be formulated in a nanoparticle such as a nucleic acid-lipid particle. As a non-limiting example, the lipid particle may comprise one or more active agents or therapeutic agents; one or more cationic lipids comprising from about $50 \mathrm{~mol} \%$ to about $85 \mathrm{~mol} \%$ of the total lipid present in the particle; one or more non-cationic lipids comprising from about 13 $\mathrm{mol} \%$ to about $49.5 \mathrm{~mol} \%$ of the total lipid present in the particle; and one or more conjugated lipids that inhibit aggregation of particles comprising from about $0.5 \mathrm{~mol} \%$ to about $2 \mathrm{~mol} \%$ of the total lipid present in the particle.

The nanoparticle formulations may comprise a phosphate conjugate. The phosphate conjugate may increase in vivo circulation times and/or increase the targeted delivery of the nanoparticle. As a non-limiting example, the phosphate conjugates may include a compound of any one of the formulas described in International Application No. WO2013033438, the contents of which are herein incorporated by reference in its entirety.

The nanoparticle formulation may comprise a polymer conjugate. The polymer conjugate may be a water soluble conjugate. The polymer conjugate may have a structure as described in U.S. Patent Application No. 20130059360, the contents of which are herein incorporated by reference in its entirety. In some embodiments, polymer conjugates with the polynucleotides of the present disclosure may be made using the methods and/or segmented polymeric reagents described in U.S. Patent Application No. 20130072709, the contents of which are herein incorporated by reference in its entirety. In some embodiments, the polymer conjugate may have pendant side groups comprising ring moieties such as, but not limited to, the polymer conjugates described in U.S. Patent Publication No. US20130196948, the contents which are herein incorporated by reference in its entirety.

The nanoparticle formulations may comprise a conjugate to enhance the delivery of nanoparticles of the present disclosure in a subject. Further, the conjugate may inhibit phagocytic clearance of the nanoparticles in a subject. In one aspect, the conjugate may be a "self" peptide designed from the human membrane protein CD47 (e.g., the "self" particles described by Rodriguez et al. (Science 2013 339, 971-975), herein incorporated by reference in its entirety). As shown by Rodriguez et al., the self peptides delayed macrophagemediated clearance of nanoparticles which enhanced delivery of the nanoparticles. In another aspect, the conjugate may be the membrane protein CD47 (e.g., see Rodriguez et al. Science 2013 339, 971-975, herein incorporated by reference in its entirety). Rodriguez et al. showed that, similarly to "self" peptides, CD47 can increase the circulating particle ratio in a subject as compared to scrambled peptides and PEG coated nanoparticles.
In some embodiments, the RNA (e.g., mRNA) vaccines of the present disclosure are formulated in nanoparticles which comprise a conjugate to enhance the delivery of the nanoparticles of the present disclosure in a subject. The conjugate may be the CD47 membrane or the conjugate may be derived from the CD47 membrane protein, such as the "self" peptide described previously. In some embodiments, the nanoparticle may comprise PEG and a conjugate of CD47 or a derivative thereof. In some embodiments, the nanoparticle may comprise both the "self" peptide described above and the membrane protein CD47.

In some embodiments, a "self" peptide and/or CD47 protein may be conjugated to a virus-like particle or pseudovirion, as described herein for delivery of the RNA (e.g., mRNA) vaccines of the present disclosure.

In some embodiments, RNA (e.g., mRNA) vaccine pharmaceutical compositions comprising the polynucleotides of the present disclosure and a conjugate that may have a degradable linkage. Non-limiting examples of conjugates include an aromatic moiety comprising an ionizable hydrogen atom, a spacer moiety, and a water-soluble polymer. As a non-limiting example, pharmaceutical compositions comprising a conjugate with a degradable linkage and methods for delivering such pharmaceutical compositions are described in U.S. Patent Publication No. US20130184443, the contents of which are herein incorporated by reference in their entirety.

The nanoparticle formulations may be a carbohydrate nanoparticle comprising a carbohydrate carrier and a RNA (e.g., mRNA) vaccine. As a non-limiting example, the carbohydrate carrier may include, but is not limited to, an anhydride-modified phytoglycogen or glycogen-type material, phtoglycogen octenyl succinate, phytoglycogen betadextrin, anhydride-modified phytoglycogen beta-dextrin. (See e.g., International Publication No. WO2012109121; the contents of which are herein incorporated by reference in their entirety).

Nanoparticle formulations of the present disclosure may be coated with a surfactant or polymer in order to improve the delivery of the particle. In some embodiments, the nanoparticle may be coated with a hydrophilic coating such as, but not limited to, PEG coatings and/or coatings that have a neutral surface charge. The hydrophilic coatings may help to deliver nanoparticles with larger payloads such as, but not limited to, RNA (e.g., mRNA) vaccines within the central nervous system. As a non-limiting example nanoparticles comprising a hydrophilic coating and methods of making such nanoparticles are described in U.S. Patent Publication No. US20130183244, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the lipid nanoparticles of the present disclosure may be hydrophilic polymer particles. Non-limiting examples of hydrophilic polymer particles and methods of making hydrophilic polymer particles are described in U.S. Patent Publication No. US20130210991, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the lipid nanoparticles of the present disclosure may be hydrophobic polymer particles.

Lipid nanoparticle formulations may be improved by replacing the cationic lipid with a biodegradable cationic lipid which is known as a rapidly eliminated lipid nanoparticle (reLNP). Ionizable cationic lipids, such as, but not limited to, DLinDMA, DLin-KC2-DMA, and DLin-MC3DMA, have been shown to accumulate in plasma and tissues over time and may be a potential source of toxicity. The rapid metabolism of the rapidly eliminated lipids can improve the tolerability and therapeutic index of the lipid nanoparticles by an order of magnitude from a $1 \mathrm{mg} / \mathrm{kg}$ dose to a $10 \mathrm{mg} / \mathrm{kg}$ dose in rat. Inclusion of an enzymatically degraded ester linkage can improve the degradation and metabolism profile of the cationic component, while still maintaining the activity of the reLNP formulation. The ester linkage can be internally located within the lipid chain or it may be terminally located at the terminal end of the lipid chain. The internal ester linkage may replace any carbon in the lipid chain.

In some embodiments, the internal ester linkage may be located on either side of the saturated carbon.

In some embodiments, an immune response may be elicited by delivering a lipid nanoparticle which may include a nanospecies, a polymer and an immunogen. (U.S. Publication No. 20120189700 and International Publication No. WO2012099805; each of which is herein incorporated by reference in their entirety). The polymer may encapsulate the nanospecies or partially encapsulate the nanospecies. The immunogen may be a recombinant protein, a modified RNA and/or a polynucleotide described herein. In some embodiments, the lipid nanoparticle may be formulated for use in a vaccine such as, but not limited to, against a pathogen.

Lipid nanoparticles may be engineered to alter the surface properties of particles so the lipid nanoparticles may penetrate the mucosal barrier. Mucus is located on mucosal
tissue such as, but not limited to, oral (e.g., the buccal and esophageal membranes and tonsil tissue), ophthalmic, gastrointestinal (e.g., stomach, small intestine, large intestine, colon, rectum), nasal, respiratory (e.g., nasal, pharyngeal, tracheal and bronchial membranes), genital (e.g., vaginal, cervical and urethral membranes). Nanoparticles larger than $10-200 \mathrm{~nm}$ which are preferred for higher drug encapsulation efficiency and the ability to provide the sustained delivery of a wide array of drugs have been thought to be too large to rapidly diffuse through mucosal barriers. Mucus is continuously secreted, shed, discarded or digested and recycled so most of the trapped particles may be removed from the mucosa tissue within seconds or within a few hours. Large polymeric nanoparticles ($200 \mathrm{~nm}-500 \mathrm{~nm}$ in diameter) which have been coated densely with a low molecular weight polyethylene glycol (PEG) diffused through mucus only 4 to 6 -fold lower than the same particles diffusing in water (Lai et al. PNAS 2007 104(5):1482-487; Lai et al. Adv Drug Deliv Rev. 2009 61(2): 158-171; each of which is herein incorporated by reference in their entirety). The transport of nanoparticles may be determined using rates of permeation and/or fluorescent microscopy techniques including, but not limited to, fluorescence recovery after photobleaching (FRAP) and high resolution multiple particle tracking (MPT). As a non-limiting example, compositions which can penetrate a mucosal barrier may be made as described in U.S. Pat. No. 8,241,670 or International Patent Publication No. WO2013110028, the contents of each of which are herein incorporated by reference in its entirety.
The lipid nanoparticle engineered to penetrate mucus may comprise a polymeric material (i.e. a polymeric core) and/or a polymer-vitamin conjugate and/or a tri-block co-polymer. The polymeric material may include, but is not limited to, polyamines, polyethers, polyamides, polyesters, polycarbamates, polyureas, polycarbonates, poly(styrenes), polyimides, polysulfones, polyurethanes, polyacetylenes, polyethylenes, polyethyeneimines, polyisocyanates, polyacrylates, polymethacrylates, polyacrylonitriles, and polyarylates. The polymeric material may be biodegradable and/or biocompatible. Non-limiting examples of biocompatible polymers are described in International Patent Publication No. WO2013116804, the contents of which are herein incorporated by reference in their entirety. The polymeric material may additionally be irradiated. As a non-limiting example, the polymeric material may be gamma irradiated (see e.g., International App. No. WO201282165, herein incorporated by reference in its entirety). Non-limiting examples of specific polymers include poly(caprolactone) (PCL), ethylene vinyl acetate polymer (EVA), poly(lactic acid) (PLA), poly(L-lactic acid) (PLLA), poly(glycolic acid) (PGA), poly (lactic acid-co-glycolic acid) (PLGA), poly(L-lactic acid-co-glycolic acid) (PLLGA), poly(D,L-lactide) (PDLA), poly (L-lactide) (PLLA), poly(D,L-lactide-co-caprolactone), poly(D,L-lactide-co-caprolactone-co-glycolide), poly(D,L-lactide-co-PEO-co-D,L-lactide), poly(D,L-lactide-co-PPO-co-D,L-lactide), polyalkyl cyanoacralate, polyurethane, poly-L-1ysine (PLL), hydroxypropyl methacrylate (HPMA), polyethyleneglycol, poly-L-glutamic acid, poly(hydroxy acids), polyanhydrides, polyorthoesters, poly(ester amides), polyamides, poly(ester ethers), polycarbonates, polyalkylenes such as polyethylene and polypropylene, polyalkylene glycols such as poly(ethylene glycol) (PEG), polyalkylene oxides (PEO), polyalkylene terephthalates such as poly (ethylene terephthalate), polyvinyl alcohols (PVA), polyvinyl ethers, polyvinyl esters such as poly(vinyl acetate), polyvinyl halides such as poly(vinyl chloride) (PVC), poly-
vinylpyrrolidone, polysiloxanes, polystyrene (PS), polyurethanes, derivatized celluloses such as alkyl celluloses, hydroxyalkyl celluloses, cellulose ethers, cellulose esters, nitro celluloses, hydroxypropylcellulose, carboxymethylcellulose, polymers of acrylic acids, such as poly(methyl(meth) acrylate) (PMMA), poly(ethyl(meth)acrylate), poly(butyl (meth)acrylate), poly(isobutyl(meth)acrylate), poly(hexyl (meth)acrylate), poly(isodecyl(meth)acrylate), poly(lauryl (meth)acrylate), poly(phenyl(meth)acrylate), poly(methyl acrylate), poly(isopropyl acrylate), poly(isobutyl acrylate), poly(octadecyl acrylate) and copolymers and mixtures thereof, polydioxanone and its copolymers, polyhydroxyalkanoates, polypropylene fumarate, polyoxymethylene, poloxamers, poly(ortho)esters, poly(butyric acid), poly(valeric acid), poly(lactide-co-caprolactone), PEG-PLGA-PEG and trimethylene carbonate, polyvinylpyrrolidone. The lipid nanoparticle may be coated or associated with a co-polymer such as, but not limited to, a block co-polymer (such as a branched polyether-polyamide block copolymer described in International Publication No. WO2013012476, herein incorporated by reference in its entirety), and (poly(ethylene glycol))-(poly(propylene oxide))-(poly(ethylene glycol)) triblock copolymer (see e.g., U.S. Publication 20120121718 and U.S. Publication 20100003337 and U.S. Pat. No. 8,263, 665 , the contents of each of which is herein incorporated by reference in their entirety). The co-polymer may be a polymer that is generally regarded as safe (GRAS) and the formation of the lipid nanoparticle may be in such a way that no new chemical entities are created. For example, the lipid nanoparticle may comprise poloxamers coating PLGA nanoparticles without forming new chemical entities which are still able to rapidly penetrate human mucus (Yang et al. Angew. Chem. Int. Ed. 2011 50:2597-2600; the contents of which are herein incorporated by reference in their entirety). A non-limiting scalable method to produce nanoparticles which can penetrate human mucus is described by Xu et al. (see, e.g., J Control Release 2013, 170(2):279-86; the contents of which are herein incorporated by reference in their entirety).

The vitamin of the polymer-vitamin conjugate may be vitamin E. The vitamin portion of the conjugate may be substituted with other suitable components such as, but not limited to, vitamin A, vitamin E, other vitamins, cholesterol, a hydrophobic moiety, or a hydrophobic component of other surfactants (e.g., sterol chains, fatty acids, hydrocarbon chains and alkylene oxide chains).

The lipid nanoparticle engineered to penetrate mucus may include surface altering agents such as, but not limited to, polynucleotides, anionic proteins (e.g., bovine serum albumin), surfactants (e.g., cationic surfactants such as for example dimethyldioctadecyl-ammonium bromide), sugars or sugar derivatives (e.g., cyclodextrin), nucleic acids, polymers (e.g., heparin, polyethylene glycol and poloxamer), mucolytic agents (e.g., N -acetylcysteine, mugwort, bromelain, papain, clerodendrum, acetylcysteine, bromhexine, carbocisteine, eprazinone, mesna, ambroxol, sobrerol, domiodol, letosteine, stepronin, tiopronin, gelsolin, thymosin 34 dornase alfa, neltenexine, erdosteine) and various DNases including rhDNase. The surface altering agent may be embedded or enmeshed in the particle's surface or disposed (e.g., by coating, adsorption, covalent linkage, or other process) on the surface of the lipid nanoparticle. (see e.g., U.S. Publication 20100215580 and U.S. Publication 20080166414 and US20130164343; the contents of each of which are herein incorporated by reference in their entirety).

In some embodiments, the mucus penetrating lipid nanoparticles may comprise at least one polynucleotide described
herein. The polynucleotide may be encapsulated in the lipid nanoparticle and/or disposed on the surface of the particle. The polynucleotide may be covalently coupled to the lipid nanoparticle. Formulations of mucus penetrating lipid nanoparticles may comprise a plurality of nanoparticles. Further, the formulations may contain particles which may interact with the mucus and alter the structural and/or adhesive properties of the surrounding mucus to decrease mucoadhesion, which may increase the delivery of the mucus penetrating lipid nanoparticles to the mucosal tissue.

In some embodiments, the mucus penetrating lipid nanoparticles may be a hypotonic formulation comprising a mucosal penetration enhancing coating. The formulation may be hypotonice for the epithelium to which it is being delivered. Non-limiting examples of hypotonic formulations may be found in International Patent Publication No. WO2013110028, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, in order to enhance the delivery through the mucosal barrier the RNA (e.g., mRNA) vaccine formulation may comprise or be a hypotonic solution.

Hypotonic solutions were found to increase the rate at which mucoinert particles such as, but not limited to, mucus-penetrating particles, were able to reach the vaginal epithelial surface (see e.g., Ensign et al. Biomaterials 2013 34(28):6922-9, the contents of which are herein incorporated by reference in their entirety).

In some embodiments, the RNA (e.g., mRNA) vaccine is formulated as a lipoplex, such as, without limitation, the ATUPLEX ${ }^{\text {TM }}$ system, the DACC system, the DBTC system and other siRNA-lipoplex technology from Silence Therapeutics (London, United Kingdom), STEMFECTTM from STEMGENT® (Cambridge, Mass.), and polyethylenimine (PEI) or protamine-based targeted and non-targeted delivery of nucleic acids acids (Aleku et al. Cancer Res. 2008 68:9788-9798; Strumberg et al. Int J Clin Pharmacol Ther 2012 50:76-78; Santel et al., Gene Ther 2006 13:1222-1234; Santel et al., Gene Ther 2006 13:1360-1370; Gutbier et al., Pulm Pharmacol. Ther. 2010 23:334-344; Kaufmann et al. Microvasc Res 2010 80:286-293 Weide et al. J Immunother. 2009 32:498-507; Weide et al. J Immunother. 2008 31:180188; Pascolo Expert Opin. Biol. Ther. 4:1285-1294; FotinMleczek et al., 2011 J. Immunother. 34:1-15; Song et al., Nature Biotechnol. 2005, 23:709-717; Peer et al., Proc Nat1 Acad Sci USA. 2007 6; 104:4095-4100; deFougerolles Hum Gene Ther. 2008 19:125-132, the contents of each of which are incorporated herein by reference in their entirety).

In some embodiments, such formulations may also be constructed or compositions altered such that they passively or actively are directed to different cell types in vivo, including but not limited to hepatocytes, immune cells, tumor cells, endothelial cells, antigen presenting cells, and leukocytes (Akinc et al. Mol Ther. 2010 18:1357-1364; Song et al., Nat Biotechnol. 2005 23:709-717; Judge et al., J Clin Invest. 2009 119:661-673; Kaufmann et al., Microvasc Res 2010 80:286-293; Santel et al., Gene Ther 2006 13:1222-1234; Santel et al., Gene Ther 2006 13:1360-1370; Gutbier et al., Pulm Pharmacol. Ther. 2010 23:334-344; Basha et al., Mol. Ther. 2011 19:2186-2200; Fenske and Cullis, Expert Opin Drug Deliv. 2008 5:25-44; Peer et al., Science. 2008 319:627-630; Peer and Lieberman, Gene Ther. 2011 18:1127-1133, the contents of each of which are incorporated herein by reference in their entirety). One example of passive targeting of formulations to liver cells includes the DLin-DMA, DLin-KC2-DMA and DLin-MC3-DMA-based lipid nanoparticle formulations, which have been shown to bind to apolipoprotein E and promote binding
and uptake of these formulations into hepatocytes in vivo (Akinc et al. Mol Ther. 2010 18:1357-1364, the contents of which are incorporated herein by reference in their entirety). Formulations can also be selectively targeted through expression of different ligands on their surface as exemplified by, but not limited by, folate, transferrin, N-acetylgalactosamine (GalNAc), and antibody targeted approaches (Kolhatkar et al., Curr Drug Discov Technol. 2011 8:197206; Musacchio and Torchilin, Front Biosci. 2011 16:13881412; Yu et al., Mol Membr Biol. 2010 27:286-298; Patil et al., Crit Rev Ther Drug Carrier Syst. 2008 25:1-61; Benoit et al., Biomacromolecules. 2011 12:2708-2714; Zhao et al., Expert Opin Drug Deliv. 2008 5:309-319; Akinc et al., Mol Ther. 2010 18:1357-1364; Srinivasan et al., Methods Mol Biol. 2012 820:105-116; Ben-Arie et al., Methods Mol Biol. 2012 757:497-507; Peer 2010 J Control Release. 20:63-68; Peer et al., Proc Nat1 Acad Sci USA. 2007 104:4095-4100; Kim et al., Methods Mol Biol. 2011 721:339-353; Subramanya et al., Mol Ther. 2010 18:2028-2037; Song et al., Nat Biotechnol. 2005 23:709-717; Peer et al., Science. 2008 319:627-630; Peer and Lieberman, Gene Ther. 2011 18:1127-1133, the contents of each of which are incorporated herein by reference in their entirety).

In some embodiments, the RNA (e.g., mRNA) vaccine is formulated as a solid lipid nanoparticle. A solid lipid nanoparticle (SLN) may be spherical with an average diameter between 10 to 1000 nm . SLN possess a solid lipid core matrix that can solubilize lipophilic molecules and may be stabilized with surfactants and/or emulsifiers. In some embodiments, the lipid nanoparticle may be a self-assembly lipid-polymer nanoparticle (see Zhang et al., ACS Nano, 2008, 2 (8), pp 1696-1702; the contents of which are herein incorporated by reference in their entirety). As a nonlimiting example, the SLN may be the SLN described in International Patent Publication No. WO2013105101, the contents of which are herein incorporated by reference in their entirety. As another non-limiting example, the SLN may be made by the methods or processes described in International Patent Publication No. WO2013105101, the contents of which are herein incorporated by reference in their entirety.

Liposomes, lipoplexes, or lipid nanoparticles may be used to improve the efficacy of polynucleotides directed protein production as these formulations may be able to increase cell transfection by the RNA (e.g., mRNA) vaccine; and/or increase the translation of encoded protein. One such example involves the use of lipid encapsulation to enable the effective systemic delivery of polyplex plasmid DNA (Heyes et al., Mol Ther. 2007 15:713-720; the contents of which are incorporated herein by reference in their entirety). The liposomes, lipoplexes, or lipid nanoparticles may also be used to increase the stability of the polynucleotide.

In some embodiments, the RNA (e.g., mRNA) vaccines of the present disclosure can be formulated for controlled release and/or targeted delivery. As used herein, "controlled release" refers to a pharmaceutical composition or compound release profile that conforms to a particular pattern of release to effect a therapeutic outcome. In some embodiments, the RNA (e.g., mRNA) vaccines may be encapsulated into a delivery agent described herein and/or known in the art for controlled release and/or targeted delivery. As used herein, the term "encapsulate" means to enclose, surround or encase. As it relates to the formulation of the compounds of the disclosure, encapsulation may be substantial, complete or partial. The term "substantially encapsulated" means that at least greater than $50,60,70,80,85,90$, $95,96,97,98,99,99.9,99.9$ or greater than 99.999% of the
pharmaceutical composition or compound of the disclosure may be enclosed, surrounded or encased within the delivery agent. "Partially encapsulation" means that less than 10,10 , $20,30,4050$ or less of the pharmaceutical composition or compound of the disclosure may be enclosed, surrounded or encased within the delivery agent. Advantageously, encapsulation may be determined by measuring the escape or the activity of the pharmaceutical composition or compound of the disclosure using fluorescence and/or electron micrograph. For example, at least $1,5,10,20,30,40,50,60,70$, $80,85,90,95,96,97,98,99,99.9,99.99$ or greater than 99.99% of the pharmaceutical composition or compound of the disclosure are encapsulated in the delivery agent.
In some embodiments, the controlled release formulation may include, but is not limited to, tri-block co-polymers. As a non-limiting example, the formulation may include two different types of tri-block co-polymers (International Pub. No. WO2012131104 and WO2012131106, the contents of each of which are incorporated herein by reference in their entirety).
In some embodiments, the RNA (e.g., mRNA) vaccines may be encapsulated into a lipid nanoparticle or a rapidly eliminated lipid nanoparticle and the lipid nanoparticles or a rapidly eliminated lipid nanoparticle may then be encapsulated into a polymer, hydrogel and/or surgical sealant described herein and/or known in the art. As a non-limiting example, the polymer, hydrogel or surgical sealant may be PLGA, ethylene vinyl acetate (EVAc), poloxamer, GELSITE® (Nanotherapeutics, Inc. Alachua, Fla.), HYLENEX® (Halozyme Therapeutics, San Diego Calif.), surgical sealants such as fibrinogen polymers (Ethicon Inc. Cornelia, Ga.), TISSELL® (Baxter International, Inc Deerfield, II1.), PEG-based sealants, and COSEAL® (Baxter International, Inc Deerfield, Ill.).

In some embodiments, the lipid nanoparticle may be encapsulated into any polymer known in the art which may form a gel when injected into a subject. As another nonlimiting example, the lipid nanoparticle may be encapsulated into a polymer matrix which may be biodegradable.

In some embodiments, the RNA (e.g., mRNA) vaccine formulation for controlled release and/or targeted delivery may also include at least one controlled release coating. Controlled release coatings include, but are not limited to, OPADRY®, polyvinylpyrrolidone/vinyl acetate copolymer, polyvinylpyrrolidone, hydroxypropyl methylcellulose, hydroxypropyl cellulose, hydroxyethyl cellulose, EUDRAGIT RL®, EUDRAGIT RS® and cellulose derivatives such as ethylcellulose aqueous dispersions (AQUACOAT(®) and SURELEASE(®).

In some embodiments, the RNA (e.g., mRNA) vaccine controlled release and/or targeted delivery formulation may comprise at least one degradable polyester which may contain polycationic side chains. Degradeable polyesters include, but are not limited to, poly(serine ester), poly(L-lactide-co-L-lysine), poly(4-hydroxy-L-proline ester), and combinations thereof. In some embodiments, the degradable polyesters may include a PEG conjugation to form a PEGylated polymer.

In some embodiments, the RNA (e.g., mRNA) vaccine controlled release and/or targeted delivery formulation comprising at least one polynucleotide may comprise at least one PEG and/or PEG related polymer derivatives as described in U.S. Pat. No. 8,404,222, the contents of which are incorporated herein by reference in their entirety.

In some embodiments, the RNA (e.g., mRNA) vaccine controlled release delivery formulation comprising at least one polynucleotide may be the controlled release polymer
system described in US20130130348, the contents of which are incorporated herein by reference in their entirety.

In some embodiments, the RNA (e.g., mRNA) vaccines of the present disclosure may be encapsulated in a therapeutic nanoparticle, referred to herein as "therapeutic nanoparticle RNA (e.g., mRNA) vaccines." Therapeutic nanoparticles may be formulated by methods described herein and known in the art such as, but not limited to, International Pub Nos. WO2010005740, WO2010030763, WO2010005721, WO2010005723, WO2012054923, U.S. Publication Nos. US20110262491, US20100104645, US20100087337, US20100068285, US20110274759, US20100068286, US20120288541, US20130123351 and US20130230567 and U.S. Pat. Nos. $8,206,747,8,293,276,8,318,208$ and $8,318,211$; the contents of each of which are herein incorporated by reference in their entirety. In some embodiments, therapeutic polymer nanoparticles may be identified by the methods described in US Pub No. US20120140790, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the therapeutic nanoparticle RNA (e.g., mRNA) vaccine may be formulated for sustained release. As used herein, "sustained release" refers to a pharmaceutical composition or compound that conforms to a release rate over a specific period of time. The period of time may include, but is not limited to, hours, days, weeks, months and years. As a non-limiting example, the sustained release nanoparticle may comprise a polymer and a therapeutic agent such as, but not limited to, the polynucleotides of the present disclosure (see International Pub No. 2010075072 and US Pub No. US20100216804, US20110217377 and US20120201859, the contents of each of which are incorporated herein by reference in their entirety). In another non-limiting example, the sustained release formulation may comprise agents which permit persistent bioavailability such as, but not limited to, crystals, macromolecular gels and/or particulate suspensions (see U.S. Patent Publication No US20130150295, the contents of each of which are incorporated herein by reference in their entirety).

In some embodiments, the therapeutic nanoparticle RNA (e.g., mRNA) vaccines may be formulated to be target specific. As a non-limiting example, the therapeutic nanoparticles may include a corticosteroid (see International Pub. No. WO2011084518, the contents of which are incorporated herein by reference in their entirety). As a non-limiting example, the therapeutic nanoparticles may be formulated in nanoparticles described in International Pub No. WO2008121949, WO2010005726, WO2010005725, WO2011084521 and US Pub No. US20100069426, US20120004293 and US20100104655, the contents of each of which are incorporated herein by reference in their entirety.

In some embodiments, the nanoparticles of the present disclosure may comprise a polymeric matrix. As a nonlimiting example, the nanoparticle may comprise two or more polymers such as, but not limited to, polyethylenes, polycarbonates, polyanhydrides, polyhydroxyacids, polypropylfumerates, polycaprolactones, polyamides, polyacetals, polyethers, polyesters, poly(orthoesters), polycyanoacrylates, polyvinyl alcohols, polyurethanes, polyphosphazenes, polyacrylates, polymethacrylates, polycyanoacrylates, polyureas, polystyrenes, polyamines, polylysine, poly(ethylene imine), poly(serine ester), poly(L-lactide-co-L-lysine), poly(4-hydroxy-L-proline ester) or combinations thereof.

In some embodiments, the therapeutic nanoparticle comprises a diblock copolymer. In some embodiments, the diblock copolymer may include PEG in combination with a polymer such as, but not limited to, polyethylenes, polycarbonates, polyanhydrides, polyhydroxyacids, polypropylfumerates, polycaprolactones, polyamides, polyacetals, polyethers, polyesters, poly(orthoesters), polycyanoacrylates, polyvinyl alcohols, polyurethanes, polyphosphazenes, polyacrylates, polymethacrylates, polycyanoacrylates, polyureas, polystyrenes, polyamines, polylysine, poly(ethylene imine), poly(serine ester), poly(L-lactide-co-L-lysine), poly(4-hydroxy-L-proline ester) or combinations thereof. In yet another embodiment, the diblock copolymer may be a high- X diblock copolymer such as those described in International Patent Publication No. WO2013120052, the contents of which are incorporated herein by reference in their entirety.

As a non-limiting example the therapeutic nanoparticle comprises a PLGA-PEG block copolymer (see U.S. Publication No. US20120004293 and U.S. Pat. No. 8,236,330, each of which is herein incorporated by reference in their entirety). In another non-limiting example, the therapeutic nanoparticle is a stealth nanoparticle comprising a diblock copolymer of PEG and PLA or PEG and PLGA (see U.S. Pat. No. 8,246,968 and International Publication No. WO2012166923, the contents of each of which are herein incorporated by reference in their entirety). In yet another non-limiting example, the therapeutic nanoparticle is a stealth nanoparticle or a target-specific stealth nanoparticle as described in U.S. Patent Publication No. US20130172406, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the therapeutic nanoparticle may comprise a multiblock copolymer (see e.g., U.S. Pat. Nos. 8,263,665 and 8,287,910 and U.S. Patent Pub. No. US20130195987, the contents of each of which are herein incorporated by reference in their entirety).

In yet another non-limiting example, the lipid nanoparticle comprises the block copolymer PEG-PLGA-PEG (see e.g., the thermosensitive hydrogel (PEG-PLGA-PEG) was used as a TGF-betal gene delivery vehicle in Lee et al. Thermosensitive Hydrogel as a Tgf- $\beta 1$ Gene Delivery Vehicle Enhances Diabetic Wound Healing. Pharmaceutical Research, 2003 20(12): 1995-2000; as a controlled gene delivery system in Li et al. Controlled Gene Delivery System Based on Thermosensitive Biodegradable Hydrogel. Pharmaceutical Research 2003 20(6):884-888; and Chang et al., Non-ionic amphiphilic biodegradable PEG-PLGA-PEG copolymer enhances gene delivery efficiency in rat skeletal muscle. J Controlled Release. 2007 118:245-253, the contents of each of which are herein incorporated by reference in their entirety). The RNA (e.g., mRNA) vaccines of the present disclosure may be formulated in lipid nanoparticles comprising the PEG-PLGA-PEG block copolymer.

In some embodiments, the therapeutic nanoparticle may comprise a multiblock copolymer (see e.g., U.S. Pat. Nos. $8,263,665$ and $8,287,910$ and U.S. Patent Pub. No. US20130195987, the contents of each of which are herein incorporated by reference in their entirety).
In some embodiments, the block copolymers described herein may be included in a polyion complex comprising a non-polymeric micelle and the block copolymer. (see e.g., U.S. Publication No. 20120076836, the contents of which are herein incorporated by reference in their entirety).
In some embodiments, the therapeutic nanoparticle may comprise at least one acrylic polymer. Acrylic polymers include but are not limited to, acrylic acid, methacrylic acid,
acrylic acid and methacrylic acid copolymers, methyl methacrylate copolymers, ethoxyethyl methacrylates, cyanoethyl methacrylate, amino alkyl methacrylate copolymer, poly (acrylic acid), poly(methacrylic acid), polycyanoacrylates and combinations thereof.

In some embodiments, the therapeutic nanoparticles may comprise at least one poly(vinyl ester) polymer. The poly (vinyl ester) polymer may be a copolymer such as a random copolymer. As a non-limiting example, the random copolymer may have a structure such as those described in International Application No. WO2013032829 or U.S. Patent Publication No US20130121954, the contents of each of which are herein incorporated by reference in their entirety. In some embodiments, the poly(vinyl ester) polymers may be conjugated to the polynucleotides described herein.

In some embodiments, the therapeutic nanoparticle may comprise at least one diblock copolymer. The diblock copolymer may be, but it not limited to, a poly(lactic) acid-poly (ethylene)glycol copolymer (see, e.g., International Patent Publication No. WO2013044219, the contents of which are herein incorporated by reference in their entirety).

As a non-limiting example, the therapeutic nanoparticle may be used to treat cancer (see International publication No. WO2013044219, the contents of which are herein incorporated by reference in their entirety).

In some embodiments, the therapeutic nanoparticles may comprise at least one cationic polymer described herein and/or known in the art.

In some embodiments, the therapeutic nanoparticles may comprise at least one amine-containing polymer such as, but not limited to polylysine, polyethylene imine, poly(amidoamine) dendrimers, poly(beta-amino esters) (see, e.g., U.S. Pat. No. $8,287,849$, the contents of which are herein incorporated by reference in their entirety) and combinations thereof.

In some embodiments, the nanoparticles described herein may comprise an amine cationic lipid such as those described in International Patent Application No. WO2013059496, the contents of which are herein incorporated by reference in their entirety. In some embodiments, the cationic lipids may have an amino-amine or an aminoamide moiety.

In some embodiments, the therapeutic nanoparticles may comprise at least one degradable polyester which may contain polycationic side chains. Degradeable polyesters include, but are not limited to, poly(serine ester), poly(L-lactide-co-L-lysine), poly(4-hydroxy-L-proline ester), and combinations thereof. In some embodiments, the degradable polyesters may include a PEG conjugation to form a PEGylated polymer.

In some embodiments, the synthetic nanocarriers may contain an immunostimulatory agent to enhance the immune response from delivery of the synthetic nanocarrier. As a non-limiting example, the synthetic nanocarrier may comprise a Th1 immunostimulatory agent, which may enhance a Th1-based response of the immune system (see International Pub No. WO2010123569 and U.S. Publication No. US20110223201, the contents of each of which are herein incorporated by reference in their entirety).

In some embodiments, the synthetic nanocarriers may be formulated for targeted release. In some embodiments, the synthetic nanocarrier is formulated to release the polynucleotides at a specified pH and/or after a desired time interval. As a non-limiting example, the synthetic nanoparticle may be formulated to release the RNA (e.g., mRNA) vaccines after 24 hours and/or at a pH of 4.5 (see International Publication Nos. WO2010138193 and WO2010138194 and

US Pub Nos. US20110020388 and US20110027217, each of which is herein incorporated by reference in their entireties).

In some embodiments, the synthetic nanocarriers may be formulated for controlled and/or sustained release of the polynucleotides described herein. As a non-limiting example, the synthetic nanocarriers for sustained release may be formulated by methods known in the art, described herein and/or as described in International Pub No. WO2010138192 and US Pub No. 20100303850, each of which is herein incorporated by reference in their entirety.

In some embodiments, the RNA (e.g., mRNA) vaccine may be formulated for controlled and/or sustained release wherein the formulation comprises at least one polymer that is a crystalline side chain (CYSC) polymer. CYSC polymers are described in U.S. Pat. No. 8,399,007, herein incorporated by reference in its entirety.
In some embodiments, the synthetic nanocarrier may be formulated for use as a vaccine. In some embodiments, the synthetic nanocarrier may encapsulate at least one polynucleotide which encode at least one antigen. As a nonlimiting example, the synthetic nanocarrier may include at least one antigen and an excipient for a vaccine dosage form (see International Publication No. WO2011150264 and U.S. Publication No. US20110293723, the contents of each of which are herein incorporated by reference in their entirety). As another non-limiting example, a vaccine dosage form may include at least two synthetic nanocarriers with the same or different antigens and an excipient (see International Publication No. WO2011150249 and U.S. Publication No. US20110293701, the contents of each of which are herein incorporated by reference in their entirety). The vaccine dosage form may be selected by methods described herein, known in the art and/or described in International Publication No. WO2011150258 and U.S. Publication No. US20120027806, the contents of each of which are herein incorporated by reference in their entirety).

In some embodiments, the synthetic nanocarrier may comprise at least one polynucleotide which encodes at least one adjuvant. As non-limiting example, the adjuvant may comprise dimethyldioctadecylammonium-bromide, dimeth-yldioctadecylammonium-chloride, dimethyldioctadecylam-monium-phosphate or dimethyldioctadecylammonium-acetate (DDA) and an apolar fraction or part of said apolar fraction of a total lipid extract of a mycobacterium (see, e.g., U.S. Pat. No. 8,241,610, the content of which is herein incorporated by reference in its entirety). In some embodiments, the synthetic nanocarrier may comprise at least one polynucleotide and an adjuvant. As a non-limiting example, the synthetic nanocarrier comprising and adjuvant may be formulated by the methods described in International Publication No. WO2011150240 and U.S. Publication No. US20110293700, the contents of each of which are herein incorporated by reference in their entirety.
In some embodiments, the synthetic nanocarrier may encapsulate at least one polynucleotide that encodes a peptide, fragment or region from a virus. As a non-limiting example, the synthetic nanocarrier may include, but is not limited to, any of the nanocarriers described in International Publication No. WO2012024621, WO201202629, WO2012024632 and U.S. Publication No. US20120064110, US20120058153 and US20120058154, the contents of each of which are herein incorporated by reference in their entirety.

In some embodiments, the synthetic nanocarrier may be coupled to a polynucleotide which may be able to trigger a humoral and/or cytotoxic T lymphocyte (CTL) response
(see, e.g., International Publication No. WO2013019669, the contents of which are herein incorporated by reference in their entirety).

In some embodiments, the RNA (e.g., mRNA) vaccine may be encapsulated in, linked to and/or associated with zwitterionic lipids. Non-limiting examples of zwitterionic lipids and methods of using zwitterionic lipids are described in U.S. Patent Publication No. US20130216607, the contents of which are herein incorporated by reference in their entirety.

In some aspects, the zwitterionic lipids may be used in the liposomes and lipid nanoparticles described herein.

In some embodiments, the RNA (e.g., mRNA) vaccine may be formulated in colloid nanocarriers as described in U.S. Patent Publication No. US20130197100, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the nanoparticle may be optimized for oral administration. The nanoparticle may comprise at least one cationic biopolymer such as, but not limited to, chitosan or a derivative thereof. As a non-limiting example, the nanoparticle may be formulated by the methods described in U.S. Publication No. 20120282343 , the contents of which are herein incorporated by reference in their entirety.

In some embodiments, LNPs comprise the lipid KL52 (an amino-lipid disclosed in U.S. Application Publication No. 2012/0295832, the contents of which are herein incorporated by reference in their entirety. Activity and/or safety (as measured by examining one or more of ALT/AST, white blood cell count and cytokine induction, for example) of LNP administration may be improved by incorporation of such lipids. LNPs comprising KL52 may be administered intravenously and/or in one or more doses. In some embodiments, administration of LNPs comprising KL52 results in equal or improved mRNA and/or protein expression as compared to LNPs comprising MC3.

In some embodiments, RNA (e.g., mRNA) vaccine may be delivered using smaller LNPs. Such particles may comprise a diameter from below 0.1 um up to 100 nm such as, but not limited to, less than 0.1 um , less than 1.0 um , less than 5 um , less than 10 um , less than 15 um , less than 20 um , less than 25 um , less than 30 um , less than 35 um , less than 40 um , less than 50 um , less than 55 um , less than 60 um , less than 65 um , less than 70 um , less than 75 um , less than 80 um , less than 85 um , less than 90 um , less than 95 um , less than 100 um , less than 125 um , less than 150 um , less than 175 um , less than 200 um , less than 225 um , less than 250 um , less than 275 um , less than 300 um , less than 325 um, less than 350 um , less than 375 um , less than 400 um , less than 425 um , less than 450 um , less than 475 um , less than 500 um , less than 525 um , less than 550 um , less than 575 um , less than 600 um , less than 625 um , less than 650 um, less than 675 um , less than 700 um , less than 725 um , less than 750 um , less than 775 um , less than 800 um , less than 825 um , less than 850 um , less than 875 um , less than 900 um , less than 925 um , less than 950 um , less than 975 um, or less than 1000 um .

In some embodiments, RNA (e.g., mRNA) vaccines may be delivered using smaller LNPs, which may comprise a diameter from about 1 nm to about 100 nm , from about 1 nm to about 10 nm , about 1 nm to about 20 nm , from about 1 nm to about 30 nm , from about 1 nm to about 40 nm , from about 1 nm to about 50 nm , from about 1 nm to about 60 nm , from about 1 nm to about 70 nm , from about 1 nm to about 80 nm , from about 1 nm to about 90 nm , from about 5 nm to about from 100 nm , from about 5 nm to about 10 nm ,
about 5 nm to about 20 nm , from about 5 nm to about 30 nm , from about 5 nm to about 40 nm , from about 5 nm to about 50 nm , from about 5 nm to about 60 nm , from about 5 nm to about 70 nm , from about 5 nm to about 80 nm , from about 5 nm to about 90 nm , about 10 to about 50 nm , from about 20 to about 50 nm , from about 30 to about 50 nm , from about 40 to about 50 nm , from about 20 to about 60 nm , from about 30 to about 60 nm , from about 40 to about 60 nm , from about 20 to about 70 nm , from about 30 to about 70 nm , from about 40 to about 70 nm , from about 50 to about 70 nm , from about 60 to about 70 nm , from about 20 to about 80 nm , from about 30 to about 80 nm , from about 40 to about 80 nm , from about 50 to about 80 nm , from about 60 to about 80 nm , from about 20 to about 90 nm , from about 30 to about 90 nm , from about 40 to about 90 nm , from about 50 to about 90 nm , from about 60 to about 90 nm and/or from about 70 to about 90 nm .

In some embodiments, such LNPs are synthesized using methods comprising microfluidic mixers. Examples of microfluidic mixers may include, but are not limited to, a slit interdigital micromixer including, but not limited to those manufactured by Microinnova (Allerheiligen bei Wildon, Austria) and/or a staggered herringbone micromixer (SHM) (Zhigaltsev, I. V. et al., Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing have been published (Langmuir. 2012. 28:3633-40; Belliveau, N. M. et al., Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Molecular Therapy-Nucleic Acids. 2012. 1:e37; Chen, D. et al., Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. J Am Chem Soc. 2012. 134(16):6948-51, the contents of each of which are herein incorporated by reference in their entirety). In some embodiments, methods of LNP generation comprising SHM, further comprise the mixing of at least two input streams wherein mixing occurs by microstructureinduced chaotic advection (MICA). According to this method, fluid streams flow through channels present in a herringbone pattern causing rotational flow and folding the fluids around each other. This method may also comprise a surface for fluid mixing wherein the surface changes orientations during fluid cycling. Methods of generating LNPs using SHM include those disclosed in U.S. Application Publication Nos. 2004/0262223 and 2012/0276209, the contents of each of which are herein incorporated by reference in their entirety.

In some embodiments, the RNA (e.g., mRNA) vaccine of the present disclosure may be formulated in lipid nanoparticles created using a micromixer such as, but not limited to, a Slit Interdigital Microstructured Mixer (SIMM-V2) or a Standard Slit Interdigital Micro Mixer (SSIMM) or Caterpillar (CPMM) or Impinging-jet (IJMM) from the Institut fiir Mikrotechnik Mainz GmbH, Mainz Germany).

In some embodiments, the RNA (e.g., mRNA) vaccines of the present disclosure may be formulated in lipid nanoparticles created using microfluidic technology (see, e.g., Whitesides, George M. The Origins and the Future of Microfluidics. Nature, 2006 442: 368-373; and Abraham et al. Chaotic Mixer for Microchannels. Science, 2002 295: 647651 ; each of which is herein incorporated by reference in its entirety). As a non-limiting example, controlled microfluidic formulation includes a passive method for mixing streams of steady pressure-driven flows in micro channels at a low Reynolds number (see, e.g., Abraham et al. Chaotic Mixer for Microchannels. Science, 2002 295: 647-651, the contents of which are herein incorporated by reference in their entirety).

In some embodiments, the RNA (e.g., mRNA) vaccines of the present disclosure may be formulated in lipid nanoparticles created using a micromixer chip such as, but not limited to, those from Harvard Apparatus (Holliston, Mass.) or Dolomite Microfluidics (Royston, UK). A micromixer chip can be used for rapid mixing of two or more fluid streams with a split and recombine mechanism.

In some embodiments, the RNA (e.g., mRNA) vaccines of the disclosure may be formulated for delivery using the drug encapsulating microspheres described in International Patent Publication No. WO2013063468 or U.S. Pat. No. 8,440, 614, the contents of each of which are herein incorporated by reference in their entirety. The microspheres may comprise a compound of the formula (I), (II), (III), (IV), (V) or (VI) as described in International Patent Publication No. WO2013063468, the contents of which are herein incorporated by reference in their entirety. In some embodiments, the amino acid, peptide, polypeptide, lipids (APPL) are useful in delivering the RNA (e.g., mRNA) vaccines of the disclosure to cells (see International Patent Publication No. WO2013063468, the contents of which are herein incorporated by reference in their entirety).

In some embodiments, the RNA (e.g., mRNA) vaccines of the disclosure may be formulated in lipid nanoparticles having a diameter from about 10 to about 100 nm such as, but not limited to, about 10 to about 20 nm , about 10 to about 30 nm , about 10 to about 40 nm , about 10 to about 50 nm , about 10 to about 60 nm , about 10 to about 70 nm , about 10 to about 80 nm , about 10 to about 90 nm , about 20 to about 30 nm , about 20 to about 40 nm , about 20 to about 50 nm , about 20 to about 60 nm , about 20 to about 70 nm , about 20 to about 80 nm , about 20 to about 90 nm , about 20 to about 100 nm , about 30 to about 40 nm , about 30 to about 50 nm , about 30 to about 60 nm , about 30 to about 70 nm , about 30 to about 80 nm , about 30 to about 90 nm , about 30 to about 100 nm , about 40 to about 50 nm , about 40 to about 60 nm , about 40 to about 70 nm , about 40 to about 80 nm , about 40 to about 90 nm , about 40 to about 100 nm , about 50 to about 60 nm , about 50 to about 70 nm about 50 to about 80 nm , about 50 to about 90 nm , about 50 to about 100 nm , about 60 to about 70 nm , about 60 to about 80 nm , about 60 to about 90 nm , about 60 to about 100 nm , about 70 to about 80 nm , about 70 to about 90 nm , about 70 to about 100 nm , about 80 to about 90 nm , about 80 to about 100 nm and/or about 90 to about 100 nm .

In some embodiments, the lipid nanoparticles may have a diameter from about 10 to 500 nm .

In some embodiments, the lipid nanoparticle may have a diameter greater than 100 nm , greater than 150 nm , greater than 200 nm , greater than 250 nm , greater than 300 nm , greater than 350 nm , greater than 400 nm , greater than 450 nm , greater than 500 nm , greater than 550 nm , greater than 600 nm , greater than 650 nm , greater than 700 nm , greater than 750 nm , greater than 800 nm , greater than 850 nm , greater than 900 nm , greater than 950 nm or greater than 1000 nm .

In some embodiments, the lipid nanoparticle may be a limit size lipid nanoparticle described in International Patent Publication No. WO2013059922, the contents of which are herein incorporated by reference in their entirety. The limit size lipid nanoparticle may comprise a lipid bilayer surrounding an aqueous core or a hydrophobic core; where the lipid bilayer may comprise a phospholipid such as, but not limited to, diacylphosphatidylcholine, a diacylphosphatidylethanolamine, a ceramide, a sphingomyelin, a dihydrosphingomyelin, a cephalin, a cerebroside, a C8-C20 fatty acid diacylphophatidylcholine, and 1-palmitoyl-2-oleoyl
phosphatidylcholine (POPC). In some embodiments, the limit size lipid nanoparticle may comprise a polyethylene glycol-lipid such as, but not limited to, DLPE-PEG, DMPEPEG, DPPC-PEG and DSPE-PEG.
In some embodiments, the RNA (e.g., mRNA) vaccines may be delivered, localized and/or concentrated in a specific location using the delivery methods described in International Patent Publication No. WO2013063530, the contents of which are herein incorporated by reference in their entirety. As a non-limiting example, a subject may be administered an empty polymeric particle prior to, simultaneously with or after delivering the RNA (e.g., mRNA) vaccines to the subject. The empty polymeric particle undergoes a change in volume once in contact with the subject and becomes lodged, embedded, immobilized or entrapped at a specific location in the subject.

In some embodiments, the RNA (e.g., mRNA) vaccines may be formulated in an active substance release system (see, e.g., U.S. Patent Publication No. US20130102545, the contents of which are herein incorporated by reference in their entirety). The active substance release system may comprise 1) at least one nanoparticle bonded to an oligonucleotide inhibitor strand which is hybridized with a catalytically active nucleic acid and 2) a compound bonded to at least one substrate molecule bonded to a therapeutically active substance (e.g., polynucleotides described herein), where the therapeutically active substance is released by the cleavage of the substrate molecule by the catalytically active nucleic acid.
In some embodiments, the RNA (e.g., mRNA) vaccines may be formulated in a nanoparticle comprising an inner core comprising a non-cellular material and an outer surface comprising a cellular membrane. The cellular membrane may be derived from a cell or a membrane derived from a virus. As a non-limiting example, the nanoparticle may be made by the methods described in International Patent Publication No. WO2013052167, the contents of which are herein incorporated by reference in their entirety. As another non-limiting example, the nanoparticle described in International Patent Publication No. WO2013052167, the contents of which are herein incorporated by reference in their entirety, may be used to deliver the RNA (e.g., mRNA) vaccines described herein.

In some embodiments, the RNA (e.g., mRNA) vaccines may be formulated in porous nanoparticle-supported lipid bilayers (protocells). Protocells are described in International Patent Publication No. WO2013056132, the contents of which are herein incorporated by reference in their entirety.
In some embodiments, the RNA (e.g., mRNA) vaccines described herein may be formulated in polymeric nanoparticles as described in or made by the methods described in U.S. Pat. Nos. 8,420, 123 and 8,518,963 and European Patent No. EP2073848B1, the contents of each of which are herein incorporated by reference in their entirety. As a non-limiting example, the polymeric nanoparticle may have a high glass transition temperature such as the nanoparticles described in or nanoparticles made by the methods described in U.S. Pat. No. $8,518,963$, the contents of which are herein incorporated by reference in their entirety. As another non-limiting example, the polymer nanoparticle for oral and parenteral formulations may be made by the methods described in European Patent No. EP2073848B1, the contents of which are herein incorporated by reference in their entirety.
In some embodiments, the RNA (e.g., mRNA) vaccines described herein may be formulated in nanoparticles used in imaging. The nanoparticles may be liposome nanoparticles
such as those described in U.S. Patent Publication No US20130129636, herein incorporated by reference in its entirety. As a non-limiting example, the liposome may comprise gadolinium(III)2-\{4,7-bis-carboxymethyl-10-[(N, N -distearylamidomethyl- N '-amido-methyl]-1,4,7,10-tetra-azacyclododec-1-yl $\}$-acetic acid and a neutral, fully saturated phospholipid component (see, e.g., U.S. Patent Publication No US20130129636, the contents of which are herein incorporated by reference in their entirety).

In some embodiments, the nanoparticles which may be used in the present disclosure are formed by the methods described in U.S. Patent Application No. US20130130348, the contents of which are herein incorporated by reference in their entirety

The nanoparticles of the present disclosure may further include nutrients such as, but not limited to, those which deficiencies can lead to health hazards from anemia to neural tube defects (see, e.g., the nanoparticles described in International Patent Publication No WO2013072929, the contents of which are herein incorporated by reference in their entirety). As a non-limiting example, the nutrient may be iron in the form of ferrous, ferric salts or elemental iron, iodine, folic acid, vitamins or micronutrients.

In some embodiments, the RNA (e.g., mRNA) vaccines of the present disclosure may be formulated in a swellable nanoparticle. The swellable nanoparticle may be, but is not limited to, those described in U.S. Pat. No. 8,440,231, the contents of which are herein incorporated by reference in their entirety. As a non-limiting embodiment, the swellable nanoparticle may be used for delivery of the RNA (e.g., mRNA) vaccines of the present disclosure to the pulmonary system (see, e.g., U.S. Pat. No. 8,440,231, the contents of which are herein incorporated by reference in their entirety).

The RNA (e.g., mRNA) vaccines of the present disclosure may be formulated in polyanhydride nanoparticles such as, but not limited to, those described in U.S. Pat. No. 8,449, 916, the contents of which are herein incorporated by reference in their entirety.

The nanoparticles and microparticles of the present disclosure may be geometrically engineered to modulate macrophage and/or the immune response. In some embodiments, the geometrically engineered particles may have varied shapes, sizes and/or surface charges in order to incorporated the polynucleotides of the present disclosure for targeted delivery such as, but not limited to, pulmonary delivery (see, e.g., International Publication No WO2013082111, the contents of which are herein incorporated by reference in their entirety). Other physical features the geometrically engineering particles may have include, but are not limited to, fenestrations, angled arms, asymmetry and surface roughness, charge which can alter the interactions with cells and tissues. As a non-limiting example, nanoparticles of the present disclosure may be made by the methods described in International Publication No WO2013082111, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the nanoparticles of the present disclosure may be water soluble nanoparticles such as, but not limited to, those described in International Publication No. WO2013090601, the contents of which are herein incorporated by reference in their entirety. The nanoparticles may be inorganic nanoparticles which have a compact and zwitterionic ligand in order to exhibit good water solubility. The nanoparticles may also have small hydrodynamic diameters (HD), stability with respect to time, pH , and salinity and a low level of non-specific protein binding.

In some embodiments the nanoparticles of the present disclosure may be developed by the methods described in U.S. Patent Publication No. US20130172406, the contents of which are herein incorporated by reference in their entirety.
In some embodiments, the nanoparticles of the present disclosure are stealth nanoparticles or target-specific stealth nanoparticles such as, but not limited to, those described in U.S. Patent Publication No. US20130172406, the contents of which are herein incorporated by reference in their entirety. The nanoparticles of the present disclosure may be made by the methods described in U.S. Patent Publication No. US20130172406, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the stealth or target-specific stealth nanoparticles may comprise a polymeric matrix. The polymeric matrix may comprise two or more polymers such as, but not limited to, polyethylenes, polycarbonates, polyanhydrides, polyhydroxyacids, polypropylfumerates, polycaprolactones, polyamides, polyacetals, polyethers, polyesters, poly(orthoesters), polycyanoacrylates, polyvinyl alcohols, polyurethanes, polyphosphazenes, polyacrylates, polymethacrylates, polycyanoacrylates, polyureas, polystyrenes, polyamines, polyesters, polyanhydrides, polyethers, polyurethanes, polymethacrylates, polyacrylates, polycyanoacrylates or combinations thereof.

In some embodiments, the nanoparticle may be a nano-particle-nucleic acid hybrid structure having a high density nucleic acid layer. As a non-limiting example, the nanopar-ticle-nucleic acid hybrid structure may made by the methods described in U.S. Patent Publication No. US20130171646, the contents of which are herein incorporated by reference in their entirety. The nanoparticle may comprise a nucleic acid such as, but not limited to, polynucleotides described herein and/or known in the art.

At least one of the nanoparticles of the present disclosure may be embedded in in the core a nanostructure or coated with a low density porous 3-D structure or coating which is capable of carrying or associating with at least one payload within or on the surface of the nanostructure. Non-limiting examples of the nanostructures comprising at least one nanoparticle are described in International Patent Publication No. WO2013123523, the contents of which are herein incorporated by reference in their entirety.

In some embodiments the RNA (e.g., mRNA) vaccine may be associated with a cationic or polycationic compounds, including protamine, nucleoline, spermine or spermidine, or other cationic peptides or proteins, such as poly-L-lysine (PLL), polyarginine, basic polypeptides, cell penetrating peptides (CPPs), including HIV-binding peptides, HIV-1 Tat (HIV), Tat-derived peptides, Penetratin, VP^{22} derived or analog peptides, Pestivirus Erns, HSV, VP ${ }^{22}$ (Herpes simplex), MAP, KALA or protein transduction domains (PTDs), PpT620, prolin-rich peptides, arginine-rich peptides, lysine-rich peptides, MPG-peptide(s), Pep-1, L-oligomers, Calcitonin peptide(s), Antennapedia-derived peptides (particularly from Drosophila antennapedia), pAntp, pIs1, FGF, Lactoferrin, Transportan, Buforin-2, Bac715-24, $\operatorname{SynB}, \operatorname{SynB}(1), \mathrm{pVEC}$, hCT-derived peptides, SAP, histones, cationic polysaccharides, for example chitosan, polybrene, cationic polymers, e.g. polyethyleneimine (PEI), cationic lipids, e.g. DOTMA: [1-(2,3-sioleyloxy) propy1)]-N,N,N-trimethylammonium chloride, DMRIE, di-C14-amidine, DOTIM, SAINT, DC-Chol, BGTC, CTAP, DOPC, DODAP, DOPE: Dioleyl phosphatidylethanolamine, DOSPA, DODAB, DOIC, DMEPC, DOGS: Dioctadecylamidoglicylspermin, DIMRI: Dimyristooxypropyl
dimethyl hydroxyethyl ammonium bromide, DOTAP: dio-leoyloxy-3-(trimethylammonio)propane, DC-6-14: O,O-ditetradecanoyl-N-.alpha.-trimethylammonioacetyl)diethanolamine chloride, CLIP 1: rac-[(2,3-dioctadecyloxypropyl) (2-hydroxyethyl)]-dimethylammonium chloride, CLIP6: rac-[2(2,3-dihexadecyloxypropyloxymethyloxy)ethyl]trimethylammonium, CLIP9: rac-[2(2,3-dihexadecyloxy-propyloxysuccinyloxy)ethyl]-trimethylammonium, oligofectamine, or cationic or polycationic polymers, e.g. modified polyaminoacids, such as beta-aminoacid-polymers or reversed polyamides, etc., modified polyethylenes, such as PVP (poly(N-ethyl-4-vinylpyridinium bromide)), etc., modified acrylates, such as pDMAEMA (poly(dimethylaminoethyl methylacrylate)), etc., modified amidoamines such as pAMAM (poly(amidoamine)), etc., modified polybetaminoester (PBAE), such as diamine end modified 1,4 butanediol diacrylate-co-5-amino-1-pentanol polymers, etc., dendrimers, such as polypropylamine dendrimers or pAMAM based dendrimers, etc., polyimine(s), such as PEI: poly(ethyleneimine), poly(propyleneimine), etc., polyallylamine, sugar backbone based polymers, such as cyclodextrin based polymers, dextran based polymers, chitosan, etc., silan backbone based polymers, such as PMOXA-PDMS copolymers, etc., blockpolymers consisting of a combination of one or more cationic blocks (e.g. selected from a cationic polymer as mentioned above) and of one or more hydrophilic or hydrophobic blocks (e.g. polyethyleneglycole), etc.

In other embodiments the RNA (e.g., mRNA) vaccine is not associated with a cationic or polycationic compounds.

In some embodiments, a nanoparticle comprises compounds of Formula (I):

or a salt or isomer thereof, wherein:
R_{1} is selected from the group consisting of C_{5-30} alkyl, C_{5-20} alkenyl, -R ${ }^{*} \mathrm{YR}^{\prime \prime}$, - YR", and -R"M'R';
R_{2} and R_{3} are independently selected from the group consisting of $\mathrm{H}, \mathrm{C}_{1-14}$ alkyl, C_{2-14} alkenyl, -R*YR", $-\mathrm{YR}{ }^{\prime \prime}$, and - $\mathrm{R}^{*} \mathrm{OR}^{\prime \prime}$, or R_{2} and R_{3}, together with the atom to which they are attached, form a heterocycle or carbocycle;
R_{4} is selected from the group consisting of a C_{3-6} carbocycle, $-\left(\mathrm{CH}_{2}\right)_{n} \mathrm{Q},-\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CHQR}$,
$-\mathrm{CHQR},-\mathrm{CQ}(\mathrm{R})_{2}$, and unsubstituted C_{1-6} alkyl, where Q is selected from a carbocycle, heterocycle, OR, $-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{~N}(\mathrm{R})_{2}, \quad \mathrm{C}(\mathrm{O}) \mathrm{OR}, \quad \mathrm{OC}(\mathrm{O}) \mathrm{R},-\mathrm{CX}_{3}$, $-\mathrm{CX}_{2} \mathrm{H},-\mathrm{CXH}_{2},-\mathrm{CN},-\mathrm{N}(\mathrm{R})_{2},-\mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{R})_{2},-\mathrm{N}(\mathrm{R})$ $\mathrm{C}(\mathrm{O}) \mathrm{R},-\mathrm{N}(\mathrm{R}) \mathrm{S}(\mathrm{O})_{2} \mathrm{R},-\mathrm{N}(\mathrm{R}) \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{R})_{2},-\mathrm{N}(\mathrm{R}) \mathrm{C}(\mathrm{S}) \mathrm{N}$ $(\mathrm{R})_{2},-\mathrm{N}(\mathrm{R}) \mathrm{R}_{8},-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{OR},-\mathrm{N}(\mathrm{R}) \mathrm{C}\left(=\mathrm{NR}_{9}\right) \mathrm{N}(\mathrm{R})_{2}$, $-\mathrm{N}(\mathrm{R}) \mathrm{C}\left(=\mathrm{CHR}_{9}\right) \mathrm{N}(\mathrm{R})_{2}, \quad-\mathrm{OC}(\mathrm{O}) \mathrm{N}(\mathrm{R})_{2}, \quad-\mathrm{N}(\mathrm{R}) \mathrm{C}(\mathrm{O})$ $\mathrm{OR},-\mathrm{N}(\mathrm{OR}) \mathrm{C}(\mathrm{O}) \mathrm{R},-\mathrm{N}(\mathrm{OR}) \mathrm{S}(\mathrm{O})_{2} \mathrm{R},-\mathrm{N}(\mathrm{OR}) \mathrm{C}(\mathrm{O}) \mathrm{OR}$, $-\mathrm{N}(\mathrm{OR}) \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{R})_{2}, \quad-\mathrm{N}(\mathrm{OR}) \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{R})_{2}, \quad-\mathrm{N}(\mathrm{OR}) \mathrm{C}$ $\left(=\mathrm{NR}_{9}\right) \mathrm{N}(\mathrm{R})_{2},-\mathrm{N}(\mathrm{OR}) \mathrm{C}\left(=\mathrm{CHR}_{9}\right) \mathrm{N}(\mathrm{R})_{2},-\mathrm{C}\left(=\mathrm{NR}_{9}\right) \mathrm{N}$ $(\mathrm{R})_{2},-\mathrm{C}\left(=\mathrm{NR}_{9}\right) \mathrm{R},-\mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{R}) \mathrm{O} \mathrm{R}$, and $-\mathrm{C}(\mathrm{R}) \mathrm{N}(\mathrm{R})_{2} \mathrm{C}$ (O)OR, and each n is independently selected from $1,2,3,4$, and 5;
each R_{5} is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H ;
each R_{6} is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H ;

M and M^{\prime} are independently selected from $-\mathrm{C}(\mathrm{O}) \mathrm{O}-$, $-\mathrm{OC}(\mathrm{O})-,-\mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{R}^{\prime}\right)-$,
$-\mathrm{N}\left(\mathrm{R}^{\prime}\right) \mathrm{C}(\mathrm{O})-\mathrm{C}(\mathrm{O})-,-\mathrm{C}(\mathrm{S})-,-\mathrm{C}(\mathrm{S}) \mathrm{S}-,-\mathrm{SC}$ $(\mathrm{S})-\mathrm{CH}(\mathrm{OH})-\quad \mathrm{P}(\mathrm{O})\left(\mathrm{OR}^{\prime}\right) \mathrm{O}-, \mathrm{S}(\mathrm{O})_{2}-,-\mathrm{S}-$ S -, an aryl group, and a heteroaryl group;
R_{7} is selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and $\mathrm{H} ; \mathrm{R}_{8}$ is selected from the group consisting of $\mathrm{C}_{3 \text {-6 }}$ carbocycle and heterocycle;
R_{9} is selected from the group consisting of $\mathrm{H}, \mathrm{CN}, \mathrm{NO}_{2}$, C_{1-6} alkyl, - OR, $-\mathrm{S}(\mathrm{O})_{2} \mathrm{R},-\mathrm{S}(\mathrm{O})_{2} \mathrm{~N}(\mathrm{R})_{2}, \mathrm{C}_{2-6}$ alkenyl, C_{3-6} carbocycle and heterocycle;
each R is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H ;
each R^{\prime} is independently selected from the group consisting of C_{1-18} alkyl, C_{2-18} alkenyl, - $\mathrm{R}^{*} \mathrm{YR}^{\prime \prime}$, - $\mathrm{YR}^{\prime \prime}$, and H ;
each $\mathrm{R}^{\prime \prime}$ is independently selected from the group consisting of C_{3-14} alkyl and C_{3-14} alkenyl;
each R^{*} is independently selected from the group consisting of C_{1-12} alkyl and C_{2-12} alkenyl;
each Y is independently a C_{3-6} carbocycle;
each X is independently selected from the group consist-
ing of $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$, and I ; and
m is selected from $5,6,7,8,9,10,11,12$, and 13 .
In some embodiments, a subset of compounds of Formula (I) includes those in which when R_{4} is $-\left(\mathrm{CH}_{2}\right)_{n} \mathrm{Q},-\left(\mathrm{CH}_{2}\right)_{n}$ $\mathrm{CHQR},-\mathrm{CHQR}$, or $-\mathrm{CQ}(\mathrm{R})_{2}$, then (i) Q is not $-\mathrm{N}(\mathrm{R})_{2}$ when n is $1,2,3,4$ or 5 , or (ii) Q is not 5,6 , or 7 -membered heterocycloalkyl when n is 1 or 2 .

In some embodiments, another subset of compounds of Formula (I) includes those in which
R_{1} is selected from the group consisting of C_{5-30} alkyl, C_{5-20} alkenyl, -R*YR", - $\mathrm{YR}^{\prime \prime}$, and - $\mathrm{R}^{\prime \prime} \mathrm{M}^{\prime} \mathrm{R}^{\prime}$;
R_{2} and R_{3} are independently selected from the group consisting of $\mathrm{H}, \mathrm{C}_{1-14}$ alkyl, C_{2-14} alkenyl, -R*YR", -YR ", and - $\mathrm{R}^{*} \mathrm{OR}{ }^{\prime \prime}$, or R_{2} and R_{3}, together with the atom to which they are attached, form a heterocycle or carbocycle;
R_{4} is selected from the group consisting of a C_{3-6} carbocycle, $-\left(\mathrm{CH}_{2}\right)_{n} \mathrm{Q},-\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CHQR}$,
$-\mathrm{CHQR},-\mathrm{CQ}(\mathrm{R})_{2}$, and unsubstituted $\mathrm{C}_{1-\sigma}$ alkyl, where Q is selected from a C_{3-6} carbocycle, a 5 - to 14 -membered heteroaryl having one or more heteroatoms selected from N , O , and S , OR ,
$-\mathrm{O}\left(\mathrm{CH}_{2}\right) \mathrm{N}(\mathrm{R})_{2},-\mathrm{C}(\mathrm{O}) \mathrm{OR},-\mathrm{OC}(\mathrm{O}) \mathrm{R},-\mathrm{CX}_{3},-\mathrm{CX}_{2} \mathrm{H}$, $-\mathrm{CXH}_{2},-\mathrm{CN},-\mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{R})_{2},-\mathrm{N}(\mathrm{R}) \mathrm{C}(\mathrm{O}) \mathrm{R},-\mathrm{N}(\mathrm{R}) \mathrm{S}$ $(\mathrm{O})_{2} \mathrm{R},-\mathrm{N}(\mathrm{R}) \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{R})_{2},-\mathrm{N}(\mathrm{R}) \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{R})_{2},-\mathrm{CRN}(\mathrm{R})_{2}$ $\mathrm{C}(\mathrm{O}) \mathrm{OR},-\mathrm{N}(\mathrm{R}) \mathrm{R}_{8},-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{OR},-\mathrm{N}(\mathrm{R}) \mathrm{C}\left(=\mathrm{NR}_{9}\right) \mathrm{N}$ $(\mathrm{R})_{2},-\mathrm{N}(\mathrm{R}) \mathrm{C}\left(=\mathrm{CHR}_{9}\right) \mathrm{N}(\mathrm{R})_{2},-\mathrm{OC}(\mathrm{O}) \mathrm{N}(\mathrm{R})_{2},-\mathrm{N}(\mathrm{R}) \mathrm{C}$ (O)OR, - N(OR)C(O)R, -N(OR)S(O) 2 R, -N(OR)C(O) $\mathrm{OR},-\mathrm{N}(\mathrm{OR}) \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{R})_{2},-\mathrm{N}(\mathrm{OR}) \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{R})_{2},-\mathrm{N}(\mathrm{OR}) \mathrm{C}$ $\left(=\mathrm{NR}_{9}\right) \mathrm{N}(\mathrm{R})_{2},-\mathrm{N}(\mathrm{OR}) \mathrm{C}\left(=\mathrm{CHR}_{9}\right) \mathrm{N}(\mathrm{R})_{2},-\mathrm{C}\left(=\mathrm{NR}_{9}\right) \mathrm{N}$ $(\mathrm{R})_{2}, \quad \mathrm{C}\left(=\mathrm{NR}_{9}\right) \mathrm{R},-\mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{R}) \mathrm{O} \mathrm{R}$, and a 5 - to 14-membered heterocycloalkyl having one or more heteroatoms selected from N, O, and S which is substituted with one or more substituents selected from oxo $(=\mathrm{O}), \mathrm{OH}$, amino, mono- or di-alkylamino, and C_{1-3} alkyl, and each n is independently selected from $1,2,3,4$, and 5 ;
each R_{5} is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H ;
each R_{6} is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H ;

M and M^{\prime} are independently selected from $-\mathrm{C}(\mathrm{O}) \mathrm{O}-$, $-\mathrm{OC}(\mathrm{O})-$, $\mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{R}^{\prime}\right)-,-\mathrm{N}\left(\mathrm{R}^{\prime}\right) \mathrm{C}(\mathrm{O})-,-\mathrm{C}(\mathrm{O})-$, $-\mathrm{C}(\mathrm{S})-\mathrm{C}(\mathrm{S}) \mathrm{S}-,-\mathrm{SC}(\mathrm{S})-,-\mathrm{CH}(\mathrm{OH})-,-\mathrm{P}(\mathrm{O})$ $\left(\mathrm{OR}^{\prime}\right) \mathrm{O},-\mathrm{S}(\mathrm{O})_{2}-, \mathrm{S} \mathrm{S}$, an aryl group, and a heteroaryl group;
R_{7} is selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H ;
R_{8} is selected from the group consisting of C_{3-6} carbocycle and heterocycle;
R_{9} is selected from the group consisting of $\mathrm{H}, \mathrm{CN}, \mathrm{NO}_{2}$, C_{1-6} alkyl, $-\mathrm{OR},-\mathrm{S}(\mathrm{O})_{2} \mathrm{R},-\mathrm{S}(\mathrm{O})_{2} \mathrm{~N}(\mathrm{R})_{2}, \mathrm{C}_{2-6}$ alkenyl, C_{3-6} carbocycle and heterocycle;
each R is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H ;
each R^{\prime} is independently selected from the group consist ing of C_{1-18} alkyl, C_{2-18} alkenyl, -R*YR", -YR", and H ; each $\mathrm{R}^{\prime \prime}$ is independently selected from the group consisting of C_{3-14} alkyl and C_{3-14} alkenyl;
each R^{*} is independently selected from the group consisting of C_{1-12} alkyl and C_{2-12} alkenyl;
each Y is independently a C_{3-6} carbocycle;
each X is independently selected from the group consisting of $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$, and I ; and
m is selected from $5,6,7,8,9,10,11,12$, and 13 , or salts or isomers thereof.
In some embodiments, another subset of compounds of Formula (I) includes those in which
R_{1} is selected from the group consisting of C_{5-30} alkyl, C_{5-20} alkenyl, -R*YR", -YR", and -R"M'R';
R_{2} and R_{3} are independently selected from the group consisting of $\mathrm{H}, \mathrm{C}_{1-14}$ alkyl, C_{2-14} alkenyl, -R*YR", $-\mathrm{YR}{ }^{\prime \prime}$, and - $\mathrm{R}^{*} \mathrm{OR}^{\prime \prime}$, or R_{2} and R_{3}, together with the atom to which they are attached, form a heterocycle or carbocycle;
R_{4} is selected from the group consisting of a C_{3-5} carbocycle, $-\left(\mathrm{CH}_{2}\right)_{n} \mathrm{Q},-\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CHQR}$,
$-\mathrm{CHQR},-\mathrm{CQ}(\mathrm{R})_{2}$, and unsubstituted C_{1-6} alkyl, where Q is selected from a C_{3-6} carbocycle, a 5 - to 14 -membered heterocycle having one or more heteroatoms selected from N, O, and $\mathrm{S},-\mathrm{OR}$,
$-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{~N}(\mathrm{R})_{2}, \quad-\mathrm{C}(\mathrm{O}) \mathrm{OR}, \quad \mathrm{OC}(\mathrm{O}) \mathrm{R},-\mathrm{CX}_{3}$, $-\mathrm{CX}_{2} \mathrm{H},-\mathrm{CXH}_{2},-\mathrm{CN},-\mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{R})_{2},-\mathrm{N}(\mathrm{R}) \mathrm{C}(\mathrm{O}) \mathrm{R}$, $-\mathrm{N}(\mathrm{R}) \mathrm{S}(\mathrm{O})_{2} \mathrm{R}, \quad-\mathrm{N}(\mathrm{R}) \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{R})_{2}, \quad-\mathrm{N}(\mathrm{R}) \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{R})_{2}$, $-\mathrm{CRN}(\mathrm{R})_{2} \mathrm{C}(\mathrm{O}) \mathrm{OR},-\mathrm{N}(\mathrm{R}) \mathrm{R}_{8}$,
$-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{OR}, \quad-\mathrm{N}(\mathrm{R}) \mathrm{C}\left(=\mathrm{NR}_{9}\right) \mathrm{N}(\mathrm{R})_{2}, \quad-\mathrm{N}(\mathrm{R}) \mathrm{C}$ $\left(=\mathrm{CHR}_{9}\right) \mathrm{N}(\mathrm{R})_{2}, \quad-\mathrm{OC}(\mathrm{O}) \mathrm{N}(\mathrm{R})_{2}, \quad-\mathrm{N}(\mathrm{R}) \mathrm{C}(\mathrm{O}) \mathrm{OR}$, $-\mathrm{N}(\mathrm{OR}) \mathrm{C}(\mathrm{O}) \mathrm{R},-\mathrm{N}(\mathrm{OR}) \mathrm{S}(\mathrm{O})_{2} \mathrm{R},-\mathrm{N}(\mathrm{OR}) \mathrm{C}(\mathrm{O}) \mathrm{OR}$, $-\mathrm{N}(\mathrm{OR}) \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{R})_{2}, \quad-\mathrm{N}(\mathrm{OR}) \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{R})_{2}, \quad-\mathrm{N}(\mathrm{OR}) \mathrm{C}$ $\left(=\mathrm{NR}_{9}\right) \mathrm{N}(\mathrm{R})_{2},-\mathrm{N}(\mathrm{OR}) \mathrm{C}\left(=\mathrm{CHR}_{9}\right) \mathrm{N}(\mathrm{R})_{2},-\mathrm{C}\left(=\mathrm{NR}_{9}\right) \mathrm{R}$, $-\mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{R}) \mathrm{OR}$, and $\mathrm{C}\left(=\mathrm{NR}_{9}\right) \mathrm{N}(\mathrm{R})_{2}$, and each n is independently selected from $1,2,3,4$, and 5 ; and when Q is a 5 - to 14 -membered heterocycle and (i) R_{4} is - $\left(\mathrm{CH}_{2}\right)_{n} \mathrm{Q}$ in which n is 1 or 2 , or (ii) R_{4} is $-\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CHQR}$ in which n is 1 , or (iii) R_{4} is - CHQR , and $-\mathrm{CQ}(\mathrm{R})_{2}$, then Q is either a 5 - to 14 -membered heteroaryl or 8 - to 14 -membered heterocycloalkyl;
each R_{5} is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H ;
each R_{6} is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H ;
M and M^{\prime} are independently selected from $\mathrm{C}(\mathrm{O}) \mathrm{O}$ - , $-\mathrm{OC}(\mathrm{O})-\mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{R}^{\prime}\right)-\mathrm{N}\left(\mathrm{R}^{\prime}\right) \mathrm{C}(\mathrm{O})-, \mathrm{C}(\mathrm{O})-$, $-\mathrm{C}(\mathrm{S})-\mathrm{C}(\mathrm{S}) \mathrm{S},-\mathrm{SC}(\mathrm{S})-\mathrm{CH}(\mathrm{OH})-\mathrm{P}(\mathrm{O})$ $\left(\mathrm{OR}^{\prime}\right) \mathrm{O}-,-\mathrm{S}(\mathrm{O})_{2}-$, $-\mathrm{S}-\mathrm{S}-$, an aryl group, and a heteroaryl group;
R_{7} is selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H ;
R_{8} is selected from the group consisting of C_{3-6} carbocycle and heterocycle;
R_{9} is selected from the group consisting of $\mathrm{H}, \mathrm{CN}, \mathrm{NO}_{2}$, C_{1-6} alkyl, $\mathrm{OR},-\mathrm{S}(\mathrm{O})_{2} \mathrm{R},-\mathrm{S}(\mathrm{O})_{2} \mathrm{~N}(\mathrm{R})_{2}, \mathrm{C}_{2-6}$ alkenyl, C_{3-6} carbocycle and heterocycle;
each R is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H ;
each R^{\prime} is independently selected from the group consisting of C_{1-18} alkyl, C_{2-18} alkenyl, - $\mathrm{R}^{*} \mathrm{YR}^{\prime \prime},-\mathrm{YR}^{\prime \prime}$, and H ; each $\mathrm{R}^{\prime \prime}$ is independently selected from the group consisting of C_{3-14} alkyl and C_{3-14} alkenyl;
each R^{*} is independently selected from the group consisting of C_{1-12} alkyl and C_{2-12} alkenyl;
each Y is independently a C_{3-6} carbocycle;
each X is independently selected from the group consist-
ing of $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$, and I ; and
m is selected from $5,6,7,8,9,10,11,12$, and 13, or salts or isomers thereof.
In some embodiments, another subset of compounds of Formula (I) includes those in which
R_{1} is selected from the group consisting of C_{5-30} alkyl, C_{5-20} alkenyl, - $\mathrm{R}^{*} \mathrm{YR}^{\prime \prime},-\mathrm{YR}^{\prime \prime}$, and -R"M'R';
R_{2} and R_{3} are independently selected from the group consisting of $\mathrm{H}, \mathrm{C}_{1-14}$ alkyl, C_{2-14} alkenyl, -R*YR", $-\mathrm{YR} "$, and - $\mathrm{R}^{*} \mathrm{OR}^{\prime \prime}$, or R_{2} and R_{3}, together with the atom to which they are attached, form a heterocycle or carbocycle;
R_{4} is selected from the group consisting of a C_{3-6} carbocycle, $-\left(\mathrm{CH}_{2}\right)_{n} \mathrm{Q},-\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CHQR}$,
$-\mathrm{CHQR},-\mathrm{CQ}(\mathrm{R})_{2}$, and unsubstituted C_{1-6} alkyl, where Q is selected from a C_{3-6} carbocycle, a 5 - to 14 -membered heteroaryl having one or more heteroatoms selected from N , O , and $\mathrm{S},-\mathrm{OR}$,
$-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{~N}(\mathrm{R})_{2}, \quad-\mathrm{C}(\mathrm{O}) \mathrm{OR}, \quad-\mathrm{OC}(\mathrm{O}) \mathrm{R}, \quad-\mathrm{CX}_{3}$, $-\mathrm{CX}_{2} \mathrm{H},-\mathrm{CXH}_{2},-\mathrm{CN},-\mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{R})_{2},-\mathrm{N}(\mathrm{R}) \mathrm{C}(\mathrm{O}) \mathrm{R}$, $-\mathrm{N}(\mathrm{R}) \mathrm{S}(\mathrm{O})_{2} \mathrm{R}, \quad-\mathrm{N}(\mathrm{R}) \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{R})_{2}, \quad-\mathrm{N}(\mathrm{R}) \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{R})_{2}$, $-\mathrm{CRN}(\mathrm{R})_{2} \mathrm{C}(\mathrm{O}) \mathrm{OR},-\mathrm{N}(\mathrm{R}) \mathrm{R}_{8},-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{OR},-\mathrm{N}(\mathrm{R}) \mathrm{C}$ $\left(=\mathrm{NR}_{9}\right) \mathrm{N}(\mathrm{R})_{2},-\mathrm{N}(\mathrm{R}) \mathrm{C}\left(=\mathrm{CHR}_{9}\right) \mathrm{N}(\mathrm{R})_{2},-\mathrm{OC}(\mathrm{O}) \mathrm{N}(\mathrm{R})_{2}$, $-\mathrm{N}(\mathrm{R}) \mathrm{C}(\mathrm{O}) \mathrm{OR}, \quad-\mathrm{N}(\mathrm{OR}) \mathrm{C}(\mathrm{O}) \mathrm{R}, \quad-\mathrm{N}(\mathrm{OR}) \mathrm{S}(\mathrm{O})_{2} \mathrm{R}$, $-\mathrm{N}(\mathrm{OR}) \mathrm{C}(\mathrm{O}) \mathrm{OR},-\mathrm{N}(\mathrm{OR}) \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{R})_{2},-\mathrm{N}(\mathrm{OR}) \mathrm{C}(\mathrm{S}) \mathrm{N}$ $(\mathrm{R})_{2},-\mathrm{N}(\mathrm{OR}) \mathrm{C}\left(=\mathrm{NR}_{9}\right) \mathrm{N}(\mathrm{R})_{2},-\mathrm{N}(\mathrm{OR}) \mathrm{C}\left(=\mathrm{CHR}_{9}\right) \mathrm{N}(\mathrm{R})$ ${ }_{2},-\mathrm{C}\left(=\mathrm{NR}_{9}\right) \mathrm{R},-\mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{R}) \mathrm{OR}$, and $-\mathrm{C}\left(=\mathrm{NR}_{9}\right) \mathrm{N}(\mathrm{R})_{2}$, and each n is independently selected from $1,2,3,4$, and 5; each R_{5} is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H ;
each R_{6} is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H ;

M and M^{\prime} are independently selected from $-\mathrm{C}(\mathrm{O}) \mathrm{O}$ - , $-\mathrm{OC}(\mathrm{O})-\mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{R}^{\prime}\right)-\mathrm{N}\left(\mathrm{R}^{\prime}\right) \mathrm{C}(\mathrm{O})-\mathrm{C}(\mathrm{O})-$, $-\mathrm{C}(\mathrm{S})-\mathrm{C}(\mathrm{S}) \mathrm{S}-, \mathrm{SC}(\mathrm{S})-, \mathrm{CH}(\mathrm{OH})-,-\mathrm{P}(\mathrm{O})$ $\left(\mathrm{OR}^{\prime}\right) \mathrm{O}-,-\mathrm{S}(\mathrm{O})_{2}-$, $\mathrm{S}-\mathrm{S}-$, an aryl group, and a heteroaryl group;
R_{7} is selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H ;
R_{8} is selected from the group consisting of C_{3-6} carbocycle and heterocycle;
R_{9} is selected from the group consisting of $\mathrm{H}, \mathrm{CN}, \mathrm{NO}_{2}$, C_{1-6} alkyl, -OR, $\mathrm{S}(\mathrm{O})_{2} \mathrm{R},-\mathrm{S}(\mathrm{O})_{2} \mathrm{~N}(\mathrm{R})_{2}, \mathrm{C}_{2-6}$ alkenyl, C_{3-6} carbocycle and heterocycle;
each R is independently selected from the group consist-
ing of C_{1-3} alkyl, C_{2-3} alkenyl, and H ;
each R^{\prime} is independently selected from the group consist-
ing of C_{1-18} alkyl, C_{2-18} alkenyl, - $\mathrm{R}^{*} \mathrm{YR}^{\prime \prime},-\mathrm{YR}^{\prime \prime}$, and H ; each $\mathrm{R}^{\prime \prime}$ is independently selected from the group consisting of C_{3-14} alkyl and C_{3-14} alkenyl;
each R^{*} is independently selected from the group consisting of C_{1-12} alkyl and C_{2-12} alkenyl;
each Y is independently a C_{3-6} carbocycle;
each X is independently selected from the group consisting of $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$, and I ; and
m is selected from $5,6,7,8,9,10,11,12$, and 13 , or salts or isomers thereof.

In some embodiments, another subset of compounds of Formula (I) includes those in which
R_{1} is selected from the group consisting of C_{5-30} alkyl, C_{5-20} alkenyl, -R*YR", -YR", and -R"M'R';
R_{2} and R_{3} are independently selected from the group 5 consisting of $\mathrm{H}, \mathrm{C}_{2-14}$ alkyl, C_{2-14} alkenyl, $\mathrm{R}^{*} \mathrm{YR}^{\prime \prime}$, - $\mathrm{YR}^{\prime \prime}$, and - $\mathrm{R}^{*} \mathrm{OR}^{\prime \prime}$, or R_{2} and R_{3}, together with the atom to which they are attached, form a heterocycle or carbocycle; R_{4} is $-\left(\mathrm{CH}_{2}\right)_{n} \mathrm{Q}$ or $-\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CHQR}$, where Q is $-\mathrm{N}(\mathrm{R})$ ${ }_{2}$, and n is selected from 3, 4, and 5;
each R_{5} is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H ;
each R_{6} is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H ;

M and M^{\prime} are independently selected from $-\mathrm{C}(\mathrm{O}) \mathrm{O}-, 15$
$-\mathrm{OC}(\mathrm{O})-,-\mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{R}^{\prime}\right)-,-\mathrm{N}\left(\mathrm{R}^{\prime}\right) \mathrm{C}(\mathrm{O})-,-\mathrm{C}(\mathrm{O})-$, $-\mathrm{C}(\mathrm{S})-,-\mathrm{C}(\mathrm{S}) \mathrm{S}-,-\mathrm{SC}(\mathrm{S})-,-\mathrm{CH}(\mathrm{OH})-,-\mathrm{P}(\mathrm{O})$ $\left(\mathrm{OR}^{\prime}\right) \mathrm{O}-,-\mathrm{S}(\mathrm{O})_{2}-,-\mathrm{S}-\mathrm{S}-$, an aryl group, and a heteroaryl group;
R_{7} is selected from the group consisting of C_{1-3} alkyl, $\mathrm{C}_{2-3} 20$ alkenyl, and H;
each R is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H ;
each R^{\prime} is independently selected from the group consist-
ing of C_{1-18} alkyl, C_{2-18} alkenyl, -R*YR", -YR", and H; each $\mathrm{R}^{\prime \prime}$ is independently selected from the group consisting of C_{3-14} alkyl and C_{3-14} alkenyl;
each R^{*} is independently selected from the group consisting of C_{1-12} alkyl and C_{1-12} alkenyl;
each Y is independently a C_{3-6} carbocycle;
each X is independently selected from the group consist-
ing of $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$, and I ; and
m is selected from $5,6,7,8,9,10,11,12$, and 13 , or salts or isomers thereof.
In some embodiments, another subset of compounds of 35 Formula (I) includes those in which
R_{1} is selected from the group consisting of C_{5-30} alkyl, C_{5-20} alkenyl, -R*YR", -YR", and -R"M'R';
R_{2} and R_{3} are independently selected from the group consisting of C_{1-14} alkyl, C_{2-14} alkenyl, -R*YR", -YR", and - $\mathrm{R}^{*} \mathrm{OR}^{\prime \prime}$, or R_{2} and R_{3}, together with the atom to which they are attached, form a heterocycle or carbocycle;
R_{4} is selected from the group consisting of $-\left(\mathrm{CH}_{2}\right)_{n} \mathrm{Q}$,
$-\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CHQR}$, CHQR , and $-\mathrm{CQ}(\mathrm{R})_{2}$, where Q is
$-\mathrm{N}(\mathrm{R})_{2}$, and n is selected from $1,2,3,4$, and 5 ;
each R_{5} is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H ;
each R_{6} is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H ;

M and M^{\prime} are independently selected from $-\mathrm{C}(\mathrm{O}) \mathrm{O}-$, $-\mathrm{OC}(\mathrm{O})-,-\mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{R}^{\prime}\right)-,-\mathrm{N}\left(\mathrm{R}^{\prime}\right) \mathrm{C}(\mathrm{O})-,-\mathrm{C}(\mathrm{O})-$, $-\mathrm{C}(\mathrm{S})-,-\mathrm{C}(\mathrm{S}) \mathrm{S}-,-\mathrm{SC}(\mathrm{S})-,-\mathrm{CH}(\mathrm{OH})-,-\mathrm{P}(\mathrm{O})$ $\left(\mathrm{OR}^{\prime}\right) \mathrm{O}-,-\mathrm{S}(\mathrm{O})_{2}-,-\mathrm{S}-\mathrm{S}-$, an aryl group, and a heteroaryl group;
R_{7} is selected from the group consisting of C_{1-3} alkyl, $\mathrm{C}_{2-3} 55$ alkenyl, and H ;
each R is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H ;
each R^{\prime} is independently selected from the group consisting of C_{1-18} alkyl, C_{2-18} alkenyl, -R*YR", -YR", and H ; each $\mathrm{R}^{\prime \prime}$ is independently selected from the group consisting of C_{3-14} alkyl and C_{3-14} alkenyl;
each R^{*} is independently selected from the group consisting of C_{1-12} alkyl and C_{1-12} alkenyl; each Y is independently a C_{3-6} carbocycle; each X is independently selected from the group consisting of $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$, and I ; and
m is selected from $5,6,7,8,9,10,11,12$, and 13 , or salts or isomers thereof.

In some embodiments, a subset of compounds of Formula (I) includes those of Formula (IA):

or a salt or isomer thereof, wherein 1 is selected from 1, $2,3,4$, and $5 ; \mathrm{m}$ is selected from $5,6,7,8$, and $9 ; \mathrm{M}_{1}$ is a bond or $\mathrm{M}^{\prime} ; \mathrm{R}_{4}$ is unsubstituted C_{1-3} alkyl, or - $\left(\mathrm{CH}_{2}\right)_{n} \mathrm{Q}$, in which Q is $\mathrm{OH},-\mathrm{NHC}(\mathrm{S}) \mathrm{N}(\mathrm{R})_{2},-\mathrm{NHC}(\mathrm{O}) \mathrm{N}(\mathrm{R})_{2},-\mathrm{N}(\mathrm{R})$ $\mathrm{C}(\mathrm{O}) \mathrm{R},-\mathrm{N}(\mathrm{R}) \mathrm{S}(\mathrm{O})_{2} \mathrm{R},-\mathrm{N}(\mathrm{R}) \mathrm{R}_{8},-\mathrm{NHC}\left(=\mathrm{NR}_{9}\right) \mathrm{N}(\mathrm{R})_{2}$, $-\mathrm{NHC}\left(=\mathrm{CHR}_{9}\right) \mathrm{N}(\mathrm{R})_{2},-\mathrm{OC}(\mathrm{O}) \mathrm{N}(\mathrm{R})_{2},-\mathrm{N}(\mathrm{R}) \mathrm{C}(\mathrm{O}) \mathrm{OR}$, heteroaryl or heterocycloalkyl; M and M^{\prime} are independently selected
from $-\mathrm{C}(\mathrm{O}) \mathrm{O}-\mathrm{OC}(\mathrm{O})-\mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{R}^{\prime}\right)-,-\mathrm{P}(\mathrm{O})$ $\left(\mathrm{OR}^{\prime}\right) \mathrm{O}-\mathrm{S} \quad \mathrm{S}-$, an aryl group, and a heteroaryl group; and R_{2} and R_{3} are independently selected from the group consisting of $\mathrm{H}, \mathrm{C}_{1-14}$ alkyl, and C_{2-14} alkenyl.

In some embodiments, a subset of compounds of Formula (I) includes those of Formula (II):

or a salt or isomer thereof, wherein 1 is selected from 1, $2,3,4$, and $5 ; \mathrm{M}_{1}$ is a bond or $\mathrm{M}^{\prime} ; \mathrm{R}_{4}$ is unsubstituted C_{1-3} alkyl, or $-\left(\mathrm{CH}_{2}\right)_{n} \mathrm{Q}$, in which n is 2,3 , or 4 , and Q is OH , $-\mathrm{NHC}(\mathrm{S}) \mathrm{N}(\mathrm{R})_{2},-\mathrm{NHC}(\mathrm{O}) \mathrm{N}(\mathrm{R})_{2},-\mathrm{N}(\mathrm{R}) \mathrm{C}(\mathrm{O}) \mathrm{R},-\mathrm{N}(\mathrm{R})$ $\mathrm{S}(\mathrm{O})_{2} \mathrm{R}, \quad \mathrm{N}(\mathrm{R}) \mathrm{R}_{8}, \quad-\mathrm{NHC}\left(=\mathrm{NR}_{9}\right) \mathrm{N}(\mathrm{R})_{2}, \quad-\mathrm{NHC}$ $\left(=\mathrm{CHR}_{9}\right) \mathrm{N}(\mathrm{R})_{2}, \quad \mathrm{OC}(\mathrm{O}) \mathrm{N}(\mathrm{R})_{2},-\mathrm{N}(\mathrm{R}) \mathrm{C}(\mathrm{O}) \mathrm{OR}$, heteroaryl or heterocycloalkyl; M and M^{\prime} are independently selected
from $-\mathrm{C}(\mathrm{O}) \mathrm{O}-, \mathrm{OC}(\mathrm{O})-\quad \mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{R}^{\prime}\right)-,-\mathrm{P}(\mathrm{O})$ $\left(\mathrm{OR}^{\prime}\right) \mathrm{O}-\mathrm{S}^{-} \mathrm{S}-$, an aryl group, and a heteroaryl group; and R_{2} and R_{3} are independently selected from the group consisting of $\mathrm{H}, \mathrm{C}_{1-14}$ alkyl, and C_{2-14} alkenyl.
In some embodiments, a subset of compounds of Formula (I) includes those of Formula (IIa), (IIb), (IIc), or (IIe):
(IIa)

-continued

(IIc)

, or
(IId)

or a salt or isomer thereof, wherein R_{4} is as described herein.

In some embodiments, a subset of compounds of Formula (I) includes those of Formula (IId):
(IId)

or a salt or isomer thereof, wherein n is 2,3 , or 4 ; and m , $R^{\prime}, R^{\prime \prime}$, and R_{2} through R_{6} are as described herein. For example, each of R_{2} and R_{3} may be independently selected from the group consisting of C_{5-14} alkyl and C_{5-14} alkenyl.

In some embodiments, a subset of compounds of Formula 55 (I) includes those of Formula (IIa), (IIb), (IIc), or (IIe):
(IIa)

5

10

15

20

25

60

or a salt or isomer thereof, wherein n is 2,3 , or 4 ; and m, ${ }_{65} \mathrm{R}^{\prime}, \mathrm{R}^{\prime \prime}$, and R_{2} through R_{6} are as described herein. For example, each of R_{2} and R_{3} may be independently selected from the group consisting of C_{5-14} alkyl and C_{5-14} alkenyl.
-continued

In some embodiments, the compound of Formula (I) is selected from the group consisting of:

(Compound 1)

(Compound 2)

(Compound 3)

(Compound 4)

(Compound 5)

(Compound 7)

(Compound 6)

(Compound 8)

(Compound 11)
(Compound 12)
(Compound 13)

(Compound 14)

(Compound 15)

(Compound 18)

(Compound 19)
(Compound 20)

(Compound 21)

(Compound 22)

(Compound 24)

(Compound 25)

(Compound 26)

(Compound 27)

(Compound 28)

(Compound 29)

(Compound 31)
(Compound 32)

(Compound 33)

Compound 34)

(Compound 35)

(Compound 36)

(Compound 38)
(Compound 39)
(Compound 40)

(Compound 42)
(Compound 43)

-continued

(Compound 44)
(Compound 45)

(Compound 46)

(Compound 48)

(Compound 49)

(Compound 50)

(Compound 52)

(Compound 53)

(Compound 54)

(Compound 55)

(Compound 56)

(Compound 57)

In further embodiments, the compound of Formula (I) is 40 selected from the group consisting of:
(Compound 62)

In some embodiments, the compound of Formula (I) is selected from the group consisting of:

(Compound 65)

(Compound 66)
(Compound 67)

(Compound 68)

(Compound 69)

(Compound 71)

(Compound 72)
(Compound 73)

(Compound 74)

(Compound 75)

(Cons)

-continued
(Compound 77)

(Compound 78)

(Compound 82)

(Compound 84)

(Compound 85)

(Compoun

(Compound 86)

(Compound 87)

(Compound 90)

(Compound 92)

(Compound 94)

-continued

(Compound 96)

(Compound 97)

(Compound 98)

?

(Compound 101)

(Compound 102)

(Compound 103)

Compound 104)

(Compound 106)

(Compound 107)

(Compound 108)

(Compound 109)

(Compound 110)

(Compound 112)
(Compound 113)

(Compound 114)
(Compound 115)

(Compound 116)

(Compound 120)

(Compound 121)

(Compound 122)

(Compound 123)

(Compound 126)

(Compound 128)

(Compound 129)

(Compound 132)
(Compound 133)

(Compound 134)

(Compound 135)

151

(Compound 146)

(Compound 149)
(Compound 150)

(Compound 151)

(Compound 152)

(Compound 153)

(Compound 154)

(Compound 155)

(Compound 156)

US 10,702,600 B1
155

 -continued

 ,

(Compound 160)

US 10,702,600 B1
157
-continued

(Compound 161)
(Compound 162)

(Compound 163)

Compound 163)

(Compound 164)
(Compound 165)

(Compound 168)

(Compound 169)

(Compound 170)
(Compound 171)

(Compound 172)

(Compound 174)

(Compound 175)

(Compound 176)

(Compound 177)

(Compound 178)

(Compound 182)

(Compound 183)
(Compound 184)

(Compound 186)
(Compound 187)
(Compound 188)

(Compound 189)

-continued

(Compound 191)

(Compound 192)

(Compound 194)

(Compound 195)

(Compound 196)

(Compound 198)

(Compound 199)

(Compound 200)

(Compound 201)

(Compound 202)

(Compound 204)

(Compound 205)

(Compound 206)

(Compound 207)

(Compound 208)

(Compound 211)

(Compound 212)

(Compound 213)

(Compound 215)

(Compound 216)

(Compound 218)

(Compound 219)

(Compound 228)

(Compound 229)
(Compound 230)

(Compound 231)

and salts and isomers thereof
In some embodiments, a nanoparticle comprises the following compound:
ing the cell with a nanoparticle composition including (i) a lipid component including a phospholipid (such as a polyunsaturated lipid), a PEG lipid, a structural lipid, and a

or salts and isomers thereof.
In some embodiments, the disclosure features a nanoparticle composition including a lipid component comprising a compound as described herein (e.g., a compound according to Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (IIe)).

In some embodiments, the disclosure features a pharmaceutical composition comprising a nanoparticle composition according to the preceding embodiments and a pharmaceutically acceptable carrier. For example, the pharmaceutical composition is refrigerated or frozen for storage and/or shipment (e.g., being stored at a temperature of $4^{\circ} \mathrm{C}$. or lower, such as a temperature between about $-150^{\circ} \mathrm{C}$. and about $0^{\circ} \mathrm{C}$. or between about $-80^{\circ} \mathrm{C}$. and about $-20^{\circ} \mathrm{C}$. (e.g., about $-5^{\circ} \mathrm{C} .,-10^{\circ} \mathrm{C} .,-15^{\circ} \mathrm{C} .,-20^{\circ} \mathrm{C} .,-25^{\circ} \mathrm{C} .,-30^{\circ}$ C., $-40^{\circ} \mathrm{C} .,-50^{\circ} \mathrm{C} .,-60^{\circ} \mathrm{C} .,-70^{\circ} \mathrm{C} .,-80^{\circ} \mathrm{C} .,-90^{\circ} \mathrm{C}$., $-130^{\circ} \mathrm{C}$. or $-150^{\circ} \mathrm{C}$.). For example, the pharmaceutical composition is a solution that is refrigerated for storage and/or shipment at, for example, about $-20^{\circ} \mathrm{C} .,-30^{\circ} \mathrm{C}$., $-40^{\circ} \mathrm{C} .,-50^{\circ} \mathrm{C} .,-60^{\circ} \mathrm{C} .,-70^{\circ} \mathrm{C}$., or $-80^{\circ} \mathrm{C}$.

In some embodiments, the disclosure provides a method of delivering a therapeutic and/or prophylactic (e.g., RNA, such as mRNA) to a cell (e.g., a mammalian cell). This method includes the step of administering to a subject (e.g., a mammal, such as a human) a nanoparticle composition including (i) a lipid component including a phospholipid (such as a polyunsaturated lipid), a PEG lipid, a structural lipid, and a compound of Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (IIe) and (ii) a therapeutic and/or prophylactic, in which administering involves contacting the cell with the nanoparticle composition, whereby the therapeutic and/or prophylactic is delivered to the cell.

In some embodiments, the disclosure provides a method of producing a polypeptide of interest in a cell (e.g., a mammalian cell). The method includes the step of contact-
compound of Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (IIe) and (ii) an mRNA encoding the polypeptide of interest, whereby the mRNA is capable of being translated in the cell to produce the polypeptide.

In some embodiments, the disclosure provides a method of treating a disease or disorder in a mammal (e.g., a human) in need thereof. The method includes the step of administering to the mammal a therapeutically effective amount of a nanoparticle composition including (i) a lipid component including a phospholipid (such as a polyunsaturated lipid), a PEG lipid, a structural lipid, and a compound of Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (IIe) and (ii) a therapeutic and/or prophylactic (e.g., an mRNA).

In some embodiments, the disease or disorder is characterized by dysfunctional or aberrant protein or polypeptide activity. For example, the disease or disorder is selected from the group consisting of rare diseases, infectious diseases, cancer and proliferative diseases, genetic diseases (e.g., cystic fibrosis), autoimmune diseases, diabetes, neurodegenerative diseases, cardio- and reno-vascular diseases, and metabolic diseases.
In some embodiments, the disclosure provides a method of delivering (e.g., specifically delivering) a therapeutic and/or prophylactic to a mammalian organ (e.g., a liver, spleen, lung, or femur). This method includes the step of administering to a subject (e.g., a mammal) a nanoparticle composition including (i) a lipid component including a phospholipid, a PEG lipid, a structural lipid, and a compound of Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (IIe) and (ii) a therapeutic and/or prophylactic (e.g., an mRNA), in which administering involves contacting the cell with the nanoparticle composition, whereby the therapeutic and/or prophylactic is delivered to the target organ (e.g., a liver, spleen, lung, or femur).

In some embodiments, the disclosure features a method for the enhanced delivery of a therapeutic and/or prophylactic (e.g., an mRNA) to a target tissue (e.g., a liver, spleen, lung, or femur). This method includes administering to a subject (e.g., a mammal) a nanoparticle composition, the composition including (i) a lipid component including a compound of Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (IIe), a phospholipid, a structural lipid, and a PEG lipid; and (ii) a therapeutic and/or prophylactic, the administering including contacting the target tissue with the nanoparticle composition, whereby the therapeutic and/or prophylactic is delivered to the target tissue.

In some embodiments, the disclosure features a method of lowering immunogenicity comprising introducing the nanoparticle composition of the disclosure into cells, wherein the nanoparticle composition reduces the induction of the cellular immune response of the cells to the nanoparticle composition, as compared to the induction of the cellular immune response in cells induced by a reference composition which comprises a reference lipid instead of a compound of Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (IIe). For example, the cellular immune response is an innate immune response, an adaptive immune response, or both.

The disclosure also includes methods of synthesizing a compound of Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (IIe) and methods of making a nanoparticle composition including a lipid component comprising the compound of Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (IIe). Modes of Vaccine Administration

Respiratory virus RNA (e.g. mRNA) vaccines may be administered by any route which results in a therapeutically effective outcome. These include, but are not limited, to intradermal, intramuscular, and/or subcutaneous administration. The present disclosure provides methods comprising administering RNA (e.g., mRNA) vaccines to a subject in need thereof. The exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the disease, the particular composition, its mode of administration, its mode of activity, and the like. Respiratory virus RNA (e.g., mRNA) vaccines compositions are typically formulated in dosage unit form for ease of administration and uniformity of dosage. It will be understood, however, that the total daily usage of RNA (e.g., mRNA) vaccine compositions may be decided by the attending physician within the scope of sound medical judgment. The specific therapeutically effective, prophylactically effective, or appropriate imaging dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed; and like factors well known in the medical arts.
In some embodiments, respiratory virus RNA (e.g. mRNA) vaccines compositions may be administered at dosage levels sufficient to deliver $0.0001 \mathrm{mg} / \mathrm{kg}$ to 100 $\mathrm{mg} / \mathrm{kg}, 0.001 \mathrm{mg} / \mathrm{kg}$ to $0.05 \mathrm{mg} / \mathrm{kg}, 0.005 \mathrm{mg} / \mathrm{kg}$ to 0.05 $\mathrm{mg} / \mathrm{kg}, 0.001 \mathrm{mg} / \mathrm{kg}$ to $0.005 \mathrm{mg} / \mathrm{kg}, 0.05 \mathrm{mg} / \mathrm{kg}$ to 0.5 $\mathrm{mg} / \mathrm{kg}, 0.01 \mathrm{mg} / \mathrm{kg}$ to $50 \mathrm{mg} / \mathrm{kg}, 0.1 \mathrm{mg} / \mathrm{kg}$ to $40 \mathrm{mg} / \mathrm{kg}, 0.5$ $\mathrm{mg} / \mathrm{kg}$ to $30 \mathrm{mg} / \mathrm{kg}, 0.01 \mathrm{mg} / \mathrm{kg}$ to $10 \mathrm{mg} / \mathrm{kg}, 0.1 \mathrm{mg} / \mathrm{kg}$ to $10 \mathrm{mg} / \mathrm{kg}$, or $1 \mathrm{mg} / \mathrm{kg}$ to $25 \mathrm{mg} / \mathrm{kg}$, of subject body weight per day, one or more times a day, per week, per month, etc. to obtain the desired therapeutic, diagnostic, prophylactic, or
imaging effect (see, e.g., the range of unit doses described in International Publication No WO2013078199, the contents of which are herein incorporated by reference in their entirety). The desired dosage may be delivered three times a day, two times a day, once a day, every other day, every third day, every week, every two weeks, every three weeks, every four weeks, every 2 months, every three months, every 6 months, etc. In some embodiments, the desired dosage may be delivered using multiple administrations (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, or more administrations). When multiple administrations are employed, split dosing regimens such as those described herein may be used. In exemplary embodiments, respiratory virus RNA (e.g., mRNA) vaccines compositions may be administered at dosage levels sufficient to deliver $0.0005 \mathrm{mg} / \mathrm{kg}$ to $0.01 \mathrm{mg} / \mathrm{kg}$, e.g., about 0.0005 $\mathrm{mg} / \mathrm{kg}$ to about $0.0075 \mathrm{mg} / \mathrm{kg}$, e.g., about $0.0005 \mathrm{mg} / \mathrm{kg}$, about $0.001 \mathrm{mg} / \mathrm{kg}$, about $0.002 \mathrm{mg} / \mathrm{kg}$, about $0.003 \mathrm{mg} / \mathrm{kg}$, about $0.004 \mathrm{mg} / \mathrm{kg}$ or about $0.005 \mathrm{mg} / \mathrm{kg}$.
In some embodiments, respiratory virus RNA (e.g., mRNA) vaccine compositions may be administered once or twice (or more) at dosage levels sufficient to deliver 0.025 $\mathrm{mg} / \mathrm{kg}$ to $0.250 \mathrm{mg} / \mathrm{kg}, 0.025 \mathrm{mg} / \mathrm{kg}$ to $0.500 \mathrm{mg} / \mathrm{kg}, 0.025$ $\mathrm{mg} / \mathrm{kg}$ to $0.750 \mathrm{mg} / \mathrm{kg}$, or $0.025 \mathrm{mg} / \mathrm{kg}$ to $1.0 \mathrm{mg} / \mathrm{kg}$.
In some embodiments, respiratory virus RNA (e.g., mRNA) vaccine compositions may be administered twice (e.g., Day 0 and Day 7, Day 0 and Day 14, Day 0 and Day 21, Day 0 and Day 28, Day 0 and Day 60, Day 0 and Day 90, Day 0 and Day 120, Day 0 and Day 150, Day 0 and Day 180 , Day 0 and 3 months later, Day 0 and 6 months later, Day 0 and 9 months later, Day 0 and 12 months later, Day 0 and 18 months later, Day 0 and 2 years later, Day 0 and 5 years later, or Day 0 and 10 years later) at a total dose of or at dosage levels sufficient to deliver a total dose of 0.0100 $\mathrm{mg}, 0.025 \mathrm{mg}, 0.050 \mathrm{mg}, 0.075 \mathrm{mg}, 0.100 \mathrm{mg}, 0.125 \mathrm{mg}$, $0.150 \mathrm{mg}, 0.175 \mathrm{mg}, 0.200 \mathrm{mg}, 0.225 \mathrm{mg}, 0.250 \mathrm{mg}, 0.275$ $\mathrm{mg}, 0.300 \mathrm{mg}, 0.325 \mathrm{mg}, 0.350 \mathrm{mg}, 0.375 \mathrm{mg}, 0.400 \mathrm{mg}$, $0.425 \mathrm{mg}, 0.450 \mathrm{mg}, 0.475 \mathrm{mg}, 0.500 \mathrm{mg}, 0.525 \mathrm{mg}, 0.550$ $\mathrm{mg}, 0.575 \mathrm{mg}, 0.600 \mathrm{mg}, 0.625 \mathrm{mg}, 0.650 \mathrm{mg}, 0.675 \mathrm{mg}$, $0.700 \mathrm{mg}, 0.725 \mathrm{mg}, 0.750 \mathrm{mg}, 0.775 \mathrm{mg}, 0.800 \mathrm{mg}, 0.825$ $\mathrm{mg}, 0.850 \mathrm{mg}, 0.875 \mathrm{mg}, 0.900 \mathrm{mg}, 0.925 \mathrm{mg}, 0.950 \mathrm{mg}$, 0.975 mg , or 1.0 mg . Higher and lower dosages and frequency of administration are encompassed by the present disclosure. For example, a respiratory virus RNA (e.g., mRNA) vaccine composition may be administered three or four times.

In some embodiments, respiratory virus RNA (e.g., mRNA) vaccine compositions may be administered twice (e.g., Day 0 and Day 7, Day 0 and Day 14, Day 0 and Day 21, Day 0 and Day 28, Day 0 and Day 60, Day 0 and Day 90, Day 0 and Day 120, Day 0 and Day 150, Day 0 and Day 180, Day 0 and 3 months later, Day 0 and 6 months later, Day 0 and 9 months later, Day 0 and 12 months later, Day 0 and 18 months later, Day 0 and 2 years later, Day 0 and 5 years later, or Day 0 and 10 years later) at a total dose of or at dosage levels sufficient to deliver a total dose of 0.010 $\mathrm{mg}, 0.025 \mathrm{mg}, 0.100 \mathrm{mg}$ or 0.400 mg .

In some embodiments, the respiratory virus RNA (e.g., mRNA) vaccine for use in a method of vaccinating a subject is administered to the subject as a single dosage of between $10 \mu \mathrm{~g} / \mathrm{kg}$ and $400 \mu \mathrm{~g} / \mathrm{kg}$ of the nucleic acid vaccine (in an effective amount to vaccinate the subject). In some embodiments the RNA (e.g., mRNA) vaccine for use in a method of vaccinating a subject is administered to the subject as a single dosage of between $10 \mu \mathrm{~g}$ and $400 \mu \mathrm{~g}$ of the nucleic acid vaccine (in an effective amount to vaccinate the subject). In some embodiments, a respiratory virus RNA (e.g.,
mRNA) vaccine for use in a method of vaccinating a subject is administered to the subject as a single dosage of 25-1000 $\mu \mathrm{g}$ (e.g., a single dosage of mRNA encoding hMPV, PIV3, RSV, MeV and/or BetaCoV antigen). In some embodiments, a respiratory virus RNA (e.g., mRNA) vaccine is administered to the subject as a single dosage of $25,50,100,150$, $200,250,300,350,400,450,500,550,600,650,700,750$, $800,850,900,950$ or $1000 \mu \mathrm{~g}$. For example, a respiratory virus RNA (e.g., mRNA) vaccine may be administered to a subject as a single dose of $25-100,25-500,50-100,50-500$, $50-1000,100-500,100-1000,250-500,250-1000$, or $500-$ $1000 \mu \mathrm{~g}$. In some embodiments, a respiratory virus RNA (e.g., mRNA) vaccine for use in a method of vaccinating a subject is administered to the subject as two dosages, the combination of which equals $25-1000 \mu \mathrm{~g}$ of the respiratory virus RNA (e.g., mRNA) vaccine.

A respiratory virus RNA (e.g. mRNA) vaccine pharmaceutical composition described herein can be formulated into a dosage form described herein, such as an intranasal, intratracheal, or injectable (e.g., intravenous, intraocular, intravitreal, intramuscular, intradermal, intracardiac, intraperitoneal, and subcutaneous).
Respiratory Virus RNA (e.g., mRNA) Vaccine Formulations and Methods of Use

Some aspects of the present disclosure provide formulations of the respiratory virus RNA (e.g., mRNA) vaccine, wherein the RNA (e.g., mRNA) vaccine is formulated in an effective amount to produce an antigen specific immune response in a subject (e.g., production of antibodies specific to an hMPV, PIV3, RSV, MeV and/or BetaCoV antigenic polypeptide). "An effective amount" is a dose of an RNA (e.g., mRNA) vaccine effective to produce an antigenspecific immune response. Also provided herein are methods of inducing an antigen-specific immune response in a subject.

In some embodiments, the antigen-specific immune response is characterized by measuring an anti-hMPV, antiPIV3, anti-RSV, anti-MeV and/or anti-BetaCoV antigenic polypeptide antibody titer produced in a subject administered a respiratory virus RNA (e.g., mRNA) vaccine as provided herein. An antibody titer is a measurement of the amount of antibodies within a subject, for example, antibodies that are specific to a particular antigen (e.g., an anti-hMPV, anti-PIV3, anti-RSV, anti-MeV and/or anti-BetaCoV antigenic polypeptide) or epitope of an antigen. Antibody titer is typically expressed as the inverse of the greatest dilution that provides a positive result. Enzymelinked immunosorbent assay (ELISA) is a common assay for determining antibody titers, for example.

In some embodiments, an antibody titer is used to assess whether a subject has had an infection or to determine whether immunizations are required. In some embodiments, an antibody titer is used to determine the strength of an autoimmune response, to determine whether a booster immunization is needed, to determine whether a previous vaccine was effective, and to identify any recent or prior infections. In accordance with the present disclosure, an antibody titer may be used to determine the strength of an immune response induced in a subject by the respiratory virus RNA (e.g., mRNA) vaccine.

In some embodiments, an anti-antigenic polypeptide (e.g., an anti-hMPV, anti-PIV3, anti-RSV, anti-MeV and/or antiBetaCoV antigenic polypeptide) antibody titer produced in a subject is increased by at least $1 \log$ relative to a control. For example, anti-antigenic polypeptide antibody titer produced in a subject may be increased by at least 1.5 , at least 2 , at least 2.5 , or at least $3 \log$ relative to a control. In some
embodiments, the anti-antigenic polypeptide antibody titer produced in the subject is increased by $1,1.5,2,2.5$ or $3 \log$ relative to a control. In some embodiments, the anti-antigenic polypeptide antibody titer produced in the subject is increased by $1-3 \log$ relative to a control. For example, the anti-antigenic polypeptide antibody titer produced in a subject may be increased by 1-1.5, 1-2, 1-2.5, 1-3, 1.5-2, $1.5-2.5,1.5-3,2-2.5,2-3$, or $2.5-3 \log$ relative to a control.
In some embodiments, the anti-antigenic polypeptide (e.g., an anti-hMPV, anti-PIV3, anti-RSV, anti-MeV and/or anti-BetaCoV antigenic polypeptide) antibody titer produced in a subject is increased at least 2 times relative to a control. For example, the anti-antigenic polypeptide antibody titer produced in a subject may be increased at least 3 times, at least 4 times, at least 5 times, at least 6 times, at least 7 times, at least 8 times, at least 9 times, or at least 10 times relative to a control. In some embodiments, the anti-antigenic polypeptide antibody titer produced in the subject is increased $2,3,4,5,6,7,8,9$, or 10 times relative to a control. In some embodiments, the anti-antigenic polypeptide antibody titer produced in a subject is increased 2-10 times relative to a control. For example, the anti-antigenic polypeptide antibody titer produced in a subject may be increased 2-10, 2-9, 2-8, 2-7, 2-6, 2-5, 2-4, 2-3, 3-10, 3-9, 3-8, 3-7, 3-6, 3-5, 3-4, 4-10, 4-9, 4-8, 4-7, 4-6, 4-5, 5-10, 5-9, $5-8,5-7,5-6,6-10,6-9,6-8,6-7,7-10,7-9,7-8,8-10,8-9$, or 9-10 times relative to a control.

A control, in some embodiments, is the anti-antigenic polypeptide (e.g., an anti-hMPV, anti-PIV3, anti-RSV, antiMeV and/or anti-BetaCoV antigenic polypeptide) antibody titer produced in a subject who has not been administered a respiratory virus RNA (e.g., mRNA) vaccine of the present disclosure. In some embodiments, a control is an antiantigenic polypeptide (e.g., an anti-hMPV, anti-PIV3, antiRSV, anti- MeV and/or anti-BetaCoV antigenic polypeptide) antibody titer produced in a subject who has been administered a live attenuated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine. An attenuated vaccine is a vaccine produced by reducing the virulence of a viable (live). An attenuated virus is altered in a manner that renders it harmless or less virulent relative to live, unmodified virus. In some embodiments, a control is an anti-antigenic polypeptide (e.g., an anti-hMPV, anti-PIV3, anti-RSV, anti-MeV and/or anti-BetaCoV antigenic polypeptide) antibody titer produced in a subject administered inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine. In some embodiments, a control is an anti-antigenic polypeptide (e.g., an antihMPV, anti-PIV3, anti-RSV, anti-MeV and/or anti-BetaCoV antigenic polypeptide) antibody titer produced in a subject administered a recombinant or purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine. Recombinant protein vaccines typically include protein antigens that either have been produced in a heterologous expression system (e.g., bacteria or yeast) or purified from large amounts of the pathogenic organism. In some embodiments, a control is an anti-antigenic polypeptide (e.g., an anti-hMPV, anti-PIV3, anti-RSV, anti- MeV and/or anti-BetaCoV antigenic polypeptide) antibody titer produced in a subject who has been administered an hMPV, PIV3, RSV, MeV and/or BetaCoV virus-like particle (VLP) vaccine. For example, an hMPV VLP vaccine used as a control may be a hMPV VLPs, comprising (or consisting of) viral matrix (M) and fusion (F) proteins, generated by expressing viral proteins in suspen-sion-adapted human embryonic kidney epithelial (293-F) cells (see, e.g., Cox R G et al., J Virol. 2014 June; 88(11): 6368-6379, the contents of which are herein incorporated by reference).

In some embodiments, an effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a dose that is reduced compared to the standard of care dose of a recombinant hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine. A "standard of care," as provided herein, refers to a medical or psychological treatment guideline and can be general or specific. "Standard of care" specifies appropriate treatment based on scientific evidence and collaboration between medical professionals involved in the treatment of a given condition. It is the diagnostic and treatment process that a physician/clinician should follow for a certain type of patient, illness or clinical circumstance. A "standard of care dose," as provided herein, refers to the dose of a recombinant or purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine, or a live attenuated or inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine, that a physician/ clinician or other medical professional would administer to a subject to treat or prevent hMPV, PIV3, RSV, MeV and/or BetaCoV, or a hMPV-, PIV3-, RSV-, MeV- and/or BetaCoVrelated condition, while following the standard of care guideline for treating or preventing hMPV, PIV3, RSV, MeV and/or BetaCoV, or a hMPV-, PIV3-, RSV-, MeV- and/or BetaCoV-related condition.

In some embodiments, the anti-antigenic polypeptide (e.g., an anti-hMPV, anti-PIV3, anti-RSV, anti-MeV and/or anti-BetaCoV antigenic polypeptide) antibody titer produced in a subject administered an effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is equivalent to an anti-antigenic polypeptide (e.g., an anti-hMPV, antiPIV3, anti-RSV, anti-MeV and/or anti-BetaCoV antigenic polypeptide) antibody titer produced in a control subject administered a standard of care dose of a recombinant or purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine or a live attenuated or inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine.

In some embodiments, an effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a dose equivalent to an at least 2 -fold reduction in a standard of care dose of a recombinant or purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine. For example, an effective amount of a respiratory virus RNA (e.g., mRNA) vaccine may be a dose equivalent to an at least 3 -fold, at least 4 -fold, at least 5 -fold, at least 6 -fold, at least 7 -fold, at least 8 -fold, at least 9 -fold, or at least 10 -fold reduction in a standard of care dose of a recombinant or purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine. In some embodiments, an effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a dose equivalent to an at least at least 100 -fold, at least 500 -fold, or at least 1000 -fold reduction in a standard of care dose of a recombinant or purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine. In some embodiments, an effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a dose equivalent to a $2-, 3-, 4-, 5-, 6-$, 7 -, 8 -, $9-, 10-, 20$-, $50-, 100-, 250$-, 500 -, or 1000 -fold reduction in a standard of care dose of a recombinant or purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine. In some embodiments, the anti-antigenic polypeptide antibody titer produced in a subject administered an effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is equivalent to an anti-antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or protein hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine or a live attenuated or inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine. In some embodiments, an effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a dose equivalent to a 2 -fold to 1000 -fold (e.g., 2 -fold to

100 -fold, 10 -fold to 1000 -fold) reduction in the standard of care dose of a recombinant or purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine, wherein the antiantigenic polypeptide antibody titer produced in the subject is equivalent to an anti-antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine or a live attenuated or inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine.

In some embodiments, the effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a dose equivalent to a 2 to $1000-, 2$ to $900-, 2$ to $800-, 2$ to $700-, 2$ to $600-, 2$ to $500-, 2$ to $400-, 2$ to $300-, 2$ to $200-, 2$ to $100-, 2$ to $90-$, 2 to $80-, 2$ to $70-, 2$ to $60-, 2$ to $50-, 2$ to $40-, 2$ to $30-, 2$ to $20-, 2$ to $10-, 2$ to $9-, 2$ to $8-, 2$ to $7-, 2$ to $6-, 2$ to $5-, 2$ to 4 -, 2 to 3 -, 3 to $1000-, 3$ to $900-, 3$ to $800-, 3$ to $700-, 3$ to $600-, 3$ to $500-, 3$ to $400-, 3$ to 3 to $00-, 3$ to 200-, 3 to $100-$, 3 to $90-, 3$ to $80-, 3$ to $70-, 3$ to $60-, 3$ to $50-, 3$ to $40-, 3$ to $30-, 3$ to $20-, 3$ to $10-, 3$ to $9-, 3$ to 8 -, 3 to $7-, 3$ to $6-, 3$ to $5-, 3$ to $4-, 4$ to $1000-, 4$ to $900-, 4$ to $800-, 4$ to $700-, 4$ to $600-, 4$ to $500-, 4$ to $400-, 4$ to 4 to $00-, 4$ to 200-, 4 to $100-$, 4 to $90-, 4$ to $80-, 4$ to $70-, 4$ to $60-, 4$ to $50-, 4$ to $40-, 4$ to $30-, 4$ to $20-, 4$ to $10-, 4$ to $9-, 4$ to $8-, 4$ to $7-, 4$ to $6-, 4$ to $5-, 4$ to 4 -, 5 to $1000-, 5$ to $900-, 5$ to $800-, 5$ to $700-, 5$ to $600-, 5$ to $500-, 5$ to $400-, 5$ to $300-, 5$ to 200-, 5 to $100-, 5$ to $90-, 5$ to $80-, 5$ to $70-, 5$ to $60-, 5$ to $50-, 5$ to $40-, 5$ to $30-$, 5 to $20-, 5$ to $10-, 5$ to 9 -, 5 to $8-, 5$ to $7-, 5$ to $6-, 6$ to $1000-$,, 6 to $900-, 6$ to $800-, 6$ to $700-, 6$ to $600-, 6$ to $500-, 6$ to $400-$, 6 to $300-, 6$ to $200-, 6$ to $100-, 6$ to $90-, 6$ to $80-, 6$ to $70-$, 6 to $60-, 6$ to $50-, 6$ to $40-, 6$ to $30-, 6$ to $20-, 6$ to $10-, 6$ to $9-, 6$ to $8-, 6$ to $7-, 7$ to $1000-, 7$ to $900-, 7$ to $800-, 7$ to $700-$, 7 to $600-, 7$ to $500-, 7$ to $400-, 7$ to $300-, 7$ to $200-, 7$ to $100-$, 7 to $90-, 7$ to $80-, 7$ to $70-, 7$ to $60-, 7$ to $50-, 7$ to $40-, 7$ to $30-, 7$ to $20-, 7$ to $10-, 7$ to $9-, 7$ to 8 -, 8 to $1000-, 8$ to $900-$, 8 to $800-, 8$ to $700-, 8$ to $600-, 8$ to $500-, 8$ to $400-, 8$ to $300-$, 8 to 200-, 8 to $100-, 8$ to $90-, 8$ to $80-, 8$ to $70-, 8$ to $60-, 8$ to $50-, 8$ to $40-, 8$ to $30-, 8$ to $20-, 8$ to $10-, 8$ to $9-, 9$ to $1000-$, 9 to $900-, 9$ to $800-, 9$ to $700-, 9$ to $600-, 9$ to $500-, 9$ to $400-$, 9 to $300-, 9$ to 200-, 9 to $100-, 9$ to $90-, 9$ to $80-, 9$ to $70-$, 9 to $60-, 9$ to $50-, 9$ to $40-, 9$ to $30-, 9$ to $20-, 9$ to $10-, 10$ to $1000-, 10$ to $900-, 10$ to $800-, 10$ to $700-, 10$ to $600-, 10$ to $500-, 10$ to $400-, 10$ to $300-, 10$ to 200-, 10 to $100-, 10$ to $90-, 10$ to $80-, 10$ to $70-, 10$ to $60-, 10$ to $50-, 10$ to $40-, 10$ to $30-, 10$ to $20-, 20$ to $1000-, 20$ to $900-, 20$ to $800-, 20$ to $700-, 20$ to $600-, 20$ to $500-, 20$ to $400-, 20$ to $300-, 20$ to $200-, 20$ to $100-, 20$ to $90-, 20$ to $80-, 20$ to $70-, 20$ to $60-$, 20 to $50-, 20$ to $40-, 20$ to $30-, 30$ to $1000-, 30$ to $900-, 30$ to $800-, 30$ to $700-, 30$ to $600-, 30$ to $500-, 30$ to $400-, 30$ to $300-, 30$ to 200-, 30 to 100-, 30 to $90-, 30$ to $80-, 30$ to $70-$, 30 to $60-, 30$ to $50-, 30$ to $40-, 40$ to $1000-, 40$ to $900-, 40$ to $800-, 40$ to $700-, 40$ to $600-, 40$ to $500-, 40$ to $400-, 40$ to $300-, 40$ to 200-, 40 to 100-, 40 to $90-, 40$ to $80-, 40$ to $70-$, 40 to $60-, 40$ to $50-, 50$ to $1000-, 50$ to $900-, 50$ to $800-, 50$ to $700-, 50$ to 600 -, 50 to $500-, 50$ to 400 -, 50 to 300 -, 50 to $200-, 50$ to $100-, 50$ to $90-, 50$ to $80-, 50$ to $70-, 50$ to $60-$, 60 to $1000-, 60$ to $900-, 60$ to $800-, 60$ to $700-, 60$ to $600-$, 60 to $500-, 60$ to $400-, 60$ to $300-, 60$ to $200-, 60$ to $100-, 60$ to $90-, 60$ to $80-, 60$ to $70-, 70$ to $1000-, 70$ to $900-, 70$ to $800-, 70$ to $700-, 70$ to $600-, 70$ to $500-, 70$ to $400-, 70$ to $300-, 70$ to $200-, 70$ to $100-, 70$ to $90-, 70$ to $80-, 80$ to $1000-$, 80 to $900-, 80$ to $800-, 80$ to $700-, 80$ to $600-, 80$ to $500-, 80$ to $400-, 80$ to $300-, 80$ to $200-, 80$ to $100-, 80$ to $90-, 90$ to 1000-, 90 to $900-, 90$ to $800-, 90$ to $700-, 90$ to $600-, 90$ to $500-, 90$ to $400-, 90$ to $300-, 90$ to $200-, 90$ to $100-, 100$ to $1000-, 100$ to $900-, 100$ to $800-, 100$ to $700-, 100$ to $600-$, 100 to $500-, 100$ to $400-, 100$ to $300-, 100$ to 200 -, 200 to
$1000-, 200$ to $900-, 200$ to $800-, 200$ to $700-, 200$ to $600-$, 200 to 500-, 200 to 400 -, 200 to $300-$, 300 to 1000 -, 300 to $900-, 300$ to $800-, 300$ to $700-, 300$ to $600-, 300$ to $500-, 300$ to $400-, 400$ to $1000-, 400$ to $900-, 400$ to $800-, 400$ to $700-$, 400 to $600-, 400$ to 500 -, 500 to $1000-, 500$ to $900-, 500$ to $800-, 500$ to $700-, 500$ to $600-, 600$ to $1000-, 600$ to $900-$, 600 to $800-, 600$ to $700-, 700$ to $1000-, 700$ to $900-, 700$ to $800-800$ to $1000-, 800$ to 900 -, or 900 to 1000 -fold reduction in the standard of care dose of a recombinant hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine. In some embodiments, the anti-antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine or a live attenuated or inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine. In some embodiments, the effective amount is a dose equivalent to (or equivalent to an at least) 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, $20-, 30-, 40-, 50-, 60-, 70-, 80-, 90-, 100-, 110-, 120-, 130-$, $140-, 150-, 160-, 170-, 1280-, 190-, 200-, 210-, 220-, 230-$, $240-$, $250-, 260-, 270-$, $280-, 290-, 300-, 310-, 320-, 330-$, $340-, 350-, 360-, 370-, 380-, 390-, 400-, 410-, 420-, 430-$, $440-, 450-, 4360-, 470-, 480-, 490-, 500-$ - $510-, 520-, 530-$, $540-, 550-, 560-, 5760-, 580-, 590-, 600-$-, $610-, 620-$, $630-$, $640-, 650-, 660-, 670-, 680-, 690-, 700-, 710-, 720-, 730-$, 740-, 750-, 760-, 770-, 780-, 790-, 800-, 810-, 820-, 830-, $840-, 850-, 860-, 870-, 880-, 890-, 900-, 910-, 920-, 930-$, $940-, 950-, 960-, 970-, 980-, 990-$, or 1000 -fold reduction in the standard of care dose of a recombinant hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine. In some embodiments, an anti-antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine or a live attenuated or inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine.

In some embodiments, the effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a total dose of $50-1000 \mu \mathrm{~g}$. In some embodiments, the effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a total dose of $50-1000,50-900,50-800,50-700,50-600,50-500$, $50-400,50-300,50-200,50-100,50-90,50-80,50-70$, $50-60,60-1000,60-900,60-800,60-700,60-600,60-500$, $60-400,60-300,60-200,60-100,60-90,60-80,60-70$, $70-1000,70-900,70-800,70-700,70-600,70-500,70-400$, $70-300,70-200,70-100,70-90,70-80,80-1000,80-900$, 80-800, 80-700, 80-600, 80-500, 80-400, 80-300, 80-200, $80-100,80-90,90-1000,90-900,90-800,90-700,90-600$, $90-500,90-400,90-300,90-200,90-100,100-1000,100-$ $900,100-800,100-700,100-600,100-500,100-400,100-$ $300,100-200,200-1000,200-900,200-800,200-700,200-$ 600, 200-500, 200-400, 200-300, 300-1000, 300-900, 300-$800,300-700,300-600,300-500,300-400,400-1000,400-$ $900,400-800,400-700,400-600,400-500,500-1000,500-$ $900,500-800,500-700,500-600,600-1000,600-900,600-$ $900,600-700,700-1000,700-900,700-800,800-1000,800-$ 900 , or $900-1000 \mu \mathrm{~g}$. In some embodiments, the effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a total dose of $50,100,150,200,250,300,350,400,450$, $500,550,600,650,700,750,800,850,900,950$ or $1000 \mu \mathrm{~g}$. In some embodiments, the effective amount is a dose of $25-500 \mu \mathrm{~g}$ administered to the subject a total of two times. In some embodiments, the effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a dose of $25-500$, $25-400,25-300,25-200,25-100,25-50,50-500,50-400$,
$50-300,50-200,50-100,100-500,100-400,100-300,100-$ $200,150-500,150-400,150-300,150-200,200-500,200-$ $400,200-300,250-500,250-400,250-300,300-500,300-$ $400,350-500,350-400,400-500$ or $450-500 \mu \mathrm{~g}$ administered to the subject a total of two times. In some embodiments, the effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a total dose of $25,50,100,150,200,250,300$, $350,400,450$, or $500 \mu \mathrm{~g}$ administered to the subject a total of two times.

EXAMPLES OF ADDITIONAL EMBODIMENTS of THE DISCLOSURE

Additional embodiments of the present disclosure are encompassed by the following numbered paragraphs:

1. A respiratory virus vaccine, comprising: at least one ribonucleic acid (RNA) polynucleotide having an open reading frame encoding at least one, at least two, at least three, at least four or at least five antigenic polypeptides selected from human metapneumovirus (hMPV) antigenic polypeptides or immunogenic fragments thereof, human parainfluenza virus type 3 (PIV3) antigenic polypeptides or immunogenic fragments thereof, respiratory syncytial virus (RSV) antigenic polypeptides or immunogenic fragments thereof, measles virus (MeV) antigenic polypeptides or immunogenic fragments thereof, and betacoronavirus (BetaCoV) antigenic polypeptides or immunogenic fragments thereof.
2. The respiratory virus vaccine of paragraph 1 , comprising: at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof and a PIV3 antigenic polypeptide or an immunogenic fragment thereof; or at least two RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof and one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof.
3. The respiratory virus vaccine of paragraph 2 , wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, and/or wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13.
4. The respiratory virus vaccine of paragraph 1 , comprising: at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof and a RSV antigenic polypeptide or an immunogenic fragment thereof; or
at least two RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof and one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof.
5 . The respiratory virus vaccine of paragraph 4 , wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8.
6 . The respiratory virus vaccine of paragraph 1 , comprising: at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immu-
nogenic fragment thereof and MeV antigenic polypeptide or an immunogenic fragment thereof; or
at least two RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof and one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof.
5. The respiratory virus vaccine of paragraph 6 , wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, and/or wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50.
8 . The respiratory virus vaccine of paragraph 1 , comprising: at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or
at least two RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.
6. The respiratory virus vaccine of paragraph 8 , wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 24-34.
7. The respiratory virus vaccine of paragraph 1 , comprising:
at least one RNA polynucleotide having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof and a RSV antigenic polypeptide or an immunogenic fragment thereof; or
at least two RNA polynucleotides, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof and one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof.
8. The respiratory virus vaccine of paragraph 10 , wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13.
9. The respiratory virus vaccine of paragraph 1 , comprising:
at least one RNA polynucleotide having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof and a MeV antigenic polypeptide or an immunogenic fragment thereof; or
at least two RNA polynucleotides, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof and one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof.
10. The respiratory virus vaccine of paragraph 12 , wherein the PIV3 antigenic polypeptide comprises an amino acid
sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID $\mathrm{NO}: 12-13$, and/or wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50.
11. The respiratory virus vaccine of paragraph 1 , comprising:
at least one RNA polynucleotide having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or
at least two RNA polynucleotides, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.
12. The respiratory virus vaccine of paragraph 14 , wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 24-34.
16 . The respiratory virus vaccine of paragraph 1 , comprising:
at least one RNA polynucleotide having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof and a MeV antigenic polypeptide or an immunogenic fragment thereof; or
at least two RNA polynucleotides, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof and one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof.
13. The respiratory virus vaccine of paragraph 16 , wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50.
14. The respiratory virus vaccine of paragraph 1 , comprising:
at least one RNA polynucleotide having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or
at least two RNA polynucleotides, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.
15. The respiratory virus vaccine of paragraph 18 , wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 24-34.
16. The respiratory virus vaccine of paragraph 1 , comprising:
at least one RNA polynucleotide having an open reading frame encoding a MeV antigenic polypeptide or an immu-
nogenic fragment thereof and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or
at least two RNA polynucleotides, one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.
17. The respiratory virus vaccine of paragraph 20 , wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 24-34.
18. The respiratory virus vaccine of paragraph 1 , comprising:
at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a PIV3 antigenic polypeptide or an immunogenic fragment thereof, and a RSV antigenic polypeptide or an immunogenic fragment thereof; or
at least two or three RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof.
19. The respiratory virus vaccine of paragraph 22 , wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, and/or wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13.
24 . The respiratory virus vaccine of paragraph 1 , comprising:
at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a PIV3 antigenic polypeptide or an immunogenic fragment thereof, and a MeV antigenic polypeptide or an immunogenic fragment thereof; or
at least two or three RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof.
25 . The respiratory virus vaccine of paragraph 24 , wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, and/or wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid
sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50. 26. The respiratory virus vaccine of paragraph 1 , comprising:
at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a PIV3 antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or
at least two or three RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.
20. The respiratory virus vaccine of paragraph 26 , wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID $\mathrm{NO}: 12-13$ or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13 and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 23-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 23-34. 28. The respiratory virus vaccine of paragraph 1 , comprising:
at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a RSV antigenic polypeptide or an immunogenic fragment thereof, and a MeV antigenic polypeptide or an immunogenic fragment thereof; or
at least two or three RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof.
29 . The respiratory virus vaccine of paragraph 28 , wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID $\mathrm{NO}: 5-8$, and/or wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50.
30 . The respiratory virus vaccine of paragraph 1 , comprising:
at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a RSV antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or
at least two or three RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, and one having an open
reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.
21. The respiratory virus vaccine of paragraph 30 , wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 23-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 23-34.
22. The respiratory virus vaccine of paragraph 1 , comprising:
at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a MeV antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or
at least two or three RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.
23. The respiratory virus vaccine of paragraph 32 , wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID $\mathrm{NO}: 5-8$, wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 23-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 23-34. 34 . The respiratory virus vaccine of paragraph 1 , comprising:
at least one RNA polynucleotide having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, a RSV antigenic polypeptide or an immunogenic fragment thereof, and a MeV antigenic polypeptide or an immunogenic fragment thereof; or
at least two or three RNA polynucleotides, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof.
24. The respiratory virus vaccine of paragraph 34 , wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, and/or wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50.
25. The respiratory virus vaccine of paragraph 1 , comprising:
at least one RNA polynucleotide having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, a RSV antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or
at least two or three RNA polynucleotides, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.
26. The respiratory virus vaccine of paragraph 36 , wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 23-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 23-34.
38 . The respiratory virus vaccine of paragraph 1 , comprising:
at least one RNA polynucleotide having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, a MeV antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or
at least two or three RNA polynucleotides, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.
27. The respiratory virus vaccine of paragraph 38 , wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 23-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 23-34.
28. The respiratory virus vaccine of paragraph 1 , comprising:
at least one RNA polynucleotide having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, a MeV antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or
at least two or three RNA polynucleotides, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.
29. The respiratory virus vaccine of paragraph 40 , wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ

ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 23-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 23-34. 42. The respiratory virus vaccine of paragraph 1 , comprising:
at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a PIV3 antigenic polypeptide or an immunogenic fragment thereof, a RSV antigenic polypeptide or an immunogenic fragment thereof, and a MeV antigenic polypeptide or an immunogenic fragment thereof; or
at least two, three or four RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof.
43. The respiratory virus vaccine of paragraph 42 , wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, and/or wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50. 44 . The respiratory virus vaccine of paragraph 1 , comprising:
at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a PIV3 antigenic polypeptide or an immunogenic fragment thereof, a RSV antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or
at least two, three or four RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.
45. The respiratory virus vaccine of paragraph 44 , wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, and/or wherein the BetaCoV
antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 24-34. 46. The respiratory virus vaccine of paragraph 1 , comprising:
at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a PIV3 antigenic polypeptide or an immunogenic fragment thereof, a MeV antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or
at least two, three or four RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.
47. The respiratory virus vaccine of paragraph 46 , wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 24-34.
48. The respiratory virus vaccine of paragraph 1 , comprising:
at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a RSV antigenic polypeptide or an immunogenic fragment thereof, a MeV antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or
at least two, three or four RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.
49. The respiratory virus vaccine of paragraph 48 , wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID $\mathrm{NO}: 5-8$, wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90%
or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 24-34. 50 . The respiratory virus vaccine of paragraph 1 , comprising:
at least one RNA polynucleotide having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, a RSV antigenic polypeptide or an immunogenic fragment thereof, a MeV antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or
at least two, three or four RNA polynucleotides, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.
51. The respiratory virus vaccine of paragraph 50 , wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 24-34. 52 . The respiratory virus vaccine of paragraph 1 , comprising:
at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a PIV3 antigenic polypeptide or an immunogenic fragment thereof, a RSV antigenic polypeptide or an immunogenic fragment thereof, a MeV antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or
at least two, three, four or five RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.
53. The respiratory virus vaccine of paragraph 52 , wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90%
or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 24-34.
54. The vaccine of any one of paragraphs $1-53$, wherein at least one RNA polynucleotide has less than 80% identity to wild-type mRNA sequence.
55. The vaccine of any one of paragraphs $1-53$, wherein at least one RNA polynucleotide has at least 80% identity to wild-type mRNA sequence, but does not include wild-type mRNA sequence.
56 . The vaccine of any one of paragraphs $1-55$, wherein at least one antigenic polypeptide has membrane fusion activity, attaches to cell receptors, causes fusion of viral and cellular membranes, and/or is responsible for binding of the virus to a cell being infected.
57. The vaccine of any one of paragraphs 1-56, wherein at least one RNA polynucleotide comprises at least one chemical modification.
58. The vaccine of paragraph 57 , wherein the chemical modification is selected from pseudouridine, N1-methylpseudouridine, N 1 -ethylpseudouridine, 2 -thiouridine, 4^{\prime}-thiouridine, 5 -methylcyto sine, 5 -methyluridine, 2 -thio-1-methyl-1-deaza-pseudouridine, 2-thio-1-methylpseudouridine, 2-thio-5-aza-uridine, 2-thiodihydropseudouridine, 2 -thio-dihydrouridine, 2 -thiopseudouridine, 4-methoxy-2-thio-pseudouridine, 4-methoxy-pseudouridine, 4-thio-1-methyl-pseudouridine, 4-thio-pseudouridine, 5 -aza-uridine, dihydropseudouridine, 5 -methoxyuridine and 2^{\prime}-O-methyl uridine.
59. The vaccine of paragraph 57 or 58 , wherein the chemical modification is in the 5 -position of the uracil.
60 . The vaccine of any one of paragraphs $57-59$, wherein the chemical modification is a N1-methylpseudouridine or N 1 -ethylpseudouridine.
61. The vaccine of any one of paragraphs 57-60, wherein at least 80%, at least 90% or 100% of the uracil in the open reading frame have a chemical modification.
62. The vaccine of any one of paragraphs 1-61, wherein at least one RNA polynucleotide further encodes at least one 5^{\prime} terminal cap, optionally wherein the 5^{\prime} terminal cap is $7 \mathrm{mG}\left(5^{\prime}\right) \mathrm{ppp}\left(5^{\prime}\right) \mathrm{NlmpNp}$.
63. The vaccine of any one of paragraphs 1-62, wherein at least one antigenic polypeptide or immunogenic fragment thereof is fused to a signal peptide selected from: a HuIgGk signal peptide (METPAQLLFLLLLWLPDTTG; SEQ ID NO: 15); IgE heavy chain epsilon-1 signal peptide (MDWTWILFLVAAATRVHS; SEQ ID NO: 16); Japanese encephalitis PRM signal sequence (MLGSNSGQRVVFTILLLLVAPAYS; SEQ ID NO: 17), VSVg protein signal sequence (MKCLLYLAFLFIGVNCA; SEQ ID NO: 18) and Japanese encephalitis JEV signal sequence (MWLVSLAIVTACAGA; SEQ ID NO: 19).
64. The vaccine of paragraph 63 , wherein the signal peptide is fused to the N -terminus or the C -terminus of at least one antigenic polypeptide.
65. The vaccine of any one of paragraphs 1-64, wherein the antigenic polypeptide or immunogenic fragment thereof comprises a mutated N -linked glycosylation site.
66. The vaccine of any one of paragraphs 1-65 formulated in a nanoparticle, optionally a a lipid nanoparticle.
67. The vaccine of paragraph 66 , wherein the lipid nanoparticle comprises a cationic lipid, a PEG-modified lipid, a sterol and a non-cationic lipid; optionally wherein the lipid nanoparticle carrier comprises a molar ratio of about $20-60 \%$ cationic lipid, $0.5-15 \%$ PEG-modified lipid, $25-55 \%$ sterol, and 25% non-cationic lipid; optionally wherein the cationic lipid is an ionizable cationic lipid and the non-cationic lipid is a neutral lipid, and the sterol is a cholesterol; and optionally wherein the cationic lipid is selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319). Formula (II) 68. The vaccine of paragraph 66 or 67, wherein the nanoparticle (e.g., lipid nanoparticle) comprises a compound of Formula (I) and/or Formula (II), optionally Compound 3, 18, 20, 25, 26, 29, 30, 60, 108-112, or 122. 69. The vaccine of any one of paragraphs 1-68 further comprising an adjuvant, optionally a flagellin protein or peptide that optionally comprises an amino acid sequence identified by any one of SEQ ID NO: 54-56.
70. The vaccine of any one of paragraphs 1-69, wherein the open reading frame is codon-optimized.
71. The vaccine of any one of paragraphs 1-70 formulated in an effective amount to produce an antigen-specific immune response.
72. A method of inducing an immune response in a subject, the method comprising administering to the subject the vaccine of any one of paragraphs 1-71 in an amount effective to produce an antigen-specific immune response in the subject.
73. The method of paragraph 72, wherein the subject is administered a single dose of the vaccine, or wherein the subject is administered a first dose and then a booster dose of the vaccine.
74. The method of paragraph 72 or 73 , wherein the vaccine is administered to the subject by intradermal injection or intramuscular injection.
75. The method of any one of paragraphs 72-74, wherein an anti-antigenic polypeptide antibody titer produced in the subject is increased by at least $1 \log$ relative to a control, and/or wherein the anti-antigenic polypeptide antibody titer produced in the subject is increased at least 2 times relative to a control.
76. The method of any one of paragraphs 72-75, wherein the control is an anti-antigenic polypeptide antibody titer produced in a subject who has not been administered a vaccine against the virus, and/or wherein the control is an antiantigenic polypeptide antibody titer produced in a subject who has been administered a live attenuated vaccine or an inactivated vaccine against the virus, and/or, wherein the control is an anti-antigenic polypeptide antibody titer produced in a subject who has been administered a recombinant protein vaccine or purified protein vaccine against the virus, and/or wherein the control is an anti-antigenic polypeptide antibody titer produced in a subject who has been administered a VLP vaccine against the virus.
77. The method of any one of paragraphs 72-76, wherein the effective amount is a dose equivalent to an at least 2 -fold reduction in the standard of care dose of a recombinant protein vaccine or a purified protein vaccine against the virus, and wherein an anti-antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant
protein vaccine or a purified protein vaccine against the virus, respectively; and/or wherein the effective amount is a dose equivalent to an at least 2 -fold reduction in the standard of care dose of a live attenuated vaccine or an inactivated vaccine against the virus, and wherein an anti-antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a live attenuated vaccine or an inactivated vaccine against the virus, respectively; and/or wherein the effective amount is a dose equivalent to an at least 2 -fold reduction in the standard of care dose of a VLP vaccine against the virus, and wherein an anti-antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a VLP vaccine against the virus.
78. The method of any one of paragraphs 72-77, wherein the effective amount is a total dose of $50 \mu \mathrm{~g}-1000 \mu \mathrm{~g}$, optionally wherein the effective amount is a dose of $25 \mu \mathrm{~g}, 100 \mu \mathrm{~g}, 400$ $\mu \mathrm{g}$, or $500 \mu \mathrm{~g}$ administered to the subject a total of two times. 79. The method of any one of paragraphs 72-78, wherein the efficacy of the vaccine against the virus is greater than 65%; and/or wherein the vaccine immunizes the subject against the virus for up to 2 years or wherein the vaccine immunizes the subject against the virus for more than 2 years.
80 . The method of any one of paragraphs $72-79$, wherein the subject has an age of about 5 years old or younger or wherein the subject has an age of about 60 years old or older; and/or wherein the subject has a chronic pulmonary disease; and/or the subject has been exposed to the virus, wherein the subject is infected with the virus, or wherein the subject is at risk of infection by the virus; and/or wherein the subject is immunocompromised.
81. The respiratory virus vaccine of any one of paragraphs 1-71, comprising at least one (e.g., at least two, at least three, at least four, or at least five) RNA polynucleotide having an open reading frame encoding at least one (e.g., at least two, at least three, at least four, or at least five) antigenic polypeptide selected from hMPV antigenic polypeptides (SEQ ID NO: 5-8), PIV3 antigenic polypeptides (SEQ ID NO: 12-13), RSV antigenic polypeptides, MeV antigenic polypeptides (SEQ ID NO: 47-50) and BetaCoV antigenic polypeptides (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1; (SEQ ID NO: 24-34)), formulated in a cationic lipid nanoparticle
(a) having a molar ratio of about 20-60\% cationic lipid, about 5-25\% non-cationic lipid, about $25-55 \%$ sterol, and about $0.5-15 \%$ PEG-modified lipid, and/or
(b) comprising a compound of Formula (I) and/or Formula (II),
wherein the at least one (e.g., at least two, at least three, at least four, or at least five) RNA polynucleotide comprises at least one chemical modification.
82. The respiratory virus vaccine of any one of paragraphs 1-71, comprising at least one (e.g., at least two, at least three, at least four, or at least five) RNA polynucleotide having an open reading frame encoding at least one (e.g., at least two, at least three, at least four, or at least five) antigenic polypeptide selected from hMPV antigenic polypeptides (SEQ ID NO: 5-8), PIV3 antigenic polypeptides (SEQ ID NO: 12-13), RSV antigenic polypeptides, MeV antigenic polypeptides (SEQ ID NO: 47-50) and BetaCoV antigenic polypeptides (e.g., MERS-CoV, SARS-CoV, HCoV-OC43,

HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1; (SEQ ID NO: 24-34)), formulated in a cationic lipid nanoparticle
(a) having a molar ratio of about $20-60 \%$ cationic lipid, about $5-25 \%$ non-cationic lipid, about $25-55 \%$ sterol, and about 0.5-15\% PEG-modified lipid, and/or
(b) comprising at least one (e.g., at least $1,2,3,4,5,6$, $7,8,9,10,11,12,13$, or 14) Compound selected from Compounds $3,18,20,25,26,29,30,60,108-112$ and 122. 83. The respiratory virus vaccine of paragraphs 81 or 82 , wherein the at least one antigenic polypeptide is selected from hMPV antigentic polypeptides (e.g., SEQ ID NO: 5-8). 84. The respiratory virus vaccine of any one of paragraphs 81-83, wherein the at least one antigenic polypeptide is selected from PIV3 antigentic polypeptides (e.g., SEQ ID NO: 12-13).
85. The respiratory virus vaccine of any one of paragraphs 81-84, wherein the at least one antigenic polypeptide is selected from RSV antigentic polypeptides.
86. The respiratory virus vaccine of any one of paragraphs 81-85, wherein the at least one antigenic polypeptide is selected from MeV antigentic polypeptides (e.g., SEQ ID NO: 47-50).
87. The respiratory virus vaccine of any one of paragraphs 81-86, wherein the at least one antigenic polypeptide is selected from BetaCoV antigentic polypeptides (e.g., SEQ ID NO: 24-34).
88. The respiratory virus vaccine of paragraph 87 , wherein the BetaCoV antigentic polypeptides are MERS antigentic polypeptides.
89. The respiratory virus vaccine of paragraph 87 , wherein the BetaCoV antigentic polypeptides are SARS antigentic polypeptides.
90. The respiratory virus vaccine of any one of paragraphs 81-89, wherein the at least one (e.g., at least two, at least three, at least four, or at least five) RNA polynucleotide comprises at least one chemical modification (e.g., selected from pseudouridine, N1-methylpseudouridine, N1-ethylpseudouridine, 2 -thiouridine, 4 -thiouridine, 5 -methylcytosine, 5 -methyluridine, 2 -thio-1-methyl-1-deaza-pseudouridine, 2-thio-1-methyl-pseudouridine, 2-thio-5-aza-uridine, 2-thio-dihydropseudouridine, 2-thio-dihydrouridine, 2-thiopseudouridine, 4-methoxy-2-thio-pseudouridine, 4-methoxy-pseudouridine, 4-thio-1-methyl-pseudouridine, 4-thio-pseudouridine, 5 -aza-uridine, dihydropseudouridine, 5 -methoxyuridine and 2^{\prime}-O-methyl uridine).
91. A respiratory virus vaccine, comprising:
at least one messenger ribonucleic acid (mRNA) polynucleotide having a 5^{\prime} terminal cap, an open reading frame encoding at least one respiratory virus antigenic polypeptide, and a 3^{\prime} polyA tail.
92. The vaccine of paragraph 91, wherein the at least one mRNA polynucleotide comprises a sequence identified by any one of SEQ ID NO: 57-80.
93. The vaccine of paragraph 91 or 92 , wherein the 5^{\prime} terminal cap is or comprises $7 \mathrm{mG}\left(5^{\prime}\right) \mathrm{ppp}\left(5^{\prime}\right) \mathrm{NlmpNp}$.
94. The vaccine of any one of paragraphs 91-93, wherein 100% of the uracil in the open reading frame is modified to include N1-methyl pseudouridine at the 5-position of the uracil.
95. The vaccine of any one of paragraphs 91-94, wherein the vaccine is formulated in a lipid nanoparticle comprising: DLin-MC3-DMA; cholesterol; 1,2-Distearoyl-sn-glycero-3phosphocholine (DSPC); and polyethylene glycol (PEG) 2000-DMG.
96. The vaccine of paragraph 95 , wherein the lipid nanoparticle further comprises trisodium citrate buffer, sucrose and water.
97. A respiratory syncytial virus (RSV) vaccine, comprising:
at least one messenger ribonucleic acid (mRNA) polynucleotide having a 5^{\prime} terminal cap $7 \mathrm{mG}\left(5^{\prime}\right) \mathrm{ppp}\left(5^{\prime}\right) \mathrm{N} 1 \mathrm{mpNp}$, a sequence identified by any one of SEQ ID NO: 57-80 and a 3' polyA tail, formulated in a lipid nanoparticle comprising DLin-MC3-DMA, cholesterol, 1,2-Distearoyl-sn-glycero-3phosphocholine (DSPC), and polyethylene glycol (PEG) 2000-DMG, wherein the uracil nucleotides of the sequence identified by any one of SEQ ID NO: 57-80 are modified to include N1-methyl pseudouridine at the 5 -position of the uracil nucleotide.
This disclosure is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The disclosure is capable of other embodiments and of being practiced or of being carried out in various ways. Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of "including," "comprising," or "having," "containing," "involving," and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.

EXAMPLES

Example 1: Manufacture of Polynucleotides

According to the present disclosure, the manufacture of polynucleotides and/or parts or regions thereof may be accomplished utilizing the methods taught in International Publication WO2014/152027, entitled "Manufacturing Methods for Production of RNA Transcripts," the contents of which is incorporated herein by reference in its entirety.
Purification methods may include those taught in International Publication WO2014/152030 and International Publication WO2014/152031, each of which is incorporated herein by reference in its entirety.

Detection and characterization methods of the polynucleotides may be performed as taught in International Publication WO2014/144039, which is incorporated herein by reference in its entirety.

Characterization of the polynucleotides of the disclosure may be accomplished using polynucleotide mapping, reverse transcriptase sequencing, charge distribution analysis, detection of RNA impurities, or any combination of two or more of the foregoing. "Characterizing" comprises determining the RNA transcript sequence, determining the purity of the RNA transcript, or determining the charge heterogeneity of the RNA transcript, for example. Such methods are taught in, for example, International Publication WO2014/ 144711 and International Publication WO2014/144767, the content of each of which is incorporated herein by reference in its entirety.

Example 2: Chimeric Polynucleotide Synthesis

According to the present disclosure, two regions or parts of a chimeric polynucleotide may be joined or ligated using triphosphate chemistry. A first region or part of 100 nucleotides or less is chemically synthesized with a 5^{\prime} monophosphate and terminal 3^{\prime} desOH or blocked OH , for example. If the region is longer than 80 nucleotides, it may be synthesized as two strands for ligation.

If the first region or part is synthesized as a non-positionally modified region or part using in vitro transcription (IVT), conversion the 5 'monophosphate with subsequent capping of the 3 ' terminus may follow.

Monophosphate protecting groups may be selected from any of those known in the art.

The second region or part of the chimeric polynucleotide may be synthesized using either chemical synthesis or IVT methods. IVT methods may include an RNA polymerase that can utilize a primer with a modified cap. Alternatively, a cap of up to 130 nucleotides may be chemically synthesized and coupled to the IVT region or part.

For ligation methods, ligation with DNA T4 ligase, followed by treatment with DNase should readily avoid concatenation.

The entire chimeric polynucleotide need not be manufactured with a phosphate-sugar backbone. If one of the regions or parts encodes a polypeptide, then such region or part may comprise a phosphate-sugar backbone.

Ligation is then performed using any known click chemistry, orthoclick chemistry, solulink, or other bioconjugate chemistries known to those in the art.
Synthetic Route
The chimeric polynucleotide may be made using a series of starting segments. Such segments include:
(a) a capped and protected 5^{\prime} segment comprising a normal 3'OH (SEG. 1)
(b) a 5^{\prime} triphosphate segment, which may include the coding region of a polypeptide and a normal $3^{\prime} \mathrm{OH}$ (SEG. 2)
(c) a 5^{\prime} monophosphate segment for the 3^{\prime} end of the chimeric polynucleotide (e.g., the tail) comprising cordycepin or no $3^{\prime} \mathrm{OH}$ (SEG. 3)
After synthesis (chemical or IVT), segment 3 (SEG. 3) may be treated with cordycepin and then with pyrophosphatase to create the 5' monophosphate.

Segment 2 (SEG. 2) may then be ligated to SEG. 3 using RNA ligase. The ligated polynucleotide is then purified and treated with pyrophosphatase to cleave the diphosphate.

The treated SEG. 2 -SEG. 3 construct may then be purified and SEG. 1 is ligated to the 5^{\prime} terminus. A further purification step of the chimeric polynucleotide may be performed.

Where the chimeric polynucleotide encodes a polypeptide, the ligated or joined segments may be represented as: 5'UTR (SEG. 1), open reading frame or ORF (SEG. 2) and 3'UTR+PolyA (SEG. 3).

The yields of each step may be as much as $90-95 \%$.

Example 3: PCR for cDNA Production

PCR procedures for the preparation of cDNA may be performed using $2 \times$ KAPA HIFI ${ }^{\text {TM }}$ HotStart ReadyMix by Kapa Biosystems (Woburn, Mass.). This system includes $2 \times$ KAPA ReadyMix $12.5 \mu \mathrm{l}$; Forward Primer $(10 \mu \mathrm{M}) 0.75 \mu 1$; Reverse Primer (10 PM) 0.75μ; Template cDNA 100 ng ; and $\mathrm{dH}_{2} \mathrm{O}$ diluted to 25.0μ. The reaction conditions may be at $95^{\circ} \mathrm{C}$. for 5 min . The reaction may be performed for 25 cycles of $98^{\circ} \mathrm{C}$. for 20 sec , then $58^{\circ} \mathrm{C}$. for 15 sec , then 72° C. for 45 sec , then $72^{\circ} \mathrm{C}$. for 5 min , then $4^{\circ} \mathrm{C}$. to termination.

The reaction may be cleaned up using Invitrogen's PURELINK ${ }^{\text {TM }}$ PCR Micro Kit (Carlsbad, Calif.) per manufacturer's instructions (up to $5 \mu \mathrm{~g}$). Larger reactions may require a cleanup using a product with a larger capacity. Following the cleanup, the cDNA may be quantified using the NANODROPTM and analyzed by agarose gel electrophoresis to confirm that the cDNA is the expected size. The
cDNA may then be submitted for sequencing analysis before proceeding to the in vitro transcription reaction.

Example 4: In Vitro Transcription (IVT)

The in vitro transcription reaction generates RNA polynucleotides. Such polynucleotides may comprise a region or part of the polynucleotides of the disclosure, including chemically modified RNA (e.g., mRNA) polynucleotides. The chemically modified RNA polynucleotides can be uniformly modified polynucleotides. The in vitro transcription reaction utilizes a custom mix of nucleotide triphosphates (NTPs). The NTPs may comprise chemically modified NTPs, or a mix of natural and chemically modified NTPs, or natural NTPs.
A typical in vitro transcription reaction includes the following:

1)	Template cDNA	$1.0 \mu \mathrm{~g}$
2)	10 x transcription buffer	$2.0 \mu \mathrm{l}$
	$(400 \mathrm{mM}$ Tris-HCl pH $8.0,190 \mathrm{mM}$	
	$\mathrm{MgCl}_{2}, 50 \mathrm{mM}$ DTT, 10 mM Spermidine)	
3)	Custom NTPs (25 mM each $)$	$0.2 \mu \mathrm{l}$
4)	RNase Inhibitor	20 U
5)	T 7 RNA polymerase	3000 U
6)	$\mathrm{dH}_{2} 0$	up to $20.0 \mu \mathrm{l}$. and
7)	Incubation at $37^{\circ} \mathrm{C}$. for 3 hr- 5 hrs.	

The crude IVT mix may be stored at $4^{\circ} \mathrm{C}$. overnight for cleanup the next day. 1 U of RNase-free DNase may then be used to digest the original template. After 15 minutes of incubation at $37^{\circ} \mathrm{C}$., the mRNA may be purified using Ambion's MEGACLEAR ${ }^{\text {TM }}$ Kit (Austin, Tex.) following the manufacturer's instructions. This kit can purify up to 500 $\mu \mathrm{g}$ of RNA. Following the cleanup, the RNA polynucleotide may be quantified using the NanoDrop and analyzed by agarose gel electrophoresis to confirm the RNA polynucleotide is the proper size and that no degradation of the RNA has occurred.

Example 5: Enzymatic Capping

Capping of a RNA polynucleotide is performed as follows where the mixture includes: IVT RNA $60 \mu \mathrm{~g}-180 \mu \mathrm{~g}$ and $\mathrm{dH}_{2} \mathrm{O}$ up to 72μ. The mixture is incubated at $65^{\circ} \mathrm{C}$. for 5 minutes to denature RNA, and then is transferred immediately to ice.

The protocol then involves the mixing of $10 \times$ Capping Buffer (0.5 M Tris- HCl (pH 8.0), $60 \mathrm{mM} \mathrm{KCl}, 12.5 \mathrm{mM}$ $\left.\mathrm{MgCl}_{2}\right)(10.0 \mu \mathrm{l}) ; 20 \mathrm{mM}$ GTP $(5.0 \mu \mathrm{l}) ; 20 \mathrm{mM}$ S-Adenosyl Methionine ($2.5 \mu \mathrm{l}$); RNase Inhibitor (100 U); 2^{\prime}-O-Methyltransferase (400 U); Vaccinia capping enzyme (Guanylyl transferase) $(40 \mathrm{U}) ; \mathrm{dH}_{2} \mathrm{O}(\mathrm{Up}$ to $28 \mu \mathrm{l})$; and incubation at $37^{\circ} \mathrm{C}$. for 30 minutes for $60 \mu \mathrm{~g}$ RNA or up to 2 hours for $180 \mu \mathrm{~g}$ of RNA.
The RNA polynucleotide may then be purified using Ambion's MEGACLEAR ${ }^{\mathrm{TM}}$ Kit (Austin, Tex.) following the manufacturer's instructions. Following the cleanup, the RNA may be quantified using the NANODROP ${ }^{\text {TM }}$ (ThermoFisher, Waltham, Mass.) and analyzed by agarose gel electrophoresis to confirm the RNA polynucleotide is the proper size and that no degradation of the RNA has occurred. The RNA polynucleotide product may also be sequenced by running a reverse-transcription-PCR to generate the cDNA for sequencing.

Example 6: PolyA Tailing Reaction

Without a poly-T in the cDNA, a poly-A tailing reaction must be performed before cleaning the final product. This is
done by mixing capped IVT RNA ($100 \mu \mathrm{l}$); RNase Inhibitor (20 U); $10 \times$ Tailing Buffer (0.5 M Tris- $\mathrm{HCl}(\mathrm{pH} 8.0$), 2.5 M $\mathrm{NaCl}, 100 \mathrm{mM} \mathrm{MgCl} \mathrm{I}_{2}$ ($12.0 \mu \mathrm{l}$); 20 mM ATP ($6.0 \mu \mathrm{l}$); Poly-A Polymerase (20 U); $\mathrm{dH}_{2} \mathrm{O}$ up to $123.5 \mu \mathrm{l}$ and incubation at $37^{\circ} \mathrm{C}$. for 30 min . If the poly-A tail is already in the transcript, then the tailing reaction may be skipped and proceed directly to cleanup with Ambion's MEGACLEAR ${ }^{\text {TM }}$ kit (Austin, Tex.) (up to $500 \mu \mathrm{~g}$). Poly-A Polymerase may be a recombinant enzyme expressed in yeast.

It should be understood that the processivity or integrity of the polyA tailing reaction may not always result in an exact size polyA tail. Hence, polyA tails of approximately between 40-200 nucleotides, e.g., about 40, 50, 60, 70, 80, $90,91,92,93,94,95,96,97,98,99,100,101,102,103$, $104,105,106,107,108,109,110,150-165,155,156,157$, $158,159,160,161,162,163,164$ or 165 are within the scope of the present disclosure.

Example 7: Natural 5' Caps and 5' Cap Analogues

5'-capping of polynucleotides may be completed concomitantly during the in vitro-transcription reaction using the following chemical RNA cap analogs to generate the 5 '-guanosine cap structure according to manufacturer protocols: $3^{\prime}-\mathrm{O}-\mathrm{Me}-\mathrm{m} 7 \mathrm{G}\left(5^{\prime}\right) \mathrm{ppp}\left(5^{\prime}\right) \mathrm{G}$ [the ARCA cap];G(5') ppp($\left.5^{\prime}\right) \mathrm{A} ; \mathrm{G}\left(5^{\prime}\right) \mathrm{ppp}\left(5^{\prime}\right) \mathrm{G} ; \mathrm{m} 7 \mathrm{G}\left(5^{\prime}\right) \mathrm{ppp}\left(5^{\prime}\right) \mathrm{A} ; \mathrm{m} 7 \mathrm{G}\left(5^{\prime}\right) \mathrm{ppp}$ (5^{\prime}) G (New England BioLabs, Ipswich, Mass.). 5^{\prime}-capping of modified RNA may be completed post-transcriptionally using a Vaccinia Virus Capping Enzyme to generate the "Cap 0" structure: m7G(5')ppp(5')G (New England BioLabs, Ipswich, Mass.). Cap 1 structure may be generated using both Vaccinia Virus Capping Enzyme and a $2^{\prime}-\mathrm{O}$ methyl-transferase to generate: $\mathrm{m} 7 \mathrm{G}\left(5^{\prime}\right) \mathrm{ppp}\left(5^{\prime}\right) \mathrm{G}-2^{\prime}-\mathrm{O}-$ methyl. Cap 2 structure may be generated from the Cap 1 structure followed by the 2^{\prime}-O-methylation of the 5^{\prime}-antepenultimate nucleotide using a 2^{\prime}-O methyl-transferase. Cap 3 structure may be generated from the Cap 2 structure followed by the 2 '-O-methylation of the 5^{\prime}-preantepenultimate nucleotide using a $2^{\prime}-0$ methyl-transferase. Enzymes are preferably derived from a recombinant source.

When transfected into mammalian cells, the modified mRNAs have a stability of between 12-18 hours or more than 18 hours, e.g., $24,36,48,60,72$ or greater than 72 hours.

Example 8: Capping Assays

Protein Expression Assay

Polynucleotides (e.g., mRNA) encoding a polypeptide, containing any of the caps taught herein, can be transfected into cells at equal concentrations. The amount of protein secreted into the culture medium can be assayed by ELISA at $6,12,24$ and/or 36 hours post-transfection. Synthetic polynucleotides that secrete higher levels of protein into the medium correspond to a synthetic polynucleotide with a higher translationally-competent cap structure.
Purity Analysis Synthesis
RNA (e.g., mRNA) polynucleotides encoding a polypeptide, containing any of the caps taught herein can be compared for purity using denaturing Agarose-Urea gel electrophoresis or HPLC analysis. RNA polynucleotides with a single, consolidated band by electrophoresis correspond to the higher purity product compared to polynucleotides with multiple bands or streaking bands. Chemically modified RNA polynucleotides with a single HPLC peak also corre-
spond to a higher purity product. The capping reaction with a higher efficiency provides a more pure polynucleotide population.

Cytokine Analysis

RNA (e.g., mRNA) polynucleotides encoding a polypeptide, containing any of the caps taught herein can be transfected into cells at multiple concentrations. The amount of pro-inflammatory cytokines, such as TNF-alpha and IFNbeta, secreted into the culture medium can be assayed by ELISA at 6, 12, 24 and/or 36 hours post-transfection. RNA polynucleotides resulting in the secretion of higher levels of pro-inflammatory cytokines into the medium correspond to a polynucleotides containing an immune-activating cap structure.

Capping Reaction Efficiency

RNA (e.g., mRNA) polynucleotides encoding a polypeptide, containing any of the caps taught herein can be analyzed for capping reaction efficiency by LC-MS after nuclease treatment. Nuclease treatment of capped polynucleotides yield a mixture of free nucleotides and the capped 5'-5triphosphate cap structure detectable by LC-MS. The amount of capped product on the LC-MS spectra can be expressed as a percent of total polynucleotide from the reaction and correspond to capping reaction efficiency. The cap structure with a higher capping reaction efficiency has a higher amount of capped product by LC-MS.

Example 9: Agarose Gel Electrophoresis of Modified RNA or RT PCR Products

Individual RNA polynucleotides (200-400 ng in a $20 \mu 1$ volume) or reverse transcribed PCR products (200-400 ng) may be loaded into a well on a non-denaturing 1.2% Agarose E-Gel (Invitrogen, Carlsbad, Calif.) and run for 12-15 minutes, according to the manufacturer protocol.

Example 10: Nanodrop Modified RNA
Quantification and UV Spectral Data
Chemically modified RNA polynucleotides in TE buffer ($1 \mu \mathrm{l}$) are used for Nanodrop UV absorbance readings to quantitate the yield of each polynucleotide from an chemical synthesis or in vitro transcription reaction.

Example 11: Formulation of Modified mRNA
 Using Lipidoids

RNA (e.g., mRNA) polynucleotides may be formulated for in vitro experiments by mixing the polynucleotides with the lipidoid at a set ratio prior to addition to cells. In vivo formulation may require the addition of extra ingredients to facilitate circulation throughout the body. To test the ability of these lipidoids to form particles suitable for in vivo work, a standard formulation process used for siRNA-lipidoid formulations may be used as a starting point. After formation of the particle, polynucleotide is added and allowed to integrate with the complex. The encapsulation efficiency is determined using a standard dye exclusion assays.

Example 12: Immunogenicity Study

The instant study is designed to test the immunogenicity in mice of candidate hMPV vaccines comprising a mRNA polynucleotide encoding Fusion (F) glycoprotein, major surface glycoprotein G, or a combination thereof, obtained from hMPV.

Mice are immunized intravenously (IV), intramuscularly (IM), or intradermally (ID) with candidate vaccines. Candidate vaccines are chemically modified or unmodified. A total of four immunizations are given at 3 -week intervals (i.e., at weeks $0,3,6$, and 9), and sera are collected after each immunization until weeks 33-51. Serum antibody titers against Fusion (F) glycoprotein or major surface glycoprotein (G) protein are determined by ELISA. Sera collected from each mouse during weeks $10-16$ are pooled, and total IgG purified. Purified antibodies are used for immunoelectron microscopy, antibody-affinity testing, and in vitro protection assays.

Example 13: hMPV Rodent Challenge

The instant study is designed to test the efficacy in cotton rats of candidate hMPV vaccines against a lethal challenge using an hMPV vaccine comprising mRNA encoding Fusion (F) glycoprotein, major surface glycoprotein G, or a combination of both antigens obtained from hMPV. Cotton rats are challenged with a lethal dose of the hMPV.

Animals are immunized intravenously (IV), intramuscularly (IM), or intradermally (ID) at week 0 and week 3 with candidate hMPV vaccines with and without adjuvant. Candidate vaccines are chemically modified or unmodified. The animals are then challenged with a lethal dose of hMPV on week 7 via IV, IM or ID. Endpoint is day 13 post infection, death or euthanasia. Animals displaying severe illness as determined by $>30 \%$ weight loss, extreme lethargy or paralysis are euthanized. Body temperature and weight are assessed and recorded daily.

In experiments where a lipid nanoparticle (LNP) formulation is used, the formulation may include a cationic lipid, non-cationic lipid, PEG lipid and structural lipid in the ratios $50: 10: 1.5: 38.5$. The cationic lipid is DLin-KC2-DMA (50 mol \%) or DLin-MC3-DMA ($50 \mathrm{~mol} \%$), the non-cationic lipid is DSPC ($10 \mathrm{~mol} \%$), the PEG lipid is PEG-DOMG (1.5 $\mathrm{mol} \%$) and the structural lipid is cholesterol ($38.5 \mathrm{~mol} \%$), for example.

Example 14: Immunogenicity of hMPV mRNA Vaccine in BALB/c Mice

The instant study was designed to test the immunogenicity in BALB/c mice of hMPV vaccines comprising an mRNA polynucleotide encoding the hMPV Fusion (F) glycoprotein. The mRNA polynucleotide encodes the fulllength fusion protein and comprises the wild-type nucleotide sequence obtained from the hMPV A2a strain. Mice were divided into 3 groups ($\mathrm{n}=8$ for each group) and immunized intramuscularly (IM) with PBS, a $10 \mu \mathrm{~g}$ dose of mRNA vaccines encoding hMPV fusion protein, or a $2 \mu \mathrm{~g}$ dose of mRNA vaccines encoding hMPV fusion protein. A total of two immunizations were given at 3 -week intervals (i.e., at weeks 0 , and 3 weeks), and sera were collected after each immunization according to the schedule described in Table 1. Serum antibody titers against hMPV fusion glycoprotein were determined by ELISA and antibodies were detected in the sera collected on day 14 onward. Both vaccine doses tested induced comparable levels of immune response in mice (FIGS. 2A-2C).

Additionally, mice sera were used for IgG isotyping (FIGS. 3A-3C). Both hMPV fusion protein-specific IgG1 and IgG2a were detected in mice sera. hMPV fusion protein mRNA vaccine also induced Th 1 and Th 2 cytokine responses, with a Th1 bias.

Sera from mice immunized with either $10 \mu \mathrm{~g}$ or $2 \mu \mathrm{~g}$ doses of the hMPV fusion protein mRNA vaccine contain neutralizing antibodies. The ability of these antibodies to neutralize hMPV B2 strain was also tested. The antibody-containing sera successfully neutralized the hMPV B2 virus (FIG. 4).

Example 15: T-Cell Stimulation

The instant study was designed to test T-cell stimulation in the splenocytes of mice immunized with mRNA vaccines encoding hMPV fusion protein, as described herein. Immunization of BALB/c mice was performed as described in Example 14. The splenocytes for each group were pooled and split into two parts. One part of splenocytes from each group of mice was stimulated with hMPV-free media, Concanavalin A or a hMPV fusion protein peptide pool comprising 15 -mers (15 amino acids long); while the other part of splenocytes from each group of mice was stimulated with hMPV-free media, Concanavalin A or inactivated hMPV virus. Secreted mouse cytokines were measured using the Meso Scale Discovery (MSD) assay.

Cytokines specific to Th1 or Th2 responses were measured. For Th1 response, IFN- γ, IL2 and IL12 were detected from splenocytes stimulated with the hMPV fusion protein peptide pool at a level comparable to that of Concanavalin A (FIGS. 5A-5C). For a Th2 response, the hMPV fusion protein peptide pool induced the secretion of detectable IL10, TNF- α, IL 4 and IL, but not IL 5 , while Concanavalin A stimulated the secretion of all the above-mentioned Th2 cytokines (FIGS. 6A-6E) at a much higher level.

In contrast, inactivated hMPV virus only induced the secretion of IL2 in the Th1 response comparable to that of Concanavalin A (FIGS. 7A-7C). For the Th2 response, the inactivated hMPV virus induced the secretion of detectable IL10, TNF- α, IL 4 and IL6, but not IL5, while Concanavalin A stimulated the secretion of all the above-mentioned Th2 cytokines (FIGS. 8A-8E) at a much higher level.

Example 16: hMPV Rodent Challenge in Cotton Rats Immunized with mRNA Vaccine Encoding hMPV Fusion Protein

The instant study was designed to test the efficacy in cotton rats of hMPV vaccines against a lethal challenge. mRNA vaccines encoding hMPV fusion protein were used. The mRNA polynucleotide encodes a full-length fusion protein and comprises the wild-type nucleotide sequence obtained from the hMPV A2a strain.
Cotton rats were immunized intramuscularly (IM) at week 0 and week 3 with the mRNA vaccines encoding hMPV fusion protein with either $2 \mu \mathrm{~g}$ or $10 \mu \mathrm{~g}$ doses for each immunization. The animals were then challenged with a lethal dose of hMPV in week 7 post initial immunization via IV, IM or ID. The endpoint was day 13 post infection, death or euthanasia. Viral titers in the noses and lungs of the cotton rats were measured. The results (FIGS. 9A and 9B) show that a $10 \mu \mathrm{~g}$ dose of mRNA vaccine protected the cotton mice 100% in the lung and drastically reduced the viral titer in the nose after challenge ($\sim 2 \log$ reduction). Moreover, a $2 \mu \mathrm{~g}$ dose of mRNA vaccine showed a $1 \log$ reduction in lung viral titer in the cotton mice challenged.

Further, the histopathology of the lungs of the cotton mice immunized and challenged showed no pathology associated with vaccine-enhanced disease (FIG. 10).

Example 17: Immunogenicity Study
The instant study is designed to test the immunogenicity in mice of candidate PIV3 vaccines comprising a mRNA
polynucleotide encoding hemagglutinin-neuraminidase or fusion protein (F or F0) obtained from PIV3.

Mice are immunized intravenously (IV), intramuscularly (IM), or intradermally (ID) with candidate vaccines. Candidate vaccines are chemically modified or unmodified. A total of four immunizations are given at 3-week intervals (i.e., at weeks $0,3,6$, and 9), and sera are collected after each immunization until weeks 33-51. Serum antibody titers against hemagglutinin-neuraminidase or fusion protein (F or F0) are determined by ELISA. Sera collected from each mouse during weeks $10-16$ are, optionally, pooled, and total IgGs are purified. Purified antibodies are used for immunoelectron microscopy, antibody-affinity testing, and in vitro protection assays.

Example 18: PIV3 Rodent Challenge

The instant study is designed to test the efficacy in cotton rats of candidate PIV3 vaccines against a lethal challenge using a PIV3 vaccine comprising mRNA encoding hemag-glutinin-neuraminidase or fusion protein (F or F0) obtained from PIV3. Cotton rats are challenged with a lethal dose of the PIV3.

Animals are immunized intravenously (IV), intramuscularly (IM), or intradermally (ID) at week 0 and week 3 with candidate PIV3 vaccines with and without adjuvant. Candidate vaccines are chemically modified or unmodified. The animals are then challenged with a lethal dose of PIV3 on week 7 via IV, IM or ID. Endpoint is day 13 post infection, death or euthanasia. Animals displaying severe illness as determined by $>30 \%$ weight loss, extreme lethargy or paralysis are euthanized. Body temperature and weight are assessed and recorded daily.

In experiments where a lipid nanoparticle (LNP) formulation is used, the formulation may include a cationic lipid, non-cationic lipid, PEG lipid and structural lipid in the ratios 50:10:1.5:38.5. The cationic lipid is DLin-KC2-DMA (50 $\mathrm{mol} \%$) or DLin-MC3-DMA ($50 \mathrm{~mol} \%$), the non-cationic lipid is DSPC ($10 \mathrm{~mol} \%$), the PEG lipid is PEG-DOMG (1.5 $\mathrm{mol} \%$) and the structural lipid is cholesterol ($38.5 \mathrm{~mol} \%$), for example.

Example 19: hMPV/PIV Cotton Rat Challenge

The instant study was designed to test the efficacy in cotton rats of candidate hMPV mRNA vaccines, PIV3 mRNA vaccines, or hMPV/PIV combination mRNA vaccines against a lethal challenge using PIV3 strain or hMPV/ A2 strain. The study design is shown in Table 9.

Cotton rats of $10-12$ weeks old were divided into 12 groups ($\mathrm{n}=5$), and each group was vaccinated with mRNA vaccines indicated in Table 9. The PIV3 vaccine comprises mRNA encoding hemagglutinin-neuraminidase or fusion protein (F or F0) obtained from PIV3. The hMPV mRNA vaccine encodes the full-length hMPV fusion protein. The hMPV/PIV combination mRNA vaccine is a mixture of the PIV3 vaccine and hMPV vaccine at a $1: 1$ ratio.

Cotton rats were immunized intramuscularly (IM) at week 0 and week 3 with candidate vaccines with the doses indicated in Table 9. Cotton rats immunized with hMPV mRNA vaccines or hMPV/PIV combination mRNA vaccines were challenged with a lethal dose of hMPV/A2 strain on week 7 via IM. Cotton rats immunized with PIV mRNA vaccines or hMPV/PIV combination mRNA vaccines were challenged with a lethal dose of PIV3 strain on week 7 via IM.

The endpoint was day 13 post infection, death or euthanasia. Animals displaying severe illness as determined by $>30 \%$ weight loss, extreme lethargy or paralysis were euthanized. Body temperature and weight were assessed and recorded daily.

Lung and nose hMPV/A2 (FIG. 12) or PIV3 (FIG. 13) viral titers were assessed. Lung histopathology of the immunized and challenged cotton rat immunized and challenged were assessed to determine pathology associated with vaccine enhance disease. Neutralization antibody titers in the serum of immunized cotton rats on day 0 and 42 post immunization were assessed (FIG. 11).
hMPV/A2 (FIG. 14) or PIV3 (FIG. 15) neutralizing antibody titers in the serum samples of the immunized cotton rat 42 days post immunization were measured. All mRNA vaccines tested induced strong neutralizing antibodies cotton rats. Lung histopathology of the immunized cotton rats were also evaluated (FIG. 16). Low occurrence of alevolitis and interstitial pneumonia was observed, indicating no antibody-dependent enhancement (ADE) of hMPV or PIV associated diseases.

Example 20: Betacoronavirus Immunogenicity Study

The instant study is designed to test the immunogenicity in rabbits of candidate betacoronavirus (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1 or a combination thereof) vaccines comprising a mRNA polynucleotide encoding the spike (S) protein, the S1 subunit (S1) of the spike protein, or the S 2 subunit (S 2) of the spike protein obtained from a betacoronavirus (e.g., MERS-CoV, SARSCoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1).

Rabbits are vaccinated on week 0 and 3 via intravenous (IV), intramuscular (IM), or intradermal (ID) routes. One group remains unvaccinated and one is administered inactivated betacoronavirus. Serum is collected from each rabbit on weeks 1, 3 (pre-dose) and 5. Individual bleeds are tested for anti-S, anti-S1 or anti-S2 activity via a virus neutralization assay from all three time points, and pooled samples from week 5 only are tested by Western blot using inactivated betacoronavirus (e.g., inactivated MERS-CoV, SARSCoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1).

In experiments where a lipid nanoparticle (LNP) formulation is used, the formulation may include a cationic lipid, non-cationic lipid, PEG lipid and structural lipid in the ratios 50:10:1.5:38.5. The cationic lipid is DLin-KC2-DMA (50 $\mathrm{mol} \%$) or DLin-MC3-DMA ($50 \mathrm{~mol} \%$), the non-cationic lipid is DSPC ($10 \mathrm{~mol} \%$), the PEG lipid is PEG-DOMG (1.5 $\mathrm{mol} \%$) and the structural lipid is cholesterol ($38.5 \mathrm{~mol} \%$), for example.

Example 21: Betacoronavirus Challenge

The instant study is designed to test the efficacy in rabbits of candidate betacoronavirus (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-HKU1 or a combination thereof) vaccines against a lethal challenge using a betacoronavirus (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-HKU1 or a combination thereof) vaccine comprising mRNA encoding the spike (S) protein, the S1 subunit (S1) of the spike protein, or the S 2 subunit (S 2) of the spike protein obtained from betacoronavirus (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL,
$\mathrm{HCoV}-\mathrm{NH}$ or HCoV-HKU1). Rabbits are challenged with a lethal dose ($10 \times \mathrm{LD} 90 ; \sim 100$ plaque-forming units; PFU) of betacoronavirus (e.g., MERS-CoV, SARS-CoV, HCoVOC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1).

The animals used are 6-8 week old female rabbits in groups of 10 . Rabbits are vaccinated on weeks 0 and 3 via an IM, ID or IV route of administration. Candidate vaccines are chemically modified or unmodified. Rabbit serum is tested for microneutralization (see Example 14). Rabbits are then challenged with ~ 1 LD90 of betacoronavirus (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1) on week 7 via an IN, IM, ID or IV route of administration. Endpoint is day 13 post infection, death or euthanasia. Animals displaying severe illness as determined by $>30 \%$ weight loss, extreme lethargy or paralysis are euthanized. Body temperature and weight are assessed and recorded daily.

Example 22: Microneutralization Assay

Nine serial 2 -fold dilutions (1:50-1:12,800) of rabbit serum are made in $50 \mu 1$ virus growth medium (VGM) with trypsin in 96 well microtiter plates. Fifty microliters of virus containing $\sim 50 \mathrm{pfu}$ of betacoronavirus (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1) is added to the serum dilutions and allowed to incubate for 60 minutes at room temperature (RT). Positive control wells of virus without sera and negative control wells without virus or sera are included in triplicate on each plate. While the serumvirus mixtures incubate, a single cell suspension of MadinDarby Canine-Kidney cells are prepared by trypsinizing (Gibco 0.5\% bovine pancrease trypsin in EDTA) a confluent monolayer and suspended cells are transferred to a 50 ml centrifuge tube, topped with sterile PBS and gently mixed. The cells are then pelleted at 200 g for 5 minutes, supernatant aspirated and cells resuspended in PBS. This procedure is repeated once and the cells are resuspended at a concentration of $3 \times 10^{5} / \mathrm{ml}$ in VGM with porcine trypsin. Then, 100 $\mu 1$ of cells are added to the serum-virus mixtures and the plates incubated at $35^{\circ} \mathrm{C}$. in C 02 for 5 days. The plates are fixed with 80% acetone in phosphate buffered saline (PBS) for 15 minutes at RT, air dried and then blocked for 30 minutes containing PBS with 0.5% gelatin and 2% FCS. An antibody to the S proteins, S 1 protein or S 2 protein is diluted in PBS with 0.5% gelatin $/ 2 \%$ FCS $/ 0.5 \%$ Tween 20 and incubated at RT for 2 hours. Wells are washed and horseradish peroxidase-conjugated goat anti-mouse IgG added, followed by another 2 hour incubation. After washing, O-phenylenediamine dihydrochloride is added and the neutralization titer is defined as the titer of serum that reduced color development by 50% compared to the positive control wells.

Example 23: MERS CoV Vaccine Immunogenicity Study in Mice

The instant study was designed to test the immunogenicity in mice of candidate MERS-CoV vaccines comprising a mRNA polynucleotide encoding the full-length Spike (S) protein, or the S2 subunit (S2) of the Spike protein obtained from MERS-CoV.

Mice were vaccinated with a $10 \mu \mathrm{~g}$ dose of MERS-CoV mRNA vaccine encoding either the full-length MERS-CoV Spike (S) protein, or the S 2 subunit (S2) of the Spike protein
on days 0 and 21 . Sera were collected from each mice on days $0,21,42$, and 56 . Individual bleeds were tested for anti-S, anti-S2 activity via a virus neutralization assay from all four time points.
As shown in FIG. 17, the MERS-CoV vaccine encoding the full-length S protein induced strong immune response after the boost dose on day 21 . Further, full-length S protein vaccine generated much higher neutralizing antibody titers as compared to S2 alone (FIG. 18).

Example 24: MERS CoV Vaccine Immunogenicity Study in New Zealand White Rabbits

The instant study was designed to test the immunogenicity of candidate MERS-CoV mRNA vaccines encoding the full-length Spike (S) protein. The New Zealand white rabbits used in this study weighed about $4-5 \mathrm{~kg}$. The rabbits were divided into three groups (Group 1a, Group 1b, and Group $2, \mathrm{n}=8$). Rabbits in Group 1a were immunized intramuscularly (IM) with one $20 \mu \mathrm{~g}$ dose of the MERS-CoV mRNA vaccine encoding the full-length Spike protein on day 0. Rabbits in Group 1b were immunized intramuscularly (IM) with one $20 \mu \mathrm{~g}$ dose of the MERS-CoV mRNA vaccine encoding the full-length Spike protein on day 0 , and again on day 21 (booster dose). Group 2 received placebo (PBS). The immunized rabbits were then challenged and samples were collected 4 days after challenge. The viral loads in the lungs, bronchoalveolar lavage (Bal), nose, and throat of the rabbits were determined, e.g., via quantitative PCR. Replicating virus in the lung tissues of the rabbits were also detected. Lung histopathology were evaluated and the neutralizing antibody titers in serum samples of the rabbits were determined.

Two $20 \mu \mathrm{~g}$ doses of MERS-CoV mRNA vaccine resulted in a $3 \log$ reduction of viral load in the nose and led to complete protection in the throat of the New Zealand white rabbits (FIG. 19A). Two $20 \mu \mathrm{~g}$ doses of MERS-CoV mRNA vaccine also resulted in a $4 \log$ reduction of viral load in the BAL of the New Zealand white rabbits (FIG. 19B). One 20 $\mu \mathrm{g}$ dose of MERS-CoV mRNA vaccine resulted in a $2 \log$ reduction of viral load, while two $20 \mu \mathrm{~g}$ doses of MERSCoV mRNA vaccine resulted in an over $4 \log$ reduction of viral load in the lungs of the New Zealand white rabbits (FIG. 19C).

Quantitative PCR results show that two $20 \mu \mathrm{~g}$ doses of MERS-CoV mRNA vaccine reduced over 99% (2 log) of viruses in the lungs of New Zealand white rabbits (FIG. 20A). No replicating virus were detected in the lungs (FIG. 20B).

Further, as shown in FIG. 21, two $20 \mu \mathrm{~g}$ doses of MERS-CoV mRNA vaccine induced significant amount of neutralizing antibodies against MERS-CoV (ECso between 500-1000).
The MERS-CoV mRNA vaccine induced antibody titer is 3-5 fold better than any other vaccines tested in the same model.

Example 25: Immunogenicity Study

The instant study is designed to test the immunogenicity in mice of candidate MeV vaccines comprising a mRNA polynucleotide encoding MeV hemagglutinin (HA) protein, MeV Fusion (F) protein or a combination of both.

Mice are immunized intravenously (IV), intramuscularly (IM), or intradermally (ID) with candidate vaccines. Up to three immunizations are given at 3 -week intervals (i.e., at weeks $0,3,6$, and 9), and sera are collected after each
immunization until weeks 33-51. Serum antibody titers against MeV HA protein or MeV F protein are determined by ELISA.

Example 26: MeV Rodent Challenge

The instant study is designed to test the efficacy in transgenic mice of candidate MeV vaccines against a lethal challenge using a MeV vaccine comprising mRNA encoding MeV HA protein or MeV F protein. The transgenic mice express human receptor CD46 or signaling lymphocyte activation molecule (SLAM) (also referred to as CD150). Humans are the only natural host for MeV infection, thus transgenic lines are required for this study. CD46 is a complement regulatory protein that protects host tissue from complement deposition by binding to complement components C 3 b and C 4 b . Its expression on murine fibroblast and lymphoid cell lines renders these otherwise refractory cells permissive for MeV infection, and the expression of CD46 on primate cells parallels the clinical tropism of MeV infection in humans and nonhuman primates (Rall G F et al. PNAS USA 1997; 94(9):4659-63). SLAM is a type 1 membrane glycoprotein belonging to the immunoglobulin super-
family. It is expressed on the surface of activated lymphocytes, macrophages, and dendritic cells and is thought to play an important role in lymphocyte signaling. SLAM is a receptor for both wild-type and vaccine MeV strains (Sellin C I et al. J Virol. 2006; 80(13):6420-29).

CD46 or SLAM/CD150 transgenic mice are challenged with a lethal dose of the MeV . Animals are immunized intravenously (IV), intramuscularly (IM), or intradermally (ID) at week 0 and week 3 with candidate MeV vaccines with and without adjuvant. The animals are then challenged with a lethal dose of MeV on week 7 via IV, IM or ID. Endpoint is day 13 post infection, death or euthanasia. Animals displaying severe illness as determined by $>30 \%$ weight loss, extreme lethargy or paralysis are euthanized. Body temperature and weight are assessed and recorded daily.

In experiments where a lipid nanoparticle (LNP) formulation is used, the formulation may include a cationic lipid, non-cationic lipid, PEG lipid and structural lipid in the ratios $50: 10: 1.5: 38.5$. The cationic lipid is DLin-KC2-DMA (50 $\mathrm{mol} \%$), the non-cationic lipid is DSPC ($10 \mathrm{~mol} \%$), the PEG lipid is PEG-DOMG ($1.5 \mathrm{~mol} \%$) and the structural lipid is cholesterol ($38.5 \mathrm{~mol} \%$), for example.

TABLE 1

hMPV Immunogenicity studies bleeding schedule									
	Animal groups	Day							
	($\mathrm{n}=8$) vaccine	-2	0	7	14	21	28	35	56
Placebo	Group PBS $1(\mathrm{n}=8)$ (IM)	Pre-Bleed	Prime	Bleeds	Bleeds	Bleeds/Boost	Bleeds	Bleeds	Harvest Spleens/Term-
$10 \mu \mathrm{~g}$	Group $10 \mu \mathrm{~g}$								inal Bleeds
Dose	$2(\mathrm{n}=8)(\mathrm{IM})$								
$2 \mu \mathrm{~g}$	Group $2 \mu \mathrm{~g}$								
Dose	$3(\mathrm{n}=8)(\mathrm{IM})$								

Total $\mathrm{n}=24$

40 Each of the sequences described herein encompasses a chemically modified sequence or an unmodified sequence which includes no nucleotide modifications.

TABLE 2

TABLE 2-continued

Description	Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$	
	AAGGCCGCTCCTAGCTGCTCCGAGAAGAAAGGAAACTAT		
	GCCTGTCTGCTGAGAGAGGACCAGGGCTGGTACTGCCAG		
	AACGCCGGAAGCACAGTGTACTATCCCAACGAGAAGGAC		
	TGCGAGACCAGAGGCGACCACGTGTTCTGCGACACCGCT		
	GCCGGAATCAACGTGGCCGAGCAGAGCAAGGAGTGCAA		
	CATCAACATCAGCACAACCAACTACCCCTGCAAGGTGAG		
	CACCGGACGGCACCCCATCAGCATGGTGGCTCTGAGCCC		
	TCTGGGCGCTCTGGTGGCCTGCTATAAGGGCGTGTCCTGT		
	AGCATCGGCAGCAATCGGGTGGGCATCATCAAGCAGCTG		
	AACAAGGGATGCTCCTACATCACCAACCAGGACGCCGAC		
	ACCGTGACCATCGACAACACCGTGTACCAGCTGAGCAAG		
	GTGGAGGGCGAGCAGCACGTGATCAAGGGCAGACCCGT		
	GAGCTCCAGCTTCGACCCCATCAAGTTCCCTGAGGACCA		
	GTTCAACGTGGCCCTGGACCAGGTGTTTGAGAACATCGA		
	GAACAGCCAGGCCCTGGTGGACCAGAGCAACAGAATCCT		
	GTCCAGCGCTGAGAAGGGCAACACCGGCTTCATCATTGT		
	GATCATTCTGATCGCCGTGCTGGGCAGCTCCATGATCCTG		
	GTGAGCATCTTCATCATTATCAAGAAGACCAAGAAACCC		
	ACCGGAGCCCCTCCTGAGCTGAGCGGCGTGACCAACAAT		
	GGCTTCATTCCCCACAACTGA		
```gb\|AY525843.1	: 3065-4684 Human metapneumovirus isolate NL/1/99, complete genome```	ATGTCTTGGAAAGTGATGATCATCATTTCGTTACTCATAA	2
	CACCCCAGCACGGGCTAAAGGAGAGTTATTTGGAAGAAT		
	CATGTAGTACTATAACTGAGGGATACCTCAGTGTTTTAAG		
	AACAGGCTGGTACACTAATGTCTTCACATTAGAAGTTGGT		
	GATGTTGAAAATCTTACATGTACTGATGGACCTAGCTTAA		
	TCAAAACAGAACTTGATCTAACAAAAAGTGCTTTAAGGG		
	AACTCAAAACAGTCTCTGCTGATCAGTTGGCGAGAGAGG		
	AGCAAATTGAAAATCCCAGACAATCAAGATTTGTCTTAG		
	GTGCGATAGCTCTCGGAGTTGCTACAGCAGCAGCAGTCA		
	CAGCAGGCATTGCAATAGCCAAAACCATAAGGCTTGAGA		
	GTGAGGTGAATGCAATTAAAGGTGCTCTCAAACAAACTA		
	ATGAAGCAGTATCCACATTAGGGAATGGTGTGCGGGTCC		
	TAGCCACTGCAGTGAGAGAGCTAAAAGAATTTGTGAGCA		
	AAAACCTGACTAGTGCAATCAACAGGAACAAATGTGACA		
	TTGCTGATCTGAAGATGGCTGTCAGCTTCAGTCAATTCAA		
	CAGAAGATTTCTAAATGTTGTGCGGCAGTTTTCAGACAAT		
	GCAGGGATAACACCAGCAATATCATTGGACCTGATGACT		
	GATGCTGAGTTGGCCAGAGCTGTATCATACATGCCAACA		
	TCTGCAGGGCAGATAAAACTGATGTTGGAGAACCGCGCA		
	ATGGTAAGGAGAAAAGGATTTGGAATCCTGATAGGGGTC		
	TACGGAAGCTCTGTGATTTACATGGTTCAATTGCCGATCT		
	TTGGTGTCATAGATACACCTTGTTGGATCATCAAGGCAGC		
	TСССТСТTGCTCAGAAAAAACGGGAATTATGCTTGCCTC		
	CTAAGAGAGGATCAAGGGTGGTATTGTAAAAATGCAGGA		
	TCTACTGTTTACTACCCAAATGAAAAAGACTGCGAAACA		
	AGAGGTGATCATGTTTTTTGTGACACAGCAGCAGGGATC		
	AATGTTGCTGAGCAATCAAGAGAATGCAACATCAACATA		
	TCTACTACCAACTACCCATGCAAAGTCAGCACAGGAAGA		
	CACCCTATAAGCATGGTTGCACTATCACCTCTCGGTGCTT		
	TGGTGGCTTGCTATAAAGGGGTAAGCTGCTCGATTGGCA		
	GCAATTGGGT		
	TGGAATCATCAAACAATTACCCAAAGGCTGCTCATACAT		
	AACCAACCAGGATGCAGACACTGTAACAATTGACAATAC		
	CGTGTATCAACTAAGCAAAGTTGAAGGTGAACAGCATGT		
	AATAAAAGGGAGACCAGTTTCAAGCAGTTTTGATCCAAT		
	CAAGTTTCCTGAGGATCAGTTCAATGTTGCGCTTGATCAA		
	GTCTTCGAAAGCATTGAGAACAGTCAGGCACTAGTGGAC		
	CAGTCAAACAAAATTCTAAACAGTGCAGAAAAAGGAAA		
	CACTGGTTTCATTATCGTAGTAATTTTGGTTGCTGTTCTTG		
	GTCTAACCATGATTTCAGTGAGCATCATCATCATAATCAA		
	GAAAACAAGGAAGCCCACAGGAGCACCTCCAGAGCTGA		
	ATGGTGTCACCAACGGCGGTTTCATACCACATAGTTA		
gb\|KJ627414.1	: 3015-4634	ATGTCTTGGAAAGTGATGATTATCATTTCGTTACTCATAA	3
Human	CACCTCAGCATGGACTAAAAGAAAGTTATTTAGAAGAAT		
metapneumovirus	CATGTAGTACTATAACTGAAGGATATCTCAGTGTTTTAAG		
strain hMPV/Homo	AACAGGTTGGTACACCAATGTCTTTACATTAGAAGTTGGT		
sapiens/PER/CFI0497/	GATGTTGAAAATCTTACATGTACTGATGGACCTAGCTTAA		
$\begin{aligned} & 2010 / \mathrm{B}, \\ & \text { complete genome } \end{aligned}$	TCAAAACAGAACTTGACCTAACCAAAAGTGCTTTAAGAG		
	AACTCAAAACAGTTTCTGCTGATCAGTTAGCGAGAGAAG		
	AACAAATTGAAAATCCCAGACAATCAAGGTTTGTCCTAG		
	GTGCAATAGCTCTTGGAGTTGCCACAGCAGCAGCAGTCA		
	CAGCAGGCATTGCAATAGCCAAAACTATAAGGCTTGAGA		
	GTGAAGTGAATGCAATCAA.AGGTGCTCTCAAAACAACCA		

TABLE 2-continued

hMPV Nucleic Acid Sequences			
Description	Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$	
	ATGAGGCAGTATCAACACTAGGAAATGGAGTGCGGGTCC		
	TAGCCACTGCAGTAAGAGAGCTGAAAGAATTTGTGAGCA		
	AAAACCTGACTAGTGCGATCAACAAGAACAAGTGTGACA		
	TTGCTGATTTGAAGATGGCTGTCAGCTTCAGTCAGTTCAA		
	CAGAAGATTCCTAAATGTTGTGCGGCAGTTTTCAGACAAT		
	GCAGGGATAACACCAGCAATATCATTGGACCTGATGAAT		
	GATGCTGAGCTGGCCAGAGCTGTATCATACATGCCAACA		
	TCTGCAGGACAGATAAAACTAATGTTAGAGAACCGTGCA		
	ATGGTGAGGAGAAAAGGATTTGGAATCTTGATAGGGGTC		
	TACGGAAGCTCTGTGATTTACATGGTCCAGCTGCCGATCT		
	TTGGTGTCATAAATACACCTTGTTGGATAATCAAGGCAGC		
	TCCCTCTTGTTCAGAAAAAGATGGAAATTATGCTTGCCTC		
	CTAAGAGAGGATCAAGGGTGGTATTGTAAAAATGCAGGA		
	TCCACTGTTTACTACCCAAATGAAAAAGACTGCGAAACA		
	AGAGGTGATCATGTTTTTTGTGACACAGCAGCAGGGATC		
	AATGTTGCTGAGCAATCAAGAGAATGCAACATCAACATA		
	TCTACCACCAACTACCCATGCAAAGTCAGCACAGGAAGA		
	CACCCTATCAGCATGGTTGCACTATCACCTCTCGGTGCTT		
	TGGTAGCTTGCTACAAAGGGGTTAGCTGCTCGACTGGCA		
	GTAATCAGGTTGGAATAATCAAACAACTACCTAAAGGCT		
	GCTCATACATAACTAACCAGGACGCAGACACTGTAACAA		
	TTGACAACACTGTGTATCAACTAAGCAAAGTTGAGGGTG		
	AACAGCATGTAATAAAAGGGAGACCAGTTTCAAGCAGTT		
	TTGATCCAATCAGGTTTCCTGAGGATCAGTTCAATGTTGC		
	GCTTGATCAAGTCTTTGAAAGCATTGAAAACAGTCAAGC		
	ACTAGTGGACCAGTCAAACAAAATTCTGAACAGTGCAGA		
	AAAAGGAAACACTGGT		
	TTCATTATTGTAATAATTTTGATTGCTGTTCTTGGGTtAAC		
	CATGATTTCAGTGAGCATCATCATCATAATCAAAAAAAC		
	AAGGAAGCCCACAGGGGCACCTCCGGAGCTGAATGGTGT		
	TACCAACGGCGGTTTCATACCGCATAGTTAG		
```gb\|KJ723483.1	: 5586-7310 Human respiratory syncytial virus strain RSVA/Homo sapiens/USA/84I- 215A-01/1984, complete genome```	ATGGAGTTGCCAATCCTCAAAACAAATGCAATTACCACA	4
	ATCCTTGCTGCAGTCACACTCTGTTTCGCTTCCAGTCAAA		
	ACATCACTGAAGAATTTTATCAATCAACATGCAGTGCAG		
	TTAGCAAAGGCTATCTTAGTGCTCTAAGAACTGGTTGGTA		
	tactagtgttatanctatagan		
	AAATAAGTGTAATGGAACAGATGCTAAGGTAAAATTGAT		
	AAAACAAGAATTAGATAAATATAAAAATGCTGTAACAGA		
	ATTGCAGTTGCTCATGCAAAGCACACCAGCAGCCAACAA		
	TCGAGCCAGAAGAGAACTACCAAGGTTTATGAATTATAC		
	ACTCAATAATACCAAAAATACCAATGTAACATTAAGCAA		
	GAAAAGGAAAAGAAGATTTCTTGGCTTTTTGTTAGGTGTT		
	GGATCTGCAATCGCCAGTGGCATTGCTGTATCTAAGGTCC		
	TGCACCTAGAAGGGGAAGTGAACAAAATCAAAAGTGCTC		
	TACTATCCACAAACAAGGCTGTAGTCAGCTTATCAAATG		
	GAGTTAGTGTCTTAACCAGCAAAGTGTTAGACCTCAAAA		
	ACTATATAGATAAACAGTTGITACCTATTGTGAACAAGC		
	AAAGCTGCAGCATATCAAACATTGAAACTGTGATAGAGT		
	TCCAACAAAAGAACAACAGACTACTAGAGATTACCAGGG		
	AATTTAGTGTTAATGCAGGTGTAACTACACCTGTAAGCAC		
	TTATATGTTAACTAATAGTGAATTATTATCATTAATCAAT		
	GATATGCCTATAACAAATGATCAGAAAAAGTTAATGTCC		
	AACAATGTTCAAATAGTTAGACAGCAAAGTTACTCTATC		
	ATGTCCATAATAAAGGAGGAAGTCTTAGCATATGTAGTA		
	CAATTACCACTATATGGTGTAATAGATACACCCTGTTGGA		
	AACTGCACACATCCCCTCTATGTACAACCAACACAAAGG		
	AAGGGTCCAACATCTGCTTAACAAGAACCGACAGAGGAT		
	GGTATTGTGACAATGCAGGATCAGTATCTTTCTTCCCACA		
	AGCTGAAACATGTAAAGTTCAATCGAATCGGGTATTTTGT		
	GACACAATGAACAGTTTAACATTACCAAGTGAAGTAAAT		
	СTCTGCAACATTGACATATTCAACCCCAAATATGATTGCA		
	AAATTATGACTTCAAAAACAGATGTAAGCAGCTCCGTTA		
	TCACATCTCTAGGAGCCATTGTGTCATGCTATGGCAAAAC		
	TAAATGTACAGCATCCAATAAAAATCGTGGGATCATAAA		
	GACATTTTCTAACGGGTGTGATTATGTATCAAATAAGGG		
	GGTGGATACTGTGTCTGTAGGTAATACATTATATTATGTA		
	AATAAGCAAGAAGGCAAAAGTCTCTATGTAAAAGGTGAA		
	ССААТААТАААТTTCTATGACCCATTAGTGTTCCCCTCTG		
	ATGAATTTGATGCATCAATATCTCAAGTCAATGAGAAGA		
	TTAACCAGAGCCTAGCATTTATTCGTAAATCCGATGAATT		
	ATTACATAATGTAAATGCTGGTAAATCCACCACAAATAT		
	CATGATAACTACTATAATTATAGTGATTATAGTAATATTG		
	TTATCATTAATTGCAGTTGGACTGCTCCTATACTGCAAGG		
	CCAGAAGCACACCAGTCACACTAAGTAAGGATCAACTGA		

TABLE 2-continued

hMPV Nucleic Acid Sequences					
Description	Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$			
	GTGGTATAAATAATATTGCATTTAGTAACTGA				
	hMPV mRNA Sequences				
```gi\|122891979	gb	EF051124.1	Human metapneumo virus isolate TN/92-4 fusion protein gene, complete genome```	AUGAGCUGGAAGGUGGUGAUUAUCUUCAGCCUGCUGAU	57
	UACACCUCAACACGGCCUGAAGGAGAGCUACCUGGAAG				
	AGAGCUGCUCCACCAUCACCGAGGGCUACCUGAGCGUG				
	CUGCGGACCGGCUGGUACACCAACGUGUUCACCCUGGA				
	GGUGGGCGACGUGGAGAACCUGACCUGCAGCGACGGCC				
	CUAGCCUGAUCAAGACCGAGCUGGACCUGACCAAGAGC				
	GCUCUGAGAGAGCUGAAGACCGUGUCCGCCGACCAGCU				
	GGCCAGAGAGGAACAGAUCGAGAACCCUCGGCAGAGCA				
	GAUUCGUGCUGGGCGCCAUCGCUCUGGGAGUCGCCGCU				
	GCCGCUGCAGUGACAGCUGGAGUGGCCAUUGCUAAGAC				
	CAUCAGACUGGAAAGCGAGGUGACAGCCAUCAACAAUG				
	CCCUGAAGAAGACCAACGAGGCCGUGAGCACCCUGGGC				
	AAUGGAGUGAGAGUGCUGGCCACAGCCGUGCGGGAGCU				
	GAAGGACUUCGUGAGCAAGAACCUGACCAGAGCCAUCA				
	ACAAGAACAAGUGCGACAUCGAUGACCUGAAGAUGGCC				
	GUGAGCUUCUCCCAGUUCAA.ACAGACGGUUCCUGAACGU				
	GGUGAGACAGUUCUCCGACAACGCUGGAAUCACACCUG				
	CCAUUAGCCUGGACCUGAUGACCGACGCCGAGCUGGCU				
	AGAGCCGUGCCCAACAUGCCCACCAGCGCUGGCCAGAU				
	CAAGCUGAUGCUGGAGAACAGAGCCAUGGUGCGGAGAA				
	AGGGCUUCGGCAUCCUGAUUGGGGUGUAUGGAAGCUCC				
	GUGAUCUACAUGGUGCAGCUGCCCAUCUUCGGCGUGAU				
	CGACACACCCUGCUGGAUCGUGAAGGCCGCUCCUAGCU				
	GCUCCGAGAAGAAAGGAAACUAUGCCUGUCUGCUGAGA				
	GAGGACCAGGGCUGGUACUGCCAGAACGCCGGAAGCAC				
	AGUGUACUAUCCCAACGAGAAGGACUGCGAGACCAGAG				
	GCGACCACGUGUUCUGCGACACCGCUGCCGGAAUCAAC				
	GUGGCCGAGCAGAGCAAGGAGUGCAACAUCAACAUCAG				
	CACAACCAACUACCCCUGCAAGGUGAGCACCGGACGGC				
	ACCCCAUCAGCAUGGUGGCUCUGAGCCCUCUGGGCGCU				
	CUGGUGGCCUGCUAUAAGGGCGUGUCCUGUAGCAUCGG				
	CAGCAAUCGGGUGGGCAUCAUCAAGCAGCUGAACAAGG				
	GAUGCUCCUACAUCACCAACCAGGACGCCGACACCGUG				
	ACCAUCGACAACACCGUGUACCAGCUGAGCAAGGUGGA				
	GGGCGAGCAGCACGUGAUCAAGGGCAGACCCGUGAGCU				
	CCAGCUUCGACCCCAUCAAGUUCCCUGAGGACCAGUUC				
	AACGUGGCCCUGGACCAGGUGUUUGAGAACAUCGAGAA				
	CAGCCAGGCCCUGGUGGACCAGAGCAACAGAAUCCUGU				
	CCAGCGCUGAGAAGGGCAACACCGGCUUCAUCAUUGUG				
	AUCAUUCUGAUCGCCGUGCUGGGCAGCUCCAUGAUCCU				
	GGUGAGCAUCUUCAUCAUUAUCAAGAAGACCAAGAAAC				
	CCACCGGAGCCCCUCCUGAGCUGAGCGGCGUGACCAAC				
	AAUGGGCUUCAUUCCCCACAACUGA				
```gb\|AY525843.1	: 3065-4684 Human metapneumovirus isolate NL/1/99, complete genome```	AUGUCUUGGAAAGUGAUGAUCAUCAUUUCGUUACUCAU	58		
	AACACCCCAGCACGGGCUAAAGGAGAGUUAUUUGGAAG				
	AAUCAUGUAGUACUAUAACUGAGGGAUACCUCAGUGUU				
	UUAAGAACAGGCUGGUACACUAAUGUCUUCACAUUAGA				
	AGUUGGUGAUGUUGAAAAUCUUACAUGUACUGAUGGA				
	CCUAGCUUAAUCAAAACAGAACUUGAUCUAACAAAAAG				
	UGCUUUAAGGGAACUCAAA.ACAGUCUCUGCUGAUCAGU				
	UGGCGAGAGAGGAGCAAAUUGAAAAUCCCAGACAAUCA				
	AGAUUUGUCUUAGGUGCGAUAGCUCUCGGAGUUGCUAC				
	AGCAGCAGCAGUCACAGCAGGCAUUGCAAUAGCCAAAA				
	CCAUAAGGCUUGAGAGUGAGGUGAAUGCAAUUAAAGG				
	UGCUCUCAAACAAACUAAUGAAGCAGUAUCCACAUUAG				
	GGAAUGGUGUGCGGGUCCUAGCCACUGCAGUGAGAGAG				
	CUAAAAGAAUUUGUGAGCAAAAACCUGACUAGUGCAAU				
	CAACAGGAACAAAUGUGACAUUGCUGAUCUGAAGAUGG				
	CUGUCAGCUUCAGUCAAUUCAACAGAAGAUUUCUAAAU				
	GUUGUGCGGCAGUUUUCAGACAAUGCAGGGAUAACACC				
	AGCAAUAUCAUUGGACCUGAUGACUGAUGCUGAGUUGG				
	CCAGAGCUGUAUCAUACAUGCCAACAUCUGCAGGGCAG				
	AUAAAACUGAUGUUGGAGAACCGCGCAAUGGUAAGGAG				
	AAAAGGAUUUGGAAUCCUGAUAGGGGUCUACGGAAGCU				
	CUGUGAUUUACAUGGUUCA.AUUGCCGAUCUUUGGUGUC				
	AUAGAUACACCUUGUUGGAUCAUCAAGGCAGCUCCCUC				
	UUGCUCAGAAAAAAACGGGAAUUAUGCUUGCCUCCUAA				
	GAGAGGAUCAAGGGUGGUAUUGUAAAAAUGCAGGAUC				
	UACUGUUUACUACCCAAAUGAAAAAGACUGCGAAACAA				
	GAGGUGAUCCAUGUUUUUUGUGACACAGCAGCAGGGAUC				

TABLE 2-continued

hMPV Nucleic Acid Sequences			
Description	Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$	
	AAUGUUGCUGAGCAAUCAAGAGAAUGCAACAUCAACAU		
	AUCUACUACCAACUACCCAUGCAAAGUCAGCACAGGAA		
	GACACCCUAUAAGCAUGGUUGCACUAUCACCUCUCGGU		
	GCUUUGGUGGCUUGCUAUAAAGGGGUAAGCUGCUCGAU		
	UGGCAGCAAUUGGGU		
	UGGAAUCAUCAAACAAUUACCCAAAGGCUGCUCAUACA		
	UAACCAACCAGGAUGCAGACACUGUAACAAUUGACAAU		
	ACCGUGUAUCAACUAAGCAAAGUUGAAGGUGAACAGCA		
	UGUAAUAAAAGGGAGACCAGUUUCAAGCAGUUUUGAUC		
	CAAUCAAGUUUCCUGAGGAUCAGUUCAAUGUUGCGCUU		
	GAUCAAGUCUUCGAAAGCAUUGAGAACAGUCAGGCACU		
	AGUGGACCAGUCAAACAAAAUUCUAAACAGUGCAGAAA		
	AAGGAAACACUGGUUUCAUUAUCGUAGUAAUUUUGGU		
	UGCUGUUCUUGGUCUAACCAUGAUUUCAGUGAGCAUCA		
	UCAUCAUAAUCAAGAAAACAAGGAAGCCCACAGGAGCA		
	CCUCCAGAGCUGAAUGGUGUUCACCAACGGCGGUUUCAU		
	ACCACAUAGUUAG		
```gb\|KJ627414.1	: 3015-4634 Human metapneumovirus strain hMPV/Homo sapiens/PER/CFI0497/ 2010/B, complete genome```	AUGUCUUGGAAAGUGAUGAUUAUCAUUUCGUUACUCAU	59
	AACACCUCAGCAUGGACUAAAAGAAAGUUAUUUAGAAG		
	AAUCAUGUAGUACUAUAACUGAAGGAUAUCUCAGUGUU		
	UUAAGAACAGGUUGGUACACCAAUGUCUUUACAUUAGA		
	AGUUGGUGAUGUUGAAAAUCUUACAUGUACUGAUGGA		
	CCUAGCUUAAUCAAAACAGAACUUGACCUAACCAAAAG		
	UGCUUUAAGAGAACUCAAAACAGUUUCUGCUGAUCAGU		
	UAGCGAGAGAAGAACAAAUUGAAAAUCCCAGACAAUCA		
	AGGUUUGUCCUAGGUGCAAUAGCUCUUGGAGUUGCCAC		
	AGCAGCAGCAGUCACAGCAGGCAUUGCAAUAGCCAAAA		
	CUAUAAGGCUUGAGAGUGAAGUGAAUGCAAUCAAAAGG		
	UGCUCUCAAAACAACCAAUGAGGCAGUAUCAACACUAG		
	GAAAUGGAGUGCGGGUCCUAGCCACUGCAGUAAGAGAG		
	CUGAAAGAAUUUGUGAGCAAAAACCUGACUAGUGCGAU		
	CAACAAGAACAAGUGUGACAUUGCUGAUUUGAAGAUGG		
	CUGUCAGCUUCAGUCAGUUCAACAGAAGAUUCCUAAAU		
	GUUGUGCGGCAGUUUUCAGACAAUGCAGGGAUAACACC		
	AGCAAUAUCAUUGGACCUGAUGAAUGAUGCUGAGCUGG		
	CCAGAGCUGUAUCAUACAUGCCAACAUCUGCAGGACAG		
	AUAAAACUAAUGUUAGAGAACCGUGCAAUGGUGAGGA		
	GAAAAGGAUUUGGAAUCUUGAUAGGGGUCUACGGAAG		
	CUCUGUGAUUUACAUGGUCCAGCUGCCGAUCUUUGGUG		
	UCAUAAAUACACCUUGUUGGAUAAUCAAGGCAGCUCCC		
	UCUUGUUCAGAAAAAGAUGGAAAUUAUGCUUGCCUCCU		
	AAGAGAGGAUCAAGGGUGGUAUUGUAAAAAUGCAGGA		
	UCCACUGUUUACUACCCAAAUGAAAAAGACUGCGAAAC		
	AAGAGGUGAUCAUGUUUUUUGUGACACAGCAGCAGGGA		
	UCAAUGUUGCUGAGCAAUCAAGAGAAUGCAACAUCAAC		
	AUAUCUACCACCAACUACCCAUGCAAAGUCAGCACAGG		
	AAGACACCCUAUCAGCAUGGUUGCACUAUCACCUCUCG		
	GUGCUUUGGUAGCUUGCUACAAAGGGGUUAGCUGCUCG		
	ACUGGCAGUAAUCAGGUUGGAAUAAUCAAACAACUACC		
	UAAAGGCUGCUCAUACAUAACUAACCAGGACGCAGACA		
	CUGUAACAAUUGACAACACUGUGUAUCAACUAAGCAAA		
	GUUGAGGGUGAACAGCAUGUAAUAAAAGGGAGACCAG		
	UUUCAAGCAGUUUUGAUCCAAUCAGGUUUCCUGAGGAU		
	CAGUUCAAUGUUGCGCUUGAUCAAGUCUUUGAAAGCAU		
	UGAAAACAGUCAAGCACUAGUGGACCAGUCAAACAAAA		
	UUCUGAACAGUGCAGAAAAAGGAAACACUGGU		
	UUCAUUAUUGUAAUAAUUUUGAUUGCUGUUCUUGGGU		
	UAACCAUGAUUUCAGUGAGCAUCAUCAUCAUAAUCAAA		
	AAAACAAGGAAGCCCACAGGGGCACCUCCGGAGCUGAA		
	UGGUGUUACCAACGGCGGUUUCAUACCGCAUAGUUAG		
```gb\|KJ723483.1	: 5586-7310 Human respiratory syncytial virus strain RSVA/Homo sapiens/USA/84I- 215A-01/1984, complete genome```	AUGGAGUUGCCAAUCCUCAAAAACAAAUGCAAUUACCAC	60
	AAUCCUUGCUGCAGUCACACUCUGUUUCGCUUCCAGUC		
	AAAACAUCACUGAAGAAUUUUAUCAAUCAACAUGCAGU		
	GCAGUUAGCAAAGGCUAUCUUAGUGCUCUAAGAACUGG		
	UUGGUAUACUAGUGUUAUAACUAUAGAAUUAAGUAAU		
	AUCAAGGAAAAUAAGUGUAAUGGAACAGAUGCUAAGG		
	UAAAAUUGAUAAAACAAGA.AUUAGAUAA.AUAUAAAAA		
	UGCUGUAACAGAAUUGCAGUUGCUCAUGCAAAAGCACAC		
	CAGCAGCCAACAAUCGAGCCAGAAGAGAACUACCAAGG		
	UUUAUGAAUUAUACACUCA.AUAAUACCAAAAA UACCAA		
	UGUAACAUUAAGCAAGAAAAGGAAAAGAAGAUUUCUU		
	GGCuUuUugudagguguudganucugcanuccecagugg		
	CAUUGCUGUAUCUAAGGUCCUGCACCUAGAAGGGGAAG		

TABLE 2-continued

hMPV Nucleic Acid Sequences		
Description	Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
	UGAACAAAAUCAAAAGUGCUCUACUAUCCACAAACAAG	
	GCUGUAGUCAGCUUAUCAAAUGGAGUUAGUGUCUUAAC	
	CAGCAAAGUGUUAGACCUCAAAAACUAUAUAGAUAAAC	
	AGUUGUUACCUAUUGUGAACAAGCAAAGCUGCAGCAUA	
	UCAAACAUUGAAACUGUGAUAGAGUUCCAACAAAAGAA	
	CAACAGACUACUAGAGAUUACCAGGGAAUUUAGUGUUA	
	AUGCAGGUGUAACUACACCUGUAAGCACUUAUAUGUUA	
	ACUAAUAGUGA.AUUAUUAUCAUUAAUCAAUGAUAUGCC	
	UAUAACAAAUGAUCAGAAAAAGUUAAUGUCCAACAAUG	
	UUCAAAUAGUUAGACAGCAAAGUUACUCUAUCAUGUCC	
	AUAAUAAAGGAGGAAGUCUUAGCAUAUGUAGUACAAU	
	UACCACUAUAUGGUGUAAUAGAUACACCCUGUUGGAAA	
	CUGCACACAUCCCCUCUAUGUACAACCAACACAAAGGA	
	AGGGUCCAACAUCUGCUUAACAAGAACCGACAGAGGAU	
	GGUAUUGUGACAAUGCAGGAUCAGUAUCUUUCUUCCCA	
	CAAGCUGAAACAUGUAAAGUUCAAUCGAAUCGGGUAUU	
	UUGUGACACAAUGAACAGUUUAACAUUACCAAGUGAAG	
	UAAAUCUCUGCAACAUUGACAUAUUCAACCCCAAAUAU	
	GAUUGCAAAAUUAUGACUUCAAAAACAGAUGUAAGCAG	
	CUCCGUUAUCACAUCUCUAGGAGCCAUUGUGUCAUGCU	
	AUGGCAAAACUAAAUGUACAGCAUCCAAUAAAAAUCGU	
	GGGAUCAUAAAGACAUUUUCUAACGGGUGUGAUUAUG	
	UAUCAAAUAAGGGGGUGGAUACUGUGUCUGUAGGUAA	
	UACAUUAUAUUAUGUAAAUAAGCAAGAAGGCAAAAGU	
	CUCUAUGUAAAAGGUGAACCAAUAAUAAAUUUCUAUGA	
	CCCAUUAGUGUUCCCCUCUGAUGAAUUUGAUGCAUCAA	
	UAUCUCAAGUCAAUGAGAAGAUUAACCAGAGCCUAGCA	
	UUUAUUCGUAAAUUCCGAUGA.AUUAUUACAUAAUGUAA	
	AUGCUGGUAAAUCCACCACAAAUAUCAUGAUAACUACU	
	AUAAUUAUAGUGAUUAUAGUAAUAUUGUUAUCAUUAA	
	UUGCAGUUGGACUGCUCCUAUACUGCAAGGCCAGAAGC	
	ACACCAGUCACACUAAGUAAGGAUCAACUGAGUGGUAU	
	AAAUAAUAUUGCAUUUAGUAACUGA	

TABLE 3

	hMPV Amino Acid Sequences				
Description	Sequence	$\begin{gathered} \text { SEQ ID } \\ \text { NO: } \end{gathered}$			
gi\|122891979	gb	EF051124.1		MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGW	5
Human	YTNVFTLEVGDVENLTCSDGPSLIKTELDLTKSALRELKTVS				
metapneumovirus	ADQLAREEQIENPRQSRFVLGAIALGVAAAAAVTAGVAIAK				
isolate TN/92-4	TIRLESEVTAINNALKKTNEAVSTLGNGVRVLATAVRELKD				
fusion protein gene, complete cds	FVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFS				
	DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRA				
	MVRRKGFGILIGVYGSSVI YMVQLPIFGVIDTPCWIVKAAPS				
	CSEKKGNYACLLREDQGWYCQNAGSTVYYPNEKDCETRG				
	DHVFCDTAAGINVAEQSKECNINISTTNYPCKVSTGRHPISM				
	VALSPLGALVACYKGVSCSIGSNRVGII KQLNKGCSYITNQD				
	ADTVTIDNTVYQLSKVEGEOHVIKGRPVSSSFDPIKFPEDQF				
	NVALDQVFENIENSQALVDQSNRILSSAEKGNTGFIIVIILIAV				
	LGSSMILVSIFIIIKKTKKPTGAPPELSGVTNNGFIPHN				
```gb\|AY525843.1	: 3065-4684 Human metapneumovirus isolate NL/1/99, complete cds```	MSWKVMIIISLLITPQHGLKESYLEESCSTITEGYLSVLRTGW	6		
	YTNVFTLEVGDVENLTCTDGPSLIKTELDLTKSALRELKTVS				
	ADQLAREEQIENPRQSRFVLGAIALGVATAAAVTAGIAIAKT				
	IRLESEVNAIKGALKQTNEAVSTLGNGVRVLATAVRELKEF				
	VSKNLTSAINRNKCDIADLKMAVSFSQFNRRFLNVVRQFSD				
	NAGI TPAISLDLMTDAELARAVSYMPTSAGQI KLMLENRAM				
	VRRKGFGILIGVYGSSVIYMVQLPIFGVIDTPCWIIKAAPSCS				
	EKNGNYACLLREDQGWYCKNAGSTVYYPNEKDCETRGDH				
	VFCDTAAGINVAEQSRECNINISTTNYPCKVSTGRHPISMVA				
	LSPLGALVACYKGVSCSIGSNTVGII KQLPKGCSYITNODAD				
	TVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFNV				
	ALDQVFESIENSQALVDQSNKILNSAEKGNTGFIIVVILVAVL				
	GLTMISVSIIIIIKKTRKPTGAPPELNGVTNGGFIPHS				
```gb\|KJ627414.1	: 3015-4634 Human metapneumovirus```	MSWKVMIIISLLITPQHGLKESYLEESCSTITEGYLSVLRTGW	7		
	YTNVFTLEVGDVENLTCTDGPSLIKTELDLTKSALRELKTVS				
	ADQLAREEQIENPRQSRFVLGAIALGVATAAAVTAGIAIAKT				

TABLE 3-continued

hMPV Amino Acid Sequences			
Description	Sequence	$\begin{gathered} \text { SEQ ID } \\ \text { NO: } \end{gathered}$	
```strain hMPV/HomO sapiens/PER/CFI0497/ 2010/B, complete cds```	IRLESEVNAIKGALKTTNEAVSTLGNGVRVLATAVRELKEF VSKNLTSAINKNKCDIADLKMAVSFSOFNRRFLNVVROFSD NAGI TPAI SLDLMNDAELARAVSYMPTSAGQI KLMLENRAM VRRKGFGILIGVYGSSVIYMVQLPIFGVINTPCWIIKAAPSCS EKDGNYACLLREDQGWYCKNJAGSTVYYPNEKDCETRGDH VFCDTAAGINVAEQSRECNINISTTNYPCKVSTGRHPISMVA LSPLGALVACYKGVSCSTGSNQVGII KOLPKGCSYITNODAD TVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIRFPEDQFNV ALDQVFESIENSQALVDQSNKILNSAEKGNTGFIIVIILIAVLG LTMISVSIIIIIKKTRKPTGAPPELNGVTNGGFIPHS		
```gb\|KJ723483.1	: 5586-7310 Human respiratory syncytial virus strain RSVA/Homo sapiens/USA/84I- 215A-01/1984. complete cds```	MELPILKTNAITTILAAVTLCFASSQNITEEFYQSTCSAVSKG YLSALRTGWYTSVITIELSNIKENKCNGTDAKVKLIKQELDK YKNAVTELQLLMQSTPAANNRARRELPRFMNYTLNNTKNT NVTLSKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGEVNKI KSALLSTNKAVVSLSNGVSVLTSKKVLDLKNYIDKQLLPIVN KQSCSISNIETVIEFQQKNNRLLEITREFSVNAGVTTPVSTYM LTNSELLSLINDMPI TNDQKKLMSNNVQIVRQQSYSIMSIIKE EVLAYVVOLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTR TDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLP SEVNLCNIDIFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGK TKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVN KQEGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSL AFIRKSDELLHNVNAGKSTTNIMITTIIIVIIVILLSLIAVGLLL YCKARSTPVTLSKDQLSGINNIAFSN	8

TABLE 4

Virus	GenBank Accession
F [Human metapneumovirus] [Human metapneumovirus]	AEK26895.1
fusion glycoprotein [Human metapneumovirus]	ACJ53565.1
fusion glycoprotein [Human metapneumovirus]	ACJ53566.1
fusion glycoprotein [Human metapneumovirus]	ACJ53569.1
fusion protein [Human metapneumovirus]	AEZ52347.1
fusion glycoprotein [Human metapneumovirus]	ACJ53574.1
fusion glycoprotein [Human metapneumovirus]	AHV79473.1
fusion glycoprotein [Human metapneumovirus]	ACJ53570.1
fusion glycoprotein [Human metapneumovirus]	ACJ53567.1
fusion protein [Human metapneumovirus]	AAS22125.1
fusion glycoprotein [Human metapneumovirus]	AHV79795.1
fusion glycoprotein [Human metapneumovirus]	AHV79455.1
fusion glycoprotein [Human metapneumovirus]	ACJ53568.1
fusion protein [Human metapneumovirus]	AAS22109.1
fusion glycoprotein [Human metapneumovirus]	AGU68417.1
fusion glycoprotein [Human metapneumovirus]	AGJ74228.1
fusion glycoprotein [Human metapneumovirus]	ACJ53575.1
fusion protein [Human metapneumovirus]	AAU25820.1
fusion glycoprotein [Human metapneumovirus]	AGU68377.1
fusion glycoprotein [Human metapneumovirus]	AGU68371.1
fusion glycoprotein [Human metapneumovirus]	AGJ74087.1
fusion glycoprotein [Human metapneumovirus]	ACJ53560.1
fusion glycoprotein [Human metapneumovirus]	AHV79858.1
fusion glycoprotein [Human metapneumovirus]	ACJ53577.1
fusion protein [Human metapneumovirus]	AAS22085.1
fusion protein [Human metapneumovirus]	AEZ52348.1
fusion glycoprotein [Human metapneumovirus]	AGJ74044.1
fusion glycoprotein [Human metapneumovirus]	ACJ53563.1
fusion glycoprotein precursor [Human metapneumovirus]	YP_012608.1
fusion glycoprotein [Human metapneumovirus]	AGJ74053.1
fusion protein [Human metapneumovirus]	BAM37562.1
fusion glycoprotein [Human metapneumovirus]	ACJ53561.1
fusion glycoprotein [Human metapneumovirus]	AGU68387.1
fusion [Human metapneumovirus]	AGL74060.1
fusion glycoprotein precursor [Human metapneumovirus]	AAV88364.1
fusion protein [Human metapneumovirus]	AAN52910.1
fusion protein [Human metapneumovirus]	AAN52915.1
fusion protein [Human metapneumovirus]	BAM37564.1
fusion glycoprotein precursor [Human metapneumovirus]	BAH59618.1
fusion protein [Human metapneumovirus]	AAQ90144.1

TABLE 4-continued

Virus	GenBank Accession
fusion glycoprotein [Human metapneumovirus]	AHV79446.1
fusion protein [Human metapneumovirus]	AEL87260.1
fusion glycoprotein [Human metapneumovirus]	AHV79867.1
fusion protein [Human metapneumovirus]	ABQ66027.2
fusion glycoprotein [Human metapneumovirus]	ACJ53621.1
fusion protein [Human metapneumovirus]	AAN52911.1
fusion glycoprotein [Human metapneumovirus]	AHV79536.1
fusion glycoprotein [Human metapneumovirus]	AGU68411.1
fusion protein [Human metapneumovirus]	AEZ52346.1
fusion protein [Human metapneumovirus]	AAN52913.1
fusion protein [Human metapneumovirus]	AAN52908.1
fusion glycoprotein [Human metapneumovirus]	ACJ53553.1
fusion glycoprotein [Human metapneumovirus]	AIY25727.1
fusion protein [Human metapneumovirus]	ABM67072.1
fusion protein [Human metapneumovirus]	AEZ52361.1
fusion protein [Human metapneumovirus]	AAS22093.1
fusion glycoprotein [Human metapneumovirus]	AGH27049.1
fusion protein [Human metapneumovirus]	AAK62968.2
fusion glycoprotein [Human metapneumovirus]	ACJ53556.1
fusion glycoprotein [Human metapneumovirus]	ACJ53620.1
fusion protein [Human metapneumovirus]	ABQ58820.1
F [Human metapneumovirus] [Human metapneumovirus]	AEK26886.1
fusion glycoprotein [Human metapneumovirus]	ACJ53619.1
fusion glycoprotein [Human metapneumovirus]	ACJ53555.1
fusion [Human metapneumovirus]	AGL74057.1
fusion protein [Human metapneumovirus]	ABD27850.1
fusion protein [Human metapneumovirus]	AEZ52349.1
fusion protein [Human metapneumovirus]	ABD27848.1
fusion protein [Human metapneumovirus]	ABD27846.1
fusion protein [Human metapneumovirus]	ABQ66021.1
fusion protein [Human metapneumovirus]	AFM57710.1
fusion protein [Human metapneumovirus]	AFM57709.1
fusion protein [Human metapneumovirus]	ABH05968.1
fusion protein [Human metapneumovirus]	AEZ52350.1
fusion protein [Human metapneumovirus]	AFM57712.1
fusion protein [Human metapneumovirus]	AEZ52364.1
fusion protein [Human metapneumovirus]	AAN52912.1
fusion protein [Human metapneumovirus]	AEZ52363.1
fusion [Human metapneumovirus]	AGL74059.1
fusion glycoprotein [Human metapneumovirus]	ACJ53583.1
fusion protein [Human metapneumovirus]	AEZ52356.1
fusion protein [Human metapneumovirus]	AEZ52353.1
fusion glycoprotein [Human metapneumovirus]	ACJ53581.1
fusion glycoprotein [Human metapneumovirus]	ACJ53578.1
fusion protein [Human metapneumovirus]	AAS22117.1
fusion protein [Human metapneumovirus]	BAN75965.1
fusion protein [Human metapneumovirus]	AGF92105.1
fusion protein [Human metapneumovirus]	AAS22077.1
fusion protein [Human metapneumovirus]	AAN52909.1
fusion glycoprotein [Human metapneumovirus]	ACJ53586.1
fusion protein [Human metapneumovirus]	AAQ90145.1
fusion glycoprotein [Human metapneumovirus]	AGT75042.1
fusion [Human metapneumovirus]	AGL74058.1
fusion protein [Human metapneumovirus]	AEL87263.1
fusion glycoprotein [Human metapneumovirus]	AGH27057.1
fusion glycoprotein [Human metapneumovirus]	AHV79491.1
F [Human metapneumovirus] [Human metapneumovirus]	AEK26906.1
fusion glycoprotein [Human metapneumovirus]	ACJ53580.1
fusion protein [Human metapneumovirus]	AEZ52354.1
fusion protein [Human metapneumovirus]	AAN52914.1
G [Human metapneumovirus] [Human metapneumovirus]	AEK26901.1
glycoprotein [Human metapneumovirus]	AFI56738.1
glycoprotein [Human metapneumovirus]	AFI56739.1
glycoprotein [Human metapneumovirus]	AFI56745.1
G protein [Human metapneumovirus]	AAQ62718.1
G protein [Human metapneumovirus]	AAQ62719.1
attachment glycoprotein G [Human metapneumovirus]	AGH27104.1
G protein [Human metapneumovirus]	AAQ62729.1
G protein [Human metapneumovirus]	AAQ62728.1
glycoprotein [Human metapneumovirus]	AFI56753.1
glycoprotein [Human metapneumovirus]	AFI56746.1
glycoprotein [Human metapneumovirus]	AFI56750.1
glycoprotein [Human metapneumovirus]	AFI56747.1
G protein [Human metapneumovirus]	AAQ62721.1
glycoprotein [Human metapneumovirus]	AAT46573.1
glycoprotein [Human metapneumovirus]	AFI56748.1

TABLE 4-continued

Virus	GenBank Accession
glycoprotein [Human metapneumovirus]	AFI56736.1
glycoprotein [Human metapneumovirus]	AFI56749.1
attachment glycoprotein G [Human metapneumovirus]	AGH27131.1
attachment glycoprotein G [Human metapneumovirus]	AHV79558.1
glycoprotein [Human metapneumovirus]	AFI56740.1
glycoprotein [Human metapneumovirus]	AFI56741.1
glycoprotein [Human metapneumovirus]	AFI56744.1
attachment glycoprotein G [Human metapneumovirus]	AHV79790.1
attachment glycoprotein G [Human metapneumovirus]	AGH27122.1
attachment glycoprotein G [Human metapneumovirus]	AHV79763.1
attachment glycoprotein G [Human metapneumovirus]	AGZ48849.1
glycoprotein [Human metapneumovirus]	AFI56743.1
attachment glycoprotein G [Human metapneumovirus]	AHV79450.1
glycoprotein [Human metapneumovirus]	AFI56751.1
attachment glycoprotein [Human metapneumovirus]	AAS48482.1
attachment glycoprotein G [Human metapneumovirus]	AHV79889.1
attachment surface glycoprotein [Human metapneumovirus]	AGW43050.1
glycoprotein [Human metapneumovirus]	AFI56754.1
attachment glycoprotein G [Human metapneumovirus]	AHV79601.1
glycoprotein [Human metapneumovirus]	AFI56752.1
attachment glycoprotein G [Human metapneumovirus]	AHV79871.1
G protein [Human metapneumovirus]	AEZ68099.1
attachment glycoprotein G [Human metapneumovirus]	AHV79817.1
attachment glycoprotein G [Human metapneumovirus]	AHV79943.1
attachment glycoprotein G [Human metapneumovirus]	BAN75968.1
attachment surface glycoprotein [Human metapneumovirus]	AGW43045.1
attachment glycoprotein G [Human metapneumovirus]	AHV79628.1
attachment glycoprotein [Human metapneumovirus]	AFK49783.1
G protein [Human metapneumovirus]	AAQ62723.1
attachment glycoprotein [Human metapneumovirus]	ABD27839.1
attachment surface glycoprotein [Human metapneumovirus]	AGW43046.1
G protein [Human metapneumovirus]	AAQ62717.1
glycoprotein [Human metapneumovirus]	AFI56742.1
attachment protein [Human metapneumovirus]	ABQ44522.1
glycoprotein [Human metapneumovirus]	AFI56735.1
attachment surface glycoprotein [Human metapneumovirus]	AGW43065.1
G protein [Human metapneumovirus]	AAQ62724.1
attachment surface glycoprotein [Human metapneumovirus]	AGW43075.1
attachment surface glycoprotein [Human metapneumovirus]	AGW43062.1
glycoprotein [Human metapneumovirus]	AAT46579.1
attachment surface glycoprotein [Human metapneumovirus]	AGW43064.1
attachment surface glycoprotein [Human metapneumovirus]	AGW43054.1
attachment surface glycoprotein [Human metapneumovirus]	AGW43042.1
attachment surface glycoprotein [Human metapneumovirus]	AGW43078.1
attachment surface glycoprotein [Human metapneumovirus]	AGW43067.1
G protein [Human metapneumovirus]	AAQ62722.1
attachment surface glycoprotein [Human metapneumovirus]	AGW43063.1
glycoprotein [Human metapneumovirus]	AAT46571.1
glycoprotein [Human metapneumovirus]	AAT46578.1
attachment glycoprotein G [Human metapneumovirus]	AGJ74232.1
glycoprotein [Human metapneumovirus]	AAT46580.1
glycoprotein [Human metapneumovirus]	AAT46574.1
attachment surface glycoprotein [Human metapneumovirus]	AGW43061.1
attachment glycoprotein [Human metapneumovirus]	AFK49791.1
attachment surface glycoprotein [Human metapneumovirus]	AGW43047.1
glycoprotein [Human metapneumovirus]	ABC26386.1
attachment glycoprotein [Human metapneumovirus]	AAS48466.1
attachment surface glycoprotein [Human metapneumovirus]	AGW43048.1
attachment glycoprotein G [Human metapneumovirus]	AGH27140.1
attachment surface glycoprotein [Human metapneumovirus]	AGW43049.1
attachment glycoprotein G [Human metapneumovirus]	AGJ74082.1
attachment glycoprotein G [Human metapneumovirus]	AHV79442.1
attachment glycoprotein G [Human metapneumovirus]	AGJ74091.1
attachment glycoprotein G [Human metapneumovirus]	AHV79477.1
attachment surface glycoprotein [Human metapneumovirus]	AGW43056.1
attachment protein [Human metapneumovirus]	ABQ44523.1
attachment glycoprotein G [Human metapneumovirus]	BAH59622.1
attachment surface glycoprotein [Human metapneumovirus]	AGW43070.1
glycoprotein [Human metapneumovirus]	AAT46585.1
attachment glycoprotein G [Human metapneumovirus]	AGU68409.1
attachment glycoprotein G [Human metapneumovirus]	AGJ74223.1
attachment glycoprotein [Human metapneumovirus]	AAS22129.1
attachment glycoprotein G [Human metapneumovirus]	AGJ74048.1
G protein [Human metapneumovirus]	AAQ62725.1
glycoprotein [Human metapneumovirus]	ABC26384.1
attachment protein [Human metapneumovirus]	ABQ44525.1

TABLE 4-continued

Virus	GenBank Accession
attachment glycoprotein G [Human metapneumovirus]	YP_012612.1
attachment surface glycoprotein [Human metapneumovirus]	AGW43071.1
attachment glycoprotein G [Human metapneumovirus]	AGJ74162.1
attachment glycoprotein G [Human metapneumovirus]	AGH27095.1
attachment glycoprotein G [Human metapneumovirus]	AHV79531.1
G protein [Human metapneumovirus]	AAQ62726.1
attachment glycoprotein [Human metapneumovirus]	AAS48465.1
attachment surface glycoprotein [Human metapneumovirus]	AGW43058.1
P [Human metapneumovirus] [Human metapneumovirus]	AEK26894.1
phosphoprotein [Human metapneumovirus]	AHV79631.1
phosphoprotein [Human metapneumovirus]	AHV79901.1
phosphoprotein [Human metapneumovirus]	AHV79570.1
phosphoprotein [Human metapneumovirus]	AGJ74076.1
phosphoprotein [Human metapneumovirus]	AAS22123.1
phosphoprotein [Human metapneumovirus]	ABB16895.1
phosphoprotein [Human metapneumovirus]	AHV79579.1
phosphoprotein [Human metapneumovirus]	AGJ74244.1
phosphoprotein [Human metapneumovirus]	AHV79856.1
phosphoprotein [Human metapneumovirus]	ACJ70113.1
phosphoprotein [Human metapneumovirus]	AGZ48843.1
phosphoprotein [Human metapneumovirus]	AHV79498.1
phosphoprotein [Human metapneumovirus]	AHV79480.1
phosphoprotein [Human metapneumovirus]	ABQ43382.1
phosphoprotein [Human metapneumovirus]	AAS22107.1
phosphoprotein [Human metapneumovirus]	ABB16898.1
phosphoprotein [Human metapneumovirus]	AGH27134.1
phosphoprotein [Human metapneumovirus]	ABB16899.1
phosphoprotein [Human metapneumovirus]	AGH27098.1
phosphoprotein [Human metapneumovirus]	AAN52866.1
phosphoprotein [Human metapneumovirus]	AAS22083.1
phosphoprotein [Human metapneumovirus]	YP_012606.1
phosphoprotein [Human metapneumovirus]	AHV79973.1
phosphoprotein [Human metapneumovirus]	AHV79462.1
phosphoprotein [Human metapneumovirus]	AGJ74042.1
phosphoprotein [Human metapneumovirus]	AAV88362.1
P [Human metapneumovirus] [Human metapneumovirus]	AIL23591.1
phosphoprotein [Human metapneumovirus]	AHV79453.1
phosphoprotein [Human metapneumovirus]	AGJ74261.1
phosphoprotein [Human metapneumovirus]	AGH27116.1
phosphoprotein [Human metapneumovirus]	ABB16444.1
phosphoprotein [Human metapneumovirus]	ABB16445.1
phosphoprotein [Human metapneumovirus]	AHV79507.1
phosphoprotein [Human metapneumovirus]	BAH59616.1
phosphoprotein [Human metapneumovirus]	ABB16443.1
phosphoprotein [Human metapneumovirus]	ABQ43388.1
phosphoprotein [Human metapneumovirus]	ABQ43389.1
phosphoprotein [Human metapneumovirus]	ABQ43395.1
phosphoprotein [Human metapneumovirus]	ABQ43385.1
phosphoprotein [Human metapneumovirus]	AAP84042.1
phosphoprotein [Human metapneumovirus]	AAN52868.1
phosphoprotein [Human metapneumovirus]	AAP84041.1
phosphoprotein [Human metapneumovirus]	AGH27080.1
phosphoprotein [Human metapneumovirus]	ABQ43387.1
phosphoprotein [Human metapneumovirus]	AAS22099.1
phosphoprotein [Human metapneumovirus]	ABB16896.1
phosphoprotein [Human metapneumovirus]	AGJ74094.1
phosphoprotein [Human metapneumovirus]	AEZ68089.1
phosphoprotein [Human metapneumovirus]	ABK97002.1
phosphoprotein [Human metapneumovirus]	AAP13486.1
phosphoprotein [Human metapneumovirus]	AHV79444.1
phosphoprotein [Human metapneumovirus]	AHV79865.1
phosphoprotein [Human metapneumovirus]	AGJ74226.1
phosphoprotein [Human metapneumovirus]	ABQ43383.1
phosphoprotein [Human metapneumovirus]	AAN52863.1
phosphoprotein [Human metapneumovirus]	AHV79775.1
phosphoprotein [Human metapneumovirus]	AEZ68094.1
phosphoprotein [Human metapneumovirus]	AHV79883.1
phosphoprotein [Human metapneumovirus]	AEZ68092.1
phosphoprotein [Human metapneumovirus]	ABQ43390.1
phosphoprotein [Human metapneumovirus]	ABQ43386.1
phosphoprotein [Human metapneumovirus]	ABQ43391.1
phosphoprotein [Human metapneumovirus]	ACS16062.1
phosphoprotein [Human metapneumovirus]	AEZ68090.1
phosphoprotein [Human metapneumovirus]	AAK62967.1
phosphoprotein [Human metapneumovirus]	AEZ68093.1
phosphoprotein [Human metapneumovirus]	AEZ68088.1

TABLE 4-continued

Virus	GenBank Accession
phosphoprotein [Human metapneumovirus]	ABQ43392.1
phosphoprotein [Human metapneumovirus]	ABQ43393.1
phosphoprotein [Human metapneumovirus]	ABQ43384.1
phosphoprotein [Human metapneumovirus]	ABQ43394.1
phosphoprotein [Human metapneumovirus]	ABK96999.1
phosphoprotein [Human metapneumovirus]	AHV79489.1
phosphoprotein [Human metapneumovirus]	AGJ74235.1
phosphoprotein [Human metapneumovirus]	AAS22075.1
phosphoprotein [Human metapneumovirus]	AAS22115.1
phosphoprotein [Human metapneumovirus]	AII17601.1
phosphoprotein [Human metapneumovirus]	ABK97000.1
phosphoprotein [Human metapneumovirus]	AHV79561.1
phosphoprotein [Human metapneumovirus]	AGT75040.1
phosphoprotein [Human metapneumovirus]	AAN52864.1
phosphoprotein [Human metapneumovirus]	ABK97001.1
phosphoprotein [Human metapneumovirus]	AGT74979.1
phosphoprotein [Human metapneumovirus]	AHV79955.1
phosphoprotein [Human metapneumovirus]	AGH27055.1
phosphoprotein [Human metapneumovirus]	AAV88361.1
phosphoprotein [Human metapneumovirus]	ABQ43397.1
phosphoprotein [Human metapneumovirus]	AGJ74173.1
P [Human metapneumovirus] [Human metapneumovirus]	AEK26904.1
phosphoprotein [Human metapneumovirus]	ACJ70104.1
phosphoprotein [Human metapneumovirus]	ABK97003.1
phosphoprotein [Human metapneumovirus]	AGT74955.1
phosphoprotein [Human metapneumovirus]	AAN52856.1
phosphoprotein [Human metapneumovirus]	AAN52862.1
phosphoprotein [Human metapneumovirus]	AGJ74138.1
phosphoprotein [Human metapneumovirus]	AHV79613.1
phosphoprotein [Human metapneumovirus]	AGJ74060.1
phosphoprotein [Human metapneumovirus]	AAQ67684.1
phosphoprotein [Human metapneumovirus]	AEA02278.1
N [Human metapneumovirus] [Human metapneumovirus]	AEK26899.1
nucleoprotein [Human metapneumovirus]	ACS16061.1
nucleoprotein [Human metapneumovirus]	AAS88425.1
nucleoprotein [Human metapneumovirus]	YP_012605.1
nucleoprotein [Human metapneumovirus]	AHV79882.1
nucleoprotein [Human metapneumovirus]	AHV79774.1
nucleocapsid protein [Human metapneumovirus]	AAN52886.1
nucleoprotein [Human metapneumovirus]	AAS22082.1
nucleoprotein [Human metapneumovirus]	AHV79864.1
nucleoprotein [Human metapneumovirus]	AHV79828.1
nucleoprotein [Human metapneumovirus]	AGJ74084.1
nucleocapsid protein [Human metapneumovirus]	AAN52888.1
N [Human metapneumovirus] [Human metapneumovirus]	AIL23590.1
nucleoprotein [Human metapneumovirus]	AAK62966.1
nucleoprotein [Human metapneumovirus]	AHV79972.1
nucleoprotein [Human metapneumovirus]	AHV79470.1
nucleoprotein [Human metapneumovirus]	AHV79452.1
nucleoprotein [Human metapneumovirus]	AGJ74243.1
nucleoprotein [Human metapneumovirus]	AHV79533.1
nucleoprotein [Human metapneumovirus]	AGJ74181.1
nucleoprotein [Human metapneumovirus]	AHV79497.1
nucleoprotein [Human metapneumovirus]	AHV79702.1
nucleoprotein [Human metapneumovirus]	AHV79648.1
nucleoprotein [Human metapneumovirus]	AHV79435.1
putative nucleoprotein [Human metapneumovirus]	AGJ74260.1
nucleocapsid protein [Human metapneumovirus]	AAN52887.1
nucleoprotein [Human metapneumovirus]	AGU68386.1
nucleocapsid protein [Human metapneumovirus]	AAN52899.1
nucleoprotein [Human metapneumovirus]	AAR17673.1
nucleocapsid protein [Human metapneumovirus]	AAN52898.1
nucleoprotein [Human metapneumovirus]	AEA02277.1
nucleoprotein [Human metapneumovirus]	AHV79612.1
nucleoprotein [Human metapneumovirus]	AGU68416.1
nucleoprotein [Human metapneumovirus]	AGU68408.1
nucleoprotein [Human metapneumovirus]	AGU68370.1
nucleoprotein [Human metapneumovirus]	AAQ67683.1
nucleoprotein [Human metapneumovirus]	AGJ74137.1
nucleoprotein [Human metapneumovirus]	AGU68344.1
nucleocapsid protein [Human metapneumovirus]	ABK96997.1
nucleoprotein [Human metapneumovirus]	AGU68413.1
nucleocapsid protein [Human metapneumovirus]	AAN52891.1
nucleoprotein [Human metapneumovirus]	AGU68360.1
nucleoprotein [Human metapneumovirus]	AGU68353.1
nucleocapsid protein [Human metapneumovirus]	ABK96996.1

TABLE 4-continued

Virus	GenBank Accession
nucleoprotein [Human metapneumovirus]	AAR17666.1
N [Human metapneumovirus] [Human metapneumovirus]	AEK26903.1
nucleoprotein [Human metapneumovirus]	AGT75039.1
nucleoprotein [Human metapneumovirus]	AGU68410.1
nucleoprotein [Human metapneumovirus]	AAS22074.1
nucleoprotein [Human metapneumovirus]	AHV79560.1
nucleoprotein [Human metapneumovirus]	AGT74978.1
nucleoprotein [Human metapneumovirus]	AGJ74128.1
nucleoprotein [Human metapneumovirus]	AAR17663.1
nucleoprotein [Human metapneumovirus]	AAR17662.1
nucleoprotein [Human metapneumovirus]	AAR17664.1
nucleoprotein [Human metapneumovirus]	AAR17657.1
nucleoprotein [Human metapneumovirus]	AAR17659.1
nucleoprotein [Human metapneumovirus]	AAR17661.1
nucleoprotein [Human metapneumovirus]	AGU68352.1
nucleoprotein [Human metapneumovirus]	AGU68373.1
nucleoprotein [Human metapneumovirus]	AGU68376.1
nucleoprotein [Human metapneumovirus]	AGU68342.1
nucleoprotein [Human metapneumovirus]	AGU68365.1
nucleoprotein [Human metapneumovirus]	AGU68363.1
nucleoprotein [Human metapneumovirus]	AGU68398.1
nucleoprotein [Human metapneumovirus]	AGU68348.1
nucleoprotein [Human metapneumovirus]	AGU68354.1
nucleoprotein [Human metapneumovirus]	AGU68391.1
nucleoprotein [Human metapneumovirus]	AGU68389.1
nucleoprotein [Human metapneumovirus]	AGU68399.1
nucleoprotein [Human metapneumovirus]	AGU68337.1
nucleoprotein [Human metapneumovirus]	AAR17660.1
nucleoprotein [Human metapneumovirus]	AAR17667.1
nucleoprotein [Human metapneumovirus]	AGU68402.1
nucleoprotein [Avian metapneumovirus type C]	CDN30025.1
nucleoprotein [Avian metapneumovirus]	AGZ87947.1
Nucleoprotein [Avian metapneumovirus type C]	CAL25113.1
nucleocapsid protein [Avian metapneumovirus]	ABO42286.1
nucleocapsid protein [Avian metapneumovirus]	AAK38430.1
nucleocapsid protein [Avian metapneumovirus]	AAK54155.1
nucleocapsid protein [Avian metapneumovirus]	AAK38426.1
nucleocapsid protein [Avian metapneumovirus]	AAK38425.1
nucleocapsid protein [Avian metapneumovirus]	AAK38424.1
nucleocapsid protein [Avian metapneumovirus]	AAF05909.1
nucleocapsid protein [Avian metapneumovirus]	AAK38435.1
nucleocapsid protein [Avian metapneumovirus]	AAK38428.1
nucleoprotein [Human metapneumovirus]	AAR17669.1
nucleocapsid protein [Avian metapneumovirus]	AAK38429.1
nucleocapsid protein [Avian metapneumovirus]	AAK38427.1
nucleocapsid protein [Avian metapneumovirus]	AAK38423.1
nucleocapsid protein [Avian metapneumovirus]	AAK38434.1
nucleoprotein [Human metapneumovirus]	AGU68338.1
nucleoprotein [Avian metapneumovirus]	YP_443837.1
nucleoprotein [Human metapneumovirus]	AGU68384.1
nucleocapsid protein [Avian metapneumovirus]	AAK38431.1
nucleoprotein [Human metapneumovirus]	AGU68405.1
nucleoprotein [Human metapneumovirus]	AGU68382.1
nucleoprotein [Human metapneumovirus]	AGU68395.1
nucleocapsid [Human metapneumovirus]	AAL35389.3
nucleoprotein [Human metapneumovirus]	AEZ68064.1

TABLE 5

	PIV3 Nucleic Acid Sequences		
		SEQ ID	
Description	Sequence	NO:	
>gb\|KJ672601.1	: 4990-6609	ATGCCAATTTCAATACTGTTAATTATTACAACCATGATC	9
Human	ATGGCATCACACTGCCAAATAGACATCACAAAACTACA		
parainfluenza virus	GCATGTAGGTGTATTGGTCAACAGTCCCAAAGGGATGA		
3 strain	AGATATCACAAAACTTCGAAACAAGATATCTAATCCTGA		
HPIV3/Homo	GTCTCATACCAAAAATAGAAGATTCTAACTCTTGTGGTG		
sapiens/PER/FLA4815/	ACCAACAGATCAAGCAATACAAGAGGTTATTGGATAGA		
2008[fusion	CTGATCATTCCTTTATATGATGGACTAAGATTACAGAAG		
glycoprotein F0]	GATGTGATAGTGACTAATCAAGAATCCAATGAAAACAC		
	TGATCCCAGAACAGAACGATTCTTTGGAGGGGTAATTGG		

TABLE 5-continued

PIV3 Nucleic Acid Sequences					
Description	Sequence	$\begin{gathered} \text { SEQ ID } \\ \text { NO: } \end{gathered}$			
	AACTATTGCTCTAGGAGTAGCAACCTCAGCACAAATTAC				
	AGCAGCAGTTGCTCTGGTTGAAGCCAAGCAGGCAAGAT				
	CAGACATTGAAAAACTCAAGGAAGCAATCAGGGACACA				
	AATAAAGCAGTGCAGTCAGTTCAGAGCTCTGTAGGAAA				
	TTTGATAGTAGCAATTAAATCAGTCCAGGATTATGTCAA				
	CAAAGAAATCGTGCCATCGATTGCGAGACTAGGTTGTG				
	AAGCAGCAGGACTTCAGTTAGGGATTGCATTAACACAG				
	CATTACTCAGAATTAACAAATATATTTGGTGATAACATA				
	GGATCGTTACAAGAAAAGGAATAAAAT TACAAGGTAT				
	AGCATCATTATACCGTACAAATATCACAGAAATATTCAC				
	AACATCAACAGTTGACAAATATGATATTTATGATCTATT				
	ATTTACAGAATCAATAAAGGTGAGAGTTATAGATGTTGA				
	TTTGAATGATTACTCAATAACCCTCCAAGTCAGACTCCC				
	TTTATTGACCAGACTGCTGAACACTCAAATCTACAAAGT				
	AGATTCCATATCATACAATATCCAAAATAGAGAATGGTA				
	TATCCCTCTTCCCAGCCATATCATGACGAAAGGGGCATT				
	TCTAGGTGGAGCAGATGTCAAAGAATGCATAGAAGCAT				
	TCAGCAGTTATATATGCCCTTCTGATCCAGGATTTGTACT				
	AAACCATGAAATGGAGAGCTGTCTATCAGGAAACATAT				
	CССАATGTCCAAGAACCACAGTCACATCAGACATAGTTC				
	CTAGGTATGCATTTGTCAATGGAGGAGTGGTTGCGAATT				
	GTATAACAACTACATGTACATGCAATGGTATCGGTAATA				
	GAATCAACCAACCACCTGATCAAGGAGTCAAAATTATA				
	ACACATAAAGAATGTAATACAATAGGTATCAACGGAAT				
	GСTATTCAACACAAACAAAGAAGGAACTCTTGCATTCTA				
	CACACCAGACGACATAACATTAAACAATTCTGTTGCACT				
	TGATCCGATTGACATATCAATCGAGCTCAACAAGGCCAA				
	ATCAGATCTTGAGGAATCAAAAGAATGGATAAGAAGGT				
	CAAATCAAAAGCTAGATTCTATTGGAAGTTGGCATCAAT				
	CTAGCACTACAATCATAGTTATTTTGATAATGATGATTA				
	TATTGTTTATAATTAATATAACAATAATTACAATTGCAA				
	TTAAGTATTACAGAATTCAAAAGAGAAATCGAGTGGAT				
	CAAAATGATAAGCCGTATGTATTAACAAACAAG				
```gi\|612507167	gb	AHX22430.1	hemagglutinin- neuraminidase [Human parainfluenza virus 3]```	ATGGAATACTGGAAGCACACCAACCACGGAAAGGATGC	10
	TGGTAATGAGCTGGAGACATCCACAGCCACTCATGGCA				
	ACAAGCTCACCAACAAGATAACATATATATTGTGGACG				
	ATAACCCTGGTGTTATTATCAATAGTCTTCATCATAGTG				
	СTAACTAATTCCATCAAAAGTGAAAAGGCCCGCGAATC				
	ATTGCTACAAGACATAAATAATGAGTTTATGGAAGTTAC				
	AGAAAAGATCCAAGTGGCATCGGATAATACTAATGATC				
	TAATACAGTCAGGAGTGAATACAAGGCTTCTTACAATTC				
	AGAGTCATGTCCAGAATTATATACCAATATCATTGACAC				
	AACAAATATCGGATCTTAGGAAATTCATTAGTGAAATTA				
	CAATTAGAAATGATAATCAAGAAGTGCCACCACAAAGA				
	ATAACACATGATGTGGGTATAAAACCTTTAAATCCAGAT				
	GATTTCTGGAGATGCACGTCTGGTCTTCCATCTTTGATG				
	AAAACTCCAAAAA TAAGATTAATGCCGGGACCAGGATT				
	ATTAGCTATGCCAACGACTGITGATGGCTGTGTCAGAAC				
	CCCGTCCTTAGTGATAAATGATCTGATTTATGCTTACAC				
	CTCAAATCTAATTACTCGAGGTTGCCAGGATATAGGGAA				
	ATCATATCAAGTATTACAGATAGGGATAATAACTGTAAA				
	CTCAGACTTGGTACCTGACTTAAATCCTAGGATCTCTCA				
	TACCTTCAACATAAATGACAATAGAAAGTCATGTTCTCT				
	AGCACTCCTAAATACAGATGTATATCAACTGTGTTCAAC				
	CCCAAAAGTTGATGAAAGATCAGATTATGCATCATCAG				
	GCATAGAAGATATTGTACTTGATATTGTCAATTATGATG				
	GCTCAATCTCGACAACAAGATTTAAGAATAATAATATAA				
	GTTTTGATCAACCATATGCGGCATTATACCCATCTGTTG				
	GACCAGGGATATACTACAAAGGCAAAATAATATTTCTC				
	GGGTATGGAGGTCTTGAACATCCAATAAATGAGAATGC				
	AATCTGCAACACAACTGGGTGTCCTGGGAAAACACAGA				
	GAGACTGTAATCAAGCATCTCATAGTCCATGGTTTTCAG				
	ATAGAAGGATGGTCAACTCTATAATTGTTGTTGACAAGG				
	GCTTGAACTCAGTTCCAAAATTGAAGGTATGGACGATAT				
	CTATGAGACAAAATTACTGGGGGTCAGAAGGAAGATTA				
	СТTСTACTAGGTAACAAGATCTACATATACACAAGATCT				
	ACAAGTTGGCACAGCAAGTTACAATTAGGAATAATTGA				
	CATTACTGACTACAGTGATATAAGGATAAAATGGACAT				
	GGCATAATGTGCTATCAAGACCAGGAAACAATGAATGT				
	CCATGGGGACATTCATGTCCGGATGGATGTATAACGGG				
	AGTATATACCGATGCATATCCACTCAATCCCACAGGAAG				
	CATTGTATCATCTGTCATATTGGACTCACAAAAATCGAG				
	AGTCAACCCAGTCATAACTTACTCAACAGCAACCGAAA				
	GGGTAAACGAGCTGGCTATCCGAAACAAAACACTCTCA				

TABLE 5-continued


TABLE 5-continued


TABLE 5-continued

PIV3 Nucleic Acid Sequences		
Description	Sequence	$\begin{gathered} \text { SEQ ID } \\ \text { NO: } \end{gathered}$
	UCUUACAAUUCAGAGUCAUGUCCAGAAUUAUAUACCA	
	AUAUCAUUGACACAACAAAUAUCGGAUCUUAGGAAAU	
	UCAUUAGUGAAAUUACAAUUAGAAAUGAUAAUCAAGA	
	AGUGCCACCACAAAGAAUAACACAUGAUGUGGGUAUA	
	AAACCUUUAAAUCCAGAUGAUUUCUGGAGAUGCACGU	
	CUGGUCUUCCAUCUUUGAUGAAAACUCCAAAAAUAAG	
	AUUAAUGCCGGGACCAGGAUUAUUAGCUAUGCCAACG	
	ACUGUUGAUGGCUGUGUCAGAACCCCCGUCCUUAGUGA	
	UAAAUGAUCUGAUUUAUGCUUACACCUCAAAUCUAAU	
	UACUCGAGGUUGCCAGGAUAUAGGGAAAUCAUAUCAA	
	GUAUUACAGAUAGGGAUAAUAACUGUAAACUCAGACU	
	UGGUACCUGACUUAAAUCCUAGGAUCUCUCAUACCUU	
	CAACAUAAAUGACAAUAGAAAGUCAUGUUCUCUAGCA	
	CUCCUAAAUACAGAUGUAUAUCAACUGUGUUCAAACCC	
	CAAAAGUUGAUGAAAGAUCAGAUUAUGCAUCAUCAGG	
	CAUAGAAGAUAUUGUACUUGAUAUUGUCAAUUUAUGAU	
	GGCUCAAUCUCGACAACAAGAUUUAAGAAUAAUAAUA	
	UAAGUUUUGAUCAACCAUAUGCGGCAUUAUACCCAUC	
	UGUUGGACCAGGGAUAUACUACAAAGGCAAAAUAAUA	
	UUUCUCGGGUAUGGAGGUCUUGAACAUCCAAUAAAUG	
	AGAAUGCAAUCUGCAACACAACUGGGUGUCCUGGGAA	
	AACACAGAGAGACUGUAAUCAAGCAUCUCAUAGUCCA	
	UGGUUUUCAGAUAGAAGGAUGGUCAACUCUAUAAUUG	
	UUGUUGACAAGGGCUUGAACUCAGUUCCAAAAUUGAA	
	GGUAUGGACGAUAUCUAUGAGACAAAAUUACUGGGGG	
	UCAGAAGGAAGAUUACUUCUACUAGGUAACAAGAUCU	
	ACAUAUACACAAGAUCUACAAGUUGGCACAGCAAGUU	
	ACAAUUAGGAAUAAUUGACAUUACUGACUACAGUGAU	
	AUAAGGAUAAAAUGGACAUGGCAUAAUGUGCUAUCAA	
	GACCAGGAAACAAUGAAUGUCCAUGGGGACAUUCAUG	
	UCCGGAUGGAUGUAUAACGGGAGUAUAUACCGAUGCA	
	UAUCCACUCAAUCCCACAGGAAGCAUUGUAUCAUCUG	
	UCAUAUUGGACUCACAAAAAUCGAGAGUCAACCCAGU	
	CAUAACUUACUCAACAGCAACCGAAAGGGUAAACGAG	
	CUGGCUAUCCGAAACAAAACACUCUCAGCUGGGUACA	
	CAACAACAAGCUGCAUUACACACUAUAACAAAGGGUA	
	UUGUUUUCAUAUAGUAGAAAUAAAUCAUAAAAGGCUUA	
	AACACAUUUCAACCCAUGUUGUUCAAAACAGAGAUUC	
	CAAAAAGCUGCAGU	
HPIV3_HN_Codon Optimīzē	AUGGAAUACUGGAAGCACACCAACCACGGCAAGGACG	63
	CCGGCAACGAGCUGGAAACCAGCACAGCCACACACGGC	
	AACAAGCUGACCAACAAGAUCACCUACAUCCUGUGGA	
	CCAUCACCCUGGUGCUGCUGAGCAUCGUGUUCAUCAUC	
	gUGCUGACCAAUAGCAUCAAGAGCGAGAAGGCCAGAG	
	AGAGCCUGCUGCAGGACAUCAACAACGAGUUCAUGGA	
	AGUGACCGAGAAGAUCCAGGUGGCCAGCGACAACACC	
	AACGACCUGAUCCAGAGCGGCGUGAACACCCGGCUGCU	
	GACCAUCCAGAGCCACGUGCAGAACUACAUCCCCAUCA	
	GCCUGACCCAGCAGAUCAGCGACCUGCGGAAGUUCAUC	
	AGCGAGAUCACCAUCCGGAACGACAACCAGGAAGUGC	
	CCCCCCAGAGAAUCACCCACGACGUGGGCAUCAAGCCC	
	CUGAACCCCGACGAUUUCUGGCGGUGUACAAGCGGCC	
	UGCCCAGCCUGAUGAAGACCCCCAAGAUCCGGCUGAUG	
	CCUGGCCCUGGACUGCUGGCCAUGCCUACCACAGUGGA	
	UGGCUGUGUGCGGACCCCCAGCCUCGUGAUCAACGAUC	
	UGAUCUACGCCUACACCAGCAAACCUGAUCACCCGGGGC	
	UGCCAGGAUAUCGGCAAGAGCUACCAGGUGCUGCAGA	
	UCGGCAUCAUCACCGUGAACUCCGACCUGGUGCCCGAC	
	CUGAACCCUCGGAUCAGCCACACCUUCAACAUCAACGA	
	CAACAGAAAGAGCUGCAGCCUGGCUCUGCUGAACACC	
	GACGUGUACCAGCUGUGCAGCACCCCCAAGGUGGACG	
	AGAGAAGCGACUACGCCAGCAGCGGCAUCGAGGAUAU	
	CGUGCUGGACAUCGUGAACUACGACGGCAGCAUCAGC	
	ACCACCCGGUUCAAGAACAACAACAUCAGCUUCGACCA	
	GCCCUACGCCGCCCUGUACCCUUCUGUGGGCCCUGGCA	
	UCUACUACAAGGGCAAGAUCAUCUUCCUGGGCUACGG	
	CGGCCUGGAACACCCCAUCAACGAGAACGCCAUCUGCA	
	ACACCACCGGCUGCCCUGGCAAGACCCAGAGAGACUGC	
	AAUCAGGCCAGCCACAGCCCCUGGUUCAGCGACCGCAG	
	AAUGGUCAACUCUAUCAUCGUGGUGGACAAGGGCCUG	
	AACAGCGUGCCCAAGCUGAAAGUGUGGACAAUCAGCA	
	UGCGCCAGAACUACUGGGGCAGCGAGGGCAGACUUCU	
	GCUGCUGGGAAACAAGAUCUACAUCUACACCCGGUCC	
	ACCAGCUGGCACAGCAAACUGCAGCUGGGAAUCAUCG	

TABLE 5-continued

	3 Nucleic Acid Sequences	
Description	Sequence	$\begin{gathered} \text { SEQ ID } \\ \text { NO: } \end{gathered}$
	ACAUCACCGACUACAGCGACAUCCGGAUCAAGUGGACC	
	UGGCACAACGUGCUGAGCAGACCCGGCAACAAUGAGU	
	GCCCUUGGGGCCACAGCUGCCCCGAUGGAUGUAUCACC	
	GGCGUGUACACCGACGCCUACCCCCUGAAUCCUACCGG	
	CUCCAUCGUGUCCAGCGUGAUCCUGGACAGCCAGAAA	
	AGCAGAGUGAACCCCGUGAUCACAUACAGCACCGCCAC	
	CGAGAGAGUGAACGAACUGGCCAUCAGAAACAAGACC	
	CUGAGCGCCGGCUACACCACCACAAGCUGCAUCACACA	
	CUACAACAAGGGCUACUGCUUCCACAUCGUGGAAAUC	
	AACCACAAGUCCCUGAACACCUUCCAGCCCAUGCUGUU	
	CAAGACCGAGAUCCCCAAGAGCUGCUCC	
HPIV3_F_Codon Optimized mRNA sequence	AUGCCCAUCAGCAUCCUGCUGAUCAUCACCACAAUGAU	64
	CAUGGCCAGCCACUGCCAGAUCGACAUCACCAAGCUGC	
	AGCACGUGGGCGugcucgugaicagccccaighgcau	
	GAAGAUCAGCCAGAACUUCGAGACACGCUACCUGAUC	
	CUGAGCCUGAUCCCCAAGAUCGAGGACAGCAACAGCU	
	GCGGCGACCAGCAGAUCAAGCAGUACAAGCGGCUGCU	
	GGACAGACUGAUCAUCCCCCUGUACGACGGCCUGCGGC	
	UGCAGAAAGACGUGAUCGUGACCAACCAGGAAAGCAA	
	CGAGAACACCGACCCCCGGACCGAGAGAUUCUUCGGCG	
	GCGUGAUCGGCACAAUCGCCCUGGGAGUGGCCACAAG	
	CGCCCAGAUUACAGCCGCUGUGGCCCUGGUGGAAGCCA	
	AGCAGGCCAGAAGCGACAUCGAGAAGCUGAAAGAGGC	
	CAUCCGGGACACCAACAAGGCCGUGCAGAGCGUGCAG	
	UCCAGCGUGGGCAAUCUGAUCGUGGCCAUCAAGUCCG	
	UGCAGGACUACGUGAACAAAGAAAUCGUGCCCUCUAU	
	CGCCCGGCUGGGCUGUGAAGCUGCCGGACUGCAGCUG	
	GGCAUUGCCCUGACACAGCACUACAGCGAGCUGACCAA	
	CAUCUUCGGCGACAACAUCGGCAGCCUGCAGGAAAAG	
	GGCAUUAAGCUGCAGGGAAUCGCCAGCCUGUACCGCA	
	CCAACAUCACCGAGAUCUUCACCACCAGCACCGUGGAU	
	AAGUACGACAUCUACGACCUGCUGUUCACCGAGAGCA	
	UCAAAGUGCGCGUGAUCGACGUGGACCUGAACGACUA	
	CAGCAUCACCCUGCAAGUGCGGCUGCCCCUGCUGACCA	
	GACUGCUGAACACCCAGAUCUACAAGGUGGACAGCAU	
	CUCCUACAACAUCCAGAACCGCGAGUGGUACAUCCCUC	
	UGCCCAGCCACAUUAUGACCAAGGGCGCCUUUCUGGGC	
	GGAGCCGACGUGAAAGAGUGCAUCGAGGCCUUCAGCA	
	GCUACAUCUGCCCCAGCGACCCUGGCUUCGUGCUGAAC	
	CACGAGAUGGAAAGCUGCCUGAGCGGCAACAUCAGCC	
	AGUGCCCCAGAACCACCGUGACCUCCGACAUCGUGCCC	
	AGAUACGCCUUCGUGAAUGGCGGCGUGGUGGCCAACU	
	GCAUCACCACCACCUGUACCUGCAACGGCAUCGGCAAC	
	CGGAUCAACCAGCCUCCCGAUCAGGGCGUGAAGAUUA	
	UCACCCACAAAGAGUGUAACACCAUCGGCAUCAACGGC	
	AUGCUGUUCAAUACCAACAAAGAGGGCACCCUGGCCU	
	UCUACACCCCCGACGAUAUCACCCUGAACAACUCCGUG	
	GCUCUGGACCCCAUCGACAUCUCCAUCGAGCUGAACAA	
	GGCCAAGAGCGACCUGGAAGAGUCCAAAGAGUGGAUC	
	CGGCGGAGCAACCAGAAGCUGGACUCUAUCGGCAGCU	
	GGCACCAGAGCAGCACCACCAUCAUCGUGAUCCUGAUU	
	AUGAUGAUUAUCCUGUUCAUCAUCAACAUUACCAUCA	
	UCACUAUCGCCAUUAAGUACUACCGGAUCCAGAAACG	
	GAACCGGGUGGACCAGAAUGACAAGCCCUACGUGCUG	
	ACAAACAAG	

TABLE 6

PIV3 Amino Acid Sequences				
Description	Sequence	$\begin{gathered} \text { SEQ ID } \\ \text { NO: } \end{gathered}$		
>gi\|612507166	gb		MPISILLIITTMIMASHCQIDITKLQHVGVLVNSPKGMKISQ	13
AHX22429.1\|	NFETRYLILSLIPKIEDSNSCGDQQI KQYKRLLDRLI IPLYDG			
fusion glycoprotein	LRLQKDVIVTNQESNENTDPRTERFFGGVIGTIALGVATSA			
FO [Human	QITAAVALVEAKQARSDIEKLKEAIRDTNKAVQSVQSSVG			
parainfluenza virus	NLIVAI KSVQDYVNKEIVPSIARLGCEAAGLQLGIALTQHYS			
3]	ELTNIFGDNIGSLQEKGIKLQGIASLYRTNITEIFTTSTVDKY			
	DIYDLLFTESIKVRVIDVDLNDYSITLQVRLPLLTRLLNTQIY			

TABLE 6-continued

PIV3 Amino Acid Sequences					
Description	Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$			
	KVDSISYNIQNREWYIPLPSHIMTKGAFLGGADVKECIEAFS SYICPSDPGFVLNHEMESCLSGNISQCPRTTVTSDIVPRYAF VNGGVVANCITTTCTCNGIGNRINQPPDQGVKIITHKECNTI GINGMLFNTNKEGTLAFYTPDDITLNNSVALDPIDISIELNK AKSDLEESKEWIRRSNQKLDSIGSWHOSSTTIIVILIMMIILFI INITIITIAIKYYRIQKRNRVDQNDKPYVLTNK				
```gi\|612507167	gb	AHX22430.1	hemagglutinin- neuraminidase [Human parainfluenza virus 3]```	MEYWKHTNHGKDAGNELETSTATHGNKLTNKITYILWTIT LVLLSIVFIIVLTNSIKSEKARESLLQDINNEFMEVTEKIQVA SDNTNDLIQSGVNTRLLTIQSHVQNYIPISLTQQISDLRKFIS EITIRNDNQEVPPQRITHDVGIKPLNPDDFWRCTSGLPSLMK TPKIRLMPGPGLLAMPTTVDGCVRTPSLVINDLIYAYTSNLI TRGCQDIGKSYQVLQIGIITVNSDLVPDLNPRISHTFNINDN RKSCSLALLINTDVYQLCSTPKVDERSDYASSGIEDIVLDIV NYDGSISTTRFKNNNISFDQPYAALYPSVGPGIYYKGKIIFL GYGGLEHPINENAICNTTGCPGKTQRDCNQASHSPWFSDR RMVNSI IVVDKGLNSVPKLKVWTISMRONYWGSEGRLLLL GNKIYIYTRSTSWHSKLQLGIIDI TDYSDIRI KWTWHNVLSR PGNNECPWGHSCPDGCITGVYTDAYPLNPTGSIVSSVILDS QKSRVNPVITYSTATERVNELAIRNKTLSAGYTTTSCITHY NKGYCFHIVEINHKSLNTFQPMLFKTEIPKSCS	14

TABLE 7
PIV3 NCBI Accession Numbers (Nucleic Acid and Amino Acid Sequences)

Description	GenBank Accession
Fusion glycoprotein F0 [Human parainfluenza virus 3]	KJ672601.1\|:
HPIV3/Homo sapiens/PER/FLA4815/2008	4990-6609
	AHX22429
	(Fusion protein)
hemagglutinin-neuraminidase [Human parainfluenza virus 3]	KJ672601.1\|:
HPIV3/Homo sapiens/PER/FLA4815/2008	6724-8442
	AHX22430
	(HN protein)
Recombinant PIV3/PIV1 virus fusion glycoprotein (F)	AF016281
and hemagglutinin (HN) genes, complete cds; and RNA	AAC23947
dependent RNA polymerase (L) gene, partial cds.	(hemagglutinin)
Recombinant PIV3/PIV1 virus fusion glycoprotein (F)	AF016281
and hemagglutinin (HN) genes, complete cds; and RNA	AAC23947
dependent RNA polymerase (L) gene, partial cds.	(fusion protein)
hemagglutinin-neuraminidase [Human parainfluenza virus 3]	BAO32044.1
hemagglutinin-neuraminidase [Human parainfluenza virus 3]	BAO32051.1
C protein [Human parainfluenza virus 3]	NP_599251.1
C protein [Human parainfluenza virus 3]	ABZ85670.1
C protein [Human parainfluenza virus 3]	AGT75164.1
C protein [Human parainfluenza virus 3]	AAB48686.1
C protein [Human parainfluenza virus 3]	AHX22115.1
C protein [Human parainfluenza virus 3]	AGW51066.1
C protein [Human parainfluenza virus 3]	AGW51162.1
C protein [Human parainfluenza virus 3]	AGT75252.1
C protein [Human parainfluenza virus 3]	AGT75188.1
C protein [Human parainfluenza virus 3]	AGW51218.1
C protein [Human parainfluenza virus 3]	AGW51074.1
C protein [Human parainfluenza virus 3]	AGT75323.1
C protein [Human parainfluenza virus 3]	AGT75307.1
C protein [Human parainfluenza virus 3]	AHX22131.1
C protein [Human parainfluenza virus 3]	AGW51243.1
C protein [Human parainfluenza virus 3]	AGT75180.1
C protein [Human parainfluenza virus 3]	AGT75212.1
C protein [Human parainfluenza virus 3]	AGW51186.1
C protein [Human parainfluenza virus 3]	AHX22075.1
C protein [Human parainfluenza virus 3]	AHX22163.1
C protein [Human parainfluenza virus 3]	AGT75196.1
C protein [Human parainfluenza virus 3]	AHX22491.1
C protein [Human parainfluenza virus 3]	AHX22139.1
C protein [Human parainfluenza virus 3]	AGW51138.1
C protein [Human parainfluenza virus 3]	AGW51114.1
C protein [Human parainfluenza virus 3]	AGT75220.1
C protein [Human parainfluenza virus 3]	AHX22251.1
RecName: Full = Protein C; AltName: Full $=$ VP18 protein	P06165.1

TABLE 7-continued

Description	GenBank Accession
C protein [Human parainfluenza virus 3]	AHX22187.1
C protein [Human parainfluenza virus 3]	AGT75228.1
C protein [Human parainfluenza virus 3]	AHX22179.1
C protein [Human parainfluenza virus 3]	AHX22427.1
C protein [Human parainfluenza virus 3]	AGW51210.1
nonstructural protein C [Human parainfluenza virus 3]	BAA00922.1
C protein [Human parainfluenza virus 3]	AHX22315.1
C protein [Human parainfluenza virus 3]	AGW51259.1
C protein [Human parainfluenza virus 3]	AHX22435.1
C protein [Human parainfluenza virus 3]	AHX22123.1
C protein [Human parainfluenza virus 3]	AHX22299.1
C protein [Human parainfluenza virus 3]	AGW51267.1
unnamed protein product [Human parainfluenza virus 3]	CAA28430.1
C protein [Human parainfluenza virus 3]	AGW51178.1
C protein [Human parainfluenza virus 3]	AHX22411.1
RecName: Full = Protein C	P06164.1
phosphoprotein [Human parainfluenza virus 3]	NP_067149.1
phosphoprotein [Human parainfluenza virus 3]	AAB48685.1
phosphoprotein [Human parainfluenza virus 3]	AHX22498.1
phosphoprotein [Human parainfluenza virus 3]	AHX22490.1
phosphoprotein [Human parainfluenza virus 3]	AGT75259.1
phosphoprotein [Human parainfluenza virus 3]	AGW51137.1
phosphoprotein [Human parainfluenza virus 3]	AGW51145.1
phosphoprotein [Human parainfluenza virus 3]	AGT75298.1
phosphoprotein [Human parainfluenza virus 3]	AGW51113.1
phosphoprotein [Human parainfluenza virus 3]	AGT75203.1
phosphoprotein [Human parainfluenza virus 3]	AGT75163.1
phosphoprotein [Human parainfluenza virus 3]	AHX22506.1
phosphoprotein [Human parainfluenza virus 3]	AGW51129.1
phosphoprotein [Human parainfluenza virus 3]	AHX22194.1
phosphoprotein [Human parainfluenza virus 3]	AGT75211.1
phosphoprotein [Human parainfluenza virus 3]	AHX22258.1
phosphoprotein [Human parainfluenza virus 3]	AGW51121.1
phosphoprotein [Human parainfluenza virus 3]	AGT75282.1
phosphoprotein [Human parainfluenza virus 3]	AHX22146.1
phosphoprotein [Human parainfluenza virus 3]	AHX22138.1
phosphoprotein [Human parainfluenza virus 3]	AHX22322.1
phosphoprotein [Human parainfluenza virus 3]	AHX22370.1
phosphoprotein [Human parainfluenza virus 3]	AHX22098.1
phosphoprotein [Human parainfluenza virus 3]	AHX22130.1
phosphoprotein [Human parainfluenza virus 3]	AHX22418.1
phosphoprotein [Human parainfluenza virus 3]	AHX22114.1
phosphoprotein [Human parainfluenza virus 3]	AHX22410.1
phosphoprotein [Human parainfluenza virus 3]	AGT75306.1
phosphoprotein [Human parainfluenza virus 3]	AHX22170.1
phosphoprotein [Human parainfluenza virus 3]	AHX22266.1
phosphoprotein [Human parainfluenza virus 3]	AHX22090.1
phosphoprotein [Human parainfluenza virus 3]	AGT75195.1
phosphoprotein [Human parainfluenza virus 3]	AHX22226.1
phosphoprotein [Human parainfluenza virus 3]	AHX22178.1
phosphoprotein [Human parainfluenza virus 3]	AHX22122.1
phosphoprotein [Human parainfluenza virus 3]	AHX22186.1
phosphoprotein [Human parainfluenza virus 3]	AHX22066.1
phosphoprotein [Human parainfluenza virus 3]	AHX22522.1
phosphoprotein [Human parainfluenza virus 3]	AGW51225.1
phosphoprotein [Human parainfluenza virus 3]	BAN29032.1
phosphoprotein [Human parainfluenza virus 3]	ABZ85669.1
phosphoprotein [Human parainfluenza virus 3]	AHX22426.1
phosphoprotein [Human parainfluenza virus 3]	AHX22058.1
phosphoprotein [Simian Agent 10]	ADR00400.1
phosphoprotein [Human parainfluenza virus 3]	AHX22250.1
phosphoprotein [Human parainfluenza virus 3]	AHX22434.1
phosphoprotein [Human parainfluenza virus 3]	AHX22298.1
phosphoprotein [Human parainfluenza virus 3]	AHX22442.1
phosphoprotein [Human parainfluenza virus 3]	AHX22074.1
phosphoprotein [Human parainfluenza virus 3]	AGW51153.1
phosphoprotein [Human parainfluenza virus 3]	AGW51241.1
phosphoprotein [Human parainfluenza virus 3]	AHX22210.1
phosphoprotein [Human parainfluenza virus 3]	AGW51105.1
phosphoprotein [Human parainfluenza virus 3]	AGT75251.1
phosphoprotein [Human parainfluenza virus 3]	AHX22362.1
phosphoprotein [Human parainfluenza virus 3]	AHX22474.1
phosphoprotein [Human parainfluenza virus 3]	AGW51217.1
phosphoprotein [Human parainfluenza virus 3]	AIG60038.1
phosphoprotein [Human parainfluenza virus 3]	AHX22378.1
phosphoprotein [Human parainfluenza virus 3]	AGW51057.1

TABLE 7-continued

Description	GenBank Accession
phosphoprotein [Human parainfluenza virus 3]	AGT75187.1
phosphoprotein [Human parainfluenza virus 3]	AGW51233.1
phosphoprotein [Human parainfluenza virus 3]	AHX22482.1
phosphoprotein [Human parainfluenza virus 3]	AGW51161.1
phosphoprotein [Human parainfluenza virus 3]	AHX22306.1
phosphoprotein [Human parainfluenza virus 3]	AHX22162.1
phosphoprotein [Human parainfluenza virus 3]	ACJ70087.1
phosphoprotein [Human parainfluenza virus 3]	AHX22466.1
phosphoprotein [Human parainfluenza virus 3]	AHX22346.1
phosphoprotein [Human parainfluenza virus 3]	AGW51089.1
phosphoprotein [Human parainfluenza virus 3]	AGW51073.1
phosphoprotein [Human parainfluenza virus 3]	AGW51185.1
phosphoprotein [Human parainfluenza virus 3]	AGW51065.1
phosphoprotein [Human parainfluenza virus 3]	ABY47603.1
phosphoprotein [Human parainfluenza virus 3]	AGW51049.1
phosphoprotein [Human parainfluenza virus 3]	AHX22330.1
phosphoprotein [Human parainfluenza virus 3]	AGW51250.1
phosphoprotein [Human parainfluenza virus 3]	AGT75227.1
phosphoprotein [Human parainfluenza virus 3]	AGW51282.1
phosphoprotein [Human parainfluenza virus 3]	AGW51209.1
phosphoprotein [Human parainfluenza virus 3]	AGW51193.1
phosphoprotein [Human parainfluenza virus 3]	AGT75322.1
phosphoprotein [Human parainfluenza virus 3]	AGT75219.1
phosphoprotein [Human parainfluenza virus 3]	AGW51258.1
phosphoprotein [Human parainfluenza virus 3]	AGW51041.1
phosphoprotein [Human parainfluenza virus 3]	ACD99698.1
phosphoprotein [Human parainfluenza virus 3]	AGW51266.1
phosphoprotein [Human parainfluenza virus 3]	AGT75179.1
phosphoprotein [Human parainfluenza virus 3]	AHX22282.1
phosphoprotein [Human parainfluenza virus 3]	AGW51169.1
phosphoprotein [Human parainfluenza virus 3]	AGW51274.1
phosphoprotein [Human parainfluenza virus 3]	AGW51201.1
phosphoprotein [Human parainfluenza virus 3]	AGW51177.1
RecName: Full $=$ Phosphoprotein; Short $=$ Protein P	P06162.1
P protein [Human parainfluenza virus 3]	AAA66818.1
phosphoprotein [Human parainfluenza virus 3]	AAA46866.1
phosphoprotein [Human parainfluenza virus 3]	BAA00031.1
polymerase-associated nucleocapsid phosphoprotein (version 2) - parainfluenza virus type 3	RRNZP5
[Human parainfluenza virus 3]	
phosphoprotein [Human parainfluenza virus 3]	AGT75171.1
phosphoprotein [Human parainfluenza virus 3]	BAA00921.1
D protein [Human parainfluenza virus 3]	NP_599250.1
D protein [Human parainfluenza virus 3]	AHX22377.1
D protein [Human parainfluenza virus 3]	AHX22121.1
D protein [Human parainfluenza virus 3]	AGT75297.1
D protein [Human parainfluenza virus 3]	AGW51136.1
D protein [Human parainfluenza virus 3]	AGW5 1242.1
D protein [Human parainfluenza virus 3]	AGW51112.1
D protein [Human parainfluenza virus 3]	AHX22497.1
D protein [Human parainfluenza virus 3]	AHX22145.1
D protein [Human parainfluenza virus 3]	AGT75202.1
D protein [Human parainfluenza virus 3]	AHX22385.1
D protein [Human parainfluenza virus 3]	AGW51216.1
D protein [Human parainfluenza virus 3]	AGT75281.1
D protein [Human parainfluenza virus 3]	AGT75194.1
D protein [Human parainfluenza virus 3]	AHX22521.1
D protein [Human parainfluenza virus 3]	AGW51120.1
D protein [Human parainfluenza virus 3]	AGT75313.1
D protein [Human parainfluenza virus 3]	AHX22249.1
D protein [Human parainfluenza virus 3]	AHX22097.1
D protein [Human parainfluenza virus 3]	AGW51144.1
D protein [Human parainfluenza virus 3]	AHX22089.1
D protein [Human parainfluenza virus 3]	AHX22225.1
D protein [Human parainfluenza virus 3]	AHX22137.1
D protein [Human parainfluenza virus 3]	AHX22065.1
D protein [Human parainfluenza virus 3]	AGW51224.1
D protein [Human parainfluenza virus 3]	AGT75210.1
D protein [Human parainfluenza virus 3]	AHX22393.1
D protein [Human parainfluenza virus 3]	AGT75258.1
D protein [Human parainfluenza virus 3]	AHX22345.1
D protein [Human parainfluenza virus 3]	AGT75250.1
D protein [Human parainfluenza virus 3]	AHX22113.1
D protein [Human parainfluenza virus 3]	AGW51232.1
D protein [Human parainfluenza virus 3]	AHX22057.1
D protein [Human parainfluenza virus 3]	AHX22209.1

TABLE 7-continued

Description	GenBank Accession
D protein [Human parainfluenza virus 3]	AGW51056.1
D protein [Human parainfluenza virus 3]	AHX22161.1
D protein [Simian Agent 10]	ADR00402.1
D protein [Human parainfluenza virus 3]	AHX22361.1
D protein [Human parainfluenza virus 3]	AGW51281.1
D protein [Human parainfluenza virus 3]	AGW51184.1
D protein [Human parainfluenza virus 3]	AGW51160.1
D protein [Human parainfluenza virus 3]	AHX22465.1
D protein [Human parainfluenza virus 3]	AHX22329.1
D protein [Human parainfluenza virus 3]	AGW51064.1
D protein [Human parainfluenza virus 3]	AGW51040.1
D protein [Human parainfluenza virus 3]	AGT75226.1
D protein [Human parainfluenza virus 3]	AHX22425.1
D protein [Human parainfluenza virus 3]	AHX22305.1
D protein [Human parainfluenza virus 3]	AGW51249.1
D protein [Human parainfluenza virus 3]	AHX22481.1
D protein [Human parainfluenza virus 3]	AHX22281.1
D protein [Human parainfluenza virus 3]	AGW51048.1
D protein [Human parainfluenza virus 3]	AHX22297.1
D protein [Human parainfluenza virus 3]	AGW51088.1
D protein [Human parainfluenza virus 3]	AGT75305.1
D protein [Human parainfluenza virus 3]	AHX22185.1
D protein [Human parainfluenza virus 3]	AGW51104.1
D protein [Human parainfluenza virus 3]	AHX22081.1
D protein [Human parainfluenza virus 3]	AGW51192.1
D protein [Human parainfluenza virus 3]	AHX22489.1
D protein [Human parainfluenza virus 3]	AHX22441.1
D protein [Human parainfluenza virus 3]	AHX22409.1
D protein [Human parainfluenza virus 3]	AHX22369.1
D protein [Human parainfluenza virus 3]	AHX22321.1
D protein [Human parainfluenza virus 3]	AHX22073.1
D protein [Human parainfluenza virus 3]	AGW51152.1
D protein [Human parainfluenza virus 3]	AGW51072.1
D protein [Human parainfluenza virus 3]	AGT75321.1
D protein [Human parainfluenza virus 3]	AHX22257.1
D protein [Human parainfluenza virus 3]	AHX22129.1
D protein [Human parainfluenza virus 3]	AHX22417.1
D protein [Human parainfluenza virus 3]	AGT75218.1
D protein [Human parainfluenza virus 3]	AHX22265.1
D protein [Human parainfluenza virus 3]	AGT75178.1
D protein [Human parainfluenza virus 3]	AHX22433.1
D protein [Human parainfluenza virus 3]	AGW51273.1
D protein [Human parainfluenza virus 3]	AGW51208.1
D protein [Human parainfluenza virus 3]	AGT75170.1
D protein [Human parainfluenza virus 3]	AGT75162.1
D protein [Human parainfluenza virus 3]	AGW51257.1
D protein [Human parainfluenza virus 3]	AGW51200.1
D protein [Human parainfluenza virus 3]	AGW51176.1
D protein [Human parainfluenza virus 3]	AGT75186.1
D protein [Human parainfluenza virus 3]	AGW51265.1
D protein [Human parainfluenza virus 3]	AGW51168.1

TABLE 8

	Siqnal Peptides	
Description	Sequence	SEQ ID NO:
HuIgG peptide		
IgE heavy chain epsilon-1 signal peptide	METPAQLLFLLLLWLPDTTG	15
Japanese encephalitis PRM signal sequence	MLGSNSGQRVVFTILLLLVAPAYS	

50

	Signal Peptides			
	Sequence	SEQ ID		
Description	NO:			
Japanese encephalitis JEV signal sequence		19		

60

	hMPV/PIV Cotton Rat Challenge Study Design					
	Group	n	Test Article	[conc]/ $/ \mathrm{g}$	Route	Challenge
65	1	5	Placebo	n / a	IM	hMPV/A2
	2	5	hMPV vaccine mRNA	30	IM	hMPV/A2

TABLE 9-continued

TABLE 9-continued

TABLE 10

Strain	Nucleic Acid Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$	
gb\|KJ156934.1	: 21405-25466	ATGATACACTCAGTGTTTCTACTGATGTTCTTGTTAACACC	20
Middle	TACAGAAAGTTACGTTGATGTAGGGCCAGATTCTGTTAAG		
East respiratory	TCTGCTTGTATTGAGGTTGATATACAACAGACCTTCTTTGA		
syndrome	TAAAACTTGGCCTAGGCCAATTGATGTTTCTAAGGCTGAC		
coronavirus	GGTATTATATACCCTCAAGGCCGTACATATTCTAACATAA		
isolate	СТАTCACTTATCAAGGTCTTTTTCCCTATCAGGGAGACCAT		
Riyadh_14_2013,	GGTGATATGTATGTTTACTCTGCAGGACATGCTACAGGCA		
spike protein	CAACTCCACAAAAGTTGTTTGTAGCTAACTATTCTCAGGA		
(nucleotide)	CGTCAAACAGTTTGCTAATGGGTTTGTCGTCCGTATAGGA		
	GCAGCTGCCAATTCCACTGGCACTGTTATTATTAGCCCATC		
	TACCAGCGCTACTATACGAAAAATTTACCCTGCTTTTATGC		
	TGGGTTCTTCAGTTGGTAATTTCTCAGATGGTAAAATGGG		
	CCGCTTCTTCAATCATACTCTAGTTCTTTTGCCCGATGGAT		
	GTGGCACTTTACTTAGAGCTTTTTATTGTATTCTAGAGCCT		
	CGCTCTGGAAATCATTGTCCTGCTGGCAATTCCTATACTTC		
	TTTTGCCACTTATCACACTCCTGCAACAGATTGTTCTGATG		
	GCAATTACAATCGTAATGCCAGTCTGAACTCTTTTAAGGA		
	GTATTTTAATTTACGTAACTGCACCTTTATGTACACTTATA		
	ACATTACCGAAGATGAGATTTTAGAGTGGTTTGGCATTAC		
	ACAAACTGCTCAAGGTGTTCACCTCTTCTCATCTCGGTATG		
	TTGATTTGTACGGCGGCAATATGTTTCAATTTGCCACCTTG		
	CCTGTTTATGATACTATTAAGTATTATTCTATCATTCCTCA		
	CAGTATTCGTTCTATCCAAAGTGATAGAAAAGCTTGGGCT		
	GCCTTCTACGTATATAAACTTCAACCGTTAACTTTCCTGTT		
	GGATTTTTCTGTTGATGGTTATATACGCAGAGCTATAGACT		
	GTGGTTTTAATGAtTTGTCACAACTCCACTGCTCATATGAA		
	TCCTTCGATGTTGAATCTGGAGTTTATTCAGTTTCGTCTTT		
	CGAAGCAAAACCTTCTGGCTCAGTTGTGGAACAGGCTGAA		
	GGTGTTGAATGTGATTTTTCACCTCTTCTGTCTGGCACACC		
	TCCTCAGGTTTATAATTTCAAGCGTTTGGTTTTTACCAATT		
	GCAATTATAATCTTACCAAATTGCTTTCACTTTTTTCTGTG		
	AATGATTTTACTTGTAGTCAAATATCTCCAGCAGCAATTGC		
	TAGCAACTGTTATTCTTCACTGATTTTGGATTATTTTTCAT		
	ACCCACTTAGTATGAAATCCGATCTCAGTGTTAGTTCTGCT		
	GGTCCAATATCCCAGTTTAATTATAAACAGTCCTTTTCTAA		
	TCCCACATGTTTGATCTTAGCGACTGTTCCTCATAACCTTA		
	CTACTATTACTAAGCCTCTTAAGTACAGCTATATTAACAA		
	GTGCTCTCGTCTTCTTTCTGATGATCGTACTGAAGTACCTC		
	AGTTAGTGAACGCTAATCAATACTCACCCTGTGTATCCATT		
	GTCCCATCCACTGTGTGGGAAGACGGTGATTATTATAGGA		
	AACAACTATCTCCACTTGAAGGTGGTGGCTGGCTTGTTGC		
	TAGTGGCTCAACTGTTGCCATGACTGAGCAATTACAGATG		
	GGCTTTGGTATTACAGTTCAATATGGTACAGACACCAATA		
	GTGTTTGCCCCAAGCTTGAATTTGCTAATGACACAAAAAT		
	TGCCTCTCAATTAGGCAATTGCGTGGAATATTCCCTCTATG		
	GTGTTTCGGGCCGTGGTGTTTTTCAGAATTGCACAGCTGTA		
	GGTGTTCGACAGCAGCGCTTTGTTTATGATGCGTACCAGA		
	ATtTAGTtGGCTATtATtCTGATGATGGCAACTACTACTGT		
	CTGCGTGCTTGTGTTAGTGTTCCTGTTTCTGTCATCTATGA		
	TAAAGAAACTAAAACCCACGCTACTCTATTTGGTAGTGTT		
	GCATGTGAACACATTTCTTCTACCATGTCTCAATACTCCCG		
	TTCTACGCGATCAATGCTTAAACGGCGAGATTCTACATAT		
	GGCCCCCTTCAGACACCTGTTGGTTGTGTCCTAGGACTTGT		
	TAATTCCTCTTTGTTCGTAGAGGACTGCAAGTTGCCTCTCG		
	GTCAATCTCTCTGTGCTCTTCCTGACACACCTAGTACTCTC		
	ACACCTCGCAGTGTGCGCTCTGTGCCAGGTGAAATGCGCT		
	TGGCATCCATTGCTTTTAATCATCCCATTCAGGTTGATCAA		
	CTTAATAGTAGTTATTTTAAATTAAGTATACCCACTAATTT		

TABLE 10-continued

TABLE 10-continued

Strain	Nucleic Acid Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
	AATGATTTTACTTGTAGTCAAATATCTCCAGCAGCAATTGC	
	TAGCAACTGTTATTCTTCACTGATtTTGGATTACTTTTCAT	
	ACCCACTTAGTATGAAATCCGATCTCAGTGTTAGTTCTGCT	
	GGTCCAATATCCCAGTTTAATTATAAACAGTCCTTTTCTAA	
	TCCCACATGTTTGATTTTAGCGACTGTTCCTCATAACCTTA	
	CTACTATTACTAAGCCTCTTAAGTACAGCTATATTAACAA	
	GTGCTCTCGTCTTCTTTCTGATGATCGTACTGAAGTACCTC	
	AGTTAGTGAACGCTAATCAATACTCACCCTGTGTATCCATT	
	GTCCCATCCACTGTGTGGGAAGACGGTGATTATTATAGGA	
	AACAACTATCTCCACTTGAAGGTGGTGGCTGGCTTGTTGC	
	TAGTGGCTCAACTGTTGCCATGACTGAGCAATTACAGATG	
	GGCTTTGGTATTACAGTTCAATATGGTACAGACACCAATA	
	GTGTTTGCCCCAAGCTTGAATTTGCTAATGACACAAAAAT	
	TGCCTCTCAATTAGGCAATTGCGTGGAATATTCCCTCTATG	
	GTGTTTCGGGCCGTGGTGTTTTTCAGAATTGCACAGCTGTA	
	GGTGTTCGACAGCAGCGCTTTGTTTATGATGCGTACCAGA	
	ATTTAGTTGGCTATTATTCTGATGATGGCAACTACTACTGT	
	TTGCGTGCTTGTGTTAGTGTTCCTGTTTCTGTCATCTATGAT	
	AAAGAAACTAAAACCCACGCTACTCTATTTGGTAGTGTTG	
	САTGTGAACACATTTCTTCTACCATGTCTCAATACTCCCGT	
	TCTACGCGATCAATGCTTAAACGGCGAGATTCTACATATG	
	GCCCCCTTCAGACACCTGTTGGTTGTGTCCTAGGACTTGTT	
	AATTCCTCTTTGTTCGTAGAGGACTGCAAGTTGCCTCTTGG	
	TCAATCTCTCTGTGCTCTTCCTGACACACCTAGTACTCTCA	
	CACCTCGCAGTGTGCGCTCTGTTCCAGGTGAAATGCGCTT	
	GGCATCCATTGCTTTTAATCATCCTATTCAGGTTGATCAAC	
	TTAATAGTAGTTATTTTAAATTAAGTATACCCACTAATTTT	
	TCCTTTGGTGTGACTCAGGAGTACATTCAGACAACCATTC	
	AGAAAGTTACTGTTGATTGTAAACAGTACGTTTGCAATGG	
	TTTCCAGAAGTGTGAGCAATTACTGCGCGAGTATGGCCAG	
	TTTTGTTCCAAAATAAACCAGGCTCTCCATGGTGCCAATTT	
	ACGCCAGGATGATTCTGTACGTAATTTGTTTGCGAGCGTG	
	AAAAGCTCTCAATCATCTCCTATCATACCAGGTTTTGGAG	
	GTGACTTTAATTTGACACTTCTGGAACCTGTTTCTATATCT	
	ACTGGCAGTCGTAGTGCACGTAGTGCTATTGAGGATTTGC	
	TATTTGACAAAGTCACTATAGCTGATCCTGGTTATATGCA	
	AGGTTACGATGATTGCATGCAGCAAGGTCCAGCATCAGCT	
	CGTGATCTTATTTGTGCTCAATATGTGGCTGGTTACAAAGT	
	ATTACCTCCTCTTATGGATGTTAATATGGAAGCCGCGTATA	
	СTTCATCTTTGCTTGGCAGCATAGCAGGTGTTGGCTGGACT	
	GCTGGCTTATCCTCCTTTGCTGCTATTCCATTTGCACAGAG	
	TATCTTTTATAGGTTAAACGGTGTTGGCATTACTCAACAGG	
	TTCTTTCAGAGAACCAAAAGCTTATTGCCAATAAGTTTAA	
	TCAGGCTCTGGGAGCTATGCAAACAGGCTTCACTACAACT	
	AATGAAGCTTTTCAGAAGGTTCAGGATGCTGTGAACAACA	
	ATGCACAGGCTCTATCCAAATTAGCTAGCGAGCTATCTAA	
	TACTTTTGGTGCTATTTCCGCCTCTATTGGAGACATCATAC	
	AACGTCTTGATGTTCTCGAACAGGACGCCCAAATAGACAG	
	ACTTATTAATGGCCGTTTGACAACACTAAATGCTTTTGTTG	
	CACAGCAGCTTGTTCGITCCGAATCAGCTGCTCTTTCCGCT	
	CAATTGGCTAAAGATAAAGTCAATGAGTGTGTCAAGGCAC	
	AATCCAAGCGTTCTGGATTTTGCGGTCAAGGCACACATAT	
	AGTGTCCTTTGTTGTAAATGCCCCTAATGGCCTTTACTTCA	
	TGCATGTTGGTTATTACCCTAGCAACCACATTGAGGTTGTT	
	TCTGCTTATGGTCTTTGCGATGCAGCTAACCCTACTAATTG	
	TATAGCCCCTGTTAATGGCTACTTTATTAAAACTAATAACA	
	CTAGGATTGTTGATGAGTGGTCATATACTGGCTCGTCCTTC	
	TATGCACCTGAGCCCATTACCTCCCTTAATACTAAGTATGT	
	TGCACCACAGGTGACATACCAAAACATTTCTACTAACCTC	
	ССТССТССТСТТСТСGGCAATTCCACCGGGATTGACTTCCA	
	AGATGAGTTGGATGAGTTTTTCAAAAATGTTAGCACCAGT	
	ATACCTAATTTTGGTTCCCTAACACAGATTAATACTACATT	
	ACTCGATCTTACCTACGAGATGTTGTCTCTTCAACAAGTTG	
	TTAAAGCCCTTAATGAGTCTTACATAGACCTTAAAGAGCT	
	TGGCAATTATACTTATTACAACAAATGGCCGTGGTACATT	
	TGGCTTGGTTTCATTGCTGGGCTTGTTGCCTTAGCTCTATG	
	CGTCTTCTTCATACTGTGCTGCACTGGTTGTGGCACAAACT	
	GTATGGGAAAACTTAAGTGTAATCGTTGTTGTGATAGATA	
	CGAGGAATACGACCTCGAGCCGCATAAGGTTCATGTTCAC	
	TAA	
```Novel_MERS_S2_subunit_trimeric vaccine (nucleotide)```	ATGATCCACTCCGTGTTCCTCCTCATGTTCCTGTTGACCCC	22
	CACTGAGTCAGACTGCAAGCTCCCGCTGGGACAGTCCCTG	
	TGTGCGCTGCCTGACACTCCTAGCACTCTGACCCCACGCTC	
	CGTGCGGTCGGTGCCTGGCGAAATGCGGCTGGCCTCCATC	

TABLE 10-continued


TABLE 10-continued

	havirus Nucleic Acid Sequence	
Strain	Nucleic Acid Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
	ССТGACCAAGCTGCTGAGCCTGTTCTCCGTGAACGACTTC	
	АССТGTAGCCAGATCAGCCCTGCCGCCATTGCCAGCAACT	
	GСТАСАССАGССТGATCCTGGACTACTTCAGCTACCCCCT	
	GAGCATGAAGTCCGATCTGAGCGTGTCCTCCGCCGGACCC	
	ATCAGCCAGTTCAACTACAAGCAGAGCTTCAGCAACCCTA	
	ССТGССТGATTCTGGССАССGTGCCCCACAATCTGACCAC	
	AGCAGACTGCTGTCCGACGACCGGACCGAAGTGCCCCAGC	
	TCGTGAACGCCAACCAGTACAGCCCCTGCGTGTCCATCGT	
	GCCCAGCACCGTGTGGGAGGACGGCGACTACTACAGAAA	
	GCAGCTGAGCCCCCTGGAAGGCGGcGgatgactgetgect	
	TCTGGADGCACAGTGGCCATGACCGA.SCAGCTGCAGATG	
	GGCTTTGGCATCACCGTGCAGTACGGCACCGACACCAACA	
	GCGTGTGCCCCAAGCTGGAATTCGCCAATGACACCAAGAT	
	CGCCAGCCAGCTGGGAAACTGCGTGGAATACTCCCTGTAT	
	GGCGTGTCCGGACGGGGCGTGTTCCAGAATTGCACAGCAG	
	TGGGAGTGCGGCAGCAGAGATTCGTGTACGATGCCTACCA	
	GAACCTCGTGGGCTACTACAGCGACGACGGCAATTACTAC	
	TGCCTGCGGGCCTGTGTGTCCGTGCCCGTGTCCGTGATCTA	
	CGACARAGAGACAAAGACCCACGCCACACTGTTCGGCTCC	
	GTGGCCTGCGAGCACATCAGCTCCACCATGAGCCAGTACT	
	СССGCTCCACCCGGTCCATGCTGAAGCGGAGAGATAGCAC	
	СTACGGCCCCCTGCAGACACCTGTGGGATGTGTGCTGGGC	
	CTCGTGAACAGCTCCCTGT TTGTGGAAGATTGCAAGCTGC	
	СССТGGGCCAGAGCCTGTGTGCCCTGCCAGATACCCCTAG	
	CACCCTGACCCCTAGAXGCGTGCGCTCTGTGCCCGGCGAA	
	АТGСGGCTGGCCTCTATCGCCTTCAATCACCCCATCCAGGT	
	ACCAACTTCAGCTTCGGCGTGACCCAGGAGTACATCCAGA	
	CCACAATCCAGAAAGTGACCGTGGACTGCAAGCAGTACGT	
	GTGCAACGGCTTTCAGAAGTGCGAACAGCTGCTGCGCGAG	
	TACGGCCAGTTCTGCAGCAAGATCAACCAGGCCCTGCACG	
	GCGCCAACCTGAGACAGGATGACAGCGTGCGGAACCTGTT	
	CGCCAGCGTGAAAAGCAGCCAGTCCAGCCCCATCATCCCT	
	GGCTTCGGCGGCGACTTTAACCTGACCCTGCTGGAACCTG	
	TGTCCATCAGCACCGGCTCCAGAAGCGCCAGATCCGCCAT	
	CGAGGACCTGCTGTTCGACAAAGTGACCATTGCCGA.CCCC	
	GGCTACATGCAGGGCTACGACGATTGCATGCAGCAGGGCC	
	CAGCCAGCGCCAGGGATCTGATCTGTGCCCAGTATGTGGC	
	CGGCTACAAGGTGCTGCCCCCCCTGATGGACGTGAACATG	
	GAAGCCGCCTACACCTCCAGCCTGCTGGGCTCTATTGCTG	
	GCGTGGGATGGACAGCCGGCCTGTCTAGCTTTGCCGCCAT	
	СССТTTCGCCCAGAGCATCTTCTACCGGCTGAACGGCGTG	
	GGCATCACACAACAGGTGCTGAGCGAGAACCAGAAGCTG	
	ATCGCCAACAAGTTTAACCAGGCACTGGGCGCCATGCAGA	
	CCGGCTTCACCACCACCAACGAGGCCTTCAGAAAGGTGCA	
	GGACGCCGTGAACAACAACGCCCAGGCTCTGAGCAAGCT	
	GGCCTCCGAGCTGAGCAATACCTTCGGCGCCATCAGCGCC	
	TCCATCGGCGACATCATCCAGCGGCTGGACGTGCTGGAAC	
	AGGACGCCCAGATCGACCGGCTGATCAACGGCAGACTGA	
	ССАСССТGAACGCCTTCGTGGCACAGCAGCTCGTGCGGAG	
	CGAATCTGCCGCTCTGTCTGCTCAGCTGGCCAAGGACAAA	
	GTGAACGAGTGCGTGADGGCCCAGTCCAAGCGGAGCGGC	
	тTTTGTGGCCAGGGCACCCACATCGTGTCCTTCGTCGTGAA	
	TGCCCCCAACGGCCTGTACTTTATGCACGTGGGCTATTACC	
	CCAGCAACCACATCGAGGTGGTGTCCGCCTATGGCCTGTG	
	CGACGCCGCCAATCCTACCAACTGTATCGCCCCCGTGAAC	
	GGCTACTTCATCAAGACCAACAACACCCGGATCGTGGACG	
	AGTGGTCCTACACAGGCAGCAGCTTCTACGCCCCCGAGCC	
	САТСАССТСССТGAACACCAAATACGTGGCCCCCCAAGTG	
	АСАТАССАGААСАТСТССАССААССтесССсСтССАСтGС	
	TGGGAAATTCCACCGGCATCGACTTCCAGGACGAGCTGGA	
	CGAGTTCTTCAAGAACGTGTCCACCTCCATCCCCAACTTCG	
	GCAGCCTGACCCAGATCAACACCACTCTGCTGGACCTGAC	
	CTACGAGATGCTGTCCCTGCAACAGGTCGTGAAAGCCCTG	
	AACGAGAGCTACATCGACCTGAAAGAGCTGGGGAACTAC	
	ACCTACTACAACAAGTGGCCTTGGTACATTTGGCTGGGCT	
	TTATCGCCGGCCTGGTGGCCCTGGCCCTGTGCGTGTTCTTC	
	ATCCTGTGCTGCACCGGCTGCGGCACCAATTGCATGGGCA	
	AGCTGAAATGCAACCGGTGCTGCGACAGATACGAGGAAT ACGACCTGGAACCTCACAAAGTGCATGTGCAC	

TABLE 10-continued

Betacoronavirus Nucleic Acid Sequence			
Strain	Nucleic Acid Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$	
Betacoronavirus mRNA Sequences			
gb\|KJ156934.1	: 21405-25466	AUGAUACACUCAGUGUUUCUACUGAUGUUCUUGUUAAC	65
Middle	ACCUACAGAAAGUUACGUUGAUGUAGGGCCAGAUUCUG		
East respiratory	UUAAGUCUGCUUGUAUUGAGGUUGAUAUACAACAGACC		
syndrome	UUCUUUGAUAAAACUUGGCCUAGGCCAAUUGAUGUUUC		
coronavirus	UAAGGCUGACGGUAUUAUAUACCCUCAAGGCCGUACAU		
isolate	AUUCUAACAUAACUAUCACUUAUCARAGGUCUUUUUCCCU		
Riyadh_14_2013,	AUCAGGGAGACCAUGGUGAUAUGUAUGUUUACUCUGCA		
spike protein	GGACAUGCUACAGGCACAACUCCACAAAAGUUGUUUGU		
(nucleotide)	AGCUAACUAUUCUCAGGACGUCAAACAGUUUGCUAAUG		
	GGUUUGUCGUCCGUAUAGGAGCAGCUGCCAAUUCCACUG		
	GCACUGUUAUUAUUAGCCCAUCUACCAGCGCUACUAUAC		
	GAAAAAUUUACCCUGCUUUUAUGCUGGGUUCUUCAGUU		
	GGUAAUUUCUCAGAUGGUAAAAUGGGCCGCUUCUUCAA		
	UCAUACUCUAGUUCUUUUGCCCGAUGGAUGUGGCACUU		
	UACUUAGAGCUUUUUAUUGUAUUCUAGAGCCUCGCUCU		
	GGAAAUCAUUGUCCUGCUGGCAAUUCCUAUACUUCUUU		
	UGCCACUUAUCACACUCCUGCAACAGAUUGUUCUGAUGG		
	CAAUUACAAUCGUAAUGCCAGUCUGAACUCUUUUAAGG		
	AGUAUUUUAAUUUACGUAACUGCACCUUUAUGUACACU		
	UAUAACAUUACCGAAGAUGAGAUUUUAGAGUGGUUUGG		
	CAUUACACAAACUGCUCAAGGUGUUCACCUCUUCUCAUC		
	UCGGUAUGUUGAUUUGUACGGCGGCAAUAUGUUUCAAU		
	UUGCCACCUUGCCUGUUUAUGAUACUAUUAAGUAUUAU		
	UCUAUCAUUCCUCACAGUAUUCGUUCUAUCCAAAGUGAU		
	AGAAAAGCUUGGGCUGCCUUCUACGUAUAUAAACUUCA		
	ACCGUUAACUUUCCUGUUGGAUUUUUCUGUUGAUGGUU		
	AUAUACGCAGAGCUAUAGACUGUGGUUUUAAUGAUUUG		
	UCACAACUCCACUGCUCAUAUGAAUCCUUCGAUGUUGAA		
	UCUGGAGUUUAUUCAGUUUCGUCUUUCGAAGCAAAACC		
	UUCUGGCUCAGUUGUGGAACAGGCUGAAGGUGUUGAAU		
	GUGAUUUUUCACCUCUUCUGUCUGGCACACCUCCUCAGG		
	UUUAUA.AUUUCAAGCGUUUGGUUUUUACCAAUUGCA.AU		
	UAUAAUCUUACCAAAUUGCUUUCACUUUUUUCUGUGAA		
	UGAUUUUACUUGUAGUCAAAUAUCUCCAGCAGCAAUUG		
	CUAGCAACUGUUAUUCUUCACUGAUUUUGGAUUAUUUU		
	UCAUACCCACUUAGUAUGAAAUCCGAUCUCAGUGUUAG		
	UUCUGCUGGUCCAAUAUCCCAGUUUAAUUAUAAACAGU		
	CCUUUUCUAAUCCCACAUGUUUGAUCUUAGCGACUGUUC		
	CUCAUAACCUUACUACUAUUACUAAGCCUCUUAAGUACA		
	GCUAUAUUAACAAGUGCUCUCGUCUUCUUUCUGAUGAU		
	CGUACUGAAGUACCUCAGUUAGUGAACGCUAAUCAAUA		
	CUCACCCUGUGUAUCCAUUGUCCCAUCCACUGUGUGGGA		
	AGACGGUGAUUAUUAUAGGAAACAACUAUCUCCACUUG		
	AAGGUGGUGGCUGGCUUGUUGCUAGUGGCUCAACUGUU		
	GCCAUGACUGAGCAAUUACAGAUGGGCUUUGGUAUUAC		
	AGUUCAAUAUGGUACAGACACCAAUAGUGUUUGCCCCA		
	AGCUUGAAUUUGCUAAUGACACAAAAAUUGCCUCUCAA		
	UUAGGCAAUUGCGUGGAAUAUUCCCUCUAUGGUGUUUC		
	GGGCCGUGGUGUUUUUCAGAAUUGCACAGCUGUAGGUG		
	UUCGACAGCAGCGCUUUGUUUAUGAUGCGUACCAGAAU		
	UUAGUUGGCUAUUAUUCUGAUGAUGGCAACUACUACUG		
	UCUGCGUGCUUGUGUUAGUGUUCCUGUUUCUGUCAUCU		
	AUGAUAAAGAAACUAAAACCCACGCUACUCUAUUUGGU		
	AGUGUUGCAUGUGAACACAUUUCUUCUACCAUGUCUCA		
	AUACUCCCGUUCUACGCGAUCAAUGCUUAAACGGCGAGA		
	UUCUACAUAUGGCCCCCUUCAGACACCUGUUGGUUGUGU		
	CCUAGGACUUGUUAAUUCCUCUUUGUUCGUAGAGGACU		
	GCAAGUUGCCUCUCGGUCAAUCUCUCUGUGCUCUUCCUG		
	ACACACCUAGUACUCUCACACCUCGCAGUGUGCGCUCUG		
	UGCCAGGUGAAAUGCGCUUGGCAUCCAUUGCUUUUAAUU		
	CAUCCCAUUCAGGUUGAUCAACUUAAUAGUAGUUAUUU		
	UAAAUUAAGUAUACCCACUAAUUUUUCCUUUGGUGUGA		
	CUCAGGAGUACAUUCAGACAACCAUUCAGAAAGUUACU		
	GUUGAUUGUAAACAGUACGUUUGCAAUGGUUUCCAGAA		
	GUGUGAGCAAUUACUGCGCGAGUAUGGCCAGUUUUGUU		
	CCAAAAUAAACCAGGCUCUCCAUGGUGCCAAUUUACGCC		
	AGGAUGAUUCUGUACGUAAUUUGUUUGCGAGCGUGA.AA		
	AGCUCUCAAUCAUCUCCUAUCAUACCAGGUUUUGGAGGU		
	GACUUUAAUUUGACACUUCUAGAACCUGUUUCUAUAUC		
	UACUGGCAGUCGUAGUGCACGUAGUGCUAUUGAGGAUU		
	UGCUAUUUGACAAAGUCACUAUAGCUGAUCCUGGUUAU		
	AUGCAAGGUUACGAUGAUUGUAUGCAGCAAGGUCCAGC		

TABLE 10-continued


TABLE 10-continued


TABLE 10-continued


TABLE 10-continued


TABLE 11

Strain	Amino Acid Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$	
```gb\|KJ156934.1	: 21405-25466 Middle East respiratory syndrome coronavirus isolate Riyadh_14_2013, spike protein (amino acid)```	MIHSVFLLMFLLTPTESYVDVGPDSVKSACIEVDIQQTFFDKT	24
	WPRPIDVSKADGIIYPQGRTYSNITITYQGLFPYQGDHGDMY		
	VYSAGHATGTTPQKLFVANYSQDVKQFANGFVVRIGAAANS		
	TGTVIISPSTSATIRKI YPAFMLGSSVGNFSDGKMGRFFNHTL		
	VLLPDGCGTLLRAFYCILEPRSGNHCPAGNSYTSFATYHTPA		
	TDCSDGNYNRNASLNSFKEYFNLRNCTFMYTYNI TEDEILEW		
	FGITQTAQGVHLFSSRYVDLYGGNMFQFATLPVYDTIKYYSII		
	PHSIRSIQSDRKAWAAFYVYKLQPLTFLLDFSVDGYIRRAIDC		
	GFNDLSQLHCSYESFDVESGVYSVSSFEAKPSGSVVEQAEGV		
	ECDFSPLLSGTPPQVYNFKRLVFTNCNYNLTKLLSLFSVNDFt		
	CSQISPAAIASNCYSSLILDYFSYPLSMKSDLSVSSAGPISQFN		
	YKQSFSNPTCLILATVPHNLTTITKPLKYSYINKCSRLLSDDRT		
	EVPQLVNANQYSPCVSIVPSTVWEDGDYYRKQLSPLEGGGW		
	LVASGSTVAMTEQLQMGFGITVQYGTDTNSVCPKLEFANDT		
	KIASQLGNCVEYSLYGVSGRGVFONCTAVGVRQQRFVYDA		
	YQNLVGYYSDDGNYYCLRACVSVPVSVIYDKETKTHATLFG		
	SVACEHISSTMSQYSRSTRSMLKRRDSTYGPLQTPVGCVLGL		
	VNSSLFVEDCKLPLGQSLCALPDTPSTLTPRSVRSVPGEMRLA		
	SIAFNHPIQVDQLNSSYFKLSIPTNFSFGVTQEYIQTTIQKVTV		
	DCKQYVCNGFQKCEQLLREYGQFCSKINqALHGANLRQDDS		
	VRNLFASVKSSQSSPIIPGFGGDFNLTLLEPVSISTGSRSARSAI		
	EDLLFDKVTIADPGYMQGYDDCMQQGPASARDLI CAQYVA		
	GYKVLPPLMDVNMEAAYTSSLLGSIAGVGWTAGLSSFAAIPF		
	AQSIFYRLNGVGITQQVLSENQKLIANKFNQALGAMQTGFTT		
	TNEAFIKVQDAVNNNAQALSKLASELSNTFGAISASIGDIIQR		
	LDVLEQDAQIDRLINGRLTTLNAFVAQQLVRSESAALSAQLA		
	KDKVNECVKAQSKRSGFCGQGTHIVSFVVNAPNGLYFMHV		
	GYYPSNHIEVVSAYGLCDAANPTNCIAPVNGYFI KTNNTRIV		
	DEWSYTGSSFYAPEPITSLNTKYVAPQVTYQNISTNLPPPLLG		
	NSTGIDFQDELDEFFKNVSTSIPNFGSLTQINTTLLDLTYEMLS		
	LQQVVKALNESYIDLKELGNYTYYNKNPWYIWLGFIAGLVA		
	LALCVFFILCCTGCGTNCMGKLKCNRCCDRYEEYDLEPHKV		
	HVH		
MERS S FL SPIKE 2CEMC/2012 (XBaI change(T to G)) (amino acid)	MIHSVFLLMFLLTPTESYVDVGPDSVKSACIEVDIQQTFFDKT	25	
	WPRPIDVSKADGIIYPQGRTYSNITITYQGLFPYQGDHGDMY		
	VYSAGHATGTTPQKLFVANYSQDVKQFANGFVVRIGAAANS		
	TGTVIISPSTSATIRKI YPAFMLGSSVGNFSDGKMGRFFNHTL		
	VLLPDGCGTLLRAFYCILEPRSGNHCPAGNSYTSFATYHTPA		
	TDCSDGNYNRNASLNSFKEYFNLRNCTFMYTYNI TEDEILEN		
	FGITQTAQGVHLFSSRYVDLYGGNMFQFATLPVYDTIKYYSII		
	PHSIRSIQSDRKAWAAFYVYKLQPLTFLLDFSVDGYIRRAIDC		
	GFNDLSOLHCSYESFDVESGVYSVSSFEAKPSGSVVEQAEGV		
	ECDFSPLLSGTPPQVYNFKRLVFTNCNYNLTKLLSLFSVNDFT		
	CSQISPAAIASNCYSSLILDYFSYPLSMKSDLSVSSAGPISQFN		
	YKQSFSNPTCLILATVPHNLTTITKPLKYSYINKCSRLLSDDRT		
	EVPQLVNANQYSPCVSIVPSTVWEDGDYYRKQLSPLEGGGW		
	LVASGS TVAMTEQLQMGFGITVQYGTDTNSVCPKLEFANDT		
	KIASQLGNCVEYSLYGVSGRGVFONCTAVGVRQQRFVYDA		
	YQNLVGYYSDDGNYYCLRACVSVPVSVIYDKETKTHATLFG		
	SVACEHISSTMSQYSRSTRSMLKRRDSTYGPLQTPVGCVLGL		
	VNSSLFVEDCKLPLGQSLCALPDTPSTLTPRSVRSVPGEMRLA		
	SIAFNHPIQVDQLNSSYFKLSIPTNFSFGVTQEYIQTTIQKVTV		
	DCKQYVCNGFQKCEQLLREYGQFCSKINQALHGANLRQDDS		
	VRNLFASVKSSQSSPIIPGFGGDFNLTLLEPVSISTGSRSARSAI		
	EDLLFDKVTIADPGYMQGYDDCMQQGPASARDLICAQYVA		
	GYKVLPPLMDVNMEAAYTSSLLGSIAGVGWTAGLSSFAAIPF		
	AQSIFYRLNGVGITQQVLSENQKLIANKFNQALGAMOTGFTT		
	TNEAFQKVQDAVNNNAQALSKLASELSNTFGAISASIGDIIQR		
	LDVLEQDAQIDRLINGRLTTLNAFVAQQLVRSESAALSAQLA		
	KDKVNECVKAQSKRSGFCGQGTHIVSFVVNAPNGLYFMHV		
	GYYPSNHIEVVSAYGLCDAANPTNCIAPVNGYFI KTNNTRIV		
	DEWSYTGSSFYAPEPITSLNTKYVAPQVTYQNISTNLPPPLLG		
	NSTGIDFQDELDEFFKNVSTSIPNFGSLTQINTTLLDLTYEMLS		
	LQQVVKALNESYIDLKELGNYTYYNKNPWYIWLGFIAGLVA		
	LALCVFFILCCTGCGTNCMGKLKCNRCCDRYEEYDLEPHKV		
	HVH		
```Novel_MERS_S2_subunit_trimeric vaccine (amino acid)```	MIHSVFLLMFLLTPTESDCKLPLGQSLCALPDTPSTLTPRSVR	26	
	SVPGEMRLASIAFNHPIQVDQLNSSYFKLSIPTNFSFGVTQEYI		
	QTTIQKVTVDCKQYVCNGFQKCEQLLREYGQFCSKINQALH		
	GANLRQDDSVRNLFASVKSSQSSPIIPGFGGDFNLTLLEPVSIS		
	TGSRSARSAIEDLLFDKVTIADPGYMQGYDDCMQQGPASAR		
	DLICAQYVAGYKVLPPLMDVNMEAAYTSSLLGSIAGVGWTA		
	GLSSFAAIPFAQSIFYRLNGVGI TQQVLSENQKLIANKFNQAL		

TABLE 11-continued

Betacoronavirus Amino Acid Sequences		
Strain	Amino Acid Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
	GAMOTGFTTTNEAFQKVQDAVNNNAOALSKLASELSNTFG AISASIGDIIQRLDVLEQDAQIDRLINGRLTTLNAFVAQQLVRS ESAALSAQLAKDKVNECVKAQSKRSGFCGQGTHIVSFVVNA PNGLYFMHVGYYPSNHIEVVSAYGLCDAANPTNCIAPVNGY FIKTNNTRIVDEWSYTGSSFYAPEPITSLNTKYVAPQVTYQNI STNLPPPLLGNSTGIDFQDELDEFFKNVSTSIPNFGSLTQINTTL LDLTYEMLSLQQVVKALNESYIDLKELGNYTYYNKWPDKIE EILSKIYHIENEIARIKKLIGEA	
Isolate Al-   Hasa_1_2013   (NCBI accession   \#AGN70962)	MIHSVFLLMFLLTPTESYVDVGPDSVKSACIEVDIQQTFFDKT WPRPIDVSKADGIIYPQGRTYSNITITYQGLFPYQGDHGDMY VYSAGHATGTTPQKLFVANYSQDVKQFANGFVVRIGAAANS TGTVIISPSTSATIRKIYPAFMLGSSVGNFSDGKMGRFFNHTL VLLPDGCGTLLRAFYCILEPRSGNHCPAGNSYTSFATYHTPA TDCSDGNYNRNASLNSFKEYFNLRNCTFMYTYNI TEDEILEW FGITQTAQGVHLFSSRYVDLYGGNMFQFATLPVYDTIKYYSII PHSIRSIQSDRKAWAAFYVYKLQPLTFLLDFSVDGYIRRAIDC GFNDLSOLHCSYESFDVESGVYSVSSFEAKPSGSVVEQAEGV ECDFSPLLSGTPPQVYNFKRLVFTNCNYNLTKLLSLFSVNDFT CSQISPAAIASNCYSSLILDYFSYPLSMKSDLSVSSAGPISQFN YKQSFSNPTCLILATVPHNLTTITKPLKYSYINKCSRLLSDDRT EVPQLVIAANQYSPCVSIVPSTVWEDGDYYRKQLSPLEGGGW LVASGSTVAMTEQLQMGFGITVQYGTDTNSVCPKLEFANDT KIASQLGNCVEYSLYGVSGRGVFONCTAVGVRQQRFVYDA YQNLVGYYSDDGNYYCLRACVSVPVSVIYDKETKTHATLFG SVACEHISSTMSQYSRSTRSMLKRRDSTYGPLQTPVGCVLGL VNSSLFVEDCKLPLGQSLCALPDTPSTLTPRSVRSVPGEMRLA SIAFNHPIQVDQLNSSYFKLSIPTNFSFGVTQEYIQTTIQKVTV DCKQYVCNGFQKCEQLLREYGQFCSKINQALHGANLRQDDS VRNLFASVKSSQSSPIIPGFGGDFNLTLLEPVSISTGSRSARSAI EDLLFDKVTIADPGYMQGYDDCMQQGPASARDLICAQYVA GYKVLPPLMDVNMEAAYTSSLLGSIAGVGWTAGLSSFAAIPF AQSIFYRLNGVGITQQVLSENQKLIANKFNQALGAMQTGFTT TNEAFRKVQDAVNNNAQALSKLASELSNTFGAISASIGDIIQR LDVLEQDAQIDRLINGRLTTLNAFVAQQLVRSESAALSAQLA KDKVNECVKAQSKRSGFCGQGTHIVSFVVNAPNGLYFMHV GYYPSNHI EVVSAYGLCDAANPTNCIAPVNGYFI KTNNTRIV DEWSYTGSSFYAPEPITSLNTKYVAPHVTYQNISTNLPPPLLG NSTGIDFQDELDEFFKNVSTSIPNFGSLTQINTTLLDLTYEMLS LQQVVKALNESYIDLKELGNYTYYNKWPWYIWLGFIAGLVA LALCVFFILCCTGCGTNCMGKLKKCNRCCDRYEEYDLEPHKV HVH	27
Middle East respiratory syndrome coronavirus $S$ protein UniProtKBR9UQ53	MIHSVFLLMFLLTPTESYVDVGPDSVKSACIEVDIQQTFFDKT WPRPIDVSKADGIIYPQGRTYSNITITYQGLFPYQGDHGDMY VYSAGHATGTTPQKLFVANYSQDVKQFANGFVVRIGAAANS TGTVIISPSTSATIRKIYPAFMLGSSVGNFSDGKMGRFFNHTL VLLPDGCGTLLRAFYCILEPRSGNHCPAGNSYTSFATYHTPA TDCSDGNYNRNASLNSFKEYFNLRNCTFMYTYNITEDEILEW FGITQTAQGVHLFSSRYVDLYGGNMFQFATLPVYDTIKYYSII PHSIRSIQSDRKAWAAFYVYKLQPLTFLLDFSVDGYIRRAIDC GFNDLSQLHCSYESFDVESGVYSVSSFEAKPSGSVVEQAEGV ECDFSPLLSGTPPQVYNFKRLVFTNCNYNLTKLLSLFSVNDFT CSQISPAAIASNCYSSLILDYFSYPLSMKSDLSVSSAGPISQFN YKQSFSNPTCLILATVPHNLTTITKPLKYSYINKCSRLLSDDRT EVPQLVNANQYSPCVSIVPSTVWEDGDYYRKQLSPLEGGGW LVASGS TVAMTEQLQMGFGITVQYGTDTNSVCPKLEFANDT KIASQLGNCVEYSLYGVSGRGVFQNCTAVGVRQQRFVYDA YQNLVGYYSDDGNYYCLRACVSVPVSVIYDKETKTHATLFG SVACEHISSTMSQYSRSTRSMLKRRDSTYGPLQTPVGCVLGL VNSSLFVEDCKLPLGQSLCALPDTPSTLTPRSVRSVPGEMRLA SIAFNHPIQVDQLNSSYFKLSIPTNFSFGVTQEYIQTTIQKVTV DCKQYVCNGFQKCEQLLREYGQFCS KINQALHGANLRQDDS VRNLFASVKSSQSSPII PGFGGDFNLTLLEPVSISTGSRSARSAI EDLLFDKVTIADPGYMQGYDDCMQQGPASARDLICAQYVA GYKVLPPLMDVNMEAAYTSSLLGSIAGVGWTAGLSSFAAIPF AQSIFYRLNGVGITQQVLSENQKLIANKFNQALGAMQTGFTT TNEAFRKVQDAVNNNAQALSKLASELSNTFGAISASIGDIIQR LDVLEQDAQIDRLINGRLTTLNAFVAQQLVRSESAALSAQLA KDKVNECVKAQS KRSGFCGQGTHIVSFVVNAPNGLYFMHV GYYPSNHIEVVSAYGLCDAANPTNCIAPVNGYFI KTNNTRIV DEWSYTGSSFYAPEPITSLNTKYVAPHVTYQNISTNLPPPLLG NSTGIDFQDELDEFFKNVSTSIPNFGSLTQINTTLLDLTYEMLS LQQVVKALNESYIDLKELGNYTYYNKNPWYIWLGFIAGLVA	28

TABLE 11-continued


TABLE 11-continued

Betacoronavirus Amino Acid Sequences		
Strain	Amino Acid Sequence	$\begin{gathered} \text { SEQ ID } \\ \text { NO: } \end{gathered}$
UniProtKB-	WVTPLSRRQYLLNFDEHGVITNAVDCSSSFLSEIQCKTQSFAP	
QOZME7	NTGVYDLSGFTVKPVATVYRRIPNLPDCDIDNWLNNVSVPSP	
	LNNERRIFSNCNFNLSTLLRLVHVDSFSCNNLDKSKIFGSCFN	
	SITVDKFAIPNRRRDDLQLGSSGFLQSSNYKIDISSSSCQLYYS	
	LPLVNVTINNFNPSSWNRRYGFGSFNLSSYDVVYSDHCFSVN	
	SDFCPCADPSVVNSCAKSKPPSAICPAGTKYRHCDLDTTLYV	
	KNWCRCSCLPDPISTYSPNTCPQKKVVVGIGEHCPGLGINEE	
	KCGTQLNHSSCFCSPDAFLGWSFDSCISNNRCNIFSNFIFNGIN	
	SGTTCSNDLLYSNTEISTGVCVNYDLYGITGQGIFKEVSAAY	
	YNNWONLLYDSNGNIIGFKDFLTNKTYTILPCYSGRVSAAFY	
	QNSSSPALLYRNLKCSYVLNNISFISQPFYFDSYLGCVLNAVN	
	LTSYSVSSCDLRMGSGFCIDYALPSSRRKRRGISSPYRFVTFEP	
	FNVSFVNDSVETVGGLFEIQIPTNFTIAGHEEFIQTSSPKVTIDC	
	SAFVCSNYAACHDLLSEYGTFCDNINSILNEVNDLLDITQLQV	
	ANALMOGVTLSSNLNTNLHSDVDNIDFKSLLGCLGSQCGSSS	
	RSLLEDLLFNKVKLSDVGFVEAYNNCTGGSEIRDLLCVQSFN	
	GIKVLPPILSETQISGYTTAATVAAMFPPWSAAAGVPFSLNVQ	
	YRINGLGVTMDVLNKNQKLIANAFNKALLSIQNGFTATNSAL	
	AKIQSVVNANAQALNSLLQQLFNKFGAISSSLQEILSRLDNLE	
	AQVQIDRLINGRTALNAYVSQQLSDITLIKAGASRAIEKVNE	
	CVKSQSPRINFCGNGNHILSLVQNAPYGLLFIHFSYKPTSFKT	
	VLVSPGLCLSGDRGIAPKQGYFIKQNDSWMFTGSSYYYPEPIS	
	DKNVVFMNSSCSVNFTKAPFIYLNNSIPNLSDFEAELSLWFKN	
	HTSIAPNLTFNSHINATFLDLYYEMNVIQESIKSLNSSFINLKEI	
	GTYEMYVKWPWYIWLLIVILFIIFLMILFFICCCTGCGSACFSK	
	CHNCCDEYGGHNDFVIKASHDD	
Novel_SARS_S2	MFIFLLFLTLTSGSDLDRALSGIAAEQDRNTREVFAOVKQMY	32
	KTPTLKYFGGFNFSQILPDPLKPTKRSFIEDLLFNKVTLADAG	
	FMKQYGECLGDINARDLICAQKFNGLTVLPPLLTDDMIAAYT	
	AALVSGTATAGWTFGAGAALQIPFAMQMAYRFNGIGVTQN	
	VLYENQKQIANQFNKAISQIQESLTTTSTALGKLQDVVNQNA	
	QALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITG	
	RLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRV	
	DFCGKGYHLMSFPQAAPHGVVFLHVTYVPSQERNFTTAPAIC	
	HEGKAYFPREGVFVFNGTSWFITQRNFFSPQIITTDNTFVSGN	
	CDVVIGIINNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLG	
	DISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYI	
	KWPWYVWLGFIAGLIAIVMVTILLCCMTSCCSCLKGACSCGS	
	CCKFDEDDSEPVLKGVKLHYT	
Novel_MERS_S2	MIHSVFLLMFLLTPTESDCKLPLGQSLCALPDTPSTLTPRSVR	33
	SVPGEMRLASIAFNHPIQVDQLNSSYFKLSIPTNFSFGVTQEYI	
	QTTIQKVTVDCKQYVCNGFQKCEQLLREYGQFCSKINQALH	
	GANLRQDDSVRNLFASVKSSQSSPIIPGFGGDFNLTLLEPVSIS	
	TGSRSARSAIEDLLFDKVTIADPGYMQGYDDCMQQGPASAR	
	DLICAQYVAGYKVLPPLMDVNMEAAYTSSLLGSIAGVGWTA	
	GLSSFAAI PFAQSIFYRLNGVGI TQQVLSENQKLIANKFNQAL	
	GAMQTGFTTTNEAFOKVQDAVNNNAQALSKLASELSNTFG	
	AISASIGDIIQRLDVLEQDAQIDRLINGRLTTLNAFVAQQLVVRS	
	ESAALSAQLAKDKVNECVKAQSKRSGFCGQGTHIVSFVVNA	
	PNGLYFMHVGYYPSNHIEVVSAYGLCDAANPTNCIAPVNGY	
	FIKTINTRIVDEWSYTGSSFYAPEPITSLNTKYVAPQVTYQNI	
	STNLPPPLLGNSTGIDFQDELDEFFKNVSTSIPNFGSLTQINTTL	
	LDLTYEMLSLQQVVKALNESYIDLKELGNYTYYNKWP	
Novel_Trimeric_SARS_S2	MFIFLLFLTLTSGSDLDRALSGIAAEQDRNTREVFAQVKQMY	34
	KTPTLKYFGGFNFSQILPDPLKPTKRSFIEDLLFNKVTLADAG	
	FMKQYGECLGDINARDLICAQKFNGLTVLPPLLTDDMIAAYT	
	AALVSGTATAGWTFGAGAALQIPFAMQMAYRFNGIGVTQN	
	VLYENQKQIANQFNKAISQIQESLTTTSTALGKLQDVVNQNA	
	QALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITG	
	RLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRV	
	DFCGKGYHLMSFPQAAPHGVVFLHVTYVPSQERNFTTAPAIC	
	HEGKAYFPREGVFVFNGTSWFITQRIFFFSPQIITTDNTFVSGN	
	CDVVIGIINNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLG	
	DISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYI	
	KWPWYVWLGFIAGLIAIVMVTILLCCMTSCCSCLKGACSCGS	
	CCKFDEDDSEPVLKGVKLHYT	

TABLE 12

Full-length Spike Glycoprotein Amino Acid Sequences (Homo sapiens strains)				
GenBank Accession	Country	Collection Date	Release Date	Virus Name
AFY13307	United   Kingdom	2012 Sep. 11	2012 Dec. 5	Betacoronavirus England 1, complete genome
AFS88936		2012 Jun. 13	2012 Sep. 27	Human betacoronavirus 2c EMC/2012, complete genome
AGG22542	United   Kingdom	2012 Sep. 19	2013 Feb. 27	Human betacoronavirus 2c EnglandQatar/2012, complete genome
AHY21469	Jordan	2012	2014 May 4	Human betacoronavirus 2c JordanN3/2012 isolate MG167, complete genome
AGH58717	Jordan	2012 April	2013 Mar. 25	Human betacoronavirus 2c JordanN3/2012, complete genome
AGV08444	Saudi   Arabia	2013 May 7	2013 Sep. 17	Middle East respiratory syndrome coronavirus isolate AlHasa_12_2013, complete genome
AGV08546	Saudi   Arabia	2013 May 11	2013 Sep. 17	Middle East respiratory syndrome coronavirus isolate AlHasa_15_2013, complete genome
AGV08535	Saudi   Arabia	2013 May 12	2013 Sep. 17	Middle East respiratory syndrome coronavirus isolate AlHasa_16_2013, complete genome
AGV08558	Saudi   Arabia	2013 May 15	2013 Sep. 17	Middle East respiratory syndrome coronavirus isolate AlHasa_17_2013, complete genome
AGV08573	Saudi   Arabia	2013 May 23	2013 Sep. 17	Middle East respiratory syndrome coronavirus isolate AlHasa_18_2013, complete genome
AGV08480	Saudi   Arabia	2013 May 23	2013 Sep. 17	Middle East respiratory syndrome coronavirus isolate AlHasa_19_2013, complete genome
AGN70962	Saudi   Arabia	2013 May 9	2013 Jun. 10	Middle East respiratory syndrome coronavirus isolate AlHasa_1_2013, complete genome
AGV08492	Saudi   Arabia	2013 May 30	2013 Sep. 17	Middle East respiratory syndrome coronavirus isolate AlHasa_21_2013, complete genome
AHI48517	Saudi   Arabia	2013 May 2	2014 Feb. 6	Middle East respiratory syndrome coronavirus isolate AlHasa_25_2013, complete genome
AGN70951	Saudi   Arabia	2013 Apr. 21	2013 Jun. 10	Middle East respiratory syndrome coronavirus isolate AlHasa_2_2013, complete genome
AGN70973	Saudi   Arabia	2013 Apr. 22	2013 Jun. 10	Middle East respiratory syndrome coronavirus isolate AlHasa_3_2013, complete genome
AGN70929	Saudi   Arabia	2013 May 1	2013 Jun. 10	Middle East respiratory syndrome coronavirus isolate AlHasa_4_2013, complete genome
AGV08408	Saudi   Arabia	2012 Jun. 19	2013 Sep. 17	Middle East respiratory syndrome coronavirus isolate Bisha_1_2012, complete genome
AGV08467	Saudi   Arabia	2013 May 13	2013 Sep. 17	Middle East respiratory syndrome coronavirus isolate Buraidah_1_2013, complete genome
AID50418	United   Kingdom	2013 Feb. 10	2014 Jun. 18	Middle East respiratory syndrome coronavirus isolate England/2/2013, complete genome
AJD81451	United Kingdom	2013 Feb. 10	2015 Jan. 18	Middle East respiratory syndrome coronavirus isolate England/3/2013, complete genome
AJD81440	United   Kingdom	2013 Feb. 13	2015 Jan. 18	Middle East respiratory syndrome coronavirus isolate England/4/2013, complete genome
AHB33326	France	2013 May 7	2013 Dec. 7	Middle East respiratory syndrome coronavirus isolate FRA/UAE, complete genome
AIZ48760	USA	2014 June	2014 Dec. 14	Middle East respiratory syndrome coronavirus isolate Florida/USA2_Saudi Arabia_2014, complete genome
AGV08455	Saudi   Arabia	2013 Jun. 4	2013 Sep. 17	Middle East respiratory syndrome coronavirus isolate Hafr-AlBatin_1_2013, complete genome
AHI48561	Saudi   Arabia	2013 Aug. 5	2014 Feb. 6	Middle East respiratory syndrome coronavirus isolate Hafr-AlBatin_2_2013, complete genome

TABLE 12-continued

Full-length Spike Glycoprotein Amino Acid Sequences (Homo sapiens strains)				
GenBank Accession	Country	Collection Date	Release Date	Virus Name
AHI48539	Saudi   Arabia	2013 Aug. 28	2014 Feb. 6	Middle East respiratory syndrome coronavirus isolate Hafr-Al-   Batin_6_2013, complete genome
AIZ74417	France	2013 Apr. 26	2015 Mar. 10	Middle East respiratory syndrome coronavirus isolate $\mathrm{Hu}-\mathrm{France}$ (UAE) - FRA1_16272013_BAL_Sanger, complete genome
AIZ74433	France	2013 May 7	2015 Mar. 10	Middle East respiratory syndrome coronavirus isolate Hu-France -FRA2_130569-2013_IS_HTS, complete genome
AIZ74439	France	2013 May 7	2015 Mar. 10	Middle East respiratory syndrome coronavirus isolate Hu-France -FRA2_130569-2013_InSpu_Sanger, complete genome
AIZ74450	France	2013 May 7	2015 Mar. 10	Middle East respiratory syndrome coronavirus isolate Hu-France -FRA2_130569-2013_Isolate_Sanger, complete genome
AKK52602	Saudi   Arabia	2015 Feb. 10	2015 Jun. 8	Middle East respiratory syndrome coronavirus isolate   Hu/Riyadh_KSA_2959_2015, complete genome
AKK52612	Saudi   Arabia	2015 Mar. 1	2015 Jun. 8	Middle East respiratory syndrome coronavirus isolate   Hu/Riyadh_KSA_4050_2015, complete genome
AHN10812	Saudi   Arabia	2013 Nov. 6	2014 Mar. 24	Middle East respiratory syndrome coronavirus isolate Jeddah $_1 _2013$, complete genome
AID55071	Saudi   Arabia	2014 Apr. 21	2014 Nov. 12	Middle East respiratory syndrome coronavirus isolate   Jeddah_C10306/KSA/2014-04-20, complete genome
AID55066	Saudi   Arabia	2014	2014 Nov. 12	Middle East respiratory syndrome coronavirus isolate   Jeddah_C7149/KSA/2014-04-05, complete genome
AID55067	Saudi   Arabia	2014	2014 Nov. 12	Middle East respiratory syndrome coronavirus isolate Jeddah_C7569/KSA/2014-04-03, complete genome
AID55068	Saudi   Arabia	2014 Apr. 7	2014 Nov. 12	Middle East respiratory syndrome coronavirus isolate Jeddah_C7770/KSA/2014-04-07, complete genome
AID55069	Saudi   Arabia	2014 Apr. 12	2014 Nov. 12	Middle East respiratory syndrome coronavirus isolate Jeddah_C8826/KSA/2014-04-12, complete genome
AID55070	Saudi   Arabia	2014 Apr. 14	2014 Nov. 12	Middle East respiratory syndrome coronavirus isolate   Jeddah_C9055/KSA/2014-04-14, complete genome
AHE78108	Saudi   Arabia	2013 Nov. 5	2014 May 1	Middle East respiratory syndrome coronavirus isolate MERS-CoV-   Jeddah-human- 1 , complete genome
AKL59401	South   Korea	2015 May 20	2015 Jun. 9	Middle East respiratory syndrome coronavirus isolate MERSCoV/KOR/KNIH/002_05_2015, complete genome
ALD51904	Thailand	2015 Jun. 17	2015 Jul. 7	Middle East respiratory syndrome coronavirus isolate MERSCoV/THA/CU/17_06_2015, complete genome
AID55072	Saudi   Arabia	2014 Apr. 15	2014 Nov. 12	Middle East respiratory syndrome coronavirus isolate   Makkah_C9355/KSA/Makkah/2014-04-15, complete genome
AHC74088	Qatar	2013 Oct. 13	2013 Dec. 23	Middle East respiratory syndrome coronavirus isolate Qatar3, complete genome

TABLE 12-continued

Full-length Spike Glycoprotein Amino Acid Sequences (Homo sapiens strains)				
GenBank   Accession	Country	Collection Date	Release Date	Virus Name
AHC74098	Qatar	2013 Oct. 17	2013 Dec. 23	Middle East respiratory syndrome coronavirus isolate Qatar4, complete genome
AHI48572	Saudi Arabia	2013 Aug. 15	2014 Feb. 6	Middle East respiratory syndrome coronavirus isolate   Riyadh_14_2013, complete genome
AGV08379	Saudi   Arabia	2012 Oct. 23	2013 Sep. 17	Middle East respiratory syndrome coronavirus isolate Riyadh_1_2012, complete genome
AID55073	Saudi   Arabia	2014 Apr. 22	2014 Nov. 12	Middle East respiratory syndrome coronavirus isolate   Riyadh_2014KSA_683/KSA/2014, complete genome
AGV08584	Saudi   Arabia	2012 Oct. 30	2013 Sep. 17	Middle East respiratory syndrome coronavirus isolate Riyadh_2_2012, complete genome
AGV08390	Saudi   Arabia	2013 Feb. 5	2013 Sep. 17	Middle East respiratory syndrome coronavirus isolate Riyadh_3_2013, complete genome
AHI48605	Saudi   Arabia	2013 Mar. 1	2014 Feb. 6	Middle East respiratory syndrome coronavirus isolate Riyadh_4_2013, complete genome
AHI48583	Saudi Arabia	2013 Jul. 2	2014 Feb. 6	Middle East respiratory syndrome coronavirus isolate Riyadh_5_2013, complete genome
AHI48528	Saudi   Arabia	2013 Jul. 17	2014 Feb. 6	Middle East respiratory syndrome coronavirus isolate Riyadh_9_2013, complete genome
AHI48594	Saudi   Arabia	2013 Jun. 12	2014 Feb. 6	Middle East respiratory syndrome coronavirus isolate Taif_1_2013, complete genome
AHI48550	Saudi   Arabia	2013 Jun. 12	2014 Feb. 6	Middle East respiratory syndrome coronavirus isolate Wadi-AdDawasir_1_2013, complete genome
AIY60558	United   Arab   Emirates	2014 Mar. 7	2014 Dec. 6	Middle East respiratory syndrome coronavirus strain Abu Dhabi/Gayathi_UAE_2_2014, complete genome
AIY60538	United   Arab   Emirates	2014 Apr. 10	2014 Dec. 6	Middle East respiratory syndrome coronavirus strain Abu Dhabi_UAE_16_2014, complete genome
AIY60528	United   Arab   Emirates	2014 Apr. 10	2014 Dec. 6	Middle East respiratory syndrome coronavirus strain Abu Dhabi_UAE_18_2014, complete genome
AIY60588	United   Arab   Emirates	2014 Apr. 13	2014 Dec. 6	Middle East respiratory syndrome coronavirus strain Abu Dhabi_UAE_26_2014, complete genome
AIY60548	United   Arab   Emirates	2014 Apr. 19	2014 Dec. 6	Middle East respiratory syndrome coronavirus strain Abu Dhabi_UAE_30_2014, complete genome
AIY60568	United   Arab   Emirates	2014 Apr. 17	2014 Dec. 6	Middle East respiratory syndrome coronavirus strain Abu   Dhabi_UAE_33_2014, complete genome
AIY60518	United   Arab   Emirates	2014 Apr. 7	2014 Dec. 6	Middle East respiratory syndrome coronavirus strain Abu   Dhabi_UAE_8_2014, complete genome
AIY60578	United   Arab   Emirates	2013 Nov. 15	2014 Dec. 6	Middle East respiratory syndrome coronavirus strain Abu   Dhabi_UAE_9_2013, complete genome
AKJ80137	China	2015 May 27	2015 Jun. 5	Middle East respiratory syndrome coronavirus strain ChinaGD01, complete genome
AHZ64057	USA	2014 May 10	2014 May 14	Middle East respiratory syndrome coronavirus strain Florida/USA2_Saudi Arabia_2014, complete genome
AKM76229	Oman	2013 Oct. 28	2015 Jun. 23	Middle East respiratory syndrome coronavirus strain

TABLE 12-continued

| Full-length Spike Glycoprotein Amino Acid Sequences (Homo sapiens strains) |  |  |  |
| :--- | :--- | :--- | :--- | :--- |

TABLE 13

	MeV Nucleic Acid Sequences	
Description	Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
```GC_F_MEASLES_B3.1 Sequence, NT (5' UTR, ORF, 3' UTR) Sequence Length: 1864```	TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACT	35
	CACTATAGGGAAATAGAGAGAAAAGA.AGAGTAAGAA	
	GAAATATAAGAGCCACCATGGGTCTCAAGGTGAACGTC	
	TCTGCCGTATTCATGGCAGTACTGTTAACTCTCCAAACA	
	CCCGCCGGTCAAATTCATTGGGGCAATCTCTCTAAGAT	
	AGGGGTAGTAGGAATAGGAAGTGCAAGCTACAAAGTT	
	ATGACTCGTTCCAGCCATCAATCATTAGTCATAAAATT	
	AATGCCCAATATAACTCTCCTCAATAACTGCACGAGGG	
	TAGAGATTGCAGAATACAGGAGACTACTAAGAACAGTT	
	TTGGAACCAATTAGGGATGCACTTAATGCAATGACCCA	
	GAACATAAGGCCGGTTCAGAGCGTAGCTTCAAGTAGGA	
	GACACAAGAGATTTGCGGGAGTAGTCCTGGCAGGTGCG	
	GCCCTAGGTGTTGCCACAGCTGCTCAGATAACAGCCGG	
	CATTGCACTTCACCGGTCCATGCTGAACTCTCAGGCCAT	
	CGACAATCTGAGAGCGAGCCTGGAAACTACTAATCAGG	
	CAATTGAGGCAATCAGACAAGCAGGGCAGGAGATGAT	
	ATTGGCTGTTCAGGGTGTCCAAGACTACATCAATAATG	
	AGCTGATACCGTCTATGAACCAGCTATCTTGTGATCTA	
	ATCGGTCAGAAGCTCGGGCTCAAATTGCTTAGATACTA	
	TACAGAAATCCTGTCATTATTTGGCCCCAGCCTACGGG	
	ACCCCATATCTGCGGAGATATCTATCCAGGCTTTGAGTT	
	ATGCACTTGGAGGAGATATCAATAAGGTGTTAGAAAAG	
	CTCGGATACAGTGGAGGCGATTTACTAGGCATCTTAGA	
	GAGCAGAGGAATAAAGGCTCGGATAACTCACGTCGAC	
	ACAGAGTCCTACTTCATAGTCCTCAGTATAGCCTATCCG	
	ACGCTGTCCGAGATTAAGGGGGTGATTGTCCACCGGCT	
	AGAGGGGGTCTCGTACAACATAGGCTCTCAAGAGTGGT	
	ATACCACTGTGCCCAAGTATGTTGCAACCCAAGGGTAC	
	СTTATCTCGAATTTTGATGAGTCATCATGTACTTTCATG	
	CCAGAGGGGACTGTGTGCAGCCAAAATGCCTTGTACCC	
	GATGAGTCCTCTGCTCCAAGAATGCCTCCGGGGGTCCA	

TABLE 13-continued

	MeV Nucleic Acid Sequences	
Description	Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
	CCAAGTCCTGTGCTCGTACACTCGTATCCGGGTCTTTTG	
	GGAACCGGTTCATTTTATCACAAGGGAACCTAATAGCC	
	AATTGTGCATCAATTCTTTGTAAGTGTTACACAACAGGT	
	ACGATTATTAATCAAGACCCTGACAAGATCCTAACATA	
	CATTGCTGCCGATCGCTGCCCGGTAGTCGAGGTGAACG	
	GCGTGACCATCCAAGTCGGGAGCAGGAGGTATCCAGA	
	CGCTGTGTACTTGCACAGAATTGACCTCGGTCCTCCCAT	
	ATCATTGGAGAGGTTGGACGTAGGGACAAATCTGGGG	
	AATGCAATTGCCAAATTGGAGGATGCCAAGGAATTGTT	
	GGAATCATCGGACCAGATATTGAGAAGTATGAAAGGTT	
	TATCGAGCACTAGCATAGTCTACATCCTGATTGCAGTG	
	TGTCTTGGAGGGTTGATAGGGATCCCCACTTTAATATGT	
	TGCTGCAGGGGGCGTTGTAACAAAAAGGGAGAACAAG	
	TTGGTATGTCAAGACCAGGCCTAAAGCCTGACCTTACA	
	GGAACATCAAAATCCTATGTAAGATCGCTTTGATGATA	
	ATAGGCTGGAGCCTCGGTGGCCAAGCTTCTTGCCCCTT	
	GGGCCTCCCCCCAGCCCCTCCTсссСтTCCTGCACCCGT	
	ACCCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGC	
	ATGGGTCTCAAGGTGAACGTCTCTGCCGTATTCATGGC	36
ORF $\overline{\text { Sequence, }}$ NT	AGTACTGTTAACTCTCCAAACACCCGCCGGTCAAATTC	
	ATTGGGGCAATCTCTCTAAGATAGGGGTAGTAGGAATA	
	GGAAGTGCAAGCTACAAAGT TATGACTCGTTCCAGCCA	
	TCAATCATTAGTCATAAAATTAATGCCCAATATAACTCT	
	CCTCAATAACTGCACGAGGGTAGAGATTGCAGAATACA	
	GGAGACTACTAAGAACAGTT TTGGAACCAATTAGGGAT	
	GCACTTAATGCAATGACCCAGAACATAAGGCCGGTTCA	
	GAGCGTAGCTTCAAGTAGGAGACACAAGAGATTTGCG	
	GGAGTAGTCCTGGCAGGTGCGGCCCTAGGTGTTGCCAC	
	AGCTGCTCAGATAACAGCCGGCATTGCACTTCACCGGT	
	ССАTGCTGAACTCTCAGGCCATCGACAATCTGAGAGCG	
	AGCCTGGAAACTACTAATCAGGCAATTGAGGCAATCAG	
	ACAAGCAGGGCAGGAGATGATATTGGCTGTTCAGGGTG	
	TCCAAGACTACATCAATAATGAGCTGATACCGTCTATG	
	AACCAGCTATCTTGTGATCTAATCGGTCAGAAGCTCGG	
	GCTCAAATTGCTTAGATACTATACAGAAATCCTGTCATT	
	ATTTGGCCCCAGCCTACGGGACCCCATATCTGCGGAGA	
	TATCTATCCAGGCTTTGAGTTATGCACTTGGAGGAGAT	
	ATCAATAAGGTGTTAGAAAAGCTCGGATACAGTGGAG	
	GCGATTTACTAGGCATCTTAGAGAGCAGAGGAATAAAG	
	GCTCGGATAACTCACGTCGACACAGAGTCCTACTTCAT	
	AGTCCTCAGTATAGCCTATCCGACGCTGTCCGAGATTA	
	AGGGGGTGATTGTCCACCGGCTAGAGGGGGTCTCGTAC	
	AACATAGGCTCTCAAGAGTGGTATACCACTGTGCCCAA	
	GTATGTTGCAACCCAAGGGTACCTTATCTCGAATTTTGA	
	TGAGTCATCATGTACTTTCATGCCAGAGGGGACTGTGT	
	GCAGCCAAAATGCCTTGTACCCGATGAGTCCTCTGCTC	
	CAAGAATGCCTCCGGGGGTCCACCAAGTCCTGTGCTCG	
	TACACTCGTATCCGGGTCTTTTGGGAACCGGTTCATTTT	
	ATCACAAGGGAACCTAATAGCCAATTGTGCATCAATTC	
	TTTGTAAGTGTTACACAACAGGTACGATTATTAATCAA	
	GACCCTGACAAGATCCTAACATACATTGCTGCCGATCG	
	CTGCCCGGTAGTCGAGGTGAACGGCGTGACCATCCAAG	
	TCGGGAGCAGGAGGTATCCAGACGCTGTGTACTTGCAC	
	AGAATTGACCTCGGTCCTCCCATATCATTGGAGAGGTT	
	GGACGTAGGGACAAATCTGGGGAATGCAATTGCCAAA	
	TTGGAGGATGCCAAGGAATTGTTGGAATCATCGGACCA	
	GATATTGAGAAGTATGAAAGGTTTATCGAGCACTAGCA	
	TAGTCTACATCCTGATTGCAGTGTGTCTTGGAGGGTTGA	
	TAGGGATCCCCACTTTAATATGTTGCTGCAGGGGGCGT	
	TGTAACAAAAAGGGAGAACAAGTTGGTATGTCAAGAC	
	CAGGCCTAAAGCCTGACCTTACAGGAACATCAAAATCC	
	TATGTAAGATCGCTTTGA	
GC_F_MEASLES_B3.1	G*GGGAAATAAGAGAGAAAAGAAGAGTAAGAAGAAAT	37
mRNA - Sequence	ATAAGAGCCACCATGGGTCTCAAGGTGAACGTCTCTGC	
(assumes Tloo tail)	CGTATTCATGGCAGTACTGTTAACTCTCCAAACACCCG	
	CCGGTCAAATTCATTGGGGCAATCTCTCTAAGATAGGG	
Length: 1925	GTAGTAGGAATAGGAAGTGCAAGCTACAAAGTTATGA	
	CTCGTTCCAGCCATCAATCATTAGTCATAAAATTAATGC	
	ATTGCAGAATACAGGAGACTACTAAGAACAGTTTTGGA	
	ACCAATTAGGGATGCACT TAATGCAATGACCCAGAACA	
	TAAGGCCGGTTCAGAGCGTAGCTTCAAGTAGGAGACAC	
	AAGAGATTTGCGGGAGTAGTCCTGGCAGGTGCGGCCCT	

TABLE 13-continued

	MeV Nucleic Acid Sequences	
Description	Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
	AGGTGTTGCCACAGCTGCTCAGATAACAGCCGGCATTG	
	CACTTCACCGGTCCATGCTGAACTCTCAGGCCATCGAC	
	AATCTGAGAGCGAGCCTGGAAACTACTAATCAGGCAAT	
	TGAGGCAATCAGACAAGCAGGGCAGGAGATGATATTG	
	GCTGTTCAGGGTGTCCAAGACTACATCAATAATGAGCT	
	GATACCGTCTATGAACCAGCTATCTTGTGATCTAATCG	
	GTCAGAAGCTCGGGCTCAAATTGCTTAGATACTATACA	
	GAAATCCTGTCATTATTTGGCCCCAGCCTACGGGACCC	
	CATATCTGCGGAGATATCTATCCAGGCTTTGAGTTATGC	
	ACTTGGAGGAGATATCAATAAGGTGTTAGAAAAGCTCG	
	GATACAGTGGAGGCGATTTACTAGGCATCTTAGAGAGC	
	AGAGGAATAAAGGCTCGGATAACTCACGTCGACACAG	
	AGTCCTACTTCATAGTCCTCAGTATAGCCTATCCGACGC	
	TGTCCGAGATTAAGGGGGTGATTGTCCACCGGCTAGAG	
	GGGGTCTCGTACAACATAGGCTCTCAAGAGTGGTATAC	
	CACTGTGCCCAAGTATGTTGCAACCCAAGGGTACCTTA	
	TCTCGAATTTTGATGAGTCATCATGTACTTTCATGCCAG	
	AGGGGACTGTGTGCAGCCAAAATGCCTTGTACCCGATG	
	AGTCCTCTGCTCCAAGAATGCCTCCGGGgGtccaccai	
	GTCCTGTGCTCGTACACTCGTATCCGGGTCTTTTGGGAA	
	CCGGTTCATTTTATCACAAGGGAACCTAATAGCCAATT	
	GTGCATCAATTCTTTGTAAGTGTTACACAACAGGTACG	
	ATTATTAATCAAGACCCTGACAAGATCCTAACATACAT	
	TGCTGCCGATCGCTGCCCGGTAGTCGAGGTGAACGGCG	
	TGACCATCCAAGTCGGGAGCAGGAGGTATCCAGACGCT	
	GTGTACTTGCACAGAATTGACCTCGGTCCTCCCATATCA	
	TTGGAGAGGTTGGACGTAGGGACAAATCTGGGGAATG	
	CAATTGCCAAATTGGAGGATGCCAAGGAATTGTTGGAA	
	TCATCGGACCAGATATTGAGAAGTATGAAAGGTTTATC	
	GAGCACTAGCATAGTCTACATCCTGATTGCAGTGTGTC	
	TTGGAGGGTTGATAGGGATCCCCACTTTAATATGTTGCT	
	GCAGGGGGCGTTGTAACAAAAAGGGAGAACAAGTTGG	
	TATGTCAAGACCAGGCCTAAAGCCTGACCTTACAGGAA	
	CATCAAAATCCTATGTAAGATCGCTTTGATGATAATAG	
	GCTGGAGCCTCGGTGGCCAAGCTTCTTGCCCCTTGGGC	
	CTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCC	
	CCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGCAAAAA	
	A A AAAA A	
	AAAAAAAAAAAAAAAAAAAAAATCTAG	
GC_F_MEASLES_D8 Sequence, NT^{\prime} (5^{\prime} UTR, ORF, 3^{\prime} UTR) Sequence Length: 1864	TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACT	38
	CACTATAGGGAAATAAGAGAGAAAAGAAGAGTAAGAA	
	GAAATATAAGAGCCACCATGGGTCTCAAGGTGAACGTC	
	TCTGTCATATTCATGGCAGTACTGTTAACTCTTCAAACA	
	CCCACCGGTCAAATCCATTGGGGCAATCTCTCTAAGAT	
	AGGGGTGGTAGGGGTAGGAAGTGCAAGCTACAAAGTT	
	ATGACTCGTTCCAGCCATCAATCATTAGTCATAAAGTT	
	AATGCCCAATATAACTCTCCTCAACAATTGCACGAGGG	
	TAGGGATTGCAGAATACAGGAGACTACTGAGAACAGTT	
	CTGGAACCAATTAGAGATGCACTTAATGCAATGACCCA	
	GAATATAAGACCGGTTCAGAGTGTAGCTTCAAGTAGGA	
	GACACAAGAGATTTGCGGGAGTTGTCCTGGCAGGTGCG	
	GCCCTAGGCGTTGCCACAGC TGCTCAAATAACAGCCGG	
	TATTGCACTTCACCAGTCCATGCTGAACTCTCAAGCCAT	
	CGACAATCTGAGAGCGAGCCTAGAAACTACTAATCAGG	
	CAATTGAGGCAATCAGACAAGCAGGGCAGGAGATGAT	
	ATTGGCTGTTCAGGGTGTCCAAGACTACATCAATAATG	
	AGCTGATACCGTCTATGAATCAACTATCTTGTGATTTAA	
	TCGGCCAGAAGCTAGGGCTCAAATTGCTCAGATACTAT	
	ACAGAAATCCTGTCATTATTTGGCCCCAGCTTACGGGA	
	CCCCATATCTGCGGAGATATCTATCCAGGCTTTGAGCT	
	ATGCGCTTGGAGGAGATATCAATAAGGTGTTGGAAAAG	
	CTCGGATACAGTGGAGGTGATCTACTGGGCATCTTAGA	
	GAGCAGAGGAATAAAGGCCCGGATAACTCACGTCGAC	
	ACAGAGTCCTACTTCATTGTACTCAGTATAGCCTATCCG	
	ACGCTATCCGAGATTAAGGGGGTGATTGTCCACCGGCT	
	AGAGGGGGTCTCGTACAACATAGGCTCTCAAGAGTGGT	
	ATACCACTGTGCCCAAGTATGTTGCAACCCAAGGGTAC	
	CTTATCTCGAATTTTGATGAGTCATCATGCACTTTCATG	
	CCAGAGGGGACTGTGTGCAGCCAGAATGCCTTGTACCC	
	GATGAGTCCTCTGCTCCAAGAATGCCTCCGGGGGTCCA	
	CTAAGTCCTGTGCTCGTACACTCGTATCCGGGTCTTTCG	
	GGAACCGGTTCATTTTATCACAGGGGAACCTAATAGCC	
	AATTGTGCATCAATCCTTTGCAAGTGTTACACAACAGG	

TABLE 13-continued

	MeV Nucleic Acid Sequences	
Description	Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
	AACAATCATTAATCAAGACCCTGACAAGATCCTAACAT	
	ACATTGCTGCCGATCACTGCCCGGTGGTCGAGGTGAAT	
	GGCGTGACCATCCAAGTCGGGAGCAGGAGGTATCCGG	
	ACGCTGTGTACTTGCACAGGATTGACCTCGGTCCTCCC	
	ATATCTTTGGAGAGGTTGGACGTAGGGACAAATCTGGG	
	GAATGCAATTGCTAAGTTGGAGGATGCCAAGGAATTGT	
	TGGAGTCATCGGACCAGATATTGAGGAGTATGAAAGGT	
	TTATCGAGCACTAGTATAGTTTACATCCTGATTGCAGTG	
	TGTCTTGGAGGATTGATAGGGATCCCCGCTTTAATATGT	
	TGCTGCAGGGGGCGTTGTAACAAGAAGGGAGAACAAG	
	TTGGTATGTCAAGACCAGGCCTAAAGCCTGATCTTACA	
	GGAACATCAAAATCCTATGTAAGGTCACTCTGATGATA	
	ATAGGCTGGAGCCTCGGTGGCCAAGCTTCTTGCCCCTT	
	GGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGT	
	ACCCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGC	
GC_F_MEASLES_D8 ORF $\overline{\text { S }}$ equence, NT	ATGGGTCTCAAGGTGAACGTCTCTGTCATATTCATGGC	39
	AGTACTGTTAACTCTTCAAACACCCACCGGTCAAATCC	
	ATTGGGGCAATCTCTCTAAGATAGGGGTGGTAGGGGTA	
	GGAAGTGCAAGCTACAAAGT TATGACTCGTTCCAGCCA	
	TCAATCATTAGTCATAAAGTTAATGCCCAATATAACTCT	
	CCTCAACAATTGCACGAGGGTAGGGATTGCAGAATACA	
	GGAGACTACTGAGAACAGTTCTGGAACCAATTAGAGAT	
	GCACTTAATGCAATGACCCAGAATATAAGACCGGTTCA	
	GAGTGTAGCTTCAAGTAGGAGACACAAGAGATTTGCGG	
	GAGTTGTCCTGGCAGGTGCGGCCCTAGGCGTTGCCACA	
	GCTGCTCAAATAACAGCCGGTATTGCACTTCACCAGTC	
	CATGCTGAACTCTCAAGCCATCGACAATCTGAGAGCGA	
	GCCTAGAAACTACTAATCAGGCAATTGAGGCAATCAGA	
	CAAGCAGGGCAGGAGATGATATTGGCTGTTCAGGGTGT	
	CCAAGACTACATCAATAATGAGCTGATACCGTCTATGA	
	ATCAACTATCTTGTGATTTAATCGGCCAGAAGCTAGGG	
	СTCAAATTGCTCAGATACTATACAGAAATCCTGTCATT	
	ATTTGGCCCCAGCTTACGGGACCCCATATCTGCGGAGA	
	TATCTATCCAGGCTTTGAGC TATGCGCTTGGAGGAGAT	
	ATCAATAAGGTGTTGGAAAAGCTCGGATACAGTGGAG	
	GTGATCTACTGGGCATCTTAGAGAGCAGAGGAATAAAG	
	GCCCGGATAACTCACGTCGACACAGAGTCCTACTTCAT	
	TGTACTCAGTATAGCCTATCCGACGCTATCCGAGATTA	
	AGGGGGTGATTGTCCACCGGCTAGAGGGGGTCTCGTAC	
	AACATAGGCTCTCAAGAGTGGTATACCACTGTGCCCAA	
	GTATGTTGCAACCCAAGGGTACCTTATCTCGAATTTTGA	
	TGAGTCATCATGCACTTTCATGCCAGAGGGGACTGTGT	
	GCAGCCAGAATGCCTTGTACCCGATGAGTCCTCTGCTC	
	CAAGAATGCCTCCGGGGGTCCACTAAGTCCTGTGCTCG	
	TACACTCGTATCCGGGTCTTTCGGGAACCGGTTCATTTT	
	ATCACAGGGGAACCTAATAGCCAATTGTGCATCAATCC	
	TTTGCAAGTGTTACACAACAGGAACAATCATTAATCAA	
	GACCCTGACAAGATCCTAACATACATTGCTGCCGATCA	
	CTGCCCGGTGGTCGAGGTGAATGGCGTGACCATCCAAG	
	TCGGGAGCAGGAGGTATCCGGACGCTGTGTACTTGCAC	
	AGGATTGACCTCGGTCCTCCCATATCTTTGGAGAGGTT	
	GGACGTAGGGACAAATCTGGGGAATGCAATTGCTAAGT	
	TGGAGGATGCCAAGGAATTGTTGGAGTCATCGGACCAG	
	ATATTGAGGAGTATGAAAGGTTTATCGAGCACTAGTAT	
	AGTTTACATCCTGATTGCAGTGTGTCTTGGAGGATTGAT	
	AGGGATCCCCGCTTTAATATGTTGCTGCAGGGGGCGTT	
	GTAACAAGAAGGGAGAACAAGTTGGTATGTCAAGACC	
	ATGTAAGGTCACTCTGA	
```GC_F_MEASLES_D8 mPNA Sequence (assumes T100 tail) Sequence Length: 1925```	G*GGGAAATAAGAGAGAAAAGAAGAGTAAGAAGAAAT	40
	ATAAGAGCCACCATGGGTCTCAAGGTGAACGTCTCTGT	
	CATATTCATGGCAGTACTGTTAACTCTTCAAACACCCAC	
	CGGTCAAATCCATTGGGGCAATCTCTCTAAGATAGGGG	
	TGGTAGGGGTAGGAAGTGCAAGCTACAAAGTTATGACT	
	CGTTCCAGCCATCAATCATTAGTCATAAAGTTAATGCC	
	CAATATAACTCTCCTCAACAATTGCACGAGGGTAGGGA	
	TTGCAGAATACAGGAGACTACTGAGAACAGTTCTGGAA	
	CCAATTAGAGATGCACTTAATGCAATGACCCAGAATAT	
	AAGACCGGTTCAGAGTGTAGCTTCAAGTAGGAGACACA	
	AGAGATTTGCGGGAGTTGTCCTGGCAGGTGCGGCCCTA	
	GGCGTTGCCACAGCTGCTCAAATAACAGCCGGTATTGC	
	АСТTCACCAGTCCATGCTGAACTCTCAAGCCATCGACA	
	ATCTGAGAGCGAGCCTAGAAACTACTAATCAGGCAATT	

TABLE 13-continued

	MeV Nucleic Acid Sequences	
Description	Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
Description	GAGGCAATCAGACAAGCAGGGCAGGAGATGATATTGG	
	CTGTTCAGGGTGTCCAAGACTACATCAATAATGAGCTG	
	ATACCGTCTATGAATCAACTATCTTGTGATTTAATCGGC	
	CAGAAGCTAGGGCTCAAATTGCTCAGATACTATACAGA	
	AATCCTGTCATTATTTGGCCCCAGCTTACGGGACCCCAT	
	ATCTGCGGAGATATCTATCCAGGCTTTGAGCTATGCGC	
	TTGGAGGAGATATCAATAAGGTGTTGGAAAAGCTCGGA	
	TACAGTGGAGGTGATCTACTGGGCATCTTAGAGAGCAG	
	AGGAATAAAGGCCCGGATAACTCACGTCGACACAGAG	
	TCCTACTTCATTGTACTCAGTATAGCCTATCCGACGCTA	
	TCCGAGATTAAGGGGGTGATTGTCCACCGGCTAGAGGG	
	GGTCTCGTACAACATAGGCTCTCAAGAGTGGTATACCA	
	CTGTGCCCAAGTATGTTGCAACCCAAGGGTACCTTATC	
	TCGAATTTTGATGAGTCATCATGCACTTTCATGCCAGAG	
	GGGACTGTGTGCAGCCAGAATGCCTTGTACCCGATGAG	
	TCCTCTGCTCCAAGAATGCCTCCGGGGGTCCACTAAGT	
	CCTGTGCTCGTACACTCGTATCCGGGTCTTTCGGGAACC	
	GGTTCATTTTATCACAGGGGAACCTAATAGCCAATTGT	
	GCATCAATCCTTTGCAAGTGTTACACAACAGGAACAAT	
	CATTAATCAAGACCCTGACAAGATCCTAACATACATTG	
	CTGCCGATCACTGCCCGGTGGTCGAGGTGAATGGCGTG	
	ACCATCCAAGTCGGGAGCAGGAGGTATCCGGACGCTGT	
	GTACTTGCACAGGATTGACCTCGGTCCTCCCATATCTTT	
	GGAGAGGTTGGACGTAGGGACAAATCTGGGGAATGCA	
	ATTGCTAAGTTGGAGGATGCCAAGGAATTGTTGGAGTC	
	ATCGGACCAGATATTGAGGAGTATGAAAGGTTTATCGA	
	GCACTAGTATAGTTTACATCCTGATTGCAGTGTGTCTTG	
	GAGGATTGATAGGGATCCCCGCTTTAATATGTTGCTGC	
	AGGGGGCGTTGTAACAAGAAGGGAGAACAAGTTGGTA	
	TGTCAAGACCAGGCCTAAAGCCTGATCTTACAGGAACA	
	TCAAAATCCTATGTAAGGTCACTCTGATGATAATAGGC	
	TGGAGCCTCGGTGGCCAAGCTTCTTGCCCCTTGGGCCTC	
	CCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCCCCG	
	TGGTCTTTGAATAAAGTCTGAGTGGGCGGCAAAAAAAA	
	AAAAAAAAAAAAAAAAAAATTCTAG	
```GC_H_MEASLES_B3 Sequence, NT (5' UTR, ORF, 3' UTR) Sequence Length: 2 0 6 5```	TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACT	41
	CACTATAGGGAAATAAGAGAGAAAAGAAGAGTAAGAA	
	GAAATATAAGAGCCACCATGTCACCGCAACGAGACCG	
	GATAAATGCCTTCTACAAAGATAACCCTTATCCCAAGG	
	GAAGTAGGATAGTTATTAACAGAGAACATCTTATGATT	
	GACAGACCCTATGTTCTGCTGGCTGTTCTGTTCGTCATG	
	TTTCTGAGCTTGATCGGATTGCTGGCAATTGCAGGCATT	
	AGACTTCATCGGGCAGCCATCTACACCGCGGAGATCCA	
	TAAAAGCCTCAGTACCAATCTGGATGTGACTAACTCCA	
	TCGAGCATCAGGTCAAGGACGTGCTGACACCACTCTTT	
	AAAATCATCGGGGATGAAGTGGGCCTGAGAACACCTC	
	AGAGATTCACTGACCTAGTGAAATTCATCTCGGACAAG	
	ATTAAATTCCTTAATCCGGATAGGGAGTACGACTTCAG	
	AGATCTCACTTGGTGCATCAACCCGCCAGAGAGGATCA	
	AACTAGATTATGATCAATACTGTGCAGATGTGGCTGCT	
	GAAGAGCTCATGAATGCATTGGTGAACTCAACTCTACT	
	GGAGACCAGAACAACCACTCAGTTCCTAGCTGTCTCAA	
	AGGGAAACTGCTCAGGGCCCACTACAATCAGAGGTCA	
	АTTCTCAAACATGTCGCTGTCCTTGTTGGACTTGTACTT	
	AGGTCGAGGTtACAATGTGTCATCTATAGTCACTATGA	
	CATCCCAGGGAATGTATGGGGGAACCTACCTAGTTGAA	
	AAGCCTAATCTGAACAGCAAAGGGTCAGAGTTGTCACA	
	ACTGAGCATGTACCGAGTGITTGAAGTAGGTGTGATCA	
	GAAACCCGGGTTTGGGGGCTCCGGTGTTCCATATGACA	
	AACTATTTTGAGCAACCAGTCAGTAATGGTCTCGGCAA	
	CTGTATGGTGGCTTTGGGGGAGCTCAAACTCGCAGCCC	
	TTTGTCACGGGGACGATTCTATCATAATTCCCTATCAGG	
	GATCAGGGAAAGGTGTCAGCTTCCAGCTCGTCAAGCTG	
	GGTGTCTGGAAATCCCCAACCGACATGCAATCCTGGGT	
	CCCCTTATCAACGGATGATC CAGTGGTAGACAGGCTTT	
	ACCTCTCATCTCACAGAGGTGTCATCGCTGACAATCAA	
	GCAAAATGGGCTGTCCCGACAACACGAACAGATGACA	
	AGTTGCGAATGGAGACATGCTTCCAGCAGGCGTGTAAA	
	GGTAAAATCCAAGCACTCTGCGAGAATCCCGAGTGGGT	
	ACCATTGAAGGATAACAGGATTCCTTCATACGGGGTCC	
	TGTCTGTTGATCTGAGTCTGACGGTTGAGCTTAAAATCA	
	AAATTGCTTCGGGATTCGGGCCATTGATCACACACGGC	

TABLE 13-continued

	MeV Nucleic Acid Sequences	
Description	Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
	TCAGGGATGGACCTATACAAATCCAACTGCAACAATGT	
	GTATTGGCTGACTATTCCGCCAATGAGAAATCTAGCCT	
	TAGGCGTAATCAACACATTGGAGTGGATACCGAGATTC	
	AAGGTTAGTCCCAACCTCTTCACTGTCCCAATTAAGGA	
	AGCAGGCGAAGACTGCCATGCCCCAACATACCTACCTG	
	CGGAGGTGGACGGTGATGTCAAACTCAGTTCCAACCTG	
	GTGATTCTACCTGGTCAAGATCTCCAATATGTTTTGGCA	
	ACCTACGATACCTCCAGGGITGAGCATGCTGTGGTTTA	
	TTACGTTTACAGCCCAAGCCGCTCATTTTCTTACTTTTA	
	TCCTTTTAGGTTGCCTATAAAGGGGGTCCCAATCGAAC	
	TACAAGTGGAATGCTTCACATGGGATCAAAAACTCTGG	
	TGCCGTCACTTCTGTGTGCTTGCGGACTCAGAATCCGGT	
	GGACTTATCACTCACTCTGGGATGGTGGGCATGGGAGT	
	CAGCTGCACAGCTACCCGGGAAGATGGAACCAATCGC	
	AGAtAATGATAATAGGCTGGAGCCTCGGTGGCCAAGCT	
	TСTTGССССТTGGGССТССССССАGССССТССТССССТT	
	CCTGCACCCGTACCCCCGTGGTCTTTGAATAAAGTCTG	
	AGTGGGCGGC	
GC_H_MEA.SLES_B3 ORF $\overline{\mathrm{S}}$ equence, NT	ATGTCACCGCAACGAGACCGGATAAATGCCTTCTACAA	42
	AGATAACCCTTATCCCAAGGGAAGTAGGATAGTTATTA	
	ACAGAGAACATCTTATGATTGACAGACCCTATGTTCTG	
	CTGGCTGTTCTGTTCGTCATGTTTCTGAGCTTGATCGGA	
	TTGCTGGCAATTGCAGGCATTAGACTTCATCGGGCAGC	
	CATCTACACCGCGGAGATCCATAAAAGCCTCAGTACCA	
	ATCTGGATGTGACTAACTCCATCGAGCATCAGGTCAAG	
	GACGTGCTGACACCACTCTTTAAAATCATCGGGGATGA	
	AGTGGGCCTGAGAACACCTCAGAGATTCACTGACCTAG	
	TGAAATTCATCTCGGACAAGATTAAATTCCTTAATCCG	
	GATAGGGAGTACGACTTCAGAGATCTCACTTGGTGCAT	
	CAACCCGCCAGAGAGGATCAAAC TAGATTATGATCAAT	
	ACTGTGCAGATGTGGCTGCTGAAGAGCTCATGAATGCA	
	TTGGTGAACTCAACTCTACTGGAGACCAGAACAACCAC	
	TCAGTTCCTAGCTGTCTCAAAGGGAAACTGCTCAGGGC	
	ССАСТАСААТСАGAGGTCAATTCTCAAACATGTCGCTG	
	TCCTTGTTGGACTTGTACTTAGGTCGAGGTTACAATGTG	
	TCATCTATAGTCACTATGACATCCCAGGGAATGTATGG	
	GGGAACCTACCTAGTTGAAAAGCCTAATCTGAACAGCA	
	AAGGGTCAGAGTTGTCACAACTGAGCATGTACCGAGTG	
	TTTGAAGTAGGTGTGATCAGAAACCCGGGTTTGGGGGC	
	TCCGGTGTTCCATATGACAAACTATTTTGAGCAACCAG	
	TCAGTAATGGTCTCGGCAAC TGTATGGTGGCTTTGGGG	
	GAGCTCAAACTCGCAGCCCTTTGTCACGGGGACGATTC	
	TATCATAATTCCCTATCAGGGATCAGGGAAAGGTGTCA	
	GCTTCCAGCTCGTCAAGCTGGGTGTCTGGAAATCCCCA	
	ACCGACATGCAATCCTGGGTCCCCTTATCAACGGATGA	
	TCCAGTGGTAGACAGGCTTTACCTCTCATCTCACAGAG	
	GTGTCATCGCTGACAATCAAGCAAAATGGGCTGTCCCG	
	ACAACACGAACAGATGACAAGTTGCGAATGGAGACAT	
	GCTTCCAGCAGGCGTGTAAAGGTAAAATCCAAGCACTC	
	TGCGAGAATCCCGAGTGGGTACCATTGAAGGATAACAG	
	GATTCCTTCATACGGGGTCCTGTCTGTTGATCTGAGTCT	
	GACGGTTGAGCTTAAAATCAAAATTGCTTCGGGATTCG	
	GGCCATTGATCACACACGGCTCAGGGATGGACCTATAC	
	AAATCCAACTGCAACAATGTGTATTGGCTGACTATTCC	
	GCCAATGAGAAATCTAGCCTTAGGCGTAATCAACACAT	
	TGGAGTGGATACCGAGATTCAAGGTTAGTCCCAACCTC	
	TTCACTGTCCCAATTAAGGAAGCAGGCGAAGACTGCCA	
	TGCCCCAACATACCTACCTGCGGAGGTGGACGGTGATG	
	TCAAACTCAGTTCCAACCTGGTGATTCTACCTGGTCAA	
	GATCTCCAATATGTTTTGGCAACCTACGATACCTCCAG	
	GGTTGAGCATGCTGTGGTTTATTACGTTTACAGCCCAA	
	GCCGCTCATTTTCTTACTTTTATCCTTTTAGGTTGCCTAT	
	AAAGGGGGTCCCAATCGAACTACAAGTGGAATGCTTCA	
	CATGGGATCAAAAACTCTGGTGCCGTCACTTCTGTGTG	
	CTTGCGGACTCAGAATCCGGTGGACTTATCACTCACTCT	
	GGGATGGTGGGCATGGGAGTCAGCTGCACAGCTACCCG	
	GGAAGATGGAACCAATCGCAGATAA	
	G*GGGAAATAAGAGAGAAAAGAAGAGTAAGAAGAAAT	43
mRNA Sequence	ATAAGAGCCACCATGTCACCGCAACGAGACCGGATAA	
(assumes T100 tail)	ATGCCTTCTACAAAGATAACCCTTATCCCAAGGGAAGT	
Sequence Length:	AGGATAGTTATTAACAGAGACATCTTATGATTGACAG	
2126	ACCCTATGTTCTGCTGGCTGTTCTGTTCGTCATGTTTCT	
	GAGCTTGATCGGATTGCTGGCAATTGCAGGCATTAGAC	

TABLE 13-continued

	MeV Nucleic Acid Sequences	
Description	Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
Desiption	TTCATCGGGCAGCCATCTACACCGCGGAGATCCATAAA	
	AGCCTCAGTACCAATCTGGATGTGACTAACTCCATCGA	
	GCATCAGGTCAAGGACGTGCTGACACCACTCTTTAAAA	
	TCATCGGGGATGAAGTGGGCCTGAGAACACCTCAGAG	
	ATTCACTGACCTAGTGAAATTCATCTCGGACAAGATTA	
	AATTCCTTAATCCGGATAGGGAGTACGACTTCAGAGAT	
	CTCACTTGGTGCATCAACCCGCCAGAGAGGATCAAACT	
	AGATTATGATCAATACTGTGCAGATGTGGCTGCTGAAG	
	AGCTCATGAATGCATTGGTGAACTCAACTCTACTGGAG	
	ACCAGAACAACCACTCAGTTCCTAGCTGTCTCAAAGGG	
	AAACTGCTCAGGGCCCACTACAATCAGAGGTCAATTCT	
	CAAACATGTCGCTGTCCTTGTTGGACTTGTACTTAGGTC	
	GAGGTTACAATGTGTCATCTATAGTCACTATGACATCC	
	CAGGGAATGTATGGGGGAACCTACCTAGTTGAAAAGCC	
	TAATCTGAACAGCAAAGGGT CAGAGTTGTCACAACTGA	
	GCATGTACCGAGTGTTTGAAGTAGGTGTGATCAGAAAC	
	CCGGGTtTGGGGGCTCCGGTGTTCCATATGACAAACTA	
	TTTTGAGCAACCAGTCAGTAATGGTCTCGGCAACTGTA	
	TGGTGGCTTTGGGGGAGCTCAAACTCGCAGCCCTTTGT	
	CACGGGGACGATTCTATCATAATTCCCTATCAGGGATC	
	AGGGAAAGGTGTCAGCTTCCAGCTCGTCAAGCTGGGTG	
	TCTGGAAATCCCCAACCGACATGCAATCCTGGGTCCCC	
	TTATCAACGGATGATCCAGTGGTAGACAGGCTTTACCT	
	СTCATCTCACAGAGGTGTCATCGCTGACAATCAAGCAA	
	AATGGGCTGTCCCGACAACACGAACAGATGACAAGTTG	
	CGAATGGAGACATGCTTCCAGCAGGCGTGTAAAGGTAA	
	AATCCAAGCACTCTGCGAGAATCCCGAGTGGGTACCAT	
	TGAAGGATAACAGGATTCCTTCATACGGGGTCCTGTCT	
	GTTGATCTGAGTCTGACGGTTGAGCTTAAAATCAAAAT	
	TGCTTCGGGATTCGGGCCAT TGATCACACACGGCTCAG	
	GGATGGACCTATACAAATCCAACTGCAACAATGTGTAT	
	TGGCTGACTATTCCGCCAATGAGAAATCTAGCCTTAGG	
	CGTAATCAACACATTGGAGTGGATACCGAGATTCAAGG	
	TTAGTCCCAACCTCTTCACTGTCCCAATTAAGGAAGCA	
	GGCGAAGACTGCCATGCCCCAACATACCTACCTGCGGA	
	GGTGGACGGTGATGTCAAAC TCAGTTCCAACCTGGTGA	
	TTCTACCTGGTCAAGATCTCCAATATGTTTTGGCAACCT	
	ACGATACCTCCAGGGTTGAGCATGCTGTGGTTTATTAC	
	GTTTACAGCCCAAGCCGCTCATTTTCTTACTTTTATCCT	
	TTTAGGTTGCCTATAAAGGGGGTCCCAATCGAACTACA	
	AGTGGAATGCTTCACATGGGATCAAAAACTCTGGTGCC	
	GTCACTTCTGTGTGCTTGCGGACTCAGAATCCGGTGGA	
	CTTATCACTCACTCTGGGATGGTGGGCATGGGAGTCAG	
	CTGCACAGCTACCCGGGAAGATGGAACCAATCGCAGAT	
	AATGATAATAGGCTGGAGCCTCGGTGGCCAAGCTTCTT	
	GCCCCTTGGGCCTCCCCCCAGCCCCTCCTCСССтTССТG	
	CACCCGTACCCCCGTGGTCTTTGAATAAAGTCTGAGTG	
	GGCGGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATC	
	TAG	
GC_H_MEASLES_D8	TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACT	44
Sequence, NT^{-}(5^{\prime}	CACTATAGGGAAATAAGAGAGAAAAGAAGAGTAAGAA	
UTR, ORF, 3'	GAAATATAAGAGCCACCATGTCACCACAACGAGACCG	
UTR)	GATAAATGCCTTCTACAAAGACAACCCCCATCCTAAGG	
	GAAGTAGGATAGTTATTAACAGAGAACATCTTATGATT	
$\begin{aligned} & \text { Seque } \\ & 2065 \end{aligned}$	GATAGACCTTATGTTTTGCTGGCTGTTCTATTCGTCATG	
	TTTCTGAGCTTGATCGGGTTGCTAGCCATTGCAGGCATT	
	AGACTTCATCGGGCAGCCATCTACACCGCAGAGATCCA	
	TAAAAGCCTCAGCACCAATCTGGATGTAACTAACTCAA	
	TCGAGCATCAGGTTAAGGACGTGCTGACACCACTCTTC	
	AAGATCATCGGTGATGAAGTGGGCTTGAGGACACCTCA	
	GAGATTCACTGACCTAGTGAAGTTCATCTCTGACAAGA	
	TTAAATTCCTTAATCCGGACAGGGAATACGACTTCAGA	
	GATCTCACTTGGTGTATCAACCCGCCAGAGAGAATCAA	
	ATTGGATTATGATCAATACTGTGCAGATGTGGCTGCTG	
	AAGAACTCATGAATGCATTGGTGAACTCAACTCTACTG	
	GAGACCAGGGCAACCAATCAGTTCCTAGCTGTCTCAAA	
	GGGAAACTGCTCAGGGCCCACTACAATCAGAGGCCAAT	
	TCTCAAACATGTCGCTGTCCCTGTTGGACTTGTATTTAA	
	GTCGAGGTTACAATGTGTCATCTATAGTCACTATGACA	
	TCCCAGGGAATGTACGGGGGAACTTACCTAGTGGAAAA	
	GCCTAATCTGAGCAGCAAAGGGTCAGAGTTGTCACAAC	
	TGAGCATGCACCGAGTGTTTGAAGTAGGTGTTATCAGA	

TABLE 13-continued

TABLE 13-continued

	Mev Nucleic Acid Sequences	
Description	Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
	GTTGAACATGCTGTAGTTTATTACGTTTACAGCCCAAGC CGCTCATTTTCTTACTTTTATCCTTTTAGGTTGCCTGTAA GGGGGGTCCCCATTGAATTACAAGTGGAATGCTTCACA TGGGACCAAAAACTCTGGTGCCGTCACTTCTGTGTGCTT GCGGACTCAGAATCTGGTGGACATATCACTCACTCTGG GATGGTGGGCATGGGAGTCAGCTGCACAGCCACTCGGG AAGATGGAACCAGCCGCAGATAG	
```GC_H_MEASLES_D8 mRNA Sequence (assumes T100 tail) Sequence Length: 2126```	G*GGGAAATAAGAGAGAAAAGAAGAGTAAGAGAAAT	46
	ATAAGAGCCACCATGTCACCACAACGAGACCGGATAA	
	ATGCCTTCTACAAAGACAACCCCCATCCTAAGGGAAGT	
	AGGATAGTTATTAACAGAGAACATCTTATGATTGATAG	
	ACCTTATGTTTTGCTGGCTGTTCTATTCGTCATGTTTCTG	
	AGCTTGATCGGGTTGCTAGCCATTGCAGGCATTAGACT	
	TCATCGGGCAGCCATCTACACCGCAGAGATCCATAAAA	
	GCCTCAGCACCAATCTGGATGTAACTAACTCAATCGAG	
	CATCAGGTTAAGGACGTGCTGACACCACTCTTCAAGAT	
	CATCGGTGATGAAGTGGGCTTGAGGACACCTCAGAGAT	
	TCACTGACCTAGTGAAGTTCATCTCTGACAAGATTAAA	
	TTCCTTAATCCGGACAGGGAATACGACTTCAGAGATCT	
	CACTTGGTGTATCAACCCGCCAGAGAGAATCAAATTGG	
	ATTATGATCAATACTGTGCAGATGTGGCTGCTGAAGAA	
	CTCATGAATGCATTGGTGAACTCAACTCTACTGGAGAC	
	CAGGGCAACCAATCAGTTCCTAGCTGTCTCAAAGGGAA	
	ACTGCTCAGGGCCCACTACAATCAGAGGCCAATTCTCA	
	AACATGTCGCTGTCCCTGTTGGACTTGTATTTAAGTCGA	
	GGTTACAATGTGTCATCTATAGTCACTATGACATCCCA	
	GGGAATGTACGGGGGAACTTACCTAGTGGAAAAGCCT	
	AATCTGAGCAGCAAAGGGTCAGAGTTGTCACAACTGAG	
	CATGCACCGAGTGTTTGAAGTAGGTGTTATCAGAAATC	
	CGGGTTTGGGGGCTCCGGTATTCCATATGACAAACTAT	
	CTTGAGCAACCAGTCAGTAATGATTTCAGCAACTGCAT	
	GGTGGCTTTGGGGGAGCTCAAGTTCGCAGCCCTCTGTC	
	ACAGGGAAGATTCTATCACAATTCCCTATCAGGGATCA	
	GGGAAAGGTGTCAGCTTCCAGCTTGTCAAGCTAGGTGT	
	CTGGAAATCCCCAACCGACATGCAATCCTGGGTCCCCC	
	TATCAACGGATGATCCAGTGATAGACAGGCTTTACCTC	
	TCATCTCACAGAGGCGTTATCGCTGACAATCAAGCAAA	
	ATGGGCTGTCCCGACAACACGGACAGATGACAAGTTGC	
	GAATGGAGACATGCTTCCAGCAGGCGTGTAAGGGTAA	
	AATCCAAGCACTTTGCGAGAATCCCGAGTGGACACCAT	
	TGAAGGATAACAGGATTCCTTCATACGGGGTCTTGTCT	
	GTTGATCTGAGTCTGACAGT TGAGCTTAAAATCAAAAT	
	TGTTTCAGGATTCGGGCCATTGATCACACACGGTTCAG	
	GGATGGACCTATACAAATCCAACCACAACAATATGTAT	
	TGGCTGACTATCCCGCCAATGAAGAACCTGGCCTTAGG	
	TGTAATCAACACATTGGAGTGGATACCGAGATTCAAGG	
	TTAGTCCCAACCTCTTCACTGTTCCAATTAAGGAAGCA	
	GGCGAGGACTGCCATGCCCCAACATACCTACCTGCGGA	
	GGTGGATGGTGATGTCAAACTCAGTTCCAATCTGGTGA	
	TTCTACCTGGTCAAGATCTCCAATATGTTCTGGCAACCT	
	ACGATACTTCCAGAGTTGAACATGCTGTAGTTTATTAC	
	GTTTACAGCCCAAGCCGCTCATTTTCTTACTTTTATCCT	
	TTTAGGTTGCCTGTAAGGGGGGTCCCCATTGAATTACA	
	AGTGGAATGCTTCACATGGGACCAAAAACTCTGGTGCC	
	GTCACTTCTGTGTGCTTGCGGACTCAGAATCTGGTGGA	
	CATATCACTCACTCTGGGATGGTGGGCATGGGAGTCAG	
	CTGCACAGCCACTCGGGAAGATGGAACCAGCCGCAGA	
	TAGTGATAATAGGCTGGAGCCTCGGTGGCCAAGCTTCT	
	TGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCT	
	GCACCCGTACCCCCGTGGTCTTTGAATAAAGTCTGAGT	
	GGGCGGCAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
	A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A	
	A $A$ A AAA AAA AA A A A A A A A A A A A A A A A A A A	
	CTAG	


GC_F_MEASLES_B3.1	UCAAGCUUUUGGACCCUCGUACAGAAGCUAAUACGAC	69
Sequence, NT ${ }^{\text {( }}{ }^{\prime}$	UCACUAUAGGGAAAUAAGAGAGAAAAGAAGAGUAAG	
UTR, ORF, 3'	AAGAAAUAUAAGAGCCACCAUGGGUCUCAAGGUGAA	
UTR)	CGUCUCUGCCGUAUUCAUGGCAGUACUGUUAACUCUC	
Sequence Length:	CAAACACCCGCCGGUCAAAUUCAUUGGGGCAAUCUCU	
1864	CUAAGAUAGGGGUAGUAGGAAUAGGAAGUGCAAGCU	
	ACAAAGUUAUGACUCGUUCCAGCCAUCAAUCAUUAGU	

TABLE 13-continued

	MeV Nucleic Acid Sequences	
Description	Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
	CAUAAAAUUAAUGCCCAAUAUAACUCUCCUCAAUAAC	
	UGCACGAGGGUAGAGAUUGCAGAAUACAGGAGACUA	
	CUAAGAACAGUUUUGGAACCAAUUAGGGAUGCACUU	
	AAUGCAAUGACCCAGAACAUAAGGCCGGUUCAGAGCG	
	UAGCUUCAAGUAGGAGACACAAGAGAUUUGCGGGAG	
	UAGUCCUGGCAGGUGCGGCCCUAGGUGUUGCCACAGC	
	UGCUCAGAUAACAGCCGGCAUUGCACUUCACCGGUCC	
	AUGCUGAACUCUCAGGCCAUCGACAAUCUGAGAGCGA	
	GCCUGGAAACUACUAAUCAGGCAAUUGAGGCAAUCAG	
	ACAAGCAGGGCAGGAGAUGAUAUUGGCUGUUCAGGG	
	UGUCCAAGACUACAUCAAUAAUGAGCUGAUACCGUCU	
	AUGAACCAGCUAUCUUGUGAUCUAAUCGGUCAGAAGC	
	UCGGGCUCAAAUUGCUUAGAUACUAUACAGAAAUCCU	
	GUCAUUAUUUGGCCCCAGCCUACGGGACCCCAUAUCU	
	GCGGAGAUAUCUAUCCAGGCUUUGAGUUAUGCACUU	
	GGAGGAGAUAUCAAUAAGGUGUUAGAAAAGCUCGGA	
	UACAGUGGAGGCGAUUUACUAGGCAUCUUAGAGAGC	
	AGAGGAAUAAAGGCUCGGAUAACUCACGUCGACACAG	
	AGUCCUACUUCAUAGUCCUCAGUAUAGCCUAUCCGAC	
	GCUGUCCGAGAUUAAGGGGGUGAUUGUCCACCGGCUA.	
	GAGGGGGucucguacaicauaggcuculaiagagugg	
	UAUACCACUGUGCCCAAGUAUGUUGCAACCCAAGGGU	
	ACCUUAUCUCGAAUUUUGAUGAGUCAUCAUGUACUU	
	UCAUGCCAGAGGGGACUGUGUGCAGCCAAAAUGGCCUU	
	GUACCCGAUGAGUCCUCUGCUCCAAGAAUGCCUCCGG	
	GGGUCCACCAAGUCCUGUGCUCGUACACUCGUAUCCG	
	GGUCUUUUGGGAACCGGUUCAUUUUAUCACAAGGGA	
	ACCUAAUAGCCAAUUGUGCAUCAAUUCUUUGUAAGU	
	GUUACACAACAGGUACGAUUAUUAAUCAAGACCCUGA	
	CAAGAUCCUAACAUACAUUGCUGCCGAUCGCUGCCCG	
	GUAGUCGAGGUGAACGGCGUGACCAUCCAAGUCGGGA	
	GCAGGAGGUAUCCAGACGCUGUGUACUUGCACAGAAU	
	UGACCUCGGUCCUCCCAUAUCAUUGGAGAGGUUGGAC	
	GUAGGGACAAAUCUGGGGAAUGCAAUUGCCAAAUUG	
	GAGGAUGCCAAGGAAUUGUUGGAAUCAUCGGACCAG	
	AUAUUGAGAAGUAUGAAAGGUUUAUCGAGCACUAGC	
	AUAGUCUACAUCCUGAUUGCAGUGUGUCUUGGAGGG	
	UUGAUAGGGAUCCCCACUUUAAUAUGUUGCUGCAGG	
	GGGCGUUGUAACAAAAAGGGAGAACAAGUUGGUAUG	
	UCAAGACCAGGCCUAAAGCCUGACCUUACAGGAACAU	
	CAAAAUCCUAUGUAAGAUCGCUUUGAUGAUAAUAGG	
	CUGGAGCCUCGGUGGCCAAGGCUUCUUGCCCCUUGGGC	
	CUCCCCCCAGCCCCUCCUCCCCUUCCUGCACCCGUACC	
	CCCGUGGUCUUUGAAUAAAGUCUGAGUGGGCGGC	
ORF S'suence, NT	AUGGGUCUCAAGGUGAACGUCUCUGCCGUAUUCAUGG	70
	CAGUACUGUUAACUCUCCAAACACCCGCCGGUCAAAU	
	UCAUUGGGGCAAUCUCUCUAAGAUAGGGGUAGUAGG	
	AAUAGGAAGUGCAAGCUACAAAGUUAUGACUCGUUC	
	CAGCCAUCAAUCAUUAGUCAUAAAAUUAAUGCCCAAU	
	AUAACUCUCCUCAAUAACUGCACGAGGGUAGAGAUUG	
	CAGAAUACAGGAGACUACUAAGAACAGUUUUGGAAC	
	CAAUUAGGGAUGCACUUAAUGCAAUGACCCAGAACAU	
	AAGGCCGGUUCAGAGCGUAGCUUCAAGUAGGAGACAC	
	AAGAGAUUUGCGGGAGUAGUCCUGGCAGGUGCGGCCC	
	UAGGUGUUGCCACAGCUGCUCAGAUAACAGCCGGCAU	
	UGCACUUCACCGGUCCAUGCUGAACUCUCAGGCCAUC	
	GACAAUCUGAGAGCGAGCCUGGAAACUACUAAUCAGG	
	CAAUUGAGGCAAUCAGACAAGCAGGGCAGGAGAUGA	
	UAUUGGCUGUUCAGGGUGUCCAAGACUACAUCAAUA	
	AUGAGCUGAUACCGUCUAUGAACCAGCUAUCUUGUGA	
	UCUAAUCGGUCAGAAGCUCGGGCUCAAAUUGCUUAGA	
	UACUAUACAGAAAUCCUGUCAUUAUUUGGCCCCAGCC	
	UACGGGACCCCAUAUCUGCGGAGAUAUCUAUCCAGGC	
	UUUGAGUUAUGCACUUGGAGGAGAUAUCAAUAAGGU	
	GUUAGAAAAGCUCGGAUACAGUGGAGGCGAUUUACU	
	AGGCAUCUUAGAGAGCAGAGGAAUAAAGGCUCGGAU	
	AACUCACGUCGACACAGAGUCCUACUUCAUAGUCCUC	
	AGUAUAGCCUAUCCGACGCUGUCCGAGAUUAAGGGGG	
	UGAUUGUCCACCGGCUAGAGGGGGUCUCGUACAACAU	
	AGGCUCUCAAGAGUGGUAUACCACUGUGCCCAAGUAU	
	GUUGCAACCCAAGGGUACCUUAUCUCGAAUUUUGAUG	
	AGUCAUCAUGUACUUUCAUGCCAGAGGGGACUGUGU	
	GCAGCCAAAAUGGCUUUUUACCCGAUGAGUCCUCUGCU	
	CCAAGAAUGCCUCCGGGGGUCCACCAAGUCCUGUGCU	

TABLE 13-continued

MeV Nucleic Acid Sequences		
Description	Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
	CGUACACUCGUAUCCGGGUCUUUUGGGAACCGGUUCA	
	UUUUAUCACAAGGGAACCUAAUAGCCAAUUGUGCAUC	
	AAUUCUUUGUAAGUGUUACACAACAGGUACGAUUAU	
	UAAUCAAGACCCUGACAAGAUCCUAACAUACAUUGCU	
	GCCGAUCGCUGCCCGGUAGUCGAGGUGAACGGCGUGA	
	CCAUCCAAGUCGGGAGCAGGAGGUAUCCAGACGCUGU	
	GUACUUGCACAGAAUUGACCUCGGUCCUCCCAUAUCA	
	UUGGAGAGGUUGGACGUAGGGACAAAUCUGGGGAAU	
	GCAAUUGCCAAAUUGGAGGAUGCCAAGGAAUUGUUG	
	GAAUCAUCGGACCAGAUAUUGAGAAGUAUGAAAGGU	
	UUAUCGAGCACUAGCAUAGUCUACAUCCUGAUUGCAG	
	UGUGUCUUGGAGGGUUGAUAGGGAUCCCCACUUUAA	
	UAUGUUGCUGCAGGGGGCGUUGUAACAAAAAGGGAG	
	AACAAGUUGGUAUGUCAAGACCAGGCCUAAAGCCUGA	
	CCUUACAGGAACAUCAAAAUCCUAUGUAAGAUCGCUU	
	UGA	
GC_F_MEASLES_B3.1	G*GGGAAAUAAGAGAGAAAAGAAGAGUAAGAAGAAA	71
mRNA Sequence	UAUAAGAGCCACCAUGGGUCUCAAGGUGAACGUCUCU	
(assumes Tl00 tail)	GCCGUAUUCAUGGCAGUACUGUUAACUCUCCAAACAC	
mRNA Sequence	CCGCCGGUCAAAUUCAUUGGGGCAAUCUCUCUAAGAU	
Length: 1925	AGGGGUAGUAGGAAUAGGAAGUGCAAGCUACAAAGU	
	UAUGACUCGUUCCAGCCAUCAAUCAUUAGUCAUAAAA	
	UUAAUGCCCAAUAUAACUCUCCUCAAUAACUGCACGA	
	GGGUAGAGAUUGCAGAAUACAGGAGACUACUAAGAA	
	CAGUUUUGGAACCAAUUAGGGAUGCACUUAAUGCAA	
	UGACCCAGAACAUAAGGCCGGUUCAGAGCGUAGCUUC	
	AAGUAGGAGACACAAGAGAUUUGCGGGAGUAGUCCU	
	GGCAGGUGCGGCCCUAGGUGUUGCCACAGCUGCUCAG	
	AUAACAGCCGGCAUUGCACUUCACCGGUCCAUGCUGA	
	ACUCUCAGGCCAUCGACAAUCUGAGAGCGAGCCUGGA	
	AACUACUAAUCAGGCAAUUGAGGCAAUCAGACAAGCA	
	GGGCAGGAGAUGAUAUUGGCUGUUCAGGGUGUCCAA	
	GACUACAUCAAUAAUGAGCUGAUACCGUCUAUGAACC	
	AGCUAUCUUGUGAUCUAAUCGGUCAGAAGCUCGGGCU	
	CAAAUUGCUUAGAUACUAUACAGAAAUCCUGUCAUU	
	AUUUGGCCCCAGCCUACGGGACCCCAUAUCUGCGGAG	
	AUAUCUAUCCAGGCUUUGAGUUAUGCACUUGGAGGA	
	GAUAUCAAUAAGGUGUUAGAAAAGCUCGGAUACAGU	
	GGAGGCGAUUUACUAGGCAUCUUAGAGAGCAGAGGA	
	AUAAAGGCUCGGAUAACUCACGUCGACACAGAGUCCU	
	ACUUCAUAGUCCUCAGUAUAGCCUAUCCGACGCUGUC	
	CGAGAUUAAGGGGGUGAUUGUCCACCGGCUAGAGGG	
	GGUCUCGUACAACAUAGGCUCUCAAGAGUGGUAUACC	
	ACUGUGCCCAAGUAUGUUGCAACCCAAGGGUACCUUA	
	UCUCGAAUUUUGAUGAGUCAUCAUGUACUUUCAUGCC	
	AGAGGGGACUGUGUGCAGCCAAAAUGCCUUGUACCCG	
	AUGAGUCCUCUGCUCCAAGAAUGCCUCCGGGGGUCCA	
	CCAAGUCCUGUGCUCGUACACUCGUAUCCGGGUCUUU	
	UGGGAACCGGUUCAUUUUAUCACAAGGGAACCUAAU	
	AGCCAAUUGUGCAUCAAUUCUUUGUAAGUGUUACAC	
	AACAGGUACGAUUAUUAAUCAAGACCCUGACAAGAUC	
	CUAACAUACAUUGCUGCCGAUCGCUGCCCGGUAGUCG	
	AGGUGAACGGCGUGACCAUCCAAGUCGGGAGCAGGAG	
	GUAUCCAGACGCUGUGUACUUGCACAGAAUUGACCUC	
	GGUCCUCCCAUAUCAUUGGAGAGGUUGGACGUAGGG	
	ACAAAUCUGGGGAAUGCAAUUGCCAAAUUGGAGGAU	
	GCCAAGGAAUUGUUGGAAUCAUCGGACCAGAUAUUG	
	AGAAGUAUGAAAGGUUUAUCGAGCACUAGCAUAGUC	
	UACAUCCUGAUUGCAGUGUGUCUUGGAGGGUUGAUA	
	GGGAUCCCCACUUUAAUAUGUUGCUGCAGGGGGCGUU	
	GUAACAAAAAGGGAGAACAAGUUGGUAUGUCAAGAC	
	CAGGCCUAAAGCCUGACCUUACAGGAACAUCAAAAUC	
	CUAUGUAAGAUCGCUUUGAUGAUAAUAGGCUGGAGC	
	CUCGGUGGCCAAGCUUCUUGCCCCUUGGGCCUCCCCC	
	CAGCCCCUCCUCCCCUUCCUGCACCCGUACCCCCGUGG	
	UCUUUGAAUAAAGUCUGAGUGGGCGGCAAAAAAAAA	
	AAAAAAAAAAAAAAAAAAMUCUAG	
GC_F_MEASLES_D8	UCAAGCUUUUGGACCCUCGUACAGAAGCUAAUACGAC	72
Sequence, $\mathrm{NT}^{( } 5^{\prime}$	UCACUAUAGGGAAAUAGAGAGAAAAGAAGAGUAAG	
UTR, ORF, 3'	AAGAAAUAUAAGAGCCACCAUGGGUCUCAAGGUGAA	
UTR)	CGUCUCUGUCAUAUUCAUGGCAGUACUGUUAACUCUU	

TABLE 13-continued

	MeV Nucleic Acid Sequences	
Description	Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
$\begin{aligned} & \text { Sequence Length: } \\ & 1864 \end{aligned}$	CAAACACCCACCGGUCAAAUCCAUUGGGGCAAUCUCU	
	CUAAGAUAGGGGUGGUAGGGGUAGGAAGUGCAAGCU	
	ACAAAGUUAUGACUCGUUCCAGCCAUCAAUCAUUAGU	
	CAUAAAGUUAAUGCCCAAUAUAACUCUCCUCAACAAU	
	UGCACGAGGGUAGGGAUUGCAGAAUACAGGAGACUA	
	CUGAGAACAGUUCUGGAACCAAUUAGAGAUGCACUU	
	AAUGCAAUGACCCAGAAUAUAAGACCGGUUCAGAGU	
	GUAGCUUCAAGUAGGAGACACAAGAGAUUUGCGGGA	
	GUUGUCCUGGCAGGUGCGGCCCUAGGCGUUGCCACAG	
	CUGCUCAAAUAACAGCCGGUAUUGCACUUCACCAGUC	
	CAUGCUGAACUCUCAAGCCAUCGACAAUCUGAGAGCG	
	AGCCUAGAAACUACUAAUCAGGCAAUUGAGGCAAUCA	
	GACAAGCAGGGCAGGAGAUGAUAUUGGCUGUUCAGG	
	GUGUCCAAGACUACAUCAAUAAUGAGCUGAUACCGUC	
	UAUGAAUCAACUAUCUUGUGAUUUAAUCGGCCAGAA	
	GCUAGGGCUCAAAUUGCUCAGAUACUAUACAGAAAUC	
	CUGUCAUUAUUUGGCCCCAGCUUACGGGACCCCAUAU	
	CUGCGGAGAUAUCUAUCCAGGCUUUGAGCUAUGCGCU	
	UGGAGGAGAUAUCAAUAAGGUGUUGGAAAAGCUCGG	
	AUACAGUGGAGGUGAUCUACUGGGCAUCUUAGAGAG	
	CAGAGGAAUAAAGGCCCGGAUAACUCACGUCGACACA	
	GAGUCCUACUUCAUUGUACUCAGUAUAGCCUAUCCGA	
	CGCUAUCCGAGAUUAAGGGGGUGAUUGUCCACCGGCU	
	AGAGGGGGUCUCGUACAACAUAGGCUCUCAAGAGUG	
	GUAUACCACUGUGCCCAAGUAUGUUGCAACCCAAGGG	
	UACCUUAUCUCGAAUUUUGAUGAGUCAUCAUGCACUU	
	UCAUGCCAGAGGGGACUGUGUGCAGCCAGAAUGCCUU	
	GUACCCGAUGAGUCCUCUGCUCCAAGAAUGCCUCCGG	
	GGGUCCACUAAGUCCUGUGCUCGUACACUCGUAUCCG	
	GGUCUUUCGGGAACCGGUUCAUUUUAUCACAGGGGA	
	ACCUAAUAGCCAAUUGUGCAUCAAUCCUUUGCAAGUG	
	UUACACAACAGGAACAAUCAUUAAUCAAGACCCUGAC	
	AAGAUCCUAACAUACAUUGCUGCCGAUCACUGCCCGG	
	UGGUCGAGGUGAAUGGCGUGACCAUCCAAGUCGGGA	
	GCAGGAGGUAUCCGGACGCUGUGUACUUGCACAGGAU	
	UGACCUCGGUCCUCCCAUAUCUUUGGAGAGGUUGGAC	
	GUAGGGACAAAUCUGGGGAAUGCAAUUGCUAAGUUG	
	GAGGAUGCCAAGGAAUUGUUGGAGUCAUCGGACCAG	
	AUAUUGAGGAGUAUGAAAGGUUUAUCGAGCACUAGU	
	AUAGUUUACAUCCUGAUUGCAGUGUGUCUUGGAGGA	
	UUGAUAGGGAUCCCCGCUUUAAUAUGUUGCUGCAGG	
	GGGCGUUGUAACAAGAAGGGAGAACAAGUUGGUAUG	
	UCAAGACCAGGCCUAAAGCCUGAUCUUACAGGAACAU	
	CAAAAUCCUAUGUAAGGUCACUCUGAUGAUAAUAGG	
	CUGGAGCCUCGGUGGCCAAGCUUCUUGCCCCUUGGGC	
	CUCCCCCCAGCCCCUCCUCCCCUUCCUGCACCCGUACC	
	CCCGUGGUCUUUGAAUAAAGUCUGAGUGGGCGGC	
GC_F_MEASLES_D8   ORF $\overline{\mathrm{S}}$ equence, NT	AUGGGUCUCAAGGUGAACGUCUCUGUCAUAUUCAUG	73
	GCAGUACUGUUAACUCUUCAAACACCCACCGGUCAAA	
	UCCAUUGGGGCAAUCUCUCUAAGAUAGGGGUGGUAG	
	GGGUAGGAAGUGCAAGCUACAAAGUUAUGACUCGUU	
	CCAGCCAUCAAUCAUUAGUCAUAAAGUUAAUGCCCAA	
	UAUAACUCUCCUCAACAAUUGCACGAGGGUAGGGAUU	
	GCAGAAUACAGGAGACUACUGAGAACAGUUCUGGAA	
	CCAAUUAGAGAUGCACUUAAUGCAAUGACCCAGAAUA	
	UAAGACCGGUUCAGAGUGUAGCUUCAAGUAGGAGAC	
	ACAAGAGAUUUGCGGGAGUUGUCCUGGCAGGUGCGG	
	CCCUAGGCGUUGCCACAGCUGCUCAAAUAACAGCCGG	
	UAUUGCACUUCACCAGUCCAUGCUGAACUCUCAAGCC	
	AUCGACAAUCUGAGAGCGAGCCUAGAAACUACUAAUC	
	AGGCAAUUGAGGCAAUCAGACAAGCAGGGCAGGAGA	
	UGAUAUUGGCUGUUCAGGGUGUCCAAGACUACAUCA	
	AUAAUGAGCUGAUACCGUCUAUGAAUCAACUAUCUU	
	GUGAUUUAAUCGGCCAGAAGCUAGGGCUCAAAUUGC	
	UCAGAUACUAUACAGAAAUCCUGUCAUUAUUUGGCCC	
	CAGCUUACGGGACCCCAUAUCUGCGGAGAUAUCUAUC	
	CAGGCUUUGAGCUAUGCGCUUGGAGGAGAUAUCAAU	
	AAGGUGUUGGAAAAGCUCGGAUACAGUGGAGGUGAU	
	CUACUGGGCAUCUUAGAGAGCAGAGGAAUAAAGGCCC	
	GGAUAACUCACGUCGACACAGAGUCCUACUUCAUUGU	
	ACUCAGUAUAGCCUAUCCGACGCUAUCCGAGAUUAAG	
	GGGGUGAUUGUCCACCGGCUAGAGGGGGUCUCGUACA	
	ACAUAGGCUCUCAAGAGUGGUAUACCACUGUGCCCAA	
	GUAUGUUGCAACCCAAGGGUACCUUAUCUCGAAUUUU	

TABLE 13-continued

MeV Nucleic Acid Sequences		
Description	Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
	GAUGAGUCAUCAUGCACUUUCAUGCCAGAGGGGACUG	
	UGUGCAGCCAGAAUGCCUUGUACCCGAUGAGUCCUCU	
	GCUCCAAGAAUGCCUCCGGGGGUCCACUAAGUCCUGU	
	GCUCGUACACUCGUAUCCGGGUCUUUCGGGAACCGGU	
	UCAUUUUAUCACAGGGGAAC CUAAUAGCCAAUUGUGC	
	AUCAAUCCUUUGCAAGUGUUACACAACAGGAACAAUC	
	AUUAAUCAAGACCCUGACAAGAUCCUAACAUACAUUG	
	CUGCCGAUCACUGCCCGGUGGUCGAGGUGAAUGGCGU	
	GACCAUCCAAGUCGGGAGCAGGAGGUAUCCGGACGCU	
	GUGUACUUGCACAGGAUUGACCUCGGUCCUCCCAUAU	
	CUUUGGAGAGGUUGGACGUAGGGACAAAUCUGGGGA	
	AUGCAAUUGCUAAGUUGGAGGAUGCCAAGGAAUUGU	
	UGGAGUCAUCGGACCAGAUAUUGAGGAGUAUGAAAG	
	GUUUAUCGAGCACUAGUAUAGUUUACAUCCUGAUUG	
	CAGUGUGUCUUGGAGGAUUGAUAGGGAUCCCCGCUU	
	UAAUAUGUUGCUGCAGGGGGCGUUGUAACAAGAAGG	
	GAGAACAAGUUGGUAUGUCAAGACCAGGCCUAAAGCC	
	UGAUCUUACAGGAACAUCAAAAUCCUAUGUAAGGUC	
	ACUCUGA	
```GC_F_MEASLES_D8 mRNA Sequence (assumes Tl00 tail) Sequence Length: 1925```	G*GGGAAAUAAGAGAGAAAAGAAGAGUAAGAAGAAA	74
	UAUAAGAGCCACCAUGGGUCUCAAGGUGAACGUCUCU	
	GUCAUAUUCAUGGCAGUACUGUUAACUCUUCAAACAC	
	CCACCGGUCAAAUCCAUUGGGGCAAUCUCUCUAAGAU	
	AGGGGUGGUAGGGGUAGGAAGUGCAAGCUACAAAGU	
	UAUGACUCGUUCCAGCCAUCAAUCAUUAGUCAUAAAG	
	UUAAUGCCCAAUAUAACUCUCCUCAACAAUUGCACGA	
	GGGUAGGGAUUGCAGAAUACAGGAGACUACUGAGAA	
	CAGUUCUGGAACCAAUUAGAGAUGCACUUAAUGCAA	
	UGACCCAGAAUAUAAGACCGGUUCAGAGUGUAGCUUC	
	AAGUAGGAGACACAAGAGAUUUGCGGGAGUUGUCCU	
	GGCAGGUGCGGCCCUAGGCGUUGCCACAGCUGCUCAA	
	AUAACAGCCGGUAUUGCACUUCACCAGUCCAUGCUGA	
	ACUCUCAAGCCAUCGACAAUCUGAGAGCGAGCCUAGA	
	AACUACUAAUCAGGCAAUUGAGGCAAUCAGACAAGCA	
	GGGCAGGAGAUGAUAUUGGCUGUUCAGGGUGUCCAA	
	GACUACAUCAAUAAUGAGCUGAUACCGUCUAUGAAUC	
	AACUAUCUUGUGAUUUAAUCGGCCAGAAGCUAGGGC	
	UCAAAUUGCUCAGAUACUAUACAGAAAUCCUGUCAUU	
	AUUUGGCCCCAGCUUACGGGACCCCAUAUCUGCGGAG	
	AUAUCUAUCCAGGCUUUGAGCUAUGCGCUUGGAGGA	
	GAUAUCAAUAAGGUGUUGGAAAAGCUCGGAUACAGU	
	GGAGGUGAUCUACUGGGCAUCUUAGAGAGCAGAGGA	
	AUAAAGGCCCGGAUAACUCACGUCGACACAGAGUCCU	
	ACUUCAUUGUACUCAGUAUAGCCUAUCCGACGCUAUC	
	CGAGAUUAAGGGGGUGAUUGUCCACCGGCUAGAGGG	
	GGUCUCGUACAACAUAGGCUCUCAAGAGUGGUAUACC	
	ACUGUGCCCAAGUAUGUUGCAACCCAAGGGUACCUUA	
	UCUCGAAUUUUGAUGAGUCAUCAUGCACUUUCAUGCC	
	AGAGGGGACUGUGUGCAGCCAGAAUGCCUUGUACCCG	
	AUGAGUCCUCUGCUCCAAGAAUGCCUCCGGGGGUCCA	
	CUAAGUCCUGUGCUCGUACACUCGUAUCCGGGUCUUU	
	CGGGAACCGGUUCAUUUUAUCACAGGGGAACCUAAUA	
	GCCAAUUGUGCAUCAAUCCUUUGCAAGUGUUACACAA	
	CAGGAACAAUCAUUAAUCAAGACCCUGACAAGAUCCU	
	AACAUACAUUGCUGCCGAUCACUGCCCGGUGGUCGAG	
	GUGAAUGGCGUGACCAUCCAAGUCGGGAGCAGGAGG	
	UAUCCGGACGCUGUGUACUUGCACAGGAUUGACCUCG	
	GUCCUCCCAUAUCUUUGGAGAGGUUGGACGUAGGGAC	
	AAAUCUGGGGAAUGCAAUUGCUAAGUUGGAGGAUGC	
	CAAGGAAUUGUUGGAGUCAUCGGACCAGAUAUUGAG	
	GAGUAUGAAAGGUUUAUCGAGCACUAGUAUAGUUUA	
	CAUCCUGAUUGCAGUGUGUCUUGGAGGAUUGAUAGG	
	GAUCCCCGCUUUAAUAUGUUGCUGCAGGGGGCGUUGU	
	AACAAGAAGGGAGAACAAGUUGGUAUGUCAAGACCA	
	GGCCUAAAGCCUGAUCUUACAGGAACAUCAAAAUCCU	
	AUGUAAGGUCACUCUGAUGAUAAUAGGCUGGAGCCU	
	CGGUGGCCAAGGUUCUUGCCCCUUGGGCCUCCCCCCA	
	GCCCCUCCUCCCCUUCCUGCACCCGUACCCCCGUGGUC	
	UUUGAAUAAAGUCUGAGUGGGCGGCAAAAAAAAAAA	
	AAAAAAAAAAAAAAAAAUCUAG	

TABLE 13-continued

	MeV Nucleic Acid Sequences	
Description	Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
```GC_H_MEASLES_B3 Sequence, NT- (5' UTR, ORF, 3' UTR) Sequence Length: 2065```	UCAAGCUUUUGGACCCUCGUACAGAAGCUAAUACGAC	75
	UCACUAUAGGGAAAUAAGAGAGAAAAGAAGAGUAAG	
	AAGAAAUAUAAGAGCCACCAUGUCACCGCAACGAGAC	
	CGGAUAAAUGCCUUCUACAAAGAUAACCCUUAUCCCA	
	AGGGAAGUAGGAUAGUUAUUAACAGAGAACAUCUUA	
	UGAUUGACAGACCCUAUGUUCUGCUGGCUGUUCUGUU	
	CGUCAUGUUUCUGAGCUUGAUCGGAUUGCUGGCAAU	
	UGCAGGCAUUAGACUUCAUCGGGCAGCCAUCUACACC	
	GCGGAGAUCCAUAAAAGCCUCAGUACCAAUCUGGAUG	
	UGACUAACUCCAUCGAGCAUCAGGUCAAGGACGUGCU	
	GACACCACUCUUUAAAAUCAUCGGGGAUGAAGUGGGC	
	CUGAGAACACCUCAGAGAUUCACUGACCUAGUGAAAU	
	UCAUCUCGGACAAGAUUAAAUUCCUUAAUCCGGAUAG	
	GGAGUACGACUUCAGAGAUCUCACUUGGUGCAUCAAC	
	CCGCCAGAGAGGAUCAAACUAGAUUAUGAUCAAUACU	
	GUGCAGAUGUGGCUGCUGAAGAGCUCAUGAAUGCAU	
	UGGUGAACUCAACUCUACUGGAGACCAGAACAACCAC	
	UCAGUUCCUAGCUGUCUCAAAGGGAAACUGCUCAGGG	
	CCCACUACAAUCAGAGGUCAAUUUCUCAAACAUGUCGC	
	UGUCCUUGUUGGACUUGUACUUAGGUCGAGGUUACA	
	AUGUGUCAUCUAUAGUCACUAUGACAUCCCAGGGAAU	
	GUAUGGGGGAACCUACCUAGUUGAAAAGCCUAAUCU	
	GAACAGCAAAGGGUCAGAGUUGUCACAACUGAGCAU	
	GUACCGAGUGUUUGAAGUAGGUGUGAUCAGAAACCC	
	GGGUUUGGGGGCUCCGGUGUUCCAUAUGACAAACUA	
	UUUUGAGCAACCAGUCAGUAAUGGUCUCGGCAACUGU	
	AUGGUGGCUUUGGGGGAGCUCAAACUCGCAGCCCUUU	
	GUCACGGGGACGAUUCUAUCAUAAUUCCCUAUCAGGG	
	AUCAGGGAAAGGUGUCAGCUUCCAGCUCGUCAAGCUG	
	GGUGUCUGGAAAUCCCCAAACCGACAUGCAAUCCUGGG	
	UCCCCUUAUCAACGGAUGAUCCAGUGGUAGACAGGCU	
	UUACCUCUCAUCUCACAGAGGUGUCAUCGCUGACAAU	
	CAAGCAAAAUGGGCUGUCCCGACAACACGAACAGAUG	
	ACAAGUUGCGAAUGGAGACAUGCUUCCAGCAGGCGUG	
	UAAAGGUAAAAUCCAAGCACUCUGCGAGAAUCCCGAG	
	UGGGUACCAUUGAAGGAUAACAGGAUUCCUUCAUAC	
	GGGGuccugucuguugaucugagucugaccgudugag	
	CUUAAAAUCAAAAUUGCUUCGGGAUUCGGGCCAUUG	
	AUCACACACGGCUCAGGGAUGGACCUAUACAAAUCCA	
	ACUGCAACAAUGUGUAUUGGCUGACUAUUCCGCCAAU	
	GAGAAAUCUAGCCUUAGGCGUAAUCAACACAUUGGA	
	GUGGAUACCGAGAUUCAAGGUUAGUCCCAACCUCUUC	
	ACUGUCCCAAUUAAGGAAGCAGGCGAAGACUGCCAUG	
	CCCCAACAUACCUACCUGCGGAGGUGGACGGUGAUGU	
	CAAACUCAGUUCCAACCUGGUGAUUCUACCUGGUCAA	
	GAUCUCCAAUAUGUUUUGGCAACCUACGAUACCUCCA	
	GGGUUGAGCAUGCUGUGGUUUAUUACGUUUACAGCC	
	CAAGCCGCUCAUUUUCUUACUUUUAUCCUUUUAGGUU	
	GCCUAUAAAGGGGGUCCCAAUCGAACUACAAGUGGAA	
	UGCUUCACAUGGGAUCAAAAACUCUGGUGCCGUCACU	
	UCUGUGUGCUUGCGGACUCAGAAUCCGGUGGACUUAU	
	CACUCACUCUGGGAUGGUGGGCAUGGGAGUCAGCUGC	
	ACAGCUACCCGGGAAGAUGGAACCAAUCGCAGAUAAU	
	GAUAAUAGGCUGGAGCCUCGGUGGCCAAGCUUCUUGC	
	CCCUUGGGCCUCCCCCCAGCCCCUCCUCCCCUUCCUGC	
	ACCCGUACCCCCGUGGUCUUUGAAUAAAGUCUGAGUG	
	GGCGGC	
GC_H_MEASLES_B3	AUGUCACCGCAACGAGACCGGAUAAAUGCCUUCUACA	76
ORF $\overline{\mathrm{F}}$ Sequence, NT	AAGAUAACCCUUAUCCCAAGGGAAGUAGGAUAGUUA	
	UUAACAGAGAACAUCUUAUGAUUGACAGACCCUAUG	
	UUCUGCUGGCUGUUCUGUUCGUCAUGUUUCUGAGCUU	
	GAUCGGAUUGCUGGCAAUUGCAGGCAUUAGACUUCA	
	UCGGGCAGCCAUCUACACCGCGGAGAUCCAUAAAAGC	
	CUCAGUACCAAUCUGGAUGUGACUAACUCCAUCGAGC	
	AUCAGGUCAAGGACGUGCUGACACCACUCUUUAAAAU	
	CAUCGGGGAUGAAGUGGGCCUGAGAACACCUCAGAGA	
	UUCACUGACCUAGUGAAAUUCAUCUCGGACAAGAUUA	
	AAUUUCCUUAAUCCGGAUAGGGAGUACGACUUCAGAG	
	AUCUCACUUGGUGCAUCAACCCGCCAGAGAGGAUCAA	
	ACUAGAUUAUGAUCAAUACUGUGCAGAUGUGGCUGC	
	UGAAGAGCUCAUGAAUGCAUUGGUGAACUCAACUCU	
	ACUGGAGACCAGAACAACCACUCAGUUCCUAGCUGUC	
	UCAAAGGGAAACUGCUCAGGGCCCACUACAAUCAGAG	

TABLE 13-continued

	MeV Nucleic Acid Sequences	
Description	Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
Description	GUCAAUUCUCAAACAUGUCGCUGUCCUUGUUGGACUU	
	GUACUUAGGUCGAGGUUACAAUGUGUCAUCUAUAGU	
	CACUAUGACAUCCCAGGGAAUGUAUGGGGGAACCUAC	
	CUAGUUGAAAAGCCUAAUCUGAACAGCAAAGGGUCA	
	GAGUUGUCACAACUGAGCAUGUACCGAGUGUUUGAA	
	GUAGGUGUGAUCAGAAACCCGGGUUUGGGGGCUCCG	
	GUGUUCCAUAUGACAAACUAUUUUGAGCAACCAGUCA	
	GUAAUGGUCUCGGCAACUGUAUGGUGGCUUUGGGGG	
	AGCUCAAACUCGCAGCCCUUUGUCACGGGGACGAUUC	
	UAUCAUAAUUCCCUAUCAGGGAUCAGGGAAAGGUGU	
	CAGCUUCCAGCUCGUCAAGCUGGGUGUCUGGAAAUCC	
	CCAACCGACAUGCAAUCCUGGGUCCCCUUAUCAACGG	
	AUGAUCCAGUGGUAGACAGGCUUUACCUCUCAUCUCA	
	CAGAGGUGUCAUCGCUGACAAUCAAGCAAAAUGGGCU	
	GUCCCGACAACACGAACAGAUGACAAGUUGCGAAUGG	
	AGACAUGCUUCCAGCAGGCGUGUAAAGGUAAAAUCCA	
	AGCACUCUGCGAGAAUCCCGAGUGGGUACCAUUGAAG	
	GAUAACAGGAUUCCUUCAUACGGGGUCCUGUCUGUUG	
	AUCUGAGUCUGACGGUUGAGCUUAAAAUCAAAAUUG	
	CUUCGGGAUUCGGGCCAUUGAUCACACACGGCUCAGG	
	GAUGGACCUAUACAAAUCCAACUGCAACAAUGUGUAU	
	UGGCUGACUAUUCCGCCAAUGAGAAAUCUAGCCUUAG	
	GCGUAAUCAACACAUUGGAGUGGAUACCGAGAUUCA	
	AGGUUAGUCCCAACCUCUUCACUGUCCCAAJUAAGGA	
	AGCAGGCGAAGACUGCCAUGCCCCAACAUACCUACCU	
	GCGGAGGUGGACGGUGAUGUCAAACUCAGUUCCAACC	
	UGGUGAUUCUACCUGGUCAAGAUCUCCAAUAUGUUU	
	UGGCAACCUACGAUACCUCCAGGGUUGAGCAUGCUGU	
	GGUUUAUUACGUUUACAGCCCAAGCCGCUCAUUUUCU	
	UACUUUUAUCCUUUUAGGUUGCCUAUAAAGGGGGUC	
	CCAAUCGAACUACAAGUGGAAUGCUUCACAUGGGAUC	
	AAAAAACUCUGGUGCCGUCACUUCUGUGUGCUUGCGGA	
	CUCAGAAUCCGGUGGACUUAUCACUCACUCUGGGAUG	
	GUGGGCAUGGGAGUCAGCUGCACAGCUACCCGGGAAG	
	AUGGAACCAAUCGCAGAUAA	
GC_H_MEASLES_B3 mRNA Sequence (assumes T100 Tail)   Sequence Length: $2126$	G*GGGAAAJAAGGAGAGAAAAGAAGAGUAAGAAGAAA	77
	UAUAAGAGCCACCAUGUCACCGCAACGAGACCGGAUA	
	AAUGCCUUCUACAAAGAUAACCCUUAUCCCAAGGGAA	
	GUAGGAUAGUUAUUAACAGAGAACAUCUUAUGAUUG	
	ACAGACCCUAUGUUCUGCUGGCUGUUCUGUUCGUCAU	
	GUUUCUGAGCUUGAUCGGAUUGCUGGCAAUUGCAGG	
	CAUUAGACUUCAUCGGGCAGCCAUCUACACCGCGGAG	
	AUCCAUAAAAGCCUCAGUACCAAUCUGGAUGUGACUA	
	ACUCCAUCGAGCAUCAGGUCAAGGACGUGCUGACACC	
	ACUCUUUAAAAUCAUCGGGGAUGAAGUGGGCCUGAG	
	AACACCUCAGAGAUUCACUGACCUAGUGAAAUUCAUC	
	UCGGACAAGAUUAAAUUCCUUAAUCCGGAUAGGGAG	
	UACGACUUCAGAGAUCUCACUUGGUGCAUCAACCCGC	
	CAGAGAGGAUCAAACUAGAUUAUGAUCAAUACUGUG	
	CAGAUGUGGCUGCUGAAGAGCUCAUGAAUGCAUUGG	
	UGAACUCAACUCUACUGGAGACCAGAACAACCACUCA	
	GUUCCUAGCUGUCUCAAAGGGAAACUGCUCAGGGCCC	
	ACUACAAUCAGAGGUCAAUUCUCAAACAUGUCGCUGU	
	CCUUGUUGGACUUGUACUUAGGUCGAGGUUACAAUG	
	UGUCAUCUAUAGUCACUAUGACAUCCCAGGGAAUGUA	
	UGGGGGAACCUACCUAGUUGAAAAGCCUAAUCUGAAC	
	AGCAAAGGGUCAGAGUUGUCACAACUGAGCAUGUACC	
	GAGUGUUUGAAGUAGGUGUGAUCAGAAACCCGGGUU	
	UGGGGGCUCCGGUGUUCCAUAUGACAAACUAUUUUG	
	AGCAACCAGUCAGUAAUGGUCUCGGCAACUGUAUGGU	
	GGCUUUGGGGGAGCUCAAACUCGCAGCCCUUUGUCAC	
	GGGGACGAUUCUAUCAUAAUUCCCUAUCAGGGAUCAG	
	GGAAAGGUGUCAGCUUCCAGCUCGUCAAGCUGGGUGU	
	CUGGAAAUCCCCAACCGACAUGCAAUCCUGGGUCCCC	
	UUAUCAACGGAUGAUCCAGUGGUAGACAGGCUUUACC	
	UCUCAUCUCACAGAGGUGUCAUCGCUGACAAUCAAGC	
	AAAAUGGGCUGUCCCGACAACACGAACAGAUGACAAG	
	UUGCGAAUGGAGACAUGCUUCCAGCAGGCGUGUAAA	
	GGUAAAAUCCAAGCACUCUGCGAGAAUCCCGAGUGGG	
	UACCAUUGAAGGAUAACAGGAUUCCUUCAUACGGGG	
	UCCUGUCUGUUGAUCUGAGUCUGACGGUUGAGCUUA	
	AAAUCAAAAUUGCUUCGGGAUUCGGGCCAUUGAUCAC	
	ACACGGCUCAGGGAUGGACCUAUACAAAUCCAACUGC	
	AACAAUGUGUAUUGGCUGACUAUUCCGCCAAUGAGA.	

TABLE 13-continued

	MeV Nucleic Acid Sequences	
	Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
$\qquad$	AAUCUAGCCUUAGGCGUAAUCAACACAUUGGAGUGG	
	AUACCGAGAUUCAAGGUUAGUCCCAACCUCUUCACUG	
	UCCCAAUUAAGGAAGCAGGCGAAGACUGCCAUGCCCC	
	AACAUACCUACCUGCGGAGGUGGACGGUGAUGUCAAA	
	CUCAGUUCCAACCUGGUGAUUCUACCUGGUCAAGAUC	
	UCCAAUAUGUUUUGGCAACCUACGAUACCUCCAGGGU	
	UGAGCAUGCUGUGGUUUAUUACGUUUACAGCCCAAGC	
	CGCUCAUUUUCUUACUUUUAUCCUUUUAGGUUGCCUA	
	UAAAGGGGGUCCCAAUCGAACUACAAGUGGAAUGCU	
	UCACAUGGGAUCAAAAACUCUGGUGCCGUCACUUCUG	
	UGUGCUUGCGGACUCAGAAUCCGGUGGACUUAUCACU	
	CACUCUGGGAUGGUGGGCAUGGGAGUCAGCUGCACAG	
	CUACCCGGGAAGAUGGAACCAAUCGCAGAUAAUGAUA	
	AUAGGCUGGAGCCUCGGUGGCCAAGCUUCUUGCCCCU	
	UGGGCCUCCCCCCAGCCCCUCCUCCCCUUCCUGCACCC	
	GUACCCCCGUGGUCUUUGAAUAAAGUCUGAGUGGGCG	
	GСАAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
	ААААААААААААААААААААААААААААААЈ	
GC_H_MEASLES_D8	UCAAGCUUUUGGACCCUCGUACAGAAGCUAAUACGAC	78
Sequence, $\mathrm{NT}^{-}\left(5^{\prime}\right.$	UCACUAUAGGGAAAUAAGAGAGAAAAGAAGAGUAAG	
UTR, ORF, $3^{\prime}$	AAGAAAUAUAAGAGCCACCAUGUCACCACAACGAGAC	
UTR)	CGGAUAAAUGCCUUCUACAAAGACAACCCCCAUCCUA	
Sequence Length:	AGGGAAGUAGGAUAGUUAUUAACAGAGAACAUCUUA	
2065	UGAUUGAUAGACCUUAUGUUUUGCUGGCUGUUCUAU	
	UCGUCAUGUUUCUGAGCUUGAUCGGGUUGCUAGCCAU	
	UGCAGGCAUUAGACUUCAUCGGGCAGCCAUCUACACC	
	GCAGAGAUCCAUAAAAGCCUCAGCACCAAUCUGGAUG	
	UAACUAACUCAAUCGAGCAUCAGGUUAAGGACGUGCU	
	GACACCACUCUUCAAGAUCAUCGGUGAUGAAGUGGGC	
	UUGAGGACACCUCAGAGAUUCACUGACCUAGUGAAGU	
	UCAUCUCUGACAAGAUUA.A.AUUCCUUA.AUCCGGACAG	
	GGAAUACGACUUCAGAGAUCUCACUUGGUGUAUCAAC	
	CCGCCAGAGAGAAUCAAAUUGGAUUAUGAUCAAUAC	
	UGUGCAGAUGUGGCUGCUGAAGAACUCAUGAAUGCA	
	UUGGUGAACUCAACUCUACUGGAGACCAGGGCAACCA	
	AUCAGUUCCUAGCUGUCUCAAAGGGAAACUGCUCAGG	
	GCCCACUACAAUCAGAGGCCAAUUCUCAAACAUGUCG	
	CUGUCCCUGUUGGACUUGUAUUUAAGUCGAGGUUAC	
	AAUGUGUCAUCUAUAGUCACUAUGACAUCCCAGGGAA	
	UGUACGGGGGAACUUACCUAGUGGAAAAGCCUAAUC	
	UGAGCAGCAAAGGGUCAGAGUUGUCACAACUGAGCA	
	UGCACCGAGUGUUUGAAGUAGGUGUUAUCAGAAAUC	
	CGGGUUUGGGGGCUCCGGUAUUCCAUAUGACAAACUA	
	UCUUGAGCAACCAGUCAGUAAUGAUUUCAGCAACUGC	
	AUGGUGGCUUUGGGGGAGCUCAAGUUCGCAGCCCUCU	
	GUCACAGGGAAGAUUCUAUCACAAUUCCCUAUCAGGG	
	AUCAGGGAAAGGUGUCAGCUUCCAGCUUGUCAAGCUA	
	GGUGUCUGGAAAUCCCCAACCGACAUGCAAUCCUGGG	
	UCCCCCUAUCAACGGAUGAUCCAGUGAUAGACAGGCU	
	UUACCUCUCAUCUCACAGAGGCGUUAUCGCUGACAAU	
	CAAGCAAAAUGGGCUGUCCCGACAACACGGACAGAUG	
	ACAAGUUGCGAAUGGAGACAUGCUUCCAGCAGGCGUG	
	UAAGGGUAAAAUCCAAGCACUUUGCGAGAAUCCCGAG	
	UGGACACCAUUGAAGGAUAACAGGAUUCCUUCAUACG	
	GGGUCUUGUCUGUUGAUCUGAGUCUGACAGUUGAGC	
	UUAAAAUCAAAAUUGUUUCAGGAUUCGGGCCAUUGA	
	UCACACACGGUUCAGGGAUGGACCUAUACAAAUCCAA	
	CCACAACAAUAUGUAUUGGCUGACUAUCCCGCCAAUG	
	AAGAACCUGGCCUUAGGUGUAAUCAACACAUUGGAG	
	UGGAUACCGAGAUUCAAGGUUAGUCCCAACCUCUUCA	
	CUGUUCCAAUUAAGGAAGCAGGCGAGGACUGCCAUGC	
	CCCAACAUACCUACCUGCGGAGGUGGAUGGUGAUGUC	
	AAACUCAGUUCCAAUCUGGUGAUUCUACCUGGUCAAG	
	AUCUCCAAUAUGUUCUGGCAACCUACGAUACUUCCAG	
	AGUUGAACAUGCUGUAGUUUAUUACGUUUACAGCCC	
	AAGCCGCUCAUUUUCUUACUUUUAUCCUUUUAGGUUG	
	CCUGUAAGGGGGGUCCCCAUUGAAUUACAAGUGGAA	
	UGCUUCACAUGGGACCAAAAACUCUGGUGCCGUCACU	
	UCUGUGUGCUUGCGGACUCAGAAUCUGGUGGACAUA	
	UCACUCACUCUGGGAUGGUGGGCAUGGGAGUCAGCUG	
	CACAGCCACUCGGGAAGAUGGAACCAGCCGCAGAUAG	
	UGAUAAUAGGCUGGAGCCUCGGUGGCCAAGCUUCUUG	
	CCCCUUGGGCCUCCCCCCAGCCCCUCCUCCCCUUCCUG	

TABLE 13-continued

	MeV Nucleic Acid Sequences	
Description	Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
	CACCCGUACCCCCGUGGUCUUUGAAUAAAGUCUGAGU GGGCGGC	
GC H MEASLES D8 ORF Sequence, NT	AUGUCACCACAACGAGACCGGAUAAAUGCCUUCUACA	79
	AAGACAACCCCCAUCCUAAGGGAAGUAGGAUAGUUAU	
	UAACAGAGAACAUCUUAUGAUUGAUAGACCUUAUGU	
	UUUGCUGGCUGUUCUAUUCGUCAUGUUUCUGAGCUU	
	GAUCGGGUUGCUAGCCAUUGCAGGCAUUAGACUUCAU	
	CGGGCAGCCAUCUACACCGCAGAGAUCCAUAAAAGCC	
	UCAGCACCAAUCUGGAUGUAACUAACUCAAUCGAGCA	
	UCAGGUUAAGGACGUGCUGACACCACUCUUCAAGAUC	
	AUCGGUGAUGAAGUGGGCUUGAGGACACCUCAGAGA	
	UUCACUGACCUAGUGAAGUUCAUCUCUGACAAGAUUA	
	AAUUCCUUAAUCCGGACAGGGAAUACGACUUCAGAGA	
	UCUCACUUGGUGUAUCAACCCGCCAGAGAGAAUCAAA	
	UUGGAUUAUGAUCAAUACUGUGCAGAUGUGGCUGCU	
	GAAGAACUCAUGAAUGCAUUGGUGAACUCAACUCUAC	
	UGGAGACCAGGGCAACCAAUCAGUUCCUAGCUGUCUC	
	AAAGGGAAACUGCUCAGGGCCCACUACAAUCAGAGGC	
	CAAUUCUCAAACAUGUCGCUGUCCCUGUUGGACUUGU	
	AUUUAAGUCGAGGUUACAAUGUGUCAUCUAUAGUCA	
	CUAUGACAUCCCAGGGAAUGUACGGGGGAACUUACCU	
	AGUGGAAAAGCCUAAUCUGAGCAGCAAAGGGUCAGA	
	GUUGUCACAACUGAGCAUGCACCGAGUGUUUGAAGU	
	AGGUGUUAUCAGAAAUCCGGGUUUGGGGGCUCCGGU	
	AUUCCAUAUGACAAACUAUCUUGAGCAACCAGUCAGU	
	AAUGAUUUCAGCAACUGCAUGGUGGCUUUGGGGGAG	
	CUCAAGUUCGCAGCCCUCUGUCACAGGGAAGAUUCUA	
	UCACAAUUCCCUAUCAGGGAUCAGGGAAAGGUGUCAG	
	CUUCCAGCUUGUCAAGCUAGGUGUCUGGAAAUCCCCA	
	ACCGACAUGCAAUCCUGGGUCCCCCUAUCAACGGAUG	
	AUCCAGUGAUAGACAGGCUUUACCUCUCAUCUCACAG	
	AGGCGUUAUCGCUGACAAUCAAGCAAAAUGGGCUGUC	
	CCGACAACACGGACAGAUGACAAGUUGCGAAUGGAGA	
	CAUGCUUCCAGCAGGCGUGUAAGGGUAAAAUCCAAGC	
	ACUUUGCGAGAAUCCCGAGUGGACACCAUUGAAGGAU	
	AACAGGAUUCCUUCAUACGGGGUCUUGUCUGUUGAUC	
	UGAGUCUGACAGUUGAGCUUAAAAUCAAAAUUGUUU	
	CAGGAUUCGGGCCAUUGAUCACACACGGUUCAGGGAU	
	GGACCUAUACAAAUCCAACCACAACAAUAUGUAUUGG	
	CUGACUAUCCCGCCAAUGAAGAACCUGGCCUUAGGUG	
	UAAUCAACACAUUGGAGUGGAUACCGAGAUUCAAGG	
	UUAGUCCCAACCUCUUCACUGUUCCAAUUAAGGAAGC	
	AGGCGAGGACUGCCAUGCCCCAACAUACCUACCUGCG	
	GAGGUGGAUGGUGAUGUCAAACUCAGUUCCAAUCUG	
	GUGAUUCUACCUGGUCAAGAUCUCCAAUAUGUUCUGG	
	CAACCUACGAUACUUCCAGAGUUGAACAUGCUGUAGU	
	UUAUUACGUUUACAGCCCAAGCCGCUCAUUUUCUUAC	
	UUUUAUCCUUUUAGGUUGCCUGUAAGGGGGGUCCCCA	
	UUGAAUUACAAGUGGAAUGCUUCACAUGGGACCAAA	
	AACUCUGGUGCCGUCACUUCUGUGUGCUUGCGGACUC	
	AGAAUCUGGUGGACAUAUCACUCACUCUGGGAUGGU	
	GGGCAUGGGAGUCAGCUGCACAGCCACUCGGGAAGAU	
	GGAACCAGCCGCAGAUAG	
```GC_H_MEASLES_D8 mRNA- Sequence (assumes Tloo tail) Sequence Length: 2126```	G*GGGAAAUAAGAGAGAAAAGAMGAGUAAGAAGAAA	80
	UAUAAGAGCCACCAUGUCACCACAACGAGACCGGAUA	
	AAUGCCUUCUACAAAGACAACCCCCAUCCUAAGGGAA	
	GUAGGAUAGUUAUUAACAGAGAACAUCUUAUGAUUG	
	AUAGACCUUAUGUUUUGCUGGCUGUUCUAUUCGUCA	
	UGUUUCUGAGCUUGAUCGGGUUGCUAGCCAUUGCAG	
	GCAUUAGACUUCAUCGGGCAGCCAUCUACACCGCAGA	
	GAUCCAUAAAAGCCUCAGCACCAAUCUGGAUGUAACU	
	AACUCAAUCGAGCAUCAGGUUAAGGACGUGCUGACAC	
	CACUCUUCAAGAUCAUCGGUGAUGAAGUGGGCUUGA	
	GGACACCUCAGAGAUUCACUGACCUAGUGAAGUUCAU	
	CUCUGACAAGAUUAAAUUCCUUAAUCCGGACAGGGAA	
	UACGACUUCAGAGAUCUCACUUGGUGUAUCAACCCGC	
	CAGAGAGAAUCAAAUUGGAUUAUGAUCAAUACUGUG	
	CAGAUGUGGCUGCUGAAGAACUCAUGA.AUGCAUUGG	
	UGAACUCAACUCUACUGGAGACCAGGGCAACCAAUCA	
	GUUCCUAGCUGUCUCAAAGGGAAACUGCUCAGGGCCC	
	ACUACAAUCAGAGGCCAAUUCUCAAACAUGUCGCUGU	
	CCCUGUUGGACUUGUAUUUAAGUCGAGGUUACAAUG	
	UGUCAUCUAUAGUCACUAUGACAUCCCAGGGAAUGUA	

TABLE 13-continued

MeV Nucleic Acid Sequences		
Description	Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
	CGGGGGAACUUACCUAGUGGAAAAGCCUAAUUCUGAGC	
	AGCAAAGGGUCAGAGUUGUCACAACUGAGCAUGCACC	
	GAGUGUUUGAAGUAGGUGUUAUCAGAAAUCCGGGUU	
	UGGGGGCUCCGGUAUUCCAUAUGACAAACUAUCUUGA	
	GCAACCAGUCAGUAAUGAUUUCAGCAACUGCAUGGUG	
	GCUUUGGGGGAGCUCAAGUUCGCAGCCCUCUGUCACA	
	GGGAAGAUUCUAUCACAAUUCCCUAUCAGGGAUCAGG	
	GAAAGGUGUCAGCUUCCAGCUUGUCAAGCUAGGUGUC	
	UGGAAAUCCCCAACCGACAUGCAAUCCUGGGUCCCCC	
	UAUCAACGGAUGAUCCAGUGAUAGACAGGCUUUACCU	
	CUCAUCUCACAGAGGCGUUAUCGCUGACAAUCAAGCA	
	AAAUGGGCUGUCCCGACAACACGGACAGAUGACAAGU	
	UGCGAAUGGAGACAUGCUUCCAGCAGGCGUGUAAGG	
	GUAAAAUCCAAGCACUUUGCGAGAAUCCCGAGUGGAC	
	ACCAUUGAAGGAUAACAGGAUUCCUUCAUACGGGGUC	
	UUGUCUGUUGAUCUGAGUCUGACAGUUGAGCUUAAA	
	AUCAAAAUUGUUUCAGGAUUCGGGCCAUUGAUCACAC	
	ACGGUUCAGGGAUGGACCUAUACAAAUCCAACCACAA	
	CAAUAUGUAUUGGCUGACUAUCCCGCCAAUGAAGAAC	
	CUGGCCUUAGGUGUAAUCAACACAUUGGAGUGGAUA	
	CCGAGAUUCAAGGUUAGUCCCAACCUCUUCACUGUUC	
	CAAUUAAGGAAGCAGGCGAGGACUGCCAUGCCCCAAC	
	AUACCUACCUGCGGAGGUGGAUGGUGAUGUCAAACUC	
	AGUUCCAAUCUGGUGAUUCUACCUGGUCAAGAUCUCC	
	AAUAUGUUCUGGCAACCUACGAUACUUCCAGAGUUGA	
	ACAUGCUGUAGUUUAUUACGUUUACAGCCCAAGCCGC	
	UCAUUUUCUUACUUUUAUCCUUUUAGGUUGCCUGUA	
	ACAUGGGACCAAAAACUCUGGUGCCGUCACUUCUGUG	
	UGCUUGCGGACUCAGAAUCUGGUGGACAUAUCACUCA	
	CUCUGGGAUGGUGGGCAUGGGAGUCAGCUGCACAGCC	
	ACUCGGGAAGAUGGAACCAGCCGCAGAUAGUGAUAA	
	UAGGCUGGAGCCUCGGUGGCCAAAGCUUCUUGCCCCUU	
	GGGCCUCCCCCCAGCCCCUCCUCCCCUUCCUGCACCCG	
	UACCCCCGUGGUCUUUGAAUAAAGUCUGAGUGGGCGG	
	САААААААААААААААААААААААААААААААААА	
	АААААААААААААА.А.A.AAAAAAAAA.AUCUAG	

TABLE 14

	MeV Amino Acid Sequences	
Description	Sequence	$\begin{gathered} \text { SEQ ID } \\ \text { NO: } \end{gathered}$
GC_F_MEASLES_B3.1 orF $\overline{\text { Sequence. }}$ AA	MGLKVNVSAVFMAVLLTLQTPAGQI HWGNLSKIGVV	47
	GIGSASYKVMTRSSHQSLVIKLMPNITLLNNCTRVEIA	
	EYRRLLRTVLEPIRDALNAMTQNIRPVQSVASSRRHK	
	RFAGVVLAGAALGVATAAQITAGIALHRSMLNSQAID	
	NLRASLETTNQAIEAIRQAGQEMILAVQGVQDYINNE	
	LIPSMNQLSCDLIGQKLGLKLLRYYTEILSLFGPSLRDP	
	ISAEISIQALSYALGGDINKVLEKLGYSGGDLLGILESR	
	GIKARITHVDTESYFIVLSIAYPTLSEIKGVIVHRLEGVS	
	YNIGSQEWYTTVPKYVATQGYLISNFDESSCTFMPEG	
	TVCSQNALYPMSPLLQECLRGSTKSCARTLVSGSFGN	
	RFILSQGNLIANCASILCKCYTTGTIINQDPDKILTYIAA	
	DRCPVVEVNGVTIQVGSRRYPDAVYLHRIDLGPPISLE	
	RLDVGTNLGNAIAKLEDAKELLESSDQILRSMKGLSST	
	SIVYILIAVCLGGLIGIPTLICCCRGRCNKKGEQVGMSR	
	PGLKPDLTGTSKSYVRSL*	
GC_F_MEASLES_D8 ORF Sequence, $A A$	MGLKVNVSVIFMAVLLTLQTPTGQIHWGNLSKIGVVG	48
	VGSASYKVMTRSSHQSLVIKLMPNI TLLNNCTRVGIAE	
	YRRLLRTVLEPIRDALNAMTQNIRPVQSVASSRRHKR	
	FAGVVLAGAALGVATAAQITAGIALHQSMLNSQAIDN	
	LRASLETTTNQAIEAIRQAGQEMILAVQGVQDYINNELI	
	PSMNQLSCDLIGQKLGLKLLRYYTEILSLFGPSLRDPIS	
	AEISIQALSYALGGDINKVLEKLGYSGGDLLGILESRGI	
	KARITHVDTESYFIVLSIAYPTLSEIKGVIVHRLEGVSY	
	NIGSQEWYTTVPKYVATQGYLISNFDESSCTFMPEGT	
	VCSQNALYPMSPLLQECLRGSTKSCARTLVSGSFGNR	

TABLE 14-continued

MeV Amino Acid Sequences		
Description	Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
	FILSQGNLIANCASILCKCYTTGTIINQDPDKILTYIAAD HCPVVEVNGVTIQVGSRRYPDAVYLHRIDLGPPISLER LDVGTNLGNAIAKLEDAKELLESSDQILRSMKGLSSTS IVYILIAVCLGGLIGIPALICCCRGRCNKKGEQVGMSRP GLKPDLTGTSKSYVRSL*	
GC_H_MEASLES_B3 ORF Sequence, $A A$	MSPQRDRINAFYKDNPYPKGSRIVINREHLMIDRPYVL LAVLFVMFLSLIGLLAIAGIRLHRAAIYTAEIHKSLSTN LDVTNSIEHQVKDVLTPLFKIIGDEVGLRTPQRFTDLV KFISDKIKFLNPDREYDFRDLTWCINPPERI KLDYDQY CADVAAEELMNALVNSTLLETRTTTQFLAVSKGNCS GPTTIRGQFSNMSLSLLDLYLGRGYNVSSIVTMTSQG MYGGTYLVEKPNLNSKGSELSQLSMYRVFEVGVIRNP GLGAPVFHMTNYFEQPVSNGLGNCMVALGELKLAAL CHGDDSIIIPYQGSGKGVSFQLVKLGVWKSPTDMQSW VPLSTDDPVVDRLYLSSHRGVIADNQAKWAVPTTRT DDKLRMETCFQQACKGKIOALCENPEWVPLKDNRIPS YGVLSVDLSLTVELKIKIASGFGPLITHGSGMDLYKSN CNNVYWLTIPPMRNLALGVINTLEWIPRFKVSPNLFTV PIKEAGEDCHAPTYLPAEVDGDVKLSSNLVILPGQDL QYVLATYDTSRVEHAVVYYVYSPSRSFSYFYPFRLPIK GVPIELQVECFTWDQKLWCRHFCVLADSESGGLITHS GMVGMGVSCTATREDGTNRR*	49
GC_H_MEASLES_D8 ORF Sequence, AA	MSPQRDRINAFYKDNPHPKGSRIVINREHLMIDRPYVL LAVLFVMFLSLIGLLAIAGIRLHRAAIYTAEIHKSLSTN LDVTNSIEHOVKDVLTPLFKIIGDEVGLRTPQRFTDLV KFISDKIKFLNPDREYDFRDLTWCINPPERIKLDYDQY CADVAAEELMNALVNS TLLETRATNQFLAVSKGNCS GPTTIRGQFSNMSLSLLDLYLSRGYNVSSIVTMTSQGM YGGTYLVEKPNLSSKGSELSQLSMHRVFEVGVIRNPG LGAPVFHMTNYLEQPVSNDFSNCMVALGELKFAALC HREDSITIPYQGSGKGVSFOLVKLGVWKSPTDMQSW VPLSTDDPVIDRLYLSSHRGVIADNQAKWAVPTTRTD DKLRMETCFQQACKGKIQALCENPEWTPLKDNRIPSY GVLSVDLSLTVELKIKIVSGFGPLITHGSGMDLYKSNH NNMYWLTI PPMKNLALGVINTLEWI PRFKVSPNLFTV PIKEAGEDCHAPTYLPAEVDGDVKLSSNLVILPGQDL QYVLATYDTSRVEHAVVYYVYSPSRSFSYFYPFRLPV RGVPIELQVECFTWDQKLWCRHFCVLADSESGGHITH SGMVGMGVSCTATREDGTSRR*	50

TABLE 15

	MeV NCBI Accession Numbers (Amino Acid Sequences)	
Type	Virus Name	GenBank Accession
hemagglutinin	hemagglutinin [Measles virus strain Moraten]	AAF85673.1
hemagglutinin	hemagglutinin [Measles virus strain Rubeovax]	AAF85689.1
hemagglutinin	hemagglutinin [Measles virus]	AAF89824.1
hemagglutinin	hemagglutinin protein [Measles virus]	CAA91369.1
hemagglutinin	hemagglutinin [Measles virus]	BAJ23068.1
hemagglutinin	hemagglutinin protein [Measles virus]	BAB39848.1
hemagglutinin	hemagglutinin [Measles virus]	AAA50551.1
hemagglutinin	RecName: Full = Hemagglutinin glycoprotein	P08362.1
hemagglutinin	hemaggglutinin [Measles virus]	AAB63802.1
hemagglutinin	hemagggutinin [Measles virus]	AAA56650.1
hemagggutinin	hemagggutinin [Measles virus]	AAA56642.1
hemagglutinin	hemagglutinin [Measles virus]	AAA74936.1
hemagglutinin	hemagggutinin protein [Measles virus]	BAH56665.1
hemagglutinin	hemagglutinin [Measles virus]	ACC86105.1
hemagglutinin	hemagglutinin [Measles virus strain Edmonston-Zagreb]	AAF85697.1
hemagglutinin	hemagglutinin [Measles virus]	AAR89413.1
hemagglutinin	hemagglutinin [Measles virus]	AAA56653.1
hemagglutinin	RecName: Full = Hemagglutinin glycoprotein	P35971.1.1
hemagglutinin	Hemagglutinin [Measles virus]	CAB94916.1
hemagglutinin	hemagglutinin [Measles virus]	AAC03036.1
hemagglutinin	hemagglutinin [Measles virus]	AAF85681.1
hemagglutinin	Hemagglutinin [Measles virus]	CAB94927.1
hemagglutinin	Hemagglutinin [Measles virus]	CAB94925.1
hemagglutinin	hemagglutinin protein [Measles virus]	BAB39835.1

TABLE 15-continued

MeV NCBI Accession Numbers (Amino Acid Sequences)		
Type	Virus Name	GenBank Accession
hemagglutinin	Hemagglutinin [Measles virus]	CAB94931.1
hemagglutinin	hemagglutinin [Measles virus genotype A]	AFO84712.1
hemagglutinin	hemagglutinin [Measles virus]	AAA56639.1
hemagglutinin	Hemagglutinin [Measles virus]	CAB94926.1
hemagglutinin	hemagglutinin protein [Measles virus]	BAB39836.1
hemagglutinin	Hemagglutinin [Measles virus]	CAB94929.1
hemagglutinin	RecName: Full = Hemagglutinin glycoprotein	P06830.1
hemagglutinin	Hemagglutinin [Measles virus]	CAB94928.1
hemagglutinin	hemagglutinin protein [Measles virus]	BAB39837.1
hemagglutinin	hemagglutinin [Measles virus]	AAA74935.1
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43780.1
hemagglutinin	hemagglutinin [Measles virus]	BAA09952.1
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43815.1
hemagglutinin	hemagglutinin [Measles virus]	AAF28390.1
hemagglutinin	Hemagglutinin [Measles virus]	CAB94923.1
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43785.1
hemagglutinin	hemagglutinin [Measles virus]	ABD34001.1
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43782.1
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43781.1
hemagglutinin	hemagglutinin [Measles virus]	BAH22353.1
hemagglutinin	hemagglutinin [Measles virus]	AAC35878.2
hemagglutinin	hemagglutinin protein [Measles virus]	AAL86996.1
hemagglutinin	hemagglutinin [Measles virus]	CAA76066.2
hemagglutinin	hemagglutinin [Measles virus]	AAA46428.1
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43803.1
hemagglutinin	Hemagglutinin [Measles virus]	CAB94918.1
hemagglutinin	hemagglutinin [Measles virus]	AAF72162.1
hemagglutinin	hemagglutinin [Measles virus]	AAM70154.1
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43776.1
hemagglutinin	hemagglutinin [Measles virus genotype D4]	ACT78395.1
hemagglutinin	hemagglutinin [Measles virus genotype D7]	AAL02030.1
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43789.1
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43774.1
hemagglutinin	Hemagglutinin [Measles virus]	CAB94920.1
hemagglutinin	Hemagglutinin [Measles virus]	CAB94922.1
hemagglutinin	hemagglutinin [Measles virus]	ABB59491.1
hemagglutinin	hemagglutinin protein [Measles virus]	BAB39843.1
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43804.1
hemagglutinin	hemagglutinin [Measles virus]	AAX52048.1
hemagglutinin	Hemagglutinin [Measles virus]	CAB94930.1
hemagglutinin	hemagglutinin [Measles virus]	AAA74526.1
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43814.1
hemagglutinin	hemagglutinin [Measles virus]	ABB59493.1
hemagglutinin	hemagglutinin [Measles virus genotype D4]	AAL02019.1
hemagglutinin	Hemagglutinin [Measles virus]	CAB94919.1
hemagglutinin	hemagglutinin protein [Measles virus]	AAL86997.1
hemagglutinin	hemagglutinin [Measles virus genotype C2]	AAL02017.1
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43769.1
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43808.1
hemagglutinin	hemagglutinin [Measles virus]	BAO97032.1
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43805.1
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43777.1
hemagglutinin	hemagglutinin [Measles virus]	AAL67793.1
hemagglutinin	hemagglutinin [Measles virus]	AAF89816.1
hemagglutinin	hemagglutinin [Measles virus genotype D4]	AAL02020.1
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43786.1
hemagglutinin	hemagglutinin protein [Measles virus strain MVi/New Jersey.USA/45.05]	AEP40452.1
hemagglutinin	hemagglutinin [Measles virus]	AAA74531.1
hemagglutinin	hemagglutinin [Measles virus]	AAB63800.1
hemagglutinin	hemagglutinin [Measles virus]	AAO21711.1
hemagglutinin	hemagglutinin [Measles virus genotype D8]	ALE27189.1
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43810.1
hemagglutinin	hemagglutinin [Measles virus]	AAF89817.1
hemagglutinin	hemagglutinin [Measles virus genotype D6]	AAL02022.1
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43800.1
hemagglutinin	hemagglutinin protein [Measles virus genotype B3]	AGA17219.1
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43770.1
hemagglutinin	hemagglutinin protein [Measles virus strain MVI/Texas.USA/4.07]	AEP40444.1
hemagglutinin	hemagglutinin [Measles virus]	AAX52047.1
hemagglutinin	hemagglutinin [Measles virus]	AAB63794.1
hemagglutinin	hemagglutinin [Measles virus]	AAB63796.1
hemagglutinin	hemagglutinin [Measles virus]	AAA74528.1
hemagglutinin	hemagglutinin [Measles virus]	AAB63774.1
hemagglutinin	hemagglutinin [Measles virus]	AAB63795.1

TABLE 15-continued

MeV NCBI Accession Numbers (Amino Acid Sequences)		
Type	Virus Name	GenBank Accession
hemagglutinin	hemagglutinin [Measles virus]	AAA74519.1
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43778.1
fusion protein	fusion protein [Measles virus strain Moraten]	AAF85672.1
fasion protein	fusion protein [Measles virus]	AAA56645.1
fusion protein	fusion protein [Measles virus strain Rubeovax]	AAF85688.1
fusion protein	fusion protein [Measles virus]	AAF85680.1
fusion protein	fusion protein [Measles virus]	AEF30359.1
fusion protein	fusion protein [Measles virus]	BAA09957.1
fusion protein	fusion protein [Measles virus]	AAV84957.1
fusion protein	fusion protein [Measles virus MeV-eGFP_Edm-tag]	AII16636.1
fusion protein	fusion protein [Measles virus]	ABY58018.1
fusion protein	fusion protein [Measles virus]	BAA19838.1
fusion protein	fusion protein [Measles virus]	AAA56641.1
fusion protein	F protein [Measles virus]	ABK40529.1
fusion protein	fusion protein [Measles virus]	AAA56652.1
fusion protein	fusion protein [Measles virus]	ABY58017.1
fusion protein	fusion protein [Measles virus]	ABB71645.1
fusion protein	fusion protein [Measles virus]	NP_056922.1
fusion protein	fusion protein [Measles virus strain AIK-C]	AAF85664.1
fusion protein	fusion protein [Measles virus]	BAB60865.1
fusion protein	fusion protein [Measles virus]	BAA09950.1
fusion protein	fusion protein [Measles virus strain MVi/New York.USA/26.09/3]	AEP40403.1
fusion protein	fusion protein [Measles virus]	AAA74934.1
fusion protein	fusion protein [Measles virus]	CAB38075.1
fusion protein	fusion protein [Measles virus strain MVI/Texas.USA/4.07]	AEP40443.1
fusion protein	fusion protein [Measles virus]	AAF02695.1
fusion protein	fusion protein [Measles virus]	AAF02696.1
fusion protein	fusion protein [Measles virus]	AAT99301.1
fusion protein	fusion protein [Measles virus]	ABB71661.1
fusion protein	fusion protein [Measles virus]	BAK08874.1
fusion protein	fusion protein [Measles virus]	AAF02697.1
fusion protein	fusion protein [Measles virus genotype D4]	AFY12704.1
fusion protein	fusion protein [Measles virus strain MVI/California.USA/16.03]	AEP40467.1
fusion protein	fusion protein [Measles virus genotype D8]	AHN07989.1
fusion protein	fusion protein [Measles virus]	AAA46421.1
fusion protein	fusion protein [Measles virus]	AAA56638.1
fusion protein	fusion protein [Measles virus strain MVi/Virginia.USA/15.09]	AEP40419.1
fusion protein	fusion protein [Measles virus genotype D8]	ALE27200.1
fusion protein	fusion protein [Measles virus genotype D8]	AFY12695.1
fusion protein	fusion protein [Measles virus genotype D8]	ALE27248.1
fusion protein	fusion protein [Measles virus genotype D8]	ALE27224.1
fusion protein	fusion protein [Measles virus]	AAT99300.1
fusion protein	fusion protein [Measles virus]	BAH96592.1
fusion protein	fusion protein [Measles virus strain MVi/California.USA/8.04]	AEP40459.1
fusion protein	fusion protein [Measles virus genotype D8]	AIG94081.1
fusion protein	fusion protein [Measles virus]	BAA09951.1
fusion protein	fusion protein [Measles virus genotype D8]	ALE27194.1
fusion protein	fusion protein [Measles virus]	BAA33871.1
fusion protein	fusion protein [Measles virus strain MVi/Washington.USA/18.08/1]	AEP40427.1
fusion protein	fusion protein [Measles virus]	ABY21182.1
fusion protein	fusion protein [Measles virus genotype D8]	ALE27284.1
fusion protein	fusion protein [Measles virus]	ACA09725.1
fusion protein	fusion protein [Measles virus genotype D8]	ALE27314.1
fusion protein	fusion protein [Measles virus genotype G3]	AFY12712.1
fusion protein	fusion protein [Measles virus genotype D8]	ALE27368.1
fusion protein	RecName: Full = Fusion glycoprotein F0; Contains: RecName: Full = Fusion glycoprotein F2; Contains:	P35973.1
fusion protein	RecName: Full = Fusion glycoprotein F1; Flags: Precursor fusion protein [Measles virus genotype H1] unnamed protein product [Measles virus]	$\begin{aligned} & \text { AIG53713.1 } \\ & \text { CAA34588.1 } \end{aligned}$
fusion protein	fusion protein [Measles virus]	CAA76888.1
fusion protein	fusion protein [Measles virus genotype B3.1]	AIY55563.1
fusion protein	fusion protein [Measles virus]	ADO17330.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53703.1
fusion protein	fusion protein [Measles virus genotype B3]	AGA17208.1
fusion protein	fusion protein [Measles virus]	AAL29688.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53706.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53701.1
fusion protein	fusion protein [Measles virus genotype B3]	ALE27092.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53714.1

TABLE 15-continued

MeV NCBI Accession Numbers (Amino Acid Sequences)		
Type	Virus Name	GenBank Accession
fusion protein	fusion protein [Measles virus genotype H1]	AIG53694.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53668.1
fusion protein	fusion protein [Measles virus]	ACC86094.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53670.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53707.1
fusion protein	fusion protein [Measles virus genotype B3]	AGA17216.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53671.1
fusion protein	fusion protein [Measles virus strain	AEP40451.1
	MVi/New Jersey.USA/45.05]	
fusion protein	fusion protein [Measles virus genotype H1]	AIG53684.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53688.1
fusion protein	fusion protein [Measles virus genotype B3]	AGA17214.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53683.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53667.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53686.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53685.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53681.1
	unnamed protein product [Measles virus]	CAA34589.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53678.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53710.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53669.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53664.1
fusion protein	fusion protein [Measles virus]	AAA50547.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53679.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53709.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53672.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53697.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53689.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53676.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53675.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53663.1
fusion protein	fusion protein [Measles virus]	BAA19841.1
fusion protein	fusion protein [Measles virus]	AAF02701.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53680.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53674.1
C protein	C protein [Measles virus strain Moraten]	AAF85670.1
C protein	RecName: Full $=$ Protein C	P03424.1
C protein	C protein [Measles virus]	ACN54404.1
C protein	C protein [Measles virus]	ACN54412.1
C protein	RecName: Full = Protein C	P35977.1
C protein	C protein [Measles virus]	AAF85678.1
C protein	C protein [Measles virus]	ABD33998.1
C protein	unnamed protein product [Measles virus]	CAA34586.1
C protein	C protein [Measles virus]	BAJ51786.1
C protein	C protein [Measles virus]	BAA33869.1
C protein	virulence factor [Measles virus]	ABO69700.1
C protein	C protein [Measles virus]	NP_056920.1
C protein	C protein [Measles virus]	ADO17333.1
C protein	C protein [Measles virus]	ACC86082.1
C protein	C protein [Measles virus]	BAA33875.1
C protein	C protein [Measles virus]	ABY21189.1
C protein	C protein [Measles virus]	BAE98296.1
C protein	C protein [Measles virus]	ADU17782.1
C protein	C protein [Measles virus strain	AEP40417.1
	MVi/Virginia.USA/15.09]	
C protein	C protein [Measles virus]	ADU17814.1
C protein	C protein [Measles virus]	ADU17798.1
C protein	C protein [Measles virus genotype D4]	AFY12700.1
C protein	C protein [Measles virus]	ADU17784.1
C protein	C protein [Measles virus strain	AEP40465.1
	MVi/California.USA/16.03]	
C protein	C protein [Measles virus]	ABB71643.1
C protein	C protein [Measles virus]	AEI91027.1
C protein	C protein [Measles virus]	ADU17874.1
C protein	C protein [Measles virus]	ADU17903.1
C protein	C protein [Measles virus]	CAA34579.1
C protein	C protein [Measles virus]	ADU17790.1
C protein	C protein [Measles virus]	ADU17800.1
C protein	C protein [Measles virus]	ABB71667.1
C protein	unnamed protein product [Measles virus]	CAA34572.1
C protein	C protein [Measles virus strain MVI/Arizona.USA/11.08/2]	AEP40433.1
C protein	C protein [Measles virus]	ADU17830.1
C protein	C protein [Measles virus]	ADU17947.1
C protein	C protein [Measles virus]	ADU17818.1
C protein	C protein [Measles virus strain	AEP40449.1

TABLE 15-continued

MeV NCBI Accession Numbers (Amino Acid Sequences)		
Type	Virus Name	GenBank Accession
C protein	MVi/New Jersey.USA/45.05]	
	C protein [Measles virus strain	AEP40441.1
	MVi/Texas.USA/4.07]	
C protein	C protein [Measles virus]	ADU17864.1
C protein	C protein [Measles virus]	ADU17838.1
C protein	C protein [Measles virus]	ADU17881.1
C protein	C protein [Measles virus strain	AEP40425.1
	MVi/Washington.USA/18.08/1]	
C protein	C protein [Measles virus]	ADU17927.1
C protein	C protein [Measles virus]	ADU17953.1
C protein	C protein [Measles virus]	ADU17889.1
C protein	C protein [Measles virus]	ADU17963.1
C protein	C protein [Measles virus]	ADU17893.1
C protein	C protein [Measles virus]	ADU17820.1
C protein	C protein [Measles virus]	ABB71651.1
C protein	C protein [Measles virus]	ADU17786.1
C protein	C protein [Measles virus]	ADU17862.1
C protein	C protein [Measles virus]	ADU17923.1
C protein	C protein [Measles virus]	ADU17959.1
C protein	C protein [Measles virus]	ADU17951.1
C protein	C protein [Measles virus]	ADU17916.1
C protein	C protein [Measles virus]	ADU17957.1
C protein	C protein [Measles virus]	ADU17925.1
C protein	C protein [Measles virus]	ADU17901.1
C protein	C protein [Measles virus]	ADU17887.1
C protein	C protein [Measles virus]	ADU17832.1
C protein	C protein [Measles virus]	ADU17891.1
C protein	C protein [Measles virus]	ADU17961.1
C protein	C protein [Measles virus]	ADU17872.1
C protein	C protein [Measles virus]	ADU17929.1
C protein	C protein [Measles virus]	ADU17908.1
C protein	C protein [Measles virus]	ADU17910.1
C protein	C protein [Measles virus]	ADU17921.1
C protein	C protein [Measles virus]	ADU17824.1
C protein	C protein [Measles virus strain MVI/Pennsylvania.USA/20.09]	AEP40473.1
C protein	C protein [Measles virus]	ADU17828.1
C protein	C protein [Measles virus]	ADU17812.1
C protein	C protein [Measles virus genotype D8]	AFY12692.1
C protein	nonstructural C protein [Measles virus]	ABA59559.1
C protein	RecName: Full $=$ Protein C	Q00794.1
C protein	nonstructural C protein [Measles virus]	ADO17934.1
C protein	nonstructural C protein [Measles virus]	ACJ66773.1
C protein	C protein [Measles virus genotype G3]	AFY12708.1
C protein	RecName: Full $=$ Protein C	P26035.1
C protein nucleoprotein	C protein [Measles virus]	BAA84128.1
	RecName: Full = Nucleoprotein; AltName: Full $=$ Nucleocapsid protein;	Q77M43.1
	Full = Nucleocapsid protein; Short = NP; Short $=$ Protein N	
nucleoprotein	nucleocapsid protein [Measles virus strain Rubeovax]	AAF85683.1
nucleoprotein	RecName: Full = Nucleoprotein; AltName:	Q89933.1
	Full $=$ Nucleocapsid protein; Short = NP; Short $=$ Protein N	
nucleoprotein	nucleocapsid protein [Measles virus strain AIK-C]	AAF85659.1
nucleoprotein	nucleoprotein [Measles virus]	ABI54102.1
nucleoprotein	nucleoprotein [Measles virus]	AAA56643.1
nucleoprotein	nucleoprotein [Measles virus]	AAC03050.1
nucleoprotein	nucleoprotein [Measles virus]	AAA18990.1
nucleoprotein	nucleoprotein [Measles virus]	AAA56640.1
nucleoprotein	RecName: Full = Nucleoprotein; AltName: Full $=$ Nucleocapsid protein; Short $=$ NP; Short $=$ Protein N	P35972.1
nucleoprotein	RecName: Full=Nucleoprotein; AltName: Full = Nucleocapsid protein; Short $=$ NP; Short $=$ Protein N	P10050.1
nucleoprotein	N protein [Measles virus]	BAB60956.1
nucleoprotein	RecName: Full = Nucleoprotein; AltName: Full $=$ Nucleocapsid protein; Short $=$ NP; Short $=$ Protein N	B1AAA7.1
nucleoprotein	nucleoprotein [Measles virus]	AAA18991.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46894.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46871.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46872.1
nucleoprotein	nucleoprotein [Measles virus]	ABU49606.1
nucleoprotein	nucleocapsid protein [Measles virus]	AAA75494.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46883.1

TABLE 15-continued

MeV NCBI Accession Numbers (Amino Acid Sequences)		
Type	Virus Name	GenBank Accession
nucleoprotein	nucleoprotein [Measles virus]	CAB46892.1
nucleoprotein	unnamed protein product [Measles virus]	CAA34584.1
nucleoprotein	nucleoprotein [Measles virus]	AAA18997.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46863.1
nucleoprotein	nucleoprotein [Measles virus]	AEF30352.1
nucleoprotein	nucleoprotein [Measles virus]	ABI54103.1
nucleoprotein	nucleocapsid protein [Measles virus]	AAA46433.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46902.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46873.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46906.1
nucleoprotein	nucleoprotein [Measles virus]	AAA74547.1
nucleoprotein	nucleoprotein [Measles virus]	AAA74537.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46862.1
nucleoprotein	nucleocapsid protein [Measles virus]	BAA09961.1
nucleoprotein	nucleoprotein [Measles virus]	AAO15875.1
nucleoprotein	nucleoprotein [Measles virus]	AAO15871.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46882.1
nucleoprotein	nucleoprotein [Measles virus]	CAB60124.1
nucleoprotein	nucleoprotein [Measles virus]	ABI54104.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46869.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46880.1
nucleoprotein	nucleoprotein [Measles virus]	AAA74541.1
nucleoprotein	nucleocapsid protein [Measles virus strain MVi/New Jersey.USA/45.05]	AEP40446.1
nucleoprotein	nucleoprotein [Measles virus]	ABI54110.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46903.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46899.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46901.1
nucleoprotein	nucleocapsid protein [Measles virus]	ABB71640.1
nucleoprotein	nucleoprotein [Measles virus]	CAB60113.1
nucleoprotein	nucleoprotein [Measles virus]	CAB60114.1
nucleoprotein	nucleoprotein [Measles virus]	CAB60116.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46895.1
nucleoprotein	nucleoprotein [Measles virus]	CAB60121.1
nucleoprotein	nucleoprotein [Measles virus]	ABI54111.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46889.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46898.1
nucleoprotein	nucleoprotein [Measles virus genotype B3]	ALE27083.1
nucleoprotein	nucleoprotein [Measles virus]	CAB60118.1
nucleoprotein	nucleocapsid protein [Measles virus]	CAA34570.1
nucleoprotein	nucleoprotein [Measles virus]	AAC29443.1
nucleoprotein	nucleocapsid protein [Measles virus strain MVi/Washington.USA/18.08/1]	AEP40422.1
nucleoprotein	nucleoprotein [Measles virus]	AAO15872.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46874.1
nucleoprotein	nucleoprotein [Measles virus]	AAA74550.1
nucleoprotein	nucleocapsid protein [Measles virus]	ABB71648.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46900.1
nucleoprotein	nucleoprotein [Measles virus]	BAH22440.1
nucleoprotein	nucleocapsid protein [Measles virus]	AAA46432.1
nucleoprotein	nucleocapsid protein [Measles virus]	BAA33867.1
nucleoprotein	nucleoprotein [Measles virus]	AAA74539.1
nucleoprotein	nucleoprotein [Measles virus]	CAB60115.1
nucleoprotein	nucleoprotein [Measles virus]	CAB60123.1
nucleoprotein	nucleocapsid protein [Measles virus]	ABB71664.1
nucleoprotein	nucleoprotein [Measles virus]	CAB60125.1
nucleoprotein	nucleoprotein [Measles virus]	AAA74546.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46886.1
nucleoprotein	nucleoprotein [Measles virus]	BAH22350.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46867.1
nucleoprotein	nucleocapsid protein [Measles virus]	BAA09954.1
nucleoprotein	nucleoprotein [Measles virus]	AAO15873.1
nucleoprotein	nucleocapsid protein [Measles virus]	AEP95735.1
nucleoprotein	nucleoprotein [Measles virus]	AAL37726.1
nucleoprotein	nucleoprotein [Measles virus]	AAA74549.1
nucleoprotein	RecName: Full = Nucleoprotein; AltName: Full = Nucleocapsid protein; Short $=$ NP; Short $=$ Protein N	P26030.1
nucleoprotein	nucleoprotein [Measles virus ETH55/99]	AAK07777.1
nucleoprotein	nucleoprotein [Measles virus genotype B3]	AGA17238.1
nucleoprotein	nucleoprotein [Measles virus]	AEF30351.1
nucleoprotein	nucleoprotein [Measles virus genotype B3]	AGA17242.1
nucleoprotein	nucleoprotein [Measles virus ETH54/98]	AAK07776.1
nucleoprotein	nucleoprotein [Measles virus]	AAA74548.1
nucleoprotein	nucleoprotein [Measles virus]	AAA19221.1
nucleoprotein	nucleoprotein [Measles virus]	AAC03039.1

TABLE 15-continued

MeV NCBI Accession Numbers (Amino Acid Sequences)		
Type	Virus Name	GenBank Accession
nucleoprotein	nucleoprotein [Measles virus]	AAA19223.1
nucleoprotein	nucleoprotein [Measles virus genotype B3]	AGA17241.1
nucleoprotein	nucleoprotein [Measles virus]	CAB60122.1
nucleoprotein	nucleoprotein [Measles virus]	CAC34599.1
nucleoprotein	nucleoprotein [Measles virus]	AAC03042.1
nucleoprotein	nucleoprotein [Measles virus]	CAC34604.1
nucleoprotein	nucleoprotein [Measles virus]	AAA74544.1
nucleoprotein	nucleocapsid protein [Measles virus]	NP_056918.1
V Protein	RecName: Full $=$ Non-structural protein V	Q9IC37.1
V Protein	RecName: Full $=$ Non-structural protein V	Q9EMA9.1
V Protein	\checkmark protein [Measles virus]	ACN54411.1
V Protein	V protein [Measles virus]	ACN54403.1
\checkmark Protein	\checkmark protein [Measles virus]	AEP95742.1
V Protein	V protein [Measles virus strain MVi/Virginia.USA/15.09]	AEP40416.1
V Protein	V protein [Measles virus]	ADU17801.1
V Protein	V protein [Measles virus]	ADU17849.1
V Protein	V protein [Measles virus]	ABB71642.1
V Protein	V protein [Measles virus genotype D8]	AFY12693.1
V Protein	V protein [Measles virus]	YP_003873249.2
V Protein	V protein [Measles virus strain MVi/Arizona.USA/11.08/2]	AEP40432.1
V Protein	RecName: Full = Non-structural protein V	P26036.1
V Protein	V protein [Measles virus strain $\mathrm{MVI} /$ /California.USA/16.03]	AEP40464.1
V Protein	V protein [Measles virus strain $\mathrm{MVI} /$ California.USA/8.04]	AEP40456.1
\checkmark Protein	\checkmark protein [Measles virus]	ABY21188.1
V Protein	V protein [Measles virus strain MVi/Washington.USA/18.08/1]	AEP40424.1
V Protein	V protein [Measles virus]	BAH96581.1
V Protein	V protein [Measles virus]	ABB71666.1
V Protein	RecName: Full = Non-structural protein V	P60168.1
\checkmark Protein	\checkmark protein [Measles virus]	BAH96589.1
V Protein	V protein [Measles virus]	ADU17954.1
V Protein	V protein [Measles virus strain MVi/New York.USA/26.09/3]	AEP40400.1
V Protein	V protein [Measles virus]	ABY21196.1
V Protein	virulence factor [Measles virus]	ABO69701.1
V Protein	V protein [Measles virus]	ABB71650.1
V Protein	\checkmark protein [Measles virus]	ACC86086.1
V Protein	V protein [Measles virus genotype D4]	AFY12702.1
V Protein	V protein [Measles virus strain MVi/New Jersey.USA/45.05]	AEP40448.1
V Protein	V protein [Measles virus]	BAE98295.1
\checkmark Protein	V protein [Measles virus]	ACC86083.1
V Protein	V protein [Measles virus]	ACU5139.1
V Protein	V protein [Measles virus]	ADO17334.1
V Protein	V protein [Measles virus]	ADU17930.1
V Protein	V protein [Measles virus genotype G3]	AFY12710.1
V Protein	V protein [Measles virus strain MVi/Pennsylvania.USA/20.09]	AEP40472.1
V Protein	phosphoprotein [Measles virus]	ADU17839.1
V Protein	\checkmark protein [Measles virus]	ADU17894.1
V Protein	V protein [Measles virus]	ACN50010.1
V Protein	V protein [Measles virus] unnamed protein product [Measles virus]	$\begin{aligned} & \text { ADU17892.1 } \\ & \text { CAA34585.1 } \end{aligned}$
V Protein	V protein [Measles virus]	ABD33997.1

TABLE 16

Name	Sequence	$\begin{gathered} \text { SEQ ID } \\ \text { NO: } \end{gathered}$
Flagellin Nucleic Acid Sequences		
NT (5'	TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTAT	51
UTR, ORF,	AGGGAAATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAG	
3^{1} UTR)	AGCCACCATGGCACAAGTCATTAATACAAACAGCCTGTCGCTG	
	TTGACCCAGAATAACCTGAACAAATCCCAGTCCGCACTGGGCA	
	CTGCTATCGAGCGTTTGTCTTCCGGTCTGCGTATCAACAGCGCG	
	AAAGACGATGCGGCAGGACAGGCGATTGCTAACCGTTTTACCG	
	CGAACATCAAAGGTCTGACTCAGGCTTCCCGTAACGCTAACGA	

TABLE 16-continued

Name	Sequence	$\begin{gathered} \text { SEQ ID } \\ \text { NO: } \end{gathered}$
	CGGTATCTCCATTGCGCAGACCACTGAAGGCGCGCTGAACGAA	
	ATCAACAACAACCTGCAGCGTGTGCGTGAACTGGCGGTTCAGT	
	CTGCGAATGGTACTAACTCCCAGTCTGACCTCGACTCCATCCAG	
	GCTGAAATCACCCAGCGCCTGAACGAAATCGACCGTGTATCCG	
	GCCAGACTCAGTTCAACGGCGTGAAAGTCCTGGCGCAGGACAA	
	CACCCTGACCATCCAGGTTGGTGCCAACGACGGTGAAACTATC	
	GATATTGATTTAAAAGAAATCAGCTCTAAAACACTGGGACTTG	
	ATAAGCTTAATGTCCAAGATGCCTACACCCCGAAAGAAACTGC	
	TGTAACCGTTGATAAAACTACCTATAAAAATGGTACAGATCCT	
	ATTACAGCCCAGAGCAATACTGATATCCAAACTGCAATTGGCG	
	GTGGTGCAACGGGGGTtACTGGGGCTGATATCAAATTTAAAGA	
	TGGTCAATACTATTTAGATGTTAAAGGCGGTGCTTCTGCTGGTG	
	TTTATAAAGCCACTTATGATGAAACTACAAAGAAAGTTAATAT	
	TGATACGACTGATAAAACTCCGTTGGCAACTGCGGAAGCTACA	
	GCTATTCGGGGAACGGCCACTATAACCCACAACCAAATTGCTG	
	AAGTAACAAAAGAGGGTGTTGATACGACCACAGTTGCGGCTCA	
	ACTTGCTGCAGCAGGGGTTACTGGCGCCGATAAGGACAATACT	
	AGCCTTGTAAAACTATCGTTTGAGGATAAAAACGGTAAGGTTA	
	TTGATGGTGGCTATGCAGTGAAAATGGGCGACGATTTCTATGC	
	CGCTACATATGATGAGAAAACAGGTGCAATTACTGCTAAAACC	
	ACTACTTATACAGATGGTACTGGCGTTGCTCAAACTGGAGCTGT	
	GAAATTTGGTGGCGCAAATGGTAAATCTGAAGTTGTTACTGCT	
	ACCGATGGTAAGACTTACTTAGCAAGCGACCTTGACAAACATA	
	ACTTCAGAACAGGCGGTGAGCTTAAAGAGGTTAATACAGATAA	
	GACTGAAAACCCACTGCAGAAAATTGATGCTGCCTTGGCACAG	
	GTTGATACACTTCGTTCTGACCTGGGTGCGGTTCAGAACCGTTT	
	СААСТССGСТАТСАССАДАССТGGGCAATACCGTAAATAACCTG	
	TСTTCTGCCCGTAGCCGTATCGAAGATTCCGACTACGCAACCGA	
	AGTCTCCAACATGTCTCGCGCGCAGATTCTGCAGCAGGCCGGT	
	ACCTCCGTTCTGGCGCAGGCGAACCAGGTTCCGCAAAACGTCC	
	TСТСТTTACTGCGTTGATAATAGGCTGGAGCCTCGGTGGCCATG	
	СТTСTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTG	
	CACCCGTACCCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGC	
ORF	ATGGCACAAGTCATTAATACAAACAGCCTGTCGCTGTTGACCC	52
Sequence,	AGAATAACCTGAACAAATCCCAGTCCGCACTGGGCACTGCTAT	
NT	CGAGCGTTTGTCTTCCGGTCTGCGTATCAACAGCGCGAAAGAC	
	GATGCGGCAGGACAGGCGATTGCTAACCGTTTTACCGCGAACA	
	TCAAAGGTCTGACTCAGGCTTCCCGTAACGCTAACGACGGTAT	
	CTCCATTGCGCAGACCACTGAAGGCGCGCTGAACGAAATCAAC	
	AACAACCTGCAGCGTGTGCGTGAACTGGCGGTTCAGTCTGCGA	
	ATGGTACTAACTCCCAGTCTGACCTCGACTCCATCCAGGCTGAA	
	ATCACCCAGCGCCTGAACGAAATCGACCGTGTATCCGGCCAGA	
	CTCAGTTCAACGGCGTGAAAGTCCTGGCGCAGGACAACACCCT	
	GACCATCCAGGTTGGTGCCAACGACGGTGAAACTATCGATATT	
	GATTTAAAAGAAATCAGCTCTAAAACACTGGGACTTGATAAGC	
	TTAATGTCCAAGATGCCTACACCCCGAAAGAAACTGCTGTAAC	
	CGTTGATAAAACTACCTATAAAAATGGTACAGATCCTATTACA	
	GCCCAGAGCAATACTGATATCCAAACTGCAATTGGCGGTGGTG	
	CAACGGGGGTTACTGGGGCTGATATCAAATTTAAAGATGGTCA	
	ATACTATTTAGATGTTAAAGGCGGTGCTTCTGCTGGTGTTTATA	
	AAGCCACTTATGATGAAACTACAAAGAAAGTTAATATTGATAC	
	GACTGATAAAACTCCGTTGGCAACTGCGGAAGCTACAGCTATT	
	CGGGGAACGGCCACTATAACCCACAACCAAATTGCTGAAGTAA	
	CAAAAGAGGGTGTTGATACGACCACAGTTGCGGCTCAACTTGC	
	TGCAGCAGGGGTTACTGGCGCCGATAAGGACAATACTAGCCTT	
	GTAAAACTATCGTTTGAGGATAAAAACGGTAAGGTTATTGATG	
	GTGGCTATGCAGTGAAAATGGGCGACGATTTCTATGCCGCTAC	
	ATATGATGAGAAAACAGGTGCAATTACTGCTAAAACCACTACT	
	TATACAGATGGTACTGGCGTTGCTCAAACTGGAGCTGTGAAAT	
	TTGGTGGCGCAAATGGTAAATCTGAAGTTGTTACTGCTACCGAT	
	GGTAAGACTTACTTAGCAAGCGACCTTGACAAACATAACTTCA	
	GAACAGGCGGTGAGCTTAAAGAGGTTAATACAGATAAGACTG	
	AAAACCCACTGCAGAAAATTGATGCTGCCTTGGCACAGGTTGA	
	TACACTTCGTTCTGACCTGGGTGCGGTTCAGAACCGTTTCAACT	
	CCGCTATCACCAACCTGGGCAATACCGTAAATAACCTGTCTTCT	
	GCCCGTAGCCGTATCGAAGATTCCGACTACGCAACCGAAGTCT	
	CCAACATGTCTCGCGCGCAGATTCTGCAGCAGGCCGGTACCTC	
	CGTTCTGGCGCAGGCGAACCAGGTTCCGCAAAACGTCCTCTCTT	
	TACTGCGT	
mRNA	G*GGGAAAUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAA	53
Sequence	GAGCCACCAUGGCACAAGUCAUUAAUACAAACAGCCUGUCGC	
(assumes	UGUUGACCCAGAAUAACCUGAACAAAUCCCAGUCCGCACUGG	
T100 tail)	GCACUGCUAUCGAGCGUUUGUCUUCCGGUCUGCGUAUCAACA	
	GCGCGAAAGACGAUGCGGCAGGACAGGCGAUUGCUAACCGUU	
	UUACCGCGAACAUCAAAGGUCUGACUCAGGCUUCCCGUAACG	

TABLE 16-continued

Name	Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
	CUAACGACGGUAUCUCCAUUGCGCAGACCACUGAAGGCGCGC	
	UGAACGAAAUCAACAACAACCUGCAGCGUGUGCGUGAACUGG	
	CGGUUCAGUCUGCGAAUGGUACUAACUCCCAGUCUGACCUCG	
	ACUCCAUCCAGGCUGAAAUCACCCAGCGCCUGAACGAAAUCG	
	ACCGUGUAUCCGGCCAGACUCAGUUCAACGGCGUGAAAGUCC	
	UGGCGCAGGACAACACCCUGACCAUCCAGGUUGGUGCCAACG	
	ACGGUGAAACUAUCGAUAUUGAUUUA.AAAGAAAUCAGCUCU	
	AAAACACUGGGACUUGAUAAGCUUAAUGUCCAAGAUGCCUAC	
	ACCCCGAAAGAAACUGCUGUAACCGUUGAUAAAACUACCUAU	
	AAAAAUGGUACAGAUCCUAUUACAGCCCAGAGCAAUACUGAU	
	AUCCAAACUGCAAUUGGCGGUGGUGCAACGGGGGUUACUGG	
	GGCUGAUAUCAAAUUUAAAGAUGGUCAAUACUAUUUAGAUG	
	UUAAAGGCGGUGCUUCUGCUGGUGUUUAUAAAGCCACUUAU	
	GAUGAAACUACAAAGAAAGUUAAUAUUGAUACGACUGAUAA	
	AACUCCGUUGGCAACUGCGGAAGCUACAGCUAUUCGGGGAAC	
	GGCCACUAUAACCCACAACCAAAUUGCUGAAGUAACAAAAGA	
	GGGUGUUGAUACGACCACAGUUGCGGCUCAACUUGCUGCAGC	
	AGGGGUUACUGGCGCCGAUAAGGACAAUACUAGCCUUGUAA	
	AACUAUCGUUUGAGGAUAAAAACGGUAAGGUUAUUGAUGGU	
	GGCUAUGCAGUGAAAAUGGGCGACGAUUUCUAUGCCGCUACA	
	UAUGAUGAGAAAACAGGUGCAAUUACUGCUAAAACCACUAC	
	UUAUACAGAUGGUACUGGCGUUGCUCAAACUGGAGCUGUGA	
	AAUUUGGUGGCGCAAAUGGUAAAUCUGAAGUUGUUACUGCU	
	ACCGAUGGUAAGACUUACUUAGCAAGCGACCUUGACAAACAU	
	AACUUCAGAACAGGCGGUGAGCUUAAAGAGGUUAAUACAGA	
	UAAGACUGAAAACCCACUGCAGAAAAUUGAUGCUGCCUUGGC	
	ACAGGUUGAUACACUUCGUUCUGACCUGGGUGCGGUUCAGAA	
	CCGUUUCAACUCCGCUAUCACCAACCUGGGCAAUACCGUAAA	
	UAACCUGUCUUCUGCCCGUAGCCGUAUCGAAGAUUCCGACUA	
	CGCAACCGAAGUCUCCAACAUGUCUCGCGCGCAGAUUCUGCA	
	GCAGGCCGGUACCUCCGUUCUGGCGCAGGCGAACCAGGUUCC	
	GCAAAACGUCCUCUCUUUACUGCGUUGAUAAUAGGCUGGAGC	
	CUCGGUGGCCAUGCUUCUUGCCCCUUGGGCCUCCCCCCAGCC	
	CCUCCUCCCCUUCCUGCACCCGUACCCCCGUGGUCUUUGAAU	
	AAAGUCUGAGUGGGCGGCAAAAAAAAAAAAAAAA.A.A.A.AA	
	AAAAAAAAAAA A	
	Flagellin mRNA Sequences	
$\begin{aligned} & \text { NT (} 5^{\prime} \\ & \text { UTR, ORF, } \\ & 3^{\prime} \text { ' UTR) } \end{aligned}$	UCAAGCUUUUGGACCCUCGUACAGAAGCUAAUACGACUCACU	81
	AUAGGGAAAUAAGAGAGAAAAGAAGAGUAAGAGGAAAUAUA	
	AGAGCCACCAUGGCACAAGUCAUUAAUACAAACAGCCUGUCG	
	CUGUUGACCCAGAAUAACCUGAACAAAUCCCAGUCCGCACUG	
	GGCACUGCUAUCGAGCGUUUGUCUUCCGGUCUGCGUAUCAAC	
	AGCGCGAAAGACGAUGCGGCAGGACAGGCGAUUGCUAACCGU	
	UUUACCGCGAACAUCAAAGGUCUGACUCAGGCUUCCCGUAAC	
	GCUAACGACGGUAUCUCCAUUGCGCAGACCACUGAAGGCGCG	
	CUGAACGAAAUCAACAACAACCUGCAGCGUGUGCGUGAACUG	
	GCGGUUCAGUCUGCGAAUGGUACUAACUCCCAGUCUGACCUC	
	GACUCCAUCCAGGCUGAAAUCACCCAGCGCCUGAACGAAAUC	
	GACCGUGUAUCCGGCCAGACUCAGUUCAACGGCGUGAAAGUC	
	CUGGCGCAGGACAACACCCUGACCAUCCAGGUUGGUGCCAAC	
	GACGGUGAAACUAUCGAUAUUGAUUUAAAAGAAAUCAGCUC	
	UAAAACACUGGGACUUGAUAAGCUUAAUGUCCAAGAUGCCU	
	ACACCCCGAAAGAAACUGCUGUAACCGUUGAUAAAACUACCU	
	AUAAAAAUGGUACAGAUCCUAUUACAGCCCAGAGCAAUACUG	
	AUAUCCAAACUGCAAUUGGCGGUGGUGCAACGGGGGUUACU	
	GGGGCUGAUAUCAAAUUUAAAGAUGGUCAAUACUAUUUAGA	
	UGUUAAAGGCGGUGCUUCUGCUGGUGUUUAUAAAGCCACUU	
	AUGAUGAAACUACAAAGAAAGUUAAUAUUGAUACGACUGAU	
	AAAACUCCGUUGGCAACUGCGGAAGCUACAGCUAUUCGGGGA	
	ACGGCCACUAUAACCCACAACCAAAUUGCUGAAGUAACAAAA	
	GAGGGUGUUGAUACGACCACAGUUGCGGCUCAACUUGCUGCA	
	GCAGGGGUUACUGGCGCCGAUAAGGACAAUACUAGCCUUGUA	
	AAACUAUCGUUUGAGGAUAAAAACGGUAAGGUUAUUGAUGG	
	UGGCUAUGCAGUGAAAAUGGGCGACGAUUUCUAUGCCGCUAC	
	AUAUGAUGAGAAAACAGGUGCAAUUACUGCUAAAACCACUA	
	CUUAUACAGAUGGUACUGGCGUUGCUCAAAACUGGAGCUGUG	
	AAAUUUGGUGGCGCA.AAUGGUAAAUCUGAAGUUGUUACUGC	
	UACCGAUGGUAAGACUUACUUAGCAAGCGACCUUGACAAACA	
	UAACUUCAGAACAGGCGGUGAGCUUAAAGAGGUUAAUACAG	
	AUAAGACUGAAAACCCACUGCAGAAAAUUGAUGCUGCCUUGG	
	CACAGGUUGAUACACUUCGUUCUGACCUGGGUGCGGUUCAGA	
	ACCGUUUCAACUCCGCUAUCACCAACCUGGGCAAUACCGUAA	
	AUAACCUGUCUUCUGCCCGUAGCCGUAUCGAAGAUUCCGACU	
	ACGCAACCGAAGUCUCCAACAUGUCUCGCGCGCAGAUUCUGC	
	AGCAGGCCGGUACCUCCGUUCUGGCGCAGGCGAACCAGGUUC	

TABLE 16-continued

TABLE 16-continued

Name	Sequence	$\begin{gathered} \text { SEQ ID } \\ \text { NO: } \end{gathered}$
	UAACCUGUCUUCUGCCCGUAGCCGUAUCGAAGAUUCCGACUA	
	CGCAACCGAAGUCUCCAACAUGUCUCGCGCGCAGAUUCUGCA	
	GCAGGCCGGUACCUCCGUUCUGGCGCAGGCGAACCAGGUUCC	
	GCAAAACGUCCUCUCUUUACUGCGUUGAUAAUAGGCUGGAGC	
	CUCGGUGGCCAUGCUUCUUGCCCCUUGGGCCUCCCCCCAGCC	
	CCUCCUCCCCUUCCUGCACCCGUACCCCCGUGGUCUUUGAAU	
	A.AGUCUGAGUGGGCGGCAAAAAAAAAAAAAAAAAAAAAAA	
	AAA A	
	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUCUAG	

TABLE 17

Flagellin Amino Acid Sequences		
Name	Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
ORF Sequence, AA	MAQVINTNSLSLLTQNNLNKSOSALGTAIERLSSGLRINSAKDDAA GQAIANRFTANI KGLTQASRNANDGISIAQTTEGALNEINNNLQRV RELAVQSANGTNSQSDLDSIQAEITQRLNEIDRVSGQTQFNGVKVL AODNTLTIQVGANDGETIDIDLKEISSKTLGLDKLNVQDAYTPKET AVTVDKTTYKNGTDPITAQSNTDIQTAIGGGATGVTGADIKFKDG QYYLDVKGGASAGVYKATYDETTKKVNIDTTDKTPLATAEATAI RGTATITHNQIAEVTKEGVDTTTVAAQLAAAGVTGADKDNTSLV KLSFEDKNGKVIDGGYAVKMGDDFYAATYDEKTGAI TAKTTTYT DGTGVAQTGAVKFGGANGKSEVVTATDGKTYLASDLDKHNFRT GGELKEVNTDKTENPLQKIDAALAQVDTLRSDLGAVQNRFNSAIT NLGNTVNNLSSARSRIEDSDYATEVSNMSRAQILQQAGTSVLAQA NOVPQNVLSLLR	54
```Flagellin- GS linker- circumsporozoite protein (CSP)```	MAQVINTNSLSLLTQNNLNKSOSALGTAIERLSSGLRINSAKDDAA GQAIANRFTANIKGLTQASRNANDGISIAQTTEGALNEINNNLQRV RELAVQSANSTNSQSDLDSIOAEITQRLNEIDRVSGQTOFNGVKVL AQDNTLTIQVGANDGETIDIDLKQINSQTLGLDTLNVQQKYKVSD TAATVTGYADTTIALDNSTFKASATGLGGTDQKIDGDLKFDDTTG KYYAKVTVTGGTGKDGYYEVSVDKTNGEVTLAGGATSPLTGGLP ATATEDVKNVQVANADLTEAKAALTAAGVTGTASVVKMSYTDN NGKTIDGGLAVKVGDDYYSATONKDGSISINTTKYTADDGTSKTA LNKLGGADGKTEVVSIGGKTYAASKAEGHNFKAQPDLAEAAATT TENPLQKIDAALAQVDTLRSDLGAVQNRFNSAITNLGNTVNNLTS ARSRIEDSDYATEVSNMSRAQILQQAGTSVLAQAANQVPQNVLSLL RGGGGSGGGGSMMAPDPNANPNANPNANPNANPNANPNANPNA NPNANPNANPNANPNANPNANPNANPNANPNANPNANPNANPN ANPNANPNKNNQGNGQGHNMPNDPNRNVDENANANNAVKNNN NEEPSDKHIEOYLKKIKNS ISTEWSPCSVTCGNGIOVRIKPGSANKP KDELDYENDIEKKICKMEKCSSVFNVVNS	55
Flagellin-   RPVT   linker-   circumsporozoite   protein   (CSP)	MMA PDPNANPNANPNANPNANPNANPNANPNANPNANPNANPN ANPNANPNANPNANPNANPNANPNANPNANPNANPNANPNKNN QGNGQGHNMPNDPNRNVDENANANNAVKNNNNEEPSDKHI EQY LKKIKNSISTEWSPCSVTCGNGIQVRI KPGSANKPKDELDYENDI EK KICKMEKCSSVFNVVNSRPVTMAQVINTNSLSLLTQNNLNKSQSA LGTAIERLSSGLRINSAKDDAAGQAIANRFTANI KGLTQA.SRNAND GISIAQTTEGALNEINNNLQRVRELAVQSANSTNSQSDLDSIQAEIT QRLNEIDRVSGQTQFNGVKVLAQDNTLTIQVGANDGETIDIDLKQI NSQTLGLDTLNVQQKYKVSDTAATVTGYADTTIALDNSTFKASAT GLGGTDQKIDGDLKFDDTTGKYYAKVTVTGGTGKDGYYEVSVD KTNGEVTLAGGATSPLTGGLPATATEDVKNVQVANADLTEAKAA LTAAGVTGTA.SVVKMSYTDNNGKTIDGGLAVKVGDDYYSATQN KDGSIS INTTKYTADDGTSKTALNKLGGADGKTEVVSIGGKTYAA SKAEGHNFKAQPDLAEAAATTTENPLQKIDAALAQVDTLRSDLG AVQNRFNSAI TNLGNTVNNLTSARSRI EDSDYATEVSNMSRAQILQ QAGTSVLAQANQVPQNVLSLLR	56

TABLE 18

Strain	Sequence	$\begin{gathered} \text { SEQ } \\ \text { ID } \\ \text { NO: } \end{gathered}$
HMPV_SC_DSCAV1_4MMV	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAICKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LAFAVRELKDFVSKNLTRALNKINCDIDDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGIL CGVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGNY CQNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPC KVSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGII KQLNKGCSYITNQ DADTVTIDNTVYQLSKVEGEQHVI KGRPVSSSFDPIKFPEDQFIVALDQVFE NIENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKK PTGAPPELSGVTNNGFIPHN	85
HMPV_SC_DSTRIC_4MMV	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGNYTNVFTLEVG DVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAICKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGIL CGVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWY CQNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPC KVSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGII KQLNKGCSYITNQ DADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEHQNHVALDQVFE NIENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKK PTGAPPELSGVTNNGFIPHN	86
HMPV_SC_DM_Krarup_T74LD185P	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DVENLTCSDGPSLIKTELDLLKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKINKCDIPDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPI SMVALSPLGALVACYKGVSCSIGSNRVGI IKQLNKGCSYITNQD ADTVTIDNTVYOLSKVEGEQHVIKGRPVSSSFDPIIKFPEDQFQVALDQVFENI ENSSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP TGAPPELSGVTNNGFIPHN	87
HMPV_SC_TM_Krarup_T74LD185PD454N	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGNYTNVFTLEVG DVENLTCSDGPSLIKTELDLLKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIPDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVOLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKOLNKGCSYITNQD ADTVTIDNTVYOLSKVEGEQHVIKGRPVSSSFDPIKFPENOFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVI ILIAVLGSSMILVSIFIII KKTKK. TGAPPELSGVTINGGFIPHN	88
HMPV_SC_4M_Krarup_T74LS170LD185P	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGNYTNVFTLEVG DVENLTCSDGPSLIKTELDLLKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVLKNLTRAINKNKCDIPDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVI YMVQLPI FGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGI IKQLNKGCSYITNQD ADTVTIDNTVYOLSKVEGEQHVIKGRPVSSSFFDPIKFPEDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP TGAPPELSGVTNNGFIPHN	89
HMPV_SC_5M_Krarup_T74LS170LD185PD454N	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGNYTNVFTLEVG DVENLTCSDGPSLIKTELDLLKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVLKNLTRAINKNKCDIPDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVI YMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPI SMVALSPLGALVACYKGVSCSIGSNRVGIIKOLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPENQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP TGAPPELSGVTNNGFIPHN	90
HMPV_SC_DM_Krarup_E51PT74L	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGNYTNVFTLPVG DVENLTCSDGPSLIKTELDLLKSALRELKTVSADQLAREEOIENPGSGSFVLG	91

TABLE 18-continued

Strain	Sequence	$\begin{gathered} \text { SEQ } \\ \text { ID } \\ \text { NO : } \end{gathered}$
	AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV	
	LATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFS	
	DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI	
	GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC	
	QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK	
	VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGI IKQLNKGCSYITNQD	
	ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVALDQVFENI	
	ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMI LVSIFIIIKKTKKP	
	TGAPPELSGVTNNGFIPHN	
HMPV_SC_TM_Krarup_E51PT74LD454N	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLPVG	92
	DVENLTCSDGPSLIKTELDLLKSALRELKTVSADQLAREEQIENPGSGSFVLG	
	AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV	
	LATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFS	
	DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI	
	GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC	
	QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK	
	VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD	
	ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPENQFQVALDQVFENI	
	ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIII KKTKK.	
	TGAPPELSGVTNNGFIPHN	
HMPV_SC_StabilizeAlpha_T74L	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGNYTNVFTLEVG	93
	DVENLTCSDGPSLIKTELDLLKSALRELKTVSADQLAREEQIENPGSGSFVLG	
	AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV	
	LATAVRELKDFVSKNLTRAINKINKCDIDDLKMAVSFSQFNRRFLNVVRQFS	
	DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI	
	GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGNYC	
	QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK	
	VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGI IKQLNKGCSYITNQD	
	ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVALDQVFENI	
	ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP	
	TGAPPELSGVTNNGFIPHN	
HMPV_SC_StabilizeAlpha_V55L	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGNYTNVFTLEVG	94
	DLENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGSFVLG	
	AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV	
	LATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFS	
	DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI	
	GVYGSSVI YMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC	
	QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK	
	VS TGRHPISMVALSPLGALVACYKGVSCSI GSNRVGI IKQLNKGCSYITNQD	
	ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFI II KKTKKP	
	TGAPPELSGVTNNGFIPHN	
HMPV_SC_StabilizeAlpha_S170L	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGNYTNVFTLEVG	95
	DVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEOIENPGSGSFVLG	
	AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV	
	LATAVRELKDFVLKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFS	
	DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI	
	GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGNYC	
	QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK	
	VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD	
	ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVALDQVFENI	
	ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIII KKTKKP	
	TGAPPELSGVTNNGFIPHN	
HMPV_SC_StabilizeAlpha_T174W	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG	96
	DVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGSFVLG	
	AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV	
	LATAVRELKDFVSKNLWRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFS	
	DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI	
	GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC	
	QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK	
	VSTGRHPI SMVALSPLGALVACYKGVSCSI GSNRVGI IKQLNKGCSYITNQD	
	ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVALDQVFENI	
	ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP	
	TGAPPELSGVTNNGFIPHN	
HMPV_SC_4M_StabilizeAlpha_V55LT74LS170LT174W	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG	97
	DLENLTCSDGPSLIKTELDLLKSALRELKTVSADQLAREEQIENPGSGSFVLG	
	AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV	
	LATAVRELKDFVLKNLWRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFS	

TABLE 18-continued

Human Metapneumovirus Mutant Amino Acid Sequences		
Strain	Sequence	SEQ ID NO:
	DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVI YMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGI IKQLNKGCSYITNOD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP TGAPPELSGVTNNGFIPHN	
HMPV_ProlineStab_E51P	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGNYTNVFTLPVG DVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEOIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVROFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQI KLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKOLNKGCSYITNOD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP TGAPPELSGVTINGGFIPHN	98
HMPV_ProlineStab_D185P	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGNYTNVFTLEVG DVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIPDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVI YMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGI IKOLNKGCSYITNOD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP TGAPPELSGVTNNGFIPHN	99
HMPV_ProlineStab_D183P	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGNYTNVFTLEVG DVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCPIDDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVI YMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKOLNKGCSYITNOD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIII KKTKK. TGAPPELSGVTNNGFIPHN	100
HMPV_ProlineStab_E131P	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGNYTNVFTLEVG DVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLPSEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVI YMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKOLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIII KKTKKP TGAPPELSGVTNNGFIPHN	101
HMPV_ProlineStab_D447P	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVI YMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKOLNKGCSYITNOD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFPPIKFPEDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIII KKTKKP TGAPPELSGVTNNGFIPHN	102
HMPV_TrimerRepulsionD454N	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGNYTNVFTLEVG DVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVI YMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC	103

TABLE 18-continued

Human Metapneumovirus Mutant Amino Acid Sequences		
Strain	Sequence	$\begin{gathered} \text { SEQ } \\ \text { ID } \\ \text { NO: } \end{gathered}$
	QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPI SMVALSPLGALVACYKGVSCSIGSNRVGI IKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPENOFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVI ILIAVLGSSMILVSIFIII KKTKKP TGAPPELSGVTNNGFIPHN	
HMPV_TrimerRepulsionE453N	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGNYTNVFTLEVG DVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEOIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVI YMVOLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGI IKQLNKGCSYITNOD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPQDQFQVALDQVFENI ENSQALVDQSNRI LSSAEKGNTGFIIVIILIAVLGSSMI LVSIFIIIKKTKKP TGA.PPELSGVTNNGFIPHN	104
HMPV_StabilizeAlphaF196W	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGNYTNVFTLEVG DVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQWNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVI YMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEOSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGI IKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVI ILIAVLGSSMILVSIFIII KKTKKP TGAPPELSGVTNNGFIPHN	105

TABLE 19


TABLE 19-continued

Strain	Nucleic Acid Sequence	$\begin{gathered} \text { SEQ ID } \\ \text { NO: } \end{gathered}$
	TCCCTGAGGATCAGTTCAACGTGGCCCTGGACCAGGTGTT	
	CGAGAACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCC	
	AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC	
	TTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTC	
	CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC	
	AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG	
	ACCAACAATGGCTTCATCCCTCACAAC	
HMPV_SC_DSTRIC_4MMV	ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA	107
	CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT	
	CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG	
	AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC	
	GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA	
	TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG	
	AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA	
	ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA	
	GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG	
	CAGGCGTGGCCATCTGCAAGACCATCAGACTGGAAAGCG	
	AAGTGACCGCCAT CAACAACGCCCTGAAGAAGACAAACG	
	AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGC	
	CACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAAC	
	CTGACACGGGCCATTAACAAGAACAAGTGCGACATCGAC	
	GACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGC	
	GGTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGG	
	AATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCT	
	GAGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCG	
	GCCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCG	
	ACGGAAAGGCTTCGGCATTCTGTGTGGCGTGTACGGCAGC	
	AGCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGA	
	TCGACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTG	
	TAGCGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGA	
	GGACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTG	
	TACTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGAC	
	CACGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCG	
	AGCAGAGCAAAGAGTGCAACATCAACATCAGCACCACCA	
	ACTATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTC	
	TATGGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTT	
	ATAAGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGG	
	GCATCATCAAGCAGCTGAACAAGGGCTGCAGCTACATCAC	
	CAACCAGGACGCCGATACCGTGACCATCGACAACACCGTG	
	TATCAGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATC	
	AAGGGCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGT	
	TCCCTGAGCACCAGTGGCATGTGGCCCTGGACCAGGTGTT	
	CGAGAACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCC	
	AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC	
	TTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTC	
	CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC	
	AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG	
	ACCAACAATGGCTTCATCCCTCACAAC	
HMPV_SC_DM_Krarup_T74LD185P	ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA	108
	CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT	
	CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG	
	AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC	
	GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA	
	TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA	
	ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGAA	
	CAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGAG	
	CCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAGC	
	AGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCGA	
	AGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACGA	
	GGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGCC	
	ACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAACC	
	TGACACGGGCCATTAACAAGAACAAGTGCGACATCCCTGA	
	ССTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCGG	
	TTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGAA	
	TCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTGA	
	GCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGGC	
	CAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGAC	
	GGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCAG	
	CGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATCG	
	ACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTAG	
	CGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGAGGA	
	CCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTAC	
	TACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCAC	
	GTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAGC	
	AGAGCAAAGAGTGCAACATCAACATCAGCACCACCAACT	

TABLE 19-continued

Strain	Nucleic Acid Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
	ATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT	
	GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA	
	AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT	
	CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC	
	CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC	
	AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG	
	GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC	
	TGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG	
	AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA	
	GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT	
	CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG	
	ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA	
	AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA	
	CAATGGCTTCATCCCTCACAAC	
HMPV_SC_TM_Krarup_T74LD185PD454N	ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA	109
	CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT	
	CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG	
	AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC	
	GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA	
	TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA	
	ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGAA	
	CAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGAG	
	CCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAGC	
	AGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCGA	
	AGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACGA	
	GGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGCC	
	ACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAACC	
	TGACACGGGCCATTAACAAGAACAAGTGCGACATCCCTGA	
	CCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCGG	
	TTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGAA	
	TCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTGA	
	GCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGGC	
	CAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGAC	
	GGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCAG	
	CGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATCG	
	ACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTAG	
	CGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGAGGA	
	CCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTAC	
	TACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCAC	
	GTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAGC	
	AGAGCAAAGAGTGCAACATCAACATCAGCACCACCAACT	
	ATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT	
	GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA	
	AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT	
	CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC	
	CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC	
	AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG	
	GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC	
	TGAGAACCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG	
	AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA	
	GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT	
	CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG	
	ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA	
	AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA	
	CAATGGCTTCATCCCTCACAAC	
HMPV_SC_4M_Krarup_T74LS170LD185P	ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA	110
	CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT	
	CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG	
	AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC	
	GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA	
	TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA	
	ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGAA	
	CAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGAG	
	CCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAGC	
	AGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCGA	
	AGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACGA	
	GGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGCC	
	ACAGCCGTGCGCGAGCTGAAGGACTTCGTGCTTAAGAACC	
	TGACACGGGCCATTAACAAGAACAAGTGCGACATCCCTGA	
	CCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCGG	
	TTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGAA	
	TCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTGA	
	GCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGGC	
	CAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGAC	
	GGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCAG	

TABLE 19-continued

Strain	Nucleic Acid Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
	CGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATCG	
	ACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTAG	
	CGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGAGGA	
	CCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTAC	
	TACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCAC	
	GTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAGC	
	AGAGCAAAGAGTGCAACATCAACATCAGCACCACCAACT	
	ATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT	
	GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA	
	AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT	
	CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC	
	CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC	
	AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG	
	GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC	
	TGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG	
	AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA	
	GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT	
	CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG	
	ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA	
	AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA	
	CAATGGCTTCATCCCTCACAAC	
HMPV_SC_5M_Krarup_T74LS170LD185PD454N	ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA	111
	CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT	
	CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG	
	AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC	
	GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA	
	TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA	
	ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGAA	
	CAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGAG	
	CCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAGC	
	AGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCGA	
	AGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACGA	
	GGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGCC	
	ACAGCCGTGCGCGAGCTGAAGGACTTCGTGCTTAAGAACC	
	TGACACGGGCCATTAACAAGACAAGTGCGACATCCCTGA	
	CCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCGG	
	TTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGAA	
	TCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTGA	
	GCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGGC	
	CAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGAC	
	GGA.A.AGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCAG	
	CGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATCG	
	ACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTAG	
	CGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGAGGA	
	CCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTAC	
	TACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCAC	
	GTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAGC	
	AGAGCAAAGAGTGCAACATCAACATCAGCACCACCAACT	
	ATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT	
	GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA	
	AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT	
	CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC	
	CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC	
	AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG	
	GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC	
	TGAGAACCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG	
	AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA	
	GA.ATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT	
	CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG	
	ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA	
	AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA	
	CAATGGCTTCATCCCTCACAAC	
HMPV_SC_DM_Krarup_E51PT74L	ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA	112
	CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT	
	CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG	
	AACCGGCTGGTACACCAACGTGTTCACACTGCCTGTGGGC	
	GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA	
	TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA	
	ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGAA	
	CAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGAG	
	CCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAGC	
	AGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCGA	
	AGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACGA	
	GGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGCC	
	ACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAACC	

TABLE 19-continued

Strain	Nucleic Acid Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
	TGACACGGGCCATTAACAAGAACAAGTGCGACATCGACG	
	ACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCG	
	GTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGA	
	ATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTG	
	AGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGG	
	CCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGA	
	CGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCA	
	GCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATC	
	GACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTA	
	GCGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGAGG	
	ACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTA	
	CTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCA	
	CGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAG	
	CAGAGCAAAGAGTGCAACATCAACATCAGCACCACCAAC	
	TATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT	
	GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA	
	AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT	
	CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC	
	CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC	
	AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG	
	GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC	
	TGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG	
	AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA	
	GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT	
	CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG	
	ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA	
	AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA	
	CAATGGCTTCATCCCTCACAAC	
HMPV_SC_TM_Krarup_E51PT74LD454N	ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA	113
	CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT	
	CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG	
	AACCGGCTGGTACACCAACGTGTTCACACTGCCTGTGGGC	
	GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA	
	TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA	
	ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGAA	
	CAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGAG	
	CCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGITACAGC	
	AGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCGA	
	AGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACGA	
	GGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGCC	
	ACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAACC	
	TGACACGGGCCAT TAACAAGAACAAGTGCGACATCGACG	
	ACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCG	
	GTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGA	
	ATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTG	
	AGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGG	
	CCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGA	
	CGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCA	
	GCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATC	
	GACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTA	
	GCGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGAGG	
	ACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTA	
	CTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCA	
	CGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAG	
	CAGAGCAAAGAGTGCAACATCAACATCAGCACCACCAAC	
	TATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT	
	GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA	
	AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT	
	CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC	
	CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC	
	AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG	
	GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC	
	TGAGAACCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG	
	AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA	
	GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT	
	CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG	
	ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA	
	AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA	
	CAATGGCTTCATCCCTCACAAC	
HMPV_SC_StabilizeAlpha_T74L		114
	САССТСАGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT	
	CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG	
	AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC	
	GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA	
	TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA	

TABLE 19-continued

Strain	Nucleic Acid Sequence	$\begin{gathered} \text { SEQ ID } \\ \text { NO: } \end{gathered}$
	ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGAA	
	CAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGAG	
	CCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAGC	
	AGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCGA	
	AGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACGA	
	GGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGCC	
	ACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAACC	
	TGACACGGGCCATTAACAAGAACAAGTGCGACATCGACG	
	ACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCG	
	GTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGA	
	ATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTG	
	AGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGG	
	CCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGA	
	CGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCA	
	GCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATC	
	GACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTA	
	GCGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGAGG	
	ACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTA	
	CTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCA	
	CGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAG	
	CAGAGCAAAGAGTGCAACATCAACATCAGCACCACCAAC	
	TATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT	
	GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA	
	AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT	
	CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC	
	CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC	
	AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG	
	GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC	
	TGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG	
	AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA	
	GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT	
	CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG	
	ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA	
	AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA	
	CAATGGCTTCATCCCTCACAAC	
HMPV_SC_StabilizeAlpha_V55L	ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA	115
	CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT	
	CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG	
	AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC	
	GACCTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA	
	TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG	
	AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA	
	ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA	
	GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG	
	CAGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCG	
	AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG	
	AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGC	
	CACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAAC	
	CTGACACGGGCCATTAACAAGAACAAGTGCGACATCGAC	
	GACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGC	
	GGTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGG	
	AATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCT	
	GAGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCG	
	GCCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCG	
	ACGGAAAGGCTTCGGCATTCTGAT TGGCGTGTACGGCAGC	
	AGCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGA	
	TCGACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTG	
	TAGCGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGA	
	GGACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTG	
	TACTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGAC	
	CACGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCG	
	AGCAGAGCAAAGAGTGCAACATCAACATCAGCACCACCA	
	ACTATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTC	
	TATGGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTT	
	ATAAGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGG	
	GCATCATCAAGCAGCTGAACAAGGGCTGCAGCTACATCAC	
	CAACCAGGACGCCGATACCGTGACCATCGACAACACCGTG	
	TATCAGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATC	
	AAGGGCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGT	
	TCCCTGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTT	
	CGAGAACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCC	
	AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC	
	TTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTC	
	CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC	
	AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG	
	ACCAACAATGGCTTCATCCCTCACAAC	

TABLE 19-continued

Strain	Nucleic Acid Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
HMPV_SC_StabilizeAlpha_S170L	ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA	116
	CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT	
	CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG	
	AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC	
	GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA	
	TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG	
	AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA	
	ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA	
	GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG	
	CAGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCG	
	AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG	
	AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGC	
	CACAGCCGTGCGCGAGCTGAAGGACTTCGTGCTTAAGAAC	
	CTGACACGGGCCATTAACAAGAACAAGTGCGACATCGAC	
	GACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGC	
	GGTTTCTGAACGTCGTGCGGCAGT TTAGCGACAACGCCGG	
	AATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCT	
	GAGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCG	
	GCCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCG	
	ACGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGC	
	AGCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGA	
	TCGACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTG	
	TAGCGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGA	
	GGACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTG	
	TACTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGAC	
	CACGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCG	
	AGCAGAGCAAAGAGTGCAACATCAACATCAGCACCACCA	
	AСTATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTC	
	TATGGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTT	
	ATAAGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGG	
	GCATCATCAAGCAGCTGAACAAGGGCTGCAGCTACATCAC	
	CAACCAGGACGCCGATACCGTGACCATCGACAACACCGTG	
	TATCAGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATC	
	AAGGGCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGT	
	TCCCTGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTT	
	CGAGAACATCGAGAATTCCCAGGC TCTGGTGGACCAGTCC	
	AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC	
	TTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTC	
	CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC	
	AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG	
	АССААСААТGGСТTСАТСССТСАСААС	
HMPV_SC_StabilizeAlpha_T174W	ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA	117
	CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT	
	CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG	
	AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC	
	GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA	
	TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG	
	AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA	
	ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA	
	GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG	
	CAGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCG	
	AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG	
	AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGC	
	CACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAAC	
	CTGTGGCGGGCCATTAACAAGAACAAGTGCGACATCGAC	
	GACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGC	
	GGTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGG	
	AATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCT	
	GAGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCG	
	GCCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCG	
	ACGGAAAGGCTTCGGCATTCTGAT TGGCGTGTACGGCAGC	
	AGCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGA	
	TCGACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTG	
	TAGCGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGA	
	GGACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTG	
	TACTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGAC	
	CACGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCG	
	AGCAGAGCAAAGAGTGCAACATCAACATCAGCACCACCA	
	ACTATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTC	
	TATGGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTT	
	ATAAGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGG	
	GCATCATCAAGCAGCTGAACAAGGGCTGCAGCTACATCAC	
	CAACCAGGACGCCGATACCGTGACCATCGACAACACCGTG	
	TATCAGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATC	
	AAGGGCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGT	

TABLE 19-continued

Strain	Nucleic Acid Sequence	$\begin{gathered} \text { SEQ ID } \\ \text { NO: } \end{gathered}$
	TCCCTGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTT	
	CGAGAACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCC	
	AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC	
	TTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTC	
	CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC	
	AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG	
	ACCAACAATGGCTTCATCCCTCACAAC	
HMPV_SC_4M_StabilizeAlpha_V55LT74LS170LT174W	ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA	118
	CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT	
	CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG	
	AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC	
	GACCTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA	
	TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA	
	ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGAA	
	CAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGAG	
	CCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAGC	
	AGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCGA	
	AGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACGA	
	GGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGCC	
	ACAGCCGTGCGCGAGCTGAAGGACTTCGTGCTTAAGAACC	
	TGTGGCGGGCCATTAACAAGAACAAGTGCGACATCGACG	
	ACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCG	
	GTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGA	
	ATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTG	
	AGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGG	
	CCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGA	
	CGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCA	
	GCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATC	
	GACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTA	
	GCGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGAGG	
	ACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTA	
	CTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCA	
	CGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAG	
	CAGAGCAAAGAGTGCAACATCAACATCAGCACCACCAAC	
	TATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT	
	GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA	
	AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT	
	CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC	
	CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC	
	AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG	
	GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC	
	TGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG	
	AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA	
	GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT	
	CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG	
	ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA	
	AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA	
	CAATGGCTTCATCCCTCACAAC	
HMPV_ProlineStab_E51P		119
	CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT	
	CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG	
	AACCGGCTGGTACACCAACGTGTTCACACTGCCTGTGGGC	
	GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA	
	TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG	
	AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA	
	ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA	
	GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG	
	CAGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCG	
	AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG	
	AGGCCGTCAGCACACTCGGCAATGGCGT TAGAGTGCTGGC	
	CACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAAC	
	CTGACACGGGCCATTAACAAGAACAAGTGCGACATCGAC	
	GACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGC	
	GGTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGG	
	AATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCT	
	GAGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCG	
	GCCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCG	
	ACGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGC	
	AGCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGA	
	TCGACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTG	
	TAGCGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGA	
	GGACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTG	
	TACTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGAC	
	CACGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCG	
	AGCAGAGCAAAGAGTGCAACATCAACATCAGCACCACCA	

TABLE 19-continued

Strain	Nucleic Acid Sequence	$\begin{gathered} \text { SEQ ID } \\ \text { NO: } \end{gathered}$
	ACTATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTC	
	TATGGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTT	
	ATAAGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGG	
	GCATCATCAAGCAGCTGAACAAGGGCTGCAGCTACATCAC	
	CAACCAGGACGCCGATACCGTGACCATCGACAACACCGTG	
	TATCAGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATC	
	AAGGGCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGT	
	TCCCTGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTT	
	CGAGAACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCC	
	AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC	
	TTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTC	
	CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC	
	AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG	
HMPV_ProlineStab_D185P	ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA	120
	CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT	
	CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG	
	AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC	
	GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA	
	TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG	
	AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA	
	ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA	
	GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG	
	CAGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCG	
	AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG	
	AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGC	
	CACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAAC	
	CTGACACGGGCCATTAACAAGAACAAGTGCGACATCCCTG	
	ACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCG	
	GTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGA	
	ATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTG	
	AGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGG	
	CCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGA	
	CGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCA	
	GCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATC	
	GACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTA	
	GCGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGAGG	
	ACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTA	
	CTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCA	
	CGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAG	
	CAGAGCAAAGAGTGCAACATCAACATCAGCACCACCAAC	
	TATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT	
	GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA	
	AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT	
	CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC	
	CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC	
	AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG	
	GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC	
	TGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG	
	AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA	
	GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT	
	CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG	
	ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA	
	AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA	
	CAATGGCTTCATCCCTCACAAC	
HMPV_ProlineStab_D183P	ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA	121
	CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT	
	CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG	
	AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC	
	GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA	
	TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG	
	AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA	
	ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA	
	GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG	
	CAGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCG	
	AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG	
	AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGC	
	CACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAAC	
	CTGACACGGGCCATTAACAAGAACAAGTGCCCTATCGACG	
	ACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCG	
	GTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGA	
	ATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTG	
	AGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGG	
	CCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGA	
	CGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCA	

TABLE 19-continued

Strain	Nucleic Acid Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
	GCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATC	
	GACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTA	
	GCGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGAGG	
	ACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTA	
	CTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCA	
	CGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAG	
	CAGAGCAAAGAGTGCAACATCAACATCAGCACCACCAAC	
	TATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT	
	GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA	
	AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT	
	CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC	
	CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC	
	AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG	
	GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC	
	TGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG	
	AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA	
	GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT	
	CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG	
	ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA	
	AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA	
	CAATGGCTTCATCCCTCACAAC	
HMPV_ProlineStab_E131P	ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA	122
	CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT	
	CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG	
	AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC	
	GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA	
	TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG	
	AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA	
	ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA	
	GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG	
	CAGGCGTGGCCATCGCTAAGACCATCAGACTGCCTAGCGA	
	AGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACGA	
	GGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGCC	
	ACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAACC	
	TGACACGGGCCATTAACAAGAACAAGTGCGACATCGACG	
	ACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCG	
	GTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGA	
	ATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTG	
	AGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGG	
	CCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGA	
	CGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCA	
	GCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATC	
	GACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTA	
	GCGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGAGG	
	ACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTA	
	CTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCA	
	CGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAG	
	CAGAGCAAAGAGTGCAACATCAACATCAGCACCACCAAC	
	TATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT	
	GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA	
	AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT	
	CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC	
	CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC	
	AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG	
	GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC	
	TGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG	
	AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA	
	GA.ATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT	
	CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG	
	ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA	
	AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA	
	CAATGGCTTCATCCCTCACAAC	
HMPV_ProlineStab_D447P	ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA	123
	CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT	
	CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG	
	AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC	
	GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA	
	TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG	
	AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA	
	ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA	
	GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG	
	CAGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCG	
	AAGTGACCGCCAT CAACAACGCCCTGAAGAAGACAAACG	
	AGGCCGTCAGCACACTCGGCAATGGCGT TAGAGTGCTGGC	
	CACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAAC	

TABLE 19-continued

Strain	Nucleic Acid Sequence	$\begin{gathered} \text { SEQ ID } \\ \text { NO: } \end{gathered}$
	CTGACACGGGCCATTAACAAGAACAAGTGCGACATCGAC	
	GACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGC	
	GGTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGG	
	AATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCT	
	GAGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCG	
	GCCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCG	
	ACGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGC	
	AGCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGA	
	TCGACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTG	
	TAGCGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGA	
	GGACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTG	
	TACTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGAC	
	CACGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCG	
	AGCAGAGCAAAGAGTGCAACATCAACATCAGCACCACCA	
	ACTATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTC	
	TATGGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTT	
	ATAAGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGG	
	GCATCATCAAGCAGCTGAACAAGGGCTGCAGCTACATCAC	
	CAACCAGGACGCCGATACCGTGACCATCGACAACACCGTG	
	TATCAGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATC	
	AAGGGCAGACCTGTGTCCAGCAGCTTCCCACCTATCAAGT	
	TCCCTGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTT	
	CGAGAACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCC	
	AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC	
	TTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTC	
	CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC	
	AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG	
	ACCAACAATGGCTTCATCCCTCACAAC	
HMPV_TrimerRepulsionD454N	ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA	124
	CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT	
	CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG	
	AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC	
	GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA	
	TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG	
	AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA	
	ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA	
	GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG	
	CAGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCG	
	AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG	
	AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGC	
	CACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAAC	
	CTGACACGGGCCATTAACAAGAACAAGTGCGACATCGAC	
	GACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGC	
	GGTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGG	
	AATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCT	
	GAGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCG	
	GCCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCG	
	ACGGAAAGGCTTCGGCATTCTGAT TGGCGTGTACGGCAGC	
	AGCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGA	
	TCGACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTG	
	TAGCGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGA	
	GGACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTG	
	TACTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGAC	
	CACGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCG	
	AGCAGAGCAAAGAGTGCAACATCAACATCAGCACCACCA	
	ACTATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTC	
	TATGGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTT	
	ATAAGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGG	
	GCATCATCAAGCAGCTGAACAAGGGCTGCAGCTACATCAC	
	CAACCAGGACGCCGATACCGTGACCATCGACAACACCGTG	
	TATCAGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATC	
	AAGGGCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGT	
	TCCCTGAGAACCAGTTCCAGGTGGCCCTGGACCAGGTGTT	
	CGAGAACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCC	
	AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC	
	TTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTC	
	CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC	
	AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG	
	ACCAACAATGGCTTCATCCCTCACAAC	
HMPV_TrimerRepulsionE453N	ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA	125
	CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT	
	CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG	
	AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC	
	GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA	
	TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG	

TABLE 19-continued

Strain	Nucleic Acid Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
	AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA	
	ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA	
	GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG	
	CAGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCG	
	AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG	
	AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGC	
	CACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAAC	
	CTGACACGGGCCATTAACAAGAACAAGTGCGACATCGAC	
	GACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGC	
	GGTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGG	
	AATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCT	
	GAGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCG	
	GCCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCG	
	ACGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGC	
	AGCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGA	
	TCGACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTG	
	TAGCGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGA	
	GGACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTG	
	TACTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGAC	
	CACGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCG	
	AGCAGAGCAAAGAGTGCAACATCAACATCAGCACCACCA	
	ACTATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTC	
	TATGGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTT	
	ATAAGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGG	
	GCATCATCAAGCAGCTGAACAAGGGCTGCAGCTACATCAC	
	CAACCAGGACGCCGATACCGTGACCATCGACAACACCGTG	
	TATCAGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATC	
	AAGGGCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGT	
	TCCCTCAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTT	
	CGAGAACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCC	
	AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC	
	TTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTC	
	CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC	
	AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG	
	АССААСААТGGСTTCATCCCTCACAAC	
HMPV_StabilizeAlphaF196W	ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA	126
	CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT	
	ССTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG	
	AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC	
	GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA	
	TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG	
	AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA	
	ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA	
	GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG	
	CAGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCG	
	AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG	
	AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGC	
	CACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAAC	
	CTGACACGGGCCATTAACAAGAACAAGTGCGACATCGAC	
	GACCTGAAGATGGCCGTGTCCTTTAGCCAGTGGAACCGGC	
	GGTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGG	
	AATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCT	
	GAGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCG	
	GCCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCG	
	ACGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGC	
	AGCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGA	
	TCGACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTG	
	TAGCGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGA	
	GGACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTG	
	TACTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGAC	
	CACGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCG	
	AGCAGAGCAAAGAGTGCAACATCAACATCAGCACCACCA	
	ACTATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTC	
	TATGGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTT	
	ATAAGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGG	
	GCATCATCAAGCAGCTGAACAAGGGCTGCAGCTACATCAC	
	CAACCAGGACGCCGATACCGTGACCATCGACAACACCGTG	
	TATCAGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATC	
	AAGGGCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGT	
	TCCCTGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTT	
	CGAGAACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCC	
	AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC	
	TTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTC	
	CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC	
	AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG	
	ACCAACAATGGCTTCATCCCTCACAAC	

TABLE 19-continued

Strain	Nucleic Acid Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
	irus mPNA Sequences	
HMPV_SC_DSCAV1_4MMV	AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU	127
	CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA	
	GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU	
	GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU	
	GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG	
	CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU	
	GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG	
	AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG	
	UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCUGCA	
	GCUGUUACAGCAGGCGUGGCCAUCUGCAAGACCAUCAGA	
	CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG	
	AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU	
	AgAgugcugcccuudgccgugcccanaglugaigcaicuuc	
	GUGUCCAAGAACCUGACACGGGCCCUGAACAAGAACAAG	
	UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC	
	CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU	
	AGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGAC	
	CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC	
	AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG	
	AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU	
	GUGUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC	
	AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA	
	UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC	
	AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA	
	UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA	
	GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG	
	AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG	
	AgUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA	
	AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC	
	UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC	
	GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC	
	AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG	
	GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG	
	CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG	
	CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC	
	UGAGGAUCAGUUCAACGUGGCCCUGGACCAGGUGUUCG	
	AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA	
	ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU	
	UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU	
	CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA	
	CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG	
	UGACCAACAAUGGCUUCAUCCCUCACAAC	
HMPV_SC_DSURIC_4MMV	AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU	128
	CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA	
	GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU	
	GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU	
	GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG	
	CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU	
	GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG	
	AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG	
	UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCUGCA	
	GCUGUUACAGCAGGCGUGGCCAUCUGCAAGACCAUCAGA	
	CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG	
	AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU	
	AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC	
	GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG	
	UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC	
	CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU	
	AGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGAC	
	CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC	
	AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG	
	AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU	
	GUGUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC	
	AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA	
	UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC	
	AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA	
	UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA	
	GA.AGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG	
	AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG	
	AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA	
	AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC	
	UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC	
	GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC	
	AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG	

TABLE 19-continued

Strain	Nucleic Acid Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
	GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG	
	CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG	
	CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC	
	UGAGCACCAGUGGCAUGUGGCCCUGGACCAGGUGUUCGA	
	GAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCAA	
	CAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCUU	
	CAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCUC	
	CAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGAC	
	CAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAGU	
	GACCAACAAUGGCUUCAUCCCUCACAAC	
HMPV_SC_DM_Krarup_U74LD185P	AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU	129
	CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA	
	GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU	
	GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU	
	GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG	
	CCUGAUCAAGACCGAGCUGGAUCUGCUCAAGAGCGCCCU	
	GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG	
	AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG	
	UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCUGCA	
	GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA	
	CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG	
	AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU	
	AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC	
	GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG	
	UGCGACAUCCCUGACCUGAAGAUGGCCGUGUCCUUUAGC	
	CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU	
	AGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGAC	
	CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC	
	AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG	
	AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU	
	GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC	
	AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA	
	UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC	
	AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA	
	UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA	
	GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG	
	AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG	
	AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA	
	AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC	
	UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC	
	GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC	
	AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG	
	GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG	
	CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG	
	CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC	
	UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG	
	AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA	
	ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU	
	UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU	
	CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA	
	CCAAGAAGCCCACCGGCGGCUCCUCCAGAACUGAGCGGAG	
	UGACCAACAAUGGCUUCAUCCCUCACAAC	
HMPV_SC_UM_Krarup_U74LD185PD454N	AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU	130
	CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA	
	GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU	
	GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU	
	GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG	
	CCUGAUCAAGACCGAGCUGGAUCUGCUCAAGAGCGCCCU	
	GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG	
	AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG	
	UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCUGCA	
	GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA	
	CUGGAAAGCGA.AGUGACCGCCAUCAACAACGCCCUGAAG	
	AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU	
	AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC	
	GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG	
	UGCGACAUCCCUGACCUGAAGAUGGCCGUGUCCUUUAGC	
	CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU	
	AGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGAC	
	CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC	
	AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG	
	AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU	
	GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC	
	AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA	
	UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC	

TABLE 19-continued

Strain	Nucleic Acid Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
	AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA	
	UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA	
	GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG	
	AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG	
	AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA	
	AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC	
	UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC	
	GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC	
	AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG	
	GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG	
	CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG	
	CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC	
	UGAGAACCAGUUCCAGGUGGCCCUGGACCAGGUGUUCGA	
	GAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCAA	
	CAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCUU	
	CAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCUC	
	CAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGAC	
	CAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAGU	
	GACCAACAAUGGCUUCAUCCCUCACAAC	
HMPV_SC_4M_Krarup_U74LS170LD185P	AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU	131
	CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA	
	GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU	
	GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU	
	GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG	
	CCUGAUCAAGACCGAGCUGGAUCUGCUCAAGAGCGCCCU	
	GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG	
	AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG	
	UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCUGCA	
	GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA	
	CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG	
	AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU	
	AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC	
	GUGCUUAAGAACCUGACACGGGCCAUUAACAAGAACAA	
	GUGCGACAUCCCUGACCUGAAGAUGGCCGUGUCCUUUAG	
	CCAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUU	
	UAGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGA	
	CCUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAA	
	CAUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGA	
	GAAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUC	
	UGAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUG	
	CAGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGG	
	AUUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGG	
	CAAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA	
	UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA	
	GA.AGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG	
	AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG	
	AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA	
	AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC	
	UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUA.AGGGC	
	GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC	
	AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG	
	GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG	
	CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG	
	CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC	
	UGAGGAJUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG	
	AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA	
	ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU	
	UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU	
	CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA	
	CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG	
	UGACCAACAAUGGCUUCAUCCCUCACAAC	
HMPV_SC_5M_Krarup_U74LS170LD185PD454N	AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU	132
	CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA	
	GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU	
	GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU	
	GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG	
	CCUGAUCAAGACCGAGCUGGAUCUGCUCAAGAGCGCCCU	
	GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG	
	AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG	
	UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCUGCA	
	GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA	
	CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG	
	AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU	
	AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC	
	GUGCUUAAGAACCUGACACGGGCCAUUAACAA.GAACAA	

TABLE 19-continued

Strain	Nucleic Acid Sequence	$\begin{gathered} \text { SEQ ID } \\ \text { NO: } \end{gathered}$
	GUGCGACAUCCCUGACCUGAAGAUGGCCGUGUCCUUUAG	
	CCAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUU	
	UAGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGA	
	CCUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAA	
	CAUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGA	
	GAAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUC	
	UGAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUG	
	CAGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGG	
	AUUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGG	
	CAAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA	
	UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA	
	GA.AGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG	
	AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG	
	AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA	
	AgGuguccaccagcaggcacccuaduudcuaugguggcuc	
	UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC	
	GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC	
	AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG	
	GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG	
	CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG	
	CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC	
	UGAGAACCAGUUCCAGGUGGCCCUGGACCAGGUGUUCGA	
	GAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCAA	
	CAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCUU	
	CAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCUC	
	CAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGAC	
	CAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAGU	
	GACCAACAAUGGCUUCAUCCCUCACAAC	
HMPV_SC_DM_Krarup_E51PU74L	AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU	133
	CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA	
	GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU	
	GAGAACCGGCUGGUACACCAACGUGUUCACACUGCCUGU	
	GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG	
	CCUGAUCAAGACCGAGCUGGAUCUGCUCAAGAGCGCCCU	
	GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG	
	AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG	
	UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCUGCA	
	GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA	
	CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG	
	AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU	
	AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC	
	GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG	
	UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC	
	CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU	
	AGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGAC	
	CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC	
	AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG	
	AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU	
	GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC	
	AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA	
	UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC	
	AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA	
	UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA	
	GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG	
	AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG	
	AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA	
	AgGuguccacccgcaggcacccuaduuucuaugguggcuc	
	UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC	
	GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC	
	AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG	
	GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG	
	CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG	
	CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC	
	UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG	
	AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA	
	ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU	
	UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU	
	CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA	
	CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG	
	UGACCAACAAUGGCUUCAUCCCUCACAAC	
HMPV_SC_UM_Krarup_E51PU74LD454N	AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU	134
	CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA	
	GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU	
	GAGAACCGGCUGGUACACCAACGUGUUCACACUGCCUGU	
	GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG	

TABLE 19-continued

Strain	Nucleic Acid Sequence	$\begin{gathered} \text { SEQ ID } \\ \text { NO: } \end{gathered}$
	CCUGAUCAAGACCGAGCUGGAUCUGCUCAAGAGCGCCCU	
	GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG	
	AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG	
	UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCUGCA	
	GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA	
	CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG	
	AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU	
	AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC	
	GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG	
	UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC	
	CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU	
	AGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGAC	
	CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC	
	AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG	
	AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU	
	GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC	
	AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA	
	UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC	
	AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA	
	UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA	
	GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG	
	AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG	
	AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA	
	AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC	
	UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC	
	GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC	
	AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG	
	GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG	
	CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG	
	CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC	
	UGAGAACCAGUUCCAGGUGGCCCUGGACCAGGUGUUCGA	
	GAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCAA	
	CAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCUU	
	CAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCUC	
	CAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGAC	
	CAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAGU	
	GACCAACAAUGGCUUCAUCCCUCACAAC	
HMPV_SC_SUabilizeAlpha_U74L	AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU	135
	CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA	
	GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU	
	GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU	
	GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG	
	CCUGAUCAAGACCGAGCUGGAUCUGCUCAAGAGCGCCCU	
	GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG	
	AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG	
	UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCUGCA	
	GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA	
	CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG	
	AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU	
	AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC	
	GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG	
	UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC	
	CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU	
	AGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGAC	
	CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC	
	AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG	
	AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU	
	GAUUGGCGUUGUACGGCAGCAGCGUGAUCUAUAUGGUGC	
	AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA	
	UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC	
	AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA	
	UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA	
	GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG	
	AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG	
	AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA	
	AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC	
	UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC	
	GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC	
	AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG	
	GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG	
	CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG	
	CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC	
	UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG	
	AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA	
	ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU	
	UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU	

TABLE 19-continued

Strain	Nucleic Acid Sequence	$\begin{gathered} \text { SEQ ID } \\ \text { NO: } \end{gathered}$
	CCAUGAUCCUGGUGUCCAUCUUCAUCAUUUAUCAAGAAGA ССAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG UGACCAACAAUGGCUUCAUCCCUCACAAC	
HMPV_SC_SUabilizeAlpha_V55L	AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU	136
	CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA	
	GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU	
	GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU	
	GGGCGACCUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG	
	CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU	
	GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG	
	AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG	
	UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCUGCA	
	GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA	
	CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG	
	AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU	
	AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC	
	GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG	
	UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC	
	CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU	
	AGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGAC	
	CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC	
	AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG	
	AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU	
	GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC	
	AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA	
	UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC	
	AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA	
	UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA	
	GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG	
	AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG	
	AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA	
	AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC	
	UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC	
	GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC	
	AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG	
	GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUUCAG	
	CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG	
	CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC	
	UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG	
	AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA	
	ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU	
	UCAUCAUCGUGAUUCAUCCUGAUCGCCGUGCUGGGCAGCU	
	CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA	
	CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG	
	UGACCAACAAUGGCUUCAUCCCUCACAAC	
HMPV_SC_SUabilizeAlpha_S170L	AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU	137
	CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA	
	GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU	
	GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU	
	GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG	
	CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU	
	GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG	
	AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG	
	UGCUGGGAGCCAUUGCUCUUGGA.GUGGCUGCUGCUGCA	
	GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA	
	CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG	
	AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU	
	AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC	
	GUGCUUAAGAACCUGACACGGGCCAUUAACAAGAACAA	
	GUGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAG	
	CCAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUU	
	UAGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGA	
	CCUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAA	
	CAUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGA	
	GA.AUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUC	
	UGAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUG	
	CAGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGG	
	AUUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGG	
	CAAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA	
	UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA	
	GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG	
	AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG	
	AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA	
	AGGUGUCCACCGGCAGGCACCCUAUUUUUUAUGGUGGCUC	
	UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC	

TABLE 19-continued

Strain	Nucleic Acid Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
	GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC	
	AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG	
	GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG	
	CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG	
	CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC	
	UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG	
	AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA	
	ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU	
	UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU	
	CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA	
	CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG	
	UGACCAACAAUGGCUUCAUCCCUCACAAC	
HMPV_SC_SUabilizeAlpha_U174W	AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU	138
	CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA	
	GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU	
	GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU	
	GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG	
	CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU	
	GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG	
	AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG	
	UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCUGCA	
	GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA	
	CUGGAAAGCGA.AGUGACCGCCAUCAACAACGCCCUGAAG	
	AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU	
	AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC	
	GUGUCCAAGAACCUGUGGCGGGCCAUUAACAAGAACAA	
	GUGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAG	
	CCAGUUCAACCGGCGGUUUCUGA.ACGUCGUGCGGCAGUU	
	UAGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGA	
	CCUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAA	
	CAUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGA	
	GAAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUC	
	UGAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUG	
	CAGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGG	
	AUUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGG	
	CAAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA	
	UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA	
	GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG	
	AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG	
	AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA	
	AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC	
	UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC	
	GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC	
	AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG	
	GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG	
	CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG	
	CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC	
	UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG	
	AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA	
	ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU	
	UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU	
	CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA	
	CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG	
	UGACCAACAAUGGCUUCAUCCCUCACAAC	
HMPV_SC_4M_SUabilizeAlpha_V55LU74LS170LU174W	AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU	139
	CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA	
	GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU	
	GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU	
	GGGCGACCUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG	
	CCUGAUCAAGACCGAGCUGGAUCUGCUCAAGAGCGCCCU	
	GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG	
	AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG	
	UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCUGCA	
	GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA	
	CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG	
	AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU	
	AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC	
	GUGCUUAAGAACCUGUGGCGGGCCAUUAACAAGAACAA	
	GUGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAG	
	CCAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUU	
	UAGCGACAACGCCGGAAUCACACCAGCCCAUCAGCCUGGA	
	CCUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAA	
	CAUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGA	
	GAAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUC	
	UGAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUG	

TABLE 19-continued

Strain	Nucleic Acid Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
	CAGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGG	
	AUUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGG	
	CAAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA	
	UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA	
	GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG	
	AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG	
	AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA	
	AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC	
	UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC	
	GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC	
	AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG	
	GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG	
	CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG	
	CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC	
	UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG	
	AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA	
	ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU	
	UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU	
	CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA	
	CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG	
	UGACCAACAAUGGCUUCAUCCCUCACAAC	
HMPV_ProlineSUab_E51P	AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU	140
	CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA	
	GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU	
	GAGAACCGGCUGGUACACCAACGUGUUCACACUGCCUGU	
	GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG	
	CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU	
	GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG	
	AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG	
	UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCUGCA	
	GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA	
	CUGGAAAGCGA.AGUGACCGCCAUCAACAACGCCCUGAAG	
	AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU	
	AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC	
	GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG	
	UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC	
	CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU	
	AGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGAC	
	CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC	
	AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG	
	AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU	
	GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC	
	AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA	
	UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC	
	AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA	
	UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA	
	GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG	
	AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG	
	AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA	
	AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC	
	UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC	
	GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC	
	AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG	
	GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG	
	CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG	
	CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC	
	UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG	
	AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA	
	ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU	
	UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU	
	CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA	
	CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG	
	UGACCAACAAUGGCUUCAUCCCUCACAAC	
HMPV_ProlineSUab_D185P	AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU	141
	CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA	
	GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU	
	GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU	
	GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG	
	CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU	
	GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG	
	AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG	
	UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCUGCA	
	GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA	
	CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG	
	AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU	

TABLE 19-continued

Strain	Nucleic Acid Sequence	$\begin{gathered} \text { SEQ ID } \\ \text { NO: } \end{gathered}$
	AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC	
	GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG	
	UGCGACAUCCCUGACCUGAAGAUGGCCGUGUCCUUUAGC	
	CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU	
	AGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGAC	
	CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC	
	AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG	
	AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU	
	GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC	
	AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA	
	UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC	
	AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA	
	UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA	
	GA.AGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG	
	AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG	
	AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA	
	AgGuguccaccagcaggcacccuaduudcuauggugccuc	
	UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC	
	GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC	
	AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG	
	GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG	
	CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG	
	CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC	
	UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG	
	AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA	
	ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU	
	UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU	
	CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA	
	CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG	
	UGACCAACAAUGGCUUCAUCCCUCACAAC	
HMPV_ProlineSUab_D183P	AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU	142
	CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA	
	GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU	
	GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU	
	GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG	
	CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU	
	GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG	
	AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG	
	UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCUGCA	
	GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA	
	CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG	
	AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU	
	AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC	
	GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG	
	UGCCCUAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC	
	CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU	
	AGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGAC	
	CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC	
	AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG	
	AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU	
	GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC	
	AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA	
	UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGA.AGGGC	
	AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA	
	UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA	
	GA.AGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG	
	AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG	
	AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA	
	AgGuguccaccagcaggcacccuauuubuauggguggcuc	
	UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC	
	GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC	
	AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG	
	GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG	
	CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG	
	CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC	
	UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG	
	AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA	
	ACAGAAUCCUGUCUAGCGCCGAGA.AGGGAAACACCGGCU	
	UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU	
	CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA	
	CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG	
	UGACCAACAAUGGCUUCAUCCCUCACAAC	
HMPV_ProlineSUab_E131P	AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU	143
	CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA	
	GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU	

TABLE 19-continued

Strain	Nucleic Acid Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
	GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU	
	GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG	
	CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU	
	GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG	
	AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG	
	UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCUGCA	
	GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA	
	CUGCCUAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG	
	AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU	
	AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC	
	GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG	
	UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC	
	CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU	
	AGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGAC	
	CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC	
	AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG	
	AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU	
	GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC	
	AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA	
	UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC	
	AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA	
	UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA	
	GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG	
	AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG	
	AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA	
	AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC	
	UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC	
	GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC	
	AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG	
	GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG	
	CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG	
	CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC	
	UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG	
	AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA	
	ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU	
	UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU	
	CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA	
	CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG	
	UGACCAACAAUGGCUUCAUCCCUCACAAC	
HMPV_ProlineSUab_D447P	AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU	144
	CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA	
	GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU	
	GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU	
	GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG	
	CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU	
	GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG	
	AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG	
	UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCUGCA	
	GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA	
	CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG	
	AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGGCGUU	
	AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC	
	GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG	
	UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC	
	CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU	
	AGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGAC	
	CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC	
	AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG	
	AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU	
	GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC	
	AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA	
	UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGA.AGGGC	
	AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA	
	UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA	
	GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG	
	AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG	
	AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA	
	AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC	
	UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC	
	GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC	
	AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG	
	GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG	
	CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG	
	CAGACCUGUGUCCAGCAGCUUCCCACCUAUCA.AGUUCCC	
	UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG	
	AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA	

TABLE 19-continued

Strain	Nucleic Acid Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
	ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG UGACCAACAAUGGCUUCAUCCCUCACAAC	
HMPV_UrimerRepulsionD454N	AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU	145
	CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA	
	GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU	
	GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU	
	GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG	
	CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU	
	GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG	
	AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG	
	UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCUGCA	
	GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA	
	CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG	
	AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU	
	AgAgugcuggccacagcccuuccgcgagcuganggacuuc	
	GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG	
	UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC	
	CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU	
	AGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGAC	
	CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC	
	AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG	
	AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU	
	GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC	
	AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA	
	UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC	
	AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA	
	UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA	
	GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG	
	AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG	
	AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA	
	AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC	
	UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC	
	GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC	
	AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG	
	GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG	
	CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG	
	CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC	
	UGAGAACCAGUUCCAGGUGGCCCUGGACCAGGUGUUCGA	
	GAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCAA	
	CAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCUU	
	CAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCUC	
	CAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGAC	
	CAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAGU	
	GACCAACAAUGGCUUCAUCCCUCACAAC	
HMPV_UrimerRepulsionE453N	AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU	146
	CACACCUCAGCACGGCCUGAA.AGAGAGCUACCUGGAAGA	
	GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU	
	GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU	
	GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG	
	CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU	
	GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG	
	AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG	
	UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCUGCA	
	GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA	
	CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG	
	AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU	
	AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC	
	GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG	
	UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC	
	CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU	
	AGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGAC	
	CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC	
	AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG	
	AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU	
	GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC	
	AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA	
	UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC	
	AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA	
	UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA	
	GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG	
	AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG	
	AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA	

TABLE 19-continued

Strain	Nucleic Acid Sequence	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
	AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC	
	UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC	
	GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC	
	AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG	
	GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG	
	CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG	
	CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC	
	UCAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCGA	
	GAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCAA	
	CAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCUU	
	CAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCUC	
	CAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGAC	
	CAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAGU	
	GACCAACAAUGGCUUCAUCCCUCACAAC	
HMPV_SUabilizeAlphaF196W	AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU	147
	CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA	
	GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU	
	GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU	
	GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG	
	CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU	
	GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG	
	AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG	
	UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCUGCA	
	GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA	
	CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG	
	AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU	
	AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC	
	GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG	
	UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC	
	CAGUGGAACCGGCGGUUUCUGAACGUCGUGCGGCAGUU	
	UAGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGA	
	CCUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAA	
	CAUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGA	
	GA.AUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUC	
	UGAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUG	
	CAGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGG	
	AUUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGG	
	CAAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA	
	UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA	
	GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG	
	AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG	
	AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA	
	AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC	
	UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC	
	GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC	
	AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG	
	GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG	
	CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG	
	CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC	
	UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG	
	AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA	
	ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU	
	UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU	
	CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA	
	CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG	
	UGACCAACAAUGGCUUCAUCCCUCACAAC	

## EQUIVALENTS

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the disclosure
described herein. Such equivalents are intended to be encompassed by the following claims.

All references, including patent documents, disclosed herein are incorporated by reference in their entirety.


$<210>$ SEQ ID NO 2
$<211>$ LENGTH: 1620
$<212>$ TYPE $: ~ D N A$
$<213>$ ORGANISM: Human metapneumovirus
$<400>$ SEQUENCE: 2
atgtcttgga aagtgatgat catcatttcg ttactcataa caccccagca cgggctaaag
gagagttatt tggaagaatc atgtagtact ataactgagg gatacctcag tgttttaaga
acaggctggt acactaatgt cttcacatta gaagttggtg atgttgaaaa tcttacatgt
actgatggac ctagcttaat caaaacagaa cttgatctaa caaaaagtgc tttaagggaa

-continued

ctcaaacaaa	ctaatgaagc agtatccaca	ttagggaatg gtgtgcgggt	ctagccact	480
gcagtgagag	agctaaaga atttgtgagc	aaaaacctga ctagtgcaat	caacaggaac	540
aaatgtgaca	ttgctgatct gaagatggct	gtcagcttca gtcaattcaa	cagaagattt	600
ctaaatgttg	tgcggcagtt ttcagacaat	gcagggataa caccagcaat	atcattggac	660
ctgatgactg	atgctgagtt ggccagagct	tatcataca tgccaacatc	tgcagggcag	720
ataaaactga	tgttggagaa cogcgcaatg	gtaaggagaa aaggatttgg	atcetgata	780
ggggtctacg	gaagctctgt gatttacatg	gttcaattgc cgatctttgg	tgtcatagat	840
acaccttgtt	ggatcatcaa ggcagctccc	tcttgctcag aaaaaaacgg	gaattatgct	900
tgcetcctaa	gagaggatca agggtggtat	tgtaaaaatg caggatctac	tgtttactac	960
ccaaatgaaa	aagactgcga aacaagaggt	gatcatgttt tttgtgacac	agcagcaggg	1020
atcaatgttg	ctgagcaatc aagagaatgc	acatcaaca tatctactac	caactaccca	1080
tgcaaagtca	gcacaggaag acaccctata	agcatggttg cactatcacc	tcteggtgct	1140
ttggtggctt	gctataaagg ggtaagctgc	tcgattggca gcaattgggt	tggaatcatc	1200
aaacaattac	ccaaaggctg ctcatacata	ccaaccagg atgcagacac	tgtaacaatt	1260
gacaataccg	tgtatcaact aagcaaagtt	gaaggtgaac agcatgtaat	aaaagggaga	1320
ccagtttcaa	gcagttttga tccaatcaag	tttcctgagg atcagttcaa	tgttgcgett	1380
gatcaagtct	tcgaaagcat tgagaacagt	caggcactag tggaccagtc	aaacaaaatt	1440
ctaaacagtg	cagaaaaagg aaacactggt	ttcattatcg tagtaatttt	ggttgctgtt	1500
cttggtctaa	ccatgatttc agtgagcatc	atcatcataa tcaagaaaac	aaggaagccc	1560
acaggagcac	ctccagagct gaatggtgtc	accaacggcg gtttcatacc	acatagttag	1620

$<210>$ SEQ ID NO 3
$<211>$ LENGTH: 1620
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Human metapneumovirus
$<400>$ SEQUENCE: 3
atgtcttgga aagtgatgat tatcatttcg ttactcataa cacctcagca tggactaaaa 60
gaaagttatt tagaagaatc atgtagtact ataactgaag gatatctcag tgttttaaga 120
acaggttggt acaccaatgt ctttacatta gaagttggtg atgttgaaaa tcttacatgt 180
actgatggac ctagcttaat caaaacagaa cttgacctaa ccaaaagtgc tttaagagaa 240
ctcaaaacag tttctgctga tcagttagcg agagaagaac aaattgaaaa tcccagacaa 300
tcaaggtttg tcctaggtgc aatagctctt ggagttgcca cagcagcagc agtcacagca 360
ggcattgcaa tagccaaaac tataaggctt gagagtgaag tgaatgcaat caaaggtgct 420
ctcaaaacaa ccaatgaggc agtatcaaca ctaggaaatg gagtgcgggt cctagccact 480
gcagtaagag agctgaaaga atttgtgagc aaaacctga ctagtgcgat caacaagaac 540
aagtgtgaca ttgctgattt gaagatggct gtcagcttca gtcagttcaa cagaagattc 600
ctaaatgttg tgcggcagtt ttcagacaat gcagggataa caccagcaat atcattggac 660
ctgatgaatg atgctgagct ggccagagct gtatcataca tgccaacatc tgcaggacag 720
ataaactaa tgttagagaa cogtgcaatg gtgaggagaa aaggatttgg aatcttgata 780
ggggtctacg gaagctctgt gatttacatg gtccagctgc cgatctttgg tgtcataaat 840
acaccttgtt ggataatcaa ggcagctccc tcttgttcag aaaaagatgg aaattatgct 900
tgcetcctaa gagaggatca agggtggtat tgtaaaatg caggatccac tgtttactac 960


ttagtgttcc cctctgatga atttgatgca tcaatatctc aagtcaatga gaagattaac	1500
cagagcctag catttattcg taaatccgat gaattattac ataatgtaaa tgctggtaaa	1560
tccaccacaa atatcatgat aactactata attatagtga ttatagtaat attgttatca	1620
ttaattgcag ttggactgct cctatactgc aaggccagaa gcacaccagt cacactaagt	1680
aaggatcaac tgagtggtat aaataatatt gcatttagta actga	1725

$<210>$ SEQ ID NO 5
$<211>$ LENGTH: 539
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Human metapneumovirus isolate
$<400>$ SEQUENCE: 5


				325					330					335	
Thr	Ala	Ala	$\begin{aligned} & \text { Gly } \\ & 340 \end{aligned}$	Ile	Asn	Val	Ala	$\begin{aligned} & \text { Glu } \\ & 345 \end{aligned}$	Gln	Ser	Lys	Glu	$\begin{aligned} & \text { Cys } \\ & 350 \end{aligned}$	Asn	Ile
Asn	Ile	$\begin{aligned} & \text { Ser } \\ & 355 \end{aligned}$	Thr	Thr	Asn	Tyr	$\begin{aligned} & \text { Pro } \\ & 360 \end{aligned}$	Cys	Lys	Val	Ser	$\begin{aligned} & \text { Thr } \\ & 365 \end{aligned}$	Gly	Arg	His
Pro	$\begin{aligned} & \text { Ile } \\ & 370 \end{aligned}$	Ser	Met	Val	Ala	$\begin{aligned} & \text { Leu } \\ & 375 \end{aligned}$	Ser	Pro	Leu	Gly	$\begin{aligned} & \text { Ala } \\ & 380 \end{aligned}$		Val	Ala	Cys
$\begin{aligned} & \text { Tyr } \\ & 385 \end{aligned}$	Lys	Gly	Val	Ser	$\begin{aligned} & \text { Cys } \\ & 390 \end{aligned}$	Ser		Gly	Ser	$\begin{aligned} & \text { Asn } \\ & 395 \end{aligned}$	Arg	Val	$\mathrm{Gly}$	Ile	$\begin{aligned} & \text { Ile } \\ & 400 \end{aligned}$
Lys	Gln	Leu	Asn	$\begin{aligned} & \text { Lys } \\ & 405 \end{aligned}$	Gly	Cys	Ser	Tyr	$\begin{aligned} & \text { Ile } \\ & 410 \end{aligned}$	Thr	Asn	Gln	Asp	Ala   415	Asp
Thr	Val	Thr	$\begin{aligned} & \text { Ile } \\ & 420 \end{aligned}$	Asp	Asn	Thr	Val	$\begin{aligned} & \text { Tyr } \\ & 425 \end{aligned}$	Gln	Leu	Ser	Lys	$\begin{aligned} & \mathrm{Val} \\ & 430 \end{aligned}$	Glu	Gly
Glu	$\mathrm{Gln}$	$\begin{aligned} & \mathrm{His} \\ & 435 \end{aligned}$	Val	Ile	Lys	Gly	$\begin{aligned} & \text { Arg } \\ & 440 \end{aligned}$	Pro	Val	Ser	Ser	$\begin{aligned} & \text { Ser } \\ & 445 \end{aligned}$	Phe	Asp	Pro
Ile	$\begin{aligned} & \text { Lys } \\ & 450 \end{aligned}$	Phe	Pro	Glu	Asp	$\begin{aligned} & \mathrm{Gln} \\ & 455 \end{aligned}$	Phe	Asn	Val	Ala	$\begin{aligned} & \text { Leu } \\ & 460 \end{aligned}$	Asp	$\mathrm{Gln}$		Phe
$\begin{aligned} & \mathrm{Glu} \\ & 465 \end{aligned}$	Asn	Ile	Glu	Asn	$\begin{aligned} & \text { Ser } \\ & 470 \end{aligned}$	Gln	Ala	Leu	Val	$\begin{aligned} & \text { Asp } \\ & 475 \end{aligned}$	Gln		Asn	Arg	$\begin{aligned} & \text { Ile } \\ & 480 \end{aligned}$
Leu	Ser	Ser	Ala	$\begin{aligned} & \text { Glu } \\ & 485 \end{aligned}$	Lys	Gly		Thr	$\begin{aligned} & \text { Gly } \\ & 490 \end{aligned}$	Phe	Ile		Val	$\begin{aligned} & \text { Ile } \\ & 495 \end{aligned}$	Ile
Leu	Ile	Ala	$\begin{aligned} & \mathrm{Val} \\ & 500 \end{aligned}$	Leu	Gly	Ser		Met 505	Ile	Leu	Val		$\begin{aligned} & \text { Ile } \\ & 510 \end{aligned}$	Phe	Ile
Ile	Ile	$\begin{aligned} & \text { Lys } \\ & 515 \end{aligned}$	Lys	Thr	Lys	Lys	$\begin{aligned} & \text { Pro } \\ & 520 \end{aligned}$	Thr	Gly	Ala	Pro	$\begin{aligned} & \text { Pro } \\ & 525 \end{aligned}$	Glu.		Ser
Gly	$\begin{aligned} & \mathrm{Val} \\ & 530 \end{aligned}$	Thr	Asn	Asn	Gly	Phe $535$	Ile	Pro	His	Asn					

$<210>$ SEQ ID NO 6
$<211>$ LENGTH: 539
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Human metapneumovirus
$<400>$ SEQUENCE: 6


$<210>$ SEQ ID NO 7
$<211>$ LENGTH: 539
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Human metapneumovirus
$<400>$ SEQUENCE: 7


$<210>$ SEQ ID NO 8
$<211>$ LENGTH: 574
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Human respiratory syncytial virus
$<400>$ SEQUENCE: 8


$<210>$ SEQ ID NO 9
$<211>$ LENGTH: 1617
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Human parainfluenza virus 3
$<400>$ SEQUENCE: 9
atgccaattt caatactgtt aattattaca accatgatca tggcatcaca ctgccaaata 60
gacatcacaa aactacagca tgtaggtgta ttggtcaaca gtcccaaagg gatgaagata 120
-continued

$<210>$ SEQ ID NO 10
$<211>$ LENGTH: 1716
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Human parainfluenza virus 3
$<400>$ SEQUENCE: 10
atggaatact ggaagcacac caaccacgga aaggatgctg gtaatgagct ggagacatcc 60
acagccactc atggcaacaa gctcaccaac aagataacat atatattgtg gacgataacc 120
ctggtgttat tatcaatagt cttcatcata gtgctaacta attccatcaa aagtgaaaag 180

gcatcatcag gcatagaaga tattgtactt gatattgtca attatgatgg ctcaatctcg	900
acaacaagat ttaagaataa taatataagt tttgatcaac catatgcggc attataccca	960
tctgttggac cagggatata ctacaaaggc aaataatat ttctcgggta tggaggtctt	1020
gaacatccaa taaatgagaa tgcaatctgc aacacaactg ggtgtcctgg gaaaacacag	1080
agagactgta atcaagcatc tcatagtcca tggttttcag atagaaggat ggtcaactct	1140
ataattgttg ttgacaaggg cttgaactca gttccaaaat tgaaggtatg gacgatatct	1200
atgagacaaa attactgggg gtcagaagga agattacttc tactaggtaa caagatctac	1260
atatacacaa gatctacaag ttggcacagc aagttacaat taggaataat tgacattact	1320
gactacagtg atataaggat aaaatggaca tggcataatg tgctatcaag accaggaaac	1380
aatgaatgtc catggggaca ttcatgtccg gatggatgta taacgggagt atataccgat	1440
gcatatccac tcaatcccac aggaagcatt gtatcatctg tcatattgga ctcacaaaaa	1500
tcgagagtca acccagtcat aacttactca acagcaaccg aaagggtaaa cgagctggct	1560
atccgaaaca aaacactctc agctgggtac acaacaacaa gctgcattac acactataac	1620
aagggtatt gttttcatat agtagaaata aatcataaaa gcttaaacac atttcaaccc	1680

$<210>$ SEQ ID NO 11
$<211>$ LENGTH: 1716
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 11
atggaatact ggaagcacac caaccacggc aaggacgccg gcaacgagct ggaaaccagc 60
acagccacac acggcaacaa gctgaccaac aagatcacct acatcctgtg gaccatcacc 120
ctggtgctgc tgagcatcgt gttcatcatc gtgctgacca atagcatcaa gagcgagaag 180
gccagagaga gcctgctgca ggacatcaac aacgagttca tggaagtgac cgagaagatc 240
caggtggcca gcgacaacac caacgacctg atccagagcg gcgtgaacac ccggctgctg 300
accatccaga gccacgtgca gaactacatc cecatcagce tgacccagca gatcagcgac 360
ctgcggaagt tcatcagcga gatcaccatc cggaacgaca accaggaagt gcccccccag 420
agaatcaccc acgacgtggg catcaagccc ctgaaccccg acgatttctg gcggtgtaca 480
agcggcetgc ccagcctgat gaagaccccc aagatcoggc tgatgcctgg coctggactg 540
ctggccatgc ctaccacagt ggatggctgt gtgcggacce ccagcetcgt gatcaacgat 600
ctgatctacg cetacaccag caacctgatc accoggggct gccaggatat cggcaagagc 660
taccaggtgc tgcagatcgg catcatcacc gtgaactccg acctggtgce cgacctgaac 720
cctcggatca gccacacctt caacatcaac gacaacagaa agagctgcag cctggctctg 780
ctgaacaccg acgtgtacca gctgtgcagc acccccaagg tggacgagag aagcgactac 840
gccagcagcg gcatcgagga tatcgtgctg gacatcgtga actacgacgg cagcatcagc 900
accaccoggt tcaagaacaa caacatcagc ttcgaccagc cetacgecge cotgtaccet 960
tctgtgggce ctggcatcta ctacaagggc aagatcatct tcctgggcta cggcggcetg 1020
gaacacccca tcaacgagaa cgccatctgc aacaccaccg gctgccctgg caagacccag 1080
agagactgca atcaggccag ccacagccec tggttcagcg accgcagaat ggtcaactct 1140
-continued

atcatcgtgg	tggacaaggg	cctgaacagc gtgcccaagc	agtgtg	gacaatcagc	1200
atgcgccaga	actactgggg	cagcgagggc agacttctgc	tgctgggaaa	caagatctac	1260
atctacaccc	ggtccaccag	ctggcacagc aaactgcagc	tgggaatcat	cgacatcacc	1320
gactacagcg	acatccggat	caagtggacc tggcacaacg	tgctgagcag	acccggcaac	1380
aatgagtgcc	cttggggcca	cagctgcecc gatggatgta	tcaccggcgt	gtacaccgac	1440
gectacccoc	tgaatcctac	cggctecatc gtgtccagcg	tgatcetgga	cagccagaaa	1500
agcagagtga	accecgtgat	cacatacagc accgccaccg	agagagtgaa	cgaactggcc	1560
atcagaaaca	agaccctgag	cgcoggctac accaccacaa	gctgcatcac	acactacaac	1620
aagggctact	gcttccacat	cgtggaaatc aaccacaagt	ccctgaacac	cttccagcce	1680
atgctgttca	agaccgagat	ceccaagage tgctcc			1716

$<210>$ SEQ ID NO 12
$<211>$ LENGTH: 1617
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 12
atgcccatca gcatcctgct gatcatcacc acaatgatca tggccagcca ctgccagatc 60
gacatcacca agctgcagca cgtgggcgtg ctcgtgaaca gccccaaggg catgaagatc 120
agccagaact tcgagacacg etacctgatc etgagcctga tccccaagat cgaggacagc 180
aacagctgcg gcgaccagca gatcaagcag tacaagcggc tgctggacag actgatcatc 240
cccetgtacg acggcctgeg getgcagaaa gacgtgatcg tgaccaacca ggaaagcaac 300
gagaacaccg acceccggac cgagagattc ttcggcggeg tgatcggcac aatcgecetg 360
ggagtggcea caagcgccea gattacagcc gctgtggcce tggtggaagc caagcaggce 420
agaagcgaca tcgagaagct gaaagaggce atccgggaca ccaacaaggc cgtgcagagc 480
gtgcagtcca gcgtgggcaa tctgatcgtg gccatcaagt ccgtgcagga ctacgtgaac 540
aagaaatcg tgcectctat cgcccggctg ggctgtgaag ctgccggact gcagctgggc 600
attgccctga cacagcacta cagcgagctg accaacatct tcggcgacaa catcggcagc 660
ctgcaggaaa agggcattaa gctgcaggga atcgccagce tgtaccgcac caacatcacc 720
gagatcttca ccaccagcac cgtggataag tacgacatct acgacctgct gttcaccgag 780
agcatcaaag tgcgcgtgat cgacgtggac ctgaacgact acagcatcac cctgcaagtg 840
cggctgcccc tgctgaccag actgctgaac acccagatct acaaggtgga cagcatctcc 900
tacaacatcc agaaccgega gtggtacatc cctctgccea gccacattat gaccaagggc 960

| gcctttctgg gcggagccga cgtgaaagag tgcatcgagg cottcagcag ctacatctgc | 1020 |
| :--- | :--- | :--- |
| cccagcgacc ctggcttcgt gctgaaccac gagatggaaa gctgcctgag cggcaacatc | 1080 |

agccagtgcc ccagaaccac cgtgacctcc gacatcgtgc ccagatacge cttcgtgaat 1140
ggcggcgtgg tggccaactg catcaccacc acctgtacct gcaacggcat cggcaaccgg 1200
atcaaccagc ctcccgatca gggcgtgaag attatcaccc acaaagagtg taacaccatc 1260
ggcatcaacg gcatgctgtt caataccaac aaagagggca ccctggcett ctacaccccc 1320
gacgatatca ccctgaacaa ctccgtggct ctggacccea tcgacatctc catcgagctg 1380
aacaaggcca agagcgacct ggaagagtcc aaagagtgga tccggcggag caaccagaag ctggactcta teggcagctg gcaccagagc agcaccacca tcatcgtgat cotgattatg

atgattatcc tgttcatcat caacattacc atcatcacta tcgccattaa gtactaccgg	1560
atccagaaac ggaaccgggt ggaccagat gacaagccet acgtgctgac aacaag	1617

$<210>$ SEQ ID NO 13
$<211>$ LENGTH: 539
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Human parainfluenza virus 3
$<400>$ SEQUENCE: 13


$<210>$ SEQ ID NO 14
$<211>$ LENGTH: 572
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Human parainfluenza virus 3
$<400>$ SEQUENCE: 14


$<210>$ SEQ ID NO 15
$<211>$ LENGTH: 20
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
<223> OTHER INFORMATION: Synthetic Polypeptide
<400> SEQUENCE: 15
Met Glu Thr Pro Ala Gln Leu Leu Phe Leu Leu Leu Leu Trp Leu Pro

1
5

Asp Thr Thr Gly
$<210>$ SEQ ID NO 16
$<211>$ LENGTH: 18
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polypeptide
$<400>$ SEQUENCE: 16
Met Asp Trp Thr Trp Ile Leu Phe Leu Val Ala Ala Ala Thr Arg Val
1

His Ser
$<210>$ SEQ ID NO 17
$<211>$ LENGTH: 24
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polypeptide
$<400>$ SEQUENCE: 17

$<210>$ SEQ ID NO 18
$<211>$ LENGTH: 17
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polypeptide
$<400>$ SEQUENCE: 18
Met Lys Cys Leu Leu Tyr Leu Ala Phe Leu Phe Ile Gly Val Asn Cys

L
I

Ala
$<210>$ SEQ ID NO 19
$<211>$ LENGTH: 15
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polypeptide
$<400>$ SEQUENCE: 19

Me1	Th
	0

$<210>$ SEQ ID NO 20
$<211>$ LENGTH: 4062
$<212>$ TYPE : DNA
$<213>$ ORGANISM: Middle East respiratory syndrome coronavirus
$<400>$ SEQUENCE: 20
-continued

gtagggccag attctgttaa gtctgcttgt attgaggttg atatacaaca gas	120
gataaaactt ggcctaggce aattgatgtt tctaaggctg acggtattat ataccctcaa	180
ggccgtacat attctaacat aactatcact tatcaaggtc tttttcceta tcagggagac	240
catggtgata tgtatgttta ctctgcagga catgctacag gcacaactcc acaaaagttg	300
tttgtagcta actattctca ggacgtcaaa cagtttgcta atgggtttgt cgtccgtata	360
ggagcagctg ccaattccac tggcactgtt attattagce catctaccag cgctactata	420
cgaaaattt accetgcttt tatgctgggt tcttcagttg gtaatttctc agatggtaaa	480
atgggcogct tcttcaatca tactctagtt cttttgccog atggatgtgg cactttactt	540
agagcttttt attgtattct agagcetcge tctggaaatc attgtcetgc tggcaattcc	600
tatacttctt ttgccactta tcacactcct gcaacagatt gttctgatgg caattacaat	660
cgtaatgcca gtctgaactc ttttaaggag tattttaatt tacgtaactg cacctttatg	720
tacacttata acattaccga agatgagatt ttagagtggt ttggcattac acaaactgct	780
caaggtgttc acctcttctc atctcggtat gttgatttgt acggcggcaa tatgtttcaa	840
tttgccacct tgcetgttta tgatactatt aagtattatt ctatcattcc tcacagtatt	900
cgttctatcc aaagtgatag aaaagcttgg gctgccttct acgtatataa acttcaaccg	960
ttaactttcc tgttggattt ttctgttgat ggttatatac gcagagctat agactgtggt	1020
tttaatgatt tgtcacaact ccactgctca tatgaatcet tcgatgttga atctggagtt	1080
tattcagttt cgtctttcga agcaaaacct tctggctcag ttgtggaaca ggctgaaggt	1140
gttgaatgtg atttttcacc tcttctgtct ggcacacctc ctcaggttta taatttcaag	1200
cgtttggttt ttaccaattg caattataat cttaccaaat tgctttcact tttttctgtg	1260
aatgatttta cttgtagtca aatatctcca gcagcaattg ctagcaactg ttattcttca	1320
gattttgg attattttc atacccactt agtatgaat cogatctcag tgttagttct	1380
gctggtccaa tatcccagtt taattataaa cagtcotttt ctaatccoac atgtttgatc	1440
ttagcgactg ttcctcataa ccttactact attactaagc ctcttaagta cagctatatt	1500
aacaagtgct ctcgtcttct ttctgatgat cgtactgaag tacctcagtt agtgaacgct	1560
aatcaatact caccotgtgt atccattgtc ccatccactg tgtgggaaga cggtgattat	1620
tataggaaac aactatctcc acttgaaggt ggtggctggc ttgttgctag tggctcaact	1680
gttgccatga ctgagcaatt acagatgggc tttggtatta cagttcaata tggtacagac	1740
accaatagtg tttgccecaa gcttgaattt gctaatgaca caaaaattgc ctctcaatta	1800
ggcaattgcg tggaatattc cotctatggt gtttcgggce gtggtgtttt tcagaattgc	1860
acagctgtag gtgttcgaca gcagcgcttt gtttatgatg cgtaccagaa tttagttggc	1920
tattattctg atgatggcaa ctactactgt ctgcgtgctt gtgttagtgt tcctgtttct	1980
gtcatctatg ataaagaaac taaaacceac gctactctat ttggtagtgt tgcatgtgaa	2040
cacatttctt ctaccatgtc tcaatactec cgttctacge gatcaatgct taaacggega	2100
gattctacat atggceccet tcagacacct gttggttgtg toctaggact tgttaattcc	2160
tetttgttcg tagaggactg caagttgect ctcggtcaat ctctctgtgc tcttcctgac	2220
acacctagta ctctcacacc tcgcagtgtg cgctctgtgc caggtgaaat gcgettggca	2280
tecattgett ttaatcatce cattcaggtt gatcaactta atagtagtta ttttaaatta	2340
agtataccca ctaatttte ctttggtgtg actcaggagt acattcagac aaccattcag	2400
aagttactg ttgattgtaa acagtacgtt tgcaatggtt tccagaagtg tgagcaatta	2460


-continued


gttaatatgg	aagcegcgta	tacttcatct	ttgcttggca gcatagcagg	tgttggctgg	2880
actgctggct	tatcetcctt	tgctgctatt	ccatttgcac agagtatctt	ttataggtta	2940
aacggtgttg	gcattactca	acaggttctt	tcagagaacc aaaagcttat	tgceaat aag	3000
tttaatcagg	ctctgggagc	tatgcaaaca	ggcttcacta caactaatga	agcttttcag	3060
aaggttcagg	atgctgtgaa	caacaatgca	caggctctat ccaaattagc	tagcgagcta	3120
tetaatactt	ttggtgctat	ttccgcetct	ttggagaca tcatacaacg	tcttgatgtt	3180
ctcgaacagg	acgcccaaat	agacagactt	attaatggce gtttgacaac	actaaatgct	3240
tttgttgcac	agcagcttgt	tcgttccgaa	tcagctgctc tttccgetca	attggctaaa	3300
gataaagtca	atgagtgtgt	caaggcacaa	tccaagcgtt ctggattttg	cggtcaaggc	3360
acacatatag	tgtcctttgt	tgtaaatgcc	ctaatggec tttacttcat	gcatgttggt	3420
tattacccta	gcaaccacat	tgaggttgtt	ctgcttatg gtctttgcga	tgcagctaac	3480
cctactaatt	gtatagcccc	tgttaatggc	actttatta aaactaataa	cactaggatt	3540
gttgatgagt	ggtcatatac	tggctcgtcc	ttctatgcac ctgagcceat	tacctccett	3600
aatactaagt	atgttgcacc	acaggtgaca	taccaaaaca tttctactaa	cetccetcct	3660
cctcttcteg	gcaattccac	cgggattgac	tccaagatg agttggatga	gtttttcaaa	3720
aatgttagca	ccagtatacc	taattttggt	ccctaacac agattaatac	tacattactc	3780
gatcttacct	acgagatgtt	gtctcttcaa	caagttgtta aagccettaa	tgagtcttac	3840
atagacctta	aagagcttgg	caattatact	tattacaaca aatggcegtg	gtacatttgg	3900
cttggtttca	ttgctgggct	tgttgcetta	gctetatgcg tettcttcat	actgtgctgc	3960
actggttgtg	gcacaaactg	tatgggaaaa	cttaagtgta atcgttgttg	tgatagatac	4020
gaggaatacg	acctcgagce	gcataaggtt	catgttcact aa		4062

$<210>$ SEQ ID NO 22
$<211>$ LENGTH: 1845
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 22

-continued

gctatccoct	ttgcacaatc	cattttctac	cggctcaacg	gcgtgggcat	actcaacaa	840
gtcctgtcgg	agaaccagaa	gttgatcgca	aacaagttca	atcaggccet	gggggccatg	900
cagactggat	tcactacgac	taacgaagcg	ttccagaagg	tccaggacgc	tgtgaacaac	960
aacgcceagg	cgctctcaaa	gctggectcc	gaactcagca	acaccttcgg	agccatcagc	1020
gcatcgatcg	gtgacataat	tcagcggctg	gacgtgctgg	agcaggacgc	ccagatcgac	1080
cgectcatca	acggacgget	gaccaccttg	aatgecttcg	tggcacaaca	gctggtccgg	1140
agcgaatcag	cggcactttc	cgeccaactc	gccaaggaca	aagtcaacga	atgegtgaag	1200
gcecagtcoa	agaggtccgg	tttctgcggt	aaggaaccc	atattgtgtc	cttcgtcgtg	1260
aacgcgccca	acggtctgta	ctttatgcac	gtcggctact	accogagcaa	tcatatcgaa	1320
gtggtgtcog	cctacggcet	gtgcgatgcc	gctaacceca	ctaactgtat	tgcccetgtg	1380
aacggatatt	ttattaagac	caacaacacc	cgcattgtgg	acgaatggtc	atacaccggt	1440
tegtcettct	acgcgccoga	gcccatcact	tcactgaaca	ccaaatacgt	ggctcogcaa	1500
gtgacctacc	agaacatctc	caccaatttg	cgcogccgc	tgctcggaaa	cagcaccgga	1560
attgatttcc	aagatgaact	ggacgaattc	ttcaagaacg	tgtccacttc	cattcccaac	1620
ttcggaagce	tgacacagat	caacaccacc	cttctcgacc	tgacctacga	gatgctgagc	1680
cttcaacaag	tggtcaaggc	cctgaacgag	agctacatcg	acctgaagga	gctgggcaac	1740
tatacctact	acaacaagtg	gccggacaag	attgaggaga	ttctgtcgaa	aatctaccac	1800
attgaaaacg	agatcgccag	aatcaagaag	cttatcggcg	aagcc		1845




tgtggccagg	gcacccacat cgtgtccttc gtcgtgaatg	cccccaacgg cotgtacttt	3420
atgcacgtgg	gctattaccc cagcaaccac atcgaggtgg	tgtccgccta tggcetgtgc	3480
gacgccgcca	atcctaccaa ctgtatcgcc cccgtgaacg	gctacttcat caagaccaac	3540
aacacccgga	tcgtggacga gtggtcctac acaggcagca	gcttctacge cccogagcec	3600
atcacctccc	tgaacaccaa atacgtggce ceccaagtga	ataccagaa catctccacc	3660
aacctgcccc	ctccactgct gggaaattcc accggcatcg	acttccagga cgagctggac	3720
gagttcttca	agaacgtgtc cacctccatc cccaacttcg	gcagcetgac ccagatcaac	3780
accactctgc	tggacctgac ctacgagatg ctgtcoctgc	aacaggtcgt gaaagcectg	3840
aacgagagct	acatcgacct gaaagagctg gggaactaca	ctactacaa caagtggcet	3900
tggtacattt	ggctgggett tatcgccggc ctggtggccc	tggcectgtg cgtgttcttc	3960
atcetgtget	gcaccggctg cggcaccaat tgcatgggca	agctgaaatg caaccggtgc	4020
tgcgacagat	cgaggaata cgacctggaa cctcacaaag	gcatgtgca c	4071

$<210>$ SEQ ID NO 24
$<211>$ LENGTH: 1353
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Middle East respiratory syndrome coronavirus
$<400>$ SEQUENCE: 24




$<210>$ SEQ ID NO 25
$<211>$ LENGTH: 1353
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: SYnthetic Polypeptide
$<400>$ SEQUENCE: 25





1325	1330	1335
Arg Tyr Glu Glu Tyr Asp Leu Glu Pro His Lys Val His Val His		
1340		

$<210>$ SEQ ID NO 26
$<211>$ LENGTH: 615
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polypeptide
$<400>$ SEQUENCE: 26


$<210>$ SEQ ID NO 27
$<211>$ LENGTH: 1353
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Middle East respiratory syndrome coronavirus
$<400>$ SEQUENCE: 27




Arg Tyr Glu Glu Tyr Asp Leu

$\mathbf{1 3 4 0}$ Glu Pro His Lys Val | 1345 |
| :--- | His Val His

$<210>$ SEQ ID NO 28
$<211>$ LENGTH: 1353
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Middle East respiratory syndrome coronavirus
$<400>$ SEQUENCE: 28

$\begin{aligned} & \text { Met } \\ & 1 \end{aligned}$			Ser	$\begin{aligned} & \text { Val } \\ & 5 \end{aligned}$					$\begin{aligned} & \text { Phe } \\ & 10 \end{aligned}$					$\begin{aligned} & \text { Thr } \\ & 15 \end{aligned}$	,
Ser	TYr	Val	$\begin{aligned} & \text { Asp } \\ & 20 \end{aligned}$	Val	Gly	Pro	Asp	$\begin{aligned} & \text { Ser } \\ & 25 \end{aligned}$	Val	Lys	Ser	Ala	$\begin{aligned} & \text { Cys } \\ & 30 \end{aligned}$	Ile	Glu
Val	Asp	Ile 35	Gln	Gln	Thr	Phe	Phe   40	Asp	Lys	Thr	Trp	$\begin{aligned} & \text { Pro } \\ & 45 \end{aligned}$	Arg	Pro	Ile
Asp	$\begin{aligned} & \mathrm{Val} \\ & 50 \end{aligned}$	Ser	Lys	$1 a$	Asp	$\begin{aligned} & \text { Gly } \\ & 55 \end{aligned}$	Ile	Ile	Tyr	Pro	$\begin{aligned} & \mathrm{Gln} \\ & 60 \end{aligned}$	Gly	Arg	Thr	Tyr
$\begin{aligned} & \text { Ser } \\ & 65 \end{aligned}$	Asn	Ile	Thr	Ile	$\begin{aligned} & \text { Thr } \\ & 70 \end{aligned}$	Tyr	Gln	Gly	Leu	$\begin{aligned} & \text { Phe } \\ & 75 \end{aligned}$	Pro	TYr	Gln	Gly	$\begin{aligned} & \text { Asp } \\ & 80 \end{aligned}$
His	Gly	Asp	Met	$\begin{aligned} & \text { Tyr } \\ & 85 \end{aligned}$	Val	Tyr	Ser	1 a	$\begin{aligned} & \text { Gly } \\ & 90 \end{aligned}$	His	Ala	Thr	Gly	$\begin{aligned} & \text { Thr } \\ & 95 \end{aligned}$	Thr
Pro	Gln	Lys	$\begin{aligned} & \text { Leu } \\ & 100 \end{aligned}$	Phe	Val	1 a	Sn	$\begin{aligned} & \text { Tyr } \\ & 105 \end{aligned}$	Ser	Gln	Asp	al	$\begin{aligned} & \text { Lys } \\ & 110 \end{aligned}$	Gln	Phe
Ala	Asn	$\begin{aligned} & \text { Gly } \\ & 115 \end{aligned}$	Phe	Val	Val	$A r g$	$\begin{aligned} & \text { Ile } \\ & 120 \end{aligned}$	Gly	Ala	Ala	Ala	$\begin{aligned} & \text { Asn } \\ & 125 \end{aligned}$	Ser	Thr	Gly
Thr	$\begin{aligned} & \mathrm{Val} \\ & 130 \end{aligned}$	Ile	Ile	er	ro	$\begin{aligned} & \text { Ser } \\ & 135 \end{aligned}$	ar	er	a	hr	$\begin{aligned} & \text { Ile } \\ & 140 \end{aligned}$	$r g$	Lys	Ile	TYr
$\begin{aligned} & \text { Pro } \\ & 145 \end{aligned}$	Ala	Phe	Met	Leu	$\begin{aligned} & \text { Gly } \\ & 150 \end{aligned}$	Ser	Ser	Val	Gly	$\begin{aligned} & \text { Asn } \\ & 155 \end{aligned}$	Phe	Ser	Asp	Gly	Lys 160
Met	Gly	Arg	e	$\begin{aligned} & \text { Phe } \\ & 165 \end{aligned}$	Asn	is	hr	Leu	$\begin{aligned} & \text { Val } \\ & 170 \end{aligned}$	Leu	Leu	ro	Asp	$\begin{aligned} & \text { Gly } \\ & 175 \end{aligned}$	Cys
Gly	Thr	Leu	$\begin{aligned} & \text { Leu } \\ & 180 \end{aligned}$	Arg	Ala	Phe	Tyr	$\begin{aligned} & \text { Cys } \\ & 185 \end{aligned}$	Ile	Leu	Glu	ro	$\begin{aligned} & \text { Arg } \\ & 190 \end{aligned}$	ser	Gly
Asn	His	$\begin{aligned} & \text { Cys } \\ & 195 \end{aligned}$	Pro	Ala	Gly	Asn	$\begin{aligned} & \text { Ser } \\ & 200 \end{aligned}$	Tyr	Thr	Ser	Phe	$\begin{aligned} & \text { Ala } \\ & 205 \end{aligned}$	Thr	TYr	His
Thr	$\begin{aligned} & \text { Pro } \\ & 210 \end{aligned}$	Ala	Thr	Asp	Cys	$\begin{aligned} & \text { Ser } \\ & 215 \end{aligned}$	sp	Gly	sn	Tyr	$\begin{aligned} & \text { Asn } \\ & 220 \end{aligned}$	Arg	Asn	Ala	Ser
$\begin{aligned} & \text { Leu } \\ & 225 \end{aligned}$	Asn	Ser	e	ys	$\begin{aligned} & \text { Glu } \\ & 230 \end{aligned}$	Tyr	e	sn	eu	$\begin{aligned} & \text { Arg } \\ & 235 \end{aligned}$	Asn	Ys	Thr	Phe	$\begin{aligned} & \text { Met } \\ & 240 \end{aligned}$
Tyr	Thr	TYr	$n$	$\begin{aligned} & \text { Ile } \\ & 245 \end{aligned}$	Thr	ilu	sp	Glu	$\begin{aligned} & \text { Ile } \\ & 250 \end{aligned}$	Leu	Glu	Trp	Phe	$\begin{aligned} & \text { Gly } \\ & 255 \end{aligned}$	Ile
Thr	Gln	rr	$\begin{aligned} & \text { Ala } \\ & 260 \end{aligned}$	Gln	Gly	al	is	$\begin{aligned} & \text { Leu } \\ & 265 \end{aligned}$	Phe	Ser	Ser	Arg	$\begin{aligned} & \text { TYr } \\ & 270 \end{aligned}$	Val	Asp
Leu	TYr	$\begin{aligned} & \text { Gly } \\ & 275 \end{aligned}$	Gly	Asn	Met	Phe	$\begin{aligned} & \mathrm{Gln} \\ & 280 \end{aligned}$	Phe	Ala	Thr	Leu	$\begin{aligned} & \text { Pro } \\ & 285 \end{aligned}$	Val	TYr	Asp
Thr	$\begin{aligned} & \text { Ile } \\ & 290 \end{aligned}$	Lys	Tyr	Tyr	er	$\begin{aligned} & \text { Ile } \\ & 295 \end{aligned}$	Ile	ro	is	er	$\begin{aligned} & \text { Ile } \\ & 300 \end{aligned}$	Arg	Ser	Ile	Gln
$\begin{aligned} & \text { Ser } \\ & 305 \end{aligned}$	Asp	Arg	Lys	Ala	$\begin{aligned} & \operatorname{Trp} \\ & 310 \end{aligned}$	$1 a$	la	he	Tyr	$\begin{aligned} & \text { Val } \\ & 315 \end{aligned}$	Tyr	Lys	Leu	Gln	$\begin{aligned} & \text { Pro } \\ & 320 \end{aligned}$
Leu	Thr	Phe	Leu	$\begin{aligned} & \text { Leu } \\ & 325 \end{aligned}$	Asp	Phe	Ser	Val	$\begin{aligned} & \text { Asp } \\ & 330 \end{aligned}$	Gly	Tyr	Ile	Arg	$\begin{aligned} & \text { Arg } \\ & 335 \end{aligned}$	Ala
Ile	Asp	Cys	$\begin{aligned} & \text { Gly } \\ & 340 \end{aligned}$	Phe	Asn	Asp	Leu	$\begin{aligned} & \text { Ser } \\ & 345 \end{aligned}$	Gln	Leu	His	Cys	$\begin{aligned} & \text { Ser } \\ & 350 \end{aligned}$	TYr	Glu
Ser	Phe	$\begin{aligned} & \text { Asp } \\ & 355 \end{aligned}$	Val	Glu	Ser		$\begin{aligned} & \text { Val } \\ & 360 \end{aligned}$	Tyr	Ser	Val	Ser	$\begin{aligned} & \text { Ser } \\ & 365 \end{aligned}$	Phe		Ala




	1190		1195				1200	
Tyr	$\begin{aligned} & \text { Val } \\ & 1205 \end{aligned}$	Ala Pro His Val	$\begin{aligned} & \text { Thr } \\ & 1210 \end{aligned}$	Tyr	Gln	Asn Ile	$\begin{aligned} & \text { Ser } \\ & 1215 \end{aligned}$	Thr Asn Leu
Pro	$\begin{aligned} & \text { Pro } \\ & 1220 \end{aligned}$	Pro Leu Leu Gly	Asn   1225	Ser	Thr	Gly Ile	Asp   1230	Phe Gln Asp
Glu	$\begin{aligned} & \text { Leu } \\ & 1235 \end{aligned}$	Asp Glu Phe Phe	$\begin{aligned} & \text { Lys } \\ & 1240 \end{aligned}$	Asn	Val	Ser Thr	$\begin{aligned} & \text { Ser } \\ & 1245 \end{aligned}$	Ile Pro Asn
Phe	$\begin{aligned} & \text { Gly } \\ & 1250 \end{aligned}$	Ser Leu Thr Gln	$\begin{aligned} & \text { Ile } \\ & 1255 \end{aligned}$	Asn	Thr	Thr Leu	$\begin{aligned} & \text { Leu } \\ & 1260 \end{aligned}$	Asp Leu Thr
Tyr	$\begin{aligned} & \text { Glu } \\ & 1265 \end{aligned}$	Met Leu Ser Leu	$\begin{aligned} & \text { Gln } \\ & 1270 \end{aligned}$	Gln	Val	Val Lys	$\begin{aligned} & \text { Ala } \\ & 1275 \end{aligned}$	Leu Asn Glu
Ser	$\begin{aligned} & \text { Tyr } \\ & 1280 \end{aligned}$	Ile Asp Leu Lys	$\begin{aligned} & \text { Glu } \\ & 1285 \end{aligned}$	Leu	Gly	Asn Tyr	$\begin{aligned} & \text { Thr } \\ & 1290 \end{aligned}$	Tyr Tyr Asn
Lys	$\begin{aligned} & \text { Trp } \\ & 1295 \end{aligned}$	Pro Trp Tyr Ile	$\begin{aligned} & \text { Trp } \\ & 1300 \end{aligned}$	Leu	Gly	Phe Ile	$\begin{aligned} & \text { Ala } \\ & 1305 \end{aligned}$	Gly Leu Val
Ala	$\begin{aligned} & \text { Leu } \\ & 1310 \end{aligned}$	Ala Leu Cys Val	Phe 1315	Phe	Ile	Leu Cys	$\begin{aligned} & \text { Cys } \\ & 1320 \end{aligned}$	Thr Gly Cys
Gly	$\begin{aligned} & \text { Thr } \\ & 1325 \end{aligned}$	Asn Cys Met Gly	Lys $1330$	Leu	Lys	Cys Asn	Arg   1335	Cys Cys Asp
Arg	$\begin{aligned} & \text { Tyr } \\ & 1340 \end{aligned}$	Glu Glu Tyr Asp	$\begin{aligned} & \text { Leu } \\ & 1345 \end{aligned}$	Glu	Pro	His Lys	$\begin{aligned} & \text { Val } \\ & 1350 \end{aligned}$	His Val His

$<210>$ SEQ ID NO 29
$<211>$ LENGTH: 1255
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Human SARS coronavirus
$<400>$ SEQUENCE: 29




Glu	Arg   1055	Asn		Thr	Thr	$\begin{aligned} & \text { Ala } \\ & 1060 \end{aligned}$	Pro	Ala	Ile	Cys	His   1065		Gly	Lys
Ala	$\begin{aligned} & \text { Tyr } \\ & 1070 \end{aligned}$	Phe	Pro	Arg	Glu	$\begin{aligned} & \text { Gly } \\ & 1075 \end{aligned}$	Val	Phe		Phe	$\begin{aligned} & \text { Asn } \\ & 1080 \end{aligned}$	Gly	Thr	Ser
Trp	Phe   1085	Ile	Thr	Gln	Arg	Asn $1090$	Phe	Phe	Ser	Pro	$\begin{aligned} & \text { Gln } \\ & 1095 \end{aligned}$	Ile	Ile	Thr
Thr	Asp   1100	Asn	Thr	Phe	Val	$\begin{aligned} & \text { Ser } \\ & 1105 \end{aligned}$	Gly	Asn	Cys	Asp	$\begin{aligned} & \text { Val } \\ & 1110 \end{aligned}$	Val	Ile	Gly
Ile	$\begin{aligned} & \text { Ile } \\ & 1115 \end{aligned}$	Asn	Asn	Thr	Val	$\begin{aligned} & \text { Tyr } \\ & 1120 \end{aligned}$	Asp	Pro	Leu	Gln	$\begin{aligned} & \text { Pro } \\ & 1125 \end{aligned}$	Glu	Leu	Asp
Ser	$\begin{aligned} & \text { Phe } \\ & 1130 \end{aligned}$	Lys	Glu.	Glu	Leu	Asp   1135	Lys	TYr	Phe	Lys	Asn   1140	His	Thr	Ser
Pro	Asp   1145	Val	Asp	Leu	Gly	Asp $1150$	Ile	Ser	Gly	Ile	$\begin{aligned} & \text { Asn } \\ & 1155 \end{aligned}$	Ala	Ser	Val
Val	Asn   1160	Ile	Gln	Lys	Glu	$\begin{aligned} & \text { Ile } \\ & 1165 \end{aligned}$	Asp	Arg	Leu	Asn	$\begin{aligned} & \text { Glu } \\ & 1170 \end{aligned}$	Val	Ala	Lys
Asn	Leu $1175$	Asn	Glu	Ser	Leu	$\begin{aligned} & \text { Ile } \\ & 1180 \end{aligned}$	Asp	Leu	$\mathrm{Gln}$	Glu	$\begin{aligned} & \text { Leu } \\ & 1185 \end{aligned}$	Gly	Lys	Tyr
Glu	$\begin{aligned} & \text { Gln } \\ & 1190 \end{aligned}$	TYr	Ile	LYs	Trp	$\begin{aligned} & \text { Pro } \\ & 1195 \end{aligned}$	Trp	TYr	Val	$\operatorname{Trp}$	$\begin{aligned} & \text { Leu } \\ & 1200 \end{aligned}$	Gly	Phe	Ile
Ala	$\begin{aligned} & \text { Gly } \\ & 1205 \end{aligned}$	Leu	Ile	Ala	Ile	$\begin{aligned} & \text { Val } \\ & 1210 \end{aligned}$	Met	Val	Thr	Ile	Leu $1215$	Leu	Cys	Cys
Met	$\begin{aligned} & \text { Thr } \\ & 1220 \end{aligned}$	Ser	Cys	Cys	Ser	$\begin{aligned} & \text { Cys } \\ & 1225 \end{aligned}$	Leu	Lys	Gly	Ala	$\begin{aligned} & \text { Cys } \\ & 1230 \end{aligned}$	Ser	Cys	Gly
Ser	$\begin{aligned} & \text { Cys } \\ & 12.35 \end{aligned}$	Cys	Lys	Phe	Asp	$\begin{aligned} & \text { Glu } \\ & 1240 \end{aligned}$	Asp	Asp	Ser	Glu	$\begin{aligned} & \text { Pro } \\ & 1245 \end{aligned}$	Val	Leu	Lys
Gly	$\begin{aligned} & \text { Val } \\ & 1250 \end{aligned}$	Lys	Leu	His	Tyr	$\begin{aligned} & \text { Thr } \\ & 1255 \end{aligned}$								

$<210>$ SEQ ID NO 30
$<211>$ LENGTH: 1353
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Human coronavirus
$<400>$ SEQUENCE: 30




$<210>$ SEQ ID NO 31
$<211>$ LENGTH: 1351
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Human coronavirus
$<400>$ SEQUENCE: 31




$<210>$ SEQ ID NO 32
$<211>$ LENGTH: 526
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polypeptide
$<400>$ SEQUENCE: 32


$<210>$ SEQ ID NO 33
$<211>$ LENGTH: 588
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polypeptide
$<400>$ SEQUENCE: 33



$<210>$ SEQ ID NO 34
$<211>$ LENGTH: 526
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polypeptide
$<400>$ SEQUENCE: 34


$<210>$ SEQ ID NO 35
$<211>$ LENGTH: 1864
$<212>$ TYPE : DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 35
tcaagctttt ggaccetcgt acagaagcta atacgactca ctatagggaa ataagagaga 60
aaagaagagt aagaagaaat ataagagcca ccatgggtct caaggtgaac gtctctgceg 120
tattcatggc agtactgtta actctccaaa cacccgccgg tcaaattcat tggggcaatc 180
tctctaagat aggggtagta ggaataggaa gtgcaagcta caaagttatg actcgttcca 240
gccatcaatc attagtcata aaattaatgc ccaatataac tctcctcaat aactgcacga 300
gggtagagat tgcagaatac aggagactac taagaacagt tttggaacca attagggatg 360
cacttaatgc aatgacccag aacataaggc cggttcagag cgtagcttca agtaggagac 420
acaagagatt tgcgggagta gtcetggcag gtgcggcect aggtgttgce acagctgctc 480
agataacagc cggcattgca cttcaccggt ccatgctgaa ctctcaggec atcgacaatc 540
tgagagcgag cctggaaact actaatcagg caattgaggc aatcagacaa gcagggcagg 600
agatgatatt ggctgttcag ggtgtccaag actacatcaa taatgagctg ataccgtcta 660
tgaaccagct atcttgtgat ctaatcggtc agaagctcgg getcaaattg cttagatact 720
-continued

$<210>$ SEQ ID NO 36
$<211>$ LENGTH: 1653
$<212>$ TYPE : DNA
$<213>$ ORGANISM: Artificial sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 36


ggggtctcgt acaacatagg ctctcaagag tggtatacca ctgtgcceaa gtatgttgca	960
acccaagggt accttatctc gaattttgat gagtcatcat gtactttcat gccagagggg	1020
actgtgtgca gccaaaatgc cttgtacceg atgagtcctc tgctccaaga atgcctccgg	1080
gggtccacca agtcctgtgc tcgtacactc gtatccgggt cttttgggaa coggttcatt	1140
ttatcacaag ggaacctaat agccaattgt gcatcaattc tttgtaagtg ttacacaaca	1200
ggtacgatta ttaatcaaga ccctgacaag atcctaacat acattgctgc cgatcgctgc	1260
ceggtagtcg aggtgaacgg cgtgaccatc caagtcggga gcaggaggta tccagacgct	1320
gtgtacttgc acagaattga cetcggtcct cccatatcat tggagaggtt ggacgtaggg	1380
acaaatctgg ggaatgcaat tgccaaattg gaggatgcca aggaattgtt ggaatcatcg	1440
gaccagatat tgagaagtat gaaaggttta tcgagcacta gcatagtcta catcctgatt	1500
gcagtgtgtc ttggagggtt gatagggatc cccactttaa tatgttgctg cagggggcgt	1560
tgtaacaaaa agggagaaca agttggtatg tcaagaccag gcctaaagce tgaccttaca	1620
ggaacatcaa aatcctatgt aagatcgett tga	1653
<210> SEQ ID NO 37	
<211> LENGTH: 1925	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE : 37	
ggggaaataa gagagaaaag aagagtaaga agaaatataa gagccaccat gggtctcaag	60
gtgaacgtct ctgccgtatt catggcagta ctgttaactc tccaaacacc cgcoggtcaa	120
attcattggg gcaatctctc taagataggg gtagtaggaa taggaagtgc aagctacaaa	180
gttatgacte gttccagcea tcaatcatta gtcataaat taatgcecaa tataactctc	240
ctcaataact gcacgagggt agagattgca gaatacagga gactactaag aacagttttg	300
gaaccaatta gggatgcact taatgcaatg acccagaaca taaggccggt tcagagcgta	360
gcttcaagta ggagacacaa gagatttgcg ggagtagtcc tggcaggtgc ggcectaggt	420
gttgccacag ctgctcagat aacagccggc attgcacttc accggtccat gctgaactet	480
caggccatcg acaatctgag agcgagcetg gaaactacta atcaggcaat tgaggcaatc	540
agacaagcag ggcaggagat gatattgget gttcagggtg tccaagacta catcaataat	600
gagctgatac cgtctatgaa ccagctatct tgtgatctaa toggtcagaa gctegggctc	660
aattgctta gatactatac agaaatcctg tcattatttg gceccagcet acgggaccoc	720
atatctgcgg agatatctat ccaggctttg agttatgcac ttggaggaga tatcaataag	780
gtgttagaaa agctcggata cagtggaggc gatttactag gcatcttaga gagcagagga	840
ataaggctc ggataactca cgtcgacaca gagtcctact tcatagtcct cagtatagce	900
tatccgacge tgtccgagat taagggggtg attgtccacc ggctagaggg ggtetcgtac	960
aacataggct ctcaagagtg gtataccact gtgcceaagt atgttgcaac ccaagggtac	1020
cttatctcga attttgatga gtcatcatgt actttcatgc cagaggggac tgtgtgcagc	1080
caaatgcct tgtaccogat gagtcctctg ctccaagaat gcctccgggg gtccaccaag	1140
tcetgtgcte gtacactegt atcogggtet tttgggaacc ggttcatttt atcacaaggg	1200
aacctaatag ccaattgtgc atcaattctt tgtaagtgtt acacaacagg tacgattatt	1260

-continued


$<210>$ SEQ ID NO 39
$<211>$ LENGTH: 1653
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 39

atgggtctca aggtgaacgt ctctgtcata ttcatggcag tactgttaac tcttcaaaca	60
cccaccggtc aaatccattg gggcaatctc tctaagatag gggtggtagg ggtaggaagt	120
gcaagctaca aagttatgac tcgttccagc catcaatcat tagtcataaa gttaatgccc	180
aatataactc tcctcaacaa ttgcacgagg gtagggattg cagaatacag gagactactg	240

gttcagagtg tagcttcaag taggagacac aagagatttg cgggagttgt cetggcaggt 360
gcggccetag gcgttgccac agctgctcaa ataacagceg gtattgcact tcaccagtcc 420
atgctgaact ctcaagccat cgacaatctg agagcgagce tagaaactac taatcaggca 480
attgaggcaa tcagacaagc agggcaggag atgatattgg ctgttcaggg tgtccaagac 540
tacatcaata atgagctgat accgtctatg aatcaactat cttgtgattt aatcggccag 600
aagctagggc tcaaattgct cagatactat acagaaatcc tgtcattatt tggccccagc 660
ttacgggacc ccatatctgc ggagatatct atccaggctt tgagctatgc gcttggagga 720
gatatcaata aggtgttgga aaagctcgga tacagtggag gtgatctact gggcatctta 780
gagagcagag gaataaagge coggataact cacgtcgaca cagagtceta cttcattgta 840
ctcagtatag cotatcogac gctatcogag attaaggggg tgattgtcca coggctagag 900
ggggtctcgt acaacatagg ctctcaagag tggtatacca ctgtgcccaa gtatgttgca 960


gcagtgtgtc ttggaggatt gatagggatc cccgctttaa tatgttgctg cagggggcgt	1560
tgtaacaaga agggagaaca agttggtatg tcaagaccag gcctaaagcc tgatcttaca	1620
ggaacatcaa aatcctatgt aaggtcactc tga	1653

$<210>$ SEQ ID NO 40
$<211>$ LENGTH: 1925
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 40
ggggaaataa gagagaaaag aagagtaaga agaaatataa gagccaccat gggtctcaag 60
gtgaacgtct ctgtcatatt catggcagta ctgttaactc ttcaaacacc caccggtcaa 120
atccattggg gcaatctctc taagataggg gtggtagggg taggaagtgc aagctacaaa 180
gttatgactc gttccagcca tcaatcatta gtcataaagt taatgcccaa tataactctc 240
ctcaacaatt gcacgagggt agggattgca gaatacagga gactactgag aacagttctg 300
gaaccaatta gagatgcact taatgcaatg acccagaata taagaccggt tcagagtgta 360
gettcaagta ggagacacaa gagatttgcg ggagttgtcc tggcaggtgc ggecetaggc 420
gttgccacag ctgctcaaat aacagccggt attgcacttc accagtccat gctgaactct 480
caagccatcg acaatctgag agcgagccta gaaactacta atcaggcaat tgaggcaatc 540
agacaagcag ggcaggagat gatattgget gttcagggtg tccaagacta catcaataat 600
gagctgatac cgtctatgaa tcaactatct tgtgatttaa tcggccagaa gctagggctc 660
aattgctca gatactatac agaaatcetg tcattatttg gccccagctt acgggaccec 720
atatctgcgg agatatctat ccaggctttg agctatgcgc ttggaggaga tatcaataag 780
gtgttggaaa agctcggata cagtggaggt gatctactgg gcatcttaga gagcagagga 840
ataaaggcce ggataactca cgtcgacaca gagtcctact tcattgtact cagtatagcc 900
tatccgacge tatccgagat taagggggtg attgtccacc ggctagaggg ggtctcgtac 960
aacataggct ctcaagagtg gtataccact gtgcccaagt atgttgcaac ccaagggtac 1020
cttatctcga attttgatga gtcatcatgc actttcatgc cagaggggac tgtgtgcagc 1080
cagaatgcct tgtacccgat gagtcctctg ctccaagaat gcctccgggg gtccactaag 1140
tcctgtgctc gtacactcgt atccgggtct ttcgggaacc ggttcatttt atcacagggg 1200
aacctaatag ccaattgtgc atcaatcctt tgcaagtgtt acacaacagg aacaatcatt 1260
aatcaagacc ctgacaagat cctaacatac attgctgccg atcactgccc ggtggtcgag 1320
gtgaatggcg tgaccatcca agtcgggagc aggaggtatc cggacgetgt gtacttgcac 1380
aggattgacc tcggtcctcc catatctttg gagaggttgg acgtagggac aaatctgggg 1440
aatgcaattg ctaagttgga ggatgccaag gaattgttgg agtcatcgga ccagatattg 1500
aggagtatga aaggtttatc gagcactagt atagtttaca tcctgattgc agtgtgtctt 1560
ggaggattga tagggatccc cgctttaata tgttgctgca gggggegttg taacaagaag 1620
ggagaacaag ttggtatgtc aagaccaggc ctaaagcetg atcttacagg aacatcaaaa 1680
tcctatgtaa ggtcactctg atgataatag gctggagcct cggtggccaa gcttcttgcc 1740
ccttgggcct ccccccagcc cetcctcccc ttcctgcacc cgtacccccg tggtctttga 1800
ataaagtctg agtgggcggc aaaaaaaaa aaaaaaaaa aaaaaaaaa aaaaaaaaa 1860


tctag	1925
<210> SEQ ID NO 41	
<211> LENGTH: 2065	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 41	
tcaagctttt ggaccctcgt acagaagcta atacgactca ctatagggaa ataagagaga	60
aaagaagagt aagaagaaat ataagagcca ccatgtcacc gcaacgagac cggataaatg	120
cottctacaa agataaccct tatcccaagg gaagtaggat agttattaac agagaacatc	180
ttatgattga cagaccetat gttctgctgg ctgttctgtt cgtcatgttt ctgagettga	240
tcggattgct ggcaattgca ggcattagac ttcatcgggc agccatctac accgcggaga	300
tccataaag cctcagtacc aatctggatg tgactaactc catcgagcat caggtcaagg	360
acgtgctgac accactcttt aaatcatcg gggatgaagt gggcetgaga acacctcaga	420
gattcactga cctagtgaaa ttcatctcgg acaagattaa attccttaat coggataggg	480
agtacgactt cagagatctc acttggtgca tcaaccogcc agagaggatc aaactagatt	540
atgatcaata ctgtgcagat gtggctgctg aagagctcat gaatgcattg gtgaactcaa	600
ctctactgga gaccagaaca accactcagt tcctagctgt ctcaaaggga aactgctcag	660
ggcccactac aatcagaggt caattctcaa acatgtcgct gtccttgttg gacttgtact	720
taggtcgagg ttacaatgtg tcatctatag tcactatgac atcccaggga atgtatgggg	780
gaacctacct agttgaaaag cctaatctga acagcaaagg gtcagagttg tcacaactga	840
gcatgtaccg agtgtttgaa gtaggtgtga tcagaaaccc gggtttgggg gctecggtgt	900
tccatatgac aaactatttt gagcaaccag tcagtaatgg tctcggcaac tgtatggtgg	960
ctttggggga gctcaaactc gcagcecttt gtcacgggga cgattctatc ataattccct	1020
atcagggatc agggaaaggt gtcagcttcc agctcgtcaa gctgggtgtc tggaaatccc	1080
caaccgacat gcaatcctgg gtccccttat caacggatga tccagtggta gacaggcttt	1140
acctctcatc tcacagaggt gtcatcgetg acaatcaagc aaaatggget gtcccgacaa	1200
cacgaacaga tgacaagttg cgaatggaga catgcttcca gcaggcgtgt aaaggtaaaa	1260
tccaagcact ctgcgagaat cccgagtggg taccattgaa ggataacagg attcettcat	1320
acggggtcct gtctgttgat ctgagtctga cggttgagct taaaatcaaa attgcttcgg	1380
gattcgggce attgatcaca cacggcteag ggatggacct atacaaatcc aactgcaaca	1440
atgtgtattg gctgactatt cogccaatga gaaatctagc cttaggegta atcaacacat	1500
tggagtggat accgagattc aaggttagtc ccaacctett cactgtccca attaaggaag	1560
caggcgaaga ctgccatgcc ccaacatacc tacctgcgga ggtggacggt gatgtcaaac	1620
tcagttccaa cetggtgatt ctacctggtc aagatctcca atatgttttg gcaacctacg	1680
atacctccag ggttgagcat gctgtggttt attacgttta cagcceaage cgctcatttt	1740
cttactttta tccttttagg ttgcctataa agggggtccc aatcgaacta caagtggaat	1800
gcttcacatg ggatcaaaaa ctctggtgce gtcacttctg tgtgcttgcg gactcagaat	1860
ccggtggact tatcactcac tctgggatgg tgggcatggg agtcagctgc acagctaccc	1920
gggaagatgg aaccaatcge agataatgat aataggctgg agcetcggtg gccaagcttc	1980


ttgceccttg ggcetccccc cagcc	2040
tttgaataaa gtctgagtgg gcggc	2065

$<210>$ SEQ ID NO 42
$<211>$ LENGTH: 1854
$<212>$ TYPE : DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 42

ctagctgtct caaagggaaa ctgctcaggg cccactacaa tcagaggtca attctcaaac 600
atgtcgetgt cettgttgga ettgtactta ggtcgaggtt acaatgtgtc atctatagtc 660
actatgacat cccagggaat gtatggggga acctacctag ttgaaaagcc taatctgaac 720
agcaaagggt cagagttgtc acaactgagc atgtaccgag tgtttgaagt aggtgtgatc 780
agaaacccgg gtttggggge tccggtgttc catatgacaa actattttga gcaaccagtc 840
agtaatggtc teggcaactg tatggtgget ttgggggage tcaaactcge agcectttgt 900
cacggggacg attctatcat aattccctat cagggatcag ggaaaggtgt cagcttccag 960
ctcgtcaage tgggtgtctg gaaatcccca accgacatgc aatcctgggt ccccttatca 1020
acggatgatc cagtggtaga caggctttac ctctcatctc acagaggtgt catcgctgac 1080
aatcaagcaa aatgggctgt cccgacaaca cgaacagatg acaagttgcg aatggagaca 1140
tgcttccagc aggcgtgtaa aggtaaaatc caagcactct gcgagaatcc cgagtgggta 1200
ccattgaagg ataacaggat tccttcatac ggggtcctgt ctgttgatct gagtctgacg 1260
gttgagctta aaatcaaaat tgcttcggga ttcgggccat tgatcacaca cggctcaggg 1320
atggacctat acaaatccaa ctgcaacaat gtgtattggc tgactattcc gccaatgaga 1380
aatctagcct taggcgtaat caacacattg gagtggatac cgagattcaa ggttagtccc 1440
aacctcttca ctgtcccaat taaggaagca ggcgaagact gccatgcccc aacataccta 1500
cctgcggagg tggacggtga tgtcaaactc agttccaacc tggtgattct acctggtcaa 1560
gatctccaat atgttttggc aacctacgat acctccaggg ttgagcatgc tgtggtttat 1620
tacgtttaca gcccaagceg ctcattttct tacttttatc cttttaggtt gcctataaag 1680
ggggtcccaa tcgaactaca agtggaatgc ttcacatggg atcaaaaact ctggtgcegt 1740
cacttctgtg tgcttgcgga ctcagaatcc ggtggactta tcactcactc tgggatggtg
ggcatgggag tcagctgcac agctacccgg gaagatggaa ccaatcgcag ataa 1854
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 43

ggggaaataa gagagaaaag aagagtaaga agaaatataa gagccaccat gtcaccgcaa	60
cgagaccgga taaatgcctt ctacaaagat aacccttatc ccaagggaag taggatagtt	120
attaacagag aacatcttat gattgacaga ccctatgttc tgctggctgt tctgttcgtc	180
atgtttctga gcttgatcgg attgctggca attgcaggca ttagacttca tcgggcagcc	240
atctacaccg cggagatcca taaaagcctc agtaccaatc tggatgtgac taactccatc	300
gagcatcagg tcaaggacgt gctgacacca ctctttaaaa tcatcgggga tgaagtgggc	360
ctgagaacac ctcagagatt cactgaccta gtgaaattca tctcggacaa gattaaattc	420
cttaatccgg atagggagta cgacttcaga gatctcactt ggtgcatcaa cccgccagag	480

aggatcaaac tagattatga tcaatactgt gcagatgtgg ctgctgaaga gctcatgaat 540
gcattggtga actcaactct actggagacc agaacaacca ctcagttcct agctgtctca 600
aagggaaact getcagggcc cactacaatc agaggtcaat tctcaaacat gtcgetgtcc 660
ttgttggact tgtacttagg tcgaggttac aatgtgtcat ctatagtcac tatgacatcc 720
cagggaatgt atgggggaac ctacctagtt gaaaagceta atctgaacag caaagggtca 780
gagttgtcac aactgagcat gtaccgagtg tttgaagtag gtgtgatcag aaacccgggt 840
ttgggggctc cggtgttcca tatgacaaac tatttgagc aaccagtcag taatggtctc 900
ggcaactgta tggtggcttt gggggagctc aactcgcag cectttgtca cggggacgat 960
tctatcataa ttccctatca gggatcaggg aaaggtgtca gcttccagct cgtcaagctg 1020
ggtgtctgga aatccccaac cgacatgcaa tcetgggtcc cettatcaac ggatgatcca 1080
gtggtagaca ggctttacct ctcatctcac agaggtgtca tcgctgacaa tcaagcaaaa 1140
tgggctgtcc cgacaacacg aacagatgac aagttgcgaa tggagacatg cttccagcag 1200
gcgtgtaaag gtaaaatcca agcactctgc gagaatcccg agtgggtacc attgaaggat 1260
aacaggattc cttcatacgg ggtcctgtct gttgatctga gtctgacggt tgagcttaaa 1320
atcaaattg cttcgggatt cgggccattg atcacacacg gctcagggat ggacctatac 1380
aaatccaact gcaacaatgt gtattggctg actattccgc caatgagaaa tctagcetta 1440
ggcgtaatca acacattgga gtggataccg agattcaagg ttagtcccaa cctcttcact 1500
gtcccaatta aggaagcagg cgaagactgc catgccccaa catacctacc tgcggaggtg 1560
gacggtgatg tcaaactcag ttccaacctg gtgattctac ctggtcaaga tctccaatat 1620
gttttggcaa cctacgatac ctccagggtt gagcatgctg tggtttatta cgtttacagc 1680
ccaagccgct cattttcta cttttatcct tttaggttgc ctataaggg ggtcccaatc 1740
gaactacaag tggaatgctt cacatgggat caaaaactct ggtgccgtca cttctgtgtg 1800
cttgcggact cagaatcegg tggacttatc actcactctg ggatggtggg catgggagtc 1860
agctgcacag ctacccggga agatggaacc aatcgcagat aatgataata ggctggagce 1920
teggtggcea agcttcttge cecttgggec tccccceage cectcctcce cttcetgcac 1980
ccgtaccccc gtggtctttg aataaagtct gagtgggcgg caaaaaaaaa aaaaaaaaaa 2040

$<210>$ SEQ ID NO 44
$<211>$ LENGTH: 2065
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 44

ggcccactac aatcagagge caattctcaa acatgtcgct gtccctgttg gacttgtatt 720
taagtcgagg ttacaatgtg tcatctatag tcactatgac atcccaggga atgtacgggg 780
gaacttacct agtggaaaag cetaatctga gcagcaaagg gtcagagttg tcacaactga 840
gcatgcaccg agtgtttgaa gtaggtgtta tcagaaatcc gggtttgggg gctccggtat 900
tccatatgac aaactatctt gagcaaccag tcagtaatga tttcagcaac tgcatggtgg 960
ctttggggga gctcaagttc gcagccetct gtcacaggga agattctatc acaattccet 1020
atcagggatc agggaaaggt gtcagcttcc agcttgtcaa getaggtgtc tggaaatccc 1080
caaccgacat gcaatcctgg gtccccetat caacggatga tccagtgata gacaggcttt 1140
acctctcatc tcacagagge gttatcgctg acaatcaagc aaaatgggct gtcccgacaa 1200
cacggacaga tgacaagttg cgaatggaga catgcttcca gcaggcgtgt aagggtaaaa 1260
tccaagcact ttgcgagaat cccgagtgga caccattgaa ggataacagg attccttcat 1320
acggggtctt gtctgttgat ctgagtctga cagttgagct taaaatcaaa attgtttcag 1380
gattcgggcc attgatcaca cacggttcag ggatggacct atacaaatcc aaccacaaca 1440
atatgtattg gctgactatc cegccaatga agaacctggc cttaggtgta atcaacacat 1500
tggagtggat accgagattc aaggttagtc ccaacctctt cactgttcca attaaggaag 1560
caggcgagga ctgccatgcc ccaacatacc tacctgcgga ggtggatggt gatgtcaaac 1620
tcagttccaa tctggtgatt ctacctggtc aagatctcca atatgttctg gcaacctacg 1680
atacttccag agttgaacat gctgtagttt attacgttta cagcccaagc cgctcatttt 1740
cttactttta tccttttagg ttgcctgtaa ggggggtccc cattgaatta caagtggaat 1800

gcttcacatg ggaccaaaa ctctggtgce gtcacttctg tgtgcttgcg gactcagaat	1860
ctggtggaca tatcactcac tctgggatgg tgggcatggg agtcagctgc acagccactc	1920

gggaagatgg aaccagccge agatagtgat aataggctgg agcctcggtg gccaagcttc 1980
ttgeccettg ggcetccecc cagcccetcc tccecttcet gcaccogtac cecegtggtc

$<210>$ SEQ ID NO 46
$<211>$ LENGTH: 2126
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial sequence
$<220>$ FEATURE:
-continued

$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polypeptide
$<400>$ SEQUENCE: 47

$1$	Gly	u	Lys	Val 5	An	al		Ala	$\begin{aligned} & \text { Val } \\ & 10 \end{aligned}$					$\begin{aligned} & \text { Leu } \\ & 15 \end{aligned}$
Thr	Leu	Gln	$\begin{aligned} & \text { Thr } \\ & 20 \end{aligned}$	Pro	Ala	Gly	Gln	$\begin{aligned} & \text { Ile I } \\ & 25 \end{aligned}$		Trp	Gly	Asn	$\begin{aligned} & \text { Leu } \\ & 30 \end{aligned}$	Ser Lys
Ile	Gly	$\begin{aligned} & \mathrm{Val} \\ & 35 \end{aligned}$	Val	Gly	le	$l_{Y}$	$\begin{aligned} & \text { Ser } A \\ & 40 \end{aligned}$	Ala	er	Cyr	Lys	Val 45	Met	Thr Arg
Ser	$\begin{aligned} & \text { Ser } \\ & 50 \end{aligned}$	His	Gln	Ser		$\begin{aligned} & \text { Val } \\ & 55 \end{aligned}$	Ile	Lys	Leu		$\begin{aligned} & \text { Pro } \\ & 60 \end{aligned}$	Asn	Ile	Thr Leu
$\begin{aligned} & \text { Leu } \\ & 65 \end{aligned}$	Asn	Asn	Cys	Thr	$\begin{aligned} & \text { Arg } \\ & 70 \end{aligned}$	Val	Glu	le	Ala	$\begin{aligned} & \text { Glu } \\ & 75 \end{aligned}$	Tyr	Arg	Arg	$\begin{gathered} \text { Leu Leu } \\ 80 \end{gathered}$
Arg	Thr	Val	Leu	$\begin{aligned} & \text { Glu } \\ & 85 \end{aligned}$	ro	le	Arg	Asp	$\begin{aligned} & \text { Ala } \\ & 90 \end{aligned}$		Asn	Ala	Met $T$	$\begin{aligned} & \text { Thr Gln } \\ & 95 \end{aligned}$
Asn	Ile	Arg	$\begin{aligned} & \text { Pro } \\ & 100 \end{aligned}$	Val	Gln	er	Val	$\begin{aligned} & \text { Ala } \\ & 105 \end{aligned}$		Ser	Arg	Arg	$\begin{aligned} & \text { His } \\ & 110 \end{aligned}$	Lys Arg
Phe	Ala	$\begin{aligned} & \text { Gly } \\ & 115 \end{aligned}$	Val	Val	eu	$1 a$	$\begin{aligned} & \text { Gly } \\ & 120 \end{aligned}$	Ala	Ala	Leu	Gly	$\begin{aligned} & \mathrm{Val} \\ & 125 \end{aligned}$	la	Thr Ala
Ala	$\begin{aligned} & \text { Gln } \\ & 130 \end{aligned}$	Ile	Thr	Ala	Gly	$\begin{aligned} & \text { Ile } \\ & 135 \end{aligned}$	Ala	eu	His	Arg	$\begin{aligned} & \text { Ser } \\ & 140 \end{aligned}$	Met	eu.	sn Ser
$\begin{aligned} & \text { Gln } \\ & 145 \end{aligned}$	Ala	Ile	Asp	Asn	$\begin{aligned} & \text { Leu } \\ & 150 \end{aligned}$	Arg	Ala	er	Leu	$\begin{aligned} & \text { Glu } \\ & 155 \end{aligned}$	Thr	Thr	Asn	$\begin{array}{r} \text { Gln Ala } \\ 160 \end{array}$
Ile	Glu.	$1 a$	$e$	$\begin{aligned} & \text { Arg } \\ & 165 \end{aligned}$	$\mathrm{Gln}$	la	Gly	$\ln$	$\begin{aligned} & \text { Glu } \\ & 170 \end{aligned}$	et	Ile	Leu	Ala	$\begin{aligned} & \text { Val Gln } \\ & 175 \end{aligned}$
Gly	Val	Gln	$\begin{aligned} & \text { Asp } \\ & 180 \end{aligned}$	Tyr	Ile	sn	Asn	$\begin{aligned} & \text { Glu } \\ & 185 \end{aligned}$	Leu	Ile	Pro	ser	$\begin{aligned} & \text { Met } \\ & 190 \end{aligned}$	Asn Gln
Leu	Ser	$\begin{aligned} & \text { Cys } \\ & 195 \end{aligned}$	Asp	Leu	le	$1 Y$	$\begin{aligned} & \text { Gln } \\ & 200 \end{aligned}$	Lys	Leu	Gly	eu	$\begin{aligned} & \text { Lys } \\ & 205 \end{aligned}$	eu	Leu Arg
Tyr	$\begin{aligned} & \mathrm{TYY} \\ & 210 \end{aligned}$	Thr	Glu	Ile	eu	$\begin{aligned} & \text { Ser } \\ & 215 \end{aligned}$	Leu	ne	Gly	ro	$\begin{aligned} & \text { Ser } \\ & 220 \end{aligned}$	Leu	rg	Asp Pro
$\begin{aligned} & \text { Ile } \\ & 225 \end{aligned}$	Ser			Ile	$\begin{aligned} & \text { Ser } \\ & 230 \end{aligned}$		$\ln$			$\begin{aligned} & \text { Ser } \\ & 235 \end{aligned}$	Tyr	Ala	eu	$\begin{aligned} & \text { Gly } \text { Gly } \\ & 240 \end{aligned}$
Asp		Asn		$\begin{aligned} & \text { Val } \\ & 245 \end{aligned}$	eu	u	ys	eu	$\begin{aligned} & \text { Gly } \\ & 250 \end{aligned}$	Tyr	er	Gly	Gly	$\begin{aligned} & \text { Asp } \\ & 255 \end{aligned}$
Leu	Gly	Ile	$\begin{aligned} & \text { Leu } \\ & 260 \end{aligned}$	Glu		rg	Gly	$\begin{aligned} & \text { Ile } \\ & 265 \end{aligned}$	Lys	Ala	rg	Ile	$\begin{aligned} & \text { Thr } \\ & 270 \end{aligned}$	His Val
Asp		$\begin{aligned} & \text { Glu } \\ & 275 \end{aligned}$	Ser	TYr	Phe		$\begin{aligned} & \text { Val } \\ & 280 \end{aligned}$	Leu			la	$\begin{aligned} & \text { TYr } \\ & 285 \end{aligned}$		Thr Leu
Ser	$\begin{aligned} & \text { Glu } \\ & 290 \end{aligned}$	Ile	Lys	Gly	al	$\begin{aligned} & \text { Ile } \\ & 295 \end{aligned}$	Val	Iis	Arg	Leu	$\begin{aligned} & \text { Glu } \\ & 300 \end{aligned}$	Gly	al	Ser Tyr
$\begin{aligned} & \text { Asn } \\ & 305 \end{aligned}$		Gly		$\mathrm{Gln}$	$\begin{aligned} & \text { Glu } \\ & 310 \end{aligned}$	rp	Tyr			$\begin{aligned} & \text { Val } \\ & 315 \end{aligned}$	ro	Lys	Tyr	$\begin{array}{r} \text { Val Ala } \\ 320 \end{array}$
Thr	Gln	Gly	Tyr	$\begin{aligned} & \text { Leu } \\ & 325 \end{aligned}$	Ile	er	Asn	Phe	$\begin{aligned} & \text { Asp } \\ & 330 \end{aligned}$			Ser	Cys	Thr Phe 335
Met		Glu	$\begin{aligned} & \text { Gly } \\ & 340 \end{aligned}$	Thr		Cys	Ser	$\begin{aligned} & \text { Gln } \\ & 345 \end{aligned}$	Asn			TYr	$\begin{aligned} & \text { Pro } \\ & 350 \end{aligned}$	Met Ser
	Leu	$\begin{aligned} & \text { Leu } \\ & 355 \end{aligned}$	$\mathrm{Gln}$	Glu	Cys	Leu	$\begin{aligned} & \text { Arg } \\ & 360 \end{aligned}$	Gly	Ser	Thr	Lys	$\begin{aligned} & \text { Ser } \\ & 365 \end{aligned}$	Cys	Ala Arg
r	Leu $370$	Val	Ser	Gly	er	e	$\text { Gly } A$	sn	rg	he	[le	Leu	Ser	ln Gly


$<210>$ SEQ ID NO 48
$<211>$ LENGTH: 550
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polypeptide
$<400>$ SEQUENCE: 48


Leu		$\begin{aligned} & \text { Cys } \\ & 195 \end{aligned}$	Asp	Leu	Ile	Gly	$\begin{aligned} & \text { Gln I } \\ & 200 \end{aligned}$	Lys L	Leu	Gly	eu	$\begin{aligned} & \text { Lys } \\ & 205 \end{aligned}$	Leu	Leu	Arg
Tyr	$\begin{aligned} & \text { Tyr } \\ & 210 \end{aligned}$	Thr	Glu	Ile	Leu	$\begin{aligned} & \text { Ser L } \\ & 215 \end{aligned}$	Leu	Phe	Gly	Pro	$\begin{aligned} & \text { Ser } \\ & 220 \end{aligned}$	Leu	Arg	Asp	Pro
$\begin{aligned} & \text { Ile } \\ & 225 \end{aligned}$	Ser	Ala	Glu	Ile	$\begin{aligned} & \text { Ser } \\ & 230 \end{aligned}$	Ile	$\text { Gln } 7$	Ala	Leu	$\begin{aligned} & \text { Ser } \\ & 235 \end{aligned}$	Tyr	Ala	eu	Gly	$\begin{aligned} & \text { Gly } \\ & 240 \end{aligned}$
Asp	Ile	Asn	Lys	$\begin{aligned} & \text { Val } \\ & 245 \end{aligned}$	Leu	Glu	Lys I	Leu	$\begin{aligned} & \text { Gly } \\ & 250 \end{aligned}$	Tyr	Ser	Gly	$1 Y$	Asp   255	Leu
Leu	Gly	Ile	$\begin{aligned} & \text { Leu } \\ & 260 \end{aligned}$	Glu	Ser $A$	Arg	Gly	$\begin{aligned} & \text { Ile I } \\ & 265 \end{aligned}$	Lys	Ala	Arg	Ile	$\begin{aligned} & \text { Thr } \\ & 270 \end{aligned}$	His	Val
Asp	Thr	$\begin{aligned} & \text { Glu } \\ & 275 \end{aligned}$	Ser	Tyr	Phe I		$\begin{aligned} & \text { Val I } \\ & 280 \end{aligned}$	Leu	Ser	Ile	Ala	$\begin{aligned} & \text { Tyr } \\ & 285 \end{aligned}$	ro		Leu
Ser	$\begin{aligned} & \text { Glu } \\ & 290 \end{aligned}$	Ile	Lys	Gly	Val I	$\begin{aligned} & \text { Ile } \\ & 295 \end{aligned}$	Val	His	Arg	Leu	$\begin{aligned} & \text { Glu } \\ & 300 \end{aligned}$	Gly	Tal	Ser	Tyr
$\begin{aligned} & \text { Asn } \\ & 305 \end{aligned}$	Ile	Gly	Ser	$\mathrm{Gln}$	$\begin{aligned} & \text { Glu T } \\ & 310 \end{aligned}$	$\operatorname{Trp} I$	Tyr I	Thr	Thr	$\begin{aligned} & \text { Val } \\ & 315 \end{aligned}$	Pro	Lys	Tyr	Val	$\begin{aligned} & \text { Ala } \\ & 320 \end{aligned}$
Thr	Gln	Gly	Tyr	$\begin{aligned} & \text { Leu } \\ & 325 \end{aligned}$	Ile S	Ser A	$\operatorname{sn}$	Phe	$\begin{aligned} & \text { Asp } \\ & 330 \end{aligned}$	Glu	Ser	Ser	Cys	$\begin{aligned} & \text { Thr } \\ & 335 \end{aligned}$	Phe
Met	Pro	Glu	$\begin{aligned} & \text { Gly } \\ & 340 \end{aligned}$	Thr	Val	Cys	Ser	$\begin{aligned} & \text { Gln } A \\ & 345 \end{aligned}$	Asn	Ala	Leu	Tyr	$\begin{aligned} & \text { Pro } \\ & 350 \end{aligned}$	Met	Ser
Pro	Leu	$\begin{aligned} & \text { Leu } \\ & 355 \end{aligned}$	Gln	Glu	Cys	Leu	$\begin{aligned} & \text { Arg } \\ & 360 \end{aligned}$	Gly S	Ser	Thr	Lys	$\begin{aligned} & \text { Ser } \\ & 365 \end{aligned}$	Cys	Ala	Arg
Thr	$\begin{aligned} & \text { Leu } \\ & 370 \end{aligned}$	Val	Ser	Gly	Ser	Phe $375$	$\text { Gly } A$	Asn	Arg	Phe	$\begin{aligned} & \text { Ile } \\ & 380 \end{aligned}$	Leu	er	Gln	Gly
$\begin{aligned} & \text { Asn } \\ & 385 \end{aligned}$	Leu	Ile	Ala	Asn	$\begin{aligned} & \text { Cys } \\ & 390 \end{aligned}$	Ala	Ser	Ile	Leu	$\begin{aligned} & \text { Cys } \\ & 395 \end{aligned}$	Lys	Cys	Tyr	Thr	$\begin{aligned} & \text { Thr } \\ & 400 \end{aligned}$
Gly	Thr	Ile	Ile	$\begin{aligned} & \text { Asn } \\ & 405 \end{aligned}$	$\mathrm{Gln} A$	Asp P	Pro A	Asp L	$\begin{aligned} & \text { Lys } \\ & 410 \end{aligned}$	Ile	Leu	Thr	Tyr	Ile $415$	Ala
Ala	Asp	His	$\begin{aligned} & \text { Cys } \\ & 420 \end{aligned}$	Pro	Val	Val	Glu	$\begin{aligned} & \text { Val } \\ & 425 \end{aligned}$	Asn	Gly	Val	Thr	Ile $430$	Gln	Val
Gly	Ser	$\begin{aligned} & \text { Arg } \\ & 435 \end{aligned}$	Arg	Tyr	Pro A	Asp	$\begin{aligned} & \text { Ala } \\ & 440 \end{aligned}$	Val T	Tyr	Leu	His	$\begin{aligned} & \text { Arg } \\ & 445 \end{aligned}$	Ile	Asp	Leu
Gly	$\begin{aligned} & \text { Pro } \\ & 450 \end{aligned}$	Pro	Ile	Ser		$\begin{aligned} & \text { Glu } \quad \text { A } \\ & 455 \end{aligned}$	Arg L	Leu	Asp	Val	$\begin{aligned} & \text { Gly } \\ & 460 \end{aligned}$	Thr	Asn	Leu	Gly
$\begin{aligned} & \text { Asn } \\ & 465 \end{aligned}$	Ala	Ile	Ala	Lys	$\begin{aligned} & \text { Leu } \\ & 470 \end{aligned}$	Glu	Asp A	Ala	Lys	$\begin{aligned} & \text { Glu I } \\ & 475 \end{aligned}$	Leu	Leu	Glu	Ser	$\begin{aligned} & \text { Ser } \\ & 480 \end{aligned}$
Asp	Gln	Ile	Leu	$\begin{aligned} & \text { Arg } \\ & 485 \end{aligned}$	Ser M	Met L	Lys	$\text { Gly } \begin{aligned} & \mathrm{L} \\ & 4 \end{aligned}$	Leu S $490$	Ser	Ser	Thr	Ser	$\begin{aligned} & \text { Ile } \\ & 495 \end{aligned}$	Val
Tyr	Ile	Leu	$\begin{aligned} & \text { Ile } \\ & 500 \end{aligned}$	Ala	Val	$\text { Cys } 1$	Leu	$\begin{aligned} & \text { Gly } \\ & 505 \end{aligned}$	Gly	Leu	Ile	Gly	$\begin{aligned} & \text { Ile } \\ & 510 \end{aligned}$	Pro	Ala
Leu	Ile	$\begin{aligned} & \text { CYs } \\ & 515 \end{aligned}$	Cys	Cys	Arg	Gly	$\begin{aligned} & \text { Arg } \\ & 520 \end{aligned}$	Cys A	Asn	Lys	Lys	$\begin{aligned} & \text { Gly } \\ & 525 \end{aligned}$	Glu		Val
Gly	$\begin{aligned} & \text { Met } \\ & 530 \end{aligned}$	Ser	Arg	Pro		$\begin{aligned} & \text { Leu L } \\ & 535 \end{aligned}$	Lys P	Pro A	Asp	Leu	$\begin{aligned} & \text { Thr } \\ & 540 \end{aligned}$	Gly	Thr	Ser	Lys
$\begin{aligned} & \text { Ser } \\ & 545 \end{aligned}$	Tyr	Val	Arg	Ser	$\begin{aligned} & \text { Leu } \\ & 550 \end{aligned}$										

$<210>$ SEQ ID NO 49
$<211>$ LENGTH: 617
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polypeptide
$<400>$ SEQUENCE: 49


			420					425					430		
Pro	Leu	Ile   435	Thr	His	Gly		$\begin{aligned} & \text { Gly } \\ & 440 \end{aligned}$	Met	Asp	Leu	Tyr	$\begin{aligned} & \text { Lys } \\ & 445 \end{aligned}$	Ser	Asn	Cys
Asn	$\begin{aligned} & \text { Asn } \\ & 450 \end{aligned}$	Val	Tyr	$\operatorname{Trp}$	Leu	$\begin{aligned} & \text { Thr } \\ & 455 \end{aligned}$	Ile	Pro	Pro	Met	$\begin{aligned} & \text { Arg } \\ & 460 \end{aligned}$		Leu		Leu
$\begin{aligned} & \text { Gly } \\ & 465 \end{aligned}$	Val	Ile	Asn	Thr	$\begin{aligned} & \text { Leu } \\ & 470 \end{aligned}$	Glu	$\operatorname{Trp}$	Ile	Pro	$\begin{aligned} & \text { Arg } \\ & 475 \end{aligned}$	Phe	Lys	Val	Ser	$\begin{aligned} & \text { Pro } \\ & 480 \end{aligned}$
Asn	Leu	Phe	Thr	$\begin{aligned} & \text { Val } \\ & 485 \end{aligned}$	Pro	Ile	Lys	Glu	$\begin{aligned} & \text { Ala } \\ & 490 \end{aligned}$	Gly	Glu	Asp	Cys	$\begin{aligned} & \mathrm{His} \\ & 495 \end{aligned}$	Ala
Pro	Thr	Tyr	$\begin{aligned} & \text { Leu } \\ & 500 \end{aligned}$	Pro	Ala		Val	Asp   505	Gly	Asp	Val	Lys	$\begin{aligned} & \text { Leu } \\ & 510 \end{aligned}$	ser	Ser
Asn	Leu	$\begin{aligned} & \text { Val } \\ & 515 \end{aligned}$	Ile	Leu	Pro	$\mathrm{Gl} \mathrm{Y}_{\mathrm{Y}}$	$\begin{aligned} & \mathrm{Gln} \\ & 520 \end{aligned}$	Asp	Leu	Gln	Tyr	$\begin{aligned} & \text { Val } \\ & 525 \end{aligned}$	Leu	Ala	Thr
Tyr	$\begin{aligned} & \text { Asp } \\ & 530 \end{aligned}$	Thr	Ser	Arg	Val	$\begin{aligned} & \text { Glu } \\ & 535 \end{aligned}$	His	Ala	Val	Val	$\begin{aligned} & \text { Tyr } \\ & 540 \end{aligned}$	Tyr	Val	Tyr	Ser
$\begin{aligned} & \text { Pro } \\ & 545 \end{aligned}$	Ser	Arg	Ser	Phe	$\begin{aligned} & \text { Ser } \\ & 550 \end{aligned}$	Tyr	Phe	Tyr	Pro	$\begin{aligned} & \text { Phe } \\ & 555 \end{aligned}$	Arg	Leu	Pro	Ile	$\begin{aligned} & \text { Lys } \\ & 560 \end{aligned}$
Gly	Val		Ile	$\begin{aligned} & \text { Glu } \\ & 565 \end{aligned}$	Leu	Glr.	Val	Glu	$\begin{aligned} & \text { Cys } \\ & 570 \end{aligned}$	Phe	Thr	$\operatorname{Trp}$	Asp	$\begin{aligned} & \mathrm{Gln} \\ & 575 \end{aligned}$	Lys
Leu	Trp	Cys	Arg   580	His	Phe	Cys	Val	$\begin{aligned} & \text { Leu } \\ & 585 \end{aligned}$	Ala	Asp	Ser	Glu	$\begin{aligned} & \text { Ser } \\ & 590 \end{aligned}$	Gly	Gly
Leu	Ile	$\begin{aligned} & \text { Thr } \\ & 595 \end{aligned}$	His	Ser	Gly	Met	$\begin{aligned} & \text { Val } \\ & 600 \end{aligned}$	Gly	Met	Gly	Val	$\begin{aligned} & \text { Ser } \\ & 605 \end{aligned}$	Cys	Thr	Ala
Thr	Arg $610$	Glu	Asp	Gly	Thr	Asn   615	Arg	Arg							

$<210>$ SEQ ID NO 50
$<211>$ LENGTH: 617
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION : Synthetic Polypeptide
$<400>$ SEQUENCE : 50


His Ile Thr His Ser Gly Met Val Gly Met Gly Val Ser Cys Thr Ala

| 595 |
| ---: | :--- |
| 600 |

Thr Arg Glu Asp Gly Thr
610
$<210>$ SEQ ID NO 51
$<211>$ LENGTH: 1729
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 51

tcaagctttt ggaccotcgt acagaagcta atacgactca ctatagggaa ataagagaga	60
aaagaagagt aagaagaaat ataagagcca ccatggcaca agtcattaat acaaacagcc	120
tgtcgctgtt gacccagaat aacctgaaca aatcccagtc cgcactgggc actgctatcg	180
agcgtttgtc ttccggtctg cgtatcaaca gcgcgaaaga cgatgcggca ggacaggcga	240
ttgctaaccg ttttaccgcg aacatcaaag gtctgactca ggcttcccgt aacgctaacg	300
acggtatctc cattgcgcag accactgaag gcgcgctgaa cgaaatcaac aacaacctgc	360
agcgtgtgcg tgaactggcg gttcagtctg cgaatggtac taactcccag tctgacctcg	420
actccatcca ggctgaaatc acccagcgcc tgaacgaaat cgaccgtgta tccggccaga	480
ctcagttcaa cggcgtgaaa gtcctggcgc aggacaacac cetgaccatc caggttggtg	540
ccaacgacgg tgaaactatc gatattgatt taaaagaaat cagctctaaa acactgggac	600
ttgataagct taatgtccaa gatgcctaca ccccgaaaga aactgctgta accgttgata	660

aaactaccta taaaaatggt acagatccta ttacagccca gagcaatact gatatccaaa 720
ctgcaattgg cggtggtgca acgggggtta ctggggctga tatcaaattt aaagatggtc 780
aatactattt agatgttaaa ggcggtgctt ctgctggtgt ttataaagcc acttatgatg 840
aaactacaaa gaaagttaat attgatacga ctgataaaac tccgttggca actgcggaag 900
ctacagctat tcggggaacg gccactataa cccacaacca aattgctgaa gtaacaaaag 960
agggtgttga tacgaccaca gttgcggctc aacttgctgc agcaggggtt actggcgccg 1020
ataaggacaa tactagcctt gtaaaactat cgtttgagga taaaaacggt aaggttattg 1080
atggtggcta tgcagtgaaa atgggcgacg atttctatgc cgctacatat gatgagaaaa 1140
caggtgcaat tactgctaaa accactactt atacagatgg tactggcgtt gctcaaactg 1200
gagctgtgaa atttggtggc gcaaatggta atctgaagt tgttactgct accgatggta 1260
agacttactt agcaagcgac cttgacaac ataacttcag aacaggcggt gagcttaaag 1320
aggttaatac agataagact gaaaacccac tgcagaaaat tgatgctgcc ttggcacagg 1380
ttgatacact tcgttctgac ctgggtgcgg ttcagaaccg tttcaactcc gctatcacca 1440
acctgggcaa taccgtaat aacctgtctt ctgcccgtag cogtatcgaa gattccgact 1500
acgcaaccga agtctccaac atgtctcgeg cgcagattct gcagcaggce ggtacctccg 1560
ttctggcgca ggcgaaccag gttccgcaaa acgtcctctc tttactgcgt tgataatagg 1620
ctggagcctc ggtggceatg ettcttgcec cttgggcetc cccccagcec ctcctccect 1680
tcctgcacce gtacccccgt ggtctttgaa taaagtctga gtgggcggc 1729
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 52

$<210>$ SEQ ID NO 53
$<211>$ LENGTH: 1790
$<212>$ TYPE : RNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 53

$<210>$ SEQ ID NO 54
$<211>$ LENGTH: 506
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polypeptide
$<400>$ SEQUENCE: 54


$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polypeptide
$<400>$ SEQUENCE: 55


$<210>$ SEQ ID NO 56
$<211>$ LENGTH: 692
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polypeptide
$<400>$ SEQUENCE: 56



$<210>$ SEQ ID NO 57
$<211>$ LENGTH: 1620
$<212>$ TYPE : RNA
$<213>$ ORGANISM: Human metapneumovirus
$<400>$ SEQUENCE: 57

-continued

$<210>$ SEQ ID NO 58
$<211>$ LENGTH: 1620
$<212>$ TYPE : RNA
$<213>$ ORGANISM: Human metapneumovirus
$<400>$ SEQUENCE: 58
augucuugga aagugaugau caucauuucg unacucauaa caccccagca cgggcuaaag $\quad 60$
gagaguuauu uggaagaauc auguaguacu auaacugagg gauaccucag uguuuuaaga 120
acaggcuggu acacuaaugu cuucacauua gaaguuggug auguugaaaa ucuuacaugu 180
acugauggac cuagcuuaau caaaacagaa cuugaucuaa caaaaagugc uuuaagggaa 240
cucaaaacag ucucugcuga ucaguuggeg agagaggagc aaauugaaaa ucccagacaa 300
ucaagaunug ucuuagguge gauagcucuc ggaguugcua cagcagcagc agucacagca 360
ggcauugcaa uagccaaaac cauaaggcuu gagagugagg ugaaugcaau uaaaggugcu 420
cucaaacaaa cuaaugaage aguauccaca uuagggaaug gugugcgggu ccuagccacu 480
gcagugagag agcuaaaaga auuggugagc aaaaaccuga cuagugcaau caacaggaac 540
aaaugugaca ungcugaucu gaagauggcu gucagcuuca gucaauncaa cagaagauuu 600
cuaaaugung ugcggcaguu uucagacaau gcagggauaa caccagcaau aucauuggac 660
cugaugacug augcugaguu ggccagagcu guavcauaca ugccaacauc ugcagggcag 720
auaaaacuga uguuggagaa cogcgcaang guaaggagaa aaggauuugg aauccugaua 780
ggggucuacg gaagcucugu gauuuacaug guncaauugc cgaucuungg ugucauagau 840
acaccuuguu ggaucaucaa ggcagcucce ucuugcucag aaaaaaacgg gaauuaugcu 900
ugccuccuaa gagaggauca agggugguau uguaaaaaug caggaucuac uguuaacuac 960


ccaguuncaa gcaguuuuga uccaaucaag unuccugagg aucaguucaa uguugcgcuu	1380
gaucaagucu ucgaaagcau ugagaacagu caggcacuag uggaccaguc aaacaaaauu	1440
cuaaacagug cagaaaaagg aaacacuggu uncauuaucg uaguaauuuu gguugcuguu	1500
cuuggucuaa ccaugauunc agugagcauc aucaucauaa ucaagaaaac aaggaagccc	1560
acaggagcac cuccagagcu gaaugguguc accaacggcg guuncauacc acauaguuag	1620

$<210>$ SEQ ID NO 59
$<211>$ LENGTH: 1620
$<212>$ TYPE : RNA
$<213>$ ORGANISM: Human metapneumovirus
$<400>$ SEQUENCE: 59

ggcauugcaa uagccaaaac uauaaggcuu gagagugaag ugaaugcaau caaaggugcu 420
cucaaaacaa ccaaugagge aguaucaaca cuaggaaaug gagugcgggu ccuagccacu 480
gcaguaagag agcugaaaga auuugugage aaaaaccuga cuagugcgau caacaagaac 540
aagugugaca ungcugauuu gaagauggcu gucagcuuca gucaguucaa cagaagauuc 600
cuaaaugung ugcggcaguu uucagacaau gcagggauaa caccagcaau aucauuggac 660
cugaugaaug augcugagcu ggccagagcu guaucauaca ugccaacauc ugcaggacag 720
auaaaacuaa uguuagagaa cogugcaang gugaggagaa aaggauuugg aaucuugaua 780
ggggucuacg gaagcucugu gauuuacaug guccagcugc cgaucuuugg ugucauaaau 840
acaccuuguu ggauaaucaa ggcagcuccc ucuuguucag aaaaagaugg aaauuaugcu 900
ugccuccuaa gagaggauca agggugguau uguaaaaaug caggauccac uguuuacuac 960

$<210>$ SEQ ID NO 60
$<211>$ LENGTH: 1725
$<212>$ TYPE: RNA
$<213>$ ORGANISM: Human respiratory syncytial virus
$<400>$ SEQUENCE: 60

-continued

ggaguagcaa	ccucagcaca	aauuacagca gcaguugcuc	ugguugaagc	caagcaggca	420
agaucagaca	uugaaaaacu	caaggaagca aucagggaca	caaauaaagc	agugcaguca	480
guucagagcu	cuguaggaaa	uuugauagua gcaauuaaau	caguccagga	uuaugucaac	540
aaagaaaucg	ugccaucgau	ugcgagacua gguugugaag	cagcaggacu	ucaguuaggg	600
auugcaunaa	cacagcauua	cucagaauua acaaauauau	unggugauaa	cauaggaucg	660
uuacaagaaa	aaggaauaaa	auuacaaggu auagcaucau	uauaccguac	aaauaucaca	720
gaaauaumea	caacaucaac	aguugacaaa uaugauauuu	augaucuauu	auuuacagaa	780
ucaauaaagg	ugagaguuau	agauguugau ungaaugauu	acucaauaac	ccuccaaguc	840
agacucccuu	uauugaccag	acugcugaac acucaaaucu	acaaaguaga	unccauauca	900
uacaauaucc	aaaauagaga	augguauauc ceucuuceca	gccauaucau	gacgaaaggg	960
gcauuucuag	guggagcaga	ugucaaagaa ugcauagaag	caulucagcag	unauauaugc	1020
ccuucugauc	caggauuugu	acuaaaccau gaaauggaga	gcugucuauc	aggaaacaua	1080
ucccaauguc	caagaaccac	agucacauca gacauaguuc	cuagguaugc	auuugucaau	1140
ggaggagugg	uugcgaauug	uauaacaacu acauguacau	gcaaugguau	cgguaauaga	1200
aucaaccaac	caccugauca	aggagucaaa aunauaacac	auaaagaaug	uaauacaaua	1260
gguaucaacg	gaaugcuauu	caacacaaac aaagaaggaa	cucuugcauu	cuacacacca	1320
gacgacauaa	cauuaaacaa	uncuguugca cuugauccga	ungacauauc	aaucgagcuc	1380
aacaaggeca	aaucagaucu	ugaggaauca aaagaaugga	uaagaagguc	aaaucaaaag	1440
cuagauucua	uuggaaguug	gcaucaaucu agcacuacaa	ucauaguuau	uuugauaaug	1500
augauuauau	uguuuauaau	uaauauaaca auaaumacaa	ungcaauuaa	guauuacaga	1560
auucaaaaga	gaaaucgagu	ggaucaaaau gauaagccgu	auguauuaac	aaacaag	1617

$<210>$ SEQ ID NO 62
$<211>$ LENGTH: 1716
$<212>$ TYPE: RNA
$<213>$ ORGANISM: Human parainfluenza virus 3
$<400>$ SEQUENCE: 62


acaacaagau	uuaagaauaa	uaauauaagu uuugaucaac	auaugcggc	auuauaccea	960
ucuguuggac	cagggauaua	cuacaaaggc aaaauaauau	uucucgggua	uggaggucuu	1020
gaacauccaa	uaaaugagaa	ugcaaucugc aacacaacug	gguguccugg	gaaaacacag	1080
agagacugua	aucaagcauc	ucauagucca ugguuuucag	auagaaggau	ggucaacucu	1140
auaauugung	uugacaaggg	cuugaacuca guuccaaaau	ugaagguaug	gacgauaucu	1200
augagacaaa	auuacugggg	gucagaagga agauuacuuc	uacuagguaa	caagaucuac	1260
auauacacaa	gaucuacaag	uuggcacagc aaguuacaau	uaggaauaau	ugacauuacu	1320
gacuacagug	auauaaggau	aaaauggaca uggcauaaug	ugcuaucaag	accaggaaac	1380
aaugaauguc	cauggggaca	uucauguccg gauggaugua	uaacgggagu	auauaccgau	1440
gcauauccac	ucaaucccac	aggaagcauu guaucaucug	ucauauugga	cucacaaaaa	1500
ucgagaguca	acccagucau	aacuuacuca acagcaaccg	aaaggguaaa	cgagcuggcu	1560
auccgaaaca	aaacacucuc	agcuggguac acaacaacaa	gcugcauuac	acacuauaac	1620
aaaggguauu	guuuucauau	aguagaaaua aaucauaaaa	gcuuaaacac	auuucaaccc	1680
auguuguuca	aaacagagau	uccaaaaage ugcagu			1716

$<210>$ SEQ ID NO 63
$<211>$ LENGTH: 1716
$<212>$ TYPE: RNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: SYnthetic Polynucleotide
$<400>$ SEQUENCE: 63

-continued

| augcgccaga acuacugggg cagcgagggc agacuucugc ugcugggaaa caagaucuac | 1260 |
| :--- | :--- | :--- |
| aucuacacce gguccaccag cuggcacagc aaacugcagc ugggaaucau cgacaucacc | 1320 |
| gacuacagcg acauccggau caaguggacc uggcacaacg ugcugagcag acccggcaac | 1380 |
| aaugagugcc cuuggggcca cagcugcccc gauggaugua ucaccggcgu guacaccgac | 1440 |
| gccuaccccc ugaauccuac cggcuccauc guguccagcg ugauccugga cagccagaaa | 1500 |
| agcagaguga accccgugau cacauacagc accgccaccg agagagugaa cgaacuggcc | 1560 |
| aucagaaaca agacccugag cgccggcuac accaccacaa gcugcaucac acacuacaac | 1620 |
| aagggcuacu gcuuccacau cguggaaauc aaccacaagu cccugaacac cuuccagccc | 1680 |
| augcuguuca agaccgagau ccccaagagc ugcucc | 1716 |

$<210>$ SEQ ID NO 64
$<211>$ LENGTH: 1617
$<212>$ TYPE: RNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: SYnthetic Polynucleotide
$<400>$ SEQUENCE: 64

augcccauca	gcauccugcu	gaucaucacc	acaaugauca	uggceagcca	cugccagauc	60
gacaucacca	agcugcagca	cgugggcgug	cucgugaaca	gccccaaggg	caugaagauc	120
agccagaacu	ucgagacacg	cuaccugauc	cugagccuga	uccccaagau	cgaggacagc	180
aacagcugcg	gcgaccagca	gaucaagcag	uacaagegge	ugcuggacag	acugaucauc	240
ccccuguacg	acggccugcg	gcugcagaaa	gacgugaucg	ugaccaacca	ggaaagcaac	300
gagaacaccg	acceccggac	cgagagauuc	uucggcggcg	ugaucggcac	aaucgeccug	360
ggaguggcea	caagcgecca	gauuacagcc	gcuguggcec	ugguggaagc	caagcaggce	420
agaagcgaca	ucgagaagcu	gaaagaggce	uccgggaca	ccaacaagge	cgugcagagc	480
gugcagucca	gcgugggcaa	ucugaucgug	gccaucaagu	ccgugcagga	cuacgugaac	540
aaagaaaucg	ugcecucuau	cgcccggcug	ggcugugaag	cugceggacu	gcagcuggge	600
auugcecuga	cacagcacua	cagcgagcug	accaacaucu	ucggcgacaa	caucggcagc	660
cugcaggaaa	agggcauuaa	gcugcaggga	aucgecagce	uguaccgcac	caacaucacc	720
gagaucuuca	ccaccagcac	cguggauaag	uacgacaucu	acgaccugcu	guucaccgag	780
agcaucaaag	ugcgcgugau	cgacguggac	cugaacgacu	acagcaucac	ccugcaagug	840
cggcugccec	ugcugaccag	acugcugaac	acccagaucu	acaaggugga	cagcaucucc	900
uacaacaucc	agaaccgega	gugguacauc	ccucugceca	gccacauuau	gaccaagggc	960
gccuuucugg	geggagcega	cgugaaagag	ugcaucgagg	ccuucagcag	cuacaucugc	1020
cccagcgacc	cuggcuucgu	gcugaaccac	gagauggaaa	gcugccugag	cggcaacauc	1080
agccagugcc	ccagaaccac	cgugaccucc	gacaucgugc	ccagauacgc	cuucgugaau	1140
ggcggcgugg	uggccaacug	caucaccacc	ccuguaccu	gcaacggcau	cggcaaccgg	1200
aucaaccagc	cuccegauca	gggcgugaag	auuaucaccc	acaaagagug	uaacaccauc	1260
ggcaucaacg	gcaugcuguu	caauaccaac	aaagagggca	cccuggceuu	cuacaccecc	1320
gacgauauca	cccugaacaa	cuccguggcu	cuggacceca	ucgacaucuc	caucgagcug	1380
aacaaggeca	agagcgaccu	ggaagaguce	aaagagugga	uccggeggag	caaccagaag	1440
cuggacucua	ucggcagcug	gcaccagagc	agcaccacca	ucaucgugau	ccugauuaug	1500
augauuaucc	uguucaucau	caacauuacc	aucaucacua	ucgccauuaa	guacuaccgg	1560


-continued

cacauuucuu	cuaccauguc	ucaauacucc	cguucuacge	gaucaaugcu	uaaacggcga	2100
gauucuacau	auggcceccu	ucagacaccu	guugguugug	uccuaggacu	uguuaauucc	2160
ucuuuguucg	uagaggacug	caaguugccu	cucggucaau	cucucugugc	ucuuccugac	2220
acaccuagua	cucucacacc	ucgcagugug	cgcucugugc	caggugaaau	gcgcuuggca	2280
uccauugcuu	uuaaucaucc	cauucagguu	gaucaacuua	auaguaguua	uuuvaaauua	2340
aguauaccea	cuaauuuuuc	cuuuggugug	acucaggagu	acauucagac	aaccauucag	2400
aagguuacug	uugauuguaa	acaguacguu	ugcaaugguu	uccagaagug	ugagcaauua	2460
cugcgegagu	auggceaguu	uuguuccaaa	auaaaccagg	cucuccaugg	ugccaauuua	2520
cgccaggaug	auucuguacg	uaauuuguuu	gcgagcguga	aaagcucuca	aucaucuccu	2580
aucauaccag	guuuuggagg	ugacuuuaau	ungacacuuc	uagaaccugu	uncuauaucu	2640
acuggeague	guagugcacg	uagugcuauu	gaggauuugc	uauuugacaa	agucacuaua	2700
gcugauccug	guuauaugca	agguuacgau	gauuguaugc	agcaaggucc	agcaucagcu	2760
cgugaucuua	uuugugcuca	auauguggcu	gguuauaaag	uauuaccucc	ucuuauggau	2820
guuaauaugg	aagccgcgua	uacuucaucu	uugcuuggca	gcauagcagg	uguuggcugg	2880
acugcuggcu	uauccuccuu	ugcugcuauu	ccauuugcac	agaguauyuu	unauagguua	2940
aacgguguug	gcauuacuca	acagguucuu	ucagagaacc	aaaagcuuau	ugccaauaag	3000
uuuaaucagg	cucugggagc	uaugcaaaca	ggcuucacua	caacuaauga	agcuuuucgg	3060
aagguucagg	augcugugaa	caacaaugca	aggcucuau	caaauuage	uagcgagcua	3120
ucuaauacuu	uuggugcuau	uuccgccucu	auuggagaca	ucauacaacg	ucuugauguu	3180
cucgaacagg	acgeccaaau	agacagacuu	auuaauggec	guuugacaac	acuaaaugcu	3240
uuuguugcac	agcagcuugu	ucguuccgaa	ucagcugcuc	uuuccgcuca	auuggcuaaa	3300
gauaaaguca	augagugugu	caaggcacaa	uccaageguu	cuggauuuug	cggucaaggc	3360
acacauauag	uguccuuugu	uguaaaugcc	ccuaauggec	uuuacuuuau	gcauguuggu	3420
uauuacccua	gcaaccacau	ugagguuguu	ucugcuuaug	gucuulugcga	ugcagcuaac	3480
ccuacuaauu	guauagcecc	uguuaauggc	acuuuauua	a aacuaauaa	cacuaggauu	3540
guugaugagu	ggucauauac	uggcucguce	uncuaugcac	cugagcecau	caccucucuu	3600
aauacuaagu	auguugcacc	acaggugaca	uaccaaaaca	uuucuacuaa	ccucccuccu	3660
ccucuucucg	gcaauuccac	cgggauugac	uccaagaug	aguuggauga	guuuuucaaa	3720
aauguuagca	ccaguauacc	uaauuuuggu	ucucuaacac	agauuaauac	uacauuacuc	3780
gaucuuaccu	acgagauguu	gucucuucaa	caaguuguua	aagcecuuaa	ugagucuuac	3840
auagaccuua	aagagcuugg	caaumauacu	uauuacaaca	aauggecgug	guacauuugg	3900
cuugguuuca	uugcugggcu	uguugccuia	gcucuaugcy	ucuucuucau	acugugcugc	3960
acugguugug	gcacaaacug	uaugggaaaa	cuuaagugua	aucguuguug	ugauagauac	4020
gaggaauacg	accucgagec	gcauaagguu	cauguucacu	aa		4062

$<210>$ SEQ ID NO 66
$<211>$ LENGTH: 4062
$<212>$ TYPE: RNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 66



$<210>$ SEQ ID NO 67	
$<211>$ LENGTH: 1845	
$<212>$ TYPE : RNA	
$<213>$ ORGANISM: Artificial Sequence	
$<220>$ FEATURE:	
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide	
$<400>$ SEQUENCE: 67	60
augauccacu ccguguuccu ccucauguuc cuguugaccc ccacugaguc agacugcaag	180
cucccgcugg gacagucccu gugugcgcug ccugacacuc cuagcacucu gaccccacgc	120
uccgugcggu cggugccugg cgaaaugcgg cuggccucca ucgccuucaa ucacccaauc	180
caaguggauc agcugaauag cucguauuuc aagcugucca uccccacgaa cuucucguuc	240
ggggucacce aggaguacau ccagaccaca auucagaagg ucaccgucga uugcaagcaa	300
uacgugugca acggcuucca gaagugcgag cagcugcuga gagaauacgg gcaguuuugc	360


$<210>$ SEQ ID NO 68
$<211>$ LENGTH: 4071
$<212>$ TYPE: RNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 68
auggaaaccc cugcccagcu gcuguuccug cugcugcugu ggcugccuga uaccaccggc 60
agcuaugugg acgugggcec cgauagcgug aaguccgccu guaucgaagu ggacauccag 120
cagaccuuuu ucgacaagac cuggcecaga cecaucgacg uguccaaggc cgacggcauc 180
aucuauccac aaggccggac cuacagcaac aucaccauua ccuaccaggg ccuguuccca 240
uaucaaggcg accacggcga uauguacgug uacucugceg gccacgccac cggcaccaca 300
ccccagaaac uguucgugge caacuacage caggacguga agcaguucge caacggcuuc 360
gucgugcgga u
agcgccacca uccggaagau cuaccccgcc uucaugcugg gcagcuccgu gggcaauuuc
agcgacggca agaugggecg guucuucaac cacacccugg ugcugcugcc cgauggcugu 540
ggcacacugc ugagagccuu cuacugcauc cuggaaccea gaageggcaa ccacugcecu 600
-continued


aucgecaaca	aguuuaacca	ggcacuggge gccaugcaga	ccggcuucac	caccaccaac	3060
gaggceuuca	gaaaggugca	ggacgccgug aacaacaacg	cccaggcucu	gagcaagcug	3120
gccuccgage	ugagcaauac	cuucggegec aucagegceu	ccaucggega	caucauccag	3180
cggcuggacg	ugcuggaaca	ggacgcccag aucgaccggc	ugaucaacgg	cagacugacc	3240
acccugaacg	ccuucgugge	acagcagcuc gugcggagcg	aaucugcegc	ucugucugcu	3300
cagcuggcea	aggacaaagu	gaacgaguge gugaaggecc	aguccaagcg	gageggcuuu	3360
uguggceagg	gcacccacau	cguguccuuc gucgugaaug	cccccaacgg	ccuguacuuu	3420
augcacgugg	gcuauuacce	cagcaaccac aucgaggugg	uguccgccua	uggceugugc	3480
gacgecgcea	auccuaccaa	cuguaucgec cocgugaacg	gcuacuucau	caagaccaac	3540
aacaccegga	ucguggacga	gugguccuac acaggcagca	gcuucuacge	cccegagcec	3600
aucaccuccc	ugaacaccaa	auacguggce ceccaaguga	cauaccagaa	caucuccacc	3660
aaccugccec	cuccacugcu	gggaaauucc accggcaucg	acuuccagga	cgagcuggac	3720
gaguucuuca	agaacguguc	caccuccauc cecaacuucg	gcagccugac	ccagaucaac	3780
accacucuge	uggaccugac	cuacgagaug cugucccugc	aacaggucgu	gaaagcecug	3840
aacgagagcu	acaucgaccu	gaaagagcug gggaacuaca	ccuacuacaa	caaguggceu	3900
ugguacauuu	ggcugggcuu	uaucgecgge cugguggcec	uggcecugug	cguguucuuc	3960
auccugugcu	gcaccggcug	cggcaccaau ugcaugggca	agcugaaaug	caaccggugc	4020
ugcgacagau	acgaggaaua	cgaccuggaa ccucacaaag	ugcaugugca	c	4071

$<210>$ SEQ ID NO 69
$<211>$ LENGTH: 1864
$<212>$ TYPE: RNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: SYnthetic Polynucleotide
$<400>$ SEQUENCE: 69
ucaagcuuuu ggacccucgu acagaagcua auacgacuca cuauagggaa auaagagaga 60
aaagaagagu aagaagaaau auaagagcca ccaugggucu caaggugaac gucucugccg 120
uauucauggc aguacuguua acucuccaaa cacccgccgg ucaaauucau uggggcaauc 180
ucucuaagau agggguagua ggaauaggaa gugcaagcua caaaguuaug acucguucca 240
gccaucaauc aunagucaua aaaunaaugc ccaauauac ucuccucaau aacugcacga 300
ggguagagau ugcagaauac aggagacuac uaagaacagu uunggaacca auuagggaug 360
cacuuaaugc aaugacccag aacauaaggc cgguucagag cguagcuuca aguaggagac 420
acaagagauu ugcgggagua guccuggcag gugcggcecu agguguugce acagcugcuc 480
agauaacagc cggcaungca cuucaccggu ccaugcugaa cucucaggce aucgacaauc 540
ugagagcgag ccuggaaacu acuaaucagg caauugaggc aaucagacaa gcagggcagg 600
agaugauauu ggcuguncag gguguccaag acuacaucaa uaaugagcug auaccgucua 660
ugaaccagcu aucuugugau cuaaucgguc agaagcucgg gcucaaauug cuuagauacu 720
auacagaaau ccugucauua uunggcceca gccuacggga ceccauaucu gcggagauau 780
cuauccaggc uuugaguuau gcacuuggag gagauaucaa uaagguguua gaaaagcucg 840
gauacagugg aggcgauuua cuaggcaucu uagagagcag aggaauaaag gcucggauaa 900
cucacgucga cacagagucc uacuucauag uccucaguau agccuauccg acgeuguceg 960
-continued

agauuaaggg	ggugauuguc	caccggcuag	agggggucuc	guacaacaua	ggcucucaag	1020
agugguauac	cacugugccc	aaguauguug	caacccaagg	guaccuuauc	ucgaauuuug	1080
augagucauc	auguacuuuc	augccagagg	ggacugugug	cagccaaaau	gccuuguacc	1140
cgaugagucc	ucugcuccaa	gaaugccucc	gggaguccac	caaguccugu	gcucguacac	1200
ucguauccgg	gucuuunggg	aaccgguuca	uuuuaucaca	agggaaccua	auagccaauu	1260
gugcaucaau	ucuuuguaag	uguuacacaa	cagguacgau	uauuaaucaa	gaccougaca	1320
agauccuaac	auacauugcu	gccgaucgcu	gcecgguagu	cgaggugaac	ggcgugacca	1380
uccaagucgg	gagcaggagg	uauccagacg	cuguguacuu	gcacagaauu	gaccucgguc	1440
cucceauauc	auuggagagg	uuggacguag	ggacaaaucu	ggggaaugca	aungccaaau	1500
uggaggaugc	caaggaaulug	uuggaaucau	cggaccagau	auugagaagu	augaaagguu	1560
uaucgagcac	uagcauaguc	uacauccuga	ungcagugug	ucuuggaggg	ungauaggga	1620
uccecacuuu	aauauguugc	ugcagggggc	guuguaacaa	aaagggagaa	caaguuggua	1680
ugucaagacc	aggccuaaag	ccugaccuua	caggaacauc	aaaauccuau	guaagaucgc	1740
uuugaugaua	auaggcugga	gccucggugg	ccaagcuucu	ugccecuugg	gccucceccc	1800
agceccuccu	ceccuuccug	caccoguacc	cccguggucu	uugaauaaag	ucugaguggg	1860
cggc						1864

$<210>$ SEQ ID NO 70
$<211>$ LENGTH: 1653
$<212>$ TYPE : RNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 70

augggucuca	aggugaacgu	cucugcegua	uucauggcag	uacuguuaac	ucuccaaaca	60
cecgecggue	aaauucaung	gggcaaucuc	ucuaagauag	ggguaguagg	aauaggaagu	120
gcaagcuaca	aaguuaugac	ucguuccagc	caucaaucau	uagucauaaa	auuaaugcec	180
a auauaacuc	uccucaauaa	cugcacgagg	guagagauug	cagaauacag	gagacuacua	240
agaacaguuu	uggaaccaau	uagggaugca	cuuaaugcaa	ugacccagaa	cauaaggceg	300
guucagagcg	uagcuucaag	uaggagacac	aagagauuug	cgggaguagu	ceuggcaggu	360
geggcecuag	guguugccac	agcugcucag	auaacagccg	gcauugcacu	ucacegguce	420
augcugaacu	cucaggccau	cgacaaucug	agagcgagce	uggaaacuac	uaaucaggca	480
auugaggcaa	ucagacaagc	agggcaggag	augauauugg	cuguucaggg	uguccaagac	540
uacaucaaua	augagcugau	accgucuaug	aaccagcuau	cuugugaucu	aaucggucag	600
aagcucggge	ucaaauugcu	uagauacuau	cagaaaucc	ugucauuauu	uggceccagc	660
cuacgggacc	ccauaucugc	ggagauaucu	auccaggcuu	ugaguuaugc	acuuggagga	720
gauaucaaua	agguguuaga	aaagcucgga	uacaguggag	gcgauuuacu	aggcaucuua	780
gagagcagag	gaauaaaggc	ucggauaacu	cacgucgaca	cagaguccua	cuucauaguc	840
cucaguauag	ccuauccgac	gcuguccgag	auuaaggggg	ugauugucca	ccggcuagag	900
ggggucucgu	acaacauagg	cucucaagag	ugguauacca	cugugcceaa	guauguugca	960
acccaagggu	accuuaucuc	gaauuuugau	gagucaucau	guacuuucau	gccagagggg	1020
acugugugca	gccaaaaugc	cuuguacceg	augaguccuc	ugcuccaaga	augceuccgg	1080
ggguccacca	aguccuguge	ucguacacuc	guauccgggu	cuuuugggaa	cogguucauu	1140


$<210>$ SEQ ID NO 71
$<211>$ LENGTH: 1925
$<212>$ TYPE : RNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 71
ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaccau gggucucaag 60
gugaacgucu cugccguauu cauggcagua cuguuaacuc uccaaacacc cgceggucaa 120
auucauuggg gcaaucucuc uaagauaggg guaguaggaa uaggaagugc aagcuacaaa 180
guuaugacuc guuccagcea ucaaucauua gucauaaaau vaaugcceaa uauaacucuc 240
cucaauaacu gcacgagggu agagauugca gaauacagga gacuacuaag aacaguuuug 300
gaaccaauua gggaugcacu uaaugcaaug acccagaaca uaaggccggu ucagagcgua 360
gcuucaagua ggagacacaa gagauuugcg ggaguagucc uggcaggugc ggcecuaggu 420
guugccacag cugcucagau aacagceggc aungcacuuc accgguccau gcugaacucu 480
caggccaucg acaaucugag agcgagccug gaaacuacua aucaggcaau ugaggcaauc 540
agacaagcag ggcaggagau gauauuggcu guucagggug uccaagacua caucaauaau 600
gagcugauac cgucuaugaa ccagcuaucu ugugaucuaa ucggucagaa gcucgggcuc 660
aaauugcuua gauacuauac agaaauccug ucauuauug gecceagceu acgggaccec 720
auaucugcgg agauaucuau ccaggcuung agunaugcac unggaggaga uaucaauaag 780
guguuagaaa agcucggaua caguggaggc gauuuacuag gcaucuuaga gagcagagga 840
auaaaggcuc ggauaacuca cgucgacaca gaguccuacu ucauaguccu caguauagce 900
uauccgacge uguccgagau uaagggggug aunguccacc ggcuagaggg ggucucguac 960
aacauaggcu cucaagagug guauaccacu gugcccaagu auguugcaac ccaaggguac 1020
cuuaucucga auuuugauga gucaucaugu acuuucaugc cagaggggac ugugugcagc 1080
caaaaugccu uguacccgau gaguccucug cuccaagaau gccuccgggg guccaccaag 1140
uccugugcuc guacacucgu auccgggucu uuugggaace gguucauuuu aucacaaggg 1200
aaccuaauag ccaaungugc aucaauucuu uguaaguguu acacaacagg uacgauuauu 1260
aaucaagacc cugacaagau ccuaacauac aungcugceg aucgcugcec gguagucgag 1320
gugaacggcg ugaccaucca agucgggagc aggagguauc cagacgcugu guacuugcac
agaauugace ucgguccucc cauaucaung gagagguugg acguagggac aaaucugggg 1440
aaugcaaung ccaaaungga ggaugccaag gaaunguugg aaucaucgga ccagauauug 1500
-continued

$<210>$ SEQ ID NO 72
$<211>$ LENGTH: 1864
$<212>$ TYPE: RNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 72
ucaagcuuuu ggacccucgu acagaagcua auacgacuca cuauagggaa auaagagaga 60
aaagaagagu aagaagaaau auaagagcca ccaugggucu caaggugaac gucucuguca 120
uauucauggc aguacuguua acucuucaaa cacccaccgg ucaaauccau uggggcaauc 180
ucucuaagau agggguggua gggguaggaa gugcaagcua caaaguuaug acucguucca 240
gecaucaauc aunagucaua aaguuaauge ccaauauaac ucuccucaac aauugcacga 300
ggguagggau ugcagaauac aggagacuac ugagaacagu ucuggaacca auuagagaug 360
cacuuaaugc aaugacceag aauauaagac cgguucagag uguagcuuca aguaggagac 420
acaagagauu ugcgggaguu guccuggcag gugcggcceu aggcguugce acagcugcuc 480
aaauaacage cgguauugca cuucaccagu ccaugcugaa cucucaagce aucgacaauc 540
ugagagcgag ccuagaaacu acuaaucagg caauugaggc aaucagacaa gcagggcagg 600
agaugauauu ggcuguucag gguguccaag acuacaucaa uaaugagcug auaccgucua 660
ugaaucaacu aucuugugau uuaaucggcc agaagcuagg gcucaaauug cucagauacu 720
auacagaaau ccugucauna uugggcccca gcuuacggga ccccauaucu gcggagauau 780
cuauccagge uugagcuau gcgcuuggag gagauaucaa uaagguguug gaaaagcucg 840
gauacagugg aggugaucua cugggcaucu uagagagcag aggaauaaag gcccggauaa 900
cucacgucga cacagagucc uacuucaung uacucaguau agccuauccg acgcuauccg 960
agauuaaggg ggugauuguc caccggcuag agggggucuc guacaacaua ggcucucaag 1020
agugguauac cacugugcec aaguaugung caacccaagg guaccuuauc ucgaauuuug 1080
augagucauc augcacuuuc augccagagg ggacugugug cagccagaau gccuuguacc 1140
cgaugagucc ucugcuccaa gaaugccucc ggggguccac uaaguccugu gcucguacac 1200
ucguauccgg gucuuucggg aaccgguuca uuuuaucaca ggggaaccua auagccaauu 1260
gugcaucaau ccuuugcaag uguuacacaa caggaacaau cauuaaucaa gacccugaca 1320
agauccuaac auacauugcu gccgaucacu gcccgguggu cgaggugaau ggcgugacca 1380
uccaagucgg gagcaggagg uauccggacg cuguguacuu gcacaggauu gaccucgguc 1440
cucccauauc uugggagagg uuggacguag ggacaaaucu ggggaaugca auugcuaagu 1500
uggaggaugc caaggaauug uuggagucau cggaccagau aungaggagu augaaagguu 1560
uaucgagcac uaguauaguu uacauccuga ungcagugug ucuuggagga ungauaggga 1620

$<210>$ SEQ ID NO 73
$<211>$ LENGTH: 1653
$<212>$ TYPE: RNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 73
augggucuca aggugaacgu cucugucaua uucauggcag uacuguuaac ucuucaaaca 60
cccaccgguc aaauccauug gggcaaucuc ucuaagauag gggugguagg gguaggaagu 120
gcaagcuaca aaguuaugac ucguuccagc caucaaucau uagucauaaa gunaaugcec 180
aauauaacuc uccucaacaa ungcacgagg guagggaung cagaauacag gagacuacug 240
agaacaguuc uggaaccaau uagagaugca cuuaaugcaa ugacccagaa uauaagaccg 300
guucagagug uagcuucaag uaggagacac aagagauuug cgggaguugu ceuggcaggu 360
gcggcecuag gcguugccac agcugcucaa auaacagceg guauugcacu ucaccagucc 420
augcugaacu cucaagccau cgacaaucug agagcgagce uagaaacuac uaaucaggca 480
aungaggcaa ucagacaagc agggcaggag augauauugg cuguucaggg uguccaagac 540
uacaucaaua augagcugau accgucuang aaucaacuau cuugugauuu aaucggccag 600
aagcuaggge ucaaauugcu cagauacuau acagaaaucc ugucauuauu uggccecagc 660
unacgggace ccauaucugc ggagauaucu auccaggcuu ugagcuaugc gcuuggagga 720
gauaucaaua agguguugga aaagcucgga uacaguggag gugaucuacu gggcaucuua 780
gagagcagag gaauaaaggc coggauaacu cacgucgaca cagaguccua cuucauugua 840
cucaguauag ccuauccgac gcuauccgag auuaaggggg ugauugucca ccggcuagag 900
ggggucucgu acaacauagg cucucaagag ugguauacca cugugcccaa guauguugca 960
acccaagggu accuuaucuc gaauuuugau gagucaucau gcacuuucau gccagagggg 1020
acugugugca gccagaaugc cuuguacceg augaguccuc ugcuccaaga augccuccgg 1080
ggguccacua aguccugugc ucguacacuc guauccgggu cuuncgggaa cogguucauu 1140
uuaucacagg ggaaccuaau agccaauugu gcaucaaucc uungcaagug uuacacaaca 1200
ggaacaauca uuaaucaaga cecugacaag auccuaacau acaungcugc cgaucacugc 1260
ccgguggucg aggugaaugg cgugaccauc caagucggga gcaggaggua uccggacgcu 1320
guguacuugc acaggauuga ccucgguccu cccauaucuu uggagagguu ggacguaggg 1380
acaaaucugg ggaaugcaau ugcuaaguug gaggaugcea aggaauuguu ggagucaucg 1440
gaccagauau ugaggaguau gaaagguuua ucgagcacua guauaguuua cauccugauu 1500
gcaguguguc uuggaggauu gauagggauc cecgcuuuaa uauguugcug cagggggegu 1560
uguaacaaga agggagaaca aguugguaug ucaagaccag gccuaaagcc ugaucuuaca 1620
$<211>$ LENGTH: 1925
$<212>$ TYPE: RNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 74
ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaccau gggucucaag 60
gugaacgucu cugucauauu cauggcagua cugunaacuc uncaaacacc caccggucaa 120
auccaulugg gcaaucucuc uaagauaggg gugguagggg uaggaagugc aagcuacaaa 180
guuaugacuc guuccagcea ucaaucauua gucauaaagu vaaugcccaa uauaacucuc 240
cucaacaauu gcacgagggu agggauugca gaauacagga gacuacugag aacaguucug 300
gaaccaauua gagaugcacu uaaugcaaug acccagaaua uaagaccggu ucagagugua 360
gcuucaagua ggagacacaa gagauuugeg ggaguugucc uggcaggugc ggcccuaggc 420
guugccacag cugcucaaau aacagccggu auugcacuuc accaguccau gcugaacucu 480
caagccaucg acaaucugag agcgagccua gaaacuacua aucaggcaau ugaggcaauc 540
agacaagcag ggcaggagau gauauuggcu guucagggug uccaagacua caucaauaau 600
gagcugauac cgucuaugaa ucaacuaucu ugugauuaaa ucggccagaa gcuagggcuc 660
aaauugcuca gauacuauac agaaauccug ucauuauuug gccccagcuu acgggacccc 720
auaucugcgg agauaucuau ccaggcuung agcuaugcgc uuggaggaga uaucaauaag 780
guguuggaaa agcucggaua caguggaggu gaucuacugg gcaucuuaga gagcagagga 840
auaaaggcce ggauaacuca cgucgacaca gaguccuacu ucauuguacu caguauagce 900
uauccgacge uauccgagau uaagggggug auuguccacc ggcuagaggg ggucucguac 960
aacauaggcu cucaagagug guauaccacu gugcccaagu auguugcaac ccaaggguac 1020
cuuaucucga auuungauga gucaucaugc acuuncaugc cagaggggac ugugugcagc 1080

cagaaugcen uguacccgau gaguccucug cuccaagaau gccuccgggg guccacuaag	1140
uccugugcuc guacacucgu auccgggucu uncgggaacc gguvcauuuu aucacagggg	1200

aaccuaauag ccaauugugc aucaauccuu ugcaaguguu acacaacagg aacaaucauu 1260
aaucaagacc cugacaagau ccuaacauac aungcugceg aucacugcec gguggucgag 1320
gugaauggeg ugaccaucca agucgggagc aggagguauc cggacgcugu guacuugcac 1380
aggauugacc ucgguccucc cauaucuuug gagagguugg acguagggac aaaucugggg 1440
aaugcaaung cuaaguugga ggaugccaag gaauuguugg agucaucgga ccagauauug 1500
aggaguauga aagguunauc gagcacuagu auaguuuaca uccugauugc agugugucuu 1560
ggaggauuga uagggaucce cgcuuuaaua uguugcugca gggggeguug uaacaagaag 1620
ggagaacaag uugguauguc aagaccaggc cuaaagccug aucuuacagg aacaucaaaa 1680
uccuauguaa ggucacucug augauaauag gcuggagccu cgguggccaa gcuucuugcc 1740
ccuugggecu ceccccagce ccuccuccec unccugcacc cguacceccg uggucuuuga 1800
auaaagucug agugggeggc aaaaaaaaa aaaaaaaaa aaaaaaaaaa aaaaaaaaa 1860

aaaaaaaaa aaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa	1920
ucuag	1925

$<210>$ SEQ ID NO 75
$<211>$ LENGTH: 2065
$<212>$ TYPE : RNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 75

ucaagcuuuu ggacccucgu acagaagcua auacgacuca cuauagggaa auaagagaga	60
aaagaagagu aagaagaaau auaagagcca ccaugucacc gcaacgagac cggauaaaug	120

ccuucuacaa agauaacccu uaucccaagg gaaguaggau aguuauuaac agagaacauc 180
uuaugaunga cagacccuau guucugcugg cuguucuguu cgucauguuu cugagcuuga 240
ucggauugcu ggcaaungca ggcaunagac uucaucgggc agccaucuac acegcggaga 300
uccauaaaag ccucaguacc aaucuggaug ugacuaacuc caucgagcau caggucaagg 360
acgugcugac accacucuuu aaaaucaucg gggaugaagu gggccugaga acaccucaga 420
gauucacuga ccuagugaaa uncaucucgg acaagauuaa aunccuuaau ccggauaggg 480
aguacgacuu cagagaucuc acuuggugca ucaacccgcc agagaggauc aaacuagauu 540
augaucaaua cugugcagau guggcugcug aagagcucau gaaugcauug gugaacucaa 600
cucuacugga gaccagaaca accacucagu uccuagcugu cucaaaggga aacugcucag 660
ggcceacuac aaucagaggu caauucucaa acaugucgcu guccunguig gacuuguacu 720
uaggucgagg unacaangug ucaucuauag ucacuaugac aucccaggga auguaugggg 780
gaaccuaccu aguugaaaag ccuaaucuga acagcaaagg gucagaguug ucacaacuga 840

gcauguaccg aguguungaa guagguguga ucagaaaccc ggguungggg gcuccggugu	900
uccauaugac aaacuauuuu gagcaaccag ucaguaaugg ucucggcaac uguauggugg	960


cuunggggga gcucaaacuc gcagcecuuu gucacgggga cgauucuauc auaauncceu	1020
aucagggauc agggaaaggu gucagcuucc agcucgucaa gcuggguguc uggaaaucec	1080

caaccgacau gcaauccugg guccccuuau caacggauga uccaguggua gacaggcuuu 1140
accucucauc ucacagaggu gucaucgcug acaaucaagc aaaaugggcu guccegacaa 1200
cacgaacaga ugacaaguug cgaauggaga caugcuucca gcaggcgugu aaagguaaaa 1260
uccaagcacu cugcgagaau cccgaguggg uaccaungaa ggauaacagg aunccuucau 1320
acgggguccu gucuguugau cugagucuga cggungagcu uaaaaucaaa auugcuucgg 1380
gauucgggcc auugaucaca cacggcucag ggauggaccu auacaaaucc aacugcaaca 1440
auguguaung gcugacuauu cegccaauga gaaaucuage cunaggegua aucaacacau 1500
uggaguggau accgagauuc aagguuaguc ccaaccucuu cacuguccea aunaaggaag 1560
caggegaaga cugccaugcc ccaacauacc uaccugcgga gguggacggu gaugucaaac 1620
ucaguuccaa couggugauu cuaccugguc aagaucucca auauguuuug gcaaccuacg 1680

auaccuccag gguugagcau geugugguuu aunacguuua cagcccaage cgcucauuuu	1740
cunacuuuna uccuunuagg ungccuauaa aggggguccc aavcgaacua caaguggaau	1800


$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 76

gaugaagugg gccugagaac accucagaga uncacugacc uagugaaauu caucucggac 360
aagaunaaau uccuuaaucc ggauagggag uacgacuuca gagaucucac unggugcauc 420
aaccegccag agaggaucaa acuagauuau gaucaauacu gugcagaugu ggcugcugaa 480
gagcucauga augcaunggu gaacucaacu cuacuggaga ccagaacaac cacucaguuc 540
cuagcugucu caaagggaaa cugcucaggg cecacuacaa ucagagguca auncucaaac 600
augucgcugu ccuuguugga cuuguacuua ggucgagguu acaauguguc aucuauaguc 660
acuaugacau cccagggaau guauggggga accuaccuag uugaaaagcc uaaucugaac 720
agcaaagggu cagaguuguc acaacugagc auguaccgag uguuugaagu aggugugauc 780
agaaacccgg guuuggggge uccgguguuc cauaugacaa acuauuuuga gcaaccaguc 840
aguaaugguc ucggcaacug uaugguggcu ungggggage ucaaacucge agcccuuugu 900

| cacggggacg auncuaucau aauucccuau cagggaucag ggaaaggugu cagcuuccag | 960 |
| :--- | :--- | :--- |
| cucgucaagc ugggugucug gaaaucccca accgacaugc aauccugggu ccccuuauca | 1020 |

acggaugauc cagugguaga caggcuuuac cucucaucuc acagaggugu caucgcugac 1080
aaucaagcaa augggcugu cccgacaaca cgaacagaug acaaguugcg aanggagaca 1140
ugcuuccage aggcguguaa agguaaaauc caagcacucu gegagaauce cgagugggua 1200
ccauugaagg auaacaggau uccuucauac gggguccugu cugungaucu gagucugacg 1260
guugagcuua aaaucaaaau ugcuucggga uncgggccau ugaucacaca cggcucaggg 1320
auggaccuau acaaauccaa cugcaacaau guguaunggc ugacuauucc gccaaugaga 1380
aaucuagccu uaggcguaau caacacaung gaguggauac cgagauncaa gguuagucec 1440
aaccucuuca cugucccaau uaaggaagca ggcgaagacu gccaugccec aacauaccua 1500
ccugcggagg uggacgguga ugucaaacuc aguuccaacc uggugauucu accuggucaa 1560
gaucuccaau auguuungge aaccuacgau accuccaggg uqgagcaugc ugugguuuau 1620
uacguunaca gcccaagecg cucauuuucu uacuuuuauc cuuuuagguu gccuanaaag 1680
ggggucccaa ucgaacuaca aguggaaugc uucacauggg aucaaaaacu cuggugccgu 1740

cacuucugug ugcuugcgga cucagaaucc gguggacuua ucacucacuc ugggauggug	1800
ggcaugggag ucagcugcac agcuacccgg gaagauggaa ccaaucgcag auaa	1854

$<210>$ SEQ ID NO 77
$<211>$ LENGTH: 2126
$<212>$ TYPE: RNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 77

$<210>$ SEQ ID NO 78
$<211>$ LENGTH: 2065
$<212>$ TYPE: RNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: SYnthetic Polynucleotide
-continued

$<210>$ SEQ ID NO 79
$<211>$ LENGTH: 1854
$<212>$ TYPE : RNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
-continued

$<210>$ SEQ ID NO 80
$<211>$ LENGTH: 2126
$<212>$ TYPE: RNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE : 80
ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaccau gucaccacaa 60
cgagaccgga uaaaugccuu cuacaaagac aacccccauc cuaagggaag uaggauaguu 120
-continued

$<210>$ SEQ ID NO 81
$<211>$ LENGTH: 1729
$<212>$ TYPE: RNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 81
-continued

$<210>$ SEQ ID NO 82
$<211>$ LENGTH: 1518
$<212>$ TYPE: RNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 82

-continued

aacgaaaucg	accguguauc	cggccagacu	caguucaacg	gcgugaaagu	ccuggcgcag	420
gacaacaccc	ugaccaucca	gguuggugcc	aacgacggug	aaacuaucga	uauugauuua	480
aaagaaauca	gcucuaaaac	acugggacuu	gauaagcuua	auguccaaga	ugccuacacc	540
ccgaaagaaa	cugcuguaac	cguugauaaa	acuaccuaua	aaaaugguac	agauccuauu	600
acagcccaga	gcaauacuga	uauccaaacu	gcaauuggeg	guggugcaac	g9ggguuacu	660
ggggcugaua	ucaaauuuaa	agauggucaa	uacuauuuag	auguuaaagg	cggugcuucu	720
gcugguguuu	auaaagccac	uuaugaugaa	acuacaaaga	aaguuaauau	ugauacgacu	780
gauaaaacuc	cguuggcaac	ugcggaagcu	acagcuauuc	ggggaacggc	cacuauaacc	840
cacaaccaaa	uugcugaagu	aacaaaagag	gguguugaua	cgaccacagu	ugcggcucaa	900
cuugcugcag	cagggguuac	uggcgecgau	aaggacaaua	cuagceuugu	aaaacuaucg	960
uuugaggaua	aaaacgguaa	gguuauugau	gguggcuaug	cagugaaaau	gggcgacgau	1020
uucuaugecg	cuacauauga	ugagaaaaca	ggugcaauua	cugcuaaaac	cacuacuuau	1080
acagauggua	cuggeguugc	ucaaacugga	gcugugaaau	ungguggcgc	aaaugguaaa	1140
ucugaaguug	uuacugcuac	cgaugguaag	acuuacuuag	caagegaccu	ugacaaacau	1200
aacuucagaa	caggcgguga	gcuuaaagag	guuaauacag	auaagacuga	aaacccacug	1260
cagaaaauug	augcugccuu	ggcacagguu	gauacacuuc	guucugaccu	gggugcgguu	1320
cagaaccguu	ucaacuccge	uaucaccaac	cugggcaaua	ccguaaauaa	ccugucuucu	1380
gcceguagce	guaucgaaga	uuccgacuac	gcaaccgaag	ucuccaacau	gucucgegeg	1440
cagauucugc	agcaggccgg	uaccuccguu	cuggcgcagg	cgaaccaggu	uccgeaaaac	1500
guccucucuu	uacugcgu					1518

$<210>$ SEQ ID NO 83
$<211>$ LENGTH: 1790
$<212>$ TYPE : RNA
$<213>$ ORGANISM: Artificial sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 83


gcugaaguaa	caaaagaggg	uguugauacg accacaguug	cggcucaacu	ugcugcagca	960
gggguuacug	gcgcegauaa	ggacaauacu agccuuguaa	aacuaucguu	ugaggauaaa	1020
aacgguaagg	uuauugaugg	uggcuaugca gugaaaaugg	gcgacgauuu	cuaugcegcu	1080
acauaugaug	agaaaacagg	ugcaauuacu gcuaaaacca	cuacuuauac	agaugguacu	1140
ggcguugcuc	aaacuggagc	ugugaaauuu gguggcgcaa	augguaaauc	ugaaguuguu	1200
acugcuaccg	augguaagac	uuacuuagca agcgaccuug	acaaacauaa	cuucagaaca	1260
ggcggugage	uuaaagaggu	uaauacagau aagacugaaa	acccacugca	gaaaauugau	1320
gcugccuugg	cacagguuga	uacacuucgu ucugaccugg	gugcgguuca	gaaccguuuc	1380
aacuccgcua	ucaccaaccu	gggcaauacc guaaauaacc	ugucuucuge	ccguagcegu	1440
aucgaagauu	cogacuacge	aaccgaaguc uccaacaugu	cucgcgegca	gauucugcag	1500
caggecggua	ccuccguucu	ggcgcaggcg aaccagguuc	cgcaaaacgu	cucucuuua	1560
cugcguugau	aauaggcugg	agccucggug gecaugcuuc	ungccecuug	ggccuccecc	1620
cagceccucc	uccecuuccu	gcaccoguac ceccgugguc	uuugaauaaa	gucugagugg	1680
gcggcaaaaa	aaaaaaaaaa	aaaaaaaaa aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	1740
aaaaaaaaaa	aaaaaaaaaa	a aaaaaaaa a aaaaaaaa	aaaaaucuag		1790

$<210>$ SEQ ID NO 84
$<211>$ LENGTH: 13
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Salmonella typhimurium
$<400>$ SEQUENCE: 84

Leu Gln Arg Val Arg Glu Leu Ala Val	
1	5 Gln Ser Ala Asn
10	

$<210>$ SEQ ID NO 85
$<211>$ LENGTH: 539
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polypeptide
$<400>$ SEQUENCE: 85


$<210>$ SEQ ID NO 86
$<211>$ LENGTH: 539
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polypeptide
$<400>$ SEQUENCE: 86


$<210>$ SEQ ID NO 87
$<211>$ LENGTH: 539
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: SYnthetic Polypeptide
$<400>$ SEQUENCE: 87


$<210>$ SEQ ID NO 88
$<211>$ LENGTH: 539
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polypeptide
$<400>$ SEQUENCE: 88


		35					40					45			
Thr	$\begin{aligned} & \text { Leu } \\ & 50 \end{aligned}$	Glu	Val	Gly	Asp	$\begin{aligned} & \mathrm{Val} \\ & 55 \end{aligned}$					$\begin{aligned} & \text { Cys } \\ & 60 \end{aligned}$				Pro
$\begin{aligned} & \text { Ser } \\ & 65 \end{aligned}$	Leu	Ile	Lys	Thr	$\begin{aligned} & \text { Glu } \\ & 70 \end{aligned}$	Leu	Asp	Leu	Leu	$\begin{aligned} & \text { Lys } \\ & 75 \end{aligned}$	Ser	Ala		Arg	$\begin{aligned} & \text { Glu } \\ & 80 \end{aligned}$
Leu	Lys	Thr	Val	$\begin{aligned} & \text { Ser } \\ & 85 \end{aligned}$	Ala	Asp	Gln	Leu	$\begin{aligned} & \text { Ala } \\ & 90 \end{aligned}$	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Gly	$\begin{aligned} & \text { Ser } \\ & 100 \end{aligned}$	Gly	Ser	he	Val	Leu $105$	Gly	Ala	Ile		Leu   110	Gly	Val
Ala	Ala	Ala $115$	Ala	Ala	Val	Thr	$\begin{aligned} & \text { Ala } \\ & 120 \end{aligned}$	Gly	Val	Ala	Ile	$\begin{aligned} & \text { Ala } \\ & 125 \end{aligned}$	Lys		Ile
Arg	$\begin{aligned} & \text { Leu } \\ & 130 \end{aligned}$	Glu	Ser	Glu	Val	$\begin{aligned} & \text { Thr } \\ & 135 \end{aligned}$	Ala	Ile	Asn	Asn	$\begin{aligned} & \text { Ala } \\ & 140 \end{aligned}$	Leu	Lys	Lys	Thr
$\begin{aligned} & \text { Asn } \\ & 145 \end{aligned}$	Glu.	Ala	Val	er	$\begin{aligned} & \text { Thr } \\ & 150 \end{aligned}$	eu	Gly	Asn	Gly	$\begin{aligned} & \text { Val } \\ & 155 \end{aligned}$	Arg	Val	Leu	Ala	$\begin{aligned} & \text { Thr } \\ & 160 \end{aligned}$
Ala	Val	Arg	Glu	$\begin{aligned} & \text { Leu } \\ & 165 \end{aligned}$	Lys	Asp	Phe	Val	$\begin{aligned} & \text { Ser } \\ & 170 \end{aligned}$	Lys	Asn	Leu	Thr	$\begin{aligned} & \text { Arg } \\ & 175 \end{aligned}$	Ala
Ile	Asn	Lys	$\begin{aligned} & \text { Asn } \\ & 180 \end{aligned}$	Lys	Cys A	Asp	Ile	$\begin{aligned} & \text { Pro } \\ & 185 \end{aligned}$	Asp	Leu	Lys		$\begin{aligned} & \text { Ala } \\ & 190 \end{aligned}$	Val	Ser
Phe	Ser	$\begin{aligned} & \text { Gln } \\ & 195 \end{aligned}$	Phe	Asn	Arg	Arg	$\begin{aligned} & \text { Phe } \\ & 200 \end{aligned}$	Leu	Asn		al	$\begin{aligned} & \text { Arg } \\ & 205 \end{aligned}$	$\mathrm{Gln}$		Ser
Asp	$\begin{aligned} & \text { Asn } \\ & 210 \end{aligned}$	Ala	Gly	Ile	Thr	$\begin{aligned} & \text { Pro } \\ & 215 \end{aligned}$	Ala	Ile	Ser	Leu	$\begin{aligned} & \text { Asp } \\ & 220 \end{aligned}$	Leu	Met	Thr	Asp
$\begin{aligned} & \text { Ala } \\ & 225 \end{aligned}$	Glu.	Leu	Ala	g	$\begin{aligned} & \text { Ala } \\ & 230 \end{aligned}$	al	Pro	Asn	Met	$\begin{aligned} & \text { Pro } \\ & 235 \end{aligned}$	Thr	Ser	Ala	Gly	$\begin{aligned} & \mathrm{Gln} \\ & 240 \end{aligned}$
Ile	Lys	Leu	Met	$\begin{aligned} & \text { Leu } \\ & 245 \end{aligned}$	Glu	sn	Arg	Ala	Met $250$	Val	Arg	Arg	Lys	$\begin{aligned} & \mathrm{Gly} \\ & 255 \end{aligned}$	Phe
Gly	Ile	u	$\begin{aligned} & \text { Ile } \\ & 260 \end{aligned}$	Gly	Val	$y r$	Gly	$\begin{aligned} & \text { Ser } \\ & 265 \end{aligned}$	Ser	al	le	Tyr	$\begin{aligned} & \text { Met } \\ & 270 \end{aligned}$	Val	Gln
Leu	Pro	$\begin{aligned} & \text { Ile } \\ & 275 \end{aligned}$	Phe	Gly	Val	Ile	$\begin{aligned} & \text { Asp } \\ & 280 \end{aligned}$	Thr	Pro	Cys	$\operatorname{Trp}$	$\begin{aligned} & \text { Ile } \\ & 285 \end{aligned}$	Val	Lys	Ala
Ala	$\begin{aligned} & \text { Pro } \\ & 290 \end{aligned}$	Ser	Cys	er	Glu	$\begin{aligned} & \text { Lys } \\ & 295 \end{aligned}$	Lys	Gly	Asn	Tyr	$\begin{aligned} & \text { Ala } \\ & 300 \end{aligned}$	Cys	Leu	Leu	Arg
$\begin{aligned} & \text { Glu } \\ & 305 \end{aligned}$	Asp	Gln	Gly	rp	$\begin{aligned} & \text { Tyr } \\ & 310 \end{aligned}$	Cys		sn	Ala	$\begin{aligned} & \text { Gly } \\ & 315 \end{aligned}$	er			Tyr	$\begin{aligned} & \text { Tyr } \\ & 320 \end{aligned}$
Pro	Asn	Glu	Lys	$\begin{aligned} & \text { Asp } \\ & 325 \end{aligned}$	Cys	Glu	Thr	Arg	$\begin{aligned} & \text { Gly } \\ & 330 \end{aligned}$	Asp	His	Val	Phe	$\begin{aligned} & \text { Cys } \\ & 335 \end{aligned}$	Asp
Thr	Ala	Ala	$\begin{aligned} & \text { Gly } \\ & 340 \end{aligned}$	Ile	Asn	Val	Ala	$\begin{aligned} & \text { Glu } \\ & 345 \end{aligned}$	Gln	Ser	Lys	Glu	$\begin{aligned} & \text { Cys } \\ & 350 \end{aligned}$	Asn	Ile
Asn	Ile	$\begin{aligned} & \text { ser } \\ & 355 \end{aligned}$	Thr	Thr	Asn	Tyr	$\begin{aligned} & \text { Pro } \\ & 360 \end{aligned}$	Cys	Lys	Val	Ser	$\begin{aligned} & \text { Thr } \\ & 365 \end{aligned}$	Gly	Arg	His
Pro	$\begin{aligned} & \text { Ile } \\ & 370 \end{aligned}$	Ser	Met	Val		$\begin{aligned} & \text { Leu } \\ & 375 \end{aligned}$	Ser	Pro	Leu	Gly	$\begin{aligned} & \text { Ala } \\ & 380 \end{aligned}$	Leu	Val	Ala	Cys
$\begin{aligned} & \text { Tyr } \\ & 385 \end{aligned}$	Lys	Gly	Val	Ser	$\begin{aligned} & \text { Cys } s \\ & 390 \end{aligned}$	Ser	Ile	Gly	Ser	$\begin{aligned} & \text { Asn } \\ & 395 \end{aligned}$	Arg	Val	Gly	Ile	$\begin{aligned} & \text { Ile } \\ & 400 \end{aligned}$
Lys	Gln	Leu	Asn	$\begin{aligned} & \text { Lys } \\ & 405 \end{aligned}$	Gly	Cys	Ser	Tyr	$\begin{aligned} & \text { Ile } \\ & 410 \end{aligned}$	Thr	Asn	$\mathrm{Gln}$	Asp	Ala $415$	Asp
Thr	Val	Thr	Ile   420	Asp	Asn	Thr	Val	$\begin{aligned} & \text { Tyr } \\ & 425 \end{aligned}$	Gln	Leu	Ser	Lys	Val   430	Glu	Gly
Glu	Gln	$\begin{aligned} & \mathrm{His} \\ & 435 \end{aligned}$	Val	Ile	Lys	Gly	Arg $440$	Pro	Val	Ser	Ser	$\begin{aligned} & \text { Ser } \\ & 445 \end{aligned}$	Phe	Asp	Pro
Ile	$\begin{aligned} & \text { Lys } \\ & 450 \end{aligned}$	Phe	Pro	Glu	Asn	$\begin{aligned} & \text { Gln } \\ & 455 \end{aligned}$	Phe	$\mathrm{Gln}$	Val	Ala	$\begin{aligned} & \text { Leu } \\ & 460 \end{aligned}$		$\mathrm{Gln}$		


$<210>$ SEQ ID NO 89
$<211>$ LENGTH: 539
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polypeptide
$<400>$ SEQUENCE: 89


$<210>$ SEQ ID NO 90
$<211>$ LENGTH: 539
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polypeptide
$<400>$ SEQUENCE: 90


Gly Val Thr Asn Asn Gly Phe Ile Pro His Asn
530


$<210>$ SEQ ID NO 92
$<211>$ LENGTH: 539
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION : SYnthetic Polypeptide
$<400>$ SEQUENCE: 92


$<210>$ SEQ ID NO 93
$<211>$ LENGTH: 539
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polypeptide
$<400>$ SEQUENCE: 93


$<210>$ SEQ ID NO 94
$<211>$ LENGTH: 539
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION : Synthetic Polypeptide
$<400>$ SEQUENCE: 94


$<210>$ SEQ ID NO 95
$<211>$ LENGTH: 539
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polypeptide
$<400>$ SEQUENCE: 95



$<210>$ SEQ ID NO 96
$<211>$ LENGTH: 539
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION : Synthetic Polypeptide
$<400>$ SEQUENCE: 96


$<210>$ SEQ ID NO 97
$<211>$ LENGTH: 539
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polypeptide
$<400>$ SEQUENCE: 97


$<210>$ SEQ ID NO 98
$<211>$ LENGTH: 539
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polypeptide
$<400>$ SEQUENCE: 98

Tyr Lys Gly Val Ser Cys Ser Ile Gly Ser Asn Arg Val Gly Ile Ile
385
$<210>$ SEQ ID NO 99
$<211>$ LENGTH: 539
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polypeptide
$<400>$ SEQUENCE: 99


$<210>$ SEQ ID NO 100
$<211>$ LENGTH: 539
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polypeptide
$<400>$ SEQUENCE : 100



$<210>$ SEQ ID NO 101
$<211>$ LENGTH: 539
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polypeptide
$<400>$ SEQUENCE: 101



Gly Val Thr Asn Asn Gly Phe Ile Pro His Asn	
530	535

$<210>$ SEQ ID NO 102
$<211>$ LENGTH: 539
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: SYnthetic Polypeptide
$<400>$ SEQUENCE: 102


Gly Val Thr Asn Asn Gly Phe Ile Pro His Asn
530


	$\text { Ile } \mathrm{S}$	$\begin{aligned} & \text { Ser } \\ & 355 \end{aligned}$	Thr	Thr	Asn	Tyr	$\begin{aligned} & \text { Pro } \\ & 360 \end{aligned}$	Cys	Lys V	Val		$\begin{aligned} & \text { Thr } \\ & 365 \end{aligned}$	Gly	Arg	His
Pro	Ile S $370$	Ser	Met	Val	Ala	$\begin{aligned} & \text { Leu } \\ & 375 \end{aligned}$	Ser	Pro	Leu	$\text { Gly } \begin{gathered} 7 \\ 3 \end{gathered}$	$\begin{aligned} & \text { Ala L } \\ & 380 \end{aligned}$	Leu			Cys
$\begin{aligned} & \text { Tyr } \\ & 385 \end{aligned}$	Lys G	Gly	Val	Ser	$\begin{aligned} & \text { Cys } \\ & 390 \end{aligned}$	Ser	Ile	Gly	Ser	$\begin{aligned} & \text { Asn } \\ & 395 \end{aligned}$	Arg	Val		Ile	$\begin{aligned} & \text { Ile } \\ & 400 \end{aligned}$
Lys	Gln L	Leu	Asn	$\begin{aligned} & \text { Lys } \\ & 405 \end{aligned}$	Gly	Cys	Ser	Tyr	$\begin{aligned} & \text { Ile } \\ & 410 \end{aligned}$	Thr A	Asn G	Gln	Asp	$\begin{aligned} & \text { Ala } \\ & 415 \end{aligned}$	Asp
Thr	Val T	Thr	Ile $420$	Asp	Asn	Thr	Val	$\begin{aligned} & \text { Tyr } \\ & 425 \end{aligned}$	Gln	Leu S	Ser L	LYs	$\begin{aligned} & \mathrm{Val} \\ & 430 \end{aligned}$	Glu	Gly
Glu	Gln   4	$\begin{aligned} & \mathrm{His} \\ & 435 \end{aligned}$	Val	Ile	Lys	Gly	$\begin{aligned} & \text { Arg } \\ & 440 \end{aligned}$	Pro	Val	Ser		$\begin{aligned} & \text { Ser } \\ & 445 \end{aligned}$	Phe	Asp	Pro
Ile	$\begin{aligned} & \text { Lys } \mathrm{P} \\ & 450 \end{aligned}$	Phe	Pro	Glu	Asn	$\begin{aligned} & \mathrm{Gln} \\ & 455 \end{aligned}$	Phe	Gln	Val A	Ala	$\begin{aligned} & \text { Leu } \\ & 460 \end{aligned}$	Asp	Gln	Val	Phe
$\begin{aligned} & \text { Glu } \\ & 465 \end{aligned}$	Asn I	Ile	Glu	A.sn	$\begin{aligned} & \text { Ser } \\ & 470 \end{aligned}$	Gln	Ala	Leu	Val	$\begin{aligned} & \text { Asp } \\ & 475 \end{aligned}$	$\text { Gln } S$	Ser	Asn	Arg	$\begin{aligned} & \text { Ile } \\ & 480 \end{aligned}$
Leu	Ser S	Ser	Ala	$\begin{aligned} & \text { Glu } \\ & 485 \end{aligned}$	Lys	Gly	Asn	Thr	$\begin{aligned} & \text { Gly P } \\ & 490 \end{aligned}$	Phe I	Ile I	Ile	Val	Ile 495	Ile
Leu	Ile A	Ala	$\begin{aligned} & \mathrm{Val} \\ & 500 \end{aligned}$	Leu	Gly	Ser	Ser	Met $505$	Ile L	Leu V	Val S	Ser	$\begin{aligned} & \text { Ile } \\ & 510 \end{aligned}$	Phe	Ile
Ile	$\begin{array}{r} \text { Ile } \\ 5 \end{array}$	$\begin{aligned} & \text { Lys } \\ & 515 \end{aligned}$	Lys	Thr	Lys	Lys	$\begin{aligned} & \text { Pro } \\ & 520 \end{aligned}$	Thr	Gly A	Ala	Pro	$\begin{aligned} & \text { Pro } \\ & 525 \end{aligned}$	Glu		Ser
Gly	$\begin{aligned} & \text { Val T } \\ & 530 \end{aligned}$	Thr	Asn	Asn	Gly	Phe $535$	Ile	Pro	His A	Asn					

$<210>$ SEQ ID NO 104
$<211>$ LENGTH: 539
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polypeptide
$<400>$ SEQUENCE: 104


$<210>$ SEQ ID NO 105
$<211>$ LENGTH: 539
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION : Synthetic Polypeptide
$<400>$ SEQUENCE: 105


$<210>$ SEQ ID NO 106
$<211>$ LENGTH: 1617
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 106
atgagctgga aggtggtcat catcttcagc ctgctgatca cacctcagca cggcetgaaa 60
gagagctacc tggaagagtc etgcagcacc atcacagagg gctacctgtc tgtgctgaga 120
accggctggt acaccaacgt gttcacactg gaagtgggeg acgtcgagaa tctgacatgc 180
tctgatggcc ctagcctgat caagaccgag ctggatctga ccaagagcgc cctgagagaa 240
ctcaagaccg tgtctgccga tcagctggce agagaggaac agatcgagaa tcctggcagc 300
ggcagctttg tgctgggagc cattgctett ggagtggetg ctgctgcagc tgttacagca 360
ggcgtggcca tctgcaagac catcagactg gaaagcgaag tgaccgccat caacaacgcc 420
ctgaagaaga caaacgaggc cgtcagcaca ctcggcaatg gcgttagagt gctggcettt 480
gccgtgcgcg agctgaagga cttcgtgtcc aagaacctga cacgggccct gaacaagaac 540
aagtgcgaca tcgacgacct gaagatggcc gtgtccttta gccagttcaa ccggcggttt 600
ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac 660
ctgatgacag atgctgagct ggctagagce gtgcctaaca tgcctacatc tgccggccag 720
atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgtgt 780
ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac 840
acaccetgct ggattgtgaa ggccgctcct agctgtagcg agaagaaggg caattacgcc 900
tgcctgctga gagaggacca aggctggtat tgtcagaacg ccggcagcac cgtgtactac 960
cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgetgga 1020
atcaatgtgg cogagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc 1080
tgcaaggtgt ccaccggcag gcaccetatt tctatggtgg ctctgtctcc tctgggagce 1140
ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc 1200
aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc 1260
gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga 1320
cotgtgtcca gcagcttcga cectatcaag ttccctgagg atcagttcaa cgtggcectg 1380

| gaccaggtgt tcgagaacat cgagaattcc caggctctgg tggaccagtc caacagaatc | 1440 |
| :--- | :--- | :--- |
| ctgtctagcg cogagaaggg aaacaccggc ttcatcatcg tgatcatcct gatcgccgtg | 1500 |
| ctgggcagct ccatgatcet ggtgtccatc ttcatcatta tcaagaagac caagaagccc | 1560 |
| accggcgetc ctccagaact gagcggagtg accaacaatg gcttcatccc tcacaac | 1617 |

$<210>$ SEQ ID NO 107
$<211>$ LENGTH: 1617
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 107
atgagctgga aggtggtcat catcttcagc ctgctgatca cacctcagca cggcetgaaa 60
gagagctacc tggaagagtc ctgcagcacc atcacagagg gctacctgtc tgtgctgaga 120
accggctggt acaccaacgt gttcacactg gaagtgggeg acgtcgagaa tctgacatgc 180
tctgatggcc ctagcctgat caagaccgag ctggatctga ccaagagcge cctgagagaa 240
ctcaagaccg tgtctgccga tcagctggec agagaggaac agatcgagaa tcetggcagc 300
ggcagctttg tgctgggagc cattgctctt ggagtggctg ctgctgcagc tgttacagca 360
ggcgtggcca tctgcaagac catcagactg gaaagcgaag tgaccgccat caacaacgcc 420
ctgaagaaga caaacgaggc cgtcagcaca ctcggcaatg gcgttagagt gctggccaca 480
gccgtgcgcg agctgaagga cttcgtgtcc aagaacctga cacgggccat taacaagaac 540
aagtgcgaca tcgacgacct gaagatggce gtgtccttta gccagttcaa coggcggttt 600
ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac 660
ctgatgacag atgctgagct ggctagagcc gtgcctaaca tgcetacatc tgccggccag 720
atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgtgt 780
ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac 840
acaccctgct ggattgtgaa ggccgctcct agctgtagcg agaagaaggg caattacgcc 900
tgcctgctga gagaggacca aggctggtat tgtcagaacg ccggcagcac cgtgtactac 960
cctaacgaga aggactgega gacaagaggc gaccacgtgt tctgtgatac cgccgetgga 1020
atcaatgtgg cogagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc 1080
tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagce 1140
ctggtggctt gttataaggg cgtgtcotgt agcatcggca gcaacagagt gggcatcatc 1200
aagcagctga acaagggetg cagctacatc accaaccagg acgecgatac cgtgaccatc 1260

| gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga | 1320 |
| :--- | :--- | :--- |
| cetgtgtcca gcagcttcga ccctatcaag ttccctgagc accagtggca tgtggcectg | 1380 |
| gaccaggtgt tcgagaacat cgagaattcc caggctctgg tggaccagtc caacagaatc | 1440 |
| ctgtctagcg cogagaaggg aaacaccggc ttcatcatcg tgatcatcct gatcgccgtg | 1500 |
| ctgggcagct ccatgatcct ggtgtccatc ttcatcatta tcaagaagac caagaagccc | 1560 |
| accggcgctc ctccagaact gagcggagtg accaacaatg gcttcatccc tcacaac | 1617 |

$<210>$ SEQ ID NO 108
$<211>$ LENGTH: 1617
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial sequence
$<220>$ FEATURE:
-continued


$<210>$	SEQ ID NO 109
$<211>$ LENGTH: 1617	
$<212>$ TYPE $: ~ D N A ~$	
$<213>$ ORGANISM: Artificial Sequence	
$<220>$ FEATURE:	
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide	
$<400>$ SEQUENCE: 109	60
atgagctgga aggtggtcat catcttcagc ctgctgatca cacctcagca cggcetgaaa	120
gagagctacc tggaagagtc ctgcagcacc atcacagagg gctacctgtc tgtgctgaga	180
accggctggt acaccaacgt gttcacactg gaagtgggcg acgtcgagaa tctgacatgc	180
tctgatggcc ctagcctgat caagaccgag ctggatctgc tcaagagcgc cctgagagaa	240
ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcagc	300
ggcagctttg tgctgggagc cattgctctt ggagtggctg ctgctgcagc tgttacagca	360


$<210>$ SEQ ID NO 110
$<211>$ LENGTH: 1617
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 110

atgagctgga aggtggtcat catcttcagc ctgctgatca cacctcagca cggcctgaaa	60
gagagctacc tggaagagtc ctgcagcacc atcacagagg gctacctgtc tgtgctgaga	120
accggctggt acaccaacgt gttcacactg gaagtgggcg acgtcgagaa tctgacatgc	180
tctgatggcc ctagcctgat caagaccgag ctggatctgc tcaagagcgc cctgagagaa	240
ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcagc	300
ggcagctttg tgctgggagc cattgctctt ggagtggctg ctgctgcagc tgttacagca	360
ggcgtggcca tcgctaagac catcagactg gaaagcgaag tgaccgccat caacaacgcc	420
ctgaagaaga caaacgaggc cgtcagcaca ctcggcaatg gcgttagagt gctggccaca	480
gccgtgcgcg agctgaagga cttcgtgctt aagaacctga cacgggccat taacaagaac	540
aagtgcgaca tccetgacct gaagatggcc gtgtccttta gccagttcaa ccggcggttt	600
ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac	660
ctgatgacag atgctgagct ggctagagcc gtgcctaaca tgcctacatc tgccggccag	720

-continued

ggcgtgtacg	gcagcagcgt gatctatatg gtgcagctgc	ctatcttcgg cgtgatcgac	840
acaccctgct	ggattgtgaa ggccgctcct agctgtagcg	agaagaaggg caattacgcc	900
tgcetgctga	gagaggacca aggctggtat tgtcagaacg	ccggcagcac cgtgtactac	960
cctaacgaga	aggactgcga gacaagaggc gaccacgtgt	tctgtgatac cgccgetgga	1020
atcaatgtgg	ccgagcagag caaagagtgc aacatcaaca	tcagcaccac caactatcec	1080
tgcaaggtgt	ccaccggcag gcaccotatt tctatggtgg	ctctgtctcc tctgggagec	1140
ctggtggctt	gttataaggg cgtgtcotgt agcatcggca	gcaacagagt gggcatcatc	1200
aagcagctga	acaagggctg cagctacatc accaaccagg	acgecgatac cgtgaccatc	1260
gacaacaccg	tgtatcagct gagcaaggtg gaaggcgaac	agcacgtgat caagggcaga	1320
cetgtgtcca	gcagcttcga ccctatcaag ttccctgagg	atcagttcca ggtggcectg	1380
gaccaggtgt	tcgagaacat cgagaattcc caggctetgg	tggaccagtc caacagaatc	1440
ctgtctagcg	ccgagaaggg aaacaccggc ttcatcatcg	tgatcatcet gatcgecgtg	1500
ctgggcagct	ccatgatcet ggtgtccatc ttcatcatta	tcaagaagac caagaagcec	1560
accggcgetc	ctccagaact gagcggagtg accaacaatg	gcttcatccc tcacaac	1617

$<210>$ SEQ ID NO 111
$<211>$ LENGTH: 1617
$<212>$ TYPE : DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 111
atgagctgga aggtggtcat catcttcagc ctgctgatca cacctcagca cggcetgaaa 60 gagagctacc tggaagagtc ctgcagcacc atcacagagg getacctgtc tgtgetgaga 120
accggctggt acaccaacgt gttcacactg gaagtgggcg acgtcgagaa tctgacatgc 180
tctgatggce ctagcctgat caagaccgag ctggatctgc tcaagagcgc cetgagagaa 240
ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcagc 300
ggcagctttg tgctgggagc cattgctctt ggagtggctg ctgctgcagc tgttacagca 360
ggcgtggcca tcgctaagac catcagactg gaaagcgaag tgaccgccat caacaacgcc 420
ctgaagaaga caaacgagge cgtcagcaca ctcggcaatg gcgttagagt gctggccaca 480
gccgtgcgcg agctgaagga cttcgtgctt aagaacctga cacgggccat taacaagaac 540
aagtgcgaca tccetgacct gaagatggce gtgtccttta gccagttcaa ccggcggttt 600
ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac 660
ctgatgacag atgctgagct ggctagagce gtgcctaaca tgcctacatc tgceggccag 720
atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgatt 780
ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac 840
acaccctgct ggattgtgaa ggccgctcct agctgtagcg agaagaaggg caattacgcc 900
tgcetgctga gagaggacca aggctggtat tgtcagaacg ceggcagcac cgtgtactac 960
cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga 1020
atcaatgtgg cogagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc 1080
tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc 1140

| gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga | 1320 |
| :--- | :--- | :--- |
| cetgtgtcca gcagcttcga ccctatcaag ttccctgaga accagttcca ggtggcectg | 1380 |
| gaccaggtgt tcgagaacat cgagaattcc caggctctgg tggaccagtc caacagaatc | 1440 |
| ctgtctagcg ccgagaaggg aaacaccggc ttcatcatcg tgatcatcct gatcgccgtg | 1500 |
| ctgggcagct ccatgatcct ggtgtccatc ttcatcatta tcaagaagac caagaagccc | 1560 |
| accggcgctc ctccagaact gagcggagtg accaacaatg gcttcatccc tcacaac | 1617 |

$<210>$ SEQ ID NO 112
$<211>$ LENGTH: 1617
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 112
atgagctgga aggtggtcat catcttcagc ctgctgatca cacctcagca cggcctgaaa 60
gagagctacc tggaagagtc ctgcagcacc atcacagagg gctacctgtc tgtgctgaga 120
accggctggt acaccaacgt gttcacactg cctgtgggcg acgtcgagaa tctgacatgc 180
tctgatggcc ctagcctgat caagaccgag ctggatctgc tcaagagcgc cotgagagaa 240
ctcaagaccg tgtctgccga tcagctggce agagaggaac agatcgagaa tcetggcagc 300
ggcagctttg tgctgggagc cattgctctt ggagtggctg ctgctgcagc tgttacagca 360
ggcgtggcca tcgctaagac catcagactg gaaagcgaag tgaccgccat caacaacgcc 420
ctgaagaaga caaacgaggc cgtcagcaca ctcggcaatg gcgttagagt gctggccaca 480
gcegtgcgcg agctgaagga cttcgtgtcc aagaacctga cacgggccat taacaagaac 540
aagtgcgaca tcgacgacct gaagatggce gtgtccttta gccagttcaa ccggcggttt 600
ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac 660
ctgatgacag atgctgagct ggctagagce gtgcctaaca tgcctacatc tgccggccag 720
atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgatt 780
ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac 840
acaccctgct ggattgtgaa ggccgctcct agctgtagcg agaagaaggg caattacgec 900
tgcetgctga gagaggacca aggctggtat tgtcagaacg coggcagcac cgtgtactac 960
cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgetgga 1020
atcaatgtgg cogagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc 1080
tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagce 1140
ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc 1200
aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc 1260
gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga 1320
cotgtgtcca gcagcttcga cectatcaag ttccctgagg atcagttcca ggtggcectg 1380
gaccaggtgt togagaacat cgagaattcc caggctctgg tggaccagtc caacagaatc 1440
ctgtctagcg cegagaaggg aaacaccggc ttcatcatcg tgatcatcet gatcgecgtg 1500
ctgggcagct ccatgatcct ggtgtccatc ttcatcatta tcaagaagac caagaagccc 1560
accggegctc ctccagaact gageggagtg accaacaatg gettcatccc tcacaac 1617
$<211>$ LENGTH: 1617
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 113

$<210>$ SEQ ID NO 114
$<211>$ LENGTH: 1617
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 114

atgagctgga aggtggtcat catcttcagc ctgctgatca cacctcagca cggcctgaaa	60
gagagctacc tggaagagtc ctgcagcacc atcacagagg gctacctgtc tgtgctgaga	120
accggctggt acaccaacgt gttcacactg gaagtgggcg acgtcgagaa tctgacatgc	180
tctgatggcc ctagcctgat caagaccgag ctggatctgc tcaagagcgc cctgagagaa	240

-continued

$<210>$ SEQ ID NO 115
$<211>$ LENGTH: 1617
$<212>$ TYPE : DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 115
atgagctgga aggtggtcat catcttcagc ctgctgatca cacctcagca cggcctgaaa 60
gagagctacc tggaagagtc etgcagcacc atcacagagg getacctgtc tgtgetgaga 120
accggctggt acaccaacgt gttcacactg gaagtgggcg acctcgagaa tctgacatgc 180
tctgatggcc ctagcctgat caagaccgag ctggatctga ccaagagcgc cctgagagaa 240
ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcagc 300
ggcagctttg tgctgggagc cattgctctt ggagtggctg ctgctgcagc tgttacagca 360
ggcgtggcea tegctaagac catcagactg gaaagegaag tgaccgccat caacaacgcc 420
ctgaagaaga caaacgagge cgtcagcaca ctcggcaatg gcgttagagt gctggceaca 480
gccgtgcgcg agctgaagga cttcgtgtcc aagaacctga cacgggccat taacaagaac 540
aagtgcgaca tcgacgacct gaagatggce gtgtccttta gccagttcaa ccggcggttt 600
ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcetggac 660
-continued

ctgatgacag atgctgagct ggctagagcc gtgcctaaca tgcctacatc tgccggccag	720
atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgatt	780
ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac	840
acaccctgct ggattgtgaa ggccgctcct agctgtagcg agaagaaggg caattacgcc	900
tgcctgctga gagaggacca aggctggtat tgtcagaacg ccggcagcac cgtgtactac	960
cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga	1020
atcaatgtgg ccgagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc	1080
tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc	1140
ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc	1200
aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc	1260
gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga	1320
cctgtgtcca gcagcttcga ccctatcaag ttccctgagg atcagttcca ggtggccctg	1380
gaccaggtgt tcgagaacat cgagaattcc caggctctgg tggaccagtc caacagaatc	1440
ctgtctagcg ccgagaaggg aaacaccggc ttcatcatcg tgatcatcct gatcgccgtg	1500

$<210>$ SEQ ID NO 116
$<211>$ LENGTH: 1617
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 116

atgagctgga aggtggtcat catcttcagc ctgctgatca cacctcagca cggcctgaaa	60
gagagctacc tggaagagtc ctgcagcacc atcacagagg gctacctgtc tgtgctgaga	120
accggctggt acaccaacgt gttcacactg gaagtgggcg acgtcgagaa tctgacatgc	180
tctgatggcc ctagcctgat caagaccgag ctggatctga ccaagagcgc cctgagagaa	240
ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcagc	300
ggcagctttg tgctgggagc cattgctctt ggagtggctg ctgctgcagc tgttacagca	360
ggcgtggcca tcgctaagac catcagactg gaaagcgaag tgaccgccat caacaacgcc	420
ctgaagaaga caaacgaggc cgtcagcaca ctcggcaatg gcgttagagt gctggccaca	480
gccgtgcgcg agctgaagga cttcgtgctt aagaacctga cacgggccat taacaagaac	540
aagtgcgaca tcgacgacct gaagatggcc gtgtccttta gccagttcaa ccggcggttt	600
ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac	660
ctgatgacag atgctgagct ggctagagcc gtgcctaaca tgcctacatc tgccggccag	720
atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgatt	780
ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac	840


| ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc | 1200 |
| :--- | :--- | :--- |
| aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc | 1260 |
| gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga | 1320 |
| cctgtgtcca gcagcttcga ccctatcaag ttccctgagg atcagttcca ggtggccetg | 1380 |
| gaccaggtgt tcgagaacat cgagaattcc caggctctgg tggaccagtc caacagaatc | 1440 |
| ctgtctagcg ccgagaaggg aaacaccggc ttcatcatcg tgatcatcct gatcgccgtg | 1500 |
| ctgggcagct ccatgatcct ggtgtccatc ttcatcatta tcaagaagac caagaagccc | 1560 |
| accggcgctc ctccagaact gagcggagtg accaacaatg gcttcatccc tcacaac | 1617 |

$<210>$ SEQ ID NO 117
$<211>$ LENGTH: 1617
$<212>$ TYPE : DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 117
atgagctgga aggtggtcat catcttcagc etgctgatca cacctcagca cggcetgaaa 60
gagagctacc tggaagagtc etgcagcacc atcacagagg getacctgtc tgtgetgaga 120
accggctggt acaccaacgt gttcacactg gaagtgggcg acgtcgagaa tctgacatgc 180
tctgatggcc ctagcctgat caagaccgag ctggatctga ccaagagcgc cctgagagaa 240
ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcagc 300
ggcagctttg tgctgggagc cattgctctt ggagtggctg ctgctgcagc tgttacagca 360
ggcgtggcca tcgctaagac catcagactg gaaagcgaag tgaccgccat caacaacgcc 420
ctgaagaaga caaacgaggc cgtcagcaca ctcggcaatg gcgttagagt gctggccaca 480
gcegtgcgcg agctgaagga cttcgtgtcc aagaacctgt ggcgggccat taacaagaac 540
aagtgcgaca tcgacgacct gaagatggce gtgtccttta gccagttcaa ccggcggttt 600
ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac 660
ctgatgacag atgctgagct ggctagagcc gtgcctaaca tgcctacatc tgccggccag 720
atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgatt 780
ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac 840
acaccetgct ggattgtgaa ggccgctcct agctgtageg agaagaaggg caattacgcc 900
tgcctgctga gagaggacca aggctggtat tgtcagaacg coggcagcac cgtgtactac 960
cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga 1020
atcaatgtgg cogagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc 1080
tgcaaggtgt ccaccggcag gcaccetatt tctatggtgg ctctgtctcc tctgggagec 1140
ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc 1200
aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc 1260
gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga 1320
cetgtgtcca geagcttcga cectatcaag ttccetgagg atcagttcea ggtggecetg 1380
gaccaggtgt tcgagaacat cgagaattcc caggctctgg tggaccagtc caacagaatc 1440
ctgtctagcg cogagaaggg aaacaccggc ttcatcatcg tgatcatcct gatcgcegtg 1500
ctgggcagct ccatgatcct ggtgtccatc ttcatcatta tcaagaagac caagaagcce 1560
$<210>$ SEQ ID NO 118
$<211>$ LENGTH: 1617
$<212>$ TYPE : DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 118
atgagctgga aggtggtcat catcttcagc ctgctgatca cacctcagca cggcetgaaa 60
gagagctacc tggaagagtc ctgcagcacc atcacagagg gctacctgtc tgtgctgaga 120
accggctggt acaccaacgt gttcacactg gaagtgggcg acctcgagaa tctgacatgc 180
tctgatggcc ctagcctgat caagaccgag ctggatctgc tcaagagcgc cctgagagaa 240
ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcagc 300
ggcagctttg tgctgggagc cattgctctt ggagtggctg ctgctgcagc tgttacagca 360
ggcgtggcca tcgctaagac catcagactg gaaagcgaag tgaccgccat caacaacgcc 420
ctgaagaaga caaacgagge cgtcagcaca ctcggcaatg gcgttagagt gctggccaca 480
gccgtgcgeg agctgaagga cttcgtgctt aagaacctgt ggcgggceat taacaagaac 540
aagtgcgaca tcgacgacct gaagatggce gtgtccttta gccagttcaa ccggcggttt 600
ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac 660
ctgatgacag atgctgaget ggctagagce gtgcctaaca tgcctacatc tgccggccag 720
atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgatt 780
ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac 840
acaccctgct ggattgtgaa ggccgctcct agctgtagcg agaagaaggg caattacgcc 900
tgcetgctga gagaggacca aggctggtat tgtcagaacg coggcagcac cgtgtactac 960
cctaacgaga aggactgcga gacaagagge gaccacgtgt tetgtgatac cgccgetgga 1020
atcaatgtgg ccgagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc 1080
tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc 1140
ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc 1200
aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc 1260
gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga 1320
cctgtgtcca gcagcttcga ccctatcaag ttccctgagg atcagttcca ggtggccetg 1380
gaccaggtgt tcgagaacat cgagaattcc caggctctgg tggaccagtc caacagaatc 1440
ctgtctagcg cogagaaggg aaacaccggc ttcatcatcg tgatcatcct gatcgecgtg 1500
ctgggcagct ccatgatcct ggtgtccatc ttcatcatta tcaagaagac caagaagccc 1560
accggcgctc ctccagaact gagcggagtg accaacaatg gcttcatccc tcacaac 1617
$<210>$ SEQ ID NO 119
$<211>$ LENGTH: 1617
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 119
atgagctgga aggtggtcat catcttcagc ctgctgatca cacctcagca cggcetgaaa
gagagctacc tggaagagtc ctgcagcacc atcacagagg gctacctgtc tgtgctgaga
-continued


<210> SEQ ID NO 120	
<211> LENGTH: 1617	
$<212\rangle$ TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 120	
atgagctgga aggtggtcat catcttcagc ctgctgatca cacctcagca cggcetgaaa	60
gagagctacc tggaagagtc ctgcagcacc atcacagagg gctacctgtc tgtgctgaga	120
accggctggt acaccaacgt gttcacactg gaagtgggcg acgtcgagaa tctgacatgc	180
tctgatggce ctagcctgat caagaccgag ctggatctga ccaagagcgc cctgagagaa	240
ctcaagaccg tgtetgcega tcagctggec agagaggaac agatcgagaa tcctggcagc	300
ggcagctttg tgctgggage cattgctett ggagtggctg ctgctgcage tgttacagca	360
ggcgtggcea tcgctaagac catcagactg gaaagcgaag tgaccgceat caacaacgcc	420
ctgaagaaga caaacgaggc cgtcagcaca ctcggcaatg gcgttagagt gctggccaca	480
gcegtgcgeg agctgaagga cttcgtgtcc aagaacctga cacgggceat taacaagaac	540

-continued


$<210\rangle$ SEQ ID NO 121	
<212> TYPE: DNA   <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
$<223$ - OTHER INFORMATION: Synthetic Polynucleotide	
$<400>$ SEQUENCE: 121	
atgagctgga aggtggtcat catcttcagc ctgctgatca cacctcagca cggcetgaaa 60	
gagagctacc tggaagagtc ctgcagcacc atcacagagg gctacctgtc tgtgctgaga 120	
accggctggt acaccaacgt gttcacactg gaagtgggcg acgtcgagaa tctgacatgc 180	
tctgatggce ctagcetgat caagaccgag ctggatctga ccaagagcgc cctgagagaa 240	
ctcaagaccg tgtctgcega tcagctggce agagaggaac agatcgagaa tcctggcagc 300	
ggcagctttg tgctgggagc cattgctett ggagtggctg ctgctgcagc tgttacagca 360	
ggcgtggcea tcgctaagac catcagactg gaaagcgaag tgaccgccat caacaacgec 420	
ctgaagaaga caaacgaggc cgtcagcaca ctcggcaatg gcgttagagt gctggccaca 480	
gccgtgcgcg agctgaagga cttcgtgtcc aagaacctga cacgggceat taacaagaac 540	
aagtgcccta tcgacgacct gaagatggce gtgtccttta gccagttcaa ccggcggttt 600	
ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcotggac 660	
ctgatgacag atgctgagct ggctagagce gtgcctaaca tgcetacatc tgceggceag 720	
atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgatt 780	
ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac 840	
acaccctgct ggattgtgaa ggcegctcct agctgtagcg agaagaaggg caattacgce 900	
tgcetgctga gagaggacca aggctggtat tgtcagaacg ceggcagcac cgtgtactac	960
cctaacgaga aggactgcga gacaagagge gaccacgtgt tctgtgatac cgcogctgga	020


| atcaatgtgg cegagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc | 1080 |
| :--- | :--- | :--- |
| tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc | 1140 |
| ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc | 1200 |
| aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc | 1260 |
| gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga | 1320 |
| cctgtgtcca gcagcttcga ccctatcaag ttccctgagg atcagttcca ggtggccetg | 1380 |
| gaccaggtgt tcgagaacat cgagaattcc caggctctgg tggaccagtc caacagaatc | 1440 |
| ctgtctagcg ccgagaaggg aaacaccggc ttcatcatcg tgatcatcct gatcgccgtg | 1500 |
| ctgggcagct ccatgatcct ggtgtccatc ttcatcatta tcaagaagac caagaagccc | 1560 |
| accggcgctc ctccagaact gagcggagtg accaacaatg gcttcatccc tcacaac | 1617 |

$<210>$ SEQ ID NO 122
$<211>$ LENGTH: 1617
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 122
atgagctgga aggtggtcat catcttcagc ctgctgatca cacctcagca cggcetgaaa 60
gagagctacc tggaagagtc ctgcagcacc atcacagagg gctacctgtc tgtgctgaga 120
accggctggt acaccaacgt gttcacactg gaagtgggcg acgtcgagaa tctgacatgc 180
tctgatggcc ctagcctgat caagaccgag ctggatctga ccaagagcgc cctgagagaa 240
ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcagc 300
ggcagctttg tgctgggagc cattgctctt ggagtggctg ctgctgcagc tgttacagca 360
ggcgtggcca tcgctaagac catcagactg cctagcgaag tgaccgccat caacaacgcc 420
ctgaagaaga caaacgagge cgtcagcaca ctcggcaatg gcgttagagt gctggccaca 480
gccgtgcgcg agctgaagga cttcgtgtcc aagaacctga cacgggccat taacaagaac 540
aagtgcgaca tcgacgacct gaagatggcc gtgtccttta gccagttcaa ccggcggttt 600
ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcetggac 660
ctgatgacag atgctgagct ggctagagce gtgcctaaca tgcctacatc tgccggceag 720
atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgatt 780
ggcgtgtacg gcagcagegt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac 840
acaccctgct ggattgtgaa ggccgctcct agctgtagcg agaagaaggg caattacgcc 900
tgcctgctga gagaggacca aggctggtat tgtcagaacg coggcagcac cgtgtactac 960
cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgcegctgga 1020
atcaatgtgg cogagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc 1080
tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagce 1140
ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc 1200
aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc 1260
gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga 1320
cetgtgtcca gcagcttcga cectatcaag ttccctgagg atcagttcca ggtggcectg 1380
gaccaggtgt tcgagaacat cgagaattcc caggctctgg tggaccagtc caacagaatc 1440
-continued

| ctgtctagcg ccgagaaggg aaacaccggc ttcatcatcg tgatcatcct gatcgccgtg | 1500 |
| :--- | :--- | :--- |
| ctgggcagct ccatgatcct ggtgtccatc ttcatcatta tcaagaagac caagaagccc | 1560 |
| accggcgctc ctccagaact gagcggagtg accaacaatg gcttcatcce tcacaac | 1617 |

$<210>$ SEQ ID NO 123
$<211>$ LENGTH: 1617
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: SYnthetic Polynucleotide
$<400>$ SEQUENCE: 123
atgagctgga aggtggtcat catcttcagc ctgctgatca cacctcagca cggcetgaaa 60
gagagctacc tggaagagtc ctgcagcacc atcacagagg getacctgtc tgtgctgaga 120
accggctggt acaccaacgt gttcacactg gaagtgggcg acgtcgagaa tctgacatgc 180
tctgatggcc ctagcctgat caagaccgag ctggatctga ccaagagcgc cctgagagaa 240
ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcagc 300
ggcagctttg tgctgggagc cattgctctt ggagtggctg ctgctgcagc tgttacagca 360
ggcgtggcca tcgctaagac catcagactg gaaagcgaag tgaccgccat caacaacgcc 420
ctgaagaaga caaacgaggc cgtcagcaca ctcggcaatg gcgttagagt gctggccaca 480
gccgtgcgeg agctgaagga cttcgtgtcc aagaacctga cacgggccat taacaagaac 540
aagtgcgaca tegacgacct gaagatggce gtgtccttta gccagttcaa ccggcggttt 600
ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcetggac 660
ctgatgacag atgctgaget ggctagagce gtgcctaaca tgcctacatc tgccggccag 720
atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgatt 780
ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac 840
acaccctgct ggattgtgaa ggccgctcct agctgtagcg agaagaaggg caattacgcc 900
tgcetgctga gagaggacca aggctggtat tgtcagaacg coggcagcac cgtgtactac 960
cctaacgaga aggactgcga gacaagaggc gaccacgtgt tetgtgatac cgcegctgga 1020
atcaatgtgg cogagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc 1080
tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagce 1140
ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc 1200
aagcagctga acaagggetg cagctacatc accaaccagg acgccgatac cgtgaccatc 1260
gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga 1320
cctgtgtcca gcagcttccc acctatcaag ttccctgagg atcagttcca ggtggccetg 1380
gaccaggtgt tcgagaacat cgagaattcc caggctctgg tggaccagtc caacagaatc 1440
ctgtctagcg ccgagaaggg aaacaccggc ttcatcatcg tgatcatcct gatcgccgtg 1500
ctgggcagct ccatgatcct ggtgtccatc ttcatcatta tcaagaagac caagaagccc 1560
accggcgctc ctccagaact gagcggagtg accaacaatg gettcatccc tcacaac 1617
$<210>$ SEQ ID NO 124
$<211>$ LENGTH: 1617
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 124


$<210>$ SEQ ID NO 125	
<211> LENGTH: 1617	
<212> TYPE: DNA	
$<213>$ ORGANISM: Artificial sequence	
<220> FEATURE:	
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 125	
atgagctgga aggtggtcat catcttcagc ctgctgatca cacctcagca cggcetgaaa	60
gagagctacc tggaagagtc ctgcagcacc atcacagagg gctacctgtc tgtgetgaga	120
accggctggt acaccaacgt gttcacactg gaagtgggcg acgtcgagaa tctgacatgc	180
tctgatggce ctagcetgat caagaccgag ctggatctga ccaagagcge cctgagagaa	240
ctcaagaccg tgtctgccga tcagctggce agagaggaac agategagaa tcctggcagc	300
ggcagctttg tgctgggagc cattgctett ggagtggctg ctgctgcagc tgttacagca	360
ggcgtggcea tegctaagac catcagactg gaaagcgaag tgaccgceat caacaacgec	420

-continued

ctgaagaaga caacgaggc cgtcagcaca ctcggcaatg gcgttagagt gctggccaca	480
gccgtgcgcg agctgaagga cttcgtgtcc aggaacctga cacgggccat taacaagaac	540
aagtgcgaca tcgacgacct gaagatggcc gtgtccttta gccagttcal ccggcggttt	600
ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac	660
ctgatgacag atgctgagct ggctagagcc gtgcctaaca tgcctacatc tgccggccag	720
atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgatt	780
ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac	840
acaccctgct ggattgtgaa ggccgctcct agctgtagcg agaagaaggg caattacgcc	900
tgcctgctga gagaggacca aggctggtat tgtcagaacg ccggcagcac cgtgtactac	960
cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga	1020
atcaatgtgg ccgagcagag caagagtgc aacatcaaca tcagcaccac caactatccc	1080
tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc	1140
ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc	1200
aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc	1260


$<210>$ SEQ ID NO 126	
<211> LENGTH: 1617	
<212> TYPE: DNA	
$<213>$ ORGANISM: Artificial sequence	
<220> FEATURE:	
$<223$ > OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 126	
atgagctgga aggtggtcat catcttcagc ctgctgatca cacctcagca cggcctgaaa	60
gagagctacc tggaagagte ctgcagcacc atcacagagg gctacctgtc tgtgctgaga 120	
accggctggt acaccaacgt gttcacactg gaagtgggcg acgtcgagaa tctgacatgc 180	
tctgatggce ctagcetgat caagaccgag ctggatctga ccaagagcge cotgagagaa 240	
ctcaagaccg tgtctgcega tcagctggce agagaggaac agatcgagaa tcctggcagc 300	
ggcagctttg tgctgggagc cattgctett ggagtggctg ctgctgcagc tgttacagca 360	
ggcgtggcea tcgctaagac catcagactg gaaagcgaag tgaccgccat caacaacgec 420	
ctgaagaaga caaacgagge cgtcagcaca ctcggcaatg gcgttagagt gctggccaca 480	
gcegtgcgcg agctgaagga cttcgtgtcc aagaacctga cacgggceat taacaagaac 540	
aagtgcgaca tcgacgacct gaagatggce gtgtccttta gccagtggaa coggcggttt 600	
ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcetggac 660	
ctgatgacag atgctgagct ggctagagce gtgcctaaca tgcetacatc tgccggceag 720	
atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgatt	780
ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac	840
acaccetgct ggattgtgaa ggcegctcct agctgtagcg agaagaaggg caattacgec	900


| tgcctgctga gagaggacca aggctggtat tgtcagaacg ccggcagcac cgtgtactac | 960 |
| :--- | :--- | :--- |
| cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga | 1020 |
| atcaatgtgg cegagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc | 1080 |
| tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc | 1140 |
| ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc | 1200 |
| aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc | 1260 |
| gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga | 1320 |
| cctgtgtcca gcagcttcga ccctatcaag ttccctgagg atcagttcca ggtggccctg | 1380 |
| gaccaggtgt tcgagaacat cgagaattcc caggctctgg tggaccagtc caacagaatc | 1440 |
| ctgtctagcg ccgagaaggg aaacaccggc ttcatcatcg tgatcatcct gatcgccgtg | 1500 |
| ctgggcagct ccatgatcct ggtgtccatc ttcatcatta tcaagaagac caagaagccc | 1560 |

$<210>$ SEQ ID NO 127
$<211>$ LENGTH: 1617
$<212>$ TYPE: RNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 127
augagcugga agguggucau caucuucagc cugcugauca caccucagca cggccugaaa $\quad 60$
gagagcuacc uggaagaguc cugcagcacc aucacagagg gcuaccuguc ugugcugaga 120
accggcuggu acaccaacgu guucacacug gaagugggcg acgucgagaa ucugacaugc 180
ucugauggec cuagccugau caagaccgag cuggaucuga ccaagagcgc ccugagagaa 240
cucaagaccg ugucugcega ucagcuggce agagaggaac agaucgagaa uccuggcagc 300
ggcagcuung ugcugggage caungcucuu ggaguggcug cugcugcagc ugunacagca 360
ggcguggcca ucugcaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc 420
cugaagaaga caaacgagge cgucagcaca cucggcaaug gcguuagagu gcuggccuuu 480
gccgugcgeg agcugaagga cuucgugucc aagaaccuga cacgggcccu gaacaagaac 540
aagugcgaca ucgacgaccu gaagauggec guguccuuua gccaguucaa ccggcgguuu 600
cugaacgucg ugcggcaguu uagcgacaac gccggaauca caccagccau cagccuggac 660
cugaugacag augcugagcu ggcuagagce gugccuaaca ugccuacauc ugceggceag 720
aucaagcuga ugcucgagaa uagagccaug guccgacgga aaggcuucgg cauucugugu 780
ggcguguacg gcagcagcgu gaucuauaug gugcagcugc cuaucuucgg cgugaucgac 840
acacceugcu ggauugugaa ggcegcuccu agcuguageg agaagaaggg caauuacgec 900
ugccugcuga gagaggacca aggcugguau ugucagaacg coggcagcac cguguacuac 960
ccuaacgaga aggacugega gacaagaggc gaccacgugu ucugugauac cgcegcugga 1020
aucaaugugg cogagcagag caaagagugc aacaucaaca ucagcaccac caacuaucce 1080
aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc 1260
gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga 1320

ccugugucca gcagcuncga cccuaucaag uncccugagg aucaguucaa cguggcccug	1380
gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc	1440
cugucuagcg cegagaaggg aaacaccggc uncaucaucg ugaucauccu gaucgccgug	1500
cugggcagcu ccaugauccu gguguccauc uncaucauua ucaagaagac caagaagccc	1560
accggcgcuc cuccagaacu gagcggagug accaacaaug gcuucauccc ucacaac	1617

$<210>$ SEQ ID NO 128
$<211>$ LENGTH: 1617
$<212>$ TYPE: RNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: SYnthetic Polynucleotide
$<400>$ SEQUENCE: 128
augagcugga agguggucau caucuucagc cugcugauca caccucagca cggccugaaa 60
gagagcuace uggaagaguc cugcagcacc aucacagagg gcuaccuguc ugugcugaga 120
accggcuggu acaccaacgu guucacacug gaagugggcg acgucgagaa ucugacaugc 180
ucugauggce cuagccugau caagaccgag cuggaucuga ccaagagcgc ccugagagaa 240
cucaagaccg ugucugcega ucagcuggce agagaggaac agaucgagaa uccuggcagc 300
ggcagcuuug ugcugggage cauugcucuu ggaguggcug cugcugcagc uguuacagca 360
ggcguggcea ucugcaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc 420
cugaagaaga caaacgagge cgucagcaca cucggcaang gcguuagagu gcuggceaca 480
gccgugcgeg agcugaagga cuucgugucc aagaaccuga cacgggccau uaacaagaac 540
aagugcgaca ucgacgaccu gaagauggec guguccuuua gccaguucaa ccggcgguuu 600
cugaacgucg ugcggcaguu uagcgacaac gecggaauca caccagceau cagccuggac 660
cugaugacag augcugagcu ggcuagagce gugccuaaca ugccuacauc ugceggceag 720
aucaagcuga ugcucgagaa uagagccang guccgacgga aaggcuucgg cauucugugu 780
ggcguguacg gcagcagcgu gaucuauaug gugcagcugc cuaucuucgg cgugaucgac 840
acacccugcu ggauugugaa ggccgcuccu agcuguagcg agaagaaggg caauuacgcc 900
ugccugcuga gagaggacca aggcugguau ugucagaacg ccggcagcac cguguacuac 960
ccuaacgaga aggacugcga gacaagaggc gaccacgugu ucugugauac cgecgcugga 1020
aucaaugugg cogagcagag caaagagugc aacaucaaca ucagcaccac caacuauccc 1080
ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagce 1140
cugguggcuu guuauaaggg eguguccugu agcaucggca gcaacagagu gggcaucauc 1200
aagcagcuga acaagggcug cagcuacauc accaaccagg acgecgauac cgugaccauc 1260
gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga 1320
ccugugucca gcagcuucga cccuaucaag uucccugagc accaguggca uguggcccug 1380
gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc 1440
cugucuagcg cogagaaggg aaacaccggc uncaucaucg ugaucauccu gaucgecgug 1500
cugggcagcu ccaugauccu gguguccauc uucaucauua ucaagaagac caagaagcec 1560
accggcgcuc cuccagaacu gagcggagug accaacaaug gcuucauccc ucacaac 1617
$<210>$ SEQ ID NO 129
$<211>$ LENGTH: 1617
$<212>$ TYPE : RNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 129

augagcugga agguggucau caucuucagc cugcugauca caccucagca cggccugaaa	60
gagagcuacc uggaagaguc cugcagcacc aucacagagg gcuaccuguc ugugcugaga	120

accggcuggu acaccaacgu guucacacug gaagugggcg acgucgagaa ucugacaugc 180
ucugauggce cuagccugau caagaccgag cuggaucugc ucaagagcge ccugagagaa 240
cucaagaccg ugucugccga ucagcuggce agagaggaac agaucgagaa uccuggcagc 300
ggcagcuuug ugcugggagc cauugcucuu ggaguggcug cugcugcagc uguuacagca 360
ggcguggcca ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc 420
cugaagaaga caaacgagge cgucagcaca cucggcaaug gcguuagagu gcuggceaca 480
gccgugcgcg agcugaagga cuucgugucc aagaaccuga cacgggccau uaacaagaac 540
aagugcgaca ucccugaccu gaagauggec guguccuuua gecaguucaa ccggegguuu 600
cugaacgucg ugcggcaguu uagcgacaac gccggaauca caccagccau cagccuggac 660
cugaugacag augcugagcu ggcuagagce gugccuaaca ugccuacauc ugceggceag 720
aucaagcuga ugcucgagaa uagagccaug guccgacgga aaggcuucgg cauucugauu 780
ggcguguacg gcagcagcgu gaucuauaug gugcagcugc cuaucuucgg cgugaucgac 840
acacccugcu ggauugugaa ggccgcuccu agcuguagcg agaagaaggg caauuacgcc 900
ugccugcuga gagaggacca aggcugguau ugucagaacg coggcagcac cguguacuac 960
ccuaacgaga aggacugcga gacaagaggc gaccacgugu ucugugauac cgccgcugga 1020
aucaaugugg cegagcagag caaagagugc aacaucaaca ucagcaccac caacuauccc 1080
ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagec 1140
cugguggcuu guuauaaggg eguguccugu agcaucggca gcaacagagu gggcaucauc 1200
aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc 1260
gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga 1320
ccugugucca gcagcuucga cccuaucaag uucccugagg aucaguucca gguggcccug 1380
gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc 1440
cugucuageg cegagaaggg aaacaccggc uncaucaucg ugaucauccu gaucgecgug 1500
cugggcagcu ccaugauccu gguguccauc uncaucauua ucaagaagac caagaagcec 1560
accggcgcuc cuccagaacu gagcggagug accaacaaug gcuucauccc ucacaac 1617
$<210>$ SEQ ID NO 130
$<211>$ LENGTH: 1617
$<212>$ TYPE: RNA
$<213>$ ORGANISM: Artificial sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 130
augagcugga agguggucau caucuucagc cugcugauca caccucagca cggccugaaa $\quad 60$
-continued

ggcagcuuug	ugcugggage cauugcucuu	ggaguggcug	cugcugcagc	uguuacagca	360
ggcguggcea	ucgcuaagac caucagacug	gaaagcgaag	ugaccgccau	caacaacgce	420
cugaagaaga	caaacgagge cgucagcaca	cucggcaaug	gcguuagagu	gcuggccaca	480
gccgugcgcg	agcugaagga cuucgugucc	aagaaccuga	cacgggccau	uaacaagaac	540
aagugcgaca	ucccugaccu gaagauggec	guguccuuua	gccaguucaa	coggegguuu	600
cugaacgucg	ugcggcaguu uagcgacaac	gccggaauca	caccagccau	cagccuggac	660
cugaugacag	augcugagcu ggcuagagec	gugccuaaca	ugccuacauc	ugceggecag	720
aucaagcuga	ugcucgagaa uagagceaug	guccgacgga	aaggcuucgg	cauucugauu	780
ggcguguacg	gcagcagcgu gaucuauaug	gugcagcugc	cuaucuucgg	cgugaucgac	840
acacccugcu	ggauugugaa ggcegcuccu	agcuguagcg	agaagaaggg	caauuacgec	900
ugccugcuga	gagaggacca aggcugguau	ugucagaacg	ccggcagcac	cguguacuac	960
ccuaacgaga	aggacugcga gacaagaggc	gaccacgugu	ucugugauac	cgecgcugga	1020
aucaaugugg	ccgagcagag caaagagugc	acaucaaca	cagcaccac	caacuaucce	1080
ugcaaggugu	ccaccggcag gcacccuauu	ucuauggugg	cucugucuce	ucugggagcc	1140
cugguggcuu	guuauaaggg eguguccugu	agcaucggca	gcaacagagu	gggcaucauc	1200
aagcagcuga	acaagggcug cagcuacauc	accaaccagg	acgccgauac	cgugaccauc	1260
gacaacaccg	uguaucagcu gagcaaggug	gaaggcgaac	agcacgugau	caagggcaga	1320
ccugugucca	gcagcuucga cecuaucaag	uucccugaga	accaguucca	gguggcecug	1380
gaccaggugu	ucgagaacau cgagaauucc	caggcucugg	uggaccaguc	caacagaauc	1440
cugucuagcg	ccgagaaggg aaacaccgge	uucaucaucg	ugaucauccu	gaucgecgug	1500
cugggcagcu	ccaugauccu gguguccauc	uucaucauua	ucaagaagac	caagaagcec	1560
accggegcuc	cuccagaacu gagcggagug	accaacaaug	gcuucaucce	ucacaac	1617



ggcguguacg	gcagcagcgu	gaucuauaug gugcagcugc	cuaucuucgg	cgugaucgac	840
acacceugcu	ggauugugaa	ggcegcuccu agcuguagcg	agaagaaggg	caauuacgec	900
ugceugcuga	gagaggacca	aggcugguau ugucagaacg	ccggcagcac	cguguacuac	960
ccuaacgaga	aggacugcga	gacaagagge gaccacgugu	ucugugauac	cgcegcugga	1020
aucaaugugg	cogagcagag	caaagagugc aacaucaaca	ucagcaccac	caacuauccc	1080
ugcaaggugu	ccaccggcag	gcacccuauu ucuauggugg	cucugucuce	ucugggagce	1140
cugguggcuu	guuauaaggg	cguguccugu agcaucggca	gcaacagagu	gggcaucauc	1200
aagcagcuga	acaagggcug	cagcuacauc accaaccagg	acgccgauac	cgugaccauc	1260
gacaacaccg	uguaucagcu	gagcaaggug gaaggcgaac	agcacgugau	caagggcaga	1320
ccugugucea	gcagcuucga	ccuaucaag uucccugagg	aucaguucca	gguggeccug	1380
gaccaggugu	ucgagaacau	cgagaauucc caggcucugg	uggaccaguc	caacagaauc	1440
cugucuageg	ccgagaaggg	aaacaccgge uucaucaucg	ugaucauccu	gaucgecgug	1500
cugggcagcu	ccaugauccu	gguguccauc uncaucauna	ucaagaagac	caagaagcec	1560
accggegcuc	cuccagaacu	gagcggagug accaacaaug	gcuucaucce	ucacaac	1617

$<210>$ SEQ ID NO 132
$<211>$ LENGTH: 1617
$<212>$ TYPE: RNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: SYnthetic Polynucleotide
$<400>$ SEQUENCE: 132
augagcugga agguggucau caucuucagc cugcugauca caccucagca cggccugaaa 60
gagagcuacc uggaagaguc cugcagcacc aucacagagg gcuaccuguc ugugcugaga 120
accggcuggu acaccaacgu guucacacug gaagugggcg acgucgagaa ucugacaugc 180
ucugauggce cuagccugau caagaccgag cuggaucugc ucaagagcge ccugagagaa 240
cucaagaccg ugucugccga ucagcuggce agagaggaac agaucgagaa uccuggcagc 300
ggcagcuuug ugcugggage cauugcucuu ggaguggcug cugcugcagc uguuacagca 360
ggcguggcea ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgec 420
cugaagaaga caaacgagge cgucagcaca cucggcaaug gcguuagagu gcuggceaca 480
gccgugcgcg agcugaagga cuucgugcuu aagaaccuga cacgggccau uaacaagaac 540
aagugcgaca ucccugaccu gaagauggec guguccuuua gecaguucaa coggcgguuu 600
cugaacgucg ugcggcaguu uagcgacaac gccggaauca caccagccau cagccuggac 660
cugaugacag augcugagcu ggcuagagce gugccuaaca ugccuacauc ugceggceag 720
aucaagcuga ugcucgagaa uagagccaug guccgacgga aaggcuucgg cauucugauu 780
ggcguguacg gcagcagcgu gaucuauaug gugcagcugc cuaucuucgg cgugaucgac 840
acacccugcu ggauugugaa ggccgcuccu agcuguagcg agaagaaggg caauuacgcc 900
ugccugcuga gagaggacca aggcugguau ugucagaacg ceggcagcac cguguacuac 960
ccuaacgaga aggacugcga gacaagagge gaccacgugu ucugugauac cgecgcugga 1020
aucaaugugg cogagcagag caaagagugc aacaucaaca ucagcaccac caacuauccc 1080
ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagce 1140
cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc 1200

aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc	1260
gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga	1320
ccugugucca gcagcuucga cccuavcaag uucccugaga accaguucca gguggcccug	1380
gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc	1440
cugucuagcg ccgagaaggg aaacaccggc uncaucaucg ugaucauccu gaucgccgug	1500
cugggcagcu ccaugauccu gguguccauc uncaucauia ucaagaagac caagaagcce	1560
accggcgcuc cuccagaacu gagcggagug accaacaaug gcuucauccc ucacaac	1617

$<210>$ SEQ ID NO 133
$<211>$ LENGTH: 1617
$<212>$ TYPE: RNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 133
augagcugga agguggucau caucuucagc cugcugauca caccucagca cggccugaaa 60
gagagcuace uggaagaguc cugcagcacc aucacagagg gcuaccuguc ugugcugaga 120
accggcuggu acaccaacgu guucacacug ccugugggcg acgucgagaa ucugacaugc 180
ucugauggce cuagccugau caagaccgag cuggaucugc ucaagagcgc ccugagagaa 240
cucaagaccg ugucugccga ucagcuggce agagaggaac agaucgagaa uccuggcagc 300
ggcagcuung ugcugggage caungcucuu ggaguggcug cugcugcagc uguuacagca 360
ggcguggcca ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgec 420
cugaagaaga caaacgagge cgucagcaca cucggcaaug gcguuagagu gcuggccaca 480
gccgugcgcg agcugaagga cuucgugucc aagaaccuga cacgggceau uaacaagaac 540
aagugcgaca ucgacgaccu gaagauggce guguccuuua gccaguucaa coggcgguuu 600
cugaacgucg ugcggcaguu uagcgacaac gccggaauca caccagccau cagccuggac 660
cugaugacag augcugagcu ggcuagagce gugccuaaca ugccuacauc ugceggceag 720
aucaagcuga ugcucgagaa uagagccaug guccgacgga aaggcuucgg cauucugauu 780
ggcguguacg gcagcagcgu gaucuauaug gugcagcugc cuaucuucgg cgugaucgac 840
acacccugcu ggauugugaa ggcegcuccu agcuguagcg agaagaaggg caauuacgce 900
ugccugcuga gagaggacca aggcugguau ugucagaacg coggcagcac cguguacuac 960
ccuaacgaga aggacugcga gacaagaggc gaccacgugu ucugugauac cgccgcugga 1020
aucaaugugg cegagcagag caaagagugc aacaucaaca ucagcaccac caacuauccc 1080
ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagce 1140
cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc 1200
aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc 1260
gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga 1320
ccugugucca gcagcuucga cecuaucaag uncccugagg aucaguucca gguggcecug 1380
gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc 1440
cugucuagcg ccgagaaggg aaacaccggc uucaucaucg ugaucauccu gaucgccgug 1500
cugggcagcu ccaugauccu gguguccauc uncaucauua ucaagaagac caagaagcec 1560
accggcgcuc cuccagaacu gagcggagug accaacaaug gcuucauccc ucacaac 1617
$<210>$ SEQ ID NO 134
$<211>$ LENGTH: 1617
$<212>$ TYPE: RNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 134
augagcugga agguggucau caucuucagc cugcugauca caccucagca cggccugaaa $\quad 60$
gagagcuacc uggaagaguc cugcagcacc aucacagagg gcuaccuguc ugugcugaga 120
accggcuggu acaccaacgu guucacacug ccugugggcg acgucgagaa ucugacaugc 180
ucugauggce cuagccugau caagaccgag cuggaucugc ucaagagcgc ccugagagaa 240
cucaagaccg ugucugccga ucagcuggce agagaggaac agaucgagaa uccuggcagc 300
ggcagcuung ugcugggage caungcucuu ggaguggcug cugcugcagc uguuacagca 360
ggcguggcca ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc 420
cugaagaaga caaacgagge cgucagcaca cucggcaaug gcguuagagu gcuggccaca 480
gccgugcgeg agcugaagga cuucgugucc aagaaccuga cacgggccau uaacaagaac 540
aagugcgaca ucgacgaccu gaagauggce guguccuuua gccaguucaa coggcgguuu 600
cugaacgucg ugcggcaguu uagcgacaac gccggaauca caccagccau cagccuggac 660
cugaugacag augcugagcu ggcuagagce gugccuaaca ugccuacauc ugceggceag 720
aucaagcuga ugcucgagaa uagagccaug guccgacgga aaggcuucgg cauucugauu 780
ggcguguacg gcagcagcgu gaucuauaug gugcagcugc cuaucuucgg egugaucgac 840
acacceugcu ggauugugaa ggccgcuccu agcuguageg agaagaaggg caauuacgec 900
ugccugcuga gagaggacca aggcugguau ugucagaacg ceggcagcac cguguacuac 960
ccuaacgaga aggacugcga gacaagaggc gaccacgugu ucugugauac cgccgcugga 1020
aucaaugugg cegagcagag caaagagugc aacaucaaca ucagcaccac caacuauccc 1080
ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagce 1140
cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc
aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc 1260
gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga 1320
ccugugucca gcagcuucga cccuaucaag uucccugaga accaguucca gguggeccug 1380
gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc 1440
cugucuageg cogagaaggg aaacaccggc uncaucaucg ugaucauccu gaucgecgug 1500
cugggcagcu ccaugauccu gguguccauc uucaucauua ucaagaagac caagaagcce 1560
accggcgcuc cuccagaacu gagcggagug accaacaaug gcuucaucce ucacaac 1617
$<210>$ SEQ ID NO 135
$<211>$ LENGTH: 1617
$<212>$ TYPE : RNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 135augagcugga agguggucau caucuucagc cugcugauca caccucagca cggccugaaa
-continued

ucugauggce	cuagccugau	caagaccgag	cuggaucugc	ucaagagcge	ccugagagaa	240
cucaagaccg	ugucugccga	ucagcuggec	agagaggaac	agaucgagaa	uccuggcagc	300
ggcagcuuug	ugcugggage	cauugcucuu	ggaguggcug	cugcugcagc	uguuacagca	360
ggcguggcca	ucgcuaagac	caucagacug	gaaagcgaag	ugaccgccau	caacaacgec	420
cugaagaaga	caaacgagge	cgucagcaca	cucggcaaug	gcguuagagu	gcuggecaca	480
gccgugcgeg	agcugaagga	cuucguguce	agaaccuga	cacgggccau	uaacaagaac	540
aagugcgaca	ucgacgaccu	gaagauggce	guguccuuua	gccaguucaa	coggegguuu	600
cugaacgucg	ugcggcaguu	uagcgacaac	gccggaauca	caccagccau	cagccuggac	660
cugaugacag	augcugagcu	ggcuagagce	gugccuaaca	ugccuacauc	ugceggceag	720
aucaagcuga	ugcucgagaa	uagagccaug	guccgacgga	aaggcuucgg	cauucugauu	780
ggcguguacg	gcagcagcgu	gaucuauaug	gugcagcugc	cuaucuucgg	cgugaucgac	840
acacccugcu	ggauugugaa	ggcegcuccu	agcuguagcg	agaagaaggg	caauuacgec	900
ugccugcuga	gagaggacca	aggcugguau	ugucagaacg	cggcagcac	cguguacuac	960
ccuaacgaga	aggacugcga	gacaagaggc	gaccacgugu	ucugugauac	cgcegcugga	1020
aucaaugugg	ccgagcagag	caaagagugc	aacaucaaca	ucagcaccac	caacuauccc	1080
ugcaaggugu	ccaccggcag	gcacccuauu	ucuauggugg	cucugucuce	ucugggagce	1140
cugguggcuu	guuauaaggg	cguguccugu	gcaucggca	gcaacagagu	gggcaucauc	1200
aagcagcuga	acaagggcug	cagcuacauc	ccaaccagg	cgccgauac	cgugaccauc	1260
gacaacaccg	uguaucagcu	gagcaaggug	gaaggcgaac	agcacgugau	caagggcaga	1320
ccugugucea	gcagcuucga	cccuaucaag	uucccugagg	aucaguucca	gguggcecug	1380
gaccaggugu	ucgagaacau	cgagaauucc	caggcucugg	uggaccaguc	caacagaauc	1440
cugucuageg	ccgagaaggg	aaacaccggc	uucaucaucg	ugaucauccu	gaucgecgug	1500
cugggcagcu	ccaugauccu	gguguccauc	uucaucauua	ucaagaagac	caagaagcec	1560
accggcgcuc	cuccagaacu	gagcggagug	accaacaaug	gcuucaucce	ucacaac	1617

$<210>$ SEQ ID NO 136
$<211>$ LENGTH: 1617
$<212>$ TYPE: RNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: SYnthetic Polynucleotide
$<400>$ SEQUENCE: 136
augagcugga agguggucau caucuucagc cugcugauca caccucagca cggccugaaa 60
gagagcuace uggaagaguc cugcagcacc aucacagagg gcuaccuguc ugugcugaga 120
accggcuggu acaccaacgu guucacacug gaagugggcg accucgagaa ucugacaugc 180
ucugauggcc cuagccugau caagaccgag cuggaucuga ccaagagcgc ccugagagaa 240
cucaagaccg ugucugccga ucagcuggce agagaggaac agaucgagaa uccuggcagc 300
ggcagcuung ugcugggagc caungcucuu ggaguggcug cugcugcagc uguuacagca 360
ggcguggcca ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgec 420
cugaagaaga caaacgaggc cgucagcaca cucggcaaug gcguuagagu gcuggccaca 480
gccgugcgeg agcugaagga cuucgugucc aagaaccuga cacgggccau uaacaagaac 540
aagugcgaca ucgacgaccu gaagauggce guguccuuua gccaguucaa ccggcgguuu 600
cugaacgucg ugcggcaguu uagcgacaac gccggaauca caccagccau cagccuggac 660

-continued

| ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagcc | 1140 |
| :--- | :--- | :--- |
| cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc | 1200 |
| aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc | 1260 |
| gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga | 1320 |
| ccugugucca gcagcuucga cccuaucaag uncccugagg aucaguucca gguggcccug | 1380 |
| gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc | 1440 |
| cugucuagcg cegagaaggg aaacaccggc uncaucaucg ugaucauccu gaucgccgug | 1500 |
| cugggcagcu ccaugauccu gguguccauc uncaucauua ucaagaagac caagaagccc | 1560 |
| accggcgcuc cuccagaacu gagcggagug accaacaaug gcuucauccc ucacaac | 1617 |

$<210>$ SEQ ID NO 138
$<211>$ LENGTH: 1617
$<212>$ TYPE: RNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: SYnthetic Polynucleotide
$<400>$ SEQUENCE: 138
augagcugga agguggucau caucuucagc cugcugauca caccucagca cggccugaaa 60
gagagcuacc uggaagaguc cugcagcacc aucacagagg gcuaccuguc ugugcugaga 120
accggcuggu acaccaacgu guucacacug gaagugggeg acgucgagaa ucugacaugc 180
ucugauggec cuagccugau caagaccgag cuggaucuga ccaagagcge ccugagagaa 240
cucaagaccg ugucugccga ucagcuggec agagaggaac agaucgagaa uccuggcagc 300
ggcagcuung ugcugggage caungcucuu ggaguggcug cugcugcagc uguuacagca 360
ggcguggcea ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc 420
cugaagaaga caaacgagge cgucagcaca cucggcaaug gcguuagagu gcuggccaca 480
gccgugcgeg agcugaagga cuucgugucc aagaaccugu ggcgggccau uaacaagaac 540
aagugcgaca ucgacgaccu gaagauggec guguccuuua gccaguucaa coggcgguuu 600
cugaacgucg ugcggcaguu uagcgacaac gccggaauca caccagccau cagccuggac 660
cugaugacag augcugagcu ggcuagagce gugccuaaca ugccuacauc ugceggceag 720
aucaagcuga ugcucgagaa uagagccaug guccgacgga aaggcuucgg cauncugauu 780
ggcguguacg gcagcagcgu gaucuauaug gugcagcugc cuaucuucgg cgugaucgac 840
acacccugcu ggauugugaa ggccgcuccu agcuguagcg agaagaaggg caauuacgcc 900
ugccugcuga gagaggacca aggcugguau ugucagaacg coggcagcac cguguacuac 960
ccuaacgaga aggacugega gacaagagge gaccacgugu ucugugauac cgecgcugga 1020
aucaaugugg cegagcagag caaagagugc aacaucaaca ucagcaccac caacuauccc 1080
ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagce 1140
cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc 1200
aagcagcuga acaagggcug cagcuacauc accaaccagg acgecgauac cgugaccauc 1260
gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga 1320
ccugugucca gcagcuucga cccuaucaag uucccugagg aucaguucca gguggcceug 1380
gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc 1440
cugucuageg cegagaaggg aaacaccggc uncaucaucg ugaucauccu gaucgecgug 1500
cugggcagcu ccaugauccu gguguccauc uucaucauua ucaagaagac caagaagcec 1560

$<210>$ SEQ ID NO 140
$<211>$ LENGTH: 1617
$<212>$ TYPE: RNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 140
-continued


$<210>S E Q$ ID NO 141	
<211> LENGTH: 1617	
<212> TYPE: RNA	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 141	
augagcugga agguggucau caucuucagc cugcugauca caccucagca cggccugaaa	60
gagagcuacc uggaagaguc cugcagcace aucacagagg gcuaccuguc ugugcugaga	120
accggcuggu acaccaacgu guucacacug gaagugggcg acgucgagaa ucugacaugc	180
ucugauggce cuagceugau caagaccgag cuggaucuga ccaagagcge ccugagagaa	240
cucaagaccg ugucugcega ucagcuggec agagaggaac agaucgagaa uccuggcagc	300
ggcagcuung ugcugggage caungcucuu ggaguggcug cugcugcagc uguaacagca	360
ggcguggcea ucgcuaagac caucagacug gaaagcgaag ugaccgceau caacaacgec	420
cugaagaaga caaacgagge cgucagcaca cucggcaaug gcguuagagu gcuggceaca	480
gccgugcgeg agcugaagga cuucgugucc aagaaccuga cacgggceau uaacaagaac	540


aagugcgaca ucccugaccu gaagauggcc guguccuuua gccaguucaa ccggcgguuu	600
cugaacgucg ugcggcaguu uagcgacaac gccggaauca caccagccau cagccuggac	660
cugaugacag augcugagcu ggcuagagcc gugccuaaca ugccuacauc ugccggccag	720
aucaagcuga ugcucgagaa uagagccaug guccgacgga aaggcuucgg cauucugauu	780
ggcguguacg gcagcagcgu gaucuauaug gugcagcugc cuaucuucgg cgugaucgac	840
acacccugcu ggauugugaa ggccgcuccu agcuguagcg agaagaaggg caauuacgcc	900
ugccugcuga gagaggacca aggcugguau ugucagaacg ccggcagcac cguguacuac	960
ccuaacgaga aggacugcga gacaagaggc gaccacgugu ucugugauac cgccgcugga	1020
aucaaugugg ccgagcagag caaagagugc aacaucaaca ucagcaccac caacuauccc	1080
ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagcc	1140
cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc	1200
aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc	1260
gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga	1320
ccugugucca gcagcuucga cccuaucaag uncccugagg aucaguucca gguggcccug	1380
gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc	1440

$<210>$ SEQ ID NO 142
$<211>$ LENGTH: 1617
$<212>$ TYPE: RNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 142
augagcugga agguggucau caucuucagc cugcugauca caccucagca cggccugaaa 60
gagagcuacc uggaagaguc cugcagcacc aucacagagg gcuaccuguc ugugcugaga 120
accggcuggu acaccaacgu guucacacug gaagugggcg acgucgagaa ucugacaugc 180
ucugauggec cuagccugau caagaccgag cuggaucuga ccaagagegc ccugagagaa 240
cucaagaccg ugucugccga ucagcuggec agagaggaac agaucgagaa uccuggcagc 300
ggcagcuung ugcugggagc caungcucuu ggaguggcug cugcugcagc uguuacagca 360
ggcguggcea ucgcuaagac caucagacug gaaagegaag ugaccgccau caacaacgec 420
cugaagaaga caaacgaggc cgucagcaca cucggcaaug gcguuagagu gcuggccaca 480
gccgugcgeg agcugaagga cuucgugucc aagaaccuga cacgggccau uaacaagaac 540
aagugcccua ucgacgaccu gaagauggcc guguccuuua gccaguucaa ccggcgguuu 600
cugaacgucg ugcggcaguu uagcgacaac gccggaauca caccagccau cagccuggac 660
cugaugacag augcugagcu ggcuagagce gugccuaaca ugccuacauc ugceggceag 720
aucaagcuga ugcucgagaa uagagccaug guccgacgga aaggcuucgg cauncugauu 780
ggcguguacg gcagcagcgu gaucuauaug gugcagcugc cuaucuucgg cgugaucgac 840
acacccugcu ggauugugaa ggccgcuccu agcuguagcg agaagaaggg caauuacgcc 900
ugccugcuga gagaggacca aggcugguau ugucagaacg ceggcagcac cguguacuac 960
-continued

| ccuaacgaga aggacugcga gacaagaggc gaccacgugu ucugugauac cgccgcugga | 1020 |
| :--- | :--- | :--- |
| aucaaugugg ccgagcagag caaagagugc aacaucaaca ucagcaccac caacuauccc | 1080 |
| ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagcc | 1140 |
| cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc | 1200 |
| aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc | 1260 |
| gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga | 1320 |
| ccugugucca gcagcuncga cccuaucaag uncccugagg aucaguucca gguggcccug | 1380 |
| gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc | 1440 |
| cugucuagcg ccgagaaggg aaacaccggc uncaucaucg ugaucauccu gaucgccgug | 1500 |
| cugggcagcu ccauganccu gguguccauc uncaucauua ucaagaagac caagaagccc | 1560 |
| accggcgcuc cuccagaacu gagcggagug accaacaaug gcuucauccc ucacaac | 1617 |

$<210>$ SEQ ID NO 143
$<211>$ LENGTH: 1617
$<212>$ TYPE: PNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 143
augagcugga agguggucau caucuucagc cugcugauca caccucagca cggccugaaa 60
gagagcuacc uggaagaguc cugcagcacc aucacagagg gcuaccuguc ugugcugaga 120
accggcuggu acaccaacgu guucacacug gaagugggeg acgucgagaa ucugacaugc 180
ucugauggce cuagccugau caagaccgag cuggaucuga ccaagagcge ccugagagaa 240
cucaagaccg ugucugccga ucagcuggec agagaggaac agaucgagaa uccuggcagc 300
ggcagcuung ugcugggage caungcucuu ggaguggcug cugcugcage uguuacagca 360
ggcguggcea ucgcuaagac caucagacug ccuagcgaag ugaccgccau caacaacgec 420
cugaagaaga caaacgaggc cgucagcaca cucggcaaug gcguuagagu gcuggccaca 480
gccgugcgeg agcugaagga cuucgugucc aagaaccuga cacgggccau uaacaagaac 540
aagugcgaca ucgacgaccu gaagauggce guguccuuua gccaguucaa coggcgguuu 600
cugaacgucg ugcggcaguu uagcgacaac gccggaauca caccagccau cagccuggac 660
cugaugacag augcugagcu ggcuagagce gugccuaaca ugccuacauc ugceggceag 720
aucaagcuga ugcucgagaa uagagccaug guccgacgga aaggcuucgg cauncugauu 780
ggcguguacg gcagcagegu gaucuauaug gugcagcugc cuaucuucgg cgugaucgac 840
acacccugcu ggauugugaa ggccgcuccu agcuguagcg agaagaaggg caauuacgcc 900
ugccugcuga gagaggacca aggcugguau ugucagaacg ccggcagcac cguguacuac 960
ccuaacgaga aggacugcga gacaagaggc gaccacgugu ucugugauac cgccgcugga 1020
aucaaugugg cegagcagag caaagagugc aacaucaaca ucagcaccac caacuauccc 1080
ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagce 1140
cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc 1200
aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc 1260
gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga 1320
ccugugucca gcagcuucga cccuaucaag uncccugagg aucaguucca gguggeccug 1380 gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc 1440

cugucuagcg cogagaaggg aaacaccggc uncaucaucg ugaucauccu gaucgcegug	1500
cugggcagcu ccaugavceu gguguccauc uncaucauua ucaagaagac caagaagcec	1560
accggcgcuc cuccagaacu gagcggagug accaacaaug gcuucauccc ucacaac	1617

$<210>$ SEQ ID NO 144
$<211>$ LENGTH: 1617
$<212>$ TYPE: PNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 144
augagcugga agguggucau caucuncagc cugcugauca caccucagca cggccugaaa 60
gagagcuacc uggaagaguc cugcagcacc aucacagagg gcuaccuguc ugugcugaga 120
accggcuggu acaccaacgu guucacacug gaagugggcg acgucgagaa ucugacaugc 180
ucugauggce cuagccugau caagaccgag cuggaucuga ccaagagcge ccugagagaa 240
cucaagaccg ugucugccga ucagcuggec agagaggaac agaucgagaa uccuggcage 300
ggcagcuung ugcugggage caungcucuu ggaguggcug cugcugcagc uguuacagca 360
ggcguggcea ucgcuaagac caucagacug gaaagegaag ugaccgccau caacaacgec 420
cugaagaaga caaacgagge cgucagcaca cucggcaaug gcguuagagu gcuggccaca 480
gccgugcgeg agcugaagga cuucgugucc aagaaccuga cacgggccau uaacaagaac 540
aagugcgaca ucgacgaccu gaagauggce guguccuuua gccaguucaa ceggcgguuu 600
cugaacgucg ugcggcaguu uagcgacaac gccggaauca caccagccau cagccuggac 660
cugaugacag augcugagcu ggcuagagec gugccuaaca ugccuacauc ugceggceag 720
aucaagcuga ugcucgagaa uagagccaug guccgacgga aaggcuucgg cauucugauu 780
ggcguguacg gcagcagcgu gaucuauaug gugcagcugc cuaucuucgg cgugaucgac 840
acacccugcu ggauugugaa ggccgcuccu agcuguagcg agaagaaggg caauuacgcc 900
ugccugcuga gagaggacca aggcugguau ugucagaacg ccggcagcac cguguacuac 960
ccuaacgaga aggacugcga gacaagaggc gaccacgugu ucugugauac cgccgcugga 1020
aucaaugugg cegagcagag caaagagugc aacaucaaca ucagcaccac caacuauccc 1080
ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagec 1140
cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc 1200

$<210>$ SEQ ID NO 145
$<211>$ LENGTH: 1617
$<212>$ TYPE: RNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
-continued


$<210>$ SEQ ID NO 146	
$<211>$ LENGTH: 1617	
$<212>$ TYPE: RNA	
$<213>$ ORGANISM: Artificial Sequence	
$<220>$ FEATURE:	
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide	
$<400>$ SEQUENCE: 146	60
augagcugga agguggucau caucuucagc cugcugauca caccucagca cggccugaaa	120
gagagcuacc uggaagaguc cugcagcacc aucacagagg gcuaccuguc ugugcugaga	180
accggcuggu acaccaacgu guucacacug gaagugggcg acgucgagaa ucugacaugc	240
ucugauggcc cuagccugau caagaccgag cuggaucuga ccaagagcgc ccugagagaa	200
cucaagaccg ugucugccga ucagcuggcc agagaggaac agaucgagaa uccuggcagc	300
ggcagcuuug ugcugggagc cauugcucuu ggaguggcug cugcugcagc uguuacagca	360
ggcguggcca ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc	420

-continued

$<210>$ SEQ ID NO 147
$<211>$ LENGTH: 1617
$<212>$ TYPE : RNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Polynucleotide
$<400>$ SEQUENCE: 147
augagcugga agguggucau caucuucagc cugcugauca caccucagca cggccugaaa 60
gagagcuacc uggaagaguc cugcagcacc aucacagagg gcuaccuguc ugugcugaga 120
accggcuggu acaccaacgu guucacacug gaagugggeg acgucgagaa ucugacaugc 180
ucugauggec cuagccugau caagacogag cuggaucuga ccaagagegc ccugagagaa 240
cucaagaccg ugucugccga ucagcuggec agagaggaac agaucgagaa uccuggcagc 300
ggcagcuung ugcugggagc cauugcucuu ggaguggcug cugcugcagc uguuacagca 360
ggcguggcea ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc 420
cugaagaaga caaacgaggc cgucagcaca cucggcaaug gcguuagagu gcuggccaca 480
gccgugcgeg agcugaagga cuucgugucc aagaaccuga cacgggccau uaacaagaac 540
aagugcgaca ucgacgaccu gaagauggce guguccuuua gccaguggaa ccggcgguuu 600
cugaacgucg ugcggcaguu uagcgacaac gecggaauca caccagccau cagccuggac 660
cugaugacag augcugagcu ggcuagagce gugccuaaca ugccuacauc ugccggccag 720
aucaagcuga ugcucgagaa uagagccaug guccgacgga aaggcuucgg cauucugauu 780
ggcguguacg gcagcagcgu gaucuauaug gugcagcugc cuaucuucgg cgugaucgac 840
-continued


What is claimed is:

1. A composition, comprising: a messenger ribonucleic acid (mRNA) comprising an open reading frame encoding a betacoronavirus (BetaCoV) S protein or S protein subunit formulated in a lipid nanoparticle.
2. The composition of claim $\mathbf{1}$, wherein the open reading frame encodes a BetaCoV S protein.
3. The composition of claim 1, wherein the open reading frame encodes an $S$ protein subunit selected from an S 1 subunit and an S2 subunit.
4. The composition of claim 1 , wherein the mRNA further comprising a $5^{\prime}$ untranslated region (UTR) and a $3^{\prime}$ UTR.
5. The composition of claim 4 , wherein the mRNA further comprises a poly(A) tail.
6. The composition of claim 4 , wherein the mRNA further comprises a $5^{\prime}$ cap analog.
7. The composition of claim 6, wherein the 5 ' cap analog is $7 \mathrm{mG}\left(5^{\prime}\right) \mathrm{ppp}\left(5^{\prime}\right) \mathrm{NlmpNp}$.
8. The composition of claim 1 , wherein the mRNA comprises a chemical modification.
9. The composition of claim 8, wherein the chemical modification is a 1-methylpseudouridine modification or a 1 -ethylpseudouridine modification.
10. The composition of claim 8 , wherein at least $80 \%$ of the uracil in the open reading frame has a chemical modification.
11. The composition of claim 1, wherein the lipid nanoparticle comprises an ionizable cationic lipid, a neutral lipid, a sterol, and a PEG-modified lipid.
12. The composition of claim 11, wherein the lipid nanoparticle comprises $20-60 \%$ ionizable cationic lipid, 5-25\% neutral lipid, 25-55\% cholesterol, and 0.5-15\% PEGmodified lipid.
13. The composition of claim 12, wherein the lipid nanoparticle comprises $50 \%$ ionizable cationic lipid, $10 \%$ neutral lipid, $38.5 \%$ sterol, and $1.5 \%$ PEG-modified lipid.
14. The composition of claim 11, wherein the ionizable cationic lipid is Compound 25.
15. The composition of claim 11, wherein the neutral lipid is 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), the sterol is cholesterol, and the PEG-modified lipid is 1,2-dimyristoyl-racalycero-3-methoxypolyethylene glycol-2000 (PEG-DMG) or PEG-cDMA.
16. A composition, comprising: a messenger ribonucleic acid (mRNA) comprising a $5^{\prime}$ untranslated region (UTR), an open reading frame encoding a betacoronavirus (BetaCoV) S protein or S protein subunit, a 3' UTR, and a poly(A) tail, formulated in a lipid nanoparticle that comprises 20-60\% ionizable cationic lipid, $5-25 \%$ neutral lipid, $25-55 \%$ cholesterol, and 0.5-15\% PEG-modified lipid.
17. The composition of claim 16, wherein the open reading frame encodes a BetaCoV S protein.
18. The composition of claim 16, wherein the open reading frame encodes an $S$ protein subunit selected from an S1 subunit and an S 2 subunit.
19. The composition of claim 16, wherein the mRNA further comprises $5^{\prime}$ cap analog $7 \mathrm{mG}\left(5^{\prime}\right) \mathrm{ppp}\left(5^{\prime}\right) \mathrm{NlmpNp}$.
20. The composition of claim 16, wherein at least $80 \%$ of the uracil in the open reading frame has a chemical modification.
21. The composition of claim 20, wherein the chemical modification is a 1 -methylpseudouridine modification or a 1-ethylpseudouridine modification.
22. The composition of claim 16, wherein the ionizable cationic lipid is Compound 25.
23. The composition of claim 16, wherein the neutral lipid is DSPC, the sterol is cholesterol, and the PEG-modified lipid is PEG-DMG.
24. A composition, comprising: a messenger ribonucleic acid (mRNA) comprising a $5^{\prime}$ cap analog, a $5^{\prime}$ untranslated region (UTR), an open reading frame encoding a betacoronavirus (BetaCoV) S protein, a 3' UTR, and a poly(A) tail, formulated in a lipid nanoparticle that comprises $20-60 \%$ ionizable cationic lipid, 5-25\% DSPC, $25-55 \%$ cholesterol, and $0.5-15 \%$ PEG-DMG, wherein the ionizable cationic lipid has the structure of Compound 25, and wherein at least $80 \%$ of the uracil in the open reading frame has a 1-methylpseudouridine modification.
25. The composition of claim 24, wherein the $5^{\prime}$ cap analog is $7 \mathrm{mG}\left(5^{\prime}\right) \mathrm{ppp}\left(5^{\prime}\right) \mathrm{Nl} \mathrm{mpNp}$.
26. A lipid nanoparticle, comprising: a messenger ribonucleic acid (mRNA) comprising an open reading frame encoding a betacoronavirus (BetaCoV) S protein or S protein subunit; wherein the lipid nanoparticle comprises
$20-60 \%$ ionizable cationic lipid, $5-25 \%$ neutral lipid,
$25-55 \%$ cholesterol, and $0.5-15 \%$ PEG-modified lipid.
