EXHIBIT 2

(12) United States Patent

Ciaramella et al.

US 10,702,600 B1 (10) Patent No.:

(45) Date of Patent: Jul. 7, 2020

(54) BETACORONAVIRUS MRNA VACCINE

(71) Applicant: ModernaTX, Inc., Cambridge, MA

(72) Inventors: Giuseppe Ciaramella, Sudbury, MA (US); Sunny Himansu, Winchester,

MA (US)

(73) Assignee: ModernaTX, Inc., Cambridge, MA

(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 16/805,587

(22) Filed: Feb. 28, 2020

Related U.S. Application Data

- (63) Continuation of application No. 16/368,270, filed on Mar. 28, 2019, which is a continuation of application No. 16/040,981, filed on Jul. 20, 2018, now Pat. No. 10,272,150, which is a continuation of application No. 15/674,599, filed on Aug. 11, 2017, now Pat. No. 10,064,934, which is a continuation of application No. PCT/US2016/058327, filed on Oct. 21, 2016.
- (60) Provisional application No. 62/247,362, filed on Oct. 28, 2015, provisional application No. 62/247,394, filed on Oct. 28, 2015, provisional application No. 62/247,483, filed on Oct. 28, 2015, provisional application No. 62/247,297, filed on Oct. 28, 2015, provisional application No. 62/244,802, filed on Oct. 22, 2015, provisional application No. 62/244,946, filed on Oct. 22, 2015, provisional application No. 62/244,813, filed on Oct. 22, 2015, provisional application No. 62/244,837, filed on Oct. 22, 2015, provisional application No. 62/245,031, filed on Oct. 22, 2015.
- (51) Int. Cl. (2006.01) A61P 11/00 A61K 39/12 (2006.01)A61K 39/215 (2006.01)A61K 39/155 (2006.01)C07K 16/10 (2006.01)A61K 39/00 (2006.01)

(52) U.S. Cl.

CPC A61K 39/155 (2013.01); A61K 39/12 (2013.01); A61K 39/215 (2013.01); A61P 11/00 (2018.01); C07K 16/10 (2013.01); C07K 16/1027 (2013.01); A61K 2039/53 (2013.01); A61K 2039/55511 (2013.01); A61K 2039/55555 (2013.01); A61K 2039/6018 (2013.01); A61K 2039/70 (2013.01); C07K 2317/76 (2013.01); C12N 2760/18034 (2013.01); C12N 2760/18334 (2013.01); C12N 2760/18434 (2013.01); C12N 2760/18534 (2013.01); C12N 2760/18634 (2013.01); C12N 2770/20034 (2013.01); Y02A 50/381 (2018.01); Y02A 50/39 (2018.01)

(58) Field of Classification Search

None

See application file for complete search history.

(56)References Cited

U.S. PATENT DOCUMENTS

3,906,092	A	9/1975	Hilleman et al.
4,790,987	A	12/1988	Compans et al.
5,169,628	Α	12/1992	Wathen
5,427,782	A	6/1995	Compans et al.
6,225,091	B1	5/2001	Klein et al.
6,500,419	B1	12/2002	Hone et al.
6,514,948	B1	2/2003	Raz et al.
7,001,890	B1	2/2006	Wagner et al.
7,208,161	B1	4/2007	Murphy et al.
7,449,324	B2	11/2008	Fouchier et al.
7,531,342	B2	5/2009	Fouchier et al.
7,671,186	B2	3/2010	Klein et al.
7,704,720	B2	4/2010	Tang et al.
8,217,016	B2	7/2012	Hoerr et al.
8,252,289	B2	8/2012	Eleouët et al.
8,710,200	B2	4/2014	Schrum et al.
8,722,341	B2	5/2014	Fouchier et al.
8,734,853	B2	5/2014	Sood et al.
8,754,062	B2	6/2014	De Fougerolles et al.
8,822,663	B2	9/2014	Schrum et al.
8,841,433	B2	9/2014	Fouchier et al.
8,889,146	B2	11/2014	Blais et al.
8,927,206	B2	1/2015	De Jong et al.
8,999,380	B2	4/2015	Bancel et al.
9,192,661	B2	11/2015	Jain et al.
9,221,891	B2	12/2015	Bancel et al.
9,283,287	B2	3/2016	Bancel et al.
9,303,079	B2	4/2016	Bancel et al.
9,376,726	B2	6/2016	Fouchier et al.
9,464,124	B2	10/2016	Bancel et al.
9,512,456	B2	12/2016	Wang et al.
9,567,653	B2	2/2017	Fouchier et al.
9,597,380	B2	3/2017	Chakraborty et al.
		(Con	tinued)
		(002	

FOREIGN PATENT DOCUMENTS

CA	2473135	6/2003
EP	1026253	8/2000
	(Coı	ntinued)

OTHER PUBLICATIONS

U.S. Appl. No. 16/036,318, filed Jul. 16, 2018, Ciaramella et al. (Continued)

Primary Examiner - Nicole Kinsey White (74) Attorney, Agent, or Firm — Wolf, Greenfield & Sacks, P.C.

(57)ABSTRACT

The disclosure relates to respiratory virus ribonucleic acid (RNA) vaccines and combination vaccines, as well as methods of using the vaccines and compositions comprising the vaccines.

26 Claims, 24 Drawing Sheets

Specification includes a Sequence Listing.

US 10,702,600 B1 Page 2

(56)	Referen	ices Cited		0038612			Hoge et al.
U.S.	PATENT	DOCUMENTS	2016/0	0039884	A1	6/2016	Li et al. Kallen et al.
0.622.005 P2	1/2017	77 11 1)271272)317647			Bancel et al. Ciaramella et al.
9,623,095 B2 9,669,089 B2	6/2017	Kallen et al. Thess et al.		0331828			Ciaramella et al.
9,790,531 B2		Wang et al.		0065675			Bancel et al.
9,868,691 B2	1/2018	Benenato et al.		0130255			Wang et al.
9,872,900 B2		Ciaramella et al.)202979)340724		7/2017	Chakraborty et al. Ciaramella et al.
9,937,196 B2 10,064,934 B2		Jain et al. Ciaramella et al.		0000953			Almarsson et al.
10,064,935 B2		Ciaramella et al.		0002393			Bancel et al.
10,124,055 B2		Ciaramella et al.		0008694			Ciaramella et al.
10,207,010 B2		Besin et al.		0028645 0028664			Ciaramella et al. Besin et al.
10,273,269 B2 10,449,244 B2		Ciaramella Ciaramella et al.		0237849			Thompson
10,465,190 B1		Chen et al.		0243225		8/2018	Ciaramella
10,493,143 B2		Ciaramella et al.		0243230		8/2018	
10,526,629 B2		Rabideau et al.)271970)273977			Ciaramella et al. Mousavi et al.
2003/0092653 A1 2003/0232061 A1		Kisich et al. Fouchier et al.		274009			Marquardt et al.
2004/0005545 A1		Fouchier et al.		280496			Ciaramella et al.
2004/0096451 A1		Young et al.)289792)303929			Ciaramella et al. Ciaramella et al.
2005/0032730 A1 2005/0059624 A1		Von Der Mulbe et al. Hoerr et al.		0311336			Ciaramella et al.
2005/0059024 A1 2005/0250723 A1		Hoerr et al.		318409			Valiante et al.
2006/0002958 A1		Naylor et al.		0363019		12/2018	
2006/0172003 A1		Meers et al.		0002890		1/2019	Martini et al. Ciaramella et al.
2006/0228367 A1 2007/0280929 A1		Ulbrandt et al. Hoerr et al.		008938		4/2019	
2008/0025944 A1		Hoerr et al.)192646		6/2019	Cohen et al.
2008/0171711 A1		Hoerr et al.		0192653			Hoge et al.
2009/0123529 A1		Xiaomao)275170)314493			Benenato et al. Ciaramella et al.
2009/0162395 A1 2010/0203076 A1		Crowe et al. Fotin-Mleczek et al.		336595		11/2019	
2010/0239608 A1		Von Der Mulbe et al.		351040		11/2019	
2010/0272747 A1		Chow et al.		0030432		1/2020	
2010/0291156 A1 2010/0305196 A1		Barner et al. Probst et al.		0032274		1/2020 2/2020	Mauger et al. Narayanan et al.
2011/0135645 A1		Williamson et al.		0054737		2/2020	Ciaramella et al.
2011/0250225 A1	10/2011	Fotin-Mleczek et al.					
2011/0269950 A1		Von Der Mulbe et al. Hoerr et al.		FO	REIG	N PATE	NT DOCUMENTS
2012/0009221 A1 2012/0045471 A1		Haller et al.	ED		1000	222	2/2005
2012/0219573 A1		Baumhof et al.	EP EP		1083	5232 5844 A2	2/2005 2/2008
2013/0022538 A1	1/2013		EP			8960 A1	1/2013
2013/0078281 A1 2013/0102034 A1	3/2013 4/2013	He et al. Schrum et al.	WO			5326 A1	9/1987
2013/0121988 A1		Hoerr et al.	WO WO	WO 1 WO 1			10/1990 8/1993
2013/0142818 A1		Baumhof et al.	wo	WO I			9/1995
2013/0183355 A1 2013/0195867 A1		Jain et al. Hoerr et al.	WO	WO 1			10/1995
2013/0195967 A1		Guild et al.	WO WO	WO 10			12/1995 12/1998
2013/0195969 A1		Geall et al.	WO	WO 19 WO 1			7/1999
2013/0202684 A1		Geall et al.	WO			2720 A2	9/2003
2013/0243848 A1 2013/0245103 A1	9/2013	Lobovkina et al. de Fougerolles et al.	WO			5645 A1	9/2004
2013/0259923 A1		Bancel et al.	WO WO	WO 20 WO 20		5027 A1	2/2005 6/2006
2013/0266640 A1		De Fougerolles et al.	WO	WO 20			7/2006
2013/0295043 A1 2013/0336998 A1		Kallen et al. Kallen et al.	WO	WO 20			9/2006
2014/0024076 A1	1/2014		WO WO			3862 A1 5976 A2	4/2007 8/2007
2014/0037660 A1		Folin-Mleczek et al.	wo			2770 A2	5/2008
2014/0147432 A1 2014/0148502 A1		Bancel et al. Bancel et al.	WO)254 A1	3/2009
2014/0193482 A1		Bancel et al.	WO WO)481 A1	3/2009
2014/0206752 A1		Afeyan et al.	WO	WO 20 WO 20		7230 A1	8/2009 10/2009
2014/0271829 A1		Lilja et al.	WO			7408 A1	4/2010
2014/0370497 A1 2014/0378538 A1	12/2014	Fouchier et al. Bancel	WO			7539 A1	4/2010
2015/0051268 A1		Bancel et al.	WO WO			2877 A1 1406 A1	4/2010 5/2010
2015/0093413 A1		Thess et al.	wo			3927 A1	8/2010
2015/0126589 A1		Geiger et al.	WO	WO 20	10/149	9743 A2	12/2010
2015/0141499 A1 2015/0307542 A1		Bancel et al. Roy et al.	WO			5799 A2	1/2011
2015/0315541 A1		Bancel et al.	WO WO			5641 A9 3810 A1	3/2011 6/2011
2015/0335728 A1	11/2015	Wong et al.	WO	WO 20	11/069	9529 A1	6/2011
2016/0024141 A1		Issa et al.	WO			9586 A1	6/2011
2016/0032273 A1	2/2016	Shahrokh et al.	WO	w O 20	11/144	1358 A1	11/2011

(56)	Referen	ces Cited	U.S. Appl. No. 15/753,293, filed Feb. 17, 2018, Smith.
	FOREIGN PATE	NT DOCUMENTS	U.S. Appl. No. 15/753,297, filed Feb. 17, 2018, Thompson.
	TOKEIGNTAIL	NI DOCOMENIS	U.S. Appl. No. 15/748,782, filed Jan. 30, 2018, Mousavi et al. U.S. Appl. No. 15/767,587, filed Apr. 11, 2018, Ciaramella.
WO	WO 2012/019630 A1	2/2012	U.S. Appl. No. 16/450,882, filed Jun. 24, 2019, Ciaramella.
WO	WO 2012/019780 A1	2/2012	U.S. Appl. No. 15/767,600, filed Apr. 11, 2018, Ciaramella et al.
WO WO	WO 2012/116714 A1 WO 2012/116715 A1	9/2012 9/2012	U.S. Appl. No. 15/769,710, filed Apr. 19, 2018, Ciaramella et al.
wo	WO 2012/116713 AT WO 2012/116810 A1	9/2012	U.S. Appl. No. 15/767,609, filed Apr. 11, 2018, Ciaramella et al.
WO	WO 2012/116811 A1	9/2012	U.S. Appl. No. 15/767,613, filed Apr. 11, 2018, Ciaramella et al.
WO	WO 2013/055905 A1	4/2013	U.S. Appl. No. 15/767,618, filed Apr. 11, 2018, Ciaramella et al. U.S. Appl. No. 16/136,503, filed Sep. 20, 2018, Ciaramella et al.
WO WO	WO 2013/090186 A1 WO 2013/102203 A1	6/2013 7/2013	U.S. Appl. No. 15/746,286, filed Jan. 19, 2018, Ciaramella et al.
wo	WO 2013/102203 A1 WO 2013/120628 A1	8/2013	U.S. Appl. No. 16/009,880, filed Jun. 15, 2018, Ciaramella et al.
WO	WO 2013/120629 A1	8/2013	U.S. Appl. No. 15/981,762, filed May 16, 2018, Bancel et al.
WO	WO 2013/185069 A1	12/2013	U.S. Appl. No. 16/582,621, filed Sep. 25, 2019, Chen et al.
WO WO	WO 2014/089486 A1 WO 2014/152027 A1	6/2014 9/2014	U.S. Appl. No. 16/599,661, filed Oct. 11, 2019, Besin et al.
wo	WO 2014/152774 A1	9/2014	U.S. Appl. No. 16/001,786, filed Jun. 6, 2018, Hoge et al. U.S. Appl. No. 16/333,330, filed Mar. 14, 2019, Hoge et al.
WO	WO 2014/152940 A1	9/2014	U.S. Appl. No. 16/389,545, filed Apr. 19, 2019, Ciaramella et al.
WO	WO 2014/160243 A1	10/2014	U.S. Appl. No. 16/368,270, filed Mar. 28, 2019, Ciaramella et al.
WO WO	WO 2015/024668 A2 WO 2015/101414 A2	2/2015 7/2015	U.S. Appl. No. 16/468,838, filed Jun. 12, 2019, Miracco.
wo	WO 2015/101414 A2	7/2015	U.S. Appl. No. 16/001,765, filed Jun. 6, 2018, Marquardt et al.
WO	WO 2015/130584 A2	9/2015	U.S. Appl. No. 16/348,943, filed May 10, 2019, Ciaramella.
WO	WO 2016/103238	6/2016	U.S. Appl. No. 16/467,142, filed Jun. 6, 2019, Ciaramella et al.
WO WO	WO 2016/164762 A1 WO 2016/201377 A1	10/2016 12/2016	U.S. Appl. No. 16/603,111, filed Oct. 4, 2019, Brito et al. U.S. Appl. No. 16/482,844, filed Aug. 1, 2019, Valiante et al.
wo	WO 2017/015457 A1	1/2017	U.S. Appl. No. 16/496,135, filed Sep. 20, 2019, Narayanan et al.
WO	WO 2017/015463 A1	1/2017	U.S. Appl. No. 16/483,012, filed Aug. 1, 2019, Mauger et al.
WO WO	WO 2017/019935 A1 WO 2017/020026 A1	2/2017 2/2017	U.S. Appl. No. 16/657,122, filed Oct. 18, 2019, Rabideau et al.
WO	WO 2017/020020 AT WO 2017/062513 A1	4/2017	U.S. Appl. No. 16/362,366, filed Mar. 22, 2019, Ciaramella.
WO	WO 2017/066789 A1	4/2017	U.S. Appl. No. 16/493,986, filed Sep. 13, 2019, Ciaramella et al.
WO	WO 2017/070601 A1	4/2017	U.S. Appl. No. 16/494,130, filed Sep. 13, 2019, Ciaramella et al. U.S. Appl. No. 16/494,103, filed Sep. 13, 2019, Ciaramella et al.
WO WO	WO 2017/070616 A1 WO 2017/070618 A1	4/2017 4/2017	U.S. Appl. No. 16/494,162, filed Sep. 13, 2019, Ciaramella.
wo	WO 2017/070620 A1	4/2017	U.S. Appl. No. 16/494,988, filed Sep. 17, 2019, Ciaramella et al.
WO	WO 2017/070622 A1	4/2017	U.S. Appl. No. 16/639,265, filed Feb. 14, 2020, Issa et al.
WO	WO 2017/070623 A1	4/2017	U.S. Appl. No. 16/639,305, filed Feb. 14, 2020, Issa et al.
WO WO	WO 2017/201340 A1 WO 2017/201342 A1	11/2017 11/2017	U.S. Appl. No. 16/302,607, filed Nov. 16, 2018, Benenato et al.
WO	WO 2017/201347 A1	11/2017	U.S. Appl. No. 16/623,069, filed Dec. 16, 2019, Hoge et al. U.S. Appl. No. 16/639,403, filed Feb. 14, 2002, Hoge et al.
WO	WO 2017/201349 A1	11/2017	U.S. Appl. No. 16/131,793, filed Sep. 14, 2018, Ciaramella et al.
WO WO	WO 2018/053209 A1 WO 2018/075980 A1	3/2018 4/2018	U.S. Appl. No. 16/608,451, filed Oct. 25, 2019, Ciaramella et al.
wo	WO 2018/081459 A1	5/2018	U.S. Appl. No. 16/788,182, filed Feb. 11, 2020, Panther et al.
WO	WO 2018/081462 A1	5/2018	U.S. Appl. No. 16/794,318, filed Feb. 19, 2020, Mauger et al.
WO	WO 2018/089851 A1	5/2018	PCT/U82016/058327, Jun. 29, 2017, International Search Report and Written Opinion.
WO WO	WO 2018/107088 A1 WO 2018/111967 A1	6/2018 6/2018	[No Author Listed], "Messenger RNA", Internet: Wikipedia. Jun.
WO	WO 2018/144082 A1	8/2018	19, 2013, XP002699196, Retrieved from the Internet: URL: http://
WO	WO 2018/144778 A1	8/2018	en.wikipedia.org/wiki/Messenger RNA.
WO WO	WO 2018/151816 A1 WO 2018/170245 A1	8/2018 9/2018	Archer, S.J., Induction of a T-cell specific antigen on bone marrow
wo	WO 2018/170245 A1 WO 2018/170256 A1	9/2018	lymphocytes with thymus RNA. Immunology. Jan. 1978;34(1):123-
WO	WO 2018/170260 A1	9/2018	9. Ashley, D.M. et al., Bone marrow-generated dendritic cells pulsed
WO	WO 2018/170270 A1	9/2018	with tumor extracts or tumor RNA induce antitumor immunity
WO WO	WO 2018/170347 A1 WO 2018/175783 A1	9/2018 9/2018	against central nervous system tumors. J Exp Med. Oct. 6, 1997;
wo	WO 2018/175785 AT WO 2018/187590 A2	10/2018	186(7): 1177-82.
WO	WO 2018/200737 A1	11/2018	Bettinger, T. et al., Peptide-mediated RNA delivery: a novel approach
WO	WO 2018/232355 A1	12/2018	for enhanced transfection of primary and post-mitotic cells. Nucleic
WO WO	WO 2018/232357 A1 WO 2019/036670 A1	12/2018 2/2019	Acids Res. Sep. 15, 2001;29(18):3882-91.
wo	WO 2019/036682 A1	2/2019	Bogers et al., Potent immune responses in rhesus macaques induced by nonviral delivery of a self-amplifying RNA vaccine expressing
WO	WO 2019/036683 A1	2/2019	HIV type 1 envelope with a cationic nanoemulsion. J Infect Dis.
WO WO	WO 2019/036685 A1	2/2019 5/2019	Mar. 15, 2015;211(6):947-55. doi: 10.1093/infdis/jiu522. Epub Sep.
WO	WO 2019/103993 A1 WO 2019/148101 A1	5/2019 8/2019	18, 2014.
wo	WO 2020/006242 A1	1/2020	Bonehill, A., et al., Single-step antigen loading and activation of dendritic cells by mRNA electroporation for the purpose of therapeutic vaccination in melanoma patients. Clin Cancer Res. May
	OTHER PUI	BLICATIONS	2009; 15(10): 3366-3375.

U.S. Appl. No. 16/048,154, filed Jul. 27, 2018, Ciaramella et al. U.S. Appl. No. 16/144,394, filed Sep. 27, 2018, Ciaramella et al. U.S. Appl. No. 90/014,395, filed Oct. 24, 2019, Ciaramella et al. U.S. Appl. No. 15/748,773, filed Jan. 30, 2018, Ciaramella et al.

Conry, R.M. et al., Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res. Apr. 1, 1995;55 (7):1397-1400.

Bose, S. et al., Role of nucleolin in human parainfluenza virus type 3 infection of human lung epithelial cells. J Viral. Aug.

2004;78(15):8146-58.

(56) References Cited

OTHER PUBLICATIONS

Dahlman, James E. et al., In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight, Nature Nanotechnology, 2014, No. vol. #, pp. 1-8.

Diken et al., Current Developments in Actively Personalized Cancer Vaccination with a Focus on RNA as the Drug Format. Prog Tumor Res. 2015;42:44-54. doi: 10.1159/000437184. Epub Sep. 4, 2015. Review.

Fleeton et al., Self-replicative RNA vaccines elicit protection against influenza A virus, respiratory syncytial virus, and a tickborne encephalitis virus. J Infect Dis. May 1, 2001;183(9):1395-8. Epub Mar. 30, 2001.

Geall et al., Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci U S A. Sep. 4, 2012;109(36):14604-9. doi:10. 1073/pnas.1209367109. Epub Aug. 20, 2012.

GenBank Accession No. AHX22069. First seen on NCBI on May 14, 2014.

Gilboa, E. et al., Cancer immunotherapy with mRNA-transfected dendritic cells. Immunol Rev. Jun. 2004;199:251-63.

Greer et al., Long-term protection in hamsters against human parainfluenza virus type 3 following mucosal or combinations of mucosal and systemic immunizations with chimeric alphavirus-based replicon particles. Scand J Immunol. Dec. 2007;66(6):645-53. Epub Oct. 17, 2007.

Hecker, J.G. et al., Non-Viral DNA and mRNA Gene Delivery to the CNS Pre-Operatively for Neuroprotection and Following Neurotrauma. Molecular Therapy. 2004; 9, S258-S258.

Heiser, A. et al., Induction of polyclonal prostate cancer-specific CTL using dendritic cells transfected with amplified tumor RNA. J lmmunol. Mar. 1, 2001; 166(5):2953-60.

Heyes et al., Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. J Control Release. Oct. 3, 2005;107(2):276-87.

Hoerr, I. et al., in vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. EurJ lmmunol. Jan. 2000;30(1):1-7.

Hoerr, I. et al., Stabilized Messenger RNA (RNActiveTM) as a Tool for Innovative Gene Delivery. Tissue Engineering. Apr. 2007; 13(4): 865-925.

Hoerr, More than a messenger: A new class of drugs-mRNA-based therapeutics. Genetic Engineering & Biotechnology News. Jun. 18, 2013. http://www.genengnews.com/gen-articles/more-than-a-messenger-a-new-class-of-drugs-mrna-based-therapeutics/4916/ [last accessed Mar. 25, 2016].

Holtkamp, S. et al., Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood. Dec. 15, 2006;108(13):4009-17.

Jirikowski, G.F., et al., Reversal of diabetes insipidus in Brattleboro Rats: Intrahypothalamic injection of vasopressin mRNA. Science. Feb. 1992; 255(5047): 996-998.

Kallen et al, A development that may evolve into a revolution in medicine: mRNA as the basis for novel, nucleotide-based vaccines and drugs. Ther Adv Vaccines. Jan. 2014;2(1):10-31. doi: 10.1177/2051013613508729.

Kallen et al., A novel, disruptive vaccination technology: self-adjuvanted RNActive(®) vaccines. Hum Vaccin Immunother. Oct. 2013;9(10):2263-76. doi: 10.4161/hv.25181. Epub Jun. 4, 2013. Review.

Kalra et al., Virosomes: As a Drug Delivery Carrier. American Journal of Advanced Drug Delivery. 2013;1:29-35.

Kanapathipillai, et al., Nanoparticle targeting of anti-cancer drugs that alter intracellular signaling or influence the tumor microenvironment, Adv. Drug Deliv. Rev. (2014), , pp. 1-12.

Kariko, K., et al., Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA, Nucleic Acids Research, Oxford University Press, GB, vol. 39, No. 21, Sep. 2, 2011 (Sep. 2, 2011), e142. doi: 10.1093/nar/gkr695. Epub Sep. 2, 2011.

Kauffman et al., Optimization of Lipid Nanoparticle Formulations for mRNA Delivery in Vivo with Fractional Factorial and Definitive Screening Designs. Nano Lett. Nov. 11, 2015;15(11):7300-6. doi: 10.1021/acs.nanolett.5b02497. Epub Oct. 20, 2015.

Kisich et al., Antimycobacterial agent based on mRNA encoding human beta-defensin 2 enables primary macrophages to restrict growth of *Mycobacterium tuberculosis*. Infect Immun. Apr. 2001;69(4):2692-9.

Kozielski et al., Bioreducible cationic polymer-based nanoparticles for efficient and environmentally triggered cytoplasmic siRNA delivery to primary human brain cancer cells. ACS Nano. Apr. 22, 2014;8(4):3232-41. doi: 10.1021/nn500704t. Epub Apr. 3, 2014.

Kreiter, S., et al., Intranodal vaccination with naked antigenencoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res. 2010; 70: 9031-9040.

Kreiter, S., et al., Tumor vaccination using messenger RNA: prospects of a future therapy. Curr Opinion in Immun. Jun. 2011; 23(3): 399-406.

Kuhn, A.N., et al., mRNA as a versatile tool for exogenous protein expression. Current Gene Therapy. Oct. 2012; 12 (5): 347-361.

Leitner, W.W. et al., DNA and RNA-based vaccines: principles, progress and prospects. Vaccine. Dec. 10, 1999;18 (9-10):765-77. Li, L. et al., Overcoming obstacles to develop effective and safe siRNA therapeutics. Expert Opin Biol Ther. May 2009; 9(5): 609-19

Lorenzi, J.C., et al., Intranasal vaccination with messenger RNA as a new approach in gene therapy: Use against tuberculosis. BMC Biotechnol. Oct. 2010; 10(77): 1-11.

Mockey et al., mRNA-based cancer vaccine: prevention of B16 melanoma progression and metastasis by systemic injection of MART1 mRNA histidylated lipopolyplexes, Cancer Gene Therapy, 2007, 14, pp. 802-814.

Magini et al., Self-Amplifying mRNA Vaccines Expressing Multiple Conserved Influenza Antigens Confer Protection against Homologous and Heterosubtypic Viral Challenge. PLoS One. Aug. 15, 2016;11(8):e0161193. doi: 10.1371/journal.pone.0161193. eCollection 2016.

Martinon, F. et al., Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. EurJ lmmunol. Jul. 1993;23(7):1719-22.

Midoux et al., Lipid-based mRNA vaccine delivery systems. Expert Rev Vaccines. Feb. 2015;14(2):221-34. doi: 10.1586/14760584. 2015.986104. Epub Dec. 26, 2014. Review.

Mitchell, DA et al., RNA transfected dendritic cells as cancer vaccines. Curr Opin Mal Ther. Apr. 2000;2(2):176-81.

Mitchell, DA et al., RNA-transfected dendritic cells in cancer immunotherapy. J Clin Invest. Nov. 2000;106 (9):1065-9.

Muller, M.R. et al., Transfection of dendritic cells with RNA induces CD4- and COB-mediated T cell immunity against breast carcinomas and reveals the immunodominance of presented T cell epitopes. J Immunol. Jun. 15, 2003;170(12):5892-6.

Narayanan et al., Interplay between viruses and host mRNA degradation. Biochim Biophys Acta. Jun.-Jul. 2013; 1829(6-7):732-41. doi: 10.1016/j.bbagrm.2012.12.003. Epub Dec. 26, 2012.

Petsch et al., Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat Biotechnol. Dec. 2012;30(12):1210-6. doi: 10.1038/nbt.2436. Epub Nov. 25, 2012.

Phua et al., Mesenger RNA (mRNA) nanoparticle tumour vaccination. Nanoscale. Jul. 21, 2014;6(14):7715-29. dsoi: 10.1039/c4nr01346h. Review.

Pulford, B., et al., Liposome-siRNA-peptide complexes cross the blood-brain barrier and significantly decrease PrP'C on neuronal cells and PrP'RES in infected cell cultures. PLoS One. 201 O; 5(6): e11085.

Rabinovich, P.M., et al., Synthetic messenger RNA as a tool for gene therapy. Hum. Gene Ther. Oct. 2006; 17: 1027-1035.

Rittig et al., Intradermal vaccinations with RNA coding for TAA generate CD8+ and CD4+ immune responses and induce clinical benefit in vaccinated patients. Mol Ther. May 2011;19(5):990-9. doi: 10.1038/mt.2010.289. Epub Dec. 28, 2010.

(56) References Cited

OTHER PUBLICATIONS

Sahin et al., mRNA-based therapeutics—developing a new class of drugs. Nat Rev Drug Discov. Oct. 2014;13(10):759-80. doi: 10.1038/nrd4278. Epub Sep. 19, 2014.

Schmitt, W.E. et al., In vitro induction of a bladder cancer-specific T-cell response by mRNA-transfected dendritic cells. J Cancer Res Clin Oncol. 2001;127(3):203-6.

Schott, J.W., et al., Viral and non-viral approaches for transient delivery of mRNA and proteins. Current Gene Ther. 2011; 11 (5): 382-398.

Segura, J., et al., Monitoring gene therapy by external imaging of mRNA: Pilot study on murine erythropoietin. Ther Drug Monit. Oct. 2007; 29(5): 612-8.

Smits, E., et al., RNA-based gene transfer for adult stem cells and T cells. Leukemia. 2004; 18: 1898-1902.

Sohn, R.L., et al., In-vivo particle mediated delivery of mRNA to mammalian tissues: ballistic and biological effects. Wound Rep and Regen. Jul.-Aug. 2001; 287-296.

Strong, V.T. et al., Incorporation of beta-globin untranslated regions into a Sindbis virus vector for augmentation of heterologous mRNA expression. Gene Ther. Jun. 1997;4(6):624-7.

Sullenger, BA et al., Emerging clinical applications of RNA. Nature. Jul. 11, 2002;418(6894):252-8.

Tavernier, G., et al., mRNA as gene therapeutic: How to control protein expression. J. of Controlled Release. Mar. 2011; 150(3): 238-247.

Teufel, R. et al., Human peripheral blood mononuclear cells transfected with messenger RNA stimulate antigen-specific cytotoxic T-lymphocytes in vitro. Cell Mol Life Sci. Aug. 2005;62(15):1755-62. Thess et al., Sequence-engineered mRNA Without Chemical Nucleoside Modifications Enables an Effective Protein Therapy in Large Animals. Mol Ther. Sep. 2015;23(9):1456-64. doi: 10.1038/mt.2015. 103. Epub Jun. 8, 2015.

Wang et al., Systemic delivery of modified mRNA encoding herpes simplex virus 1 thymidine kinase for targeted cancer gene therapy. Mol Ther. Feb. 2013;21(2):358-67. doi: 10.1038/mt.2012.250. Epub Dec. 11, 2012.

Wong et al., An mRNA vaccine for influenza. Nat Biotechnol. Dec. $2012;30(12):1202-4.\ doi:\ 10.1038/nbt.2439.$

Yamamoto et al., Current prospects for mRNA gene delivery, European Journal of Pharmaceutics and Biopharmaceutics 71 (2009) 484-489.

Zhou, W.Z. et al., RNA melanoma vaccine: induction of antitumor immunity by human glycoprotein 100 mRNA immunization. Hum Gene Ther. Nov. 1, 1999;10(16):2719-24.

Fig. 1

Fig. 4

Fig. 9A

Fig. 9B

Fig. 10

Fig. 11
HMPV neutralization antibody titers in cotton rats

Fig. 14

Fig. 16 Cotton rat lung histopathology

Fig. 17

Fig. 18

Fig. 19/

Fig. 19E

MERS_Vaccine_20ug_1D MERS_Vaccine_20ug_2D PBS 0 \triangleleft MERS viral load- Lung- D4 post challenge Lung Pool 107 8 6 Log10 copies/g

Fig. 190

egend PCR Range

MERS-CoV RNA loads in lungs

Fig. 20A

MERS-CoV replication in lungs

O- MERS_20ug_1Dose
O- MERS_20ug_2Doses

A- Placebo

Fig. 21

BETACORONAVIRUS MRNA VACCINE

RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. 5 No. 16/368,270, filed Mar. 28, 2019, which is a continuation of Ser. No. 16/040,981, filed Jul. 20, 2018, now U.S. Pat. No. 10,272,150, which is a continuation of U.S. application Ser. No. 15/674,599, filed Aug. 11, 2017, now U.S. Pat. No. 10,064,934, which is a continuation of International application number PCT/US2016/058327, filed Oct. 21, 2016, which claims the benefit under 35 U.S.C. § 119(e) of U.S. provisional application No. 62/244,802, filed Oct. 22, 2015, U.S. provisional application No. 62/247,297, filed Oct. 28, 2015, U.S. provisional application No. 62/244,946, filed 15 Oct. 22, 2015, U.S. provisional application No. 62/247,362, filed Oct. 28, 2015, U.S. provisional application No. 62/244, 813, filed Oct. 22, 2015, U.S. provisional application No. 62/247,394, filed Oct. 28, 2015, U.S. provisional application No. 62/244,837, filed Oct. 22, 2015, U.S. provisional appli- 20 cation No. 62/247,483, filed Oct. 28, 2015, and U.S. provisional application No. 62/245,031, filed Oct. 22, 2015, each of which is incorporated by reference herein in its entirety.

BACKGROUND

Respiratory disease is a medical term that encompasses pathological conditions affecting the organs and tissues that make gas exchange possible in higher organisms, and includes conditions of the upper respiratory tract, trachea, 30 bronchi, bronchioles, alveoli, pleura and pleural cavity, and the nerves and muscles of breathing. Respiratory diseases range from mild and self-limiting, such as the common cold, to life-threatening entities like bacterial pneumonia, pulmonary embolism, acute asthma and lung cancer. Respiratory disease is a common and significant cause of illness and death around the world. In the US, approximately 1 billion "common colds" occur each year. Respiratory conditions are among the most frequent reasons for hospital stays among children

The human metapneumovirus (hMPV) is a negative-sense, single-stranded RNA virus of the genus Pneumovirinae and of the family Paramyxoviridae and is closely related to the avian metapneumovirus (AMPV) subgroup C. It was isolated for the first time in 2001 in the Netherlands by using 45 the RAP-PCR (RNA arbitrarily primed PCR) technique for identification of unknown viruses growing in cultured cells. hPMV is second only to RSV as an important cause of viral lower respiratory tract illness (LRI) in young children. The seasonal epidemiology of hMPV appears to be similar to that 50 of RSV, but the incidence of infection and illness appears to be substantially lower.

Parainfluenza virus type 3 (PIV3), like hMPV, is also a negative-sense, single-stranded sense RNA virus of the genus Pneumovirinae and of the family Paramyxoviridae 55 and is a major cause of ubiquitous acute respiratory infections of infancy and early childhood. Its incidence peaks around 4-12 months of age, and the virus is responsible for 3-10% of hospitalizations, mainly for bronchiolitis and pneumonia. PIV3 can be fatal, and in some instances is 60 associated with neurologic diseases, such as febrile seizures. It can also result in airway remodeling, a significant cause of morbidity. In developing regions of the world, infants and young children are at the highest risk of mortality, either from primary PIV3 viral infection or a secondary consequences, such as bacterial infections. Human parainfluenza viruses (hPIV) types 1, 2 and 3 (hPIV1, hPIV2 and hPIV3,

2

respectively), also like hMPV, are second only to RSV as important causes of viral LRI in young children.

RSV, too, is a negative-sense, single-stranded RNA virus of the genus Pneumovirinae and of the family Paramyxoviridae. Symptoms in adults typically resemble a sinus infection or the common cold, although the infection may be asymptomatic. In older adults (e.g., >60 years), RSV infection may progress to bronchiolitis or pneumonia. Symptoms in children are often more severe, including bronchiolitis and pneumonia. It is estimated that in the United States, most children are infected with RSV by the age of three. The RSV virion consists of an internal nucleocapsid comprised of the viral RNA bound to nucleoprotein (N), phosphoprotein (P), and large polymerase protein (L). The nucleocapsid is surrounded by matrix protein (M) and is encapsulated by a lipid bilayer into which the viral fusion (F) and attachment (G) proteins as well as the small hydrophobic protein (SH) are incorporated. The viral genome also encodes two nonstructural proteins (NS1 and NS2), which inhibit type I interferon activity as well as the M-2 protein.

The continuing health problems associated with hMPV, PIV3 and RSV are of concern internationally, reinforcing the importance of developing effective and safe vaccine candi-25 dates against these virus.

Despite decades of research, no vaccines currently exist (Sato and Wright, *Pediatr. Infect. Dis. J.* 2008; 27(10 Suppl): S123-5). Recombinant technology, however, has been used to target the formation of vaccines for hPIV-1, 2 and 3 serotypes, for example, and has taken the form of several live-attenuated intranasal vaccines. Two vaccines in particular were found to be immunogenic and well tolerated against hPIV-3 in phase I trials. hPIV1 and hPIV2 vaccine candidates remain less advanced (Durbin and Karron, Clinical infectious diseases: an official publication of the Infectious Diseases Society of America 2003; 37(12):1668-77).

Measles virus (MeV), like hMPV, PIV3 and RSV, is a negative-sense, single-stranded RNA virus that is the cause of measles, an infection of the respiratory system. MeV is of the genus Morbillivirus within the family Paramyxoviridae. Humans are the natural hosts of the virus; no animal reservoirs are known to exist. Symptoms of measles include fever, cough, runny nose, red eyes and a generalized, maculopapular, erythematous rash. The virus is highly contagious and is spread by coughing

In additional to hMPV, PIV, RSV and MeV, betacorona-viruses are known to cause respiratory illnesses. Betacoronaviruses (BetaCoVs) are one of four genera of coronaviruses of the subfamily Coronavirinae in the family Coronaviridae, of the order Nidovirales. They are enveloped, positive-sense, single-stranded RNA viruses of zoonotic origin. The coronavirus genera are each composed of varying viral lineages, with the betacoronavirus genus containing four such lineages. The BetaCoVs of the greatest clinical importance concerning humans are OC43 and HKU1 of the A lineage, SARS-CoV of the B lineage, and MERS-CoV of the C lineage. MERS-CoV is the first betacoronavirus belonging to lineage C that is known to infect humans.

The Middle East respiratory syndrome coronavirus (MERS-CoV), or EMC/2012 (HCoV-EMC/2012), initially referred to as novel coronavirus 2012 or simply novel coronavirus, was first reported in 2012 after genome sequencing of a virus isolated from sputum samples from a person who fell ill during a 2012 outbreak of a new flu. As of July 2015, MERS-CoV cases have been reported in over 21 countries. The outbreaks of MERS-CoV have raised

serious concerns world-wide, reinforcing the importance of developing effective and safe vaccine candidates against MERS-CoV.

Severe acute respiratory syndrome (SARS) emerged in China in 2002 and spread to other countries before brought under control. Because of a concern for reemergence or a deliberate release of the SARS coronavirus, vaccine development was initiated.

Deoxyribonucleic acid (DNA) vaccination is one technique used to stimulate humoral and cellular immune responses to foreign antigens, such as hMPV antigens and/or PIV antigens and/or RSV antigens. The direct injection of genetically engineered DNA (e.g., naked plasmid DNA) into a living host results in a small number of its cells directly producing an antigen, resulting in a protective immunological response. With this technique, however, comes potential problems, including the possibility of insertional mutagenesis, which could lead to the activation of oncogenes or the inhibition of tumor suppressor genes.

SUMMARY

Provided herein are ribonucleic acid (RNA) vaccines that build on the knowledge that RNA (e.g., messenger RNA 25 (mRNA)) can safely direct the body's cellular machinery to produce nearly any protein of interest, from native proteins to antibodies and other entirely novel protein constructs that can have therapeutic activity inside and outside of cells. The RNA (e.g., mRNA) vaccines of the present disclosure may 30 be used to induce a balanced immune response against hMPV, PIV, RSV, MeV, and/or BetaCoV (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1), or any combination of two or more of the foregoing viruses, comprising 35 both cellular and humoral immunity, without risking the possibility of insertional mutagenesis, for example. hMPV, PIV, RSV, MeV, BetaCoV (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1) and combinations thereof are 40 referred to herein as "respiratory viruses." Thus, the term "respiratory virus RNA vaccines" encompasses hMPV RNA vaccines, PIV RNA vaccines, RSV RNA vaccines, MeV RNA vaccines, BetaCoV RNA vaccines, and any combination of two or more of hMPV RNA vaccines, PIV RNA 45 vaccines, RSV RNA vaccines, MeV RNA vaccines, and BetaCoV RNA vaccines.

The RNA (e.g., mRNA) vaccines may be utilized in various settings depending on the prevalence of the infection or the degree or level of unmet medical need. The RNA (e.g. 50 mRNA) vaccines may be utilized to treat and/or prevent a hMPV, PIV, RSV, MeV, a BetaCoV (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH, HCoV-HKU1), or any combination of two or more of the foregoing viruses, of various geno- 55 types, strains, and isolates. The RNA (e.g., mRNA) vaccines have superior properties in that they produce much larger antibody titers and produce responses earlier than commercially available anti-viral therapeutic treatments. While not wishing to be bound by theory, it is believed that the RNA 60 (e.g., mRNA) vaccines, as mRNA polynucleotides, are better designed to produce the appropriate protein conformation upon translation as the RNA (e.g., mRNA) vaccines co-opt natural cellular machinery. Unlike traditional vaccines, which are manufactured ex vivo and may trigger 65 unwanted cellular responses, RNA (e.g., mRNA) vaccines are presented to the cellular system in a more native fashion.

4

In some aspects the invention is a respiratory virus vaccine, comprising at least one RNA polynucleotide having an open reading frame encoding at least one respiratory virus antigenic polypeptide, formulated in a cationic lipid nanoparticle.

Surprisingly, in some aspects, it has also been shown that efficacy of mRNA vaccines can be significantly enhanced when combined with a flagellin adjuvant, in particular, when one or more antigen-encoding mRNAs is combined with an mRNA encoding flagellin.

RNA (e.g., mRNA) vaccines combined with the flagellin adjuvant (e.g., mRNA-encoded flagellin adjuvant) have superior properties in that they may produce much larger antibody titers and produce responses earlier than commercially available vaccine formulations. While not wishing to be bound by theory, it is believed that the RNA (e.g., mRNA) vaccines, for example, as mRNA polynucleotides, are better designed to produce the appropriate protein conformation upon translation, for both the antigen and the adjuvant, as the RNA (e.g., mRNA) vaccines co-opt natural cellular machinery. Unlike traditional vaccines, which are manufactured ex vivo and may trigger unwanted cellular responses, RNA (e.g., mRNA) vaccines are presented to the cellular system in a more native fashion.

Some embodiments of the present disclosure provide RNA (e.g., mRNA) vaccines that include at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one antigenic polypeptide or an immunogenic fragment thereof (e.g., an immunogenic fragment capable of inducing an immune response to the antigenic polypeptide) and at least one RNA (e.g., mRNA polynucleotide) having an open reading frame encoding a flagellin adjuvant.

In some embodiments, at least one flagellin polypeptide (e.g., encoded flagellin polypeptide) is a flagellin protein. In some embodiments, at least one flagellin polypeptide (e.g., encoded flagellin polypeptide) is an immunogenic flagellin fragment. In some embodiments, at least one flagellin polypeptide and at least one antigenic polypeptide are encoded by a single RNA (e.g., mRNA) polynucleotide. In other embodiments, at least one flagellin polypeptide and at least one antigenic polypeptide are each encoded by a different RNA polynucleotide.

In some embodiments at least one flagellin polypeptide has at least 80%, at least 85%, at least 90%, or at least 95% identity to a flagellin polypeptide having a sequence identified by any one of SEQ ID NO: 54-56.

Provided herein, in some embodiments, is a ribonucleic acid (RNA) (e.g., mRNA) vaccine, comprising at least one (e.g., at least 2, 3, 4 or 5) RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one (e.g., at least 2, 3, 4 or 5) hMPV, PIV, RSV, MeV, or a BetaCoV (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH, HCoV-HKU1) antigenic polypeptide, or any combination of two or more of the foregoing antigenic polypeptides. Herein, use of the term "antigenic polypeptide" encompasses immunogenic fragments of the antigenic polypeptide (an immunogenic fragment that is induces (or is capable of inducing) an immune response to hMPV, PIV, RSV, MeV, or a BetaCoV), unless otherwise stated.

Also provided herein, in some embodiments, is a RNA (e.g., mRNA) vaccine comprising at least one (e.g., at least 2, 3, 4 or 5) RNA polynucleotide having an open reading frame encoding at least one (e.g., at least 2, 3, 4 or 5) hMPV, PIV, RSV, MeV, and/or a BetaCoV (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63,

HCoV-NL, HCoV-NH, HCoV-HKU1) antigenic polypeptide or an immunogenic fragment thereof, linked to a signal peptide.

Further provided herein, in some embodiments, is a nucleic acid (e.g., DNA) encoding at least one (e.g., at least 52, 3, 4 or 5) hMPV, PIV, RSV, MeV, and/or a BetaCoV (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH, HCoV-HKU1) RNA (e.g., mRNA) polynucleotide.

Further still, provided herein, in some embodiments, is a 10 method of inducing an immune response in a subject, the method comprising administering to the subject a vaccine comprising at least one (e.g., at least 2, 3, 4 or 5) RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one (e.g., at least 2, 3, 4 or 5) hMPV, PIV, 15 RSV, MeV, and/or a BetaCoV (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH, HCoV-HKU1) antigenic polypeptide, or any combination of two or more of the foregoing antigenic polypeptides.

hMPV/PIV3/RSV

In some embodiments, a RNA (e.g., mRNA) vaccine comprises at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one hMPV, PIV3 or RSV antigenic polypeptide. In some embodiments, 25 at least one antigenic polypeptide is a hMPV, PIV3 or RSV polyprotein. In some embodiments, at least one antigenic polypeptide is major surface glycoprotein G or an immunogenic fragment thereof. In some embodiments, at least one antigenic polypeptide is Fusion (F) glycoprotein (e.g., 30 Fusion glycoprotein F0, F1 or F2) or an immunogenic fragment thereof. In some embodiments, at least one antigenic polypeptide is major surface glycoprotein G or an immunogenic fragment thereof and F glycoprotein or an immunogenic fragment thereof. In some embodiments, the 35 antigenic polypeptide is nucleoprotein (N) or an immunogenic fragment thereof, phosphoprotein (P) or an immunogenic fragment thereof, large polymerase protein (L) or an immunogenic fragment thereof, matrix protein (M) or an immunogenic fragment thereof, small hydrophobic protein 40 (SH) or an immunogenic fragment thereof nonstructural protein1 (NS1) or an immunogenic fragment thereof, or nonstructural protein 2 (NS2) and an immunogenic fragment thereof.

In some embodiments, at least one hMPV antigenic 45 polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 (Table 3; see also amino acid sequences of Table 4). In some embodiments, the amino acid sequence of the hMPV antigenic polypeptide is, or is a fragment of, or is a homolog or variant having at least 80% 50 (e.g., 85%, 90%, 95%, 98%, 99%) identity to, the amino acid sequence identified by any one of SEQ ID NO: 5-8 (Table 3; see also amino acid sequences of Table 4).

In some embodiments, at least one hMPV antigenic polypeptide is encoded by a nucleic acid sequence identified by any one of SEQ ID NO: 1-4 (Table 2).

In some embodiments, at least one MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 (Table 14). In some embodiments,

In some embodiments, at least one hMPV RNA (e.g., mRNA) polynucleotide is encoded by a nucleic acid sequence, or a fragment of a nucleotide sequence, identified by any one of SEQ ID NO: 1-4 (Table 2). In some embodiments, at least one hMPV RNA (e.g., mRNA) polynucleotide comprises a nucleic acid sequence, or a fragment of a nucleotide sequence, identified by any one of SEQ ID NO: 57-60 (Table 2).

In some embodiments, at least one antigenic polypeptide 65 is obtained from hMPV strain CAN98-75 (CAN75) or the hMPV strain CAN97-83 (CAN83).

6

In some embodiments, at least one PIV3 antigenic polypeptide comprises hemagglutinin-neuraminidase, Fusion (F) glycoprotein, matrix protein (M), nucleocapsid protein (N), viral replicase (L), non-structural V protein, or an immunogenic fragment thereof.

In some embodiments, at least one PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 (Table 6; see also amino acid sequences of Table 7). In some embodiments, the amino acid sequence of the PIV3 antigenic polypeptide is, or is a fragment of, or is a homolog or variant having at least 80% (e.g., 85%, 90%, 95%, 98%, 99%) identity to, the amino acid sequence identified by any one of SEQ ID NO: 12-13 (Table 6; see also amino acid sequences of Table 7).

In some embodiments, at least one PIV3 antigenic polypeptide is encoded by a nucleic acid sequence identified by any one of SEQ ID NO: 9-12 (Table 5; see also nucleic acid sequences of Table 7).

In some embodiments, at least one PIV3 RNA (e.g., mRNA) polynucleotide is encoded by a nucleic acid sequence, or a fragment of a nucleotide sequence, identified by any one of SEQ ID NO: 9-12 (Table 5; see also nucleic acid sequences of Table 7). In some embodiments, at least one PIV3 RNA (e.g., mRNA) polynucleotide comprises a nucleic acid sequence, or a fragment of a nucleotide sequence, identified by any one of SEQ ID NO: 61-64 (Table 5).

In some embodiments, at least one antigenic polypeptide is obtained from PIV3 strain HPIV3/Homo sapiens/PER/FLA4815/2008.

In some embodiments, at least one RSV antigenic polypeptide comprises at least one antigenic polypeptide that comprises glycoprotein G, glycoprotein F, or an immunogenic fragment thereof. In some embodiments, at least one RSV antigenic polypeptide comprises at least one antigenic polypeptide that comprises glycoprotein F and at least one or at least two antigenic polypeptide selected from G, M, N, P, L, SH, M2, NS1 and NS2.

MeV

In some embodiments, a RNA (e.g., mRNA) vaccine comprises at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one MeV antigenic polypeptide. In some embodiments, at least one antigenic polypeptide is a hemagglutinin (HA) protein or an immunogenic fragment thereof. The HA protein may be from MeV strain D3 or B8, for example. In some embodiments, at least one antigenic polypeptide is a Fusion (F) protein or an immunogenic fragment thereof. The F protein may be from MeV strain D3 or B8, for example. In some embodiments, a MeV RNA (e.g., mRNA) vaccines comprises a least one RNA polynucleotide encoding a HA protein and a F protein. The HA and F proteins may be from MeV strain D3 or B8, for example.

In some embodiments, at least one MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 (Table 14). In some embodiments, the amino acid sequence of the MeV antigenic polypeptide is, or is a fragment of, or is a homolog or variant having at least 80% (e.g., 85%, 90%, 95%, 98%, 99%) identity to, the amino acid sequence identified by any one of SEQ ID NO: 47-50 (Table 14).

In some embodiments, at least one MeV antigenic polypeptide is encoded by a nucleic acid sequence of SEQ ID NO: 35-46 (Table 13).

In some embodiments, at least one MeV RNA (e.g., mRNA) polynucleotide is encoded by a nucleic acid sequence, or a fragment of a nucleotide sequence, identified

by any one of SEQ ID NO: 35-46 (Table 13). In some embodiments, at least one MeV RNA (e.g., mRNA) polynucleotide comprises a nucleic acid sequence, or a fragment of a nucleotide sequence, identified by any one of SEQ ID NO: 69-80 (Table 13).

In some embodiments, at least one antigenic polypeptide is obtained from MeV strain B3/B3.1, C2, D4, D6, D7, D8, G3, H1, Moraten, Rubeovax, MVi/New Jersey.USA/45.05, MVi/Texas.USA/4.07, AIK-C, MVi/New York.USA/26.09/ 3, MVi/California.USA/16.03, MVi/Virginia.USA/15.09, MVi/California.USA/8.04, or MVi/Pennsylvania.USA/

BetaCoV

In some embodiments, a RNA (e.g., mRNA) vaccine comprises at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one Beta-CoV antigenic polypeptide. In some embodiments, the Beta-CoV is MERS-CoV. In some embodiments, the BetaCoV is SARS-CoV. In some embodiments, the BetaCoV is HCoV- 20 OC43. In some embodiments, the BetaCoV is HCoV-229E. In some embodiments, the BetaCoV is HCoV-NL63. In some embodiments, the BetaCoV is HCoV-HKU1. In some embodiments, at least one antigenic polypeptide is a betacoronavirus structural protein. For example, a betacorona- 25 virus structural protein may be spike protein (S), envelope protein (E), nucleocapsid protein (N), membrane protein (M) or an immunogenic fragment thereof. In some embodiments, a betacoronavirus structural protein is a spike protein (S). In some embodiments, a betacoronavirus structural protein is a S1 subunit or a S2 subunit of spike protein (S) or an immunogenic fragment thereof.

BetaCoV RNA (e.g., mRNA) polynucleotides of the vaccines provided herein may encode viral protein components 35 of betacoronaviruses, for example, accessory proteins, replicase proteins and the like are encompassed by the present disclosure. RNA (e.g., mRNA) vaccines may include RNA polynucleotides encoding at least one accessory protein replicase protein (e.g., protein 1a, protein 1b), or a combination of at least one accessory protein and at least one replicase protein. The present disclosure also encompasses RNA (e.g., mRNA) vaccines comprising RNA (e.g., mRNA) polynucleotides encoding an accessory protein and/or a 45 replicase protein in combination with at least one structural protein. Due to their surface expression properties, vaccines featuring RNA polynucleotides encoding structural proteins are believed to have preferred immunogenic activity and, hence, may be most suitable for use in the vaccines of the 50 present disclosure.

Some embodiments of the present disclosure provide betacoronavirus (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH, HCoV-HKU1 or a combination thereof) vaccines that 55 include at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one betacoronavirus (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH, HCoV-HKU1) antigenic polypeptide. Also provided herein are 60 pan-betacoronavirus vaccines. Thus, a betacoronavirus vaccine comprising a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding any one, two, three or four of MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, and HCoV-HKU1, for example, may be effec- 65 tive against any one of, any combination of, or all of, MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E,

HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1. Other betacoronaviruses are encompassed by the present

In some embodiments, at least one antigenic polypeptide is a MERS-CoV structural protein. For example, a MERS-CoV structural protein may be spike protein (S), envelope protein (E), nucleocapsid protein (N), membrane protein (M) or an immunogenic fragment thereof. In some embodiments, the MERS-CoV structural protein is a spike protein (S) (see, e.g., Coleman C M et al. Vaccine 2014; 32:3169-74, incorporated herein by reference). In some embodiments, the MERS-CoV structural protein is a S1 subunit or a S2 subunit of spike protein (S) or an immunogenic fragment thereof (Li J et al. Viral Immunol 2013; 26(2):126-32; He Y et al. Biochem Biophys Res Commun 2004; 324(2):773-81, each of which is incorporated herein by reference).

In some embodiments, at least one MERS-CoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-28 or 33 (Table 11). In some embodiments, the amino acid sequence of the MERS-CoV antigenic polypeptide is, or is a fragment of, or is a homolog or variant having at least 80% (e.g., 85%, 90%, 95%, 98%, 99%) identity to, the amino acid sequence identified by any one of SEQ ID NO: 24-28 or 33 (Table 11).

In some embodiments, at least one MERS-CoV antigenic polypeptide is encoded by a nucleic acid sequence identified by any one of SEQ ID NO: 20-23 (Table 10).

In some embodiments, at least one MERS-CoV RNA (e.g., mRNA) polynucleotide is encoded by a nucleic acid sequence, or a fragment of a nucleotide sequence, identified by any one of SEQ ID NO: 20-23 (Table 10). In some embodiments, at least one MERS-CoV RNA (e.g., mRNA) polynucleotide comprises a nucleic acid sequence, or a fragment of a nucleotide sequence, identified by any one of SEQ ID NO: 65-68 (Table 10).

In some embodiments, at least one antigenic polypeptide is obtained from MERS-CoV strain Riyadh 14 2013, 2cEMC/2012, or Hasa 1 2013.

In some embodiments, at least one antigenic polypeptide (e.g., protein 3, protein 4a, protein 4b, protein 5), at least one 40 is a SARS-CoV structural protein. For example, a SARS-CoV structural protein may be spike protein (S), envelope protein (E), nucleocapsid protein (N), membrane protein (M) or an immunogenic fragment thereof. In some embodiments, the SARS-CoV structural protein is a spike protein (S). In some embodiments, the SARS-CoV structural protein is a S1 subunit or a S2 subunit of spike protein (S) or an immunogenic fragment thereof.

In some embodiments, at least one SARS-CoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 29, 32 or 34 (Table 11). In some embodiments, the amino acid sequence of the SARS-CoV antigenic polypeptide is, or is a fragment of, or is a homolog or variant having at least 80% (e.g., 85%, 90%, 95%, 98%, 99%) identity to, the amino acid sequence identified by any one of SEQ ID NO: 29, 32 or 34 (Table 11).

In some embodiments, at least one antigenic polypeptide is a HCoV-OC43 structural protein. For example, a HCoV-OC43 structural protein may be spike protein (S), envelope protein (E), nucleocapsid protein (N), membrane protein (M) or an immunogenic fragment thereof. In some embodiments, the HCoV-OC43 structural protein is a spike protein (S). In some embodiments, the HCoV-OC43 structural protein is a S1 subunit or a S2 subunit of spike protein (S) or an immunogenic fragment thereof.

In some embodiments, at least one HCoV-OC43 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 30 (Table 11). In some embodi-

ments, the amino acid sequence of the HCoV-OC43 antigenic polypeptide is, or is a fragment of, or is a homolog or variant having at least 80% (e.g., 85%, 90%, 95%, 98%, 99%) identity to, the amino acid sequence identified by any one of SEQ ID NO: 30 (Table 11).

In some embodiments, an antigenic polypeptide is a HCoV-HKU1 structural protein. For example, a HCoV-HKU1 structural protein may be spike protein (S), envelope protein (E), nucleocapsid protein (N), membrane protein (M) or an immunogenic fragment thereof. In some embodiments, the HCoV-HKU1 structural protein is a spike protein (S). In some embodiments, the HCoV-HKU1 structural protein is a S1 subunit or a S2 subunit of spike protein (S) or an immunogenic fragment thereof.

In some embodiments, at least one HCoV-HKU1 anti- 15 genic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 31 (Table 11). In some embodiments, the amino acid sequence of the HCoV-HKU1 antigenic polypeptide is, or is a fragment of, or is a homolog or variant having at least 80% (e.g., 85%, 90%, 95%, 98%, 20 99%) identity to, the amino acid sequence identified by any one of SEQ ID NO: 31 (Table 11).

In some embodiments, an open reading frame of a RNA (e.g., mRNA) vaccine is codon-optimized. In some embodiments, at least one RNA polynucleotide encodes at least one 25 antigenic polypeptide having an amino acid sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, or 47-50 (Tables 3, 6, 11 and 14; see also amino acid sequences of Tables 4, 7, 12 and 15) and is codon optimized mRNA.

In some embodiments, a RNA (e.g., mRNA) vaccine 30 further comprising an adjuvant.

Tables 4, 7, 12 and 15 provide National Center for Biotechnology Information (NCBI) accession numbers of interest. It should be understood that the phrase "an amino acid sequence of Tables 4, 7, 12 and 15" refers to an amino 35 acid sequence identified by one or more NCBI accession numbers listed in Tables 4, 7, 12 and 15. Each of the amino acid sequences, and variants having greater than 95% identity or greater than 98% identity to each of the amino acid sequences encompassed by the accession numbers of Tables 40 4, 7, 12 and 15 are included within the constructs (polynucleotides/polypeptides) of the present disclosure.

In some embodiments, at least one mRNA polynucleotide is encoded by a nucleic acid having a sequence identified by any one of SEQ ID NO: 1-4, 9-12, 20-23, or 35-46 (Tables 45 2, 5, 10 and 13; see also nucleic acid sequences of Table 7) and having less than 80% identity to wild-type mRNA sequence. In some embodiments, at least one mRNA polynucleotide is encoded by a nucleic acid having a sequence identified by any one of SEQ ID NO: 1-4, 9-12, 20-23, or 50 35-46 (Tables 2, 5, 10 and 13; see also nucleic acid sequences of Table 7) and having less than 75%, 85% or 95% identity to a wild-type mRNA sequence. In some embodiments, at least one mRNA polynucleotide is encoded by a nucleic acid having a sequence identified by any one of 55 SEQ ID NO: 1-4, 9-12, 20-23, or 35-46 (Tables 2, 5, 10 and 13; see also nucleic acid sequences of Table 7) and having less than 50-80%, 60-80%, 40-80%, 30-80%, 70-80%, 75-80% or 78-80% identity to wild-type mRNA sequence. In some embodiments, at least one mRNA polynucleotide is 60 encoded by a nucleic acid having a sequence identified by any one of SEQ ID NO: 1-4, 9-12, 20-23, or 35-46 (Tables 2, 5, 10 and 13; see also nucleic acid sequences of Table 7) and having less than 40-85%, 50-85%, 60-85%, 30-85%, 70-85%, 75-85% or 80-85% identity to wild-type mRNA 65 sequence. In some embodiments, at least one mRNA polynucleotide is encoded by a nucleic acid having a sequence

10

identified by any one of SEQ ID NO: 1-4, 9-12, 20-23, or 35-46 (Tables 2, 5, 10 and 13; see also nucleic acid sequences of Table 7) and having less than 40-90%, 50-90%, 60-90%, 30-90%, 70-90%, 75-90%, 80-90%, or 85-90% identity to wild-type mRNA sequence.

In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide having an amino acid sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, or 47-50 (Tables 3, 6, 11 and 14; see also amino acid sequences of Tables 4, 7, 12 and 15) and having at least 80% (e.g., 85%, 90%, 95%, 98%, 99%) identity to wild-type mRNA sequence, but does not include wild-type mRNA sequence.

In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide having an amino acid sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, or 47-50 (Tables 3, 6, 11 and 14; see also amino acid sequences of Tables 4, 7, 12 and 15) and has less than 95%, 90%, 85%, 80% or 75% identity to wild-type mRNA sequence.

In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide having an amino acid sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, or 47-50 (Tables 3, 6, 11 and 14; see also amino acid sequences of Tables 4, 7, 12 and 15) and has 30-80%, 40-80%, 50-80%, 60-80%, 70-80%, 75-80% or 78-80%, 30-85%, 40-85%, 50-805%, 60-85%, 70-85%, 75-85% or 78-85%, 30-90%, 40-90%, 50-90%, 60-90%, 70-90%, 75-90%, 80-90% or 85-90% identity to wild-type mRNA sequence.

In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide having at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, or 47-50 (Tables 3, 6, 11 and 14; see also amino acid sequences of Tables 4, 7, 12 and 15). In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide having 95%-99% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, or 47-50 (Tables 3, 6, 11 and 14; see also amino acid sequences of Tables 4, 7, 12 and 15).

In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide having at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, or 47-50 (Tables 3, 6, 11 and 14; see also amino acid sequences of Tables 4, 7, 12 and 15) and having membrane fusion activity. In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide having 95%-99% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, or 47-50 (Tables 3, 6, 11 and 14; see also amino acid sequences of Tables 4, 7, 12 and 15) and having membrane fusion activity.

In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide (e.g., at least one hMPV antigenic polypeptide, at least one PIV3 antigenic polypeptide, at least one RSV antigenic polypeptide, at least one MeV antigenic polypeptide, or at least one BetaCoV antigenic polypeptide, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic polypeptides) that attaches to cell receptors.

In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide (e.g., at least one

hMPV antigenic polypeptide, at least one PIV3 antigenic polypeptide, at least one RSV antigenic polypeptide, at least one MeV antigenic polypeptide, or at least one BetaCoV antigenic polypeptide, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic polypeptides) that causes fusion of viral and cellular membranes.

In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide (e.g., at least one hMPV antigenic polypeptide, at least one PIV3 antigenic

12

a cationic lipid is selected from the group consisting of 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), (12Z,15Z)—N,N-dimethyl-2-nonylhenicosa-12,15-dien-1-amine (L608), and N,N-dimethyl-1-[(1S,2R)-2-octylcyclo-propyl]heptadecan-8-amine (L530).

In some embodiments, the lipid is (L608). In some embodiments, the lipid is

polypeptide, at least one RSV antigenic polypeptide, at least one MeV antigenic polypeptide, or at least one BetaCoV antigenic polypeptide, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic polypeptides) 30 that is responsible for binding of the virus to a cell being infected.

Some embodiments of the present disclosure provide a vaccine that includes at least one ribonucleic acid (RNA) (e.g., mRNA) polynucleotide having an open reading frame 35 encoding at least one antigenic polypeptide (e.g., at least one hMPV antigenic polypeptide, at least one PIV3 antigenic polypeptide, at least one MeV antigenic polypeptide, or at least one BetaCoV antigenic polypeptide, e.g., selected from MERS-CoV, 40 SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic polypeptides), at least one 5' terminal cap and at least one chemical modification, formulated within a lipid nanoparticle.

In some embodiments, a 5' terminal cap is 7mG(5')ppp (5')NImpNp.

In some embodiments, at least one chemical modification is selected from pseudouridine, N1-methylpseudouridine, N1-ethylpseudouridine, 2-thiouridine, 4'-thiouridine, 50 5-methylcytosine, 5-methyluridine, 2-thio-1-methyl-1deaza-pseudouridine, 2-thio-1-methyl-pseudouridine, 2-thio-5-aza-uridine, 2-thio-dihydropseudouridine, 2-thiodihydrouridine, 2-thio-pseudouridine, 4-methoxy-2-thiopseudouridine, 4-methoxy-pseudouridine, 4-thio-1-methyl- 55 pseudouridine, 4-thio-pseudouridine, 5-aza-uridine, dihydropseudouridine, 5-methoxyuridine and 2'-O-methyl uridine. In some embodiments, the chemical modification is in the 5-position of the uracil. In some embodiments, the chemical modification is a N1-methylpseudouridine. In 60 some embodiments, the chemical modification is a N1-ethylpseudouridine.

In some embodiments, a lipid nanoparticle comprises a cationic lipid, a PEG-modified lipid, a sterol and a non-cationic lipid. In some embodiments, a cationic lipid is an 65 ionizable cationic lipid and the non-cationic lipid is a neutral lipid, and the sterol is a cholesterol. In some embodiments,

In some embodiments, a lipid nanoparticle comprises compounds of Formula (I) and/or Formula (II), discussed below

In some embodiments, a repiratory virus RNA (e.g., mRNA) vaccine is formulated in a lipid nanoparticle that comprises a compound selected from Compounds 3, 18, 20, 25, 26, 29, 30, 60, 108-112 and 122, described below.

Some embodiments of the present disclosure provide a vaccine that includes at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one antigenic polypeptide (e.g., at least one hMPV antigenic polypeptide, at least one PIV3 antigenic polypeptide, at least one RSV antigenic polypeptide, at least one MeV antigenic polypeptide, or at least one BetaCoV antigenic polypeptide, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic polypeptides), wherein at least 80% (e.g., 85%, 90%, 95%, 98%, 99%) of the uracil in the open reading frame have a chemical modification, optionally wherein the vaccine is formulated in a lipid nanoparticle (e.g., a lipid nanoparticle comprises a cationic lipid, a PEG-modified lipid, a sterol and a non-cationic lipid).

In some embodiments, 100% of the uracil in the open reading frame have a chemical modification. In some embodiments, a chemical modification is in the 5-position of the uracil. In some embodiments, a chemical modification is a N1-methyl pseudouridine. In some embodiments, 100% of the uracil in the open reading frame have a N1-methyl pseudouridine in the 5-position of the uracil.

In some embodiments, an open reading frame of a RNA (e.g., mRNA) polynucleotide encodes at least two antigenic polypeptides (e.g., at least two hMPV antigenic polypeptides, at least two PIV3 antigenic polypeptides, at least two

RSV antigenic polypeptides, at least two MeV antigenic polypeptides, or at least two BetaCoV antigenic polypeptides, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the 5 foregoing antigenic polypeptides). In some embodiments, the open reading frame encodes at least five or at least ten antigenic polypeptides. In some embodiments, the open reading frame encodes at least 100 antigenic polypeptides. In some embodiments, the open reading frame encodes 10 2-100 antigenic polypeptides.

In some embodiments, a vaccine comprises at least two RNA (e.g., mRNA) polynucleotides, each having an open reading frame encoding at least one antigenic polypeptide (e.g., at least one hMPV antigenic polypeptide, at least one PIV3 antigenic polypeptide, at least one RSV antigenic polypeptide, at least one MeV antigenic polypeptide, or at least one BetaCoV antigenic polypeptide, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or 20 any combination of two or more of the foregoing antigenic polypeptides). In some embodiments, the vaccine comprises at least five or at least ten RNA (e.g., mRNA) polynucleotides, each having an open reading frame encoding at least one antigenic polypeptide or an immunogenic fragment 25 thereof. In some embodiments, the vaccine comprises at least 100 RNA (e.g., mRNA) polynucleotides, each having an open reading frame encoding at least one antigenic polypeptide. In some embodiments, the vaccine comprises 2-100 RNA (e.g., mRNA) polynucleotides, each having an 30 open reading frame encoding at least one antigenic polypeptide.

In some embodiments, at least one antigenic polypeptide (e.g., at least one hMPV antigenic polypeptide, at least one PIV3 antigenic polypeptide, at least one RSV antigenic 35 polypeptide, at least one MeV antigenic polypeptide, or at least one BetaCoV antigenic polypeptide, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic 40 polypeptides) is fused to a signal peptide. In some embodiments, the signal peptide is selected from: a HuIgGk signal peptide (METPAQLLFLLLLWLPDTTG; SEQ ID NO: 15); IgE heavy chain epsilon-1 signal peptide (MDWTWIL-FLVAAATRVHS; SEQ ID NO: 16); Japanese encephalitis 45 PRM signal sequence (MLGSNSGQRVVFTILLLLVA-PAYS; SEQ ID NO: 17), VSVg protein signal sequence (MKCLLYLAFLFIGVNCA; SEQ ID NO: 18) and Japanese encephalitis JEV signal sequence (MWLVSLAIVTA-CAGA; SEQ ID NO: 19).

In some embodiments, the signal peptide is fused to the N-terminus of at least one antigenic polypeptide. In some embodiments, a signal peptide is fused to the C-terminus of at least one antigenic polypeptide.

In some embodiments, at least one antigenic polypeptide 55 (e.g., at least one hMPV antigenic polypeptide, at least one PIV3 antigenic polypeptide, at least one RSV antigenic polypeptide, at least one RSV antigenic polypeptide, or at least one BetaCoV antigenic polypeptide, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, 60 HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic polypeptides) comprises a mutated N-linked glycosylation site.

Also provided herein is a RNA (e.g., mRNA) vaccine of 65 any one of the foregoing paragraphs (e.g., a hMPV vaccine, a PIV3 vaccine, a RSV vaccine, a MeV vaccine, or a

14

BetaCoV vaccine, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing vaccines), formulated in a nanoparticle (e.g., a lipid nanoparticle).

In some embodiments, the nanoparticle has a mean diameter of 50-200 nm. In some embodiments, the nanoparticle is a lipid nanoparticle. In some embodiments, the lipid nanoparticle comprises a cationic lipid, a PEG-modified lipid, a sterol and a non-cationic lipid. In some embodiments, the lipid nanoparticle comprises a molar ratio of about 20-60% cationic lipid, 0.5-15% PEG-modified lipid, 25-55% sterol, and 25% non-cationic lipid. In some embodiments, the cationic lipid is an ionizable cationic lipid and the non-cationic lipid is a neutral lipid, and the sterol is a cholesterol. In some embodiments, the cationic lipid is selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319).

In some embodiments, a lipid nanoparticle comprises compounds of Formula (I) and/or Formula (II), as discussed below.

In some embodiments, a lipid nanoparticle comprises Compounds 3, 18, 20, 25, 26, 29, 30, 60, 108-112, or 122, as discussed below.

In some embodiments, the nanoparticle has a polydispersity value of less than 0.4 (e.g., less than 0.3, 0.2 or 0.1).

In some embodiments, the nanoparticle has a net neutral charge at a neutral pH value.

In some embodiments, the respiratory virus vaccine is multivalent.

Some embodiments of the present disclosure provide methods of inducing an antigen specific immune response in a subject, comprising administering to the subject any of the RNA (e.g., mRNA) vaccine as provided herein in an amount effective to produce an antigen-specific immune response. In some embodiments, the RNA (e.g., mRNA) vaccine is a hMPV vaccine, a PIV3 vaccine, a RSV vaccine, a MeV vaccine, or a BetaCoV vaccine, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1 vaccines. In some embodiments, the RNA (e.g., mRNA) vaccine is a combination vaccine comprising a combination of any two or more of the foregoing vaccines.

In some embodiments, an antigen-specific immune response comprises a T cell response or a B cell response.

In some embodiments, a method of producing an antigen-specific immune response comprises administering to a subject a single dose (no booster dose) of a RNA (e.g., mRNA) vaccine of the present disclosure. In some embodiments, the RNA (e.g., mRNA) vaccine is a hMPV vaccine, a PIV3 vaccine, a RSV vaccine, a MeV vaccine, or a BetaCoV vaccine, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1 vaccines. In some embodiments, the RNA (e.g., mRNA) vaccine is a combination vaccine comprising a combination of any two or more of the foregoing vaccines.

In some embodiments, a method further comprises administering to the subject a second (booster) dose of a RNA (e.g., mRNA) vaccine. Additional doses of a RNA (e.g., mRNA) vaccine may be administered.

In some embodiments, the subjects exhibit a seroconversion rate of at least 80% (e.g., at least 85%, at least 90%, or at least 95%) following the first dose or the second (booster)

dose of the vaccine. Seroconversion is the time period during which a specific antibody develops and becomes detectable in the blood. After seroconversion has occurred, a virus can be detected in blood tests for the antibody. During an infection or immunization, antigens enter the 5 blood, and the immune system begins to produce antibodies in response. Before seroconversion, the antigen itself may or may not be detectable, but antibodies are considered absent. During seroconversion, antibodies are present but not yet detectable. Any time after seroconversion, the antibodies can 10 be detected in the blood, indicating a prior or current infection.

In some embodiments, a RNA (e.g., mRNA) vaccine is administered to a subject by intradermal or intramuscular

Some embodiments, of the present disclosure provide methods of inducing an antigen specific immune response in a subject, including administering to a subject a RNA (e.g., mRNA) vaccine in an effective amount to produce an antigen specific immune response in a subject. Antigen- 20 PIV3, RSV, MeV and/or BetaCoV vaccine, or a hMPV, specific immune responses in a subject may be determined, in some embodiments, by assaying for antibody titer (for titer of an antibody that binds to a hMPV, PIV3, RSV, MeV and/or BetaCoV antigenic polypeptide) following administration to the subject of any of the RNA (e.g., mRNA) 25 vaccines of the present disclosure. In some embodiments, the anti-antigenic polypeptide antibody titer produced in the subject is increased by at least 1 log relative to a control. In some embodiments, the anti-antigenic polypeptide antibody titer produced in the subject is increased by 1-3 log relative 30 to a control.

In some embodiments, the anti-antigenic polypeptide antibody titer produced in a subject is increased at least 2 times relative to a control. In some embodiments, the anti-antigenic polypeptide antibody titer produced in the 35 subject is increased at least 5 times relative to a control. In some embodiments, the anti-antigenic polypeptide antibody titer produced in the subject is increased at least 10 times relative to a control. In some embodiments, the anti-antigenic polypeptide antibody titer produced in the subject is 40 increased 2-10 times relative to a control.

In some embodiments, the control is an anti-antigenic polypeptide antibody titer produced in a subject who has not been administered a RNA (e.g., mRNA) vaccine of the present disclosure. In some embodiments, the control is an 45 anti-antigenic polypeptide antibody titer produced in a subject who has been administered a live attenuated or inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine (see, e.g., Ren J. et al. J of Gen. Virol. 2015; 96: 1515-1520), or wherein the control is an anti-antigenic polypeptide 50 antibody titer produced in a subject who has been administered a recombinant or purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine. In some embodiments, the control is an anti-antigenic polypeptide antibody titer produced in a subject who has been administered a hMPV, 55 PIV3, RSV, MeV and/or BetaCoV virus-like particle (VLP) vaccine (see, e.g., Cox R G et al., J Virol. 2014 June; 88(11): 6368-6379).

A RNA (e.g., mRNA) vaccine of the present disclosure is administered to a subject in an effective amount (an amount 60 effective to induce an immune response). In some embodiments, the effective amount is a dose equivalent to an at least 2-fold, at least 4-fold, at least 10-fold, at least 100-fold, at least 1000-fold reduction in the standard of care dose of a recombinant hMPV, PIV3, RSV, MeV and/or BetaCoV 65 protein vaccine, wherein the anti-antigenic polypeptide antibody titer produced in the subject is equivalent to an

16

anti-antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine, a purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine, a live attenuated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine, an inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine, or a hMPV, PIV3, RSV, MeV and/or BetaCoV VLP vaccine. In some embodiments, the effective amount is a dose equivalent to 2-1000-fold reduction in the standard of care dose of a recombinant hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine, wherein the anti-antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine, a purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine, a live attenuated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine, an inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV VLP vaccine.

In some embodiments, the control is an anti-antigenic polypeptide antibody titer produced in a subject who has been administered a virus-like particle (VLP) vaccine comprising structural proteins of hMPV, PIV3, RSV, MeV and/or BetaCoV.

In some embodiments, the RNA (e.g., mRNA) vaccine is formulated in an effective amount to produce an antigen specific immune response in a subject.

In some embodiments, the effective amount is a total dose of 25 µg to 1000 µg, or 50 µg to 1000 µg. In some embodiments, the effective amount is a total dose of 100 µg. In some embodiments, the effective amount is a dose of 25 μg administered to the subject a total of two times. In some embodiments, the effective amount is a dose of 100 µg administered to the subject a total of two times. In some embodiments, the effective amount is a dose of 400 µg administered to the subject a total of two times. In some embodiments, the effective amount is a dose of 500 µg administered to the subject a total of two times.

In some embodiments, the efficacy (or effectiveness) of a RNA (e.g., mRNA) vaccine is greater than 60%. In some embodiments, the RNA (e.g., mRNA) polynucleotide of the vaccine at least one hMPV antigenic polypeptide, at least one PIV3 antigenic polypeptide, at least one RSV antigenic polypeptide, at least one MeV antigenic polypeptide, at least one BetaCoV antigenic polypeptide, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic polypeptides.

Vaccine efficacy may be assessed using standard analyses (see, e.g., Weinberg et al., J Infect Dis. 2010 Jun. 1; 201(11):1607-10). For example, vaccine efficacy may be measured by double-blind, randomized, clinical controlled trials. Vaccine efficacy may be expressed as a proportionate reduction in disease attack rate (AR) between the unvaccinated (ARU) and vaccinated (ARV) study cohorts and can be calculated from the relative risk (RR) of disease among the vaccinated group with use of the following formulas:

Efficacy=(ARU-ARV)/ARU×100; and

Efficacy=(1-RR)×100.

Likewise, vaccine effectiveness may be assessed using standard analyses (see, e.g., Weinberg et al., J Infect Dis. 2010 Jun. 1; 201(11):1607-10). Vaccine effectiveness is an

assessment of how a vaccine (which may have already proven to have high vaccine efficacy) reduces disease in a population. This measure can assess the net balance of benefits and adverse effects of a vaccination program, not just the vaccine itself, under natural field conditions rather than in a controlled clinical trial. Vaccine effectiveness is proportional to vaccine efficacy (potency) but is also affected by how well target groups in the population are immunized, as well as by other non-vaccine-related factors that influence the 'real-world' outcomes of hospitalizations, ambulatory visits, or costs. For example, a retrospective case control analysis may be used, in which the rates of vaccination among a set of infected cases and appropriate controls are compared. Vaccine effectiveness may be expressed as a 15 rate difference, with use of the odds ratio (OR) for developing infection despite vaccination:

Effectiveness= $(1-OR)\times 100$.

In some embodiments, the efficacy (or effectiveness) of a ²⁰ RNA (e.g., mRNA) vaccine is at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, or at least 90%.

In some embodiments, the vaccine immunizes the subject against hMPV, PIV3, RSV, MeV, BetaCoV (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1), or any combination of two or more of the foregoing viruses for up to 2 years. In some embodiments, the vaccine immunizes the subject against hMPV, PIV3, RSV, MeV, BetaCoV (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1), or any combination of two or more of the foregoing viruses for more than 2 years, more than 3 years, more than 4 years, or for 5-10 years.

In some embodiments, the subject is about 5 years old or younger. For example, the subject may be between the ages of about 1 year and about 5 years (e.g., about 1, 2, 3, 5 or 5 years), or between the ages of about 6 months and about 1 year (e.g., about 6, 7, 8, 9, 10, 11 or 12 months). In some 40 embodiments, the subject is about 12 months or younger (e.g., 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 months or 1 month). In some embodiments, the subject is about 6 months or younger.

In some embodiments, the subject was born full term 45 (e.g., about 37-42 weeks). In some embodiments, the subject was born prematurely, for example, at about 36 weeks of gestation or earlier (e.g., about 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26 or 25 weeks). For example, the subject may have been born at about 32 weeks of gestation or earlier. In some 50 embodiments, the subject was born prematurely between about 32 weeks and about 36 weeks of gestation. In such subjects, a RNA (e.g., mRNA) vaccine may be administered later in life, for example, at the age of about 6 months to about 5 years, or older.

In some embodiments, the subject is pregnant (e.g., in the first, second or third trimester) when administered an RNA (e.g., mRNA) vaccine. Viruses such as hMPV, PIV3 and RSV causes infections of the lower respiratory tract, mainly in infants and young children. One-third of RSV related 60 deaths, for example, occur in the first year of life, with 99 percent of these deaths occurring in low-resource countries. It's so widespread in the United States that nearly all children become infected with the virus before their second birthdays. Thus, the present disclosure provides RNA (e.g., 65 mRNA) vaccines for maternal immunization to improve mother-to-child transmission of protection against the virus.

18

In some embodiments, the subject is a young adult between the ages of about 20 years and about 50 years (e.g., about 20, 25, 30, 35, 40, 45 or 50 years old).

In some embodiments, the subject is an elderly subject about 60 years old, about 70 years old, or older (e.g., about 60, 65, 70, 75, 80, 85 or 90 years old).

In some embodiments, the subject is has a chronic pulmonary disease (e.g., chronic obstructive pulmonary disease (COPD) or asthma). Two forms of COPD include chronic bronchitis, which involves a long-term cough with mucus, and emphysema, which involves damage to the lungs over time. Thus, a subject administered a RNA (e.g., mRNA) vaccine may have chronic bronchitis or emphysema.

In some embodiments, the subject has been exposed to hMPV, PIV3, RSV, MeV, BetaCoV (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1), or any combination of two or more of the foregoing viruses; the subject is infected with hMPV, PIV3, RSV, MeV, BetaCoV (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1), or any combination of two or more of the foregoing viruses; or subject is at risk of infection by hMPV, PIV3, RSV, MeV, BetaCoV (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1), or any combination of two or more of the foregoing viruses.

In some embodiments, the subject is immunocompromised (has an impaired immune system, e.g., has an immune disorder or autoimmune disorder).

In some embodiments the nucleic acid vaccines described herein are chemically modified. In other embodiments the nucleic acid vaccines are unmodified.

Yet other aspects provide compositions for and methods of vaccinating a subject comprising administering to the subject a nucleic acid vaccine comprising one or more RNA polynucleotides having an open reading frame encoding a first respiratory virus antigenic polypeptide, wherein the RNA polynucleotide does not include a stabilization element, and wherein an adjuvant is not coformulated or co-administered with the vaccine.

In other aspects the invention is a composition for or method of vaccinating a subject comprising administering to the subject a nucleic acid vaccine comprising one or more RNA polynucleotides having an open reading frame encoding a first antigenic polypeptide wherein a dosage of between 10 μg/kg and 400 μg/kg of the nucleic acid vaccine is administered to the subject. In some embodiments the dosage of the RNA polynucleotide is 1-5 µg, 5-10 µg, 10-15 μg, 15-20 μg, 10-25 μg, 20-25 μg, 20-50 μg, 30-50 μg, 40-50 $\mu g,\ 40\text{-}60\ \mu g,\ 60\text{-}80\ \mu g,\ 60\text{-}100\ \mu g,\ 50\text{-}100\ \mu g,\ 80\text{-}120\ \mu g,$ 40-120 μg, 40-150 μg, 50-150 μg, 50-200 μg, 80-200 μg, 100-200 μg, 120-250 μg, 150-250 μg, 180-280 μg, 200-300 μд, 50-300 μд, 80-300 μд, 100-300 μд, 40-300 μд, 50-350 55 µg, 100-350 µg, 200-350 µg, 300-350 µg, 320-400 µg, 40-380 μg, 40-100 μg, 100-400 μg, 200-400 μg, or 300-400 μg per dose. In some embodiments, the nucleic acid vaccine is administered to the subject by intradermal or intramuscular injection. In some embodiments, the nucleic acid vaccine is administered to the subject on day zero. In some embodiments, a second dose of the nucleic acid vaccine is administered to the subject on day twenty one.

In some embodiments, a dosage of 25 micrograms of the RNA polynucleotide is included in the nucleic acid vaccine administered to the subject. In some embodiments, a dosage of 100 micrograms of the RNA polynucleotide is included in the nucleic acid vaccine administered to the subject. In some

embodiments, a dosage of 50 micrograms of the RNA polynucleotide is included in the nucleic acid vaccine administered to the subject. In some embodiments, a dosage of 75 micrograms of the RNA polynucleotide is included in the nucleic acid vaccine administered to the subject. In some 5 embodiments, a dosage of 150 micrograms of the RNA polynucleotide is included in the nucleic acid vaccine administered to the subject. In some embodiments, a dosage of 400 micrograms of the RNA polynucleotide is included in the nucleic acid vaccine administered to the subject. In some 10 embodiments, a dosage of 200 micrograms of the RNA polynucleotide is included in the nucleic acid vaccine administered to the subject. In some embodiments, the RNA polynucleotide accumulates at a 100 fold higher level in the local lymph node in comparison with the distal lymph node. 15 In other embodiments the nucleic acid vaccine is chemically modified and in other embodiments the nucleic acid vaccine is not chemically modified.

Aspects of the invention provide a nucleic acid vaccine comprising one or more RNA polynucleotides having an 20 open reading frame encoding a first antigenic polypeptide, wherein the RNA polynucleotide does not include a stabilization element, and a pharmaceutically acceptable carrier or excipient, wherein an adjuvant is not included in the vaccine. In some embodiments, the stabilization element is a histone stem-loop. In some embodiments, the stabilization element is a nucleic acid sequence having increased GC content relative to wild type sequence.

Aspects of the invention provide nucleic acid vaccines comprising one or more RNA polynucleotides having an 30 open reading frame encoding a first antigenic polypeptide, wherein the RNA polynucleotide is present in the formulation for in vivo administration to a host, which confers an antibody titer superior to the criterion for seroprotection for the first antigen for an acceptable percentage of human 35 subjects. In some embodiments, the antibody titer produced by the mRNA vaccines of the invention is a neutralizing antibody titer. In some embodiments the neutralizing antibody titer is greater than a protein vaccine. In other embodiments the neutralizing antibody titer produced by the mRNA 40 vaccines of the invention is greater than an adjuvanted protein vaccine. In yet other embodiments the neutralizing antibody titer produced by the mRNA vaccines of the invention is 1,000-10,000, 1,200-10,000, 1,400-10,000, 1,500-10,000, 1,000-5,000, 1,000-4,000, 1,800-10,000, 45 2000-10,000, 2,000-5,000, 2,000-3,000, 2,000-4,000, 3,000-5,000, 3,000-4,000, or 2,000-2,500. A neutralization titer is typically expressed as the highest serum dilution required to achieve a 50% reduction in the number of plaques.

Also provided are nucleic acid vaccines comprising one 50 or more RNA polynucleotides having an open reading frame encoding a first antigenic polypeptide, wherein the RNA polynucleotide is present in a formulation for in vivo administration to a host for eliciting a longer lasting high antibody titer than an antibody titer elicited by an mRNA vaccine 55 having a stabilizing element or formulated with an adjuvant and encoding the first antigenic polypeptide. In some embodiments, the RNA polynucleotide is formulated to produce a neutralizing antibodies within one week of a single administration. In some embodiments, the adjuvant is selected from a cationic peptide and an immunostimulatory nucleic acid. In some embodiments, the cationic peptide is protamine.

Aspects provide nucleic acid vaccines comprising one or more RNA polynucleotides having an open reading frame 65 comprising at least one chemical modification or optionally no nucleotide modification, the open reading frame encod-

ing a first antigenic polypeptide, wherein the RNA polynucleotide is present in the formulation for in vivo administration to a host such that the level of antigen expression in the host significantly exceeds a level of antigen expression produced by an mRNA vaccine having a stabilizing element or formulated with an adjuvant and encoding the first antigenic polypeptide.

Other aspects provide nucleic acid vaccines comprising one or more RNA polynucleotides having an open reading frame comprising at least one chemical modification or optionally no nucleotide modification, the open reading frame encoding a first antigenic polypeptide, wherein the vaccine has at least 10 fold less RNA polynucleotide than is required for an unmodified mRNA vaccine to produce an equivalent antibody titer. In some embodiments, the RNA polynucleotide is present in a dosage of 25-100 micrograms.

Aspects of the invention also provide a unit of use vaccine, comprising between 10 ug and 400 ug of one or more RNA polynucleotides having an open reading frame comprising at least one chemical modification or optionally no nucleotide modification, the open reading frame encoding a first antigenic polypeptide, and a pharmaceutically acceptable carrier or excipient, formulated for delivery to a human subject. In some embodiments, the vaccine further comprises a cationic lipid nanoparticle.

Aspects of the invention provide methods of creating, maintaining or restoring antigenic memory to a respiratory virus strain in an individual or population of individuals comprising administering to said individual or population an antigenic memory booster nucleic acid vaccine comprising (a) at least one RNA polynucleotide, said polynucleotide comprising at least one chemical modification or optionally no nucleotide modification and two or more codon-optimized open reading frames, said open reading frames encoding a set of reference antigenic polypeptides, and (b) optionally a pharmaceutically acceptable carrier or excipient. In some embodiments, the vaccine is administered to the individual via a route selected from the group consisting of intramuscular administration, intradermal administration and subcutaneous administration. In some embodiments, the administering step comprises contacting a muscle tissue of the subject with a device suitable for injection of the composition. In some embodiments, the administering step comprises contacting a muscle tissue of the subject with a device suitable for injection of the composition in combination with electroporation.

Aspects of the invention provide methods of vaccinating a subject comprising administering to the subject a single dosage of between 25 ug/kg and 400 ug/kg of a nucleic acid vaccine comprising one or more RNA polynucleotides having an open reading frame encoding a first antigenic polypeptide in an effective amount to vaccinate the subject.

Other aspects provide nucleic acid vaccines comprising one or more RNA polynucleotides having an open reading frame comprising at least one chemical modification, the open reading frame encoding a first antigenic polypeptide, wherein the vaccine has at least 10 fold less RNA polynucleotide than is required for an unmodified mRNA vaccine to produce an equivalent antibody titer. In some embodiments, the RNA polynucleotide is present in a dosage of 25-100 micrograms.

Other aspects provide nucleic acid vaccines comprising an LNP formulated RNA polynucleotide having an open reading frame comprising no nucleotide modifications (unmodified), the open reading frame encoding a first antigenic polypeptide, wherein the vaccine has at least 10 fold less RNA polynucleotide than is required for an unmodified

mRNA vaccine not formulated in a LNP to produce an equivalent antibody titer. In some embodiments, the RNA polynucleotide is present in a dosage of 25-100 micrograms.

21

The data presented in the Examples demonstrate significant enhanced immune responses using the formulations of 5 the invention. Both chemically modified and unmodified RNA vaccines are useful according to the invention. Surprisingly, in contrast to prior art reports that it was preferable to use chemically unmodified mRNA formulated in a carrier for the production of vaccines, it is described herein that 10 chemically modified mRNA-LNP vaccines required a much lower effective mRNA dose than unmodified mRNA, i.e., tenfold less than unmodified mRNA when formulated in carriers other than LNP. Both the chemically modified and unmodified RNA vaccines of the invention produce better 15 immune responses than mRNA vaccines formulated in a different lipid carrier.

In other aspects the invention encompasses a method of treating an elderly subject age 60 years or older comprising administering to the subject a nucleic acid vaccine comprising one or more RNA polynucleotides having an open reading frame encoding a respiratory virus antigenic polypeptide in an effective amount to vaccinate the subject.

In other aspects the invention encompasses a method of treating a young subject age 17 years or younger comprising 25 administering to the subject a nucleic acid vaccine comprising one or more RNA polynucleotides having an open reading frame encoding a respiratory virus antigenic polypeptide in an effective amount to vaccinate the subject.

In other aspects the invention encompasses a method of 30 treating an adult subject comprising administering to the subject a nucleic acid vaccine comprising one or more RNA polynucleotides having an open reading frame encoding a respiratory virus antigenic polypeptide in an effective amount to vaccinate the subject.

In some aspects the invention is a method of vaccinating a subject with a combination vaccine including at least two nucleic acid sequences encoding respiratory antigens wherein the dosage for the vaccine is a combined therapeutic dosage wherein the dosage of each individual nucleic acid 40 encoding an antigen is a sub therapeutic dosage. In some embodiments, the combined dosage is 25 micrograms of the RNA polynucleotide in the nucleic acid vaccine administered to the subject. In some embodiments, the combined dosage is 100 micrograms of the RNA polynucleotide in the 45 nucleic acid vaccine administered to the subject. In some embodiments the combined dosage is 50 micrograms of the RNA polynucleotide in the nucleic acid vaccine administered to the subject. In some embodiments, the combined dosage is 75 micrograms of the RNA polynucleotide in the 50 nucleic acid vaccine administered to the subject. In some embodiments, the combined dosage is 150 micrograms of the RNA polynucleotide in the nucleic acid vaccine administered to the subject. In some embodiments, the combined dosage is 400 micrograms of the RNA polynucleotide in the 55 nucleic acid vaccine administered to the subject. In some embodiments, the sub therapeutic dosage of each individual nucleic acid encoding an antigen is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 micrograms. In other embodiments the nucleic acid vaccine is chemically 60 modified and in other embodiments the nucleic acid vaccine is not chemically modified.

The RNA polynucleotide is one of SEQ ID NO: 1-4, 9-12, 20-23, 35-46, 57-61, and 64-80 and includes at least one chemical modification. In other embodiments the RNA 65 polynucleotide is one of SEQ ID NO: 1-4, 9-12, 20-23, 35-46, 57-61, and 64-80 and does not include any nucleotide

22

modifications, or is unmodified. In yet other embodiments the at least one RNA polynucleotide encodes an antigenic protein of any of SEQ ID NO: 5-8, 12-13, 24-34, and 47-50 and includes at least one chemical modification. In other embodiments the RNA polynucleotide encodes an antigenic protein of any of SEQ ID NO: 5-8, 12-13, 24-34, and 47-50 and does not include any nucleotide modifications, or is unmodified.

In preferred aspects, vaccines of the invention (e.g., LNP-encapsulated mRNA vaccines) produce prophylactically- and/or therapeutically-efficacious levels, concentrations and/or titers of antigen-specific antibodies in the blood or serum of a vaccinated subject. As defined herein, the term antibody titer refers to the amount of antigen-specific antibody produces in s subject, e.g., a human subject. In exemplary embodiments, antibody titer is expressed as the inverse of the greatest dilution (in a serial dilution) that still gives a positive result. In exemplary embodiments, antibody titer is determined or measured by enzyme-linked immunosorbent assay (ELISA). In exemplary embodiments, antibody titer is determined or measured by neutralization assay, e.g., by microneutralization assay. In certain aspects, antibody titer measurement is expressed as a ratio, such as 1:40, 1:100, etc. In exemplary embodiments of the invention, an efficacious vaccine produces an antibody titer of greater than 1:40, greater that 1:100, greater than 1:400, greater than 1:1000, greater than 1:2000, greater than 1:3000, greater than 1:4000, greater than 1:500, greater than 1:6000, greater than 1:7500, greater than 1:10000. In exemplary embodiments, the antibody titer is produced or reached by 10 days following vaccination, by 20 days following vaccination, by 30 days following vaccination, by 40 days following vaccination, or by 50 or more days following vaccination. In exemplary embodiments, the titer is produced or reached following a single dose of vaccine administered to the subject. In other embodiments, the titer is produced or reached following multiple doses, e.g., following a first and a second dose (e.g., a booster dose.) In exemplary aspects of the invention, antigen-specific antibodies are measured in units of µg/ml or are measured in units of IU/L (International Units per liter) or mIU/ml (milli International Units per ml). In exemplary embodiments of the invention, an efficacious vaccine produces $>0.5 \,\mu \text{g/ml}$, $>0.1 \,\mu \text{g/ml}$, $>0.2 \,\mu \text{g/ml}$, >0.35 $\mu g/ml$, >0.5 $\mu g/ml$, >1 $\mu g/ml$, >2 $\mu g/ml$, >5 $\mu g/ml$ or >10 μg/ml. In exemplary embodiments of the invention, an efficacious vaccine produces >10 mIU/ml, >20 mIU/ml, >50 mIU/ml, >100 mIU/ml, >200 mIU/ml, >500 mIU/ml or >1000 mIU/ml. In exemplary embodiments, the antibody level or concentration is produced or reached by 10 days following vaccination, by 20 days following vaccination, by 30 days following vaccination, by 40 days following vaccination, or by 50 or more days following vaccination. In exemplary embodiments, the level or concentration is produced or reached following a single dose of vaccine administered to the subject. In other embodiments, the level or concentration is produced or reached following multiple doses, e.g., following a first and a second dose (e.g., a booster dose.) In exemplary embodiments, antibody level or concentration is determined or measured by enzyme-linked immunosorbent assay (ELISA). In exemplary embodiments, antibody level or concentration is determined or measured by neutralization assay, e.g., by microneutralization assay.

The details of various embodiments of the disclosure are set forth in the description below. Other features, objects,

and advantages of the disclosure will be apparent from the description and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages will be apparent from the following description of particular embodiments of the disclosure, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of various embodiments of the disclosure.

FIG. 1 shows a schematic of one example of a RNA (e.g. mRNA) vaccine construct of the present disclosure. The construct depicts a human metapneumovirus and human respiratory syncytial virus full length fusion protein obtained from wild-type strains (The Journal of General Virology. 2008; 89(Pt 12):3113-3118, incorporated herein by refer- 20

FIGS. 2A-2C are graphs showing the levels of anti-hMPV fusion protein-specific antibodies in the serum of mice immunized with hMPV mRNA vaccines on day 0 (FIG. 2A), day 14 (FIG. 2B) and day 35 (FIG. 2C) post immunization. 25 The mice were immunized with a single dose (2 μ g or 10 μ g) on day 0 and were given a boost dose (2 µg or 10 µg) on day 21. hMPV fusion protein-specific antibodies were detected at up to 1:10000 dilution of serum on day 35 for both doses.

FIGS. 3A-3C are graphs showing the result of IgG 30 isotyping in the serum of mice immunized with hMPV mRNA vaccines. The levels of hMPV fusion protein-specific IgG2a (FIG. 3A) and IgG1 (FIG. 3B) antibodies in the serum are measured by ELISA. FIG. 3C shows that hMPV fusion protein mRNA vaccine induced a mixed Th1/Th2 cytokine 35 response with a Th1 bias.

FIG. 4 is a graph showing in vitro neutralization of a hMPV B2 strain (TN/91-316) using the sera of mice immunized with a mRNA vaccine encoding hMPV fusion protein. μg dose contained hMPV-neutralizing antibodies.

FIGS. 5A-5C are graphs showing a Th1 cytokine response induced by a hMPV fusion peptide pool (15-mers-50 (overlap)) in splenocytes isolated from mice immunized with the hMPV mRNA vaccines. Virus-free media was used as a 45 negative control and Concanavalin A (ConA, a positive control for splenocyte stimulation) was included. The cytokines tested included IFN-y (FIG. 5A), IL-2 (FIG. 5B) and IL12 (FIG. 5C).

FIGS. 6A-6E are graphs showing the Th2 cytokine 50 response induced by a hMPV fusion peptide pool (15-mers-50) in splenocytes isolated from mice immunized with the hMPV mRNA vaccines. Virus-free media was used as a negative control and Concanavalin A was also included. The cytokines tested included IL-10 (FIG. 6A), TNF-a (FIG. 55 6B), IL4 (FIG. 6C), IL-5 (FIG. 6D) and IL-6 (FIG. 6E).

FIGS. 7A-7C are graphs showing the Th1 response induced by inactivated hMPV virus in splenocytes isolated from mice immunized with hMPV mRNA vaccines. Virusfree media was used as a negative control and Concanavalin 60 A was included. The cytokines tested included IFN-γ (FIG. 7A), IL-2 (FIG. 7B) and IL12 (FIG. 7C).

FIGS. 8A-8E are graphs showing the Th2 response induced by inactivated hMPV virus in splenocytes isolated from mice immunized with the hMPV mRNA vaccines. 65 Virus-free media was used as a negative control and Concanavalin A was included. The cytokines tested include

24

IL-10 (FIG. 8A), TNF-α (FIG. 8B), IL4 (FIG. 8C), IL-5 (FIG. 8D) and IL-6 (FIG. 8E).

FIGS. 9A-9B are graphs showing the results of cotton rat challenge experiments. Two different doses of the hMPV mRNA vaccines were used (2 µg or 10 µg doses) to immunize the cotton rats before challenge. The hMPV mRNA vaccines reduced the viral titer in the lung and nose of the cotton rat, with the 10 µg dose being more effective in reducing viral titer. Use of a 10 µg dose resulted in 100% protection in the lung and a ~2 log reduction in nose viral titer. Use of a 2 µg dose resulted in a 1 log reduction in lung vital titer and no reduction in nose viral titer. The vaccine was administered on Day 0, and a boost was administered on Day 21.

FIG. 10 is a graph showing the lung histopathology of cotton rats that received hMPV mRNA vaccines. Pathology associated with vaccine-enhanced disease was not observed in immunized groups.

FIG. 11 is a graph showing hMPV neutralization antibody titers in cotton rats that received hMPV mRNA vaccines (2) μg or 10 μg doses) on days 35 and 42 post immunization.

FIG. 12 is a graph showing the lung and nose viral load in cotton rats challenged with a hMPV/A2 strain after immunization with the indicated mRNA vaccines (hMPV mRNA vaccine or hMPV/PIV mRNA combination vaccine). Vaccinated cotton rats showed reduced lung and nose viral loads after challenge, compared to control.

FIG. 13 is a graph showing the lung and nose viral load in cotton rats challenged with PIV3 strain after immunization with indicated mRNA vaccines (PIV mRNA vaccine or hMPV/PIV combination vaccine). Vaccinated cotton rats showed reduced lung and nose viral loads after challenge, compared to control.

FIG. 14 is a graph showing hMPV neutralizing antibody titers in cotton rats that received different dosages of hMPV mRNA vaccines or hMPV/PIV combination mRNA vaccines on day 42 post immunization. The dosages of the vaccine are indicated in Table 9.

FIG. 15 is a graph showing PIV3 neutralizing antibody Mouse serum obtained from mice receiving a 10 µg or a 2 40 titers in cotton rats that received different dosages of PIV mRNA vaccines or hMPV/PIV combination mRNA vaccines on day 42 post immunization. The dosages of the vaccine are indicated in Table 9.

> FIG. 16 is a graph showing the lung histopathology score of cotton rats immunized with hMPV mRNA vaccines, PIV mRNA vaccines or hMPV/PIV combination mRNA vaccines as indicated in Table 9. Low occurrence of alevolitis and interstitial pneumonia was observed, indicating no antibody-dependent enhancement (ADE) of hMPV associated diseases.

> FIG. 17 is a graph showing the reciprocal MERS-CoV neutralizing antibody titers in mice immunized with betacoronavirus mRNA vaccine encoding the MERS-CoV fulllength Spike protein, on days 0, 21, 42, and 56 post immunization.

> FIG. 18 is a graph showing the reciprocal MERS-CoV neutralizing antibody titers in mice immunized with betacoronavirus mRNA vaccine encoding either the MERS-CoV full-length Spike protein, or the S2 subunit of the Spike protein. The full length spike protein induced a stronger immune response compared to the S2 subunit alone.

FIGS. 19A-19C are graphs showing the viral load in the nose and throat, the bronchoalveolar lavage (BAL), or the lungs of New Zealand white rabbits 4 days post challenge with MERS-CoV. The New Zealand white rabbits were immunized with one 20 µg-dose (on day 0) or two 20 μg-doses (on day 0 and 21) of MERS-CoV mRNA vaccine

encoding the full-length Spike protein before challenge. FIG. 19A shows that two doses of MERS-CoV mRNA vaccine resulted in a 3 log reduction of viral load in the nose and led to complete protection in the throat of the New Zealand white rabbits. FIG. 19B shows that two doses of MERS-CoV mRNA vaccine resulted in a 4 log reduction of viral load in the BAL of the New Zealand white rabbits. FIG. 19C show one dose of MERS-CoV mRNA vaccine resulted in a 2 log reduction of viral load, while two doses of MERS-CoV mRNA vaccine resulted in an over 4 log reduction of viral load in the lungs of the New Zealand white rabbits.

FIGS. **20**A-**20**B are images and graphs showing viral load or replicating virus detected by PCR in the lungs of New Zealand white rabbits 4 days post challenge with MERS-CoV. The New Zealand white rabbits were immunized with a single 20 μg dose (on day 0, Group 1a) of MERS-CoV mRNA vaccine encoding the full-length Spike protein, two 20 μg doses (on day 0 and 21, Group 1b) of MERS-CoV mRNA vaccine encoding the full-length Spike protein, or placebo (Group 2) before challenge. FIG. **20**A shows that two doses of 20 μg a MERS-CoV mRNA vaccine reduced over 99% (2 log) of viruses in the lungs of New Zealand white rabbits. FIG. **20**B shows that the group of New Zealand white rabbits that received 2 doses of 20 μg MERS-CoV mRNA vaccine did not have any detectable replicating MERS-CoV virus in their lungs.

FIG. 21 is a graph showing the MERS-CoV neutralizing antibody titers in New Zealand white rabbits immunized with MERS-CoV mRNA vaccine encoding the full-length Spike protein. Immunization of the in New Zealand white rabbits were carried out as described in FIGS. 21A-21C. The results show that two doses of 20 μ g MERS-CoV mRNA vaccine induced a significant amount of neutralizing antibodies against MERS-CoV (EC₅₀ between 500-1000). The MERS-CoV mRNA vaccine induced antibody titer is 3-5 fold better than any other vaccines tested in the same model.

DETAILED DESCRIPTION

The present disclosure provides, in some embodiments, vaccines that comprise RNA (e.g., mRNA) polynucleotides encoding a human metapneumovirus (hMPV) antigenic 45 polypeptide, a parainfluenza virus type 3 (PIV3) antigenic polypeptide, a respiratory syncytial virus (RSV) antigenic polypeptide, a measles virus (MeV) antigenic polypeptide, or a betacoronavirus antigenic polypeptide (e.g., Middle East respiratory syndrome coronavirus (MERS-CoV), 50 SARS-CoV, human coronavirus (HCoV)-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH (New Haven) and HCoV-HKU1) (see, e.g., Esper F. et al. Emerging Infectious Diseases, 12(5), 2006; and Pyrc K. et al. Journal of Virology, 81(7):3051-57, 2007, the contents of each of 55 which is here incorporated by reference in their entirety). The present disclosure also provides, in some embodiments, combination vaccines that comprise at least one RNA (e.g., mRNA) polynucleotide encoding at least two antigenic polypeptides selected from hMPV antigenic polypeptides, 60 PIV3 antigenic polypeptides, RSV antigenic polypeptides, MeV antigenic polypeptides and BetaCoV antigenic polypeptides. Also provided herein are methods of administering the RNA (e.g., mRNA) vaccines, methods of producing the RNA (e.g., mRNA) vaccines, compositions (e.g., pharma- 65 ceutical compositions) comprising the RNA (e.g., mRNA) vaccines, and nucleic acids (e.g., DNA) encoding the RNA

26

(e.g., mRNA) vaccines. In some embodiments, a RNA (e.g., mRNA) vaccine comprises an adjuvant, such as a flagellin adjuvant, as provided herein.

The RNA (e.g., mRNA) vaccines (e.g., hMPV, PIV3, RSV, MeV, BetaCoV RNA vaccines and combinations thereof), in some embodiments, may be used to induce a balanced immune response, comprising both cellular and humoral immunity, without many of the risks associated with DNA vaccination.

The entire contents of International Application No. PCT/US2015/02740 is incorporated herein by reference. Human Metapneumovirus (hMPV)

hMPV shares substantial homology with respiratory syncytial virus (RSV) in its surface glycoproteins. hMPV fusion protein (F) is related to other paramyxovirus fusion proteins and appears to have homologous regions that may have similar functions. The hMPV fusion protein amino acid sequence contains features characteristic of other paramyxovirus F proteins, including a putative cleavage site and potential N-linked glycosylation sites. Paramyxovirus fusion proteins are synthesized as inactive precursors (F0) that are cleaved by host cell proteases into the biologically fusion-active F1 and F2 domains (see, e.g., Cseke G. et al. Journal of Virology 2007; 81(2):698-707, incorporated herein by reference). hMPV has one putative cleavage site, in contrast to the two sites established for RSV F, and only shares 34% amino acid sequence identity with RSV F. F2 is extracellular and disulfide linked to F1. Fusion proteins are type I glycoproteins existing as trimers, with two 4-3 heptad repeat domains at the N- and C-terminal regions of the protein (HR1 and HR2), which form coiled-coil alphahelices. These coiled coils become apposed in an antiparallel fashion when the protein undergoes a conformational change into the fusogenic state. There is a hydrophobic fusion peptide N proximal to the N-terminal heptad repeat, which is thought to insert into the target cell membrane. while the association of the heptad repeats brings the trans-40 membrane domain into close proximity, inducing membrane fusion (see, e.g., Baker, K A et al. Mol. Cell 1999; 3:309-319). This mechanism has been proposed for a number of different viruses, including RSV, influenza virus, and human immunodeficiency virus. Fusion proteins are major antigenic determinants for all known paramyxoviruses and for other viruses that possess similar fusion proteins such as human immunodeficiency virus, influenza virus, and Ebola

In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding hMPV fusion protein (F). In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding a F1 or F2 subunit of a hMPV F protein. In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding hMPV glycoprotein (G). In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding hMPV matrix protein (M). In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding hMPV phosphoprotein (P). In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding hMPV nucleoprotein (N). In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding hMPV SH protein (SH).

In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein, M protein, P protein, N protein and SH protein.

In some embodiments, a hMPV vaccine of the present 5 disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and G protein. In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and M protein. In some embodiments, a hMPV vaccine of the 10 present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and P protein.

In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and N protein. In some embodiments, a 15 hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and SH protein.

In some embodiments, a hMPV vaccine of the present encoding G protein and M protein. In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding G protein and P protein. In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) poly- 25 nucleotide encoding G protein and N protein. In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding G protein and SH protein.

In some embodiments, a hMPV vaccine of the present 30 disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and M protein. In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and P protein. In some embodiments, a 35 hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and N protein. In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and SH pro- 40

A hMPV vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one hMPV antigenic polypeptide identified by any one of SEQ ID NO: 5-8 (Table 3; see also 45 amino acid sequences of Table 4).

A hMPV vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide encoded by a nucleic acid (e.g., DNA) identified by any one of SEQ ID NO: 1-4 (Table 2).

The present disclosure is not limited by a particular strain of hMPV. The strain of hMPV used in a vaccine may be any strain of hMPV. Non-limiting examples of strains of hMPV for use as provide herein include the CAN98-75 (CAN75) and the CAN97-83 (CAN83) hMPV strains (Skiadopoulos 55 M H et al. J Virol. 20014; 78(13)6927-37, incorporated herein by reference), a hMPV A1, A2, B1 or B2 strain (see, e.g., de Graaf M et al. The Journal of General Virology 2008; 89:975-83; Peret T C T et al. The Journal of Infectious Disease 2002; 185:1660-63, incorporated herein by refer- 60 ence), a hMPV isolate TN/92-4 (e.g., SEQ ID NO: 1 and 5), a hMPV isolate NL/1/99 (e.g., SEQ ID NO: 2 and 6), or a hMPV isolate PER/CFI0497/2010/B (e.g., SEQ ID NO: 3 and 7).

In some embodiments, at least one hMPV antigenic 65 polypeptide is obtained from a hMPV A1, A2, B1 or B2 strain (see, e.g., de Graaf M et al. The Journal of General

28

Virology 2008; 89:975-83; Peret T C T et al. The Journal of Infectious Disease 2002; 185:1660-63, incorporated herein by reference). In some embodiments, at least one antigenic polypeptide is obtained from the CAN98-75 (CAN75) hMPV strain. In some embodiments, at least one antigenic polypeptide is obtained from the CAN97-83 (CAN83) hMPV strain. In some embodiments, at least one antigenic polypeptide is obtained from hMPV isolate TN/92-4 (e.g., SEQ ID NO: 1 and 5). In some embodiments, at least one antigenic polypeptide is obtained from hMPV isolate NL/1/ 99 (e.g., SEQ ID NO: 2 and 6). In some embodiments, at least one antigenic polypeptide is obtained from hMPV isolate PER/CFI0497/2010/B (e.g., SEQ ID NO: 3 and 7).

In some embodiments, hMPV vaccines comprise RNA (e.g., mRNA) polynucleotides encoding a hMPV antigenic polypeptides having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with hMPV F protein and having F protein activity.

A protein is considered to have F protein activity if, for disclosure comprises a RNA (e.g., mRNA) polynucleotide 20 example, the protein acts to fuse the viral envelope and host cell plasma membrane, mediates viral entry into a host cell via an interaction with arginine-glycine-aspartate RGDbinding integrins, or a combination thereof (see, e.g., Cox R G et al. J Virol. 2012; 88(22):12148-60, incorporated herein by reference).

> In some embodiments, hMPV vaccines comprise RNA (e.g., mRNA) polynucleotides encoding hMPV antigenic polypeptides having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with hMPV G protein and having G protein activity.

> A protein is considered to have G protein activity if, for example, the protein acts to modulate (e.g., inhibit) hMPVinduced cellular (immune) responses (see, e.g., Bao X et al. PLoS Pathog. 2008; 4(5):e1000077, incorporated herein by reference).

Human Parainfluenza Virus Type 3 (PIV3)

Parainfluenza viruses belong to the family Paramyxoviridae. These are enveloped viruses with a negative-sense single-stranded RNA genome. Parainfluenza viruses belong to the subfamily Paramyxoviridae, which is subdivided into three genera: Respirovirus (PIV-1, PIV-3, and Sendai virus (SeV)), Rubulavirus (PIV-2, PIV-4 and mumps virus) and Morbillivirus (measles virus, rinderpest virus and canine distemper virus (CDV)). Their genome, a ~15 500 nucleotide-long negative-sense RNA molecule, encodes two envelope glycoproteins, the hemagglutinin-neuraminidase (HN), the fusion protein (F or F0), which is cleaved into F1 and F2 subunits, a matrix protein (M), a nucleocapsid protein (N) and several nonstructural proteins including the viral replicase (L). All parainfluenza viruses, except for PIV-1, express a non-structural V protein that blocks IFN signaling in the infected cell and acts therefore as a virulence factor (see, e.g., Nishio M et al. J Virol. 2008; 82(13):6130-38).

PIV3 hemagglutinin-neuraminidase (HN), a structural protein, is found on the viral envelope, where it is necessary for attachment and cell entry. It recognizes and binds to sialic acid-containing receptors on the host cell's surface. As a neuroaminidase, HN removes sialic acid from virus particles, preventing self-aggregation of the virus, and promoting the efficient spread of the virus. Furthermore, HN promotes the activity of the fusion (F or F0) protein, contributing to the penetration of the host cell's surface.

PIV3 fusion protein (PIV3 F) is located on the viral envelope, where it facilitates the viral fusion and cell entry. The F protein is initially inactive, but proteolytic cleavage leads to its active forms, F1 and F2, which are linked by disulfide bonds. This occurs when the HN protein binds its

receptor on the host cell's surface. During early phases of infection, the F glycoprotein mediates penetration of the host cell by fusion of the viral envelope to the plasma membrane. In later stages of the infection, the F protein facilitates the fusion of the infected cells with neighboring uninfected cells, which leads to the formation of a syncytium and spread of the infection.

PIV3 matrix protein (M) is found within the viral envelope and assists with viral assembly. It interacts with the nucleocapsid and envelope glycoproteins, where it facilitates the budding of progeny viruses through its interactions with specific sites on the cytoplasmic tail of the viral glycoproteins and nucleocapsid. It also plays a role in transporting viral components to the budding site.

PIV3 phosphoprotein (P) and PIV3 large polymerase protein (L) are found in the nucleocapsid where they form part of the RNA polymerase complex. The L protein, a viral RNA-dependent RNA polymerase, facilitates genomic transcription, while the host cell's ribosomes translate the viral 20 mRNA into viral proteins.

PIV3 V is a non-structural protein that blocks IFN signaling in the infected cell, therefore acting as a virulence factor.

PIV3 nucleoprotein (N) encapsidates the genome in a 25 ratio of 1 N per 6 ribonucleotides, protecting it from nucleases. The nucleocapsid (NC) has a helical structure.

The encapsidated genomic RNA is termed the NC and serves as template for transcription and replication. During replication, encapsidation by PIV3 N is coupled to RNA 30 synthesis and all replicative products are resistant to nucleases. PIV3 N homo-multimerizes to form the nucleocapsid and binds to viral genomic RNA. PIV3 N binds the P protein and thereby positions the polymerase on the template.

In some embodiments, a PIV3 vaccine of the present 35 disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding PIV3 fusion protein (F). In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding a F1 or F2 subunit of a PIV3 F protein. In some embodiments, a PIV3 vaccine of 40 the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding PIV3 hemagglutinin-neuraminidase (HN) (see, e.g., van Wyke Coelingh K L et al. J Virol. 1987; 61(5):1473-77, incorporated herein by reference). In some embodiments, a PIV3 vaccine of the present disclosure 45 comprises a RNA (e.g., mRNA) polynucleotide encoding PIV3 matrix protein (M). In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding PIV3 phosphoprotein (P). In some embodiments, a PIV3 vaccine of the present dis- 50 closure comprises a RNA (e.g., mRNA) polynucleotide encoding PIV3 nucleoprotein (N).

In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, HN protein, M protein, P protein, and N 55 protein.

In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and HN protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA 60 (e.g., mRNA) polynucleotide encoding F protein and M protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and P protein. In some embodiments, a PIV3 vaccine of the present disclosure 65 comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and N protein.

30

In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HN protein and M protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HN protein and P protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HN protein and N protein.

In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, HN protein and M protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, HN protein and P protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, HN protein and N protein.

A PIV3 vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one PIV3 antigenic polypeptide identified by any one of SEQ ID NO: 12-13 (Table 6; see also amino acid sequences of Table 7).

A PIV3 vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide encoded by a nucleic acid (e.g., DNA) identified by any one of SEQ ID NO: 9-12 (Table 5; see also nucleic acid sequences of Table 7).

The present disclosure is not limited by a particular strain of PIV3. The strain of PIV3 used in a vaccine may be any strain of PIV3. A non-limiting example of a strain of PIV3 for use as provide herein includes HPIV3/Homo sapiens/PER/FLA4815/2008.

In some embodiments, PIV3 vaccines comprise RNA (e.g., mRNA) polynucleotides encoding a PIV3 antigenic polypeptides having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with PIV3 F protein and having F protein activity.

In some embodiments, PIV3 vaccines comprise RNA (e.g., mRNA) polynucleotides encoding PIV3 antigenic polypeptides having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with PIV3 hemagglutinin-neuraminidase (HN) and having hemagglutinin-neuraminidase activity.

A protein is considered to have hemagglutinin-neuraminidase activity if, for example, it is capable of both receptor binding and receptor cleaving. Such proteins are major surface glycoproteins that have functional sites for cell attachment and for neuraminidase activity. They are able to cause red blood cells to agglutinate and to cleave the glycosidic linkages of neuraminic acids, so they have the potential to both bind a potential host cell and then release the cell if necessary, for example, to prevent self-aggregation of the virus.

In some embodiments, PIV3 vaccines comprise RNA (e.g., mRNA) polynucleotides encoding PIV3 antigenic polypeptides having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with PIV3 HN, F (e.g., F, F1 or F2), M, N, L or V and having HN, F (e.g., F, F1 or F2), M, N, L or V activity, respectively. Respiratory Syncytial Virus (RSV)

RSV is a negative-sense, single-stranded RNA virus of the genus Pneumovirinae. The virus is present in at least two antigenic subgroups, known as Group A and Group B, primarily resulting from differences in the surface G glycoproteins. Two RSV surface glycoproteins—G and F—mediate attachment with and attachment to cells of the respiratory epithelium. F surface glycoproteins mediate coalescence of neighboring cells. This results in the forma-

tion of syncytial cells. RSV is the most common cause of bronchiolitis. Most infected adults develop mild cold-like symptoms such as congestion, low-grade fever, and wheezing. Infants and small children may suffer more severe symptoms such as bronchiolitis and pneumonia. The disease may be transmitted among humans via contact with respiratory secretions.

The genome of RSV encodes at least three surface glycoproteins, including F, G, and SH, four nucleocapsid proteins, including L, P, N, and M2, and one matrix protein, M. 10 Glycoprotein F directs viral penetration by fusion between the virion and the host membrane. Glycoprotein G is a type II transmembrane glycoprotein and is the major attachment protein. SH is a short integral membrane protein. Matrix protein M is found in the inner layer of the lipid bilayer and assists virion formation. Nucleocapsid proteins L, P, N, and M2 modulate replication and transcription of the RSV genome. It is thought that glycoprotein G tethers and stabilizes the virus particle at the surface of bronchial epithelial cells, while glycoprotein F interacts with cellular gly- 20 cosaminoglycans to mediate fusion and delivery of the RSV virion contents into the host cell (Krzyzaniak M A et al. PLoS Pathog 2013; 9(4)).

In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide 25 encoding F protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding G protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding L protein. In some 30 embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding P protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding N protein. In some embodiments, a 35 PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding M2 protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding M

In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein, L protein, P protein, N protein, M2 protein and M protein.

In some embodiments, a RSV vaccine of the present 45 disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and G protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and L protein. In some embodiments, a RSV vaccine of the present 50 disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and P protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and N protein. In some embodiments, a RSV vaccine of the present 55 disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and M2 protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and M protein.

In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding G protein and L protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding G protein and P protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide

encoding G protein and N protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding G protein and M2 protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding G protein and M protein.

32

In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and L protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and P protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and N protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and M2 protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and M2 protein. F protein, G protein and M protein.

The present disclosure is not limited by a particular strain of RSV. The strain of RSV used in a vaccine may be any strain of RSV.

In some embodiments, RSV vaccines comprise RNA (e.g., mRNA) polynucleotides encoding a RSV antigenic polypeptides having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with RSV F protein and having F protein activity.

In some embodiments, RSV vaccines comprise RNA (e.g., mRNA) polynucleotides encoding RSV antigenic polypeptides having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with RSV G protein and having G protein activity.

A protein is considered to have G protein activity if, for example, the protein acts to modulate (e.g., inhibit) hMPV-induced cellular (immune) responses (see, e.g., Bao X et al. *PLoS Pathog.* 2008; 4(5):e1000077, incorporated herein by reference).

Measles Virus (MeV) Molecular epidemiologic investigations and virologic surveillance contribute notably to the control and prevention of measles. Nearly half of measles-related deaths worldwide occur in India, yet virologic surveillance data are incomplete for many regions of the country. Previous studies have documented the presence of measles virus genotypes D4, D7, and D8 in India, and genotypes D5, D9, D11, H1, and G3 have been detected in neighboring countries. Recently, MeV genotype B3 was detected in India (Kuttiatt V S et al. *Emerg Infect Dis.* 2014; 20(10): 1764-66).

The glycoprotein complex of paramyxoviruses mediates receptor binding and membrane fusion. In particular, the MeV fusion (F) protein executes membrane fusion, after receptor binding by the hemagglutinin (HA) protein (Muhlebach MD et al. Journal of Virology 2008; 82(22):11437-45). The MeV P gene codes for three proteins: P, an essential polymerase cofactor, and V and C, which have multiple functions but are not strictly required for viral propagation in cultured cells. V shares the amino-terminal domain with 60 P but has a zinc-binding carboxyl-terminal domain, whereas C is translated from an overlapping reading frame. The MeV C protein is an infectivity factor. During replication, the P protein binds incoming monomeric nucleocapsid (N) proteins with its amino-terminal domain and positions them for assembly into the nascent ribonucleocapsid. The P protein amino-terminal domain is natively unfolded (Deveaux P et al. Journal of Virology 2004; 78(21): 11632-40).

In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HA protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding P protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding V protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding C protein.

In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HA protein, F protein, P protein, V protein and C protein.

In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HA protein and F protein. In some embodiments, 20 a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HA protein and P protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HA protein and V protein. In some embodiments, 25 a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HA protein and C protein.

some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and P protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and V protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F 35 protein and C protein.

In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HA protein, F protein and P protein. In some embodiments, a MeV vaccine of the present disclosure 40 comprises a RNA (e.g., mRNA) polynucleotide encoding HA protein, F protein and V protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HA protein, F protein and C protein.

In some embodiments, MeV vaccines comprise RNA (e.g., mRNA) encoding a MeV antigenic polypeptide having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with MeV HA protein and having MeV HA protein activity.

In some embodiments, MeV vaccines comprise RNA (e.g., mRNA) encoding a MeV antigenic polypeptide having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with MeV F protein and having MeV F protein activity.

A protein is considered to have HA protein activity if the protein mediates receptor binding and/or membrane fusion. MeV F protein executes membrane fusion, after receptor binding by the MeV HA protein.

A MeV vaccine may comprise, for example, at least one 60 RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one MeV antigenic polypeptide identified by any one of SEQ ID NO: 47-50 (Table 14; see also amino acid sequences of Table 15).

A MeV vaccine may comprise, for example, at least one 65 RNA (e.g., mRNA) polynucleotide identified by any one of SEQ ID NO: 37, 40, 43, 46 (Table 13).

34

A MeV vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide encoded by a nucleic acid (e.g., DNA) identified by any one of SEQ ID NO: 35, 36, 38, 39, 41, 42, 44 and 45 (Table 13).

The present disclosure is not limited by a particular strain of MeV. The strain of MeV used in a vaccine may be any strain of MeV. Non-limiting examples of strains of MeV for use as provide herein include B3/B3.1, C2, D4, D6, D7, D8, G3, H1, Moraten, Rubeovax, MVi/New Jersey.USA/45.05, MVi/Texas.USA/4.07, AIK-C, MVi/New York.USA/26.09/3, MVi/California.USA/16.03, MVi/Virginia.USA/15.09, MVi/California.USA/8.04, and MVi/Pennsylvania.USA/20.09.

MeV proteins may be from MeV genotype D4, D5, D7, D8, D9, D11, H1, G3 or B3. In some embodiments, a MeV HA protein or a MeV F protein is from MeV genotype D8. In some embodiments, a MeV HA protein or a MeV F protein is from MeV genotype B3. Betacoronaviruses (BetaCoV)

MERS-CoV. MERS-CoV is a positive-sense, singlestranded RNA virus of the genus Betacoronavirus. The genomes are phylogenetically classified into two clades, clade A and clade B. It has a strong tropism for non-ciliated bronchial epithelial cells, evades the innate immune response and antagonizes interferon (IFN) production in infected cells. Dipeptyl peptidase 4 (DDP4, also known as CD26) has been identified as a functional cellular receptor for MERS-CoV. Its enzymatic activity is not required for infection, although its amino acid sequence is highly conserved across species and is expressed in the human bronchial epithelium and kidneys. Most infected individuals develop severe acute respiratory illnesses, including fever, cough, and shortness of breath, and the virus can be fatal. The disease may be transmitted among humans, generally among those in close contact.

The genome of MERS-CoV encodes at least four unique accessory proteins, such as 3, 4a, 4b and 5, two replicase proteins (open reading frame 1a and 1b), and four major structural proteins, including spike (S), envelope (E), nucleocapsid (N), and membrane (M) proteins (Almazan F et al. *MBio* 2013; 4(5):e00650-13). The accessory proteins play nonessential roles in MERS-CoV replication, but they are likely structural proteins or interferon antagonists, modulating in vivo replication efficiency and/or pathogenesis, as in the case of SARS-CoV (Almazan F et al. MBio 2013; 4(5):e00650-13; Totura A L et al. Curr Opin Virol 2012; 2(3):264-75; Scobey T et al. Proc Natl Acad Sci USA 2013; 110(40):16157-62). The other proteins of MERS-CoV maintain different functions in virus replication. The E protein, for example, involves in virulence, and deleting the E-coding gene results in replication-competent and propagation-defective viruses or attenuated viruses (Almazan F et al. MBio 2013; 4(5):e00650-13). The S protein is particularly essential in mediating virus binding to cells expressing receptor dipeptidyl peptidase-4 (DPP4) through receptorbinding domain (RBD) in the S1 subunit, whereas the S2 subunit subsequently mediates virus entry via fusion of the virus and target cell membranes (Li F. J Virol 2015; 89(4): 1954-64; Raj V S et al. Nature 2013; 495(7440):251-4).

In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding the S1 subunit of the S protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding the S2 subunit of the S

protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding E protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding N protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding M protein.

In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2), E protein, N protein and M protein.

In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2) and E 15 protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2) and N protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2) and M protein.

In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2), E protein 25 and M protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2), E protein and N protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a 30 RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2), M protein and N protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding E protein, M protein and N protein.

A MERS-CoV vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one MERS-CoV antigenic polypeptide identified by any one of SEQ ID NO: 24-38 or 33 (Table 11; see also amino acid sequences of Table 12). 40

A MERS-CoV vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide encoded by a nucleic acid (e.g., DNA) identified by any one of SEQ ID NO: 20-23 (Table 10).

The present disclosure is not limited by a particular strain 45 of MERS-CoV. The strain of MERS-CoV used in a vaccine may be any strain of MERS-CoV. Non-limiting examples of strains of MERS-CoV for use as provide herein include Riyadh_14_2013, and 2cEMC/2012, Hasa_1_2013.

SARS-CoV. The genome of SARS-CoV includes of a 50 single, positive-strand RNA that is approximately 29,700 nucleotides long. The overall genome organization of SARS-CoV is similar to that of other coronaviruses. The reference genome includes 13 genes, which encode at least 14 proteins. Two large overlapping reading frames (ORFs) 55 encompass 71% of the genome. The remainder has 12 potential ORFs, including genes for structural proteins S (spike), E (small envelope), M (membrane), and N (nucleocapsid). Other potential ORFs code for unique putative SARS-CoV-specific polypeptides that lack obvious 60 sequence similarity to known proteins. A detailed analysis of the SARS-CoV genome has been published in *J Mol Biol* 2003; 331: 991-1004.

In some embodiments, a SARS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2), E protein, N protein and M protein.

36

In some embodiments, a SARS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2) and E protein. In some embodiments, a SARS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2) and N protein. In some embodiments, a SARS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2) and M protein.

In some embodiments, a SARS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2), E protein and M protein. In some embodiments, a SARS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2), E protein and N protein. In some embodiments, a SARS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2), M protein and N protein. In some embodiments, a SARS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding E protein, M protein and N protein.

A SARS-CoV vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one SARS-CoV antigenic polypeptide identified by any one of SEQ ID NO: 29, 32 or 34 (Table 11; see also amino acid sequences of Table 12).

The present disclosure is not limited by a particular strain of SARS-CoV. The strain of SARS-CoV used in a vaccine may be any strain of SARS-CoV.

HCoV-OC43.

Human coronavirus OC43 is an enveloped, positivesense, single-stranded RNA virus in the species Betacoro-35 navirus-1 (genus Betacoronavirus, subfamily Coronavirinae, family Coronaviridae, order Nidovirales). Four HCoV-OC43 genotypes (A to D), have been identified with genotype D most likely arising from recombination. The complete genome sequencing of two genotype C and D strains and bootscan analysis shows recombination events between genotypes B and C in the generation of genotype D. Of 29 strains identified, none belong to the more ancient genotype A. Along with HCoV-229E, a species in the Alphacoronavirus genus, HCoV-OC43 are among the known viruses that cause the common cold. Both viruses can cause severe lower respiratory tract infections, including pneumonia in infants, the elderly, and immunocompromised individuals such as those undergoing chemotherapy and those with HIV-AIDS.

HCoV-HKU1.

Human coronavirus HKU1 (HCoV-H KU 1) is a positivesense, single-stranded RNA virus with the HE gene, which distinguishes it as a group 2, or betacoronavirus. It was discovered in January 2005 in two patients in Hong Kong. The genome of HCoV-HKU1 is a 29,926-nucleotide, polyadenylated RNA. The GC content is 32%, the lowest among all known coronaviruses. The genome organization is the same as that of other group II coronaviruses, with the characteristic gene order 1a, 1b, HE, S, E, M, and N. Furthermore, accessory protein genes are present between the S and E genes (ORF4) and at the position of the N gene (ORF8). The TRS is presumably located within the AAUC-UAAAC sequence, which precedes each ORF except E. As in sialodacryoadenitis virus and mouse hepatitis virus (MHV), translation of the E protein possibly occurs via an internal ribosomal entry site. The 3' untranslated region contains a predicted stem-loop structure immediately down-

stream of the N ORF (nucleotide position 29647 to 29711). Further downstream, a pseudoknot structure is present at nucleotide position 29708 to 29760. Both RNA structures are conserved in group II coronaviruses and are critical for virus replication.

HCoV-NL63.

The RNA genome of human coronavirus NL63 (HCoV-NL63) is 27,553 nucleotides, with a poly(A) tail (FIG. 1). With a GC content of 34%, HCoV-NL63 has one of the lowest GC contents of the coronaviruses, for which GC content ranges from 32 to 42%. Untranslated regions of 286 and 287 nucleotides are present at the 5' and 3' termini, respectively. Genes predicted to encode the S, E, M, and N proteins are found in the 3' part of the HCoV-NL63 genome. The HE gene, which is present in some group II coronavi- 15 ruses, is absent, and there is only a single, monocistronic accessory protein ORF (ORF3) located between the S and E genes. Subgenomic mRNAs are generated for all ORFs (S, ORF3, E, M, and N), and the core sequence of the TRS of HCoV-NL63 is defined as AACUAAA. This sequence is 20 situated upstream of every ORF except for the E ORF, which contains the suboptimal core sequence AACUAUA. Interestingly, a 13-nucleotide sequence with perfect homology to the leader sequence is situated upstream of the suboptimal E TRS. Annealing of this 13-nucleotide sequence to the leader 25 sequence may act as a compensatory mechanism for the disturbed leader-TRS/body-TRS interaction.

HCoV-229E.

Human coronavirus 229E (HCoV-229E) is a singlestranded, positive-sense, RNA virus species in the Alpha- 30 coronavirus genus of the subfamily Coronavirinae, in the family Coronaviridae, of the order Nidovirales. Along with Human coronavirus OC43, it is responsible for the common cold. HCoV-NL63 and HCoV-229E are two of the four human coronaviruses that circulate worldwide. These two 35 viruses are unique in their relationship towards each other. Phylogenetically, the viruses are more closely related to each other than to any other human coronavirus, yet they only share 65% sequence identity. Moreover, the viruses use different receptors to enter their target cell. HCoV-NL63 is 40 associated with croup in children, whereas all signs suggest that the virus probably causes the common cold in healthy adults. HCoV-229E is a proven common cold virus in healthy adults, so it is probable that both viruses induce comparable symptoms in adults, even though their mode of 45 infection differs (HCoV-NL63 and HCoV-229E are two of the four human coronaviruses that circulate worldwide. These two viruses are unique in their relationship towards each other. Phylogenetically, the viruses are more closely related to each other than to any other human coronavirus, 50 yet they only share 65% sequence identity. Moreover, the viruses use different receptors to enter their target cell. HCoV-NL63 is associated with croup in children, whereas all signs suggest that the virus probably causes the common cold in healthy adults. HCoV-229E is a proven common cold 55 virus in healthy adults, so it is probable that both viruses induce comparable symptoms in adults, even though their mode of infection differs (Dijkman R. et al. J Formos Med Assoc. 2009 April; 108(4):270-9, the contents of which is incorporated herein by reference in their entirety). Combination Vaccines

Embodiments of the present disclosure also provide combination RNA (e.g., mRNA) vaccines. A "combination RNA (e.g., mRNA) vaccine disclosure refers to a vaccine comprising at least one (e.g., at least 2, 3, 4, or 5) RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a combination of any two or more (or all of)

38

antigenic polypeptides selected from hMPV antigenic polypeptides, PIV3 antigenic polypeptides, RSV antigenic polypeptides, MeV antigenic polypeptides, and BetaCoV antigenic polypeptides (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a PIV3 antigenic polypeptide, a MeV antigenic polypeptide, a MeV antigenic polypeptide, and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide and a PIV3 antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide and a RSV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide and a MeV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide and a BetaCoV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a PIV3 antigenic polypeptide and a RSV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a PIV3 antigenic polypeptide and a MeV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a PIV3 antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a RSV antigenic polypeptide and a MeV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a RSV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a MeV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63,
 HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a PIV3 antigenic polypeptide and a MeV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide

encoding a hMPV antigenic polypeptide, a PIV3 antigenic polypeptide, a RSV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a PIV3 antigenic selected from polypeptide, a MeV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, 10 HCoV-HKU1). Other combination RNA (e.g., mRNA) encoding a RS polypeptide and a BetaCoV HCoV-229E, HCoV-229E, HCoV-NL63, Other combination RNA (e.g., mRNA) encoding a RS polypeptide and a BetaCoV HCoV-229E, HCoV-229E, HCoV-NL63, Other combination RNA (e.g., mRNA) encoding a RS polypeptide and a BetaCoV HCoV-229E, HCoV-NL63, Other combination RNA (e.g., mRNA) encoding a RS polypeptide and a BetaCoV HCoV-229E, HCoV-NL63, Other combination RNA (e.g., mRNA) polypucleotide and a BetaCoV HCoV-229E, HCoV-NL63, Other combination RNA (e.g., mRNA) polypucleotide and a BetaCoV HCoV-229E, HCoV-NL63, Other combination RNA (e.g., mRNA) polypucleotide and a BetaCoV HCoV-229E, HCoV-NL63, Other combination RNA (e.g., mRNA) polypucleotide and a BetaCoV HCoV-229E, HCoV-NL63, Other combination RNA (e.g., mRNA) polypucleotide and a BetaCoV HCoV-229E, HCoV-NL63, Other combination RNA (e.g., mRNA) polypucleotide and a BetaCoV HCoV-229E, HCoV-NL63, Other combination RNA (e.g., mRNA) polypucleotide and a BetaCoV HCoV-229E, HCoV-NL63, Other combination RNA (e.g., mRNA) polypucleotide and a BetaCoV HCoV-229E, HCoV-NL63, Other combination RNA (e.g., mRNA) polypucleotide and a BetaCoV HCoV-NL63, HCoV-NL63, HCoV-NL63, HCoV-NL63, HCoV-NL63, HCoV-NL64, HCOV

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a RSV antigenic 15 polypeptide, a MeV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) 20 vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a PIV3 antigenic polypeptide, a RSV antigenic polypeptide, a MeV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, 25 HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a PIV3 antigenic polypeptide and a RSV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a PIV3 antigenic polypeptide and a MeV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) 35 vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a PIV3 antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and 40 HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a RSV antigenic polypeptide and a MeV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a RSV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, 50 HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a MeV antigenic 55 polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) 60 vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a PIV3 antigenic polypeptide, a RSV antigenic polypeptide and a MeV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide 65 encoding a PIV3 antigenic polypeptide, a RSV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g.,

40

selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a RSV antigenic polypeptide, a MeV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1)

Other combination respiratory virus RNA (e.g., mRNA) vaccines are encompassed by the present disclosure.

It has been discovered that the mRNA vaccines described herein are superior to current vaccines in several ways. First, the lipid nanoparticle (LNP) delivery is superior to other formulations including a protamine base approach described in the literature and no additional adjuvants are to be necessary. The use of LNPs enables the effective delivery of chemically modified or unmodified mRNA vaccines. Additionally it has been demonstrated herein that both modified and unmodified LNP formulated mRNA vaccines were superior to conventional vaccines by a significant degree. In some embodiments the mRNA vaccines of the invention are superior to conventional vaccines by a factor of at least 10 fold, 20 fold, 40 fold, 50 fold, 100 fold, 500 fold or 1,000 fold.

Although attempts have been made to produce functional RNA vaccines, including mRNA vaccines and self-replicating RNA vaccines, the therapeutic efficacy of these RNA vaccines have not yet been fully established. Quite surprisingly, the inventors have discovered, according to aspects of the invention a class of formulations for delivering mRNA vaccines in vivo that results in significantly enhanced, and in many respects synergistic, immune responses including enhanced antigen generation and functional antibody production with neutralization capability. These results can be achieved even when significantly lower doses of the mRNA are administered in comparison with mRNA doses used in other classes of lipid based formulations. The formulations of the invention have demonstrated significant unexpected in vivo immune responses sufficient to establish the efficacy of functional mRNA vaccines as prophylactic and therapeutic agents. Additionally, self-replicating RNA vaccines rely on viral replication pathways to deliver enough RNA to a cell to produce an immunogenic response. The formulations of the invention do not require viral replication to produce enough protein to result in a strong immune response. Thus, the mRNA of the invention are not self-replicating RNA and do not include components necessary for viral replication.

The invention involves, in some aspects, the surprising finding that lipid nanoparticle (LNP) formulations significantly enhance the effectiveness of mRNA vaccines, including chemically modified and unmodified mRNA vaccines. The efficacy of mRNA vaccines formulated in LNP was examined in vivo using several distinct antigens. The results presented herein demonstrate the unexpected superior efficacy of the mRNA vaccines formulated in LNP over other commercially available vaccines.

In addition to providing an enhanced immune response, the formulations of the invention generate a more rapid immune response with fewer doses of antigen than other vaccines tested. The mRNA-LNP formulations of the invention also produce quantitatively and qualitatively better immune responses than vaccines formulated in a different carriers.

The data described herein demonstrate that the formulations of the invention produced significant unexpected , ,

improvements over existing antigen vaccines. Additionally, the mRNA-LNP formulations of the invention are superior to other vaccines even when the dose of mRNA is lower than other vaccines. Mice immunized with either 10 μ g or 2 μ g doses of an hMPV fusion protein mRNA LNP vaccine or a 5 PIV3 mRNA LNP vaccine produced neutralizing antibodies which for instance, successfully neutralized the hMPV B2 virus. A 10 μ g dose of mRNA vaccine protected 100% of mice from lethal challenge and drastically reduced the viral titer after challenge (~2 log reduction).

41

Two 20 μg doses of MERS-CoV mRNA LNP vaccine significantly reduced viral load and induced significant amount of neutralizing antibodies against MERS-CoV (ECso between 500-1000). The MERS-CoV mRNA vaccine induced antibody titer was 3-5 fold better than any other 15 vaccines tested in the same model.

The LNP used in the studies described herein has been used previously to deliver siRNA in various animal models as well as in humans. In view of the observations made in association with the siRNA delivery of LNP formulations, 20 the fact that LNP is useful in vaccines is quite surprising. It has been observed that therapeutic delivery of siRNA formulated in LNP causes an undesirable inflammatory response associated with a transient IgM response, typically leading to a reduction in antigen production and a compromised immune response. In contrast to the findings observed with siRNA, the LNP-mRNA formulations of the invention are demonstrated herein to generate enhanced IgG levels, sufficient for prophylactic and therapeutic methods rather than transient IgM responses.

Nucleic Acids/Polynucleotides

Respiratory virus vaccines, as provided herein, comprise at least one (one or more) ribonucleic acid (RNA) (e.g., mRNA) polynucleotide having an open reading frame encoding at least one antigenic polypeptide selected from 35 hMPV, PIV3, RSV, MeV and BetaCoV (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1) antigenic polypeptides. The term "nucleic acid" includes any compound and/or substance that comprises a polymer of 40 nucleotides (nucleotide monomer). These polymers are referred to as polynucleotides. Thus, the terms "nucleic acid" and "polynucleotide" are used interchangeably.

Nucleic acids may be or may include, for example, ribonucleic acids (RNAs), deoxyribonucleic acids (DNAs), 45 threose nucleic acids (TNAs), glycol nucleic acids (GNAs), peptide nucleic acids (PNAs), locked nucleic acids (LNAs, including LNA having a β -D-ribo configuration, α -LNA having an α -L-ribo configuration (a diastereomer of LNA), 2'-amino-LNA having a 2'-amino functionalization, and 50 2'-amino- α -LNA having a 2'-amino functionalization), ethylene nucleic acids (ENA), cyclohexenyl nucleic acids (CeNA) or chimeras or combinations thereof.

In some embodiments, polynucleotides of the present disclosure function as messenger RNA (mRNA). "Messenger RNA" (mRNA) refers to any polynucleotide that encodes a (at least one) polypeptide (a naturally-occurring, non-naturally-occurring, or modified polymer of amino acids) and can be translated to produce the encoded polypeptide in vitro, in vivo, in situ or ex vivo. The skilled artisan will appreciate that, except where otherwise noted, polynucleotide sequences set forth in the instant application will recite "T"s in a representative DNA sequence but where the sequence represents RNA (e.g., mRNA), the "T"s would be substituted for "U"s. Thus, any of the RNA polynucleotides encoded by a DNA identified by a particular sequence identification number may also comprise the corresponding

RNA (e.g., mRNA) sequence encoded by the DNA, where each "T" of the DNA sequence is substituted with "U."

The basic components of an mRNA molecule typically include at least one coding region, a 5' untranslated region (UTR), a 3' UTR, a 5' cap and a poly-A tail. Polynucleotides of the present disclosure may function as mRNA but can be distinguished from wild-type mRNA in their functional and/or structural design features, which serve to overcome existing problems of effective polypeptide expression using nucleic-acid based therapeutics.

In some embodiments, a RNA polynucleotide of an RNA (e.g., mRNA) vaccine encodes 2-10, 2-9, 2-8, 2-7, 2-6, 2-5, 2-4, 2-3, 3-10, 3-9, 3-8, 3-7, 3-6, 3-5, 3-4, 4-10, 4-9, 4-8, 4-7, 4-6, 4-5, 5-10, 5-9, 5-8, 5-7, 5-6, 6-10, 6-9, 6-8, 6-7, 7-10, 7-9, 7-8, 8-10, 8-9 or 9-10 antigenic polypeptides. In some embodiments, a RNA (e.g., mRNA) polynucleotide of a respiratory virus vaccine encodes at least 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 antigenic polypeptides. In some embodiments, a RNA (e.g., mRNA) polynucleotide of a respiratory virus vaccine encodes at least 100 or at least 200 antigenic polypeptides. In some embodiments, a RNA polynucleotide of an respiratory virus vaccine encodes 1-10, 5-15, 10-20, 15-25, 20-30, 25-35, 30-40, 35-45, 40-50, 1-50, 1-100, 2-50 or 2-100 antigenic polypeptides.

Polynucleotides of the present disclosure, in some embodiments, are codon optimized. Codon optimization methods are known in the art and may be used as provided herein. Codon optimization, in some embodiments, may be used to match codon frequencies in target and host organisms to ensure proper folding; bias GC content to increase mRNA stability or reduce secondary structures; minimize tandem repeat codons or base runs that may impair gene construction or expression; customize transcriptional and translational control regions; insert or remove protein trafficking sequences; remove/add post translation modification sites in encoded protein (e.g. glycosylation sites); add, remove or shuffle protein domains; insert or delete restriction sites; modify ribosome binding sites and mRNA degradation sites; adjust translational rates to allow the various domains of the protein to fold properly; or to reduce or eliminate problem secondary structures within the polynucleotide. Codon optimization tools, algorithms and services are known in the art—non-limiting examples include services from GeneArt (Life Technologies), DNA2.0 (Menlo Park Calif.) and/or proprietary methods. In some embodiments, the open reading frame (ORF) sequence is optimized using optimization algorithms.

2'-amino-LNA having a 2'-amino functionalization, and 50 In some embodiments, a codon optimized sequence 2'-amino-α-LNA having a 2'-amino functionalization), ethylene nucleic acids (ENA), cyclohexenyl nucleic acids (CeNA) or chimeras or combinations thereof.

In some embodiments, polynucleotides of the present disclosure function as messenger RNA (mRNA). "Messenger RNA" (mRNA) refers to any polynucleotide that encodes a (at least one) polypeptide (a naturally-occurring, a codon optimized sequence shares less than 95% sequence identity, less than 85% sequence identity, or less than 75% sequence identity to a naturally-occurring or wild-type sequence (e.g., a naturally-occurring or wild-type mRNA sequence encoding a polypeptide or protein of interest (e.g., an antigenic protein or antigenic polypeptide)).

In some embodiments, a codon-optimized sequence shares between 65% and 85% (e.g., between about 67% and about 85%, or between about 67% and about 80%) sequence identity to a naturally-occurring sequence or a wild-type sequence (e.g., a naturally-occurring or wild-type mRNA sequence encoding a polypeptide or protein of interest (e.g., an antigenic protein or polypeptide)). In some embodiments, a codon-optimized sequence shares between 65% and 75%, or about 80% sequence identity to a naturally-occurring sequence or wild-type sequence (e.g., a naturally-occurring

or wild-type mRNA sequence encoding a polypeptide or protein of interest (e.g., an antigenic protein or polypep-

In some embodiments a codon-optimized RNA (e.g., mRNA) may, for instance, be one in which the levels of G/C are enhanced. The G/C-content of nucleic acid molecules may influence the stability of the RNA. RNA having an increased amount of guanine (G) and/or cytosine (C) residues may be functionally more stable than nucleic acids containing a large amount of adenine (A) and thymine (T) or 10 uracil (U) nucleotides. WO02/098443 discloses a pharmaceutical composition containing an mRNA stabilized by sequence modifications in the translated region. Due to the degeneracy of the genetic code, the modifications work by substituting existing codons for those that promote greater 15 RNA stability without changing the resulting amino acid. The approach is limited to coding regions of the RNA. Antigens/Antigenic Polypeptides

In some embodiments, an antigenic polypeptide (e.g., a hMPV, PIV3, RSV, MeV or BetaCoV antigenic polypeptide) 20 is longer than 25 amino acids and shorter than 50 amino acids. Polypeptides include gene products, naturally occurring polypeptides, synthetic polypeptides, homologs, orthologs, paralogs, fragments and other equivalents, variants, and analogs of the foregoing. A polypeptide may be a 25 single molecule or may be a multi-molecular complex such as a dimer, trimer or tetramer. Polypeptides may also comprise single chain polypeptides or multichain polypeptides, such as antibodies or insulin, and may be associated or linked to each other. Most commonly, disulfide linkages are 30 found in multichain polypeptides. The term "polypeptide" may also apply to amino acid polymers in which at least one amino acid residue is an artificial chemical analogue of a corresponding naturally-occurring amino acid.

A "polypeptide variant" is a molecule that differs in its 35 amino acid sequence relative to a native sequence or a reference sequence. Amino acid sequence variants may possess substitutions, deletions, insertions, or a combination of any two or three of the foregoing, at certain positions within the amino acid sequence, as compared to a native 40 sequence or a reference sequence. Ordinarily, variants possess at least 50% identity to a native sequence or a reference sequence. In some embodiments, variants share at least 80% identity or at least 90% identity with a native sequence or a reference sequence.

In some embodiments "variant mimics" are provided. A "variant mimic" contains at least one amino acid that would mimic an activated sequence. For example, glutamate may serve as a mimic for phosphoro-threonine and/or phosphoroserine. Alternatively, variant mimics may result in deacti- 50 vation or in an inactivated product containing the mimic. For example, phenylalanine may act as an inactivating substitution for tyrosine, or alanine may act as an inactivating substitution for serine.

evolved from a common ancestral gene by speciation. Normally, orthologs retain the same function in the course of evolution. Identification of orthologs is important for reliable prediction of gene function in newly sequenced genomes.

"Analogs" is meant to include polypeptide variants that differ by one or more amino acid alterations, for example, substitutions, additions or deletions of amino acid residues that still maintain one or more of the properties of the parent or starting polypeptide.

The present disclosure provides several types of compositions that are polynucleotide or polypeptide based, includ44

ing variants and derivatives. These include, for example, substitutional, insertional, deletion and covalent variants and derivatives. The term "derivative" is synonymous with the term "variant" and generally refers to a molecule that has been modified and/or changed in any way relative to a reference molecule or a starting molecule.

As such, polynucleotides encoding peptides or polypeptides containing substitutions, insertions and/or additions, deletions and covalent modifications with respect to reference sequences, in particular the polypeptide sequences disclosed herein, are included within the scope of this disclosure. For example, sequence tags or amino acids, such as one or more lysines, can be added to peptide sequences (e.g., at the N-terminal or C-terminal ends). Sequence tags can be used for peptide detection, purification or localization. Lysines can be used to increase peptide solubility or to allow for biotinylation. Alternatively, amino acid residues located at the carboxy and amino terminal regions of the amino acid sequence of a peptide or protein may optionally be deleted providing for truncated sequences. Certain amino acids (e.g., C-terminal residues or N-terminal residues) alternatively may be deleted depending on the use of the sequence, as for example, expression of the sequence as part of a larger sequence that is soluble, or linked to a solid support.

"Substitutional variants" when referring to polypeptides are those that have at least one amino acid residue in a native or starting sequence removed and a different amino acid inserted in its place at the same position. Substitutions may be single, where only one amino acid in the molecule has been substituted, or they may be multiple, where two or more (e.g., 3, 4 or 5) amino acids have been substituted in the same molecule.

As used herein the term "conservative amino acid substitution" refers to the substitution of an amino acid that is normally present in the sequence with a different amino acid of similar size, charge, or polarity. Examples of conservative substitutions include the substitution of a non-polar (hydrophobic) residue such as isoleucine, valine and leucine for another non-polar residue. Likewise, examples of conservative substitutions include the substitution of one polar (hydrophilic) residue for another such as between arginine and lysine, between glutamine and asparagine, and between glycine and serine. Additionally, the substitution of a basic residue such as lysine, arginine or histidine for another, or the substitution of one acidic residue such as aspartic acid or glutamic acid for another acidic residue are additional examples of conservative substitutions. Examples of nonconservative substitutions include the substitution of a nonpolar (hydrophobic) amino acid residue such as isoleucine, valine, leucine, alanine, methionine for a polar (hydrophilic) residue such as cysteine, glutamine, glutamic acid or lysine and/or a polar residue for a non-polar residue.

"Features" when referring to polypeptide or polynucle-"Orthologs" refers to genes in different species that 55 otide are defined as distinct amino acid sequence-based or nucleotide-based components of a molecule respectively. Features of the polypeptides encoded by the polynucleotides include surface manifestations, local conformational shape, folds, loops, half-loops, domains, half-domains, sites, termini and any combination(s) thereof.

> As used herein when referring to polypeptides the term "domain" refers to a motif of a polypeptide having one or more identifiable structural or functional characteristics or properties (e.g., binding capacity, serving as a site for protein-protein interactions).

> As used herein when referring to polypeptides the terms "site" as it pertains to amino acid based embodiments is used

----,

synonymously with "amino acid residue" and "amino acid side chain." As used herein when referring to polynucle-otides the terms "site" as it pertains to nucleotide based embodiments is used synonymously with "nucleotide." A site represents a position within a peptide or polypeptide or 5 polynucleotide that may be modified, manipulated, altered, derivatized or varied within the polypeptide-based or polynucleotide-based molecules.

45

As used herein the terms "termini" or "terminus" when referring to polypeptides or polynucleotides refers to an 10 extremity of a polypeptide or polynucleotide respectively. Such extremity is not limited only to the first or final site of the polypeptide or polynucleotide but may include additional amino acids or nucleotides in the terminal regions. Polypeptide-based molecules may be characterized as hav- 15 ing both an N-terminus (terminated by an amino acid with a free amino group (NH2)) and a C-terminus (terminated by an amino acid with a free carboxyl group (COOH)). Proteins are in some cases made up of multiple polypeptide chains brought together by disulfide bonds or by non-covalent 20 forces (multimers, oligomers). These proteins have multiple N- and C-termini. Alternatively, the termini of the polypeptides may be modified such that they begin or end, as the case may be, with a non-polypeptide based moiety such as an organic conjugate.

As recognized by those skilled in the art, protein fragments, functional protein domains, and homologous proteins are also considered to be within the scope of polypeptides of interest. For example, provided herein is any protein fragment (meaning a polypeptide sequence at least one amino 30 acid residue shorter than a reference polypeptide sequence but otherwise identical) of a reference protein having a length of 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 or longer than 100 amino acids. In another example, any protein that includes a stretch of 20, 30, 40, 50, or 100 (contiguous) 35 amino acids that are 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 100% identical to any of the sequences described herein can be utilized in accordance with the disclosure. In some embodiments, a polypeptide includes 2, 3, 4, 5, 6, 7, 8, 9, 10, or more mutations as shown in any of the sequences pro- 40 vided herein or referenced herein. In another example, any protein that includes a stretch of 20, 30, 40, 50, or 100 amino acids that are greater than 80%, 90%, 95%, or 100% identical to any of the sequences described herein, wherein the protein has a stretch of 5, 10, 15, 20, 25, or 30 amino 45 acids that are less than 80%, 75%, 70%, 65% to 60% identical to any of the sequences described herein can be utilized in accordance with the disclosure.

Polypeptide or polynucleotide molecules of the present disclosure may share a certain degree of sequence similarity 50 or identity with the reference molecules (e.g., reference polypeptides or reference polynucleotides), for example, with art-described molecules (e.g., engineered or designed molecules or wild-type molecules). The term "identity," as known in the art, refers to a relationship between the 55 sequences of two or more polypeptides or polynucleotides, as determined by comparing the sequences. In the art, identity also means the degree of sequence relatedness between two sequences as determined by the number of matches between strings of two or more amino acid residues 60 or nucleic acid residues. Identity measures the percent of identical matches between the smaller of two or more sequences with gap alignments (if any) addressed by a particular mathematical model or computer program (e.g., "algorithms"). Identity of related peptides can be readily 65 calculated by known methods. "% identity" as it applies to polypeptide or polynucleotide sequences is defined as the

46

percentage of residues (amino acid residues or nucleic acid residues) in the candidate amino acid or nucleic acid sequence that are identical with the residues in the amino acid sequence or nucleic acid sequence of a second sequence after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent identity. Methods and computer programs for the alignment are well known in the art. Identity depends on a calculation of percent identity but may differ in value due to gaps and penalties introduced in the calculation. Generally, variants of a particular polynucleotide or polypeptide have at least 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% but less than 100% sequence identity to that particular reference polynucleotide or polypeptide as determined by sequence alignment programs and parameters described herein and known to those skilled in the art. Such tools for alignment include those of the BLAST suite (Stephen F. Altschul, et al. (1997)." Gapped BLAST and PSI-BLAST: a new generation of protein database search programs," Nucleic Acids Res. 25:3389-3402). Another popular local alignment technique is based on the Smith-Waterman algorithm (Smith, T. F. & Waterman, M. S. (1981) "Identification of common molecular subsequences." J. Mol. Biol. 147:195-197). A general global alignment technique based on dynamic programming is the Needleman-Wunsch algorithm (Needleman, S. B. & Wunsch, C. D. (1970) "A general method applicable to the search for similarities in the amino acid sequences of two proteins." J. Mol. Biol. 48:443-453). More recently, a Fast Optimal Global Sequence Alignment Algorithm (FOGSAA) was developed that purportedly produces global alignment of nucleotide and protein sequences faster than other optimal global alignment methods, including the Needleman-Wunsch algorithm. Other tools are described herein, specifically in the definition of "identity" below.

As used herein, the term "homology" refers to the overall relatedness between polymeric molecules, e.g. between nucleic acid molecules (e.g. DNA molecules and/or RNA molecules) and/or between polypeptide molecules. Polymeric molecules (e.g. nucleic acid molecules (e.g. DNA molecules and/or RNA molecules) and/or polypeptide molecules) that share a threshold level of similarity or identity determined by alignment of matching residues are termed homologous. Homology is a qualitative term that describes a relationship between molecules and can be based upon the quantitative similarity or identity. Similarity or identity is a quantitative term that defines the degree of sequence match between two compared sequences. In some embodiments, polymeric molecules are considered to be "homologous" to one another if their sequences are at least 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% identical or similar. The term "homologous" necessarily refers to a comparison between at least two sequences (polynucleotide or polypeptide sequences). Two polynucleotide sequences are considered homologous if the polypeptides they encode are at least 50%, 60%, 70%, 80%, 90%, 95%, or even 99% for at least one stretch of at least 20 amino acids. In some embodiments, homologous polynucleotide sequences are characterized by the ability to encode a stretch of at least 4-5 uniquely specified amino acids. For polynucleotide sequences less than 60 nucleotides in length, homology is determined by the ability to encode a stretch of at least 4-5 uniquely specified amino acids. Two protein sequences are considered homologous if the proteins are at least 50%, 60%, 70%, 80%, or 90% identical for at least one stretch of at least 20 amino acids.

Homology implies that the compared sequences diverged in evolution from a common origin. The term "homolog" refers to a first amino acid sequence or nucleic acid sequence (e.g., gene (DNA or RNA) or protein sequence) that is related to a second amino acid sequence or nucleic acid 5 sequence by descent from a common ancestral sequence. The term "homolog" may apply to the relationship between genes and/or proteins separated by the event of speciation or to the relationship between genes and/or proteins separated by the event of genetic duplication. "Orthologs" are genes 10 (or proteins) in different species that evolved from a common ancestral gene (or protein) by speciation. Typically, orthologs retain the same function in the course of evolution. "Paralogs" are genes (or proteins) related by duplication within a genome. Orthologs retain the same function in the 15 course of evolution, whereas paralogs evolve new functions, even if these are related to the original one.

47

The term "identity" refers to the overall relatedness between polymeric molecules, for example, between polynucleotide molecules (e.g. DNA molecules and/or RNA 20 molecules) and/or between polypeptide molecules. Calculation of the percent identity of two polynucleic acid sequences, for example, can be performed by aligning the two sequences for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second 25 nucleic acid sequences for optimal alignment and nonidentical sequences can be disregarded for comparison purposes). In certain embodiments, the length of a sequence aligned for comparison purposes is at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, 30 at least 90%, at least 95%, or 100% of the length of the reference sequence. The nucleotides at corresponding nucleotide positions are then compared. When a position in the first sequence is occupied by the same nucleotide as the corresponding position in the second sequence, then the 35 molecules are identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which needs to be introduced for optimal alignment of the 40 two sequences. The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. For example, the percent identity between two nucleic acid sequences can be determined using methods such as those described in 45 Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; Computer Analysis 50 of Sequence Data, Part I, Griffin, A. M., and Griffin, H. G., eds., Humana Press, New Jersey, 1994; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M. Stockton Press, New York, 1991; each of which is incorporated herein by reference. For example, the percent identity 55 between two nucleic acid sequences can be determined using the algorithm of Meyers and Miller (CABIOS, 1989, 4:11-17), which has been incorporated into the ALIGN program (version 2.0) using a PAM 120 weight residue table, a gap length penalty of 12 and a gap penalty of 4. The 60 percent identity between two nucleic acid sequences can, alternatively, be determined using the GAP program in the GCG software package using an NWSgapdna.CMP matrix. Methods commonly employed to determine percent identity between sequences include, but are not limited to those 65 disclosed in Carillo, H., and Lipman, D., SIAM J Applied Math., 48:1073 (1988); incorporated herein by reference.

48

Techniques for determining identity are codified in publicly available computer programs. Exemplary computer software to determine homology between two sequences include, but are not limited to, GCG program package, Devereux, J., et al., *Nucleic Acids Research*, 12(1), 387 (1984)), BLASTP, BLASTN, and FASTA Altschul, S. F. et al., *J. Molec. Biol.*, 215, 403 (1990)).

Multiprotein and Multicomponent Vaccines

The present disclosure encompasses respiratory virus vaccines comprising multiple RNA (e.g., mRNA) polynucleotides, each encoding a single antigenic polypeptide, as well as respiratory virus vaccines comprising a single RNA polynucleotide encoding more than one antigenic polypeptide (e.g., as a fusion polypeptide). Thus, a vaccine composition comprising a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a first antigenic polypeptide and a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a second antigenic polypeptide encompasses (a) vaccines that comprise a first RNA polynucleotide encoding a first antigenic polypeptide and a second RNA polynucleotide encoding a second antigenic polypeptide, and (b) vaccines that comprise a single RNA polynucleotide encoding a first and second antigenic polypeptide (e.g., as a fusion polypeptide). RNA (e.g., mRNA) vaccines of the present disclosure, in some embodiments, comprise 2-10 (e.g., 2, 3, 4, 5, 6, 7, 8, 9 or 10), or more, RNA polynucleotides having an open reading frame, each of which encodes a different antigenic polypeptide (or a single RNA polynucleotide encoding 2-10, or more, different antigenic polypeptides). The antigenic polypeptides may be selected from hMPV, PIV3, RSV, MEV and BetaCoV (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1) antigenic polypeptides.

In some embodiments, a respiratory virus vaccine comprises a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a viral capsid protein, a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a viral premembrane/membrane protein, and a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a viral envelope protein. In some embodiments, a respiratory virus vaccine comprises a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a viral fusion (F) protein and a RNA polynucleotide having an open reading frame encoding a viral major surface glycoprotein (G protein). In some embodiments, a vaccine comprises a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a viral F protein. In some embodiments, a vaccine comprises a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a viral G protein. In some embodiments, a vaccine comprises a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a HN protein.

In some embodiments, a multicomponent vaccine comprises at least one RNA (e.g., mRNA) polynucleotide encoding at least one antigenic polypeptide fused to a signal peptide (e.g., any one of SEQ ID NO: 15-19). The signal peptide may be fused at the N-terminus or the C-terminus of an antigenic polypeptide. An antigenic polypeptide fused to a signal peptide may be selected from hMPV, PIV3, RSV, MEV and BetaCoV (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1) antigenic polypeptides. Signal Peptides

In some embodiments, antigenic polypeptides encoded by respiratory virus RNA (e.g., mRNA) polynucleotides comprise a signal peptide. Signal peptides, comprising the

N-terminal 15-60 amino acids of proteins, are typically needed for the translocation across the membrane on the secretory pathway and, thus, universally control the entry of most proteins both in eukaryotes and prokaryotes to the secretory pathway. Signal peptides generally include three 5 regions: an N-terminal region of differing length, which usually comprises positively charged amino acids; a hydrophobic region; and a short carboxy-terminal peptide region. In eukaryotes, the signal peptide of a nascent precursor protein (pre-protein) directs the ribosome to the rough 10 endoplasmic reticulum (ER) membrane and initiates the transport of the growing peptide chain across it for processing. ER processing produces mature proteins, wherein the signal peptide is cleaved from precursor proteins, typically by a ER-resident signal peptidase of the host cell, or they 15 remain uncleaved and function as a membrane anchor. A signal peptide may also facilitate the targeting of the protein to the cell membrane. The signal peptide, however, is not responsible for the final destination of the mature protein. Secretory proteins devoid of additional address tags in their 20 sequence are by default secreted to the external environment. During recent years, a more advanced view of signal peptides has evolved, showing that the functions and immunodominance of certain signal peptides are much more versatile than previously anticipated.

Respiratory virus vaccines of the present disclosure may comprise, for example, RNA (e.g., mRNA) polynucleotides encoding an artificial signal peptide, wherein the signal peptide coding sequence is operably linked to and is in frame with the coding sequence of the antigenic polypeptide. Thus, 30 respiratory virus vaccines of the present disclosure, in some embodiments, produce an antigenic polypeptide comprising an antigenic polypeptide (e.g., hMPV, PIV3, RSV, MeV or BetaCoV) fused to a signal peptide. In some embodiments, a signal peptide is fused to the N-terminus of the antigenic polypeptide. In some embodiments, a signal peptide is fused to the C-terminus of the antigenic polypeptide.

In some embodiments, the signal peptide fused to the antigenic polypeptide is an artificial signal peptide. In some embodiments, an artificial signal peptide fused to the anti- 40 genic polypeptide encoded by the RNA (e.g., mRNA) vaccine is obtained from an immunoglobulin protein, e.g., an IgE signal peptide or an IgG signal peptide. In some embodiments, a signal peptide fused to the antigenic polypeptide encoded by a RNA (e.g., mRNA) vaccine is an Ig 45 heavy chain epsilon-1 signal peptide (IgE HC SP) having the sequence of: MDWTWILFLVAAATRVHS (SEO ID NO: 16). In some embodiments, a signal peptide fused to the antigenic polypeptide encoded by the (e.g., mRNA) RNA (e.g., mRNA) vaccine is an IgGk chain V-III region HAH 50 signal peptide (IgGk SP) having the sequence of MET-PAQLLFLLLWLPDTTG (SEQ ID NO: 15). In some embodiments, the signal peptide is selected from: Japanese encephalitis PRM signal sequence (MLGSNSGQRV-VFTILLLLVAPAYS; SEQ ID NO: 17), VSVg protein signal 55 sequence (MKCLLYLAFLFIGVNCA; SEQ ID NO: 18) and Japanese encephalitis JEV signal sequence (MWLVS-LAIVTACAGA; SEQ ID NO: 19).

In some embodiments, the antigenic polypeptide encoded by a RNA (e.g., mRNA) vaccine comprises an amino acid 60 sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, 47-50 or 54-56 (Tables 3, 6, 11, 14 or 17; see also amino acid sequences of Tables 4, 7, 12 or 15) fused to a signal peptide identified by any one of SEQ ID NO: 15-19 (Table 8). The examples disclosed herein are not meant to be 65 limiting and any signal peptide that is known in the art to facilitate targeting of a protein to ER for processing and/or

targeting of a protein to the cell membrane may be used in accordance with the present disclosure.

A signal peptide may have a length of 15-60 amino acids. For example, a signal peptide may have a length of 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, or 60 amino acids. In some embodiments, a signal peptide has a length of 20-60, 25-60, 30-60, 35-60, 40-60, 45-60, 50-60, 55-60, 15-55, 20-55, 25-55, 30-55, 35-55, 40-55, 45-55, 50-55, 15-50, 20-50, 25-50, 30-50, 35-50, 40-50, 45-50, 15-45, 20-45, 25-45, 30-45, 35-45, 40-45, 15-40, 20-40, 25-40, 30-40, 35-40, 15-35, 20-35, 25-35, 30-35, 15-30, 20-30, 25-30, 15-25, 20-25, or 15-20 amino acids.

A signal peptide is typically cleaved from the nascent polypeptide at the cleavage junction during ER processing. The mature antigenic polypeptide produce by a respiratory virus RNA (e.g., mRNA) vaccine of the present disclosure typically does not comprise a signal peptide.

Chemical Modifications

Respiratory virus vaccines of the present disclosure, in some embodiments, comprise at least RNA (e.g. mRNA) polynucleotide having an open reading frame encoding at least one antigenic polypeptide that comprises at least one 25 chemical modification.

The terms "chemical modification" and "chemically modified" refer to modification with respect to adenosine (A), guanosine (G), uridine (U), thymidine (T) or cytidine (C) ribonucleosides or deoxyribnucleosides in at least one of their position, pattern, percent or population. Generally, these terms do not refer to the ribonucleotide modifications in naturally occurring 5'-terminal mRNA cap moieties. With respect to a polypeptide, the term "modification" refers to a modification relative to the canonical set 20 amino acids. Polypeptides, as provided herein, are also considered "modified" of they contain amino acid substitutions, insertions or a combination of substitutions and insertions.

Polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides), in some embodiments, comprise various (more than one) different modifications. In some embodiments, a particular region of a polynucleotide contains one, two or more (optionally different) nucleoside or nucleotide modifications. In some embodiments, a modified RNA polynucleotide (e.g., a modified mRNA polynucleotide), introduced to a cell or organism, exhibits reduced degradation in the cell or organism, respectively, relative to an unmodified polynucleotide. In some embodiments, a modified RNA polynucleotide (e.g., a modified mRNA polynucleotide), introduced into a cell or organism, may exhibit reduced immunogenicity in the cell or organism, respectively (e.g., a reduced innate response).

Modifications of polynucleotides include, without limitation, those described herein. Polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) may comprise modifications that are naturally-occurring, non-naturally-occurring or the polynucleotide may comprise a combination of naturally-occurring and non-naturally-occurring modifications. Polynucleotides may include any useful modification, for example, of a sugar, a nucleobase, or an internucleoside linkage (e.g., to a linking phosphate, to a phosphodiester linkage or to the phosphodiester backbone).

Polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides), in some embodiments, comprise non-natural modified nucleotides that are introduced during synthesis or post-synthesis of the polynucleotides to achieve desired functions or properties. The modifications may be present on an internucleotide linkages, purine or pyrimidine

bases, or sugars. The modification may be introduced with chemical synthesis or with a polymerase enzyme at the terminal of a chain or anywhere else in the chain. Any of the regions of a polynucleotide may be chemically modified.

The present disclosure provides for modified nucleosides 5 and nucleotides of a polynucleotide (e.g., RNA polynucleotides, such as mRNA polynucleotides). A "nucleoside" refers to a compound containing a sugar molecule (e.g., a pentose or ribose) or a derivative thereof in combination with an organic base (e.g., a purine or pyrimidine) or a 10 derivative thereof (also referred to herein as "nucleobase"). A nucleotide" refers to a nucleoside, including a phosphate group. Modified nucleotides may by synthesized by any useful method, such as, for example, chemically, enzymatically, or recombinantly, to include one or more modified or 15 non-natural nucleosides. Polynucleotides may comprise a region or regions of linked nucleosides. Such regions may have variable backbone linkages. The linkages may be standard phosphdioester linkages, in which case the polynucleotides would comprise regions of nucleotides.

Modified nucleotide base pairing encompasses not only the standard adenosine-thymine, adenosine-uracil, or guanosine-cytosine base pairs, but also base pairs formed between nucleotides and/or modified nucleotides comprising non-standard or modified bases, wherein the arrangement of hydrogen bond donors and hydrogen bond acceptors permits hydrogen bonding between a non-standard base and a standard base or between two complementary non-standard base structures. One example of such non-standard base pairing is the base pairing between the modified nucleotide inosine and adenine, cytosine or uracil. Any combination of base/sugar or linker may be incorporated into polynucleotides of the present disclosure.

Modifications of polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) that are useful in the 35 vaccines of the present disclosure include, but are not limited to the following: 2-methylthio-N6-(cis-hydroxyisopentenyl)adenosine; 2-methylthio-N6-methyladenosine; 2-methylthio-N6-threonyl carbamoyladenosine; N6-glycinylcarbamoyladenosine; N6-isopentenyladenosine; 40 N6-methyladenosine; N6-threonylcarbamoyladenosine; 1,2'-O-dimethyladenosine; 1-methyladenosine; 2'-O-methyladenosine; 2'-O-ribosyladenosine (phosphate); 2-methyladenosine; 2-methylthio-N6 isopentenyladenosine; 2-methylthio-N6-hydroxynorvalyl carbamoyladenosine; 2'-O- 45 2'-O-ribosyladenosine methyladenosine; (phosphate); Isopentenyladenosine: N6-(cis-hydroxyisopentenyl)adenosine; N6,2'-O-dimethyladenosine; N6,2'-O-dimethyladenosine; N6,N6,2'-O-trimethyladenosine; N6,N6-dimethyladenosine: N6-acetyladenosine; 50 N6-hydroxynorvalylcarbamoyladenosine; N6-methyl-N6threonylcarbamoyladenosine; 2-methyladenosine; 2-methylthio-N6-isopentenyladenosine; 7-deaza-adenosine; N1-methyl-adenosine; N6, N6 (dimethyl)adenine; N6-cishydroxy-isopentenyl-adenosine; α -thio-adenosine; (amino)adenine; 2 (aminopropyl)adenine; 2 (methylthio) N6 (isopentenyl)adenine; 2-(alkyl)adenine; 2-(aminoalkyl)adenine; 2-(aminopropyl)adenine; 2-(halo)adenine; 2-(halo) 2-(propyl)adenine; 2'-Amino-2'-deoxy-ATP; adenine; 2'-Azido-2'-deoxy-ATP; 2'-Deoxy-2'-a-aminoadenosine TP; 60 2'-Deoxy-2'-a-azidoadenosine TP; 6 (alkyl)adenine; (methyl)adenine; 6-(alkyl)adenine; 6-(methyl)adenine; (deaza)adenine; 8 (alkenyl)adenine; 8 (alkynyl)adenine; 8 (amino)adenine; 8 (thioalkyl)adenine; 8-(alkenyl)adenine; 8-(alkyl)adenine; 8-(alkynyl)adenine; 8-(amino)adenine; 65 8-(halo)adenine; 8-(hydroxyl)adenine; 8-(thioalkyl)adenine; 8-(thiol)adenine; 8-azido-adenosine; aza adenine; deaza

52

adenine; N6 (methyl)adenine; N6-(isopentyl)adenine; 7-deaza-8-aza-adenosine; 7-methyladenine; 1-Deazaadenosine TP; 2'Fluoro-N6-Bz-deoxyadenosine TP; 2'-OMe-2-Amino-ATP; 2'O-methyl-N6-Bz-deoxyadenosine TP; 2'-a-Ethynyladenosine TP; 2-aminoadenine; 2-Aminoadenosine TP; 2-Amino-ATP; 2'-a-Trifluoromethyladenosine TP; 2-Azidoadenosine TP; 2'-b-Ethynyladenosine TP; 2-Bromoadenosine TP; 2'-b-Trifluoromethyladenosine TP; 2-Chloroadenosine TP; 2'-Deoxy-2', 2'-difluoroadenosine TP: 2'-Deoxy-2'-a-mercaptoadenosine TP: 2'-Deoxy-2'-athiomethoxyadenosine TP; 2'-Deoxy-2'-b-aminoadenosine TP; 2'-Deoxy-2'-b-azidoadenosine TP; 2'-Deoxy-2'-b-bromoadenosine TP; 2'-Deoxy-2'-b-chloroadenosine TP; 2'-Deoxy-2'-b-fluoroadenosine TP; 2'-Deoxy-2'-b-iodoadenosine TP; 2'-Deoxy-2'-b-mercaptoadenosine TP; 2'-Deoxy-2'-bthiomethoxyadenosine TP; 2-Fluoroadenosine TP; 2-lodoadenosine TP; 2-Mercaptoadenosine TP; 2-methoxy-adenine; 2-methylthio-adenine; 2-Trifluoromethyladenosine TP; 3-Deaza-3-bromoadenosine TP; 3-Deaza-3-chloroadenosine TP: 3-Deaza-3-fluoroadenosine TP: 3-Deaza-3-iodoadenosine TP; 3-Deazaadenosine TP; 4'-Azidoadenosine TP; 4'-Carbocyclic adenosine TP; 4'-Ethynyladenosine TP; 5'-Homo-adenosine TP; 8-Aza-ATP; 8-bromo-adenosine TP; 8-Trifluoromethyladenosine TP; 9-Deazaadenosine TP; 2-aminopurine; 7-deaza-2,6-diaminopurine; 7-deaza-8-aza-2,6-diaminopurine; 7-deaza-8-aza-2-aminopurine; 2,6-diaminopurine; 7-deaza-8-aza-adenine, 7-deaza-2-aminopurine; 2-thiocytidine; 3-methylcytidine; 5-formylcytidine; 5-hydroxymethylcytidine; 5-methylcytidine; N4-acetylcytidine; 2'-O-methylcytidine; 2'-O-methylcytidine; 5,2'-O-dimethylcytidine; 5-formyl-2'-O-methylcytidine; Lysidine; N4,2'-O-dimethylcytidine; N4-acetyl-2'-O-methylcytidine; N4-methylcytidine; N4,N4-Dimethyl-2'-OMe-Cytidine TP; 4-methylcytidine; 5-aza-cytidine; Pseudo-iso-cytidine; pyrrolo-cytidine; α-thio-cytidine; 2-(thio)cytosine; 2'-Amino-2'-deoxy-CTP; 2'-Azido-2'-deoxy-CTP; 2'-Deoxy-2'-aaminocytidine TP; 2'-Deoxy-2'-a-azidocytidine TP; 3 (deaza) 5 (aza)cytosine; 3 (methyl)cytosine; 3-(alkyl)cytosine; 3-(deaza) 5 (aza)cytosine; 3-(methyl)cytidine; 4,2'-Odimethylcytidine; 5 (halo)cytosine; 5 (methyl)cytosine; 5 (propynyl)cytosine; 5 (trifluoromethyl)cytosine; 5-(alkyl) cytosine; 5-(alkynyl)cytosine; 5-(halo)cytosine; 5-(propynyl)cytosine; 5-(trifluoromethyl)cytosine; 5-bromo-cytidine; 5-iodo-cytidine; 5-propynyl cytosine; 6-(azo)cytosine; 6-aza-cytidine; aza cytosine; deaza cytosine; N4 (acetyl) cytosine; 1-methyl-1-deaza-pseudoisocytidine; 1-methylpseudoisocytidine; 2-methoxy-5-methyl-cytidine: 2-methoxy-cytidine; 2-thio-5-methyl-cytidine; 4-methoxy-1-methyl-pseudoisocytidine; 4-methoxy-pseudoisocytidine; 4-thio-1-methyl-1-deaza-pseudoisocytidine; 4-thio-1methyl-pseudoisocytidine; 4-thio-pseudoisocytidine; 5-azazebularine; 5-methyl-zebularine; pyrrolo-pseudoisocytidine; Zebularine; (E)-5-(2-Bromo-vinyl)cytidine TP; 2,2'-anhydro-cytidine TP hydrochloride; 2'Fluor-N4-Bz-cytidine TP; 2'Fluoro-N4-Acetyl-cytidine TP; 2'-O-Methyl-N4-Acetyl-cytidine TP; 2'O-methyl-N4-Bz-cytidine TP; 2'-a-Ethynylcytidine TP; 2'-a-Trifluoromethylcytidine TP; 2'-b-Ethynylcytidine TP; 2'-b-Trifluoromethylcytidine TP; 2'-Deoxy-2', 2'-difluorocytidine TP; 2'-Deoxy-2'-a-mercaptocytidine TP; 2'-Deoxy-2'-a-thiomethoxycytidine TP; 2'-Deoxy-2'-b-aminocytidine TP; 2'-Deoxy-2'-b-azidocytidine TP; 2'-Deoxy-2'-b-bromocytidine TP; 2'-Deoxy-2'-bchlorocytidine TP; 2'-Deoxy-2'-b-fluorocytidine TP; 2'-Deoxy-2'-b-iodocytidine TP; 2'-Deoxy-2'-b-mercaptocytidine TP; 2'-Deoxy-2'-b-thiomethoxycytidine TP; 2'-O-Methyl-5-(1-propynyl)cytidine TP; 3'-Ethynylcytidine TP; 4'-Azidocytidine TP; 4'-Carbocyclic cytidine TP; 4'-Ethynylcytidine TP; 5-(1-Propynyl)ara-cytidine TP; 5-(2-Chloro-phenyl)-2thiocytidine TP; 5-(4-Amino-phenyl)-2-thiocytidine TP; 5-Aminoallyl-CTP; 5-Cyanocytidine TP; 5-Ethynylara-cytidine TP; 5-Ethynylcytidine TP; 5'-Homo-cytidine TP; 5-Methoxycytidine TP; 5-Trifluoromethyl-Cytidine TP; 5 N4-Amino-cytidine TP; N4-Benzoyl-cytidine TP; Pseudoisocytidine; 7-methylguanosine; N2,2'-O-dimethylguanosine; N2-methylguanosine; Wyosine; 1,2'-O-dimethylguanosine; 1-methylguanosine; 2'-O-methylguanosine; 2'-O-ribosylguanosine (phosphate); 2'-O-methylguanosine; 10 2'-O-ribosylguanosine (phosphate); 7-aminomethyl-7deazaguanosine; 7-cyano-7-deazaguanosine; Archaeosine; Methylwyosine; N2,7-dimethylguanosine; N2,N2,2'-Otrimethylguanosine; N2,N2,7-trimethylguanosine; N2,N2dimethylguanosine; N2,7,2'-O-trimethylguanosine; 6-thio- 15 7-deaza-guanosine; 8-oxo-guanosine; guanosine; N1-methyl-guanosine; α-thio-guanosine; 2 (propyl)guanine; 2-(alkyl)guanine; 2'-Amino-2'-deoxy-GTP; 2'-Azido-2'-deoxy-GTP; 2'-Deoxy-2'-a-aminoguanosine TP; 2'-Deoxy-2'a-azidoguanosine TP; 6 (methyl)guanine; 6-(alkyl)guanine; 20 6-(methyl)guanine; 6-methyl-guanosine; 7 (alkyl)guanine; 7 (deaza)guanine; 7 (methyl)guanine; 7-(alkyl)guanine; 7-(deaza)guanine; 7-(methyl)guanine; 8 (alkyl)guanine; 8 (alkynyl)guanine; 8 (halo)guanine; 8 (thioalkyl)guanine; 8-(alkenyl)guanine; 8-(alkyl)guanine; 8-(alkynyl)guanine; 25 8-(amino)guanine; 8-(halo)guanine; 8-(hydroxyl)guanine; 8-(thioalkyl)guanine; 8-(thiol)guanine; aza guanine; deaza guanine; N (methyl)guanine; N-(methyl)guanine; 1-methyl-6-thio-guanosine; 6-methoxy-guanosine; 6-thio-7-deaza-8aza-guanosine; 6-thio-7-deaza-guanosine; 6-thio-7-methyl- 30 7-deaza-8-aza-guanosine; 7-methyl-8-oxoguanosine; guanosine; N2,N2-dimethyl-6-thio-guanosine; N2-methyl-6-thio-guanosine; 1-Me-GTP; 2'Fluoro-N2-isobutylguanosine TP; 2'O-methyl-N2-isobutyl-guanosine TP; 2'-a-Ethynylguanosine TP; 2'-a-Trifluoromethylguanosine TP; 35 2'-b-Ethynylguanosine TP; 2'-b-Trifluoromethylguanosine TP; 2'-Deoxy-2', 2'-difluoroguanosine TP; 2'-Deoxy-2'-amercaptoguanosine TP; 2'-Deoxy-2'-a-thiomethoxyguanosine TP; 2'-Deoxy-2'-b-aminoguanosine TP; 2'-Deoxy-2'-bazidoguanosine TP; 2'-Deoxy-2'-b-bromoguanosine TP; 40 2'-Deoxy-2'-b-chloroguanosine TP; 2'-Deoxy-2'-b-fluoroguanosine TP; 2'-Deoxy-2'-b-iodoguanosine TP; 2'-Deoxy-2'-b-mercaptoguanosine TP; 2'-Deoxy-2'-b-thiomethoxyguanosine TP; 4'-Azidoguanosine 4'-Carbocyclic guanosine TP; 4'-Ethynylguanosine TP; 45 5'-Homo-guanosine TP; 8-bromo-guanosine TP; 9-Deazaguanosine TP: N2-isobutyl-guanosine TP: 1-methylinosine: 1,2'-O-dimethylinosine; 2'-O-methylinosine; 7-methylinosine; 2'-O-methylinosine; Epoxyqueuosine; galactosyl-queuosine; Mannosylqueuosine; Queuosine; 50 allyamino-thymidine; aza thymidine; deaza thymidine; deoxy-thymidine; 2'-O-methyluridine; 2-thiouridine; 3-methyluridine; 5-carboxymethyluridine; 5-hydroxyuridine; 5-methyluridine; 5-taurinomethyl-2-thiouridine; 5-taurinomethyluridine; Dihydrouridine; Pseudouridine; (3-(3-55 amino-3-carboxypropyl)uridine; 1-methyl-3-(3-amino-5carboxypropyl)pseudouridine; 1-methylpseduouridine; 1-methyl-pseudouridine; 2'-O-methyluridine; 2'-O-methylpseudouridine; 2'-O-methyluridine; 2-thio-2'-O-methyluridine; 3-(3-amino-3-carboxypropyl)uridine; 3,2'-O-dimethy- 60 luridine; 3-Methyl-pseudo-Uridine TP; 4-thiouridine; 5-(carboxyhydroxymethyl)uridine; 5-(carboxyhydroxymethyl)uridine methyl ester; 5,2'-O-dimethyluridine; 5,6-dihydro-uridine; 5-aminomethyl-2-thiouridine; 5-carbamoylmethyl-2'-O-methyluridine; 5-carbamovlmethyluridine; 65 5-carboxyhydroxymethyluridine; 5-carboxyhydroxymethyluridine methyl ester; 5-carboxymethylaminomethyl-2'-O-

methyluridine; 5-carboxymethylaminomethyl-2-thiouri-5-carboxymethylaminomethyl-2-thiouridine; dine; 5-carboxymethylaminomethyluridine; 5-carboxymethylaminomethyluridine; 5-Carbamoylmethyluridine 5-methoxycarbonylmethyl-2'-O-methyluridine; 5-methoxycarbonylmethyl-2-thiouridine; 5-methoxycarbonylmethyluridine; 5-methoxyuridine; 5-methyl-2-thiouridine; 5-methylaminomethyl-2-selenouridine; 5-methylaminomethyl-2thiouridine: 5-methylaminomethyluridine; 5-Methyldihydrouridine; 5-Oxyacetic acid-Uridine TP; 5-Oxyacetic acid-methyl ester-Uridine TP; N1-methylpseudo-uridine; uridine 5-oxyacetic acid; uridine 5-oxyacetic acid methyl ester; 3-(3-Amino-3-carboxypropyl)-Uridine TP; 5-(iso-Pentenylaminomethyl)-2-thiouridine TP; 5-(iso-Pentenylaminomethyl)-2'-O-methyluridine 5-(iso-Pentenylaminomethyl)uridine TP; 5-propynyl uracil; α-thio-uridine; 1 (aminoalkylamino-carbonylethylenyl)-2 (thio)-pseudouracil; 1 (aminoalkylaminocarbonylethylenyl)-2,4-(dithio)pseudouracil; 1 (aminoalkylaminocarbonvlethylenvl)-4 (thio)pseudouracil; (aminoalkylaminocarbonylethylenyl)-pseudouracil; (aminocarbonylethylenyl)-2(thio)-pseudouracil; 1 (aminocarbonylethylenyl)-2,4-(dithio)pseudouracil; 1 (aminocarbonylethylenyl)-4 (thio)pseudouracil; 1 (aminocarbonylethylenyl)-pseudouracil; 1 substituted 2(thio)-pseudouracil; 1 substituted 2,4-(dithio)pseudouracil; 1 substituted 4 (thio) pseudouracil; 1 substituted pseudouracil; 1-(aminoalkylamino-carbonylethylenyl)-2-(thio)-pseudouracil; 1-Methyl-3-(3-amino-3-carboxypropyl) pseudouridine TP; 1-Methyl-3-(3-amino-3-carboxypropyl)pseudo-UTP; 1-Methyl-pseudo-UTP; 2 (thio)pseudouracil; 2' deoxy uridine; 2' fluorouridine; 2-(thio)uracil; 2,4-(dithio)psuedouracil; 2' methyl, 2'amino, 2' azido, 2'fluro-guanosine; 2'-Amino-2'-deoxy-UTP; 2'-Azido-2'-deoxy-UTP; 2'-Azido-deoxyuridine TP; 2'-O-methylpseudouridine; 2' deoxy uridine; 2' fluorouridine; 2'-Deoxy-2'-a-aminouridine TP; 2'-Deoxy-2'-a-azidouridine TP; 2-methylpseudouridine; 3 (3 amino-3 carboxypropyl)uracil; 4 (thio)pseudouracil; 4-(thio)pseudouracil; 4-(thio)uracil; 4-thiouracil; 5 (1,3-diazole-1-alkyl)uracil; 5 (2-aminopropyl)uracil; 5 (aminoalkyl)uracil; 5 (dimethylaminoalkyl)uracil; 5 (guanidiniumalkyl)uracil; 5 (methoxycarbonylmethyl)-2-(thio)uracil; 5 (methoxycarbonyl-methyl)uracil; 5 (methyl) 2 (thio)uracil; 5 (methyl) 2,4 (dithio)uracil; 5 (methyl) 4 (thio)uracil; 5 (methylaminomethyl)-2 (thio)uracil; 5 (methylaminomethyl)-2,4 (dithio)uracil; 5 (methylaminomethyl)-4 (thio) uracil; 5 (propynyl)uracil; 5 (trifluoromethyl)uracil; 5-(2aminopropyl)uracil; 5-(alkyl)-2-(thio)pseudouracil; (dithio)pseudouracil; 5-(alkyl)-4 5-(alkyl)-2,4 pseudouracil; 5-(alkyl)pseudouracil; 5-(alkyl)uracil; 5-(alkynyl)uracil; 5-(allylamino)uracil; 5-(cyanoalkyl)uracil; 5-(dialkylaminoalkyl)uracil; 5-(dimethylaminoalkyl) uracil; 5-(guanidiniumalkyl)uracil; 5-(halo)uracil; 5-(1,3-diazole-1-alkyl)uracil; 5-(methoxy)uracil; 5-(methoxycarbonylmethyl)-2-(thio)uracil; 5-(methoxycarbonyl-methyl)uracil; 5-(methyl) 2(thio)uracil; 5-(methyl) 2,4 (dithio)uracil; 5-(methyl) 4 (thio)uracil; 5-(methyl)-2-(thio)pseudouracil; 5-(methyl)-2,4 (dithio)pseudouracil; 5-(methyl)-4 (thio)pseudouracil; 5-(methyl)pseudouracil; 5-(methylaminomethyl)-2 (thio)uracil; 5-(methylaminomethyl)-2,4(dithio)uracil; 5-(methylaminomethyl)-4-(thio) 5-(propynyl)uracil; 5-(trifluoromethyl)uracil; 5-aminoallyl-uridine; 5-bromo-uridine; 5-iodo-uridine; 5-uracil; 6 (azo)uracil; 6-(azo)uracil; 6-aza-uridine; allyamino-uracil; aza uracil; deaza uracil; N3 (methyl)uracil; Pseudo-UTP-1-2-ethanoic acid; Pseudouracil; 4-Thiopseudo-UTP; 1-carboxymethyl-pseudouridine; 1-methyl-1-

deaza-pseudouridine; 1-propynyl-uridine; 1-taurinomethyl-1-taurinomethyl-4-thio-uridine; 1-methyl-uridine; 1-taurinomethyl-pseudouridine; 2-methoxy-4-thio-pseudouridine; 2-thio-1-methyl-1-deaza-pseudouridine; 2-thio-1methyl-pseudouridine; 2-thio-5-aza-uridine; 2-thio-dihy- 5 dropseudouridine; 2-thio-dihydrouridine; 2-thiopseudouridine; 4-methoxy-2-thio-pseudouridine; 4-methoxy-pseudouridine; 4-thio-1-methyl-pseudouridine; 4-thio-pseudouridine; 5-aza-uridine; Dihydropseudouridine; (±) 1-(2-Hydroxypropyl)pseudouridine TP; (2R)-1-(2-Hydroxypropyl)pseudouridine TP; (2S)-1-(2-Hydroxypropyl) pseudouridine TP; (E)-5-(2-Bromo-vinyl)ara-uridine TP; (E)-5-(2-Bromo-vinyl)uridine TP; (Z)-5-(2-Bromo-vinyl) ara-uridine TP; (Z)-5-(2-Bromo-vinyl)uridine TP; 1-(2,2,2-Trifluoroethyl)-pseudo-UTP; 1-(2,2,3,3,3-Pentafluoropro- 15 pyl)pseudouridine TP; 1-(2,2-Diethoxyethyl)pseudouridine TP; 1-(2,4,6-Trimethylbenzyl)pseudouridine TP; 1-(2,4,6-Trimethyl-benzyl)pseudo-UTP; 1-(2,4,6-Trimethyl-phenyl) pseudo-UTP; 1-(2-Amino-2-carboxyethyl)pseudo-UTP; 1-(2-Amino-ethyl)pseudo-UTP: pseudouridine TP; 1-(2-Methoxyethyl)pseudouridine TP; 1-(3,4-Bis-trifluoromethoxybenzyl)pseudouridine TP; 1-(3, 4-Dimethoxybenzyl)pseudouridine TP; 1-(3-Amino-3-carboxypropyl)pseudo-UTP; 1-(3-Amino-propyl)pseudo-UTP; 1-(3-Cyclopropyl-prop-2-ynyl)pseudouridine TP; Amino-4-carboxybutyl)pseudo-UTP; 1-(4-Amino-benzyl) pseudo-UTP; 1-(4-Amino-butyl)pseudo-UTP; 1-(4-Aminophenyl)pseudo-UTP; 1-(4-Azidobenzyl)pseudouridine TP; 1-(4-Bromobenzyl)pseudouridine TP; 1-(4-Chlorobenzyl) pseudouridine TP; 1-(4-Fluorobenzyl)pseudouridine TP; 30 1-(4-Iodobenzyl)pseudouridine TP; 1-(4-Methanesulfonylbenzyl)pseudouridine TP; 1-(4-Methoxybenzyl)pseudouridine TP; 1-(4-Methoxy-benzyl)pseudo-UTP; 1-(4-Methoxyphenyl)pseudo-UTP; 1-(4-Methylbenzyl)pseudouridine TP; 1-(4-Methyl-benzyl)pseudo-UTP; 1-(4-Nitrobenzyl) 35 pseudouridine TP; 1-(4-Nitro-benzyl)pseudo-UTP; 1(4-Ni-1-(4-Thiomethoxybenzyl) tro-phenyl)pseudo-UTP; pseudouridine 1-(4-Trifluoromethoxybenzyl) pseudouridine TP: 1-(4-Trifluoromethylbenzyl) pseudouridine TP; 1-(5-Amino-pentyl)pseudo-UTP; 1-(6-40 Amino-hexyl)pseudo-UTP; 1,6-Dimethyl-pseudo-UTP; $1-[3-(2-\{2-[2-(2-Aminoethoxy)-ethoxy\}-ethoxy]-ethoxy]$ propionyl]pseudouridine TP; 1-{3-[2-(2-Aminoethoxy)ethoxy]-propionyl}pseudouridine TP; 1-Acetylpseudouridine TP; 1-Alkyl-6-(1-propynyl)-pseudo-UTP; 1-Alkyl-6- 45 (2-propynyl)-pseudo-UTP; 1-Alkyl-6-allyl-pseudo-UTP; 1-Alkyl-6-ethynyl-pseudo-UTP; 1-Alkyl-6-homoallyl-1-Alkyl-6-vinyl-pseudo-UTP; seudouridine TP; 1-Aminomethyl-pseudo-UTP; 1-Benzoylpseudouridine TP; 1-Benzyloxymethylpseudouridine TP; 50 1-Benzyl-pseudo-UTP; 1-Biotinyl-PEG2-pseudouridine TP; 1-Biotinylpseudouridine TP; 1-Butyl-pseudo-UTP; 1-Cyanomethylpseudouridine TP; 1-Cyclobutylmethyl-pseudo-UTP; 1-Cyclobutyl-pseudo-UTP; 1-Cycloheptylmethylpseudo-UTP; 1-Cycloheptyl-pseudo-UTP; 55 1-Cyclohexylmethyl-pseudo-UTP; 1-Cyclohexyl-pseudo-1-Cyclooctylmethyl-pseudo-UTP; 1-Cyclooctylpseudo-UTP; 1-Cyclopentylmethyl-pseudo-UTP; 1-Cyclopentyl-pseudo-UTP; 1-Cyclopropylmethyl-pseudo-UTP; 1-Cyclopropyl-pseudo-UTP; 1-Ethyl-pseudo-UTP; 60 1-Hexyl-pseudo-UTP; 1-Homoallylpseudouridine 1-Hydroxymethylpseudouridine TP; 1-iso-propyl-pseudo-UTP; 1-Me-2-thio-pseudo-UTP; 1-Me-4-thio-pseudo-UTP; 1-Me-alpha-thio-pseudo-UTP; 1-Methanesulfonylmethylpseudouridine TP; 1-Methoxymethylpseudouridine TP; 65 1-Methyl-6-(2,2,2-Trifluoroethyl)pseudo-UTP; 1-Methyl-6-(4-morpholino)-pseudo-UTP; 1-Methyl-6-(4-thiomor-

56 pholino)-pseudo-UTP; 1-Methyl-6-(substituted phenyl) pseudo-UTP; 1-Methyl-6-amino-pseudo-UTP; 1-Methyl-6azido-pseudo-UTP; 1-Methyl-6-bromo-pseudo-UTP; 1-Methyl-6-butyl-pseudo-UTP; 1-Methyl-6-chloro-pseudo-UTP; 1-Methyl-6-cyano-pseudo-UTP; 1-Methyl-6-dimethylamino-pseudo-UTP; 1-Methyl-6-ethoxy-pseudo-UTP; 1-Methyl-6-ethylcarboxylate-pseudo-UTP; 1-Methyl-6ethyl-pseudo-UTP; 1-Methyl-6-fluoro-pseudo-UTP; 1-Methyl-6-formyl-pseudo-UTP; 1-Methyl-6-hydroxyamino-pseudo-UTP; 1-Methyl-6-hydroxy-pseudo-UTP; 1-Methyl-6-iodo-pseudo-UTP; 1-Methyl-6-iso-propyl-pseudo-UTP; 1-Methyl-6-methoxy-pseudo-UTP; 1-Methyl-6-methylamino-pseudo-UTP; 1-Methyl-6-phenylpseudo-UTP; 1-Methyl-6-propyl-pseudo-UTP; 1-Methyl-6tert-butyl-pseudo-UTP: 1-Methyl-6-trifluoromethoxypseudo-UTP; 1-Methyl-6-trifluoromethyl-pseudo-UTP; 1-Morpholinomethylpseudouridine TP; 1-Pentyl-pseudo-UTP; 1-Phenyl-pseudo-UTP; 1-Pivaloylpseudouridine TP; 1-Propargylpseudouridine TP; 1-Propyl-pseudo-UTP; 1-(2-Hydroxyethyl) 20 1-propynyl-pseudouridine: 1-p-tolyl-pseudo-UTP: 1-tert-Butyl-pseudo-UTP; 1-Thiomethoxymethylpseudouridine TP; 1-Thiomorpholinomethylpseudouridine TP; 1-Trifluoroacetylpseudouridine TP; 1-Trifluoromethyl-pseudo-UTP; 1-Vinylpseudouridine TP; 2,2'-anhydro-uridine 2'-bromo-deoxyuridine TP; 2'-F-5-Methyl-2'-deoxy-UTP; 2'-OMe-5-Me-UTP; 2'-OMe-pseudo-UTP; 2'-a-Ethynyluridine TP; 2'-a-Trifluoromethyluridine TP; 2'-b-Ethynyluridine TP; 2'-b-Trifluoromethyluridine TP; 2'-Deoxy-2', 2'-difluorouridine TP; 2'-Deoxy-2'-a-mercaptouridine TP; 2'-Deoxy-2'-a-thiomethoxyuridine TP; 2'-Deoxy-2'-b-aminouriding TP; 2'-Deoxy-2'-b-azidouriding TP; 2'-Deoxy-2'-bbromouridine TP; 2'-Deoxy-2'-b-chlorouridine TP; 2'-Deoxy-2'-b-fluorouridine TP; 2'-Deoxy-2'-b-iodouridine TP; 2'-Deoxy-2'-b-mercaptouridine TP; 2'-Deoxy-2'-b-thiomethoxyuridine TP; 2-methoxy-4-thio-uridine; 2-methoxyuridine; 2'-O-Methyl-5-(1-propynyl)uridine TP; 3-Alkvl-pseudo-UTP; 4'-Azidouridine TP; 4'-Carbocyclic uridine TP; 4'-Ethynyluridine TP; 5-(1-Propynyl)ara-uridine TP; 5-(2-Furanyl)uridine TP; 5-Cyanouridine TP; 5-Dimethylaminouridine TP; 5'-Homo-uridine TP; 5-iodo-2'fluoro-deoxyuridine TP; 5-Phenylethynyluridine TP; 5-Trideuteromethyl-6-deuterouridine TP; 5-Trifluoromethyl-Uridine TP; 5-Vinylarauridine TP; 6-(2,2,2-Trifluoroethyl)pseudo-UTP; 6-(4-Morpholino)-pseudo-UTP; Thiomorpholino)-pseudo-UTP; 6-(Substituted-Phenyl)pseudo-UTP; 6-Azido-pseudo-UTP; 6-Bromo-pseudo-UTP; 6-Butyl-pseudo-UTP; 6-Chloropseudo-UTP; 6-Cyano-pseudo-UTP; 6-Dimethylaminopseudo-UTP; 6-Ethoxy-pseudo-UTP; 6-Ethylcarboxylatepseudo-UTP; 6-Ethyl-pseudo-UTP; 6-Fluoro-pseudo-UTP; 6-Formyl-pseudo-UTP; 6-Hydroxyamino-pseudo-UTP; 6-Hydroxy-pseudo-UTP; 6-Iodo-pseudo-UTP; 6-iso-Propyl-pseudo-UTP; 6-Methoxy-pseudo-UTP; 6-Methylamino-pseudo-UTP; 6-Methyl-pseudo-UTP; 6-Phenvlpseudo-UTP; 6-Phenyl-pseudo-UTP; 6-Propyl-pseudo-UTP: 6-tert-Butyl-pseudo-UTP; 6-Trifluoromethoxypseudo-UTP; 6-Trifluoromethyl-pseudo-UTP; Alpha-thiopseudo-UTP; Pseudouridine 1-(4-methylbenzenesulfonic acid) TP; Pseudouridine 1-(4-methylbenzoic acid) TP; Pseudouridine TP 1-[3-(2-ethoxy)]propionic acid; Pseudou- $1-[3-{2-(2-[2-(2-ethoxy)-ethoxy]-ethoxy}$ ethoxy}|propionic acid; Pseudouridine TP 1-[3-{2-(2-[2-{2}]) (2-ethoxy)-ethoxy}-ethoxy]-ethoxy}]propionic acid; Pseudouridine TP 1-[3-{2-(2-[2-ethoxy]-ethoxy)ethoxy}]propionic acid; Pseudouridine TP 1-[3-{2-(2ethoxy)-ethoxy}] propionic acid; Pseudouridine TP 1-methylphosphonic acid; Pseudouridine TP 1-methylphosphonic

acid diethyl ester; Pseudo-UTP-N1-3-propionic acid; Pseudo-UTP-N1-4-butanoic acid; Pseudo-UTP-N1-5-pentanoic acid; Pseudo-UTP-N1-6-hexanoic acid; Pseudo-UTP-N1-7-heptanoic acid; Pseudo-UTP-N1-methyl-p-benzoic acid; Pseudo-UTP-N1-p-benzoic acid; Wybutosine; 5 Hydroxywybutosine; Isowyosine; Peroxywybutosine: undermodified hydroxywybutosine: 4-demethylwyosine: 2,6-(diamino)purine; 1-(aza)-2-(thio)-3-(aza)-phenoxazin-1-yl: 1,3-(diaza)-2-(oxo)-phenthiazin-1-yl; 1,3-(diaza)-2-(oxo)-phenoxazin-1-yl; 1,3,5-(triaza)-2,6-(dioxa)-naphthalene;2 (amino)purine;2,4,5-(trimethyl)phenyl;2' methyl, 2'amino, 2'azido, 2'fluro-cytidine;2' methyl, 2' amino, 2'azido, 2'fluro-adenine;2'methyl, 2'amino, 2' azido, 2'flurouridine;2'-amino-2'-deoxyribose; 2-amino-6-Chloro-purine; 15 2-aza-inosinyl; 2'-azido-2'-deoxyribose; 2'fluoro-2'-deoxyribose; 2'-fluoro-modified bases; 2'-O-methyl-ribose; 2-oxo-7-aminopyridopyrimidin-3-yl; 2-oxo-pyridopyrimidine-3yl; 2-pyridinone; 3 nitropyrrole; 3-(methyl)-7-(propynyl) isocarbostyrilyl; 3-(methyl)isocarbostyrilyl; 4-(fluoro)-6- 20 4-(methyl)benzimidazole; (methyl)benzimidazole; 4-(methyl)indolyl; 4,6-(dimethyl)indolyl; 5 nitroindole; 5 substituted pyrimidines; 5-(methyl)isocarbostyrilyl; 5-nitroindole; 6-(aza)pyrimidine; 6-(azo)thymine; 6-(methyl)-7-(aza)indolyl; 6-chloro-purine; 6-phenyl-pyrrolo-pyrimidin- 25 2-on-3-yl; 7-(aminoalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)phenthiazin-1-yl; 7-(aminoalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phenoxazin-1-yl; 7-(aminoalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenoxazin-1-yl; 7-(aminoalkylhydroxy)-1, 3-(diaza)-2-(oxo)-phenthiazin-1-yl; 7-(aminoalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenoxazin-1-

yl; 7-(aza)indolyl; 7-(guanidiniumalkylhydroxy)-1-(aza)-2-7-(guanidiniumalkylhy-(thio)-3-(aza)-phenoxazinl-yl; droxy)-1-(aza)-2-(thio)-3-(aza)-phenthiazin-1-yl;

7-(guanidiniumalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phe- 35 noxazin-1-yl; 7-(guanidiniumalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenoxazin-1-yl; 7-(guanidiniumalkyl-hydroxy)-1,3-(diaza)-2-(oxo)-phenthiazin-1-yl;

7-(guanidiniumalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenoxazin-1-yl; 7-(propynyl)isocarbostyrilyl; 7-(propynyl)isocar- 40 bostyrilyl, propynyl-7-(aza)indolyl; 7-deaza-inosinyl; 7-substituted 1-(aza)-2-(thio)-3-(aza)-phenoxazin-1-yl; 1,3-(diaza)-2-(oxo)-phenoxazin-1-yl; 7-substituted 9-(methyl)-imidizopyridinyl; Aminoindolyl; Anthracenyl; bis-ortho-(aminoalkylhydroxy)-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl; bis-ortho-substituted-6-phenyl-pyrrolo-pyrimidin-2-on-3-vl; Difluorotolvl; Hypoxanthine; Imidizopyridinyl; Inosinyl; Isocarbostyrilyl; Isoguanisine; N2-substituted purines; N6-methyl-2-amino-purine; N6-substituted purines; N-alkylated derivative; Napthale- 50 nyl; Nitrobenzimidazolyl; Nitroimidazolyl; Nitroindazolyl; Nitropyrazolyl; Nubularine; 06-substituted purines; O-alkylated derivative; ortho-(aminoalkylhydroxy)-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl; ortho-substituted-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl; Oxoformycin para- 55 (aminoalkylhydroxy)-6-phenyl-pyrrolo-pyrimidin-2-on-3yl; para-substituted-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl; Pentacenyl; Phenanthracenyl; Phenyl; propynyl-7-(aza)indolyl; Pyrenyl; pyridopyrimidin-3-yl; pyridopyrimidin-3-yl, 2-oxo-7-amino-pyridopyrimidin-3-yl; pyrrolo-pyrimidin-2- 60 on-3-yl; Pyrrolopyrimidinyl; Pyrrolopyrizinyl; Stilbenzyl; substituted 1,2,4-triazoles; Tetracenyl; Tubercidine; Xanthine; Xanthosine-5'-TP; 2-thio-zebularine; 5-aza-2-thio-zebularine; 7-deaza-2-amino-purine; pyridin-4-one ribonucleoside; 2-Amino-riboside-TP; Formycin A TP; 65 Formycin B TP; Pyrrolosine TP; 2'-OH-ara-adenosine TP; 2'-OH-ara-cytidine TP; 2'-OH-ara-uridine TP; 2'-OH-ara58

guanosine TP; 5-(2-carbomethoxyvinyl)uridine TP; and N6-(19-Amino-pentaoxanonadecyl)adenosine TP.

In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) include a combination of at least two (e.g., 2, 3, 4 or more) of the aforementioned modified nucleobases.

In some embodiments, modified nucleobases in polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) are selected from the group consisting of pseudouridine (ψ), N1-methylpseudouridine ($m^1\psi$), N1-ethylpseudouridine, 2-thiouridine, 4'-thiouridine, 5-methylcyto 2-thio-1-methyl-1-deaza-pseudouridine, 2-thio-1methyl-pseudouridine, 2-thio-5-aza-uridine, 2-thio-dihydropseudouridine, 2-thio-dihydrouridine, 2-thio-pseudouridine, 4-methoxy-2-thio-pseudouridine, 4-methoxypseudouridine, 4-thio-1-methyl-pseudouridine, 4-thiopseudouridine, 5-aza-uridine, dihydropseudouridine, 5-methoxyuridine and 2'-O-methyl uridine. In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) include a combination of at least two (e.g., 2, 3, 4 or more) of the aforementioned modified nucleobases.

In some embodiments, modified nucleobases in polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) are selected from the group consisting of 1-methyl-pseudouridine ($m^1\psi$), 5-methoxy-uridine (mo^5U), 5-methyl-cytidine (m 5 C), pseudouridine (ψ), α -thio-guanosine and α-thio-adenosine. In some embodiments, polynucleotides includes a combination of at least two (e.g., 2, 3, 4 or more) of the aforementioned modified nucleobases.

In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise pseudouridine (v) and 5-methyl-cytidine (m⁵C). In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise 1-methylpseudouridine ($m^1\psi$). In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise 1-methyl-pseudouridine ($m^1\psi$) and 5-methyl-cytidine (m⁵C). In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise 2-thiouridine (s²U). In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise 2-thiouridine and 5-methyl-cytidine (m⁵C). In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise methoxy-uridine (mo⁵U). In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise 5-methoxy-uridine (mo⁵U) and 5-methyl-cytidine (m⁵C). In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise 2'-O-methyl uridine. In some embodiments polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise 2'-Omethyl uridine and 5-methyl-cytidine (m⁵C). In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise N6-methyl-adenosine (m⁶A). In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise N6-methyl-adenosine (m⁶A) and 5-methyl-cytidine (m^5C) .

In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) are uniformly modified (e.g., fully modified, modified throughout the entire sequence) for a particular modification. For example, a polynucleotide can be uniformly modified with 5-methylcytidine (m⁵C), meaning that all cytosine residues in the mRNA sequence are replaced with 5-methyl-cytidine (m⁵C).

Similarly, a polynucleotide can be uniformly modified for any type of nucleoside residue present in the sequence by replacement with a modified residue such as those set forth above

59

Exemplary nucleobases and nucleosides having a modified cytosine include N4-acetyl-cytidine (ac4C), 5-methyl-cytidine (m5C), 5-halo-cytidine (e.g., 5-iodo-cytidine), 5-hydroxymethyl-cytidine (hm5C), 1-methyl-pseudoisocytidine, 2-thio-cytidine (s2C), and 2-thio-5-methyl-cytidine.

In some embodiments, a modified nucleobase is a modified uridine. Exemplary nucleobases and In some embodiments, a modified nucleobase is a modified cytosine. nucleosides having a modified uridine include 5-cyano uridine, and 4'-thio uridine.

In some embodiments, a modified nucleobase is a modified adenine. Exemplary nucleobases and nucleosides having a modified adenine include 7-deaza-adenine, 1-methyladenosine (m1A), 2-methyl-adenine (m2A), and N6-methyladenosine (m6A).

In some embodiments, a modified nucleobase is a modified guanine. Exemplary nucleobases and nucleosides having a modified guanine include inosine (I), 1-methyl-inosine (m1I), wyosine (imG), methylwyosine (mimG), 7-deazaguanosine, 7-cyano-7-deaza-guanosine (preQO), 7-aminomethyl-7-deaza-guanosine (preQ1), 7-methyl-guanosine 25 (m7G), 1-methyl-guanosine (mlG), 8-oxo-guanosine, 7-methyl-8-oxo-guanosine.

The polynucleotides of the present disclosure may be partially or fully modified along the entire length of the molecule. For example, one or more or all or a given type of 30 nucleotide (e.g., purine or pyrimidine, or any one or more or all of A, G, U, C) may be uniformly modified in a polynucleotide of the disclosure, or in a given predetermined sequence region thereof (e.g., in the mRNA including or excluding the polyA tail). In some embodiments, all nucleotides X in a polynucleotide of the present disclosure (or in a given sequence region thereof) are modified nucleotides, wherein X may any one of nucleotides A, G, U, C, or any one of the combinations A+G, A+U, A+C, G+U, G+C, U+C, A+G+U, A+G+C, G+U+C or A+G+C.

The polynucleotide may contain from about 1% to about 100% modified nucleotides (either in relation to overall nucleotide content, or in relation to one or more types of nucleotide, i.e., any one or more of A, G, U or C) or any intervening percentage (e.g., from 1% to 20%, from 1% to 45 25%, from 1% to 50%, from 1% to 60%, from 1% to 70%, from 1% to 80%, from 1% to 90%, from 1% to 95%, from 10% to 20%, from 10% to 25%, from 10% to 50%, from 10% to 60%, from 10% to 70%, from 10% to 80%, from 10% to 90%, from 10% to 95%, from 10% to 100%, from 50 20% to 25%, from 20% to 50%, from 20% to 60%, from 20% to 70%, from 20% to 80%, from 20% to 90%, from 20% to 95%, from 20% to 100%, from 50% to 60%, from 50% to 70%, from 50% to 80%, from 50% to 90%, from 50% to 95%, from 50% to 100%, from 70% to 80%, from 55 70% to 90%, from 70% to 95%, from 70% to 100%, from 80% to 90%, from 80% to 95%, from 80% to 100%, from 90% to 95%, from 90% to 100%, and from 95% to 100%). Any remaining percentage is accounted for by the presence of unmodified A, G, U, or C.

The polynucleotides may contain at a minimum 1% and at maximum 100% modified nucleotides, or any intervening percentage, such as at least 5% modified nucleotides, at least 10% modified nucleotides, at least 25% modified nucleotides, at least 50% modified nucleotides, at least 80% 65 modified nucleotides, or at least 90% modified nucleotides. For example, the polynucleotides may contain a modified

60

pyrimidine such as a modified uracil or cytosine. In some embodiments, at least 5%, at least 10%, at least 25%, at least 50%, at least 80%, at least 90% or 100% of the uracil in the polynucleotide is replaced with a modified uracil (e.g., a 5-substituted uracil). The modified uracil can be replaced by a compound having a single unique structure, or can be replaced by a plurality of compounds having different structures (e.g., 2, 3, 4 or more unique structures). n some embodiments, at least 5%, at least 10%, at least 25%, at least 50%, at least 80%, at least 90% or 100% of the cytosine in the polynucleotide is replaced with a modified cytosine (e.g., a 5-substituted cytosine). The modified cytosine can be replaced by a compound having a single unique structure, or can be replaced by a plurality of compounds having different structures (e.g., 2, 3, 4 or more unique structures).

Thus, in some embodiments, the RNA (e.g., mRNA) vaccines comprise a 5'UTR element, an optionally codon optimized open reading frame, and a 3'UTR element, a poly(A) sequence and/or a polyadenylation signal wherein the RNA is not chemically modified.

In some embodiments, the modified nucleobase is a modified uracil. Exemplary nucleobases and nucleosides having a modified uracil include pseudouridine (ψ) , pyridin-4-one ribonucleoside, 5-aza-uridine, 6-aza-uridine, 2-thio-5-aza-uridine, 2-thio-uridine (s²U), 4-thio-uridine (s⁴U), 4-thio-pseudouridine, 2-thio-pseudouridine, 5-hydroxy-uridine (ho⁵U), 5-aminoallyl-uridine, 5-halo-uridine (e.g., 5-iodo-uridineor 5-bromo-uridine), 3-methyl-uridine (m³U), 5-methoxy-uridine (mo⁵U), uridine 5-oxyacetic acid (cmo⁵U), uridine 5-oxyacetic acid methyl ester (mcmo⁵U), 5-carboxymethyl-uridine (cm⁵U), 1-carboxymethylpseudouridine, 5-carboxyhydroxymethyl-uridine (chm⁵U), 5-carboxyhydroxymethyl-uridine methyl ester (mchm⁵U), 5-methoxycarbonylmethyl-uridine (mcm⁵U), 5-methoxycarbonylmethyl-2-thio-uridine (mcm⁵s²U), 5-aminomethyl-2-thio-uridine (nm⁵s²U), 5-methylaminomethyl-uridine (mnm⁵U), 5-methylaminomethyl-2-thio-uridine $(mnm^5s^2U),$ 5-methylaminomethyl-2-seleno-uridine (mnm⁵se²U), 5-carbamoylmethyl-uridine (ncm⁵U), 5-carboxymethylaminomethyl-uridine (cmnm⁵U), 5-carboxymethylaminomethyl-2-thio-uridine (cmnm⁵s²U), 5-propynyluridine, 1-propynyl-pseudouridine, 5-taurinomethyl-uridine (τm⁵U), 1-taurinomethyl-pseudouridine, 5-taurinomethyl-2thio-uridine(m⁵s²U), 1-taurinomethyl-4-thio-pseudouridine, 5-methyl-uridine (m⁵U, i.e., having the nucleobase deoxythymine), 1-methyl-pseudouridine ($m^1\psi$), 5-methyl-2-thiouridine (m5s²U), 1-methyl-4-thio-pseudouridine (m¹s⁴ ψ), 4-thio-1-methyl-pseudouridine, 3-methyl-pseudouridine $(m^3\psi)$, 2-thio-1-methyl-pseudouridine, 1-methyl-1-deazapseudouridine, 2-thio-1-methyl-1-deaza-pseudouridine, dihydrouridine (D), dihydropseudouridine, 5,6-dihydrouridine, 5-methyl-dihydrouridine (m⁵D), 2-thio-dihydrouri-2-thio-dihydropseudouridine, 2-methoxy-uridine, 2-methoxy-4-thio-uridine, 4-methoxy-pseudouridine, 4-methoxy-2-thio-pseudouridine, N1-methyl-pseudouridine. 3-(3-amino-3-carboxypropyl)uridine (acp³U), 1-methyl-3-(3-amino-3-carboxypropyl)pseudouridine $(acp^3\psi)$, 5-(isopentenylaminomethyl)uridine (inm⁵U), 5-(isopentenylaminomethyl)-2-thio-uridine $(inm^5s^2U),$ 60 α-thio-uridine, 2'-O-methyl-uridine (Um), 5,2'-O-dimethyluridine (msUm), 2'-O-methyl-pseudouridine (Wm), 2-thio-2'-O-methyl-uridine (s²Um), 5-methoxycarbonylmethyl-2'-O-methyl-uridine (mcm⁵Um), 5-carbamoylmethyl-2'-Omethyl-uridine (ncm⁵Um), 5-carboxymethylaminomethyl-2'-O-methyl-uridine (cmnm⁵Um), 3,2'-O-dimethyl-uridine (m³Um), and 5-(isopentenylaminomethyl)-2'-O-methyl-uridine (inm⁵Um), 1-thio-uridine, deoxythymidine, 2'-F-ara-

uridine, 2'-F-uridine, 2'-OH-ara-uridine, 5-(2-carbomethoxyvinyl) uridine, and 5-[3-(1-E-propenylamino)] uridine.

In some embodiments, the modified nucleobase is a modified cytosine. Exemplary nucleobases and nucleosides 5 having a modified cytosine include 5-aza-cytidine, 6-azacytidine, pseudoisocytidine, 3-methyl-cytidine (m^3C) , N4-acetyl-cytidine (ac 4 C), 5-formyl-cytidine N4-methyl-cytidine (m⁴C), 5-methyl-cytidine (m^5C) , 5-halo-cytidine (e.g., 5-iodo-cytidine), 5-hydroxymethyl- 10 cytidine (hm⁵C), 1-methyl-pseudoisocytidine, pyrrolo-cytidine, pyrrolo-pseudoisocytidine, 2-thio-cytidine (s²C), 2-thio-5-methyl-cytidine, 4-thio-pseudoisocytidine, 4-thio-4-thio-1-methyl-1-deaza-1-methyl-pseudoisocytidine, pseudoisocytidine. 1-methyl-1-deaza-pseudoisocytidine, 15 zebularine, 5-aza-zebularine, 5-methyl-zebularine, 5-aza-2thio-zebularine, 2-thio-zebularine, 2-methoxy-cytidine, 2-methoxy-5-methyl-cytidine, 4-methoxy-pseudoisocyti-4-methoxy-1-methyl-pseudoisocytidine, (k₂C), α-thio-cytidine, 2'-O-methyl-cytidine (Cm), 5,2'-O- 20 dimethyl-cytidine (m⁵Cm), N4-acetyl-2'-O-methyl-cytidine (ac⁴Cm), N4,2'-O-dimethyl-cytidine (m⁴Cm), 5-formyl-2'-O-methyl-cytidine (f5Cm), N4,N4,2'-O-trimethyl-cytidine (m⁴2Cm), 1-thio-cytidine, 2'-F-ara-cytidine, 2'-F-cytidine, and 2'-OH-ara-cytidine.

In some embodiments, the modified nucleobase is a modified adenine. Exemplary nucleobases and nucleosides having a modified adenine include 2-amino-purine, 2, 6-diaminopurine, 2-amino-6-halo-purine (e.g., 2-amino-6chloro-purine), 6-halo-purine (e.g., 6-chloro-purine), 30 2-amino-6-methyl-purine, 8-azido-adenosine, 7-deaza-adenine, 7-deaza-8-aza-adenine, 7-deaza-2-amino-purine, 7-deaza-8-aza-2-amino-purine, 7-deaza-2,6-diaminopurine, 7-deaza-8-aza-2,6-diaminopurine, 1-methyl-adenosine (m¹A), 2-methyl-adenine (m²A), N6-methyl-adenosine 35 2-methylthio-N6-methyl-adenosine (ms²m⁶A), (m^6A) , N6-isopentenyl-adenosine (i⁶A), 2-methylthio-N6-isopentenyl-adenosine (ms²i⁶A), N6-(cis-hydroxyisopentenyl)adenosine (io⁶A), 2-methylthio-N6-(cis-hydroxyisopentenyl) adenosine (ms²io⁶A), N6-glycinylcarbamoyl-adenosine 40 (g⁶A), N6-threonylcarbamoyl-adenosine (t⁶A), N6-methyl-N6-threonylcarbamoyl-adenosine (m⁶t6A), 2-methylthio-N6-threonylcarbamoyl-adenosine (ms²g⁶A), N6,N6-dimethyl-adenosine (m⁶2A), N6-hydroxynorvalylcarbamoyl- $(hn^6A),$ 2-methylthio-N6- 45 adenosine hydroxynorvalylcarbamoyl-adenosine (ms^2hn^6A) , N6-acetyl-adenosine (ac⁶A), 7-methyl-adenine, 2-methylthio-adenine, 2-methoxy-adenine, α-thio-adenosine, 2'-O-N6,2'-O-dimethyl-adenosine methyl-adenosine (Am), (m⁶Am), N6,N6,2'-O-trimethyl-adenosine (m⁶2Am), 1,2'- 50 O-dimethyl-adenosine (m¹Am), 2'-O-ribosyladenosine (phosphate) (Ar(p)), 2-amino-N6-methyl-purine, 1-thio-adenosine, 8-azido-adenosine, 2'-F-ara-adenosine, 2'-F-adenosine, 2'-OH-ara-adenosine, and N6-(19-amino-pentaoxanonadecyl)-adenosine.

In some embodiments, the modified nucleobase is a modified guanine. Exemplary nucleobases and nucleosides having a modified guanine include inosine (I), 1-methylinosine (m¹I), wyosine (imG), methylwyosine (mimG), 4-demethyl-wyosine (imG-14), isowyosine (imG2), wybutosine (yW), peroxywybutosine (o₂yW), hydroxywybutosine (OhyW*), 7-deaza-guanosine, queuosine (Q), epoxyqueuosine (oQ), galactosyl-queuosine (galQ), mannosyl-queuosine (manQ), 7-cyano-7-deaza-guanosine (preQ₀), 7-aminomethyl-7-65 deaza-guanosine (preQ₁), archaeosine (G⁺), 7-deaza-8-aza-guanosine, 6-thio-guanosine, 6-thio-7-deaza-guanosine,

62

6-thio-7-deaza-8-aza-guanosine, 7-methyl-guanosine 6-thio-7-methyl-guanosine, 7-methyl-inosine, 6-methoxy-guanosine, 1-methyl-guanosine N2-methyl-guanosine (m²G), N2,N2-dimethyl-guanosine (m²2G), N2,7-dimethyl-guanosine (m²,7G), N2, N2,7-dimethyl-guanosine (m^{2,2,7}G), 8-oxo-guanosine, 7-methyl-8oxo-guanosine, 1-methyl-6-thio-guanosine, N2-methyl-6thio-guanosine, N2,N2-dimethyl-6-thio-guanosine, α-thioguanosine, 2'-O-methyl-guanosine (Gm), N2-methyl-2'-Omethyl-guanosine (m²Gm), N2,N2-dimethyl-2'-O-methylguanosine (m²2Gm), 1-methyl-2'-O-methyl-guanosine (mGm), N2,7-dimethyl-2'-O-methyl-guanosine (m²'7Gm), 2'-O-methyl-inosine (Im), 1,2'-O-dimethyl-inosine (m¹Im), 2'-O-ribosylguanosine (phosphate) (Gr(p)), 1-thio-guanosine, 06-methyl-guanosine, 2'-F-ara-guanosine, and 2'-Fguanosine.

N-Linked Glycosylation Site Mutants

N-linked glycans of viral proteins play important roles in modulating the immune response. Glycans can be important for maintaining the appropriate antigenic conformations, shielding potential neutralization epitopes, and may alter the proteolytic susceptibility of proteins. Some viruses have putative N-linked glycosylation sites. Deletion or modification of an N-linked glycosylation site may enhance the immune response. Thus, the present disclosure provides, in some embodiments, RNA (e.g., mRNA) vaccines comprising nucleic acids (e.g., mRNA) encoding antigenic polypeptides that comprise a deletion or modification at one or more N-linked glycosylation sites.

In Vitro Transcription of RNA (e.g., mRNA)

Respiratory virus vaccines of the present disclosure comprise at least one RNA polynucleotide, such as a mRNA (e.g., modified mRNA). mRNA, for example, is transcribed in vitro from template DNA, referred to as an "in vitro transcription template." In some embodiments, an in vitro transcription template encodes a 5' untranslated (UTR) region, contains an open reading frame, and encodes a 3' UTR and a polyA tail. The particular nucleic acid sequence composition and length of an in vitro transcription template will depend on the mRNA encoded by the template.

A "5' untranslated region" (5'UTR) refers to a region of an mRNA that is directly upstream (i.e., 5') from the start codon (i.e., the first codon of an mRNA transcript translated by a ribosome) that does not encode a polypeptide.

A "3' untranslated region" (3'UTR) refers to a region of an mRNA that is directly downstream (i.e., 3') from the stop codon (i.e., the codon of an mRNA transcript that signals a termination of translation) that does not encode a polypeptide

An "open reading frame" is a continuous stretch of DNA beginning with a start codon (e.g., methionine (ATG)), and ending with a stop codon (e.g., TAA, TAG or TGA) and encodes a polypeptide.

A "polyA tail" is a region of mRNA that is downstream, e.g., directly downstream (i.e., 3'), from the 3' UTR that contains multiple, consecutive adenosine monophosphates. A polyA tail may contain 10 to 300 adenosine monophosphates. For example, a polyA tail may contain 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290 or 300 adenosine monophosphates. In some embodiments, a polyA tail contains 50 to 250 adenosine monophosphates. In a relevant biological setting (e.g., in cells, in vivo) the poly(A) tail functions to protect mRNA from enzymatic degradation, e.g., in the cytoplasm, and aids in transcription termination, export of the mRNA from the nucleus and translation.

In some embodiments, a polynucleotide includes 200 to 3,000 nucleotides. For example, a polynucleotide may include 200 to 500, 200 to 1000, 200 to 1500, 200 to 3000, 500 to 1000, 500 to 1500, 500 to 2000, 500 to 3000, 1000 to 1500, 1000 to 2000, 1000 to 3000, 1500 to 3000, or 2000 5 to 3000 nucleotides.

Flagellin Adjuvants

Flagellin is an approximately 500 amino acid monomeric protein that polymerizes to form the flagella associated with bacterial motion. Flagellin is expressed by a variety of 10 flagellated bacteria (Salmonella typhimurium for example) as well as non-flagellated bacteria (such as Escherichia coli). Sensing of flagellin by cells of the innate immune system (dendritic cells, macrophages, etc.) is mediated by the Tolllike receptor 5 (TLR5) as well as by Nod-like receptors 15 (NLRs) Ipaf and Naip5. TLRs and NLRs have been identified as playing a role in the activation of innate immune response and adaptive immune response. As such, flagellin provides an adjuvant effect in a vaccine.

The nucleotide and amino acid sequences encoding 20 known flagellin polypeptides are publicly available in the NCBI GenBank database. The flagellin sequences from S.

Typhimurium, H. Pylori, V. Cholera, S. marcesens, S. flexneri, T. Pallidum, L. pneumophila, B. burgdorferei, C. difficile, R. meliloti, A. tumefaciens, R. lupini, B. clar- 25 ridgeiae, P. Mirabilis, B. subtilus, L. monocytogenes, P. aeruginosa, and E. coli, among others are known.

A flagellin polypeptide, as used herein, refers to a full length flagellin protein, immunogenic fragments thereof, and peptides having at least 50% sequence identify to a 30 flagellin protein or immunogenic fragments thereof. Exemplary flagellin proteins include flagellin from Salmonella typhi (UniPro Entry number: Q56086), Salmonella typhimu-(A0A0C9DG09), Salmonella and SEQ ID NO: 54-56 (Table 17). In some embodiments, the flagellin polypeptide has at least 60%, 70%, 75%, 80%, 90%, 95%, 97%, 98%, or 99% sequence identify to a flagellin protein or immunogenic fragments thereof.

In some embodiments, the flagellin polypeptide is an 40 immunogenic fragment. An immunogenic fragment is a portion of a flagellin protein that provokes an immune response. In some embodiments, the immune response is a TLR5 immune response. An example of an immunogenic fragment is a flagellin protein in which all or a portion of a 45 hinge region has been deleted or replaced with other amino acids. For example, an antigenic polypeptide may be inserted in the hinge region. Hinge regions are the hypervariable regions of a flagellin. Hinge regions of a flagellin are also referred to as "D3 domain or region, "propeller 50 domain or region," "hypervariable domain or region" and "variable domain or region." "At least a portion of a hinge region," as used herein, refers to any part of the hinge region of the flagellin, or the entirety of the hinge region. In other embodiments an immunogenic fragment of flagellin is a 20, 55 25, 30, 35, or 40 amino acid C-terminal fragment of flagel-

The flagellin monomer is formed by domains D0 through D3. D0 and D1, which form the stem, are composed of tandem long alpha helices and are highly conserved among 60 different bacteria. The D1 domain includes several stretches of amino acids that are useful for TLR5 activation. The entire D1 domain or one or more of the active regions within the domain are immunogenic fragments of flagellin. Examples of immunogenic regions within the D1 domain 65 include residues 88-114 and residues 411-431 (in Salmonella typhimurium FliC flagellin. Within the 13 amino acids

64

in the 88-100 region, at least 6 substitutions are permitted between Salmonella flagellin and other flagellins that still preserve TLR5 activation. Thus, immunogenic fragments of flagellin include flagellin like sequences that activate TLR5 and contain a 13 amino acid motif that is 53% or more identical to the Salmonella sequence in 88-100 of FliC (LORVRELAVQSAN; SEQ ID NO: 84).

In some embodiments, the RNA (e.g., mRNA) vaccine includes an RNA that encodes a fusion protein of flagellin and one or more antigenic polypeptides. A "fusion protein" as used herein, refers to a linking of two components of the construct. In some embodiments, a carboxy-terminus of the antigenic polypeptide is fused or linked to an amino terminus of the flagellin polypeptide. In other embodiments, an amino-terminus of the antigenic polypeptide is fused or linked to a carboxy-terminus of the flagellin polypeptide. The fusion protein may include, for example, one, two, three, four, five, six or more flagellin polypeptides linked to one, two, three, four, five, six or more antigenic polypeptides. When two or more flagellin polypeptides and/or two or more antigenic polypeptides are linked such a construct may be referred to as a "multimer."

Each of the components of a fusion protein may be directly linked to one another or they may be connected through a linker. For instance, the linker may be an amino acid linker. The amino acid linker encoded for by the RNA (e.g., mRNA) vaccine to link the components of the fusion protein may include, for instance, at least one member selected from the group consisting of a lysine residue, a glutamic acid residue, a serine residue and an arginine residue. In some embodiments the linker is 1-30, 1-25, 1-25, 5-10, 5, 15, or 5-20 amino acids in length.

In other embodiments the RNA (e.g., mRNA) vaccine (AOAOC9BAB7), and Salmonella choleraesuis (Q6V2X8), 35 includes at least two separate RNA polynucleotides, one encoding one or more antigenic polypeptides and the other encoding the flagellin polypeptide. The at least two RNA polynucleotides may be co-formulated in a carrier such as a lipid nanoparticle.

Broad Spectrum RNA (e.g., mRNA) Vaccines

There may be situations where persons are at risk for infection with more than one strain of hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1). RNA (e.g., mRNA) therapeutic vaccines are particularly amenable to combination vaccination approaches due to a number of factors including, but not limited to, speed of manufacture, ability to rapidly tailor vaccines to accommodate perceived geographical threat, and the like. Moreover, because the vaccines utilize the human body to produce the antigenic protein, the vaccines are amenable to the production of larger, more complex antigenic proteins, allowing for proper folding, surface expression, antigen presentation, etc. in the human subject. To protect against more than one strain of hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1), a combination vaccine can be administered that includes RNA (e.g., mRNA) encoding at least one antigenic polypeptide protein (or antigenic portion thereof) of a first respiratory virus and further includes RNA encoding at least one antigenic polypeptide protein (or antigenic portion thereof) of a second respiratory virus. RNA (e.g., mRNA) can be co-formulated, for example, in a single lipid nanoparticle (LNP) or can be formulated in separate LNPs for co-administration.

Methods of Treatment

Provided herein are compositions (e.g., pharmaceutical compositions), methods, kits and reagents for prevention and/or treatment of respiratory diseases/infections in humans and other mammals. Respiratory virus RNA (e.g. 5 mRNA) vaccines can be used as therapeutic or prophylactic agents, alone or in combination with other vaccine(s). They may be used in medicine to prevent and/or treat respiratory disease/infection. In exemplary aspects, the RNA (e.g., mRNA) vaccines of the present disclosure are used to 10 provide prophylactic protection from hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1). Prophylactic protection from hMPV, PIV3, RSV, MeV and/or BetaCoV (including 15 MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) can be achieved following administration of a RNA (e.g., mRNA) vaccine of the present disclosure. Respiratory virus RNA (e.g., mRNA) vaccines of the present disclosure may 20 be used to treat or prevent viral "co-infections" containing two or more respiratory infections. Vaccines can be administered once, twice, three times, four times or more, but it is likely sufficient to administer the vaccine once (optionally followed by a single booster). It is possible, although less 25 desirable, to administer the vaccine to an infected individual to achieve a therapeutic response. Dosing may need to be adjusted accordingly.

A method of eliciting an immune response in a subject against hMPV, PIV3, RSV, MeV and/or BetaCoV (including 30 MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) is provided in aspects of the present disclosure. The method involves administering to the subject a respiratory virus RNA (e.g., mRNA) vaccine comprising at least one RNA 35 (e.g., mRNA) polynucleotide having an open reading frame encoding at least one hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) antigenic polypeptide thereof, thereby 40 inducing in the subject an immune response specific to hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) antigenic polypeptide or an immunogenic fragment thereof, 45 wherein anti-antigenic polypeptide antibody titer in the subject is increased following vaccination relative to antiantigenic polypeptide antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against hMPV, PIV3, RSV, MeV and/or BetaCoV 50 (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1). An "anti-antigenic polypeptide antibody" is a serum antibody the binds specifically to the antigenic polypeptide.

In some embodiments, a RNA (e.g., mRNA) vaccine 55 (e.g., a hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1 RNA vaccine) capable of eliciting an immune response is administered intramuscularly via a composition including a 60 compound according to Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (IIe) (e.g., Compound 3, 18, 20, 25, 26, 29, 30, 60, 108-112, or 122).

A prophylactically effective dose is a therapeutically effective dose that prevents infection with the virus at a 65 clinically acceptable level. In some embodiments the therapeutically effective dose is a dose listed in a package insert

66

for the vaccine. A traditional vaccine, as used herein, refers to a vaccine other than the RNA (e.g., mRNA) vaccines of the present disclosure. For instance, a traditional vaccine includes but is not limited to live/attenuated microorganism vaccines, killed/inactivated microorganism vaccines, subunit vaccines, protein antigen vaccines, DNA vaccines, VLP vaccines, etc. In exemplary embodiments, a traditional vaccine is a vaccine that has achieved regulatory approval and/or is registered by a national drug regulatory body, for example the Food and Drug Administration (FDA) in the United States or the European Medicines Agency (EMA).

In some embodiments the anti-antigenic polypeptide antibody titer in the subject is increased 1 log to 10 log following vaccination relative to anti-antigenic polypeptide antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1).

In some embodiments the anti-antigenic polypeptide antibody titer in the subject is increased 1 log, 2 log, 3 log, 5 log or 10 log following vaccination relative to anti-antigenic polypeptide antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1).

A method of eliciting an immune response in a subject against hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) is provided in other aspects of the disclosure. The method involves administering to the subject a respiratory virus RNA (e.g., mRNA) vaccine comprising at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) antigenic polypeptide or an immunogenic fragment thereof, thereby inducing in the subject an immune response specific to hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) antigenic polypeptide or an immunogenic fragment thereof, wherein the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine against the hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) at 2 times to 100 times the dosage level relative to the RNA (e.g., mRNA) vaccine.

In some embodiments, the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at 2, 3, 4, 5, 10, 50, 100 times the dosage level relative to the hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) RNA (e.g., mRNA) vaccine

In some embodiments the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at 10-100 times, or 100-1000 times, the dosage level relative to the hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV,

HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) RNA (e.g., mRNA) vac-

In some embodiments the immune response is assessed by determining [protein] antibody titer in the subject.

Some aspects of the present disclosure provide a method of eliciting an immune response in a subject against a In some embodiments the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at 2, 3, 4, 5, 10, 50, 100 times the dosage level relative to the hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) RNA (e.g., mRNA) vaccine by administering to the subject a respiratory virus RNA (e.g., mRNA) vaccine comprising at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, 20 mRNA) vaccine is provided based, at least in part, on the HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) antigenic polypeptide, thereby inducing in the subject an immune response specific to the antigenic polypeptide or an immunogenic fragment thereof, wherein the immune response in the subject is induced 2 days to 10 weeks earlier 25 relative to an immune response induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against the hMPV, PIV3, RSV, MeV and/or Beta-CoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or 30 HCoV-HKU1). In some embodiments, the immune response in the subject is induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine at 2 times to 100 times the dosage level relative to the RNA (e.g., mRNA) vaccine.

In some embodiments, the immune response in the subject is induced 2 days earlier, or 3 days earlier, relative to an immune response induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine.

In some embodiments the immune response in the subject 40 is induced 1 week, 2 weeks, 3 weeks, 5 weeks, or 10 weeks earlier relative to an immune response induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine.

Also provided herein is a method of eliciting an immune 45 response in a subject against hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) by administering to the subject a respiratory virus RNA (e.g., mRNA) vaccine having an open 50 reading frame encoding a first antigenic polypeptide, wherein the RNA polynucleotide does not include a stabilization element, and wherein an adjuvant is not co-formulated or co-administered with the vaccine.

Therapeutic and Prophylactic Compositions

Provided herein are compositions (e.g., pharmaceutical compositions), methods, kits and reagents for prevention, treatment or diagnosis of hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH 60 and/or HCoV-HKU1) in humans and other mammals, for example. Respiratory virus RNA (e.g. mRNA) vaccines can be used as the rapeutic or prophylactic agents. They may be used in medicine to prevent and/or treat infectious disease. In some embodiments, the respiratory RNA (e.g., mRNA) 65 vaccines of the present disclosure are used fin the priming of immune effector cells, for example, to activate peripheral

68

blood mononuclear cells (PBMCs) ex vivo, which are then infused (re-infused) into a subject.

In some embodiments, respiratory virus vaccine containing RNA (e.g., mRNA) polynucleotides as described herein can be administered to a subject (e.g., a mammalian subject, such as a human subject), and the RNA (e.g., mRNA) polynucleotides are translated in vivo to produce an antigenic polypeptide.

The respiratory virus RNA (e.g., mRNA) vaccines may be induced for translation of a polypeptide (e.g., antigen or immunogen) in a cell, tissue or organism. In some embodiments, such translation occurs in vivo, although such translation may occur ex vivo, in culture or in vitro. In some embodiments, the cell, tissue or organism is contacted with an effective amount of a composition containing a respiratory virus RNA (e.g., mRNA) vaccine that contains a polynucleotide that has at least one a translatable region encoding an antigenic polypeptide.

An "effective amount" of an respiratory virus RNA (e.g. target tissue, target cell type, means of administration, physical characteristics of the polynucleotide (e.g., size, and extent of modified nucleosides) and other components of the vaccine, and other determinants. In general, an effective amount of the respiratory virus RNA (e.g., mRNA) vaccine composition provides an induced or boosted immune response as a function of antigen production in the cell, preferably more efficient than a composition containing a corresponding unmodified polynucleotide encoding the same antigen or a peptide antigen. Increased antigen production may be demonstrated by increased cell transfection (the percentage of cells transfected with the RNA, e.g., mRNA, vaccine), increased protein translation from the polynucleotide, decreased nucleic acid degradation (as dem-35 onstrated, for example, by increased duration of protein translation from a modified polynucleotide), or altered antigen specific immune response of the host cell.

In some embodiments, RNA (e.g. mRNA) vaccines (including polynucleotides their encoded polypeptides) in accordance with the present disclosure may be used for treatment of hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1).

Respiratory RNA (e.g. mRNA) vaccines may be administered prophylactically or therapeutically as part of an active immunization scheme to healthy individuals or early in infection during the incubation phase or during active infection after onset of symptoms. In some embodiments, the amount of RNA (e.g., mRNA) vaccine of the present disclosure provided to a cell, a tissue or a subject may be an amount effective for immune prophylaxis.

Respiratory virus RNA (e.g. mRNA) vaccines may be administrated with other prophylactic or therapeutic com-55 pounds. As a non-limiting example, a prophylactic or therapeutic compound may be an adjuvant or a booster. As used herein, when referring to a prophylactic composition, such as a vaccine, the term "booster" refers to an extra administration of the prophylactic (vaccine) composition. A booster (or booster vaccine) may be given after an earlier administration of the prophylactic composition. The time of administration between the initial administration of the prophylactic composition and the booster may be, but is not limited to, 1 minute, 2 minutes, 3 minutes, 4 minutes, 5 minutes, 6 minutes, 7 minutes, 8 minutes, 9 minutes, 10 minutes, 15 minutes, 20 minutes 35 minutes, 40 minutes, 45 minutes, 50 minutes, 55 minutes, 1 hour, 2 hours, 3 hours, 4 hours, 5

hours, 6 hours, 7 hours, 8 hours, 9 hours, 10 hours, 11 hours, 12 hours, 13 hours, 14 hours, 15 hours, 16 hours, 17 hours, 18 hours, 19 hours, 20 hours, 21 hours, 22 hours, 23 hours, 1 day, 36 hours, 2 days, 3 days, 4 days, 5 days, 6 days, 1 week, 10 days, 2 weeks, 3 weeks, 1 month, 2 months, 3 5 months, 4 months, 5 months, 6 months, 7 months, 8 months, 9 months, 10 months, 11 months, 1 year, 18 months, 2 years, 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 11 years, 12 years, 13 years, 14 years, 15 years, 16 years, 17 years, 18 years, 19 years, 20 years, 25 years, 30 10 years, 35 years, 40 years, 45 years, 50 years, 55 years, 60 years, 65 years, 70 years, 75 years, 80 years, 85 years, 90 years, 95 years or more than 99 years. In some embodiments, the time of administration between the initial administration of the prophylactic composition and the booster 15 may be, but is not limited to, 1 week, 2 weeks, 3 weeks, 1 month, 2 months, 3 months, 6 months or 1 year.

In some embodiments, respiratory virus RNA (e.g. mRNA) vaccines may be administered intramuscularly or intradermally, similarly to the administration of inactivated 20 vaccines known in the art.

Respiratory virus RNA (e.g. mRNA) vaccines may be utilized in various settings depending on the prevalence of the infection or the degree or level of unmet medical need. As a non-limiting example, the RNA (e.g., mRNA) vaccines 25 may be utilized to treat and/or prevent a variety of respiratory infections. RNA (e.g., mRNA) vaccines have superior properties in that they produce much larger antibody titers and produce responses early than commercially available anti-viral agents/compositions.

Provided herein are pharmaceutical compositions including respiratory virus RNA (e.g. mRNA) vaccines and RNA (e.g. mRNA) vaccine compositions and/or complexes optionally in combination with one or more pharmaceutically acceptable excipients.

Respiratory virus RNA (e.g. mRNA) vaccines may be formulated or administered alone or in conjunction with one or more other components. For instance, hMPV/PIV3/RSV RNA (e.g., mRNA) vaccines (vaccine compositions) may comprise other components including, but not limited to, 40 adjuvants.

In some embodiments, respiratory virus (e.g. mRNA) vaccines do not include an adjuvant (they are adjuvant free).

Respiratory virus RNA (e.g. mRNA) vaccines may be formulated or administered in combination with one or more 45 pharmaceutically-acceptable excipients. In some embodiments, vaccine compositions comprise at least one additional active substances, such as, for example, a therapeutically-active substance, a prophylactically-active substance, or a combination of both. Vaccine compositions may be 50 sterile, pyrogen-free or both sterile and pyrogen-free. General considerations in the formulation and/or manufacture of pharmaceutical agents, such as vaccine compositions, may be found, for example, in Remington: The Science and Practice of Pharmacy 21st ed., Lippincott Williams & 55 Wilkins, 2005 (incorporated herein by reference in its entirety).

In some embodiments, respiratory virus RNA (e.g. mRNA) vaccines are administered to humans, human patients or subjects. For the purposes of the present disclosure, the phrase "active ingredient" generally refers to the RNA (e.g., mRNA) vaccines or the polynucleotides contained therein, for example, RNA polynucleotides (e.g., mRNA polynucleotides) encoding antigenic polypeptides.

Formulations of the respiratory virus vaccine compositions described herein may be prepared by any method known or hereafter developed in the art of pharmacology. In 70

general, such preparatory methods include the step of bringing the active ingredient (e.g., mRNA polynucleotide) into association with an excipient and/or one or more other accessory ingredients, and then, if necessary and/or desirable, dividing, shaping and/or packaging the product into a desired single- or multi-dose unit.

Relative amounts of the active ingredient, the pharmaceutically acceptable excipient, and/or any additional ingredients in a pharmaceutical composition in accordance with the disclosure will vary, depending upon the identity, size, and/or condition of the subject treated and further depending upon the route by which the composition is to be administered. By way of example, the composition may comprise between 0.1% and 100%, e.g., between 0.5 and 50%, between 1-30%, between 5-80%, at least 80% (w/w) active ingredient.

Respiratory virus RNA (e.g. mRNA) vaccines can be formulated using one or more excipients to: (1) increase stability; (2) increase cell transfection; (3) permit the sustained or delayed release (e.g., from a depot formulation); (4) alter the biodistribution (e.g., target to specific tissues or cell types); (5) increase the translation of encoded protein in vivo; and/or (6) alter the release profile of encoded protein (antigen) in vivo. In addition to traditional excipients such as any and all solvents, dispersion media, diluents, or other liquid vehicles, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, excipients can include, without limitation, lipidoids, liposomes, lipid nanoparticles, polymers, lipoplexes, core-shell nanoparticles, peptides, proteins, cells transfected with respiratory virus RNA (e.g. mRNA)vaccines (e.g., for transplantation into a subject), hyaluronidase, nanoparticle mimics and combinations thereof. 35 Stabilizing Elements

been found to contain stabilizing elements, including, but not limited to untranslated regions (UTR) at their 5'-end (5'UTR) and/or at their 3'-end (3'UTR), in addition to other structural features, such as a 5'-cap structure or a 3'-poly(A) tail. Both the 5'UTR and the 3'UTR are typically transcribed from the genomic DNA and are elements of the premature mRNA. Characteristic structural features of mature mRNA, such as the 5'-cap and the 3'-poly(A) tail are usually added

Naturally-occurring eukaryotic mRNA molecules have

to the transcribed (premature) mRNA during mRNA processing. The 3'-poly(A) tail is typically a stretch of adenine nucleotides added to the 3'-end of the transcribed mRNA. It can comprise up to about 400 adenine nucleotides. In some embodiments the length of the 3'-poly(A) tail may be an essential element with respect to the stability of the individual mRNA.

In some embodiments the RNA (e.g., mRNA) vaccine may include one or more stabilizing elements. Stabilizing elements may include for instance a histone stem-loop. A stem-loop binding protein (SLBP), a 32 kDa protein has been identified. It is associated with the histone stem-loop at the 3'-end of the histone messages in both the nucleus and the cytoplasm. Its expression level is regulated by the cell cycle; it peaks during the S-phase, when histone mRNA levels are also elevated. The protein has been shown to be essential for efficient 3'-end processing of histone premRNA by the U7 snRNP. SLBP continues to be associated with the stem-loop after processing, and then stimulates the translation of mature histone mRNAs into histone proteins in the cytoplasm. The RNA binding domain of SLBP is conserved through metazoa and protozoa; its binding to the histone stem-loop depends on the structure of the loop. The

minimum binding site includes at least three nucleotides 5' and two nucleotides 3' relative to the stem-loop.

In some embodiments, the RNA (e.g., mRNA) vaccines include a coding region, at least one histone stem-loop, and optionally, a poly(A) sequence or polyadenylation signal. 5 The poly(A) sequence or polyadenylation signal generally should enhance the expression level of the encoded protein. The encoded protein, in some embodiments, is not a histone protein, a reporter protein (e.g. Luciferase, GFP, EGFP, β-Galactosidase, EGFP), or a marker or selection protein (e.g. alpha-Globin, Galactokinase and Xanthine:guanine phosphoribosyl transferase (GPT)).

In some embodiments, the combination of a poly(A) sequence or polyadenylation signal and at least one histone stem-loop, even though both represent alternative mechanisms in nature, acts synergistically to increase the protein expression beyond the level observed with either of the individual elements. It has been found that the synergistic effect of the combination of poly(A) and at least one histone stem-loop does not depend on the order of the elements or 20 the length of the poly(A) sequence.

In some embodiments, the RNA (e.g., mRNA) vaccine does not comprise a histone downstream element (HDE). "Histone downstream element" (HDE) includes a purinerich polynucleotide stretch of approximately 15 to 20 25 nucleotides 3' of naturally occurring stem-loops, representing the binding site for the U7 snRNA, which is involved in processing of histone pre-mRNA into mature histone mRNA. Ideally, the inventive nucleic acid does not include an intron

In some embodiments, the RNA (e.g., mRNA) vaccine may or may not contain a enhancer and/or promoter sequence, which may be modified or unmodified or which may be activated or inactivated. In some embodiments, the histone stem-loop is generally derived from histone genes, 35 and includes an intramolecular base pairing of two neighbored partially or entirely reverse complementary sequences separated by a spacer, including (e.g., consisting of) a short sequence, which forms the loop of the structure. The unpaired loop region is typically unable to base pair with 40 either of the stem loop elements. It occurs more often in RNA, as is a key component of many RNA secondary structures, but may be present in single-stranded DNA as well. Stability of the stem-loop structure generally depends on the length, number of mismatches or bulges, and base 45 composition of the paired region. In some embodiments, wobble base pairing (non-Watson-Crick base pairing) may result. In some embodiments, the at least one histone stemloop sequence comprises a length of 15 to 45 nucleotides.

In other embodiments the RNA (e.g., mRNA) vaccine 50 may have one or more AU-rich sequences removed. These sequences, sometimes referred to as AURES are destabilizing sequences found in the 3'UTR. The AURES may be removed from the RNA (e.g., mRNA) vaccines. Alternatively the AURES may remain in the RNA (e.g., mRNA) 55 vaccine.

Nanoparticle Formulations

In some embodiments, respiratory virus RNA (e.g. mRNA) vaccines are formulated in a nanoparticle. In some embodiments, respiratory virus RNA (e.g. mRNA) vaccines 60 are formulated in a lipid nanoparticle. In some embodiments, respiratory virus RNA (e.g. mRNA) vaccines are formulated in a lipid-polycation complex, referred to as a cationic lipid nanoparticle. As a non-limiting example, the polycation may include a cationic peptide or a polypeptide 65 such as, but not limited to, polylysine, polyornithine and/or polyarginine. In some embodiments, respiratory virus RNA

72

(e.g., mRNA) vaccines are formulated in a lipid nanoparticle that includes a non-cationic lipid such as, but not limited to, cholesterol or dioleoyl phosphatidylethanolamine (DOPE).

A lipid nanoparticle formulation may be influenced by, but not limited to, the selection of the cationic lipid component, the degree of cationic lipid saturation, the nature of the PEGylation, ratio of all components and biophysical parameters such as size. In one example by Semple et al. (*Nature Biotech.* 2010 28:172-176), the lipid nanoparticle formulation is composed of 57.1% cationic lipid, 7.1% dipalmitoylphosphatidylcholine, 34.3% cholesterol, and 1.4% PEG-c-DMA. As another example, changing the composition of the cationic lipid can more effectively deliver siRNA to various antigen presenting cells (Basha et al. *Mol Ther.* 2011 19:2186-2200).

In some embodiments, lipid nanoparticle formulations may comprise 35 to 45% cationic lipid, 40% to 50% cationic lipid, 50% to 60% cationic lipid and/or 55% to 65% cationic lipid. In some embodiments, the ratio of lipid to RNA (e.g., mRNA) in lipid nanoparticles may be 5:1 to 20:1, 10:1 to 25:1, 15:1 to 30:1 and/or at least 30:1.

In some embodiments, the ratio of PEG in the lipid nanoparticle formulations may be increased or decreased and/or the carbon chain length of the PEG lipid may be modified from C14 to C18 to alter the pharmacokinetics and/or biodistribution of the lipid nanoparticle formulations. As a non-limiting example, lipid nanoparticle formulations may contain 0.5% to 3.0%, 1.0% to 3.5%, 1.5% to 4.0%, 2.0% to 4.5%, 2.5% to 5.0% and/or 3.0% to 6.0% of the lipid molar ratio of PEG-c-DOMG (R-3-[(ω-methoxy-poly(ethyleneglycol)2000)carbamoyl)]-1,2-dimyristyloxypropyl-3amine) (also referred to herein as PEG-DOMG) as compared to the cationic lipid, DSPC and cholesterol. In some embodiments, the PEG-c-DOMG may be replaced with a PEG lipid such as, but not limited to, PEG-DSG (1,2-Distearoyl-snglycerol, methoxypolyethylene glycol), PEG-DMG (1,2-Dimyristoyl-sn-glycerol) and/or PEG-DPG (1,2-Dipalmitoyl-sn-glycerol, methoxypolyethylene glycol). The cationic lipid may be selected from any lipid known in the art such as, but not limited to, DLin-MC3-DMA, DLin-DMA, C12-200 and DLin-KC2-DMA.

In some embodiments, an respiratory virus RNA (e.g. mRNA) vaccine formulation is a nanoparticle that comprises at least one lipid. The lipid may be selected from, but is not limited to, DLin-DMA, DLin-K-DMA, 98N12-5, C12-200, DLin-MC3-DMA, DLin-KC2-DMA, DODMA, PLGA, PEG, PEG-DMG, PEGylated lipids and amino alcohol lipids. In some embodiments, the lipid may be a cationic lipid such as, but not limited to, DLin-DMA, DLin-DDMA, DLin-MC3-DMA, DLin-KC2-DMA, DODMA and amino alcohol lipids.

The amino alcohol cationic lipid may be the lipids described in and/or made by the methods described in U.S. Patent Publication No. US20130150625, herein incorporated by reference in its entirety. As a non-limiting example, the cationic lipid may be 2-amino-3-[(9Z,12Z)-octadeca-9, 12-dien-1-yloxy]-2-{[(9Z,2Z)-octadeca-9,12-dien-1-yloxy] methyl\propan-1-ol (Compound 1 in US20130150625); 2-amino-3-[(9Z)-octadec-9-en-1-yloxy]-2-{[(9Z)-octadec-9-en-1-yloxy]methyl}propan-1-ol (Compound US20130150625); 2-amino-3-[(9Z,12Z)-octadeca-9,12dien-1-yloxy]-2-[(octyloxy)methyl]propan-1-ol (Compound 3 in US20130150625); and 2-(dimethylamino)-3-[(9Z,12Z)octadeca-9,12-dien-1-yloxy]-2-{[(9Z, 12Z)-octadeca-9,12dien-1-yloxy]methyl}propan-1-ol (Compound 4 US20130150625); or any pharmaceutically acceptable salt or stereoisomer thereof.

Lipid nanoparticle formulations typically comprise a lipid, in particular, an ionizable cationic lipid, for example, 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), or di((Z)-non-2-en-1-yl) 9-((4-5 (dimethylamino)butanoyl)oxy)heptadecanedioate (L319), and further comprise a neutral lipid, a sterol and a molecule capable of reducing particle aggregation, for example a PEG or PEG-modified lipid.

In some embodiments, a lipid nanoparticle formulation 10 consists essentially of (i) at least one lipid selected from the group consisting of 2,2-dilinoleyl-4-dimethylaminoethyl-[1, 3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy) 15 heptadecanedioate (L319); (ii) a neutral lipid selected from DSPC, DPPC, POPC, DOPE and SM; (iii) a sterol, e.g., cholesterol; and (iv) a PEG-lipid, e.g., PEG-DMG or PEG-cDMA, in a molar ratio of 20-60% cationic lipid: 5-25% neutral lipid: 25-55% sterol; 0.5-15% PEG-lipid.

In some embodiments, a lipid nanoparticle formulation includes 25% to 75% on a molar basis of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-25 yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), e.g., 35 to 65%, 45 to 65%, 60%, 57.5%, 50% or 40% on a molar basis.

In some embodiments, a lipid nanoparticle formulation includes 0.5% to 15% on a molar basis of the neutral lipid, 30 e.g., 3 to 12%, 5 to 10% or 15%, 10%, or 7.5% on a molar basis. Examples of neutral lipids include, without limitation, DSPC, POPC, DPPC, DOPE and SM. In some embodiments, the formulation includes 5% to 50% on a molar basis of the sterol (e.g., 15 to 45%, 20 to 40%, 40%, 38.5%, 35%, 35 or 31% on a molar basis. A non-limiting example of a sterol is cholesterol. In some embodiments, a lipid nanoparticle formulation includes 0.5% to 20% on a molar basis of the PEG or PEG-modified lipid (e.g., 0.5 to 10%, 0.5 to 5%, 1.5%, 0.5%, 1.5%, 3.5%, or 5% on a molar basis. In some 40 embodiments, a PEG or PEG modified lipid comprises a PEG molecule of an average molecular weight of 2,000 Da. In some embodiments, a PEG or PEG modified lipid comprises a PEG molecule of an average molecular weight of less than 2,000, for example around 1,500 Da, around 1,000 45 Da, or around 500 Da. Non-limiting examples of PEGmodified lipids include PEG-distearovl glycerol (PEG-DMG) (also referred herein as PEG-C14 or C14-PEG), PEG-cDMA (further discussed in Reyes et al. J. Controlled Release, 107, 276-287 (2005) the contents of which are 50 herein incorporated by reference in their entirety).

In some embodiments, lipid nanoparticle formulations include 25-75% of a cationic lipid selected from 2,2-dilino-leyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-55 MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 0.5-15% of the neutral lipid, 5-50% of the sterol, and 0.5-20% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, lipid nanoparticle formulations 60 include 35-65% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 65 3-12% of the neutral lipid, 15-45% of the sterol, and 0.5-10% of the PEG or PEG-modified lipid on a molar basis.

74

In some embodiments, lipid nanoparticle formulations include 45-65% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 5-10% of the neutral lipid, 25-40% of the sterol, and 0.5-10% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, lipid nanoparticle formulations include 60% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 7.5% of the neutral lipid, 31% of the sterol, and 1.5% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, lipid nanoparticle formulations include 50% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), 20 dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 10% of the neutral lipid, 38.5% of the sterol, and 1.5% of the PEG or PEGmodified lipid on a molar basis.

In some embodiments, lipid nanoparticle formulations include 50% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 10% of the neutral lipid, 35% of the sterol, 4.5% or 5% of the PEG or PEG-modified lipid, and 0.5% of the targeting lipid on a molar basis.

In some embodiments, lipid nanoparticle formulations include 40% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 15% of the neutral lipid, 40% of the sterol, and 5% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, lipid nanoparticle formulations include 57.2% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 7.1% of the neutral lipid, 34.3% of the sterol, and 1.4% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, lipid nanoparticle formulations include 57.5% of a cationic lipid selected from the PEG lipid is PEG-cDMA (PEG-cDMA is further discussed in Reyes et al. (J. Controlled Release, 107, 276-287 (2005), the contents of which are herein incorporated by reference in their entirety), 7.5% of the neutral lipid, 31.5% of the sterol, and 3.5% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, lipid nanoparticle formulations consists essentially of a lipid mixture in molar ratios of 20-70% cationic lipid: 5-45% neutral lipid: 20-55% cholesterol: 0.5-15% PEG-modified lipid. In some embodiments, lipid nanoparticle formulations consists essentially of a lipid mixture in a molar ratio of 20-60% cationic lipid: 5-25% neutral lipid: 25-55% cholesterol: 0.5-15% PEG-modified lipid.

In some embodiments, the molar lipid ratio is 50/10/38.5/1.5 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG, PEG-DSG or PEG-

DPG), 57.2/7.1134.3/1.4 (mol % cationic lipid/neutral lipid, e.g., DPPC/Chol/PEG-modified lipid, e.g., PEG-cDMA), 40/15/40/5 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG), 50/10/35/4.5/0.5 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/ 5 PEG-modified lipid, e.g., PEG-DSG), 50/10/35/5 (cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG), 40/10/40/10 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG or PEG-cDMA), 35/15/40/10 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG or PEG-cDMA) or 52/13/30/5 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG or PEG-cDMA).

Non-limiting examples of lipid nanoparticle compositions 15 and methods of making them are described, for example, in Semple et al. (2010) *Nat. Biotechnol.* 28:172-176; Jayarama et al. (2012), *Angew. Chem. Int. Ed.*, 51: 8529-8533; and Maier et al. (2013) *Molecular Therapy* 21, 1570-1578 (the contents of each of which are incorporated herein by reference in their entirety).

In some embodiments, lipid nanoparticle formulations may comprise a cationic lipid, a PEG lipid and a structural lipid and optionally comprise a non-cationic lipid. As a non-limiting example, a lipid nanoparticle may comprise 25 40-60% of cationic lipid, 5-15% of a non-cationic lipid, 1-2% of a PEG lipid and 30-50% of a structural lipid. As another non-limiting example, the lipid nanoparticle may comprise 50% cationic lipid, 10% non-cationic lipid, 1.5% PEG lipid and 38.5% structural lipid. As yet another non-limiting example, a lipid nanoparticle may comprise 55% cationic lipid, 10% non-cationic lipid, 2.5% PEG lipid and 32.5% structural lipid. In some embodiments, the cationic lipid may be any cationic lipid described herein such as, but not limited to, DLin-KC2-DMA, DLin-MC3-DMA and 35 L319.

In some embodiments, the lipid nanoparticle formulations described herein may be 4 component lipid nanoparticles. The lipid nanoparticle may comprise a cationic lipid, a non-cationic lipid, a PEG lipid and a structural lipid. As a 40 non-limiting example, the lipid nanoparticle may comprise 40-60% of cationic lipid, 5-15% of a non-cationic lipid, 1-2% of a PEG lipid and 30-50% of a structural lipid. As another non-limiting example, the lipid nanoparticle may comprise 50% cationic lipid, 10% non-cationic lipid, 1.5% 45 PEG lipid and 38.5% structural lipid. As yet another nonlimiting example, the lipid nanoparticle may comprise 55% cationic lipid, 10% non-cationic lipid, 2.5% PEG lipid and 32.5% structural lipid. In some embodiments, the cationic lipid may be any cationic lipid described herein such as, but 50 not limited to, DLin-KC2-DMA, DLin-MC3-DMA and L319.

In some embodiments, the lipid nanoparticle formulations described herein may comprise a cationic lipid, a non-cationic lipid, a PEG lipid and a structural lipid. As a 55 non-limiting example, the lipid nanoparticle comprise 50% of the cationic lipid DLin-KC2-DMA, 10% of the non-cationic lipid DSPC, 1.5% of the PEG lipid PEG-DOMG and 38.5% of the structural lipid cholesterol. As a non-limiting example, the lipid nanoparticle comprise 50% of the cationic lipid DLin-MC3-DMA, 10% of the non-cationic lipid DSPC, 1.5% of the PEG lipid PEG-DOMG and 38.5% of the structural lipid cholesterol. As a non-limiting example, the lipid nanoparticle comprise 50% of the cationic lipid DLin-MC3-DMA, 10% of the non-cationic lipid DLin-MC3-DMA, 10% of the non-cationic lipid DSPC, 1.5% of the PEG lipid PEG-DMG and 38.5% of the structural lipid cholesterol. As yet another non-limiting

example, the lipid nanoparticle comprise 55% of the cationic lipid L319, 10% of the non-cationic lipid DSPC, 2.5% of the PEG lipid PEG-DMG and 32.5% of the structural lipid cholesterol.

76

Relative amounts of the active ingredient, the pharmaceutically acceptable excipient, and/or any additional ingredients in a vaccine composition may vary, depending upon the identity, size, and/or condition of the subject being treated and further depending upon the route by which the composition is to be administered. For example, the composition may comprise between 0.1% and 99% (w/w) of the active ingredient. By way of example, the composition may comprise between 0.1% and 100%, e.g., between 0.5 and 50%, between 1-30%, between 5-80%, at least 80% (w/w) active ingredient.

In some embodiments, the respiratory virus RNA (e.g. mRNA) vaccine composition may comprise the polynucle-otide described herein, formulated in a lipid nanoparticle comprising MC3, Cholesterol, DSPC and PEG2000-DMG, the buffer trisodium citrate, sucrose and water for injection. As a non-limiting example, the composition comprises: 2.0 mg/mL of drug substance (e.g., polynucleotides encoding H10N8 hMPV), 21.8 mg/mL of MC3, 10.1 mg/mL of cholesterol, 5.4 mg/mL of DSPC, 2.7 mg/mL of PEG2000-DMG, 5.16 mg/mL of trisodium citrate, 71 mg/mL of sucrose and 1.0 mL of water for injection.

In some embodiments, a nanoparticle (e.g., a lipid nanoparticle) has a mean diameter of 10-500 nm, 20-400 nm, 30-300 nm, 40-200 nm. In some embodiments, a nanoparticle (e.g., a lipid nanoparticle) has a mean diameter of 50-150 nm, 50-200 nm, 80-100 nm or 80-200 nm. Liposomes, Lipoplexes, and Lipid Nanoparticles

The RNA (e.g., mRNA) vaccines of the disclosure can be formulated using one or more liposomes, lipoplexes, or lipid nanoparticles. In some embodiments, pharmaceutical compositions of RNA (e.g., mRNA) vaccines include liposomes. Liposomes are artificially-prepared vesicles which may primarily be composed of a lipid bilayer and may be used as a delivery vehicle for the administration of nutrients and pharmaceutical formulations. Liposomes can be of different sizes such as, but not limited to, a multilamellar vesicle (MLV) which may be hundreds of nanometers in diameter and may contain a series of concentric bilayers separated by narrow aqueous compartments, a small unicellular vesicle (SUV) which may be smaller than 50 nm in diameter, and a large unilamellar vesicle (LUV) which may be between 50 and 500 nm in diameter. Liposome design may include, but is not limited to, opsonins or ligands in order to improve the attachment of liposomes to unhealthy tissue or to activate events such as, but not limited to, endocytosis. Liposomes may contain a low or a high pH in order to improve the delivery of the pharmaceutical formulations.

The formation of liposomes may depend on the physicochemical characteristics such as, but not limited to, the pharmaceutical formulation entrapped and the liposomal ingredients, the nature of the medium in which the lipid vesicles are dispersed, the effective concentration of the entrapped substance and its potential toxicity, any additional processes involved during the application and/or delivery of the vesicles, the optimization size, polydispersity and the shelf-life of the vesicles for the intended application, and the batch-to-batch reproducibility and possibility of large-scale production of safe and efficient liposomal products.

In some embodiments, pharmaceutical compositions described herein may include, without limitation, liposomes such as those formed from 1,2-dioleyloxy-N,N-dimethylaminopropane (DODMA) liposomes, DiLa2 liposomes from

Marina Biotech (Bothell, Wash.), 1,2-dilinoleyloxy-3-dimethylaminopropane (DLin-DMA), 2,2-dilinoleyl-4-(2-dimethylaminoethyl)-[1,3]-dioxolane (DLin-KC2-DMA), and MC3 (US20100324120; herein incorporated by reference in its entirety) and liposomes which may deliver small molecule drugs such as, but not limited to, DOXIL® from Janssen Biotech. Inc. (Horsham, Pa.).

In some embodiments, pharmaceutical compositions described herein may include, without limitation, liposomes such as those formed from the synthesis of stabilized plasmid-lipid particles (SPLP) or stabilized nucleic acid lipid particle (SNALP) that have been previously described and shown to be suitable for oligonucleotide delivery in vitro and in vivo (see Wheeler et al. Gene Therapy. 1999 6:271-281; Zhang et al. Gene Therapy. 1999 6:1438-1447; Jeffs et al. Pharm Res. 2005 22:362-372; Morrissey et al., Nat Biotechnol. 2005 2:1002-1007; Zimmermann et al., Nature. 2006 441:111-114; Heyes et al. J Contr Rel. 2005 107:276-287; Semple et al. Nature Biotech. 2010 28:172-176; Judge 20 et al. J Clin Invest. 2009 119:661-673; deFougerolles Hum Gene Ther. 2008 19:125-132; U.S. Patent Publication No US20130122104; all of which are incorporated herein in their entireties). The original manufacture method by Wheeler et al. was a detergent dialysis method, which was 25 later improved by Jeffs et al. and is referred to as the spontaneous vesicle formation method. The liposome formulations are composed of 3 to 4 lipid components in addition to the polynucleotide. As an example a liposome can contain, but is not limited to, 55% cholesterol, 20% 30 disteroylphosphatidyl choline (DSPC), 10% PEG-S-DSG, 15% 1,2-dioleyloxy-N,N-dimethylaminopropane (DODMA), as described by Jeffs et al. As another example, certain liposome formulations may contain, but are not limited to, 48% cholesterol, 20% DSPC, 2% PEG-c-DMA, 35 and 30% cationic lipid, where the cationic lipid can be 1,2-distearloxy-N,N-dimethylaminopropane (DSDMA). DODMA, DLin-DMA, or 1,2-dilinolenyloxy-3-dimethylaminopropane (DLenDMA), as described by Heyes et al.

In some embodiments, liposome formulations may comprise from about 25.0% cholesterol to about 40.0% cholesterol, from about 30.0% cholesterol to about 45.0% cholesterol, from about 35.0% cholesterol to about 50.0% cholesterol and/or from about 48.5% cholesterol to about 60% cholesterol. In some embodiments, formulations may comprise a percentage of cholesterol selected from the group consisting of 28.5%, 31.5%, 33.5%, 36.5%, 37.0%, 38.5%, 39.0% and 43.5%. In some embodiments, formulations may comprise from about 5.0% to about 10.0% DSPC and/or from about 7.0% to about 15.0% DSPC.

In some embodiments, the RNA (e.g., mRNA) vaccine pharmaceutical compositions may be formulated in liposomes such as, but not limited to, DiLa2 liposomes (Marina Biotech, Bothell, Wash.), SMARTICLES® (Marina Biotech, Bothell, Wash.), neutral DOPC (1,2-dioleoyl-sn-55 glycero-3-phosphocholine) based liposomes (e.g., siRNA delivery for ovarian cancer (Landen et al. Cancer Biology & Therapy 2006 5(12)1708-1713); herein incorporated by reference in its entirety) and hyaluronan-coated liposomes (Quiet Therapeutics, Israel).

In some embodiments, the cationic lipid may be a low molecular weight cationic lipid such as those described in U.S. Patent Application No. 20130090372, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the RNA (e.g., mRNA) vaccines 65 may be formulated in a lipid vesicle, which may have crosslinks between functionalized lipid bilayers.

78

In some embodiments, the RNA (e.g., mRNA) vaccines may be formulated in a lipid-polycation complex. The formation of the lipid-polycation complex may be accomplished by methods known in the art and/or as described in U.S. Pub. No. 20120178702, herein incorporated by reference in its entirety. As a non-limiting example, the polycation may include a cationic peptide or a polypeptide such as, but not limited to, polylysine, polyornithine and/or polyarginine. In some embodiments, the RNA (e.g., mRNA) vaccines may be formulated in a lipid-polycation complex, which may further include a non-cationic lipid such as, but not limited to, cholesterol or dioleoyl phosphatidylethanolamine (DOPE).

In some embodiments, the ratio of PEG in the lipid nanoparticle (LNP) formulations may be increased or decreased and/or the carbon chain length of the PEG lipid may be modified from C14 to C18 to alter the pharmacokinetics and/or biodistribution of the LNP formulations. As a non-limiting example, LNP formulations may contain from about 0.5% to about 3.0%, from about 1.0% to about 3.5%, from about 1.5% to about 4.0%, from about 2.0% to about 4.5%, from about 2.5% to about 5.0% and/or from about 3.0% to about 6.0% of the lipid molar ratio of PEG-c-DOMG (R-3-[(ω-methoxy-poly(ethyleneglycol)2000)carbamoyl)]-1,2-dimyristyloxypropyl-3-amine) (also referred to herein as PEG-DOMG) as compared to the cationic lipid, DSPC and cholesterol. In some embodiments, the PEG-c-DOMG may be replaced with a PEG lipid such as, but not limited to, PEG-DSG (1,2-Distearoyl-sn-glycerol, methoxypolyethylene glycol), PEG-DMG (1,2-Dimyristoyl-sn-glycerol) and/or PEG-DPG (1,2-Dipalmitoyl-sn-glycerol, methoxypolyethylene glycol). The cationic lipid may be selected from any lipid known in the art such as, but not limited to, DLin-MC3-DMA, DLin-DMA, C12-200 and DLin-KC2-DMA.

In some embodiments, the RNA (e.g., mRNA) vaccines may be formulated in a lipid nanoparticle.

In some embodiments, the RNA (e.g., mRNA) vaccine formulation comprising the polynucleotide is a nanoparticle which may comprise at least one lipid. The lipid may be selected from, but is not limited to, DLin-DMA, DLin-K-DMA, 98N12-5, C12-200, DLin-MC3-DMA, DLin-KC2-DMA, DODMA, PLGA, PEG, PEG-DMG, PEGylated lipids and amino alcohol lipids. In another aspect, the lipid may be a cationic lipid such as, but not limited to, DLin-DMA, DLin-D-DMA, DLin-MC3-DMA, DLin-KC2-DMA. DODMA and amino alcohol lipids. The amino alcohol cationic lipid may be the lipids described in and/or made by the methods described in U.S. Patent Publication No. US20130150625, herein incorporated by reference in its entirety. As a non-limiting example, the cationic lipid may be 2-amino-3-[(9Z, 12Z)-octadeca-9,12-dien-1-yloxy]-2-{ [(9Z,2Z)-octadeca-9,12-dien-1-yloxy]methyl}propan-1-ol (Compound 1 in US20130150625); 2-amino-3-[(9Z)-octadec-9-en-1-yloxy]-2-{[(9Z)-octadec-9-en-1-yloxy] methyl\propan-1-ol (Compound 2 in US20130150625); 2-amino-3-[(9Z, 12Z)-octadeca-9,12-dien-1-yloxy]-2-[(octyloxy)methyl]propan-1-ol (Compound US20130150625); and 2-(dimethylamino)-3-[(9Z, 12Z)-oc-60 tadeca-9,12-dien-1-yloxy]-2-{[(9Z, 12Z)-octadeca-9,12dien-1-yloxy]methyl}propan-1-ol (Compound US20130150625); or any pharmaceutically acceptable salt or stereoisomer thereof.

Lipid nanoparticle formulations typically comprise a lipid, in particular, an ionizable cationic lipid, for example, 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobu-

tyrate (DLin-MC3-DMA), or di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), and further comprise a neutral lipid, a sterol and a molecule capable of reducing particle aggregation, for example a PEG or PEG-modified lipid.

79

In some embodiments, the lipid nanoparticle formulation consists essentially of (i) at least one lipid selected from the group consisting of 2,2-dilinoleyl-4-dimethylaminoethyl-[1, 3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-10 en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy) heptadecanedioate (L319); (ii) a neutral lipid selected from DSPC, DPPC, POPC, DOPE and SM; (iii) a sterol, e.g., cholesterol; and (iv) a PEG-lipid, e.g., PEG-DMG or PEG-cDMA, in a molar ratio of about 20-60% cationic lipid: 15 5-25% neutral lipid: 25-55% sterol; 0.5-15% PEG-lipid.

In some embodiments, the formulation includes from about 25% to about 75% on a molar basis of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), e.g., from about 35 to about 65%, from about 45 to about 65%, about 60%, about 57.5%, about 50% or about 40% on a molar basis.

In some embodiments, the formulation includes from about 0.5% to about 15% on a molar basis of the neutral lipid e.g., from about 3 to about 12%, from about 5 to about 10%or about 15%, about 10%, or about 7.5% on a molar basis. Examples of neutral lipids include, but are not limited to, 30 DSPC, POPC, DPPC, DOPE and SM. In some embodiments, the formulation includes from about 5% to about 50% on a molar basis of the sterol (e.g., about 15 to about 45%, about 20 to about 40%, about 40%, about 38.5%, about 35%, or about 31% on a molar basis. An exemplary sterol is 35 cholesterol. In some embodiments, the formulation includes from about 0.5% to about 20% on a molar basis of the PEG or PEG-modified lipid (e.g., about 0.5 to about 10%, about 0.5 to about 5%, about 1.5%, about 0.5%, about 1.5%, about 3.5%, or about 5% on a molar basis. In some embodiments, 40 the PEG or PEG modified lipid comprises a PEG molecule of an average molecular weight of 2,000 Da. In other embodiments, the PEG or PEG modified lipid comprises a PEG molecule of an average molecular weight of less than 2,000, for example around 1,500 Da, around 1,000 Da, or 45 around 500 Da. Examples of PEG-modified lipids include, but are not limited to, PEG-distearovl glycerol (PEG-DMG) (also referred herein as PEG-C14 or C14-PEG), PEGcDMA (further discussed in Reyes et al. J. Controlled Release, 107, 276-287 (2005) the contents of which are 50 herein incorporated by reference in their entirety)

In some embodiments, the formulations of the present disclosure include 25-75% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 0.5-15% of the neutral lipid, 5-50% of the sterol, and 0.5-20% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, the formulations of the present 60 disclosure include 35-65% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 65 3-12% of the neutral lipid, 15-45% of the sterol, and 0.5-10% of the PEG or PEG-modified lipid on a molar basis.

80

In some embodiments, the formulations of the present disclosure include 45-65% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutvrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-

tyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 5-10% of the neutral lipid, 25-40% of the sterol, and 0.5-10% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, the formulations of the present disclosure include about 60% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), about 7.5% of the neutral lipid, about 31% of the sterol, and about 1.5% of the PEG or PEG-modified lipid on a molar basis

In some embodiments, the formulations of the present disclosure include about 50% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), about 10% of the neutral lipid, about 38.5% of the sterol, and about 1.5% of the PEG or PEG-modified lipid on a molar basis

In some embodiments, the formulations of the present disclosure include about 50% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), about 10% of the neutral lipid, about 35% of the sterol, about 4.5% or about 5% of the PEG or PEG-modified lipid, and about 0.5% of the targeting lipid on a molar basis.

In some embodiments, the formulations of the present disclosure include about 40% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), about 15% of the neutral lipid, about 40% of the sterol, and about 5% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, the formulations of the present disclosure include about 57.2% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), about 7.1% of the neutral lipid, about 34.3% of the sterol, and about 1.4% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, the formulations of the present disclosure include about 57.5% of a cationic lipid selected from the PEG lipid is PEG-cDMA (PEG-cDMA is further discussed in Reyes et al. (*J. Controlled Release*, 107, 276-287 (2005), the contents of which are herein incorporated by reference in their entirety), about 7.5% of the neutral lipid, about 31.5% of the sterol, and about 3.5% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, lipid nanoparticle formulation consists essentially of a lipid mixture in molar ratios of about 20-70% cationic lipid: 5-45% neutral lipid: 20-55% cholesterol: 0.5-15% PEG-modified lipid; more preferably in a molar ratio of about 20-60% cationic lipid: 5-25% neutral lipid: 25-55% cholesterol: 0.5-15% PEG-modified lipid.

In some embodiments, the molar lipid ratio is approximately 50/10/38.5/1.5 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG, PEG-DSG or PEG-DPG), 57.2/7.1134.3/1.4 (mol % cationic lipid/neutral lipid, e.g., DPPC/Chol/PEG-modified lipid, 5 e.g., PEG-cDMA), 40/15/40/5 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG), 50/10/35/4.5/0.5 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DSG), 50/10/35/5 (cationic lipid/neutral lipid, e.g., DSPC/Chol/ 10 PEG-modified lipid, e.g., PEG-DMG), 40/10/40/10 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG or PEG-cDMA), 35/15/40/10 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG or PEG-cDMA) or 52/13/30/5 (mol % 15 cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG or PEG-cDMA).

Examples of lipid nanoparticle compositions and methods of making same are described, for example, in Semple et al. (2010) *Nat. Biotechnol.* 28:172-176; Jayarama et al. (2012), 20 *Angew. Chem. Int. Ed.*, 51: 8529-8533; and Maier et al. (2013) *Molecular Therapy* 21, 1570-1578 (the contents of each of which are incorporated herein by reference in their entirety).

In some embodiments, the lipid nanoparticle formulations 25 described herein may comprise a cationic lipid, a PEG lipid and a structural lipid and optionally comprise a non-cationic lipid. As a non-limiting example, the lipid nanoparticle may comprise about 40-60% of cationic lipid, about 5-15% of a non-cationic lipid, about 1-2% of a PEG lipid and about 30 30-50% of a structural lipid. As another non-limiting example, the lipid nanoparticle may comprise about 50% cationic lipid, about 10% non-cationic lipid, about 1.5% PEG lipid and about 38.5% structural lipid. As yet another non-limiting example, the lipid nanoparticle may comprise 35 about 55% cationic lipid, about 10% non-cationic lipid, about 2.5% PEG lipid and about 32.5% structural lipid. In some embodiments, the cationic lipid may be any cationic lipid described herein such as, but not limited to, DLin-KC2-DMA, DLin-MC3-DMA and L319.

In some embodiments, the lipid nanoparticle formulations described herein may be 4 component lipid nanoparticles. The lipid nanoparticle may comprise a cationic lipid, a non-cationic lipid, a PEG lipid and a structural lipid. As a non-limiting example, the lipid nanoparticle may comprise 45 about 40-60% of cationic lipid, about 5-15% of a noncationic lipid, about 1-2% of a PEG lipid and about 30-50% of a structural lipid. As another non-limiting example, the lipid nanoparticle may comprise about 50% cationic lipid, about 10% non-cationic lipid, about 1.5% PEG lipid and 50 about 38.5% structural lipid. As yet another non-limiting example, the lipid nanoparticle may comprise about 55% cationic lipid, about 10% non-cationic lipid, about 2.5% PEG lipid and about 32.5% structural lipid. In some embodiments, the cationic lipid may be any cationic lipid described 55 herein such as, but not limited to, DLin-KC2-DMA, DLin-MC3-DMA and L319.

In some embodiments, the lipid nanoparticle formulations described herein may comprise a cationic lipid, a non-cationic lipid, a PEG lipid and a structural lipid. As a 60 non-limiting example, the lipid nanoparticle comprise about 50% of the cationic lipid DLin-KC2-DMA, about 10% of the non-cationic lipid DSPC, about 1.5% of the PEG lipid PEG-DOMG and about 38.5% of the structural lipid cholesterol. As a non-limiting example, the lipid nanoparticle 65 comprise about 50% of the cationic lipid DLin-MC3-DMA, about 10% of the non-cationic lipid DSPC, about 1.5% of

the PEG lipid PEG-DOMG and about 38.5% of the structural lipid cholesterol. As a non-limiting example, the lipid nanoparticle comprise about 50% of the cationic lipid DLin-MC3-DMA, about 10% of the non-cationic lipid DSPC, about 1.5% of the PEG lipid PEG-DMG and about 38.5% of the structural lipid cholesterol. As yet another non-limiting example, the lipid nanoparticle comprise about 55% of the cationic lipid L319, about 10% of the non-cationic lipid DSPC, about 2.5% of the PEG lipid PEG-DMG and about 32.5% of the structural lipid cholesterol.

82

As a non-limiting example, the cationic lipid may be (20Z,23Z)-N,N-dimethylnonacosa-20,23dien-10-amine, (17Z,20Z)-N,N-dimemylhexacosa-17,20dien-9-amine, (1Z,19Z)-N5N-dimethylpentacosa-16, 19-dien-8-amine. (13Z,16Z)-N,N-dimethyldocosa-13,16dien-5-amine, (12Z, 15Z)-N,N-dimethylhenicosa-12,15dien-4-amine, (14Z, 17Z)-N,N-dimethyltricosa-14,17-dien-6-amine, (15Z, 18Z)-N,N-dimethyltetracosa-15,18-dien-7amine, (18Z,21Z)-N,N-dimethylheptacosa-18,21-dien-10amine. (15Z, 18Z)-N,N-dimethyltetracosa-15,18-dien-5amine, 17Z)-N,N-dimethyltricosa-14,17-dien-4amine, (19Z,22Z)-N,N-dimeihyloctacosa-19,22-dien-9-(18Z,21 Z)-N,N-dimethylheptacosa-18,21-dien-8amine, amine. (17Z,20Z)-N,N-dimethylhexacosa-17,20-dien-7amine, (16Z, 19Z)-N,N-dimethylpentacosa-16,19-dien-6-(22Z,25Z)-N,N-dimethylhentriaconta-22,25-dienamine, 10-amine, (21 Z,24Z)-N,N-dimethyltriaconta-21,24-dien-9amine, (18Z)-N,N-dimetylheptacos-18-en-10-amine, (17Z)-N,N-dimethylhexacos-17-en-9-amine, (19Z,22Z)-N,Ndimethyloctacosa-19,22-dien-7-amine, N.N-(20Z,23Z)-N-ethyl-Ndimethylheptacosan-10-amine, methylnonacosa-20,23-dien-10-amine, 1-[(11Z,14Z)-1pyrrolidine, (20Z)-N,Nnonylicosa-11,14-dien-1-yl] dimethylheptacos-20-en-10-amine, (15Z)-N,N-dimethyl eptacos-15-en-10-amine, (14Z)-N,N-dimethylnonacos-14en-10-amine, (17Z)-N,N-dimethylnonacos-17-en-10-amine, (24Z)-N,N-dimethyltritriacont-24-en-10-amine, (20Z)-N,Ndimethylnonacos-20-en-10-amine, (22Z)-N,N-dimethylhentriacont-22-en-10-amine, (16Z)-N,N-dimethylpentacos-16-40 en-8-amine, (12Z, 15Z)-N,N-dimethyl-2-nonylhenicosa-12, 15-dien-1-amine, (13Z, 16Z)-N,N-dimethyl-3-nonyldocosa-N,N-dimethyl-1-[(1S,2R)-2-13,16-dien-1-amine, eptadecan-8-amine, octylcyclopropyl] 1-[(1S,2R)-2hexylcyclopropyl]-N,N-dimethylnonadecan-10-amine, N,N-dimethyl-1-[(1S,2R)-2-octylcyclopropyl]nonadecan-10-amine, N,N-dimethyl-21-[(1S,2R)-2-octylcyclopropyl] henicosan-10-amine, N, N-dimethyl-1-[(1S, 2S)-2-{[(1R, 2R)-2-pentylcyclopropyl]methyl}cyclopropyl]nonadecan-10-amine,N,N-dimethyl-1-[(1S,2R)-2-octylcyclopropyl] hexadecan-8-amine, N,N-dimethyl-[(1R,2S)-2undecylcyclopropyl]tetradecan-5-amine, N,N-dimethyl-3-{7-[(1S,2R)-2-octylcyclopropyl]heptyl} dodecan-1-amine, 1-[(1R,2S)-2-heptylcyclopropyl]-N,N-dimethyloctadecan-1-[(1S,2R)-2-decylcyclopropyl]-N,N-dimethyl-9-amine. pentadecan-6-amine, N,N-dimethyl-1-[(1S,2R)-2-octylcyclopropyl]pentadecan-8-amine, R-N,N-dimethyl-1-[(9Z, 12Z)-octadeca-9,12-dien-1-yloxy]-3-(octyloxy)propan-2amine, S-N,N-dimethyl-1-[(9Z, 12Z)-octadeca-9,12-dien-1yloxy]-3-(octyloxy)propan-2-amine, $1-\{2-[(9Z,12Z)-octa$ deca-9,12-dien-1-yloxy]-1-[(octyloxy)methyl] (2S)-N,N-dimethyl-1-[(9Z, ethyl\pyrrolidine, octadeca-9,12-dien-1-yloxy]-3-[(5Z)-oct-5-en-1-yloxy] propan-2-amine, 1-{2-[(9Z, 12Z)-octadeca-9,12-dien-1-(2S)-1yloxy]-1-[(octyloxy)methyl]ethyl}azetidine, (hexyloxy)-N,N-dimethyl-3-[(9Z, 12Z)-octadeca-9,12-dien-(2S)-1-(heptyloxy)-N,N-1-yloxy]propan-2-amine,

dimethyl-3-[(9Z, 12Z)-octadeca-9,12-dien-1-yloxy]propan-

N,N-dimethyl-1-(nonyloxy)-3-[(9Z, 12Z)-2-amine. octadeca-9,12-dien-1-yloxy]propan-2-amine, N.Ndimethyl-1-[(9Z)-octadec-9-en-1-yloxy]-3-(octyloxy) propan-2-amine; (2S)-N,N-dimethyl-1-[(6Z,9Z,12Z)octadeca-6,9,12-trien-1-yloxy]-3-(octyloxy)propan-2amine, (2S)-1-[(11Z,14Z)-icosa-11,14-dien-1-yloxy]-N,Ndimethyl-3-(pentyloxy)propan-2-amine, (2S)-1-(hexyloxy)-3-[(11Z,14Z)-icosa-11,14-dien-1-yloxy]-N,Ndimethylpropan-2-amine, 1-[(11Z,14Z)-icosa-11,14-dien-1yloxy]-N,N-dimethyl-3-(octyloxy)propan-2-amine, 1-[(13Z, 16Z)-docosa-13,16-dien-1-yloxy]-N,N-dimethyl-3-(octyloxy)propan-2-amine, (2S)-1-[(13Z,16Z)-docosa-13, 16-dien-1-yloxy]-3-(hexyloxy)-N,N-dimethylpropan-2amine, (2S)-1-[(13Z)-docos-13-en-1-yloxy]-3-(hexyloxy)- $_{15}$ 1-[(13Z)-docos-13-en-1-N,N-dimethylpropan-2-amine, yloxy]-N,N-dimethyl-3-(octyloxy)propan-2-amine, 1-[(9Z)hexadec-9-en-1-yloxy]-N,N-dimethyl-3-(octyloxy)propan-(2R)-N,N-dimethyl-H(1-metoylo ctyl)oxy]-3-12Z)-octadeca-9,12-dien-1-yloxy|propan-2-amine, 20 (2R)-1-[(3,7-dimethyloctyl)oxy]-N,N-dimethyl-3-[(9Z, 12Z)-octadeca-9,12-dien-1-yloxy]propan-2-amine, N,N-dimethyl-1-(octyloxy)-3-({8-[(1S,2S)-2-{[(1R,2R)-2-pentylcyclopropyl]methyl}cyclopropyl]octyl}oxy)propan-2-N,N-dimethyl-1-{[8-(2-oc1ylcyclopropyl)octyl] 25 oxy\-3-(octyloxy)propan-2-amine and (11E,20Z,23Z)-N,Ndimethylnonacosa-11,20,2-trien-10-amine pharmaceutically acceptable salt or stereoisomer thereof.

In some embodiments, the LNP formulations of the RNA (e.g., mRNA) vaccines may contain PEG-c-DOMG at 3% 30 lipid molar ratio. In some embodiments, the LNP formulations of the RNA (e.g., mRNA) vaccines may contain PEG-c-DOMG at 1.5% lipid molar ratio.

In some embodiments, the pharmaceutical compositions of the RNA (e.g., mRNA) vaccines may include at least one 35 of the PEGylated lipids described in International Publication No. WO2012099755, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the LNP formulation may contain PEG-DMG 2000 (1,2-dimyristoyl-sn-glycero-3-phophoe- 40 thanolamine-N-[methoxy(polyethylene glycol)-2000). In some embodiments, the LNP formulation may contain PEG-DMG 2000, a cationic lipid known in the art and at least one other component. In some embodiments, the LNP formulation may contain PEG-DMG 2000, a cationic lipid known in 45 the art, DSPC and cholesterol. As a non-limiting example, the LNP formulation may contain PEG-DMG 2000, DLin-DMA, DSPC and cholesterol. As another non-limiting example the LNP formulation may contain PEG-DMG 2000, DLin-DMA, DSPC and cholesterol in a molar ratio of 50 2:40:10:48 (see e.g., Geall et al., Nonviral delivery of self-amplifying RNA (e.g., mRNA) vaccines, PNAS 2012; PMID: 22908294, the contents of each of which are herein incorporated by reference in their entirety).

The lipid nanoparticles described herein may be made in 55 a sterile environment.

In some embodiments, the LNP formulation may be formulated in a nanoparticle such as a nucleic acid-lipid particle. As a non-limiting example, the lipid particle may comprise one or more active agents or therapeutic agents; 60 one or more cationic lipids comprising from about 50 mol % to about 85 mol % of the total lipid present in the particle; one or more non-cationic lipids comprising from about 13 mol % to about 49.5 mol % of the total lipid present in the particle; and one or more conjugated lipids that inhibit 65 aggregation of particles comprising from about 0.5 mol % to about 2 mol % of the total lipid present in the particle.

84

The nanoparticle formulations may comprise a phosphate conjugate. The phosphate conjugate may increase in vivo circulation times and/or increase the targeted delivery of the nanoparticle. As a non-limiting example, the phosphate conjugates may include a compound of any one of the formulas described in International Application No. WO2013033438, the contents of which are herein incorporated by reference in its entirety.

The nanoparticle formulation may comprise a polymer conjugate. The polymer conjugate may be a water soluble conjugate. The polymer conjugate may have a structure as described in U.S. Patent Application No. 20130059360, the contents of which are herein incorporated by reference in its entirety. In some embodiments, polymer conjugates with the polynucleotides of the present disclosure may be made using the methods and/or segmented polymeric reagents described in U.S. Patent Application No. 20130072709, the contents of which are herein incorporated by reference in its entirety. In some embodiments, the polymer conjugate may have pendant side groups comprising ring moieties such as, but not limited to, the polymer conjugates described in U.S. Patent Publication No. US20130196948, the contents which are herein incorporated by reference in its entirety.

The nanoparticle formulations may comprise a conjugate to enhance the delivery of nanoparticles of the present disclosure in a subject. Further, the conjugate may inhibit phagocytic clearance of the nanoparticles in a subject. In one aspect, the conjugate may be a "self" peptide designed from the human membrane protein CD47 (e.g., the "self" particles described by Rodriguez et al. (Science 2013 339, 971-975), herein incorporated by reference in its entirety). As shown by Rodriguez et al., the self peptides delayed macrophagemediated clearance of nanoparticles which enhanced delivery of the nanoparticles. In another aspect, the conjugate may be the membrane protein CD47 (e.g., see Rodriguez et al. Science 2013 339, 971-975, herein incorporated by reference in its entirety). Rodriguez et al. showed that, similarly to "self" peptides, CD47 can increase the circulating particle ratio in a subject as compared to scrambled peptides and PEG coated nanoparticles.

In some embodiments, the RNA (e.g., mRNA) vaccines of the present disclosure are formulated in nanoparticles which comprise a conjugate to enhance the delivery of the nanoparticles of the present disclosure in a subject. The conjugate may be the CD47 membrane or the conjugate may be derived from the CD47 membrane protein, such as the "self" peptide described previously. In some embodiments, the nanoparticle may comprise PEG and a conjugate of CD47 or a derivative thereof. In some embodiments, the nanoparticle may comprise both the "self" peptide described above and the membrane protein CD47.

In some embodiments, a "self" peptide and/or CD47 protein may be conjugated to a virus-like particle or pseudovirion, as described herein for delivery of the RNA (e.g., mRNA) vaccines of the present disclosure.

In some embodiments, RNA (e.g., mRNA) vaccine pharmaceutical compositions comprising the polynucleotides of the present disclosure and a conjugate that may have a degradable linkage. Non-limiting examples of conjugates include an aromatic moiety comprising an ionizable hydrogen atom, a spacer moiety, and a water-soluble polymer. As a non-limiting example, pharmaceutical compositions comprising a conjugate with a degradable linkage and methods for delivering such pharmaceutical compositions are described in U.S. Patent Publication No. US20130184443, the contents of which are herein incorporated by reference in their entirety.

The nanoparticle formulations may be a carbohydrate nanoparticle comprising a carbohydrate carrier and a RNA (e.g., mRNA) vaccine. As a non-limiting example, the carbohydrate carrier may include, but is not limited to, an anhydride-modified phytoglycogen or glycogen-type material, phtoglycogen octenyl succinate, phytoglycogen beta-dextrin, anhydride-modified phytoglycogen beta-dextrin. (See e.g., International Publication No. WO2012109121; the contents of which are herein incorporated by reference in their entirety).

Nanoparticle formulations of the present disclosure may be coated with a surfactant or polymer in order to improve the delivery of the particle. In some embodiments, the nanoparticle may be coated with a hydrophilic coating such as, but not limited to, PEG coatings and/or coatings that have 15 a neutral surface charge. The hydrophilic coatings may help to deliver nanoparticles with larger payloads such as, but not limited to, RNA (e.g., mRNA) vaccines within the central nervous system. As a non-limiting example nanoparticles comprising a hydrophilic coating and methods of making 20 such nanoparticles are described in U.S. Patent Publication No. US20130183244, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the lipid nanoparticles of the present disclosure may be hydrophilic polymer particles. 25 Non-limiting examples of hydrophilic polymer particles and methods of making hydrophilic polymer particles are described in U.S. Patent Publication No. US20130210991, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the lipid nanoparticles of the present disclosure may be hydrophobic polymer particles.

Lipid nanoparticle formulations may be improved by replacing the cationic lipid with a biodegradable cationic lipid which is known as a rapidly eliminated lipid nanopar- 35 ticle (reLNP). Ionizable cationic lipids, such as, but not limited to, DLinDMA, DLin-KC2-DMA, and DLin-MC3-DMA, have been shown to accumulate in plasma and tissues over time and may be a potential source of toxicity. The rapid metabolism of the rapidly eliminated lipids can 40 improve the tolerability and therapeutic index of the lipid nanoparticles by an order of magnitude from a 1 mg/kg dose to a 10 mg/kg dose in rat. Inclusion of an enzymatically degraded ester linkage can improve the degradation and metabolism profile of the cationic component, while still 45 maintaining the activity of the reLNP formulation. The ester linkage can be internally located within the lipid chain or it may be terminally located at the terminal end of the lipid chain. The internal ester linkage may replace any carbon in the lipid chain.

In some embodiments, the internal ester linkage may be located on either side of the saturated carbon.

In some embodiments, an immune response may be elicited by delivering a lipid nanoparticle which may include a nanospecies, a polymer and an immunogen. (U.S. Publication No. 20120189700 and International Publication No. WO2012099805; each of which is herein incorporated by reference in their entirety). The polymer may encapsulate the nanospecies or partially encapsulate the nanospecies. The immunogen may be a recombinant protein, a modified 60 RNA and/or a polynucleotide described herein. In some embodiments, the lipid nanoparticle may be formulated for use in a vaccine such as, but not limited to, against a pathogen.

Lipid nanoparticles may be engineered to alter the surface 65 properties of particles so the lipid nanoparticles may penetrate the mucosal barrier. Mucus is located on mucosal

tissue such as, but not limited to, oral (e.g., the buccal and esophageal membranes and tonsil tissue), ophthalmic, gastrointestinal (e.g., stomach, small intestine, large intestine, colon, rectum), nasal, respiratory (e.g., nasal, pharyngeal, tracheal and bronchial membranes), genital (e.g., vaginal, cervical and urethral membranes). Nanoparticles larger than 10-200 nm which are preferred for higher drug encapsulation efficiency and the ability to provide the sustained delivery of a wide array of drugs have been thought to be too large to rapidly diffuse through mucosal barriers. Mucus is continuously secreted, shed, discarded or digested and recycled so most of the trapped particles may be removed from the mucosa tissue within seconds or within a few hours. Large polymeric nanoparticles (200 nm-500 nm in diameter) which have been coated densely with a low molecular weight polyethylene glycol (PEG) diffused through mucus only 4 to 6-fold lower than the same particles diffusing in water (Lai et al. PNAS 2007 104(5):1482-487; Lai et al. Adv Drug Deliv Rev. 2009 61(2): 158-171; each of which is herein incorporated by reference in their entirety). The transport of nanoparticles may be determined using rates of permeation and/or fluorescent microscopy techniques including, but not limited to, fluorescence recovery after photobleaching (FRAP) and high resolution multiple

particle tracking (MPT). As a non-limiting example, com-

positions which can penetrate a mucosal barrier may be

made as described in U.S. Pat. No. 8,241,670 or Interna-

tional Patent Publication No. WO2013110028, the contents

of each of which are herein incorporated by reference in its

86

The lipid nanoparticle engineered to penetrate mucus may comprise a polymeric material (i.e. a polymeric core) and/or a polymer-vitamin conjugate and/or a tri-block co-polymer. The polymeric material may include, but is not limited to, polyamines, polyethers, polyamides, polyesters, polycarbamates, polyureas, polycarbonates, poly(styrenes), polyimides, polysulfones, polyurethanes, polyacetylenes, polyethylenes, polyethyeneimines, polyisocyanates, polyacrylates, polymethacrylates, polyacrylonitriles, and polyarylates. The polymeric material may be biodegradable and/or biocompatible. Non-limiting examples of biocompatible polymers are described in International Patent Publication No. WO2013116804, the contents of which are herein incorporated by reference in their entirety. The polymeric material may additionally be irradiated. As a non-limiting example, the polymeric material may be gamma irradiated (see e.g., International App. No. WO201282165, herein incorporated by reference in its entirety). Non-limiting examples of specific polymers include poly(caprolactone) (PCL), ethylene vinyl acetate polymer (EVA), poly(lactic acid) (PLA), poly(L-lactic acid) (PLLA), poly(glycolic acid) (PGA), poly (lactic acid-co-glycolic acid) (PLGA), poly(L-lactic acidco-glycolic acid) (PLLGA), poly(D,L-lactide) (PDLA), poly (L-lactide) (PLLA), poly(D,L-lactide-co-caprolactone), poly(D,L-lactide-co-caprolactone-co-glycolide), poly(D,Llactide-co-PEO-co-D,L-lactide), poly(D,L-lactide-co-PPOco-D,L-lactide), polyalkyl cyanoacralate, polyurethane, poly-L-lysine (PLL), hydroxypropyl methacrylate (HPMA), polyethyleneglycol, poly-L-glutamic acid, poly(hydroxy acids), polyanhydrides, polyorthoesters, poly(ester amides), polyamides, poly(ester ethers), polycarbonates, polyalkylenes such as polyethylene and polypropylene, polyalkylene glycols such as poly(ethylene glycol) (PEG), polyalkylene oxides (PEO), polyalkylene terephthalates such as poly (ethylene terephthalate), polyvinyl alcohols (PVA), polyvinyl ethers, polyvinyl esters such as poly(vinyl acetate), polyvinyl halides such as poly(vinyl chloride) (PVC), poly-

vinylpyrrolidone, polysiloxanes, polystyrene (PS), polyurethanes, derivatized celluloses such as alkyl celluloses, hydroxyalkyl celluloses, cellulose ethers, cellulose esters, nitro celluloses, hydroxypropylcellulose, carboxymethylcellulose, polymers of acrylic acids, such as poly(methyl(meth) 5 acrylate) (PMMA), poly(ethyl(meth)acrylate), poly(butyl (meth)acrylate), poly(isobutyl(meth)acrylate), poly(hexyl (meth)acrylate), poly(isodecyl(meth)acrylate), poly(lauryl (meth)acrylate), poly(phenyl(meth)acrylate), poly(methyl acrylate), poly(isopropyl acrylate), poly(isobutyl acrylate), poly(octadecyl acrylate) and copolymers and mixtures thereof, polydioxanone and its copolymers, polyhydroxyalkanoates, polypropylene fumarate, polyoxymethylene, poloxamers, poly(ortho)esters, poly(butyric acid), poly(valeric acid), poly(lactide-co-caprolactone), PEG-PLGA-PEG 15 and trimethylene carbonate, polyvinylpyrrolidone. The lipid nanoparticle may be coated or associated with a co-polymer such as, but not limited to, a block co-polymer (such as a branched polyether-polyamide block copolymer described in International Publication No. WO2013012476, herein 20 incorporated by reference in its entirety), and (poly(ethylene glycol))-(poly(propylene oxide))-(poly(ethylene glycol)) triblock copolymer (see e.g., U.S. Publication 20120121718 and U.S. Publication 20100003337 and U.S. Pat. No. 8,263, 665, the contents of each of which is herein incorporated by 25 reference in their entirety). The co-polymer may be a polymer that is generally regarded as safe (GRAS) and the formation of the lipid nanoparticle may be in such a way that no new chemical entities are created. For example, the lipid nanoparticle may comprise poloxamers coating PLGA nano- 30 particles without forming new chemical entities which are still able to rapidly penetrate human mucus (Yang et al. Angew. Chem. Int. Ed. 2011 50:2597-2600; the contents of which are herein incorporated by reference in their entirety). A non-limiting scalable method to produce nanoparticles 35 which can penetrate human mucus is described by Xu et al. (see, e.g., J Control Release 2013, 170(2):279-86; the contents of which are herein incorporated by reference in their

The vitamin of the polymer-vitamin conjugate may be 40 vitamin E. The vitamin portion of the conjugate may be substituted with other suitable components such as, but not limited to, vitamin A, vitamin E, other vitamins, cholesterol, a hydrophobic moiety, or a hydrophobic component of other surfactants (e.g., sterol chains, fatty acids, hydrocarbon 45 chains and alkylene oxide chains).

The lipid nanoparticle engineered to penetrate mucus may include surface altering agents such as, but not limited to, polynucleotides, anionic proteins (e.g., bovine serum albumin), surfactants (e.g., cationic surfactants such as for 50 example dimethyldioctadecyl-ammonium bromide), sugars or sugar derivatives (e.g., cyclodextrin), nucleic acids, polymers (e.g., heparin, polyethylene glycol and poloxamer), mucolytic agents (e.g., N-acetylcysteine, mugwort, bromelain, papain, clerodendrum, acetylcysteine, bromhexine, car- 55 bocisteine, eprazinone, mesna, ambroxol, sobrerol, domiodol, letosteine, stepronin, tiopronin, gelsolin, thymosin 34 dornase alfa, neltenexine, erdosteine) and various DNases including rhDNase. The surface altering agent may be embedded or enmeshed in the particle's surface or disposed 60 (e.g., by coating, adsorption, covalent linkage, or other process) on the surface of the lipid nanoparticle. (see e.g., U.S. Publication 20100215580 and U.S. Publication 20080166414 and US20130164343; the contents of each of which are herein incorporated by reference in their entirety). 65

In some embodiments, the mucus penetrating lipid nanoparticles may comprise at least one polynucleotide described herein. The polynucleotide may be encapsulated in the lipid nanoparticle and/or disposed on the surface of the particle. The polynucleotide may be covalently coupled to the lipid nanoparticle. Formulations of mucus penetrating lipid nanoparticles may comprise a plurality of nanoparticles. Further, the formulations may contain particles which may interact with the mucus and alter the structural and/or adhesive properties of the surrounding mucus to decrease mucoadhesion, which may increase the delivery of the mucus penetrating lipid nanoparticles to the mucosal tissue.

88

In some embodiments, the mucus penetrating lipid nanoparticles may be a hypotonic formulation comprising a mucosal penetration enhancing coating. The formulation may be hypotonice for the epithelium to which it is being delivered. Non-limiting examples of hypotonic formulations may be found in International Patent Publication No. WO2013110028, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, in order to enhance the delivery through the mucosal barrier the RNA (e.g., mRNA) vaccine formulation may comprise or be a hypotonic solution.

Hypotonic solutions were found to increase the rate at which mucoinert particles such as, but not limited to, mucus-penetrating particles, were able to reach the vaginal epithelial surface (see e.g., Ensign et al. Biomaterials 2013 34(28):6922-9, the contents of which are herein incorporated by reference in their entirety).

In some embodiments, the RNA (e.g., mRNA) vaccine is formulated as a lipoplex, such as, without limitation, the ATUPLEX™ system, the DACC system, the DBTC system and other siRNA-lipoplex technology from Silence Therapeutics (London, United Kingdom), STEMFECTTM from STEMGENT® (Cambridge, Mass.), and polyethylenimine (PEI) or protamine-based targeted and non-targeted delivery of nucleic acids acids (Aleku et al. Cancer Res. 2008 68:9788-9798; Strumberg et al. Int J Clin Pharmacol Ther 2012 50:76-78; Santel et al., Gene Ther 2006 13:1222-1234; Santel et al., Gene Ther 2006 13:1360-1370; Gutbier et al., Pulm Pharmacol. Ther. 2010 23:334-344; Kaufmann et al. Microvasc Res 2010 80:286-293 Weide et al. J Immunother. 2009 32:498-507; Weide et al. J Immunother. 2008 31:180-188; Pascolo Expert Opin. Biol. Ther. 4:1285-1294; Fotin-Mleczek et al., 2011 J. Immunother. 34:1-15; Song et al., Nature Biotechnol. 2005, 23:709-717; Peer et al., Proc Natl Acad Sci USA. 2007 6; 104:4095-4100; deFougerolles Hum Gene Ther. 2008 19:125-132, the contents of each of which are incorporated herein by reference in their entirety).

In some embodiments, such formulations may also be constructed or compositions altered such that they passively or actively are directed to different cell types in vivo, including but not limited to hepatocytes, immune cells, tumor cells, endothelial cells, antigen presenting cells, and leukocytes (Akinc et al. Mol Ther. 2010 18:1357-1364; Song et al., Nat Biotechnol. 2005 23:709-717; Judge et al., J Clin Invest. 2009 119:661-673; Kaufmann et al., Microvasc Res 2010 80:286-293; Santel et al., Gene Ther 2006 13:1222-1234; Santel et al., Gene Ther 2006 13:1360-1370; Gutbier et al., Pulm Pharmacol. Ther. 2010 23:334-344; Basha et al., Mol. Ther. 2011 19:2186-2200; Fenske and Cullis, Expert Opin Drug Deliv. 2008 5:25-44; Peer et al., Science. 2008 319:627-630; Peer and Lieberman, Gene Ther. 2011 18:1127-1133, the contents of each of which are incorporated herein by reference in their entirety). One example of passive targeting of formulations to liver cells includes the DLin-DMA, DLin-KC2-DMA and DLin-MC3-DMA-based lipid nanoparticle formulations, which have been shown to bind to apolipoprotein E and promote binding

and uptake of these formulations into hepatocytes in vivo (Akinc et al. Mol Ther. 2010 18:1357-1364, the contents of which are incorporated herein by reference in their entirety). Formulations can also be selectively targeted through expression of different ligands on their surface as exempli- 5 fied by, but not limited by, folate, transferrin, N-acetylgalactosamine (GalNAc), and antibody targeted approaches (Kolhatkar et al., Curr Drug Discov Technol. 2011 8:197-206; Musacchio and Torchilin, Front Biosci. 2011 16:1388-1412; Yu et al., Mol Membr Biol. 2010 27:286-298; Patil et 10 al., Crit Rev Ther Drug Carrier Syst. 2008 25:1-61; Benoit et al., Biomacromolecules. 2011 12:2708-2714; Zhao et al., Expert Opin Drug Deliv. 2008 5:309-319; Akinc et al., Mol Ther. 2010 18:1357-1364; Srinivasan et al., Methods Mol Biol. 2012 820:105-116; Ben-Arie et al., Methods Mol Biol. 15 2012 757:497-507; Peer 2010 J Control Release. 20:63-68; Peer et al., Proc Natl Acad Sci USA. 2007 104:4095-4100; Kim et al., Methods Mol Biol. 2011 721:339-353; Subramanya et al., Mol Ther. 2010 18:2028-2037; Song et al., Nat Biotechnol. 2005 23:709-717; Peer et al., Science. 2008 20 319:627-630; Peer and Lieberman, Gene Ther. 2011 18:1127-1133, the contents of each of which are incorporated herein by reference in their entirety).

In some embodiments, the RNA (e.g., mRNA) vaccine is formulated as a solid lipid nanoparticle. A solid lipid nano- 25 particle (SLN) may be spherical with an average diameter between 10 to 1000 nm. SLN possess a solid lipid core matrix that can solubilize lipophilic molecules and may be stabilized with surfactants and/or emulsifiers. In some embodiments, the lipid nanoparticle may be a self-assembly 30 lipid-polymer nanoparticle (see Zhang et al., ACS Nano, 2008, 2 (8), pp 1696-1702; the contents of which are herein incorporated by reference in their entirety). As a nonlimiting example, the SLN may be the SLN described in International Patent Publication No. WO2013105101, the 35 contents of which are herein incorporated by reference in their entirety. As another non-limiting example, the SLN may be made by the methods or processes described in International Patent Publication No. WO2013105101, the contents of which are herein incorporated by reference in 40 their entirety.

Liposomes, lipoplexes, or lipid nanoparticles may be used to improve the efficacy of polynucleotides directed protein production as these formulations may be able to increase cell transfection by the RNA (e.g., mRNA) vaccine; and/or 45 increase the translation of encoded protein. One such example involves the use of lipid encapsulation to enable the effective systemic delivery of polyplex plasmid DNA (Heyes et al., Mol Ther. 2007 15:713-720; the contents of which are incorporated herein by reference in their entirety). 50 The liposomes, lipoplexes, or lipid nanoparticles may also be used to increase the stability of the polynucleotide.

In some embodiments, the RNA (e.g., mRNA) vaccines of the present disclosure can be formulated for controlled release and/or targeted delivery. As used herein, "controlled release" refers to a pharmaceutical composition or compound release profile that conforms to a particular pattern of release to effect a therapeutic outcome. In some embodiments, the RNA (e.g., mRNA) vaccines may be encapsulated into a delivery agent described herein and/or known in 60 the art for controlled release and/or targeted delivery. As used herein, the term "encapsulate" means to enclose, surround or encase. As it relates to the formulation of the compounds of the disclosure, encapsulation may be substantial, complete or partial. The term "substantially encapsulated" means that at least greater than 50, 60, 70, 80, 85, 90, 95, 96, 97, 98, 99, 99.9, 99.9 or greater than 99.999% of the

90

pharmaceutical composition or compound of the disclosure may be enclosed, surrounded or encased within the delivery agent. "Partially encapsulation" means that less than 10, 10, 20, 30, 40 50 or less of the pharmaceutical composition or compound of the disclosure may be enclosed, surrounded or encased within the delivery agent. Advantageously, encapsulation may be determined by measuring the escape or the activity of the pharmaceutical composition or compound of the disclosure using fluorescence and/or electron micrograph. For example, at least 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 85, 90, 95, 96, 97, 98, 99, 99.9, 99.99 or greater than 99.99% of the pharmaceutical composition or compound of the disclosure are encapsulated in the delivery agent.

In some embodiments, the controlled release formulation may include, but is not limited to, tri-block co-polymers. As a non-limiting example, the formulation may include two different types of tri-block co-polymers (International Pub. No. WO2012131104 and WO2012131106, the contents of each of which are incorporated herein by reference in their entirety).

In some embodiments, the RNA (e.g., mRNA) vaccines may be encapsulated into a lipid nanoparticle or a rapidly eliminated lipid nanoparticle and the lipid nanoparticles or a rapidly eliminated lipid nanoparticle may then be encapsulated into a polymer, hydrogel and/or surgical sealant described herein and/or known in the art. As a non-limiting example, the polymer, hydrogel or surgical sealant may be PLGA, ethylene vinyl acetate (EVAc), poloxamer, GELSITE® (Nanotherapeutics, Inc. Alachua, Fla.), HYLENEX® (Halozyme Therapeutics, San Diego Calif.), surgical sealants such as fibrinogen polymers (Ethicon Inc. Cornelia, Ga.), TISSELL® (Baxter International, Inc Deerfield, Ill.), PEG-based sealants, and COSEAL® (Baxter International, Inc Deerfield, Ill.).

In some embodiments, the lipid nanoparticle may be encapsulated into any polymer known in the art which may form a gel when injected into a subject. As another non-limiting example, the lipid nanoparticle may be encapsulated into a polymer matrix which may be biodegradable.

In some embodiments, the RNA (e.g., mRNA) vaccine formulation for controlled release and/or targeted delivery may also include at least one controlled release coating. Controlled release coatings include, but are not limited to, OPADRY®, polyvinylpyrrolidone/vinyl acetate copolymer, polyvinylpyrrolidone, hydroxypropyl methylcellulose, hydroxypropyl cellulose, hydroxyethyl cellulose, EUDRAGIT RL®, EUDRAGIT RS® and cellulose derivatives such as ethylcellulose aqueous dispersions (AQUACOAT® and SURELEASE®).

In some embodiments, the RNA (e.g., mRNA) vaccine controlled release and/or targeted delivery formulation may comprise at least one degradable polyester which may contain polycationic side chains. Degradeable polyesters include, but are not limited to, poly(serine ester), poly(L-lactide-co-L-lysine), poly(4-hydroxy-L-proline ester), and combinations thereof. In some embodiments, the degradable polyesters may include a PEG conjugation to form a PEGy-lated polymer.

In some embodiments, the RNA (e.g., mRNA) vaccine controlled release and/or targeted delivery formulation comprising at least one polynucleotide may comprise at least one PEG and/or PEG related polymer derivatives as described in U.S. Pat. No. 8,404,222, the contents of which are incorporated herein by reference in their entirety.

In some embodiments, the RNA (e.g., mRNA) vaccine controlled release delivery formulation comprising at least one polynucleotide may be the controlled release polymer

system described in US20130130348, the contents of which are incorporated herein by reference in their entirety.

In some embodiments, the RNA (e.g., mRNA) vaccines of the present disclosure may be encapsulated in a therapeutic nanoparticle, referred to herein as "therapeutic nanoparticle RNA (e.g., mRNA) vaccines." Therapeutic nanoparticles may be formulated by methods described herein and known in the art such as, but not limited to, International Pub Nos. WO2010005740, WO2010030763, WO2010005721, WO2010005723, WO2012054923, U.S. Publication Nos. US20110262491, US20100104645, US20100087337, US20100068285, US20110274759, US20100068286, US20120288541, US20130123351 and US20130230567 and U.S. Pat. Nos. 8,206,747, 8,293,276, 8,318,208 and 8,318,211; the contents of each of which are herein incorporated by reference in their entirety. In some embodiments, therapeutic polymer nanoparticles may be identified by the methods described in US Pub No. US20120140790, the contents of which are herein incorporated by reference in 20 their entirety.

In some embodiments, the therapeutic nanoparticle RNA (e.g., mRNA) vaccine may be formulated for sustained release. As used herein, "sustained release" refers to a pharmaceutical composition or compound that conforms to 25 a release rate over a specific period of time. The period of time may include, but is not limited to, hours, days, weeks, months and years. As a non-limiting example, the sustained release nanoparticle may comprise a polymer and a therapeutic agent such as, but not limited to, the polynucleotides 30 of the present disclosure (see International Pub No. 2010075072 and US Pub No. US20100216804, US20110217377 and US20120201859, the contents of each of which are incorporated herein by reference in their entirety). In another non-limiting example, the sustained 35 release formulation may comprise agents which permit persistent bioavailability such as, but not limited to, crystals, macromolecular gels and/or particulate suspensions (see U.S. Patent Publication No US20130150295, the contents of each of which are incorporated herein by reference in their 40 entirety).

In some embodiments, the therapeutic nanoparticle RNA (e.g., mRNA) vaccines may be formulated to be target specific. As a non-limiting example, the therapeutic nanoparticles may include a corticosteroid (see International Pub. 45 No. WO2011084518, the contents of which are incorporated herein by reference in their entirety). As a non-limiting example, the therapeutic nanoparticles may be formulated in nanoparticles described in International Pub No. WO2008121949, WO2010005726, WO2010005725, 50 WO2011084521 and US Pub No. US20100069426, US20120004293 and US20100104655, the contents of each of which are incorporated herein by reference in their entirety.

In some embodiments, the nanoparticles of the present 55 disclosure may comprise a polymeric matrix. As a nonlimiting example, the nanoparticle may comprise two or more polymers such as, but not limited to, polyethylenes, polycarbonates, polyanhydrides, polyhydroxyacids, polypropylfumerates, polycaprolactones, polyamides, polyac- 60 etals, polyethers, polyesters, poly(orthoesters), polycyanoacrylates, polyvinyl alcohols, polyurethanes, polyphosphazenes, polyacrylates, polymethacrylates, polycyanoacrylates, polyureas, polystyrenes, polyamines, polylysine, poly(ethylene imine), poly(serine ester), poly(L- 65 lactide-co-L-lysine), poly(4-hydroxy-L-proline ester) or combinations thereof.

92

In some embodiments, the therapeutic nanoparticle comprises a diblock copolymer. In some embodiments, the diblock copolymer may include PEG in combination with a polymer such as, but not limited to, polyethylenes, polycarbonates, polyanhydrides, polyhydroxyacids, polypropylfumerates, polycaprolactones, polyamides, polyacetals, polyethers, polyesters, poly(orthoesters), polycyanoacrylates, polyvinyl alcohols, polyurethanes, polyphosphazenes, polyacrylates, polymethacrylates, polycyanoacrylates, polyureas, polystyrenes, polyamines, polylysine, poly(ethylene imine), poly(serine ester), poly(L-lactide-co-L-lysine), poly(4-hydroxy-L-proline ester) or combinations thereof. In yet another embodiment, the diblock copolymer may be a high-X diblock copolymer such as those described in International Patent Publication No. WO2013120052, the contents of which are incorporated herein by reference in their entirety.

As a non-limiting example the therapeutic nanoparticle comprises a PLGA-PEG block copolymer (see U.S. Publication No. US20120004293 and U.S. Pat. No. 8,236,330, each of which is herein incorporated by reference in their entirety). In another non-limiting example, the therapeutic nanoparticle is a stealth nanoparticle comprising a diblock copolymer of PEG and PLA or PEG and PLGA (see U.S. Pat. No. 8,246,968 and International Publication No. WO2012166923, the contents of each of which are herein incorporated by reference in their entirety). In yet another non-limiting example, the therapeutic nanoparticle is a stealth nanoparticle or a target-specific stealth nanoparticle described in U.S. Patent Publication US20130172406, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the therapeutic nanoparticle may comprise a multiblock copolymer (see e.g., U.S. Pat. Nos. 8,263,665 and 8,287,910 and U.S. Patent Pub. No. US20130195987, the contents of each of which are herein incorporated by reference in their entirety).

In yet another non-limiting example, the lipid nanoparticle comprises the block copolymer PEG-PLGA-PEG (see e.g., the thermosensitive hydrogel (PEG-PLGA-PEG) was used as a TGF-beta1 gene delivery vehicle in Lee et al. Thermosensitive Hydrogel as a Tgf-\beta1 Gene Delivery Vehicle Enhances Diabetic Wound Healing. Pharmaceutical Research, 2003 20(12): 1995-2000; as a controlled gene delivery system in Li et al. Controlled Gene Delivery System Based on Thermosensitive Biodegradable Hydrogel. Pharmaceutical Research 2003 20(6):884-888; and Chang et al., Non-ionic amphiphilic biodegradable PEG-PLGA-PEG copolymer enhances gene delivery efficiency in rat skeletal muscle. J Controlled Release. 2007 118:245-253, the contents of each of which are herein incorporated by reference in their entirety). The RNA (e.g., mRNA) vaccines of the present disclosure may be formulated in lipid nanoparticles comprising the PEG-PLGA-PEG block copolymer.

In some embodiments, the therapeutic nanoparticle may comprise a multiblock copolymer (see e.g., U.S. Pat. Nos. 8,263,665 and 8,287,910 and U.S. Patent Pub. No. US20130195987, the contents of each of which are herein incorporated by reference in their entirety).

In some embodiments, the block copolymers described herein may be included in a polyion complex comprising a non-polymeric micelle and the block copolymer. (see e.g., U.S. Publication No. 20120076836, the contents of which are herein incorporated by reference in their entirety).

In some embodiments, the therapeutic nanoparticle may comprise at least one acrylic polymer. Acrylic polymers include but are not limited to, acrylic acid, methacrylic acid,

acrylic acid and methacrylic acid copolymers, methyl methacrylate copolymers, ethoxyethyl methacrylates, cyanoethyl methacrylate, amino alkyl methacrylate copolymer, poly (acrylic acid), poly(methacrylic acid), polycyanoacrylates and combinations thereof.

In some embodiments, the therapeutic nanoparticles may comprise at least one poly(vinyl ester) polymer. The poly (vinyl ester) polymer may be a copolymer such as a random copolymer. As a non-limiting example, the random copolymer may have a structure such as those described in International Application No. WO2013032829 or U.S. Patent Publication No US20130121954, the contents of each of which are herein incorporated by reference in their entirety. In some embodiments, the poly(vinyl ester) polymers may be conjugated to the polynucleotides described herein.

In some embodiments, the therapeutic nanoparticle may comprise at least one diblock copolymer. The diblock copolymer may be, but it not limited to, a poly(lactic) acid-poly (ethylene)glycol copolymer (see, e.g., International Patent Publication No. WO2013044219, the contents of which are 20 herein incorporated by reference in their entirety).

As a non-limiting example, the therapeutic nanoparticle may be used to treat cancer (see International publication No. WO2013044219, the contents of which are herein incorporated by reference in their entirety).

In some embodiments, the therapeutic nanoparticles may comprise at least one cationic polymer described herein and/or known in the art.

In some embodiments, the therapeutic nanoparticles may comprise at least one amine-containing polymer such as, but 30 not limited to polylysine, polyethylene imine, poly(amidoamine) dendrimers, poly(beta-amino esters) (see, e.g., U.S. Pat. No. 8,287,849, the contents of which are herein incorporated by reference in their entirety) and combinations thereof.

In some embodiments, the nanoparticles described herein may comprise an amine cationic lipid such as those described in International Patent Application No. WO2013059496, the contents of which are herein incorporated by reference in their entirety. In some embodiments, 40 the cationic lipids may have an amino-amine or an amino-amide moiety.

In some embodiments, the therapeutic nanoparticles may comprise at least one degradable polyester which may contain polycationic side chains. Degradeable polyesters 45 include, but are not limited to, poly(serine ester), poly(L-lactide-co-L-lysine), poly(4-hydroxy-L-proline ester), and combinations thereof. In some embodiments, the degradable polyesters may include a PEG conjugation to form a PEGy-lated polymer.

In some embodiments, the synthetic nanocarriers may contain an immunostimulatory agent to enhance the immune response from delivery of the synthetic nanocarrier. As a non-limiting example, the synthetic nanocarrier may comprise a Th1 immunostimulatory agent, which may enhance 55 a Th1-based response of the immune system (see International Pub No. WO2010123569 and U.S. Publication No. US20110223201, the contents of each of which are herein incorporated by reference in their entirety).

In some embodiments, the synthetic nanocarriers may be 60 formulated for targeted release. In some embodiments, the synthetic nanocarrier is formulated to release the polynucle-otides at a specified pH and/or after a desired time interval. As a non-limiting example, the synthetic nanoparticle may be formulated to release the RNA (e.g., mRNA) vaccines 65 after 24 hours and/or at a pH of 4.5 (see International Publication Nos. WO2010138193 and WO2010138194 and

94

US Pub Nos. US20110020388 and US20110027217, each of which is herein incorporated by reference in their entireties).

In some embodiments, the synthetic nanocarriers may be formulated for controlled and/or sustained release of the polynucleotides described herein. As a non-limiting example, the synthetic nanocarriers for sustained release may be formulated by methods known in the art, described herein and/or as described in International Pub No. WO2010138192 and US Pub No. 20100303850, each of which is herein incorporated by reference in their entirety.

In some embodiments, the RNA (e.g., mRNA) vaccine may be formulated for controlled and/or sustained release wherein the formulation comprises at least one polymer that is a crystalline side chain (CYSC) polymer. CYSC polymers are described in U.S. Pat. No. 8,399,007, herein incorporated by reference in its entirety.

In some embodiments, the synthetic nanocarrier may be formulated for use as a vaccine. In some embodiments, the synthetic nanocarrier may encapsulate at least one polynucleotide which encode at least one antigen. As a nonlimiting example, the synthetic nanocarrier may include at least one antigen and an excipient for a vaccine dosage form (see International Publication No. WO2011150264 and U.S. Publication No. US20110293723, the contents of each of which are herein incorporated by reference in their entirety). As another non-limiting example, a vaccine dosage form may include at least two synthetic nanocarriers with the same or different antigens and an excipient (see International Publication No. WO2011150249 and U.S. Publication No. US20110293701, the contents of each of which are herein incorporated by reference in their entirety). The vaccine dosage form may be selected by methods described herein, known in the art and/or described in International Publica-35 tion No. WO2011150258 and U.S. Publication No. US20120027806, the contents of each of which are herein incorporated by reference in their entirety).

In some embodiments, the synthetic nanocarrier may comprise at least one polynucleotide which encodes at least one adjuvant. As non-limiting example, the adjuvant may comprise dimethyldioctadecylammonium-bromide, dimethyldioctadecylammonium-chloride, dimethyldioctadecylammonium-phosphate or dimethyldioctadecylammonium-acetate (DDA) and an apolar fraction or part of said apolar fraction of a total lipid extract of a mycobacterium (see, e.g., U.S. Pat. No. 8,241,610, the content of which is herein incorporated by reference in its entirety). In some embodiments, the synthetic nanocarrier may comprise at least one polynucleotide and an adjuvant. As a non-limiting example, the synthetic nanocarrier comprising and adjuvant may be formulated by the methods described in International Publication No. WO2011150240 and U.S. Publication No. US20110293700, the contents of each of which are herein incorporated by reference in their entirety.

In some embodiments, the synthetic nanocarrier may encapsulate at least one polynucleotide that encodes a peptide, fragment or region from a virus. As a non-limiting example, the synthetic nanocarrier may include, but is not limited to, any of the nanocarriers described in International Publication No. WO2012024621, WO201202629, WO2012024632 and U.S. Publication No. US20120064110, US20120058153 and US20120058154, the contents of each of which are herein incorporated by reference in their entirety.

In some embodiments, the synthetic nanocarrier may be coupled to a polynucleotide which may be able to trigger a humoral and/or cytotoxic T lymphocyte (CTL) response

(see, e.g., International Publication No. WO2013019669, the contents of which are herein incorporated by reference in their entirety).

In some embodiments, the RNA (e.g., mRNA) vaccine may be encapsulated in, linked to and/or associated with 5 zwitterionic lipids. Non-limiting examples of zwitterionic lipids and methods of using zwitterionic lipids are described in U.S. Patent Publication No. US20130216607, the contents of which are herein incorporated by reference in their entirety.

In some aspects, the zwitterionic lipids may be used in the liposomes and lipid nanoparticles described herein.

In some embodiments, the RNA (e.g., mRNA) vaccine may be formulated in colloid nanocarriers as described in U.S. Patent Publication No. US20130197100, the contents 15 of which are herein incorporated by reference in their entirety.

In some embodiments, the nanoparticle may be optimized for oral administration. The nanoparticle may comprise at least one cationic biopolymer such as, but not limited to, 20 chitosan or a derivative thereof. As a non-limiting example, the nanoparticle may be formulated by the methods described in U.S. Publication No. 20120282343, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, LNPs comprise the lipid KL52 (an amino-lipid disclosed in U.S. Application Publication No. 2012/0295832, the contents of which are herein incorporated by reference in their entirety. Activity and/or safety (as measured by examining one or more of ALT/AST, white 30 blood cell count and cytokine induction, for example) of LNP administration may be improved by incorporation of such lipids. LNPs comprising KL52 may be administered intravenously and/or in one or more doses. In some embodiments, administration of LNPs comprising KL52 results in 35 equal or improved mRNA and/or protein expression as compared to LNPs comprising MC3.

In some embodiments, RNA (e.g., mRNA) vaccine may be delivered using smaller LNPs. Such particles may comprise a diameter from below 0.1 um up to 100 nm such as, 40 but not limited to, less than 0.1 um, less than 1.0 um, less than 5 um, less than 10 um, less than 15 um, less than 20 um, less than 25 um, less than 30 um, less than 35 um, less than 40 um, less than 50 um, less than 55 um, less than 60 um, less than 65 um, less than 70 um, less than 75 um, less than 45 80 um, less than 85 um, less than 90 um, less than 95 um, less than 100 um, less than 125 um, less than 150 um, less than 175 um, less than 200 um, less than 225 um, less than 250 um, less than 275 um, less than 300 um, less than 325 um, less than 350 um, less than 375 um, less than 400 um, 50 less than 425 um, less than 450 um, less than 475 um, less than 500 um, less than 525 um, less than 550 um, less than 575 um, less than 600 um, less than 625 um, less than 650 um, less than 675 um, less than 700 um, less than 725 um, less than 750 um, less than 775 um, less than 800 um, less 55 than 825 um, less than 850 um, less than 875 um, less than 900 um, less than 925 um, less than 950 um, less than 975 um, or less than 1000 um.

In some embodiments, RNA (e.g., mRNA) vaccines may be delivered using smaller LNPs, which may comprise a 60 diameter from about 1 nm to about 100 nm, from about 1 nm to about 10 nm, about 1 nm to about 20 nm, from about 1 nm to about 30 nm, from about 1 nm to about 40 nm, from about 1 nm to about 50 nm, from about 1 nm to about 60 nm, from about 1 nm to about 50 nm, from about 1 nm to about 50 nm, from about 1 nm to about 50 nm, from about 5 nm, from about 5 nm to about 5 nm to about 5 nm to about 5 nm, from about 5 nm to about 5 nm, from about 5 nm to about 10 nm,

96

about 5 nm to about 20 nm, from about 5 nm to about 30 nm. from about 5 nm to about 40 nm, from about 5 nm to about 50 nm, from about 5 nm to about 60 nm, from about 5 nm to about 70 nm, from about 5 nm to about 80 nm, from about 5 nm to about 90 nm, about 10 to about 50 nm, from about 20 to about 50 nm, from about 30 to about 50 nm, from about 40 to about 50 nm, from about 20 to about 60 nm, from about 30 to about 60 nm, from about 40 to about 60 nm, from about 20 to about 70 nm, from about 30 to about 70 nm, from about 40 to about 70 nm, from about 50 to about 70 nm, from about 60 to about 70 nm, from about 20 to about 80 nm, from about 30 to about 80 nm, from about 40 to about 80 nm, from about 50 to about 80 nm, from about 60 to about 80 nm, from about 20 to about 90 nm, from about 30 to about 90 nm, from about 40 to about 90 nm, from about 50 to about 90 nm, from about 60 to about 90 nm and/or from about 70 to about 90 nm.

In some embodiments, such LNPs are synthesized using methods comprising microfluidic mixers. Examples of microfluidic mixers may include, but are not limited to, a slit interdigital micromixer including, but not limited to those manufactured by Microinnova (Allerheiligen bei Wildon, Austria) and/or a staggered herringbone micromixer (SHM) (Zhigaltsev, I. V. et al., Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing have been published (Langmuir. 2012. 28:3633-40; Belliveau, N. M. et al., Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Molecular Therapy-Nucleic Acids. 2012. 1:e37; Chen, D. et al., Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. J Am Chem Soc. 2012. 134(16):6948-51, the contents of each of which are herein incorporated by reference in their entirety). In some embodiments, methods of LNP generation comprising SHM, further comprise the mixing of at least two input streams wherein mixing occurs by microstructureinduced chaotic advection (MICA). According to this method, fluid streams flow through channels present in a herringbone pattern causing rotational flow and folding the fluids around each other. This method may also comprise a surface for fluid mixing wherein the surface changes orientations during fluid cycling. Methods of generating LNPs using SHM include those disclosed in U.S. Application Publication Nos. 2004/0262223 and 2012/0276209, the contents of each of which are herein incorporated by reference in their entirety.

In some embodiments, the RNA (e.g., mRNA) vaccine of the present disclosure may be formulated in lipid nanoparticles created using a micromixer such as, but not limited to, a Slit Interdigital Microstructured Mixer (SIMM-V2) or a Standard Slit Interdigital Micro Mixer (SSIMM) or Caterpillar (CPMM) or Impinging-jet (IJMM) from the Institut für Mikrotechnik Mainz GmbH, Mainz Germany).

In some embodiments, the RNA (e.g., mRNA) vaccines of the present disclosure may be formulated in lipid nanoparticles created using microfluidic technology (see, e.g., Whitesides, George M. The Origins and the Future of Microfluidics. Nature, 2006 442: 368-373; and Abraham et al. Chaotic Mixer for Microchannels. Science, 2002 295: 647-651; each of which is herein incorporated by reference in its entirety). As a non-limiting example, controlled microfluidic formulation includes a passive method for mixing streams of steady pressure-driven flows in micro channels at a low Reynolds number (see, e.g., Abraham et al. Chaotic Mixer for Microchannels. Science, 2002 295: 647-651, the contents of which are herein incorporated by reference in their entirety).

In some embodiments, the RNA (e.g., mRNA) vaccines of the present disclosure may be formulated in lipid nanoparticles created using a micromixer chip such as, but not limited to, those from Harvard Apparatus (Holliston, Mass.) or Dolomite Microfluidics (Royston, UK). A micromixer 5 chip can be used for rapid mixing of two or more fluid streams with a split and recombine mechanism.

In some embodiments, the RNA (e.g., mRNA) vaccines of the disclosure may be formulated for delivery using the drug encapsulating microspheres described in International Patent Publication No. WO2013063468 or U.S. Pat. No. 8,440, 614, the contents of each of which are herein incorporated by reference in their entirety. The microspheres may comprise a compound of the formula (I), (II), (III), (IV), (V) or (VI) as described in International Patent Publication No. 15 WO2013063468, the contents of which are herein incorporated by reference in their entirety. In some embodiments, the amino acid, peptide, polypeptide, lipids (APPL) are useful in delivering the RNA (e.g., mRNA) vaccines of the disclosure to cells (see International Patent Publication No. 20 WO2013063468, the contents of which are herein incorporated by reference in their entirety).

In some embodiments, the RNA (e.g., mRNA) vaccines of the disclosure may be formulated in lipid nanoparticles having a diameter from about 10 to about 100 nm such as, 25 but not limited to, about 10 to about 20 nm, about 10 to about 30 nm, about 10 to about 40 nm, about 10 to about 50 nm, about 10 to about 60 nm, about 10 to about 70 nm, about 10 to about 80 nm, about 10 to about 90 nm, about 20 to about 30 nm, about 20 to about 40 nm, about 20 to about 50 nm, 30 about 20 to about 60 nm, about 20 to about 70 nm, about 20 to about 80 nm, about 20 to about 90 nm, about 20 to about 100 nm, about 30 to about 40 nm, about 30 to about 50 nm, about 30 to about 60 nm, about 30 to about 70 nm, about 30 to about 80 nm, about 30 to about 90 nm, about 30 to about 35 100 nm, about 40 to about 50 nm, about 40 to about 60 nm, about 40 to about 70 nm, about 40 to about 80 nm, about 40 to about 90 nm, about 40 to about 100 nm, about 50 to about 60 nm, about 50 to about 70 nm about 50 to about 80 nm, about 50 to about 90 nm, about 50 to about 100 nm, about 40 60 to about 70 nm, about 60 to about 80 nm, about 60 to about 90 nm, about 60 to about 100 nm, about 70 to about 80 nm, about 70 to about 90 nm, about 70 to about 100 nm, about 80 to about 90 nm, about 80 to about 100 nm and/or about 90 to about 100 nm.

In some embodiments, the lipid nanoparticles may have a diameter from about 10 to 500 nm.

In some embodiments, the lipid nanoparticle may have a diameter greater than 100 nm, greater than 150 nm, greater than 200 nm, greater than 250 nm, greater than 300 nm, 50 greater than 350 nm, greater than 400 nm, greater than 450 nm, greater than 500 nm, greater than 550 nm, greater than 600 nm, greater than 650 nm, greater than 750 nm, greater than 800 nm, greater than 850 nm, greater than 900 nm, greater than 950 nm or greater than 55 1000 nm.

In some embodiments, the lipid nanoparticle may be a limit size lipid nanoparticle described in International Patent Publication No. WO2013059922, the contents of which are herein incorporated by reference in their entirety. The limit 60 size lipid nanoparticle may comprise a lipid bilayer surrounding an aqueous core or a hydrophobic core; where the lipid bilayer may comprise a phospholipid such as, but not limited to, diacylphosphatidylcholine, a diacylphosphatidylethanolamine, a ceramide, a sphingomyelin, a dihydrosphingomyelin, a cephalin, a cerebroside, a C8-C20 fatty acid diacylphophatidylcholine, and 1-palmitoyl-2-oleoyl

98

phosphatidylcholine (POPC). In some embodiments, the limit size lipid nanoparticle may comprise a polyethylene glycol-lipid such as, but not limited to, DLPE-PEG, DMPE-PEG, DPPC-PEG and DSPE-PEG.

In some embodiments, the RNA (e.g., mRNA) vaccines may be delivered, localized and/or concentrated in a specific location using the delivery methods described in International Patent Publication No. WO2013063530, the contents of which are herein incorporated by reference in their entirety. As a non-limiting example, a subject may be administered an empty polymeric particle prior to, simultaneously with or after delivering the RNA (e.g., mRNA) vaccines to the subject. The empty polymeric particle undergoes a change in volume once in contact with the subject and becomes lodged, embedded, immobilized or entrapped at a specific location in the subject.

In some embodiments, the RNA (e.g., mRNA) vaccines may be formulated in an active substance release system (see, e.g., U.S. Patent Publication No. US20130102545, the contents of which are herein incorporated by reference in their entirety). The active substance release system may comprise 1) at least one nanoparticle bonded to an oligonucleotide inhibitor strand which is hybridized with a catalytically active nucleic acid and 2) a compound bonded to at least one substrate molecule bonded to a therapeutically active substance (e.g., polynucleotides described herein), where the therapeutically active substance is released by the cleavage of the substrate molecule by the catalytically active nucleic acid.

In some embodiments, the RNA (e.g., mRNA) vaccines may be formulated in a nanoparticle comprising an inner core comprising a non-cellular material and an outer surface comprising a cellular membrane. The cellular membrane may be derived from a cell or a membrane derived from a virus. As a non-limiting example, the nanoparticle may be made by the methods described in International Patent Publication No. WO2013052167, the contents of which are herein incorporated by reference in their entirety. As another non-limiting example, the nanoparticle described in International Patent Publication No. WO2013052167, the contents of which are herein incorporated by reference in their entirety, may be used to deliver the RNA (e.g., mRNA) vaccines described herein.

In some embodiments, the RNA (e.g., mRNA) vaccines may be formulated in porous nanoparticle-supported lipid bilayers (protocells). Protocells are described in International Patent Publication No. WO2013056132, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the RNA (e.g., mRNA) vaccines described herein may be formulated in polymeric nanoparticles as described in or made by the methods described in U.S. Pat. Nos. 8,420,123 and 8,518,963 and European Patent No. EP2073848B1, the contents of each of which are herein incorporated by reference in their entirety. As a non-limiting example, the polymeric nanoparticle may have a high glass transition temperature such as the nanoparticles described in or nanoparticles made by the methods described in U.S. Pat. No. 8,518,963, the contents of which are herein incorporated by reference in their entirety. As another non-limiting example, the polymer nanoparticle for oral and parenteral formulations may be made by the methods described in European Patent No. EP2073848B1, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the RNA (e.g., mRNA) vaccines described herein may be formulated in nanoparticles used in imaging. The nanoparticles may be liposome nanoparticles

such as those described in U.S. Patent Publication No US20130129636, herein incorporated by reference in its entirety. As a non-limiting example, the liposome may comprise gadolinium(III)2-{4,7-bis-carboxymethyl-10-[(N, N-distearylamidomethyl-N'-amido-methyl]-1,4,7,10-tetra-azacyclododec-1-yl}-acetic acid and a neutral, fully saturated phospholipid component (see, e.g., U.S. Patent Publication No US20130129636, the contents of which are herein incorporated by reference in their entirety).

In some embodiments, the nanoparticles which may be used in the present disclosure are formed by the methods described in U.S. Patent Application No. US20130130348, the contents of which are herein incorporated by reference in their entirety.

The nanoparticles of the present disclosure may further include nutrients such as, but not limited to, those which deficiencies can lead to health hazards from anemia to neural tube defects (see, e.g., the nanoparticles described in International Patent Publication No WO2013072929, the contents of which are herein incorporated by reference in their entirety). As a non-limiting example, the nutrient may be iron in the form of ferrous, ferric salts or elemental iron, iodine, folic acid, vitamins or micronutrients.

In some embodiments, the RNA (e.g., mRNA) vaccines of 25 the present disclosure may be formulated in a swellable nanoparticle. The swellable nanoparticle may be, but is not limited to, those described in U.S. Pat. No. 8,440,231, the contents of which are herein incorporated by reference in their entirety. As a non-limiting embodiment, the swellable 30 nanoparticle may be used for delivery of the RNA (e.g., mRNA) vaccines of the present disclosure to the pulmonary system (see, e.g., U.S. Pat. No. 8,440,231, the contents of which are herein incorporated by reference in their entirety).

The RNA (e.g., mRNA) vaccines of the present disclosure 35 may be formulated in polyanhydride nanoparticles such as, but not limited to, those described in U.S. Pat. No. 8,449, 916, the contents of which are herein incorporated by reference in their entirety.

The nanoparticles and microparticles of the present dis- 40 closure may be geometrically engineered to modulate macrophage and/or the immune response. In some embodiments, the geometrically engineered particles may have varied shapes, sizes and/or surface charges in order to incorporated the polynucleotides of the present disclosure for targeted 45 delivery such as, but not limited to, pulmonary delivery (see, e.g., International Publication No WO2013082111, the contents of which are herein incorporated by reference in their entirety). Other physical features the geometrically engineering particles may have include, but are not limited to, 50 fenestrations, angled arms, asymmetry and surface roughness, charge which can alter the interactions with cells and tissues. As a non-limiting example, nanoparticles of the present disclosure may be made by the methods described in International Publication No WO2013082111, the contents 55 of which are herein incorporated by reference in their

In some embodiments, the nanoparticles of the present disclosure may be water soluble nanoparticles such as, but not limited to, those described in International Publication 60 No. WO2013090601, the contents of which are herein incorporated by reference in their entirety. The nanoparticles may be inorganic nanoparticles which have a compact and zwitterionic ligand in order to exhibit good water solubility. The nanoparticles may also have small hydrodynamic diameters (HD), stability with respect to time, pH, and salinity and a low level of non-specific protein binding.

100

In some embodiments the nanoparticles of the present disclosure may be developed by the methods described in U.S. Patent Publication No. US20130172406, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the nanoparticles of the present disclosure are stealth nanoparticles or target-specific stealth nanoparticles such as, but not limited to, those described in U.S. Patent Publication No. US20130172406, the contents of which are herein incorporated by reference in their entirety. The nanoparticles of the present disclosure may be made by the methods described in U.S. Patent Publication No. US20130172406, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the stealth or target-specific stealth nanoparticles may comprise a polymeric matrix. The polymeric matrix may comprise two or more polymers such as, but not limited to, polyethylenes, polycarbonates, polyanhydrides, polyhydroxyacids, polypropylfumerates, polycaprolactones, polyamides, polyacetals, polyethers, polyesters, poly(orthoesters), polycyanoacrylates, polyvinyl alcohols, polyurethanes, polyphosphazenes, polyacrylates, polymethacrylates, polycyanoacrylates, polyureas, polystyrenes, polyamines, polyesters, polyanhydrides, polyethers, polyurethanes, polymethacrylates, polyacrylates, polycyanoacrylates or combinations thereof.

In some embodiments, the nanoparticle may be a nanoparticle-nucleic acid hybrid structure having a high density nucleic acid layer. As a non-limiting example, the nanoparticle-nucleic acid hybrid structure may made by the methods described in U.S. Patent Publication No. US20130171646, the contents of which are herein incorporated by reference in their entirety. The nanoparticle may comprise a nucleic acid such as, but not limited to, polynucleotides described herein and/or known in the art.

At least one of the nanoparticles of the present disclosure may be embedded in in the core a nanostructure or coated with a low density porous 3-D structure or coating which is capable of carrying or associating with at least one payload within or on the surface of the nanostructure. Non-limiting examples of the nanostructures comprising at least one nanoparticle are described in International Patent Publication No. WO2013123523, the contents of which are herein incorporated by reference in their entirety.

In some embodiments the RNA (e.g., mRNA) vaccine may be associated with a cationic or polycationic compounds, including protamine, nucleoline, spermine or spermidine, or other cationic peptides or proteins, such as poly-L-lysine (PLL), polyarginine, basic polypeptides, cell penetrating peptides (CPPs), including HIV-binding peptides, HIV-1 Tat (HIV), Tat-derived peptides, Penetratin, VP²² derived or analog peptides, Pestivirus Erns, HSV, VP²² (Herpes simplex), MAP, KALA or protein transduction domains (PTDs), PpT620, prolin-rich peptides, arginine-rich peptides, lysine-rich peptides, MPG-peptide(s), Pep-1, L-oligomers, Calcitonin peptide(s), Antennapedia-derived peptides (particularly from Drosophila antennapedia), pAntp, pIsl, FGF, Lactoferrin, Transportan, Buforin-2, Bac715-24, SynB, SynB(1), pVEC, hCT-derived peptides, SAP, histones, cationic polysaccharides, for example chitosan, polybrene, cationic polymers, e.g. polyethyleneimine (PEI), cationic lipids, e.g. DOTMA: [1-(2,3-sioleyloxy) propyl)]-N,N,N-trimethylammonium chloride, DMRIE, di-C14-amidine, DOTIM, SAINT, DC-Chol, BGTC, CTAP, DOPC, DODAP, DOPE: Dioleyl phosphatidylethanolamine, DOSPA, DODAB, DOIC, DMEPC, DOGS: Dioctadecylamidoglicylspermin, DIMRI: Dimyristooxypropyl

dimethyl hydroxyethyl ammonium bromide, DOTAP: dioleoyloxy-3-(trimethylammonio)propane, DC-6-14: O,Oditetradecanoyl-N-.alpha.-trimethylammonioacetyl)diethanolamine chloride, CLIP 1: rac-[(2,3-dioctadecyloxypropyl) (2-hydroxyethyl)]-dimethylammonium chloride, CLIP6: 5 rac-[2(2,3-dihexadecyloxypropyloxymethyloxy)ethyl]trimethylammonium, CLIP9: rac-[2(2.3-dihexadecyloxypropyloxysuccinyloxy)ethyl]-trimethylammonium, oligofectamine, or cationic or polycationic polymers, e.g. modified polyaminoacids, such as beta-aminoacid-polymers or reversed polyamides, etc., modified polyethylenes, such as PVP (poly(N-ethyl-4-vinylpyridinium bromide)), etc., modified acrylates, such as pDMAEMA (poly(dimethylaminoethyl methylacrylate)), etc., modified amidoamines such as pAMAM (poly(amidoamine)), etc., modified polybetaminoester (PBAE), such as diamine end modified 1,4 butanediol diacrylate-co-5-amino-1-pentanol polymers, etc., dendrimers, such as polypropylamine dendrimers or pAMAM based dendrimers, etc., polyimine(s), such as PEI: 20 poly(ethyleneimine), poly(propyleneimine), etc., polyallylamine, sugar backbone based polymers, such as cyclodextrin based polymers, dextran based polymers, chitosan, etc., silan backbone based polymers, such as PMOXA-PDMS copolymers, etc., blockpolymers consisting of a combina- 25 tion of one or more cationic blocks (e.g. selected from a cationic polymer as mentioned above) and of one or more hydrophilic or hydrophobic blocks (e.g. polyethyleneglycole), etc.

In other embodiments the RNA (e.g., mRNA) vaccine is not associated with a cationic or polycationic compounds.

In some embodiments, a nanoparticle comprises compounds of Formula (I):

$$R_4$$
 R_5
 R_6
 R_6
 R_7
 R_7
 R_7
 R_7

or a salt or isomer thereof, wherein:

 R_1 is selected from the group consisting of C_{5-30} alkyl, 45 C_{5-20} alkenyl, -R*YR", -YR", and -R"M'R';

R₂ and R₃ are independently selected from the group consisting of H, C_{1-14} alkyl, C_{2-14} alkenyl, -R*YR", -YR", and -R*OR", or R_2 and R_3 , together with the atom to which they are attached, form a heterocycle or carbocycle; 50

R₄ is selected from the group consisting of a C₃₋₆ carbocycle, $-(CH_2)_nQ$, $-(CH_2)_nCHQR$,

-CHQR, $-CQ(R)_2$, and unsubstituted C_{1-6} alkyl, where Q is selected from a carbocycle, heterocycle, —OR, $-\mathrm{O}(\mathrm{CH}_2)_n\mathrm{N}(\mathrm{R})_2, \quad -\mathrm{C}(\mathrm{O})\mathrm{OR}, \quad -\mathrm{OC}(\mathrm{O})\mathrm{R},$ $-CX_3$, 55 $-CX_2H$, $-CXH_2$, -CN, $-N(R)_2$, $-C(O)N(R)_2$, -N(R)C(O)R, $-N(R)S(O)_2R$, $-N(R)C(O)N(R)_2$, -N(R)C(S)N $(R)_2$, $-N(R)R_8$, $-O(CH_2)_nOR$, $-N(R)C(=NR_9)N(R)_2$, $-N(R)C(=CHR_9)N(R)_2$, $-OC(O)N(R)_2$, -N(R)C(O) $OR, -N(OR)C(O)R, -N(OR)S(O)_2R, -N(OR)C(O)OR, \ \ 60 \ \ ing \ of \ C_{1-3} \ alkyl, \ C_{2-3} \ alkenyl, \ and \ H;$ $-N(OR)C(O)N(R)_2$, $-N(OR)C(S)N(R)_2$, -N(OR)C $(=NR_9)N(R)_2$, $-N(OR)C(=CHR_9)N(R)_2$, $-C(=NR_9)N$ $(R)_2$, $-C(=NR_9)R$, -C(O)N(R)OR, and $-C(R)N(R)_2C$ (O)OR, and each n is independently selected from 1, 2, 3, 4,

each R₅ is independently selected from the group consisting of C₁₋₃ alkyl, C₂₋₃ alkenyl, and H;

102

each R₆ is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H;

M and M' are independently selected from —C(O)O—, -OC(O)—, -C(O)N(R')—,

-N(R')C(O)-, -C(O)-, -C(S)-, -C(S)S-, -SC(S)—, —CH(OH)—, —P(O)(OR')O—, — $S(O)_2$ —, —S— S—, an aryl group, and a heteroaryl group;

 R_7 is selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H; R₈ is selected from the group consisting of C_{3-6} carbocycle and heterocycle;

R₉ is selected from the group consisting of H, CN, NO₂, C_{1-6} alkyl, -OR, $-S(O)_2R$, $-S(O)_2N(R)_2$, C_{2-6} alkenyl, C_{3-6} carbocycle and heterocycle;

each R is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H;

each R' is independently selected from the group consisting of C_{1-18} alkyl, C_{2-18} alkenyl, —R*YR", —YR", and H; each R" is independently selected from the group consisting of C₃₋₁₄ alkyl and C₃₋₁₄ alkenyl;

each R* is independently selected from the group consisting of C_{1-12} alkyl and C_{2-12} alkenyl;

each Y is independently a C_{3-6} carbocycle;

each X is independently selected from the group consisting of F, Cl, Br, and I; and

m is selected from 5, 6, 7, 8, 9, 10, 11, 12, and 13.

In some embodiments, a subset of compounds of Formula (I) includes those in which when R_4 is $-(CH_2)_n Q$, $-(CH_2)_n$ CHQR, —CHQR, or —CQ(R)₂, then (i) Q is not —N(R)₂ when n is 1, 2, 3, 4 or 5, or (ii) Q is not 5, 6, or 7-membered heterocycloalkyl when n is 1 or 2.

In some embodiments, another subset of compounds of Formula (I) includes those in which

 R_1 is selected from the group consisting of C_{5-30} alkyl, C_{5-20} alkenyl, -R*YR", -YR", and -R"M'R';

R₂ and R₃ are independently selected from the group consisting of H, C_{1-14} alkyl, C_{2-14} alkenyl, -R*YR", -YR", and -R*OR", or R_2 and R_3 , together with the atom to which they are attached, form a heterocycle or carbocycle;

R₄ is selected from the group consisting of a C₃₋₆ carbo-

40 cycle, $-(CH_2)_nQ$, $-(CH_2)_nCHQR$,

-CHQR, --CQ(R)₂, and unsubstituted C_{1-6} alkyl, where Q is selected from a C_{3-6} carbocycle, a 5- to 14-membered heteroaryl having one or more heteroatoms selected from N, O, and S, —OR,

 $--O(CH_2)N(R)_2, --C(O)OR, --OC(O)R, --CX_3, --CX_2H,$ $-\overrightarrow{CXH_2}$, $-\overrightarrow{CN}$, $-\overrightarrow{C}(O)N(R)_2$, -N(R)C(O)R, -N(R)S $(O)_2 R$, $-N(R)C(O)N(R)_2$, $-N(R)C(S)N(R)_2$, $-CRN(R)_2$ C(O)OR, $-N(R)R_8$, $-O(CH_2)_nOR$, $-N(R)C(=NR_9)N$ $(R)_2$, $-N(R)C(=CHR_9)N(R)_2$, $-OC(O)N(R)_2$, -N(R)C(O)OR, -N(OR)C(O)R, $-\overline{N(OR)S(O)_2}R$, $-\overline{N(OR)C(O)}$ OR, $-N(OR)C(O)N(R)_2$, $-N(OR)C(S)N(R)_2$, -N(OR)C(S) $(=NR_9)N(R)_2, -N(OR)C(=CHR_9)N(R)_2, -C(=NR_9)N(R)_2$ $(R)_2$, $-C(=NR_2)R$, -C(O)N(R)O R, and a 5- to 14-membered heterocycloalkyl having one or more heteroatoms selected from N, O, and S which is substituted with one or more substituents selected from oxo (=O), OH, amino, mono- or di-alkylamino, and C_{1-3} alkyl, and each n is independently selected from 1, 2, 3, 4, and 5;

each R₅ is independently selected from the group consist-

each R₆ is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H;

M and M' are independently selected from —C(O)O—, -OC(O)—, -C(O)N(R')—, -N(R')C(O)—, -C(O)—, -C(S)-, -C(S)S-, -SC(S)-, -CH(OH)-, -P(O)(OR')O—, $-S(O)_2$ —, -S—S—, an aryl group, and a heteroaryl group;

 R_7 is selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H;

 R_8 is selected from the group consisting of C_{3-6} carbocycle and heterocycle;

R₉ is selected from the group consisting of H, CN, NO₂, ⁵ C_{1-6} alkyl, -OR, $-S(O)_2R$, $-S(O)_2N(R)_2$, C_{2-6} alkenyl, C₃₋₆ carbocycle and heterocycle;

each R is independently selected from the group consisting of C₁₋₃ alkyl, C₂₋₃ alkenyl, and H;

each R' is independently selected from the group consisting of C_{1-18} alkyl, C_{2-18} alkenyl, —R*YR", —YR", and H; each R" is independently selected from the group consisting of C_{3-14} alkyl and C_{3-14} alkenyl;

each R* is independently selected from the group consisting of C_{1-12} alkyl and C_{2-12} alkenyl;

each Y is independently a C_{3-6} carbocycle;

each X is independently selected from the group consisting of F, Cl, Br, and I; and

m is selected from 5, 6, 7, 8, 9, 10, 11, 12, and 13, or salts or isomers thereof.

In some embodiments, another subset of compounds of Formula (I) includes those in which

 R_1 is selected from the group consisting of C_{5-30} alkyl, C_{5-20} alkenyl, —R*YR", —YR", and —R"M'R';

R₂ and R₃ are independently selected from the group consisting of H, C_{1-14} alkyl, C_{2-14} alkenyl, --R*YR", --YR", and --R*OR", or R_2 and R_3 , together with the atom to which they are attached, form a heterocycle or carbocycle;

 R_4 is selected from the group consisting of a C_{3-6} carbocycle, $-(CH_2)_nQ$, $-(CH_2)_nCHQR$,

-CHQR, -CQ(R)₂, and unsubstituted C_{1-6} alkyl, where Q is selected from a C_{3-6} carbocycle, a 5- to 14-membered heterocycle having one or more heteroatoms selected from N, O, and S, -OR,

 $-O(CH_2)_nN(R)_2$ --C(O)OR, --OC(O)R, $-CX_2H$, $-CXH_2$, -CN, $-C(O)N(R)_2$, -N(R)C(O)R, $-N(R)S(O)_2R$, $-N(R)C(O)N(R)_2$, $-N(R)C(S)N(R)_2$, $-CRN(R)_2\bar{C}(O)OR, -N(R)R_8,$

 $-N(R)C(=NR_9)N(R)_2$ $--O(CH_2)_nOR$, -N(R)C 40 -N(R)C(O)OR $(=CHR_9)N(R)_2$ $--OC(O)N(R)_2$ $--N(OR)S(O)_2R$, -N(OR)C(O)OR, -N(OR)C(O)R $-N(OR)C(O)N(R)_2$ $-N(OR)C(S)N(R)_2$ -N(OR)C $(=NR_9)N(R)_2$, $-N(OR)C(=CHR_9)N(R)_2$, $-C(=NR_9)R$, C(O)N(R)OR, and $-C(=NR_9)N(R)_2$, and each n is 45 independently selected from 1, 2, 3, 4, and 5; and when Q is a 5- to 14-membered heterocycle and (i) R_4 is $-(CH_2)_nQ$ in which n is 1 or 2, or (ii) R_4 is $-(CH_2)_n$ CHQR in which n is 1, or (iii) R_4 is —CHQR, and —CQ(R)₂, then Q is either a 5- to 14-membered heteroaryl or 8- to 14-membered 50 heterocycloalkyl;

each R₅ is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H;

each R₆ is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H;

M and M' are independently selected from -C(O)O-, -OC(O)—, -C(O)N(R')—, -N(R')C(O)—, -C(O)-C(S)-, -C(S)S-, -SC(S)-, -CH(OH)-, -P(O)(OR')O-, -S(O)₂-, -S-S-, an aryl group, and a heteroaryl group;

 R_7 is selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H;

 R_8 is selected from the group consisting of C_{3-6} carbocycle and heterocycle;

R₉ is selected from the group consisting of H, CN, NO₂, 65 ing of F, Cl, Br, and I; and C_{1-6} alkyl, -OR, $-S(O)_2R$, $-S(O)_2N(R)_2$, C_{2-6} alkenyl, C_{3-6} carbocycle and heterocycle;

each R is independently selected from the group consisting of C₁₋₃ alkyl, C₂₋₃ alkenyl, and H;

each R' is independently selected from the group consisting of C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, —R*YR", —YR", and H; each R" is independently selected from the group consisting of C_{3-14} alkyl and C_{3-14} alkenyl;

each R* is independently selected from the group consisting of C_{1-12} alkyl and C_{2-12} alkenyl;

each Y is independently a C₃₋₆ carbocycle;

each X is independently selected from the group consisting of F, Cl, Br, and I; and

m is selected from 5, 6, 7, 8, 9, 10, 11, 12, and 13, or salts or isomers thereof.

In some embodiments, another subset of compounds of Formula (I) includes those in which

 R_1 is selected from the group consisting of C_{5-30} alkyl, C_{5-20} alkenyl, -R*YR", -YR", and -R"M'R';

R₂ and R₃ are independently selected from the group 20 consisting of H, C₁₋₁₄ alkyl, C₂₋₁₄ alkenyl, —R*YR", -YR", and -R*OR", or R_2 and R_3 , together with the atom to which they are attached, form a heterocycle or carbocycle; R_4 is selected from the group consisting of a C_{3-6} carbo-

cycle, $-(CH_2)_nQ$, $-(CH_2)_nCHQR$,

-CHQR, -CQ(R)₂, and unsubstituted C₁₋₆ alkyl, where Q is selected from a C₃₋₆ carbocycle, a 5- to 14-membered heteroaryl having one or more heteroatoms selected from N, O, and S, -OR.

 $-\mathrm{O}(\mathrm{CH}_2)_n\mathrm{N}(\mathrm{R})_2,$ --C(O)OR, --OC(O)R, $-CX_2H$, $-CXH_2$, -CN, $-C(O)N(R)_2$, -N(R)C(O)R, $-N(R)C(O)N(R)_2$, $-N(R)C(S)N(R)_2$ $-CRN(R)_2C(O)OR$, $-N(R)R_8$, $-O(CH_2)_nOR$, -N(R)C $(=NR_9)N(R)_2$, $-N(R)C(=CHR_9)N(R)_2$, $-OC(O)N(R)_2$, -N(R)C(O)OR-N(OR)C(O)R, $-N(OR)S(O)_2R$, 35 - N(OR)C(O)OR, -N(OR)C(O)N(R)₂, -N(OR)C(S)N $(R)_2, -N(OR)C(=NR_9)N(R)_2, -N(OR)C(=CHR_9)N(R)$ $_{2}$, —C(=NR $_{9}$)R, —C(O)N(R)OR, and —C(=NR $_{9}$)N(R) $_{2}$, and each n is independently selected from 1, 2, 3, 4, and 5; each R₅ is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H;

each R₆ is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H;

M and M' are independently selected from —C(O)O—, -OC(O)—, -C(O)N(R')—, -N(R')C(O)—, -C(O)-C(S)—, -C(S)S—, -SC(S)—, -CH(OH)—, -P(O) (OR')O—, $-S(O)_2$ —, -S—s—, an aryl group, and a heteroaryl group;

 R_7 is selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H;

R₈ is selected from the group consisting of C₃₋₆ carbocycle and heterocycle;

 R_{9} is selected from the group consisting of H, CN, $N\mathrm{O}_{2},$ C_{1-6} alkyl, -OR, $-S(O)_2R$, $-S(O)_2N(R)_2$, C_{2-6} alkenyl, C_{3-6} carbocycle and heterocycle;

each R is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H;

each R' is independently selected from the group consisting of C_{1-18} alkyl, C_{2-18} alkenyl, —R*YR", —YR", and H; each R" is independently selected from the group con-60 sisting of C_{3-14} alkyl and C_{3-14} alkenyl;

each R* is independently selected from the group consisting of C_{1-12} alkyl and C_{2-12} alkenyl;

each Y is independently a C_{3-6} carbocycle;

each X is independently selected from the group consist-

m is selected from 5, 6, 7, 8, 9, 10, 11, 12, and 13, or salts or isomers thereof.

104

In some embodiments, another subset of compounds of Formula (I) includes those in which

 R_1 is selected from the group consisting of C_{5-30} alkyl, C_{5-20} alkenyl, -R*YR", -YR", and -R"M'R';

 R_2 and R_3 are independently selected from the group consisting of H, C_{2-14} alkyl, C_{2-14} alkenyl, —R*YR", —YR", and —R*OR", or R_2 and R_3 , together with the atom to which they are attached, form a heterocycle or carbocycle;

 R_4 is $-(CH_2)_nQ$ or $-(CH_2)_nCHQR$, where Q is $-N(R)_2$, and n is selected from 3, 4, and 5;

each R_5 is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H;

each R_6 is independently selected from the group consisting of $C_{1\text{-}3}$ alkyl, $C_{2\text{-}3}$ alkenyl, and H;

M and M' are independently selected from —C(O)O—, 15 —OC(O)—, —C(O)N(R')—, —N(R')C(O)—, —C(O)—, —C(O)—, —C(S)—, —C(S)—, —C(S)—, —C(S)—, —C(S)—, —C(S)—, —C(S)—, —C(S)—, an aryl group, and a heteroaryl group;

 R_7 is selected from the group consisting of C_{1-3} alkyl, C_{2-3} 20 alkenyl, and H;

each R is independently selected from the group consisting of $C_{1\text{-}3}$ alkyl, $C_{2\text{-}3}$ alkenyl, and H;

each R' is independently selected from the group consisting of C_{1-18} alkyl, C_{2-18} alkenyl, —R*YR", —YR", and H; 25 each R" is independently selected from the group consisting of C_{3-14} alkyl and C_{3-14} alkenyl;

each R^* is independently selected from the group consisting of C_{1-12} alkyl and C_{1-12} alkenyl;

each Y is independently a C₃₋₆ carbocycle;

each X is independently selected from the group consisting of F, Cl, Br, and I; and

m is selected from 5, 6, 7, 8, 9, 10, 11, 12, and 13, or salts or isomers thereof.

In some embodiments, another subset of compounds of $\,^{35}$ Formula (I) includes those in which

 R_1 is selected from the group consisting of $C_{\text{5-30}}$ alkyl, $C_{\text{5-20}}$ alkenyl, —R*YR", —YR", and —R"M'R';

 R_2 and R_3 are independently selected from the group consisting of $C_{1\text{-}14}$ alkyl, $C_{2\text{-}14}$ alkenyl, $-R^*YR", -YR", \ \, 40$ and $-R^*OR",$ or R_2 and R_3 , together with the atom to which they are attached, form a heterocycle or carbocycle;

 R_4 is selected from the group consisting of —(CH₂)_nQ, —(CH₂)_nCHQR, —CHQR, and —CQ(R)₂, where Q is —N(R)₂, and n is selected from 1, 2, 3, 4, and 5;

each R_5 is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H;

each R_6 is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H;

M and M' are independently selected from —C(O)O—, 50 —OC(O)—, —C(O)N(R')—, —N(R')C(O)—, —C(O)—, —C(S)—, —C(S)S—, —SC(S)—, —CH(OH)—, —P(O) (OR')O—, —S(O) $_2$ —, —S—S—, an aryl group, and a heteroaryl group;

 R_7 is selected from the group consisting of C_{1-3} alkyl, C_{2-3} 55 alkenyl, and H;

each R is independently selected from the group consisting of $C_{1,3}$ alkyl, $C_{2,3}$ alkenyl, and H;

each R' is independently selected from the group consisting of C_{1-18} alkyl, C_{2-18} alkenyl, —R*YR", —YR", and H; 60 each R" is independently selected from the group consisting of C_{3-14} alkyl and C_{3-14} alkenyl;

each R^* is independently selected from the group consisting of C_{1-12} alkyl and C_{1-12} alkenyl;

each Y is independently a C₃₋₆ carbocycle;

each X is independently selected from the group consisting of F, Cl, Br, and I; and

106

m is selected from 5, 6, 7, 8, 9, 10, 11, 12, and 13, or salts or isomers thereof.

In some embodiments, a subset of compounds of Formula (I) includes those of Formula (IA):

or a salt or isomer thereof, wherein 1 is selected from 1, 2, 3, 4, and 5; m is selected from 5, 6, 7, 8, and 9; M_1 is a bond or M'; R_4 is unsubstituted C_{1-3} alkyl, or $-(CH_2)_nQ$, in which Q is OH, $-NHC(S)N(R)_2$, $-NHC(O)N(R)_2$, -N(R) C(O)R, $-N(R)S(O)_2R$, $-N(R)R_8$, $-NHC(=NR_9)N(R)_2$, $-NHC(=CHR_9)N(R)_2$, $-OC(O)N(R)_2$, -N(R)C(O)OR, heteroaryl or heterocycloalkyl; M and M' are independently selected

from —C(O)O—, —OC(O)—, —C(O)N(R')—, —P(O) (OR')O—, —S—S—, an aryl group, and a heteroaryl group; and R_2 and R_3 are independently selected from the group consisting of H, C_{1-14} alkyl, and C_{2-14} alkenyl.

In some embodiments, a subset of compounds of Formula $_{30}$ (I) includes those of Formula (II):

$$\begin{array}{c} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$$

or a salt or isomer thereof, wherein 1 is selected from 1, 2, 3, 4, and 5; M_1 is a bond or M'; R_4 is unsubstituted C_{1-3} alkyl, or $-(CH_2)_nQ$, in which n is 2, 3, or 4, and Q is OH, $-NHC(S)N(R)_2$, $-NHC(O)N(R)_2$, -N(R)C(O)R, -N(R) $S(O)_2R$, $-N(R)R_8$, $-NHC(=NR_9)N(R)_2$, $-NHC(=CHR_9)N(R)_2$, $-NC(O)N(R)_2$, $-NC(C)N(R)_2$, $-NC(C)N(R)_2$, heteroaryl or heterocycloalkyl; M and M' are independently selected

from —C(O)O—, —OC(O)—, —C(O)N(R')—, —P(O) (OR')O—, —S—S—, an aryl group, and a heteroaryl group; and $\rm R_2$ and $\rm R_3$ are independently selected from the group consisting of H, $\rm C_{1-14}$ alkyl, and $\rm C_{2-14}$ alkenyl.

In some embodiments, a subset of compounds of Formula (I) includes those of Formula (IIa), (IIb), (IIc), or (IIe):

15

20

35

45

50

60

-continued

(IIb)

$$\mathbb{R}_4$$
 (IIe)

$$\begin{array}{c} (IId) \\ 25 \\ \\ R_4 \end{array}$$

or a salt or isomer thereof, wherein R4 is as described herein.

In some embodiments, a subset of compounds of Formula (I) includes those of Formula (IId):

O
$$R'$$

HO R''
 R''
 R_6
 R_6
 R_7
 R_7

or a salt or isomer thereof, wherein n is 2, 3, or 4; and m, $R^{\prime},\ R^{\prime\prime},\ and\ R_{2}$ through R_{6} are as described herein. For example, each of R2 and R3 may be independently selected from the group consisting of C_{5-14} alkyl and C_{5-14} alkenyl.

In some embodiments, a subset of compounds of Formula 55 (I) includes those of Formula (IIa), (IIb), (IIc), or (IIe):

-continued

$$\mathbb{R}_4$$
 \mathbb{N} \mathbb{N}

$$(IId)$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

or a salt or isomer thereof, wherein R4 is as described herein.

In some embodiments, a subset of compounds of Formula (I) includes those of Formula (IId):

O
$$R'$$

HO R'
 R'
 R_5
 R_6
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7

or a salt or isomer thereof, wherein n is 2, 3, or 4; and m, $_{65}$ R', R", and R $_{2}$ through R $_{6}$ are as described herein. For example, each of \boldsymbol{R}_2 and \boldsymbol{R}_3 may be independently selected from the group consisting of C_{5-14} alkyl and C_{5-14} alkenyl. In some embodiments, the compound of Formula (I) is selected from the group consisting of:

In further embodiments, the compound of Formula (I) is $\,^{40}$ selected from the group consisting of:

(Compound 62)

127

In some embodiments, the compound of Formula (I) is selected from the group consisting of:

$$\begin{array}{c} \text{(Compound 77)} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}$$

$$136$$
)
HO

(Compound 136)

(Compound 137)

HO
$$N$$
 (Compound 146)

$$\begin{array}{c} O \\ O \\ O \\ N \end{array}$$

$$\begin{array}{c} O_2N \\ N \\ H \end{array}$$

$$\bigcap_{\mathbb{N}} \bigcap_{\mathbb{N}} \bigcap$$

$$\bigcap_{N} \bigcap_{N} \bigcap_{N$$

(Compound 197)

$$\begin{array}{c} O_2N \\ N \\ N \\ N \end{array}$$

$$\bigcap_{N} \bigcap_{N} \bigcap_{N$$

$$(Compound 230)$$

and salts and isomers thereof.

In some embodiments, a nanoparticle comprises the following compound: ing the cell with a nanoparticle composition including (i) a lipid component including a phospholipid (such as a polyunsaturated lipid), a PEG lipid, a structural lipid, and a

182

or salts and isomers thereof.

In some embodiments, the disclosure features a nanoparticle composition including a lipid component comprising a compound as described herein (e.g., a compound according to Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (IIe)).

In some embodiments, the disclosure features a pharmaceutical composition comprising a nanoparticle composition according to the preceding embodiments and a pharmaceutically acceptable carrier. For example, the pharmaceutical composition is refrigerated or frozen for storage and/or shipment (e.g., being stored at a temperature of 4° C. or lower, such as a temperature between about –150° C. and 45 about 0° C. or between about –80° C. and about –20° C. (e.g., about –5° C., –10° C., –15° C., –20° C., –25° C., –30° C., –40° C., –50° C., –60° C., –70° C., –80° C., –90° C., –130° C. or –150° C.). For example, the pharmaceutical composition is a solution that is refrigerated for storage 50 and/or shipment at, for example, about –20° C., –30° C., –40° C., –50° C., –60° C., –70° C., or –80° C.

In some embodiments, the disclosure provides a method of delivering a therapeutic and/or prophylactic (e.g., RNA, such as mRNA) to a cell (e.g., a mammalian cell). This 55 method includes the step of administering to a subject (e.g., a mammal, such as a human) a nanoparticle composition including (i) a lipid component including a phospholipid (such as a polyunsaturated lipid), a PEG lipid, a structural lipid, and a compound of Formula (I), (IA), (II), (IIa), (IIb), 60 (IIc), (IId) or (IIe) and (ii) a therapeutic and/or prophylactic, in which administering involves contacting the cell with the nanoparticle composition, whereby the therapeutic and/or prophylactic is delivered to the cell.

In some embodiments, the disclosure provides a method 65 of producing a polypeptide of interest in a cell (e.g., a mammalian cell). The method includes the step of contact-

compound of Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (IIe) and (ii) an mRNA encoding the polypeptide of interest, whereby the mRNA is capable of being translated in the cell to produce the polypeptide.

In some embodiments, the disclosure provides a method of treating a disease or disorder in a mammal (e.g., a human) in need thereof. The method includes the step of administering to the mammal a therapeutically effective amount of a nanoparticle composition including (i) a lipid component including a phospholipid (such as a polyunsaturated lipid), a PEG lipid, a structural lipid, and a compound of Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (IIe) and (ii) a therapeutic and/or prophylactic (e.g., an mRNA).

In some embodiments, the disease or disorder is characterized by dysfunctional or aberrant protein or polypeptide activity. For example, the disease or disorder is selected from the group consisting of rare diseases, infectious diseases, cancer and proliferative diseases, genetic diseases (e.g., cystic fibrosis), autoimmune diseases, diabetes, neurodegenerative diseases, cardio- and reno-vascular diseases, and metabolic diseases.

In some embodiments, the disclosure provides a method of delivering (e.g., specifically delivering) a therapeutic and/or prophylactic to a mammalian organ (e.g., a liver, spleen, lung, or femur). This method includes the step of administering to a subject (e.g., a mammal) a nanoparticle composition including (i) a lipid component including a phospholipid, a PEG lipid, a structural lipid, and a compound of Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (IIe) and (ii) a therapeutic and/or prophylactic (e.g., an mRNA), in which administering involves contacting the cell with the nanoparticle composition, whereby the therapeutic and/or prophylactic is delivered to the target organ (e.g., a liver, spleen, lung, or femur).

In some embodiments, the disclosure features a method for the enhanced delivery of a therapeutic and/or prophylactic (e.g., an mRNA) to a target tissue (e.g., a liver, spleen, lung, or femur). This method includes administering to a subject (e.g., a mammal) a nanoparticle composition, the 5 composition including (i) a lipid component including a compound of Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (IIe), a phospholipid, a structural lipid, and a PEG lipid; and (ii) a therapeutic and/or prophylactic, the administering including contacting the target tissue with the nanoparticle 10 composition, whereby the therapeutic and/or prophylactic is delivered to the target tissue.

In some embodiments, the disclosure features a method of lowering immunogenicity comprising introducing the nanoparticle composition of the disclosure into cells, wherein the 15 nanoparticle composition reduces the induction of the cellular immune response of the cells to the nanoparticle composition, as compared to the induction of the cellular immune response in cells induced by a reference composition which comprises a reference lipid instead of a com- 20 pound of Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (IIe). For example, the cellular immune response is an innate immune response, an adaptive immune response, or both.

The disclosure also includes methods of synthesizing a compound of Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) 25 or (IIe) and methods of making a nanoparticle composition including a lipid component comprising the compound of Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (IIe). Modes of Vaccine Administration

Respiratory virus RNA (e.g. mRNA) vaccines may be 30 administered by any route which results in a therapeutically effective outcome. These include, but are not limited, to intradermal, intramuscular, and/or subcutaneous administration. The present disclosure provides methods comprising administering RNA (e.g., mRNA) vaccines to a subject in 35 need thereof. The exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the disease, the particular composition, its mode of administration, its mode of activity, and the like. Respiratory virus RNA (e.g., 40 mRNA) vaccines compositions are typically formulated in dosage unit form for ease of administration and uniformity of dosage. It will be understood, however, that the total daily usage of RNA (e.g., mRNA) vaccine compositions may be decided by the attending physician within the scope of sound 45 medical judgment. The specific therapeutically effective, prophylactically effective, or appropriate imaging dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound 50 employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with 55 5 years later, or Day 0 and 10 years later) at a total dose of the specific compound employed; and like factors well known in the medical arts.

In some embodiments, respiratory virus RNA (e.g. mRNA) vaccines compositions may be administered at dosage levels sufficient to deliver 0.0001 mg/kg to 100 60 mg/kg, 0.001 mg/kg to 0.05 mg/kg, 0.005 mg/kg to 0.05 mg/kg, 0.001 mg/kg to 0.005 mg/kg, 0.05 mg/kg to 0.5 mg/kg, 0.01 mg/kg to 50 mg/kg, 0.1 mg/kg to 40 mg/kg, 0.5 mg/kg to 30 mg/kg, 0.01 mg/kg to 10 mg/kg, 0.1 mg/kg to 10 mg/kg, or 1 mg/kg to 25 mg/kg, of subject body weight 65 per day, one or more times a day, per week, per month, etc. to obtain the desired therapeutic, diagnostic, prophylactic, or

imaging effect (see, e.g., the range of unit doses described in International Publication No WO2013078199, the contents of which are herein incorporated by reference in their entirety). The desired dosage may be delivered three times a day, two times a day, once a day, every other day, every third day, every week, every two weeks, every three weeks, every four weeks, every 2 months, every three months, every 6 months, etc. In some embodiments, the desired dosage may be delivered using multiple administrations (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, or more administrations). When multiple administrations are employed, split dosing regimens such as those described herein may be used. In exemplary embodiments, respiratory virus RNA (e.g., mRNA) vaccines compositions may be administered at dosage levels sufficient to deliver 0.0005 mg/kg to 0.01 mg/kg, e.g., about 0.0005 mg/kg to about 0.0075 mg/kg, e.g., about 0.0005 mg/kg, about 0.001 mg/kg, about 0.002 mg/kg, about 0.003 mg/kg, about 0.004 mg/kg or about 0.005 mg/kg.

184

In some embodiments, respiratory virus RNA (e.g., mRNA) vaccine compositions may be administered once or twice (or more) at dosage levels sufficient to deliver 0.025 mg/kg to 0.250 mg/kg, 0.025 mg/kg to 0.500 mg/kg, 0.025 mg/kg to 0.750 mg/kg, or 0.025 mg/kg to 1.0 mg/kg.

In some embodiments, respiratory virus RNA (e.g., mRNA) vaccine compositions may be administered twice (e.g., Day 0 and Day 7, Day 0 and Day 14, Day 0 and Day 21, Day 0 and Day 28, Day 0 and Day 60, Day 0 and Day 90, Day 0 and Day 120, Day 0 and Day 150, Day 0 and Day 180, Day 0 and 3 months later, Day 0 and 6 months later, Day 0 and 9 months later, Day 0 and 12 months later, Day 0 and 18 months later, Day 0 and 2 years later, Day 0 and 5 years later, or Day 0 and 10 years later) at a total dose of or at dosage levels sufficient to deliver a total dose of 0.0100 mg, 0.025 mg, 0.050 mg, 0.075 mg, 0.100 mg, 0.125 mg, 0.150 mg, 0.175 mg, 0.200 mg, 0.225 mg, 0.250 mg, 0.275 mg, 0.300 mg, 0.325 mg, 0.350 mg, 0.375 mg, 0.400 mg, 0.425 mg, 0.450 mg, 0.475 mg, 0.500 mg, 0.525 mg, 0.550 mg, 0.575 mg, 0.600 mg, 0.625 mg, 0.650 mg, 0.675 mg, 0.700 mg, 0.725 mg, 0.750 mg, 0.775 mg, 0.800 mg, 0.825 mg, 0.850 mg, 0.875 mg, 0.900 mg, 0.925 mg, 0.950 mg, 0.975 mg, or 1.0 mg. Higher and lower dosages and frequency of administration are encompassed by the present disclosure. For example, a respiratory virus RNA (e.g., mRNA) vaccine composition may be administered three or four times.

In some embodiments, respiratory virus RNA (e.g., mRNA) vaccine compositions may be administered twice (e.g., Day 0 and Day 7, Day 0 and Day 14, Day 0 and Day 21, Day 0 and Day 28, Day 0 and Day 60, Day 0 and Day 90, Day 0 and Day 120, Day 0 and Day 150, Day 0 and Day 180, Day 0 and 3 months later, Day 0 and 6 months later, Day 0 and 9 months later, Day 0 and 12 months later, Day 0 and 18 months later, Day 0 and 2 years later, Day 0 and or at dosage levels sufficient to deliver a total dose of 0.010 mg, 0.025 mg, 0.100 mg or 0.400 mg.

In some embodiments, the respiratory virus RNA (e.g., mRNA) vaccine for use in a method of vaccinating a subject is administered to the subject as a single dosage of between 10 μg/kg and 400 μg/kg of the nucleic acid vaccine (in an effective amount to vaccinate the subject). In some embodiments the RNA (e.g., mRNA) vaccine for use in a method of vaccinating a subject is administered to the subject as a single dosage of between 10 µg and 400 µg of the nucleic acid vaccine (in an effective amount to vaccinate the subject). In some embodiments, a respiratory virus RNA (e.g.,

mRNA) vaccine for use in a method of vaccinating a subject is administered to the subject as a single dosage of 25-1000 μg (e.g., a single dosage of mRNA encoding hMPV, PIV3, RSV, MeV and/or BetaCoV antigen). In some embodiments, a respiratory virus RNA (e.g., mRNA) vaccine is adminis- 5 tered to the subject as a single dosage of 25, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950 or 1000 µg. For example, a respiratory virus RNA (e.g., mRNA) vaccine may be administered to a subject as a single dose of 25-100, 25-500, 50-100, 50-500, 10 50-1000, 100-500, 100-1000, 250-500, 250-1000, or 500-1000 μg. In some embodiments, a respiratory virus RNA (e.g., mRNA) vaccine for use in a method of vaccinating a subject is administered to the subject as two dosages, the combination of which equals 25-1000 µg of the respiratory 15 virus RNA (e.g., mRNA) vaccine.

A respiratory virus RNA (e.g. mRNA) vaccine pharmaceutical composition described herein can be formulated into a dosage form described herein, such as an intranasal, intratracheal, or injectable (e.g., intravenous, intraocular, 20 intravitreal, intramuscular, intradermal, intracardiac, intraperitoneal, and subcutaneous).

Respiratory Virus RNA (e.g., mRNA) Vaccine Formulations and Methods of Use

Some aspects of the present disclosure provide formulations of the respiratory virus RNA (e.g., mRNA) vaccine, wherein the RNA (e.g., mRNA) vaccine is formulated in an effective amount to produce an antigen specific immune response in a subject (e.g., production of antibodies specific to an hMPV, PIV3, RSV, MeV and/or BetaCoV antigenic 30 polypeptide). "An effective amount" is a dose of an RNA (e.g., mRNA) vaccine effective to produce an antigen-specific immune response. Also provided herein are methods of inducing an antigen-specific immune response in a subject.

In some embodiments, the antigen-specific immune response is characterized by measuring an anti-hMPV, anti-PIV3, anti-RSV, anti-MeV and/or anti-BetaCoV antigenic polypeptide antibody titer produced in a subject administered a respiratory virus RNA (e.g., mRNA) vaccine as 40 provided herein. An antibody titer is a measurement of the amount of antibodies within a subject, for example, antibodies that are specific to a particular antigen (e.g., an anti-hMPV, anti-PIV3, anti-RSV, anti-MeV and/or anti-BetaCoV antigenic polypeptide) or epitope of an antigen. 45 Antibody titer is typically expressed as the inverse of the greatest dilution that provides a positive result. Enzymelinked immunosorbent assay (ELISA) is a common assay for determining antibody titers, for example.

In some embodiments, an antibody titer is used to assess 50 whether a subject has had an infection or to determine whether immunizations are required. In some embodiments, an antibody titer is used to determine the strength of an autoimmune response, to determine whether a booster immunization is needed, to determine whether a previous 55 vaccine was effective, and to identify any recent or prior infections. In accordance with the present disclosure, an antibody titer may be used to determine the strength of an immune response induced in a subject by the respiratory virus RNA (e.g., mRNA) vaccine.

In some embodiments, an anti-antigenic polypeptide (e.g., an anti-hMPV, anti-PIV3, anti-RSV, anti-MeV and/or anti-BetaCoV antigenic polypeptide) antibody titer produced in a subject is increased by at least 1 log relative to a control. For example, anti-antigenic polypeptide antibody titer produced in a subject may be increased by at least 1.5, at least 2, at least 2.5, or at least 3 log relative to a control. In some

embodiments, the anti-antigenic polypeptide antibody titer produced in the subject is increased by 1, 1.5, 2, 2.5 or 3 log relative to a control. In some embodiments, the anti-antigenic polypeptide antibody titer produced in the subject is increased by 1-3 log relative to a control. For example, the anti-antigenic polypeptide antibody titer produced in a subject may be increased by 1-1.5, 1-2, 1-2.5, 1-3, 1.5-2, 1.5-2.5, 1.5-3, 2-2.5, 2-3, or 2.5-3 log relative to a control.

186

In some embodiments, the anti-antigenic polypeptide (e.g., an anti-hMPV, anti-PIV3, anti-RSV, anti-MeV and/or anti-BetaCoV antigenic polypeptide) antibody titer produced in a subject is increased at least 2 times relative to a control. For example, the anti-antigenic polypeptide antibody titer produced in a subject may be increased at least 3 times, at least 4 times, at least 5 times, at least 6 times, at least 7 times, at least 8 times, at least 9 times, or at least 10 times relative to a control. In some embodiments, the anti-antigenic polypeptide antibody titer produced in the subject is increased 2, 3, 4, 5, 6, 7, 8, 9, or 10 times relative to a control. In some embodiments, the anti-antigenic polypeptide antibody titer produced in a subject is increased 2-10 times relative to a control. For example, the anti-antigenic polypeptide antibody titer produced in a subject may be increased 2-10, 2-9, 2-8, 2-7, 2-6, 2-5, 2-4, 2-3, 3-10, 3-9, 3-8, 3-7, 3-6, 3-5, 3-4, 4-10, 4-9, 4-8, 4-7, 4-6, 4-5, 5-10, 5-9, 5-8, 5-7, 5-6, 6-10, 6-9, 6-8, 6-7, 7-10, 7-9, 7-8, 8-10, 8-9, or 9-10 times relative to a control.

A control, in some embodiments, is the anti-antigenic polypeptide (e.g., an anti-hMPV, anti-PIV3, anti-RSV, anti-MeV and/or anti-BetaCoV antigenic polypeptide) antibody titer produced in a subject who has not been administered a respiratory virus RNA (e.g., mRNA) vaccine of the present disclosure. In some embodiments, a control is an antiantigenic polypeptide (e.g., an anti-hMPV, anti-PIV3, anti-RSV, anti-MeV and/or anti-BetaCoV antigenic polypeptide) antibody titer produced in a subject who has been administered a live attenuated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine. An attenuated vaccine is a vaccine produced by reducing the virulence of a viable (live). An attenuated virus is altered in a manner that renders it harmless or less virulent relative to live, unmodified virus. In some embodiments, a control is an anti-antigenic polypeptide (e.g., an anti-hMPV, anti-PIV3, anti-RSV, anti-MeV and/or anti-BetaCoV antigenic polypeptide) antibody titer produced in a subject administered inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine. In some embodiments, a control is an anti-antigenic polypeptide (e.g., an antihMPV, anti-PIV3, anti-RSV, anti-MeV and/or anti-BetaCoV antigenic polypeptide) antibody titer produced in a subject administered a recombinant or purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine. Recombinant protein vaccines typically include protein antigens that either have been produced in a heterologous expression system (e.g., bacteria or yeast) or purified from large amounts of the pathogenic organism. In some embodiments, a control is an anti-antigenic polypeptide (e.g., an anti-hMPV, anti-PIV3, anti-RSV, anti-MeV and/or anti-BetaCoV antigenic polypeptide) antibody titer produced in a subject who has been administered an hMPV, PIV3, RSV, MeV and/or BetaCoV virus-like particle (VLP) vaccine. For example, an hMPV VLP vaccine used as a control may be a hMPV VLPs, comprising (or consisting of) viral matrix (M) and fusion (F) proteins, generated by expressing viral proteins in suspension-adapted human embryonic kidney epithelial (293-F) cells (see, e.g., Cox R G et al., J Virol. 2014 June; 88(11): 6368-6379, the contents of which are herein incorporated by reference).

In some embodiments, an effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a dose that is reduced compared to the standard of care dose of a recombinant hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine. A "standard of care," as provided herein, refers to 5 a medical or psychological treatment guideline and can be general or specific. "Standard of care" specifies appropriate treatment based on scientific evidence and collaboration between medical professionals involved in the treatment of a given condition. It is the diagnostic and treatment process 10 that a physician/clinician should follow for a certain type of patient, illness or clinical circumstance. A "standard of care dose," as provided herein, refers to the dose of a recombinant or purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine, or a live attenuated or inactivated hMPV, 15 PIV3, RSV, MeV and/or BetaCoV vaccine, that a physician/ clinician or other medical professional would administer to a subject to treat or prevent hMPV, PIV3, RSV, MeV and/or BetaCoV, or a hMPV-, PIV3-, RSV-, MeV- and/or BetaCoVrelated condition, while following the standard of care 20 guideline for treating or preventing hMPV, PIV3, RSV, MeV and/or BetaCoV, or a hMPV-, PIV3-, RSV-, MeV- and/or BetaCoV-related condition.

In some embodiments, the anti-antigenic polypeptide (e.g., an anti-hMPV, anti-PIV3, anti-RSV, anti-MeV and/or 25 anti-BetaCoV antigenic polypeptide) antibody titer produced in a subject administered an effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is equivalent to an anti-antigenic polypeptide (e.g., an anti-hMPV, anti-PIV3, anti-RSV, anti-MeV and/or anti-BetaCoV antigenic 30 polypeptide) antibody titer produced in a control subject administered a standard of care dose of a recombinant or purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine or a live attenuated or inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine.

In some embodiments, an effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a dose equivalent to an at least 2-fold reduction in a standard of care dose of a recombinant or purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine. For example, an effective amount 40 of a respiratory virus RNA (e.g., mRNA) vaccine may be a dose equivalent to an at least 3-fold, at least 4-fold, at least 5-fold, at least 6-fold, at least 7-fold, at least 8-fold, at least 9-fold, or at least 10-fold reduction in a standard of care dose of a recombinant or purified hMPV, PIV3, RSV, MeV and/or 45 BetaCoV protein vaccine. In some embodiments, an effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a dose equivalent to an at least at least 100-fold, at least 500-fold, or at least 1000-fold reduction in a standard of care dose of a recombinant or purified hMPV, PIV3, RSV, 50 MeV and/or BetaCoV protein vaccine. In some embodiments, an effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a dose equivalent to a 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 20-, 50-, 100-, 250-, 500-, or 1000-fold reduction in a standard of care dose of a recombinant or 55 purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine. In some embodiments, the anti-antigenic polypeptide antibody titer produced in a subject administered an effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is equivalent to an anti-antigenic polypeptide anti- 60 body titer produced in a control subject administered the standard of care dose of a recombinant or protein hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine or a live attenuated or inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine. In some embodiments, an effective 65 amount of a respiratory virus RNA (e.g., mRNA) vaccine is a dose equivalent to a 2-fold to 1000-fold (e.g., 2-fold to

100-fold, 10-fold to 1000-fold) reduction in the standard of care dose of a recombinant or purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine, wherein the antiantigenic polypeptide antibody titer produced in the subject is equivalent to an anti-antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine or a live attenuated or inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine.

In some embodiments, the effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a dose equivalent to a 2 to 1000-, 2 to 900-, 2 to 800-, 2 to 700-, 2 to 600-, 2 to 500-, 2 to 400-, 2 to 300-, 2 to 200-, 2 to 100-, 2 to 90-, 2 to 80-, 2 to 70-, 2 to 60-, 2 to 50-, 2 to 40-, 2 to 30-, 2 to 20-, 2 to 10-, 2 to 9-, 2 to 8-, 2 to 7-, 2 to 6-, 2 to 5-, 2 to 4-, 2 to 3-, 3 to 1000-, 3 to 900-, 3 to 800-, 3 to 700-, 3 to 600-, 3 to 500-, 3 to 400-, 3 to 3 to 00-, 3 to 200-, 3 to 100-, 3 to 90-, 3 to 80-, 3 to 70-, 3 to 60-, 3 to 50-, 3 to 40-, 3 to 30-, 3 to 20-, 3 to 10-, 3 to 9-, 3 to 8-, 3 to 7-, 3 to 6-, 3 to 5-, 3 to 4-, 4 to 1000-, 4 to 900-, 4 to 800-, 4 to 700-, 4 to 600-, 4 to 500-, 4 to 400-, 4 to 4 to 00-, 4 to 200-, 4 to 100-, 4 to 90-, 4 to 80-, 4 to 70-, 4 to 60-, 4 to 50-, 4 to 40-, 4 to 30-, 4 to 20-, 4 to 10-, 4 to 9-, 4 to 8-, 4 to 7-, 4 to 6-, 4 to 5-, 4 to 4-, 5 to 1000-, 5 to 900-, 5 to 800-, 5 to 700-, 5 to 600-, 5 to 500-, 5 to 400-, 5 to 300-, 5 to 200-, 5 to 100-, 5 to 90-, 5 to 80-, 5 to 70-, 5 to 60-, 5 to 50-, 5 to 40-, 5 to 30-, 5 to 20-, 5 to 10-, 5 to 9-, 5 to 8-, 5 to 7-, 5 to 6-, 6 to 1000-, 6 to 900-, 6 to 800-, 6 to 700-, 6 to 600-, 6 to 500-, 6 to 400-, 6 to 300-, 6 to 200-, 6 to 100-, 6 to 90-, 6 to 80-, 6 to 70-, 6 to 60-, 6 to 50-, 6 to 40-, 6 to 30-, 6 to 20-, 6 to 10-, 6 to 9-, 6 to 8-, 6 to 7-, 7 to 1000-, 7 to 900-, 7 to 800-, 7 to 700-, 7 to 600-, 7 to 500-, 7 to 400-, 7 to 300-, 7 to 200-, 7 to 100-, 7 to 90-, 7 to 80-, 7 to 70-, 7 to 60-, 7 to 50-, 7 to 40-, 7 to 30-, 7 to 20-, 7 to 10-, 7 to 9-, 7 to 8-, 8 to 1000-, 8 to 900-, 8 to 800-, 8 to 700-, 8 to 600-, 8 to 500-, 8 to 400-, 8 to 300-, 8 to 200-, 8 to 100-, 8 to 90-, 8 to 80-, 8 to 70-, 8 to 60-, 8 to 50-, 8 to 40-, 8 to 30-, 8 to 20-, 8 to 10-, 8 to 9-, 9 to 1000-, 9 to 900-, 9 to 800-, 9 to 700-, 9 to 600-, 9 to 500-, 9 to 400-, 9 to 300-, 9 to 200-, 9 to 100-, 9 to 90-, 9 to 80-, 9 to 70-, 9 to 60-, 9 to 50-, 9 to 40-, 9 to 30-, 9 to 20-, 9 to 10-, 10 to 1000-, 10 to 900-, 10 to 800-, 10 to 700-, 10 to 600-, 10 to 500-, 10 to 400-, 10 to 300-, 10 to 200-, 10 to 100-, 10 to 90-, 10 to 80-, 10 to 70-, 10 to 60-, 10 to 50-, 10 to 40-, 10 to 30-, 10 to 20-, 20 to 1000-, 20 to 900-, 20 to 800-, 20 to 700-, 20 to 600-, 20 to 500-, 20 to 400-, 20 to 300-, 20 to 200-, 20 to 100-, 20 to 90-, 20 to 80-, 20 to 70-, 20 to 60-, 20 to 50-, 20 to 40-, 20 to 30-, 30 to 1000-, 30 to 900-, 30 to 800-, 30 to 700-, 30 to 600-, 30 to 500-, 30 to 400-, 30 to 300-, 30 to 200-, 30 to 100-, 30 to 90-, 30 to 80-, 30 to 70-, 30 to 60-, 30 to 50-, 30 to 40-, 40 to 1000-, 40 to 900-, 40 to 800-, 40 to 700-, 40 to 600-, 40 to 500-, 40 to 400-, 40 to 300-, 40 to 200-, 40 to 100-, 40 to 90-, 40 to 80-, 40 to 70-, 40 to 60-, 40 to 50-, 50 to 1000-, 50 to 900-, 50 to 800-, 50 to 700-, 50 to 600-, 50 to 500-, 50 to 400-, 50 to 300-, 50 to 200-, 50 to 100-, 50 to 90-, 50 to 80-, 50 to 70-, 50 to 60-, 60 to 1000-, 60 to 900-, 60 to 800-, 60 to 700-, 60 to 600-, 60 to 500-, 60 to 400-, 60 to 300-, 60 to 200-, 60 to 100-, 60 to 90-, 60 to 80-, 60 to 70-, 70 to 1000-, 70 to 900-, 70 to 800-, 70 to 700-, 70 to 600-, 70 to 500-, 70 to 400-, 70 to 300-, 70 to 200-, 70 to 100-, 70 to 90-, 70 to 80-, 80 to 1000-, 80 to 900-, 80 to 800-, 80 to 700-, 80 to 600-, 80 to 500-, 80 to 400-, 80 to 300-, 80 to 200-, 80 to 100-, 80 to 90-, 90 to 1000-, 90 to 900-, 90 to 800-, 90 to 700-, 90 to 600-, 90 to 500-, 90 to 400-, 90 to 300-, 90 to 200-, 90 to 100-, 100 to 1000-, 100 to 900-, 100 to 800-, 100 to 700-, 100 to 600-, 100 to 500-, 100 to 400-, 100 to 300-, 100 to 200-, 200 to

1000-, 200 to 900-, 200 to 800-, 200 to 700-, 200 to 600-, 200 to 500-, 200 to 400-, 200 to 300-, 300 to 1000-, 300 to 900-, 300 to 800-, 300 to 700-, 300 to 600-, 300 to 500-, 300 to 400-, 400 to 1000-, 400 to 900-, 400 to 800-, 400 to 700-, 400 to 600-, 400 to 500-, 500 to 1000-, 500 to 900-, 500 to 5 800-, 500 to 700-, 500 to 600-, 600 to 1000-, 600 to 900-, 600 to 800-, 600 to 700-, 700 to 1000-, 700 to 900-, 700 to 800-, 800 to 1000-, 800 to 900-, or 900 to 1000-fold reduction in the standard of care dose of a recombinant hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine. 10 In some embodiments, the anti-antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified hMPV, PIV3, RSV, MeV and/or 15 encompassed by the following numbered paragraphs: BetaCoV protein vaccine or a live attenuated or inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine. In some embodiments, the effective amount is a dose equivalent to (or equivalent to an at least) 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 20-, 30-, 40-, 50-, 60-, 70-, 80-, 90-, 100-, 110-, 120-, 130-, 20 140-, 150-, 160-, 170-, 1280-, 190-, 200-, 210-, 220-, 230-, 240-, 250-, 260-, 270-, 280-, 290-, 300-, 310-, 320-, 330-, 340-, 350-, 360-, 370-, 380-, 390-, 400-, 410-, 420-, 430-, 440-, 450-, 4360-, 470-, 480-, 490-, 500-, 510-, 520-, 530-, 540-, 550-, 560-, 5760-, 580-, 590-, 600-, 610-, 620-, 630-, 25 640-, 650-, 660-, 670-, 680-, 690-, 700-, 710-, 720-, 730-, 740-, 750-, 760-, 770-, 780-, 790-, 800-, 810-, 820-, 830-, 840-, 850-, 860-, 870-, 880-, 890-, 900-, 910-, 920-, 930-, 940-, 950-, 960-, 970-, 980-, 990-, or 1000-fold reduction in the standard of care dose of a recombinant hMPV, PIV3, 30 RSV, MeV and/or BetaCoV protein vaccine. In some embodiments, an anti-antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or 35 purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine or a live attenuated or inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine.

In some embodiments, the effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a total dose of 40 50-1000 μg. In some embodiments, the effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a total dose of 50-1000, 50-900, 50-800, 50-700, 50-600, 50-500, 50-400, 50-300, 50-200, 50-100, 50-90, 50-80, 50-70, 50-60, 60-1000, 60-900, 60-800, 60-700, 60-600, 60-500, 45 60-400, 60-300, 60-200, 60-100, 60-90, 60-80, 60-70, 70-1000, 70-900, 70-800, 70-700, 70-600, 70-500, 70-400, 70-300, 70-200, 70-100, 70-90, 70-80, 80-1000, 80-900, 80-800, 80-700, 80-600, 80-500, 80-400, 80-300, 80-200, 80-100, 80-90, 90-1000, 90-900, 90-800, 90-700, 90-600, 50 90-500, 90-400, 90-300, 90-200, 90-100, 100-1000, 100-900, 100-800, 100-700, 100-600, 100-500, 100-400, 100-300, 100-200, 200-1000, 200-900, 200-800, 200-700, 200-600, 200-500, 200-400, 200-300, 300-1000, 300-900, 300-800, 300-700, 300-600, 300-500, 300-400, 400-1000, 400-55 900, 400-800, 400-700, 400-600, 400-500, 500-1000, 500-900, 500-800, 500-700, 500-600, 600-1000, 600-900, 600-900, 600-700, 700-1000, 700-900, 700-800, 800-1000, 800-900, or 900-1000 μg . In some embodiments, the effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is 60 a total dose of 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950 or 1000 μg. In some embodiments, the effective amount is a dose of 25-500 µg administered to the subject a total of two times. In some embodiments, the effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a dose of 25-500, 25-400, 25-300, 25-200, 25-100, 25-50, 50-500, 50-400,

190

50-300, 50-200, 50-100, 100-500, 100-400, 100-300, 100-200, 150-500, 150-400, 150-300, 150-200, 200-500, 200-400, 200-300, 250-500, 250-400, 250-300, 300-500, 300-400, 350-500, 350-400, 400-500 or 450-500 μg administered to the subject a total of two times. In some embodiments, the effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a total dose of 25, 50, 100, 150, 200, 250, 300, 350, 400, 450, or 500 µg administered to the subject a total of two times.

EXAMPLES OF ADDITIONAL EMBODIMENTS OF THE DISCLOSURE

Additional embodiments of the present disclosure are

- 1. A respiratory virus vaccine, comprising: at least one ribonucleic acid (RNA) polynucleotide having an open reading frame encoding at least one, at least two, at least three, at least four or at least five antigenic polypeptides selected from human metapneumovirus (hMPV) antigenic polypeptides or immunogenic fragments thereof, human parainfluenza virus type 3 (PIV3) antigenic polypeptides or immunogenic fragments thereof, respiratory syncytial virus (RSV) antigenic polypeptides or immunogenic fragments thereof, measles virus (MeV) antigenic polypeptides or immunogenic fragments thereof, and betacoronavirus (Beta-CoV) antigenic polypeptides or immunogenic fragments thereof.
- 2. The respiratory virus vaccine of paragraph 1, comprising: at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof and a PIV3 antigenic polypeptide or an immunogenic fragment thereof; or at least two RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof and one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof.
- 3. The respiratory virus vaccine of paragraph 2, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, and/or wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13.
- 4. The respiratory virus vaccine of paragraph 1, comprising: at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof and a RSV antigenic polypeptide or an immunogenic fragment thereof; or
- at least two RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof and one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof.
- 5. The respiratory virus vaccine of paragraph 4, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8.
- 6. The respiratory virus vaccine of paragraph 1, comprising: at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immu-

nogenic fragment thereof and MeV antigenic polypeptide or an immunogenic fragment thereof; or

- at least two RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof and one having an open 5 reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof.
- 7. The respiratory virus vaccine of paragraph 6, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an 10 amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, and/or wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at 15 least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50.
- 8. The respiratory virus vaccine of paragraph 1, comprising: at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or
- at least two RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof and one having an open 25 reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.
- 9. The respiratory virus vaccine of paragraph 8, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an 30 amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-34 or an amino acid sequence having at 35 least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 24-34.
- 10. The respiratory virus vaccine of paragraph 1, compris-
- at least one RNA polynucleotide having an open reading 40 frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof and a RSV antigenic polypeptide or an immunogenic fragment thereof; or
- at least two RNA polynucleotides, one having an open reading frame encoding a PIV3 antigenic polypeptide or an 45 immunogenic fragment thereof and one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof.
- 11. The respiratory virus vaccine of paragraph 10, wherein the PIV3 antigenic polypeptide comprises an amino acid 50 sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13.
- 12. The respiratory virus vaccine of paragraph 1, compris- 55 ing:
- at least one RNA polynucleotide having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof and a MeV antigenic polypeptide or an immunogenic fragment thereof; or
- at least two RNA polynucleotides, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof and one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof.
- 13. The respiratory virus vaccine of paragraph 12, wherein the PIV3 antigenic polypeptide comprises an amino acid

192

sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, and/or wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50.

- 14. The respiratory virus vaccine of paragraph 1, comprising:
- at least one RNA polynucleotide having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or
- at least two RNA polynucleotides, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.
- 15. The respiratory virus vaccine of paragraph 14, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 24-34.
- 16. The respiratory virus vaccine of paragraph 1, comprising:
- at least one RNA polynucleotide having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof and a MeV antigenic polypeptide or an immunogenic fragment thereof; or
- at least two RNA polynucleotides, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof and one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof.
- 17. The respiratory virus vaccine of paragraph 16, wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50.
- 18. The respiratory virus vaccine of paragraph 1, comprising:
- at least one RNA polynucleotide having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or
- at least two RNA polynucleotides, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.
- 19. The respiratory virus vaccine of paragraph 18, wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 24-34.
- 20. The respiratory virus vaccine of paragraph 1, comprising:
- at least one RNA polynucleotide having an open reading frame encoding a MeV antigenic polypeptide or an immu-

nogenic fragment thereof and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two RNA polynucleotides, one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof and one having an open 5 reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

21. The respiratory virus vaccine of paragraph 20, wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an 10 amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-34 or an amino acid sequence having at 15 least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 24-34.

22. The respiratory virus vaccine of paragraph 1, compris-

at least one RNA polynucleotide having an open reading 20 frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a PIV3 antigenic polypeptide or an immunogenic fragment thereof, and a RSV antigenic polypeptide or an immunogenic fragment thereof; or

at least two or three RNA polynucleotides, one having an 25 open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a RSV antigenic polypeptide or an 30 immunogenic fragment thereof.

23. The respiratory virus vaccine of paragraph 22, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to 35 an amino acid sequence identified by any one of SEQ ID NO: 5-8, and/or wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at identified by any one of SEQ ID NO: 12-13.

24. The respiratory virus vaccine of paragraph 1, compris-

at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immu- 45 nogenic fragment thereof, a PIV3 antigenic polypeptide or an immunogenic fragment thereof, and a MeV antigenic polypeptide or an immunogenic fragment thereof; or

at least two or three RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide 50 or an immunogenic fragment thereof, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof.

25. The respiratory virus vaccine of paragraph 24, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID 60 NO: 5-8, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, and/or wherein the MeV anti- 65 genic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid

194

sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50. 26. The respiratory virus vaccine of paragraph 1, compris-

at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a PIV3 antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two or three RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

27. The respiratory virus vaccine of paragraph 26, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13 and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 23-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 23-34. 28. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a RSV antigenic polypeptide or an immunogenic fragment thereof, and a MeV antigenic polypeptide or an immunogenic fragment thereof; or

at least two or three RNA polynucleotides, one having an least 90% or 95% identity to an amino acid sequence 40 open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof.

29. The respiratory virus vaccine of paragraph 28, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, and/or wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50.

30. The respiratory virus vaccine of paragraph 1, compris-

at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a RSV antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two or three RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, and one having an open

reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

31. The respiratory virus vaccine of paragraph 30, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 23-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 23-34.

32. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a MeV antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two or three RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof, and one having an open 25 reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

33. The respiratory virus vaccine of paragraph 32, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 23-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence having at least 90% or 95% identity to an amino 40 acid sequence identified by any one of SEQ ID NO: 23-34. 34. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, a RSV antigenic polypeptide or an immunogenic fragment thereof, and a MeV antigenic polypeptide or an immunogenic fragment thereof; or

at least two or three RNA polynucleotides, one having an open reading frame encoding a PIV3 antigenic polypeptide 50 or an immunogenic fragment thereof, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof.

35. The respiratory virus vaccine of paragraph 34, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID 60 NO: 12-13, and/or wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50.

36. The respiratory virus vaccine of paragraph 1, comprising:

196

at least one RNA polynucleotide having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, a RSV antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two or three RNA polynucleotides, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

37. The respiratory virus vaccine of paragraph 36, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one
of SEQ ID NO: 23-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 23-34.

38. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, a MeV antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two or three RNA polynucleotides, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

39. The respiratory virus vaccine of paragraph 38, wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 23-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 23-34.

40. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, a MeV antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two or three RNA polynucleotides, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

41. The respiratory virus vaccine of paragraph 40, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ

ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 23-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 23-34. 42. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading 10 frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a PIV3 antigenic polypeptide or an immunogenic fragment thereof, a RSV antigenic polypeptide or an immunogenic fragment thereof, and a MeV antigenic polypeptide or an immunogenic fragment thereof; 15 or

at least two, three or four RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a PIV3 antigenic 20 polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof.

43. The respiratory virus vaccine of paragraph 42, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, and/or wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50.

at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a PIV3 antigenic polypeptide or an immunogenic fragment thereof, a RSV antigenic polypeptide or an immunogenic fragment thereof, and a Beta-CoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two, three or four RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic 50 polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

45. The respiratory virus vaccine of paragraph 44, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an 60 amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% 65 or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, and/or wherein the BetaCoV

antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 24-34. 46. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a PIV3 antigenic polypeptide or an immunogenic fragment thereof, a MeV antigenic polypeptide or an immunogenic fragment thereof, and a Beta-CoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two, three or four RNA polynucleotides, one

having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof. 47. The respiratory virus vaccine of paragraph 46, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, wherein the MeV antigenic

polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 24-34.

48. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a RSV antigenic polypeptide or an immunogenic fragment thereof, a MeV antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof;

at least two, three or four RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

49. The respiratory virus vaccine of paragraph 48, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90%

or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-34 or an amino acid sequence having at least 90% or 95% identity to an amino 5 acid sequence identified by any one of SEQ ID NO: 24-34. 50. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, a RSV antigenic polypeptide or an immunogenic fragment thereof, a MeV antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two, three or four RNA polynucleotides, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

51. The respiratory virus vaccine of paragraph 50, wherein 25 the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 24-34. 52. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a PIV3 antigenic polypeptide or an immunogenic fragment thereof, a RSV antigenic polypeptide or an immunogenic fragment thereof, a MeV antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof, or

at least two, three, four or five RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic 50 polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

53. The respiratory virus vaccine of paragraph 52, wherein 60 the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, wherein the PIV3 antigenic polypeptide comprises 65 an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90%

or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 24-34.

54. The vaccine of any one of paragraphs 1-53, wherein at least one RNA polynucleotide has less than 80% identity to wild-type mRNA sequence.

55. The vaccine of any one of paragraphs 1-53, wherein at least one RNA polynucleotide has at least 80% identity to wild-type mRNA sequence, but does not include wild-type mRNA sequence.

56. The vaccine of any one of paragraphs 1-55, wherein at least one antigenic polypeptide has membrane fusion activity, attaches to cell receptors, causes fusion of viral and cellular membranes, and/or is responsible for binding of the virus to a cell being infected.

5 57. The vaccine of any one of paragraphs 1-56, wherein at least one RNA polynucleotide comprises at least one chemical modification.

58. The vaccine of paragraph 57, wherein the chemical modification is selected from pseudouridine, N1-methylpseudouridine, N1-ethylpseudouridine, 2-thiouridine, 4'-thiouridine, 5-methylcyto sine, 5-methyluridine, 2-thio-1methyl-1-deaza-pseudouridine, 2-thio-1-methylpseudouridine, 2-thio-5-aza-uridine, 2-thiodihydropseudouridine, 2-thio-dihydrouridine, 2-thiopseudouridine, 4-methoxy-2-thio-pseudouridine, 4-methoxy-pseudouridine, 4-thio-1-methyl-pseudouridine, 4-thio-pseudouridine, 5-aza-uridine, dihydropseudouridine, 5-methoxyuridine and 2'-O-methyl uridine.

59. The vaccine of paragraph 57 or 58, wherein the chemical modification is in the 5-position of the uracil.

60. The vaccine of any one of paragraphs 57-59, wherein the chemical modification is a N1-methylpseudouridine or N1-ethylpseudouridine.

61. The vaccine of any one of paragraphs 57-60, wherein at least 80%, at least 90% or 100% of the uracil in the open reading frame have a chemical modification.

62. The vaccine of any one of paragraphs 1-61, wherein at least one RNA polynucleotide further encodes at least one 5' terminal cap, optionally wherein the 5' terminal cap is 7mG(5')ppp(5')NlmpNp.

63. The vaccine of any one of paragraphs 1-62, wherein at least one antigenic polypeptide or immunogenic fragment thereof is fused to a signal peptide selected from: a HuIgGk signal peptide (METPAQLLFLLLWLPDTTG; SEQ ID NO: 15); IgE heavy chain epsilon-1 signal peptide (MD-WTWILFLVAAATRVHS; SEQ ID NO: 16); Japanese encephalitis PRM signal sequence (MLGSNSGQRV-VFTILLLLVAPAYS; SEQ ID NO: 17), VSVg protein signal sequence (MKCLLYLAFLFIGVNCA; SEQ ID NO: 18) and Japanese encephalitis JEV signal sequence (MWLVS-LAIVTACAGA; SEQ ID NO: 19).

- 64. The vaccine of paragraph 63, wherein the signal peptide is fused to the N-terminus or the C-terminus of at least one antigenic polypeptide.
- 65. The vaccine of any one of paragraphs 1-64, wherein the antigenic polypeptide or immunogenic fragment thereof comprises a mutated N-linked glycosylation site.

66. The vaccine of any one of paragraphs 1-65 formulated in a nanoparticle, optionally a a lipid nanoparticle.

67. The vaccine of paragraph 66, wherein the lipid nanoparticle comprises a cationic lipid, a PEG-modified lipid, a sterol and a non-cationic lipid; optionally wherein the lipid 5 nanoparticle carrier comprises a molar ratio of about 20-60% cationic lipid, 0.5-15% PEG-modified lipid, 25-55% sterol, and 25% non-cationic lipid; optionally wherein the cationic lipid is an ionizable cationic lipid and the non-cationic lipid is a neutral lipid, and the sterol is a 10 cholesterol; and optionally wherein the cationic lipid is selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate 1: (L319). Formula (II) 68. The vaccine of paragraph 66 or 67, wherein the nanoparticle (e.g., lipid nanoparticle) comprises a compound of Formula (I) and/or Formula (II), optionally Compound 3, 18, 20, 25, 26, 29, 30, 60, 108-112, or 122. 69. The vaccine of any one of paragraphs 1-68 further 20 comprising an adjuvant, optionally a flagellin protein or peptide that optionally comprises an amino acid sequence identified by any one of SEQ ID NO: 54-56.

70. The vaccine of any one of paragraphs 1-69, wherein the open reading frame is codon-optimized.

71. The vaccine of any one of paragraphs 1-70 formulated in an effective amount to produce an antigen-specific immune response.

72. A method of inducing an immune response in a subject, the method comprising administering to the subject the 30 vaccine of any one of paragraphs 1-71 in an amount effective to produce an antigen-specific immune response in the subject.

73. The method of paragraph 72, wherein the subject is administered a single dose of the vaccine, or wherein the 35 subject is administered a first dose and then a booster dose of the vaccine.

74. The method of paragraph 72 or 73, wherein the vaccine is administered to the subject by intradermal injection or intramuscular injection.

75. The method of any one of paragraphs 72-74, wherein an anti-antigenic polypeptide antibody titer produced in the subject is increased by at least 1 log relative to a control, and/or wherein the anti-antigenic polypeptide antibody titer produced in the subject is increased at least 2 times relative 45 to a control.

76. The method of any one of paragraphs 72-75, wherein the control is an anti-antigenic polypeptide antibody titer produced in a subject who has not been administered a vaccine against the virus, and/or wherein the control is an anti-antigenic polypeptide antibody titer produced in a subject who has been administered a live attenuated vaccine or an inactivated vaccine against the virus, and/or, wherein the control is an anti-antigenic polypeptide antibody titer produced in a subject who has been administered a recombinant 55 protein vaccine or purified protein vaccine against the virus, and/or wherein the control is an anti-antigenic polypeptide antibody titer produced in a subject who has been administered a VLP vaccine against the virus.

77. The method of any one of paragraphs 72-76, wherein the 60 effective amount is a dose equivalent to an at least 2-fold reduction in the standard of care dose of a recombinant protein vaccine or a purified protein vaccine against the virus, and wherein an anti-antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant

protein vaccine or a purified protein vaccine against the virus, respectively; and/or wherein the effective amount is a dose equivalent to an at least 2-fold reduction in the standard of care dose of a live attenuated vaccine or an inactivated vaccine against the virus, and wherein an anti-antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a live attenuated vaccine or an inactivated vaccine against the virus, respectively; and/or wherein the effective amount is a dose equivalent to an at least 2-fold reduction in the standard of care dose of a VLP vaccine against the virus, and wherein an anti-antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a VLP vaccine against the virus.

202

78. The method of any one of paragraphs 72-77, wherein the effective amount is a total dose of 50 μ g-1000 μ g, optionally wherein the effective amount is a dose of 25 μ g, 100 μ g, 400 μ g, or 500 μ g administered to the subject a total of two times. 79. The method of any one of paragraphs 72-78, wherein the efficacy of the vaccine against the virus is greater than 65%; and/or wherein the vaccine immunizes the subject against the virus for up to 2 years or wherein the vaccine immunizes the subject against the virus for more than 2 years.

80. The method of any one of paragraphs 72-79, wherein the subject has an age of about 5 years old or younger or wherein the subject has an age of about 60 years old or older; and/or wherein the subject has a chronic pulmonary disease; and/or the subject has been exposed to the virus, wherein the subject is infected with the virus, or wherein the subject is at risk of infection by the virus; and/or wherein the subject is immunocompromised.

81. The respiratory virus vaccine of any one of paragraphs 1-71, comprising at least one (e.g., at least two, at least three, at least four, or at least five) RNA polynucleotide having an open reading frame encoding at least one (e.g., at least two, at least three, at least four, or at least five) antigenic polypeptide selected from hMPV antigenic polypeptides (SEQ ID NO: 5-8), PIV3 antigenic polypeptides (SEQ ID NO: 12-13), RSV antigenic polypeptides, MeV antigenic polypeptides (SEQ ID NO: 47-50) and BetaCoV antigenic polypeptides (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1; (SEQ ID NO: 24-34)), formulated in a cationic lipid nanoparticle

(a) having a molar ratio of about 20-60% cationic lipid, about 5-25% non-cationic lipid, about 25-55% sterol, and about 0.5-15% PEG-modified lipid, and/or

(b) comprising a compound of Formula (I) and/or Formula (II),

wherein the at least one (e.g., at least two, at least three, at least four, or at least five) RNA polynucleotide comprises at least one chemical modification.

82. The respiratory virus vaccine of any one of paragraphs 1-71, comprising at least one (e.g., at least two, at least three, at least four, or at least five) RNA polynucleotide having an open reading frame encoding at least one (e.g., at least two, at least three, at least four, or at least five) antigenic polypeptide selected from hMPV antigenic polypeptides (SEQ ID NO: 5-8), PIV3 antigenic polypeptides (SEQ ID NO: 12-13), RSV antigenic polypeptides, MeV antigenic polypeptides (SEQ ID NO: 47-50) and BetaCoV antigenic polypeptides (e.g., MERS-CoV, SARS-CoV, HCoV-OC43,

HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1; (SEQ ID NO: 24-34)), formulated in a cationic lipid nanoparticle

(a) having a molar ratio of about 20-60% cationic lipid, about 5-25% non-cationic lipid, about 25-55% sterol, and ⁵ about 0.5-15% PEG-modified lipid, and/or

(b) comprising at least one (e.g., at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 14) Compound selected from Compounds 3, 18, 20, 25, 26, 29, 30, 60, 108-112 and 122. 83. The respiratory virus vaccine of paragraphs 81 or 82, wherein the at least one antigenic polypeptide is selected from hMPV antigentic polypeptides (e.g., SEQ ID NO: 5-8). 84. The respiratory virus vaccine of any one of paragraphs 81-83, wherein the at least one antigenic polypeptide is selected from PIV3 antigentic polypeptides (e.g., SEQ ID NO: 12-13).

85. The respiratory virus vaccine of any one of paragraphs 81-84, wherein the at least one antigenic polypeptide is selected from RSV antigentic polypeptides.

86. The respiratory virus vaccine of any one of paragraphs 81-85, wherein the at least one antigenic polypeptide is selected from MeV antigentic polypeptides (e.g., SEQ ID NO: 47-50).

87. The respiratory virus vaccine of any one of paragraphs ²⁵ 81-86, wherein the at least one antigenic polypeptide is selected from BetaCoV antigentic polypeptides (e.g., SEQ ID NO: 24-34).

88. The respiratory virus vaccine of paragraph 87, wherein the BetaCoV antigentic polypeptides are MERS antigentic polypeptides.

89. The respiratory virus vaccine of paragraph 87, wherein the BetaCoV antigentic polypeptides are SARS antigentic polypeptides.

90. The respiratory virus vaccine of any one of paragraphs 81-89, wherein the at least one (e.g., at least two, at least three, at least four, or at least five) RNA polynucleotide comprises at least one chemical modification (e.g., selected from pseudouridine, N1-methylpseudouridine, N1-ethylpseudouridine, 2-thiouridine, 4'-thiouridine, 5-methylcytosine, 5-methyluridine, 2-thio-1-methyl-1-deaza-pseudouridine, 2-thio-dihydropseudouridine, 2-thio-dihydrouridine, 2-thiopseudouridine, 4-methoxy-2-thiopseudouridine, 4-methoxy-pseudouridine, 4-thio-1-methyl-pseudouridine, 4-thiopseudouridine, 5-aza-uridine, dihydropseudouridine, 5-methoxyuridine and 2'-O-methyl uridine).

91. A respiratory virus vaccine, comprising:

at least one messenger ribonucleic acid (mRNA) polynucleotide having a 5' terminal cap, an open reading frame encoding at least one respiratory virus antigenic polypeptide, and a 3' polyA tail.

92. The vaccine of paragraph 91, wherein the at least one mRNA polynucleotide comprises a sequence identified by 55 any one of SEQ ID NO: 57-80.

93. The vaccine of paragraph 91 or 92, wherein the 5' terminal cap is or comprises 7mG(5')ppp(5')NlmpNp.

94. The vaccine of any one of paragraphs 91-93, wherein 100% of the uracil in the open reading frame is modified to 60 include N1-methyl pseudouridine at the 5-position of the uracil.

95. The vaccine of any one of paragraphs 91-94, wherein the vaccine is formulated in a lipid nanoparticle comprising: DLin-MC3-DMA; cholesterol; 1,2-Distearoyl-sn-glycero-3-65 phosphocholine (DSPC); and polyethylene glycol (PEG) 2000-DMG.

204

96. The vaccine of paragraph 95, wherein the lipid nanoparticle further comprises trisodium citrate buffer, sucrose and water.

97. A respiratory syncytial virus (RSV) vaccine, comprising: at least one messenger ribonucleic acid (mRNA) polynucleotide having a 5' terminal cap 7mG(5')ppp(5')NImpNp, a sequence identified by any one of SEQ ID NO: 57-80 and a 3' polyA tail, formulated in a lipid nanoparticle comprising DLin-MC3-DMA, cholesterol, 1,2-Distearoyl-sn-glycero-3-phosphocholine (DSPC), and polyethylene glycol (PEG) 2000-DMG, wherein the uracil nucleotides of the sequence identified by any one of SEQ ID NO: 57-80 are modified to include N1-methyl pseudouridine at the 5-position of the uracil nucleotide.

This disclosure is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The disclosure is capable of other embodiments and of being practiced or of being carried out in various ways. Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of "including," "comprising," or "having," "containing," "involving," and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.

EXAMPLES

Example 1: Manufacture of Polynucleotides

According to the present disclosure, the manufacture of polynucleotides and/or parts or regions thereof may be accomplished utilizing the methods taught in International Publication WO2014/152027, entitled "Manufacturing Methods for Production of RNA Transcripts," the contents of which is incorporated herein by reference in its entirety.

Purification methods may include those taught in International Publication WO2014/152030 and International Publication WO2014/152031, each of which is incorporated herein by reference in its entirety.

Detection and characterization methods of the polynucleotides may be performed as taught in International Publication WO2014/144039, which is incorporated herein by reference in its entirety.

Characterization of the polynucleotides of the disclosure may be accomplished using polynucleotide mapping, reverse transcriptase sequencing, charge distribution analysis, detection of RNA impurities, or any combination of two or more of the foregoing. "Characterizing" comprises determining the RNA transcript sequence, determining the purity of the RNA transcript, or determining the charge heterogeneity of the RNA transcript, for example. Such methods are taught in, for example, International Publication WO2014/144711 and International Publication WO2014/144767, the content of each of which is incorporated herein by reference in its entirety.

Example 2: Chimeric Polynucleotide Synthesis

According to the present disclosure, two regions or parts of a chimeric polynucleotide may be joined or ligated using triphosphate chemistry. A first region or part of 100 nucleotides or less is chemically synthesized with a 5' monophosphate and terminal 3'desOH or blocked OH, for example. If the region is longer than 80 nucleotides, it may be synthesized as two strands for ligation.

If the first region or part is synthesized as a non-positionally modified region or part using in vitro transcription (IVT), conversion the 5'monophosphate with subsequent capping of the 3' terminus may follow.

Monophosphate protecting groups may be selected from ⁵ any of those known in the art.

The second region or part of the chimeric polynucleotide may be synthesized using either chemical synthesis or IVT methods. IVT methods may include an RNA polymerase that can utilize a primer with a modified cap. Alternatively, a cap of up to 130 nucleotides may be chemically synthesized and coupled to the IVT region or part.

For ligation methods, ligation with DNA T4 ligase, followed by treatment with DNase should readily avoid concatenation.

The entire chimeric polynucleotide need not be manufactured with a phosphate-sugar backbone. If one of the regions or parts encodes a polypeptide, then such region or part may comprise a phosphate-sugar backbone.

Ligation is then performed using any known click chemistry, orthoclick chemistry, solulink, or other bioconjugate chemistries known to those in the art.

Synthetic Route

The chimeric polynucleotide may be made using a series 25 of starting segments. Such segments include:

- (a) a capped and protected 5' segment comprising a normal 3'OH (SEG. 1)
- (b) a 5' triphosphate segment, which may include the coding region of a polypeptide and a normal 3'OH (SEG. 2) 30
 - (c) a 5' monophosphate segment for the 3' end of the chimeric polynucleotide (e.g., the tail) comprising cordycepin or no 3'OH (SEG. 3)

After synthesis (chemical or IVT), segment 3 (SEG. 3) may be treated with cordycepin and then with pyrophos- 35 phatase to create the 5' monophosphate.

Segment 2 (SEG. 2) may then be ligated to SEG. 3 using RNA ligase. The ligated polynucleotide is then purified and treated with pyrophosphatase to cleave the diphosphate.

The treated SEG.2-SEG. 3 construct may then be purified 40 and SEG. 1 is ligated to the 5' terminus. A further purification step of the chimeric polynucleotide may be performed.

Where the chimeric polynucleotide encodes a polypeptide, the ligated or joined segments may be represented as: 5'UTR (SEG. 1), open reading frame or ORF (SEG. 2) and 45 3'UTR+PolyA (SEG. 3).

The yields of each step may be as much as 90-95%.

Example 3: PCR for cDNA Production

PCR procedures for the preparation of cDNA may be performed using $2\times KAPA$ HIFT^{IM} HotStart ReadyMix by Kapa Biosystems (Woburn, Mass.). This system includes $2\times KAPA$ ReadyMix 12.5 μ l; Forward Primer (10 μ M) 0.75 μ l; Reverse Primer (10 PM) 0.75 μ l; Template cDNA 100 ng; 55 and dH₂O diluted to 25.0 μ l. The reaction conditions may be at 95° C. for 5 min. The reaction may be performed for 25 cycles of 98° C. for 20 sec, then 58° C. for 15 sec, then 72° C. for 45 sec, then 72° C. for 5 min, then 4° C. to termination.

The reaction may be cleaned up using Invitrogen's PURELINKTM PCR Micro Kit (Carlsbad, Calif.) per manufacturer's instructions (up to 5 μ g). Larger reactions may require a cleanup using a product with a larger capacity. Following the cleanup, the cDNA may be quantified using 65 the NANODROPTM and analyzed by agarose gel electrophoresis to confirm that the cDNA is the expected size. The

206

cDNA may then be submitted for sequencing analysis before proceeding to the in vitro transcription reaction.

Example 4: In Vitro Transcription (IVT)

The in vitro transcription reaction generates RNA polynucleotides. Such polynucleotides may comprise a region or part of the polynucleotides of the disclosure, including chemically modified RNA (e.g., mRNA) polynucleotides. The chemically modified RNA polynucleotides can be uniformly modified polynucleotides. The in vitro transcription reaction utilizes a custom mix of nucleotide triphosphates (NTPs). The NTPs may comprise chemically modified NTPs, or a mix of natural and chemically modified NTPs, or natural NTPs.

A typical in vitro transcription reaction includes the following:

0	1) 2)	Template cDNA 10x transcription buffer	1.0 µg 2.0 µl
U		(400 mM Tris-HCl pH 8.0, 190 mM	
		MgCl ₂ , 50 mM DTT, 10 mM Spermidine)	
	3)	Custom NTPs (25 mM each)	0.2 µl
	4)	RNase Inhibitor	20 U
	5)	T7 RNA polymerase	3000 U
_	6)	dH_20	up to 20.0 μl. and
5	7)	Incubation at 37° C. for 3 hr-5 hrs.	

The crude IVT mix may be stored at 4° C. overnight for cleanup the next day. 1 U of RNase-free DNase may then be used to digest the original template. After 15 minutes of incubation at 37° C., the mRNA may be purified using Ambion's MEGACLEAR Kit (Austin, Tex.) following the manufacturer's instructions. This kit can purify up to 500 μg of RNA. Following the cleanup, the RNA polynucleotide may be quantified using the NanoDrop and analyzed by agarose gel electrophoresis to confirm the RNA polynucleotide is the proper size and that no degradation of the RNA has occurred.

Example 5: Enzymatic Capping

Capping of a RNA polynucleotide is performed as follows where the mixture includes: IVT RNA 60 μ g-180 μ g and dH₂O up to 72 μ l. The mixture is incubated at 65° C. for 5 minutes to denature RNA, and then is transferred immediately to ice.

The protocol then involves the mixing of $10\times$ Capping Buffer (0.5 M Tris-HCl (pH 8.0), 60 mM KCl, 12.5 mM MgCl₂) (10.0 μ l); 20 mM GTP (5.0 μ l); 20 mM S-Adenosyl Methionine (2.5 μ l); RNase Inhibitor (100 U); 2'-O-Methyltransferase (400U); Vaccinia capping enzyme (Guanylyl transferase) (40 U); dH₂O (Up to 28 μ l); and incubation at 37° C. for 30 minutes for 60 μ g RNA or up to 2 hours for 180 μ g of RNA.

The RNA polynucleotide may then be purified using Ambion's MEGACLEARTM Kit (Austin, Tex.) following the manufacturer's instructions. Following the cleanup, the RNA may be quantified using the NANODROPTM (ThermoFisher, Waltham, Mass.) and analyzed by agarose gel electrophoresis to confirm the RNA polynucleotide is the proper size and that no degradation of the RNA has occurred. The RNA polynucleotide product may also be sequenced by running a reverse-transcription-PCR to generate the cDNA for sequencing.

Example 6: PolyA Tailing Reaction

Without a poly-T in the cDNA, a poly-A tailing reaction must be performed before cleaning the final product. This is

done by mixing capped IVT RNA (100 μ l); RNase Inhibitor (20 U); 10× Tailing Buffer (0.5 M Tris-HCl (pH 8.0), 2.5 M NaCl, 100 mM MgCl₂) (12.0 μ l); 20 mM ATP (6.0 μ l); Poly-A Polymerase (20 U); dH₂O up to 123.5 μ l and incubation at 37° C. for 30 min. If the poly-A tail is already in the transcript, then the tailing reaction may be skipped and proceed directly to cleanup with Ambion's MEGA-CLEARTM kit (Austin, Tex.) (up to 500 μ g). Poly-A Polymerase may be a recombinant enzyme expressed in yeast.

It should be understood that the processivity or integrity of the polyA tailing reaction may not always result in an exact size polyA tail. Hence, polyA tails of approximately between 40-200 nucleotides, e.g., about 40, 50, 60, 70, 80, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 15, 104, 105, 106, 107, 108, 109, 110, 150-165, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164 or 165 are within the scope of the present disclosure.

Example 7: Natural 5' Caps and 5' Cap Analogues

5'-capping of polynucleotides may be completed concomitantly during the in vitro-transcription reaction using the following chemical RNA cap analogs to generate the 5'-guanosine cap structure according to manufacturer pro- 25 tocols: 3'-O-Me-m7G(5')ppp(5') G [the ARCA cap];G(5') ppp(5')A; G(5')ppp(5')G; m7G(5')ppp(5')A; m7G(5')ppp(5')G (New England BioLabs, Ipswich, Mass.). 5'-capping of modified RNA may be completed post-transcriptionally using a Vaccinia Virus Capping Enzyme to generate the "Cap 0" structure: m7G(5')ppp(5')G (New England Bio-Labs, Ipswich, Mass.). Cap 1 structure may be generated using both Vaccinia Virus Capping Enzyme and a 2'-O methyl-transferase to generate: m7G(5')ppp(5')G-2'-Omethyl. Cap 2 structure may be generated from the Cap 1 structure followed by the 2'-O-methylation of the 5'-antepenultimate nucleotide using a 2'-O methyl-transferase. Cap 3 structure may be generated from the Cap 2 structure followed by the 2'-O-methylation of the 5'-preantepenultimate nucleotide using a 2'-0 methyl-transferase. Enzymes are preferably derived from a recombinant source.

When transfected into mammalian cells, the modified mRNAs have a stability of between 12-18 hours or more than 18 hours, e.g., 24, 36, 48, 60, 72 or greater than 72 45 hours

Example 8: Capping Assays

Protein Expression Assay

Polynucleotides (e.g., mRNA) encoding a polypeptide, containing any of the caps taught herein, can be transfected into cells at equal concentrations. The amount of protein secreted into the culture medium can be assayed by ELISA at 6, 12, 24 and/or 36 hours post-transfection. Synthetic 55 polynucleotides that secrete higher levels of protein into the medium correspond to a synthetic polynucleotide with a higher translationally-competent cap structure. Purity Analysis Synthesis

RNA (e.g., mRNA) polynucleotides encoding a polypeptide, containing any of the caps taught herein can be compared for purity using denaturing Agarose-Urea gel electrophoresis or HPLC analysis. RNA polynucleotides with a
single, consolidated band by electrophoresis correspond to
the higher purity product compared to polynucleotides with 65
multiple bands or streaking bands. Chemically modified
RNA polynucleotides with a single HPLC peak also corre-

208

spond to a higher purity product. The capping reaction with a higher efficiency provides a more pure polynucleotide population.

Cytokine Analysis

RNA (e.g., mRNA) polynucleotides encoding a polypeptide, containing any of the caps taught herein can be transfected into cells at multiple concentrations. The amount of pro-inflammatory cytokines, such as TNF-alpha and IFN-beta, secreted into the culture medium can be assayed by ELISA at 6, 12, 24 and/or 36 hours post-transfection. RNA polynucleotides resulting in the secretion of higher levels of pro-inflammatory cytokines into the medium correspond to a polynucleotides containing an immune-activating cap structure.

Capping Reaction Efficiency

RNA (e.g., mRNA) polynucleotides encoding a polypeptide, containing any of the caps taught herein can be analyzed for capping reaction efficiency by LC-MS after nuclease treatment. Nuclease treatment of capped polynucleotides yield a mixture of free nucleotides and the capped 5'-5-triphosphate cap structure detectable by LC-MS. The amount of capped product on the LC-MS spectra can be expressed as a percent of total polynucleotide from the reaction and correspond to capping reaction efficiency. The cap structure with a higher capping reaction efficiency has a higher amount of capped product by LC-MS.

Example 9: Agarose Gel Electrophoresis of Modified RNA or RT PCR Products

Individual RNA polynucleotides (200-400 ng in a 20 μ l volume) or reverse transcribed PCR products (200-400 ng) may be loaded into a well on a non-denaturing 1.2% Agarose E-Gel (Invitrogen, Carlsbad, Calif.) and run for 12-15 minutes, according to the manufacturer protocol.

Example 10: Nanodrop Modified RNA Quantification and UV Spectral Data

Chemically modified RNA polynucleotides in TE buffer (1 μ l) are used for Nanodrop UV absorbance readings to quantitate the yield of each polynucleotide from an chemical synthesis or in vitro transcription reaction.

Example 11: Formulation of Modified mRNA Using Lipidoids

RNA (e.g., mRNA) polynucleotides may be formulated for in vitro experiments by mixing the polynucleotides with the lipidoid at a set ratio prior to addition to cells. In vivo formulation may require the addition of extra ingredients to facilitate circulation throughout the body. To test the ability of these lipidoids to form particles suitable for in vivo work, a standard formulation process used for siRNA-lipidoid formulations may be used as a starting point. After formation of the particle, polynucleotide is added and allowed to integrate with the complex. The encapsulation efficiency is determined using a standard dye exclusion assays.

Example 12: Immunogenicity Study

The instant study is designed to test the immunogenicity in mice of candidate hMPV vaccines comprising a mRNA polynucleotide encoding Fusion (F) glycoprotein, major surface glycoprotein G, or a combination thereof, obtained from hMPV.

Mice are immunized intravenously (IV), intramuscularly (IM), or intradermally (ID) with candidate vaccines. Candidate vaccines are chemically modified or unmodified. A total of four immunizations are given at 3-week intervals (i.e., at weeks 0, 3, 6, and 9), and sera are collected after each immunization until weeks 33-51. Serum antibody titers against Fusion (F) glycoprotein or major surface glycoprotein (G) protein are determined by ELISA. Sera collected from each mouse during weeks 10-16 are pooled, and total IgG purified. Purified antibodies are used for immunoelectron microscopy, antibody-affinity testing, and in vitro protection assays.

Example 13: hMPV Rodent Challenge

The instant study is designed to test the efficacy in cotton rats of candidate hMPV vaccines against a lethal challenge using an hMPV vaccine comprising mRNA encoding Fusion (F) glycoprotein, major surface glycoprotein G, or a combination of both antigens obtained from hMPV. Cotton rats are challenged with a lethal dose of the hMPV.

Animals are immunized intravenously (IV), intramuscularly (IM), or intradermally (ID) at week 0 and week 3 with candidate hMPV vaccines with and without adjuvant. Candidate vaccines are chemically modified or unmodified. The animals are then challenged with a lethal dose of hMPV on week 7 via IV, IM or ID. Endpoint is day 13 post infection, death or euthanasia. Animals displaying severe illness as determined by >30% weight loss, extreme lethargy or paralysis are euthanized. Body temperature and weight are assessed and recorded daily.

In experiments where a lipid nanoparticle (LNP) formulation is used, the formulation may include a cationic lipid, non-cationic lipid, PEG lipid and structural lipid in the ratios 50:10:1.5:38.5. The cationic lipid is DLin-KC2-DMA (50 mol %) or DLin-MC3-DMA (50 mol %), the non-cationic lipid is DSPC (10 mol %), the PEG lipid is PEG-DOMG (1.5 mol %) and the structural lipid is cholesterol (38.5 mol %), for example.

Example 14: Immunogenicity of hMPV mRNA Vaccine in BALB/c Mice

The instant study was designed to test the immunogenic- 45 ity in BALB/c mice of hMPV vaccines comprising an mRNA polynucleotide encoding the hMPV Fusion (F) glycoprotein. The mRNA polynucleotide encodes the fulllength fusion protein and comprises the wild-type nucleotide sequence obtained from the hMPV A2a strain. Mice were 50 divided into 3 groups (n=8 for each group) and immunized intramuscularly (IM) with PBS, a 10 µg dose of mRNA vaccines encoding hMPV fusion protein, or a 2 µg dose of mRNA vaccines encoding hMPV fusion protein. A total of two immunizations were given at 3-week intervals (i.e., at 55 weeks 0, and 3 weeks), and sera were collected after each immunization according to the schedule described in Table 1. Serum antibody titers against hMPV fusion glycoprotein were determined by ELISA and antibodies were detected in the sera collected on day 14 onward. Both vaccine doses 60 tested induced comparable levels of immune response in mice (FIGS. 2A-2C).

Additionally, mice sera were used for IgG isotyping (FIGS. 3A-3C). Both hMPV fusion protein-specific IgG1 and IgG2a were detected in mice sera. hMPV fusion protein 65 mRNA vaccine also induced Th1 and Th2 cytokine responses, with a Th1 bias.

210

Sera from mice immunized with either $10\,\mu g$ or $2\,\mu g$ doses of the hMPV fusion protein mRNA vaccine contain neutralizing antibodies. The ability of these antibodies to neutralize hMPV B2 strain was also tested. The antibody-containing sera successfully neutralized the hMPV B2 virus (FIG. 4).

Example 15: T-Cell Stimulation

The instant study was designed to test T-cell stimulation in the splenocytes of mice immunized with mRNA vaccines encoding hMPV fusion protein, as described herein. Immunization of BALB/c mice was performed as described in Example 14. The splenocytes for each group were pooled and split into two parts. One part of splenocytes from each group of mice was stimulated with hMPV-free media, Concanavalin A or a hMPV fusion protein peptide pool comprising 15-mers (15 amino acids long); while the other part of splenocytes from each group of mice was stimulated with hMPV-free media, Concanavalin A or inactivated hMPV virus. Secreted mouse cytokines were measured using the Meso Scale Discovery (MSD) assay.

Cytokines specific to Th1 or Th2 responses were measured. For Th1 response, IFN- γ , IL2 and IL12 were detected from splenocytes stimulated with the hMPV fusion protein peptide pool at a level comparable to that of Concanavalin A (FIGS. 5A-5C). For a Th2 response, the hMPV fusion protein peptide pool induced the secretion of detectable IL10, TNF- α , IL4 and IL, but not IL5, while Concanavalin A stimulated the secretion of all the above-mentioned Th2 cytokines (FIGS. 6A-6E) at a much higher level.

In contrast, inactivated hMPV virus only induced the secretion of IL2 in the Th1 response comparable to that of Concanavalin A (FIGS. 7A-7C). For the Th2 response, the inactivated hMPV virus induced the secretion of detectable IL10, TNF- α , IL4 and IL6, but not IL5, while Concanavalin A stimulated the secretion of all the above-mentioned Th2 cytokines (FIGS. 8A-8E) at a much higher level.

Example 16: hMPV Rodent Challenge in Cotton Rats Immunized with mRNA Vaccine Encoding hMPV Fusion Protein

The instant study was designed to test the efficacy in cotton rats of hMPV vaccines against a lethal challenge. mRNA vaccines encoding hMPV fusion protein were used. The mRNA polynucleotide encodes a full-length fusion protein and comprises the wild-type nucleotide sequence obtained from the hMPV A2a strain.

Cotton rats were immunized intramuscularly (IM) at week 0 and week 3 with the mRNA vaccines encoding hMPV fusion protein with either 2 μg or 10 μg doses for each immunization. The animals were then challenged with a lethal dose of hMPV in week 7 post initial immunization via IV, IM or ID. The endpoint was day 13 post infection, death or euthanasia. Viral titers in the noses and lungs of the cotton rats were measured. The results (FIGS. 9A and 9B) show that a 10 μg dose of mRNA vaccine protected the cotton mice 100% in the lung and drastically reduced the viral titer in the nose after challenge (~2 log reduction). Moreover, a 2 μg dose of mRNA vaccine showed a 1 log reduction in lung viral titer in the cotton mice challenged.

Further, the histopathology of the lungs of the cotton mice immunized and challenged showed no pathology associated with vaccine-enhanced disease (FIG. 10).

Example 17: Immunogenicity Study

The instant study is designed to test the immunogenicity in mice of candidate PIV3 vaccines comprising a mRNA

polynucleotide encoding hemagglutinin-neuraminidase or fusion protein (F or F0) obtained from PIV3.

Mice are immunized intravenously (IV), intramuscularly (IM), or intradermally (ID) with candidate vaccines. Candidate vaccines are chemically modified or unmodified. A total of four immunizations are given at 3-week intervals (i.e., at weeks 0, 3, 6, and 9), and sera are collected after each immunization until weeks 33-51. Serum antibody titers against hemagglutinin-neuraminidase or fusion protein (F or F0) are determined by ELISA. Sera collected from each mouse during weeks 10-16 are, optionally, pooled, and total IgGs are purified. Purified antibodies are used for immunoelectron microscopy, antibody-affinity testing, and in vitro protection assays.

Example 18: PIV3 Rodent Challenge

The instant study is designed to test the efficacy in cotton rats of candidate PIV3 vaccines against a lethal challenge using a PIV3 vaccine comprising mRNA encoding hemagglutinin-neuraminidase or fusion protein (F or F0) obtained from PIV3. Cotton rats are challenged with a lethal dose of the PIV3.

Animals are immunized intravenously (IV), intramuscularly (IM), or intradermally (ID) at week 0 and week 3 with candidate PIV3 vaccines with and without adjuvant. Candidate vaccines are chemically modified or unmodified. The animals are then challenged with a lethal dose of PIV3 on week 7 via IV, IM or ID. Endpoint is day 13 post infection, death or euthanasia. Animals displaying severe illness as determined by >30% weight loss, extreme lethargy or paralysis are euthanized. Body temperature and weight are assessed and recorded daily.

In experiments where a lipid nanoparticle (LNP) formulation is used, the formulation may include a cationic lipid, non-cationic lipid, PEG lipid and structural lipid in the ratios 50:10:1.5:38.5. The cationic lipid is DLin-KC2-DMA (50 mol %) or DLin-MC3-DMA (50 mol %), the non-cationic lipid is DSPC (10 mol %), the PEG lipid is PEG-DOMG (1.5 40 mol %) and the structural lipid is cholesterol (38.5 mol %), for example.

Example 19: hMPV/PIV Cotton Rat Challenge

The instant study was designed to test the efficacy in cotton rats of candidate hMPV mRNA vaccines, PIV3 mRNA vaccines, or hMPV/PIV combination mRNA vaccines against a lethal challenge using PIV3 strain or hMPV/A2 strain. The study design is shown in Table 9.

Cotton rats of 10-12 weeks old were divided into 12 groups (n=5), and each group was vaccinated with mRNA vaccines indicated in Table 9. The PIV3 vaccine comprises mRNA encoding hemagglutinin-neuraminidase or fusion protein (F or F0) obtained from PIV3. The hMPV mRNA 55 vaccine encodes the full-length hMPV fusion protein. The hMPV/PIV combination mRNA vaccine is a mixture of the PIV3 vaccine and hMPV vaccine at a 1:1 ratio.

Cotton rats were immunized intramuscularly (IM) at week 0 and week 3 with candidate vaccines with the doses 60 indicated in Table 9. Cotton rats immunized with hMPV mRNA vaccines or hMPV/PIV combination mRNA vaccines were challenged with a lethal dose of hMPV/A2 strain on week 7 via IM. Cotton rats immunized with PIV mRNA vaccines or hMPV/PIV combination mRNA vaccines were 65 challenged with a lethal dose of PIV3 strain on week 7 via IM.

212

The endpoint was day 13 post infection, death or euthanasia. Animals displaying severe illness as determined by >30% weight loss, extreme lethargy or paralysis were euthanized. Body temperature and weight were assessed and recorded daily.

Lung and nose hMPV/A2 (FIG. 12) or PIV3 (FIG. 13) viral titers were assessed. Lung histopathology of the immunized and challenged cotton rat immunized and challenged were assessed to determine pathology associated with vaccine enhance disease. Neutralization antibody titers in the serum of immunized cotton rats on day 0 and 42 post immunization were assessed (FIG. 11).

hMPV/A2 (FIG. 14) or PIV3 (FIG. 15) neutralizing antibody titers in the serum samples of the immunized cotton rat 42 days post immunization were measured. All mRNA vaccines tested induced strong neutralizing antibodies cotton rats. Lung histopathology of the immunized cotton rats were also evaluated (FIG. 16). Low occurrence of alevolitis and interstitial pneumonia was observed, indicating no antibody-dependent enhancement (ADE) of hMPV or PIV associated diseases.

Example 20: Betacoronavirus Immunogenicity Study

The instant study is designed to test the immunogenicity in rabbits of candidate betacoronavirus (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1 or a combination thereof) vaccines comprising a mRNA polynucleotide encoding the spike (S) protein, the S1 subunit (S1) of the spike protein, or the S2 subunit (S2) of the spike protein obtained from a betacoronavirus (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1).

Rabbits are vaccinated on week 0 and 3 via intravenous (IV), intramuscular (IM), or intradermal (ID) routes. One group remains unvaccinated and one is administered inactivated betacoronavirus. Serum is collected from each rabbit on weeks 1, 3 (pre-dose) and 5. Individual bleeds are tested for anti-S, anti-S1 or anti-S2 activity via a virus neutralization assay from all three time points, and pooled samples from week 5 only are tested by Western blot using inactivated betacoronavirus (e.g., inactivated MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1).

In experiments where a lipid nanoparticle (LNP) formulation is used, the formulation may include a cationic lipid, non-cationic lipid, PEG lipid and structural lipid in the ratios 50:10:1.5:38.5. The cationic lipid is DLin-KC2-DMA (50 mol %) or DLin-MC3-DMA (50 mol %), the non-cationic lipid is DSPC (10 mol %), the PEG lipid is PEG-DOMG (1.5 mol %) and the structural lipid is cholesterol (38.5 mol %), for example.

Example 21: Betacoronavirus Challenge

The instant study is designed to test the efficacy in rabbits of candidate betacoronavirus (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-HKU1 or a combination thereof) vaccines against a lethal challenge using a betacoronavirus (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-HKU1 or a combination thereof) vaccine comprising mRNA encoding the spike (S) protein, the S1 subunit (S1) of the spike protein, or the S2 subunit (S2) of the spike protein obtained from betacoronavirus (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL,

HCoV-NH or HCoV-HKU1). Rabbits are challenged with a lethal dose (10×LD90; ~100 plaque-forming units; PFU) of betacoronavirus (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1).

The animals used are 6-8 week old female rabbits in groups of 10. Rabbits are vaccinated on weeks 0 and 3 via an IM, ID or IV route of administration. Candidate vaccines are chemically modified or unmodified. Rabbit serum is tested for microneutralization (see Example 14). Rabbits are 10 then challenged with ~1 LD90 of betacoronavirus (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1) on week 7 via an IN, IM, ID or IV route of administration. Endpoint is day 13 post infection, death or euthanasia. 15 Animals displaying severe illness as determined by >30% weight loss, extreme lethargy or paralysis are euthanized. Body temperature and weight are assessed and recorded daily.

Example 22: Microneutralization Assay

Nine serial 2-fold dilutions (1:50-1:12,800) of rabbit serum are made in 50 µl virus growth medium (VGM) with trypsin in 96 well microtiter plates. Fifty microliters of virus 25 containing ~50 pfu of betacoronavirus (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1) is added to the serum dilutions and allowed to incubate for 60 minutes at room temperature (RT). Positive control wells of virus 30 without sera and negative control wells without virus or sera are included in triplicate on each plate. While the serumvirus mixtures incubate, a single cell suspension of Madin-Darby Canine-Kidney cells are prepared by trypsinizing (Gibco 0.5% bovine pancrease trypsin in EDTA) a confluent 35 monolayer and suspended cells are transferred to a 50 ml centrifuge tube, topped with sterile PBS and gently mixed. The cells are then pelleted at 200 g for 5 minutes, supernatant aspirated and cells resuspended in PBS. This procedure is repeated once and the cells are resuspended at a concentration of 3×10^5 /ml in VGM with porcine trypsin. Then, 100 ul of cells are added to the serum-virus mixtures and the plates incubated at 35° C. in C02 for 5 days. The plates are fixed with 80% acetone in phosphate buffered saline (PBS) for 15 minutes at RT, air dried and then blocked for 30 45 minutes containing PBS with 0.5% gelatin and 2% FCS. An antibody to the S proteins, S1 protein or S2 protein is diluted in PBS with 0.5% gelatin/2% FCS/0.5% Tween 20 and incubated at RT for 2 hours. Wells are washed and horseradish peroxidase-conjugated goat anti-mouse IgG added, 50 followed by another 2 hour incubation. After washing, O-phenylenediamine dihydrochloride is added and the neutralization titer is defined as the titer of serum that reduced color development by 50% compared to the positive control

Example 23: MERS CoV Vaccine Immunogenicity Study in Mice

The instant study was designed to test the immunogenicity in mice of candidate MERS-CoV vaccines comprising a mRNA polynucleotide encoding the full-length Spike (S) protein, or the S2 subunit (S2) of the Spike protein obtained from MERS-CoV.

Mice were vaccinated with a 10 μg dose of MERS-CoV 65 mRNA vaccine encoding either the full-length MERS-CoV Spike (S) protein, or the S2 subunit (S2) of the Spike protein

214

on days 0 and 21. Sera were collected from each mice on days 0, 21, 42, and 56. Individual bleeds were tested for anti-S, anti-S2 activity via a virus neutralization assay from all four time points.

As shown in FIG. 17, the MERS-CoV vaccine encoding the full-length S protein induced strong immune response after the boost dose on day 21. Further, full-length S protein vaccine generated much higher neutralizing antibody titers as compared to S2 alone (FIG. 18).

Example 24: MERS CoV Vaccine Immunogenicity Study in New Zealand White Rabbits

The instant study was designed to test the immunogenic-15 ity of candidate MERS-CoV mRNA vaccines encoding the full-length Spike (S) protein. The New Zealand white rabbits used in this study weighed about 4-5 kg. The rabbits were divided into three groups (Group 1a, Group 1b, and Group 2, n=8). Rabbits in Group 1a were immunized intramuscu-20 larly (IM) with one 20 μg dose of the MERS-CoV mRNA vaccine encoding the full-length Spike protein on day 0. Rabbits in Group 1b were immunized intramuscularly (IM) with one 20 µg dose of the MERS-CoV mRNA vaccine encoding the full-length Spike protein on day 0, and again on day 21 (booster dose). Group 2 received placebo (PBS). The immunized rabbits were then challenged and samples were collected 4 days after challenge. The viral loads in the lungs, bronchoalveolar lavage (Bal), nose, and throat of the rabbits were determined, e.g., via quantitative PCR. Replicating virus in the lung tissues of the rabbits were also detected. Lung histopathology were evaluated and the neutralizing antibody titers in serum samples of the rabbits were determined.

Two 20 µg doses of MERS-CoV mRNA vaccine resulted in a 3 log reduction of viral load in the nose and led to complete protection in the throat of the New Zealand white rabbits (FIG. 19A). Two 20 µg doses of MERS-CoV mRNA vaccine also resulted in a 4 log reduction of viral load in the BAL of the New Zealand white rabbits (FIG. 19B). One 20 µg dose of MERS-CoV mRNA vaccine resulted in a 2 log reduction of viral load, while two 20 µg doses of MERS-CoV mRNA vaccine resulted in an over 4 log reduction of viral load in the lungs of the New Zealand white rabbits (FIG. 19C).

Quantitative PCR results show that two 20 µg doses of MERS-CoV mRNA vaccine reduced over 99% (2 log) of viruses in the lungs of New Zealand white rabbits (FIG. 20A). No replicating virus were detected in the lungs (FIG. 20B).

Further, as shown in FIG. **21**, two 20 µg doses of MERS-CoV mRNA vaccine induced significant amount of neutralizing antibodies against MERS-CoV (ECso between 500-1000).

The MERS-CoV mRNA vaccine induced antibody titer is 3-5 fold better than any other vaccines tested in the same model.

Example 25: Immunogenicity Study

The instant study is designed to test the immunogenicity in mice of candidate MeV vaccines comprising a mRNA polynucleotide encoding MeV hemagglutinin (HA) protein, MeV Fusion (F) protein or a combination of both.

Mice are immunized intravenously (IV), intramuscularly (IM), or intradermally (ID) with candidate vaccines. Up to three immunizations are given at 3-week intervals (i.e., at weeks 0, 3, 6, and 9), and sera are collected after each

immunization until weeks 33-51. Serum antibody titers against MeV HA protein or MeV F protein are determined by ELISA.

Example 26: MeV Rodent Challenge

The instant study is designed to test the efficacy in transgenic mice of candidate MeV vaccines against a lethal challenge using a MeV vaccine comprising mRNA encoding MeV HA protein or MeV F protein. The transgenic mice 10 express human receptor CD46 or signaling lymphocyte activation molecule (SLAM) (also referred to as CD150). Humans are the only natural host for MeV infection, thus transgenic lines are required for this study. CD46 is a complement regulatory protein that protects host tissue from 15 complement deposition by binding to complement components C3b and C4b. Its expression on murine fibroblast and lymphoid cell lines renders these otherwise refractory cells permissive for MeV infection, and the expression of CD46 on primate cells parallels the clinical tropism of MeV 20 infection in humans and nonhuman primates (Rall G F et al. PNAS USA 1997; 94(9):4659-63). SLAM is a type 1 membrane glycoprotein belonging to the immunoglobulin super216

family. It is expressed on the surface of activated lymphocytes, macrophages, and dendritic cells and is thought to play an important role in lymphocyte signaling. SLAM is a receptor for both wild-type and vaccine MeV strains (Sellin C I et al. J Virol. 2006; 80(13):6420-29).

CD46 or SLAM/CD150 transgenic mice are challenged with a lethal dose of the MeV. Animals are immunized intravenously (IV), intramuscularly (IM), or intradermally (ID) at week 0 and week 3 with candidate MeV vaccines with and without adjuvant. The animals are then challenged with a lethal dose of MeV on week 7 via IV, IM or ID. Endpoint is day 13 post infection, death or euthanasia. Animals displaying severe illness as determined by >30% weight loss, extreme lethargy or paralysis are euthanized. Body temperature and weight are assessed and recorded daily.

In experiments where a lipid nanoparticle (LNP) formulation is used, the formulation may include a cationic lipid, non-cationic lipid, PEG lipid and structural lipid in the ratios 50:10:1.5:38.5. The cationic lipid is DLin-KC2-DMA (50 mol %), the non-cationic lipid is DSPC (10 mol %), the PEG lipid is PEG-DOMG (1.5 mol %) and the structural lipid is cholesterol (38.5 mol %), for example.

TABLE 1

	Animal groups						Day			
	(n = 8)	vaccine	-2	0	7	14	21	28	35	56
Placebo 10 µg Dose 2 µg	Group 1 (n = 8 Group 2 (n = 8 Group	10 μg) (IM)	Pre-Bleed	Prime	Bleeds	Bleeds	Bleeds/Boost	Bleeds	Bleeds	Harvest Spleens/Tern inal Bleeds

Total n = 24

Each of the sequences described herein encompasses a chemically modified sequence or an unmodified sequence which includes no nucleotide modifications.

TABLE 2

Description	Sequence	SEQ ID NO:
		CEO ID
	hMPV Nucleic Acid Sequences	

metapneumovirus isolate TN/92-4 fusion protein gene,

complete genome

gi|122891979|gb|EF051124.1| ATGAGCTGGAAGGTGGTGATTATCTTCAGCCTGCTGATTA CACCTCAACACGGCCTGAAGGAGAGCTACCTGGAAGAGA GCTGCTCCACCATCACCGAGGGCTACCTGAGCGTGCTGC GGACCGGCTGGTACACCAACGTGTTCACCCTGGAGGTGG GCGACGTGGAGAACCTGACCTGCAGCGACGGCCCTAGCC TGATCAAGACCGAGCTGGACCTGACCAAGAGCGCTCTGA GAGAGCTGAAGACCGTGTCCGCCGACCAGCTGGCCAGAG AGGAACAGATCGAGAACCCTCGGCAGAGCAGATTCGTGC TGGGCGCCATCGCTCTGGGAGTCGCCGCTGCCGCTGCAG ${\tt TGACAGCTGGAGTGGCCATTGCTAAGACCATCAGACTGG}$ AAAGCGAGGTGACAGCCATCAACAATGCCCTGAAGAAG ACCAACGAGGCCGTGAGCACCCTGGGCAATGGAGTGAGA GTGCTGGCCACAGCCGTGCGGGAGCTGAAGGACTTCGTG AGCAAGAACCTGACCAGAGCCATCAACAAGAACAAGTG CGACATCGATGACCTGAAGATGGCCGTGAGCTTCTCCCA GTTCAACAGACGGTTCCTGAACGTGGTGAGACAGTTCTC CGACAACGCTGGAATCACACCTGCCATTAGCCTGGACCT GATGACCGACGCCGAGCTGGCTAGAGCCGTGCCCAACAT GCCCACCAGCGCTGGCCAGATCAAGCTGATGCTGGAGAA CAGAGCCATGGTGCGGAGAAAGGGCTTCGGCATCCTGAT TGGGGTGTATGGAAGCTCCGTGATCTACATGGTGCAGCT GCCCATCTTCGGCGTGATCGACACCCCTGCTGGATCGTG

hMPV Nucleic Acid Sequences

Description Sequence

SEQ ID NO:

AAGGCCGCTCCTAGCTGCTCCGAGAAGAAAGGAAACTAT GCCTGTCTGCTGAGAGAGGACCAGGGCTGGTACTGCCAG AACGCCGGAAGCACAGTGTACTATCCCAACGAGAAGGAC TGCGAGACCAGAGGCGACCACGTGTTCTGCGACACCGCT GCCGGAATCAACGTGGCCGAGCAGGAGCAAGGAGTGCAA CATCAACATCAGCACAACCAACTACCCCTGCAAGGTGAG CACCGGACGCACCCCATCAGCATGGTGGCTCTGAGCCC TCTGGGCGCTCTGGTGGCCTGCTATAAGGGCGTGTCCTGT AGCATCGGCAGCAATCGGGTGGGCATCATCAAGCAGCTG AACAAGGGATGCTCCTACATCACCAACCAGGACGCCGAC ACCGTGACCATCGACAACACCGTGTACCAGCTGAGCAAG GTGGAGGGCGAGCACGTGATCAAGGGCAGACCCGT GAGCTCCAGCTTCGACCCCATCAAGTTCCCTGAGGACCA GTTCAACGTGGCCCTGGACCAGGTGTTTGAGAACATCGA GAACAGCCAGGCCCTGGTGGACCAGAGCAACAGAATCCT GTCCAGCGCTGAGAAGGGCAACACCGGCTTCATCATTGT GATCATTCTGATCGCCGTGCTGGGCAGCTCCATGATCCTG GTGAGCATCTTCATCATTATCAAGAAGACCAAGAAACCC ACCGGAGCCCCTCCTGAGCTGAGCGGCGTGACCAACAAT GGCTTCATTCCCCACAACTGA

gb|AY525843.1|: 3065-4684 Human metapneumovirus isolate NL/1/99, complete genome ATGTCTTGGAAAGTGATGATCATCATTTCGTTACTCATAA CACCCCAGCACGGGCTAAAGGAGAGTTATTTGGAAGAAT CATGTAGTACTATAACTGAGGGATACCTCAGTGTTTTAAG AACAGGCTGGTACACTAATGTCTTCACATTAGAAGTTGGT GATGTTGAAAATCTTACATGTACTGATGGACCTAGCTTAA TCAAAACAGAACTTGATCTAACAAAAAGTGCTTTAAGGG AACTCAAAACAGTCTCTGCTGATCAGTTGGCGAGAGAGG AGCAAATTGAAAATCCCAGACAATCAAGATTTGTCTTAG GTGCGATAGCTCTCGGAGTTGCTACAGCAGCAGCAGTCA CAGCAGGCATTGCAATAGCCAAAACCATAAGGCTTGAGA GTGAGGTGAATGCAATTAAAGGTGCTCTCAAACAAACTA ATGAAGCAGTATCCACATTAGGGAATGGTGTGCGGGTCC TAGCCACTGCAGTGAGAGAGCTAAAAGAATTTGTGAGCA AAAACCTGACTAGTGCAATCAACAGGAACAAATGTGACA TTGCTGATCTGAAGATGGCTGTCAGCTTCAGTCAATTCAA CAGAAGATTTCTAAATGTTGTGCGGCAGTTTTCAGACAAT GCAGGGATAACACCAGCAATATCATTGGACCTGATGACT GATGCTGAGTTGGCCAGAGCTGTATCATACATGCCAACA TCTGCAGGGCAGATAAAACTGATGTTGGAGAACCGCGCA ATGGTAAGGAGAAAAGGATTTGGAATCCTGATAGGGGTC TACGGAAGCTCTGTGATTTACATGGTTCAATTGCCGATCT TTGGTGTCATAGATACACCTTGTTGGATCATCAAGGCAGC TCCCTCTTGCTCAGAAAAAAACGGGAATTATGCTTGCCTC CTAAGAGAGGATCAAGGGTGGTATTGTAAAAATGCAGGA TCTACTGTTTACTACCCAAATGAAAAAGACTGCGAAACA AGAGGTGATCATGTTTTTTGTGACACAGCAGCAGGGATC AATGTTGCTGAGCAATCAAGAGAATGCAACATCAACATA TCTACTACCAACTACCCATGCAAAGTCAGCACAGGAAGA CACCCTATAAGCATGGTTGCACTATCACCTCTCGGTGCTT TGGTGGCTTGCTATAAAGGGGTAAGCTGCTCGATTGGCA GCAATTGGGT

TGGAATCATCAAACAATTACCCAAAGGCTGCTCATACAT
AACCAACCAGGATGCAGACACTGTAACAATTGACAATAC
CGTGTATCAACTAAGCAAAGTTGAAGGTGAACACATGT
AATAAAAGGGAGACCAGTTTCAAGCAGTTTTGATCCAAT
CAAGTTTCCTGAGGATCAGTTCAATGTTGCGCTTGATCAA
GTCTTCGAAAGCATTGAGAACAGTCAGGCACTAGTGGAC
CAGTCAAACAAAATTCTAAACAGTGCAGAAAAAGGAAA
CACTGGTTTCATTATCGTAGTAATTTTGGTTGCTGTTCTTG
GTCTAACCATGATTTCAGTAGTAATTTTGGTTGCTGTTCTTG
GTCTAACCATGATTTCAGTGAGCACCACAGAGCTGA
AACAAGGAAGCCCACAGGAGCACCTCCAGAGCTGA
ATGGTGTCACCAACGGGGGGTTTCATACCACATAGTTA

gb|KJ627414.1|: 3015-4634 Human metapneumovirus strain hMPV/Homo sapiens/PER/CFI0497/ 2010/B, complete genome SEO ID

NO:

TABLE 2-continued

hMPV Nucleic Acid Sequences

Sequence

ATGAGGCAGTATCAACACTAGGAAATGGAGTGCGGGTCC TAGCCACTGCAGTAAGAGAGCTGAAAGAATTTGTGAGCA AAAACCTGACTAGTGCGATCAACAAGAACAAGTGTGACA TTGCTGATTTGAAGATGGCTGTCAGCTTCAGTCAGTTCAA CAGAAGATTCCTAAATGTTGTGCGGCAGTTTTCAGACAAT GCAGGGATAACACCAGCAATATCATTGGACCTGATGAAT GATGCTGAGCTGGCCAGAGCTGTATCATACATGCCAACA TCTGCAGGACAGATAAAACTAATGTTAGAGAACCGTGCA ATGGTGAGGAGAAAAGGATTTGGAATCTTGATAGGGGTC TACGGAAGCTCTGTGATTTACATGGTCCAGCTGCCGATCT TTGGTGTCATAAATACACCTTGTTGGATAATCAAGGCAGC TCCCTCTTGTTCAGAAAAAGATGGAAATTATGCTTGCCTC CTAAGAGAGGATCAAGGGTGGTATTGTAAAAATGCAGGA TCCACTGTTTACTACCCAAATGAAAAAGACTGCGAAACA AGAGGTGATCATGTTTTTTGTGACACAGCAGCAGGGATC AATGTTGCTGAGCAATCAAGAGAATGCAACATCAACATA TCTACCACCAACTACCCATGCAAAGTCAGCACAGGAAGA CACCCTATCAGCATGGTTGCACTATCACCTCTCGGTGCTT TGGTAGCTTGCTACAAAGGGGTTAGCTGCTCGACTGGCA GTAATCAGGTTGGAATAATCAAACAACTACCTAAAGGCT GCTCATACATAACTAACCAGGACGCAGACACTGTAACAA TTGACAACACTGTGTATCAACTAAGCAAAGTTGAGGGTG AACAGCATGTAATAAAAGGGAGACCAGTTTCAAGCAGTT TTGATCCAATCAGGTTTCCTGAGGATCAGTTCAATGTTGC GCTTGATCAAGTCTTTGAAAGCATTGAAAACAGTCAAGC ACTAGTGGACCAGTCAAACAAATTCTGAACAGTGCAGA AAAAGGAAACACTGGT TTCATTATTGTAATAATTTTGATTGCTGTTCTTGGGTTAAC

TTCATTATTGTAATAATTTTGATTGCTGTTCTTGGGTTAAC CATGATTTCAGTGAGCATCATCATAATCAAAAAAAA AAGGAAGCCCACAGGGGCACCTCCGGAGCTGAATGGTGT TACCAACGGCGGTTTCATACCGCATAGTTAG

gb|KJ723483.1|: 5586-7310 Human respiratory syncytial virus strain RSVA/Homo sapiens/USA/84I-215A-01/1984, complete genome

Description

ATGGAGTTGCCAATCCTCAAAACAAATGCAATTACCACA ATCCTTGCTGCAGTCACACTCTGTTTCGCTTCCAGTCAAA TTAGCAAAGGCTATCTTAGTGCTCTAAGAACTGGTTGGTA TACTAGTGTTATAACTATAGAATTAAGTAATATCAAGGA AAATAAGTGTAATGGAACAGATGCTAAGGTAAAATTGAT AAAACAAGAATTAGATAAATATAAAAAATGCTGTAACAGA ATTGCAGTTGCTCATGCAAAGCACCACCAGCAGCCAACAA TCGAGCCAGAAGAGAACTACCAAGGTTTATGAATTATAC ACTCAATAATACCAAAAATACCAATGTAACATTAAGCAA GAAAAGGAAAAGAAGATTTCTTGGCTTTTTGTTAGGTGTT GGATCTGCAATCGCCAGTGGCATTGCTGTATCTAAGGTCC TGCACCTAGAAGGGGAAGTGAACAAAATCAAAAGTGCTC TACTATCCACAAACAAGGCTGTAGTCAGCTTATCAAATG GAGTTAGTGTCTTAACCAGCAAAGTGTTAGACCTCAAAA ACTATATAGATAAACAGTTGTTACCTATTGTGAACAAGC AAAGCTGCAGCATATCAAACATTGAAACTGTGATAGAGT TCCAACAAAGAACAACAGACTACTAGAGATTACCAGGG AATTTAGTGTTAATGCAGGTGTAACTACACCTGTAAGCAC TTATATGTTAACTAATAGTGAATTATTATCATTAATCAAT GATATGCCTATAACAAATGATCAGAAAAAGTTAATGTCC AACAATGTTCAAATAGTTAGACAGCAAAGTTACTCTATC ATGTCCATAATAAAGGAGGAAGTCTTAGCATATGTAGTA CAATTACCACTATATGGTGTAATAGATACACCCTGTTGGA AACTGCACACATCCCCTCTATGTACAACCAACACAAAGG AAGGGTCCAACATCTGCTTAACAAGAACCGACAGAGGAT GGTATTGTGACAATGCAGGATCAGTATCTTTCTTCCCACA AGCTGAAACATGTAAAGTTCAATCGAATCGGGTATTTTGT GACACAATGAACAGTTTAACATTACCAAGTGAAGTAAAT CTCTGCAACATTGACATATTCAACCCCAAATATGATTGCA AAATTATGACTTCAAAAACAGATGTAAGCAGCTCCGTTA TCACATCTCTAGGAGCCATTGTGTCATGCTATGGCAAAAC TAAATGTACAGCATCCAATAAAAATCGTGGGATCATAAA GACATTTTCTAACGGGTGTGATTATGTATCAAATAAGGG GGTGGATACTGTGTCTGTAGGTAATACATTATATTATGTA AATAAGCAAGAAGGCAAAAGTCTCTATGTAAAAGGTGAA CCAATAATAAATTTCTATGACCCATTAGTGTTCCCCTCTG ATGAATTTGATGCATCAATATCTCAAGTCAATGAGAAGA TTAACCAGAGCCTAGCATTTATTCGTAAATCCGATGAATT ATTACATAATGTAAATGCTGGTAAATCCACCACAAATAT CATGATAACTACTATAATTATAGTGATTATAGTAATATTG TTATCATTAATTGCAGTTGGACTGCTCCTATACTGCAAGG CCAGAAGCACCAGTCACACTAAGTAAGGATCAACTGA

hMPV Nucleic Acid Sequences			
	GTGGTATAAATAATATTGCATTTAGTAACTGA		
	hMPV mRNA Sequences		
gi 122891979 qb EF051124.1	AUGAGCUGGAAGGUGGUGAUUAUCUUCAGCCUGCUGAU	57	

gi|122891979|gb|EF05112 Human metapneumo virus isolate TN/92-4 fusion protein gene, complete genome

UACACCUCAACACGGCCUGAAGGAGGCUACCUGGAAG AGAGCUGCUCCACCAUCACCGAGGGCUACCUGAGCGUG CUGCGGACCGGCUGGUACACCAACGUGUUCACCCUGGA GGUGGGCGACGUGGAGAACCUGACCUGCAGCGACGGCC CUAGCCUGAUCAAGACCGAGCUGGACCUGACCAAGAGC GCUCUGAGAGACCUGAAGACCGUGUCCGCCGACCAGCU GGCCAGAGAGCAGAUCGAGAACCCUCGGCAGAGCA GAUUCGUGCUGGGCCCAUCGCUCUGGGAGUCGCCGCU GCCGCUGCAGUGACAGCUGGAGUGGCCAUUGCUAAGAC CAUCAGACUGGAAAGCGAGGUGACAGCCAUCAACAAUG CCCUGAAGAAGACCAACGAGGCCGUGAGCACCCUGGGC AAUGGAGUGAGAGUGCUGGCCACAGCCGUGCGGGAGCU GAAGGACUUCGUGAGCAAGAACCUGACCAGAGCCAUCA ACAAGAACAAGUGCGACAUCGAUGACCUGAAGAUGGCC GUGAGCUUCUCCCAGUUCAACAGACGGUUCCUGAACGU GGUGAGACAGUUCUCCGACAACGCUGGAAUCACACCUG CCAUUAGCCUGGACCUGAUGACCGACGCCGAGCUGGCU AGAGCCGUGCCCAACAUGCCCACCAGCGCUGGCCAGAU CAAGCUGAUGCUGGAGAACAGAGCCAUGGUGCGGAGAA AGGGCUUCGGCAUCCUGAUUGGGGUGUAUGGAAGCUCC GUGAUCUACAUGGUGCAGCUGCCCAUCUUCGGCGUGAU CGACACCCUGCUGGAUCGUGAAGGCCGCUCCUAGCU GCUCCGAGAAGAAAGGAAACUAUGCCUGUCUGCUGAGA ${\tt GAGGACCAGGGCUGGUACUGCCAGAACGCCGGAAGCAC}$ AGUGUACUAUCCCAACGAGAAGGACUGCGAGACCAGAG ${\tt GCGACCACGUGUUCUGCGACACCGCUGCCGGAAUCAAC}$ GUGGCCGAGCAGGAGCAAGGAGUGCAACAUCAACAUCAG CACAACCAACUACCCCUGCAAGGUGAGCACCGGACGGC ACCCCAUCAGCAUGGUGGCUCUGAGCCCUCUGGGCGCU CUGGUGGCCUGCUAUAAGGGCGUGUCCUGUAGCAUCGG CAGCAAUCGGGUGGGCAUCAUCAAGCAGCUGAACAAGG GAUGCUCCUACAUCACCAACCAGGACGCCGACACCGUG ACCAUCGACAACACCGUGUACCAGCUGAGCAAGGUGGA GGGCGAGCACGUGAUCAAGGGCAGACCCGUGAGCU CCAGCUUCGACCCCAUCAAGUUCCCUGAGGACCAGUUC AACGUGGCCCUGGACCAGGUGUUUGAGAACAUCGAGAA CAGCCAGGCCCUGGUGGACCAGAGCAACAGAAUCCUGU CCAGCGCUGAGAAGGGCAACACCGGCUUCAUCAUUGUG AUCAUUCUGAUCGCCGUGCUGGGCAGCUCCAUGAUCCU GGUGAGCAUCUUCAUCAUUAUCAAGAAGACCAAGAAAC CCACCGGAGCCCUCCUGAGCUGAGCGGCGUGACCAAC AAUGGCUUCAUUCCCCACAACUGA

gb|AY525843.1|: 3065-4684 Human metapneumovirus isolate NL/1/99, complete genome AUGUCUUGGAAAGUGAUGAUCAUCAUUUCGUUACUCAU AACACCCCAGCACGGGCUAAAGGAGAGUUAUUUGGAAG AAUCAUGUAGUACUAUAACUGAGGGAUACCUCAGUGUU UUAAGAACAGGCUGGUACACUAAUGUCUUCACAUUAGA AGUUGGUGAUGUUGAAAAUCUUACAUGUACUGAUGGA CCUAGCUUAAUCAAAACAGAACUUGAUCUAACAAAAAG UGCUUUAAGGGAACUCAAAACAGUCUCUGCUGAUCAGU UGGCGAGAGAGGAGCAAAUUGAAAAUCCCAGACAAUCA AGAUUUGUCUUAGGUGCGAUAGCUCUCGGAGUUGCUAC AGCAGCAGCAGUCACAGCAGGCAUUGCAAUAGCCAAAA CCAUAAGGCUUGAGAGUGAGGUGAAUGCAAUUAAAGG UGCUCUCAAACAAACUAAUGAAGCAGUAUCCACAUUAG GGAAUGGUGUGCGGGUCCUAGCCACUGCAGUGAGAGAG CUAAAAGAAUUUGUGAGCAAAAACCUGACUAGUGCAAU CAACAGGAACAAAUGUGACAUUGCUGAUCUGAAGAUGG CUGUCAGCUUCAGUCAAUUCAACAGAAGAUUUCUAAAU GUUGUGCGGCAGUUUUCAGACAAUGCAGGGAUAACACC AGCAAUAUCAUUGGACCUGAUGACUGAUGCUGAGUUGG CCAGAGCUGUAUCAUACAUGCCAACAUCUGCAGGGCAG AUAAAACUGAUGUUGGAGAACCGCGCAAUGGUAAGGAG AAAAGGAUUUGGAAUCCUGAUAGGGGUCUACGGAAGCU CUGUGAUUUACAUGGUUCAAUUGCCGAUCUUUGGUGUC AUAGAUACACCUUGUUGGAUCAUCAAGGCAGCUCCCUC UUGCUCAGAAAAAACGGGAAUUAUGCUUGCCUCCUAA GAGAGGAUCAAGGGUGGUAUUGUAAAAAUGCAGGAUC UACUGUUUACUACCCAAAUGAAAAAGACUGCGAAACAA GAGGUGAUCAUGUUUUUUGUGACACAGCAGCAGGGAUC

58

	hMPV Nucleic Acid Sequences	
		SEQ ID
Description	Sequence	NO:

AAUGUUGCUGAGCAAUCAAGAGAAUGCAACAUCAACAU
AUCUACUACCAACUACCCAUGCAAAGUCAGCACAGGAA
GACACCCUAUAAGCAUGGUUGCACUAUCACCUCUCGGU
GCUUUGGUGGCUUGCUAUAAAGGGGUAAGCUGCUCGAU
UGGCAGCAAUUGGGU

UGGAAUCAUCAAACAAUUACCCAAAGGCUGCUCAUACA
UAACCAACCAGGAUGCAGACACUGUAACAAUUGACAAU
ACCGUGUAUCAACUAAGCAAAGUUGAAGGUGAACAGCA
UGUAAUAAAGGAGACCAGUUUCAAGCAGUUUCAUCAU
CAAUCAAGUUUCCUGAGGAUCCAGUUCAAUGUUGCGCUU
GAUCAAGUCUUCGAAAGCAUUCAAACAGUCAGGCACU
AGUGACCAGUCAAACAAAUUCUAAACAGUGCAGAAA
AAGGAAACACCUGGUUUCAUAUCGUAGUAAUUUUGGU
UGCUGUUCUUGGUCUAACCAUGAUUUCAGUAGCACACA
UCAUCAUAAUCAAGAAAACACAGGAAGCCCCACAGGAGCA
CCUCCAGAGCUGAUGGUGCACCAACGGCGGUUUCAU
ACCACAUAGUIUAG

gb|KJ627414.1|: 3015-4634 Human metapneumovirus strain hMPV/Homo sapiens/PER/CFI0497/ 2010/B, complete genome AUGUCUUGGAAAGUGAUGAUUAUCAUUUCGUUACUCAU AACACCUCAGCAUGGACUAAAAGAAAGUUAUUUAGAAG AAUCAUGUAGUACUAUAACUGAAGGAUAUCUCAGUGUU UUAAGAACAGGUUGGUACACCAAUGUCUUUACAUUAGA AGUUGGUGAUGUUGAAAAUCUUACAUGUACUGAUGGA CCUAGCUUAAUCAAAACAGAACUUGACCUAACCAAAAG UGCUUUAAGAGAACUCAAAACAGUUUCUGCUGAUCAGU UAGCGAGAGAAGAACAAAUUGAAAAUCCCAGACAAUCA AGGUUUGUCCUAGGUGCAAUAGCUCUUGGAGUUGCCAC AGCAGCAGCAGUCACAGCAGGCAUUGCAAUAGCCAAAA CUAUAAGGCUUGAGAGUGAAGUGAAUGCAAUCAAAGG UGCUCUCAAAACAACCAAUGAGGCAGUAUCAACACUAG GAAAUGGAGUGCGGGUCCUAGCCACUGCAGUAAGAGAG CUGAAAGAAUUUGUGAGCAAAAACCUGACUAGUGCGAU CAACAAGAACAAGUGUGACAUUGCUGAUUUGAAGAUGG CUGUCAGCUUCAGUCAGUUCAACAGAAGAUUCCUAAAU GUUGUGCGGCAGUUUUCAGACAAUGCAGGGAUAACACC AGCAAUAUCAUUGGACCUGAUGAAUGAUGCUGAGCUGG CCAGAGCUGUAUCAUACAUGCCAACAUCUGCAGGACAG AUAAAACUAAUGUUAGAGAACCGUGCAAUGGUGAGGA GAAAAGGAUUUGGAAUCUUGAUAGGGGUCUACGGAAG CUCUGUGAUUUACAUGGUCCAGCUGCCGAUCUUUGGUG UCAUAAAUACACCUUGUUGGAUAAUCAAGGCAGCUCCC UCUUGUUCAGAAAAAGAUGGAAAUUAUGCUUGCCUCCU AAGAGAGGAUCAAGGGUGGUAUUGUAAAAAUGCAGGA UCCACUGUUUACUACCCAAAUGAAAAAGACUGCGAAAC AAGAGGUGAUCAUGUUUUUUGUGACACAGCAGCAGGGA UCAAUGUUGCUGAGCAAUCAAGAGAAUGCAACAUCAAC AUAUCUACCACCAACUACCCAUGCAAAGUCAGCACAGG AAGACACCCUAUCAGCAUGGUUGCACUAUCACCUCUCG GUGCUUUGGUAGCUUGCUACAAAGGGGUUAGCUGCUCG ACUGGCAGUAAUCAGGUUGGAAUAAUCAAACAACUACC UAAAGGCUGCUCAUACAUAACUAACCAGGACGCAGACA CUGUAACAAUUGACAACACUGUGUAUCAACUAAGCAAA GUUGAGGGUGAACAGCAUGUAAUAAAAGGGAGACCAG UUUCAAGCAGUUUUGAUCCAAUCAGGUUUCCUGAGGAU CAGUUCAAUGUUGCGCUUGAUCAAGUCUUUGAAAGCAU UGAAAACAGUCAAGCACUAGUGGACCAGUCAAACAAAA UUCUGAACAGUGCAGAAAAAGGAAACACUGGU UUCAUUAUUGUAAUAAUUUUGAUUGCUGUUCUUGGGU UAACCAUGAUUUCAGUGAGCAUCAUCAUCAUAAUCAAA AAAACAAGGAAGCCCACAGGGGCACCUCCGGAGCUGAA UGGUGUUACCAACGGCGUUUCAUACCGCAUAGUUAG

gb|KJ723483.1|: 5586-7310 Human respiratory syncytial virus strain RSVA/Homo sapiens/USA/84I-215A-01/1984, complete genome

59

60

hMPV Nucleic Acid Sequences SEQ ID Description Sequence NO:

GCUGUAGUCAGCUUAUCAAAUGGAGUUAGUGUCUUAAC CAGCAAAGUGUUAGACCUCAAAAACUAUAUAGAUAAAC AGUUGUUACCUAUUGUGAACAAGCAAAGCUGCAGCAUA UCAAACAUUGAAACUGUGAUAGAGUUCCAACAAAAGAA CAACAGACUACUAGAGAUUACCAGGGAAUUUAGUGUUA AUGCAGGUGUAACUACACCUGUAAGCACUUAUAUGUUA ACUAAUAGUGAAUUAUUAUCAUUAAUCAAUGAUAUGCC UAUAACAAAUGAUCAGAAAAAGUUAAUGUCCAACAAUG UUCAAAUAGUUAGACAGCAAAGUUACUCUAUCAUGUCC AUAAUAAAGGAGGAAGUCUUAGCAUAUGUAGUACAAU UACCACUAUAUGGUGUAAUAGAUACACCCUGUUGGAAA CUGCACACAUCCCCUCUAUGUACAACCAACACAAAGGA AGGGUCCAACAUCUGCUUAACAAGAACCGACAGAGGAU GGUAUUGUGACAAUGCAGGAUCAGUAUCUUUCUUCCCA CAAGCUGAAACAUGUAAAGUUCAAUCGAAUCGGGUAUU UUGUGACACAAUGAACAGUUUAACAUUACCAAGUGAAG UAAAUCUCUGCAACAUUGACAUAUUCAACCCCAAAUAU GAUUGCAAAAUUAUGACUUCAAAAACAGAUGUAAGCAG CUCCGUUAUCACAUCUCUAGGAGCCAUUGUGUCAUGCU AUGGCAAAACUAAAUGUACAGCAUCCAAUAAAAAUCGU GGGAUCAUAAAGACAUUUUCUAACGGGUGUGAUUAUG UAUCAAAUAAGGGGGUGGAUACUGUGUCUGUAGGUAA UACAUUAUAUUAUGUAAAUAAGCAAGAAGGCAAAAGU CUCUAUGUAAAAGGUGAACCAAUAAUAAAUUUCUAUGA CCCAUUAGUGUUCCCCUCUGAUGAAUUUGAUGCAUCAA UAUCUCAAGUCAAUGAGAAGAUUAACCAGAGCCUAGCA UUUAUUCGUAAAUCCGAUGAAUUAUUACAUAAUGUAA AUGCUGGUAAAUCCACCACAAAUAUCAUGAUAACUACU AUAAUUAUAGUGAUUAUAGUAAUAUUGUUAUCAUUAA UUGCAGUUGGACUGCUCCUAUACUGCAAGGCCAGAAGC ACACCAGUCACACUAAGUAAGGAUCAACUGAGUGGUAU AAAUAAUAUUGCAUUUAGUAACUGA

TABLE 3

TABLE 3				
	hMPV Amino Acid Sequences			
Description	Sequence	SEQ ID NO:		
gi 122891979 gb EF051124.1 Human metapneumovirus isolate TN/92-4 fusion protein gene, complete cds	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGW YTNVFTLEVGDVENLTCSDGPSLIKTELDLTKSALRELKTVS ADQLAREEQIENPRQSRFVLGAIALGVAAAAAVTAGVAIAK TIRLESEVTAINNALKKTNEAVSTLGNGVRVLATAVRELKD FVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRA MVRRKGFGILIGVYGSSVIYMVQLPIFGVIDTPCWIVKAAPS CSEKKGNYACLLREDQGWYCQNAGSTVYYPNEKDCETRG DHVFCDTAAGINVAEQSKECNINISTTNYPCKVSTGRHPISM VALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQF NVALDQVFENIENSQALVDQSNRILSSAEKGNTGFIIVIILIAV LGSSMILVSIFIIIKKTKKPTGAPPELSGVTNNGFIPHN	5		
gb AY525843.1 : 3065-4684 Human metapneumovirus isolate NL/1/99, complete cds	MSWKVMIIISLLITPQHGLKESYLEESCSTITEGYLSVLRTGW YTNVFTLEVGDVENLTCTDGPSLIKTELDLTKSALRELKTVS ADQLAREEQIENPRQSRFVLGAIALGVATAAAVTAGIAIAKT IRLESEVNAIKGALKQTNEAVSTLENGVRVLATAVRELKEF VSKNLTSAINRNKCDIADLKMAVSFSQFNRRFLNVVRQFSD NAGITPAISLDLMTDAELARAVSYMPTSAGQIKLMLENRAM VRRKGFGILIGVYGSSVIYMVQLPIFGVIDTPCWIIKAAPSCS EKNGNYACLLREDQGWYCKNAGSTVYYPNEKDCETRGDH VFCDTAAGINVAEQSRECNINISTTNYPCKVSTGRHPISMVA LSPLGALVACYKGVSCSIGSNWVGIIKQLPKGCSYITNQDAD TVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFNV ALDQVFESIENSQALVDQSNKILNSAEKGNTGFIIVVILVAVL GLTMISVSIIIIIKKTRKPTGAPPELNGVTNGGFIPHS	6		
gb KJ627414.1 : 3015-4634 Human metapneumovirus	MSWKVMIIISLLITPQHGLKESYLEESCSTITEGYLSVLRTGW YTNVFTLEVGDVENLTCTDGPSLIKTELDLTKSALRELKTVS ADQLAREEQIENPRQSRFVLGAIALGVATAAAVTAGIAIAKT	7		

Description	Sequence	SEQ II
strain hMPV/Homo sapiens/PER/CFI0497/ 2010/B, complete cds	IRLESEVNAIKGALKTTNEAVSTLGNGVRVLATAVRELKEF VSKNLTSAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSD NAGITPAISLDLMMDAELARAVSYMPTSAGQIKLMLENRAM VRRKGFGILIGVYGSSVIYMVQLPIFGVINTPCWIIKAAPSCS EKDGNYACLLREDQGWYCKNAGSTVYYPNEKDCETRGDH VFCDTAAGINVAEQSRECNINISTTMYPCKVSTGRHPISMVA LSPLGALVACYKGVSCSTGSNQVGIIKQLPKGCSYITNQDAD TVTIDNTVYQLSKVEGEQHVIKGRPVSSFDPIRFPEDQFNV ALDQVFESIENSQALVDQSNKILNSAEKGNTGFIIVIILIAVLG LTMISVSIIIIIKKTRKPTGAPPELNGVTNGGFIPHS	
gb KJ723483.1 : 5586-7310 Human respiratory syncytial virus strain RSVA/Homo sapiens/USA/84I- 215A-01/1984, complete cds	MELPILKTNAITTILAAVTLCFASSQNITEEFYQSTCSAVSKG YLSALRTGWYTSVITIELSNIKENKCNGTDAKVKLIKQELDK YKNAVTELQLLMQSTPAANNRARRELPRFMNYTLNNTKNT NVTLSKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGEVNKI KSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVN KQSCSISNIETVIEFQQKNNRLLEITREFSVNAGVTTPVSTYM LTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKE EVLAYVVQLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTR TDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLP SEVNLCNIDIFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGK TKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYVN KQEGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSL AFIRKSDELLHNVNAGKSTINIMITTIIVVILLSLIAVGLLL YCKARSTPVTLSKDQLSGINNIAFSN	8

TABLE 4

hMPV NCBI Accession Numbers (Amino Acid Sequences)				
Virus	GenBank Accession			
F [Human metapneumovirus] [Human metapneumovirus]	AEK26895.1			
fusion glycoprotein [Human metapneumovirus]	ACJ53565.1			
fusion glycoprotein [Human metapneumovirus]	ACJ53566.1			
fusion glycoprotein [Human metapneumovirus]	ACJ53569.1			
fusion protein [Human metapneumovirus]	AEZ52347.1			
fusion glycoprotein [Human metapneumovirus]	ACJ53574.1			
fusion glycoprotein [Human metapneumovirus]	AHV79473.1			
fusion glycoprotein [Human metapneumovirus]	ACJ53570.1			
fusion glycoprotein [Human metapneumovirus]	ACJ53567.1			
fusion protein [Human metapneumovirus]	AAS22125.1			
fusion glycoprotein [Human metapneumovirus]	AHV79795.1			
fusion glycoprotein [Human metapneumovirus]	AHV79455.1			
fusion glycoprotein [Human metapneumovirus]	ACJ53568.1			
fusion protein [Human metapneumovirus]	AAS22109.1			
fusion glycoprotein [Human metapneumovirus]	AGU68417.1			
fusion glycoprotein [Human metapneumovirus]	AGJ74228.1			
fusion glycoprotein [Human metapneumovirus]	ACJ53575.1			
fusion protein [Human metapneumovirus]	AAU25820.1			
fusion glycoprotein [Human metapneumovirus]	AGU68377.1			
fusion glycoprotein [Human metapneumovirus]	AGU68371.1			
fusion glycoprotein [Human metapneumovirus]	AGJ74087.1			
fusion glycoprotein [Human metapneumovirus]	ACJ53560.1			
fusion glycoprotein [Human metapneumovirus]	AHV79858.1			
fusion glycoprotein [Human metapneumovirus]	ACJ53577.1			
fusion protein [Human metapneumovirus]	AAS22085.1			
fusion protein [Human metapneumovirus]	AEZ52348.1			
fusion glycoprotein [Human metapneumovirus]	AGJ74044.1			
fusion glycoprotein [Human metapneumovirus]	ACJ53563.1			
fusion glycoprotein precursor [Human metapneumovirus]	YP_012608.1			
fusion glycoprotein [Human metapneumovirus]	AGJ74053.1			
fusion protein [Human metapneumovirus]	BAM37562.1			
fusion glycoprotein [Human metapneumovirus]	ACJ53561.1			
fusion glycoprotein [Human metapneumovirus]	AGU68387.1			
fusion [Human metapneumovirus]	AGL74060.1			
fusion glycoprotein precursor [Human metapneumovirus]	AAV88364.1			
fusion protein [Human metapneumovirus]	AAN52910.1			
fusion protein [Human metapneumovirus]	AAN52915.1			
fusion protein [Human metapneumovirus]	BAM37564.1			
fusion glycoprotein precursor [Human metapneumovirus]	BAH59618.1			
fusion protein [Human metapneumovirus]	AAQ90144.1			

TABLE 4-continued

hMPV NCBI Accession Numbers (Amino Acid Sequences)		
Virus	GenBank Accession	
fusion glycoprotein [Human metapneumovirus]	AHV79446.1	
fusion protein [Human metapneumovirus] fusion glycoprotein [Human metapneumovirus]	AEL87260.1 AHV79867.1	
fusion protein [Human metapneumovirus]	ABQ66027.2	
fusion glycoprotein [Human metapneumovirus]	ACJ53621.1	
fusion protein [Human metapneumovirus]	AAN52911.1	
fusion glycoprotein [Human metapneumovirus] fusion glycoprotein [Human metapneumovirus]	AHV79536.1 AGU68411.1	
fusion protein [Human metapneumovirus]	AEZ52346.1	
fusion protein [Human metapneumovirus]	AAN52913.1	
fusion protein [Human metapneumovirus] fusion glycoprotein [Human metapneumovirus]	AAN52908.1 ACJ53553.1	
fusion glycoprotein [Human metapheumovirus]	AC333333.1 AIY25727.1	
fusion protein [Human metapneumovirus]	ABM67072.1	
fusion protein [Human metapneumovirus]	AEZ52361.1	
fusion protein [Human metapneumovirus] fusion glycoprotein [Human metapneumovirus]	AAS22093.1 AGH27049.1	
fusion protein [Human metapneumovirus]	AAK62968.2	
fusion glycoprotein [Human metapneumovirus]	ACJ53556.1	
fusion glycoprotein [Human metapneumovirus]	ACJ53620.1	
fusion protein [Human metapneumovirus] F [Human metapneumovirus] [Human metapneumovirus]	ABQ58820.1 AEK26886.1	
fusion glycoprotein [Human metapneumovirus]	ACJ53619.1	
fusion glycoprotein [Human metapneumovirus]	ACJ53555.1	
fusion [Human metapneumovirus]	AGL74057.1	
fusion protein [Human metapneumovirus] fusion protein [Human metapneumovirus]	ABD27850.1 AEZ52349.1	
fusion protein [Human metapheumovirus]	ABD27848.1	
fusion protein [Human metapneumovirus]	ABD27846.1	
fusion protein [Human metapneumovirus]	ABQ66021.1	
fusion protein [Human metapneumovirus] fusion protein [Human metapneumovirus]	AFM57710.1 AFM57709.1	
fusion protein [Human metapheumovirus]	ABH05968.1	
fusion protein [Human metapneumovirus]	AEZ52350.1	
fusion protein [Human metapneumovirus]	AFM57712.1	
fusion protein [Human metapneumovirus] fusion protein [Human metapneumovirus]	AEZ52364.1 AAN52912.1	
fusion protein [Human metapheumovirus]	AEZ52363.1	
fusion [Human metapneumovirus]	AGL74059.1	
fusion glycoprotein [Human metapneumovirus]	ACJ53583.1	
fusion protein [Human metapneumovirus] fusion protein [Human metapneumovirus]	AEZ52356.1 AEZ52353.1	
fusion glycoprotein [Human metapneumovirus]	ACJ53581.1	
fusion glycoprotein [Human metapneumovirus]	ACJ53578.1	
fusion protein [Human metapneumovirus] fusion protein [Human metapneumovirus]	AAS22117.1 BAN75965.1	
fusion protein [Human metapneumovirus]	AGF92105.1	
fusion protein [Human metapneumovirus]	AAS22077.1	
fusion protein [Human metapneumovirus]	AAN52909.1	
fusion glycoprotein [Human metapneumovirus] fusion protein [Human metapneumovirus]	ACJ53586.1 AAQ90145.1	
fusion glycoprotein [Human metapneumovirus]	AGT75042.1	
fusion [Human metapneumovirus]	AGL74058.1	
fusion protein [Human metapneumovirus]	AEL87263.1	
fusion glycoprotein [Human metapneumovirus] fusion glycoprotein [Human metapneumovirus]	AGH27057.1 AHV79491.1	
F [Human metapneumovirus] [Human metapneumovirus]	AEK26906.1	
fusion glycoprotein [Human metapneumovirus]	ACJ53580.1	
fusion protein [Human metapneumovirus]	AEZ52354.1	
fusion protein [Human metapneumovirus] G [Human metapneumovirus] [Human metapneumovirus]	AAN52914.1 AEK26901.1	
glycoprotein [Human metapneumovirus]	AFI56738.1	
glycoprotein [Human metapneumovirus]	AFI56739.1	
glycoprotein [Human metapneumovirus] G protein [Human metapneumovirus]	AFI56745.1 AAQ62718.1	
G protein [Human metapneumovirus]	AAQ62718.1 AAQ62719.1	
attachment glycoprotein G [Human metapneumovirus]	AGH27104.1	
G protein [Human metapneumovirus]	AAQ62729.1	
G protein [Human metapneumovirus] glycoprotein [Human metapneumovirus]	AAQ62728.1 AFI56753.1	
glycoprotein [Human metapneumovirus]	AFI56746.1	
glycoprotein [Human metapneumovirus]	AFI56750.1	
glycoprotein [Human metapneumovirus]	AFI56747.1	
G protein [Human metapneumovirus] glycoprotein [Human metapneumovirus]	AAQ62721.1 AAT46573.1	
glycoprotein [Human metapneumovirus]	AFI56748.1	
• • •		

TABLE 4-continued

hMPV NCBI Accession Numbers (Amino Acid Sequences)			
Virus	GenBank Accession		
glycoprotein [Human metapneumovirus]	AFI56736.1		
glycoprotein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus]	AFI56749.1		
attachment glycoprotein G [Human metapneumovirus]	AGH27131.1 AHV79558.1		
glycoprotein [Human metapneumovirus]	AFI56740.1		
glycoprotein [Human metapneumovirus]	AFI56741.1		
glycoprotein [Human metapneumovirus]	AFI56744.1		
attachment glycoprotein G [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus]	AHV79790.1 AGH27122.1		
attachment glycoprotein G [Human metapneumovirus]	AHV79763.1		
attachment glycoprotein G [Human metapneumovirus]	AGZ48849.1		
glycoprotein [Human metapneumovirus]	AFI56743.1		
attachment glycoprotein G [Human metapneumovirus] glycoprotein [Human metapneumovirus]	AHV79450.1 AFI56751.1		
attachment glycoprotein [Human metapneumovirus]	AAS48482.1		
attachment glycoprotein G [Human metapneumovirus]	AHV79889.1		
attachment surface glycoprotein [Human metapneumovirus]	AGW43050.1		
glycoprotein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus]	AFI56754.1 AHV79601.1		
glycoprotein [Human metapneumovirus]	AFI56752.1		
attachment glycoprotein G [Human metapneumovirus]	AHV79871.1		
G protein [Human metapneumovirus]	AEZ68099.1		
attachment glycoprotein G [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus]	AHV79817.1 AHV79943.1		
attachment glycoprotein G [Human metapheumovirus]	BAN75968.1		
attachment surface glycoprotein [Human metapneumovirus]	AGW43045.1		
attachment glycoprotein G [Human metapneumovirus]	AHV79628.1		
attachment glycoprotein [Human metapneumovirus] G protein [Human metapneumovirus]	AFK49783.1 AAQ62723.1		
attachment glycoprotein [Human metapneumovirus]	ABD27839.1		
attachment surface glycoprotein [Human metapneumovirus]	AGW43046.1		
G protein [Human metapneumovirus]	AAQ62717.1		
glycoprotein [Human metapneumovirus]	AFI56742.1 ABQ44522.1		
attachment protein [Human metapneumovirus] glycoprotein [Human metapneumovirus]	AFI56735.1		
attachment surface glycoprotein [Human metapneumovirus]	AGW43065.1		
G protein [Human metapneumovirus]	AAQ62724.1		
attachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus]	AGW43075.1 AGW43062.1		
glycoprotein [Human metapneumovirus]	AAT46579.1		
attachment surface glycoprotein [Human metapneumovirus]	AGW43064.1		
attachment surface glycoprotein [Human metapneumovirus]	AGW43054.1		
attachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus]	AGW43042.1 AGW43078.1		
attachment surface glycoprotein [Human metapneumovirus]	AGW43078.1 AGW43067.1		
G protein [Human metapneumovirus]	AAQ62722.1		
attachment surface glycoprotein [Human metapneumovirus]	AGW43063.1		
glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus]	AAT46571.1 AAT46578.1		
attachment glycoprotein G [Human metapneumovirus]	AGJ74232.1		
glycoprotein [Human metapneumovirus]	AAT46580.1		
glycoprotein [Human metapneumovirus]	AAT46574.1		
attachment surface glycoprotein [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus]	AGW43061.1 AFK49791.1		
attachment surface glycoprotein [Human metapneumovirus]	AGW43047.1		
glycoprotein [Human metapneumovirus]	ABC26386.1		
attachment glycoprotein [Human metapneumovirus]	AAS48466.1		
attachment surface glycoprotein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus]	AGW43048.1 AGH27140.1		
attachment surface glycoprotein [Human metapneumovirus]	AGW43049.1		
attachment glycoprotein G [Human metapneumovirus]	AGJ74082.1		
attachment glycoprotein G [Human metapneumovirus]	AHV79442.1		
attachment glycoprotein G [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus]	AGJ74091.1 AHV79477.1		
attachment surface glycoprotein [Human metapneumovirus]	AGW43056.1		
attachment protein [Human metapneumovirus]	ABQ44523.1		
attachment glycoprotein G [Human metapneumovirus]	BAH59622.1		
attachment surface glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus]	AGW43070.1 AAT46585.1		
attachment glycoprotein G [Human metapneumovirus]	AGU68409.1		
attachment glycoprotein G [Human metapneumovirus]	AGJ74223.1		
attachment glycoprotein [Human metapneumovirus]	AAS22129.1		
attachment glycoprotein G [Human metapneumovirus] G protein [Human metapneumovirus]	AGJ74048.1		
glycoprotein [Human metapneumovirus]	AAQ62725.1 ABC26384.1		
attachment protein [Human metapneumovirus]	ABQ44525.1		
• • •	•		

TABLE 4-continued

hMPV NCBI Accession Numbers (Amino Acid Sequences)		
Virus	GenBank Accession	
attachment glycoprotein G [Human metapneumovirus]	YP_012612.1	
attachment surface glycoprotein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus]	AGW43071.1 AGJ74162.1	
attachment glycoprotein G [Human metapheumovirus]	AGH27095.1	
attachment glycoprotein G [Human metapneumovirus]	AHV79531.1	
G protein [Human metapneumovirus]	AAQ62726.1	
attachment glycoprotein [Human metapneumovirus]	AAS48465.1	
attachment surface glycoprotein [Human metapneumovirus] P [Human metapneumovirus] [Human metapneumovirus]	AGW43058.1 AEK26894.1	
phosphoprotein [Human metapneumovirus]	AHV79631.1	
phosphoprotein [Human metapneumovirus]	AHV79901.1	
phosphoprotein [Human metapneumovirus]	AHV79570.1	
phosphoprotein [Human metapneumovirus] phosphoprotein [Human metapneumovirus]	AGJ74076.1 AAS22123.1	
phosphoprotein [Human metapheumovirus]	ABB16895.1	
phosphoprotein [Human metapneumovirus]	AHV79579.1	
phosphoprotein [Human metapneumovirus]	AGJ74244.1	
phosphoprotein [Human metapneumovirus]	AHV79856.1	
phosphoprotein [Human metapneumovirus] phosphoprotein [Human metapneumovirus]	ACJ70113.1 AGZ48843.1	
phosphoprotein [Human metapheumovirus]	AHV79498.1	
phosphoprotein [Human metapneumovirus]	AHV79480.1	
phosphoprotein [Human metapneumovirus]	ABQ43382.1	
phosphoprotein [Human metapneumovirus]	AAS22107.1	
phosphoprotein [Human metapneumovirus] phosphoprotein [Human metapneumovirus]	ABB16898.1 AGH27134.1	
phosphoprotein [Human metapheumovirus]	ABB16899.1	
phosphoprotein [Human metapneumovirus]	AGH27098.1	
phosphoprotein [Human metapneumovirus]	AAN52866.1	
phosphoprotein [Human metapneumovirus]	AAS22083.1	
phosphoprotein [Human metapneumovirus] phosphoprotein [Human metapneumovirus]	YP_012606.1 AHV79973.1	
phosphoprotein [Human metapneumovirus]	AHV79462.1	
phosphoprotein [Human metapneumovirus]	AGJ74042.1	
phosphoprotein [Human metapneumovirus]	AAV88362.1	
P [Human metapneumovirus] [Human metapneumovirus]	AIL23591.1	
phosphoprotein [Human metapneumovirus] phosphoprotein [Human metapneumovirus]	AHV79453.1 AGJ74261.1	
phosphoprotein [Human metapneumovirus]	AGH27116.1	
phosphoprotein [Human metapneumovirus]	ABB16444.1	
phosphoprotein [Human metapneumovirus]	ABB16445.1	
phosphoprotein [Human metapneumovirus] phosphoprotein [Human metapneumovirus]	AHV79507.1 BAH59616.1	
phosphoprotein [Human metapneumovirus]	ABB16443.1	
phosphoprotein [Human metapneumovirus]	ABQ43388.1	
phosphoprotein [Human metapneumovirus]	ABQ43389.1	
phosphoprotein [Human metapneumovirus]	ABQ43395.1	
phosphoprotein [Human metapneumovirus] phosphoprotein [Human metapneumovirus]	ABQ43385.1 AAP84042.1	
phosphoprotein [Human metapneumovirus]	AAN52868.1	
phosphoprotein [Human metapneumovirus]	AAP84041.1	
phosphoprotein [Human metapneumovirus]	AGH27080.1	
phosphoprotein [Human metapneumovirus]	ABQ43387.1	
phosphoprotein [Human metapneumovirus] phosphoprotein [Human metapneumovirus]	AAS22099.1 ABB16896.1	
phosphoprotein [Human metapneumovirus]	AGJ74094.1	
phosphoprotein [Human metapneumovirus]	AEZ68089.1	
phosphoprotein [Human metapneumovirus]	ABK97002.1	
phosphoprotein [Human metapneumovirus]	AAP13486.1 AHV79444.1	
phosphoprotein [Human metapneumovirus] phosphoprotein [Human metapneumovirus]	AHV79865.1	
phosphoprotein [Human metapneumovirus]	AGJ74226.1	
phosphoprotein [Human metapneumovirus]	ABQ43383.1	
phosphoprotein [Human metapneumovirus]	AAN52863.1	
phosphoprotein [Human metapneumovirus]	AHV79775.1 AEZ68094.1	
phosphoprotein [Human metapneumovirus] phosphoprotein [Human metapneumovirus]	AEZ68094.1 AHV79883.1	
phosphoprotein [Human metapheumovirus]	AEZ68092.1	
phosphoprotein [Human metapneumovirus]	ABQ43390.1	
phosphoprotein [Human metapneumovirus]	ABQ43386.1	
phosphoprotein [Human metapneumovirus]	ABQ43391.1 ACS16062.1	
phosphoprotein [Human metapneumovirus] phosphoprotein [Human metapneumovirus]	ACS16062.1 AEZ68090.1	
phosphoprotein [Human metapneumovirus]	AAK62967.1	
phosphoprotein [Human metapneumovirus]	AEZ68093.1	
phosphoprotein [Human metapneumovirus]	AEZ68088.1	

TABLE 4-continued

TABLE 4-continued		
hMPV NCBI Accession Numbers (Amino Acid Sequences)		
Virus	GenBank Accession	
phosphoprotein [Human metapneumovirus]	ABQ43392.1	
phosphoprotein [Human metapneumovirus]	ABQ43393.1	
phosphoprotein [Human metapneumovirus]	ABQ43384.1	
phosphoprotein [Human metapneumovirus]	ABQ43394.1	
phosphoprotein [Human metapneumovirus]	ABK96999.1	
phosphoprotein [Human metapneumovirus]	AHV79489.1	
phosphoprotein [Human metapneumovirus] phosphoprotein [Human metapneumovirus]	AGJ74235.1 AAS22075.1	
phosphoprotein [Human metapneumovirus]	AAS22075.1 AAS22115.1	
phosphoprotein [Human metapneumovirus]	AII17601.1	
phosphoprotein [Human metapneumovirus]	ABK97000.1	
phosphoprotein [Human metapneumovirus]	AHV79561.1	
phosphoprotein [Human metapneumovirus]	AGT75040.1	
phosphoprotein [Human metapneumovirus]	AAN52864.1	
phosphoprotein [Human metapneumovirus]	ABK97001.1	
phosphoprotein [Human metapneumovirus]	AGT74979.1 AHV79955.1	
phosphoprotein [Human metapneumovirus] phosphoprotein [Human metapneumovirus]	AGH27055.1	
phosphoprotein [Human metapneumovirus]	AAV88361.1	
phosphoprotein [Human metapneumovirus]	ABQ43397.1	
phosphoprotein [Human metapneumovirus]	AGJ74173.1	
P [Human metapneumovirus] [Human metapneumovirus]	AEK26904.1	
phosphoprotein [Human metapneumovirus]	ACJ70104.1	
phosphoprotein [Human metapneumovirus]	ABK97003.1	
phosphoprotein [Human metapneumovirus]	AGT74955.1	
phosphoprotein [Human metapneumovirus] phosphoprotein [Human metapneumovirus]	AAN52856.1 AAN52862.1	
phosphoprotein [Human metapneumovirus]	AGJ74138.1	
phosphoprotein [Human metapneumovirus]	AHV79613.1	
phosphoprotein [Human metapneumovirus]	AGJ74060.1	
phosphoprotein [Human metapneumovirus]	AAQ67684.1	
phosphoprotein [Human metapneumovirus]	AEA02278.1	
N [Human metapneumovirus] [Human metapneumovirus]	AEK26899.1 ACS16061.1	
nucleoprotein [Human metapneumovirus] nucleoprotein [Human metapneumovirus]	ACS16061.1 AAS88425.1	
nucleoprotein [Human metapneumovirus]	YP_012605.1	
nucleoprotein [Human metapneumovirus]	AHV79882.1	
nucleoprotein [Human metapneumovirus]	AHV79774.1	
nucleocapsid protein [Human metapneumovirus]	AAN52886.1	
nucleoprotein [Human metapneumovirus]	AAS22082.1 AHV79864.1	
nucleoprotein [Human metapneumovirus] nucleoprotein [Human metapneumovirus]	AHV79828.1	
nucleoprotein [Human metapneumovirus]	AGJ74084.1	
nucleocapsid protein [Human metapneumovirus]	AAN52888.1	
N [Human metapneumovirus] [Human metapneumovirus]	AIL23590.1	
nucleoprotein [Human metapneumovirus]	AAK62966.1	
nucleoprotein [Human metapneumovirus] nucleoprotein [Human metapneumovirus]	AHV79972.1	
nucleoprotein [Human metapneumovirus]	AHV79470.1 AHV79452.1	
nucleoprotein [Human metapneumovirus]	AGJ74243.1	
nucleoprotein [Human metapneumovirus]	AHV79533.1	
nucleoprotein [Human metapneumovirus]	AGJ74181.1	
nucleoprotein [Human metapneumovirus]	AHV79497.1	
nucleoprotein [Human metapneumovirus] nucleoprotein [Human metapneumovirus]	AHV79702.1	
nucleoprotein [Human metapneumovirus]	AHV79648.1 AHV79435.1	
putative nucleoprotein [Human metapneumovirus]	AGJ74260.1	
nucleocapsid protein [Human metapneumovirus]	AAN52887.1	
nucleoprotein [Human metapneumovirus]	AGU68386.1	
nucleocapsid protein [Human metapneumovirus]	AAN52899.1	
nucleoprotein [Human metapneumovirus]	AAR17673.1	
nucleocapsid protein [Human metapneumovirus] nucleoprotein [Human metapneumovirus]	AAN52898.1 AEA02277.1	
nucleoprotein [Human metapneumovirus]	AHV79612.1	
nucleoprotein [Human metapneumovirus]	AGU68416.1	
nucleoprotein [Human metapneumovirus]	AGU68408.1	
nucleoprotein [Human metapneumovirus]	AGU68370.1	
nucleoprotein [Human metapneumovirus]	AAQ67683.1	
nucleoprotein [Human metapneumovirus] nucleoprotein [Human metapneumovirus]	AGJ74137.1 AGU68344.1	
nucleocapsid protein [Human metapneumovirus]	ABK96997.1	
nucleoprotein [Human metapneumovirus]	AGU68413.1	
nucleocapsid protein [Human metapneumovirus]	AAN52891.1	
nucleoprotein [Human metapneumovirus]	AGU68360.1	
nucleoprotein [Human metapneumovirus]	AGU68353.1	
nucleocapsid protein [Human metapneumovirus]	ABK96996.1	

237

TABLE 4-continued

hMPV NCBI Accession Numbers (Amino Acid Sequences)		
Virus	GenBank Accession	
nucleoprotein [Human metapneumovirus]	AAR17666.1	
N [Human metapneumovirus] [Human metapneumovirus]	AEK26903.1	
nucleoprotein [Human metapneumovirus]	AGT75039.1	
nucleoprotein [Human metapneumovirus]	AGU68410.1	
nucleoprotein [Human metapneumovirus]	AAS22074.1	
nucleoprotein [Human metapneumovirus]	AHV79560.1	
nucleoprotein [Human metapneumovirus]	AGT74978.1	
nucleoprotein [Human metapneumovirus]	AGJ74128.1	
nucleoprotein [Human metapneumovirus]	AAR17663.1	
nucleoprotein [Human metapneumovirus]	AAR17662.1	
nucleoprotein [Human metapneumovirus]	AAR17664.1	
nucleoprotein [Human metapneumovirus]	AAR17657.1	
nucleoprotein [Human metapneumovirus]	AAR17659.1	
nucleoprotein [Human metapneumovirus]	AAR17661.1	
nucleoprotein [Human metapneumovirus]	AGU68352.1	
nucleoprotein [Human metapneumovirus]	AGU68373.1	
nucleoprotein [Human metapneumovirus]	AGU68376.1	
nucleoprotein [Human metapneumovirus]	AGU68342.1	
nucleoprotein [Human metapneumovirus]	AGU68365.1	
nucleoprotein [Human metapneumovirus]	AGU68363.1	
nucleoprotein [Human metapneumovirus]	AGU68398.1	
nucleoprotein [Human metapneumovirus]	AGU68348.1	
nucleoprotein [Human metapneumovirus]	AGU68354.1	
nucleoprotein [Human metapneumovirus]	AGU68391.1	
nucleoprotein [Human metapneumovirus]	AGU68389.1	
nucleoprotein [Human metapneumovirus]	AGU68399.1	
nucleoprotein [Human metapneumovirus]	AGU68337.1	
nucleoprotein [Human metapneumovirus]	AAR17660.1	
nucleoprotein [Human metapneumovirus]	AAR17667.1	
nucleoprotein [Human metapneumovirus]	AGU68402.1	
nucleoprotein [Avian metapneumovirus type C]	CDN30025.1	
nucleoprotein [Avian metapneumovirus]	AGZ87947.1	
Nucleoprotein [Avian metapneumovirus type C]	CAL25113.1	
nucleocapsid protein [Avian metapneumovirus]	ABO42286.1	
nucleocapsid protein [Avian metapneumovirus]	AAK38430.1	
nucleocapsid protein [Avian metapneumovirus]	AAK54155.1	
nucleocapsid protein [Avian metapneumovirus]	AAK38426.1	
nucleocapsid protein [Avian metapneumovirus]	AAK38425.1	
nucleocapsid protein [Avian metapneumovirus]	AAK38424.1	
nucleocapsid protein [Avian metapneumovirus]	AAF05909.1	
nucleocapsid protein [Avian metapneumovirus]	AAK38435.1	
nucleocapsid protein [Avian metapneumovirus]	AAK38428.1	
nucleoprotein [Human metapneumovirus]	AAR17669.1	
nucleocapsid protein [Avian metapneumovirus]	AAK38429.1	
nucleocapsid protein [Avian metapneumovirus]	AAK38427.1	
nucleocapsid protein [Avian metapneumovirus]	AAK38423.1	
nucleocapsid protein [Avian metapneumovirus]	AAK38434.1	
nucleoprotein [Human metapneumovirus]	AGU68338.1	
nucleoprotein [Avian metapneumovirus]	YP_443837.1	
nucleoprotein [Human metapneumovirus]	AGU68384.1	
nucleocapsid protein [Avian metapneumovirus]	AAK38431.1	
nucleoprotein [Human metapneumovirus]	AGU68405.1	
nucleoprotein [Human metapneumovirus]	AGU68382.1	
nucleoprotein [Human metapneumovirus]	AGU68395.1	
nucleocapsid [Human metapneumovirus]	AAL35389.3	
nucleoprotein [Human metapneumovirus]	AEZ68064.1	
1 f		

TABLE 5

PIV3 Nucleic Acid Sequences		
Description	Sequence	SEQ II NO:
>gb KJ672601.1 : 4990-6609 Human parainfluenza virus 3 strain HPIV3/Homo sapiens/PER/FLA4815/ 2008[fusion glycoprotein F0]	ATGCCAATTTCAATACTGTTAATTATTACAACCATGATC ATGCCATCACACTGCCAAATAGACATCACAAAACTACA GCATGTAGGTGTATTGGTCAACAGTCCCAAAGGGATGA AGATATCACAAAACTTCGAAACAAGATATCTAATCCTGA GTCTCATACCAAAAATAGAAGATTCTAACTCTTGTGGTG ACCAACAGATCAAGCAATACAAGAGGTTATTGGATAAA CTGATCATTCCTTATATGATGGACTAAGATTACAGAAG GATGTGATAGTGACTAATCAAGAATCCAATGAAAACAC TGATCCCAGAACAGAA	9

PIV3 Nucleic Acid Sequences SEQ ID Sequence NO:

AACTATTGCTCTAGGAGTAGCAACCTCAGCACAAATTAC AGCAGCAGTTGCTCTGGTTGAAGCCAAGCAGCAAGAT CAGACATTGAAAAACTCAAGGAAGCAATCAGGGACACA AATAAAGCAGTGCAGTCAGTTCAGAGCTCTGTAGGAAA TTTGATAGTAGCAATTAAATCAGTCCAGGATTATGTCAA CAAAGAAATCGTGCCATCGATTGCGAGACTAGGTTGTG AAGCAGCAGGACTTCAGTTAGGGATTGCATTAACACAG CATTACTCAGAATTAACAAATATATTTGGTGATAACATA GGATCGTTACAAGAAAAAGGAATAAAATTACAAGGTAT AGCATCATTATACCGTACAAATATCACAGAAATATTCAC AACATCAACAGTTGACAAATATGATATTTATGATCTATT ATTTACAGAATCAATAAAGGTGAGAGTTATAGATGTTGA TTTGAATGATTACTCAATAACCCTCCAAGTCAGACTCCC TTTATTGACCAGACTGCTGAACACTCAAATCTACAAAGT AGATTCCATATCATACAATATCCAAAATAGAGAATGGTA TATCCCTCTTCCCAGCCATATCATGACGAAAGGGGCATT TCTAGGTGGAGCAGATGTCAAAGAATGCATAGAAGCAT TCAGCAGTTATATATGCCCTTCTGATCCAGGATTTGTACT AAACCATGAAATGGAGAGCTGTCTATCAGGAAACATAT CCCAATGTCCAAGAACCACAGTCACATCAGACATAGTTC CTAGGTATGCATTTGTCAATGGAGGAGTGGTTGCGAATT GTATAACAACTACATGTACATGCAATGGTATCGGTAATA GAATCAACCAACCACCTGATCAAGGAGTCAAAATTATA ACACATAAAGAATGTAATACAATAGGTATCAACGGAAT GCTATTCAACACAAACAAAGAAGGAACTCTTGCATTCTA CACACCAGACGACATAACATTAAACAATTCTGTTGCACT TGATCCGATTGACATATCAATCGAGCTCAACAAGGCCAA ATCAGATCTTGAGGAATCAAAAGAATGGATAAGAAGGT CAAATCAAAAGCTAGATTCTATTGGAAGTTGGCATCAAT CTAGCACTACAATCATAGTTATTTTGATAATGATGATTA TATTGTTTATAATTAATATAACAATAATTACAATTGCAA TTAAGTATTACAGAATTCAAAAGAGAAATCGAGTGGAT CAAAATGATAAGCCGTATGTATTAACAAACAAG

ATGGAATACTGGAAGCACCACCACCACGGAAAGGATGC

gi|612507167|gb|AHX22430.1| hemagglutininneuraminidase [Human parainfluenza virus 3|

Description

TGGTAATGAGCTGGAGACATCCACAGCCACTCATGGCA ACAAGCTCACCAACAAGATAACATATATATTGTGGACG ATAACCCTGGTGTTATTATCAATAGTCTTCATCATAGTG CTAACTAATTCCATCAAAAGTGAAAAGGCCCGCGAATC ATTGCTACAAGACATAAATAATGAGTTTATGGAAGTTAC AGAAAAGATCCAAGTGGCATCGGATAATACTAATGATC TAATACAGTCAGGAGTGAATACAAGGCTTCTTACAATTC AGAGTCATGTCCAGAATTATATACCAATATCATTGACAC AACAAATATCGGATCTTAGGAAATTCATTAGTGAAATTA CAATTAGAAATGATAATCAAGAAGTGCCACCACAAAGA ATAACACATGATGTGGGTATAAAACCTTTAAATCCAGAT GATTTCTGGAGATGCACGTCTGGTCTTCCATCTTTGATG AAAACTCCAAAAATAAGATTAATGCCGGGACCAGGATT ATTAGCTATGCCAACGACTGTTGATGGCTGTGTCAGAAC CCCGTCCTTAGTGATAAATGATCTGATTTATGCTTACAC CTCAAATCTAATTACTCGAGGTTGCCAGGATATAGGGAA ATCATATCAAGTATTACAGATAGGGATAATAACTGTAAA CTCAGACTTGGTACCTGACTTAAATCCTAGGATCTCTCA TACCTTCAACATAAATGACAATAGAAAGTCATGTTCTCT AGCACTCCTAAATACAGATGTATATCAACTGTGTTCAAC CCCAAAAGTTGATGAAAGATCAGATTATGCATCATCAG GCATAGAAGATATTGTACTTGATATTGTCAATTATGATG GCTCAATCTCGACAACAAGATTTAAGAATAATATAA GTTTTGATCAACCATATGCGGCATTATACCCATCTGTTG GACCAGGGATATACTACAAAGGCAAAATAATATTTCTC GGGTATGGAGGTCTTGAACATCCAATAAATGAGAATGC AATCTGCAACACAACTGGGTGTCCTGGGAAAACACAGA GAGACTGTAATCAAGCATCTCATAGTCCATGGTTTTCAG ATAGAAGGATGGTCAACTCTATAATTGTTGTTGACAAGG GCTTGAACTCAGTTCCAAAATTGAAGGTATGGACGATAT CTATGAGACAAAATTACTGGGGGTCAGAAGGAAGATTA CTTCTACTAGGTAACAAGATCTACATATACACAAGATCT ACAAGTTGGCACAGCAAGTTACAATTAGGAATAATTGA CATTACTGACTACAGTGATATAAGGATAAAATGGACAT GGCATAATGTGCTATCAAGACCAGGAAACAATGAATGT CCATGGGGACATTCATGTCCGGATGGATGTATAACGGG AGTATATACCGATGCATATCCACTCAATCCCACAGGAAG CATTGTATCATCTGTCATATTGGACTCACAAAAATCGAG AGTCAACCCAGTCATAACTTACTCAACAGCAACCGAAA GGGTAAACGAGCTGGCTATCCGAAACAAAACACTCTCA

TABLE 5-continued			
PIV3 Nucleic Acid Sequences			
Description	Sequence	SEQ ID NO:	
	GCTGGGTACACAACAAGCTGCATTACACACTATAA CAAAGGGTATTGTTTTCATATAGTAGAAATAAATCATAA AAGCTTAAACACATTTCAACCCATGTTGTTCAAAACAGA GATTCCAAAAAGCTGCAGT		
HPIV3_HN_Codon Optimized	ATGAATACTGGAAGCACCACCACGGCAAGGACGC CGGCAACGACTGGAAACCAGCACACACGGCA ACAAGCTGACCAACAGGAAACCAGCACACACGGCA ACAAGCTGACCAACAGGAACCAGCCACACACGGCA ACAAGCTGACCAACAGAACCAGATTCATCTGTGGACC ATCACCCTGGTGCTGCTGAGCATCGTGTTCATCATCGTG CTGACCAATAGCATCAAGAGCGAGAGGCCAGAGAGG CCTGCTGCAGGACATCACACAACGAGTTCATGGAAG CCGAGAAGATCCAGGTGGCCAGCGACAACACCAACGAC CTGATCCAGAGCGGCGTGAACACCCGGCTGACCAC CAGAGCCACGTGCAGAACTCCCCATCAGCCTGACC CAGAGCCACGTGCAGAACTCCCCATCAGCCTGACC CAGCAGATCACGGACCTCCGGAACTTCATCAGCGAGAT CACCATCCGGAACGACCACGGAACTTCATCAGCGAGAT CACCATCCGGAACGACACACAGGAAGTGCCCCCAGA GAATCACCCACGACGTGGGCATCAAGCCCCTGAACCCC GACGATTTCTGGCGGTGTACAAGCGGCTGCCCAGCA ACTGCTGGCCATGCTACACACGAGAGTGCCCCTGGACCCTG ACTGATGCCAACGATCCCCAGCAGTGGATGCCTGCCAGCA GACGCCCCAAGATCCGGCTTGATCACCCAGGAATTCG GCACGACCCCAAGATCCCCAGGGACTCGACCATCACCC GTGAACTCCCACAGTGGATCAGCCTGCCAGATCACCC GTGAACTCCCACAGTGGTTCCACACAGTGGATCATCACC GTGAACTCCCACCTGGTACCCCGGGCCTGCCAGCTTA CACCACCAACCTGATCACCCGGGGCTGCCCAGATATCG GCACAGCCTCGTGATCAACGACTGAACCCCTGGATC AGCCACCCTTCAACATCAACGACAACAGAAAGAGCTG CAGCCCCCAAGGTGGTGCCCGACCTGAACCCCTCGGATC AGCACCCCCAAGGTGGACCACCACACCA	11	
HPIV3_F_Codon Optimized	ATGCCCATCAGCATCCTGCTGATCATCACCACAATGATC ATGGCCAGCCACTGCCAGATCGACATCACCAAGCTGCA GCACGTGGGCGTGCTCGTGAACAGCCCCAAGGCATGA AGATCAGCCAGAACTTCGAGACACCCCAAGGCATGA AGATCAGCCAGAACTTCGAGACACCGCTACCTGATCCTGA GCCTGATCCCCAAGATCGAGACACAGCACCACGCGACAG ACTGATCATCACCCTGTACGAGACACAGCGCTGCTGGACAG ACTGATCATCCCCCTGTACGACGACCTGCGCGCTGCAGAA AGACGTGATCGTGACCAACCAGGAAAGCACCAGAACA CCGACCCCCGGACCGAGAGATTCTTCGGCGGCTGCAGATT ACAGCCGCTGTGGCCCTGTGGAAGCCACAAGCGCCCAGATT ACAGCCGCTGTGGCCCTTGTAGAAGCCACCAGGCCAGACCACAGCCCCAGATT ACAGCCGCTGTGGCCCTTGTAGAACCAAGCCCCCAGATT ACAGCCGCTGTGGCCCTTGAAGAGCCACACCAGGCCAGACA CCAACAAGGCCGTGCAGAGCGTCCAGCTGGGC AATCTGATCGTGCAGACACTCCAGCGTGGGC AATCTGATCGTGCCATCAAGTCCCTGCAGACTACGTG GAAGCTGCCGGACTGCCGCTGTGCAGACTACCGTG GAAGCTGCCGGACTGACCAACATCTTCGGCGACAACA TCGGCAGCCTGCAGGAAAAAGGGCATTAAGCTGCAGGAA ATCGCCAGCCTGTACCACAACATCACCGAGATCTTC ACCACCAGCACGTGGAAAAAGTGCGCTGATCACCT GCTGTTCACCGAAGACTACACCAACATCACCGAGATCTTC ACCACCAGCACGTGGATAAGTACGACATCTCACACCT GCTGTTCACCGAAGCATCACCGAAGTCTTC ACCACCAGCACTGTGAACACATCACCGAAGATCTTC ACCACCAGCACTACACGAACATCACCGACATCACCGACGT GGACCTGAACGACTACAAGTGCGCTGATCGACCT GCTGTTCACCGAAGACTACACCAACATCACCGAAGATCTTC ACCACCAGCACCTGGAGAACATCACCCAAGATCTTC ACCACCAGCACCTGAACACATCACCCAAGATCTTC ACCACCAGCACACACACACCACAC	12	

AGGTGGACAGCATCTCCTACAACATCCAGAACCGCGAG

PIV3 Nucleic Acid Sequences SEO ID Sequence NO:

TGGTACATCCCTCTGCCCAGCCACATTATGACCAAGGGC GCCTTTCTGGGCGGAGCCGACGTGAAAGAGTGCATCGA GGCCTTCAGCAGCTACATCTGCCCCAGCGACCCTGGCTT CGTGCTGAACCACGAGATGGAAAGCTGCCTGAGCGGCA ACATCAGCCAGTGCCCCAGAACCACCGTGACCTCCGAC ATCGTGCCCAGATACGCCTTCGTGAATGGCGGCGTGGTG GCCAACTGCATCACCACCACCTGTACCTGCAACGGCATC GGCAACCGGATCAACCAGCCTCCCGATCAGGGCGTGAA GATTATCACCCACAAAGAGTGTAACACCATCGGCATCA ACGGCATGCTGTTCAATACCAACAAAGAGGGCACCCTG GCCTTCTACACCCCGACGATATCACCCTGAACAACTCC GTGGCTCTGGACCCCATCGACATCTCCATCGAGCTGAAC AAGGCCAAGAGCGACCTGGAAGAGTCCAAAGAGTGGAT CCGGCGGAGCAACCAGAAGCTGGACTCTATCGGCAGCT GGCACCAGAGCACCACCATCATCGTGATCCTGATTA TGATGATTATCCTGTTCATCATCAACATTACCATCATCAC TATCGCCATTAAGTACTACCGGATCCAGAAACGGAACC GGGTGGACCAGAATGACAAGCCCTACGTGCTGACAAAC

AUGCCAAUUUCAAUACUGUUAAUUAUUACAACCAUGA

PIV3 mRNA Sequences

>gb | KJ672601.1 |: 4990-6609 Human parainfluenza virus 3 strain HPIV3/Homo sapiens/PER/FLA4815/ 2008[fusion glycoprotein F0]

Description

UCAUGGCAUCACACUGCCAAAUAGACAUCACAAAACU ACAGCAUGUAGGUGUAUUGGUCAACAGUCCCAAAGGG AUGAAGAUAUCACAAAACUUCGAAACAAGAUAUCUAA UCCUGAGUCUCAUACCAAAAAUAGAAGAUUCUAACUC UUGUGGUGACCAACAGAUCAAGCAAUACAAGAGGUUA UUGGAUAGACUGAUCAUUCCUUUAUAUGAUGGACUAA GAUUACAGAAGGAUGUGAUAGUGACUAAUCAAGAAUC CAAUGAAAACACUGAUCCCAGAACAGAACGAUUCUUU GGAGGGGUAAUUGGAACUAUUGCUCUAGGAGUAGCAA CCUCAGCACAAAUUACAGCAGCAGUUGCUCUGGUUGA AGCCAAGCAGGCAAGAUCAGACAUUGAAAAACUCAAG GAAGCAAUCAGGGACACAAAUAAAGCAGUGCAGUCAG UUCAGAGCUCUGUAGGAAAUUUGAUAGUAGCAAUUAA AUCAGUCCAGGAUUAUGUCAACAAAGAAAUCGUGCCA UCGAUUGCGAGACUAGGUUGUGAAGCAGCAGGACUUC AGUUAGGGAUUGCAUUAACACAGCAUUACUCAGAAUU AACAAAUAUAUUUGGUGAUAACAUAGGAUCGUUACAA GAAAAAGGAAUAAAAUUACAAGGUAUAGCAUCAUUAU ACCGUACAAAUAUCACAGAAAUAUUCACAACAUCAAC AGUUGACAAAUAUGAUAUUUAUGAUCUAUUAUUUACA GAAUCAAUAAAGGUGAGAGUUAUAGAUGUUGAUUUGA AUGAUUACUCAAUAACCCUCCAAGUCAGACUCCCUUU AUUGACCAGACUGCUGAACACUCAAAUCUACAAAGUA GAUUCCAUAUCAUACAAUAUCCAAAAUAGAGAAUGGU AUAUCCCUCUUCCCAGCCAUAUCAUGACGAAAGGGGC AUUUCUAGGUGGAGCAGAUGUCAAAGAAUGCAUAGAA GCAUUCAGCAGUUAUAUAUGCCCUUCUGAUCCAGGAU UUGUACUAAACCAUGAAAUGGAGAGCUGUCUAUCAGG AAACAUAUCCCAAUGUCCAAGAACCACAGUCACAUCA GACAUAGUUCCUAGGUAUGCAUUUGUCAAUGGAGGAG UGGUUGCGAAUUGUAUAACAACUACAUGUACAUGCAA UGGUAUCGGUAAUAGAAUCAACCAACCACCUGAUCAA GGAGUCAAAAUUAUAACACAUAAAGAAUGUAAUACAA UAGGUAUCAACGGAAUGCUAUUCAACACAAACAAAGA AGGAACUCUUGCAUUCUACACACCAGACGACAUAACA UUAAACAAUUCUGUUGCACUUGAUCCGAUUGACAUAU CAAUCGAGCUCAACAAGGCCAAAUCAGAUCUUGAGGA AUCAAAAGAAUGGAUAAGAAGGUCAAAUCAAAAGCUA GAUUCUAUUGGAAGUUGGCAUCAAUCUAGCACUACAA UCAUAGUUAUUUUGAUAAUGAUGAUUAUAUUGUUUAU AAUUAAUAUAACAAUAAUUACAAUUGCAAUUAAGUAU UACAGAAUUCAAAAGAGAAAUCGAGUGGAUCAAAAUG AUAAGCCGUAUGUAUUAACAAACAAG

hemagglutininneuraminidase [Human parainfluenza virus

gi|612507167|gb|AHX22430.1| AUGGAAUACUGGAAGCACCACCACCACCACGGAAAGGAUG CUGGUAAUGAGCUGGAGACAUCCACAGCCACUCAUGG CAACAAGCUCACCAACAAGAUAACAUAUAUAUUGUGG ACGAUAACCCUGGUGUUAUUAUCAAUAGUCUUCAUCA UAGUGCUAACUAAUUCCAUCAAAAGUGAAAAGGCCCG CGAAUCAUUGCUACAAGACAUAAAUAAUGAGUUUAUG GAAGUUACAGAAAAGAUCCAAGUGGCAUCGGAUAAUA CUAAUGAUCUAAUACAGUCAGGAGUGAAUACAAGGCU 61

PIV3 Nucleic Acid Sequences

Description Sequence

SEQ ID

UCUUACAAUUCAGAGUCAUGUCCAGAAUUAUAUACCA AUAUCAUUGACACAACAAAUAUCGGAUCUUAGGAAAU UCAUUAGUGAAAUUACAAUUAGAAAUGAUAAUCAAGA AGUGCCACCACAAAGAAUAACACAUGAUGUGGGUAUA AAACCUUUAAAUCCAGAUGAUUUCUGGAGAUGCACGU CUGGUCUUCCAUCUUUGAUGAAAACUCCAAAAAUAAG AUUAAUGCCGGGACCAGGAUUAUUAGCUAUGCCAACG ACUGUUGAUGGCUGUGUCAGAACCCCGUCCUUAGUGA UAAAUGAUCUGAUUUAUGCUUACACCUCAAAUCUAAU UACUCGAGGUUGCCAGGAUAUAGGGAAAUCAUAUCAA GUAUUACAGAUAGGGAUAAUAACUGUAAACUCAGACU UGGUACCUGACUUAAAUCCUAGGAUCUCUCAUACCUU CAACAUAAAUGACAAUAGAAAGUCAUGUUCUCUAGCA CUCCUAAAUACAGAUGUAUAUCAACUGUGUUCAACCC CAAAAGUUGAUGAAAGAUCAGAUUAUGCAUCAUCAGG CAUAGAAGAUAUUGUACUUGAUAUUGUCAAUUAUGAU GGCUCAAUCUCGACAACAAGAUUUJAAGAAUAAUAAUA UAAGUUUUGAUCAACCAUAUGCGGCAUUAUACCCAUC UGUUGGACCAGGGAUAUACUACAAAGGCAAAAUAAUA UUUCUCGGGUAUGGAGGUCUUGAACAUCCAAUAAAUG AGAAUGCAAUCUGCAACACAACUGGGUGUCCUGGGAA AACACAGAGAGACUGUAAUCAAGCAUCUCAUAGUCCA UGGUUUUCAGAUAGAAGGAUGGUCAACUCUAUAAUUG UUGUUGACAAGGGCUUGAACUCAGUUCCAAAAUUGAA GGUAUGGACGAUAUCUAUGAGACAAAAUUACUGGGGG UCAGAAGGAAGAUUACUUCUACUAGGUAACAAGAUCU ACAUAUACACAAGAUCUACAAGUUGGCACAGCAAGUU ACAAUUAGGAAUAAUUGACAUUACUGACUACAGUGAU AUAAGGAUAAAUGGACAUGGCAUAAUGUGCUAUCAA GACCAGGAAACAAUGAAUGUCCAUGGGGACAUUCAUG UCCGGAUGGAUGUAUAACGGGAGUAUAUACCGAUGCA UAUCCACUCAAUCCCACAGGAAGCAUUGUAUCAUCUG UCAUAUUGGACUCACAAAAAUCGAGAGUCAACCCAGU CAUAACUUACUCAACAGCAACCGAAAGGGUAAACGAG CUGGCUAUCCGAAACAAAACACUCUCAGCUGGGUACA CAACAACAAGCUGCAUUACACACUAUAACAAAGGGUA UUGUUUUCAUAUAGUAGAAAUAAAUCAUAAAAGCUUA AACACAUUUCAACCCAUGUUGUUCAAAACAGAGAUUC CAAAAAGCUGCAGU

HPIV3_HN_Codon
Optimized

AUGGAAUACUGGAAGCACCACCACCACGGCAAGGACG CCGGCAACGAGCUGGAAACCAGCACAGCCACACACGGC AACAAGCUGACCAACAAGAUCACCUACAUCCUGUGGA CCAUCACCCUGGUGCUGCUGAGCAUCGUGUUCAUCAUC GUGCUGACCAAUAGCAUCAAGAGCGAGAAGGCCAGAG AGAGCCUGCUGCAGGACAUCAACAACGAGUUCAUGGA AGUGACCGAGAAGAUCCAGGUGGCCAGCGACAACACC AACGACCUGAUCCAGAGCGGCGUGAACACCCGGCUGCU GACCAUCCAGAGCCACGUGCAGAACUACAUCCCCAUCA GCCUGACCCAGCAGAUCAGCGACCUGCGGAAGUUCAUC AGCGAGAUCACCAUCCGGAACGACAACCAGGAAGUGC CCCCCAGAGAAUCACCCACGACGUGGGCAUCAAGCCC CUGAACCCCGACGAUUUCUGGCGGUGUACAAGCGGCC UGCCCAGCCUGAUGAAGACCCCCAAGAUCCGGCUGAUG CCUGGCCCUGGACUGCUGGCCAUGCCUACCACAGUGGA UGGCUGUGUGCGGACCCCCAGCCUCGUGAUCAACGAUC UGAUCUACGCCUACACCAGCAACCUGAUCACCCGGGGC UGCCAGGAUAUCGGCAAGAGCUACCAGGUGCUGCAGA UCGGCAUCAUCACCGUGAACUCCGACCUGGUGCCCGAC CUGAACCCUCGGAUCAGCCACACCUUCAACAUCAACGA CAACAGAAAGAGCUGCAGCCUGGCUCUGCUGAACACC GACGUGUACCAGCUGUGCAGCACCCCCAAGGUGGACG AGAGAAGCGACUACGCCAGCAGCGGCAUCGAGGAUAU CGUGCUGGACAUCGUGAACUACGACGGCAGCAUCAGC ACCACCCGGUUCAAGAACAACAUCAGCUUCGACCA GCCCUACGCCGCCCUGUACCCUUCUGUGGGCCCUGGCA UCUACUACAAGGGCAAGAUCAUCUUCCUGGGCUACGG CGGCCUGGAACACCCCAUCAACGAGAACGCCAUCUGCA ACACCACCGGCUGCCCUGGCAAGACCCAGAGAGACUGC AAUCAGGCCAGCCACAGCCCCUGGUUCAGCGACCGCAG AAUGGUCAACUCUAUCAUCGUGGUGGACAAGGGCCUG AACAGCGUGCCCAAGCUGAAAGUGUGGACAAUCAGCA UGCGCCAGAACUACUGGGGCAGCGAGGGCAGACUUCU GCUGCUGGGAAACAAGAUCUACAUCUACACCCGGUCC ACCAGCUGGCACAGCAAACUGCAGCUGGGAAUCAUCG

. .

	PIV3 Nucleic Acid Sequences	
Description	Sequence	SEQ II NO:
	ACAUCACCGACUACAGCGACAUCCGGAUCAAGUGGACC	
	UGGCACAACGUGCUGAGCAGACCCGGCAACAAUGAGU	
	GCCCUUGGGGCCACAGCUGCCCCGAUGGAUGUAUCACC	
	GGCGUGUACACCGACGCCUACCCCCUGAAUCCUACCGG	
	CUCCAUCGUGUCCAGCGUGAUCCUGGACAGCCAGAAA	
	AGCAGAGUGAACCCCGUGAUCACAUACAGCACCGCCAC	
	CGAGAGAGUGAACGAACUGGCCAUCAGAAACAAGACC	
	CUGAGCGCCGGCUACACCACCACAAGCUGCAUCACACA	
	CUACAACAAGGGCUACUGCUUCCACAUCGUGGAAAUC	
	AACCACAAGUCCCUGAACACCUUCCAGCCCAUGCUGUU CAAGACCGAGAUCCCCAAGAGCUGCUCC	
	CAAGACCGAGACCCCAAGAGCOGCCCC	
HPIV3_F_Codon	AUGCCCAUCAGCAUCCUGCUGAUCAUCACCACAAUGAU	64
Optimized mRNA	CAUGGCCAGCCACUGCCAGAUCGACAUCACCAAGCUGC	
sequence	AGCACGUGGGCGUGCUCGUGAACAGCCCCAAGGGCAU	
	GAAGAUCAGCCAGAACUUCGAGACACGCUACCUGAUC	
	CUGAGCCUGAUCCCCAAGAUCGAGGACAGCAACAGCU	
	GCGGCGACCAGCAGAUCAAGCAGUACAAGCGGCUGCU	
	GGACAGACUGAUCAUCCCCUGUACGACGGCCUGCGGC	
	UGCAGAAAGACGUGAUCGUGACCAACCAGGAAAGCAA	
	CGAGAACACCGACCCCGGACCGAGAGAUUCUUCGGCG	
	GCGUGAUCGGCACAAUCGCCCUGGGAGUGGCCACAAG	
	CGCCCAGAUUACAGCCGCUGUGGCCCUGGUGGAAGCCA	
	AGCAGGCCAGAAGCGACAUCGAGAAGCUGAAAGAGGC	
	CAUCCGGGACACCAACAAGGCCGUGCAGAGCGUGCAG	
	UCCAGCGUGGGCAAUCUGAUCGUGGCCAUCAAGUCCG	
	UGCAGGACUACGUGAACAAAGAAAUCGUGCCCUCUAU CGCCCGGCUGGGCUG	
	GGCAUUGCCCUGACACAGCACUACAGCGAGCUGACCAA	
	CAUCUUCGGCGACAACAUCGGCAGCCUGCAGGAAAAG	
	GGCAUUAAGCUGCAGGGAAUCGCCAGCCUGUACCGCA	
	CCAACAUCACCGAGAUCUUCACCACCAGCACCGUGGAU	
	AAGUACGACAUCUACGACCUGCUGUUCACCGAGAGCA	
	UCAAAGUGCGCGUGAUCGACGUGGACCUGAACGACUA	
	CAGCAUCACCCUGCAAGUGCGGCUGCCCCUGCUGACCA	
	GACUGCUGAACACCCAGAUCUACAAGGUGGACAGCAU	
	CUCCUACAACAUCCAGAACCGCGAGUGGUACAUCCCUC	
	UGCCCAGCCACAUUAUGACCAAGGGCGCCUUUCUGGGC	
	GGAGCCGACGUGAAAGAGUGCAUCGAGGCCUUCAGCA	
	GCUACAUCUGCCCCAGCGACCCUGGCUUCGUGCUGAAC	
	CACGAGAUGGAAAGCUGCCUGAGCGGCAACAUCAGCC	
	AGUGCCCCAGAACCACCGUGACCUCCGACAUCGUGCCC	
	AGAUACGCCUUCGUGAAUGGCGGCGUGGUGGCCAACU	
	GCAUCACCACCUGUACCUGCAACGGCAUCGGCAAC	
	CGGAUCAACCAGCCUCCCGAUCAGGGCGUGAAGAUUA	
	UCACCCACAAAGAGUGUAACACCAUCGGCAUCAACGGC	
	AUGCUGUUCAAUACCAACAAAGAGGGCACCCUGGCCU	
	UCUACACCCCGACGAUAUCACCCUGAACAACUCCGUG	
	GCUCUGGACCCCAUCGACAUCUCCAUCGAGCUGAACAA	
	GGCCAAGAGCGACCUGGAAGAGUCCAAAGAGUGGAUC	
	CGGCGGAGCAACCAGAAGCUGGACUCUAUCGGCAGCU	
	GGCACCAGAGCACCACCAUCAUCGUGAUCCUGAUU	
	AUGAUGAUUAUCCUGUUCAUCAACAUUACCAUCA	
	UCACUAUCGCCAUUAAGUACUACCGGAUCCAGAAACG	
	GAACCGGGUGGACCAGAAUGACAAGCCCUACGUGCUG	
	ACAAACAAG	

TABLE 6

	PIV3 Amino Acid Sequences	
Description	Sequence	SEQ ID NO:
>gi 612507166 gb AHX22429.1 fusion glycoprotein F0 [Human parainfluenza virus 3]	MPISILLIITTMIMASHCQIDITKLQHVGVLVNSPKGMKISQ NFETRYLILSLIPKIEDSNSCGDQQIKQYKRLLDRLIIPLYDG LRLQKDVIVTNQBSNENTDPRTERFFGGVIGTIALGVATSA QITAAVALVEAKQARSDIEKLKEAIRDTNKAVQSVQSSVG NLIVAIKSVQDYVNKEIVPSIARLGCEAAGLQLGIALTQHYS ELTNIFGDNIGSLQEKGIKLQGIASLYRTNITEIFTTSTVDKY DIYDLLFTESIKVRVIDVDLNDYSITLQVRLPLLTRLLNTQIY	13

TABLE 6-continued

	PIV3 Amino Acid Sequences	
Description	Sequence	SEQ ID
gi 612507167 gb AHX22430.1 hemagglutinin- neuraminidase [Human parainfluenza virus 3]	KVDSISYNIQNREWYIPLPSHIMTKGAFLGGADVKECIEAFS SYICPSDPGFVLNHEMESCLSGNISQCPRTTVTSDIVPRYAF VNGGVVANCITTTCTCNGIGNRINQPPDQGVKIITHKECNTI GINGMLFNTNKEGTLAFYTPDDITLINNSVALDPIDISIELNK AKSDLEESKEWIRRSNQKLDSIGSWHQSSTTIIVLLIMMIILFI INITIITIAIKYYRIQKRNRVDQNDKPYVLTNK MEYWKHTNHGKDAGNELETSTATHGNKLTNKITYILWTIT LVLLSIVFIIVLTNSIKSEKARESLLQDINNEFMEVTEKIQVA SDNTNDLIQSGVNTRLLITIQSHVQNYIPISLTQQISDLRKFIS EITIRNDNQEVPPQRITHDVGIKPLNPDDFWRCTSGLPSLMK TPKIRLMPGPGLLAMPTTVDGCVRTPSLVINDLIYAYTSNLI TRGCQDIGKSYQVLQIGIITVNSDLVPDLNPRISHTFNINDN RKSCSLALLNTDVYQLCSTPKVDERSDYASSGIEDIVLDIV NYDGSISTTRFKNNNISFDQPYAALYPSVGPGIYYKGKIIFL GYGGLEHPINENAICNTTGCPGKTQRDCNQASHSPWFSDR RMVNSIIVVDKGLNSVPKLKVWTISMRQNYWGSEGRLLLL GNKIYIYTRSTSWHSKLQLGIIDITDYSDIRIKWTWHNVLSR PGNNECPWGHSCPDGCITGVYTDAYPLNPTGSIVSSVILDS QKSRVNPVITYSTATERVNELAIRNKTLSAGYTTTSCITHY NKGYCFHIVEINHKSLNTFQPMLFKTEIPKSCS	14

TABLE 7

PIV3 NCBI Accession Numbers (Nucleic Acid and Amino Acid Sequences)		
Description	GenBank Accession	
Fusion glycoprotein F0 [Human parainfluenza virus 3] HPIV3/Homo sapiens/PER/FLA4815/2008	KJ672601.1 : 4990-6609 AHX22429	
hemagglutinin-neuraminidase [Human parainfluenza virus 3] HPIV3/Homo sapiens/PER/FLA4815/2008	(Fusion protein) KJ672601.11: 6724-8442 AHX22430	
Recombinant PIV3/PIV1 virus fusion glycoprotein (F) and hemagglutinin (HN) genes, complete cds; and RNA dependent RNA polymerase (L) gene, partial cds. Recombinant PIV3/PIV1 virus fusion glycoprotein (F) and hemagglutinin (HN) genes, complete cds; and RNA dependent RNA polymerase (L) gene, partial cds. hemagglutinin-neuraminidase [Human parainfluenza virus 3] hemagglutinin-neuraminidase [Human parainfluenza virus 3] C protein [Human parainfluenza virus 3]	(HN protein) AF016281 AAC23947 (hemagglutinin) AF016281 AAC23947 (fusion protein) BAO32044.1 BAO32051.1 NP_599251.1 ABZ85670.1 AGT75164.1 AAB48686.1 AHX22115.1 AGW51066.1 AGW51162.1 AGT75188.1 AGW51218.1 AGW51074.1 AGW51074.1	
C protein [Human parainfluenza virus 3]	AGT75307.1 AHX22131.1 AGW51243.1 AGT75180.1 AGT75212.1 AGW51186.1	
C protein [Human parainfluenza virus 3]	AHX22075.1 AHX22163.1 AGT75196.1 AHX22491.1 AHX22139.1 AGW51138.1 AGW51114.1 AGT75220.1	
C protein [Human parainfluenza virus 3] RecName: Full = Protein C; AltName: Full = VP18 protein	AHX22251.1 P06165.1	

251

TABLE 7-continued

- TABLE / Continued			
PIV3 NCBI Accession Numbers (Nucleic Acid and Amino Acid Sequences)			
	6 B 1 L L		
Description	GenBank Accession		
C protein [Human parainfluenza virus 3]	AHX22187.1		
C protein [Human parainfluenza virus 3]	AGT75228.1		
C protein [Human parainfluenza virus 3] C protein [Human parainfluenza virus 3]	AHX22179.1 AHX22427.1		
C protein [Human parainfluenza virus 3]	AGW51210.1		
nonstructural protein C [Human parainfluenza virus 3]	BAA00922.1		
C protein [Human parainfluenza virus 3]	AHX22315.1		
C protein [Human parainfluenza virus 3]	AGW51259.1		
C protein [Human parainfluenza virus 3] C protein [Human parainfluenza virus 3]	AHX22435.1 AHX22123.1		
C protein [Human parainfluenza virus 3]	AHX22299.1		
C protein [Human parainfluenza virus 3]	AGW51267.1		
unnamed protein product [Human parainfluenza virus 3]	CAA28430.1		
C protein [Human parainfluenza virus 3] C protein [Human parainfluenza virus 3]	AGW51178.1 AHX22411.1		
RecName: Full = Protein C	P06164.1		
phosphoprotein [Human parainfluenza virus 3]	NP_067149.1		
phosphoprotein [Human parainfluenza virus 3]	AAB48685.1		
phosphoprotein [Human parainfluenza virus 3]	AHX22498.1		
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AHX22490.1 AGT75259.1		
phosphoprotein [Human parainfluenza virus 3]	AGW51137.1		
phosphoprotein [Human parainfluenza virus 3]	AGW51145.1		
phosphoprotein [Human parainfluenza virus 3]	AGT75298.1		
phosphoprotein [Human parainfluenza virus 3]	AGW51113.1		
phosphoprotein [Human parainfluenza virus 3]	AGT75203.1		
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AGT75163.1 AHX22506.1		
phosphoprotein [Human parainfluenza virus 3]	AGW51129.1		
phosphoprotein [Human parainfluenza virus 3]	AHX22194.1		
phosphoprotein [Human parainfluenza virus 3]	AGT75211.1		
phosphoprotein [Human parainfluenza virus 3]	AHX22258.1		
phosphoprotein [Human parainfluenza virus 3]	AGW51121.1		
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AGT75282.1 AHX22146.1		
phosphoprotein [Human parainfluenza virus 3]	AHX22140.1 AHX22138.1		
phosphoprotein [Human parainfluenza virus 3]	AHX22322.1		
phosphoprotein [Human parainfluenza virus 3]	AHX22370.1		
phosphoprotein [Human parainfluenza virus 3]	AHX22098.1		
phosphoprotein [Human parainfluenza virus 3]	AHX22130.1		
phosphoprotein [Human parainfluenza virus 3]	AHX22418.1 AHX22114.1		
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AHX22114.1 AHX22410.1		
phosphoprotein [Human parainfluenza virus 3]	AGT75306.1		
phosphoprotein [Human parainfluenza virus 3]	AHX22170.1		
phosphoprotein [Human parainfluenza virus 3]	AHX22266.1		
phosphoprotein [Human parainfluenza virus 3]	AHX22090.1		
phosphoprotein [Human parainfluenza virus 3]	AGT75195.1 AHX22226.1		
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AHX22178.1		
phosphoprotein [Human parainfluenza virus 3]	AHX22122.1		
phosphoprotein [Human parainfluenza virus 3]	AHX22186.1		
phosphoprotein [Human parainfluenza virus 3]	AHX22066.1		
phosphoprotein [Human parainfluenza virus 3]	AHX22522.1		
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AGW51225.1 BAN29032.1		
phosphoprotein [Human parainfluenza virus 3]	ABZ85669.1		
phosphoprotein [Human parainfluenza virus 3]	AHX22426.1		
phosphoprotein [Human parainfluenza virus 3]	AHX22058.1		
phosphoprotein [Simian Agent 10]	ADR00400.1		
phosphoprotein [Human parainfluenza virus 3]	AHX22250.1		
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AHX22434.1 AHX22298.1		
phosphoprotein [Human parainfluenza virus 3]	AHX22442.1		
phosphoprotein [Human parainfluenza virus 3]	AHX22074.1		
phosphoprotein [Human parainfluenza virus 3]	AGW51153.1		
phosphoprotein [Human parainfluenza virus 3]	AGW51241.1		
phosphoprotein [Human parainfluenza virus 3]	AHX22210.1		
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AGW51105.1 AGT75251.1		
phosphoprotein [Human parainfluenza virus 3]	AHX22362.1		
phosphoprotein [Human parainfluenza virus 3]	AHX22474.1		
phosphoprotein [Human parainfluenza virus 3]	AGW51217.1		
phosphoprotein [Human parainfluenza virus 3]	AIG60038.1		
phosphoprotein [Human parainfluenza virus 3]	AHX22378.1		
phosphoprotein [Human parainfluenza virus 3]	AGW51057.1		

TABLE 7-continued

PIV3 NCBI Accession Numbers (Nucleic Acid and Amin	o Acid Sequences)
	GenBank Accession
Description	
phosphoprotein [Human parainfluenza virus 3]	AGT75187.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AGW51233.1 AHX22482.1
phosphoprotein [Human parainfluenza virus 3]	AGW51161.1
phosphoprotein [Human parainfluenza virus 3]	AHX22306.1
phosphoprotein [Human parainfluenza virus 3]	AHX22162.1
phosphoprotein [Human parainfluenza virus 3]	ACJ70087.1
phosphoprotein [Human parainfluenza virus 3]	AHX22466.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AHX22346.1 AGW51089.1
phosphoprotein [Human parainfluenza virus 3]	AGW51003.1 AGW51073.1
phosphoprotein [Human parainfluenza virus 3]	AGW51185.1
phosphoprotein [Human parainfluenza virus 3]	AGW51065.1
phosphoprotein [Human parainfluenza virus 3]	ABY47603.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AGW51049.1 AHX22330.1
phosphoprotein [Human parainfluenza virus 3]	AGW51250.1
phosphoprotein [Human parainfluenza virus 3]	AGT75227.1
phosphoprotein [Human parainfluenza virus 3]	AGW51282.1
phosphoprotein [Human parainfluenza virus 3]	AGW51209.1
phosphoprotein [Human parainfluenza virus 3]	AGW51193.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AGT75322.1 AGT75219.1
phosphoprotein [Human parainfluenza virus 3]	AGW51258.1
phosphoprotein [Human parainfluenza virus 3]	AGW51041.1
phosphoprotein [Human parainfluenza virus 3]	ACD99698.1
phosphoprotein [Human parainfluenza virus 3]	AGW51266.1
phosphoprotein [Human parainfluenza virus 3]	AGT75179.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AHX22282.1 AGW51169.1
phosphoprotein [Human parainfluenza virus 3]	AGW51109.1 AGW51274.1
phosphoprotein [Human parainfluenza virus 3]	AGW51201.1
phosphoprotein [Human parainfluenza virus 3]	AGW51177.1
RecName: Full = Phosphoprotein; Short = Protein P	P06162.1
P protein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AAA46818.1 AAA46866.1
phosphoprotein [Human parainfluenza virus 3]	BAA00031.1
polymerase-associated nucleocapsid phosphoprotein	RRNZP5
(version 2) - parainfluenza virus type 3	
[Human parainfluenza virus 3]	
phosphoprotein [Human parainfluenza virus 3]	AGT75171.1
phosphoprotein [Human parainfluenza virus 3] D protein [Human parainfluenza virus 3]	BAA00921.1 NP_599250.1
D protein [Human parainfluenza virus 3]	AHX22377.1
D protein [Human parainfluenza virus 3]	AHX22121.1
D protein [Human parainfluenza virus 3]	AGT75297.1
D protein [Human parainfluenza virus 3]	AGW51136.1
D protein [Human parainfluenza virus 3] D protein [Human parainfluenza virus 3]	AGW51242.1 AGW51112.1
D protein [Human parainfluenza virus 3]	AHX22497.1
D protein [Human parainfluenza virus 3]	AHX22145.1
D protein [Human parainfluenza virus 3]	AGT75202.1
D protein [Human parainfluenza virus 3]	AHX22385.1
D protein [Human parainfluenza virus 3] D protein [Human parainfluenza virus 3]	AGW51216.1 AGT75281.1
D protein [Human parainfluenza virus 3]	AGT75281.1 AGT75194.1
D protein [Human parainfluenza virus 3]	AHX22521.1
D protein [Human parainfluenza virus 3]	AGW51120.1
D protein [Human parainfluenza virus 3]	AGT75313.1
D protein [Human parainfluenza virus 3] D protein [Human parainfluenza virus 3]	AHX22249.1 AHX22097.1
D protein [Human parainfluenza virus 3] D protein [Human parainfluenza virus 3]	AGW51144.1
D protein [Human parainfluenza virus 3]	AHX22089.1
D protein [Human parainfluenza virus 3]	AHX22225.1
D protein [Human parainfluenza virus 3]	AHX22137.1
D protein [Human parainfluenza virus 3]	AHX22065.1
D protein [Human parainfluenza virus 3] D protein [Human parainfluenza virus 3]	AGW51224.1 AGT75210.1
D protein [Human parainfluenza virus 3] D protein [Human parainfluenza virus 3]	AG173210.1 AHX22393.1
D protein [Human parainfluenza virus 3]	AGT75258.1
D protein [Human parainfluenza virus 3]	AHX22345.1
D protein [Human parainfluenza virus 3]	AGT75250.1
D protein [Human parainfluenza virus 3]	AHX22113.1
D protein [Human parainfluenza virus 3] D protein [Human parainfluenza virus 3]	AGW51232.1 AHX22057.1
D protein [Human parainfluenza virus 3] D protein [Human parainfluenza virus 3]	AHX22057.1 AHX22209.1
- L [vernum banamum banamum viran o]	

TABLE 7-continued

PIV3 NCBI Accession Numbers (Nucleic Acid and Amino Acid Sequences)				
Description	GenBank Accession			
D protein [Human parainfluenza virus 3]	AGW51056.1			
D protein [Human parainfluenza virus 3]	AHX22161.1			
D protein [Simian Agent 10]	ADR00402.1			
D protein [Human parainfluenza virus 3]	AHX22361.1			
D protein [Human parainfluenza virus 3]	AGW51281.1			
D protein [Human parainfluenza virus 3]	AGW51184.1			
D protein [Human parainfluenza virus 3]	AGW51160.1			
D protein [Human parainfluenza virus 3]	AHX22465.1			
D protein [Human parainfluenza virus 3]	AHX22329.1			
D protein [Human parainfluenza virus 3]	AGW51064.1			
D protein [Human parainfluenza virus 3]	AGW51040.1			
D protein [Human parainfluenza virus 3]	AGT75226.1			
D protein [Human parainfluenza virus 3]	AHX22425.1			
D protein [Human parainfluenza virus 3]	AHX22305.1			
D protein [Human parainfluenza virus 3]	AGW51249.1			
D protein [Human parainfluenza virus 3]	AHX22481.1			
D protein [Human parainfluenza virus 3]	AHX22281.1			
D protein [Human parainfluenza virus 3]	AGW51048.1			
D protein [Human parainfluenza virus 3]	AHX22297.1			
D protein [Human parainfluenza virus 3]	AGW51088.1			
D protein [Human parainfluenza virus 3]	AGT75305.1			
D protein [Human parainfluenza virus 3]	AHX22185.1			
D protein [Human parainfluenza virus 3]	AGW51104.1			
D protein [Human parainfluenza virus 3]	AHX22081.1			
D protein [Human parainfluenza virus 3]	AGW51192.1			
D protein [Human parainfluenza virus 3]	AHX22489.1			
D protein [Human parainfluenza virus 3]	AHX22441.1			
D protein [Human parainfluenza virus 3]	AHX22409.1			
D protein [Human parainfluenza virus 3]	AHX22369.1			
D protein [Human parainfluenza virus 3]	AHX22321.1			
D protein [Human parainfluenza virus 3]	AHX22073.1			
D protein [Human parainfluenza virus 3]	AGW51152.1			
D protein [Human parainfluenza virus 3]	AGW51072.1			
D protein [Human parainfluenza virus 3]	AGT75321.1			
D protein [Human parainfluenza virus 3]	AHX22257.1			
D protein [Human parainfluenza virus 3]	AHX22129.1			
D protein [Human parainfluenza virus 3]	AHX22417.1			
D protein [Human parainfluenza virus 3]	AGT75218.1			
D protein [Human parainfluenza virus 3]	AHX22265.1			
D protein [Human parainfluenza virus 3]	AGT75178.1			
D protein [Human parainfluenza virus 3]	AHX22433.1			
D protein [Human parainfluenza virus 3]	AGW51273.1			
D protein [Human parainfluenza virus 3]	AGW51208.1			
D protein [Human parainfluenza virus 3]	AGT75170.1			
D protein [Human parainfluenza virus 3]	AGT75162.1			
D protein [Human parainfluenza virus 3]	AGW51257.1			
D protein [Human parainfluenza virus 3]	AGW51200.1			
D protein [Human parainfluenza virus 3]	AGW51176.1			
D protein [Human parainfluenza virus 3]	AGT75186.1			
D protein [Human parainfluenza virus 3]	AGW51265.1			
D protein [Human parainfluenza virus 3]	AGW51168.1			

TABLE	8

	Siqnal Peptides	
Description	Sequence	SEQ ID NO:
HuIgG_k signal peptide	METPAQLLFLLLLWLPDTTG	15
IgE heavy chain epsilon-1 signal peptide	MDWTWILFLVAAATRVHS	16
Japanese encephalitis PRM signal sequence	MLGSNSGQRVVFTILLLLVAPAYS	17
VSVg protein signal sequence	MKCLLYLAFLFIGVNCA	18

TABLE 8-continued

50	TABLE 8-continued								
	Signal Peptides								
	Descript	ion	Sequence			SEQ ID NO:			
55	Japanese encephal signal s	itis		ACAGA		19			
60			TABLE						
	hMPV/PIV Cotton Rat Challenge Study Design								
	Group	n Te	est Article	[conc]/μg	Route	Challenge			
65	1 2		acebo MPV vaccine mRNA	n/a 30	IM IM	hMPV/A2 hMPV/A2			

TABLE 9-continued

258

	hl	MPV/PIV Cotton Rat Chal	lenge Study l	Design				hMPV/PIV Cotton Rat Chal	lenge Study	Design	
Group	n	Test Article	[conc]/μg	Route	Challenge	. 5	Group	n Test Article	[conc]/μg	Route	Challenge
3	5	hMPV vaccine mRNA	15	IM	hMPV/A2		10	5 PIV3 vaccine mRNA	10	IM	PIV3
4	5	hMPV vaccine mRNA	10	IM	hMPV/A2						
5	5	hMPV/PIV3 vaccine mRNA (15/15)	30	IM	hMPV/A2		11	5 hMPV/PIV3 vaccine mRNA (15/15)	30	IM	PIV3
6	5	FI-hMPV	n/a	IM	hMPV/A2		12	5 FI-PIV3	n/a	IM	PIV3
7	-	Placebo	n/a	IM	PIV3	10					
8	-	PIV3 vaccine mRNA	30	IM	PIV3	10		60			
9		PIV3 vaccine mRNA	15	IM	PIV3						

TABLE 10

	Betacoronavirus Nucleic Acid Sequence	
		SEO ID
Strain	Nucleic Acid Sequence	NO:

gb|KJ156934.1|: 21405-25466 Middle East respiratory syndrome coronavirus isolate Riyadh_14_2013, spike protein (nucleotide) ATGATACACTCAGTGTTTCTACTGATGTTCTTGTTAACACC TACAGAAAGTTACGTTGATGTAGGGCCAGATTCTGTTAAG TCTGCTTGTATTGAGGTTGATATACAACAGACCTTCTTTGA ${\tt TAAAACTTGGCCTAGGCCAATTGATGTTTCTAAGGCTGAC}$ GGTATTATATACCCTCAAGGCCGTACATATTCTAACATAA CTATCACTTATCAAGGTCTTTTTCCCTATCAGGGAGACCAT GGTGATATGTTTTACTCTGCAGGACATGCTACAGGCA CAACTCCACAAAAGTTGTTTGTAGCTAACTATTCTCAGGA CGTCAAACAGTTTGCTAATGGGTTTGTCGTCCGTATAGGA GCAGCTGCCAATTCCACTGGCACTGTTATTATTAGCCCATC TACCAGCGCTACTATACGAAAAATTTACCCTGCTTTTATGC TGGGTTCTTCAGTTGGTAATTTCTCAGATGGTAAAATGGG CCGCTTCTTCAATCATACTCTAGTTCTTTTTGCCCGATGGAT GTGGCACTTTACTTAGAGCTTTTTATTGTATTCTAGAGCCT CGCTCTGGAAATCATTGTCCTGCTGGCAATTCCTATACTTC TTTTGCCACTTATCACACTCCTGCAACAGATTGTTCTGATG GCAATTACAATCGTAATGCCAGTCTGAACTCTTTTAAGGA GTATTTTAATTTACGTAACTGCACCTTTATGTACACTTATA ACATTACCGAAGATGAGATTTTAGAGTGGTTTGGCATTAC ACAAACTGCTCAAGGTGTTCACCTCTTCTCATCTCGGTATG TTGATTTGTACGGCGGCAATATGTTTCAATTTGCCACCTTG CCTGTTTATGATACTATTAAGTATTATTCTATCATTCCTCA ${\tt CAGTATTCGTTCTATCCAAAGTGATAGAAAAGCTTGGGCT}$ GCCTTCTACGTATATAAACTTCAACCGTTAACTTTCCTGTT $\tt GGATTTTTCTGTTGATGGTTATATACGCAGAGCTATAGACT$ GTGGTTTTAATGATTTGTCACAACTCCACTGCTCATATGAA TCCTTCGATGTTGAATCTGGAGTTTATTCAGTTTCGTCTTT $\tt CGAAGCAAAACCTTCTGGCTCAGTTGTGGAACAGGCTGAA$ $\tt GGTGTTGAATGTGATTTTTCACCTCTTCTGTCTGGCACACC$ TCCTCAGGTTTATAATTTCAAGCGTTTGGTTTTTACCAATT GCAATTATAATCTTACCAAATTGCTTTCACTTTTTTCTGTG AATGATTTTACTTGTAGTCAAATATCTCCAGCAGCAATTGC TAGCAACTGTTATTCTTCACTGATTTTTGGATTATTTTTCAT ACCCACTTAGTATGAAATCCGATCTCAGTGTTAGTTCTGCT GGTCCAATATCCCAGTTTAATTATAAACAGTCCTTTTCTAA TCCCACATGTTTGATCTTAGCGACTGTTCCTCATAACCTTA $\tt CTACTATTACTAAGCCTCTTAAGTACAGCTATATTAACAA$ GTGCTCTCGTCTTCTTGATGATCGTACTGAAGTACCTC AGTTAGTGAACGCTAATCAATACTCACCCTGTGTATCCATT GTCCCATCCACTGTGTGGGAAGACGGTGATTATTATAGGA ${\tt AACAACTATCTCCACTTGAAGGTGGTGGCTGGCTTGTTGC}$ TAGTGGCTCAACTGTTGCCATGACTGAGCAATTACAGATG GGCTTTGGTATTACAGTTCAATATGGTACAGACACCAATA GTGTTTGCCCCAAGCTTGAATTTGCTAATGACACAAAAAT TGCCTCTCAATTAGGCAATTGCGTGGAATATTCCCTCTATG GTGTTTCGGGCCGTGGTGTTTTTCAGAATTGCACAGCTGTA $\tt GGTGTTCGACAGCAGCGCTTTGTTTATGATGCGTACCAGA$ ATTTAGTTGGCTATTATTCTGATGATGGCAACTACTACTGT $\tt CTGCGTGCTTGTGTTAGTGTTCCTGTTTTCTGTCATCTATGA$ ${\tt TAAAGAAACTAAAACCCACGCTACTCTATTTGGTAGTGTT}$ $\tt GCATGTGAACACATTTCTTCTACCATGTCTCAATACTCCCG$ ${\tt TTCTACGCGATCAATGCTTAAACGGCGAGATTCTACATAT}$ $\tt GGCCCCTTCAGACACCTGTTGGTTGTGTCCTAGGACTTGT$ TAATTCCTCTTTGTTCGTAGAGGACTGCAAGTTGCCTCTCG GTCAATCTCTGTGCTCTTCCTGACACACCTAGTACTCTC ${\tt ACACCTCGCAGTGTGCGCTCTGTGCCAGGTGAAATGCGCT}$ TGGCATCCATTGCTTTTAATCATCCCATTCAGGTTGATCAA CTTAATAGTAGTTATTTTAAATTAAGTATACCCACTAATTT

Betacoronavirus Nucleic Acid Sequence

SEQ ID

260

Strain Nucleic Acid Sequence

TTCCTTTGGTGTGACTCAGGAGTACATTCAGACAACCATTC AGAAAGTTACTGTTGATTGTAAACAGTACGTTTGCAATGG $\tt TTTCCAGAAGTGTGAGCAATTACTGCGCGAGTATGGCCAG$ TTTTGTTCCAAAATAAACCAGGCTCTCCATGGTGCCAATTT ACGCCAGGATGATTCTGTACGTAATTTGTTTGCGAGCGTG AAAAGCTCTCAATCATCTCCTATCATACCAGGTTTTGGAG GTGACTTTAATTTGACACTTCTAGAACCTGTTTCTATATCT ACTGGCAGTCGTAGTGCACGTAGTGCTATTGAGGATTTGC TATTTGACAAAGTCACTATAGCTGATCCTGGTTATATGCA AGGTTACGATGATTGTATGCAGCAAGGTCCAGCATCAGCT CGTGATCTTATTTGTGCTCAATATGTGGCTGGTTATAAAGT ATTACCTCCTCTTATGGATGTTAATATGGAAGCCGCGTATA CTTCATCTTTGCTTGGCAGCATAGCAGGTGTTGGCTGGACT GCTGGCTTATCCTCCTTTGCTGCTATTCCATTTGCACAGAG TATYTTTTATAGGTTAAACGGTGTTGGCATTACTCAACAG GTTCTTTCAGAGAACCAAAAGCTTATTGCCAATAAGTTTA ATCAGGCTCTGGGAGCTATGCAAACAGGCTTCACTACAAC TAATGAAGCTTTTCGGAAGGTTCAGGATGCTGTGAACAAC AATGCACAGGCTCTATCCAAATTAGCTAGCGAGCTATCTA ATACTTTTGGTGCTATTTCCGCCTCTATTGGAGACATCATA CAACGTCTTGATGTTCTCGAACAGGACGCCCAAATAGACA GACTTATTAATGGCCGTTTGACAACACTAAATGCTTTTGTT GCACAGCAGCTTGTTCGTTCCGAATCAGCTGCTCTTTCCGC TCAATTGGCTAAAGATAAAGTCAATGAGTGTGTCAAGGCA CAATCCAAGCGTTCTGGATTTTGCGGTCAAGGCACACATA TAGTGTCCTTTGTTGTAAATGCCCCTAATGGCCTTTACTTT ATGCATGTTGGTTATTACCCTAGCAACCACATTGAGGTTGT TTCTGCTTATGGTCTTTGCGATGCAGCTAACCCTACTAATT $\tt GTATAGCCCCTGTTAATGGCTACTTTATTAAAACTAATAAC$ ACTAGGATTGTTGATGAGTGGTCATATACTGGCTCGTCCTT $\tt CTATGCACCTGAGCCCATCACCTCTCTTAATACTAAGTATG$ TTGCACCACAGGTGACATACCAAAACATTTCTACTAACCT CCCTCCTCTCTCTCGGCAATTCCACCGGGATTGACTTCC AAGATGAGTTGGATGAGTTTTTCAAAAATGTTAGCACCAG TATACCTAATTTTGGTTCTCTAACACAGATTAATACTACAT TACTCGATCTTACCTACGAGATGTTGTCTCTTCAACAAGTT GTTAAAGCCCTTAATGAGTCTTACATAGACCTTAAAGAGC TTGGCAATTATACTTATTACAACAAATGGCCGTGGTACAT TTGGCTTGGTTTCATTGCTGGGCTTGTTGCCTTAGCTCTAT GCGTCTTCTTCATACTGTGCTGCACTGGTTGTGGCACAAAC TGTATGGGAAAACTTAAGTGTAATCGTTGTTGTGATAGAT ACGAGGAATACGACCTCGAGCCGCATAAGGTTCATGTTCA

MERS S FL SPIKE 2cEMC/2012 (XBaI change(T to G)) (nucleotide) ${\tt ATGATACACTCAGTGTTTCTACTGATGTTCTTGTTAACACC}$ TACAGAAAGTTACGTTGATGTAGGGCCAGATTCTGTTAAG TCTGCTTGTATTGAGGTTGATATACAACAGACTTTCTTTGA TAAAACTTGGCCTAGGCCAATTGATGTTTCTAAGGCTGAC GGTATTATATACCCTCAAGGCCGTACATATTCTAACATAA CTATCACTTATCAAGGTCTTTTTCCCTATCAGGGAGACCAT GGTGATATGTTTACTCTGCAGGACATGCTACAGGCA CAACTCCACAAAAGTTGTTTGTAGCTAACTATTCTCAGGA CGTCAAACAGTTTGCTAATGGGTTTGTCGTCCGTATAGGA GCAGCTGCCAATTCCACTGGCACTGTTATTATTAGCCCATC TACCAGCGCTACTATACGAAAAATTTACCCTGCTTTTATGC TGGGTTCTTCAGTTGGTAATTTCTCAGATGGTAAAATGGG CCGCTTCTTCAATCATACTCTAGTTCTTTTTGCCCGATGGAT GTGGCACTTTACTTAGAGCTTTTTATTGTATTCTGGAGCCT CGCTCTGGAAATCATTGTCCTGCTGGCAATTCCTATACTTC TTTTGCCACTTATCACACTCCTGCAACAGATTGTTCTGATG GCAATTACAATCGTAATGCCAGTCTGAACTCTTTTAAGGA GTATTTTAATTTACGTAACTGCACCTTTATGTACACTTATA ACATTACCGAAGATGAGATTTTAGAGTGGTTTGGCATTAC ACAAACTGCTCAAGGTGTTCACCTCTTCTCATCTCGGTATG TTGATTTGTACGGCGGCAATATGTTTCAATTTGCCACCTTG CCTGTTTATGATACTATTAAGTATTATTCTATCATTCCTCA CAGTATTCGTTCTATCCAAAGTGATAGAAAAGCTTGGGCT GCCTTCTACGTATATAAACTTCAACCGTTAACTTTCCTGTT GGATTTTTCTGTTGATGGTTATATACGCAGAGCTATAGACT GTGGTTTTAATGATTTGTCACAACTCCACTGCTCATATGAA TCCTTCGATGTTGAATCTGGAGTTTATTCAGTTTCGTCTTT CGAAGCAAAACCTTCTGGCTCAGTTGTGGAACAGGCTGAA $\tt GGTGTTGAATGTGATTTTTCACCTCTTCTGTCTGGCACACC$ TCCTCAGGTTTATAATTTCAAGCGTTTGGTTTTTACCAATT GCAATTATAATCTTACCAAATTGCTTTCACTTTTTTCTGTG

AATGATTTTACTTGTAGTCAAATATCTCCAGCAGCAATTGC

TABLE 10-continued

Betacoronavirus Nucleic Acid Sequence SEO ID Nucleic Acid Sequence Strain NO:

TAGCAACTGTTATTCTTCACTGATTTTGGATTACTTTTCAT ${\tt ACCCACTTAGTATGAAATCCGATCTCAGTGTTAGTTCTGCT}$ GGTCCAATATCCCAGTTTAATTATAAACAGTCCTTTTCTAA ${\tt TCCCACATGTTTGATTTTAGCGACTGTTCCTCATAACCTTA}$ CTACTATTACTAAGCCTCTTAAGTACAGCTATATTAACAA GTGCTCTCGTCTTCTTTCTGATGATCGTACTGAAGTACCTC AGTTAGTGAACGCTAATCAATACTCACCCTGTGTATCCATT GTCCCATCCACTGTGTGGGAAGACGGTGATTATTATAGGA AACAACTATCTCCACTTGAAGGTGGTGGCTGGCTTGTTGC TAGTGGCTCAACTGTTGCCATGACTGAGCAATTACAGATG GGCTTTGGTATTACAGTTCAATATGGTACAGACACCAATA GTGTTTGCCCCAAGCTTGAATTTGCTAATGACACAAAAAT TGCCTCTCAATTAGGCAATTGCGTGGAATATTCCCTCTATG GTGTTTCGGGCCGTGGTGTTTTTCAGAATTGCACAGCTGTA GGTGTTCGACAGCAGCGCTTTGTTTATGATGCGTACCAGA ATTTAGTTGGCTATTATTCTGATGATGGCAACTACTACTGT TTGCGTGCTTGTGTTAGTGTTCCTGTTTCTGTCATCTATGAT AAAGAAACTAAAACCCACGCTACTCTATTTGGTAGTGTTG CATGTGAACACATTTCTTCTACCATGTCTCAATACTCCCGT TCTACGCGATCAATGCTTAAACGGCGAGATTCTACATATG GCCCCCTTCAGACACCTGTTGGTTGTGTCCTAGGACTTGTT AATTCCTCTTTGTTCGTAGAGGACTGCAAGTTGCCTCTTGG TCAATCTCTCTGTGCTCTTCCTGACACACCTAGTACTCTCA CACCTCGCAGTGTGCGCTCTGTTCCAGGTGAAATGCGCTT ${\tt GGCATCCATTGCTTTTAATCATCCTATTCAGGTTGATCAAC}$ ${\tt TTAATAGTAGTTATTTTAAATTAAGTATACCCACTAATTTT}$ TCCTTTGGTGTGACTCAGGAGTACATTCAGACAACCATTC AGAAAGTTACTGTTGATTGTAAACAGTACGTTTGCAATGG TTTCCAGAAGTGTGAGCAATTACTGCGCGAGTATGGCCAG ${\tt TTTTGTTCCAAAATAAACCAGGCTCTCCATGGTGCCAATTT}$ ACGCCAGGATGATTCTGTACGTAATTTGTTTGCGAGCGTG AAAAGCTCTCAATCATCTCCTATCATACCAGGTTTTTGGAG GTGACTTTAATTTGACACTTCTGGAACCTGTTTCTATATCT ACTGGCAGTCGTAGTGCACGTAGTGCTATTGAGGATTTGC TATTTGACAAAGTCACTATAGCTGATCCTGGTTATATGCA AGGTTACGATGATTGCATGCAGCAAGGTCCAGCATCAGCT CGTGATCTTATTTGTGCTCAATATGTGGCTGGTTACAAAGT ATTACCTCCTCTTATGGATGTTAATATGGAAGCCGCGTATA $\tt CTTCATCTTTGCTTGGCAGCATAGCAGGTGTTGGCTGGACT$ GCTGGCTTATCCTCCTTTGCTGCTATTCCATTTGCACAGAG ${\tt TATCTTTATAGGTTAAACGGTGTTGGCATTACTCAACAGG}$ TTCTTTCAGAGAACCAAAAGCTTATTGCCAATAAGTTTAA TCAGGCTCTGGGAGCTATGCAAACAGGCTTCACTACAACT AATGAAGCTTTTCAGAAGGTTCAGGATGCTGTGAACAACA ATGCACAGGCTCTATCCAAATTAGCTAGCGAGCTATCTAA TACTTTTGGTGCTATTTCCGCCTCTATTGGAGACATCATAC AACGTCTTGATGTTCTCGAACAGGACGCCCAAATAGACAG ACTTATTAATGGCCGTTTGACAACACTAAATGCTTTTGTTG CACAGCAGCTTGTTCGTTCCGAATCAGCTGCTCTTTCCGCT CAATTGGCTAAAGATAAAGTCAATGAGTGTGTCAAGGCAC AATCCAAGCGTTCTGGATTTTGCGGTCAAGGCACACATAT AGTGTCCTTTGTTGTAAATGCCCCTAATGGCCTTTACTTCA TGCATGTTGGTTATTACCCTAGCAACCACATTGAGGTTGTT TCTGCTTATGGTCTTTGCGATGCAGCTAACCCTACTAATTG TATAGCCCCTGTTAATGGCTACTTTATTAAAACTAATAACA CTAGGATTGTTGATGAGTGGTCATATACTGGCTCGTCCTTC TATGCACCTGAGCCCATTACCTCCCTTAATACTAAGTATGT TGCACCACAGGTGACATACCAAAACATTTCTACTAACCTC CCTCCTCCTCTCTCGGCAATTCCACCGGGATTGACTTCCA AGATGAGTTGGATGAGTTTTTCAAAAATGTTAGCACCAGT ATACCTAATTTTGGTTCCCTAACACAGATTAATACTACATT ACTCGATCTTACCTACGAGATGTTGTCTCTTCAACAAGTTG TTAAAGCCCTTAATGAGTCTTACATAGACCTTAAAGAGCT TGGCAATTATACTTATTACAACAAATGGCCGTGGTACATT TGGCTTGGTTTCATTGCTGGGCTTGTTGCCTTAGCTCTATG CGTCTTCTTCATACTGTGCTGCACTGGTTGTGGCACAAACT CGAGGAATACGACCTCGAGCCGCATAAGGTTCATGTTCAC

vaccine (nucleotide)

Novel MERS S2 subunit trimeric ATGATCCACTCCGTGTTCCTCATGTTCCTGTTGACCCC CACTGAGTCAGACTGCAAGCTCCCGCTGGGACAGTCCCTG TGTGCGCTGCCTGACACTCCTAGCACTCTGACCCCACGCTC CGTGCGGTCGCTGCCTGCCAAATGCGGCTGGCCTCCATC

Betacoronavirus Nucleic Acid Sequence

SEQ ID

Strain Nucleic Acid Sequence

GCCTTCAATCACCCAATCCAAGTGGATCAGCTGAATAGCT CGTATTTCAAGCTGTCCATCCCCACGAACTTCTCGTTCGGG GTCACCCAGGAGTACATCCAGACCACAATTCAGAAGGTCA CCGTCGATTGCAAGCAATACGTGTGCAACGGCTTCCAGAA GTGCGAGCAGCTGCTGAGAGAATACGGGCAGTTTTGCAGC AAGATCAACCAGGCGCTGCATGGAGCTAACTTGCGCCAGG ${\tt ACGACTCCGTGCGCAACCTCTTTGCCTCTGTGAAGTCATCC}$ CAGTCCTCCCCAATCATCCCGGGATTCGGAGGGGACTTCA ACCTGACCCTCCTGGAGCCCGTGTCGATCAGCACCGGTAG CAGATCGGCGCTCAGCCATTGAAGATCTTCTGTTCGAC AAGGTCACCATCGCCGATCCGGGCTACATGCAGGGATACG ACGACTGTATGCAGCAGGGACCAGCCTCCGCGAGGGACCT CATCTGCGCGCAATACGTGGCCGGGTACAAAGTGCTGCCT CCTCTGATGGATGTGAACATGGAGGCCGCTTATACTTCGT CCCTGCTCGGCTCTATCGCCGGCGTGGGGTGGACCGCCGG CCTGTCCTCCTTCGCCGCTATCCCCTTTGCACAATCCATTT TCTACCGGCTCAACGGCGTGGGCATTACTCAACAAGTCCT GTCGGAGAACCAGAAGTTGATCGCAAACAAGTTCAATCA GGCCCTGGGGGCCATGCAGACTGGATTCACTACGACTAAC GAAGCGTTCCAGAAGGTCCAGGACGCTGTGAACAACAAC GCCCAGGCGCTCTCAAAGCTGGCCTCCGAACTCAGCAACA CCTTCGGAGCCATCAGCGCATCGATCGGTGACATAATTCA GCGGCTGGACGTGCTGGAGCAGGACGCCCAGATCGACCG CCTCATCAACGGACGGCTGACCACCTTGAATGCCTTCGTG GCACAACAGCTGGTCCGGAGCGAATCAGCGGCACTTTCCG CCCAACTCGCCAAGGACAAAGTCAACGAATGCGTGAAGG $\tt CCCAGTCCAAGAGGTCCGGTTTCTGCGGTCAAGGAACCCA$ ${\tt TATTGTGTCCTTCGTCGTGAACGCGCCCAACGGTCTGTACT}$ TTATGCACGTCGGCTACTACCCGAGCAATCATATCGAAGT GGTGTCCGCCTACGGCCTGTGCGATGCCGCTAACCCCACT AACTGTATTGCCCCTGTGAACGGATATTTTATTAAGACCA ACAACACCCGCATTGTGGACGAATGGTCATACACCGGTTC GTCCTTCTACGCGCCCGAGCCCATCACTTCACTGAACACC AAATACGTGGCTCCGCAAGTGACCTACCAGAACATCTCCA CCAATTTGCCGCCGCCGCTGCTCGGAAACAGCACCGGAAT TGATTTCCAAGATGAACTGGACGAATTCTTCAAGAACGTG TCCACTTCCATTCCCAACTTCGGAAGCCTGACACAGATCA ACACCACCTTCTCGACCTGACCTACGAGATGCTGAGCCT TCAACAAGTGGTCAAGGCCCTGAACGAGAGCTACATCGAC CTGAAGGAGCTGGGCAACTATACCTACTACAACAAGTGGC CGGACAAGATTGAGGAGATTCTGTCGAAAATCTACCACAT TGAAAACGAGATCGCCAGAATCAAGAAGCTTATCGGCGA

MERS_S0_Fulllength Spike protein (nucleotide, codon optimized)

ATGGAAACCCCTGCCCAGCTGCTGTTCCTGCTGCTGCTGTG GCTGCCTGATACCACCGGCAGCTATGTGGACGTGGGCCCC GATAGCGTGAAGTCCGCCTGTATCGAAGTGGACATCCAGC AGACCTTTTTCGACAAGACCTGGCCCAGACCCATCGACGT GTCCAAGGCCGACGCATCATCTATCCACAAGGCCGGACC TACAGCAACATCACCATTACCTACCAGGGCCTGTTCCCAT ATCAAGGCGACCACGGCGATATGTACGTGTACTCTGCCGG CCACGCCACCGGCACCACACCCCAGAAACTGTTCGTGGCC AACTACAGCCAGGACGTGAAGCAGTTCGCCAACGGCTTCG TCGTGCGGATTGGCGCCGCTGCCAATAGCACCGGCACAGT GATCATCAGCCCCAGCACCAGCGCCACCATCCGGAAGATC TACCCCGCCTTCATGCTGGGCAGCTCCGTGGGCAATTTCA GCGACGGCAAGATGGGCCGGTTCTTCAACCACACCCTGGT GCTGCTGCCCGATGGCTGTGGCACACTGCTGAGAGCCTTC TACTGCATCCTGGAACCCAGAAGCGGCAACCACTGCCCTG CCGGCAATAGCTACACCAGCTTCGCCACCTACCACACACC CGCCACCGATTGCTCCGACGGCAACTACAACCGGAACGCC AGCCTGAACAGCTTCAAAGAGTACTTCAACCTGCGGAACT GCACCTTCATGTACACCTACAATATCACCGAGGACGAGAT CCTGGAATGGTTCGGCATCACCCAGACCGCCCAGGGCGTG CACCTGTTCAGCAGCAGATACGTGGACCTGTACGGCGGCA ACATGTTCCAGTTTGCCACCCTGCCCGTGTACGACACCATC AAGTACTACAGCATCATCCCCCACAGCATCCGGTCCATCC AGAGCGACAGAAAAGCCTGGGCCGCCTTCTACGTGTACAA GCTGCAGCCCTGACCTTCCTGCTGGACTTCAGCGTGGAC GGCTACATCAGACGGGCCATCGACTGCGGCTTCAACGACC ${\tt TGAGCCAGCTGCACTGCTCCTACGAGAGCTTCGACGTGGA}$ AAGCGGCGTGTACAGCGTGTCCAGCTTCGAGGCCAAGCCT ${\tt AGCGGCAGCGTGGTGGAACAGGCTGAGGGCGTGGAATGC}$ GACTTCAGCCCTCTGCTGAGCGGCACCCCTCCCCAGGTGT ACAACTTCAAGCGGCTGGTGTTCACCAACTGCAATTACAA

TABLE 10-continued

Betacoronavirus Nucleic Acid Sequence SEO ID

Strain Nucleic Acid Sequence NO:

CCTGACCAAGCTGCTGAGCCTGTTCTCCGTGAACGACTTC ACCTGTAGCCAGATCAGCCCTGCCGCCATTGCCAGCAACT GCTACAGCAGCCTGATCCTGGACTACTTCAGCTACCCCCT GAGCATGAAGTCCGATCTGAGCGTGTCCTCCGCCGGACCC ATCAGCCAGTTCAACTACAAGCAGAGCTTCAGCAACCCTA CCTGCCTGATTCTGGCCACCGTGCCCCACAATCTGACCAC CATCACCAAGCCCCTGAAGTACAGCTACATCAACAAGTGC AGCAGACTGCTGTCCGACGACCGGACCGAAGTGCCCCAGC TCGTGAACGCCAACCAGTACAGCCCCTGCGTGTCCATCGT GCCCAGCACCGTGTGGGAGGACGGCGACTACTACAGAAA GCAGCTGAGCCCCCTGGAAGGCGGCGGATGGCTGGTGGCT TCTGGAAGCACAGTGGCCATGACCGAGCAGCTGCAGATG GGCTTTGGCATCACCGTGCAGTACGGCACCGACACCAACA GCGTGTGCCCCAAGCTGGAATTCGCCAATGACACCAAGAT CGCCAGCCAGCTGGGAAACTGCGTGGAATACTCCCTGTAT GGCGTGTCCGGACGGGGCGTGTTCCAGAATTGCACAGCAG $\tt TGGGAGTGCGGCAGCAGAGATTCGTGTACGATGCCTACCA$ GAACCTCGTGGGCTACTACAGCGACGACGGCAATTACTAC TGCCTGCGGGCCTGTGTGCCCGTGTCCGTGATCTA CGACAAAGACAAAGACCCACGCCACACTGTTCGGCTCC GTGGCCTGCGAGCACATCAGCTCCACCATGAGCCAGTACT CCCGCTCCACCCGGTCCATGCTGAAGCGGAGAGATAGCAC CTCGTGAACAGCTCCCTGTTTGTGGAAGATTGCAAGCTGC CCCTGGGCCAGAGCCTGTGTGCCCTGCCAGATACCCCTAG CACCCTGACCCCTAGAAGCGTGCGCTCTGTGCCCGGCGAA ATGCGGCTGGCCTCTATCGCCTTCAATCACCCCATCCAGGT GGACCAGCTGAACTCCAGCTACTTCAAGCTGAGCATCCCC ACCAACTTCAGCTTCGGCGTGACCCAGGAGTACATCCAGA CCACAATCCAGAAAGTGACCGTGGACTGCAAGCAGTACGT GTGCAACGGCTTTCAGAAGTGCGAACAGCTGCTGCGCGAG TACGGCCAGTTCTGCAGCAAGATCAACCAGGCCCTGCACG GCGCCAACCTGAGACAGGATGACAGCGTGCGGAACCTGTT CGCCAGCGTGAAAAGCAGCCAGTCCAGCCCCATCATCCCT GGCTTCGGCGGCGACTTTAACCTGACCCTGCTGGAACCTG TGTCCATCAGCACCGGCTCCAGAAGCGCCAGATCCGCCAT CGAGGACCTGCTGTTCGACAAAGTGACCATTGCCGACCCC GGCTACATGCAGGGCTACGACGATTGCATGCAGCAGGGCC CAGCCAGCGCCAGGGATCTGATCTGTGCCCAGTATGTGGC CGGCTACAAGGTGCTGCCCCCCCTGATGGACGTGAACATG GAAGCCGCCTACACCTCCAGCCTGCTGGGCTCTATTGCTG GCGTGGGATGGACAGCCGGCCTGTCTAGCTTTGCCGCCAT CCCTTTCGCCCAGAGCATCTTCTACCGGCTGAACGGCGTG GGCATCACACACAGGTGCTGAGCGAGAACCAGAAGCTG ATCGCCAACAAGTTTAACCAGGCACTGGGCGCCATGCAGA CCGGCTTCACCACCACCAACGAGGCCTTCAGAAAGGTGCA GGACGCCGTGAACAACACGCCCAGGCTCTGAGCAAGCT GGCCTCCGAGCTGAGCAATACCTTCGGCGCCATCAGCGCC TCCATCGGCGACATCATCCAGCGGCTGGACGTGCTGGAAC AGGACGCCCAGATCGACCGGCTGATCAACGGCAGACTGA CCACCCTGAACGCCTTCGTGGCACAGCAGCTCGTGCGGAG CGAATCTGCCGCTCTGTCTGCTCAGCTGGCCAAGGACAAA GTGAACGAGTGCGTGAAGGCCCAGTCCAAGCGGAGCGGC TTTTGTGGCCAGGGCACCCACATCGTGTCCTTCGTCGTGAA TGCCCCCAACGGCCTGTACTTTATGCACGTGGGCTATTACC CCAGCAACCACATCGAGGTGGTGTCCGCCTATGGCCTGTG CGACGCCGCCAATCCTACCAACTGTATCGCCCCCGTGAAC GGCTACTTCATCAAGACCAACAACACCCGGATCGTGGACG AGTGGTCCTACACAGGCAGCAGCTTCTACGCCCCCGAGCC CATCACCTCCCTGAACACCAAATACGTGGCCCCCCAAGTG ACATACCAGAACATCTCCACCAACCTGCCCCCTCCACTGC TGGGAAATTCCACCGGCATCGACTTCCAGGACGAGCTGGA CGAGTTCTTCAAGAACGTGTCCACCTCCATCCCCAACTTCG GCAGCCTGACCCAGATCAACACCACTCTGCTGGACCTGAC CTACGAGATGCTGTCCCTGCAACAGGTCGTGAAAGCCCTG ${\tt AACGAGAGCTACATCGACCTGAAAGAGCTGGGGAACTAC}$ ACCTACTACAACAAGTGGCCTTGGTACATTTGGCTGGGCT TTATCGCCGGCCTGGTGGCCCTGTGCGTGTTCTTC ATCCTGTGCTGCACCGGCTGCGGCACCAATTGCATGGGCA AGCTGAAATGCAACCGGTGCTGCGACAGATACGAGGAAT ACGACCTGGAACCTCACAAAGTGCATGTGCAC

	Betacoronavirus Nucleic Acid Sequence	
		SEQ ID
Strain	Nucleic Acid Sequence	NO:

Betacoronavirus mRNA Sequences

gb|KJ156934.1|: 21405-25466 Middle East respiratory syndrome coronavirus isolate Riyadh_14_2013, spike protein (nucleotide) AUGAUACACUCAGUGUUUCUACUGAUGUUCUUGUUAAC ACCUACAGAAAGUUACGUUGAUGUAGGGCCAGAUUCUG UUAAGUCUGCUUGUAUUGAGGUUGAUAUACAACAGACC UUCUUUGAUAAAACUUGGCCUAGGCCAAUUGAUGUUUC UAAGGCUGACGGUAUUAUAUACCCUCAAGGCCGUACAU AUUCUAACAUAACUAUCACUUAUCAAGGUCUUUUUCCCU AUCAGGGAGACCAUGGUGAUAUGUAUGUUUACUCUGCA GGACAUGCUACAGGCACAACUCCACAAAAGUUGUUUGU AGCUAACUAUUCUCAGGACGUCAAACAGUUUGCUAAUG GGUUUGUCGUCCGUAUAGGAGCAGCUGCCAAUUCCACUG GCACUGUUAUUAUUAGCCCAUCUACCAGCGCUACUAUAC GAAAAAUUUACCCUGCUUUUAUGCUGGGUUCUUCAGUU GGUAAUUUCUCAGAUGGUAAAAUGGGCCGCUUCUUCAA UCAUACUCUAGUUCUUUUGCCCGAUGGAUGUGGCACUU UACUUAGAGCUUUUUAUUGUAUUCUAGAGCCUCGCUCU GGAAAUCAUUGUCCUGCUGGCAAUUCCUAUACUUCUUU UGCCACUUAUCACACUCCUGCAACAGAUUGUUCUGAUGG CAAUUACAAUCGUAAUGCCAGUCUGAACUCUUUUAAGG AGUAUUUUAAUUUACGUAACUGCACCUUUAUGUACACU UAUAACAUUACCGAAGAUGAGAUUUUUAGAGUGGUUUGG CAUUACACAAACUGCUCAAGGUGUUCACCUCUUCUCAUC UCGGUAUGUUGAUUUGUACGGCGGCAAUAUGUUUCAAU UUGCCACCUUGCCUGUUUAUGAUACUAUUAAGUAUUAU UCUAUCAUUCCUCACAGUAUUCGUUCUAUCCAAAGUGAU AGAAAAGCUUGGGCUGCCUUCUACGUAUAUAAACUUCA ACCGUUAACUUUCCUGUUGGAUUUUUUCUGUUGAUGGUU AUAUACGCAGAGCUAUAGACUGUGGUUUUAAUGAUUUG UCACAACUCCACUGCUCAUAUGAAUCCUUCGAUGUUGAA UCUGGAGUUUAUUCAGUUUCGUCUUUCGAAGCAAAACC UUCUGGCUCAGUUGUGGAACAGGCUGAAGGUGUUGAAU GUGAUUUUUCACCUCUUCUGUCUGGCACACCUCCUCAGG UUUAUAAUUUCAAGCGUUUGGUUUUUACCAAUUGCAAU UAUAAUCUUACCAAAUUGCUUUCACUUUUUUCUGUGAA UGAUUUUACUUGUAGUCAAAUAUCUCCAGCAGCAAUUG CUAGCAACUGUUAUUCUUCACUGAUUUUGGAUUAUUUU UCAUACCCACUUAGUAUGAAAUCCGAUCUCAGUGUUAG UUCUGCUGGUCCAAUAUCCCAGUUUAAUUAUAAACAGU CCUUUUCUAAUCCCACAUGUUUGAUCUUAGCGACUGUUC CUCAUAACCUUACUACUAUUACUAAGCCUCUUAAGUACA GCUAUAUUAACAAGUGCUCUCGUCUUCUUUCUGAUGAU CGUACUGAAGUACCUCAGUUAGUGAACGCUAAUCAAUA CUCACCCUGUGUAUCCAUUGUCCCAUCCACUGUGUGGGA AGACGGUGAUUAUUAUAGGAAACAACUAUCUCCACUUG AAGGUGGUGGCUGGCUUGUUGCUAGUGGCUCAACUGUU GCCAUGACUGAGCAAUUACAGAUGGGCUUUGGUAUUAC AGUUCAAUAUGGUACAGACACCAAUAGUGUUUGCCCCA AGCUUGAAUUUGCUAAUGACACAAAAAUUGCCUCUCAA UUAGGCAAUUGCGUGGAAUAUUCCCUCUAUGGUGUUUC GGGCCGUGGUGUUUUUCAGAAUUGCACAGCUGUAGGUG UUCGACAGCAGCGCUUUGUUUAUGAUGCGUACCAGAAU UUAGUUGGCUAUUAUUCUGAUGAUGGCAACUACUACUG UCUGCGUGCUUGUGUUAGUGUUCCUGUUUCUGUCAUCU AUGAUAAAGAAACUAAAACCCACGCUACUCUAUUUGGU AGUGUUGCAUGUGAACACAUUUCUUCUACCAUGUCUCA AUACUCCCGUUCUACGCGAUCAAUGCUUAAACGGCGAGA UUCUACAUAUGGCCCCCUUCAGACACCUGUUGGUUGUGU CCUAGGACUUGUUAAUUCCUCUUUGUUCGUAGAGGACU GCAAGUUGCCUCUCGGUCAAUCUCUCUGUGCUCUUCCUG ACACACCUAGUACUCUCACACCUCGCAGUGUGCGCUCUG UGCCAGGUGAAAUGCGCUUGGCAUCCAUUGCUUUUAAU CAUCCCAUUCAGGUUGAUCAACUUAAUAGUAGUUAUUU UAAAUUAAGUAUACCCACUAAUUUUUCCUUUGGUGUGA CUCAGGAGUACAUUCAGACAACCAUUCAGAAAGUUACU GUUGAUUGUAAACAGUACGUUUGCAAUGGUUUCCAGAA GUGUGAGCAAUUACUGCGCGAGUAUGGCCAGUUUUGUU CCAAAAUAAACCAGGCUCUCCAUGGUGCCAAUUUACGCC AGGAUGAUUCUGUACGUAAUUUGUUUGCGAGCGUGAAA AGCUCUCAAUCAUCUCCUAUCAUACCAGGUUUUGGAGGU GACUUUAAUUUGACACUUCUAGAACCUGUUUCUAUAUC UACUGGCAGUCGUAGUGCACGUAGUGCUAUUGAGGAUU UGCUAUUUGACAAAGUCACUAUAGCUGAUCCUGGUUAU

AUGCAAGGUUACGAUGAUUGUAUGCAGCAAGGUCCAGC

Betacoronavirus Nucleic Acid Sequence

SEQ ID

Strain Nucleic Acid Sequence

AUCAGCUCGUGAUCUUAUUUGUGCUCAAUAUGUGGCUG GUUAUAAAGUAUUACCUCCUCUUAUGGAUGUUAAUAUG GAAGCCGCGUAUACUUCAUCUUUGCUUGGCAGCAUAGCA GGUGUUGGCUGGACUGCUGGCUUAUCCUCCUUUGCUGCU AUUCCAUUUGCACAGAGUAUYUUUUAUAGGUUAAACGG UGUUGGCAUUACUCAACAGGUUCUUUCAGAGAACCAAA AGCUUAUUGCCAAUAAGUUUAAUCAGGCUCUGGGAGCU AUGCAAACAGGCUUCACUACAACUAAUGAAGCUUUUCG GAAGGUUCAGGAUGCUGUGAACAACAAUGCACAGGCUC UAUCCAAAUUAGCUAGCGAGCUAUCUAAUACUUUUGGU GCUAUUUCCGCCUCUAUUGGAGACAUCAUACAACGUCUU GAUGUUCUCGAACAGGACGCCCAAAUAGACAGACUUAU UAAUGGCCGUUUGACAACACUAAAUGCUUUUGUUGCAC AGCAGCUUGUUCGUUCCGAAUCAGCUGCUCUUUCCGCUC AAUUGGCUAAAGAUAAAGUCAAUGAGUGUGUCAAGGCA CAAUCCAAGCGUUCUGGAUUUUGCGGUCAAGGCACACAU AUAGUGUCCUUUGUUGUAAAUGCCCCUAAUGGCCUUUA CUUUAUGCAUGUUGGUUAUUACCCUAGCAACCACAUUG AGGUUGUUUCUGCUUAUGGUCUUUGCGAUGCAGCUAAC CCUACUAAUUGUAUAGCCCCUGUUAAUGGCUACUUUAU UAAAACUAAUAACACUAGGAUUGUUGAUGAGUGGUCAU AUACUGGCUCGUCCUUCUAUGCACCUGAGCCCAUCACCU CUCUUAAUACUAAGUAUGUUGCACCACAGGUGACAUACC AAAACAUUUCUACUAACCUCCCUCCUCCUCUUCUCGGCA AUUCCACCGGGAUUGACUUCCAAGAUGAGUUGGAUGAG UUUUUCAAAAAUGUUAGCACCAGUAUACCUAAUUUUGG UUCUCUAACACAGAUUAAUACUACAUUACUCGAUCUUAC CUACGAGAUGUUGUCUCUUCAACAAGUUGUUAAAGCCC UUAAUGAGUCUUACAUAGACCUUAAAGAGCUUGGCAAU UAUACUUAUUACAACAAAUGGCCGUGGUACAUUUGGCU UGGUUUCAUUGCUGGGCUUGUUGCCUUAGCUCUAUGCG UCUUCUUCAUACUGUGCUGCACUGGUUGUGGCACAAACU GUAUGGGAAAACUUAAGUGUAAUCGUUGUUGUGAUAGA UACGAGGAAUACGACCUCGAGCCGCAUAAGGUUCAUGU UCACUAA

MERS S FL SPIKE 2cEMC/2012 (XBaI change(U to G)) (nucleotide)

AUGAUACACUCAGUGUUUCUACUGAUGUUCUUGUUAAC ACCUACAGAAAGUUACGUUGAUGUAGGGCCAGAUUCUG UUAAGUCUGCUUGUAUUGAGGUUGAUAUACAACAGACU UUCUUUGAUAAAACUUGGCCUAGGCCAAUUGAUGUUUC UAAGGCUGACGGUAUUAUAUACCCUCAAGGCCGUACAU AUUCUAACAUAACUAUCACUUAUCAAGGUCUUUUUCCCU AUCAGGGAGACCAUGGUGAUAUGUAUGUUUACUCUGCA GGACAUGCUACAGGCACAACUCCACAAAAGUUGUUUGU AGCUAACUAUUCUCAGGACGUCAAACAGUUUGCUAAUG GGUUUGUCGUCCGUAUAGGAGCAGCUGCCAAUUCCACUG GCACUGUUAUUAUUAGCCCAUCUACCAGCGCUACUAUAC GAAAAAUUUACCCUGCUUUUAUGCUGGGUUCUUCAGUU GGUAAUUUCUCAGAUGGUAAAAUGGGCCGCUUCUUCAA UCAUACUCUAGUUCUUUUGCCCGAUGGAUGUGGCACUU UACUUAGAGCUUUUUAUUGUAUUCUGGAGCCUCGCUCU GGAAAUCAUUGUCCUGCUGGCAAUUCCUAUACUUCUUU UGCCACUUAUCACACUCCUGCAACAGAUUGUUCUGAUGG CAAUUACAAUCGUAAUGCCAGUCUGAACUCUUUUAAGG AGUAUUUUAAUUUACGUAACUGCACCUUUAUGUACACU UAUAACAUUACCGAAGAUGAGAUUUUUAGAGUGGUUUGG CAUUACACAAACUGCUCAAGGUGUUCACCUCUUCUCAUC UCGGUAUGUUGAUUUGUACGGCGGCAAUAUGUUUCAAU UUGCCACCUUGCCUGUUUAUGAUACUAUUAAGUAUUAU UCUAUCAUUCCUCACAGUAUUCGUUCUAUCCAAAGUGAU AGAAAAGCUUGGGCUGCCUUCUACGUAUAUAAACUUCA ACCGUUAACUUUCCUGUUGGAUUUUUUCUGUUGAUGGUU AUAUACGCAGAGCUAUAGACUGUGGUUUUUAAUGAUUUG UCACAACUCCACUGCUCAUAUGAAUCCUUCGAUGUUGAA UCUGGAGUUUAUUCAGUUUCGUCUUUCGAAGCAAAACC UUCUGGCUCAGUUGUGGAACAGGCUGAAGGUGUUGAAU GUGAUUUUUCACCUCUUCUGUCUGGCACACCUCCUCAGG UUUAUAAUUUCAAGCGUUUGGUUUUUACCAAUUGCAAU UAUAAUCUUACCAAAUUGCUUUCACUUUUUUUCUGUGAA UGAUUUUACUUGUAGUCAAAUAUCUCCAGCAGCAAUUG CUAGCAACUGUUAUUCUUCACUGAUUUUGGAUUACUUU UCAUACCCACUUAGUAUGAAAUCCGAUCUCAGUGUUAG UUCUGCUGGUCCAAUAUCCCAGUUUAAUUAUAAACAGU CCUUUUCUAAUCCCACAUGUUUGAUUUUAGCGACUGUUC CUCAUAACCUUACUACUAUUACUAAGCCUCUUAAGUACA

Betacoronavirus Nucleic Acid Sequence SEQ ID Strain Nucleic Acid Sequence NO:

GCUAUAUUAACAAGUGCUCUCGUCUUCUUUCUGAUGAU CGUACUGAAGUACCUCAGUUAGUGAACGCUAAUCAAUA CUCACCCUGUGUAUCCAUUGUCCCAUCCACUGUGUGGGA AGACGGUGAUUAUUAUAGGAAACAACUAUCUCCACUUG AAGGUGGUGGCUGGCUUGUUGCUAGUGGCUCAACUGUU GCCAUGACUGAGCAAUUACAGAUGGGCUUUGGUAUUAC AGUUCAAUAUGGUACAGACACCAAUAGUGUUUGCCCCA AGCUUGAAUUUGCUAAUGACACAAAAAUUGCCUCUCAA UUAGGCAAUUGCGUGGAAUAUUCCCUCUAUGGUGUUUC GGGCCGUGGUGUUUUUCAGAAUUGCACAGCUGUAGGUG UUCGACAGCAGCGCUUUGUUUAUGAUGCGUACCAGAAU UUAGUUGGCUAUUAUUCUGAUGAUGGCAACUACUACUG UUUGCGUGCUUGUGUUAGUGUUCCUGUUUCUGUCAUCU AUGAUAAAGAAACUAAAACCCACGCUACUCUAUUUGGU AGUGUUGCAUGUGAACACAUUUCUUCUACCAUGUCUCA AUACUCCCGUUCUACGCGAUCAAUGCUUAAACGGCGAGA UUCUACAUAUGGCCCCCUUCAGACACCUGUUGGUUGUGU CCUAGGACUUGUUAAUUCCUCUUUGUUCGUAGAGGACU GCAAGUUGCCUCUUGGUCAAUCUCUCUGUGCUCUUCCUG ACACACCUAGUACUCUCACACCUCGCAGUGUGCGCUCUG UUCCAGGUGAAAUGCGCUUGGCAUCCAUUGCUUUUAAU CAUCCUAUUCAGGUUGAUCAACUUAAUAGUAGUUAUUU UAAAUUAAGUAUACCCACUAAUUUUUCCUUUGGUGUGA CUCAGGAGUACAUUCAGACAACCAUUCAGAAAGUUACU GUUGAUUGUAAACAGUACGUUUGCAAUGGUUUCCAGAA GUGUGAGCAAUUACUGCGCGAGUAUGGCCAGUUUUGUU $\tt CCAAAAUAAACCAGGCUCUCCAUGGUGCCAAUUUACGCC$ AGGAUGAUUCUGUACGUAAUUUGUUUGCGAGCGUGAAA AGCUCUCAAUCAUCUCCUAUCAUACCAGGUUUUGGAGGU GACUUUAAUUUGACACUUCUGGAACCUGUUUCUAUAUC UACUGGCAGUCGUAGUGCACGUAGUGCUAUUGAGGAUU UGCUAUUUGACAAAGUCACUAUAGCUGAUCCUGGUUAU AUGCAAGGUUACGAUGAUUGCAUGCAGCAAGGUCCAGC AUCAGCUCGUGAUCUUAUUUGUGCUCAAUAUGUGGCUG GUUACAAAGUAUUACCUCCUCUUAUGGAUGUUAAUAUG GAAGCCGCGUAUACUUCAUCUUUGCUUGGCAGCAUAGCA GGUGUUGGCUGGACUGCUGGCUUAUCCUCCUUUGCUGCU AUUCCAUUUGCACAGAGUAUCUUUUAUAGGUUAAACGG UGUUGGCAUUACUCAACAGGUUCUUUCAGAGAACCAAA AGCUUAUUGCCAAUAAGUUUAAUCAGGCUCUGGGAGCU AUGCAAACAGGCUUCACUACAACUAAUGAAGCUUUUCA GAAGGUUCAGGAUGCUGUGAACAACAAUGCACAGGCUC UAUCCAAAUUAGCUAGCGAGCUAUCUAAUACUUUUGGU GCUAUUUCCGCCUCUAUUGGAGACAUCAUACAACGUCUU GAUGUUCUCGAACAGGACGCCCAAAUAGACAGACUUAU UAAUGGCCGUUUGACAACACUAAAUGCUUUUGUUGCAC AGCAGCUUGUUCGUUCCGAAUCAGCUGCUCUUUCCGCUC AAUUGGCUAAAGAUAAAGUCAAUGAGUGUGUCAAGGCA CAAUCCAAGCGUUCUGGAUUUUGCGGUCAAGGCACACAU AUAGUGUCCUUUGUUGUAAAUGCCCCUAAUGGCCUUUA CUUCAUGCAUGUUGGUUAUUACCCUAGCAACCACAUUGA GGUUGUUUCUGCUUAUGGUCUUUGCGAUGCAGCUAACC CUACUAAUUGUAUAGCCCCUGUUAAUGGCUACUUUAUU AAAACUAAUAACACUAGGAUUGUUGAUGAGUGGUCAUA UACUGGCUCGUCCUUCUAUGCACCUGAGCCCAUUACCUC CCUUAAUACUAAGUAUGUUGCACCACAGGUGACAUACCA AAACAUUUCUACUAACCUCCCUCCUCCUCUUCUCGGCAA UUCCACCGGGAUUGACUUCCAAGAUGAGUUGGAUGAGU UUUUCAAAAAUGUUAGCACCAGUAUACCUAAUUUUGGU UCCCUAACACAGAUUAAUACUACAUUACUCGAUCUUACC UACGAGAUGUUGUCUCUUCAACAAGUUGUUAAAGCCCU UAAUGAGUCUUACAUAGACCUUAAAGAGCUUGGCAAUU AUACUUAUUACAACAAAUGGCCGUGGUACAUUUGGCUU GGUUUCAUUGCUGGGCUUGUUGCCUUAGCUCUAUGCGU CUUCUUCAUACUGUGCUGCACUGGUUGUGGCACAAACUG UAUGGGAAAACUUAAGUGUAAUCGUUGUUGUGAUAGAU ACGAGGAAUACGACCUCGAGCCGCAUAAGGUUCAUGUUC ACUAA

Novel_MERS_S2_subunit_trimeric AUGAUCCACUCCGUGUUCCUCAUGUUCCUGUUGACC vaccine CCCACUGAGUCAGACUCCGCUGGGACAGUCC (nucleotide) CUGUGUGCGCUGACACUCCUAGCACUCUGACCCCA

AUGADCCACCGOGUCCOCCCCAGGGACAGUCC
CCCACUGAGUCAGACUGCAAGCUCCCGCUGGGACAGUCC
CUGUGUGCGCUGCCUGACACUCUGACCACUCUGACCCCA
CGCUCCGUGCGGUCGGUGCCUGGCGAAAUGCGGCUGGCC
UCCAUCGCCUUCAAUCACCCAAUCCAAGUGGAUCAGCUG
AAUAGCUCGUAUUUCAAGCUGUCCAUCCCCACGAACUUC

Betacoronavirus Nucleic Acid Sequence SEO ID

Strain Nucleic Acid Sequence

SEQ I

UCGUUCGGGGUCACCCAGGAGUACAUCCAGACCACAAUU CAGAAGGUCACCGUCGAUUGCAAGCAAUACGUGUGCAAC GGCUUCCAGAAGUGCGAGCAGCUGCUGAGAGAAUACGG GCAGUUUUGCAGCAAGAUCAACCAGGCGCUGCAUGGAGC UAACUUGCGCCAGGACGACUCCGUGCGCAACCUCUUUGC CUCUGUGAAGUCAUCCCAGUCCUCCCCAAUCAUCCCGGG AUUCGGAGGGACUUCAACCUGACCCUCCUGGAGCCCGU GUCGAUCAGCACCGGUAGCAGAUCGGCGCGCUCAGCCAU UGAAGAUCUUCUGUUCGACAAGGUCACCAUCGCCGAUCC GGGCUACAUGCAGGGAUACGACGACUGUAUGCAGCAGG GACCAGCCUCCGCGAGGGACCUCAUCUGCGCGCAAUACG UGGCCGGGUACAAAGUGCUGCCUCCUCUGAUGGAUGUG AACAUGGAGGCCGCUUAUACUUCGUCCCUGCUCGGCUCU AUCGCCGGCGUGGGGUGGACCGCCGGCCUGUCCUUC GCCGCUAUCCCCUUUGCACAAUCCAUUUUCUACCGGCUC AACGGCGUGGGCAUUACUCAACAAGUCCUGUCGGAGAAC CAGAAGUUGAUCGCAAACAAGUUCAAUCAGGCCCUGGG GGCCAUGCAGACUGGAUUCACUACGACUAACGAAGCGUU CCAGAAGGUCCAGGACGCUGUGAACAACAACGCCCAGGC GCUCUCAAAGCUGGCCUCCGAACUCAGCAACACCUUCGG AGCCAUCAGCGCAUCGAUCGGUGACAUAAUUCAGCGGCU GGACGUGCUGGAGCAGGACGCCCAGAUCGACCGCCUCAU CAACGGACGGCUGACCACCUUGAAUGCCUUCGUGGCACA ACAGCUGGUCCGGAGCGAAUCAGCGGCACUUUCCGCCCA ACUCGCCAAGGACAAAGUCAACGAAUGCGUGAAGGCCCA GUCCAAGAGGUCCGGUUUCUGCGGUCAAGGAACCCAUAU UGUGUCCUUCGUCGUGAACGCCCCAACGGUCUGUACUU UAUGCACGUCGGCUACUACCCGAGCAAUCAUAUCGAAGU GGUGUCCGCCUACGGCCUGUGCGAUGCCGCUAACCCCAC UAACUGUAUUGCCCCUGUGAACGGAUAUUUUAUUAAGA CCAACAACACCCGCAUUGUGGACGAAUGGUCAUACACCG GUUCGUCCUUCUACGCGCCCGAGCCCAUCACUUCACUGA ACACCAAAUACGUGGCUCCGCAAGUGACCUACCAGAACA UCUCCACCAAUUUGCCGCCGCCGCUGCUCGGAAACAGCA CCGGAAUUGAUUUCCAAGAUGAACUGGACGAAUUCUUC AAGAACGUGUCCACUUCCAUUCCCAACUUCGGAAGCCUG ACACAGAUCAACACCACCUUCUCGACCUGACCUACGAG AUGCUGAGCCUUCAACAAGUGGUCAAGGCCCUGAACGAG AGCUACAUCGACCUGAAGGAGCUGGGCAACUAUACCUAC UACAACAAGUGGCCGGACAAGAUUGAGGAGAUUCUGUC GAAAAUCUACCACAUUGAAAACGAGAUCGCCAGAAUCA AGAAGCUUAUCGGCGAAGCC

MERS_S0_Fulllength Spike protein (nucleotide, codon optimized)

AUGGAAACCCCUGCCCAGCUGCUGUUCCUGCUGCUG UGGCUGCCUGAUACCACCGGCAGCUAUGUGGACGUGGGC CCCGAUAGCGUGAAGUCCGCCUGUAUCGAAGUGGACAUC CAGCAGACCUUUUUCGACAAGACCUGGCCCAGACCCAUC GACGUGUCCAAGGCCGACGGCAUCAUCUAUCCACAAGGC CGGACCUACAGCAACAUCACCAUUACCUACCAGGGCCUG UUCCCAUAUCAAGGCGACCACGGCGAUAUGUACGUGUAC UCUGCCGGCCACGCCACCGGCACCACACCCCAGAAACUG UUCGUGGCCAACUACAGCCAGGACGUGAAGCAGUUCGCC AACGGCUUCGUCGUGCGAUUGGCGCCGCUGCCAAUAGC ACCGGCACAGUGAUCAUCAGCCCCAGCACCAGCGCCACC AUCCGGAAGAUCUACCCCGCCUUCAUGCUGGGCAGCUCC GUGGGCAAUUUCAGCGACGGCAAGAUGGGCCGGUUCUU CAACCACACCCUGGUGCUGCUGCCCGAUGGCUGUGGCAC ACUGCUGAGAGCCUUCUACUGCAUCCUGGAACCCAGAAG CGGCAACCACUGCCUGCCGGCAAUAGCUACACCAGCUU CGCCACCUACCACACCCGCCACCGAUUGCUCCGACGG CAACUACAACCGGAACGCCAGCCUGAACAGCUUCAAAGA GUACUUCAACCUGCGGAACUGCACCUUCAUGUACACCUA CAAUAUCACCGAGGACGAGAUCCUGGAAUGGUUCGGCA UCACCCAGACCGCCCAGGGCGUGCACCUGUUCAGCAGCA GAUACGUGGACCUGUACGGCGGCAACAUGUUCCAGUUU GCCACCCUGCCCGUGUACGACACCAUCAAGUACUACAGC AUCAUCCCCACAGCAUCCGGUCCAUCCAGAGCGACAGA AAAGCCUGGGCCGCCUUCUACGUGUACAAGCUGCAGCCC CUGACCUUCCUGCUGGACUUCAGCGUGGACGGCUACAUC AGACGGGCCAUCGACUGCGGCUUCAACGACCUGAGCCAG CUGCACUGCUCCUACGAGAGCUUCGACGUGGAAAGCGGC GUGUACAGCGUGUCCAGCUUCGAGGCCAAGCCUAGCGGC ${\tt AGCGUGGUGGAACAGGCUGAGGGCGUGGAAUGCGACUU}$ CAGCCCUCUGCUGAGCGGCACCCCUCCCCAGGUGUACAA CUUCAAGCGGCUGGUGUUCACCAACUGCAAUUACAACCU

TABLE 10-continued

Betacoronavirus Nucleic Acid Sequence

SEQ ID NO:

Strain Nucleic Acid Sequence

GACCAAGCUGCUGAGCCUGUUCUCCGUGAACGACUUCAC CUGUAGCCAGAUCAGCCCUGCCGCCAUUGCCAGCAACUG CUACAGCAGCCUGAUCCUGGACUACUUCAGCUACCCCCU GAGCAUGAAGUCCGAUCUGAGCGUGUCCUCCGCCGGACC CAUCAGCCAGUUCAACUACAAGCAGAGCUUCAGCAACCC UACCUGCCUGAUUCUGGCCACCGUGCCCCACAAUCUGAC CACCAUCACCAAGCCCCUGAAGUACAGCUACAUCAACAA GUGCAGCAGACUGCUGUCCGACGACCGGACCGAAGUGCC CCAGCUCGUGAACGCCAACCAGUACAGCCCCUGCGUGUC CAUCGUGCCCAGCACCGUGUGGGAGGACGGCGACUACUA CAGAAAGCAGCUGAGCCCCCUGGAAGGCGGCGGAUGGCU GGUGGCUUCUGGAAGCACAGUGGCCAUGACCGAGCAGCU GCAGAUGGGCUUUGGCAUCACCGUGCAGUACGGCACCGA CACCAACAGCGUGUGCCCCAAGCUGGAAUUCGCCAAUGA CACCAAGAUCGCCAGCCAGCUGGGAAACUGCGUGGAAUA CUCCCUGUAUGGCGUGUCCGGACGGGGCGUGUUCCAGAA UUGCACAGCAGUGGGAGUGCGGCAGCAGAGAUUCGUGU ACGAUGCCUACCAGAACCUCGUGGGCUACUACAGCGACG ACGGCAAUUACUACUGCCUGCGGGCCUGUGUGUCCGUGC CCGUGUCCGUGAUCUACGACAAAGAGACAAAGACCCACG CCACACUGUUCGGCUCCGUGGCCUGCGAGCACAUCAGCU CCACCAUGAGCCAGUACUCCCGCUCCACCCGGUCCAUGC UGAAGCGGAGAGAUAGCACCUACGGCCCCCUGCAGACAC CUGUGGGAUGUGUGCUGGGCCUCGUGAACAGCUCCCUGU UUGUGGAAGAUUGCAAGCUGCCCCUGGGCCAGAGCCUGU GUGCCCUGCCAGAUACCCCUAGCACCCUGACCCCUAGAA GCGUGCGCUCUGUGCCCGGCGAAAUGCGGCUGGCCUCUA UCGCCUUCAAUCACCCCAUCCAGGUGGACCAGCUGAACU CCAGCUACUUCAAGCUGAGCAUCCCCACCAACUUCAGCU UCGGCGUGACCCAGGAGUACAUCCAGACCACAAUCCAGA AAGUGACCGUGGACUGCAAGCAGUACGUGUGCAACGGC UUUCAGAAGUGCGAACAGCUGCUGCGCGAGUACGGCCAG UUCUGCAGCAAGAUCAACCAGGCCCUGCACGGCGCCAAC CUGAGACAGGAUGACAGCGUGCGGAACCUGUUCGCCAGC GUGAAAAGCAGCCAGUCCAGCCCCAUCAUCCCUGGCUUC GGCGGCGACUUUAACCUGACCCUGCUGGAACCUGUGUCC AUCAGCACCGGCUCCAGAAGCGCCAGAUCCGCCAUCGAG GACCUGCUGUUCGACAAAGUGACCAUUGCCGACCCCGGC UACAUGCAGGGCUACGACGAUUGCAUGCAGCAGGGCCCA GCCAGCGCCAGGAUCUGAUCUGUGCCCAGUAUGUGGCC GGCUACAAGGUGCUGCCCCCCUGAUGGACGUGAACAUG GAAGCCGCCUACACCUCCAGCCUGCUGGGCUCUAUUGCU GGCGUGGGAUGGACAGCCGGCCUGUCUAGCUUUGCCGCC AUCCCUUUCGCCCAGAGCAUCUUCUACCGGCUGAACGGC GUGGGCAUCACACAACAGGUGCUGAGCGAGAACCAGAA GCUGAUCGCCAACAAGUUUAACCAGGCACUGGGCGCCAU GCAGACCGGCUUCACCACCACCAACGAGGCCUUCAGAAA GGUGCAGGACGCCGUGAACAACAACGCCCAGGCUCUGAG CAAGCUGGCCUCCGAGCUGAGCAAUACCUUCGGCGCCAU CAGCGCCUCCAUCGGCGACAUCAUCCAGCGGCUGGACGU GCUGGAACAGGACGCCCAGAUCGACCGGCUGAUCAACGG CAGACUGACCACCUGAACGCCUUCGUGGCACAGCAGCU CGUGCGGAGCGAAUCUGCCGCUCUGUCUGCUCAGCUGGC CAAGGACAAAGUGAACGAGUGCGUGAAGGCCCAGUCCA AGCGGAGCGGCUUUUGUGGCCAGGGCACCCACAUCGUGU CCUUCGUCGUGAAUGCCCCCAACGGCCUGUACUUUAUGC ACGUGGGCUAUUACCCCAGCAACCACAUCGAGGUGGUGU CCGCCUAUGGCCUGUGCGACGCCGCCAAUCCUACCAACU GUAUCGCCCCGUGAACGGCUACUUCAUCAAGACCAACA ACACCCGGAUCGUGGACGAGUGGUCCUACACAGGCAGCA GCUUCUACGCCCCGAGCCCAUCACCUCCCUGAACACCA AAUACGUGGCCCCCAAGUGACAUACCAGAACAUCUCCA CCAACCUGCCCCUCCACUGCUGGGAAAUUCCACCGGCA UCGACUUCCAGGACGAGCUGGACGAGUUCUUCAAGAACG UGUCCACCUCCAUCCCCAACUUCGGCAGCCUGACCCAGA UCAACACCACUCUGCUGGACCUGACCUACGAGAUGCUGU CCCUGCAACAGGUCGUGAAAGCCCUGAACGAGAGCUACA UCGACCUGAAAGAGCUGGGGAACUACACCUACUACAACA AGUGGCCUUGGUACAUUUGGCUGGGCUUUAUCGCCGGCC UGGUGGCCCUGGCCCUGUGCGUGUUCUUCAUCCUGUGCU GCACCGGCUGCGGCACCAAUUGCAUGGGCAAGCUGAAAU GCAACCGGUGCUGCGACAGAUACGAGGAAUACGACCUGG AACCUCACAAAGUGCAUGUGCAC

TABLE 11

Betacoronavirus Amino Acid Sequences SEQ ID Strain Amino Acid Sequence NO:

gb|KJ156934.1|: 21405-25466 Middle East respiratory syndrome coronavirus isolate Riyadh_14_2013, spike protein (amino acid) MIHSVFLLMFLLTPTESYVDVGPDSVKSACIEVDIQQTFFDKT WPRPIDVSKADGIIYPQGRTYSNITITYQGLFPYQGDHGDMY $\verb|VYSAGHATGTTpQKLFVANYSQDVKQFANGFVVRIGAAANs||$ TGTVIISPSTSATIRKIYPAFMLGSSVGNFSDGKMGRFFNHTL VLLPDGCGTLLRAFYCILEPRSGNHCPAGNSYTSFATYHTPA TDCSDGNYNRNASLNSFKEYFNLRNCTFMYTYNITEDEILEW FGITQTAQGVHLFSSRYVDLYGGNMFQFATLPVYDTIKYYSII PHSIRSIQSDRKAWAAFYVYKLQPLTFLLDFSVDGYIRRAIDC GFNDLSQLHCSYESFDVESGVYSVSSFEAKPSGSVVEQAEGV ECDFSPLLSGTPPQVYNFKRLVFTNCNYNLTKLLSLFSVNDFt CSQISPAAIASNCYSSLILDYFSYPLSMKSDLSVSSAGPISQFN YKQSFSNPTCLILATVPHNLTTITKPLKYSYINKCSRLLSDDRT EVPQLVNANQYSPCVSIVPSTVWEDGDYYRKQLSPLEGGGW LVASGSTVAMTEQLQMGFGITVQYGTDTNSVCPKLEFANDT KIASQLGNCVEYSLYGVSGRGVFQNCTAVGVRQQRFVYDA YONLVGYYSDDGNYYCLRACVSVPVSVIYDKETKTHATLFG SVACEHISSTMSOYSRSTRSMLKRRDSTYGPLOTPVGCVLGL VNSSLFVEDCKLPLGQSLCALPDTPSTLTPRSVRSVPGEMRLA SIAFNHPIOVDOLNSSYFKLSIPTNFSFGVTOEYIOTTIOKVTV DCKQYVCNGFQKCEQLLREYGQFCSKINqALHGANLRQDDS VRNLFASVKSSQSSPIIPGFGGDFNLTLLEPVSISTGSRSARSAI EDLLFDKVTIADPGYMQGYDDCMQQGPASARDLICAQYVA GYKVLPPLMDVNMEAAYTSSLLGSIAGVGWTAGLSSFAAIPF AQSIFYRLNGVGITQQVLSENQKLIANKFNQALGAMQTGFTT TNEAFrKVQDAVNNNAQALSKLASELSNTFGAISASIGDIIQR LDVLEQDAQIDRLINGRLTTLNAFVAQQLVRSESAALSAQLA ${\tt KDKVNECVKAQSKRSGFCGQGTHIVSFVVNAPNGLYFMHV}$ GYYPSNHIEVVSAYGLCDAANPTNCIAPVNGYFIKTNNTRIV ${\tt DEWSYTGSSFYAPEPITSLNTKYVAPQVTYQNISTNLPPPLLG}$ NSTGIDFQDELDEFFKNVSTSIPNFGSLTQINTTLLDLTYEMLS LQQVVKALNESYIDLKELGNYTYYNKWPWYIWLGFIAGLVA LALCVFFILCCTGCGTNCMGKLKCNRCCDRYEEYDLEPHKV

MERS S FL SPIKE 2cEMC/2012 (XBaI change(T to G)) (amino acid) MIHSVFLLMFLLTPTESYVDVGPDSVKSACIEVDIQQTFFDKT WPRPIDVSKADGIIYPQGRTYSNITITYQGLFPYQGDHGDMY VYSAGHATGTTPQKLFVANYSQDVKQFANGFVVRIGAAANS TGTVIISPSTSATIRKIYPAFMLGSSVGNFSDGKMGRFFNHTL VLLPDGCGTLLRAFYCILEPRSGNHCPAGNSYTSFATYHTPA TDCSDGNYNRNASLNSFKEYFNLRNCTFMYTYNITEDEILEW FGITQTAQGVHLFSSRYVDLYGGNMFQFATLPVYDTIKYYSII PHSIRSIQSDRKAWAAFYVYKLQPLTFLLDFSVDGYIRRAIDC GFNDLSQLHCSYESFDVESGVYSVSSFEAKPSGSVVEQAEGV ECDFSPLLSGTPPQVYNFKRLVFTNCNYNLTKLLSLFSVNDFT CSQISPAAIASNCYSSLILDYFSYPLSMKSDLSVSSAGPISQFN YKQSFSNPTCLILATVPHNLTTITKPLKYSYINKCSRLLSDDRT EVPQLVNANQYSPCVSIVPSTVWEDGDYYRKQLSPLEGGGW LVASGSTVAMTEQLQMGFGITVQYGTDTNSVCPKLEFANDT KIASQLGNCVEYSLYGVSGRGVFQNCTAVGVRQQRFVYDA YONLVGYYSDDGNYYCLRACVSVPVSVIYDKETKTHATLFG SVACEHISSTMSQYSRSTRSMLKRRDSTYGPLQTPVGCVLGL VNSSLFVEDCKLPLGQSLCALPDTPSTLTPRSVRSVPGEMRLA SIAFNHPIQVDQLNSSYFKLSIPTNFSFGVTQEYIQTTIQKVTV DCKQYVCNGFQKCEQLLREYGQFCSKINQALHGANLRQDDS VRNLFASVKSSQSSPIIPGFGGDFNLTLLEPVSISTGSRSARSAI EDLLFDKVTIADPGYMQGYDDCMQQGPASARDLICAQYVA GYKVLPPLMDVNMEAAYTSSLLGSIAGVGWTAGLSSFAAIPF AQSIFYRLNGVGITQQVLSENQKLIANKFNQALGAMQTGFTT TNEAFOKVODAVNNNAOALSKLASELSNTFGAISASIGDIIOR LDVLEQDAQIDRLINGRLTTLNAFVAQQLVRSESAALSAQLA KDKVNECVKAOSKRSGFCGOGTHIVSFVVNAPNGLYFMHV GYYPSNHIEVVSAYGLCDAANPTNCIAPVNGYFIKTNNTRIV DEWSYTGSSFYAPEPITSLNTKYVAPQVTYQNISTNLPPPLLG NSTGIDFODELDEFFKNVSTSIPNFGSLTOINTTLLDLTYEMLS LOOVVKALNESYIDLKELGNYTYYNKWPWYIWLGFIAGLVA LALCVFFILCCTGCGTNCMGKLKCNRCCDRYEEYDLEPHKV

Novel_MERS_S2_subunit_trimeric vaccine (amino acid)

MIHSVFLLMFLLTPTESDCKLPLGQSLCALPDTPSTLTPRSVR SVPGEMRLASIAFNHPIQVDQLNSSYFKLSIPTNFSFGVTQEYI QTTIQKVTVDCKQYVCNGFQKCEQLLREYGGFCSKINQALH GANLRQDDSVRNLFASVKSSQSSPIIPGFGGDFNLTLLEPVSIS TGSRSARSAIEDLLFDKVTIADPGYMQGYDDCMQQGPASAR DLICAQYVAGYKVLPPLMDVMMEAAYTSSLLGSIAGVGWTA GLSSFAAIPFAQSIFYRLNGVGITQQVLSENQKLIANKFNQAL 26

25

TABLE 11-continued

Betacoronavirus Amino Acid Sequences

Strain Amino Acid Sequence

SEQ ID

GAMQTGFTTTNEAFQKVQDAVNNNAQALSKLASELSNTFG
AISASIGDIIQRLDVLEQDAQIDRLINGRLTTLNAFVAQQLVRS
ESAALSAQLAKDKVNECVKAQSKRSGFCGQGTHIVSFVVNA
PNGLYFMHVGYYPSNHIEVVSAYGLCDAANPTNCIAPVNGY
FIKTNNTRIVDEWSYTGSSFYAPEPITSLNTKYVAPQVTYQNI
STNLPPPLLGNSTGIDFQDELDEFFKNVSTSIPNFGSLTQINTTL
LDLTYEMLSLQQVVKALNESYIDLKELGNYTYYNKWPDKIE
EILSKIYHIENEIARIKKLIGEA

Isolate Al-Hasa_1_2013 (NCBI accession #AGN70962) MIHSVFLLMFLLTPTESYVDVGPDSVKSACIEVDIQQTFFDKT WPRPIDVSKADGIIYPQGRTYSNITITYQGLFPYQGDHGDMY VYSAGHATGTTPQKLFVANYSQDVKQFANGFVVRIGAAANS TGTVIISPSTSATIRKIYPAFMLGSSVGNFSDGKMGRFFNHTL VLLPDGCGTLLRAFYCILEPRSGNHCPAGNSYTSFATYHTPA TDCSDGNYNRNASLNSFKEYFNLRNCTFMYTYNITEDEILEW FGITQTAQGVHLFSSRYVDLYGGNMFQFATLPVYDTIKYYSII PHSIRSIQSDRKAWAAFYVYKLQPLTFLLDFSVDGYIRRAIDC GFNDLSQLHCSYESFDVESGVYSVSSFEAKPSGSVVEQAEGV ECDFSPLLSGTPPOVYNFKRLVFTNCNYNLTKLLSLFSVNDFT CSOISPAAIASNCYSSLILDYFSYPLSMKSDLSVSSAGPISOFN YKQSFSNPTCLILATVPHNLTTITKPLKYSYINKCSRLLSDDRT EVPOLVNANOYSPCVSIVPSTVWEDGDYYRKOLSPLEGGGW LVASGSTVAMTEQLQMGFGITVQYGTDTNSVCPKLEFANDT KIASQLGNCVEYSLYGVSGRGVFQNCTAVGVRQQRFVYDA YQNLVGYYSDDGNYYCLRACVSVPVSVIYDKETKTHATLFG SVACEHISSTMSQYSRSTRSMLKRRDSTYGPLQTPVGCVLGL VNSSLFVEDCKLPLGQSLCALPDTPSTLTPRSVRSVPGEMRLA SIAFNHPIOVDOLNSSYFKLSIPTNFSFGVTOEYIOTTIOKVTV ${\tt DCKQYVCNGFQKCEQLLREYGQFCSKINQALHGANLRQDDS}$ VRNLFASVKSSQSSPIIPGFGGDFNLTLLEPVSISTGSRSARSAI EDLLFDKVTIADPGYMQGYDDCMQQGPASARDLICAQYVA GYKVLPPLMDVNMEAAYTSSLLGSIAGVGWTAGLSSFAAIPF AQSIFYRLNGVGITQQVLSENQKLIANKFNQALGAMQTGFTT TNEAFRKVQDAVNNNAQALSKLASELSNTFGAISASIGDIIQR LDVLEQDAQIDRLINGRLTTLNAFVAQQLVRSESAALSAQLA KDKVNECVKAQSKRSGFCGQGTHIVSFVVNAPNGLYFMHV GYYPSNHIEVVSAYGLCDAANPTNCIAPVNGYFIKTNNTRIV DEWSYTGSSFYAPEPITSLNTKYVAPHVTYQNISTNLPPPLLG NSTGIDFQDELDEFFKNVSTSIPNFGSLTQINTTLLDLTYEMLS LQQVVKALNESYIDLKELGNYTYYNKWPWYIWLGFIAGLVA LALCVFFILCCTGCGTNCMGKLKCNRCCDRYEEYDLEPHKV

Middle East respiratory syndrome coronavirus S protein UniProtKB-R9UQ53 MIHSVFLLMFLLTPTESYVDVGPDSVKSACIEVDIQQTFFDKT WPRPIDVSKADGIIYPQGRTYSNITITYQGLFPYQGDHGDMY VYSAGHATGTTPQKLFVANYSQDVKQFANGFVVRIGAAANS TGTVIISPSTSATIRKIYPAFMLGSSVGNFSDGKMGRFFNHTL VLLPDGCGTLLRAFYCILEPRSGNHCPAGNSYTSFATYHTPA TDCSDGNYNRNASLNSFKEYFNLRNCTFMYTYNITEDEILEW FGITQTAQGVHLFSSRYVDLYGGNMFQFATLPVYDTIKYYSII PHSIRSIQSDRKAWAAFYVYKLQPLTFLLDFSVDGYIRRAIDC GFNDLSQLHCSYESFDVESGVYSVSSFEAKPSGSVVEQAEGV ECDFSPLLSGTPPQVYNFKRLVFTNCNYNLTKLLSLFSVNDFT CSQISPAAIASNCYSSLILDYFSYPLSMKSDLSVSSAGPISQFN YKQSFSNPTCLILATVPHNLTTITKPLKYSYINKCSRLLSDDRT EVPQLVNANQYSPCVSIVPSTVWEDGDYYRKQLSPLEGGGW LVASGSTVAMTEOLOMGFGITVOYGTDTNSVCPKLEFANDT KIASQLGNCVEYSLYGVSGRGVFQNCTAVGVRQQRFVYDA YQNLVGYYSDDGNYYCLRACVSVPVSVIYDKETKTHATLFG SVACEHISSTMSQYSRSTRSMLKRRDSTYGPLQTPVGCVLGL VNSSLFVEDCKLPLGQSLCALPDTPSTLTPRSVRSVPGEMRLA SIAFNHPIOVDOLNSSYFKLSIPTNFSFGVTOEYIOTTIOKVTV ${\tt DCKQYVCNGFQKCEQLLREYGQFCSKINQALHGANLRQDDS}$ VRNLFASVKSSQSSPIIPGFGGDFNLTLLEPVSISTGSRSARSAI EDLLFDKVTIADPGYMQGYDDCMQQGPASARDLICAQYVA GYKVLPPLMDVNMEAAYTSSLLGSIAGVGWTAGLSSFAAIPF $\verb"AQSIFYRLNGVGITQQVLSENQKLIANKFNQALGAMQTGFTT"$ TNEAFRKVQDAVNNNAQALSKLASELSNTFGAISASIGDIIQR $\verb|LDVLEQDAQIDRLINGRLTTLNAFVAQQLVRSESAALSAQLA|$ KDKVNECVKAQSKRSGFCGQGTHIVSFVVNAPNGLYFMHV GYYPSNHIEVVSAYGLCDAANPTNCIAPVNGYFIKTNNTRIV ${\tt DEWSYTGSSFYAPEPITSLNTKYVAPHVTYQNISTNLPPPLLG}$ NSTGIDFQDELDEFFKNVSTSIPNFGSLTQINTTLLDLTYEMLS LQQVVKALNESYIDLKELGNYTYYNKWPWYIWLGFIAGLVA

27

TABLE 11-continued

TABLE 11-continued			
	Betacoronavirus Amino Acid Sequences		
Strain	Amino Acid Sequence	SEQ II NO:	
	LALCVFFILCCTGCGTNCMGKLKCNRCCDRYEEYDLEPHKV		
Human SARS coronavirus (SARS-CoV) (Severe acute respiratory syndrome coronavirus) Spike glycoprotein UniProtKB- P59594	MFIFLLFLTLTSGSDLDRCTTFDDVQAPNYTQHTSSMRGVYY PDEIFRSDTLYLTQDLFLPFYSNVTGFHTINHTFGNPV1PFKDG IYFAATEKSNVVRGWVFGSTMNNKSQSVIIINNSTNVVIRAC NFELCDNPFFAVSKPMGTQTHTMIFDNAFNCTFEYISDAFSLD VSEKSGNFKHLREFVFKNKDGFLYVYKGYQPIDVVRDLPSGF NTLKPIFKLPLGINITMFRAILTAFSPAQDIWGTSAAAYFVGYL KPTTFMLKYDENGTITDAVDCSQNPLAELKCSVKSFEIDKGI YQTSNFRVPSGDVVRFPNITNLCPFGEVFNATKFPSVYAWE RKKISNCVADYSVLYNSTFFSTFKCYGYSATKLNDLCFSNVY ADSFVVKGDDVRQIAPGQTGVIADYNYKLPDDFMGCVLAW NTRNIDATSTGNYNYKYRYLRHCKLRPFERDISNVPFSPDGK PCTPPALNCYWPLNDYGFYTTTGIGYQPYRVVVLSFELLNAP ATVCGFKLSTDLIKNQCVNFNFNGLTGTGVLTPSSKRFQPFQ QFGRDVSDFTDSVRDPKTSEILDISPCSFGGVSVITPGTNASSE VAVLYQDVNCTDVSTATHADQLTPAWRIYSTGNNVPQTQAG CLIGAEHVDTSYECDIPIGAGICASYHTVSLLRSTSQKSIVAYT MSLGADSSIAYSNNTIAIPTNFSISITTEVMPVSMAKTSVDCN MYICGDSTECANLLLQYGSFCTQLNRALSGIAAEQDRNTREV FAQVKQMYKTPTLKYFGGFNFSQILPDPLKPTKRSFIEDLLFN KVTLADAGFMKQYGECLGDINARDLICAQKFNGLTVLPPLL TDDMIAAYTAALVSGTATAGWTFGAGAALQIPFAMQMAYR FNGIGVTQNVLYENQKQIANQFNKAISQIQESLTTTSTALGKL QDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAE VQIDRLITGRLQSLQTTVTQQLTRAAEIRASANLAATKMSEC VLGQSKRVDFCGKGYHLMSFPQAAPHGVVFLHVTYVPSQER NFTTAPAICHEGKAYFPREGVFVNGTSWFITQRNFFSPQIITT DNTFVSGNCDVVIGIINNTVYDPLQPELDSFKEELDKYFKNH TSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQE LGKYEQYIKWPWYVWLGFIAGLIAIVWVTILLCCMTSCCSCL	29	
Human coronavirus OC43 (HCoV-OC43) Spike glycoprotein UniProtKB- P36334	MFLILLISLPTAFAVIGDLKCTSDNINDKDTGPPPISTDTVDVT NGLGTYYVLDRVYLNTTLFLNGYYPTSGSTYRNMALKGSVL LSRLWFKPPFLSDFINGIFAKVKNTKVIKDRVMYSEFPAITIGS TFVNTSYSVVVQPRTINSTQDGDNKLQGLLEVSVCQYNMCE YPQTICHPNLGHHRKELWHLDTGVVSCLYKRNFTYDVNAD YLYFHFYQEGGTFYAYFTDTGVVTKFLFNVYLGMALSHYYV MPLTCNSKLTLEYWVTPLTSRQYLLAFNQDGIIFNAEDCMSD FMSEIKCKTQSIAPPTGVYELNGYTVQPIADVYRRKPNLPNC NIEAWLNDKSVPSPLNWERKTFSNCNFNMSSLMSFIQADSFT CNNIDAAKIYGMCFSSITIDKFAIPNGRKVDLQLGNLGYLQSF NYRIDTTATSCQLYYNLPAANVSVSRFNPSTWNKRFGFIEDS VFKPRPAGVLTNHDVVYAQHCFKAPKNFCPCKLMGSCVGSG PGKNNGIGTCPAGTNYLTCDNLCTPDPITFTGTYKCPQTKSL VGIGEHCSGLAVKSDYCGGNSCTCRPQAFLGWSADSCLQGD KCNIFANFILHDVNSGLTCSTDLQKANTDIILGVCVNYDLYGI LGQGIFVEVNATYYNSWQNLLYDSNGNLYGFRDYIINRTFMI RSCYSGRVSAAFHANSSEPALLFRNIKCNYVFNNSLTRQLQPI NYFDSYLGCVVNAYNSTAISVQTCDLTVGSGYCVDYSKNRR SRGAITTGYRFTNFEPFTVNSVNDSLEPVGGLYEIQIPSEFTIG NMVEFIQTSSPKVTIDCAAFVCGDYAACKSQLVEYGSFCDNI NAILTEVNELLDTTQLQVANSLNNGVTLSTKLKDGVFNVD DINFSPVLGCLGSECSKASSRSAIEDLLFDKVKLSDVGFVEAY NNCTGGAEIRDLICVQSYKGIKVLPPLLSENQISGYTLAATSA SLFPPWTAAAGVPFYLNVQYRINGLGVTMDVLSQNQKLIAN AFNNALYAIQEGFDATNSALVKIQAVVNANAEALNNLLQQL SNRFGAISASLQEILSRLDALEAEAQIDRLINGRLTALNAYVS QQLSDSTLVKFSAAQAMEKVNECVKSQSSRINFCGNGHHIIS LVQNAPYGLYFIHFSYVPTKYVTARVSPGLCIAGDRGIAPKS GYFVNVNNTWMYTGSGYYYPEPITENNVVVMSTCAVNYTK APYVMLNTSIPNLPDFKEELDQWFKNQTSVAPDLSLDYINVT FLDLQVEMNRLQEAIKVLNQSYINLKDIGTYEYYVKWPWVV WLLICLAGVAMLVLLFFICCCTGCGTSCFKKCGGCCDDYTG	30	
Human coronavirus HKU1 (isolate N5) (HCoV- HKU1) Spike glycoprotein	MFLIIFILPTTLAVIGDFNCTNSFINDYNKTIPRISEDVVDVSLG LGTYYVLNRVYLNTTLLFTGYFFKSGANFRDLALKGSIYLST LWYKPPFLSDFNNGIFSKVKNTKLYVNNTLYSEFSTIVIGSVF VNTSYTIVVQPHNGILEITACQYTMCEYPHTVCKSKGSIRNES WHIDSSEPLCLFKKNFTYNVSADWLYFHFYQERGYFYAYYA DVGMPTTFLFSLYLGTILSHYYVMPLTCNAISSNTDNETLEY	31	

Bet	cacoronavirus Amino Acid Sequences	
Strain	Amino Acid Sequence	SEQ ID NO:
UniProtKB- QOZME7	WVTPLSRRQYLLNFDEHGVITNAVDCSSSFLSEIQCKTQSFAP NTGVYDLSGFTVKPVATVYRRIPNLPDCDIDNWLNNVSVPSP LNWERRIFSNCNFNLSTLLRLVHVDSFSCNNLDKSKIFGSCFN SITVDKFAIPNRRRDDLQLGSSGFLQSSNYKIDISSSSCQLYYS LPLVNVTINNFNPSSWNRRYGFGSFNLSSYDVVYSDHCFSVN SDFCPCADPSVVNSCAKSKPPSAICPAGTKYRHCDLDTTLYV KNWCRCSCLPDPISTYSPNTCPQKKVVVGIGEHCPGLGINEE KCGTQLNHSSCFCSPDAFLGWSFDSCISNNRCNIFSNFIFNGIN SGTTCSNDLLYSNTEISTGVCVNYDLYGITGQGIFKEVSAAY YNNWQNLLYDSNGNIIGFKDPLTNKTYTILPCYSGRVSAAFY QNSSSPALLYRNLKCSYVLNNISFISQPFYFDSYLGCVLNAVN LTSYSVSSCDLRMGSGFCIDYALPSSRKKRGISSPYRPVTFEP FNVSFVNDSVETVGGLFEIQIPTNFTIAGHEEFIQTSSPKVTIDC SAFVCSNYAACHDLLSEYGTFCDNINSILNEVNDLLDITQLQV ANALMQGVTLSSNLNTNLHSDVDNIDFKSLLGCLGSQCGSSS RSLLEDLFNKVKLSDVGFVEAYNNCTGGSEIRDLLCVQSFN GIKVLPPILSETQISGYTTAATVAAMFPPWSAAAGVPFSLNVQ YRINGLGVTMDVLNKNQKLIANAFNKALLSIQNGFTATNSAL AKIQSVVNANAQALNSLLQQLFNKFGAISSSLQEILSRLDNLE AQVQIDRLINGRTALNAYVSQQLSDITLIKAGASRAIEKVNE CVKSQSPRINFCGMGNHILSLVQNAPYGLLFIHFSYKFTSFKT VLVSPGLCLSGDRGIAPKQGYFIKQNDSWMFTGSSYYYPEPIS DKNVVFMNSCSVNFTKAPFIYLNNSIPNLSDFEAELSLWFKN HTSIAPNLTFNSHINATFLDLYYEMNVIQESIKSLNSSFINLKEI GTYEMYVKWPWYIWLLIVILFIIFLMILFFICCCTGCGSACFSK CHNCCDEYGGHNDFVIKASHDD	
Novel_SARS_S2	MFIFLLFLTLTSGSDLDRALSGIAAEQDRNTREVFAQVKQMY KTPTLKYFGGFNFSQILPDPLKPTKRSFIEDLLFNKVTLADAG FMKQYGECLGDINARDLICAQKFNGLTVLPPLLTDDMIAAYT AALVSGTATAGWTFGAGAALQIPFAMQMAYRFNGIGVTQN VLYENQKQIANQFNKAISQIQESLTTTSTALGKLQDVVNQNA QALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITG RLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRV DFCGKGYHLMSFPQAAPHGVVFLHVTYVPSQERNFTTAPAIC HEGKAYFPREGVFVFNGTSWFITQRNFFSPQIITTDNTFVSGN CDVVIGIINNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLG DISGINASVVNIQKEIDRLMEVAKNLNESLIDLQELGKYEQYI KWPWYVWLGFIAGLIAIVMVTILLCCMTSCCSCLKGACSCGS CCKFDEDDSEPVLKGVKLHYT	32
Novel_MERS_S2	MIHSVFLLMFLLTPTESDCKLPLGQSLCALPDTPSTLTPRSVR SVPGEMRLASIAFNHPIQVDQLNSSYFKLSIPTNFSFGVTQEYI QTTIQKVTVDCKQYVCNGFQKCEQLLREYGQFCSKINQALH GANLRQDDSVRNLFASVKSSQSSPIIPGFGGDFNLTLLEPVSIS TGSRSARSAIEDLLFDKVTIADPGYMQGYDDCMQQGPASAR DLICAQYVAGYKVLPPLMDVNMEAAYTSSLLGSIAGVGWTA GLSSFAAIPFAQSIFYRLNGYGITQQVLSENQKLIANKFNQAL GAMQTGFTTTNEAFQKVQDAVNNNAQALSKLASELSNTFG AISASIGDIIQRLDVLEQDAQIDRLINGRLTTLNAFVAQQLVRS ESAALSAQLAKDKVNECVKAQSKRSGFCGQGTHIVSFVVNA PNGLYFMHYGYYPSNHIEVVSAYGLCDAANPTNCIAPVNGY FIKTNNTRIVDEWSYTGSSFYAPEPITSLNTKYVAPQVTYQNI STNLPPPLLGNSTGIDFQDELDEFFKNVSTSIPNFGSLTQINTTL LDLTYEMLSLQQVVKALNESYIDLKELGNYTYYNKWP	33
Novel_Trimeric_SARS_S2	MFIFLLFLTLTSGSDLDRALSGIAAEQDRNTREVFAQVKQMY KTPTLKYFGGFNFSQILPDPLKPTKRSFIEDLLFNKVTLADAG FMKQYGECLGDINARDLICAQKFNGLTVLPPLLTDDMIAAYT AALVSGTATAGWTFGAGAALQIPFAMQMAYRFNGIGVTQN VLYENQKQIANQFNKAISQIQESLTTTSTALGKLQDVVNQNA QALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITG RLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRV DFGGKGYHLMSFPQAAPHGVVFLHVTYVPSQERNFTTAPAIC HEGKAYFPREGVFVFNGTSWFITQRNFFSPQIITTDNTFVSGN CDVVIGIINNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLG DISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYI KWPWYVWLGFIAGLIAIVMVTILLCCMTSCCSCLKGACSCGS CCKFDEDDSEPVLKGVKLHYT	34

TABLE 12

	1ABLE 12							
F	Full-length Spike Glycoprotein Amino Acid Sequences (Homo sapiens strains)							
GenBank Accession	Country	Collection Date	Release Date	Virus Name				
AFY13307	United	2012 Sep. 11	2012 Dec. 5	Betacoronavirus England 1,				
AFS88936	Kingdom	2012 Jun. 13	2012 Sep. 27	complete genome Human betacoronavirus 2c				
AGG22542	United	2012 Sep. 19	2013 Feb. 27	EMC/2012, complete genome Human betacoronavirus 2c England-				
AHY21469	Kingdom Jordan	2012	2014 May 4	Qatar/2012, complete genome Human betacoronavirus 2c Jordan- N3/2012 isolate MG167, complete				
AGH58717	Jordan	2012 April	2013 Mar. 25	genome Human betacoronavirus 2c Jordan-				
AGV08444	Saudi Arabia	2013 May 7	2013 Sep. 17	N3/2012, complete genome Middle East respiratory syndrome coronavirus isolate Al-				
AGV08546	Saudi Arabia	2013 May 11	2013 Sep. 17	Hasa_12_2013, complete genome Middle East respiratory syndrome coronavirus isolate Al-				
AGV08535	Saudi Arabia	2013 May 12	2013 Sep. 17	Hasa_15_2013, complete genome Middle East respiratory syndrome coronavirus isolate Al-				
AGV08558	Saudi Arabia	2013 May 15	2013 Sep. 17	Hasa_16_2013, complete genome Middle East respiratory syndrome coronavirus isolate Al-				
AGV08573	Saudi Arabia	2013 May 23	2013 Sep. 17	Hasa_17_2013, complete genome Middle East respiratory syndrome coronavirus isolate Al-				
AGV08480	Saudi Arabia	2013 May 23	2013 Sep. 17	Hasa_18_2013, complete genome Middle East respiratory syndrome coronavirus isolate Al-				
AGN70962	Saudi Arabia	2013 May 9	2013 Jun. 10	Hasa_19_2013, complete genome Middle East respiratory syndrome coronavirus isolate Al-				
AGV08492	Saudi Arabia	2013 May 30	2013 Sep. 17	Hasa_1_2013, complete genome Middle East respiratory syndrome coronavirus isolate Al-				
AHI48517	Saudi Arabia	2013 May 2	2014 Feb. 6	Hasa_21_2013, complete genome Middle East respiratory syndrome coronavirus isolate Al-				
AGN70951	Saudi Arabia	2013 Apr. 21	2013 Jun. 10	Hasa_25_2013, complete genome Middle East respiratory syndrome coronavirus isolate Al-				
AGN70973	Saudi Arabia	2013 Apr. 22	2013 Jun. 10	Hasa_2_2013, complete genome Middle East respiratory syndrome coronavirus isolate Al-				
AGN70929	Saudi Arabia	2013 May 1	2013 Jun. 10	Hasa_3_2013, complete genome Middle East respiratory syndrome coronavirus isolate Al-				
AGV08408	Saudi Arabia	2012 Jun. 19	2013 Sep. 17	Hasa_4_2013, complete genome Middle East respiratory syndrome coronavirus isolate Bisha_1_2012,				
AGV08467	Saudi Arabia	2013 May 13	2013 Sep. 17	complete genome Middle East respiratory syndrome coronavirus isolate				
AID50418	United Kingdom	2013 Feb. 10	2014 Jun. 18	Buraidah_1_2013, complete genome Middle East respiratory syndrome coronavirus isolate England/2/2013,				
AJD81451	United Kingdom	2013 Feb. 10	2015 Jan. 18	complete genome Middle East respiratory syndrome coronavirus isolate England/3/2013,				
AJD81440	United Kingdom	2013 Feb. 13	2015 Jan. 18	complete genome Middle East respiratory syndrome coronavirus isolate England/4/2013,				
AHB33326	France	2013 May 7	2013 Dec. 7	complete genome Middle East respiratory syndrome coronavirus isolate FRA/UAE,				
AIZ48760	USA	2014 June	2014 Dec. 14	complete genome Middle East respiratory syndrome coronavirus isolate Florida/USA- 2_Saudi Arabia_2014, complete				
AGV08455	Saudi Arabia	2013 Jun. 4	2013 Sep. 17	genome Middle East respiratory syndrome coronavirus isolate Hafr-Al-				
AHI48561	Saudi Arabia	2013 Aug. 5	2014 Feb. 6	Batin_1_2013, complete genome Middle East respiratory syndrome coronavirus isolate Hafr-Al- Batin_2_2013, complete genome				

TABLE 12-continued

F	Full-length S	pike Glycoprotein	Amino Acid Se	quences (Homo sapiens strains)
GenBank Accession	Country	Collection Date	Release Date	Virus Name
AHI48539	Saudi Arabia	2013 Aug. 28	2014 Feb. 6	Middle East respiratory syndrome coronavirus isolate Hafr-Al-
A 17774417	F	2012 A 26	2015 May 10	Batin_6_2013, complete genome
AIZ74417	France	2013 Apr. 26	2015 Mar. 10	Middle East respiratory syndrome coronavirus isolate Hu-France
				(UAE) - FRA1_1627- 2013_BAL_Sanger, complete
				genome
AIZ74433	France	2013 May 7	2015 Mar. 10	Middle East respiratory syndrome coronavirus isolate Hu-France -
				FRA2_130569-2013_IS_HTS,
AIZ74439	France	2013 May 7	2015 Mar. 10	complete genome Middle East respiratory syndrome
		•		coronavirus isolate Hu-France -
				FRA2_130569-2013_InSpu_Sanger, complete genome
AIZ74450	France	2013 May 7	2015 Mar. 10	Middle East respiratory syndrome coronavirus isolate Hu-France -
				FRA2_130569-2013_Isolate_Sanger,
AKK52602	Saudi	2015 Feb. 10	2015 Jun. 8	complete genome Middle East respiratory syndrome
	Arabia			coronavirus isolate
				Hu/Riyadh_KSA_2959_2015, complete genome
AKK52612	Saudi Arabia	2015 Mar. 1	2015 Jun. 8	Middle East respiratory syndrome coronavirus isolate
	Alabia			Hu/Riyadh_KSA_4050_2015,
AHN10812	Saudi	2013 Nov. 6	2014 Mar. 24	complete genome Middle East respiratory syndrome
11111110012	Arabia	2010 11011 0	201111111121	coronavirus isolate Jeddah_1_2013,
AID55071	Saudi	2014 Apr. 21	2014 Nov. 12	complete genome Middle East respiratory syndrome
	Arabia	•		coronavirus isolate
				Jeddah_C10306/KSA/2014-04-20, complete genome
AID55066	Saudi Arabia	2014	2014 Nov. 12	Middle East respiratory syndrome coronavirus isolate
	Alabia			Jeddah_C7149/KSA/2014-04-05,
AID55067	Saudi	2014	2014 Nov. 12	complete genome Middle East respiratory syndrome
	Arabia			coronavirus isolate
				Jeddah_C7569/KSA/2014-04-03, complete genome
AID55068	Saudi	2014 Apr. 7	2014 Nov. 12	Middle East respiratory syndrome
	Arabia			coronavirus isolate Jeddah_C7770/KSA/2014-04-07,
				complete genome
AID55069	Saudi Arabia	2014 Apr. 12	2014 Nov. 12	Middle East respiratory syndrome coronavirus isolate
				Jeddah_C8826/KSA/2014-04-12,
AID55070	Saudi	2014 Apr. 14	2014 Nov. 12	complete genome Middle East respiratory syndrome
	Arabia			coronavirus isolate
				Jeddah_C9055/KSA/2014-04-14, complete genome
AHE78108	Saudi	2013 Nov. 5	2014 May 1	Middle East respiratory syndrome
	Arabia			coronavirus isolate MERS-CoV- Jeddah-human-1, complete genome
AKL59401	South	2015 May 20	2015 Jun. 9	Middle East respiratory syndrome
	Korea			coronavirus isolate MERS- CoV/KOR/KNIH/002_05_2015,
				complete genome
ALD51904	Thailand	2015 Jun. 17	2015 Jul. 7	Middle East respiratory syndrome coronavirus isolate MERS-
				CoV/THA/CU/17_06_2015,
AID55072	Saudi	2014 Apr. 15	2014 Nov. 12	complete genome Middle East respiratory syndrome
	Arabia	201.1.pn 10		coronavirus isolate
				Makkah_C9355/KSA/Makkah/2014- 04-15, complete genome
AHC74088	Qatar	2013 Oct. 13	2013 Dec. 23	Middle East respiratory syndrome
				coronavirus isolate Qatar3, complete genome
				<i>3</i>

TABLE 12-continued

Full-length Spike Glycoprotein Amino Acid Sequences (Homo sapiens strains)								
GenBank Accession	Country	Collection Date	Release Date	Virus Name				
AHC74098	Qatar	2013 Oct. 17	2013 Dec. 23	Middle East respiratory syndrome coronavirus isolate Qatar4, complete genome				
AHI48572	Saudi Arabia	2013 Aug. 15	2014 Feb. 6	Middle East respiratory syndrome coronavirus isolate Riyadh_14_2013, complete genome				
AGV08379	Saudi Arabia	2012 Oct. 23	2013 Sep. 17	Middle East respiratory syndrome coronavirus isolate Riyadh_1_2012, complete genome				
AID55073	Saudi Arabia	2014 Apr. 22	2014 Nov. 12	Middle East respiratory syndrome coronavirus isolate Riyadh 2014KSA_683/KSA/2014, complete genome				
AGV08584	Saudi Arabia	2012 Oct. 30	2013 Sep. 17	Middle East respiratory syndrome coronavirus isolate Riyadh_2_2012, complete genome				
AGV08390	Saudi Arabia	2013 Feb. 5	2013 Sep. 17	Middle East respiratory syndrome coronavirus isolate Riyadh_3_2013, complete genome				
AHI48605	Saudi Arabia	2013 Mar. 1	2014 Feb. 6	Middle East respiratory syndrome coronavirus isolate Riyadh_4_2013, complete genome				
AHI48583	Saudi Arabia	2013 Jul. 2	2014 Feb. 6	Middle East respiratory syndrome coronavirus isolate Riyadh_5_2013, complete genome				
AHI48528	Saudi Arabia	2013 Jul. 17	2014 Feb. 6	Middle East respiratory syndrome coronavirus isolate Riyadh_9_2013, complete genome				
AHI48594	Saudi Arabia	2013 Jun. 12	2014 Feb. 6	Middle East respiratory syndrome coronavirus isolate Taif_1_2013, complete genome				
AHI48550	Saudi Arabia	2013 Jun. 12	2014 Feb. 6	Middle East respiratory syndrome coronavirus isolate Wadi-Ad-Dawasir_1_2013, complete genome				
AIY60558	United Arab Emirates	2014 Mar. 7	2014 Dec. 6	Middle East respiratory syndrome coronavirus strain Abu Dhabi/Gayathi_UAE_2_2014, complete genome				
AIY60538	United Arab Emirates	2014 Apr. 10	2014 Dec. 6	Middle East respiratory syndrome coronavirus strain Abu Dhabi_UAE_16_2014, complete genome				
AIY60528	United Arab Emirates	2014 Apr. 10	2014 Dec. 6	Middle East respiratory syndrome coronavirus strain Abu Dhabi_UAE_18_2014, complete genome				
AIY60588	United Arab Emirates	2014 Apr. 13	2014 Dec. 6	Middle East respiratory syndrome coronavirus strain Abu Dhabi_UAE_26_2014, complete				
AIY60548	United Arab Emirates	2014 Apr. 19	2014 Dec. 6	genome Middle East respiratory syndrome coronavirus strain Abu Dhabi_UAE_30_2014, complete				
AIY60568	United Arab Emirates	2014 Apr. 17	2014 Dec. 6	genome Middle East respiratory syndrome coronavirus strain Abu Dhabi_UAE_33_2014, complete				
AIY60518	United Arab Emirates	2014 Apr. 7	2014 Dec. 6	genome Middle East respiratory syndrome coronavirus strain Abu Dhabi_UAE_8_2014, complete				
AIY60578	United Arab Emirates	2013 Nov. 15	2014 Dec. 6	genome Middle East respiratory syndrome coronavirus strain Abu Dhabi_UAE_9_2013, complete				
AKJ80137	China	2015 May 27	2015 Jun. 5	genome Middle East respiratory syndrome coronavirus strain ChinaGD01,				
AHZ64057	USA	2014 May 10	2014 May 14	complete genome Middle East respiratory syndrome coronavirus strain Florida/USA- 2_Saudi Arabia_2014, complete				
AKM76229	Oman	2013 Oct. 28	2015 Jun. 23	genome Middle East respiratory syndrome coronavirus strain				

TABLE 12-continued

Full-length Spike Glycoprotein Amino Acid Sequences (Homo sapiens strains)						
GenBank Accession	Country	Collection Date	Release Date	Virus Name		
AKM76239	Oman	2013 Dec. 28	2015 Jun. 23	Hu/Oman_2285_2013, complete genome Middle East respiratory syndrome coronavirus strain Hu/Oman_2874_2013, complete		
AKI29284	Saudi Arabia	2015 Jan. 6	2015 May 27	genome Middle East respiratory syndrome coronavirus strain Hu/Riyadh-KSA- 2049/2015, complete genome		
AKI29265	Saudi Arabia	2015 Jan. 21	2015 May 27	Middle East respiratory syndrome coronavirus strain Hu/Riyadh-KSA- 2343/2015, complete genome		
AKI29255	Saudi Arabia	2015 Jan. 21	2015 May 27	Middle East respiratory syndrome coronavirus strain Hu/Riyadh-KSA-2345/2015, complete genome		
AKI29275	Saudi Arabia	2015 Jan. 26	2015 May 27	Middle East respiratory syndrome coronavirus strain Hu/Riyadh-KSA-2466/2015, complete genome		
AKK52582	Saudi Arabia	2015 Feb. 10	2015 Jun. 8	Middle East respiratory syndrome coronavirus strain Hu/Riyadh_KSA_2959_2015, complete genome		
AKK52592	Saudi Arabia	2015 Mar. 1	2015 Jun. 8	Middle East respiratory syndrome coronavirus strain Hu/Riyadh_KSA_4050_2015, complete genome		
AHZ58501	USA	2014 Apr. 30	2014 May 13	Middle East respiratory syndrome coronavirus strain Indiana/USA- 1_Saudi Arabia_2014, complete genome		
AGN52936	United Arab Emirates	2013	2013 Jun. 10	Middle East respiratory syndrome coronavirus, complete genome		

TABLE 13

		SEO ID
Description	Sequence	NO:
GC_F_MEASLES_B3.1	TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACT	35
Sequence, NT (5'	CACTATAGGGAAATAAGAGAGAAAAGAAGAGTAAGAA	
UTR, ORF, 3'	GAAATATAAGAGCCACCATGGGTCTCAAGGTGAACGTC	
UTR)	TCTGCCGTATTCATGGCAGTACTGTTAACTCTCCAAACA	
Sequence Length:	CCCGCCGGTCAAATTCATTGGGGCAATCTCTCTAAGAT	
1864	AGGGGTAGTAGGAATAGGAAGTGCAAGCTACAAAGTT	
	ATGACTCGTTCCAGCCATCAATCATTAGTCATAAAATT	
	AATGCCCAATATAACTCTCCTCAATAACTGCACGAGGG	
	TAGAGATTGCAGAATACAGGAGACTACTAAGAACAGTT	
	TTGGAACCAATTAGGGATGCACTTAATGCAATGACCCA	
	GAACATAAGGCCGGTTCAGAGCGTAGCTTCAAGTAGGA	
	GACACAAGAGATTTGCGGGAGTAGTCCTGGCAGGTGCG	
	GCCCTAGGTGTTGCCACAGCTGCTCAGATAACAGCCGG	
	CATTGCACTTCACCGGTCCATGCTGAACTCTCAGGCCAT	
	CGACAATCTGAGAGCGAGCCTGGAAACTACTAATCAGG	
	CAATTGAGGCAATCAGACAAGCAGGGCAGGAGATGAT	
	ATTGGCTGTTCAGGGTGTCCAAGACTACATCAATAATG	
	AGCTGATACCGTCTATGAACCAGCTATCTTGTGATCTA	
	ATCGGTCAGAAGCTCGGGCTCAAATTGCTTAGATACTA	
	TACAGAAATCCTGTCATTATTTGGCCCCAGCCTACGGG	
	ACCCCATATCTGCGGAGATATCTATCCAGGCTTTGAGTT	
	ATGCACTTGGAGGAGATATCAATAAGGTGTTAGAAAAG	
	CTCGGATACAGTGGAGGCGATTTACTAGGCATCTTAGA	
	GAGCAGAGGAATAAAGGCTCGGATAACTCACGTCGAC	
	ACAGAGTCCTACTTCATAGTCCTCAGTATAGCCTATCCG	
	ACGCTGTCCGAGATTAAGGGGGTGATTGTCCACCGGCT	
	AGAGGGGGTCTCGTACAACATAGGCTCTCAAGAGTGGT	
	ATACCACTGTGCCCAAGTATGTTGCAACCCAAGGGTAC	
	CTTATCTCGAATTTTGATGAGTCATCATGTACTTTCATG	
	CCAGAGGGGACTGTGTGCAGCCAAAATGCCTTGTACCC	
	GATGAGTCCTCTGCTCCAAGAATGCCTCCGGGGGTCCA	

TABLE 13-continued

MeV Nucleic Acid Sequences

Description

Sequence

SEQ ID

CCAAGTCCTGTGCTCGTACACTCGTATCCGGGTCTTTTG GGAACCGGTTCATTTTATCACAAGGGAACCTAATAGCC AATTGTGCATCAATTCTTTGTAAGTGTTACACAACAGGT ACGATTATTAATCAAGACCCTGACAAGATCCTAACATA CATTGCTGCCGATCGCTGCCCGGTAGTCGAGGTGAACG GCGTGACCATCCAAGTCGGGAGCAGGAGGTATCCAGA CGCTGTGTACTTGCACAGAATTGACCTCGGTCCTCCCAT ATCATTGGAGAGGTTGGACGTAGGGACAAATCTGGGG AATGCAATTGCCAAATTGGAGGATGCCAAGGAATTGTT GGAATCATCGGACCAGATATTGAGAAGTATGAAAGGTT TATCGAGCACTAGCATAGTCTACATCCTGATTGCAGTG TGTCTTGGAGGGTTGATAGGGATCCCCACTTTAATATGT TGCTGCAGGGGGCGTTGTAACAAAAAGGGAGAACAAG TTGGTATGTCAAGACCAGGCCTAAAGCCTGACCTTACA GGAACATCAAAATCCTATGTAAGATCGCTTTGATGATA ATAGGCTGGAGCCTCGGTGGCCAAGCTTCTTGCCCCTT GGGCCTCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGT ACCCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGC

GC_F_MEASLES_B3.1 ORF Sequence, NT ATGGGTCTCAAGGTGAACGTCTCTGCCGTATTCATGGC AGTACTGTTAACTCTCCAAACACCCGCCGGTCAAATTC ATTGGGGCAATCTCTCTAAGATAGGGGTAGTAGGAATA GGAAGTGCAAGCTACAAAGTTATGACTCGTTCCAGCCA TCAATCATTAGTCATAAAATTAATGCCCAATATAACTCT CCTCAATAACTGCACGAGGGTAGAGATTGCAGAATACA GGAGACTACTAAGAACAGTTTTGGAACCAATTAGGGAT GCACTTAATGCAATGACCCAGAACATAAGGCCGGTTCA GAGCGTAGCTTCAAGTAGGAGACACAAGAGATTTGCG GGAGTAGTCCTGGCAGGTGCGGCCCTAGGTGTTGCCAC AGCTGCTCAGATAACAGCCGGCATTGCACTTCACCGGT CCATGCTGAACTCTCAGGCCATCGACAATCTGAGAGCG AGCCTGGAAACTACTAATCAGGCAATTGAGGCAATCAG ACAAGCAGGGCAGGAGATGATATTGGCTGTTCAGGGTG TCCAAGACTACATCAATAATGAGCTGATACCGTCTATG AACCAGCTATCTTGTGATCTAATCGGTCAGAAGCTCGG GCTCAAATTGCTTAGATACTATACAGAAATCCTGTCATT ATTTGGCCCCAGCCTACGGGACCCCATATCTGCGGAGA TATCTATCCAGGCTTTGAGTTATGCACTTGGAGGAGAT ATCAATAAGGTGTTAGAAAAGCTCGGATACAGTGGAG GCGATTTACTAGGCATCTTAGAGAGCAGAGGAATAAAG GCTCGGATAACTCACGTCGACACAGAGTCCTACTTCAT AGTCCTCAGTATAGCCTATCCGACGCTGTCCGAGATTA AGGGGGTGATTGTCCACCGGCTAGAGGGGGTCTCGTAC AACATAGGCTCTCAAGAGTGGTATACCACTGTGCCCAA GTATGTTGCAACCCAAGGGTACCTTATCTCGAATTTTGA TGAGTCATCATGTACTTTCATGCCAGAGGGGACTGTGT GCAGCCAAAATGCCTTGTACCCGATGAGTCCTCTGCTC CAAGAATGCCTCCGGGGGTCCACCAAGTCCTGTGCTCG TACACTCGTATCCGGGTCTTTTGGGAACCGGTTCATTTT ATCACAAGGGAACCTAATAGCCAATTGTGCATCAATTC TTTGTAAGTGTTACACAACAGGTACGATTATTAATCAA GACCCTGACAAGATCCTAACATACATTGCTGCCGATCG CTGCCCGGTAGTCGAGGTGAACGGCGTGACCATCCAAG TCGGGAGCAGGAGGTATCCAGACGCTGTGTACTTGCAC AGAATTGACCTCGGTCCTCCCATATCATTGGAGAGGTT GGACGTAGGGACAAATCTGGGGAATGCAATTGCCAAA TTGGAGGATGCCAAGGAATTGTTGGAATCATCGGACCA GATATTGAGAAGTATGAAAGGTTTATCGAGCACTAGCA TAGTCTACATCCTGATTGCAGTGTGTCTTGGAGGGTTGA TAGGGATCCCCACTTTAATATGTTGCTGCAGGGGGGCGT TGTAACAAAAAGGGAGAACAAGTTGGTATGTCAAGAC CAGGCCTAAAGCCTGACCTTACAGGAACATCAAAATCC

GC_F_MEASLES_B3.1 mRNA Sequence (assumes T100 tail) mRNA Sequence Length: 1925

G*GGGAAATAAGAGAGAAAAGAAGAGTAAGAAGAAAT
ATAAGAGCCACCATGGGTCTCAAGGTGAACGTCTCTGC
CGTATTCATGGCAGTACTGTTAACTCTCCAAAACACCG
CCGGTCAAATTCATTGGGGCAATCTCTTAAGATAGGG
GTAGTAGGAATTGATAGGAAGTCACAAAGTTATGA
CTCGTTCCAGCCATCAATCATTAGTCATAAAATTAATGC
CCAATATAACTCTCCTCAATAACTGCACGAGGGTAGAG
ATTGCAGAATACAGGAGACTACTAAGAACAGTTTTTGGA
ACCAATTAGGGATGCACTTAATGCACTAGACCCAGAACA
TAAGGCCGGTTCAGAGGTAGCTTCAAGTAGAGCACAC
AAGAGATTTGCGGGAGTAGTCCTGGCAGGTGCGCCCCT

TATGTAAGATCGCTTTGA

36

NO:

TABLE 13-continued

MeV Nucleic Acid Sequences

SEO ID Description Sequence

> AGGTGTTGCCACAGCTGCTCAGATAACAGCCGGCATTG CACTTCACCGGTCCATGCTGAACTCTCAGGCCATCGAC AATCTGAGAGCGAGCCTGGAAACTACTAATCAGGCAAT TGAGGCAATCAGACAAGCAGGCAGGAGATGATATTG GCTGTTCAGGGTGTCCAAGACTACATCAATAATGAGCT GATACCGTCTATGAACCAGCTATCTTGTGATCTAATCG GTCAGAAGCTCGGGCTCAAATTGCTTAGATACTATACA GAAATCCTGTCATTATTTGGCCCCAGCCTACGGGACCC CATATCTGCGGAGATATCTATCCAGGCTTTGAGTTATGC ACTTGGAGGAGATATCAATAAGGTGTTAGAAAAGCTCG GATACAGTGGAGGCGATTTACTAGGCATCTTAGAGAGC AGAGGAATAAAGGCTCGGATAACTCACGTCGACACAG AGTCCTACTTCATAGTCCTCAGTATAGCCTATCCGACGC TGTCCGAGATTAAGGGGGTGATTGTCCACCGGCTAGAG GGGGTCTCGTACAACATAGGCTCTCAAGAGTGGTATAC CACTGTGCCCAAGTATGTTGCAACCCAAGGGTACCTTA TCTCGAATTTTGATGAGTCATCATGTACTTTCATGCCAG AGGGGACTGTGTGCAGCCAAAATGCCTTGTACCCGATG AGTCCTCTGCTCCAAGAATGCCTCCGGGGGTCCACCAA GTCCTGTGCTCGTACACTCGTATCCGGGTCTTTTGGGAA CCGGTTCATTTTATCACAAGGGAACCTAATAGCCAATT GTGCATCAATTCTTTGTAAGTGTTACACAACAGGTACG ATTATTAATCAAGACCCTGACAAGATCCTAACATACAT TGCTGCCGATCGCTGCCCGGTAGTCGAGGTGAACGGCG TGACCATCCAAGTCGGGAGCAGGAGGTATCCAGACGCT GTGTACTTGCACAGAATTGACCTCGGTCCTCCCATATCA ${\tt TTGGAGAGGTTGGACGTAGGGACAAATCTGGGGAATG}$ CAATTGCCAAATTGGAGGATGCCAAGGAATTGTTGGAA TCATCGGACCAGATATTGAGAAGTATGAAAGGTTTATC GAGCACTAGCATAGTCTACATCCTGATTGCAGTGTGTC TTGGAGGGTTGATAGGGATCCCCACTTTAATATGTTGCT GCAGGGGGCGTTGTAACAAAAAGGGAGAACAAGTTGG TATGTCAAGACCAGGCCTAAAGCCTGACCTTACAGGAA CATCAAAATCCTATGTAAGATCGCTTTGATGATAATAG GCTGGAGCCTCGGTGGCCAAGCTTCTTGCCCCTTGGGC CTCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCC CCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGCAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAATCTAG

GC_F_MEASLES_D8 Sequence, NT (5' UTR, ORF, 3' UTR) Sequence Length: 1864

TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACT CACTATAGGGAAATAAGAGAGAAAAGAAGAGTAAGAA GAAATATAAGAGCCACCATGGGTCTCAAGGTGAACGTC TCTGTCATATTCATGGCAGTACTGTTAACTCTTCAAACA CCCACCGGTCAAATCCATTGGGGCAATCTCTCTAAGAT AGGGGTGGTAGGGTAGGAAGTGCAAGCTACAAAGTT ATGACTCGTTCCAGCCATCAATCATTAGTCATAAAGTT AATGCCCAATATAACTCTCCTCAACAATTGCACGAGGG TAGGGATTGCAGAATACAGGAGACTACTGAGAACAGTT CTGGAACCAATTAGAGATGCACTTAATGCAATGACCCA GAATATAAGACCGGTTCAGAGTGTAGCTTCAAGTAGGA GACACAAGAGATTTGCGGGAGTTGTCCTGGCAGGTGCG GCCCTAGGCGTTGCCACAGCTGCTCAAATAACAGCCGG TATTGCACTTCACCAGTCCATGCTGAACTCTCAAGCCAT CGACAATCTGAGAGCGAGCCTAGAAACTACTAATCAGG CAATTGAGGCAATCAGACAAGCAGGGCAGGAGATGAT ATTGGCTGTTCAGGGTGTCCAAGACTACATCAATAATG AGCTGATACCGTCTATGAATCAACTATCTTGTGATTTAA TCGGCCAGAAGCTAGGGCTCAAATTGCTCAGATACTAT ACAGAAATCCTGTCATTATTTGGCCCCAGCTTACGGGA CCCCATATCTGCGGAGATATCTATCCAGGCTTTGAGCT ATGCGCTTGGAGGAGATATCAATAAGGTGTTGGAAAAG CTCGGATACAGTGGAGGTGATCTACTGGGCATCTTAGA GAGCAGAGGAATAAAGGCCCGGATAACTCACGTCGAC ACAGAGTCCTACTTCATTGTACTCAGTATAGCCTATCCG ACGCTATCCGAGATTAAGGGGGTGATTGTCCACCGGCT AGAGGGGGTCTCGTACAACATAGGCTCTCAAGAGTGGT ATACCACTGTGCCCAAGTATGTTGCAACCCAAGGGTAC CTTATCTCGAATTTTGATGAGTCATCATGCACTTTCATG CCAGAGGGGACTGTGTGCAGCCAGAATGCCTTGTACCC GATGAGTCCTCTGCTCCAAGAATGCCTCCGGGGGTCCA ${\tt CTAAGTCCTGTGCTCGTACACTCGTATCCGGGTCTTTCG}$ GGAACCGGTTCATTTTATCACAGGGGAACCTAATAGCC AATTGTGCATCAATCCTTTGCAAGTGTTACACAACAGG

	MeV Nucleic Acid Sequences	
		SEO ID
Description	Sequence	NO:

GC_F_MEASLES_D8
ORF Sequence, NT

ATGGGTCTCAAGGTGAACGTCTCTGTCATATTCATGGC AGTACTGTTAACTCTTCAAACACCCCACCGGTCAAATCC ATTGGGGCAATCTCTCTAAGATAGGGGTGGTAGGGGTA GGAAGTGCAAGCTACAAAGTTATGACTCGTTCCAGCCA TCAATCATTAGTCATAAAGTTAATGCCCAATATAACTCT CCTCAACAATTGCACGAGGGTAGGGATTGCAGAATACA GGAGACTACTGAGAACAGTTCTGGAACCAATTAGAGAT GCACTTAATGCAATGACCCAGAATATAAGACCGGTTCA GAGTGTAGCTTCAAGTAGGAGACACAAGAGATTTGCGG GAGTTGTCCTGGCAGGTGCGGCCCTAGGCGTTGCCACA GCTGCTCAAATAACAGCCGGTATTGCACTTCACCAGTC CATGCTGAACTCTCAAGCCATCGACAATCTGAGAGCGA GCCTAGAAACTACTAATCAGGCAATTGAGGCAATCAGA CAAGCAGGCAGGAGATGATATTGGCTGTTCAGGGTGT CCAAGACTACATCAATAATGAGCTGATACCGTCTATGA ATCAACTATCTTGTGATTTAATCGGCCAGAAGCTAGGG CTCAAATTGCTCAGATACTATACAGAAATCCTGTCATT ATTTGGCCCCAGCTTACGGGACCCCATATCTGCGGAGA TATCTATCCAGGCTTTGAGCTATGCGCTTGGAGGAGAT ATCAATAAGGTGTTGGAAAAGCTCGGATACAGTGGAG GTGATCTACTGGGCATCTTAGAGAGCAGAGGAATAAAG GCCCGGATAACTCACGTCGACACAGAGTCCTACTTCAT TGTACTCAGTATAGCCTATCCGACGCTATCCGAGATTA AGGGGGTGATTGTCCACCGGCTAGAGGGGGTCTCGTAC AACATAGGCTCTCAAGAGTGGTATACCACTGTGCCCAA GTATGTTGCAACCCAAGGGTACCTTATCTCGAATTTTGA TGAGTCATCATGCACTTTCATGCCAGAGGGGACTGTGT GCAGCCAGAATGCCTTGTACCCGATGAGTCCTCTGCTC CAAGAATGCCTCCGGGGGTCCACTAAGTCCTGTGCTCG TACACTCGTATCCGGGTCTTTCGGGAACCGGTTCATTTT ATCACAGGGGAACCTAATAGCCAATTGTGCATCAATCC TTTGCAAGTGTTACACAACAGGAACAATCATTAATCAA GACCCTGACAAGATCCTAACATACATTGCTGCCGATCA CTGCCCGGTGGTCGAGGTGAATGGCGTGACCATCCAAG TCGGGAGCAGGAGGTATCCGGACGCTGTGTACTTGCAC AGGATTGACCTCGGTCCTCCCATATCTTTGGAGAGGTT GGACGTAGGGACAAATCTGGGGAATGCAATTGCTAAGT TGGAGGATGCCAAGGAATTGTTGGAGTCATCGGACCAG ATATTGAGGAGTATGAAAGGTTTATCGAGCACTAGTAT AGTTTACATCCTGATTGCAGTGTGTCTTGGAGGATTGAT AGGGATCCCCGCTTTAATATGTTGCTGCAGGGGGCGTT GTAACAAGAAGGGAGAACAAGTTGGTATGTCAAGACC AGGCCTAAAGCCTGATCTTACAGGAACATCAAAATCCT ATGTAAGGTCACTCTGA

GC_F_MEASLES_D8 mRNA Sequence (assumes T100 tail) Sequence Length: 1925

G*GGGAAATAAGAGAGAAAAGAGAGTAAGAAGAAT
ATAAGAGCCACCATGGGTCTCAAGGTGAACGTCTCTT
CATATTCATGGCAGTACTGTTAACTCTTCAAAACACCAC
CGGTCAAATCCATTGGGGCAATCTCTCTAAGATAGGG
TGGTAGGGGTAGGAAGTGCAAGCTACAAAGTTATGACT
CGTTCCAGCCATCAATCATTAGTCATAAAGTTAATGCC
CAATATAACTCTCCTCAACAATTGCACAGAGGGTAGGGA
TTGCAGAATACAGAGAACATTCGAACAGTTCTGGAA
CCAATTAGAGATGCACTTAATGCACAGAGATATT
AAGACCGGTTCAGGAGTTAGCTCAAGTAGGAGACACA
AGAGATTTGCGGGAGTTGCTGGCAGGTGCGGCCCTA
GGCGTTGCCACAGCTGCTCAAATAACAGCCGGTATTGC
ACTTCACCAGTCCATGCAACTCTCAAGCCATCGACA
ATCTGAGAGCCGAGCTTGAAAACTACTAAATCAGGCAATT

39

MeV Nucleic Acid Sequences

SEQ ID

Description

Sequence

GAGGCAATCAGACAAGCAGGGCAGGAGATGATATTGG CTGTTCAGGGTGTCCAAGACTACATCAATAATGAGCTG ATACCGTCTATGAATCAACTATCTTGTGATTTAATCGGC CAGAAGCTAGGGCTCAAATTGCTCAGATACTATACAGA AATCCTGTCATTATTTGGCCCCAGCTTACGGGACCCCAT ATCTGCGGAGATATCTATCCAGGCTTTGAGCTATGCGC TTGGAGGAGATATCAATAAGGTGTTGGAAAAGCTCGGA TACAGTGGAGGTGATCTACTGGGCATCTTAGAGAGCAG AGGAATAAAGGCCCGGATAACTCACGTCGACACAGAG TCCTACTTCATTGTACTCAGTATAGCCTATCCGACGCTA TCCGAGATTAAGGGGGTGATTGTCCACCGGCTAGAGGG GGTCTCGTACAACATAGGCTCTCAAGAGTGGTATACCA CTGTGCCCAAGTATGTTGCAACCCAAGGGTACCTTATC TCGAATTTTGATGAGTCATCATGCACTTTCATGCCAGAG GGGACTGTGTGCAGCCAGAATGCCTTGTACCCGATGAG TCCTCTGCTCCAAGAATGCCTCCGGGGGTCCACTAAGT CCTGTGCTCGTACACTCGTATCCGGGTCTTTCGGGAACC GGTTCATTTTATCACAGGGGAACCTAATAGCCAATTGT GCATCAATCCTTTGCAAGTGTTACACAACAGGAACAAT CATTAATCAAGACCCTGACAAGATCCTAACATACATTG CTGCCGATCACTGCCCGGTGGTCGAGGTGAATGGCGTG ACCATCCAAGTCGGGAGCAGGAGGTATCCGGACGCTGT GTACTTGCACAGGATTGACCTCGGTCCTCCCATATCTTT GGAGAGGTTGGACGTAGGGACAAATCTGGGGAATGCA ATTGCTAAGTTGGAGGATGCCAAGGAATTGTTGGAGTC ATCGGACCAGATATTGAGGAGTATGAAAGGTTTATCGA GCACTAGTATAGTTTACATCCTGATTGCAGTGTGTCTTG GAGGATTGATAGGGATCCCCGCTTTAATATGTTGCTGC AGGGGGCGTTGTAACAAGAAGGGAGAACAAGTTGGTA TGTCAAGACCAGGCCTAAAGCCTGATCTTACAGGAACA TCAAAATCCTATGTAAGGTCACTCTGATGATAATAGGC TGGAGCCTCGGTGGCCAAGCTTCTTGCCCCCTTGGGCCTC CCCCCAGCCCTCCTCCCCTTCCTGCACCCGTACCCCCG TGGTCTTTGAATAAAGTCTGAGTGGGCGGCAAAAAAAA ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ AAAAAAAAAAAAAAAAATCTAG

GC_H_MEASLES_B3 Sequence, NT (5' UTR, ORF, 3' UTR) Sequence Length:

TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACT CACTATAGGGAAATAAGAGAGAAAAGAAGAGTAAGAA GAAATATAAGAGCCACCATGTCACCGCAACGAGACCG GATAAATGCCTTCTACAAAGATAACCCTTATCCCAAGG GAAGTAGGATAGTTATTAACAGAGAACATCTTATGATT GACAGACCCTATGTTCTGCTGGCTGTTCTGTTCGTCATG TTTCTGAGCTTGATCGGATTGCTGGCAATTGCAGGCATT AGACTTCATCGGGCAGCCATCTACACCGCGGAGATCCA TAAAAGCCTCAGTACCAATCTGGATGTGACTAACTCCA TCGAGCATCAGGTCAAGGACGTGCTGACACCACTCTTT AAAATCATCGGGGATGAAGTGGGCCTGAGAACACCTC AGAGATTCACTGACCTAGTGAAATTCATCTCGGACAAG ATTAAATTCCTTAATCCGGATAGGGAGTACGACTTCAG AGATCTCACTTGGTGCATCAACCCGCCAGAGAGGATCA AACTAGATTATGATCAATACTGTGCAGATGTGGCTGCT GAAGAGCTCATGAATGCATTGGTGAACTCAACTCTACT GGAGACCAGAACCACTCAGTTCCTAGCTGTCTCAA AGGGAAACTGCTCAGGGCCCACTACAATCAGAGGTCA ATTCTCAAACATGTCGCTGTCCTTGTTGGACTTGTACTT AGGTCGAGGTTACAATGTGTCATCTATAGTCACTATGA CATCCCAGGGAATGTATGGGGGGAACCTACCTAGTTGAA AAGCCTAATCTGAACAGCAAAGGGTCAGAGTTGTCACA ACTGAGCATGTACCGAGTGTTTGAAGTAGGTGTGATCA GAAACCCGGGTTTGGGGGGCTCCGGTGTTCCATATGACA AACTATTTTGAGCAACCAGTCAGTAATGGTCTCGGCAA CTGTATGGTGGCTTTGGGGGGAGCTCAAACTCGCAGCCC TTTGTCACGGGGACGATTCTATCATAATTCCCTATCAGG GATCAGGGAAAGGTGTCAGCTTCCAGCTCGTCAAGCTG GGTGTCTGGAAATCCCCAACCGACATGCAATCCTGGGT CCCCTTATCAACGGATGATCCAGTGGTAGACAGGCTTT ACCTCTCATCTCACAGAGGTGTCATCGCTGACAATCAA GCAAAATGGGCTGTCCCGACAACACGAACAGATGACA AGTTGCGAATGGAGACATGCTTCCAGCAGGCGTGTAAA GGTAAAATCCAAGCACTCTGCGAGAATCCCGAGTGGGT ACCATTGAAGGATAACAGGATTCCTTCATACGGGGTCC TGTCTGTTGATCTGAGTCTGACGGTTGAGCTTAAAATCA AAATTGCTTCGGGATTCGGGCCATTGATCACACACGGC

TABLE 13-continued

	MeV Nucleic Acid Sequences	
		SEO ID
Description	Sequence	NO:

TCAGGGATGGACCTATACAAATCCAACTGCAACAATGT GTATTGGCTGACTATTCCGCCAATGAGAAATCTAGCCT TAGGCGTAATCAACACATTGGAGTGGATACCGAGATTC AAGGTTAGTCCCAACCTCTTCACTGTCCCAATTAAGGA AGCAGGCGAAGACTGCCCATGCCCCAACATACCTACCTG CGGAGGTGGACGGTGATGTCAAACTCAGTTCCAACCTG GTGATTCTACCTGGTCAAGATCTCCAATATGTTTTGGCA ACCTACGATACCTCCAGGGTTGAGCATGCTGTGGTTTA TTACGTTTACAGCCCAAGCCGCTCATTTTCTTACTTTTA TCCTTTTAGGTTGCCTATAAAGGGGGTCCCAATCGAAC TACAAGTGGAATGCTTCACATGGGATCAAAAACTCTGG TGCCGTCACTTCTGTGTGCTTGCGGACTCAGAATCCGGT GGACTTATCACTCACTCTGGGATGGTGGGCATGGGAGT CAGCTGCACAGCTACCCGGGAAGATGGAACCAATCGC AGATAATGATAATAGGCTGGAGCCTCGGTGGCCAAGCT TCTTGCCCCTTGGGCCTCCCCCAGCCCCTCCTCCCCTT CCTGCACCCGTACCCCCGTGGTCTTTGAATAAAGTCTG AGTGGGCGGC

GC H MEASLES_B3 ORF Sequence, NT

ATGTCACCGCAACGAGACCGGATAAATGCCTTCTACAA AGATAACCCTTATCCCAAGGGAAGTAGGATAGTTATTA ACAGAGAACATCTTATGATTGACAGACCCTATGTTCTG CTGGCTGTTCTGTTCGTCATGTTTCTGAGCTTGATCGGA TTGCTGGCAATTGCAGGCATTAGACTTCATCGGGCAGC CATCTACACCGCGGAGATCCATAAAAGCCTCAGTACCA ${\tt ATCTGGATGTGACTAACTCCATCGAGCATCAGGTCAAG}$ GACGTGCTGACACCACTCTTTAAAATCATCGGGGATGA AGTGGGCCTGAGAACACCTCAGAGATTCACTGACCTAG TGAAATTCATCTCGGACAAGATTAAATTCCTTAATCCG GATAGGGAGTACGACTTCAGAGATCTCACTTGGTGCAT CAACCCGCCAGAGAGGATCAAACTAGATTATGATCAAT ACTGTGCAGATGTGGCTGCTGAAGAGCTCATGAATGCA TTGGTGAACTCAACTCTACTGGAGACCAGAACAACCAC ${\tt TCAGTTCCTAGCTGTCTCAAAGGGAAACTGCTCAGGGC}$ CCACTACAATCAGAGGTCAATTCTCAAACATGTCGCTG TCCTTGTTGGACTTGTACTTAGGTCGAGGTTACAATGTG TCATCTATAGTCACTATGACATCCCAGGGAATGTATGG GGGAACCTACCTAGTTGAAAAGCCTAATCTGAACAGCA AAGGGTCAGAGTTGTCACAACTGAGCATGTACCGAGTG ${\tt TTTGAAGTAGGTGTGATCAGAAACCCGGGTTTGGGGGGCC}$ TCCGGTGTTCCATATGACAAACTATTTTGAGCAACCAG ${\tt TCAGTAATGGTCTCGGCAACTGTATGGTGGCTTTGGGG}$ GAGCTCAAACTCGCAGCCCTTTGTCACGGGGACGATTC TATCATAATTCCCTATCAGGGATCAGGGAAAGGTGTCA GCTTCCAGCTCGTCAAGCTGGGTGTCTGGAAATCCCCA ACCGACATGCAATCCTGGGTCCCCTTATCAACGGATGA TCCAGTGGTAGACAGGCTTTACCTCTCATCTCACAGAG GTGTCATCGCTGACAATCAAGCAAAATGGGCTGTCCCG ACAACACGAACAGATGACAAGTTGCGAATGGAGACAT GCTTCCAGCAGGCGTGTAAAGGTAAAATCCAAGCACTC TGCGAGAATCCCGAGTGGGTACCATTGAAGGATAACAG GATTCCTTCATACGGGGTCCTGTCTGTTGATCTGAGTCT GACGGTTGAGCTTAAAATCAAAATTGCTTCGGGATTCG GGCCATTGATCACACACGGCTCAGGGATGGACCTATAC AAATCCAACTGCAACAATGTGTATTGGCTGACTATTCC GCCAATGAGAAATCTAGCCTTAGGCGTAATCAACACAT TGGAGTGGATACCGAGATTCAAGGTTAGTCCCAACCTC TTCACTGTCCCAATTAAGGAAGCAGGCGAAGACTGCCA TGCCCCAACATACCTACCTGCGGAGGTGGACGGTGATG TCAAACTCAGTTCCAACCTGGTGATTCTACCTGGTCAA GATCTCCAATATGTTTTGGCAACCTACGATACCTCCAG GGTTGAGCATGCTGTGGTTTATTACGTTTACAGCCCAA GCCGCTCATTTCTTACTTTTATCCTTTTAGGTTGCCTAT AAAGGGGGTCCCAATCGAACTACAAGTGGAATGCTTCA CATGGGATCAAAAACTCTGGTGCCGTCACTTCTGTGTG CTTGCGGACTCAGAATCCGGTGGACTTATCACTCACTCT GGGATGGTGGGCATGGGAGTCAGCTGCACAGCTACCCG GGAAGATGGAACCAATCGCAGATAA

GC_H_MEASLES_B3 mRNA Sequence Sequence Length:

G*GGGAAATAAGAGAGAAAAGAAGAAGTAAGAAGAAAT ATAAGAGCCACCATGTCACCGCAACGAGACCGGATAA (assumes T100 tail) ATGCCTTCTACAAAGATAACCCTTATCCCAAGGGAAGT ${\tt AGGATAGTTATTAACAGAGAACATCTTATGATTGACAG}$ ACCCTATGTTCTGCTGGCTGTTCTGTTCGTCATGTTTCT GAGCTTGATCGGATTGCTGGCAATTGCAGGCATTAGAC

42

MeV Nucleic Acid Sequences

SEQ ID

Description

Sequence

TTCATCGGGCAGCCATCTACACCGCGGAGATCCATAAA AGCCTCAGTACCAATCTGGATGTGACTAACTCCATCGA GCATCAGGTCAAGGACGTGCTGACACCACTCTTTAAAA TCATCGGGGATGAAGTGGGCCTGAGAACACCTCAGAG ATTCACTGACCTAGTGAAATTCATCTCGGACAAGATTA AATTCCTTAATCCGGATAGGGAGTACGACTTCAGAGAT CTCACTTGGTGCATCAACCCGCCAGAGAGGATCAAACT AGATTATGATCAATACTGTGCAGATGTGGCTGCTGAAG AGCTCATGAATGCATTGGTGAACTCAACTCTACTGGAG ACCAGAACAACCACTCAGTTCCTAGCTGTCTCAAAGGG AAACTGCTCAGGGCCCACTACAATCAGAGGTCAATTCT CAAACATGTCGCTGTCCTTGTTGGACTTGTACTTAGGTC GAGGTTACAATGTGTCATCTATAGTCACTATGACATCC CAGGGAATGTATGGGGGAACCTACCTAGTTGAAAAGCC TAATCTGAACAGCAAAGGGTCAGAGTTGTCACAACTGA GCATGTACCGAGTGTTTGAAGTAGGTGTGATCAGAAAC CCGGGTTTGGGGGGCTCCGGTGTTCCATATGACAAACTA TTTTGAGCAACCAGTCAGTAATGGTCTCGGCAACTGTA TGGTGGCTTTGGGGGAGCTCAAACTCGCAGCCCTTTGT CACGGGGACGATTCTATCATAATTCCCTATCAGGGATC AGGGAAAGGTGTCAGCTTCCAGCTCGTCAAGCTGGGTG TCTGGAAATCCCCAACCGACATGCAATCCTGGGTCCCC TTATCAACGGATGATCCAGTGGTAGACAGGCTTTACCT CTCATCTCACAGAGGTGTCATCGCTGACAATCAAGCAA AATGGGCTGTCCCGACAACACGAACAGATGACAAGTTG CGAATGGAGACATGCTTCCAGCAGGCGTGTAAAGGTAA AATCCAAGCACTCTGCGAGAATCCCGAGTGGGTACCAT TGAAGGATAACAGGATTCCTTCATACGGGGTCCTGTCT GTTGATCTGAGTCTGACGGTTGAGCTTAAAATCAAAAT TGCTTCGGGATTCGGGCCATTGATCACACACGGCTCAG GGATGGACCTATACAAATCCAACTGCAACAATGTGTAT TGGCTGACTATTCCGCCAATGAGAAATCTAGCCTTAGG CGTAATCAACACATTGGAGTGGATACCGAGATTCAAGG TTAGTCCCAACCTCTTCACTGTCCCAATTAAGGAAGCA GGCGAAGACTGCCATGCCCCAACATACCTACCTGCGGA GGTGGACGGTGATGTCAAACTCAGTTCCAACCTGGTGA TTCTACCTGGTCAAGATCTCCAATATGTTTTGGCAACCT ACGATACCTCCAGGGTTGAGCATGCTGTGGTTTATTAC GTTTACAGCCCAAGCCGCTCATTTTCTTACTTTTATCCT TTTAGGTTGCCTATAAAGGGGGTCCCAATCGAACTACA AGTGGAATGCTTCACATGGGATCAAAAACTCTGGTGCC GTCACTTCTGTGTGCTTGCGGACTCAGAATCCGGTGGA CTTATCACTCACTCTGGGATGGTGGGCATGGGAGTCAG CTGCACAGCTACCCGGGAAGATGGAACCAATCGCAGAT AATGATAATAGGCTGGAGCCTCGGTGGCCAAGCTTCTT GCCCCTTGGGCCTCCCCCAGCCCCTCCTCCCCTTCCTG CACCCGTACCCCGTGGTCTTTGAATAAAGTCTGAGTG GGCGGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

GC_H_MEASLES_D8 Sequence, NT (5' UTR, ORF, 3' UTR) Sequence Length: 2065

TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACT CACTATAGGGAAATAAGAGAGAAAAGAAGAGTAAGAA GAAATATAAGAGCCACCATGTCACCACAACGAGACCG GATAAATGCCTTCTACAAAGACAACCCCCATCCTAAGG GAAGTAGGATAGTTATTAACAGAGAACATCTTATGATT GATAGACCTTATGTTTTGCTGGCTGTTCTATTCGTCATG TTTCTGAGCTTGATCGGGTTGCTAGCCATTGCAGGCATT AGACTTCATCGGGCAGCCATCTACACCGCAGAGATCCA TAAAAGCCTCAGCACCAATCTGGATGTAACTAACTCAA TCGAGCATCAGGTTAAGGACGTGCTGACACCACTCTTC AAGATCATCGGTGATGAAGTGGGCTTGAGGACACCTCA GAGATTCACTGACCTAGTGAAGTTCATCTCTGACAAGA TTAAATTCCTTAATCCGGACAGGGAATACGACTTCAGA GATCTCACTTGGTGTATCAACCCGCCAGAGAGAATCAA ATTGGATTATGATCAATACTGTGCAGATGTGGCTGCTG AAGAACTCATGAATGCATTGGTGAACTCAACTCTACTG GAGACCAGGCAACCAATCAGTTCCTAGCTGTCTCAAA GGGAAACTGCTCAGGGCCCACTACAATCAGAGGCCAAT TCTCAAACATGTCGCTGTCCCTGTTGGACTTGTATTTAA GTCGAGGTTACAATGTGTCATCTATAGTCACTATGACA TCCCAGGGAATGTACGGGGGAACTTACCTAGTGGAAAA GCCTAATCTGAGCAGCAAAGGGTCAGAGTTGTCACAAC TGAGCATGCACCGAGTGTTTGAAGTAGGTGTTATCAGA

MeV Nucleic Acid Sequences

SEQ ID

Description

Sequence

AATCCGGGTTTGGGGGCTCCGGTATTCCATATGACAAA CTATCTTGAGCAACCAGTCAGTAATGATTTCAGCAACT GCATGGTGGCTTTGGGGGAGCTCAAGTTCGCAGCCCTC TGTCACAGGGAAGATTCTATCACAATTCCCTATCAGGG ATCAGGGAAAGGTGTCAGCTTCCAGCTTGTCAAGCTAG GTGTCTGGAAATCCCCAACCGACATGCAATCCTGGGTC CCCCTATCAACGGATGATCCAGTGATAGACAGGCTTTA CCTCTCATCTCACAGAGGCGTTATCGCTGACAATCAAG CAAAATGGGCTGTCCCGACAACACGGACAGATGACAA GTTGCGAATGGAGACATGCTTCCAGCAGGCGTGTAAGG GTAAAATCCAAGCACTTTGCGAGAATCCCGAGTGGACA CCATTGAAGGATAACAGGATTCCTTCATACGGGGTCTT GTCTGTTGATCTGAGTCTGACAGTTGAGCTTAAAATCA AAATTGTTTCAGGATTCGGGCCATTGATCACACACGGT TCAGGGATGGACCTATACAAATCCAACCACAACAATAT GTATTGGCTGACTATCCCGCCAATGAAGAACCTGGCCT TAGGTGTAATCAACACATTGGAGTGGATACCGAGATTC AAGGTTAGTCCCAACCTCTTCACTGTTCCAATTAAGGA AGCAGGCGAGGACTGCCATGCCCCAACATACCTACCTG CGGAGGTGGATGTGATGTCAAACTCAGTTCCAATCTG GTGATTCTACCTGGTCAAGATCTCCAATATGTTCTGGCA ACCTACGATACTTCCAGAGTTGAACATGCTGTAGTTTAT TACGTTTACAGCCCAAGCCGCTCATTTTCTTACTTTAT CCTTTTAGGTTGCCTGTAAGGGGGGTCCCCATTGAATTA CAAGTGGAATGCTTCACATGGGACCAAAAACTCTGGTG CCGTCACTTCTGTGTGCTTGCGGACTCAGAATCTGGTGG ACATATCACTCACTCTGGGATGGTGGGCATGGGAGTCA GCTGCACAGCCACTCGGGAAGATGGAACCAGCCGCAG ATAGTGATAATAGGCTGGAGCCTCGGTGGCCAAGCTTC TTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCC TGCACCCGTACCCCGTGGTCTTTGAATAAAGTCTGAG TGGGCGGC

GC_H_MEASLES_D8
ORF Sequence, NT

ATGTCACCACAACGAGACCGGATAAATGCCTTCTACAA AGACAACCCCCATCCTAAGGGAAGTAGGATAGTTATTA ACAGAGAACATCTTATGATTGATAGACCTTATGTTTTGC TGGCTGTTCTATTCGTCATGTTTCTGAGCTTGATCGGGT TGCTAGCCATTGCAGGCATTAGACTTCATCGGGCAGCC ATCTACACCGCAGAGATCCATAAAAGCCTCAGCACCAA TCTGGATGTAACTAACTCAATCGAGCATCAGGTTAAGG ACGTGCTGACACCACTCTTCAAGATCATCGGTGATGAA GTGGGCTTGAGGACACCTCAGAGATTCACTGACCTAGT GAAGTTCATCTCTGACAAGATTAAATTCCTTAATCCGG ACAGGGAATACGACTTCAGAGATCTCACTTGGTGTATC AACCCGCCAGAGAGAATCAAATTGGATTATGATCAATA CTGTGCAGATGTGGCTGCTGAAGAACTCATGAATGCAT TGGTGAACTCAACTCTACTGGAGACCAGGGCAACCAAT CAGTTCCTAGCTGTCTCAAAGGGAAACTGCTCAGGGCC CACTACAATCAGAGGCCAATTCTCAAACATGTCGCTGT CCCTGTTGGACTTGTATTTAAGTCGAGGTTACAATGTGT CATCTATAGTCACTATGACATCCCAGGGAATGTACGGG GGAACTTACCTAGTGGAAAAGCCTAATCTGAGCAGCAA AGGGTCAGAGTTGTCACAACTGAGCATGCACCGAGTGT TTGAAGTAGGTGTTATCAGAAATCCGGGTTTGGGGGCT CCGGTATTCCATATGACAAACTATCTTGAGCAACCAGT CAGTAATGATTTCAGCAACTGCATGGTGGCTTTGGGGG AGCTCAAGTTCGCAGCCCTCTGTCACAGGGAAGATTCT ATCACAATTCCCTATCAGGGATCAGGGAAAGGTGTCAG CTTCCAGCTTGTCAAGCTAGGTGTCTGGAAATCCCCAA CCGACATGCAATCCTGGGTCCCCCTATCAACGGATGAT CCAGTGATAGACAGGCTTTACCTCTCATCTCACAGAGG CGTTATCGCTGACAATCAAGCAAAATGGGCTGTCCCGA CAACACGGACAGATGACAAGTTGCGAATGGAGACATG CTTCCAGCAGGCGTGTAAGGGTAAAATCCAAGCACTTT GCGAGAATCCCGAGTGGACACCATTGAAGGATAACAG GATTCCTTCATACGGGGTCTTGTCTGTTGATCTGAGTCT GACAGTTGAGCTTAAAATCAAAATTGTTTCAGGATTCG GGCCATTGATCACACACGGTTCAGGGATGGACCTATAC AAATCCAACCACAACAATATGTATTGGCTGACTATCCC GCCAATGAAGAACCTGGCCTTAGGTGTAATCAACACAT TGGAGTGGATACCGAGATTCAAGGTTAGTCCCAACCTC TTCACTGTTCCAATTAAGGAAGCAGGCGAGGACTGCCA TGCCCCAACATACCTACCTGCGGAGGTGGATGGTGATG TCAAACTCAGTTCCAATCTGGTGATTCTACCTGGTCAAG ATCTCCAATATGTTCTGGCAACCTACGATACTTCCAGA

307

TABLE 13-continued

MeV	Nucleic	Acid	Sequences	

Description

Sequence

SEO ID NO:

46

GTTGAACATGCTGTAGTTTATTACGTTTACAGCCCAAGC CGCTCATTTTCTTACTTTTATCCTTTTAGGTTGCCTGTAA GGGGGTCCCCATTGAATTACAAGTGGAATGCTTCACA TGGGACCAAAAACTCTGGTGCCGTCACTTCTGTGTGCTT GCGGACTCAGAATCTGGTGGACATATCACTCACTCTGG GATGGTGGGCATGGGAGTCAGCTGCACAGCCACTCGGG AAGATGGAACCAGCCGCAGATAG

GC H MEASLES D8 mRNA Sequence Sequence Length: 2126

G*GGGAAATAAGAGAGAAAAGAAGAAGAAAT ATAAGAGCCACCATGTCACCACAACGAGACCGGATAA (assumes T100 tail) ATGCCTTCTACAAAGACAACCCCCATCCTAAGGGAAGT AGGATAGTTATTAACAGAGAACATCTTATGATTGATAG ACCTTATGTTTTGCTGGCTGTTCTATTCGTCATGTTTCTG AGCTTGATCGGGTTGCTAGCCATTGCAGGCATTAGACT TCATCGGGCAGCCATCTACACCGCAGAGATCCATAAAA GCCTCAGCACCAATCTGGATGTAACTAACTCAATCGAG CATCAGGTTAAGGACGTGCTGACACCACTCTTCAAGAT CATCGGTGATGAAGTGGGCTTGAGGACACCTCAGAGAT TCACTGACCTAGTGAAGTTCATCTCTGACAAGATTAAA TTCCTTAATCCGGACAGGGAATACGACTTCAGAGATCT CACTTGGTGTATCAACCCGCCAGAGAGAATCAAATTGG ATTATGATCAATACTGTGCAGATGTGGCTGCTGAAGAA CTCATGAATGCATTGGTGAACTCAACTCTACTGGAGAC CAGGGCAACCAATCAGTTCCTAGCTGTCTCAAAGGGAA ACTGCTCAGGGCCCACTACAATCAGAGGCCAATTCTCA AACATGTCGCTGTCCCTGTTGGACTTGTATTTAAGTCGA GGTTACAATGTGTCATCTATAGTCACTATGACATCCCA GGGAATGTACGGGGGAACTTACCTAGTGGAAAAGCCT AATCTGAGCAGCAAAGGGTCAGAGTTGTCACAACTGAG CATGCACCGAGTGTTTGAAGTAGGTGTTATCAGAAATC CGGGTTTGGGGGCTCCGGTATTCCATATGACAAACTAT CTTGAGCAACCAGTCAGTAATGATTTCAGCAACTGCAT GGTGGCTTTGGGGGAGCTCAAGTTCGCAGCCCTCTGTC ACAGGGAAGATTCTATCACAATTCCCTATCAGGGATCA GGGAAAGGTGTCAGCTTCCAGCTTGTCAAGCTAGGTGT CTGGAAATCCCCAACCGACATGCAATCCTGGGTCCCCC TATCAACGGATGATCCAGTGATAGACAGGCTTTACCTC TCATCTCACAGAGGCGTTATCGCTGACAATCAAGCAAA ATGGGCTGTCCCGACAACACGGACAGATGACAAGTTGC GAATGGAGACATGCTTCCAGCAGGCGTGTAAGGGTAA AATCCAAGCACTTTGCGAGAATCCCGAGTGGACACCAT TGAAGGATAACAGGATTCCTTCATACGGGGTCTTGTCT GTTGATCTGAGTCTGACAGTTGAGCTTAAAATCAAAAT TGTTTCAGGATTCGGGCCATTGATCACACACGGTTCAG GGATGGACCTATACAAATCCAACCACAACAATATGTAT TGGCTGACTATCCCGCCAATGAAGAACCTGGCCTTAGG TGTAATCAACACATTGGAGTGGATACCGAGATTCAAGG TTAGTCCCAACCTCTTCACTGTTCCAATTAAGGAAGCA GGCGAGGACTGCCATGCCCAACATACCTACCTGCGGA GGTGGATGGTGATGTCAAACTCAGTTCCAATCTGGTGA TTCTACCTGGTCAAGATCTCCAATATGTTCTGGCAACCT ACGATACTTCCAGAGTTGAACATGCTGTAGTTTATTAC GTTTACAGCCCAAGCCGCTCATTTTCTTACTTTTATCCT TTTAGGTTGCCTGTAAGGGGGGTCCCCATTGAATTACA AGTGGAATGCTTCACATGGGACCAAAAACTCTGGTGCC GTCACTTCTGTGTGCTTGCGGACTCAGAATCTGGTGGA CATATCACTCACTCTGGGATGGTGGGCATGGGAGTCAG CTGCACAGCCACTCGGGAAGATGGAACCAGCCGCAGA TAGTGATAATAGGCTGGAGCCTCGGTGGCCAAGCTTCT TGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCT GCACCCGTACCCCCGTGGTCTTTGAATAAAGTCTGAGT GGGCGGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ CTAG

MeV mRNA Sequences

GC_F_MEASLES_B3.1 Sequence, NT (5' UTR, ORF, 3' UTR) Sequence Length:

UCAAGCUUUUGGACCCUCGUACAGAAGCUAAUACGAC UCACUAUAGGGAAAUAAGAGAGAAAAGAAGAGUAAG AAGAAAUAUAAGAGCCACCAUGGGUCUCAAGGUGAA CGUCUCUGCCGUAUUCAUGGCAGUACUGUUAACUCUC CAAACACCCGCCGGUCAAAUUCAUUGGGGCAAUCUCU CUAAGAUAGGGUAGUAGGAAUAGGAAGUGCAAGCU ACAAAGUUAUGACUCGUUCCAGCCAUCAAUCAUUAGU

MeV Nucleic Acid Sequences

SEQ ID

Description

Sequence

CAUAAAAUUAAUGCCCAAUAUAACUCUCCUCAAUAAC UGCACGAGGGUAGAGAUUGCAGAAUACAGGAGACUA CUAAGAACAGUUUUGGAACCAAUUAGGGAUGCACUU AAUGCAAUGACCCAGAACAUAAGGCCGGUUCAGAGCG UAGCUUCAAGUAGGAGACACAAGAGAUUUGCGGGAG UAGUCCUGGCAGGUGCGGCCCUAGGUGUUGCCACAGC UGCUCAGAUAACAGCCGGCAUUGCACUUCACCGGUCC AUGCUGAACUCUCAGGCCAUCGACAAUCUGAGAGCGA GCCUGGAAACUACUAAUCAGGCAAUUGAGGCAAUCAG ACAAGCAGGCAGGAGAUGAUAUUGGCUGUUCAGGG UGUCCAAGACUACAUCAAUAAUGAGCUGAUACCGUCU AUGAACCAGCUAUCUUGUGAUCUAAUCGGUCAGAAGC UCGGGCUCAAAUUGCUUAGAUACUAUACAGAAAUCCU GUCAUUAUUUGGCCCCAGCCUACGGGACCCCAUAUCU GCGGAGAUAUCUAUCCAGGCUUUGAGUUAUGCACUU GGAGGAGAUAUCAAUAAGGUGUUAGAAAAGCUCGGA UACAGUGGAGGCGAUUUACUAGGCAUCUUAGAGAGC AGAGGAAUAAAGGCUCGGAUAACUCACGUCGACACAG AGUCCUACUUCAUAGUCCUCAGUAUAGCCUAUCCGAC GCUGUCCGAGAUUAAGGGGGUGAUUGUCCACCGGCUA GAGGGGGUCUCGUACAACAUAGGCUCUCAAGAGUGG UAUACCACUGUGCCCAAGUAUGUUGCAACCCAAGGGU ACCUUAUCUCGAAUUUUGAUGAGUCAUCAUGUACUU UCAUGCCAGAGGGGACUGUGUGCAGCCAAAAUGCCUU GUACCCGAUGAGUCCUCUGCUCCAAGAAUGCCUCCGG GGGUCCACCAAGUCCUGUGCUCGUACACUCGUAUCCG GGUCUUUUGGGAACCGGUUCAUUUUAUCACAAGGGA ACCUAAUAGCCAAUUGUGCAUCAAUUCUUUGUAAGU GUUACACAACAGGUACGAUUAUUAAUCAAGACCCUGA CAAGAUCCUAACAUACAUUGCUGCCGAUCGCUGCCCG GUAGUCGAGGUGAACGGCGUGACCAUCCAAGUCGGGA GCAGGAGGUAUCCAGACGCUGUGUACUUGCACAGAAU UGACCUCGGUCCUCCCAUAUCAUUGGAGAGGUUGGAC GUAGGGACAAAUCUGGGGAAUGCAAUUGCCAAAUUG GAGGAUGCCAAGGAAUUGUUGGAAUCAUCGGACCAG AUAUUGAGAAGUAUGAAAGGUUUAUCGAGCACUAGC AUAGUCUACAUCCUGAUUGCAGUGUGUCUUGGAGGG UUGAUAGGGAUCCCCACUUUAAUAUGUUGCUGCAGG GGGCGUUGUAACAAAAAGGGAGAACAAGUUGGUAUG UCAAGACCAGGCCUAAAGCCUGACCUUACAGGAACAU CAAAAUCCUAUGUAAGAUCGCUUUGAUGAUAAUAGG CUGGAGCCUCGGUGGCCAAGCUUCUUGCCCCUUGGGC CUCCCCCAGCCCCUCCUCCCCUUCCUGCACCCGUACC CCCGUGGUCUUUGAAUAAAGUCUGAGUGGGCGGC

GC_F_MEASLES_B3.1 ORF Sequence, NT AUGGGUCUCAAGGUGAACGUCUCUGCCGUAUUCAUGG CAGUACUGUUAACUCUCCAAACACCCGCCGGUCAAAU UCAUUGGGCAAUCUCUCUAAGAUAGGGGUAGUAGG AAUAGGAAGUGCAAGCUACAAAGUUAUGACUCGUUC CAGCCAUCAAUCAUUAGUCAUAAAAUUAAUGCCCAAU AUAACUCUCCUCAAUAACUGCACGAGGGUAGAGAUUG CAGAAUACAGGAGACUACUAAGAACAGUUUUGGAAC CAAUUAGGGAUGCACUUAAUGCAAUGACCCAGAACAU AAGGCCGGUUCAGAGCGUAGCUUCAAGUAGGAGACAC AAGAGAUUUGCGGGAGUAGUCCUGGCAGGUGCGGCCC UAGGUGUUGCCACAGCUGCUCAGAUAACAGCCGGCAU UGCACUUCACCGGUCCAUGCUGAACUCUCAGGCCAUC GACAAUCUGAGAGCGAGCCUGGAAACUACUAAUCAGG CAAUUGAGGCAAUCAGACAAGCAGGGCAGGAGAUGA UAUUGGCUGUUCAGGGUGUCCAAGACUACAUCAAUA AUGAGCUGAUACCGUCUAUGAACCAGCUAUCUUGUGA UCUAAUCGGUCAGAAGCUCGGGCUCAAAUUGCUUAGA UACUAUACAGAAAUCCUGUCAUUAUUUGGCCCCAGCC UACGGGACCCCAUAUCUGCGGAGAUAUCUAUCCAGGC UUUGAGUUAUGCACUUGGAGGAGAUAUCAAUAAGGU GUUAGAAAAGCUCGGAUACAGUGGAGGCGAUUUACU AGGCAUCUUAGAGAGCAGAGGAAUAAAGGCUCGGAU AACUCACGUCGACACAGAGUCCUACUUCAUAGUCCUC AGUAUAGCCUAUCCGACGCUGUCCGAGAUUAAGGGGG UGAUUGUCCACCGGCUAGAGGGGGUCUCGUACAACAU AGGCUCUCAAGAGUGGUAUACCACUGUGCCCAAGUAU GUUGCAACCCAAGGGUACCUUAUCUCGAAUUUUGAUG AGUCAUCAUGUACUUUCAUGCCAGAGGGGACUGUGU GCAGCCAAAAUGCCUUGUACCCGAUGAGUCCUCUGCU CCAAGAAUGCCUCCGGGGGUCCACCAAGUCCUGUGCU

MeV Nucleic Acid Sequences SEQ ID Description Sequence NO:

CGUACACUCGUAUCCGGGUCUUUUGGGAACCGGUUCA
UUUUUUCACAAGGGAACCUAAUAGCCAAUUGUGCAUC
AAUUCUUUGUAAGUGUUACACAACAGGUACGAUUAU
UAAUCAAGACCCUGACAAGAUCCUAACAUACAUUACU
GCCGAUCGCUGCCGGUAGUCGAGGUGAACGGCGUGA
GUACUUGCACAGAGCUGUGUACAUCACAGCGCUGU
GUACUUGCACAGAUUGACCUCGGUCUCCCCAUAUCA
UUGGAGAGGUUGGACGUAGGGACAAAUCUGGGGAAU
GCAAUUGCCAAAUUGAGGAUGCCAAGGAAUUGUUG
GAAUCAUCGGACCAGAUUUGAGAAGUAUGAAAGGU
UUAUCGAGCACUAGCAUAGUCUACAUCCUGAUUGCAG
UUGUGUUUGGAGGGUUGAAAGCCCCACUUUAA
UAUGUUGCUCAGGGGGCGUUGUAACAAAAAGGGA
AACAAGUUGGUAGAGACCAGGCCUAAAGCCUGA

GC_F_MEASLES_B3.1 mRNA Sequence (assumes T100 tail) mRNA Sequence Length: 1925

G*GGGAAAUAAGAGAGAAAAGAAGAGUAAGAAGAAA UAUAAGAGCCACCAUGGGUCUCAAGGUGAACGUCUCU GCCGUAUUCAUGGCAGUACUGUUAACUCUCCAAACAC CCGCCGGUCAAAUUCAUUGGGGCAAUCUCUCUAAGAU AGGGGUAGUAGGAAUAGGAAGUGCAAGCUACAAAGU UAUGACUCGUUCCAGCCAUCAAUCAUUAGUCAUAAAA UUAAUGCCCAAUAUAACUCUCCUCAAUAACUGCACGA GGGUAGAGAUUGCAGAAUACAGGAGACUACUAAGAA CAGUUUUGGAACCAAUUAGGGAUGCACUUAAUGCAA UGACCCAGAACAUAAGGCCGGUUCAGAGCGUAGCUUC AAGUAGGAGACACAAGAGAUUUGCGGGAGUAGUCCU GGCAGGUGCGGCCCUAGGUGUUGCCACAGCUGCUCAG AUAACAGCCGGCAUUGCACUUCACCGGUCCAUGCUGA ACUCUCAGGCCAUCGACAAUCUGAGAGCGAGCCUGGA AACUACUAAUCAGGCAAUUGAGGCAAUCAGACAAGCA GGGCAGGAGAUGAUAUUGGCUGUUCAGGGUGUCCAA GACUACAUCAAUAAUGAGCUGAUACCGUCUAUGAACC AGCUAUCUUGUGAUCUAAUCGGUCAGAAGCUCGGGCU CAAAUUGCUUAGAUACUAUACAGAAAUCCUGUCAUU AUUUGGCCCCAGCCUACGGGACCCCAUAUCUGCGGAG AUAUCUAUCCAGGCUUUGAGUUAUGCACUUGGAGGA GAUAUCAAUAAGGUGUUAGAAAAGCUCGGAUACAGU GGAGGCGAUUUACUAGGCAUCUUAGAGAGCAGAGGA AUAAAGGCUCGGAUAACUCACGUCGACACAGAGUCCU ACUUCAUAGUCCUCAGUAUAGCCUAUCCGACGCUGUC CGAGAUUAAGGGGGUGAUUGUCCACCGGCUAGAGGG GGUCUCGUACAACAUAGGCUCUCAAGAGUGGUAUACC ACUGUGCCCAAGUAUGUUGCAACCCAAGGGUACCUUA UCUCGAAUUUUGAUGAGUCAUCAUGUACUUUCAUGCC AGAGGGGACUGUGUGCAGCCAAAAUGCCUUGUACCCG AUGAGUCCUCUGCUCCAAGAAUGCCUCCGGGGGUCCA CCAAGUCCUGUGCUCGUACACUCGUAUCCGGGUCUUU UGGGAACCGGUUCAUUUUAUCACAAGGGAACCUAAU AGCCAAUUGUGCAUCAAUUCUUUGUAAGUGUUACAC AACAGGUACGAUUAUUAAUCAAGACCCUGACAAGAUC CUAACAUACAUUGCUGCCGAUCGCUGCCCGGUAGUCG AGGUGAACGGCGUGACCAUCCAAGUCGGGAGCAGGAG GUAUCCAGACGCUGUGUACUUGCACAGAAUUGACCUC GGUCCUCCCAUAUCAUUGGAGAGGUUGGACGUAGGG ACAAAUCUGGGGAAUGCAAUUGCCAAAUUGGAGGAU GCCAAGGAAUUGUUGGAAUCAUCGGACCAGAUAUUG AGAAGUAUGAAAGGUUUAUCGAGCACUAGCAUAGUC UACAUCCUGAUUGCAGUGUGUCUUGGAGGGUUGAUA GGGAUCCCCACUUUAAUAUGUUGCUGCAGGGGGCGUU GUAACAAAAAGGGAGAACAAGUUGGUAUGUCAAGAC CAGGCCUAAAGCCUGACCUUACAGGAACAUCAAAAUC CUAUGUAAGAUCGCUUUGAUGAUAAUAGGCUGGAGC CUCGGUGGCCAAGCUUCUUGCCCCUUGGGCCUCCCCC CAGCCCCUCCCCCUUCCUGCACCCGUACCCCCGUGG UCUUUGAAUAAAGUCUGAGUGGGCGGCAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ AAAAAAAAAAAAAAAAAAUCUAG

GC_F_MEASLES_D8 Sequence, NT (5' UTR, ORF, 3' UTR) UCAAGCUUUUGGACCCUCGUACAGAAGCUAAUACGAC UCACUAUAGGGAAAUAAGAGAGAAAAGAAGAGUAAG AAGAAAUAUAAGAGCCACCAUGGGUCUCAAGGUGAA CGUCUCUGUCAUAUUCAUGGCAGUACUGUUAACUCUU 72

TABLE 13-continued

MeV Nucleic Acid Sequences

Description

Sequence

SEQ ID

Sequence Length:

CAAACACCCACCGGUCAAAUCCAUUGGGGCAAUCUCU CUAAGAUAGGGGUGGUAGGGAAGUGCAAGCU ACAAAGUUAUGACUCGUUCCAGCCAUCAAUCAUUAGU CAUAAAGUUAAUGCCCAAUAUAACUCUCCUCAACAAU UGCACGAGGGUAGGGAUUGCAGAAUACAGGAGACUA CUGAGAACAGUUCUGGAACCAAUUAGAGAUGCACUU AAUGCAAUGACCCAGAAUAUAAGACCGGUUCAGAGU GUAGCUUCAAGUAGGAGACACAAGAGAUUUGCGGGA GUUGUCCUGGCAGGUGCGGCCCUAGGCGUUGCCACAG CUGCUCAAAUAACAGCCGGUAUUGCACUUCACCAGUC CAUGCUGAACUCUCAAGCCAUCGACAAUCUGAGAGCG AGCCUAGAAACUACUAAUCAGGCAAUUGAGGCAAUCA GACAAGCAGGCAGGAGAUGAUAUUGGCUGUUCAGG GUGUCCAAGACUACAUCAAUAAUGAGCUGAUACCGUC UAUGAAUCAACUAUCUUGUGAUUUAAUCGGCCAGAA GCUAGGGCUCAAAUUGCUCAGAUACUAUACAGAAAUC CUGUCAUUAUUUGGCCCCAGCUUACGGGACCCCAUAU CUGCGGAGAUAUCUAUCCAGGCUUUGAGCUAUGCGCU UGGAGGAGAUAUCAAUAAGGUGUUGGAAAAGCUCGG AUACAGUGGAGGUGAUCUACUGGGCAUCUUAGAGAG CAGAGGAAUAAAGGCCCGGAUAACUCACGUCGACACA GAGUCCUACUUCAUUGUACUCAGUAUAGCCUAUCCGA CGCUAUCCGAGAUUAAGGGGGUGAUUGUCCACCGGCU AGAGGGGGUCUCGUACAACAUAGGCUCUCAAGAGUG GUAUACCACUGUGCCCAAGUAUGUUGCAACCCAAGGG UACCUUAUCUCGAAUUUUGAUGAGUCAUCAUGCACUU UCAUGCCAGAGGGGACUGUGUGCAGCCAGAAUGCCUU GUACCCGAUGAGUCCUCUGCUCCAAGAAUGCCUCCGG GGGUCCACUAAGUCCUGUGCUCGUACACUCGUAUCCG GGUCUUUCGGGAACCGGUUCAUUUUAUCACAGGGGA ACCUAAUAGCCAAUUGUGCAUCAAUCCUUUGCAAGUG UUACACAACAGGAACAAUCAUUAAUCAAGACCCUGAC AAGAUCCUAACAUACAUUGCUGCCGAUCACUGCCCGG UGGUCGAGGUGAAUGGCGUGACCAUCCAAGUCGGGA GCAGGAGGUAUCCGGACGCUGUGUACUUGCACAGGAU UGACCUCGGUCCUCCCAUAUCUUUGGAGAGGUUGGAC GUAGGGACAAAUCUGGGGAAUGCAAUUGCUAAGUUG GAGGAUGCCAAGGAAUUGUUGGAGUCAUCGGACCAG AUAUUGAGGAGUAUGAAAGGUUUAUCGAGCACUAGU AUAGUUUACAUCCUGAUUGCAGUGUGUCUUGGAGGA UUGAUAGGGAUCCCCGCUUUAAUAUGUUGCUGCAGG GGGCGUUGUAACAAGAAGGGAGAACAAGUUGGUAUG UCAAGACCAGGCCUAAAGCCUGAUCUUACAGGAACAU CAAAAUCCUAUGUAAGGUCACUCUGAUGAUAAUAGG CUGGAGCCUCGGUGGCCAAGCUUCUUGCCCCUUGGGC CUCCCCCAGCCCCUCCUCCCCUUCCUGCACCCGUACC CCCGUGGUCUUUGAAUAAAGUCUGAGUGGGCGGC

GC_F_MEASLES_D8
ORF Sequence, NT

AUGGGUCUCAAGGUGAACGUCUCUGUCAUAUUCAUG GCAGUACUGUUAACUCUUCAAACACCCACCGGUCAAA UCCAUUGGGGCAAUCUCUCUAAGAUAGGGGUGGUAG GGGUAGGAAGUGCAAGCUACAAAGUUAUGACUCGUU CCAGCCAUCAAUCAUUAGUCAUAAAGUUAAUGCCCAA UAUAACUCUCCUCAACAAUUGCACGAGGGUAGGGAUU GCAGAAUACAGGAGACUACUGAGAACAGUUCUGGAA CCAAUUAGAGAUGCACUUAAUGCAAUGACCCAGAAUA UAAGACCGGUUCAGAGUGUAGCUUCAAGUAGGAGAC ACAAGAGAUUUGCGGGAGUUGUCCUGGCAGGUGCGG CCCUAGGCGUUGCCACAGCUGCUCAAAUAACAGCCGG UAUUGCACUUCACCAGUCCAUGCUGAACUCUCAAGCC AUCGACAAUCUGAGAGCGAGCCUAGAAACUACUAAUC AGGCAAUUGAGGCAAUCAGACAAGCAGGGCAGGAGA UGAUAUUGGCUGUUCAGGGUGUCCAAGACUACAUCA AUAAUGAGCUGAUACCGUCUAUGAAUCAACUAUCUU GUGAUUUAAUCGGCCAGAAGCUAGGGCUCAAAUUGC UCAGAUACUAUACAGAAAUCCUGUCAUUAUUUGGCCC CAGCUUACGGGACCCCAUAUCUGCGGAGAUAUCUAUC CAGGCUUUGAGCUAUGCGCUUGGAGGAGAUAUCAAU AAGGUGUUGGAAAAGCUCGGAUACAGUGGAGGUGAU CUACUGGGCAUCUUAGAGAGCAGAGGAAUAAAGGCCC GGAUAACUCACGUCGACACAGAGUCCUACUUCAUUGU ACUCAGUAUAGCCUAUCCGACGCUAUCCGAGAUUAAG GGGGUGAUUGUCCACCGGCUAGAGGGGGUCUCGUACA ACAUAGGCUCUCAAGAGUGGUAUACCACUGUGCCCAA GUAUGUUGCAACCCAAGGGUACCUUAUCUCGAAUUUU

MeV Nucleic Acid Sequences

Description Sequence

SEQ ID

GAUGAGUCAUCAUGCACUUUCAUGCCAGAGGGGACUG UGUGCAGCCAGAAUGCCUUGUACCCGAUGAGUCCUCU GCUCCAAGAAUGCCUCCGGGGGUCCACUAAGUCCUGU GCUCGUACACUCGUAUCCGGGUCUUUCGGGAACCGGU UCAUUUUAUCACAGGGGAACCUAAUAGCCAAUUGUGC AUCAAUCCUUUGCAAGUGUUACACAACAGGAACAAUC AUUAAUCAAGACCCUGACAAGAUCCUAACAUACAUUG CUGCCGAUCACUGCCCGGUGGUCGAGGUGAAUGGCGU GACCAUCCAAGUCGGGAGCAGGAGGUAUCCGGACGCU GUGUACUUGCACAGGAUUGACCUCGGUCCUCCCAUAU CUUUGGAGAGGUUGGACGUAGGGACAAAUCUGGGGA AUGCAAUUGCUAAGUUGGAGGAUGCCAAGGAAUUGU UGGAGUCAUCGGACCAGAUAUUGAGGAGUAUGAAAG GUUUAUCGAGCACUAGUAUAGUUUACAUCCUGAUUG CAGUGUGUCUUGGAGGAUUGAUAGGGAUCCCCGCUU UAAUAUGUUGCUGCAGGGGGCGUUGUAACAAGAAGG GAGAACAAGUUGGUAUGUCAAGACCAGGCCUAAAGCC UGAUCUUACAGGAACAUCAAAAUCCUAUGUAAGGUC ACUCUGA

GC_F_MEASLES_D8 mRNA Sequence (assumes T100 tail) Sequence Length: 1925

G*GGGAAAUAAGAGAGAAAAGAAGAGUAAGAAGAAA UAUAAGAGCCACCAUGGGUCUCAAGGUGAACGUCUCU GUCAUAUUCAUGGCAGUACUGUUAACUCUUCAAACAC CCACCGGUCAAAUCCAUUGGGGCAAUCUCUCUAAGAU AGGGGUGGUAGGGUAGGAAGUGCAAGCUACAAAGU UAUGACUCGUUCCAGCCAUCAAUCAUUAGUCAUAAAG UUAAUGCCCAAUAUAACUCUCCUCAACAAUUGCACGA GGGUAGGGAUUGCAGAAUACAGGAGACUACUGAGAA CAGUUCUGGAACCAAUUAGAGAUGCACUUAAUGCAA UGACCCAGAAUAUAAGACCGGUUCAGAGUGUAGCUUC AAGUAGGAGACACAAGAGAUUUGCGGGAGUUGUCCU GGCAGGUGCGGCCUAGGCGUUGCCACAGCUGCUCAA AUAACAGCCGGUAUUGCACUUCACCAGUCCAUGCUGA ACUCUCAAGCCAUCGACAAUCUGAGAGCGAGCCUAGA AACUACUAAUCAGGCAAUUGAGGCAAUCAGACAAGCA GGGCAGGAGAUGAUAUUGGCUGUUCAGGGUGUCCAA GACUACAUCAAUAAUGAGCUGAUACCGUCUAUGAAUC AACUAUCUUGUGAUUUAAUCGGCCAGAAGCUAGGGC UCAAAUUGCUCAGAUACUAUACAGAAAUCCUGUCAUU AUUUGGCCCCAGCUUACGGGACCCCAUAUCUGCGGAG AUAUCUAUCCAGGCUUUGAGCUAUGCGCUUGGAGGA GAUAUCAAUAAGGUGUUGGAAAAGCUCGGAUACAGU GGAGGUGAUCUACUGGGCAUCUUAGAGAGCAGAGGA AUAAAGGCCCGGAUAACUCACGUCGACACAGAGUCCU ACUUCAUUGUACUCAGUAUAGCCUAUCCGACGCUAUC CGAGAUUAAGGGGGUGAUUGUCCACCGGCUAGAGGG GGUCUCGUACAACAUAGGCUCUCAAGAGUGGUAUACC ACUGUGCCCAAGUAUGUUGCAACCCAAGGGUACCUUA UCUCGAAUUUUGAUGAGUCAUCAUGCACUUUCAUGCC AGAGGGGACUGUGUGCAGCCAGAAUGCCUUGUACCCG AUGAGUCCUCUGCUCCAAGAAUGCCUCCGGGGGUCCA CUAAGUCCUGUGCUCGUACACUCGUAUCCGGGUCUUU CGGGAACCGGUUCAUUUUAUCACAGGGGAACCUAAUA GCCAAUUGUGCAUCAAUCCUUUGCAAGUGUUACACAA CAGGAACAAUCAUUAAUCAAGACCCUGACAAGAUCCU AACAUACAUUGCUGCCGAUCACUGCCCGGUGGUCGAG GUGAAUGGCGUGACCAUCCAAGUCGGGAGCAGGAGG UAUCCGGACGCUGUGUACUUGCACAGGAUUGACCUCG GUCCUCCCAUAUCUUUGGAGAGGUUGGACGUAGGGAC AAAUCUGGGGAAUGCAAUUGCUAAGUUGGAGGAUGC CAAGGAAUUGUUGGAGUCAUCGGACCAGAUAUUGAG GAGUAUGAAAGGUUUAUCGAGCACUAGUAUAGUUUA CAUCCUGAUUGCAGUGUGUCUUGGAGGAUUGAUAGG GAUCCCCGCUUUAAUAUGUUGCUGCAGGGGGCGUUGU AACAAGAAGGGAGAACAAGUUGGUAUGUCAAGACCA GGCCUAAAGCCUGAUCUUACAGGAACAUCAAAAUCCU AUGUAAGGUCACUCUGAUGAUAAUAGGCUGGAGCCU CGGUGGCCAAGCUUCUUGCCCCUUGGGCCUCCCCCA GCCCUCCUCCCUUCCUGCACCCGUACCCCCGUGGUC UUUGAAUAAAGUCUGAGUGGGCGGCAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAUCUAG

317 TABLE 13-continued MeV Nucleic Acid Sequences SEO ID Description Sequence NO: GC H MEASLES B3 UCAAGCUUUUGGACCCUCGUACAGAAGCUAAUACGAC 75 Sequence, NT (5' UCACUAUAGGGAAAUAAGAGAGAAAAGAAGAGUAAG UTR, ORF, 3' AAGAAAUAUAAGAGCCACCAUGUCACCGCAACGAGAC UTR) CGGAUAAAUGCCUUCUACAAAGAUAACCCUUAUCCCA AGGGAAGUAGGAUAGUUAUUAACAGAGAACAUCUUA Sequence Length: 2065 UGAUUGACAGACCCUAUGUUCUGCUGGCUGUUCUGUU CGUCAUGUUUCUGAGCUUGAUCGGAUUGCUGGCAAU UGCAGGCAUUAGACUUCAUCGGGCAGCCAUCUACACC GCGGAGAUCCAUAAAAGCCUCAGUACCAAUCUGGAUG UGACUAACUCCAUCGAGCAUCAGGUCAAGGACGUGCU

GACACCACUCUUUAAAAUCAUCGGGGAUGAAGUGGGC CUGAGAACACCUCAGAGAUUCACUGACCUAGUGAAAU UCAUCUCGGACAAGAUUAAAUUCCUUAAUCCGGAUAG GGAGUACGACUUCAGAGAUCUCACUUGGUGCAUCAAC CCGCCAGAGAGGAUCAAACUAGAUUAUGAUCAAUACU GUGCAGAUGUGGCUGCUGAAGAGCUCAUGAAUGCAU UGGUGAACUCAACUCUACUGGAGACCAGAACAACCAC UCAGUUCCUAGCUGUCUCAAAGGGAAACUGCUCAGGG CCCACUACAAUCAGAGGUCAAUUCUCAAACAUGUCGC UGUCCUUGUUGGACUUGUACUUAGGUCGAGGUUACA AUGUGUCAUCUAUAGUCACUAUGACAUCCCAGGGAAU GUAUGGGGGAACCUACCUAGUUGAAAAGCCUAAUCU GAACAGCAAAGGGUCAGAGUUGUCACAACUGAGCAU GUACCGAGUGUUUGAAGUAGGUGUGAUCAGAAACCC GGGUUUGGGGGCUCCGGUGUUCCAUAUGACAAACUA UUUUGAGCAACCAGUCAGUAAUGGUCUCGGCAACUGU AUGGUGGCUUUGGGGGAGCUCAAACUCGCAGCCCUUU GUCACGGGGACGAUUCUAUCAUAAUUCCCUAUCAGGG AUCAGGGAAAGGUGUCAGCUUCCAGCUCGUCAAGCUG GGUGUCUGGAAAUCCCCAACCGACAUGCAAUCCUGGG UCCCCUUAUCAACGGAUGAUCCAGUGGUAGACAGGCU UUACCUCUCAUCUCACAGAGGUGUCAUCGCUGACAAU CAAGCAAAAUGGGCUGUCCCGACAACACGAACAGAUG ACAAGUUGCGAAUGGAGACAUGCUUCCAGCAGGCGUG UAAAGGUAAAAUCCAAGCACUCUGCGAGAAUCCCGAG UGGGUACCAUUGAAGGAUAACAGGAUUCCUUCAUAC GGGGUCCUGUCUGUUGAUCUGAGUCUGACGGUUGAG CUUAAAAUCAAAAUUGCUUCGGGAUUCGGGCCAUUG AUCACACGGCUCAGGGAUGGACCUAUACAAAUCCA ACUGCAACAAUGUGUAUUGGCUGACUAUUCCGCCAAU GAGAAAUCUAGCCUUAGGCGUAAUCAACACAUUGGA GUGGAUACCGAGAUUCAAGGUUAGUCCCAACCUCUUC ACUGUCCCAAUUAAGGAAGCAGGCGAAGACUGCCAUG CCCCAACAUACCUACCUGCGGAGGUGGACGGUGAUGU CAAACUCAGUUCCAACCUGGUGAUUCUACCUGGUCAA GAUCUCCAAUAUGUUUUGGCAACCUACGAUACCUCCA GGGUUGAGCAUGCUGUGGUUUAUUACGUUUACAGCC CAAGCCGCUCAUUUUCUUACUUUUAUCCUUUUAGGUU GCCUAUAAAGGGGGUCCCAAUCGAACUACAAGUGGAA UGCUUCACAUGGGAUCAAAAACUCUGGUGCCGUCACU UCUGUGUGCUUGCGGACUCAGAAUCCGGUGGACUUAU CACUCACUCUGGGAUGGUGGGCAUGGGAGUCAGCUGC ACAGCUACCCGGGAAGAUGGAACCAAUCGCAGAUAAU GAUAAUAGGCUGGAGCCUCGGUGGCCAAGCUUCUUGC CCCUUGGGCCUCCCCCAGCCCCUCCUCCCCUUCCUGC ACCCGUACCCCGUGGUCUUUGAAUAAAGUCUGAGUG GGCGGC

GC H MEASLES B3 ORF Sequence, NT

AUGUCACCGCAACGAGACCGGAUAAAUGCCUUCUACA AAGAUAACCCUUAUCCCAAGGGAAGUAGGAUAGUUA UUAACAGAGAACAUCUUAUGAUUGACAGACCCUAUG UUCUGCUGGCUGUUCUGUUCGUCAUGUUUCUGAGCUU GAUCGGAUUGCUGGCAAUUGCAGGCAUUAGACUUCA UCGGGCAGCCAUCUACACCGCGGAGAUCCAUAAAAGC CUCAGUACCAAUCUGGAUGUGACUAACUCCAUCGAGC AUCAGGUCAAGGACGUGCUGACACCACUCUUUAAAAU CAUCGGGGAUGAAGUGGGCCUGAGAACACCUCAGAGA UUCACUGACCUAGUGAAAUUCAUCUCGGACAAGAUUA AAUUCCUUAAUCCGGAUAGGGAGUACGACUUCAGAG AUCUCACUUGGUGCAUCAACCCGCCAGAGAGGAUCAA ACUAGAUUAUGAUCAAUACUGUGCAGAUGUGGCUGC UGAAGAGCUCAUGAAUGCAUUGGUGAACUCAACUCU ACUGGAGACCAGAACCACUCAGUUCCUAGCUGUC UCAAAGGGAAACUGCUCAGGGCCCACUACAAUCAGAG

SEO ID

NO:

TABLE 13-continued

MeV Nucleic Acid Sequences

Description Sequence

GUCAAUUCUCAAACAUGUCGCUGUCCUUGUUGGACUU GUACUUAGGUCGAGGUUACAAUGUGUCAUCUAUAGU CACUAUGACAUCCCAGGGAAUGUAUGGGGGAACCUAC CUAGUUGAAAAGCCUAAUCUGAACAGCAAAGGGUCA GAGUUGUCACAACUGAGCAUGUACCGAGUGUUUGAA GUAGGUGUGAUCAGAAACCCGGGUUUGGGGGCUCCG GUGUUCCAUAUGACAAACUAUUUUGAGCAACCAGUCA GUAAUGGUCUCGGCAACUGUAUGGUGGCUUUGGGGG AGCUCAAACUCGCAGCCCUUUGUCACGGGGACGAUUC UAUCAUAAUUCCCUAUCAGGGAUCAGGGAAAGGUGU CAGCUUCCAGCUCGUCAAGCUGGGUGUCUGGAAAUCC CCAACCGACAUGCAAUCCUGGGUCCCCUUAUCAACGG AUGAUCCAGUGGUAGACAGGCUUUACCUCUCAUCUCA CAGAGGUGUCAUCGCUGACAAUCAAGCAAAAUGGGCU GUCCCGACAACACGAACAGAUGACAAGUUGCGAAUGG AGACAUGCUUCCAGCAGGCGUGUAAAGGUAAAAUCCA AGCACUCUGCGAGAAUCCCGAGUGGGUACCAUUGAAG GAUAACAGGAUUCCUUCAUACGGGGUCCUGUCUGUUG AUCUGAGUCUGACGGUUGAGCUUAAAAUCAAAAUUG CUUCGGGAUUCGGGCCAUUGAUCACACACGGCUCAGG GAUGGACCUAUACAAAUCCAACUGCAACAAUGUGUAU UGGCUGACUAUUCCGCCAAUGAGAAAUCUAGCCUUAG GCGUAAUCAACACAUUGGAGUGGAUACCGAGAUUCA AGGUUAGUCCCAACCUCUUCACUGUCCCAAUUAAGGA AGCAGGCGAAGACUGCCAUGCCCCAACAUACCUACCU GCGGAGGUGACGGUGAUGUCAAACUCAGUUCCAACC UGGUGAUUCUACCUGGUCAAGAUCUCCAAUAUGUUU UGGCAACCUACGAUACCUCCAGGGUUGAGCAUGCUGU GGUUUAUUACGUUUACAGCCCAAGCCGCUCAUUUUCU UACUUUUAUCCUUUUAGGUUGCCUAUAAAGGGGGUC CCAAUCGAACUACAAGUGGAAUGCUUCACAUGGGAUC AAAAACUCUGGUGCCGUCACUUCUGUGUGCUUGCGGA CUCAGAAUCCGGUGGACUUAUCACUCACUCUGGGAUG GUGGGCAUGGGAGUCAGCUGCACAGCUACCCGGGAAG AUGGAACCAAUCGCAGAUAA

GC_H_MEASLES_B3 mRNA Sequence (assumes T100 Tail) Sequence Length: 2126

G*GGGAAAUAAGAGAGAAAAGAAGAGUAAGAAGAAA UAUAAGAGCCACCAUGUCACCGCAACGAGACCGGAUA AAUGCCUUCUACAAAGAUAACCCUUAUCCCAAGGGAA GUAGGAUAGUUAUUAACAGAGAACAUCUUAUGAUUG ACAGACCCUAUGUUCUGCUGGCUGUUCUGUUCGUCAU GUUUCUGAGCUUGAUCGGAUUGCUGGCAAUUGCAGG CAUUAGACUUCAUCGGGCAGCCAUCUACACCGCGGAG AUCCAUAAAAGCCUCAGUACCAAUCUGGAUGUGACUA ACUCCAUCGAGCAUCAGGUCAAGGACGUGCUGACACC ACUCUUUAAAAUCAUCGGGGAUGAAGUGGGCCUGAG AACACCUCAGAGAUUCACUGACCUAGUGAAAUUCAUC UCGGACAAGAUUAAAUUCCUUAAUCCGGAUAGGGAG UACGACUUCAGAGAUCUCACUUGGUGCAUCAACCCGC CAGAGAGGAUCAAACUAGAUUAUGAUCAAUACUGUG CAGAUGUGGCUGCUGAAGAGCUCAUGAAUGCAUUGG UGAACUCAACUCUACUGGAGACCAGAACCACUCA GUUCCUAGCUGUCUCAAAGGGAAACUGCUCAGGGCCC ACUACAAUCAGAGGUCAAUUCUCAAACAUGUCGCUGU CCUUGUUGGACUUGUACUUAGGUCGAGGUUACAAUG UGUCAUCUAUAGUCACUAUGACAUCCCAGGGAAUGUA UGGGGGAACCUACCUAGUUGAAAAGCCUAAUCUGAAC AGCAAAGGGUCAGAGUUGUCACAACUGAGCAUGUACC GAGUGUUUGAAGUAGGUGUGAUCAGAAACCCGGGUU UGGGGGCUCCGGUGUUCCAUAUGACAAACUAUUUUG AGCAACCAGUCAGUAAUGGUCUCGGCAACUGUAUGGU GGCUUUGGGGGAGCUCAAACUCGCAGCCCUUUGUCAC GGGGACGAUUCUAUCAUAAUUCCCUAUCAGGGAUCAG GGAAAGGUGUCAGCUUCCAGCUCGUCAAGCUGGGUGU CUGGAAAUCCCCAACCGACAUGCAAUCCUGGGUCCCC UUAUCAACGGAUGAUCCAGUGGUAGACAGGCUUUACC UCUCAUCUCACAGAGGUGUCAUCGCUGACAAUCAAGC AAAAUGGGCUGUCCCGACAACACGAACAGAUGACAAG UUGCGAAUGGAGACAUGCUUCCAGCAGGCGUGUAAA GGUAAAAUCCAAGCACUCUGCGAGAAUCCCGAGUGGG UACCAUUGAAGGAUAACAGGAUUCCUUCAUACGGGG UCCUGUCUGUUGAUCUGAGUCUGACGGUUGAGCUUA AAAUCAAAAUUGCUUCGGGAUUCGGGCCAUUGAUCAC ACACGGCUCAGGGAUGGACCUAUACAAAUCCAACUGC AACAAUGUGUAUUGGCUGACUAUUCCGCCAAUGAGA

MeV Nucleic Acid Sequences

Description Sequence

SEQ ID

AAUCUAGCCUUAGGCGUAAUCAACACAUUGGAGUGG AUACCGAGAUUCAAGGUUAGUCCCAACCUCUUCACUG UCCCAAUUAAGGAAGCAGGCGAAGACUGCCAUGCCCC AACAUACCUACCUGCGGAGGUGGACGGUGAUGUCAAA CUCAGUUCCAACCUGGUGAUUCUACCUGGUCAAGAUC UCCAAUAUGUUUUGGCAACCUACGAUACCUCCAGGGU UGAGCAUGCUGUGGUUUAUUACGUUUACAGCCCAAGC CGCUCAUUUUCUUACUUUUAUCCUUUUAGGUUGCCUA UAAAGGGGCUCCCAAUCGAACUACAAGUGGAAUGCU UCACAUGGGAUCAAAAACUCUGGUGCCGUCACUUCUG UGUGCUUGCGGACUCAGAAUCCGGUGGACUUAUCACU CACUCUGGGAUGGUGGGCAUGGGAGUCAGCUGCACAG CUACCCGGGAAGAUGGAACCAAUCGCAGAUAAUGAUA AUAGGCUGGAGCCUCGGUGGCCAAGCUUCUUGCCCCU UGGGCCUCCCCCAGCCCCUCCUCCCCUUCCUGCACCC GUACCCCGUGGUCUUUGAAUAAAGUCUGAGUGGGCG GCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUCUAG

GC_H_MEASLES_D8 Sequence, NT (5' UTR, ORF, 3' UTR) Sequence Length: 2065

UCAAGCUUUUGGACCCUCGUACAGAAGCUAAUACGAC UCACUAUAGGGAAAUAAGAGAGAAAAGAAGAGUAAG AAGAAAUAUAAGAGCCACCAUGUCACCACAACGAGAC CGGAUAAAUGCCUUCUACAAAGACAACCCCCAUCCUA AGGGAAGUAGGAUAGUUAUUAACAGAGAACAUCUUA UGAUUGAUAGACCUUAUGUUUUGCUGGCUGUUCUAU UCGUCAUGUUUCUGAGCUUGAUCGGGUUGCUAGCCAU UGCAGGCAUUAGACUUCAUCGGGCAGCCAUCUACACC GCAGAGAUCCAUAAAAGCCUCAGCACCAAUCUGGAUG UAACUAACUCAAUCGAGCAUCAGGUUAAGGACGUGCU GACACCACUCUUCAAGAUCAUCGGUGAUGAAGUGGGC UUGAGGACACCUCAGAGAUUCACUGACCUAGUGAAGU UCAUCUCUGACAAGAUUAAAUUCCUUAAUCCGGACAG GGAAUACGACUUCAGAGAUCUCACUUGGUGUAUCAAC CCGCCAGAGAGAAUCAAAUUGGAUUAUGAUCAAUAC UGUGCAGAUGUGGCUGCUGAAGAACUCAUGAAUGCA UUGGUGAACUCAACUCUACUGGAGACCAGGGCAACCA AUCAGUUCCUAGCUGUCUCAAAGGGAAACUGCUCAGG GCCCACUACAAUCAGAGGCCAAUUCUCAAACAUGUCG CUGUCCCUGUUGGACUUGUAUUUAAGUCGAGGUUAC AAUGUGUCAUCUAUAGUCACUAUGACAUCCCAGGGAA UGUACGGGGAACUUACCUAGUGGAAAAGCCUAAUC UGAGCAGCAAAGGGUCAGAGUUGUCACAACUGAGCA UGCACCGAGUGUUUGAAGUAGGUGUUAUCAGAAAUC CGGGUUUGGGGGCUCCGGUAUUCCAUAUGACAAACUA UCUUGAGCAACCAGUCAGUAAUGAUUUCAGCAACUGC AUGGUGGCUUUGGGGGAGCUCAAGUUCGCAGCCCUCU GUCACAGGGAAGAUUCUAUCACAAUUCCCUAUCAGGG AUCAGGGAAAGGUGUCAGCUUCCAGCUUGUCAAGCUA GGUGUCUGGAAAUCCCCAACCGACAUGCAAUCCUGGG UCCCCCUAUCAACGGAUGAUCCAGUGAUAGACAGGCU UUACCUCUCAUCUCACAGAGGCGUUAUCGCUGACAAU CAAGCAAAAUGGGCUGUCCCGACAACACGGACAGAUG ACAAGUUGCGAAUGGAGACAUGCUUCCAGCAGGCGUG UAAGGGUAAAAUCCAAGCACUUUGCGAGAAUCCCGAG UGGACACCAUUGAAGGAUAACAGGAUUCCUUCAUACG GGGUCUUGUCUGUUGAUCUGAGUCUGACAGUUGAGC UUAAAAUCAAAAUUGUUUCAGGAUUCGGGCCAUUGA UCACACACGGUUCAGGGAUGGACCUAUACAAAUCCAA CCACAACAAUAUGUAUUGGCUGACUAUCCCGCCAAUG AAGAACCUGGCCUUAGGUGUAAUCAACACAUUGGAG UGGAUACCGAGAUUCAAGGUUAGUCCCAACCUCUUCA CUGUUCCAAUUAAGGAAGCAGGCGAGGACUGCCAUGC CCCAACAUACCUACCUGCGGAGGUGGAUGGUGAUGUC AAACUCAGUUCCAAUCUGGUGAUUCUACCUGGUCAAG AUCUCCAAUAUGUUCUGGCAACCUACGAUACUUCCAG AGUUGAACAUGCUGUAGUUUAUUACGUUUACAGCCC AAGCCGCUCAUUUUCUUACUUUUAUCCUUUUAGGUUG CCUGUAAGGGGGUCCCCAUUGAAUUACAAGUGGAA UGCUUCACAUGGGACCAAAAACUCUGGUGCCGUCACU UCUGUGUGCUUGCGGACUCAGAAUCUGGUGGACAUA UCACUCACUCUGGGAUGGUGGGCAUGGGAGUCAGCUG CACAGCCACUCGGGAAGAUGGAACCAGCCGCAGAUAG UGAUAAUAGGCUGGAGCCUCGGUGGCCAAGCUUCUUG CCCCUUGGGCCUCCCCCAGCCCCUCCUCCCCUUCCUG

TABLE 13-continued

	MeV Nucleic Acid Sequences	
Description	Sequence	SEQ ID NO:
	CACCCGUACCCCCGUGGUCUUUGAAUAAAGUCUGAGU GGGCGGC	
GC_H_MEASLES_D8 ORF Sequence, NT	AUGUCACCACAACGAGACCGGAUAAAUGCCUUCUACA AAGACAACCCCCAUCCUAAGGGAAGUAGAUAGUUAU UAACAGAGAACAUCUUAUGUCAUGUUUCUGACCUU GAUCGGGUUGUUCUAUUCGUCAUGUUUCUGACCUU GAUCGGGUUGCUAGCCAUUGCAGGAUUAGACCUUAUGU CGGCCAGCCAAUCUACACCGCAGAGAUCCAUAAAAGCC UCAGCACCAAUCUGGAUGUAGCACCACUCUUCAAGAUC AUCAGGUUAAGGACGAUUAGACCAUCUUCAAGAUC AUCAGGUGAAGAGGACUUCAAGAUC AUCAGUUAAGGACGAUUGAAGUUCAUCAGACC UUCACUUGACACGCAGGAGAUCCAUCUUCAAGAUC AUCACUUGAUGAAGUUCAUCUUGACAAGAU UUCACUUGAUCAAGAUUCAUCUUGACAAGAU UUCACUUGGUGAUCAACCCGCCAGAGAAUCAAAAUCAAA AUUCCUUAAUCCGGACAGGGAAUACGACCUUCAGAGA UUCACUUGGUGUAUCAACCCGCCAGAGAAGAAUCAAA UUGACUUGGUGUAUCAACCCGCCAGAGAAGAAUCAAA UUGACUUGGUGUAUCAACCCGCCAGAGAAUCAAA UUGAGAGACCAGGCAAUCAGUUCCUGACAAA ABUUCCUUAAUCAGACGCCCACAAGACAUUCAGAGA UUCACUUGGUGUAUCAACCCGCCAGAGAAUCAAA UUGGAGACCAGGCAAUCAGUUCCUGACAAA ABUUCCCAAACUGUCCAGGCCCAUCAAUCAGAGC CAAGACCAAGCGCAAUCAGAUCCGC GAAGAACUCAUGAGCCCCACUACAAUCAGAGC CAAUUCUCAAACAUGGCCCCACUACAAUCAGAGC CAAUUCUCAAACAUGUGCCCUGUUGGACUUGU AUUGAGAAACUGCUCAGGCCCCACUACAAUCAGAGC CAAUUCCCAAACAUGGCCCCCGGUGGGCACCUUGU AUUGACAACUGGCCCCGGGCCCCCGGUGGACCUUGU AUUGACAACUGACCAGCCAGAGAAGAUUACCU AGUGGAAACCCCAGCGAGACCUUACAUCAACCCCA ACGUGAUACAACUGACCAGCAAGGGAACGGCCAGACAGAC	79
GC_H_MEASLES_D8 mRNA Sequence (assumes T100 tail) Sequence Length: 2126	G*GGGAAAUAAGAGAGAAAAGAAGAGUAAGAAAA UAUAAGAGCCACCAUGUCACCACAACGAGACCGGAUA AAUGCCUUCUACAAAGACAACCCCCAUCCUAAGGGAA GUAGGAUUAUUAACAAGAGAACAUCUUAUUGUUG AUAGACCUUAUGUUUGCUGGCUGUUCUAUUCGUCA UGUUUCUAGAGCAAGUGUUGAAGACAAGAGAACACUCUA	80

UGUUUCUGAGCUUGAUCGGGUUGCUAGCCAUUGCAG GCAUUAGACUUCAUCGGGCAGCCAUCUACACCGCAGA GAUCCAUAAAAGCCUCAGCACCAAUCUGGAUGUAACU GAUCCAUAAAAGCCUCAGCACCAAUCUGGAUGUAACU
AACUCAAUCGAGCAUCAGGGUAAAGGACGUGCUGACAC
CACUCUUCAAGAUCAUCGGUGAUGAAGUGGGCUUGA
GGACACCUCAGAGAUUCACUGACCUAGUGAAGUUCAU
CUCUGACAAGAUUAAAUUCCUUAAUCCGGACAGGAA UACGACUUCAGAGAUCUCACUUGGUGUAUCAACCCGC CAGAGAGAAUCAAAUUGGAUUAUGAUCAAUACUGUG ${\tt CAGAUGUGGCUGCUGAAGAACUCAUGAAUGCAUUGG}$ UGAACUCAACUCUACUGGAGACCAGGGCAACCAAUCA ${\tt GUUCCUAGCUGUCUCAAAGGGAAACUGCUCAGGGCCC}$ ${\tt ACUACAAUCAGAGGCCAAUUCUCAAACAUGUCGCUGU}$ CCCUGUUGGACUUGUAUUUAAGUCGAGGUUACAAUG UGUCAUCUAUAGUCACUAUGACAUCCCAGGGAAUGUA

	TABLE 13-continued	
	MeV Nucleic Acid Sequences	
Description	Sequence	SEQ ID NO:
	CGGGGGAACUUACCUAGUGGAAAAGCCUAAUCUGAGC AGCAAAGGGUCAGAGUUGUCACAACUGAGCAUGCACC GAGUGUUUGAAGUAGGUGUUAUCAGAAAUCCGGGUU UGGGGGCUCCGGUAUUCCAUAUGACAAACUAUCUUGA GCAACCAGUCAGUAAUGAUUUCAGCAACUGCAUGGUG GCUUUGGGGAGCUCAAGUUCGCAGCCCUCUUCACA	
	GGGAAGAUUCUAUCACAAUUCCCUAUCAGGGAUCAGG GAAAGGUGUCAGCUUCCAGCUUGUCAAGCUAGGUGUC UGGAAAUCCCCAACCGACAUGCAAUCCUGGGUCCCCC UAUCAACGGAUGAUAGACAGGCUUUJACCU	
	CUCAUCUCACAGAGGCGUUAUCGCUGACAAUCAAGCA AAAUGGGCUGUCCCGACAACACGACAGAUGACAAGU UGCGAAUGAGAACAUGCUUCCAGCAGGCGUUGUAAGG GUAAAUCCAGCACUUUUGCGAGAAUCCCGAGUGGAC	

ACCAUUGAAGGAUAACAGGAUUCCUUCAUACGGGGUC UUGUCUGUUGAUCUGAGGUCUGACAGUUGAGCUUAAA

UCAUUUUCUUACUUUUAACUUUUAGGUUGCCUGUA
AGGGGGUCCCCAUUGAAUUACAAGUGGAAUGCUUC
ACAUGGACCAAAAACUCUGGUGCCGUCACUUCUGUG
UGCUUGCGGACUCAGCAGCAGCAGCCCCAGAGCUGCACAGCC
ACUCGGGAAGAUGGAGCAGCGCAGAUAGUGAUAA
UAGGCUGGAAGCCUCGGUGGCCAAGCUUCUUGCCCCUU
GGGCCUCCCCCAGCCCCCUCCCCCUUCCUGCACCGG
UACCCCCGUGGUCUUUGAAUAAAGUCUGAGUGGCGG

TABLE 14

MeV Amino Acid Sequences				
Description	Sequence	SEQ ID NO:		
GC_F_MEASLES_B3.1 ORF Sequence, AA	MGLKVNVSAVFMAVLLTLQTPAGQIHWGNLSKIGVV GIGSASYKVMTRSSHQSLVIKLMPNITLLNNCTRVEIA EYRRLLRTVLEPIRDALNAMTQNIRPVQSVASSRRHK RPAGVVLAGAALGVATAAQITAGIALHRSMLNSQAID NLRASLETTNQAIEAIRQAGQEMILAVQGVQDYINNE LIPSMNQLSCDLIGQKLGLKLLRYYTEILSLFGPSLRDP ISAEISIQALSYALGGDINKVLEKLGYSGGDLLGILESR GIKARITHVDTESYFIVLSIAYPTLSEIKGVIVHRLEGVS YNIGSQEWYTTVPKYVATQGYLISNFDESSCTFMPEG TVCSQNALYPMSPLLQECLRGSTKSCARTLVSGSFGN RFILSQGNLIANCASILCKCYTTGTIINQDPDKILTYIAA DRCPVVEVNGVTIQVGSRRYPDAVYLHRIDLGPPISLE RLDVGTNLGNAIAKLEDAKELLESSDQILRSMKGLSST SIVYILIAVCLGGLIGIPTLICCCRGRCNKKGEQVGMSR PGLKPDLTGTSKSYVRSL*	47		
GC_F_MEASLES_D8 ORF Sequence, AA	MGLKVNVSVIFMAVLLTLQTPTGQIHWGNLSKIGVVG VGSASYKVMTRSSHQSLVIKLMPNITLLNNCTRVGIAE YRRLLRTVLEPIRDALNAMTQNIRPVQSVASSRHKR FAGVVLAGAALGVATAAQITAGIALHQSMLNSQAIDN LRASLETINQAIEAIRQAGQEMILAVQGVQDYINNELI PSMNQLSCDLIGQKLGLKLLRYYTEILSLFGPSLRDPIS AEISIQALSYALGGDINKVLEKLGYSGGDLLGILESRGI KARITHVDTESYFIVLSIAYPTLSEIKGVIVHRLEGVSY NIGSQEWYTTVPKYVATQGYLISNFDESSCTFMPEGT VCSQNALYPMSPLLQECLRGSTKSCARTLVSGSFGNR	48		

TABLE 14-continued

MeV Amino Acid Sequences		
Description	Sequence	SEQ ID NO:
	FILSQGNLIANCASILCKCYTTGTIINQDPDKILTYIAAD HCPVVEVNGVTIQVGSRRYPDAVYLHRIDLGPPISLER LDVGTNLGNAIAKLEDAKELLESSDQILRSMKGLSSTS IVYILIAVCLGGLIGIPALICCCRGRCNKKGEQVGMSRP GLKPDLTGTSKSYVRSL*	
GC_H_MEASLES_B3 ORF Sequence, AA	MSPQRDRINAFYKDNPYPKGSRIVINREHLMIDRPYVL LAVLFVMFLSLIGLLAIAGIRLHRAAIYTAEIHKSLSTN LDVTNSIEHQVKDVLTPLFKIIGDEVGLRTPQRFTDLV KFISDKIKFLNPDREYDFRDLTWCINPPBRIKLDYDQY CADVAAEELMNALVNSTLLETRTTTQFLAVSKGNCS GPTTIRGQFSNMSLSLLDLYLGRGYNVSSIVTMTSQG MYGGTYLVEKPNLNSKGSELSQLSMYRVPEVGVIRNP GLGAPVFHMTNYFEQPVSNGLGNCMVALGELKLAAL CHGDDSIITPYQGSGKGVSFQLVKLGWKKSPTDMQSW VPLSTDDPVVDRLYLSSHRGVIADNQAKWAVPTTRT DDKLRMETCFQQACKGKIQALCENPEWVPLKDNRIPS YGVLSVDLSLTVELKIKIASGFGPLITHGSGMDLYKSN CNNVYWLTIPPMRNLALGVINTLEWIPRFKVSPNLFTV PIKEAGEDCHAPTYLPAEVDGDVKLSSNLVILPGQDL QYVLATYDTSRVEHAVVYYVYSPSRSFSYFYPFRLPIK GVPIELQVECFTWDQKLWCRHFCVLADSESGGLITHS GMVGMGVSCTATREDGTNR*	49
GC_H_MEASLES_D8 ORF Sequence, AA	MSPQRDRINAFYKDNPHPKGSRIVINREHLMIDRPYVL LAVLFVMFLSLIGLLAIAGIRLHRAAIYTAEIHKSLSTN LDVTNSIEHQVKDVLTPLFKIIGDEVGLRTPQRFTDLV KFISDKIKFLNPDREYDFRDLTWCINPPERIKLDYDQY CADVAAEELMNALVNSTLLETRATNQFLAVSKENCS GPTTIRGQFSNMSLSLLDLYLSRGYNVSSIVTMTSQGM YGGTYLVEKPNLSSKGSELSQLSMHRVFEVGVIRNPG LGAPVFHMTNYLEQPVSNDFSNCNVALGELKFAALC HREDSITIPYQGSGKGVSFQLVKLGVWKSPTDMQSW VPLSTDDPVIDRLYLSSHRGVIADNQAKWAVPTTRTD DKLRMETCFQQACKGKIQALCENPEWTPLKDNRIPSY GVLSVDLSLTVELKIKIVSGFGPLITHGSGMDLYKSNH NNMYWLTIPPMKNLALGVINTLEWIPRFKVSPNLFTV PIKEAGEDCHAPTYLPAEVDGDVKLSSNLVILPGQDL QYVLATYDTSRVEHAVVYYVYSPSRSFSYFYPFRLPV RGVPIELQVECFTWDQKLWCRHFCVLADSESGGHITH SGMVGMGVSCTATREDGTSRR*	50

TABLE 15

MeV NCBI Accession Numbers (Amino Acid Sequences)			
Туре	Virus Name	GenBank Accession	
hemagglutinin	hemagglutinin [Measles virus strain Moraten]	AAF85673.1	
hemagglutinin	hemagglutinin [Measles virus strain Rubeovax]	AAF85689.1	
hemagglutinin	hemagglutinin [Measles virus]	AAF89824.1	
hemagglutinin	hemagglutinin protein [Measles virus]	CAA91369.1	
hemagglutinin	hemagglutinin [Measles virus]	BAJ23068.1	
hemagglutinin	hemagglutinin protein [Measles virus]	BAB39848.1	
hemagglutinin	hemagglutinin [Measles virus]	AAA50551.1	
hemagglutinin	RecName: Full = Hemagglutinin glycoprotein	P08362.1	
hemagglutinin	hemagglutinin [Measles virus]	AAB63802.1	
hemagglutinin	hemagglutinin [Measles virus]	AAA56650.1	
hemagglutinin	hemagglutinin [Measles virus]	AAA56642.1	
hemagglutinin	hemagglutinin [Measles virus]	AAA74936.1	
hemagglutinin	hemagglutinin protein [Measles virus]	BAH56665.1	
hemagglutinin	hemagglutinin [Measles virus]	ACC86105.1	
hemagglutinin	hemagglutinin [Measles virus strain Edmonston-Zagreb]	AAF85697.1	
hemagglutinin	hemagglutinin [Measles virus]	AAR89413.1	
hemagglutinin	hemagglutinin [Measles virus]	AAA56653.1	
hemagglutinin	RecName: Full = Hemagglutinin glycoprotein	P35971.1	
hemagglutinin	Hemagglutinin [Measles virus]	CAB94916.1	
hemagglutinin	hemagglutinin [Measles virus]	AAC03036.1	
hemagglutinin	hemagglutinin [Measles virus]	AAF85681.1	
hemagglutinin	Hemagglutinin [Measles virus]	CAB94927.1	
hemagglutinin	Hemagglutinin [Measles virus]	CAB94925.1	
hemagglutinin	hemagglutinin protein [Measles virus]	BAB39835.1	

TABLE 15-continued

MeV NCBI Accession Numbers (Amino Acid Sequences)			
Туре	Virus Name	GenBank Accession	
hemagglutinin	Hemagglutinin [Measles virus]	CAB94931.1	
hemagglutinin	hemagglutinin [Measles virus genotype A]	AFO84712.1	
hemagglutinin	hemagglutinin [Measles virus]	AAA56639.1	
hemagglutinin	Hemagglutinin [Measles virus]	CAB94926.1	
hemagglutinin	hemagglutinin protein [Measles virus]	BAB39836.1	
hemagglutinin hemagglutinin	Hemagglutinin [Measles virus] RecName: Full = Hemagglutinin glycoprotein	CAB94929.1 P06830.1	
hemagglutinin	Hemagglutinin [Measles virus]	CAB94928.1	
hemagglutinin	hemagglutinin protein [Measles virus]	BAB39837.1	
hemagglutinin	hemagglutinin [Measles virus]	AAA74935.1	
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43780.1	
hemagglutinin hemagglutinin	hemagglutinin [Measles virus] hemagglutinin protein [Measles virus]	BAA09952.1 CAB43815.1	
hemagglutinin	hemagglutinin [Measles virus]	AAF28390.1	
hemagglutinin	Hemagglutinin [Measles virus]	CAB94923.1	
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43785.1	
hemagglutinin	hemagglutinin [Measles virus]	ABD34001.1	
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43782.1	
hemagglutinin	hemagglutinin protein [Measles virus] hemagglutinin [Measles virus]	CAB43781.1 BAH22353.1	
hemagglutinin hemagglutinin	hemagglutinin [Measles virus]	AAC35878.2	
hemagglutinin	hemagglutinin protein [Measles virus]	AAL86996.1	
hemagglutinin	hemagglutinin [Measles virus]	CAA76066.2	
hemagglutinin	hemagglutinin [Measles virus]	AAA46428.1	
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43803.1	
hemagglutinin	Hemagglutinin [Measles virus]	CAB94918.1	
hemagglutinin	hemagglutinin [Measles virus] hemagglutinin [Measles virus]	AAF72162.1 AAM70154.1	
hemagglutinin hemagglutinin	hemagglutinin protein [Measles virus]	CAB43776.1	
hemagglutinin	hemagglutinin [Measles virus genotype D4]	ACT78395.1	
hemagglutinin	hemagglutinin [Measles virus genotype D7]	AAL02030.1	
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43789.1	
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43774.1	
hemagglutinin	Hemagglutinin [Measles virus] Hemagglutinin [Measles virus]	CAB94920.1 CAB94922.1	
hemagglutinin hemagglutinin	hemagglutinin [Measles virus]	ABB59491.1	
hemagglutinin	hemagglutinin protein [Measles virus]	BAB39843.1	
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43804.1	
hemagglutinin	hemagglutinin [Measles virus]	AAX52048.1	
hemagglutinin	Hemagglutinin [Measles virus]	CAB94930.1	
hemagglutinin hemagglutinin	hemagglutinin [Measles virus] hemagglutinin protein [Measles virus]	AAA74526.1 CAB43814.1	
hemagglutinin	hemagglutinin [Measles virus]	ABB59493.1	
hemagglutinin	hemagglutinin [Measles virus genotype D4]	AAL02019.1	
hemagglutinin	Hemagglutinin [Measles virus]	CAB94919.1	
hemagglutinin	hemagglutinin protein [Measles virus]	AAL86997.1	
hemagglutinin	hemagglutinin [Measles virus genotype C2]	AAL02017.1	
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43769.1 CAB43808.1	
hemagglutinin hemagglutinin	hemagglutinin protein [Measles virus] hemagglutinin [Measles virus]	BAO97032.1	
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43805.1	
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43777.1	
hemagglutinin	hemagglutinin [Measles virus]	AAL67793.1	
hemagglutinin	hemagglutinin [Measles virus]	AAF89816.1	
hemagglutinin hemagglutinin	hemagglutinin [Measles virus genotype D4] hemagglutinin protein [Measles virus]	AAL02020.1 CAB43786.1	
hemagglutinin	hemagglutinin protein [Measles virus strain MVi/New Jersey.USA/45.05]	AEP40452.1	
hemagglutinin	hemagglutinin [Measles virus]	AAA74531.1	
hemagglutinin	hemagglutinin [Measles virus]	AAB63800.1	
hemagglutinin	hemagglutinin [Measles virus]	AAO21711.1	
hemagglutinin	hemagglutinin [Measles virus genotype D8]	ALE27189.1	
hemagglutinin hemagglutinin	hemagglutinin protein [Measles virus] hemagglutinin [Measles virus]	CAB43810.1 AAF89817.1	
hemagglutinin	hemagglutinin [Measles virus]	AAL02022.1	
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43800.1	
hemagglutinin	hemagglutinin protein [Measles virus genotype B3]	AGA17219.1	
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43770.1	
hemagglutinin	hemagglutinin protein [Measles virus strain MVi/Texas.USA/4.07]	AEP40444.1	
hemagglutinin	hemagglutinin [Measles virus]	AAX52047.1	
hemagglutinin hemagglutinin	hemagglutinin [Measles virus] hemagglutinin [Measles virus]	AAB63794.1 AAB63796.1	
hemagglutinin	hemagglutinin [Measles virus]	AAB03790.1 AAA74528.1	
hemagglutinin	hemagglutinin [Measles virus]	AAB63774.1	
hemagglutinin	hemagglutinin [Measles virus]	AAB63795.1	

331

TABLE 15-continued

MeV NCBI Accession Numbers (Amino Acid Sequences)			
Туре	Virus Name	GenBank Accession	
hemagglutinin	hemagglutinin [Measles virus]	AAA74519.1	
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43778.1	
fusion protein	fusion protein [Measles virus strain Moraten]	AAF85672.1	
fasion protein	fusion protein [Measles virus]	AAA56645.1	
fusion protein	fusion protein [Measles virus strain Rubeovax]	AAF85688.1	
fusion protein	fusion protein [Measles virus]	AAF85680.1	
fusion protein	fusion protein [Measles virus]	AEF30359.1	
fusion protein	fusion protein [Measles virus] fusion protein [Measles virus]	BAA09957.1 AAV84957.1	
fusion protein fusion protein	fusion protein [Measles virus MeV-eGFP_Edm-tag]	AII16636.1	
fusion protein	fusion protein [Measles virus]	ABY58018.1	
fusion protein	fusion protein [Measles virus]	BAA19838.1	
fusion protein	fusion protein [Measles virus]	AAA56641.1	
fusion protein	F protein [Measles virus]	ABK40529.1	
fusion protein	fusion protein [Measles virus]	AAA56652.1	
fusion protein	fusion protein [Measles virus]	ABY58017.1	
fusion protein	fusion protein [Measles virus]	ABB71645.1	
fusion protein	fusion protein [Measles virus]	NP_056922.1	
fusion protein fusion protein	fusion protein [Measles virus strain AIK-C] fusion protein [Measles virus]	AAF85664.1 BAB60865.1	
fusion protein	fusion protein [Measles virus]	BAA09950.1	
fusion protein	fusion protein [Measles virus strain	AEP40403.1	
rabion protein	MVi/New York.USA/26.09/3]	1121 10 103.1	
fusion protein	fusion protein [Measles virus]	AAA74934.1	
fusion protein	fusion protein [Measles virus]	CAB38075.1	
fusion protein	fusion protein [Measles virus strain	AEP40443.1	
	MVi/Texas.USA/4.07]		
fusion protein	fusion protein [Measles virus]	AAF02695.1	
fusion protein	fusion protein [Measles virus]	AAF02696.1	
fusion protein fusion protein	fusion protein [Measles virus] fusion protein [Measles virus]	AAT99301.1 ABB71661.1	
fusion protein	fusion protein [Measles virus]	BAK08874.1	
fusion protein	fusion protein [Measles virus]	AAF02697.1	
fusion protein	fusion protein [Measles virus genotype D4]	AFY12704.1	
fusion protein	fusion protein [Measles virus strain	AEP40467.1	
	MVi/California.USA/16.03]		
fusion protein	fusion protein [Measles virus genotype D8]	AHN07989.1	
fusion protein	fusion protein [Measles virus]	AAA46421.1	
fusion protein fusion protein	fusion protein [Measles virus] fusion protein [Measles virus strain	AAA56638.1 AEP40419.1	
rusion protein	MVi/Virginia.USA/15.09]	ALI 40419.1	
fusion protein	fusion protein [Measles virus genotype D8]	ALE27200.1	
fusion protein	fusion protein [Measles virus genotype D8]	AFY12695.1	
fusion protein	fusion protein [Measles virus genotype D8]	ALE27248.1	
fusion protein	fusion protein [Measles virus genotype D8]	ALE27224.1	
fusion protein	fusion protein [Measles virus]	AAT99300.1	
fusion protein	fusion protein [Measles virus]	BAH96592.1	
fusion protein	fusion protein [Measles virus strain	AEP40459.1	
fusion protein	MVi/California.USA/8.04] fusion protein [Measles virus genotype D8]	AIG94081.1	
fusion protein	fusion protein [Measles virus]	BAA09951.1	
fusion protein	fusion protein [Measles virus genotype D8]	ALE27194.1	
fusion protein	fusion protein [Measles virus]	BAA33871.1	
fusion protein	fusion protein [Measles virus strain	AEP40427.1	
	MVi/Washington.USA/18.08/1]		
fusion protein	fusion protein [Measles virus]	ABY21182.1	
fusion protein	fusion protein [Measles virus genotype D8] fusion protein [Measles virus]	ALE27284.1	
fusion protein fusion protein	fusion protein [Measles virus genotype D8]	ACA09725.1 ALE27314.1	
fusion protein	fusion protein [Measles virus genotype G3]	AFY12712.1	
fusion protein	fusion protein [Measles virus genotype D8]	ALE27368.1	
fusion protein	RecName: Full = Fusion glycoprotein F0; Contains:	P35973.1	
	RecName: Full = Fusion glycoprotein F2; Contains:		
	RecName: Full = Fusion glycoprotein F1; Flags: Precursor		
fusion protein	fusion protein [Measles virus genotype H1]	AIG53713.1	
finion	unnamed protein product [Measles virus]	CAA34588.1	
fusion protein fusion protein	fusion protein [Measles virus] fusion protein [Measles virus genotype B3.1]	CAA76888.1 AIY55563.1	
fusion protein	fusion protein [Measles virus]	ADO17330.1	
fusion protein	fusion protein [Measles virus genotype H1]	AIG53703.1	
fusion protein	fusion protein [Measles virus genotype B3]	AGA17208.1	
fusion protein	fusion protein [Measles virus]	AAL29688.1	
fusion protein	fusion protein [Measles virus genotype H1]	AIG53706.1	
fusion protein	fusion protein [Measles virus genotype H1]	AIG53701.1	
fusion protein	fusion protein [Measles virus genotype B3]	ALE27092.1	
fusion protein	fusion protein [Measles virus genotype H1]	AIG53714.1	

TABLE 15-continued

	MeV NCBI Accession Numbers (Amino Acid Se	equences)
Туре	Virus Name	GenBank Accession
	C. I. C. I. D. C. I. C. I. C. I.	
fusion protein fusion protein	fusion protein [Measles virus genotype H1] fusion protein [Measles virus genotype H1]	AIG53694.1 AIG53668.1
fusion protein	fusion protein [Measles virus]	ACC86094.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53670.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53707.1
fusion protein fusion protein	fusion protein [Measles virus genotype B3] fusion protein [Measles virus genotype H1]	AGA17216.1 AIG53671.1
fusion protein	fusion protein [Measles virus strain	AEP40451.1
	MVi/New Jersey.USA/45.05]	
fusion protein	fusion protein [Measles virus genotype H1]	AIG53684.1
fusion protein fusion protein	fusion protein [Measles virus genotype H1] fusion protein [Measles virus genotype B3]	AIG53688.1 AGA17214.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53683.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53667.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53686.1
fusion protein fusion protein	fusion protein [Measles virus genotype H1] fusion protein [Measles virus genotype H1]	AIG53685.1 AIG53681.1
rusion protein	unnamed protein product [Measles virus]	CAA34589.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53678.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53710.1
fusion protein fusion protein	fusion protein [Measles virus genotype H1] fusion protein [Measles virus genotype H1]	AIG53669.1 AIG53664.1
fusion protein	fusion protein [Measles virus]	AAA50547.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53679.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53709.1
fusion protein fusion protein	fusion protein [Measles virus genotype H1] fusion protein [Measles virus genotype H1]	AIG53672.1 AIG53697.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53689.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53676.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53675.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53663.1
fusion protein fusion protein	fusion protein [Measles virus] fusion protein [Measles virus]	BAA19841.1 AAF02701.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53680.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53674.1
C protein	C protein [Measles virus strain Moraten]	AAF85670.1
C protein C protein	RecName: Full = Protein C C protein [Measles virus]	P03424.1 ACN54404.1
C protein	C protein [Measles virus]	ACN54412.1
C protein	RecName: Full = Protein C	P35977.1
C protein	C protein [Measles virus]	AAF85678.1
C protein C protein	C protein [Measles virus] unnamed protein product [Measles virus]	ABD33998.1 CAA34586.1
C protein	C protein [Measles virus]	BAJ51786.1
C protein	C protein [Measles virus]	BAA33869.1
C protein	virulence factor [Measles virus]	ABO69700.1
C protein C protein	C protein [Measles virus] C protein [Measles virus]	NP_056920.1 ADO17333.1
C protein	C protein [Measles virus]	ACC86082.1
C protein	C protein [Measles virus]	BAA33875.1
C protein	C protein [Measles virus]	ABY21189.1
C protein C protein	C protein [Measles virus] C protein [Measles virus]	BAE98296.1 ADU17782.1
C protein	C protein [Measles virus strain	AEP40417.1
•	MVi/Virginia.USA/15.09]	
C protein	C protein [Measles virus]	ADU17814.1
C protein C protein	C protein [Measles virus] C protein [Measles virus genotype D4]	ADU17798.1 AFY12700.1
C protein	C protein [Measles virus]	ADU17784.1
C protein	C protein [Measles virus strain	AEP40465.1
0	MVi/California.USA/16.03]	ADD71742 1
C protein C protein	C protein [Measles virus] C protein [Measles virus]	ABB71643.1 AEI91027.1
C protein	C protein [Measles virus]	ADU17874.1
C protein	C protein [Measles virus]	ADU17903.1
C protein	C protein [Measles virus]	CAA34579.1
C protein C protein	C protein [Measles virus] C protein [Measles virus]	ADU17790.1 ADU17800.1
C protein	C protein [Measles virus]	ABB71667.1
C protein	unnamed protein product [Measles virus]	CAA34572.1
C protein	C protein [Measles virus strain	AEP40433.1
C protein	MVi/Arizona.USA/11.08/2] C protein [Measles virus]	ADU17830.1
C protein	C protein [Measles virus]	ADU17830.1 ADU17947.1
C protein	C protein [Measles virus]	ADU17818.1
C protein	C protein [Measles virus strain	AEP40449.1

TABLE 15-continued

	MeV NCBI Accession Numbers (Amino Acid Seque	nces)
Туре	Virus Name	GenBank Accession
	MVi/New Jersey.USA/45.05]	
C protein	C protein [Measles virus strain	AEP40441.1
C protein	MVi/Texas.USA/4.07] C protein [Measles virus]	ADU17864.1
C protein	C protein [Measles virus]	ADU17834.1 ADU17838.1
C protein	C protein [Measles virus]	ADU17881.1
C protein	C protein [Measles virus strain	AEP40425.1
C protein	MVi/Washington.USA/18.08/1] C protein [Measles virus]	ADU17927.1
C protein	C protein [Measles virus]	ADU17927.1 ADU17953.1
C protein	C protein [Measles virus]	ADU17889.1
C protein	C protein [Measles virus]	ADU17963.1
C protein	C protein [Measles virus]	ADU17893.1
C protein C protein	C protein [Measles virus] C protein [Measles virus]	ADU17820.1 ABB71651.1
C protein	C protein [Measles virus]	ADU17786.1
C protein	C protein [Measles virus]	ADU17862.1
C protein	C protein [Measles virus]	ADU17923.1
C protein	C protein [Measles virus]	ADU17959.1
C protein C protein	C protein [Measles virus] C protein [Measles virus]	ADU17951.1 ADU17916.1
C protein	C protein [Measles virus]	ADU17957.1
C protein	C protein [Measles virus]	ADU17925.1
C protein	C protein [Measles virus]	ADU17901.1
C protein	C protein [Measles virus]	ADU17887.1
C protein C protein	C protein [Measles virus] C protein [Measles virus]	ADU17832.1 ADU17891.1
C protein	C protein [Measles virus]	ADU17961.1
C protein	C protein [Measles virus]	ADU17872.1
C protein	C protein [Measles virus]	ADU17929.1
C protein	C protein [Measles virus]	ADU17908.1
C protein C protein	C protein [Measles virus] C protein [Measles virus]	ADU17910.1 ADU17921.1
C protein	C protein [Measles virus]	ADU17824.1
C protein	C protein [Measles virus strain	AEP40473.1
	MVi/Pennsylvania.USA/20.09]	1 DI 11 7000 1
C protein C protein	C protein [Measles virus] C protein [Measles virus]	ADU17828.1 ADU17812.1
C protein	C protein [Measles virus genotype D8]	AFY12692.1
C protein	nonstructural C protein [Measles virus]	ABA59559.1
C protein	RecName: Full = Protein C	Q00794.1
C protein	nonstructural C protein [Measles virus]	ADO17934.1
C protein C protein	nonstructural C protein [Measles virus] C protein [Measles virus genotype G3]	ACJ66773.1 AFY12708.1
C protein	RecName: Full = Protein C	P26035.1
C protein	C protein [Measles virus]	BAA84128.1
nucleoprotein	RecName: Full = Nucleoprotein; AltName:	Q77M43.1
	Full = Nucleocapsid protein;	
nucleoprotein	Short = NP; Short = Protein N nucleocapsid protein [Measles virus strain Rubeovax]	AAF85683.1
nucleoprotein	RecName: Full = Nucleoprotein; AltName:	Q89933.1
•	Full = Nucleocapsid protein;	
	Short = NP; Short = Protein N	A POSCSO A
nucleoprotein	nucleocapsid protein [Measles virus strain AIK-C] nucleoprotein [Measles virus]	AAF85659.1 ABI54102.1
nucleoprotein nucleoprotein	nucleoprotein [Measles virus]	AAA56643.1
nucleoprotein	nucleoprotein [Measles virus]	AAC03050.1
nucleoprotein	nucleoprotein [Measles virus]	AAA18990.1
nucleoprotein	nucleoprotein [Measles virus]	AAA56640.1
nucleoprotein	RecName: Full = Nucleoprotein; AltName: Full = Nucleocapsid protein; Short = NP; Short = Protein N	P35972.1
nucleoprotein	RecName: Full=Nucleoprotein; AltName: Full = Nucleocapsid protein;	P10050.1
	Short = NP; Short = Protein N	
nucleoprotein	N protein [Measles virus]	BAB60956.1
nucleoprotein	RecName: Full = Nucleoprotein; AltName:	B1AAA7.1
	Full = Nucleocapsid protein;	
	Short = NP; Short = Protein N	
nucleoprotein	nucleoprotein [Measles virus]	AAA18991.1 CAB46804.1
nucleoprotein nucleoprotein	nucleoprotein [Measles virus] nucleoprotein [Measles virus]	CAB46894.1 CAB46871.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46871.1 CAB46872.1
nucleoprotein	nucleoprotein [Measles virus]	ABU49606.1
nucleoprotein	nucleocapsid protein [Measles virus]	AAA75494.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46883.1

337

TABLE 15-continued

	MeV NCBI Accession Numbers (Amino Acid S	equences)
Туре	Virus Name	GenBank Accession
nucleoprotein nucleoprotein	nucleoprotein [Measles virus] unnamed protein product [Measles virus]	CAB46892.1 CAA34584.1
nucleoprotein	nucleoprotein [Measles virus]	AAA18997.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46863.1
nucleoprotein	nucleoprotein [Measles virus]	AEF30352.1
nucleoprotein	nucleoprotein [Measles virus]	ABI54103.1
nucleoprotein	nucleocapsid protein [Measles virus]	AAA46433.1
nucleoprotein nucleoprotein	nucleoprotein [Measles virus] nucleoprotein [Measles virus]	CAB46902.1 CAB46873.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46906.1
nucleoprotein	nucleoprotein [Measles virus]	AAA74547.1
nucleoprotein	nucleoprotein [Measles virus]	AAA74537.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46862.1
nucleoprotein	nucleocapsid protein [Measles virus]	BAA09961.1
nucleoprotein nucleoprotein	nucleoprotein [Measles virus] nucleoprotein [Measles virus]	AAO15875.1 AAO15871.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46882.1
nucleoprotein	nucleoprotein [Measles virus]	CAB60124.1
nucleoprotein	nucleoprotein [Measles virus]	ABI54104.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46869.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46880.1
nucleoprotein nucleoprotein	nucleoprotein [Measles virus] nucleocapsid protein [Measles virus strain	AAA74541.1 AEP40446.1
nucleoprotein	MVi/New Jersey.USA/45.05]	AEI 40440.1
nucleoprotein	nucleoprotein [Measles virus]	ABI54110.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46903.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46899.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46901.1
nucleoprotein	nucleocapsid protein [Measles virus]	ABB71640.1 CAB60113.1
nucleoprotein nucleoprotein	nucleoprotein [Measles virus] nucleoprotein [Measles virus]	CAB60113.1 CAB60114.1
nucleoprotein	nucleoprotein [Measles virus]	CAB60116.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46895.1
nucleoprotein	nucleoprotein [Measles virus]	CAB60121.1
nucleoprotein	nucleoprotein [Measles virus]	ABI54111.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46889.1 CAB46898.1
nucleoprotein nucleoprotein	nucleoprotein [Measles virus] nucleoprotein [Measles virus genotype B3]	ALE27083.1
nucleoprotein	nucleoprotein [Measles virus]	CAB60118.1
nucleoprotein	nucleocapsid protein [Measles virus]	CAA34570.1
nucleoprotein	nucleoprotein [Measles virus]	AAC29443.1
nucleoprotein	nucleocapsid protein [Measles virus strain MVi/Washington.USA/18.08/1]	AEP40422.1
nucleoprotein	nucleoprotein [Measles virus]	AAO15872.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46874.1
nucleoprotein	nucleoprotein [Measles virus]	AAA74550.1
nucleoprotein nucleoprotein	nucleocapsid protein [Measles virus] nucleoprotein [Measles virus]	ABB71648.1 CAB46900.1
nucleoprotein	nucleoprotein [Measles virus]	BAH22440.1
nucleoprotein	nucleocapsid protein [Measles virus]	AAA46432.1
nucleoprotein	nucleocapsid protein [Measles virus]	BAA33867.1
nucleoprotein	nucleoprotein [Measles virus]	AAA74539.1
nucleoprotein	nucleoprotein [Measles virus]	CAB60115.1
nucleoprotein nucleoprotein	nucleoprotein [Measles virus] nucleocapsid protein [Measles virus]	CAB60123.1 ABB71664.1
nucleoprotein	nucleoprotein [Measles virus]	CAB60125.1
nucleoprotein	nucleoprotein [Measles virus]	AAA74546.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46886.1
nucleoprotein	nucleoprotein [Measles virus]	BAH22350.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46867.1
nucleoprotein nucleoprotein	nucleocapsid protein [Measles virus] nucleoprotein [Measles virus]	BAA09954.1 AAO15873.1
nucleoprotein	nucleocapsid protein [Measles virus]	AEP95735.1
nucleoprotein	nucleoprotein [Measles virus]	AAL37726.1
nucleoprotein	nucleoprotein [Measles virus]	AAA74549.1
nucleoprotein	RecName: Full = Nucleoprotein; AltName:	P26030.1
	Full = Nucleocapsid protein;	
nuoleoneetoin	Short = NP; Short = Protein N nucleoprotein [Measles virus ETH55/99]	AAK07777.1
nucleoprotein nucleoprotein	nucleoprotein [Measles virus E1H55/99] nucleoprotein [Measles virus genotype B3]	AAK0////.1 AGA17238.1
nucleoprotein	nucleoprotein [Measles virus]	AEF30351.1
nucleoprotein	nucleoprotein [Measles virus genotype B3]	AGA17242.1
nucleoprotein	nucleoprotein [Measles virus ETH54/98]	AAK07776.1
nucleoprotein	nucleoprotein [Measles virus]	AAA74548.1
nucleoprotein	nucleoprotein [Measles virus]	AAA19221.1
nucleoprotein	nucleoprotein [Measles virus]	AAC03039.1

339

TABLE 15-continued

MeV NCBI Accession Numbers (Amino Acid Sequences)			
Туре	Virus Name	GenBank Accession	
nucleoprotein	nucleoprotein [Measles virus]	AAA19223.1	
nucleoprotein	nucleoprotein [Measles virus genotype B3]	AGA17241.1	
nucleoprotein	nucleoprotein [Measles virus]	CAB60122.1	
nucleoprotein	nucleoprotein [Measles virus]	CAC34599.1	
nucleoprotein	nucleoprotein [Measles virus]	AAC03042.1	
nucleoprotein	nucleoprotein [Measles virus]	CAC34604.1	
nucleoprotein	nucleoprotein [Measles virus]	AAA74544.1	
nucleoprotein	nucleocapsid protein [Measles virus]	NP_056918.1	
V Protein	RecName: Full = Non-structural protein V	Q9IC37.1	
V Protein V Protein	RecName: Full = Non-structural protein V	Q9EMA9.1	
V Protein	V protein [Measles virus]	ACN54411.1 ACN54403.1	
V Protein	V protein [Measles virus] V protein [Measles virus]	AEP95742.1	
V Protein	V protein [Measles virus strain	AEP40416.1	
v 11otem	MVi/Virginia.USA/15.09]	ALI 40410.1	
V Protein	V protein [Measles virus]	ADU17801.1	
V Protein	V protein [Measles virus]	ADU17849.1	
V Protein	V protein [Measles virus]	ABB71642.1	
V Protein	V protein [Measles virus genotype D8]	AFY12693.1	
V Protein	V protein [Measles virus]	YP 003873249.2	
V Protein	V protein [Measles virus strain	AEP40432.1	
	MVi/Arizona.USA/11.08/2]		
V Protein	RecName: Full = Non-structural protein V	P26036.1	
V Protein	V protein [Measles virus strain	AEP40464.1	
	MVi/California.USA/16.03]		
V Protein	V protein [Measles virus strain	AEP40456.1	
	MVi/California.USA/8.04]		
V Protein	V protein [Measles virus]	ABY21188.1	
V Protein	V protein [Measles virus strain	AEP40424.1	
	MVi/Washington.USA/18.08/1]		
V Protein	V protein [Measles virus]	BAH96581.1	
V Protein	V protein [Measles virus]	ABB71666.1	
V Protein	RecName: Full = Non-structural protein V	P60168.1	
V Protein V Protein	V protein [Measles virus] V protein [Measles virus]	BAH96589.1 ADU17954.1	
V Protein	V protein [Measles virus strain	AEP40400.1	
v 110tem	MVi/New York.USA/26.09/3]	AEI 40400.1	
V Protein	V protein [Measles virus]	ABY21196.1	
V Protein	virulence factor [Measles virus]	ABO69701.1	
V Protein	V protein [Measles virus]	ABB71650.1	
V Protein	V protein [Measles virus]	ACC86086.1	
V Protein	V protein [Measles virus genotype D4]	AFY12702.1	
V Protein	V protein [Measles virus strain	AEP40448.1	
	MVi/New Jersey.USA/45.05]		
V Protein	V protein [Measles virus]	BAE98295.1	
V Protein	V protein [Measles virus]	ACC86083.1	
V Protein	V protein [Measles virus]	ACU5139.1	
V Protein	V protein [Measles virus]	ADO17334.1	
V Protein	V protein [Measles virus]	ADU17930.1	
V Protein	V protein [Measles virus genotype G3]	AFY12710.1	
V Protein	V protein [Measles virus strain	AEP40472.1	
	MVi/Pennsylvania.USA/20.09]		
V Protein	phosphoprotein [Measles virus]	ADU17839.1	
V Protein	V protein [Measles virus]	ADU17894.1	
V Protein	V protein [Measles virus]	ACN50010.1	
V Protein	V protein [Measles virus]	ADU17892.1	
. 110tom	unnamed protein product [Measles virus]	CAA34585.1	
V Protein	V protein [Measles virus]	ABD33997.1	
· 11000III	· protein [measies viius]	ADD33331.1	

TABLE 16

Name	Sequence	SEQ ID NO:
	Flagellin Nucleic Acid Sequences	
NT (5' UTR, ORF, 3' UTR)	TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTAT AGGGAAATAAGAGAGAAAAGAAGAGTAAGAAAATATAAG AGCCACCATGGCACAAGTCATTAATACAAACAGCCTGTCGCTG TTGACCCAGAATAACCTGAACAAATCCCAGTCCGCACTGGGCA CTGCTATCGAGCGTTTGCTTCCGGTATCGAACAGCGC AAAGACGATGCGGCAGACAGGCGATTGCTAACCGTTTTACCG CGAACATCAAAGGTCTGACTCAGGCTTCCCGTAACGCTAACGA	51

SEQ ID
Name Sequence NO:

CGGTATCTCCATTGCGCAGACCACTGAAGGCGCGCTGAACGAA ATCAACAACAACCTGCAGCGTGTGCGTGAACTGGCGGTTCAGT GCTGAAATCACCCAGCGCCTGAACGAAATCGACCGTGTATCCG $\tt GCCAGACTCAGTTCAACGGCGTGAAAGTCCTGGCGCAGGACAA$ CACCCTGACCATCCAGGTTGGTGCCAACGACGGTGAAACTATC GATATTGATTTAAAAGAAATCAGCTCTAAAACACTGGGACTTG ATAAGCTTAATGTCCAAGATGCCTACACCCCGAAAGAAACTGC TGTAACCGTTGATAAAACTACCTATAAAAATGGTACAGATCCT ATTACAGCCCAGAGCAATACTGATATCCAAACTGCAATTGGCG GTGGTGCAACGGGGGTTACTGGGGCTGATATCAAATTTAAAGA TGGTCAATACTATTTAGATGTTAAAGGCGGTGCTTCTGCTGGTG TTTATAAAGCCACTTATGATGAAACTACAAAGAAAGTTAATAT TGATACGACTGATAAAACTCCGTTGGCAACTGCGGAAGCTACA GCTATTCGGGGAACGGCCACTATAACCCACAACCAAATTGCTG AAGTAACAAAAGAGGGTGTTGATACGACCACAGTTGCGGCTCA ACTTGCTGCAGCAGGGGTTACTGGCGCCGATAAGGACAATACT AGCCTTGTAAAACTATCGTTTGAGGATAAAAACGGTAAGGTTA TTGATGGTGGCTATGCAGTGAAAATGGGCGACGATTTCTATGC CGCTACATATGATGAGAAAACAGGTGCAATTACTGCTAAAACC ACTACTTATACAGATGGTACTGGCGTTGCTCAAACTGGAGCTGT GAAATTTGGTGGCGCAAATGGTAAATCTGAAGTTGTTACTGCT ACCGATGGTAAGACTTACTTAGCAAGCGACCTTGACAAACATA ACTTCAGAACAGGCGGTGAGCTTAAAGAGGTTAATACAGATAA GACTGAAAACCCACTGCAGAAAATTGATGCTGCCTTGGCACAG GTTGATACACTTCGTTCTGACCTGGGTGCGGTTCAGAACCGTTT CAACTCCGCTATCACCAACCTGGGCAATACCGTAAATAACCTG TCTTCTGCCCGTAGCCGTATCGAAGATTCCGACTACGCAACCGA ${\tt AGTCTCCAACATGTCTCGCGCGCAGATTCTGCAGCAGGCCGGT}$ ACCTCCGTTCTGGCGCAGGCGAACCAGGTTCCGCAAAACGTCC TCTCTTTACTGCGTTGATAATAGGCTGGAGCCTCGGTGGCCATG CTTCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTG CACCCGTACCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGC

ORF Sequence,

ATGGCACAAGTCATTAATACAAACAGCCTGTCGCTGTTGACCC AGAATAACCTGAACAAATCCCAGTCCGCACTGGGCACTGCTAT CGAGCGTTTGTCTTCCGGTCTGCGTATCAACAGCGCGAAAGAC GATGCGGCAGGACAGCCGATTGCTAACCGTTTTACCGCGAACA TCAAAGGTCTGACTCAGGCTTCCCGTAACGCTAACGACGGTAT CTCCATTGCGCAGACCACTGAAGGCGCGCTGAACGAAATCAAC AACAACCTGCAGCGTGTGCGTGAACTGGCGGTTCAGTCTGCGA ${\tt ATGGTACTAACTCCCAGTCTGACCTCGACTCCATCCAGGCTGAA}$ ATCACCCAGCGCCTGAACGAAATCGACCGTGTATCCGGCCAGA CTCAGTTCAACGGCGTGAAAGTCCTGGCGCAGGACAACACCCT GACCATCCAGGTTGGTGCCAACGACGGTGAAACTATCGATATT GATTTAAAAGAAATCAGCTCTAAAACACTGGGACTTGATAAGC TTAATGTCCAAGATGCCTACACCCCGAAAGAAACTGCTGTAAC CGTTGATAAAACTACCTATAAAAATGGTACAGATCCTATTACA GCCCAGAGCAATACTGATATCCAAACTGCAATTGGCGGTGGTG CAACGGGGTTACTGGGGCTGATATCAAATTTAAAGATGGTCA ATACTATTTAGATGTTAAAGGCGGTGCTTCTGCTGGTGTTTATA AAGCCACTTATGATGAAACTACAAAGAAAGTTAATATTGATAC GACTGATAAAACTCCGTTGGCAACTGCGGAAGCTACAGCTATT CGGGGAACGGCCACTATAACCCACAACCAAATTGCTGAAGTAA CAAAAGAGGGTGTTGATACGACCACAGTTGCGGCTCAACTTGC TGCAGCAGGGGTTACTGGCGCCGATAAGGACAATACTAGCCTT GTAAAACTATCGTTTGAGGATAAAAACGGTAAGGTTATTGATG GTGGCTATGCAGTGAAAATGGGCGACGATTTCTATGCCGCTAC ATATGATGAGAAAACAGGTGCAATTACTGCTAAAACCACTACT TATACAGATGGTACTGGCGTTGCTCAAACTGGAGCTGTGAAAT TTGGTGGCGCAAATGGTAAATCTGAAGTTGTTACTGCTACCGAT GGTAAGACTTACTTAGCAAGCGACCTTGACAAACATAACTTCA GAACAGGCGTGAGCTTAAAGAGGTTAATACAGATAAGACTG AAAACCCACTGCAGAAAATTGATGCTGCCTTGGCACAGGTTGA TACACTTCGTTCTGACCTGGGTGCGGTTCAGAACCGTTTCAACT CCGCTATCACCAACCTGGGCAATACCGTAAATAACCTGTCTTCT GCCCGTAGCCGTATCGAAGATTCCGACTACGCAACCGAAGTCT CCAACATGTCTCGCGCGCAGATTCTGCAGCAGGCCGGTACCTC CGTTCTGGCGCAGGCGAACCAGGTTCCGCAAAACGTCCTCTTT TACTGCGT

mRNA Sequence (assumes T100 tail) G*GGGAAAUAAGAGAGAAAAGAGGUAAGAAGAAUAUAA GAGCCACCAUGGCACAAGUCAUUAAUACAAACAGCCUGUCGC UGUUGACCCAGAAUAACCUGAACAAAUCCCAGUCCGCACUGG GCACUGCUAUCGAGCGUUUGUCUUCCGGUCUGCGUAUCAACA GCGCGAAAGACGAUGCGCAGGACAGCGAUUGCUAACCGUU UUACCGCGAACAUCAAAGGUCUGACUCAGGCUUCCCGUAACG 22

343

SEQ ID Name Sequence NO:

CUAACGACGGUAUCUCCAUUGCGCAGACCACUGAAGGCGCGC UGAACGAAAUCAACAACAACCUGCAGCGUGUGCGUGAACUGG CGGUUCAGUCUGCGAAUGGUACUAACUCCCAGUCUGACCUCG ACUCCAUCCAGGCUGAAAUCACCCAGCGCCUGAACGAAAUCG ACCGUGUAUCCGGCCAGACUCAGUUCAACGGCGUGAAAGUCC UGGCGCAGGACAACACCCUGACCAUCCAGGUUGGUGCCAACG ACGGUGAAACUAUCGAUAUUGAUUUAAAAGAAAUCAGCUCU AAAACACUGGGACUUGAUAAGCUUAAUGUCCAAGAUGCCUAC ACCCCGAAAGAAACUGCUGUAAACCGUUGAUAAAACUACCUAU AAAAAUGGUACAGAUCCUAUUACAGCCCAGAGCAAUACUGAU AUCCAAACUGCAAUUGGCGGUGGUGCAACGGGGGUUACUGG GGCUGAUAUCAAAUUUAAAGAUGGUCAAUACUAUUUAGAUG UUAAAGGCGGUGCUUCUGCUGGUGUUUAUAAAGCCACUUAU GAUGAAACUACAAAGAAAGUUAAUAUUGAUACGACUGAUAA AACUCCGUUGGCAACUGCGGAAGCUACAGCUAUUCGGGGAAC GGCCACUAUAACCCACAACCAAAUUGCUGAAGUAACAAAAGA GGGUGUUGAUACGACCACAGUUGCGGCUCAACUUGCUGCAGC AGGGGUUACUGGCGCCGAUAAGGACAAUACUAGCCUUGUAA AACUAUCGUUUGAGGAUAAAAACGGUAAGGUUAUUGAUGGU GGCUAUGCAGUGAAAAUGGGCGACGAUUUCUAUGCCGCUACA UAUGAUGAGAAAACAGGUGCAAUUACUGCUAAAACCACUAC UUAUACAGAUGGUACUGGCGUUGCUCAAACUGGAGCUGUGA AAUUUGGUGGCGCAAAUGGUAAAUCUGAAGUUGUUACUGCU ACCGAUGGUAAGACUUACUUAGCAAGCGACCUUGACAAACAU AACUUCAGAACAGGCGGUGAGCUUAAAGAGGUUAAUACAGA UAAGACUGAAAACCCACUGCAGAAAAUUGAUGCUGCCUUGGC ACAGGUUGAUACACUUCGUUCUGACCUGGGUGCGGUUCAGAA CCGUUUCAACUCCGCUAUCACCAACCUGGGCAAUACCGUAAA UAACCUGUCUUCUGCCCGUAGCCGUAUCGAAGAUUCCGACUA CGCAACCGAAGUCUCCAACAUGUCUCGCGCGCAGAUUCUGCA GCAGGCCGGUACCUCCGUUCUGGCGCAGGCGAACCAGGUUCC GCAAAACGUCCUCUUUUACUGCGUUGAUAAUAGGCUGGAGC CUCGGUGGCCAUGCUUCUUGCCCCUUGGGCCUCCCCCCAGCC CCUCCUCCCUUCCUGCACCCGUACCCCCGUGGUCUUUGAAU

Flagellin mRNA Sequences

NT (5' UTR, ORF, 3' UTR)

UCAAGCUUUUGGACCCUCGUACAGAAGCUAAUACGACUCACU AUAGGGAAAUAAGAGAAAAGAAGAAGUAAGAAAAUAUA AGAGCCACCAUGGCACAAGUCAUUAAUACAAACAGCCUGUCG CUGUUGACCCAGAAUAACCUGAACAAAUCCCAGUCCGCACUG GGCACUGCUAUCGAGCGUUUGUCUUCCGGUCUGCGUAUCAAC AGCGCGAAAGACGAUGCGGCAGGACAGGCGAUUGCUAACCGU UUUACCGCGAACAUCAAAGGUCUGACUCAGGCUUCCCGUAAC GCUAACGACGGUAUCUCCAUUGCGCAGACCACUGAAGGCGCG CUGAACGAAAUCAACAACCUGCAGCGUGUGCGUGAACUG GCGGUUCAGUCUGCGAAUGGUACUAACUCCCAGUCUGACCUC GACUCCAUCCAGGCUGAAAUCACCCAGCGCCUGAACGAAAUC GACCGUGUAUCCGGCCAGACUCAGUUCAACGGCGUGAAAGUC CUGGCGCAGGACAACACCCUGACCAUCCAGGUUGGUGCCAAC GACGGUGAAACUAUCGAUAUUGAUUUAAAAGAAAUCAGCUC UAAAACACUGGGACUUGAUAAGCUUAAUGUCCAAGAUGCCU ACACCCCGAAAGAAACUGCUGUAACCGUUGAUAAAACUACCU AUAAAAAUGGUACAGAUCCUAUUACAGCCCAGAGCAAUACUG AUAUCCAAACUGCAAUUGGCGGUGGUGCAACGGGGGUUACU GGGGCUGAUAUCAAAUUUAAAGAUGGUCAAUACUAUUUAGA UGUUAAAGGCGGUGCUUCUGCUGGUGUUUAUAAAGCCACUU AUGAUGAAACUACAAAGAAAGUUAAUAUUGAUACGACUGAU AAAACUCCGUUGGCAACUGCGGAAGCUACAGCUAUUCGGGGA ACGGCCACUAUAACCCACAACCAAAUUGCUGAAGUAACAAAA GAGGGUGUUGAUACGACCACAGUUGCGGCUCAACUUGCUGCA GCAGGGGUUACUGGCGCCGAUAAGGACAAUACUAGCCUUGUA AAACUAUCGUUUGAGGAUAAAAACGGUAAGGUUAUUGAUGG UGGCUAUGCAGUGAAAAUGGGCGACGAUUUCUAUGCCGCUAC AUAUGAUGAGAAAACAGGUGCAAUUACUGCUAAAACCACUA CUUAUACAGAUGGUACUGGCGUUGCUCAAACUGGAGCUGUG AAAUUUGGUGGCGCAAAUGGUAAAUCUGAAGUUGUUACUGC UACCGAUGGUAAGACUUACUUAGCAAGCGACCUUGACAAACA UAACUUCAGAACAGGCGGUGAGCUUAAAGAGGGUUAAUACAG AUAAGACUGAAAACCCACUGCAGAAAAUUGAUGCUGCCUUGG CACAGGUUGAUACACUUCGUUCUGACCUGGGUGCGGUUCAGA ACCGUUUCAACUCCGCUAUCACCAACCUGGGCAAUACCGUAA AUAACCUGUCUUCUGCCCGUAGCCGUAUCGAAGAUUCCGACU ACGCAACCGAAGUCUCCAACAUGUCUCGCGCGCAGAUUCUGC AGCAGGCCGGUACCUCCGUUCUGGCGCAGGCGAACCAGGUUC 344

345

	_	SEQ II
Name	Sequence	NO:
	CGCAAAACGUCCUCUCUUUACUGCGUUGAUAAUAGGCUGGAG CCUCGGUGGCCAUGCUUCUUGCCCCUUGGGCCUCCCCCAGC CCCUCCUCCCUUCCUGCACCCGUACCCCGUGGUCUUUGAA UAAAGUCUGAGUGGGCGGC	
ORF Sequence, NT	AUGGCACAAGUCAUUAAUACAAACAGCCUGUCGCUGUUGACC CAGAAUAACCUGAACAAAUCCCAGUCCGCACUGGGCACUGCU AUCAGACGUUUGUCUUCCGGUCUGCGUAUCAACAGCGCGAAA GACGAUGCGGCAGGACAGGCGAUUGCUAACCGUUUUACCGCG AACAUCAAAGGUCUGACUCAGGCUUCCCGUAACGAC GGUAUCUCCAUUGCGCAGACCACUGAAGGCGCGCUGAACGAC AUCAACAACAUCCAGCGCUUCCCGUAACGCUAACGAC GGUAUCUCCAUUGCGCAGCGCUGAACGAACGACAAA AUCAACAACAACCUGCAGCGUUGUGACCUCAACCGUCAUC CAGGCUGAAAUCACCCAGCGCUGAACGAAAUCGACCGUGUA UCCGGCAGAAUCACCCAGCGCCUGAACGAAAUCGACCGUGUA UCCGGCCAGACUCAGUUCAACGCCGUGAAAGUCCUCCAUC CAGGCUGAAAUCACCACGCGCUGAACGAAAUCGACCGUGUA ACUAUCGAUUAUGAUUAAAACAAAUCAGCCUACACCCCGAA ACUAUCGAUUAUAACCCAGCCCAG	82
mRNA Sequence (assumes T100 tail)	G*GGAAAUAAGAGAAAAAGAAGAUAUAAACACCUGUCGC UGUUGACCCAGAAUAACCUGAACAAUCCCAGUCCGCACUGG GCACUGCUAUCGAGCGUUUGUCUUCCGGUCUGCGCUUGUCGCACUGG GCACUGCUAUCGAGCGUUUGUCUUCCGGUCUGCGUAUCAACA GCGCGAAAGACAUCAAAGGCGCAGGACAGCGAUUCCCGUACCGUU UUACCGCGAACAUCAAAGGUCUGACUCAGGCUUCCCGUAACG CUAACGACGAUUCUCCAUUGCGCAGACCACUGAAGGCGCGC UGAACGAAAUCAACAACACCUGCAGCGUGUGCGUAACCGCU UGAACGAAAUCAACAACAACCUGCAGCGUGUGCGUGAACUGG ACUCCAUCCAGGCUGAAAUCACCCAGCGCUGAACGAAAUCG ACUCCAUCCAGGCUGAAAUCACCCAGCGCCUGAACGAAAUCG ACCCGUGAACGAAAUCACCCAGCGCCUGAACGAAAUCG ACCGUGAACCAACACCCUGACCAUCCAGGUUGGUGCCAACG ACGGUGAACACACCCUGACCAUCCAGGUUGGUGCCAACG ACGCGGAGACAACACCCUGACCAUCCAGGUUGGUGCCAACG ACCCCGAAAGAACACCCUGACCAUCCAGGUUGGUGCCAACG ACCCCGAAAGAACACCCUGACCAUCCAGGUUGGUGCCAACG ACCCCGAAAGAACUGCUGUAAUCGAUUAAAAAACUACCUAU AAAAAUGGUACAGAUCCUAUUAACGCUCAAGAAACUACCUAU AAAAAUGGUACAGAUCCUAUUAACGCCCAGAGCAAUACCUAU AAAAAUGGUACAGAUUUAAAAGCAUAUAUUAAAACCACUUAU AUCAAACUGCAAAUUUAAAAGUGUUAAAAACCACUUAU AAAAACACUCGCAAAACAACACCAGGUGGGGGUUACUGG GGCUGAUAUCCAAAUUUAAAGAUGUUAAUAAAACCACUUAU AAAAGCGCGAACCAAAUUAUAAAACCACUUAU AAAAGCGCGUGCUUCCUGUGGUGUUUAUAAAACCACUUAU GAUGAAACUACAAAGAAAGUUAAUAUAUAAAACCACUUAU AACUACCAUAAACCACAAAUUACCGCUAACAAACAAAAGA GGCCACUAUAACCCACAACCAAAUUGCUGAAGUAACUACCUUGUAA AACUCCGUUGGCGCCGAAGCAAAUCCAGCUUUAUAGACCACCUUAU GACGAACCAAACAACAAAUUGCUGAAGUUAAUUAGACCACUAC GGCUAUCCGGCCCGAAACAAAUUCCGGCUCAACUUGCUGGGCACC AGGGGUUACUGACGAACCAAAUUGCUGAAGUUAAUUGAUGGU GGCUAUGCAGGAAAACAGACAAAACAGACAAAUUCUACCCUUGAAAACAAAAAAAA	83

AACUUCAGAACAGGCGGUGAGCUUAAAGAGGUUAAUACAGA UAAGACUGAAAACCCACUGCAGAAAAUUGAUGCUGCCUUGGC ACAGGUUGAUACACUUCGUUCUGACCUGGGUGCGGUUCAGAA CCGUUUCAACUCCGCUAUCACCAACCUGGGCAAUACCGUAAA

347

TABLE 16-continued

Name	Sequence	SEQ ID NO:
	UAACCUGUCUUCUGCCCGUAGCCGUAUCGAAGAUUCCGACUA	
	CGCAACCGAAGUCUCCAACAUGUCUCGCGCGCAGAUUCUGCA	
	GCAGGCCGGUACCUCCGUUCUGGCGCAGGCGAACCAGGUUCC	
	GCAAAACGUCCUCUUUACUGCGUUGAUAAUAGGCUGGAGC	
	CUCGGUGGCCAUGCUUCUUGCCCCUUGGGCCUCCCCCCAGCC	
	CCUCCUCCCUUCCUGCACCCGUACCCCCGUGGUCUUUGAAU	
	AAAGUCUGAGUGGGCGGCAAAAAAAAAAAAAAAAAAAAA	
	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	

TABLE 17

	Flagellin Amino Acid Sequences	
Name	Sequence	SEQ ID
ORF Sequence, AA	MAQVINTNSLSLLTQNNLNKSQSALGTAIERLSSGLRINSAKDDAA GQAIANRFTANIKGLTQASRNANDGISIAQTTEGALNEINNNLQRV RELAVQSANGTNSQSDLDSIQAEITQRLNEIDRVSGQTQFNGVKVL AQDNTLTIQVGANDGETIDIDLKEISSKTLGLDKLNVQDAYTPKET AVTVDKTTYKNGTDPITAQSNTDIQTAIGGGATGVTGADIKFKDG QYYLDVKGGASAGVYKATYDETTKKVNIDTTDKTPLATAEATAI RGTATITHNQIAEVTKEGVDTTTVAAQLAAAGVTGADKDNTSLV KLSFEDKNGKVIDGGYAVKMGDDFYAATYDEKTGAITAKTTTYT DGTGVAQTGAVKFGGANGKSEVVTATDGKTYLASDLDKHNFRT GGELKEVNTDKTENPLQKIDAALAQVDTLRSDLGAVQNRFNSAIT NLGNTVNNLSSARSRIEDSDYATEVSNMSRAQILQQAGTSVLAQA NQVPQNVLSLLR	54
Flagellin- GS linker- circumsporozoite protein (CSP)	MAQVINTNSLSLLTQNNLNKSQSALGTAIERLSSGLRINSAKDDAA GQAIANRFTANIKGLTQASRNANDGISIAQTTEGALNEINNNLQRV RELAVQSANSTNSQSDLDSIQAEITQRLNEIDRVSGQTQFNGVKVL AQDNTLTIQVGANDGETIDIDLKQINSQTLGLDTLNVQQKYKVSD TAATVTGYADTTIALDNSTFKASATGLGGTDQKIDGDLKFDDTTG KYYAKVTVTGGTGKDGYYEVSVDKTNGEVTLAGGATSPLTGGLP ATATEDVKNVQVANADLTEAKAALTAAGVTGTASVVKMSYTDN NGKTIDGGLAVKVGDDYYSATQNKDGSISINTTKYTADDGTSKTA LNKLGGADGKTEVVSIGGKTYAASKAEGHNFKAQPDLAEAAATT TENPLQKIDAALAQVDTLRSDLGAVQNRFNSAITNLGNTVNNLTS ARSRIEDSDYATEVSNMSRAQILQQAGTSVLAQANQVPQNVLSLL RGGGGSGGGGSMMAPDPNANPNANPNANPNANPNANPNA NPNANPNANPNANPNA	55
Flagellin- RPVT linker- circumsporozoite protein (CSP)	MMAPDPNANPNANPNANPNANPNANPNANPNANPNANPNANP	56

TABLE 18

Human Metapne	Human Metapneumovirus Mutant Amino Acid Sequences		
Strain	Sequence	SEQ ID NO:	
HMPV_SC_DSCAV1_4MMV	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAICKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LAFAVRELKDFVSKNLTRALNKNKCDIDDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGIL CGVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKCNYACLLREDQGWY CQNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPC KVSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQ DADTVTIDNTYYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFNVALDQVFE NIENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKK PTGAPPELSGVTNNGFIPHN	85	
HMPV_SC_DSTRIC_4MMV	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAICKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGIL CGVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWY CQNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPC KVSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQ DADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEHQWHVALDQVFE NIENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKK PTGAPPELSGVTNNGFIPHN	86	
HMPV_SC_DM_Krarup_T74LD185P	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DVENLTCSDGPSLIKTELDLLKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIPDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP TGAPPELSGVTNNGFIPHN	87	
HMPV_SC_TM_Krarup_T74LD185PD454N	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DVENLTCSDGPSLIKTELDLLKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIPDLKWAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYWVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISWVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPENQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP TGAPPELSGVTNNGFIPHN	88	
HMPV_SC_4M_Krarup_T74LS170LD185P	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DVENLTCSDGPSLIKTELDLLKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVLKNLTRAINKNKCDIPDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP	89	
HMPV_SC_5M_Krarup_T74LS170LD185PD454N	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DVENLTCSDGPSLIKTELDLLKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVLKNLTRAINKNKCDIPDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIEGVIDTPCWIVKAAPSCSEKKGMYACLLREDQGMYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPENQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP	90	
HMPV_SC_DM_Krarup_E51PT74L	${\tt MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTL\underline{P}VG} \\ {\tt DVENLTCSDGPSLIKTELDL\underline{L}KSALRELKTVSADQLAREEQIENP\underline{GSGS}FVLG}$	91	

		SEQ
Strain	Sequence	ID NO:
	AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP TGAPPELSGVTNNGFIPHN	
HMPV_SC_TM_Krarup_E51PT74LD454N	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLPVG DVENLTCSDGPSLIKTELDLLKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSGPNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPENQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP TGAPPELSGVTNNGFIPHN	92
HMPV_SC_StabilizeAlpha_T74L	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DVENLTCSDGPSLIKTELDLLKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP TGAPPELSGVTNNGFIPHN	93
HMPV_SC_StabilizeAlpha_V55L	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DLENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQPNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP TGAPPELSGVTNNGFIPHN	94
HMPV_SC_StabilizeAlpha_S170L	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVLKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP TGAPPELSGVTNNGFIPHN	95
HMPV_SC_StabilizeAlpha_T174W	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLWRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP TGAPPELSGVTNNGFIPHN	96
HMPV_SC_4M_StabilizeAlpha_V55LT74LS170LT174W	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DLENLTCSDGPSLIKTELDLLKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVLKNLWRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFS	97

Human Me	Human Metapneumovirus Mutant Amino Acid Sequences		
Strain	Sequence	SEQ ID NO:	
	DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP TGAPPELSGVTNNGFIPHN		
HMPV_ProlineStab_E51P	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLPVG DVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP	98	
HMPV_ProlineStab_D185P	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIPDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLEBRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP	99	
HMPV_ProlineStab_D183P	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCPIDDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GYYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP TGAPPELSGVTNNGFIPHN	100	
HMPV_ProlineStab_E131P	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGSFVLG A1ALGVAAAAAVTAGVA1AKTIRLPSEVTAINNALKKTREAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP	101	
HMPV_ProlineStab_D447P	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFPPIKFPEDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP	102	
HMPV_TrimerRepulsionD454N	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC	103	

TABLE 18-continued

Human M	Human Metapneumovirus Mutant Amino Acid Sequences	
Strain	Sequence	SEQ ID NO:
	QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPENQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP TGAPPELSGVTNNGFIPHN	
HMPV_TrimerRepulsionE453N	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPQDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP	104
HMPV_StabilizeAlphaF196W	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQWNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGECHVIKGRPVSSSFDPIKFPEDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP	105

TABLE 19

Strain	Nucleic Acid Sequence	SEQ ID NO:
	Human Metapneumovirus Mutant Nucleic Acid Sequences	
HMPV_SC_DSCAV1_4MMV	ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA CACCTCAGCACGGCCTGAAAGAGAGACTACCTGGAAGAGT CCTGCAGCACCACCATCACAGAGGGCTACCTGGTGTGTGT	106
	GGTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGG AATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCT GAGCTGGCTAGAGCTGACATGCCTAACATGCCTACATCTGCCG GCCAGATCAAGCTGATGTCTGAGAATAGAGCCATGGTCCG ACGGAAAGGCTTCGGCATTCTGTGTGGCGTTACGGCAGC AGCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGA TCGACACACCCTGCTGGATTGTAAGGCCGCTCCTAGCTG TAGCGAAGAAGAGGCAATTACGCCTGCCTGCTGAGAGA GGACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTG TACTACCCTAACGAGAAGAGGCGACCACGC	
	AGCAGAGCAAAGAGTGCAACATCAACATCAGCACCACCA ACTATCCCTGCAAGGTGTCCACCGGCAGGCACCACTATTTC TATGGTGGCTTCTTCTCTCTGGGAGCCCTGGTGGCTTGTT ATAAGGGCGTGTCCTGTAGCATCGGCAGCACCAGAGTGG GCATCATCAAGCAGCTGAACAAGGGCTGCAGCTACATCAC CAACCAGGACGCCGATACCGTGACCATCGACAACACCGTG TATCAGCTGAGCAAGGGCGAACAGCACGTGATC AAGGGCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGT	

TABLE 19-continued

SEO ID Nucleic Acid Sequence Strain NO: TCCCTGAGGATCAGTTCAACGTGGCCCTGGACCAGGTGTT CGAGAACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCC AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC TTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTC ${\tt CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC}$ AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG ACCAACAATGGCTTCATCCCTCACAAC HMPV SC DSTRIC 4MMV ${\tt ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA}$ CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG CAGGCGTGGCCATCTGCAAGACCATCAGACTGGAAAGCG AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGC CACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAAC CTGACACGGCCATTAACAAGAACAAGTGCGACATCGAC GACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGC GGTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGG AATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCT GAGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCG GCCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCG ACGGAAAGGCTTCGGCATTCTGTGTGGCGTGTACGGCAGC ${\tt AGCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGA}$ TCGACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTG TAGCGAGAAGAAGGGCAATTACGCCTGCCTGAGAGA GGACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTG ${\tt TACTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGAC}$ ${\tt CACGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCG}$ AGCAGAGCAAAGAGTGCAACATCAACATCAGCACCACCA ${\tt ACTATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTC}$ TATGGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTT ATAAGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGG GCATCATCAAGCAGCTGAACAAGGGCTGCAGCTACATCAC CAACCAGGACGCCGATACCGTGACCATCGACAACACCGTG TATCAGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATC AAGGGCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGT TCCCTGAGCACCAGTGGCATGTGGCCCTGGACCAGGTGTT $\tt CGAGAACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCC$ AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC TTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTC CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG ACCAACAATGGCTTCATCCCTCACAAC HMPV SC DM Krarup T74LD185P ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGAA CAGATCGAGAATCCTGGCAGCGCAGCTTTGTGCTGGGAG CCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAGC AGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCGA AGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACGA GGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGCC ACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAACC TGACACGGGCCATTAACAAGAACAAGTGCGACATCCCTGA CCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCGG TTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGAA TCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTGA GCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGGC CAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGAC GGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCAG CGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATCG ${\tt ACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTAG}$ CGAGAAGAAGGCCAATTACGCCTGCCTGAGAGAGAGA $\tt CCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTAC$ TACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCAC

GTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAGC AGAGCAAAGAGTGCAACATCAACATCAGCACCACCAACT

TABLE 19-continued

SEQ ID
Strain Nucleic Acid Sequence NO:

HMPV_SC_TM_Krarup_T74LD185PD454N

ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGAA CAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGAG CCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAGC AGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCGA AGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACGA GGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGCC ACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAACC TGACACGGGCCATTAACAAGAACAAGTGCGACATCCCTGA CCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCGG $\tt TTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGAA$ TCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTGA $\tt GCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGGC$ CAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGAC $\tt GGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCAG$ $\tt CGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATCG$ ACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTAG CGAGAAGAAGGGCAATTACGCCTGCCTGAGAGAGAGA CCAAGGCTGTATTGTCAGAACGCCGGCAGCACCGTGTAC TACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCAC GTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAGC AGAGCAAAGAGTGCAACATCAACATCAGCACCACCAACT ATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC TGAGAACCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA CAATGGCTTCATCCCTCACAAC

HMPV_SC_4M_Krarup_T74LS170LD185P

ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGAA CAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGAG CCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAGC AGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCGA AGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACGA GGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGCC ACAGCCGTGCGCGAGCTGAAGGACTTCGTGCTTAAGAACC TGACACGGGCCATTAACAAGAACAAGTGCGACATCCCTGA $\tt CCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCGG$ ${\tt TTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGAA}$ TCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTGA ${\tt GCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGGC}$ CAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGAC GGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCAG

109

TABLE 19-continued

Strain Nucleic Acid Sequence NO:

CGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATCG ACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTAG CGAGAAGAAGGCCAATTACGCCTGCCTGAGAGAGAGA CCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTAC TACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCAC GTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAGC AGAGCAAAGAGTGCAACATCAACATCAGCACCACCAACT ATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC TGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA CAATGGCTTCATCCCTCACAAC

ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA

HMPV_SC_5M_Krarup_T74LS170LD185PD454N

CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGAA CAGATCGAGAATCCTGGCAGCGCAGCTTTGTGCTGGGAG $\tt CCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAGC$ AGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCGA AGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACGA GGCCGTCAGCACTCGGCAATGGCGTTAGAGTGCTGGCC ${\tt ACAGCCGTGCGCGAGCTGAAGGACTTCGTGCTTAAGAACC}$ TGACACGGGCCATTAACAAGAACAAGTGCGACATCCCTGA CCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCGG TTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGAA TCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTGA GCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGGC CAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGAC $\tt GGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCAG$ CGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATCG ACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTAG CGAGAAGAAGGCCAATTACGCCTGCCTGAGAGAGGA ${\tt CCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTAC}$ TACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCAC GTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAGC AGAGCAAAGAGTGCAACATCAACATCAGCACCACCAACT ATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC TGAGAACCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA CAATGGCTTCATCCCTCACAAC

HMPV_SC_DM_Krarup_E51PT74L

ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA
CACCTCAGCACGGCCTGAAAGAAGAGCTACCTGGAAGAGT
CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGTGG
CACGCTGGTACACCAACGTGTTCACACTGCCTGTGGGC
GACGTCGAGAATCTGACATGCTCTGATGGCCCTGA
TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA
ACTCAAGACCGTGTTCTGCCATCAGCTGGCCAGAGAGGA
CCATTGCAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGAG
CCATTGCTCTTGGAGTGGCTGCTGCAGCTGTTACAGC
AGGCCTGGCCATCACAAACACCCCTGAAGAACACAA
AGTGACCGCATCACAAAACGCCCTGAAGAAAACACA
AGCCGTCAGCACTCGCAATGGCTTAGAGTGCTGCC
ACAGCCGTCAGCACTCGAACAACGCCT

111

TABLE 19-continued

Strain Nucleic Acid Sequence NO:

TGACACGGGCCATTAACAAGAACAAGTGCGACATCGACG ACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCG GTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGA ATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTG ${\tt AGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGG}$ CCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGA $\tt CGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCA$ GCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATC ${\tt GACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTA}$ GCGAGAAGAGGGCAATTACGCCTGCCTGAGAGAGG ACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTA CTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCA CGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAG CAGAGCAAAGAGTGCAACATCAACATCAGCACCACCAAC TATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC TGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA CAATGGCTTCATCCCTCACAAC

ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA

HMPV_SC_TM_Krarup_E51PT74LD454N

CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG ${\tt AACCGGCTGGTACACCAACGTGTTCACACTGCCTGTGGGC}$ GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGAA CAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGAG $\tt CCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAGC$ AGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCGA AGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACGA GGCCGTCAGCACTCGGCAATGGCGTTAGAGTGCTGGCC ${\tt ACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAACC}$ TGACACGGGCCATTAACAAGAACAAGTGCGACATCGACG ${\tt ACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCG}$ GTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGA ATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTG ${\tt AGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGG}$ CCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGA $\tt CGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCA$ GCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATC ${\tt GACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTA}$ GCGAGAAGAAGGCCAATTACGCCTGCCTGAGAGAGAG ACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTA CTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCA CGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAG CAGAGCAAAGAGTGCAACATCAACATCAGCACCACCAAC TATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC TGAGAACCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA CAATGGCTTCATCCCTCACAAC

HMPV_SC_StabilizeAlpha_T74L

ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA
CACCTCAGCACGGCCTGAAAGAGAGTACCTGGAAGAGT
CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG
AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC
GACGTCGAGAATCTGCACTGATGGCCCTGA
TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA

Nucleic Acid Sequence

TABLE 19-continued

SEQ ID

366

ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGAA CCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAGC AGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCGA AGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACGA GGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGCC ACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAACC TGACACGGGCCATTAACAAGAACAAGTGCGACATCGACG ACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCG GTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGA ATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTG AGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGG CCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGA CGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCA GCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATC GACACCCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTA GCGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGAGG ACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTA CTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCA CGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAG CAGAGCAAAGAGTGCAACATCAACATCAGCACCACCAAC TATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC $\tt TGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG$ AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA CAATGGCTTCATCCCTCACAAC

HMPV_SC_StabilizeAlpha_V55L

Strain

115

ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG ${\tt AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC}$ GACCTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA ${\tt TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG}$ AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA ACAGATCGAGAATCCTGGCAGCGCAGCTTTGTGCTGGGA GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG CAGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCG AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGC CACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAAC CTGACACGGCCATTAACAAGAACAAGTGCGACATCGAC GACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGC GGTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGG AATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCT GAGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCG GCCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCG ACGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGC AGCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGA TCGACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTG TAGCGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGA GGACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTG TACTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGAC CACGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCG AGCAGAGCAAAGAGTGCAACATCAACATCAGCACCACCA ACTATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTC TATGGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTT ATAAGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGG GCATCATCAAGCAGCTGAACAAGGGCTGCAGCTACATCAC CAACCAGGACGCCGATACCGTGACCATCGACAACACCGTG TATCAGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATC AAGGGCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGT TCCCTGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTT CGAGAACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCC AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC TTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTC CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG ACCAACAATGGCTTCATCCCTCACAAC

TABLE 19-continued

	TABLE 19-continued	
Strain	Nucleic Acid Sequence	SEQ ID NO:
HMPV_SC_StabilizeAlpha_S170L	ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA CACCTCAGCACGGCCTGAAAGAGGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG AACCGGTGGTACACCAACGTGTTCACACTGGAAGTGGC GACGTCGAGAATCTGACATGTTCACACTGGAAGTGGGC GACGTCGAGAATCTGACTGTCTGATGGCCCTAGCCTGA TCAAGACCGAGCTGGATCTGACCAAGAGCCCCTGAGAG AACTCAAGACCGTGTCTCGCCTACCCTGACGAGA ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA GCCATTGCTCTTGGAGTGGCTGCAGCAGAGAGGA ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA GCCATTGCTCTTGGAGTGGCTGCAGCAGCAGAAGGA AAGTGACCGCATCACAACAACGCCCTGAAGAAGACCAAACG AGGCCGTCAGCACACCACCACAACAACGCCATCAGACAAACG AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTCCTGGC CACAGCCGTGCGCAGAGCTAACAACGCCTTGAACAAACA CTGACACGGGCCATTAACAAGAACAAACTCGGACATCGAC GACCTGAAGAAGTGCCTTAACAAGACAACTCGAC GGCTTCTGAACATCGGCATTTAGCCAGTTCAACCGGC GGTTTCTGAACCTCGTGCGCAATTAGCAACAACGCCGG AATCACACCAGCCATCAGCCTGGACCTGATGACAATGCCG GCCAGATCAAGACTCGGCAATTAACAAGACACACCAGCCGG AATCACACCAGCCATCAGCCTGGACCTGATGACAATGCCG GCCAGATCAAGCTTGGCGGCAATTTAGCGACAACACTCGCCGG GACTGAACACCCTGCTGAACATGCCTACATCTCCCG GCCAGATCAAGATCAGCCTGCCTAACATGCCTACATCTCCCG GCCAGATCAAGATCAGCCTGCCTAACATGCCTACATCTCCCG GCCAGATCAACATCGCCTGCCTAACATCCCTCCTAGCTG TAGCACACCCTGCTGGATTGTGAAGAGCCACCCTGCTGAACAACACCCTTGCTGAACAACACCCTTGCTGAACAACACCCTTGCTGAACAACACCCTTGCTAACAACACCCTGCTTAACAACACCCTGCTTAACAACACCCTGCTTAACAACACCACCACAACAACAACAACAACAACAACAA	116
HMPV_SC_StabilizeAlpha_T174W	AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG ACCAACAATGGCTTCATCCTCACAAC ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACACAGAGGGTACCTGTTGTGCTGAG AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGC GACGTCCAGAACTACCACACACTGTTCACACTGGAAGTGGC GACGTCCAGAATCTGACACAACACTGTTCACACTGGAAGTGGC ACGTCCAGAATCTGACACAACACTGTTCACACTGAAGAGGA AACTCAAGACCGTGTTCTGCCGATCAGCTGGCCAGAGAGA ACAGATCGAGATCTGCCGATCAGCTGGCCAGAGAGA ACAGATCGAGATCTGCCGATCAGCTGGCCAGAGAGA ACAGATCGAGATCTGGACTGCTGCTGCTGCTGCTTTACAG CAGGCGTGGCCATCGCTAAGACCTCGACATGGAAAGCG AAGTGACCGCATCAACAACGCCCTGAAGAAGACAAACG AGGCCGTCAGCACACTCGGCAATGACTTGTTCCAAGAAC CTGTGGCGGGCCATCAACAACGCCCTGAAGAAGACAACAC GACCTGAAGATGGCGTTACAACAACACCAGCCATCAAC GACCTGAAGATGGCCATTAACAAGAACAAGTCCGACATCGAC GACCTGAAGATGGCCTTTAAGCAGTTCAACAACGC GGTTTCTGAACCATCAGCCTTGACCTGAACAACACCGC GGTTTCTGAACCATCAGCCTTGACCTGAACAACACCGC GACTGAAGATGGCCGTGCCTTAACATGCCACACACCGC GACTGAACACACCCATCAGCCTGACCTGA	117

TABLE 19-continued

Strain Nucleic Acid Sequence SEQ ID

TCCCTGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTT

TCCCTGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTT

TCCCTGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTT
CGAGAACATCAGAATTCCCAGGCTCTGGTGGACCAGTCC
AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC
TTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTC
CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC
AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG
ACCAACAATGGCTTCATCCTCACAAC

HMPV SC 4M StabilizeAlpha V55LT74LS170LT174W ATGAGCTGGAAGGTGGTCATCATCATCTTCAGCCTGATCA

CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC GACCTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGAA CAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGAG CCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAGC AGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCGA AGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACGA GGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGCC ACAGCCGTGCGCGAGCTGAAGGACTTCGTGCTTAAGAACC TGTGGCGGCCATTAACAAGAACAAGTGCGACATCGACG ACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCG GTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGA ATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTG AGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGG CCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGA CGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCA $\tt GCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATC$ ${\tt GACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTA}$ $\tt GCGAGAAGAAGGGCAATTACGCCTGCTGAGAGAGGG$ ACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTA $\tt CTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCA$ $\tt CGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAG$ CAGAGCAAAGAGTGCAACATCAACATCAGCACCAAC TATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA ${\tt AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT}$ CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG $\tt GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC$ TGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT ${\tt CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG}$ ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA CAATGGCTTCATCCCTCACAAC

HMPV ProlineStab E51P

ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG AACCGGCTGGTACACCAACGTGTTCACACTGCCTGTGGGC GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG CAGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCG AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGC CACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAAC CTGACACGGGCCATTAACAAGAACAAGTGCGACATCGAC GACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGC GGTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGG AATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCT GAGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCG GCCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCG ACGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGC AGCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGA TCGACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTG TAGCGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGA GGACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTG TACTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGAC CACGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCG AGCAGAGCAAAGAGTGCAACATCAACATCAGCACCACCA

TABLE 19-continued

SEO ID Nucleic Acid Sequence Strain NO:

> ACTATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTC TATGGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTT ATAAGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGG GCATCATCAAGCAGCTGAACAAGGGCTGCAGCTACATCAC ${\tt CAACCAGGACGCCGATACCGTGACCATCGACAACACCGTG}$ TATCAGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATC AAGGGCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGT TCCCTGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTT CGAGAACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCC AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC TTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTC CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG ACCAACAATGGCTTCATCCCTCACAAC

ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA

HMPV_ProlineStab_D185P

120

CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA ACAGATCGAGAATCCTGGCAGCGCAGCTTTGTGCTGGGA GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG CAGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCG AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGC CACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAAC $\tt CTGACACGGGCCATTAACAAGAACAAGTGCGACATCCCTG$ ACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCG $\tt GTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGA$ ATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTG ${\tt AGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGG}$ CCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGA $\tt CGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCA$ GCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATC GACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTA $\tt GCGAGAAGAAGGGCAATTACGCCTGCTGAGAGAGGG$ ACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTA CTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCA CGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAG CAGAGCAAAGAGTGCAACATCAACATCAGCACCACCAAC TATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT $\tt GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA$ AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC TGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA CAATGGCTTCATCCCTCACAAC

HMPV_ProlineStab_D183P

CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG CAGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCG AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGC CACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAAC CTGACACGGGCCATTAACAAGAACAAGTGCCCTATCGACG ${\tt ACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCG}$ GTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGA ATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTG ${\tt AGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGG}$ CCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGA

CGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCA

ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA

TABLE 19-continued

Strain Nucleic Acid Sequence NO:

GCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATC GACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTA GCGAGAAGAAGGCCAATTACGCCTGCCTGCTGAGAGAGG ACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTA $\tt CTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCA$ CGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAG CAGAGCAAAGAGTGCAACATCAACATCAGCACCACCAAC TATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC TGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA CAATGGCTTCATCCCTCACAAC

HMPV_ProlineStab_E131P

ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA $\tt GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG$ CAGGCGTGGCCATCGCTAAGACCATCAGACTGCCTAGCGA AGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACGA GGCCGTCAGCACTCGGCAATGGCGTTAGAGTGCTGGCC ${\tt ACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAACC}$ ${\tt TGACACGGGCCATTAACAAGAACAAGTGCGACATCGACG}$ ACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCG GTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGA ATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTG ${\tt AGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGG}$ CCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGA $\tt CGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCA$ GCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATC ${\tt GACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTA}$ GCGAGAAGAAGGCCAATTACGCCTGCCTGAGAGAGG ACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTA $\tt CTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCA$ CGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAG CAGAGCAAAGAGTGCAACATCAACATCAGCACCACCAAC TATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC TGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA

ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA
CACCTCAGCACGCCCTGAAAGAGAGCTACCTGGAAGAGT
CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGTGAG
AACCGGCTGGTACACACAGAGGGCTACCTGCTGAGAGGT
GAAGACCGAGATCTGACATGCTCTGATGGCCTAGACT
CCAAGACCGAGCTGGATCTGACCAAGAGGCCCCTGAGAG
AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA
ACAGATCGAGAATCCTGGCAGCAGCTGTTGTGCTGGGA
GCCATTGCTCTTGGAGTGGCTGCTGCAGCTGTTACAG
CAGGCGTGGCCATCACAACACCTTGAAGAACGAAACG
AAGTGACCGCCATCAACAACGCCTTGAAGAAACG
AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGC
CACAGCCGTGCGCGAGCTGAAGAAACC
CACAGCCGTCAGCAACACCCCTTAAGAATGCTGGC
CACAGCCGTGCGCGAGCTGAAGAACAAACC

CAATGGCTTCATCCCTCACAAC

HMPV_ProlineStab_D447P

TABLE 19-continued

Strain Strain Sequence SEQ ID Nucleic Acid Sequence NO:

CTGACACGGGCCATTAACAAGAACAAGTGCGACATCGAC GACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGC GGTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGG AATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCT GAGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCG GCCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCG ${\tt ACGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGC}$ AGCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGA TCGACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTG TAGCGAGAAGAAGGGCAATTACGCCTGCCTGAGAGA GGACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTG TACTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGAC CACGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCG AGCAGAGCAAAGAGTGCAACATCAACATCAGCACCACCA ACTATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTC TATGGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTT ATAAGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGG GCATCATCAAGCAGCTGAACAAGGGCTGCAGCTACATCAC CAACCAGGACGCCGATACCGTGACCATCGACAACACCGTG TATCAGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATC AAGGGCAGACCTGTGTCCAGCAGCTTCCCACCTATCAAGT TCCCTGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTT CGAGAACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCC AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC TTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTC CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG ACCAACAATGGCTTCATCCCTCACAAC

ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA

HMPV_TrimerRepulsionD454N

CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG ${\tt AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC}$ GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA ${\tt TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG}$ AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA $\tt GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG$ ${\tt CAGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCG}$ AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGC ${\tt CACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAAC}$ CTGACACGGGCCATTAACAAGAACAAGTGCGACATCGAC GACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGC GGTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGG AATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCT GAGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCG GCCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCG ${\tt ACGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGC}$ AGCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGA TCGACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTG TAGCGAGAAGAAGGGCAATTACGCCTGCCTGAGAGA GGACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTG TACTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGAC CACGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCG AGCAGAGCAAAGAGTGCAACATCAACATCAGCACCACCA ACTATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTC TATGGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTT ATAAGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGG GCATCATCAAGCAGCTGAACAAGGGCTGCAGCTACATCAC CAACCAGGACGCCGATACCGTGACCATCGACAACACCGTG TATCAGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATC AAGGGCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGT TCCCTGAGAACCAGTTCCAGGTGGCCCTGGACCAGGTGTT CGAGAACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCC AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC ${\tt TTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTC}$ CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG ACCAACAATGGCTTCATCCCTCACAAC

ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA
CACCTCAGCACGCCTGAAAGAGAGCTACCTGGAAGAGT
CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGA
AACCGGCTGGTACACCACGTGTTCACACTGGAAGTGGGC
GACGTCGAGAATCTGACATGCTCTGATGGCCTGA
TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG

TABLE 19-continued

Strain Nucleic Acid Sequence NO:

AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG CAGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCG AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGC CACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAAC CTGACACGGCCATTAACAAGAACAAGTGCGACATCGAC GACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGC GGTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGG AATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCT GAGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCG GCCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCG ACGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGC AGCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGA TCGACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTG TAGCGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGA GGACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTG TACTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGAC CACGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCG AGCAGAGCAAAGAGTGCAACATCAACATCAGCACCACCA ACTATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTC TATGGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTT ATAAGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGG GCATCATCAAGCAGCTGAACAAGGGCTGCAGCTACATCAC CAACCAGGACGCCGATACCGTGACCATCGACAACACCGTG TATCAGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATC AAGGGCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGT ${\tt TCCCTCAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTT}$ CGAGAACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCC AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC TTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTC CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG ACCAACAATGGCTTCATCCCTCACAAC

HMPV StabilizeAlphaF196W

ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG ${\tt AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC}$ GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA ${\tt TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG}$ AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA ACAGATCGAGAATCCTGGCAGCGCAGCTTTGTGCTGGGA GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG CAGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCG AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGC CACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAAC CTGACACGGCCATTAACAAGAACAAGTGCGACATCGAC GACCTGAAGATGGCCGTGTCCTTTAGCCAGTGGAACCGGC GGTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGG AATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCT GAGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCG GCCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCG ACGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGC AGCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGA TCGACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTG TAGCGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGA GGACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTG TACTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGAC CACGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCG AGCAGAGCAAAGAGTGCAACATCAACATCAGCACCACCA ACTATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTC TATGGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTT ATAAGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGG GCATCATCAAGCAGCTGAACAAGGGCTGCAGCTACATCAC CAACCAGGACGCCGATACCGTGACCATCGACAACACCGTG TATCAGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATC AAGGGCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGT TCCCTGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTT CGAGAACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCC AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC TTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTC CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG ACCAACAATGGCTTCATCCCTCACAAC

TABLE 19-continued

		SEQ ID
Strain	Nucleic Acid Sequence	NO:

Human Metapneumovirus mRNA Sequences

HMPV_SC_DSCAV1_4MMV

AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCUGCAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU AGAGUGCUGGCCUUUGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCCUGAACAAGAACAAG UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU AGCGACAACGCCGGAAUCACCACCAGCCAUCAGCCUGGAC CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU GUGUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGGAUCAGUUCAACGUGGCCCUGGACCAGGUGUUCG AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG UGACCAACAAUGGCUUCAUCCCUCACAAC

HMPV SC DSURIC 4MMV

AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCUGCAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU AGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGAC CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU GUGUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC AGCUGCCUAUCUUCGGCGUGAUCGACACCCCUGCUGGA UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGC AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG 127

TABLE 19-continued

SEO ID Nucleic Acid Sequence Strain NO: GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGCACCAGUGGCAUGUGGCCCUGGACCAGGUGUUCGA GAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCAA CAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCUU CAUCAUCGUGAUCCUGAUCGCCGUGCUGGGCAGCUC CAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGAC CAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAGU GACCAACAAUGGCUUCAUCCCUCACAAC HMPV SC DM Krarup U74LD185P AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU 129 CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGCUCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACUCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG UGCGACAUCCCUGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU AGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGAC $\tt CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC$ AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG ${\tt AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU}$ GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC $\tt UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG$ AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG UGACCAACAAUGGCUUCAUCCCUCACAAC HMPV_SC_UM_Krarup_U74LD185PD454N AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU 130 CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGCUCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG UGCGACAUCCCUGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU AGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGAC CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG ${\tt AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU}$ ${\tt GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC}$ AGCUGCCUAUCUUCGGCGUGAUCGACACCCCUGCUGGA UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC

TABLE 19-continued

SEQ ID Strain Nucleic Acid Sequence NO:

AAUUACGCCUGCCUGAGAGAGAGCCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGAACCAGUUCCAGGUGGCCCUGGACCAGGUGUUCGA GAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCAA CAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCUU CAUCAUCGUGAUCCUGAUCGCCGUGCUGGGCAGCUC CAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGAC CAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAGU GACCAACAAUGGCUUCAUCCCUCACAAC

HMPV_SC_4M_Krarup_U74LS170LD185P

AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGCUCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACCCCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGCUUAAGAACCUGACACGGGCCAUUAACAAGAACAA GUGCGACAUCCCUGACCUGAAGAUGGCCGUGUCCUUUAG CCAGUUCAACCGGCGUUUCUGAACGUCGUGCGGCAGUU UAGCGACAACGCCGGAAUCACCCAGCCAUCAGCCUGGA CCUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAA CAUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGA GAAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUC UGAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUG CAGCUGCCUAUCUUCGGCGUGAUCGACACCCCUGCUGG AUUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGG CAAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG UGACCAACAAUGGCUUCAUCCCUCACAAC

HMPV_SC_5M_Krarup_U74LS170LD185PD454N

131

TABLE 19-continued

SEQ ID Strain Nucleic Acid Sequence NO:

GUGCGACAUCCCUGACCUGAAGAUGGCCGUGUCCUUUAG CCAGUUCAACCGGCGUUUCUGAACGUCGUGCGGCAGUU UAGCGACAACGCCGGAAUCACCACCAGCCAUCAGCCUGGA CCUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAA CAUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGA GAAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUC UGAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUG CAGCUGCCUAUCUUCGGCGUGAUCGACACCCCUGCUGG AUUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGG CAAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGAACCAGUUCCAGGUGGCCCUGGACCAGGUGUUCGA GAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCAA CAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCUU CAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCUC CAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGAC CAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAGU GACCAACAAUGGCUUCAUCCCUCACAAC

HMPV_SC_DM_Krarup_E51PU74L

AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGCCUGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGCUCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACUCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGUUUCUGAACGUCGUGCGGCAGUUU AGCGACAACGCCGGAAUCACCAGCCAUCAGCCUGGAC CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC AAUUACGCCUGCCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG UGACCAACAAUGGCUUCAUCCCUCACAAC

HMPV_SC_UM_Krarup_E51PU74LD454N

AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCACGUGUUCACACUGCCUGU GGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG

133

TABLE 19-continued

Strain Nucleic Acid Sequence NO:

CCUGAUCAAGACCGAGCUGGAUCUGCUCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACUCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU AGCGACAACGCCGGAAUCACCCAGCCAUCAGCCUGGAC CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC AGCUGCCUAUCUUCGGCGUGAUCGACACCCCUGCUGGA UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG $\tt CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG$ CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGAACCAGUUCCAGGUGGCCCUGGACCAGGUGUUCGA GAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCAA CAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCUU CAUCAUCGUGAUCCUGAUCGCCGUGCUGGGCAGCUC CAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGAC CAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAGU GACCAACAAUGGCUUCAUCCCUCACAAC

HMPV_SC_SUabilizeAlpha_U74L

AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGCUCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU AGCGACAACGCCGGAAUCACCAGCCAUCAGCCUGGAC CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC AGCUGCCUAUCUUCGGCGUGAUCGACACCCCUGCUGGA UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGC AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU UCAUCAUCGUGAUCGUGGUGGGCAGCU

TABLE 19-continued

	TABLE 19-continued	
Strain	Nucleic Acid Sequence	SEQ ID NO:
	CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG UGACCAACAAUGGCUUCAUCACCACAAC	
HMPV_SC_SUabilizeAlpha_V55L	AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU CACACCUCAGCACGGCCUGAAAGAAGAGUUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGGAAGG GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGGAAGU GAGAACCGGCUGGUACACCACACGUGUUCACACUGGAAGU GGGCGACCUCGAGAAUCUGACCAAGAGGCGCCCU GAGAGAACUCAAGACCGAGCUGGAUCUGACCAAGAGGCGCCCU GAGAGAACUCAAGACCGAGCUGGAUCUGACCAAGAGGCGCCCU GAGAGAACUCAAGACCGUGGAUCUGACCAAGAGCGCCCUGACAGAGACACACAGAGACCAUCAGAAGACCAUCAGA AGAGGAACAGAUCGAGAAUCCUGGCAAGAACCAUCAGA GCUGUUACAGCAGGGGGCAGCUUUG UGCUGGAAAGCGAAGGCGCAUCACAACAACCGCCUGAAG AAGACAAACGAGGCGUCAGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCAACAACGACCCUGAAG AAGACAAACGAGGCCGUCAGCCAUCAACAACACCCCUGAAG AAGACAAACGAGGCCGUCAGCCAUCAACAACACCCUUACAGA UGCCAACAACCACGCGUGCCCAUCAACAACAACACUUC GUUCCAAGAACCUGACACACCGGCCAUCAACAACACCCUGACAACAC CUGAUCAACCCGGCGUUUCUGAAGACGCCGUGACCUUUAGC CAGUUCAACCCGGCGGUUUCUGAACGACCAUCAAGAACAAG UGCGACAUCGACGACCGGCCAUCAACACCCUGGCAAC AUGCCUAACUCUGCCGGCAGUCAAGCCUGGCCUUAAC AUGCCUACAUCUGCCGGCCAGCCAACCAGCCGUGCCCUAAC AUGCCUACAUCUUCGGCAGACCAGCCUGACCAGCCUGACC GAUUGACAGCUGGCCGGCAACCACCCACCCUACCUGGA AUUACGCCUUCUCGCCACGGAAAGGCCUUCGGCAUUCU GAUUGACAGCCUGUCUCGCCAGCAACCACCCUGCUGGA UUGUCAAAACGCCGGCAGCCAGCCUGAUCAACCCUGCUGGA UUGUCAAAAGCCCCGCCAGCCACCACCAACCUAUCUUCU GAUUGACAGCCCCUGCUGAGAAGAGAA	136
HMPV_SC_SUabilizeAlpha_S170L	AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU CACACCUCAGCACGGCCUGAAAGAAGAGUTACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGGCU GAGAACCGGCUGGUACACCACCAUGUUUCACACUGGAAGU GGGCGACGUCGAGAAUCUGACCAAGAGGGCCUCUAG CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU GAGAAGACCCAAGGUGGAUCUGACCAAGAGCGCCCU GAGAGAACCCAAGGUGGAUCUGACCAAGAGCGCCCU GAGAGAACUCAAGACCGUGGAUCUGACCAAGAGCGCCCU UGCUGGAGACGUCAGGUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCAAGACCACCCCAAGAGCGCCAG GCUGUUACAGCAGGCGUGGCCAUCAACAACGCCUGAAG CUGGAAAGCGAAGGCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCGUCAGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCCAUCAACAACGACCCUUAA GUGCUUAAGAACCUGACAACAACGCCGUGAAGACAUUC GUGCUUAAGAACCUGACAACACCAGCCGUGACGAACAACAC CCAGUUCAACCAGCCGUGAAGACACCAGCCGUGCCCUAA CCAGUUCAACCGGCGGAUUCUGAACGACCGUGCCUGAA CCUGAAGACCAUCAGCCGGCAAUCAGCCCUGGA CCUGAUGACGACGCGGAAUCAACCAGCCGUGCCUAA CAUGCCUACAUCUGCCGGCAAGACAGCCGUGCUCAA CAUGCCUACAUCGCCGGCAAUCAAGCCGGCAUCAGCCUGA GAAUAGAGCCAUGGCCGGAAAGCCGGCAUCAGCCUGA CAGUUCACACGGCCGGAAUCAACCAGCCAUCAGCCCUGA CAGUUCACACGGCCGGAAUCAACCCGGCCAUCAGCCCUAA CAUGCCUACAUUCGCCGGCCAGAUCAAGCCGGCAUUC UGAUUAGCGCUGCCUAGCCUGACAGACCAGCCAUCACCUCCUAA CAUGCCUACAUCUUCGCGGCAGAACAGCCCUCCUCGG AUUGUGAAGCCCCUCCUAGCCGCCAGACCACCCUCCUCGG AUUGUGAAGCCCCUCCUAGCCGCCAGCCACCCACCCACCUCCUGG AUUGUCAGAACGCCGCCCAGCCACCCACCCACCCACCACCAACAA	137

TABLE 19-continued

SEO ID Nucleic Acid Sequence Strain NO: GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU UCAUCAUCGUGAUCGUGAUCGCCGUGCUGGGCAGCU CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG UGACCAACAAUGGCUUCAUCCCUCACAAC AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU HMPV SC SUabilizeAlpha U174W 138 CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACCUCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGUGGCGGGCCAUUAACAAGAACAA GUGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAG CCAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUU UAGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGA CCUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAA CAUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGA ${\tt GAAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUC}$ UGAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUG CAGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGG ${\tt AUUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGG}$ CAAUUACGCCUGCCUGAGAGAGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG $\tt CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG$ CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG UGACCAACAAUGGCUUCAUCCCUCACAAC HMPV SC 4M SUabilizeAlpha V55LU74LS170LU174W AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU 139 CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU GGGCGACCUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGCUCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACCUCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGCUUAAGAACCUGUGGCGGGCCAUUAACAAGAACAA GUGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAG CCAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUU UAGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGA CCUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAA

CAUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGA GAAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUC UGAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUG

TABLE 19-continued

Strain Nucleic Acid Sequence NO:

CAGCUGCCUAUCUUCGGCGUGAUCGACACCCCUGCUGG AUUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGG CAAUUACGCCUGCCUGAGAGAGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA ${\tt GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG}$ AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG UGACCAACAAUGGCUUCAUCCCUCACAAC

AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU

HMPV ProlineSUab E51P

140

141

CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGCCUGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG $\tt UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA$ GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU AGCGACAACGCCGGAAUCACCAGCCAUCAGCCUGGAC CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG ${\tt AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU}$ GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC AAUUACGCCUGCCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG UGACCAACAAUGGCUUCAUCCCUCACAAC

HMPV_ProlineSUab_D185P

AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU
CACACCUCAGCACGGCCUGAAAGAGGCUACCUGGAAGA
GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU
GAGAACCGGCUGGUACACCGUGUUCACACUGGAAGU
GGGCGACGUCGAGAAUCUGACCAUGCUCUGAUGGCCCUAG
CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU
GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG
AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG
UGCUGGAGCAUUGCUUUGAAGCCGCCUCGUCA
CCUGUUACAGCAGCGCGCAUCAGCCGCAACACACCGCCUCAGAG
CUGUACAGCAGAGCCCCUCAAGACCACCCCUGAAG
AAGACAAACGAGGCCGUCAGCACACCCCCUGAAG
AAGACAAACGAGGCCGUCAGCACACCCCCUGAAG

TABLE 19-continued

Strain Nucleic Acid Sequence NO:

AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG UGCGACAUCCCUGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGUUUCUGAACGUCGUGCGGCAGUUU AGCGACAACGCCGGAAUCACCAGCCAUCAGCCUGGAC CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC AGCUGCCUAUCUUCGGCGUGAUCGACACCCUGCUGGA UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC AAUUACGCCUGCCUGAGAGAGAGCCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG UGACCAACAAUGGCUUCAUCCCUCACAAC

AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU

CACACCUCAGCACGGCCUGAAAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG

HMPV_ProlineSUab_D183P

CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACUCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG UGCCCUAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU AGCGACAACGCCGGAAUCACCAGCCAUCAGCCUGGAC CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC AAUUACGCCUGCCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG

AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU CACACCUCAGCACGGCCUGAAAGAGGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU

UGACCAACAAUGGCUUCAUCCCUCACAAC

Nucleic Acid Sequence

TABLE 19-continued

SEQ ID

GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG ${\tt AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG}$ UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGCCUAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACUCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU AGCGACAACGCCGGAAUCACCCAGCCAUCAGCCUGGAC CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG $\tt CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG$ CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG UGACCAACAAUGGCUUCAUCCCUCACAAC

HMPV_ProlineSUab_D447P

Strain

AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU AGCGACAACGCCGGAAUCACCAGCCAUCAGCCUGGAC CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC AGCUGCCUAUCUUCGGCGUGAUCGACACCCCUGCUGGA UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGC AAUUACGCCUGCCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG $\tt CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG$ CAGACCUGUGUCCAGCAGCUUCCCACCUAUCAAGUUCCC UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA CDO II

398

TABLE 19-continued SEO ID Nucleic Acid Sequence Strain NO: ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU UCAUCAUCGUGAUCCUGAUCGCCGUGCUGGGCAGCU CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG UGACCAACAAUGGCUUCAUCCCUCACAAC HMPV UrimerRepulsionD454N AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU AGCGACAACGCCGGAAUCACCCAGCCAUCAGCCUGGAC CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC AGCUGCCUAUCUUCGGCGUGAUCGACACCCCUGCUGGA $\tt UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC$ AAUUACGCCUGCCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC $\tt UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC$ GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGAACCAGUUCCAGGUGGCCCUGGACCAGGUGUUCGA GAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCAA CAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCUU CAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCUC CAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGAC CAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAGU GACCAACAAUGGCUUCAUCCCUCACAAC HMPV UrimerRepulsionE453N AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU AGCGACAACGCCGGAAUCACCACCAGCCAUCAGCCUGGAC CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC AGCUGCCUAUCUUCGGCGUGAUCGACACCCCUGCUGGA UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGC AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA ${\tt GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG}$ AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG

AGUGCAACAUCAACAUCAGCACCAACUAUCCCUGCA

TABLE 19-continued

Strain	Nucleic Acid Sequence	SEQ ID NO:
	AGGUGUCCACCGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCACACACCAG GACGCCGAUACCGUGACACACACACCGUGUAUCAAG CUGAGCAAGGUGGAAGCGACACACGUGAUCAAGGG CAGACCUGUGUCCAGCACCUUCGACCAGUGUCCAC UCAGGAUCAGUUCCAGCUUCGACCAGGUGUUCGA GAACAUCGAGAAUUCCCAGGUCUGGUGGACCAGUCCAA CAGAAUCCUGUCUAGCGCCGAGAAAGGGAAACACCGGCUU CAUCAUCGUGAUCAUCCUCACCGUGCUGGGCAGCUC CAUGAUCCUGGUGUCCACCACACC	
HMPV_SUabilizeAlphaF196W	AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGUAGAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUCCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU GAGAACCGGCCGCCU GAGAGACUCAAGACUGGAUCUGACCAAGAGCCCCU GAGAGAACUCAAGACCGUGUCUGACCAAGAGCCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACACAAGACCGUGUCUGCCGAUCAGCUGCCAC AGAGGAACAGAUCGAGAAUCCUGGCAGCGCAGC	147

EQUIVALENTS

Those skilled in the art will recognize, or be able to $\,^{55}$ ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the disclosure

described herein. Such equivalents are intended to be encompassed by the following claims.

402

All references, including patent documents, disclosed herein are incorporated by reference in their entirety.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 147

<210> SEQ ID NO 1

<211> LENGTH: 1620

<212> TYPE: DNA <213> ORGANISM: Human metapneumovirus

-continued

<400> SEQUI	ENCE: 1					
atgagctgga	aggtggtgat	tatcttcagc	ctgctgatta	cacctcaaca	cggcctgaag	60
gagagctacc	tggaagagag	ctgctccacc	atcaccgagg	gctacctgag	cgtgctgcgg	120
accggctggt	acaccaacgt	gttcaccctg	gaggtgggcg	acgtggagaa	cctgacctgc	180
agcgacggcc	ctagcctgat	caagaccgag	ctggacctga	ccaagagcgc	tctgagagag	240
ctgaagaccg	tgtccgccga	ccagctggcc	agagaggaac	agatcgagaa	ccctcggcag	300
agcagattcg	tgctgggcgc	catcgctctg	ggagtcgccg	ctgccgctgc	agtgacagct	360
ggagtggcca	ttgctaagac	catcagactg	gaaagcgagg	tgacagccat	caacaatgcc	420
ctgaagaaga	ccaacgaggc	cgtgagcacc	ctgggcaatg	gagtgagagt	gctggccaca	480
gccgtgcggg	agctgaagga	cttcgtgagc	aagaacctga	ccagagccat	caacaagaac	540
aagtgcgaca	tcgatgacct	gaagatggcc	gtgagettet	cccagttcaa	cagacggttc	600
ctgaacgtgg	tgagacagtt	ctccgacaac	gctggaatca	cacctgccat	tagcctggac	660
ctgatgaccg	acgccgagct	ggctagagcc	gtgcccaaca	tgcccaccag	cgctggccag	720
atcaagctga	tgctggagaa	cagagccatg	gtgcggagaa	agggettegg	catcctgatt	780
ggggtgtatg	gaageteegt	gatctacatg	gtgcagctgc	ccatcttcgg	cgtgatcgac	840
acaccctgct	ggatcgtgaa	ggccgctcct	agetgeteeg	agaagaaagg	aaactatgcc	900
tgtctgctga	gagaggacca	gggctggtac	tgccagaacg	ccggaagcac	agtgtactat	960
cccaacgaga	aggactgcga	gaccagaggc	gaccacgtgt	tetgegacae	cgctgccgga	1020
atcaacgtgg	ccgagcagag	caaggagtgc	aacatcaaca	tcagcacaac	caactacccc	1080
tgcaaggtga	gcaccggacg	gcaccccatc	agcatggtgg	ctctgagccc	tctgggcgct	1140
ctggtggcct	gctataaggg	cgtgtcctgt	agcatcggca	gcaatcgggt	gggcatcatc	1200
aagcagctga	acaagggatg	ctcctacatc	accaaccagg	acgccgacac	cgtgaccatc	1260
gacaacaccg	tgtaccagct	gagcaaggtg	gagggcgagc	agcacgtgat	caagggcaga	1320
cccgtgagct	ccagcttcga	ccccatcaag	ttccctgagg	accagttcaa	cgtggccctg	1380
gaccaggtgt	ttgagaacat	cgagaacagc	caggccctgg	tggaccagag	caacagaatc	1440
ctgtccagcg	ctgagaaggg	caacaccggc	ttcatcattg	tgatcattct	gatcgccgtg	1500
ctgggcagct	ccatgatcct	ggtgagcatc	ttcatcatta	tcaagaagac	caagaaaccc	1560
accggagccc	ctcctgagct	gageggegtg	accaacaatg	gcttcattcc	ccacaactga	1620
<210> SEQ : <211> LENG: <212> TYPE <213> ORGAN	ΓH: 1620	metapneumov	virus			
<400> SEQUI	ENCE: 2					
atgtcttgga	aagtgatgat	catcatttcg	ttactcataa	caccccagca	cgggctaaag	60
gagagttatt	tggaagaatc	atgtagtact	ataactgagg	gatacctcag	tgttttaaga	120
acaggctggt	acactaatgt	cttcacatta	gaagttggtg	atgttgaaaa	tcttacatgt	180
actgatggac	ctagcttaat	caaaacagaa	cttgatctaa	caaaaagtgc	tttaagggaa	240
ctcaaaacag	tctctgctga	tcagttggcg	agagaggagc	aaattgaaaa	tcccagacaa	300
tcaagatttg	tcttaggtgc	gatagetete	ggagttgcta	cagcagcagc	agtcacagca	360
~~~~++~~~	+	astssagatt	ananatanaa	+ a	t 000000t 000t	420

ggcattgcaa tagccaaaac cataaggctt gagagtgagg tgaatgcaat taaaggtgct

-continued

ctcaaacaaa	ctaatgaagc	agtatccaca	ttagggaatg	gtgtgcgggt	cctagccact	480
gcagtgagag	agctaaaaga	atttgtgagc	aaaaacctga	ctagtgcaat	caacaggaac	540
aaatgtgaca	ttgctgatct	gaagatggct	gtcagcttca	gtcaattcaa	cagaagattt	600
ctaaatgttg	tgcggcagtt	ttcagacaat	gcagggataa	caccagcaat	atcattggac	660
ctgatgactg	atgctgagtt	ggccagagct	gtatcataca	tgccaacatc	tgcagggcag	720
ataaaactga	tgttggagaa	ccgcgcaatg	gtaaggagaa	aaggatttgg	aatcctgata	780
ggggtctacg	gaagctctgt	gatttacatg	gttcaattgc	cgatctttgg	tgtcatagat	840
acaccttgtt	ggatcatcaa	ggcagctccc	tcttgctcag	aaaaaaacgg	gaattatgct	900
tgcctcctaa	gagaggatca	agggtggtat	tgtaaaaatg	caggatctac	tgtttactac	960
ccaaatgaaa	aagactgcga	aacaagaggt	gatcatgttt	tttgtgacac	agcagcaggg	1020
atcaatgttg	ctgagcaatc	aagagaatgc	aacatcaaca	tatctactac	caactaccca	1080
tgcaaagtca	gcacaggaag	acaccctata	agcatggttg	cactatcacc	tctcggtgct	1140
ttggtggctt	gctataaagg	ggtaagctgc	tcgattggca	gcaattgggt	tggaatcatc	1200
aaacaattac	ccaaaggctg	ctcatacata	accaaccagg	atgcagacac	tgtaacaatt	1260
gacaataccg	tgtatcaact	aagcaaagtt	gaaggtgaac	agcatgtaat	aaaagggaga	1320
	gcagttttga					1380
_	tcgaaagcat	_		_		1440
	cagaaaaagg					1500
	ccatgatttc					1560
	ctccagagct					1620
<210> SEQ 1 <211> LENG <212> TYPE	TH: 1620					
	NISM: Human	metapneumo	virus			
	NISM: Human	metapneumo	virus			
<213> ORGAI	NISM: Human			cacctcagca	tggactaaaa	60
<213> ORGAI <400> SEQUI atgtcttgga	NISM: Human	tatcatttcg	ttactcataa			60 120
<213> ORGAI <400> SEQUI atgtcttgga gaaagttatt	NISM: Human ENCE: 3 aagtgatgat	tatcatttcg atgtagtact	ttactcataa ataactgaag	gatateteag	tgttttaaga	
<213> ORGAI <400> SEQUI atgtcttgga gaaagttatt acaggttggt	NISM: Human ENCE: 3  aagtgatgat tagaagaatc	tatcatttog atgtagtact ctttacatta	ttactcataa ataactgaag gaagttggtg	gatatctcag atgttgaaaa	tgttttaaga tcttacatgt	120
<213> ORGAI <400> SEQUI atgtcttgga gaaagttatt acaggttggt actgatggac	NISM: Human ENCE: 3  aagtgatgat tagaagaatc acaccaatgt	tatcatttcg atgtagtact ctttacatta caaaacagaa	ttactcataa ataactgaag gaagttggtg cttgacctaa	gatateteag atgttgaaaa ecaaaagtge	tgttttaaga tcttacatgt tttaagagaa	120 180
<213> ORGAI <400> SEQUI atgtcttgga gaaagttatt acaggttggt actgatggac ctcaaaacag	NISM: Human ENCE: 3  aagtgatgat tagaagaatc acaccaatgt ctagcttaat	tatcatttcg atgtagtact ctttacatta caaaacagaa tcagttagcg	ttactcataa ataactgaag gaagttggtg cttgacctaa agagaagaac	gatateteag atgttgaaaa ecaaaagtge aaattgaaaa	tgttttaaga tcttacatgt tttaagagaa tcccagacaa	120 180 240
<213> ORGAI <400> SEQUI atgtcttgga gaaagttatt acaggttggt actgatggac ctcaaaacag tcaaggtttg	NISM: Human ENCE: 3  aagtgatgat tagaagaatc acaccaatgt ctagcttaat tttctgctga	tatcatttcg atgtagtact ctttacatta caaaacagaa tcagttagcg aatagctctt	ttactcataa ataactgaag gaagttggtg cttgacctaa agagaagaac ggagttgcca	gatatctcag atgttgaaaa ccaaaagtgc aaattgaaaa cagcagcagc	tgttttaaga tcttacatgt tttaagagaa tcccagacaa agtcacagca	120 180 240 300
<213> ORGAI <400> SEQUI atgtcttgga gaaagttatt acaggttggt actgatggac ctcaaaacag tcaaggtttg ggcattgcaa	NISM: Human ENCE: 3  aagtgatgat tagaagaatc acaccaatgt ctagcttaat tttctgctga tcctaggtgc	tatcatttcg atgtagtact ctttacatta caaaacagaa tcagttagcg aatagctctt tataaggctt	ttactcataa ataactgaag gaagttggtg cttgacctaa agagaagaac ggagttgcca gagagtgaag	gatatctcag atgttgaaaa ccaaaagtgc aaattgaaaa cagcagcagc tgaatgcaat	tgttttaaga tcttacatgt tttaagagaa tcccagacaa agtcacagca caaaggtgct	120 180 240 300 360
<213> ORGAI <400> SEQUI atgtcttgga gaaagttatt acaggttggt actgatggac ctcaaaacag tcaaggtttg ggcattgcaa ctcaaaacaa	NISM: Human ENCE: 3  aagtgatgat tagaagaatc acaccaatgt ctagcttaat tttctgctga tcctaggtgc tagccaaaac	tatcatttcg atgtagtact ctttacatta caaaacagaa tcagttagcg aatagctctt tataaggctt agtatcaaca	ttactcataa ataactgaag gaagttggtg cttgacctaa agagaagaac ggagttgcca gagagtgaag ctaggaaatg	gatatctcag atgttgaaaa ccaaaagtgc aaattgaaaa cagcagcagc tgaatgcaat gagtgcgggt	tgttttaaga tcttacatgt tttaagagaa tcccagacaa agtcacagca caaaggtgct cctagccact	120 180 240 300 360 420
<213> ORGAI <400> SEQUI atgtcttgga gaaagttatt acaggttggt actgatggac ctcaaaacag tcaaggtttg ggcattgcaa ctcaaaacaa gcagtaagag	NISM: Human ENCE: 3  aagtgatgat tagaagaatc acaccaatgt ctagcttaat tttctgctga tcctaggtgc tagccaaaac ccaatgaggc	tatcatttcg atgtagtact ctttacatta caaaacagaa tcagttagcg aatagctctt tataaggctt agtatcaaca atttgtgagc	ttactcataa ataactgaag gaagttggtg cttgacctaa agagaagaac ggagttgcca gagagtgaag ctaggaaatg	gatatctcag atgttgaaaa ccaaaagtgc aaattgaaaa cagcagcagc tgaatgcaat gagtgcgggt ctagtgcgat	tgttttaaga tcttacatgt tttaagagaa tcccagacaa agtcacagca caaaggtgct cctagccact caacaagaac	120 180 240 300 360 420
<213> ORGAI <400> SEQUI atgtcttgga gaaagttatt acaggttggt actgatggac ctcaaaacag tcaaggtttg ggcattgcaa ctcaaaacaa gcagtaagag aagtgtgaca	NISM: Human ENCE: 3  aagtgatgat tagaagaatc acaccaatgt ctagcttaat tttctgctga tcctaggtgc tagccaaaac ccaatgaggc agctgaaaga ttgctgattt	tatcatttcg atgtagtact ctttacatta caaaacagaa tcagttagcg aatagctctt tataaggctt agtatcaaca atttgtgagc	ttactcataa ataactgaag gaagttggtg cttgacctaa agagaagaac ggagttgcca gagagtgaag ctaggaaatg aaaaacctga gtcagcttca	gatatctcag atgttgaaaa ccaaaagtgc aaattgaaaa cagcagcagc tgaatgcaat gagtgcgggt ctagtgcgat gtcagttcaa	tgttttaaga tcttacatgt tttaagagaa tcccagacaa agtcacagca caaaggtgct cctagccact caacaagaac	120 180 240 300 360 420 480
<213> ORGAI <400> SEQUI atgtcttgga gaaagttatt acaggttggt actgatggac ctcaaaacag tcaaggtttg ggcattgcaa ctcaaaacaa gcagtaagag aagtgtgaca ctaaatgttg	NISM: Human ENCE: 3  aagtgatgat tagaagaatc acaccaatgt ctagcttaat tttctgctga tcctaggtgc tagccaaaac ccaatgaggc agctgaaaga ttgctgattt tgcggcagtt	tatcatttcg atgtagtact ctttacatta caaaacagaa tcagttagcg aatagctctt tataaggctt agtatcaaca atttgtgagc gaagatggct ttcagacaat	ttactcataa ataactgaag gaagttggtg cttgacctaa agagaagaac ggagttgcca gagagtgaag ctaggaaatg aaaaacctga gtcagcttca gcagggataa	gatatctcag atgttgaaaa ccaaaagtgc aaattgaaaa cagcagcagc tgaatgcaat gagtgcgggt ctagtgcgat gtcagttcaa caccagcaat	tgttttaaga tcttacatgt tttaagagaa tcccagacaa agtcacagca caaaggtgct cctagccact caacaagaac cagaagattc atcattggac	120 180 240 300 360 420 480 540 600
<213> ORGAI <400> SEQUI atgtcttgga gaaagttatt acaggttggt actgatggac ctcaaaacag tcaaggtttt ggcattgcaa ctcaaaacaa gcagtaagag aagtgtgaca ctaaatgttg ctgatgaat	NISM: Human ENCE: 3  aagtgatgat tagaagaatc acaccaatgt ctagcttaat tttctgctga tcctaggtgc tagccaaaac ccaatgaggc agctgaaaga ttgctgattt tgcggcagtt atgctgagct	tatcatttcg atgtagtact ctttacatta caaaacagaa tcagttagcg aatagctctt tataaggctt agtatcaaca atttgtgagc gaagatggct ttcagacaat ggccagagct	ttactcataa ataactgaag gaagttggtg cttgacctaa agagaagaac ggagttgcca gagagtgaag ctaggaaatg aaaacctga gtcagcttca gcagggataa gtatcataca	gatateteag atgttgaaaa ccaaaagtge aaattgaaaa cagcagcage tgaatgcaat gagtgegggt etagtgegat gteagtteaa caccagcaat	tgttttaaga tcttacatgt tttaagagaa tcccagacaa agtcacagca caaaggtgct cctagccact caacaagaac cagaagattc atcattggac tgcaggacag	120 180 240 300 360 420 480 540 600 660 720
<213> ORGAI <400> SEQUI atgtcttgga gaaagttatt acaggttggt actgatggac ctcaaaacag tcaaggtttg ggcattgcaa ctcaaaacaa gcagtaagag aagtgtgaca ctaaatgttg ctgatgaatg ataaaactaa	NISM: Human ENCE: 3  aagtgatgat tagaagaatc acaccaatgt ctagcttaat tttctgctga tcctaggtgc tagccaaaac ccaatgaggc agctgaaaga ttgctgattt tgcggcagtt atgctgagct tgttagagaa	tatcatttcg atgtagtact ctttacatta caaaacagaa tcagttagcg aatagctctt tataaggctt agtatcaaca atttgtgagc gaagatggct ttcagacaat ggccagagct ccgtgcaatg	ttactcataa ataactgaag gaagttggtg cttgacctaa agagaagaac ggagttgcca gagagtgaag ctaggaaatg aaaaacctga gtcagcttca gcagggataa gtatcataca gtgaggagaa	gatatctcag atgttgaaaa ccaaaagtgc aaattgaaaa cagcagcagc tgaatgcaat gagtgcggt ctagtgcgat gtcagttcaa caccagcaat tgccaacatc aaggatttgg	tgttttaaga tcttacatgt tttaagagaa tcccagacaa agtcacagca caaaggtgct cctagccact caacaagaac cagaagattc atcattggac tgcaggacag aatcttgata	120 180 240 300 360 420 480 540 600 660 720
<213> ORGAI <400> SEQUI atgtcttgga gaaagttatt acaggttggt actgatggac ctcaaaacag tcaaggtttg ggcattgcaa ctcaaaacaa gcagtaagag aagtgtgaca ctaaatgttg ctgatgaatg ataaaactaa ggggtctacg	NISM: Human ENCE: 3  aagtgatgat tagaagaatc acaccaatgt ctagcttaat tttctgctga tcctaggtgc tagccaaaac ccaatgaggc agctgaaaga ttgctgattt tgcggcagtt atgctgagct tgttagagaa gaagctctgt	tatcatttcg atgtagtact ctttacatta caaaacagaa tcagttagcg aatagctctt tataaggctt agtatcaaca atttgtgagc gaagatggct ttcagacaat ggccagagct ccgtgcaatg gatttacatg	ttactcataa ataactgaag gaagttggtg cttgacctaa agagaagaac ggagttgcca gagagtgaag ctaggaaatg aaaaacctga gtcagcttca gcagggataa gtatcataca gtgaggagaa gtccagctgc	gatatctcag atgttgaaaa ccaaaagtgc aaattgaaaa cagcagcagc tgaatgcaat gagtgcgggt ctagtgcgat gtcagttcaa caccagcaat tgccaacatc aaggatttgg cgatctttgg	tgttttaaga tcttacatgt tttaagagaa tcccagacaa agtcacagca caaaggtgct cctagccact caacaagaac cagaagattc atcattggac tgcaggacag aatcttgata tgtcataaat	120 180 240 300 360 420 480 540 660 720 780 840
<213> ORGAI <400> SEQUI atgtcttgga gaaagttatt acaggttggt actgatggac ctcaaaacag tcaaggtttg ggcattgcaa ctcaaaacaa gcagtaagag aagtgtgaca ctaaatgttg ctgatgaatg ataaaactaa ggggtctacg	NISM: Human ENCE: 3  aagtgatgat tagaagaatc acaccaatgt ctagcttaat tttctgctga tcctaggtgc tagccaaaac ccaatgaggc agctgaaaga ttgctgattt tgcggcagtt atgctgagct tgttagagaa	tatcatttcg atgtagtact ctttacatta caaaacagaa tcagttagcg aatagctctt tataaggctt agtatcaaca atttgtgagc gaagatggct ttcagacaat ggccagagct ccgtgcaatg gatttacatg	ttactcataa ataactgaag gaagttggtg cttgacctaa agagaagaac ggagttgcca gagagtgaag ctaggaaatg aaaaacctga gtcagcttca gcagggataa gtatcataca gtgaggagaa gtccagctgc	gatatctcag atgttgaaaa ccaaaagtgc aaattgaaaa cagcagcagc tgaatgcaat gagtgcgggt ctagtgcgat gtcagttcaa caccagcaat tgccaacatc aaggatttgg cgatctttgg	tgttttaaga tcttacatgt tttaagagaa tcccagacaa agtcacagca caaaggtgct cctagccact caacaagaac cagaagattc atcattggac tgcaggacag aatcttgata tgtcataaat	120 180 240 300 360 420 480 540 600 660 720

tgcctcctaa gagaggatca agggtggtat tgtaaaaatg caggatccac tgtttactac

ccaaatgaaa	aagactgcga	aacaagaggt	gatcatgttt	tttgtgacac	agcagcaggg	1020
atcaatgttg	ctgagcaatc	aagagaatgc	aacatcaaca	tatctaccac	caactaccca	1080
tgcaaagtca	gcacaggaag	acaccctatc	agcatggttg	cactatcacc	tctcggtgct	1140
ttggtagctt	gctacaaagg	ggttagctgc	tcgactggca	gtaatcaggt	tggaataatc	1200
aaacaactac	ctaaaggctg	ctcatacata	actaaccagg	acgcagacac	tgtaacaatt	1260
gacaacactg	tgtatcaact	aagcaaagtt	gagggtgaac	agcatgtaat	aaaagggaga	1320
ccagtttcaa	gcagttttga	tccaatcagg	tttcctgagg	atcagttcaa	tgttgcgctt	1380
gatcaagtct	ttgaaagcat	tgaaaacagt	caagcactag	tggaccagtc	aaacaaaatt	1440
ctgaacagtg	cagaaaaagg	aaacactggt	ttcattattg	taataatttt	gattgctgtt	1500
cttgggttaa	ccatgatttc	agtgagcatc	atcatcataa	tcaaaaaaac	aaggaagccc	1560
acaggggcac	ctccggagct	gaatggtgtt	accaacggcg	gtttcatacc	gcatagttag	1620
<210> SEQ 1 <211> LENG <212> TYPE <213> ORGAI <400> SEQUI	TH: 1725 : DNA NISM: Human	respiratory	y syncytial	virus		
atggagttgc	caatcctcaa	aacaaatgca	attaccacaa	teettgetge	agtcacactc	60
tgtttcgctt	ccagtcaaaa	catcactgaa	gaattttatc	aatcaacatg	cagtgcagtt	120
agcaaaggct	atcttagtgc	tctaagaact	ggttggtata	ctagtgttat	aactatagaa	180
ttaagtaata	tcaaggaaaa	taagtgtaat	ggaacagatg	ctaaggtaaa	attgataaaa	240
caagaattag	ataaatataa	aaatgctgta	acagaattgc	agttgctcat	gcaaagcaca	300
ccagcagcca	acaatcgagc	cagaagagaa	ctaccaaggt	ttatgaatta	tacactcaat	360
aataccaaaa	ataccaatgt	aacattaagc	aagaaaagga	aaagaagatt	tcttggcttt	420
ttgttaggtg	ttggatctgc	aatcgccagt	ggcattgctg	tatctaaggt	cctgcaccta	480
gaaggggaag	tgaacaaaat	caaaagtgct	ctactatcca	caaacaaggc	tgtagtcagc	540
ttatcaaatg	gagttagtgt	cttaaccagc	aaagtgttag	acctcaaaaa	ctatatagat	600
aaacagttgt	tacctattgt	gaacaagcaa	agctgcagca	tatcaaacat	tgaaactgtg	660
atagagttcc	aacaaaagaa	caacagacta	ctagagatta	ccagggaatt	tagtgttaat	720
gcaggtgtaa	ctacacctgt	aagcacttat	atgttaacta	atagtgaatt	attatcatta	780
atcaatgata	tgcctataac	aaatgatcag	aaaaagttaa	tgtccaacaa	tgttcaaata	840
gttagacagc	aaagttactc	tatcatgtcc	ataataaagg	aggaagtett	agcatatgta	900
gtacaattac	cactatatgg	tgtaatagat	acaccctgtt	ggaaactgca	cacateceet	960
ctatgtacaa	ccaacacaaa	ggaagggtcc	aacatctgct	taacaagaac	cgacagagga	1020
tggtattgtg	acaatgcagg	atcagtatct	ttcttcccac	aagctgaaac	atgtaaagtt	1080
caatcgaatc	gggtattttg	tgacacaatg	aacagtttaa	cattaccaag	tgaagtaaat	1140
ctctgcaaca	ttgacatatt	caaccccaaa	tatgattgca	aaattatgac	ttcaaaaaca	1200
gatgtaagca	gctccgttat	cacatctcta	ggagccattg	tgtcatgcta	tggcaaaact	1260
aaatgtacag	catccaataa	aaatcgtggg	atcataaaga	cattttctaa	cgggtgtgat	1320
tatgtatcaa	ataagggggt	ggatactgtg	tctgtaggta	atacattata	ttatgtaaat	1380
aagcaagaaq	gcaaaagtct	ctatgtaaaa	ggtgaaccaa	taataaattt	ctatgaccca	1440
- 5 5	-	-			-	

tagatetic cottigatga attigatgas toastateta agetastag gasgattasc cagagectag cattiaticg tasaccgat gastiatic attagatga tagatgata 1950  tocaccaca attiatotgat acctactas attagatga tatagatgat attigatat 1620  tasatgaga tingacigot ottaaccgo aaggacagaa cacaccagt cacactagat 1880  aaggatcaac tgagtggtat aaataatatt gattiaga actga 1725  4210> SRO ID NO 5 4211> IMBURH. Sin 4211  IMBURH. Sin 4211> IMBURH. Sin 4211  IMBURH. Sin 4211  IMBURH	-continued													
tccaccaca atatoctgat acctatat attatagtga ttatagtaat attgtatos   1620   ttaattgcag ttggactgct cctatactgc aaggccagaa gcacaccagt cacactaagt   1680   aaggatcaac tgagtggtat aaataatatt gcatttagta actga   1725	ttagtgttcc cctctgatga atttgatgca tcaatatctc aagtcaatga gaagattaac	1500												
ttaattgoag ttggactgot octatactgo aaggocagaa goacacagt cacactaagt 1680  aaggatcaac tgagtgotat aaataatatt goattagta actga 1725 <pre> <pre> <pre> <pre> <pre> <pre> </pre> </pre> <pre> <pre< td=""><td>cagageetag catttatteg taaateegat gaattattae ataatgtaaa tgetggtaaa</td><td>1560</td></pre<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	cagageetag catttatteg taaateegat gaattattae ataatgtaaa tgetggtaaa	1560												
aaggaccaac tagajugtat aaataatat gcatttagta actga  4210	tccaccacaa atatcatgat aactactata attatagtga ttatagtaat attgttatca	1620												
210 STQ ID NO 5 2210 LENGTH: \$19 2215 CRAUNIEN Ruman metapheumovirus isolate 2210 CRAUNIEN Ruman metapheumovirus isolate 2400 SEQUENCE: \$  Met Ser Trp Lys Val Val Ile Ile Phe Ser Leu Leu Ile Thr Pro Gin 15  His Gly Leu Lys Glu Ser Tyr Leu Glu Glu Ser Cys Ser Thr Ile Thr 25 25 25 26  Glu Gly Tyr Leu Ser Val Leu Arg Thr Gly Trp Tyr Thr Asn Val Phe 35  Chu Glu Val Gly Asp Asl Glu Asn Leu Thr Cys Ser Asp Gly Pro 50  Ser Leu Ile Lys Thr Glu Leu Asp Leu Thr Lys Ser Ala Leu Arg Glu 55 70  Leu Lys Thr Val Ser Ala Asp Gln Leu Ala Arg Glu Glu Gln Ile Glu 95  Ann Pro Arg Gln Ser Arg Phe Val Leu Gly Ala Ile Ala Leu Gly Val 100  Ala Ala Ala Ala Ala Val Thr Ala Gly Val Ala Ile Ala Lys Thr Ile 110  Arg Leu Glu Ser Glu Val Thr Ala Ile Asn Asn Ash Leu Lys Lys Thr 130  Ann Glu Ala Val Ser Thr Leu Gly Asn Gly Val Arg Val Leu Ala Thr 145  Ala Val Arg Glu Leu Lys Asp Phe Val Ser Lys Asn Leu Thr Ng Ala 165  Ala Val Arg Glu Leu Lys Asp Phe Val Ser Lys Asn Leu Thr Ng Ala 165  Phe Ser Gln Phe Asn Arg Arg Phe Leu Asn Val Val Arg Gln Phe Ser 205  Asp Asn Ala Gly Ile Thr Pro Ala Ile Ser Leu Asp Leu Net Thr Asp 216  Ala Glu Leu Ala Arg Ala Val Pro Asn Met Pro Thr Ser Ala Gly Gln 225  Clu Lys Leu Ket Leu Glu Van Ann Arg Ala Met Val Arg Arg Lys Gly Phe 225  Gly Ile Leu Ile Gly Val Tyr Gly Ser Ser Val Ile Tyr Net Val Gln 226  Clu Pro Ile Phe Gly Val Tyr Gly Ser Ser Val Ile Tyr Net Val Gln 227  Leu Pro Ser Cys Ser Glu Lys Lys Gly Asn Tyr Ala Cys Leu Leu Arg 229  Glu Asp Gln Cly Trp Tyr Cys Gln Asn Ala Gly Ser Thr Val Lys Ala 230  Glu Asp Gln Cly Trp Tyr Cys Gln Asn Ala Gly Ser Thr Val Tyr Tyr 305	ttaattgcag ttggactgct cctatactgc aaggccagaa gcacaccagt cacactaagt	1680												
calls LERROTH; 539 calls TYPE; RET calls ORGANIZER: Human metapneumovirus isolate callo SEQUENCE: 5  Met Ser Trp Lye Val Val Ile Ile Phe Ser Leu Leu Ile Thr Pro Clin 1	aaggatcaac tgagtggtat aaataatatt gcatttagta actga	1725												
Met Ser Trp Lys Val Val Ile Ile Phe Ser Leu Leu Ile Thr Pro Gln  1	<211> LENGTH: 539 <212> TYPE: PRT													
1	<400> SEQUENCE: 5													
His Gly Leu Lys Glu Ser Tyr Leu Glu Glu Ser Cys Ser Thr 11e Thr 20 Glu Gly Tyr Leu Ser Val Leu Arg Thr Gly Trp Tyr Thr Asn Val Phe 45 Thr Leu Glu Val Gly Asp Val Glu Asn Leu Thr Cys Ser Asp Gly Pro 60 Ser Leu Ile Lys Thr Glu Leu Asp Leu Thr Lys Ser Ala Leu Arg Glu 65 Ear Leu Ile Lys Thr Glu Leu Asp Leu Thr Lys Ser Ala Leu Arg Glu 75 Asn Pro Arg Gln Ser Arg Phe Val Leu Gly Ala Ile Ala Leu Gly Val 110 Ala Ala Ala Ala Val Thr Ala Gly Val Ala Ile Ala Lys Thr Ile 120 Arg Leu Glu Ser Glu Val Thr Ala Gly Val Ala Ile Ala Leu Lys Lys Thr 130 Ann Glu Ala Val Ser Thr Leu Gly Asn Gly Val Arg Val Leu Ala Thr 136 Ann Glu Ala Val Ser Thr Leu Gly Asn Gly Val Arg Val Leu Ala Thr 146 Ann Glu Ala Val Ser Thr Leu Gly Asn Gly Val Arg Val Leu Ala Thr 160 Ala Val Arg Glu Leu Lys Asp Phe Val Ser Lys Asn Leu Thr Arg Ala 176 Ala Val Arg Glu Leu Lys Asp Phe Leu Asn Val Val Arg Gln Phe Ser 195 Asp Asn Ala Gly Ile Thr Pro Ala Ile Ser Leu Asp Leu Met Thr Asp 210 Ala Glu Leu Ala Arg Arg Arg Phe Leu Asn Val Val Arg Gln Phe Ser 195 Ala Glu Leu Ala Arg Ala Val Pro Asn Met Pro Thr Ser Ala Gly Gln 226 Gly Ile Leu He Gly Val Tyr Gly Ser Ser Val Ile Tyr Met Val Gln 225 Gly Ile Leu Gly Val Tyr Gly Ser Ser Val Ile Tyr Met Val Lys Ala 226 Glu Asp Gln Gly Try Tyr Cys Gln Asn Ala Gly Ser Thr Val Tyr Tyr 315														
15 40 40 45  The Leu Glu Val Gly Asp Val Glu Asp Leu Thr Cys Ser Asp Gly Pro 50 55  Ser Leu Ile Lys Thr Glu Leu Asp Leu Thr Lys Ser Ala Leu Arg Glu 65 80 80 80 80 80 80 80 80 80 80 80 80 80	His Gly Leu Lys Glu Ser Tyr Leu Glu Glu Ser Cys Ser Thr Ile Thr													
Ser Leu Ile Lys Thr Glu Leu Asp Leu Thr Lys Ser Ala Leu Arg Glu 65  Ser Leu Ile Lys Thr Glu Leu Asp Leu Thr Lys Ser Ala Leu Arg Glu 65  Leu Lys Thr Val Ser Ala Asp Gln Leu Ala Arg Glu Glu Gln Ile Glu 85  Asm Pro Arg Gln Ser Arg Phe Val Leu Gly Ala Ile Ala Leu Gly Val 105  Ala Ala Ala Ala Ala Val Thr Ala Gly Val Ala Ile Ala Leu Gly Val 115  Arg Leu Glu Ser Glu Val Thr Ala Gly Val Ala Ile Ala Leu Lys Thr Ile 125  Arg Leu Glu Ser Glu Val Thr Ala Ile Asn Asn Ala Leu Lys Lys Thr 130  Asm Glu Ala Val Ser Thr Leu Gly Asn Gly Val Arg Val Leu Ala Thr 145  Asm Glu Ala Val Ser Thr Leu Gly Asn Gly Val Arg Val Leu Ala Thr 160  Ala Val Arg Glu Leu Lys Asp Phe Val Ser Lys Asn Leu Thr Arg Ala 175  Ile Asn Lys Asn Lys Cys Asp Ile Asp Asp Leu Lys Met Ala Val Ser 180  Phe Ser Gln Phe Asn Arg Arg Phe Leu Asn Val Val Arg Gln Phe Ser 205  Asp Asn Ala Gly Ile Thr Pro Ala Ile Ser Leu Asp Leu Met Thr Asp 210  Ala Glu Leu Ala Arg Ala Val Pro Asn Met Pro Thr Ser Ala Gly Gln 225  Gly Ile Leu Met Leu Glu Asn Arg Ala Met Val Arg Arg Lys Gly Phe 260  Leu Pro Ile Phe Gly Val Tyr Gly Ser Ser Val Ile Tyr Met Val Gln 270  Cleu Pro Ile Phe Gly Val Ile Asp Thr Pro Cys Trp Ile Val Lys Ala 295  Glu Asp Gln Gly Trp Tyr Cys Gln Asn Ala Gly Ser Thr Val Tyr Tyr 305														
Leu Lys Thr Val Ser Ala Asp Gin Leu Ala Arg Giu Giu Giu Gin Ile Giu 95														
### Assn Pro Arg Gln Ser Arg Phe Val Leu Gly Ala Ile Ala Leu Gly Val 110   ### Ala Ala Ala Ala Val Thr Ala Gly Val Ala Ile Ala Leu Gly Val 110   ### Ala Ala Ala Ala Val Thr Ala Gly Val Ala Ile Ala Leu Gly Thr Ile 115   ### Ala Ala Ala Ala Val Thr Ala Gly Val Ala Ile Ala Leu Lys Thr Ile 115   ### Ala Glu Ser Glu Val Thr Ala Ile Asn Asn Ala Leu Lys Lys Thr 130   ### Ala Val Ser Thr 1150   ### Ala Ile Asn Asn Ala Leu Lys Lys Thr 1160   ### Ala Val Arg Glu Leu Lys Asn Phe Val Ser Lys Asn Leu Thr Arg Ala 176   ### Asn Lys Asn Lys Cys Asn Ile Asn Asn Ala Leu Lys Met Ala Val Ser 180   ### Phe Ser Gln Phe Asn Arg Arg Phe Leu Asn Val Val Arg Gln Phe Ser 195   ### Asn Ala Gly Ile Thr Pro Ala Ile Ser Leu Asn Val Val Arg Gln Phe Ser 195   ### Asn Ala Gly Ile Thr Pro Ala Ile Ser Leu Asn Lys Met Thr Asn 210   ### Asn Ala Gly Ile Thr Pro Asn Met Pro Thr Ser Ala Gly Gln 2240   ### Ala Val Pro Asn Met Pro Thr Ser Ala Gly Gln 225   ### Ala Glu Leu Ala Arg Ala Val Pro Asn Met Pro Thr Ser Ala Gly Gln 225   ### Asn Ala Gly Val Tyr Gly Ser Ser Val Ile Tyr Met Val Gln 225   ### Asn Ala Gly Val Tyr Gly Ser Ser Val Ile Tyr Met Val Gln 270   ### Ala Pro Ser Cys Ser Glu Lys Lys Gly Asn Tyr Ala Cys Leu Leu Arg 290   ### Ala Pro Ser Cys Ser Glu Lys Lys Gly Asn Tyr Ala Cys Leu Leu Arg 290   ### Ala Pro Ser Cys Ser Glu Lys Lys Gly Asn Tyr Ala Cys Leu Leu Arg 290   ### Ala Gly Tyr Tyr Cys Gln Asn Ala Gly Ser Thr Val Tyr Tyr 305   ### Ala Gly Tyr Tyr Cys Gln Asn Ala Gly Ser Thr Val Tyr Tyr 305   ### Ala Gly Tyr Tyr Cys Gln Asn Ala Gly Ser Thr Val Tyr Tyr 305   ### Ala Gly Ala Gly Tyr Tyr Cys Gln Asn Ala Gly Ser Thr Val Tyr Tyr 305   ### Ala Cys Leu Leu Arg 320   ### Ala Gly Ser Thr Val Tyr Tyr 320   ### Ala Cys Leu Leu Arg 320   ### Ala Cys Leu Leu														
Ala Ala Ala Ala Ala Ala Val Thr Ala Gly Val Ala Ile Ala Leu Lys Thr Ile  115  Arg Leu Glu Ser Glu Val Thr Ala Ile Asn Asn Ala Leu Lys Lys Thr  130  Asn Glu Ala Val Ser Thr Leu Gly Asn Gly Val Arg Val Leu Ala Thr  145  Ala Val Arg Glu Leu Lys Asp Phe Val Ser Lys Asn Leu Thr Arg Ala  165  Ile Asn Lys Asn Lys Cys Asp Ile Asp Asp Leu Lys Met Ala Val Ser  180  Phe Ser Gln Phe Asn Arg Arg Phe Leu Asn Val Val Arg Gln Phe Ser  195  Asp Asn Ala Gly Ile Thr Pro Ala Ile Ser Leu Asp Leu Met Thr Asp  210  Ala Glu Leu Ala Arg Ala Val Pro Asn Met Pro Thr Ser Ala Gly Gln  225  Ala Glu Leu Ala Arg Ala Val Pro Asn Arg Ala Met Val Arg Arg Lys Gly Phe  226  Gly Ile Leu Ile Gly Val Tyr Gly Ser Ser Val Ile Tyr Met Val Gln  260  Leu Pro Ile Phe Gly Val Ile Asp Thr Pro Cys Trp Ile Val Lys Ala  290  Glu Asp Gln Gly Trp Tyr Cys Gln Asn Ala Gly Ser Thr Val Tyr Tyr  305														
115														
Asn Glu Ala Val Ser Thr Leu Gly Asn Gly Val Arg Val Leu Ala Thr 160  Ala Val Arg Glu Leu Lys Asp Phe Val Ser Lys Asn Leu Thr Arg Ala 165  Ile Asn Lys Asn Lys Cys Asp Ile Asp Asp Leu Lys Met Ala Val Ser 190  Phe Ser Gln Phe Asn Arg Arg Phe Leu Asn Val Val Arg Gln Phe Ser 195  Asp Asn Ala Gly Ile Thr Pro Ala Ile Ser Leu Asp Leu Wet Thr Asp 205  Ala Glu Leu Ala Arg Ala Val Pro Asn Met Pro Thr Ser Ala Gly Gln 235  Ile Lys Leu Met Leu Glu Asn Arg Ala Met Val Arg Arg Lys Gly Phe 255  Gly Ile Leu Ile Gly Val Tyr Gly Ser Ser Val Ile Tyr Met Val Gln 270  Leu Pro Ile Phe Gly Val Ile Asp Thr Pro Cys Trp Ile Val Lys Ala 285  Ala Pro Ser Cys Ser Glu Lys Lys Gly Asn Ala Gly Ser Thr Val Tyr Tyr 305  Glu Asp Gln Gly Trp Tyr Cys Gln Asn Ala Gly Ser Thr Val Tyr Tyr 305														
145														
165														
180														
Asp Asn Ala Gly Ile Thr Pro Ala Ile Ser Leu Asp Leu Met Thr Asp 220  Ala Glu Leu Ala Arg Ala Val Pro Asn Met Pro Thr Ser Ala Gly Gln 240  Ile Lys Leu Met Leu Glu Asn Arg Ala Met Val Arg Arg Lys Gly Phe 255  Gly Ile Leu Ile Gly Val Tyr Gly Ser Ser Val Ile Tyr Met Val Gln 270  Leu Pro Ile Phe Gly Val Ile Asp Thr Pro Cys Trp Ile Val Lys Ala 285  Ala Pro Ser Cys Ser Glu Lys Lys Gly Asn Ala Gly Ser Tyr Ala Cys Leu Leu Arg 300  Glu Asp Gln Gly Trp Tyr Cys Gln Asn Ala Gly Ser Thr Val Tyr 315  Ala Pro 305														
Ala Glu Leu Ala Arg Ala Val Pro Asn Met Pro Thr Ser Ala Gly Gln 225  Ile Lys Leu Met Leu Glu Asn Arg Ala Met Val Arg Arg Lys Gly Phe 250  Gly Ile Leu Ile Gly Val Tyr Gly Ser Ser Val Ile Tyr Met Val Gln 270  Leu Pro Ile Phe Gly Val Ile Asp Thr Pro Cys Trp Ile Val Lys Ala 285  Ala Pro Ser Cys Ser Glu Lys Lys Gly Asn Tyr Ala Cys Leu Leu Arg 300  Glu Asp Gln Gly Trp Tyr Cys Gln Asn Ala Gly Ser Thr Val Tyr Tyr 305														
225														
Gly Ile Leu Ile Gly Val Tyr Gly Ser Ser Val Ile Tyr Met Val Gln 260  Leu Pro Ile Phe Gly Val Ile Asp Thr Pro Cys Trp Ile Val Lys Ala 275  Ala Pro Ser Cys Ser Glu Lys Lys Gly Asn Tyr Ala Cys Leu Leu Arg 290  Glu Asp Gln Gly Trp Tyr Cys Gln Asn Ala Gly Ser Thr Val Tyr Tyr 305	· · · · · · · · · · · · · · · · · · ·													
Leu Pro Ile Phe Gly Val Ile Asp Thr Pro Cys Trp Ile Val Lys Ala 285  Ala Pro Ser Cys Ser Glu Lys Lys Gly Asn Tyr Ala Cys Leu Leu Arg 290  Glu Asp Gln Gly Trp Tyr Cys Gln Asn Ala Gly Ser Thr Val Tyr Tyr 305  310  270  Cys Trp Ile Val Lys Ala 285  Cys Leu Leu Arg 300														
275 280 285  Ala Pro Ser Cys Ser Glu Lys Lys Gly Asn Tyr Ala Cys Leu Leu Arg 290 295 300  Glu Asp Gln Gly Trp Tyr Cys Gln Asn Ala Gly Ser Thr Val Tyr Tyr 305 310 315 320														
290 295 300  Glu Asp Gln Gly Trp Tyr Cys Gln Asn Ala Gly Ser Thr Val Tyr Tyr 305 310 315 320														
305 310 315 320														
Pro Asn Glu Lys Asp Cys Glu Thr Arg Gly Asp His Val Phe Cys Asp														
	Pro Asn Glu Lys Asp Cys Glu Thr Arg Gly Asp His Val Phe Cys Asp													

			325					330					335	
Thr Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Lys	Glu	Сув 350	Asn	Ile
Asn Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Cys	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro Ile 370		Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Сув
Tyr Lys 385	Gly	Val	Ser	Сув 390	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
Lys Gln	Leu	Asn	Lys 405	Gly	CÀa	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	ГÀа	Val 430	Glu	Gly
Glu Gln	His 435	Val	Ile	Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile Lys 450	Phe	Pro	Glu	Asp	Gln 455	Phe	Asn	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu Asn 465	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu Ser	Ser	Ala	Glu 485	Lys	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu Ile	Ala	Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile Ile	Lys 515	Lys	Thr	ГÀа	ГÀа	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser
Gly Val	Thr	Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					
					-									
<210> S <211> L	ENGTI	H: 53												
	ENGTI YPE :	H: 53 PRT	39	an me		neumo	oviru	າຣ						
<211> L <212> T	ENGTI YPE : RGAN	H: 53 PRT ISM:	39 Huma	an me		neumo	oviru	າຣ						
<211> L <212> T <213> O	ENGTI YPE : RGAN: EQUEI	H: 53 PRT ISM: NCE:	39 Huma 6		etapı				Leu	Leu	Ile	Thr	Pro 15	Gln
<211> L <212> T <213> O <400> S Met Ser	ENGTI YPE: RGAN: EQUEI	H: 53 PRT ISM: NCE: Lys	Huma 6 Val 5	Met	etapı Ile	Ile	Ile	Ser 10					15	
<211> L <212> T <213> O <400> S Met Ser 1	ENGTI YPE: RGAN: EQUEI Trp	H: 53 PRT ISM: NCE: Lys Lys 20	Huma 6 Val 5 Glu	Met Ser	etapı Ile Tyr	Ile Leu	Ile Glu 25	Ser 10 Glu	Ser	Сув	Ser	Thr 30	15 Ile	Thr
<211> L <212> T <213> O <400> S Met Ser 1 His Gly	ENGTI YPE: RGAN: EQUEI Trp Leu Tyr 35	H: 53 PRT ISM:  NCE:  Lys  Lys 20  Leu	Huma 6 Val 5 Glu Ser	Met Ser Val	Ile Tyr Leu	Ile Leu Arg 40	Ile Glu 25 Thr	Ser 10 Glu Gly	Ser Trp	Cys Tyr	Ser Thr 45	Thr 30 Asn	15 Ile Val	Thr Phe
<211> L <212> T <213> O <400> S Met Ser 1 His Gly Glu Gly	ENGTI YPE: RGAN: EQUEI Trp Leu Tyr 35 Glu	H: 53 PRT ISM: NCE: Lys Lys 20 Leu Val	Huma 6 Val 5 Glu Ser	Met Ser Val Asp	Ile Tyr Leu Val	Ile Leu Arg 40 Glu	Ile Glu 25 Thr	Ser 10 Glu Gly Leu	Ser Trp Thr	Cys Tyr Cys 60	Ser Thr 45 Thr	Thr 30 Asn Asp	15 Ile Val Gly	Thr Phe Pro
<pre>&lt;211&gt; L &lt;212&gt; T &lt;213&gt; O &lt;400&gt; S Met Ser 1 His Gly Glu Gly Thr Leu 50</pre>	ENGTHYPE: RGAN: Trp Leu Tyr 35 Glu Ile	H: 53 PRT ISM: Lys Lys Lys Val Lys	Huma 6 Val 5 Glu Ser Gly	Met Ser Val Asp Glu 70	Ile Tyr Leu Val 55 Leu	Ile Leu Arg 40 Glu Asp	Ile Glu 25 Thr Asn	Ser 10 Glu Gly Leu Thr	Ser Trp Thr Lys 75	Cys Tyr Cys 60 Ser	Ser Thr 45 Thr	Thr 30 Asn Asp	15 Ile Val Gly Arg	Thr Phe Pro Glu 80
<pre>&lt;211&gt; L &lt;212&gt; T &lt;213&gt; O &lt;400&gt; S Met Ser 1 His Gly Glu Gly Thr Leu 50 Ser Leu 65</pre>	ENGTHYPE: RGAN: Trp Leu Tyr 35 Glu Ile	H: 53 PRT ISM: UNCE: Lys Lys 20 Leu Val Lys	Huma 6 Val 5 Glu Ser Gly Thr	Met Ser Val Asp Glu 70 Ala	Ile Tyr Leu Val 55 Leu Asp	Ile Leu Arg 40 Glu Asp	Ile Glu 25 Thr Asn Leu Leu	Ser 10 Glu Gly Leu Thr	Ser Trp Thr Lys 75 Arg	Cys Tyr Cys 60 Ser	Ser Thr 45 Thr Ala	Thr 30 Asn Asp Leu	15 Ile Val Gly Arg Ile 95	Thr Phe Pro Glu 80 Glu
<pre>&lt;211&gt; L &lt;212&gt; T &lt;213&gt; O &lt;400&gt; S Met Ser 1 His Gly Glu Gly Thr Leu 50 Ser Leu 65</pre>	ENGTHYPE: RGAN: RGAN: Trp Leu Tyr 35 Glu Ile Thr	H: 53 PRT ISM:  NCE:  Lys  Lys  Lys  Val  Lys  Val  Gln 100	Huma  Val  Ser  Glu  Thr  Ser  Ser  Ser	Met Ser Val Asp Glu 70 Ala Arg	Ile Tyr Leu Val 55 Leu Asp	Ile Leu Arg 40 Glu Asp Gln Val	Ile Glu 25 Thr Asn Leu Leu Leu	Ser 10 Glu Gly Leu Thr Ala 90	Ser Trp Thr Lys 75 Arg	Cys Tyr Cys 60 Ser Glu	Ser Thr 45 Thr Ala Glu Ala	Thr 30 Asn Asp Leu Gln Leu 110	Ile Val Gly Arg Ile 95 Gly	Thr Phe Pro Glu 80 Glu Val
<211> L <212> T <213> O <400> S Met Ser 1 His Gly Glu Gly Thr Leu 50 Ser Leu 65 Leu Lys Asn Pro	ENGTHYPE: RGAN: RGAN: EQUE Trp Leu Tyr 35 Glu Ile Thr Arg Ala 115	H: 53 PRT PRT ISM:  Lys Lys 20 Leu  Val  Lys  Val  Gln 100  Ala	Huma 6 Val 5 Glu Ser Gly Thr Ser 85 Ser	Met Ser Val Asp Glu 70 Ala Arg	Ile Tyr Leu Val 55 Leu Asp	Ile Leu Arg 40 Glu Asp Gln Val	Ile Glu 25 Thr Asn Leu Leu 105 Gly	Ser 10 Glu Gly Leu Thr Ala 90 Gly	Ser Trp Thr Lys 75 Arg Ala	Cys Tyr Cys 60 Ser Glu Ile	Ser Thr 45 Thr Ala Glu Ala Ala 125	Thr 30 Asn Asp Leu Gln Leu 110	15 Ile Val Gly Arg Ile 95 Gly Thr	Thr Phe Pro Glu 80 Glu Val
<pre>&lt;211&gt; L &lt;212&gt; T &lt;213&gt; O &lt;400&gt; S Met Ser 1 His Gly Glu Gly Thr Leu 50 Ser Leu 65 Leu Lys Asn Pro Ala Thr Arg Leu</pre>	ENGTHYPE: RGAN: RGAN: EQUEI Trp Leu Tyr 35 Glu Ile Thr Arg Ala 115 Glu	H: 53 PRT PRT ISM: NCE: Lys Lys 20 Leu Val Lys Val Ala Ser	Huma  Kal  Val  Ser  Glu  Ser  Ser  Ser  Ala  Glu	Met Ser Val Asp Glu 70 Ala Arg Val	Ile Tyr Leu Val 55 Leu Asp Phe Thr	Ile Leu Arg 40 Glu Asp Gln Val Ala 120 Ala	Ile Glu 25 Thr Asn Leu Leu Gly Ile	Ser 10 Glu Gly Leu Thr Ala 90 Gly Ile	Ser Trp Thr Lys 75 Arg Ala Gly	Cys Tyr Cys 60 Ser Glu Ile Ile Ala 140	Ser Thr 45 Thr Ala Glu Ala Ala 125 Leu	Thr 30 Asn Asp Leu Gln Lys	15 Ile Val Gly Arg Ile 95 Gly Thr	Thr Phe Pro Glu 80 Glu Val Ile

Ala	Val	Arg	Glu	Leu 165	rys	Glu	Phe	Val	Ser 170	Lys	Asn	Leu	Thr	Ser 175	Ala
Ile	Asn	Arg	Asn 180	Lys	Cys	Asp	Ile	Ala 185	Asp	Leu	Lys	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Ser	Tyr	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Сув	Trp	Ile 285	Ile	Lys	Ala
Ala	Pro 290	Ser	Сув	Ser	Glu	Lуs 295	Asn	Gly	Asn	Tyr	Ala 300	Cys	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	CÀa	Lys	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	Lys	Asp 325	CAa	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Cys 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Arg	Glu	Сув 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Cys	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	CAa
Tyr 385	Lys	Gly	Val	Ser	Сув 390	Ser	Ile	Gly	Ser	Asn 395	Trp	Val	Gly	Ile	Ile 400
ГÀа	Gln	Leu	Pro	Lys 405	Gly	CAa	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	Lys	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile	Lys 450	Phe	Pro	Glu	Asp		Phe		Val	Ala	Leu 460	_	Gln	Val	Phe
Glu 465	Ser	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Lys	Ile 480
Leu	Asn	Ser	Ala	Glu 485	rys	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Val 495	Ile
Leu	Val	Ala	Val 500	Leu	Gly	Leu	Thr	Met 505	Ile	Ser	Val	Ser	Ile 510	Ile	Ile
Ile	Ile	Lys 515	Lys	Thr	Arg	Lys	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Asn
Gly	Val 530	Thr	Asn	Gly	Gly	Phe 535	Ile	Pro	His	Ser					
<211	L> LE	ENGTI	) NO H: 53												
		RGAN:	ISM:	Huma	an me	etapı	neum	ovir	ıs						
400			TOP	7											

<400> SEQUENCE: 7

Met 1	Ser	Trp	Lys	Val 5	Met	Ile	Ile	Ile	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln
His	Gly	Leu	Lys 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	CÀa	Ser	Thr 30	Ile	Thr
Glu	Gly	Tyr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr	Leu 50	Glu	Val	Gly	Asp	Val 55	Glu	Asn	Leu	Thr	Cys	Thr	Asp	Gly	Pro
Ser 65	Leu	Ile	Lys	Thr	Glu 70	Leu	Asp	Leu	Thr	Lys 75	Ser	Ala	Leu	Arg	Glu 80
Leu	Lys	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Arg	Gln 100	Ser	Arg	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val
Ala	Thr	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Ile	Ala	Ile	Ala 125	ГÀа	Thr	Ile
Arg	Leu 130	Glu	Ser	Glu	Val	Asn 135	Ala	Ile	Lys	Gly	Ala 140	Leu	Lys	Thr	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	Lys	Glu	Phe	Val	Ser 170	Lys	Asn	Leu	Thr	Ser 175	Ala
Ile	Asn	ГÀа	Asn 180	ГÀа	CAa	Asp	Ile	Ala 185	Asp	Leu	ГÀв	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Asn	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Ser	Tyr	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asn 280	Thr	Pro	Cys	Trp	Ile 285	Ile	Lys	Ala
	Pro 290		Cys	Ser		Lys 295		Gly	Asn		Ala 300		Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	CÀa	Lys	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	Lys	Asp 325	CAa	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Сув 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Arg	Glu	350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Cys	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Cys
Tyr 385	ГЛа	Gly	Val	Ser	390	Ser	Thr	Gly	Ser	Asn 395	Gln	Val	Gly	Ile	Ile 400
Lys	Gln	Leu	Pro	Lys 405	Gly	Cys	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp

-continued

Thr Val Thr Ile Asp Asn Thr Val Tyr Gln Leu Ser Lys Val Glu Gly Glu Gln His Val Ile Lys Gly Arg Pro Val Ser Ser Ser Phe Asp Pro Ile Arg Phe Pro Glu Asp Gln Phe Asn Val Ala Leu Asp Gln Val Phe Glu Ser Ile Glu Asn Ser Gln Ala Leu Val Asp Gln Ser Asn Lys Ile Leu Asn Ser Ala Glu Lys Gly Asn Thr Gly Phe Ile Ile Val Ile Ile Leu Ile Ala Val Leu Gly Leu Thr Met Ile Ser Val Ser Ile Ile Ile Ile Ile Lys Lys Thr Arg Lys Pro Thr Gly Ala Pro Pro Glu Leu Asn Gly Val Thr Asn Gly Gly Phe Ile Pro His Ser <210> SEQ ID NO 8 <211> LENGTH: 574 <212> TYPE: PRT <213> ORGANISM: Human respiratory syncytial virus <400> SEQUENCE: 8 Met Glu Leu Pro Ile Leu Lys Thr Asn Ala Ile Thr Thr Ile Leu Ala Ala Val Thr Leu Cys Phe Ala Ser Ser Gln Asn Ile Thr Glu Glu Phe Tyr Gln Ser Thr Cys Ser Ala Val Ser Lys Gly Tyr Leu Ser Ala Leu 40 Arg Thr Gly Trp Tyr Thr Ser Val Ile Thr Ile Glu Leu Ser Asn Ile 55 Lys Glu Asn Lys Cys Asn Gly Thr Asp Ala Lys Val Lys Leu Ile Lys Gln Glu Leu Asp Lys Tyr Lys Asn Ala Val Thr Glu Leu Gln Leu Leu Met Gln Ser Thr Pro Ala Ala Asn Asn Arg Ala Arg Arg Glu Leu Pro Arg Phe Met Asn Tyr Thr Leu Asn Asn Thr Lys Asn Thr Asn Val Thr Leu Ser Lys Lys Arg Lys Arg Arg Phe Leu Gly Phe Leu Leu Gly Val Gly Ser Ala Ile Ala Ser Gly Ile Ala Val Ser Lys Val Leu His Leu Glu Gly Glu Val Asn Lys Ile Lys Ser Ala Leu Leu Ser Thr Asn Lys 170 Ala Val Val Ser Leu Ser Asn Gly Val Ser Val Leu Thr Ser Lys Val 185 Leu Asp Leu Lys Asn Tyr Ile Asp Lys Gln Leu Leu Pro Ile Val Asn 200 Lys Gln Ser Cys Ser Ile Ser Asn Ile Glu Thr Val Ile Glu Phe Gln 215 Gln Lys Asn Asn Arg Leu Leu Glu Ile Thr Arg Glu Phe Ser Val Asn 230 235 Ala Gly Val Thr Thr Pro Val Ser Thr Tyr Met Leu Thr Asn Ser Glu 250

Leu Leu Se	er Leu 260	Ile	Asn	Asp	Met	Pro 265	Ile	Thr	Asn	Asp	Gln 270	Lys	ГЛа	
Leu Met Se		Asn	Val	Gln	Ile 280		Arg	Gln	Gln	Ser 285		Ser	Ile	
Met Ser Il	le Ile	ГÀа	Glu	Glu 295	Val	Leu	Ala	Tyr	Val 300	Val	Gln	Leu	Pro	
Leu Tyr Gl 305	ly Val		Asp 310	Thr	Pro	Cys	Trp	Lys 315	Leu	His	Thr	Ser	Pro 320	
Leu Cys Th	nr Thr	Asn 325	Thr	Lys	Glu	Gly	Ser 330	Asn	Ile	Сла	Leu	Thr 335	Arg	
Thr Asp Ai	rg Gly 340	Trp	Tyr	Сув	Asp	Asn 345	Ala	Gly	Ser	Val	Ser 350	Phe	Phe	
Pro Gln Al	la Glu 55	Thr	Cys	Lys	Val 360	Gln	Ser	Asn	Arg	Val 365	Phe	Cys	Asp	
Thr Met As	en Ser	Leu	Thr	Leu 375	Pro	Ser	Glu	Val	Asn 380	Leu	Cys	Asn	Ile	
Asp Ile Ph 385	ne Asn		390 Lys	Tyr	Asp	Cys	Lys	Ile 395	Met	Thr	Ser	ГЛа	Thr 400	
Asp Val Se	er Ser	Ser 405	Val	Ile	Thr	Ser	Leu 410	Gly	Ala	Ile	Val	Ser 415	CÀa	
Tyr Gly Ly	ys Thr 420	ГÀа	Cys	Thr	Ala	Ser 425	Asn	Lys	Asn	Arg	Gly 430	Ile	Ile	
Lys Thr Ph	ne Ser 35	Asn	Gly	Cys	Asp 440	Tyr	Val	Ser	Asn	Lys 445	Gly	Val	Asp	
Thr Val Se	er Val	Gly	Asn	Thr 455	Leu	Tyr	Tyr	Val	Asn 460	Lys	Gln	Glu	Gly	
Lys Ser Le 465	eu Tyr		Lys 470	Gly	Glu	Pro	Ile	Ile 475	Asn	Phe	Tyr	Asp	Pro 480	
Leu Val Ph	ne Pro	Ser 485	Asp	Glu	Phe	Asp	Ala 490	Ser	Ile	Ser	Gln	Val 495	Asn	
Glu Lys Il	le Asn 500	Gln	Ser	Leu	Ala	Phe 505	Ile	Arg	Lys	Ser	Asp 510	Glu	Leu	
Leu His As 51	en Val 15	Asn	Ala	Gly	Lys 520	Ser	Thr	Thr	Asn	Ile 525	Met	Ile	Thr	
Thr Ile II 530	le Ile	Val	Ile	Ile 535	Val	Ile	Leu	Leu	Ser 540	Leu	Ile	Ala	Val	
Gly Leu Le 545	eu Leu	_	Сув 550	Lys	Ala	Arg	Ser	Thr 555	Pro	Val	Thr	Leu	Ser 560	
Lys Asp Gl	ln Leu	Ser 565	Gly	Ile	Asn	Asn	Ile 570	Ala	Phe	Ser	Asn			
<210 > SEQ <211 > LENC <212 > TYPE <213 > ORGA <400 > SEQU	GTH: 10 E: DNA ANISM:	617 Huma	n pa	ırair	nflu∈	enza	viru	ıs 3						
atgccaattt			t aa	ıttat	taca	a acc	catga	atca	tggd	catca	aca d	etged	caaata	60
gacatcacaa	a aacta	acagc	a to	gtagg	gtgta	a ttg	gtca	aca	gtco	ccaaa	agg g	gatga	agata	120
tcacaaaact	t tega	aacaa	g at	atct	caato	ctg	gagto	ctca	taco	caaaa	aat a	agaag	gattct	180
aactcttgtg	g gtga	ccaac	a ga	itcaa	agcaa	a tac	caaga	aggt	tatt	ggat	ag a	actga	atcatt	240
cctttatatç	g atgga	actaa	g at	taca	agaag	g gat	gtga	atag	tgad	ctaat	ca a	agaat	ccaat	300

-continued

gaaaacactg atcccagaac agaacgattc tttggagggg taattggaac tattgctcta	360
ggagtagcaa cctcagcaca aattacagca gcagttgctc tggttgaagc caagcaggca	420
agatcagaca ttgaaaaact caaggaagca atcagggaca caaataaagc agtgcagtca	480
gttcagagct ctgtaggaaa tttgatagta gcaattaaat cagtccagga ttatgtcaac	540
aaagaaatcg tgccatcgat tgcgagacta ggttgtgaag cagcaggact tcagttaggg	600
attgcattaa cacagcatta ctcagaatta acaaatatat ttggtgataa cataggatcg	660
ttacaagaaa aaggaataaa attacaaggt atagcatcat tataccgtac aaatatcaca	720
gaaatattca caacatcaac agttgacaaa tatgatattt atgatctatt atttacagaa	780
tcaataaagg tgagagttat agatgttgat ttgaatgatt actcaataac cctccaagtc	840
agactccctt tattgaccag actgctgaac actcaaatct acaaagtaga ttccatatca	900
tacaatatcc aaaatagaga atggtatatc cctcttccca gccatatcat gacgaaaggg	960
gcatttctag gtggagcaga tgtcaaagaa tgcatagaag cattcagcag ttatatatgc	1020
ccttctgatc caggatttgt actaaaccat gaaatggaga gctgtctatc aggaaacata	1080
teceaatgte caagaaceae agteacatea gacatagtte etaggtatge atttgteaat	1140
ggaggagtgg ttgcgaattg tataacaact acatgtacat gcaatggtat cggtaataga	1200
atcaaccaac cacctgatca aggagtcaaa attataacac ataaagaatg taatacaata	1260
ggtatcaacg gaatgctatt caacacaaac aaagaaggaa ctcttgcatt ctacacacca	1320
gacgacataa cattaaacaa ttctgttgca cttgatccga ttgacatatc aatcgagctc	1380
aacaaggcca aatcagatct tgaggaatca aaagaatgga taagaaggtc aaatcaaaag	1440
ctagattcta ttggaagttg gcatcaatct agcactacaa tcatagttat tttgataatg	1500
atgattatat tgtttataat taatataaca ataattacaa ttgcaattaa gtattacaga	1560
attcaaaaga gaaatcgagt ggatcaaaat gataagccgt atgtattaac aaacaag	1617
<pre>&lt;210&gt; SEQ ID NO 10 &lt;211&gt; LENGTH: 1716 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Human parainfluenza virus 3</pre>	1617
<210> SEQ ID NO 10 <211> LENGTH: 1716 <212> TYPE: DNA	1617
<210> SEQ ID NO 10 <211> LENGTH: 1716 <212> TYPE: DNA <213> ORGANISM: Human parainfluenza virus 3	60
<210> SEQ ID NO 10 <211> LENGTH: 1716 <212> TYPE: DNA <213> ORGANISM: Human parainfluenza virus 3 <400> SEQUENCE: 10	
<210> SEQ ID NO 10 <211> LENGTH: 1716 <212> TYPE: DNA <213> ORGANISM: Human parainfluenza virus 3 <400> SEQUENCE: 10 atggaatact ggaagcacac caaccacgga aaggatgctg gtaatgagct ggagacatcc	60
<pre>&lt;210&gt; SEQ ID NO 10 &lt;211&gt; LENGTH: 1716 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Human parainfluenza virus 3 &lt;400&gt; SEQUENCE: 10 atggaatact ggaagcacac caaccacgga aaggatgctg gtaatgagct ggagacatcc acagccactc atggcaacaa gctcaccaac aagataacat atatattgtg gacgataacc</pre>	60 120
<pre>&lt;210&gt; SEQ ID NO 10 &lt;211&gt; LENGTH: 1716 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Human parainfluenza virus 3 &lt;400&gt; SEQUENCE: 10 atggaatact ggaagcacac caaccacgga aaggatgctg gtaatgagct ggagacatcc acagccactc atggcaacaa gctcaccaac aagataacat atatattgtg gacgataacc ctggtgttat tatcaatagt cttcatcata gtgctaacta attccatcaa aagtgaaaag</pre>	60 120 180
<pre>&lt;210&gt; SEQ ID NO 10 &lt;211&gt; LENGTH: 1716 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Human parainfluenza virus 3 &lt;400&gt; SEQUENCE: 10 atggaatact ggaagcacac caaccacgga aaggatgctg gtaatgagct ggagacatcc acagccactc atggcaacaa gctcaccaac aagataacat atatattgtg gacgataacc ctggtgttat tatcaatagt cttcatcata gtgctaacta attccatcaa aagtgaaaag gcccgcgaat cattgctaca agacataaat aatgagttta tggaagttac agaaaagatc</pre>	60 120 180 240
<pre>&lt;210&gt; SEQ ID NO 10 &lt;211&gt; LENGTH: 1716 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Human parainfluenza virus 3 &lt;400&gt; SEQUENCE: 10 atggaatact ggaagcacac caaccacgga aaggatgctg gtaatgagct ggagacatcc acagccactc atggcaacaa gctcaccaac aagataacat atatattgtg gacgataacc ctggtgttat tatcaatagt cttcatcata gtgctaacta attccatcaa aagtgaaaag gcccgcgaat cattgctaca agacataaat aatgagttta tggaagttac agaaaagatc caagtggcat cggataatac taatgatcta atacagtcag gagtgaatac aaggcttctt</pre>	60 120 180 240 300
<pre>&lt;210&gt; SEQ ID NO 10 &lt;211&gt; LENGTH: 1716 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Human parainfluenza virus 3 &lt;400&gt; SEQUENCE: 10 atggaatact ggaagcacac caaccacgga aaggatgctg gtaatgagct ggagacatcc acagccactc atggcaacaa gctcaccaac aagataacat atatattgtg gacgataacc ctggtgttat tatcaatagt cttcatcata gtgctaacta attccatcaa aagtgaaaag gcccgcgaat cattgctaca agacataaat aatgagttta tggaagttac agaaaagatc caagtggcat cggataatac taatgatcta atacagtcag gagtgaatac aaggcttctt acaattcaga gtcatgtcca gaattatata ccaatatcat tgacacaaca aatatcggat</pre>	60 120 180 240 300 360
<pre>&lt;210&gt; SEQ ID NO 10 &lt;211&gt; LENGTH: 1716 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Human parainfluenza virus 3 </pre> <pre>&lt;400&gt; SEQUENCE: 10 atggaatact ggaagcacac caaccacgga aaggatgctg gtaatgagct ggagacatcc acagccactc atggcaacaa gctcaccaac aagataacat atatattgtg gacgataacc ctggtgttat tatcaatagt cttcatcata gtgctaacta attccatcaa aagtgaaaag gcccgcgaat cattgctaca agacataaat aatgagtta tggaagttac agaaaagatc caagtggcat cggataatac taatgatcta atacagtcag gagtgaatac aaggcttctt acaattcaga gtcatgtcca gaattatata ccaatatcat tgacacaaca aatatcggat cttaggaaat tcattagtga aattacaatt agaaatgata atcaagaagt gccaccacaa</pre>	60 120 180 240 300 360 420
<pre>&lt;210&gt; SEQ ID NO 10 &lt;211&gt; LENGTH: 1716 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Human parainfluenza virus 3 &lt;400&gt; SEQUENCE: 10 atggaatact ggaagcacac caaccacgga aaggatgctg gtaatgagct ggagacatcc acagccactc atggcaacaa gctcaccaac aagataacat atatattgtg gacgataacc ctggtgttat tatcaatagt cttcatcata gtgctaacta attccatcaa aagtgaaaag gcccgcgaat cattgctaca agacataaat aatgagttta tggaagttac agaaaagatc caagtggcat cggataatac taatgatcta atacagtcag gagtgaatac aaggcttctt acaattcaga gtcatgtcca gaattatata ccaatatcat tgacacaaca aatatcggat cttaggaaat tcattagtga aattacaatt agaaatgata atcaagaagt gccaccacaa agaataacac atgatgtggg tataaaaacct ttaaatccag atgatttctg gagatgcacg</pre>	60 120 180 240 300 360 420
<pre>&lt;210&gt; SEQ ID NO 10 &lt;211&gt; LENGTH: 1716 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Human parainfluenza virus 3 </pre> <pre>&lt;400&gt; SEQUENCE: 10 atggaatact ggaagcacac caaccacgga aaggatgctg gtaatgagct ggagacatcc acagccactc atggcaacaa gctcaccaac aagataacat atatattgtg gacgataacc ctggtgttat tatcaatagt cttcatcata gtgctaacta attccatcaa aagtgaaaag gcccgcgaat cattgctaca agacataaat aatgagtta tggaagttac agaaaagatc caagtggcat cggataatac taatgatcta atacagtcag gagtgaatac aaggcttctt acaattcaga gtcatgtcca gaattatata ccaatatcat tgacacaaca aatatcggat cttaggaaat tcattagtga aattacaatt agaaatgata atcaagaagt gccaccacaa agaataacac atgatgtgg tataaaaacct ttaaatccag atgatttctg gagatgcacg tctggtcttc catctttgat gaaaactcca aaaataagat taatgccggg accaggatta</pre>	60 120 180 240 300 360 420 480
<pre>&lt;210&gt; SEQ ID NO 10 &lt;211&gt; LENGTH: 1716 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Human parainfluenza virus 3 </pre> <pre>&lt;400&gt; SEQUENCE: 10 atggaatact ggaagcacac caaccacgga aaggatgctg gtaatgagct ggagacatcc acagccactc atggcaacaa gctcaccaac aagataacat atatattgtg gacgataacc ctggtgttat tatcaatagt cttcatcata gtgctaacta attccatcaa aagtgaaaag gcccgcgaat cattgctaca agacataaat aatgagtta tggaagttac agaaaagatc caagtggcat cggataatac taatgatcta atacagtcag gagtgaatac aaggcttctt acaattcaga gtcatgtcca gaattatata ccaatatcat tgacacaaca aatatcggat cttaggaaat tcattagtga aattacaatt agaaatgata atcaagaagt gccaccacaa agaataacac atgatgtgg tataaaacct ttaaatccag atgattctg gagatgcacg tctggtcttc catctttgat gaaaactcca aaaataagat taatgccggg accaggatta ttagctatgc caacgactgt tgatggctgt gtcagaaccc cgtccttagt gataaatgat</pre>	60 120 180 240 300 360 420 480 540
<pre>&lt;210&gt; SEQ ID NO 10 &lt;211&gt; LENGTH: 1716 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Human parainfluenza virus 3 &lt;400&gt; SEQUENCE: 10 atggaatact ggaagcacac caaccacgga aaggatgctg gtaatgagct ggagacatcc acagccactc atggcaacaa gctcaccaac aagataacat atatattgtg gacgataacc ctggtgttat tatcaatagt cttcatcata gtgctaacta attccatcaa aagtgaaaag gcccgcgaat cattgctaca agacataaat aatgagttta tggaagttac agaaaagatc caagtggcat cggataatac taatgatcta atacagtcag gagtgaatac aaggcttctt acaattcaga gtcatgtcca gaattatata ccaatatcat tgacacaaca aatatcggat cttaggaaat tcattagtga aattacaatt agaaatgata atcaagaagt gccaccacaa agaataacac atgatgtggg tataaaacct ttaaatccag atgatttctg gagatgcacg tctggtcttc catctttgat gaaaactcca aaaataagat taatgccggg accaggatta ttagctatgc caacgactgt tgatggctgt gtcagaaccc cgtccttagt gataaatgat ctgatttatg cttacacctc aaatctaatt accagggtt gccaggatat agggaaatca</pre>	60 120 180 240 300 360 420 480 540 600

ctaaatacag atgtatatca actgtgttca accccaaaag ttgatgaaag atcagattat

gcatcatcag gcatagaaga tattgtactt gatattgtca attatgatgg ctcaatctcg	900
acaacaagat ttaagaataa taatataagt tttgatcaac catatgcggc attataccca	960
tctgttggac cagggatata ctacaaaggc aaaataatat ttctcgggta tggaggtctt	1020
gaacatccaa taaatgagaa tgcaatctgc aacacaactg ggtgtcctgg gaaaacacag	1080
agagactgta atcaagcatc tcatagtcca tggttttcag atagaaggat ggtcaactct	1140
ataattgttg ttgacaaggg cttgaactca gttccaaaat tgaaggtatg gacgatatct	1200
atgagacaaa attactgggg gtcagaagga agattacttc tactaggtaa caagatctac	1260
atatacacaa gatctacaag ttggcacagc aagttacaat taggaataat tgacattact	1320
gactacagtg atataaggat aaaatggaca tggcataatg tgctatcaag accaggaaac	1380
aatgaatgtc catggggaca ttcatgtccg gatggatgta taacgggagt atataccgat	1440
gcatatccac tcaatcccac aggaagcatt gtatcatctg tcatattgga ctcacaaaaa	1500
togagagtoa accoagtoat aacttactoa acagcaacog aaagggtaaa ogagotggot	1560
atccgaaaca aaacactctc agctgggtac acaacaacaa gctgcattac acactataac	1620
aaagggtatt gttttcatat agtagaaata aatcataaaa gcttaaacac atttcaaccc	1680
atgttgttca aaacagagat tccaaaaagc tgcagt	1716
<210> SEQ ID NO 11 <211> LENGTH: 1716 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 11	
atggaatact ggaagcacac caaccacggc aaggacgccg gcaacgagct ggaaaccagc	60
atggaatact ggaagcacac caaccacggc aaggacgccg gcaacgagct ggaaaccagc acagccacac acggcaacaa gctgaccaac aagatcacct acatcctgtg gaccatcacc	120
atggaatact ggaagcacac caaccacggc aaggacgccg gcaacgagct ggaaaccagc	120 180
atggaatact ggaagcacac caaccacggc aaggacgccg gcaacgagct ggaaaccagc acagccacac acggcaacaa gctgaccaac aagatcacct acatcctgtg gaccatcacc	120
atggaatact ggaagcacac caaccacggc aaggacgccg gcaacgagct ggaaaccagc acagccacac acggcaacaa gctgaccaac aagatcacct acatcctgtg gaccatcacc ctggtgctgc tgagcatcgt gttcatcatc gtgctgacca atagcatcaa gagcgagaag	120 180
atggaatact ggaagcacac caaccacggc aaggacgccg gcaacgagct ggaaaccagc acagccacac acggcaacaa gctgaccaac aagatcacct acatcctgtg gaccatcacc ctggtgctgc tgagcatcgt gttcatcatc gtgctgacca atagcatcaa gagcgagaag gccagagaga gcctgctgca ggacatcaac aacgagttca tggaagtgac cgagaagatc	120 180 240
atggaatact ggaagcacac caaccacggc aaggacgceg gcaacgagct ggaaaccagc acagccacac acggcaacaa gctgaccaac aagatcacct acatcctgtg gaccatcacc ctggtgctgc tgagcatcgt gttcatcatc gtgctgacca atagcatcaa gagcgagaag gccagagaga gcctgctgca ggacatcaac aacgagttca tggaagtgac cgagaagatc caggtggcca gcgacaacac caacgacctg atccagagcg gcgtgaacac ccggctgctg	120 180 240 300
atggaatact ggaagcacac caaccacggc aaggacgccg gcaacgagct ggaaaccagc acagccacac acggcaacaa gctgaccaac aagatcacct acatcctgtg gaccatcacc ctggtgctgc tgagcatcgt gttcatcatc gtgctgacca atagcatcaa gagcgagaag gccagagaga gcctgctgca ggacatcaac aacgagttca tggaagtgac cgagaagatc caggtggcca gcgacaacac caacgacctg atccagagcg gcgtgaacac ccggctgctg accatccaga gccacgtgca gaactacatc cccatcagcc tgacccagca gatcagcgac	120 180 240 300 360
atggaatact ggaagcacac caaccacggc aaggacgceg gcaacgagct ggaaaccagc acagccacac acggcaacaa gctgaccaac aagatcacct acatcctgtg gaccatcacc ctggtgctgc tgagcatcgt gttcatcatc gtgctgacca atagcatcaa gagcgagaag gccagagaga gcctgctgca ggacatcaac aacgagttca tggaagtgac cgagaagatc caggtggcca gcgacaacac caacgacctg atccagagcg gcgtgaacac ccggctgctg accatccaga gccacgtgca gaactacatc cccatcagcc tgacccagca gatcagcgac ctgcggaagt tcatcagcga gatcaccatc cggaacgaca accaggaagt gccccccag	120 180 240 300 360 420
atggaatact ggaagcacac caaccacggc aaggacgccg gcaacgagct ggaaaccagc acagccacac acggcaacaa gctgaccaac aagatcacct acatcctgtg gaccatcacc ctggtgotgc tgagcatcgt gttcatcatc gtgctgacca atagcatcaa gagcgagaag gccagagaga gcctgctgca ggacatcaac aacgagttca tggaagtgac cgagaagatc caggtggcca gcgacaacac caacgacctg atccagagcg gcgtgaacac ccggctgctg accatccaga gccacgtgca gaactacatc cccatcagcc tgacccagca gatcagcgac ctgcggaagt tcatcagcga gatcaccatc cggaacgaca accaggaagt gcccccccag agaatcaccc acgacgtggg catcaagccc ctgaaccccg acgattctg gcggtgtaca	120 180 240 300 360 420 480
atggaatact ggaagcacac caaccacggc aaggacgccg gcaacgagct ggaaaccagc acagccacac acggcaacaa gctgaccaac aagatcacct acatcctgtg gaccatcacc ctggtgctgc tgagcatcgt gttcatcatc gtgctgacca atagcatcaa gagcgagaag gccagagaga gcctgctgca ggacatcaac aacgagttca tggaagtgac cgagaagatc caggtggcca gcgacaacac caacgacctg atccagagcg gcgtgaacac ccggctgctg accatccaga gccacgtgca gaactacatc cccatcagcc tgacccagca gatcagcgac ctgcggaagt tcatcagcga gatcaccatc cggaacgaca accaggaagt gcccccccag agaatcaccc acgacgtggg catcaagccc ctgaaccccg acgattctg gcggtgtaca agcggcctgc ccagcctgat gaagacccc aagatccgc tgatgcctgg ccctggactg	120 180 240 300 360 420 480 540
atggaatact ggaagcacac caaccacggc aaggacgceg gcaacgagct ggaaaccagc acagccacac acggcaacaa gctgaccaac aagatcacct acatcctgtg gaccatcacc ctggtgctgc tgagcatcgt gttcatcatc gtgctgacca atagcatcaa gagcgagaag gccagagaga gcctgctgca ggacatcaac aacgagttca tggaagtgac cgagaagatc caggtggcca gcgacaacac caacgacctg atccagagcg gcgtgaacac ccggctgctg accatccaga gccacgtgca gaactacatc cccatcagcc tgacccagca gatcagcgac ctgcggaagt tcatcagcga gatcaccatc cggaacgaca accaggaagt gcccccccag agaatcaccc acgacgtggg catcaagccc ctgaaccccg acgatttctg gcggtgtaca agcgggcctgc ccagcctgat gaagaccccc aagatccggc tgatgcctgg ccctggactg ctggccatgc ctaccacagt ggatggctgt gtgcggaccc ccagcctcgt gatcaacgat	120 180 240 300 360 420 480 540
atggaatact ggaagcacac caaccacggc aaggacgccg gcaacgagct ggaaaccagc acagccacac acggcaacaa gctgaccaac aagatcacct acatcctgtg gaccatcacc ctggtgctgc tgagcatcgt gttcatcatc gtgctgacca atagcatcaa gagcgagaag gccagagaga gcctgctgca ggacatcaac aacgagttca tggaagtgac cgagaagatc caggtggcca gcgacaacac caacgacctg atccagagcg gcgtgaacac ccggctgctg accatccaga gccacgtgca gaactacatc cccatcagcc tgacccagca gatcagcgac ctgcggaagt tcatcagcga gatcaccatc cggaacgaca accaggaagt gcccccccag agaatcaccc acgacgtggg catcaagccc ctgaaccccg acgattctg gcggtgtaca agcggcctgc ccagcctgat gaagacccc aagatccgc tgatgcctgg ccctggactg ctggccatgc ctaccacagt ggatggctgt gtgcggaccc ccagcctcgt gatcaacgat ctgatctacg cctaccacag caacctgatc acccggggct gccaggatat cggcaagagc	120 180 240 300 360 420 480 540 600
atggaatact ggaagcacac caaccacggc aaggacgccg gcaacgagct ggaaaccagc acagccacac acggcaacaa gctgaccaac aagatcacct acatcctgtg gaccatcacc ctggtgctgc tgagcatcgt gttcatcatc gtgctgacca atagcatcaa gagcgagaag gccagagaga gcctgctgca ggacatcaac aacgagttca tggaagtgac cgagaagatc caggtggcca gcgacaacac caacgacctg atccagagcg gcgtgaacac ccggctgctg accatccaga gccacgtgca gaactacatc cccatcagcc tgacccagca gatcagcgac ctgcggaagt tcatcagcga gatcaccatc cggaacgaca accaggaagt gcccccccag agaatcaccc acgacgtggg catcaagccc ctgaaccccg acgattctg gcggtgacac aggggcctgc ccagcctgat gaagaccccc aagatccggc tgatgcctgg ccctggactg ctggccatgc ctaccacagt ggatggctgt gtgcggaccc ccagcctcgt gatcaacgat ctgatctacg cctacaccag caacctgatc acccggggct gccaggatat cggcaagagc taccaggtgc tgcagatcgc tgcagatcgc cgacctgaacccc gacctggtgc tgcagatcgc tgcagatcgc cgacctgaacccc accaggtgc tgcagatcgc catcatcacc gtgaactccc acctggtgcc cgacctgaacc	120 180 240 300 360 420 480 540 600 660 720
atggaatact ggaagcacac caaccacggc aaggacgccg gcaacgagct ggaaaccagc acagccacac acggcaacaa gctgaccaac aagatcacct acatcctgtg gaccatcacc ctggtgctgc tgagcatcgt gttcatcatc gtgctgacca atagcatcaa gagcgagaag gccagagaga gcctgctgca ggacatcaac aacgagttca tggaagtgac cgagaagatc caggtggcca gcgacaacac caacgacctg atccagagcg gcgtgaacac ccggctgctg accatccaga gccacgtgca gaactacatc cccatcagcc tgacccagca gatcagcgac ctgcggaagt tcatcagcga gatcaccatc cggaacgaca accaggaagt gcccccccag agaatcaccc acgacgtggg catcaagccc ctgaaccccg acgattctg gcggtgtaca agcaggcctgc ccagcctgat gaagaccccc aagatccgc tgatgcctgg ccctggactg ctggccatgc ctaccacagt ggatggctgt gtgcggaccc ccagcctcgt gatcaacgat ctgatctacg cctaccacag caacctgatc acccggggct gccaggatat cggcaagagc taccaggtgc tgcagatcgg catcatcacc gtgaactccg acctggtgc cgacctgaac cctcggatca gccacgatca gccaccctt caacatcaac gacaacagaa agagctgcag cctggctctg	120 180 240 300 360 420 480 540 600 720 780
atggaatact ggaagcacac caaccacggc aaggacgccg gcaacgagct ggaaaccagc acagccacac acggcaacaa gctgaccaac aagatcacct acatcctgtg gaccatcacc ctggtgctgc tgagcatcgt gttcatcatc gtgctgacca atagcatcaa gagcgagaag gccagagaga gcctgctgca ggacatcaac aacgagttca tggaagtgac cgagaagatc caggtggcca gcgacaacac caacgacctg atccagagcg gcgtgaacac ccggctgctg accatccaga gccacgtgca gaactacatc cccatcagcc tgacccagca gatcagcgac ctgcggaagt tcatcagcga gatcaccatc cggaacgaca accaggaagt gcccccccag agaatcaccc acgacgtggg catcaagccc ctgaaccccg acgattctg gcggtgtaca agcaggcctgc ccagcctgat gaagaccccc aagatccggc tgatgcctgg ccctggactg ctgaccatgc ctaccacagt ggatggctgt gtgcggaccc ccagcctcgt gatcaacgat ctgaccatgc ctaccacagt ggatggctgt gtgcggaccc ccagcctcgt gatcaacgat ctgatctacg cctaccacag caacctgatc acccggggct gccaggatat cggcaagagc taccaggtgc tgcagatcgg catcatcacc gtgaactccg acctggtgcc cgacctgaac cctcggatca gccacacctt caacatcaac gacaacagaa agagctgcag cctggctctg ctgaacaccg acgtgtacca gctgtacca gctgtacca gctgtgcagc acccccaagg tggacgagag aagcgactac	120 180 240 300 360 420 480 540 660 720 780 840
atggaatact ggaagcacac caaccacggc aaggacgccg gcaacgagct ggaaaccagc acagccacac acggcaacaa gctgaccaac aagatcacct acatcctgtg gaccatcacc ctggtgctgc tgagcatcgt gttcatcatc gtgctgacca atagcatcaa gagcgagaag gccagagaga gcctgctgca ggacatcaac aacgagttca tggaagtgac cgagaagatc caggtggcca gcgacaacac caacgacctg atccagagcg gcgtgaacac ccggctgctg accatccaga gccacgtgca gaactacatc cccatcagcc tgacccagca gatcagcgac ctgcggaagt tcatcagcga gatcaccatc cggaacgaca accaggaagt gcccccccag agaatcaccc acgacgtggg catcaagccc ctgaaccccg acgattctg gcggtgtaca agaatcaccc acgacgtggg catcaagccc ctgaaccccg acgattctg gcggtgtaca agcgggcctgc ccagcctgat gaagaccccc aagatccggc tgatgcctgg ccctggactg ctgaccatcg ctaccacagt ggatggctgt gtgcggaccc ccagcctcgt gatcaacgat ctgatctacg cctaccacag caacctgatc acccggggct gccaggatat cggcaagagc taccaggtgc tgcagatcgg catcatcacc gtgaactccg acctggtgcc cgacctgaac cctggatca gccacacctt caacatcaac gacaaccaga agagctgcag cctggctctg ctgaacaccg acgtgtacca gctgtgcag accccaagg tggacgagag aagcgactac gccagcagcg gcatcgagag tatcgtgcag acccccaagg tggacgagag aagcgactac gccagcagcg gcatcgagag tatcgtgcag gacatcgtga actacgacg cagcatcagc cagcatcagc	120 180 240 300 360 420 480 540 600 720 780 840 900
atggaatact ggaagcacac caaccacggc aaggacgccg gcaacgagct ggaaaccagc acagccacac acggcaacaa gctgaccaac aagatcacct acatcctgtg gaccatcacc ctggtgctgc tgagcatcgt gttcatcatc gtgctgacca atagcatcaa gagcgagaag gccagagaga gcctgctgca ggacatcaac aacgagttca tggaagtgac cgagaagatc caggtggcca gcgacaacac caacgacctg atccagagcg gcgtgaacac ccggctgctg accatccaga gccacgtgca gaactacatc cccatcagcc tgacccagca gatcagcgac ctgcggaagt tcatcagca gatcaccatc cggaacgaca accaggaagt gcccccccag agaatcaccc acgacgtggg catcaagccc ctgaaccccg acgattctg gcggtgtaca agcggcctgc ccagcctgat gaagaccccc aagatccggc tgatgcctgg ccctggactg ctggccatgc ctaccacagt ggatggctgt gtgcggaccc ccagcctgt gatcaacgat ctggccatgc ctaccacagt ggatggctgt gtgcggaccc ccagcctcgt gatcaacgat ctgatctacg cctacaccag caacctgatc acccggggct gccaggatat cggcaagagc taccaggtgc tgcagatcag cctgatcac gccacacctt caacatcaac gacaaccaga agagctgcag cctggctctg ctgaacaccg acgtgtacca gccagcactac gccagacaga acccccaagg tggacgagag aagcgactac gccagcagcg gcatcgagga tatcgtgctg gacatcgtga actacgacg cagcatcagc gccagcagcg tcaagaacaa accccggg ttcaagaacac cctggtgcc cgacctgaac gccagcagcg gcatcgagga tatcgtgctg gacatcgtga actacgacg cagcatcagc accacccggt tcaagaacaa caacatcagc ttcgaccagc cctacgccgc cctgtaccct	120 180 240 300 360 420 480 540 600 720 780 840 900 960
atggaatact ggaagcaca caaccacggc aaggacgccg gcaacgagct ggaaaccagc acagccacac acggcaacaa gctgaccaac aagatcacct acatcctgtg gaccatcacc ctggtgctgc tgagcatcgt gttcatcatc gtgctgacca atagcatcaa gagcgagaag gccagagaga gcctgctgca ggacatcaac aacgagttca tggaagtgac cgagaagatc caggtggcca gcgacaacac caacgacctg atccagagcg gcgtgaacac ccggctgctg accatccaga gccacgtgca gaactcaatc cccatcagcc tgacccagca gatcagcgac ctggcggaagt tcatcagcag gatcaccatc cggaacgaca accaggaagt gccccccag agaatacacc acgacgtgg catcaagccc ctgaaccccg acgatttctg gcggtgtaca agaatacacc acgacgtgg catcaagccc ctgaaccccg acgatttctg gcggtgtaca agacggcctgc ctaccacagt ggatggctgt gtgcggaccc ccagcctcgt gatcaacgat ctggccatgc ctaccacagt ggatggctgt gtgcggaccc ccagcctcgt gatcaacgat ctgatctacg ctaccaccag caacctgatc acccggggct gccaggatat cggcaagagc taccaggtgc tgcagatcg catcatcacc gtgaactccg acctggtgcc ggacatgaacccc acctggatca gccacacctt caacatcaac gacaacagaa agagctgcag cctggctctg ctgaacaccg acgtgtacca gctgtgcag acccccaagg tggacgagag aagcgactac gccagcagcg gcatcgagga tatcgtgctg gacatcgtga actacgaga acgcatcagc accaccggt tcaagaaca acacaccagc ttcgacacac cttggacca gcctgaccacct ctgaacaccg tcaagcagc cctggctctg gccagcagcg gcatcgagga tatcgtgctg gacatcgtga actacgacg catcaccct tcaacacccggt tcaagaacaa caacatcagc ttcgaccac cttacgccgc cctgtaccct tctgtgggcc ctggcatcta ctacaacggc aagaatcact tcctgggcta ctggcatcta ctctgtgggcc ctggcatcta ctacacccggt tcaagaacaa caacatcagc ttcgaccagc cctacgccgc cctgtaccct tctgtgggcc ctggcatcta ctacaagggc aagaatcatct tcctgggcta cggcggcctg	120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020

				COILCII			
atcatcgtgg t	ggacaaggg	cctgaacagc	gtgcccaagc	tgaaagtgtg	gacaatcagc	1200	
atgcgccaga a	ctactgggg	cagcgagggc	agacttctgc	tgctgggaaa	caagatctac	1260	
atctacaccc g	gtccaccag	ctggcacagc	aaactgcagc	tgggaatcat	cgacatcacc	1320	
gactacagcg a	catccggat	caagtggacc	tggcacaacg	tgctgagcag	acccggcaac	1380	
aatgagtgcc c	ttggggcca	cagctgcccc	gatggatgta	tcaccggcgt	gtacaccgac	1440	
gcctaccccc t	gaatcctac	cggctccatc	gtgtccagcg	tgatcctgga	cagccagaaa	1500	
agcagagtga a	ccccgtgat	cacatacagc	accgccaccg	agagagtgaa	cgaactggcc	1560	
atcagaaaca a	gaccctgag	cgccggctac	accaccacaa	gctgcatcac	acactacaac	1620	
aagggctact g	cttccacat	cgtggaaatc	aaccacaagt	ccctgaacac	cttccagccc	1680	
atgctgttca a	gaccgagat	ccccaagagc	tgctcc			1716	
<210> SEQ ID <211> LENGTH <212> TYPE: <213> ORGANI <220> FEATUR <223> OTHER	I: 1617 DNA SM: Artifi E:	-		eotide			
<400> SEQUEN	CE: 12						
atgeceatea g	catcctgct	gatcatcacc	acaatgatca	tggccagcca	ctgccagatc	60	
gacatcacca a	gctgcagca	cgtgggcgtg	ctcgtgaaca	gccccaaggg	catgaagatc	120	
agccagaact t	cgagacacg	ctacctgatc	ctgagcctga	tccccaagat	cgaggacagc	180	
aacagctgcg g	rcgaccagca	gatcaagcag	tacaagcggc	tgctggacag	actgatcatc	240	
cccctgtacg a	cggcctgcg	gctgcagaaa	gacgtgatcg	tgaccaacca	ggaaagcaac	300	
gagaacaccg a	ccccggac	cgagagattc	tteggeggeg	tgatcggcac	aatcgccctg	360	
ggagtggcca c	aagcgccca	gattacagcc	gctgtggccc	tggtggaagc	caagcaggcc	420	
agaagcgaca t	cgagaagct	gaaagaggcc	atccgggaca	ccaacaaggc	cgtgcagagc	480	
gtgcagtcca g	cgtgggcaa	tctgatcgtg	gccatcaagt	ccgtgcagga	ctacgtgaac	540	
aaagaaatcg t	gccctctat	egeceggetg	ggctgtgaag	ctgccggact	gcagctgggc	600	
attgccctga c	acagcacta	cagcgagctg	accaacatct	teggegacaa	catcggcagc	660	
ctgcaggaaa a	gggcattaa	gctgcaggga	atcgccagcc	tgtaccgcac	caacatcacc	720	
gagatettea e	caccagcac	cgtggataag	tacgacatct	acgacctgct	gttcaccgag	780	
agcatcaaag t	gcgcgtgat	cgacgtggac	ctgaacgact	acagcatcac	cctgcaagtg	840	
cggctgcccc t	gctgaccag	actgctgaac	acccagatct	acaaggtgga	cagcatetee	900	
tacaacatcc a	gaaccgcga	gtggtacatc	cctctgccca	gccacattat	gaccaagggc	960	
gcctttctgg g	ıcggagccga	cgtgaaagag	tgcatcgagg	ccttcagcag	ctacatctgc	1020	
cccagcgacc c	tggcttcgt	gctgaaccac	gagatggaaa	gctgcctgag	cggcaacatc	1080	
agccagtgcc c	cagaaccac	cgtgacctcc	gacatcgtgc	ccagatacgc	cttcgtgaat	1140	
ggcggcgtgg t	ggccaactg	catcaccacc	acctgtacct	gcaacggcat	cggcaaccgg	1200	
atcaaccagc c	tcccgatca	gggcgtgaag	attatcaccc	acaaagagtg	taacaccatc	1260	
ggcatcaacg g	catgctgtt	caataccaac	aaagagggca	ccctggcctt	ctacaccccc	1320	
gacgatatca c	cctgaacaa	ctccgtggct	ctggacccca	tcgacatctc	catcgagctg	1380	
aacaaggcca a	gagcgacct	ggaagagtcc	aaagagtgga	teeggeggag	caaccagaag	1440	
ctggactcta t						1500	
33	55 -55	5550	3	5-5	39		

### -continued

atgattatcc tgttcatcat caacattacc atcatcacta tcgccattaa gtactaccgg atccagaaac ggaaccgggt ggaccagaat gacaagccct acgtgctgac aaacaag <210> SEQ ID NO 13 <211> LENGTH: 539 <212> TYPE: PRT <213 > ORGANISM: Human parainfluenza virus 3 <400> SEQUENCE: 13 Met Pro Ile Ser Ile Leu Leu Ile Ile Thr Thr Met Ile Met Ala Ser His Cys Gln Ile Asp Ile Thr Lys Leu Gln His Val Gly Val Leu Val Asn Ser Pro Lys Gly Met Lys Ile Ser Gln Asn Phe Glu Thr Arg Tyr Leu Ile Leu Ser Leu Ile Pro Lys Ile Glu Asp Ser Asn Ser Cys Gly 55 Asp Gln Gln Ile Lys Gln Tyr Lys Arg Leu Leu Asp Arg Leu Ile Ile 70 Pro Leu Tyr Asp Gly Leu Arg Leu Gln Lys Asp Val Ile Val Thr Asn Gln Glu Ser Asn Glu Asn Thr Asp Pro Arg Thr Glu Arg Phe Phe Gly 105 Gly Val Ile Gly Thr Ile Ala Leu Gly Val Ala Thr Ser Ala Gln Ile 120 Thr Ala Ala Val Ala Leu Val Glu Ala Lys Gln Ala Arg Ser Asp Ile 135 Glu Lys Leu Lys Glu Ala Ile Arg Asp Thr Asn Lys Ala Val Gln Ser Val Gln Ser Ser Val Gly Asn Leu Ile Val Ala Ile Lys Ser Val Gln 170 Asp Tyr Val Asn Lys Glu Ile Val Pro Ser Ile Ala Arg Leu Gly Cys Glu Ala Ala Gly Leu Gln Leu Gly Ile Ala Leu Thr Gln His Tyr Ser Glu Leu Thr Asn Ile Phe Gly Asp Asn Ile Gly Ser Leu Gln Glu Lys Gly Ile Lys Leu Gln Gly Ile Ala Ser Leu Tyr Arg Thr Asn Ile Thr Glu Ile Phe Thr Thr Ser Thr Val Asp Lys Tyr Asp Ile Tyr Asp Leu Leu Phe Thr Glu Ser Ile Lys Val Arg Val Ile Asp Val Asp Leu Asn Asp Tyr Ser Ile Thr Leu Gln Val Arg Leu Pro Leu Leu Thr Arg Leu 280 Leu Asn Thr Gln Ile Tyr Lys Val Asp Ser Ile Ser Tyr Asn Ile Gln Asn Arg Glu Trp Tyr Ile Pro Leu Pro Ser His Ile Met Thr Lys Gly 315 Ala Phe Leu Gly Gly Ala Asp Val Lys Glu Cys Ile Glu Ala Phe Ser 330 Ser Tyr Ile Cys Pro Ser Asp Pro Gly Phe Val Leu Asn His Glu Met

C111	Cox	Crra	Lou	Cox	C1	7 an	T10	Con	Cln	Cric	Drec	720	The	The	1707
GIU	ser	355	ьец	ser	Gly	ASII	360	ser	GIII	сув	PIO	365	IIII	IIII	vai
Thr	Ser 370	Asp	Ile	Val	Pro	Arg 375	Tyr	Ala	Phe	Val	Asn 380	Gly	Gly	Val	Val
Ala 385	Asn	Cys	Ile	Thr	Thr 390	Thr	Cys	Thr	Cys	Asn 395	Gly	Ile	Gly	Asn	Arg 400
Ile	Asn	Gln	Pro	Pro 405	Asp	Gln	Gly	Val	Lys 410	Ile	Ile	Thr	His	Lys 415	Glu
Cys	Asn	Thr	Ile 420	Gly	Ile	Asn	Gly	Met 425	Leu	Phe	Asn	Thr	Asn 430	Lys	Glu
Gly	Thr	Leu 435	Ala	Phe	Tyr	Thr	Pro 440	Asp	Asp	Ile	Thr	Leu 445	Asn	Asn	Ser
Val	Ala 450	Leu	Asp	Pro	Ile	Asp 455	Ile	Ser	Ile	Glu	Leu 460	Asn	ГÀа	Ala	Lys
Ser 465	Asp	Leu	Glu	Glu	Ser 470	Lys	Glu	Trp	Ile	Arg 475	Arg	Ser	Asn	Gln	Lys 480
Leu	Asp	Ser	Ile	Gly 485	Ser	Trp	His	Gln	Ser 490	Ser	Thr	Thr	Ile	Ile 495	Val
Ile	Leu	Ile	Met 500	Met	Ile	Ile	Leu	Phe 505	Ile	Ile	Asn	Ile	Thr 510	Ile	Ile
Thr	Ile	Ala 515	Ile	ГÀа	Tyr	Tyr	Arg 520	Ile	Gln	ГÀв	Arg	Asn 525	Arg	Val	Asp
Gln	Asn 530	Asp	Lys	Pro	Tyr	Val 535	Leu	Thr	Asn	Lys					
<211	0> SI L> LI 2> TY	ENGTI	1: 5'												
-213	S OF			Hııma	an na	araiı	aflu4	nza	wir	19 3					
<213	3 > OF			Huma	an pa	arain	nflue	enza	vir	ıs 3					
<400	D> SI	RGANI EQUEI	ISM: ICE:	14							7 cm	710	Cl.,	7 cm	Cl.,
<400 Met 1	O> SI Glu	RGANI EQUEN Tyr	ISM: NCE: Trp	14 Lys 5	His	Thr	Asn	His	Gly 10	Lys				15	
<400 Met 1	O> SI Glu	RGANI EQUEN Tyr	ISM: NCE: Trp	14 Lys 5		Thr	Asn	His	Gly 10	Lys				15	
<400 Met 1 Leu	O> SI Glu Glu	RGANI EQUEN Tyr Thr	ISM: NCE: Trp Ser 20	14 Lys 5 Thr	His	Thr Thr	Asn His	His Gly 25	Gly 10 Asn	Lys	Leu	Thr	Asn 30	15 Lys	Ile
<400 Met 1 Leu Thr	O> SI Glu Glu Tyr	EQUENTYT Thr Ile 35	ISM: NCE: Trp Ser 20 Leu	14 Lys 5 Thr	His Ala	Thr Thr	Asn His Thr 40	His Gly 25 Leu	Gly 10 Asn Val	Lys Lys Leu	Leu Leu	Thr Ser 45	Asn 30 Ile	15 Lys Val	Ile Phe
<400 Met 1 Leu Thr	Glu Glu Tyr Ile	EQUENTYT Thr Ile 35	ISM: NCE: Trp Ser 20 Leu Leu	14 Lys 5 Thr Trp	His Ala Thr	Thr Thr Ile Ser 55	Asn His Thr 40 Ile	His Gly 25 Leu Lys	Gly 10 Asn Val Ser	Lys Lys Leu Glu	Leu Leu Lys 60	Thr Ser 45 Ala	Asn 30 Ile Arg	15 Lys Val Glu	Ile Phe Ser
<400 Met 1 Leu Thr Ile Leu 65	Glu Glu Tyr Ile 50 Leu	RGANI EQUEN Tyr Thr Ile 35 Val	ISM: Trp Ser 20 Leu Leu Asp	14 Lys 5 Thr Trp Thr	His Ala Thr Asn	Thr Thr Ile Ser 55 Asn	Asn His Thr 40 Ile Glu	His Gly 25 Leu Lys Phe	Gly 10 Asn Val Ser	Lys Lys Leu Glu Glu 75	Leu Leu Lys 60 Val	Thr Ser 45 Ala Thr	Asn 30 Ile Arg Glu	Lys Val Glu Lys	Ile Phe Ser Ile 80
<400 Met 1 Leu Thr Ile Leu 65 Gln	O> SH Glu Glu Tyr Ile 50 Leu Val	EQUENTYT Thr Ile 35 Val Gln Ala	ISM:  Trp  Ser 20 Leu Leu Asp	14 Lys 5 Thr Trp Thr Asp 85	His Ala Thr Asn Asn 70	Thr Ile Ser 55 Asn	Asn His Thr 40 Ile Glu Asn	His Gly 25 Leu Lys Phe	Gly 10 Asn Val Ser Met Leu 90	Lys Leu Glu Glu 75	Leu Lys 60 Val	Thr Ser 45 Ala Thr	Asn 30 Ile Arg Glu	Lys Val Glu Lys Val 95	Ile Phe Ser Ile 80 Asn
<400 Met 1 Leu Thr Ile Leu 65 Gln	O> SF Glu Glu Tyr Ile 50 Leu Val	RGANI Tyr Thr Ile 35 Val Gln Ala	ISM: Trp Ser 20 Leu Leu Asp Ser	14 Lys 5 Thr Trp Thr Ile Asp 85	His Ala Thr Asn Asn 70 Asn	Thr Ile Ser 55 Asn Thr	Asn His Thr 40 Ile Glu Asn	His Gly 25 Leu Lys Phe Asp His 105	Gly 10 Asn Val Ser Met Leu 90	Lys Leu Glu Glu 75 Ile	Leu Lys 60 Val Gln	Thr Ser 45 Ala Thr Ser Tyr	Asn 30 Ile Arg Glu Gly Ile 110	Lys Val Glu Lys Val 95 Pro	Ile Phe Ser Ile 80 Asn Ile
<4000 Met 1 Leu Thr Ile Leu 65 Gln Thr	O> SI Glu Glu Tyr Ile 50 Leu Val Arg	RGANI CQUEN Tyr Thr Ile 35 Val Gln Ala Leu Thr	ISM: Trp Ser 20 Leu Leu Asp Ser	14 Lys 5 Thr Trp Thr Ile Asp 85 Thr	His Ala Thr Asn Asn 70 Asn Ile	Thr Ile Ser 55 Asn Thr Gln Ser	Asn His Thr 40 Ile Glu Asn Ser Asp	His Gly 25 Leu Lys Phe Asp His 105	Gly 10 Asn Val Ser Met Leu 90 Val	Lys Leu Glu 75 Ile Gln Lys	Leu Lys 60 Val Gln Asn	Thr Ser 45 Ala Thr Ser Tyr Ile 125	Asn 30 Ile Arg Glu Gly Ile 110 Ser	Lys Val Glu Lys Val 95 Pro Glu	Ile Phe Ser Ile 80 Asn Ile Ile
<4000 Met 1 Leu Thr Ile Leu 65 Gln Thr Ser Thr	O> SIGUU Glu Tyr Ile 50 Leu Val Arg Leu Ile 130	RGANI Tyr Thr Ile 35 Val Gln Ala Leu Thr 115	ISM: Trp Ser 20 Leu Leu Asp Ser Leu Asp Asn	14 Lys 5 Thr Trp Thr Ile Asp 85 Thr Gln	His Ala Thr Asn Asn 70 Asn Ile	Thr Ile Ser 55 Asn Thr Gln Ser Gln 135	Asn His Thr 40 Ile Glu Asn Ser Asp 120 Glu	His Gly 25 Leu Lys Phe Asp His 105 Leu Val	Gly 10 Asn Val Ser Met Leu 90 Val Arg	Lys Leu Glu Glu 75 Ile Gln Lys	Leu Lys 60 Val Gln Asn Phe Gln 140	Thr Ser 45 Ala Thr Ser Tyr Ile 125 Arg	Asn 30 Ile Arg Glu Gly Ile 110 Ser	15 Lys Val Glu Lys Val 95 Pro Glu	Ile Phe Ser Ile 80 Asn Ile His
<4000 Met 1 Leu Thr Ile Leu 65 Gln Thr Ser Thr	O> SI Glu Glu Tyr Ile 50 Leu Val Arg Leu Ile 130	RGANI Tyr Thr Ile 35 Val Gln Ala Leu Thr 115 Arg Gly	ISM: Trp Ser 20 Leu Leu Asp Ser Lou Gln Asn Ile	14 Lys 5 Thr Trp Thr Asp 85 Thr Gln Asp	His Ala Thr Asn Asn 70 Asn Ile Ile Asn	Thr Ile Ser 55 Asn Thr Gln Ser Gln 135 Leu	Asn His Thr 40 Ile Glu Asn Ser Asp 120 Glu Asn	His Gly 25 Leu Lys Phe Asp His 105 Leu Val	Gly 10 Asn Val Ser Met Leu 90 Val Arg Pro	Lys Leu Glu 75 Ile Gln Lys Pro Asp 155	Leu Lys 60 Val Gln Asn Phe Gln 140	Thr Ser Thr Thr Ser Tyr Tyr Ile 125 Arg	Asn 30 Ile Arg Glu Gly Ile 110 Ser Ile Arg	Lys Val Glu Lys Val 95 Pro Glu Thr	Ile Phe Ser Ile 80 Asn Ile Ile Thr 160
<4000 Met 1 Leu Thr Ile Leu 65 Gln Thr Ser Thr Asp 145 Ser	O> SIGNU Glu Tyr Ile 50 Leu Val Arg Leu Ile 130 Val Gly	RGANI GQUEN Tyr Thr Ile 35 Val Gln Ala Leu Thr 115 Arg Gly Leu	ISM: Trp Ser 20 Leu Leu Asp Ser Leu 100 Gln Asn Ile	14 Lys 5 Thr Trp Thr Asp 85 Thr Gln Asp Lys Ser 165	His Ala Thr Asn Asn 70 Asn Ile Le Asn Pro 150	Thr Ile Ser 55 Asn Thr Gln Ser Gln 135 Leu Met	Asn His Thr 40 Ile Glu Asn Ser Asp 120 Glu Asn Lys	His Gly 25 Leu Lys Phe Asp His 105 Leu Val Pro	Gly 10 Asn Val Ser Met Leu 90 Val Arg Pro Asp	Lys Leu Glu Glu 75 Ile Gln Lys Pro Asp 155 Lys	Leu Lys 60 Val Gln Asn Phe Gln 140 Phe	Thr Ser 45 Ala Thr Ser Tyr Ile 125 Arg Trp Arg	Asn 30 Ile Arg Glu Gly Ile 110 Ser Ile Arg Leu	Lys Val Glu Lys Val 95 Pro Glu Thr Cys Met	Ile Phe Ser Ile 80 Asn Ile His Thr 160 Pro

Thr	Pro	Ser 195	Leu	Val	Ile	Asn	Asp 200	Leu	Ile	Tyr	Ala	Tyr 205	Thr	Ser	Asn
Leu	Ile 210	Thr	Arg	Gly	CÀa	Gln 215	Asp	Ile	Gly	Lys	Ser 220	Tyr	Gln	Val	Leu
Gln 225	Ile	Gly	Ile	Ile	Thr 230	Val	Asn	Ser	Asp	Leu 235	Val	Pro	Asp	Leu	Asn 240
Pro	Arg	Ile	Ser	His 245	Thr	Phe	Asn	Ile	Asn 250	Asp	Asn	Arg	Lys	Ser 255	Cys
Ser	Leu	Ala	Leu 260	Leu	Asn	Thr	Asp	Val 265	Tyr	Gln	Leu	Сув	Ser 270	Thr	Pro
Lys	Val	Asp 275	Glu	Arg	Ser	Asp	Tyr 280	Ala	Ser	Ser	Gly	Ile 285	Glu	Asp	Ile
Val	Leu 290	Asp	Ile	Val	Asn	Tyr 295	Asp	Gly	Ser	Ile	Ser 300	Thr	Thr	Arg	Phe
305	Asn	Asn	Asn	Ile	Ser 310	Phe	Asp	Gln	Pro	Tyr 315	Ala	Ala	Leu	Tyr	Pro 320
Ser	Val	Gly	Pro	Gly 325	Ile	Tyr	Tyr	Lys	Gly 330	Lys	Ile	Ile	Phe	Leu 335	Gly
Tyr	Gly	Gly	Leu 340	Glu	His	Pro	Ile	Asn 345	Glu	Asn	Ala	Ile	Сув 350	Asn	Thr
Thr	Gly	Сув 355	Pro	Gly	ГÀа	Thr	Gln 360	Arg	Asp	Сув	Asn	Gln 365	Ala	Ser	His
Ser	Pro 370	Trp	Phe	Ser	Asp	Arg 375	Arg	Met	Val	Asn	Ser 380	Ile	Ile	Val	Val
385	Lys	Gly	Leu	Asn	Ser 390	Val	Pro	Lys	Leu	Lys 395	Val	Trp	Thr	Ile	Ser 400
Met	Arg	Gln	Asn	Tyr 405	Trp	Gly	Ser	Glu	Gly 410	Arg	Leu	Leu	Leu	Leu 415	Gly
Asn	Lys	Ile	Tyr 420	Ile	Tyr	Thr	Arg	Ser 425	Thr	Ser	Trp	His	Ser 430	ГÀз	Leu
Gln	Leu	Gly 435	Ile	Ile	Asp	Ile	Thr 440	Asp	Tyr	Ser	Asp	Ile 445	Arg	Ile	ГÀв
Trp	Thr 450	Trp	His	Asn	Val	Leu 455	Ser	Arg	Pro	Gly	Asn 460	Asn	Glu	CÀa	Pro
Trp 465	Gly	His	Ser	СЛа	Pro 470	Asp	Gly	СЛа	Ile	Thr 475	Gly	Val	Tyr	Thr	Asp 480
Ala	Tyr	Pro	Leu	Asn 485	Pro	Thr	Gly	Ser	Ile 490	Val	Ser	Ser	Val	Ile 495	Leu
Asp	Ser	Gln	Lys 500	Ser	Arg	Val	Asn	Pro 505	Val	Ile	Thr	Tyr	Ser 510	Thr	Ala
Thr	Glu	Arg 515	Val	Asn	Glu	Leu	Ala 520	Ile	Arg	Asn	Lys	Thr 525	Leu	Ser	Ala
Gly	Tyr 530	Thr	Thr	Thr	Ser	Сув 535	Ile	Thr	His	Tyr	Asn 540	ГÀв	Gly	Tyr	CAa
Phe 545	His	Ile	Val	Glu	Ile 550	Asn	His	Lys	Ser	Leu 555	Asn	Thr	Phe	Gln	Pro 560
Met	Leu	Phe	Lys	Thr 565	Glu	Ile	Pro	Lys	Ser 570	Сув	Ser				

<210> SEQ ID NO 15 <211> LENGTH: 20 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE:

```
<223> OTHER INFORMATION: Synthetic Polypeptide
<400> SEQUENCE: 15
Met Glu Thr Pro Ala Gln Leu Leu Phe Leu Leu Leu Trp Leu Pro
Asp Thr Thr Gly
<210> SEQ ID NO 16
<211> LENGTH: 18
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: Synthetic Polypeptide
<400> SEQUENCE: 16
Met Asp Trp Thr Trp Ile Leu Phe Leu Val Ala Ala Ala Thr Arg Val
His Ser
<210> SEQ ID NO 17
<211> LENGTH: 24
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: Synthetic Polypeptide
<400> SEQUENCE: 17
Met Leu Gly Ser Asn Ser Gly Gln Arg Val Val Phe Thr Ile Leu Leu
Leu Leu Val Ala Pro Ala Tyr Ser
           20
<210> SEQ ID NO 18
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: Synthetic Polypeptide
<400> SEQUENCE: 18
Met Lys Cys Leu Leu Tyr Leu Ala Phe Leu Phe Ile Gly Val Asn Cys
              5
                                    10
Ala
<210> SEQ ID NO 19
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: Synthetic Polypeptide
<400> SEQUENCE: 19
Met Trp Leu Val Ser Leu Ala Ile Val Thr Ala Cys Ala Gly Ala
               5
                                    10
<210> SEQ ID NO 20
<211> LENGTH: 4062
<212> TYPE: DNA
<213> ORGANISM: Middle East respiratory syndrome coronavirus
<400> SEQUENCE: 20
atgatacact cagtgtttct actgatgttc ttgttaacac ctacagaaag ttacgttgat
```

gtagggccag	attctgttaa	gtctgcttgt	attgaggttg	atatacaaca	gaccttcttt	120	
gataaaactt	ggcctaggcc	aattgatgtt	tctaaggctg	acggtattat	ataccctcaa	180	
ggccgtacat	attctaacat	aactatcact	tatcaaggtc	tttttcccta	tcagggagac	240	
catggtgata	tgtatgttta	ctctgcagga	catgctacag	gcacaactcc	acaaaagttg	300	
tttgtagcta	actattctca	ggacgtcaaa	cagtttgcta	atgggtttgt	cgtccgtata	360	
ggagcagctg	ccaattccac	tggcactgtt	attattagcc	catctaccag	cgctactata	420	
cgaaaaattt	accetgettt	tatgctgggt	tcttcagttg	gtaatttctc	agatggtaaa	480	
atgggccgct	tcttcaatca	tactctagtt	cttttgcccg	atggatgtgg	cactttactt	540	
agagcttttt	attgtattct	agageetege	tctggaaatc	attgtcctgc	tggcaattcc	600	
tatacttctt	ttgccactta	tcacactcct	gcaacagatt	gttctgatgg	caattacaat	660	
cgtaatgcca	gtctgaactc	ttttaaggag	tattttaatt	tacgtaactg	cacctttatg	720	
tacacttata	acattaccga	agatgagatt	ttagagtggt	ttggcattac	acaaactgct	780	
caaggtgttc	acctcttctc	atctcggtat	gttgatttgt	acggcggcaa	tatgtttcaa	840	
tttgccacct	tgcctgttta	tgatactatt	aagtattatt	ctatcattcc	tcacagtatt	900	
cgttctatcc	aaagtgatag	aaaagcttgg	gctgccttct	acgtatataa	acttcaaccg	960	
ttaactttcc	tgttggattt	ttctgttgat	ggttatatac	gcagagctat	agactgtggt	1020	
tttaatgatt	tgtcacaact	ccactgctca	tatgaatcct	tcgatgttga	atctggagtt	1080	
tattcagttt	cgtctttcga	agcaaaacct	tctggctcag	ttgtggaaca	ggctgaaggt	1140	
gttgaatgtg	atttttcacc	tcttctgtct	ggcacacctc	ctcaggttta	taatttcaag	1200	
cgtttggttt	ttaccaattg	caattataat	cttaccaaat	tgctttcact	tttttctgtg	1260	
aatgatttta	cttgtagtca	aatatctcca	gcagcaattg	ctagcaactg	ttattcttca	1320	
ctgattttgg	attattttc	atacccactt	agtatgaaat	ccgatctcag	tgttagttct	1380	
gctggtccaa	tatcccagtt	taattataaa	cagtcctttt	ctaatcccac	atgtttgatc	1440	
ttagcgactg	ttcctcataa	ccttactact	attactaagc	ctcttaagta	cagctatatt	1500	
aacaagtgct	ctcgtcttct	ttctgatgat	cgtactgaag	tacctcagtt	agtgaacgct	1560	
aatcaatact	caccctgtgt	atccattgtc	ccatccactg	tgtgggaaga	cggtgattat	1620	
tataggaaac	aactatctcc	acttgaaggt	ggtggctggc	ttgttgctag	tggctcaact	1680	
gttgccatga	ctgagcaatt	acagatgggc	tttggtatta	cagttcaata	tggtacagac	1740	
accaatagtg	tttgccccaa	gcttgaattt	gctaatgaca	caaaaattgc	ctctcaatta	1800	
ggcaattgcg	tggaatattc	cctctatggt	gtttcgggcc	gtggtgtttt	tcagaattgc	1860	
acagctgtag	gtgttcgaca	gcagcgcttt	gtttatgatg	cgtaccagaa	tttagttggc	1920	
tattattctg	atgatggcaa	ctactactgt	ctgcgtgctt	gtgttagtgt	tcctgtttct	1980	
gtcatctatg	ataaagaaac	taaaacccac	gctactctat	ttggtagtgt	tgcatgtgaa	2040	
cacatttctt	ctaccatgtc	tcaatactcc	cgttctacgc	gatcaatgct	taaacggcga	2100	
gattctacat	atggccccct	tcagacacct	gttggttgtg	tcctaggact	tgttaattcc	2160	
tctttgttcg	tagaggactg	caagttgcct	ctcggtcaat	ctctctgtgc	tcttcctgac	2220	
acacctagta	ctctcacacc	tcgcagtgtg	cgctctgtgc	caggtgaaat	gcgcttggca	2280	
tccattgctt	ttaatcatcc	cattcaggtt	gatcaactta	atagtagtta	ttttaaatta	2340	
agtataccca	ctaattttc	ctttggtgtg	actcaggagt	acattcagac	aaccattcag	2400	
aaagttactg	ttgattgtaa	acagtacgtt	tgcaatggtt	tccagaagtg	tgagcaatta	2460	

-continued

	atggccagtt					2520
cgccaggatg	attctgtacg	taatttgttt	gcgagcgtga	aaagctctca	atcatctcct	2580
atcataccag	gttttggagg	tgactttaat	ttgacacttc	tagaacctgt	ttctatatct	2640
actggcagtc	gtagtgcacg	tagtgctatt	gaggatttgc	tatttgacaa	agtcactata	2700
gctgatcctg	gttatatgca	aggttacgat	gattgtatgc	agcaaggtcc	agcatcagct	2760
cgtgatctta	tttgtgctca	atatgtggct	ggttataaag	tattacctcc	tcttatggat	2820
gttaatatgg	aagccgcgta	tacttcatct	ttgcttggca	gcatagcagg	tgttggctgg	2880
actgctggct	tatcctcctt	tgctgctatt	ccatttgcac	agagtatytt	ttataggtta	2940
aacggtgttg	gcattactca	acaggttctt	tcagagaacc	aaaagcttat	tgccaataag	3000
tttaatcagg	ctctgggagc	tatgcaaaca	ggcttcacta	caactaatga	agcttttcgg	3060
aaggttcagg	atgctgtgaa	caacaatgca	caggctctat	ccaaattagc	tagcgagcta	3120
tctaatactt	ttggtgctat	ttccgcctct	attggagaca	tcatacaacg	tcttgatgtt	3180
ctcgaacagg	acgcccaaat	agacagactt	attaatggcc	gtttgacaac	actaaatgct	3240
tttgttgcac	agcagcttgt	tcgttccgaa	tcagctgctc	tttccgctca	attggctaaa	3300
gataaagtca	atgagtgtgt	caaggcacaa	tccaagcgtt	ctggattttg	cggtcaaggc	3360
acacatatag	tgtcctttgt	tgtaaatgcc	cctaatggcc	tttactttat	gcatgttggt	3420
tattacccta	gcaaccacat	tgaggttgtt	tctgcttatg	gtctttgcga	tgcagctaac	3480
cctactaatt	gtatageeee	tgttaatggc	tactttatta	aaactaataa	cactaggatt	3540
gttgatgagt	ggtcatatac	tggctcgtcc	ttctatgcac	ctgagcccat	cacctctctt	3600
aatactaagt	atgttgcacc	acaggtgaca	taccaaaaca	tttctactaa	cctccctcct	3660
cctcttctcg	gcaattccac	cgggattgac	ttccaagatg	agttggatga	gtttttcaaa	3720
aatgttagca	ccagtatacc	taattttggt	tctctaacac	agattaatac	tacattactc	3780
gatcttacct	acgagatgtt	gtctcttcaa	caagttgtta	aagcccttaa	tgagtcttac	3840
atagacctta	aagagettgg	caattatact	tattacaaca	aatggccgtg	gtacatttgg	3900
cttggtttca	ttgctgggct	tgttgcctta	gctctatgcg	tcttcttcat	actgtgctgc	3960
actggttgtg	gcacaaactg	tatgggaaaa	cttaagtgta	atcgttgttg	tgatagatac	4020
gaggaatacg	acctcgagcc	gcataaggtt	catgttcact	aa		4062
<220> FEAT	TH: 4062 : DNA NISM: Artif:	-		eotide		
<400> SEQUI	ENCE: 21					
atgatacact	cagtgtttct	actgatgttc	ttgttaacac	ctacagaaag	ttacgttgat	60
gtagggccag	attctgttaa	gtctgcttgt	attgaggttg	atatacaaca	gactttcttt	120
gataaaactt	ggcctaggcc	aattgatgtt	tctaaggctg	acggtattat	ataccctcaa	180
ggccgtacat	attctaacat	aactatcact	tatcaaggtc	tttttcccta	tcagggagac	240
catggtgata	tgtatgttta	ctctgcagga	catgctacag	gcacaactcc	acaaaagttg	300
tttgtagcta	actattctca	ggacgtcaaa	cagtttgcta	atgggtttgt	cgtccgtata	360

ggagcagctg ccaattccac tggcactgtt attattagcc catctaccag cgctactata

cgaaaaattt	accctgcttt	tatgctgggt	tcttcagttg	gtaatttctc	agatggtaaa	480	
atgggccgct	tcttcaatca	tactctagtt	cttttgcccg	atggatgtgg	cactttactt	540	
agagcttttt	attgtattct	ggagcctcgc	tctggaaatc	attgtcctgc	tggcaattcc	600	
tatacttctt	ttgccactta	tcacactcct	gcaacagatt	gttctgatgg	caattacaat	660	
cgtaatgcca	gtctgaactc	ttttaaggag	tattttaatt	tacgtaactg	cacctttatg	720	
tacacttata	acattaccga	agatgagatt	ttagagtggt	ttggcattac	acaaactgct	780	
caaggtgttc	acctcttctc	atctcggtat	gttgatttgt	acggcggcaa	tatgtttcaa	840	
tttgccacct	tgcctgttta	tgatactatt	aagtattatt	ctatcattcc	tcacagtatt	900	
cgttctatcc	aaagtgatag	aaaagcttgg	gctgccttct	acgtatataa	acttcaaccg	960	
ttaactttcc	tgttggattt	ttctgttgat	ggttatatac	gcagagctat	agactgtggt	1020	
tttaatgatt	tgtcacaact	ccactgctca	tatgaatcct	tcgatgttga	atctggagtt	1080	
tattcagttt	cgtctttcga	agcaaaacct	tctggctcag	ttgtggaaca	ggctgaaggt	1140	
gttgaatgtg	atttttcacc	tcttctgtct	ggcacacctc	ctcaggttta	taatttcaag	1200	
cgtttggttt	ttaccaattg	caattataat	cttaccaaat	tgctttcact	tttttctgtg	1260	
aatgatttta	cttgtagtca	aatatctcca	gcagcaattg	ctagcaactg	ttattcttca	1320	
ctgattttgg	attacttttc	atacccactt	agtatgaaat	ccgatctcag	tgttagttct	1380	
gctggtccaa	tatcccagtt	taattataaa	cagtcctttt	ctaatcccac	atgtttgatt	1440	
ttagcgactg	ttcctcataa	ccttactact	attactaagc	ctcttaagta	cagctatatt	1500	
aacaagtgct	ctcgtcttct	ttctgatgat	cgtactgaag	tacctcagtt	agtgaacgct	1560	
aatcaatact	caccctgtgt	atccattgtc	ccatccactg	tgtgggaaga	cggtgattat	1620	
tataggaaac	aactatctcc	acttgaaggt	ggtggctggc	ttgttgctag	tggctcaact	1680	
gttgccatga	ctgagcaatt	acagatgggc	tttggtatta	cagttcaata	tggtacagac	1740	
accaatagtg	tttgccccaa	gcttgaattt	gctaatgaca	caaaaattgc	ctctcaatta	1800	
ggcaattgcg	tggaatattc	cctctatggt	gtttcgggcc	gtggtgtttt	tcagaattgc	1860	
acagctgtag	gtgttcgaca	gcagcgcttt	gtttatgatg	cgtaccagaa	tttagttggc	1920	
tattattctg	atgatggcaa	ctactactgt	ttgcgtgctt	gtgttagtgt	tcctgtttct	1980	
gtcatctatg	ataaagaaac	taaaacccac	gctactctat	ttggtagtgt	tgcatgtgaa	2040	
cacatttctt	ctaccatgtc	tcaatactcc	cgttctacgc	gatcaatgct	taaacggcga	2100	
gattctacat	atggccccct	tcagacacct	gttggttgtg	tcctaggact	tgttaattcc	2160	
tctttgttcg	tagaggactg	caagttgcct	cttggtcaat	ctctctgtgc	tcttcctgac	2220	
acacctagta	ctctcacacc	tcgcagtgtg	cgctctgttc	caggtgaaat	gcgcttggca	2280	
tccattgctt	ttaatcatcc	tattcaggtt	gatcaactta	atagtagtta	ttttaaatta	2340	
agtataccca	ctaattttc	ctttggtgtg	actcaggagt	acattcagac	aaccattcag	2400	
aaagttactg	ttgattgtaa	acagtacgtt	tgcaatggtt	tccagaagtg	tgagcaatta	2460	
ctgcgcgagt	atggccagtt	ttgttccaaa	ataaaccagg	ctctccatgg	tgccaattta	2520	
cgccaggatg	attctgtacg	taatttgttt	gcgagcgtga	aaagctctca	atcatctcct	2580	
atcataccag	gttttggagq	tgactttaat	ttgacacttc	tggaacctgt	ttctatatct	2640	
			gaggatttgc			2700	
			gattgcatgc			2760	
cycyacctta	LLLYLYCTCA	acacycggct	ggttacaaag	LALLACCTCC	cccaiggat	2820	

-continued

gttaatatgg	aagccgcgta	tacttcatct	ttgcttggca	gcatagcagg	tgttggctgg	2880
actgctggct	tatcctcctt	tgctgctatt	ccatttgcac	agagtatctt	ttataggtta	2940
aacggtgttg	gcattactca	acaggttctt	tcagagaacc	aaaagcttat	tgccaataag	3000
tttaatcagg	ctctgggagc	tatgcaaaca	ggcttcacta	caactaatga	agcttttcag	3060
aaggttcagg	atgctgtgaa	caacaatgca	caggetetat	ccaaattagc	tagcgagcta	3120
tctaatactt	ttggtgctat	tteegeetet	attggagaca	tcatacaacg	tcttgatgtt	3180
ctcgaacagg	acgcccaaat	agacagactt	attaatggcc	gtttgacaac	actaaatgct	3240
tttgttgcac	agcagcttgt	tegtteegaa	tcagctgctc	tttccgctca	attggctaaa	3300
gataaagtca	atgagtgtgt	caaggcacaa	tccaagcgtt	ctggattttg	cggtcaaggc	3360
acacatatag	tgtcctttgt	tgtaaatgcc	cctaatggcc	tttacttcat	gcatgttggt	3420
tattacccta	gcaaccacat	tgaggttgtt	tetgettatg	gtctttgcga	tgcagctaac	3480
cctactaatt	gtatagecee	tgttaatggc	tactttatta	aaactaataa	cactaggatt	3540
gttgatgagt	ggtcatatac	tggctcgtcc	ttctatgcac	ctgagcccat	tacctccctt	3600
aatactaagt	atgttgcacc	acaggtgaca	taccaaaaca	tttctactaa	cctccctcct	3660
cctcttctcg	gcaattccac	cgggattgac	ttccaagatg	agttggatga	gtttttcaaa	3720
aatgttagca	ccagtatacc	taattttggt	tccctaacac	agattaatac	tacattactc	3780
gatettaeet	acgagatgtt	gtctcttcaa	caagttgtta	aagcccttaa	tgagtcttac	3840
atagacctta	aagagettgg	caattatact	tattacaaca	aatggccgtg	gtacatttgg	3900
cttggtttca	ttgctgggct	tgttgcctta	gctctatgcg	tcttcttcat	actgtgctgc	3960
actggttgtg	gcacaaactg	tatgggaaaa	cttaagtgta	atcgttgttg	tgatagatac	4020
gaggaatacg	acctcgagcc	gcataaggtt	catgttcact	aa		4062
<220> FEAT	TH: 1845 : DNA NISM: Artif:	_		eotide		
<400> SEQU	ENCE: 22					
atgatccact	ccgtgttcct	cctcatgttc	ctgttgaccc	ccactgagtc	agactgcaag	60
ctcccgctgg	gacagtccct	gtgtgcgctg	cctgacactc	ctagcactct	gaccccacgc	120
tccgtgcggt	cggtgcctgg	cgaaatgcgg	ctggcctcca	tcgccttcaa	tcacccaatc	180
caagtggatc	agctgaatag	ctcgtatttc	aagctgtcca	tccccacgaa	cttctcgttc	240
ggggtcaccc	aggagtacat	ccagaccaca	attcagaagg	tcaccgtcga	ttgcaagcaa	300
tacgtgtgca	acggcttcca	gaagtgcgag	cagctgctga	gagaatacgg	gcagttttgc	360
agcaagatca	accaggcgct	gcatggagct	aacttgcgcc	aggacgactc	cgtgcgcaac	420
ctctttgcct	ctgtgaagtc	atcccagtcc	tccccaatca	tcccgggatt	cggaggggac	480
ttcaacctga	ccctcctgga	gcccgtgtcg	atcagcaccg	gtagcagatc	ggcgcgctca	540
gccattgaag	atcttctgtt	cgacaaggtc	accatcgccg	atccgggcta	catgcaggga	600
tacgacgact	gtatgcagca	gggaccagcc	tccgcgaggg	acctcatctg	cgcgcaatac	660
gtggccgggt	acaaagtgct	gcctcctctg	atggatgtga	acatggaggc	cgcttatact	720
-		_				

tegteeetge teggetetat egeeggegtg gggtggaeeg eeggeetgte eteettegee

-continued

gctatcccct ttgcacaatc cattttctac cggctcaacg gcgtgggcat tactcaacaa 840	
gtcctgtcgg agaaccagaa gttgatcgca aacaagttca atcaggccct gggggccatg 900	
cagactggat tcactacgac taacgaagcg ttccagaagg tccaggacgc tgtgaacaac 960	
aacgcccagg cgctctcaaa gctggcctcc gaactcagca acaccttcgg agccatcagc 1020	
gcatcgatcg gtgacataat tcagcggctg gacgtgctgg agcaggacgc ccagatcgac 1080	
egecteatea aeggaegget gaccacettg aatgeetteg tggeacaaca getggteegg 1140	
agcgaatcag cggcactttc cgcccaactc gccaaggaca aagtcaacga atgcgtgaag 1200	
geocagteca agaggteegg tittetgeggt caaggaacee atattgtgte ettegtegtg 1260	
aacgcgccca acggtctgta ctttatgcac gtcggctact acccgagcaa tcatatcgaa 1320	
gtggtgtccg cctacggcct gtgcgatgcc gctaacccca ctaactgtat tgcccctgtg 1380	
aacggatatt ttattaagac caacaacacc cgcattgtgg acgaatggtc atacaccggt 1440	
tegteettet aegegeeega geeeateaet teaetgaaca eeaaataegt ggeteegeaa 1500	
gtgacctacc agaacatctc caccaatttg cogcogoogo tgotoggaaa cagcacogga 1560	
attgatttcc aagatgaact ggacgaattc ttcaagaacg tgtccacttc cattcccaac 1620	
ttoqqaaqoo tqacacaqat caacaccaco ottotoqaco tqacotacqa qatqotqaqo 1680	
tteggaagee tgacacagat caacaccace ettetegace tgacetaega gatgetgage 1680	
cttcaacaag tggtcaaggc cctgaacgag agctacatcg acctgaagga gctgggcaac 1740	
cttcaacaag tggtcaaggc cctgaacgag agctacatcg acctgaagga gctgggcaac 1740 tatacctact acaacaagtg gccggacaag attgaggaga ttctgtcgaa aatctaccac 1800 attgaaaacg agatcgccag aatcaagaag cttatcggcg aagcc 1845	
cttcaacaag tggtcaaggc cctgaacgag agctacatcg acctgaagga gctgggcaac 1740 tatacctact acaacaagtg gccggacaag attgaggaga ttctgtcgaa aatctaccac 1800	
cttcaacaag tggtcaaggc cctgaacgag agctacatcg acctgaagga gctgggcaac 1740  tatacctact acaacaagtg gccggacaag attgaggaga ttctgtcgaa aatctaccac 1800  attgaaaacg agatcgccag aatcaagaag cttatcggcg aagcc 1845  <210> SEQ ID NO 23 <211> LENGTH: 4071 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:	
cttcaacaag tggtcaaggc cctgaacgag agctacatcg acctgaagga gctgggcaac 1740  tatacctact acaacaagtg gccggacaag attgaggaga ttctgtcgaa aatctaccac 1800  attgaaaacg agatcgccag aatcaagaag cttatcggcg aagcc 1845  <210> SEQ ID NO 23 <211> LENGTH: 4071 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
cttcaacaag tggtcaaggc cctgaacgag agctacatcg acctgaagga gctgggcaac 1740  tatacctact acaacaagtg gccggacaag attgaggaga ttctgtcgaa aatctaccac 1800  attgaaaacg agatcgccag aatcaagaag cttatcggcg aagcc 1845  <210 > SEQ ID NO 23 <211 > LENGTH: 4071 <212 > TYPE: DNA <213 > ORGANISM: Artificial Sequence <220 > FEATURE: <223 > OTHER INFORMATION: Synthetic Polynucleotide <400 > SEQUENCE: 23  atggaaaccc ctgcccagct gctgttcctg ctgctgctgt ggctgcctga taccaccggc 60  agctatgtgg acgtgggccc cgatagcgtg aagtccgcct gtatcgaagt ggacatccag 120	
cttcaacaag tggtcaaggc cctgaacgag agctacatcg acctgaagga gctgggcaac 1740  tatacctact acaacaagtg gccggacaag attgaggaga ttctgtcgaa aatctaccac 1800  attgaaaacg agatcgccag aatcaagaag cttatcggcg aagcc 1845  <210> SEQ ID NO 23 <211> LENGTH: 4071 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide  <400> SEQUENCE: 23  atggaaaccc ctgcccagct gctgttcctg ctgctgctgt ggctgcctga taccaccggc 60	
cttcaacaag tggtcaaggc cctgaacgag agctacatcg acctgaagga gctgggcaac 1740 tatacctact acaacaagtg gccggacaag attgaggaga ttctgtcgaa aatctaccac 1800 attgaaaacg agatcgccag aatcaagaag cttatcggcg aagcc 1845  <210 > SEQ ID NO 23 <211 > LENGTH: 4071 <212 > TYPE: DNA <212 > TYPE: DNA <213 > ORGANISM: Artificial Sequence <220 > FEATURE: <223 > OTHER INFORMATION: Synthetic Polynucleotide  <400 > SEQUENCE: 23 atggaaaccc ctgcccagct gctgttcctg ctgctgctgt ggctgcctga taccaccggc 60 agctatgtgg acgtgggccc cgatagcgtg aagtccgcct gtatcgaagt ggacatccag 120 cagacctttt tcgacaagac ctggcccaga cccatcgacg tgtccaaggc cgacggcatc 180 atctatccac aaggccggac ctacagcaac atcaccatta cctaccaggg cctgttccca 240	
cttcaacaag tggtcaaggc cctgaacgag agctacatcg acctgaagga gctgggcaac 1740 tatacctact acaacaagtg gccggacaag attgaggaga ttctgtgcgaa aatctaccac 1800 attgaaaacg agatcgccag aatcaagaag cttatcggcg aagcc 1845  <210> SEQ ID NO 23 <211> LENGTH: 4071 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide  <400> SEQUENCE: 23 atggaaaccc ctgccagct gctgttcctg ctgctgctgt ggctgcctga taccaccggc 60 agctatgtgg acgtgggccc cgatagcgtg aagtccgcct gtatcgaagt ggacatccag 120 cagacctttt tcgacaagac ctggcccaga cccatcgacg tgtccaaggc cgacggcatc 180 atctatccac aaggccggac ctacagcaac atcaccatta cctaccaggg cctgttccca 240 tatcaaggcg accacggcga tatgtacgtg tactctgccg gccacgccac	
cttcaacaag tggtcaaggc cctgaacgag agctacatcg acctgaagga gctgggcaac 1740 tatacctact acaacaagtg gccggacaag attgaggaga ttctgtcgaa aatctaccac 1800 attgaaaacg agatcgccag aatcaagaag cttatcggcg aagcc 1845  <210 > SEQ ID NO 23 <211 > LENGTH: 4071 <212 > TYPE: DNA <213 > ORGANISM: Artificial Sequence <220 > FEATURE: <223 > OTHER INFORMATION: Synthetic Polynucleotide <400 > SEQUENCE: 23 atggaaaccc ctgcccagct gctgttcctg ctgctgctgt ggctgcctga taccaccggc 60 agctatgtgg acgtgggccc cgatagcgtg aagtccgcct gtatcgaagt ggacatccag 120 cagacctttt tcgacaagac ctgcccaga cccatcgacg tgtccaaggc cgaccgcatc 180 atctatccac aaggccggac ctacagcaac atcaccatta cctaccaggg cctgttccca 240 tatcaaggcg accacggcga tatgtacgtg tactctgccg gccacgccac	
cttcaacaag tggtcaaggc cctgaacgag agctacatcg acctgaagga gctgggcaac 1740 tatacctact acaacaagtg gccggacaag attgaggaga ttctgtgaa aatctaccac 1800 attgaaaacg agategccag aatcaagaag cttateggcg aagcc 1845  <210 > SEQ ID NO 23 <211 > LENGTH: 4071 <212 > TYPE: DNA <212 > TYPE: DNA <213 > OGCANISM: Artificial Sequence <220 > FEATURE: <223 > OTHER INFORMATION: Synthetic Polynucleotide <400 > SEQUENCE: 23 atggaaaccc ctgcccagct gctgttcctg ctgctgctgt ggctgcctga taccaccggc 60 agctatgtgg acgtgggccc cgatagcgtg aagtccgcct gtatcgaagt ggacatccag 120 cagacctttt tcgacaagac ctggcccaga cccatcgacg tgtccaaggc cgacggcatc 180 atctatccac aaggccggac ctacagcaac atcaccatta cctaccaggg cctgttccca 240 tatcaaggcg accacggcga tatgtacgtg tactctgccg gccacgccac	
cttcaacaag tggtcaaggc cctgaacgag agctacatcg acctgaagga gctgggcaac 1740 tatacctact acaacaagtg gccggacaag attgaggaga ttctgtcgaa aatctaccac 1800 attgaaaacg agatcgccag aatcaagaag cttatcggcg aagcc 1845  <210 > SEQ ID NO 23 <211 > LENGTH: 4071 <212 > TTPE: DNA <213 > ORGANISM: Artificial Sequence <220 > FEATURE: <223 > OTHER INFORMATION: Synthetic Polynucleotide  <400 > SEQUENCE: 23 atggaaaccc ctgcccagct gctgttcctg ctgctgctgt ggctgcctga taccaccggc 60 agctatgtgg acgtgggccc cgatagcgtg aagtccgct gtatcgaagt ggacatccag 120 cagacctttt tcgacaagac ctggcccaga cccatcgacg tgtccaaggc cgacggcatc 180 atctatccac aaggccggac ctacagcaac atcaccatta cctaccaggg cctgttccca 240 tatcaaggcg accacggcga tatgtacgtg tactctgccg gccacgccac	
cttcaacaag tggtcaaggc cctgaacgag agctacatcg acctgaagga gctgggcaac 1740 tatacctact acaacaagtg gccggacaag attgaggaga ttctgtcgaa aatctaccac 1800 attgaaaacg agatcgccag aatcaagaag cttatcggcg aagcc 1845  <210	
cttcaacaag tggtcaaggc cctgaacgag agctacatcg acctgaagga gctgggcaac 1740 tatacctact acaacaagtg gccggacaag attgaggaga ttctgtcgaa aatctaccac 1800 attgaaaacg agatcgccag aatcaagaag cttatcggcg aagcc 1845  <210 > SEQ ID NO 23 <211 > LENGTH: 4071 <212 > TTPE: DNA <213 > ORGANISM: Artificial Sequence <220 > FEATURE: <223 > OTHER INFORMATION: Synthetic Polynucleotide  <400 > SEQUENCE: 23 atggaaaccc ctgcccagct gctgttcctg ctgctgctgt ggctgcctga taccaccggc 60 agctatgtgg acgtgggccc cgatagcgtg aagtccgct gtatcgaagt ggacatccag 120 cagacctttt tcgacaagac ctggcccaga cccatcgacg tgtccaaggc cgacggcatc 180 atctatccac aaggccggac ctacagcaac atcaccatta cctaccaggg cctgttccca 240 tatcaaggcg accacggcga tatgtacgtg tactctgccg gccacgccac	
cttcaacaag tggtcaaggc cctgaacgag agctacatcg acctgaagga gctgggcaac 1740 tatacctact acaacaagtg gccggacaag attgaggaga ttctgtcgaa aatctaccac 1800 attgaaaacg agatcgccag aatcaagaag cttatcggcg aagcc 1845  <210	
cttcaacaag tggtcaaggc cctgaacga agctacatcg acctgaagga gctgggcaac 1740 tatacctact acaacaagtg gccggacaag attgaggaga ttctgtcgaa aatctaccac 1800 attgaaaacg agatcgccag aatcaagaag cttatcggcg aagcc 1845 <pre> &lt;210&gt; SEQ ID NO 23 &lt;211&gt; LENGTH: 4071 &lt;212&gt; TYPE: DNA &lt;211&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Synthetic Polynucleotide &lt;400&gt; SEQUENCE: 23 atggaaaccc ctgcccagt gctgttcctg ctgctgctgt ggctgctga taccaccggc 60 agctatgtgg acgtgggcc cgatagcgtg aagtccgcct gtatcgaagt ggacatccag 120 cagacctttt tcgacaagac ctgcccaga cccatcgacg tgtccaaggc cgacggcatc 180 atctatccac aaggccggac ctacagcaac atcaccatta cctaccaggg cctgttccca 240 tatcaaggcg accacggcga tatgtacgtg tactctgccg gccacgccac</pre>	
cttcaacaag tggtcaaggc cctgaacgag agctacatcg acctgaagga gctgggcaac 1740 tatacctact acaacaagtg gccggacaag attgaggaga ttctgtcgaa aatctaccac 1800 attgaaaacg agatcgccag aatcaagaag cttatcggcg aagcc 1845  <210	
cttcaacaag tggtcaaggc cctgaacgag agctacatcg acctgaagga gctgggcaac 1740 tatacctact acaacaagtg gccggacaag attgaggaga ttctgtcgaa aatctaccac 1800 attgaaaacg agatcgccag aatcaagaag cttatcggcg aagcc 1845  <210 > SEQ ID NO 23 <211 > LENGTH: 4071 <212 > TYPE: DNA <213 > ORGANISM: Artificial Sequence <220 > FEATURE: <223 > OTHER INFORMATION: Synthetic Polynucleotide <400 > SEQUENCE: 23 attggaaaccc ctgcccagct gctgttcctg ctgctgctgt ggctgcctga taccaccggc 60 agctatgtgg acgtgggccc cgatagcgtg aagtccgcct gtatcgaagt ggacatccag 120 cagacctttt tcgacaagac ctggcccaga cccatcgacg tgtccaaggc cgacggcatc 180 atctatccac aaggccggac ctacagcaac atcaccatta cctaccaggg cctgttccca 240 tatcaaggcg accacggcga tatgtacgtg tactctgcg gcacgccac cggcaccaca 300 ccccagaaac tgttcgtggc caactacagc caggacgtga agcagttcg caacggcttc 360 gtcgtgcgga ttggcgccg tgccaatage accggcacag tgatcatcag cccagcacc 420 agcgcacca tccggaagat ctaccccgc ttcatgctgg gcagctccgt gggcaattc 480 agcgacgcac agatgggccg gtcttcaac cacaccctgg tgctgccc ggaggaattc 480 agcgacactgc tgagaagct ctactgcac ctggaaccaa gagacgtca ccactgccct 600 gccggcaata gctacaccag cttcgcacc taccacaca ccgccaccag ttgctccgac 660 gccggcaata gctacaccag cttcgccac taccacaca ccgccaccag ttgctccgac 720	
ctteaacaag tggteaagge cetgaacgag agetacateg acetgaagga getgggeaac 1740  tatacetact acaacaagtg geeggacaag attgaggaga ttetgtegaa aatetaceac 1800  attgaaaacg agategeeag aateaagaag ettateggeg aagec 1845  <210	

aagetgeage ceetgacett eetgetggae tteagegtgg aeggetacat eagaegggee 1020

atcgactgcg	gcttcaacga	cctgagccag	ctgcactgct	cctacgagag	cttcgacgtg	1080
gaaagcggcg	tgtacagcgt	gtccagcttc	gaggccaagc	ctagcggcag	cgtggtggaa	1140
caggctgagg	gcgtggaatg	cgacttcagc	cctctgctga	geggeaeeee	tccccaggtg	1200
tacaacttca	agcggctggt	gttcaccaac	tgcaattaca	acctgaccaa	gctgctgagc	1260
ctgttctccg	tgaacgactt	cacctgtagc	cagatcagcc	ctgccgccat	tgccagcaac	1320
tgctacagca	gcctgatcct	ggactacttc	agctaccccc	tgagcatgaa	gtccgatctg	1380
agcgtgtcct	ccgccggacc	catcagccag	ttcaactaca	agcagagctt	cagcaaccct	1440
acctgcctga	ttctggccac	cgtgccccac	aatctgacca	ccatcaccaa	gcccctgaag	1500
tacagctaca	tcaacaagtg	cagcagactg	ctgtccgacg	accggaccga	agtgccccag	1560
ctcgtgaacg	ccaaccagta	cageceetge	gtgtccatcg	tgcccagcac	cgtgtgggag	1620
gacggcgact	actacagaaa	gcagctgagc	cccctggaag	geggeggatg	gctggtggct	1680
tctggaagca	cagtggccat	gaccgagcag	ctgcagatgg	gctttggcat	caccgtgcag	1740
tacggcaccg	acaccaacag	cgtgtgcccc	aagctggaat	tcgccaatga	caccaagatc	1800
gccagccagc	tgggaaactg	cgtggaatac	tccctgtatg	gcgtgtccgg	acggggcgtg	1860
ttccagaatt	gcacagcagt	gggagtgcgg	cagcagagat	tcgtgtacga	tgcctaccag	1920
aacctcgtgg	gctactacag	cgacgacggc	aattactact	gcctgcgggc	ctgtgtgtcc	1980
gtgcccgtgt	ccgtgatcta	cgacaaagag	acaaagaccc	acgccacact	gttcggctcc	2040
gtggcctgcg	agcacatcag	ctccaccatg	agccagtact	cccgctccac	ccggtccatg	2100
ctgaagcgga	gagatagcac	ctacggcccc	ctgcagacac	ctgtgggatg	tgtgctgggc	2160
ctcgtgaaca	getecetgtt	tgtggaagat	tgcaagctgc	ccctgggcca	gagcctgtgt	2220
gccctgccag	atacccctag	caccctgacc	cctagaagcg	tgegetetgt	gcccggcgaa	2280
atgeggetgg	cctctatcgc	cttcaatcac	cccatccagg	tggaccagct	gaactccagc	2340
tacttcaagc	tgagcatccc	caccaacttc	agetteggeg	tgacccagga	gtacatccag	2400
accacaatcc	agaaagtgac	cgtggactgc	aagcagtacg	tgtgcaacgg	ctttcagaag	2460
tgcgaacagc	tgctgcgcga	gtacggccag	ttctgcagca	agatcaacca	ggccctgcac	2520
ggcgccaacc	tgagacagga	tgacagcgtg	cggaacctgt	tegecagegt	gaaaagcagc	2580
cagtccagcc	ccatcatccc	tggettegge	ggcgacttta	acctgaccct	gctggaacct	2640
gtgtccatca	gcaccggctc	cagaagcgcc	agateegeea	tegaggaeet	gctgttcgac	2700
aaagtgacca	ttgccgaccc	cggctacatg	cagggctacg	acgattgcat	gcagcagggc	2760
ccagccagcg	ccagggatct	gatetgtgee	cagtatgtgg	ccggctacaa	ggtgctgccc	2820
cccctgatgg	acgtgaacat	ggaagccgcc	tacacctcca	geetgetggg	ctctattgct	2880
ggcgtgggat	ggacagccgg	cctgtctagc	tttgccgcca	tecetttege	ccagagcatc	2940
ttctaccggc	tgaacggcgt	gggcatcaca	caacaggtgc	tgagcgagaa	ccagaagctg	3000
atcgccaaca	agtttaacca	ggcactgggc	gccatgcaga	ccggcttcac	caccaccaac	3060
gaggccttca	gaaaggtgca	ggacgccgtg	aacaacaacg	cccaggctct	gagcaagctg	3120
gcctccgagc	tgagcaatac	cttcggcgcc	atcagcgcct	ccatcggcga	catcatccag	3180
cggctggacg	tgctggaaca	ggacgcccag	atcgaccggc	tgatcaacgg	cagactgacc	3240
accctgaacg	ccttcgtggc	acagcagctc	gtgcggagcg	aatctgccgc	tetgtetget	3300
cagetggeea	aggacaaagt	gaacgagtgc	gtgaaggccc	agtccaagcg	gagcggcttt	3360

tgtggccagg	gcacccacat	cgtgtcctt	c gtcgtga	atg ccccc	aacgg c	ctgtacttt	3420
atgcacgtgg	gctattacco	cagcaacca	c atcgagg	tgg tgtcc	gccta to	ggcctgtgc	3480
gacgccgcca	atcctaccaa	ctgtatcgc	c cccgtga	acg gctac	ttcat ca	aagaccaac	3540
aacacccgga	tegtggaega	ı gtggtccta	ıc acaggca	gca gcttc	tacgc co	cccgagccc	3600
atcacctccc	tgaacaccaa	atacgtggc	c ccccaag	tga catac	cagaa ca	atctccacc	3660
aacctgcccc	ctccactgct	gggaaatto	c accggca	tcg acttc	cagga c	gagetggae	3720
gagttcttca	agaacgtgtc	cacctccat	c cccaact	tcg gcago	ctgac co	cagatcaac	3780
accactctgc	tggacctgac	: ctacgagat	g ctgtccc	tgc aacag	gtcgt ga	aaagccctg	3840
aacgagagct	acatcgacct	gaaagagct	g gggaact	aca cctac	tacaa ca	aagtggcct	3900
tggtacattt	ggctgggctt	tatcgccgg	e ctggtgg	ccc tggcc	ctgtg c	gtgttcttc	3960
atcctgtgct	gcaccggctg	g cggcaccaa	ıt tgcatgg	gca agctg	aaatg ca	aaccggtgc	4020
tgcgacagat	acgaggaata	cgacctgga	a cctcaca	aag tgcat	gtgca c		4071
<210> SEQ <211> LENG <212> TYPE <213> ORGA <400> SEQU	TH: 1353 : PRT NISM: Middl	.e East res	piratory	syndrome	coronav:	irus	
	s Ser Val F	he Leu Leu	Met Phe	Leu Leu T	hr Pro '	Thr Glu	
1	5	ne neu neu	10	nea nea 1		15	
Ser Tyr Va	l Asp Val 0 20	Sly Pro Asp	Ser Val : 25	Lys Ser A	la Cys : 30	Ile Glu	
Val Asp II 35	e Gln Gln T	Thr Phe Phe 40	Aap Lya	Thr Trp P 4	_	Pro Ile	
Asp Val Se 50	r Lys Ala <i>A</i>	Asp Gly Ile 55	e Ile Tyr	Pro Gln G 60	ly Arg '	Thr Tyr	
Ser Asn Il 65	e Thr Ile T	Thr Tyr Glr 70	_	Phe Pro T 75	yr Gln (	Gly Asp 80	
His Gly As	p Met Tyr V 85	al Tyr Ser	Ala Gly :	His Ala T	_	Thr Thr 95	
Pro Gln Ly	s Leu Phe V 100	al Ala Asr	Tyr Ser	Gln Asp V	al Lys (	Gln Phe	
Ala Asn Gl	y Phe Val V 5	al Arg Ile 120	_		sn Ser 5 25	Thr Gly	
Thr Val II	e Ile Ser E	ro Ser Thr 135	Ser Ala	Thr Ile A	rg Lys :	Ile Tyr	
Pro Ala Ph 145	e Met Leu 0 1	Sly Ser Ser .50	_	Asn Phe S 155	er Asp (	Gly Lys 160	
Met Gly Ar	g Phe Phe A 165	Asn His Thr	Leu Val	Leu Leu P	_	Gly Cys 175	
Gly Thr Le	u Leu Arg A 180	ala Phe Tyr	Cys Ile 1	Leu Glu P	ro Arg s	Ser Gly	
Asn His Cy 19	s Pro Ala 0 5	Gly Asn Ser 200	-		la Thr :	Tyr His	
Thr Pro Al	a Thr Asp (	Cys Ser Asp 215	Gly Asn	Tyr Asn A 220	rg Asn A	Ala Ser	
Leu Asn Se 225	r Phe Lys C	Glu Tyr Phe 330		Arg Asn C 235	ys Thr l	Phe Met 240	
	r Asn Ile T				ro Phe (		
-1	245		250		_	255	

Thr	Gln	Thr	Ala	Gln	Gly	Val	His	Leu	Phe	Ser	Ser	Arg	Tyr	Val	Asp
_			260					265			_	_	270		
Leu	Tyr	Gly 275	Gly	Asn	Met	Phe	Gln 280	Phe	Ala	Thr	Leu	Pro 285	Val	Tyr	Asp
Thr	Ile 290	Lys	Tyr	Tyr	Ser	Ile 295	Ile	Pro	His	Ser	Ile 300	Arg	Ser	Ile	Gln
Ser 305	Asp	Arg	ГÀа	Ala	Trp 310	Ala	Ala	Phe	Tyr	Val 315	Tyr	ГÀа	Leu	Gln	Pro 320
Leu	Thr	Phe	Leu	Leu 325	Asp	Phe	Ser	Val	Asp 330	Gly	Tyr	Ile	Arg	Arg 335	Ala
Ile	Asp	Cys	Gly 340	Phe	Asn	Asp	Leu	Ser 345	Gln	Leu	His	CAa	Ser 350	Tyr	Glu
Ser	Phe	Asp 355	Val	Glu	Ser	Gly	Val 360	Tyr	Ser	Val	Ser	Ser 365	Phe	Glu	Ala
ГÀв	Pro 370	Ser	Gly	Ser	Val	Val 375	Glu	Gln	Ala	Glu	Gly 380	Val	Glu	Cys	Asp
Phe 385	Ser	Pro	Leu	Leu	Ser 390	Gly	Thr	Pro	Pro	Gln 395	Val	Tyr	Asn	Phe	Lys 400
Arg	Leu	Val	Phe	Thr 405	Asn	CÀa	Asn	Tyr	Asn 410	Leu	Thr	ГÀв	Leu	Leu 415	Ser
Leu	Phe	Ser	Val 420	Asn	Asp	Phe	Thr	Cys 425	Ser	Gln	Ile	Ser	Pro 430	Ala	Ala
Ile	Ala	Ser 435	Asn	CAa	Tyr	Ser	Ser 440	Leu	Ile	Leu	Asp	Tyr 445	Phe	Ser	Tyr
Pro	Leu 450	Ser	Met	ГÀа	Ser	Asp 455	Leu	Ser	Val	Ser	Ser 460	Ala	Gly	Pro	Ile
Ser 465	Gln	Phe	Asn	Tyr	Lys 470	Gln	Ser	Phe	Ser	Asn 475	Pro	Thr	Cys	Leu	Ile 480
Leu	Ala	Thr	Val	Pro 485	His	Asn	Leu	Thr	Thr 490	Ile	Thr	ГÀа	Pro	Leu 495	Lys
Tyr	Ser	Tyr	Ile 500	Asn	Lys	CAa	Ser	Arg 505	Leu	Leu	Ser	Asp	Asp 510	Arg	Thr
Glu	Val	Pro 515	Gln	Leu	Val	Asn	Ala 520	Asn	Gln	Tyr	Ser	Pro 525	CÀa	Val	Ser
Ile	Val 530	Pro	Ser	Thr	Val	Trp 535	Glu	Asp	Gly	Asp	Tyr 540	Tyr	Arg	ràa	Gln
Leu 545	Ser	Pro	Leu	Glu	Gly 550	Gly	Gly	Trp	Leu	Val 555	Ala	Ser	Gly	Ser	Thr 560
Val	Ala	Met	Thr	Glu 565	Gln	Leu	Gln	Met	Gly 570	Phe	Gly	Ile	Thr	Val 575	Gln
Tyr	Gly	Thr	Asp 580	Thr	Asn	Ser	Val	Cys 585	Pro	Lys	Leu	Glu	Phe 590	Ala	Asn
Asp	Thr	Lys 595	Ile	Ala	Ser	Gln	Leu 600	Gly	Asn	Cys	Val	Glu 605	Tyr	Ser	Leu
Tyr	Gly 610	Val	Ser	Gly	Arg	Gly 615	Val	Phe	Gln	Asn	Cys 620	Thr	Ala	Val	Gly
Val 625	Arg	Gln	Gln	Arg	Phe 630	Val	Tyr	Asp	Ala	Tyr 635	Gln	Asn	Leu	Val	Gly 640
Tyr	Tyr	Ser	Asp	Asp 645	Gly	Asn	Tyr	Tyr	Сув 650	Leu	Arg	Ala	СЛа	Val 655	Ser
Val	Pro	Val	Ser 660	Val	Ile	Tyr	Asp	Lys 665	Glu	Thr	Lys	Thr	His 670	Ala	Thr

Leu	Phe	Gly 675	Ser	Val	Ala	CÀa	Glu 680	His	Ile	Ser	Ser	Thr 685	Met	Ser	Gln
Tyr	Ser 690		Ser	Thr	Arg	Ser 695	Met	Leu	Lys	Arg	Arg 700		Ser	Thr	Tyr
Gly 705		Leu	Gln	Thr	Pro 710	Val	Gly	CAa	Val	Leu 715	_	Leu	Val	Asn	Ser 720
Ser	Leu	Phe	Val	Glu 725	Asp	CÀa	Lys	Leu	Pro 730	Leu	Gly	Gln	Ser	Leu 735	Сув
Ala	Leu	Pro	Asp 740		Pro	Ser	Thr	Leu 745	Thr	Pro	Arg	Ser	Val 750	Arg	Ser
Val	Pro	Gly 755		Met	Arg	Leu	Ala 760		Ile	Ala	Phe	Asn 765	His	Pro	Ile
Gln	Val 770		Gln	Leu	Asn	Ser 775	Ser	Tyr	Phe	Lys	Leu 780		Ile	Pro	Thr
Asn 785	Phe	Ser	Phe	Gly	Val 790	Thr	Gln	Glu	Tyr	Ile 795	Gln	Thr	Thr	Ile	Gln 800
Lys	Val	Thr	Val	Asp		ГÀа	Gln	Tyr	Val 810		Asn	Gly	Phe	Gln 815	Lys
CÀa	Glu	Gln	Leu 820	Leu	Arg	Glu	Tyr	Gly 825	Gln	Phe	CAa	Ser	830 TÀa	Ile	Asn
Gln	Ala	Leu 835		Gly	Ala	Asn	Leu 840		Gln	Asp	Asp	Ser 845	Val	Arg	Asn
Leu	Phe 850	Ala	Ser	Val	Lys	Ser 855	Ser	Gln	Ser	Ser	Pro 860		Ile	Pro	Gly
Phe 865	Gly	Gly	Asp	Phe	Asn 870	Leu	Thr	Leu	Leu	Glu 875		Val	Ser	Ile	Ser 880
Thr	Gly	Ser	Arg	Ser 885	Ala	Arg	Ser	Ala	Ile 890	Glu	Asp	Leu	Leu	Phe 895	Asp
Lys	Val	Thr	Ile 900	Ala	Asp	Pro	Gly	Tyr 905	Met	Gln	Gly	Tyr	Asp 910	Asp	Сла
Met	Gln	Gln 915	Gly	Pro	Ala	Ser	Ala 920		Asp	Leu	Ile	Сув 925	Ala	Gln	Tyr
Val	Ala 930		Tyr	Lys	Val	Leu 935	Pro	Pro	Leu	Met	Asp 940		Asn	Met	Glu
Ala 945	Ala	Tyr	Thr	Ser	Ser 950	Leu	Leu	Gly	Ser	Ile 955	Ala	Gly	Val	Gly	Trp 960
Thr	Ala	Gly	Leu		Ser							Ala	Gln	Ser 975	Ile
Phe	Tyr	Arg	Leu 980	Asn	Gly	Val	Gly	Ile 985	Thr	Gln	Gln	Val	Leu 990	Ser	Glu
Asn	Gln	Lys 995	Leu	Ile	Ala	Asn	Lys 1000		e Ası	n Gl	n Al	a Le 10		ly A	la Met
Gln	Thr 1010	-	/ Phe	e Thi	r Thi	Th:		sn G	Lu A	la P		rg 020	ràa /	Val (	3ln
Asp	Ala 1025		l Asr	n Asr	n Asr	n Ala 103		ln A	La Le	eu S		ys 035	Leu A	Ala S	Ger
Glu	Leu 1040		: Asr	n Thi	r Phe	e Gly		la I	Le Se	er A		er 050	Ile (	Gly A	Asp
Ile	Ile 1055		n Arg	g Let	ı Asp	Va:		∋u Gi	Lu G	ln A	-	la 065	Gln I	Ile A	Aap
Arg	Leu 1070		e Asr	n Gly	/ Arg	J Let 107		nr Tl	ır Le	eu A		la 080	Phe V	Val A	Ala
Gln	Gln	Let	ı Val	l Arç	g Sei	Glu	ı Se	er Al	La A	la L	eu S	er .	Ala (	Gln I	Leu

#### -continued

													COL	IL II.	iuec	1
1	085					109	90					1	095			
	_	Asp	Lys	Va:	l Asr			Хa	Val	Lys	Al			Ser	ГЛа	Arg
	_	Phe	Суя	Gly	y Glr	_		hr	His	Ile	· Va			Phe	Val	Val
		Pro	Asr	ı Gl	y Lei			he	Met	His	Va		_	Tyr	Tyr	Pro
		His	Ile	e Gli	u Val			er	Ala	Tyr	Gl	-		Cys	Asp	Ala
		Pro	Thi	: Ası	n Cys			.la	Pro	Val	Ası			Tyr	Phe	Ile
		Asn	Asr	Th:	r Arç			al	Asp	Glu	. Trj			Tyr	Thr	Gly
		Phe	Туг	Ala	a Pro			ro	Ile	Thr	Se:			Asn	Thr	Lys
		Ala	Pro	Gli	n Val			yr	Gln	Asn	. I1			Thr	Asn	Leu
		Pro	Leu	ı Leı	u Gly			er	Thr	Gly	11			Phe	Gln	Asp
		Asp	Glu	ı Phe	e Phe	_		.sn	Val	Ser	Th			Ile	Pro	Asn
	-	Ser	Leu	ı Th:	r Glr			.sn	Thr	Thr	Le			Asp	Leu	Thr
		Met	Leu	ı Se:	r Leı			ln	Val	Val	Ly			Leu	Asn	Glu
	_	Ile	Asp	Le:	u Lys			eu	Gly	Asn	ту			Tyr	Tyr	Asn
	_	Pro	Trp	ту:	r Ile			eu	Gly	Phe	: 11			Gly	Leu	Val
		Ala	Leu	ı Cyı	s Val			he	Ile	Leu	. Cy			Thr	Gly	Сув
-		Asn	Суя	Me1	t Gl;			eu	Lys	Cya	Ası		_	Cys	СЛа	Asp
		Glu	Glu	ι Ту:	r Asp			lu	Pro	His	Ly			His	Val	His
11 > 12 > 13 > 20 >	LEN TYP ORG FE	IGTH PE: I SANI: ATURI	: 13 PRT SM: E:	853 Art:			-			lype	•pti	de				
00>	SEÇ	QUEN(	CE:	25												
t I	le F	His :	Ser	Val 5	Phe	Leu	Leu	. Me			eu :	Ŀeu	Thr	: Pro	Thi 15	Glu
r T	yr V		-	Val	Gly	Pro	Asp			al L	iys :	Ser	Ala	a Cys 30	; Ile	e Glu
ıl A	-		Gln	Gln	Thr	Phe	Phe 40	As	рЬ	ys T	hr '	Гrр	Pro 45	› Arg	, Pro	lle
_		Ser 1	Lys	Ala	Asp	Gly 55	Ile	11	e T	yr P			Gly	7 Arg	j Thi	Tyr
	sn 1	[le '	Thr	Ile	Thr	Tyr	Gln	. Gl	у Ь			Pro	Tyr	: Glr	ı Gly	/ Asp
	a L 1 Gran A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A	1100  27 Gly 1115  28 Ala 1130  27 Asn 1145  28 Asn 1160  28 Thr 1175  29 Pro 1220  20 Leu 1235  20 Pro 1220  21 Leu 1235  22 Gly 1250  23 Trp 1280  24 Trp 1295  25 Trp 1280  26 Gly 1250  27 Glu 1265  28 Trp 1280  29 Trp 1295  30 Asn 310  30 SEC 311 > LEN 3130  31 Asn 32 Trp 33 Trp 34 Onc 32 Trp 33 Trp 34 Onc 35 Trp 36 Trp 37 Trp 38 Trp	a Lys Asp 1100  ar Gly Phe 1115  an Ala Pro 1130  ar Asn His 1145  an Asn Pro 1160  ar Ser Phe 1190  ar Val Ala 1205  ar Cly Pro Pro 1220  au Leu Asp 1235  ar Gly Ser 1250  au Leu Asp 1235  ar Tyr Ile 1280  ar Tyr Ile 1280  ar Tyr Glu Met 1265  ar Tyr Glu Ala 1310  ary Thr Asn 1325  ary Tyr Glu 1340  ary Thr Asn 1325  ary Tyr Val 1340  ary Tyr Val 1340  ary Tyr Val 135  ary Tyr Val 136  ary Tyr Val 137  ary Tyr Tyr Val 137  ary Tyr Tyr Val 137  ary Tyr Tyr Tyr Val 137  ary Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr T	a Lys Asp Lys 1100  ar Gly Phe Cys 1115  an Ala Pro Asr 1130  ar Asn His Ile 1145  an Asn Pro Thr 1160  ar Ser Phe Tyr 1190  ar Val Ala Pro Leu 1220  au Leu Asp Glu 1235  an Gly Ser Leu 1250  au Leu Asp Glu 1235  ar Tyr Ile Asp 1295  ar Tyr Ile Asp 1295  ar Tyr Ile Asp 1295  ar Tyr Jay 1295  ar Tyr Glu	a Lys Asp Lys Vailing  ar Gly Phe Cys Gly  an Ala Pro Asn Gly  an Ala Pro Asn Gly  an Asn His Ile Gly  an Asn Pro Thr Asn  an Asn Pro Try  an Leu Asp Glu Phe  an Leu Asp Glu Phe  an Leu Asp Leu  br Tyr Ile Asp Leu  and Leu Asp Leu  and Leu Asp Leu  and Leu Asp Leu  br Tyr Ile Asp Leu  and Leu Ala Leu Cyn  and Leu Ala Leu Cyn  and Leu Ala Leu Cyn  and Cys Men  and	a Lys Asp Lys Val Associated as a Lys and Asp Lys Gly Gly Gly 11115  and Ala Pro Asn Gly Let 1130  and Asn His Ile Glu Val 1145  and Asn Pro Thr Asn Cys 1160  and Asn Pro Thr Asn Cys 1160  and Asn Pro Thr Asn Cys 1160  and Asn Pro Thr Asn Cys 1120  and Leu Asp Glu Phe Phe 1235  and Gly Ser Leu Thr Glr 1250  and Leu Asp Glu Phe Phe 1235  and Gly Ser Leu Thr Glr 1250  and Leu Ala Leu Cys Val 1310  and Asn Cys Met Gly 1325  and Cys Thr Asn Cys Met Gly 1325  and Cys Type: PRT 1330  and Cys Type: PRT 1330  and Cys Type: PRT 1353  and Cys Type: PRT 135	Asp Lys Val Asn Glu 1100  Asp Lys Val Asn Glu 1115  Asp Cys Gly Gln Glu 1115  Asn Ala Pro Asn Gly Leu Tyn 1130  As Asn His Ile Glu Val Val 1145  Asn Asn Asn Thr Asn Cys Ile 1160  Thr Asn Asn Thr Arg Ile 1175  Asn Asn Asn Thr Arg Ile 1179  Ash Ala Pro Gln Val Thr 11205  Asp Cys He Tyr Ala Pro Glu 1120  Asp Glu Phe Phe Lys 1220  Asp Glu Phe Phe Lys 1226  Asp Glu Phe Phe Lys 1226  Asp Glu Phe Phe Lys 1226  Asp Cys He Leu Ser Leu Glr 1226  Asp Cys Tyr Ile Asp Leu Lys Glu 1226  Asp Tyr Ile Asp Leu Lys Glu 1226  Asp Tyr Tyr Ile Try 1225  Asp Cys Met Gly Lys 1330  Asp Tyr Glu Glu Tyr Asp Leu 1340  Asp Tyr Ser Val Phe Leu 500  Asp Tyr Glu Glu Tyr Asp Leu 1340  Asp Tyr Ser Val Phe Leu 500  Asp Tyr Val Asp Val Gly Pro 200  Al Asp Ile Gln Gln Thr Phe 35  Asp Val Ser Lys Ala Asp Gly 50  Asp Val Ser Lys Ala Asp Gly 50	As Lys Asp Lys Val Asn Glu C 1100    As Gly Phe Cys Gly Gln Gly T 1115    As Asn His Ile Glu Val Val S 1145    As Asn Pro Thr Asn Cys Ile A 1165    As Asn Pro Thr Asn Cys Ile A 1165    As Asn Pro Thr Asn Cys Ile A 1165    As Thr Asn Asn Thr Arg Ile V 1175    As Asn Pro Gln Val Thr T 1205    As Asn Pro Leu Leu Gly Asn S 1220    As Be Glu Phe Phe Lys A 1235    As Glu Met Leu Ser Leu Gln G 1265    As Try Ile Asp Leu Lys Glu L 1285    As Try Ile Asp Leu Lys Glu L 1285    As Try Ile Asp Leu Lys Glu L 1285    As Try Glu Glu Tyr Asp Leu G 1340    As Try Glu Glu Tyr Asp Leu G 1340    As Try Glu Glu Tyr Asp Leu G 1340    As Try Glu Glu Tyr Asp Leu G 1340    As Try Glu Glu Tyr Asp Leu G 1340    As Try Thr Asn Cys Met Gly Lys L 1325    As Try Glu Glu Tyr Asp Leu G 1340    As Try Glu Glu Tyr Asp Leu G 1340    As Try Glu Glu Tyr Asp Leu G 1345    As Try Chr Asn Cys Met Gly Lys L 1325    As Try Glu Glu Tyr Asp Leu G 1345    As Try Chr Asp Val Gly Pro Asp Lou SeQUENCE: 25    As Ile His Ser Val Phe Leu Leu Ser Tyr Val Asp Val Gly Pro Asp Lou Sequence: 25    As Ile Gln Gln Thr Phe Phe 35    As Try Val Asp Val Gly Pro Asp Lou Ser Tyr Val Asp Val Gly Pro Asp Lou Ser Tyr Val Asp Val Gly Pro Asp Lou Ser Tyr Val Asp Val Gly Pro Asp Lou Ser Asn Ile Thr Ile Thr Tyr Gln Thr Tyr Gln Thr Tyr Asn Ile Thr Ile Thr Tyr Gln Tyr Tyr Ile	As Lys Asp Lys Val Asn Glu Cys 1100   Thr 1115   Thr 1120   Thr 1115   Thr 1120   Thr 1115   Thr 1120   Thr 1115   Thr 1120   Thr 1135   Thr 11	La Lys Asp Lys Val Asn Glu Cys Val 1100 Phe Cys Gly Gln Gly Thr His 1115 Phe Met 1130 Phe Cys Gly Gln Gly Thr His 1115 Phe Met 1130 Phe Asn Gly Leu Tyr Phe Met 1130 Pro Asn Gly Leu Tyr Phe Met 1130 Pro Thr Asn Cys Ile Ala Pro 1165 Pro Thr Asn Cys Ile Ala Pro 1165 Pro Thr Asn Asn Thr Arg Ile Val Asp 1175 Pro Thr Asn Pro Glu Pro Ile 1190 Pro Pro Leu Leu Gly Asn Ser Thr 1220 Pro Leu Leu Gly Asn Ser Thr 1220 Pro Leu Leu Gly Asn Ser Thr 1250 Pro Pro Leu Leu Gly Asn Ser Thr 1250 Pro Pro Leu Leu Gly Asn Pro Glu Pro Ile 1265 Pro Try Ile Asp Leu Gln Gln Val 1265 Pro Try Ile Asp Leu Gln Gln Val 1285 Pro Try Ile Asp Leu Lys Glu Leu Gly 1285 Pro Try Ile Asp Leu Lys Glu Leu Gly 1285 Pro Try Ile Asp Leu Lys Glu Leu Gly 1310 Pro Ile 1310 Pro Ile 1315 Pro Ile	a Lys Asp Lys Val Asn Glu Cys Val Lys 1100  ar Gly Phe Cys Gly Gln Gly Thr His Ile 1115  ar Gly Phe Cys Gly Gln Gly Thr His Ile 1120  an Ala Pro Asn Gly Leu Tyr Phe Met His 1130  ar Asn His Ile Glu Val Val Ser Ala Tyr 1145  ar Asn His Ile Glu Val Val Ser Ala Tyr 1145  ar Asn Pro Thr Asn Cys Ile Ala Pro Val 1160  ar Ser Phe Tyr Ala Pro Glu Pro Ile Thr 1190  ar Val Ala Pro Gln Val Thr Tyr Gln Asn 1205  ar Val Ala Pro Gln Val Thr Tyr Gln Asn 1205  ar Cys Pro Pro Leu Leu Gly Asn Ser Thr Gly 1220  ar Leu Asp Glu Phe Phe Lys Asn Val Ser 1235  ar Glu Met Leu Ser Leu Gln Gln Val Val 1265  ar Tyr Ile Asp Leu Lys Glu Leu Gly Asn 1280  ar Tyr Ile Asp Leu Lys Glu Leu Gly Asn 1280  ar Trp Pro Trp Tyr Ile Trp Leu Gly Phe 1300  ar Leu Ala Leu Cys Val Phe Phe Ile Leu 1310  ar Tyr Glu Glu Tyr Asp Leu Glu Pro His 1340  ar Tyr Glu Glu Tyr Asp Leu Glu Pro His 1340  ar Tyr Glu Glu Tyr Asp Leu Glu Pro His 1340  ar Tyr Glu Glu Tyr Asp Leu Glu Pro His 1340  ar Tyr Ser Val Phe Leu Leu Met Phe Leu Farther Information: Synthetic Polype 100   ar Tyr Val Asp Val Gly Pro Asp Ser Val Leu Cys Tyr Tyr Val Asp Val Gly Pro Asp Ser Val Leu Cys Tyr Tyr Val Asp Val Gly Pro Asp Ser Val Leu Cys Tyr Tyr Val Asp Val Gly Pro Asp Ser Val Leu Cys Val Ser Lys Ala Asp Gly Ile Ile Tyr Pro Tyr Tyr Gln Gly Leu Pro Asp Ile Thr Ile Thr Tyr Gln Gly Leu Pro Asp Ile Thr Ile Thr Tyr Gln Gly Leu Pro Asp Ile Thr Ile Thr Tyr Gln Gly Leu Pro Asp Ile Thr Ile Thr Tyr Gln Gly Leu Pro Asp Ile Thr Ile Thr Tyr Gln Gly Leu Pro Asp Ile Thr Ile Thr Tyr Gln Gly Leu Pro Asp Ile Thr Ile Thr Tyr Gln Gly Leu Pro Asp Ile Thr Ile Thr Tyr Gln Gly Leu Pro Asp Ile Thr Ile Thr Tyr Gln Gly Leu Pro Asp Ile Thr Ile Thr Tyr Gln Gly Leu Pro Asp Ile Thr Ile Thr Tyr Gln Gly Leu Pro Asp Ile Thr Ile Thr Tyr Gln Gly Leu Pro Asp Ile Thr Ile Thr Tyr Gln Gly Leu Pro Asp Ile Thr Ile Thr Tyr Gln Gly Leu Pro Asp Ile Thr Ile Thr Tyr Gln Gly Leu Pro Asp Ile Thr Ile Thr Tyr Gln Gly Leu Pro Asp Ile Thr Ile Thr Ile Thr Tyr Gln Gly Leu Pro Asp Ile Thr Ile Thr Tyr Gln Gly Leu Pro Asp Ile Thr Ile Thr Tyr Gln Gly	a. Lys Asp Lys Val Asn Glu Cys Val Lys Ala 1100  To Gly Phe Cys Gly Gln Gly Thr His Ile Val 1115  The Asn Asn Gly Leu Tyr Phe Met His Val 1130  The Asn His Ile Glu Val Val Ser Ala Tyr Gly 1145  The Asn Asn Fro Thr Asn Cys Ile Ala Pro Val Ass 1160  The Asn Asn Thr Arg Ile Val Asp Glu Try 1175  The Ser Phe Tyr Ala Pro Glu Pro Ile Thr Ser 1190  The Val Ala Pro Gln Val Thr Tyr Gln Asn Ile 1210  The Pro Pro Leu Leu Gly Asn Ser Thr Gly Ile 1220  The Asp Glu Phe Phe Lys Asn Val Ser Thr 1220  The Gly Ser Leu Thr Gln Ile Asn Thr Thr Leu 1250  The Gly Ser Leu Thr Gln Ile Asn Thr Thr Leu 1250  The Tyr Ile Asp Leu Lys Glu Leu Gly Asn Tyr 1280  The Tyr Ile Asp Leu Lys Glu Leu Gly Phe Ile 1295  The Tyr Ile Asp Leu Lys Glu Leu Gly Phe Ile 1310  The Tyr Glu Glu Tyr Asp Leu Glu Pro His Lys 1315  The Tyr Glu Glu Tyr Asp Leu Glu Pro His Lys 1325  Typ Gry Glu Glu Tyr Asp Leu Glu Pro His Lys 1330  The Sec ID No 25  Typ Glu Glu Tyr Asp Leu Glu Pro His Lys 1330  Typ Glu Glu Tyr Asp Leu Glu Pro His Lys 1330  Typ Glu Glu Tyr Asp Leu Glu Pro His Lys 1330  Typ Glu Glu Tyr Asp Leu Glu Pro His Lys 1330  Typ Glu Glu Tyr Asp Leu Glu Pro His Lys 1330  Typ Glu Glu Tyr Asp Leu Glu Pro His Lys 1330  Typ Glu Glu Tyr Asp Leu Leu Met Phe Leu 1330  Typ Glu Glu Tyr Asp Leu Leu Met Phe Leu 1330  Typ Glu Glu Tyr Asp Leu Leu Met Phe Leu 1330  Typ Glu Glu Tyr Asp Ser Val Lys 1345  Typ Tyr Val Asp Val Gly Pro Asp Ser Val Lys 1345  Typ Val Ser Lys Ala Asp Gly Ile Ile Tyr Pro 1350  The Tyr Val Asp Val Gly Pro Asp Ser Val Lys 1350  Typ Val Ser Lys Ala Asp Gly Ile Ile Tyr Pro 1550  The Asn Ile Thr Ile Thr Tyr Gln Gly Leu Phe Ile 1550	1085 1090 1.  1086 1000 1000 1000 1000 1000 1000 1000	1085 1090 1095  a Lys Asp Lys Val Asn Glu Cys Val Lys Ala Gln Gly Thr His Ile Val Ser 1115  ar Gly Phe Cys Gly Gln Gly Thr His Ile Val Ser 1120  an Ala Pro Asn Gly Leu Tyr 1135  an Ala Pro Asn Gly Leu Tyr 1145  an Asn His Ile Glu Val Val Ser Ala Tyr Gly Leu 1145  an Asn Pro Thr Asn Cys Ile Ala Pro Val Asn Gly 1160  an Asn Pro Thr Asn Cys Ile Ala Pro Val Asn Gly 1160  an Asn Pro Thr Asn Cys Ile Ala Pro Val Asn Gly 1160  an Asn Pro Thr Asn Cys Ile Ala Pro Val Asn Gly 1160  an Asn Pro Thr Asn Cys Ile Ala Pro Glu Trp Ser 1175  an Asn Asn Asn Thr Arg Ile Val Asp Glu Trp Ser 1185  ar Ser Phe Tyr Ala Pro Glu Pro Ile Thr Ser Leu 1190  ar Val Ala Pro Gln Val Thr Tyr Gln Asn Ile Ser 1200  ar Val Ala Pro Gln Val Thr Tyr Gln Asn Ile Ser 1225  an Leu Asp Glu Phe Phe Lys Asn Val Ser Thr Ser 1245  an Leu Asp Glu Phe Phe Lys Asn Val Ser Thr Ser 1245  and Leu Asp Glu Phe Phe Lys Asn Val Ser Thr Ser 1245  and Leu Asp Glu Phe Phe Lys Asn Thr Thr Leu Leu 1255  ar Tyr Ile Asp Leu Lys Glu Leu Gly Asn Tyr Thr 1280  ar Glu Met Leu Ser Leu Gln Gln Val Val Lys Ala 1265  ar Tyr Ile Asp Leu Lys Glu Leu Gly Asn Tyr Thr 1280  ar Tyr Ile Asp Leu Lys Glu Leu Gly Phe Ile Ala 1300  a. Leu Ala Leu Cys Val Phe Phe Ile Leu Cys Cys 1315  ar Tyr Glu Glu Tyr Asp Leu Glu Pro His Lys Val 1310  ar Tyr Glu Glu Tyr Asp Leu Glu Pro His Lys Val 1330  ar Tyr Glu Glu Tyr Asp Leu Glu Pro His Lys Val 1330  ar Tyr Ser PRT Information: Synthetic Polypeptide  ar Tyr Val Asp Val Gly Pro Asp Ser Val Lys Ser Ala 20  ar Tyr Val Asp Val Gly Pro Asp Ser Val Lys Ser Ala 20  ar Asn Ile Thr Ile Thr Tyr Gln Gly Leu Phe Pro Tyr 45  ar Asn Ile Thr Ile Thr Tyr Gln Gly Leu Phe Pro Tyr 50  ar Asn Ile Thr Ile Thr Tyr Gln Gly Leu Phe Pro Tyr 50  ar Asn Ile Thr Ile Thr Tyr Gln Gly Leu Phe Pro Tyr 50  ar Asn Ile Thr Ile Thr Tyr Gln Gly Leu Phe Pro Tyr 50  ar Asn Ile Thr Ile Thr Tyr Gln Gly Leu Phe Pro Tyr 50  ar Asn Ile Thr Ile Thr Tyr Gln Gly Leu Phe Pro Tyr 50  ar Asn Ile Thr Ile Thr Tyr Gln Gly Leu Phe Pro Tyr 50  ar Asn Ile Thr Ile Thr Tyr Gln Gly Leu Phe Pro Tyr 50  ar Asn Ile	1085 1090 1095 1095 1106 1106 1106 1107 1110	La Lys Asp Lys Val Asn Glu Cys Val Lys Ala Gln Ser Lys 1100    1110

His Gly Asp Met Tyr Val Tyr Ser Ala Gly His Ala Thr Gly Thr Thr

_				85					90					95	
Pro	Gln	Lys	Leu 100		Val	Ala	Asn	Tyr 105		Gln	Asp	Val	Lys 110		Phe
Ala	Asn	Gly 115	Phe	Val	Val	Arg	Ile 120	Gly	Ala	Ala	Ala	Asn 125	Ser	Thr	Gly
Thr	Val 130	Ile	Ile	Ser	Pro	Ser 135	Thr	Ser	Ala	Thr	Ile 140	Arg	Lys	Ile	Tyr
Pro 145	Ala	Phe	Met	Leu	Gly 150	Ser	Ser	Val	Gly	Asn 155	Phe	Ser	Asp	Gly	Lys 160
Met	Gly	Arg	Phe	Phe 165	Asn	His	Thr	Leu	Val 170	Leu	Leu	Pro	Asp	Gly 175	Cha
Gly	Thr	Leu	Leu 180	Arg	Ala	Phe	Tyr	Сув 185	Ile	Leu	Glu	Pro	Arg 190	Ser	Gly
Asn	His	Сув 195	Pro	Ala	Gly	Asn	Ser 200	Tyr	Thr	Ser	Phe	Ala 205	Thr	Tyr	His
Thr	Pro 210	Ala	Thr	Asp	CAa	Ser 215	Asp	Gly	Asn	Tyr	Asn 220	Arg	Asn	Ala	Ser
Leu 225	Asn	Ser	Phe	ГÀа	Glu 230	Tyr	Phe	Asn	Leu	Arg 235	Asn	CÀa	Thr	Phe	Met 240
Tyr	Thr	Tyr	Asn	Ile 245	Thr	Glu	Asp	Glu	Ile 250	Leu	Glu	Trp	Phe	Gly 255	Ile
Thr	Gln	Thr	Ala 260	Gln	Gly	Val	His	Leu 265	Phe	Ser	Ser	Arg	Tyr 270	Val	Asp
Leu	Tyr	Gly 275	Gly	Asn	Met	Phe	Gln 280	Phe	Ala	Thr	Leu	Pro 285	Val	Tyr	Asp
Thr	Ile 290	Lys	Tyr	Tyr	Ser	Ile 295	Ile	Pro	His	Ser	Ile 300	Arg	Ser	Ile	Gln
Ser 305	Asp	Arg	ГЛа	Ala	Trp 310	Ala	Ala	Phe	Tyr	Val 315	Tyr	ГÀа	Leu	Gln	Pro 320
Leu	Thr	Phe	Leu	Leu 325	Asp	Phe	Ser	Val	Asp 330	Gly	Tyr	Ile	Arg	Arg 335	Ala
Ile	Asp	Сув	Gly 340	Phe	Asn	Asp	Leu	Ser 345	Gln	Leu	His	CAa	Ser 350	Tyr	Glu
Ser	Phe	355	Val	Glu	Ser	Gly	Val 360	Tyr	Ser	Val	Ser	Ser 365	Phe	Glu	Ala
ГÀа	Pro 370	Ser	Gly	Ser	Val	Val 375	Glu	Gln	Ala	Glu	Gly 380	Val	Glu	Cha	Asp
Phe 385	Ser	Pro	Leu	Leu	Ser 390	Gly	Thr	Pro	Pro	Gln 395	Val	Tyr	Asn	Phe	Lys 400
Arg	Leu	Val	Phe	Thr 405	Asn	CAa	Asn	Tyr	Asn 410	Leu	Thr	Lys	Leu	Leu 415	Ser
Leu	Phe	Ser	Val 420	Asn	Asp	Phe	Thr	Cys 425	Ser	Gln	Ile	Ser	Pro 430	Ala	Ala
Ile	Ala	Ser 435	Asn	CAa	Tyr	Ser	Ser 440	Leu	Ile	Leu	Asp	Tyr 445	Phe	Ser	Tyr
Pro	Leu 450	Ser	Met	ГÀа	Ser	Asp 455	Leu	Ser	Val	Ser	Ser 460	Ala	Gly	Pro	Ile
Ser 465	Gln	Phe	Asn	Tyr	Lys 470	Gln	Ser	Phe	Ser	Asn 475	Pro	Thr	Сув	Leu	Ile 480
Leu	Ala	Thr	Val	Pro 485	His	Asn	Leu	Thr	Thr 490	Ile	Thr	Lys	Pro	Leu 495	Lys
Tyr	Ser	Tyr	Ile 500	Asn	Lys	Cys	Ser	Arg 505	Leu	Leu	Ser	Asp	Asp 510	Arg	Thr

Glu	Val	Pro 515	Gln	Leu	Val	Asn	Ala 520	Asn	Gln	Tyr	Ser	Pro 525	Сув	Val	Ser
Ile	Val 530	Pro	Ser	Thr	Val	Trp 535	Glu	Asp	Gly	Asp	Tyr 540	Tyr	Arg	Lys	Gln
Leu 545	Ser	Pro	Leu	Glu	Gly 550	Gly	Gly	Trp	Leu	Val 555	Ala	Ser	Gly	Ser	Thr 560
Val	Ala	Met	Thr	Glu 565	Gln	Leu	Gln	Met	Gly 570	Phe	Gly	Ile	Thr	Val 575	Gln
Tyr	Gly	Thr	Asp 580	Thr	Asn	Ser	Val	Cys 585	Pro	Lys	Leu	Glu	Phe 590	Ala	Asn
Asp	Thr	Lys 595	Ile	Ala	Ser	Gln	Leu 600	Gly	Asn	Cys	Val	Glu 605	Tyr	Ser	Leu
Tyr	Gly 610	Val	Ser	Gly	Arg	Gly 615	Val	Phe	Gln	Asn	Cys 620	Thr	Ala	Val	Gly
Val 625	Arg	Gln	Gln	Arg	Phe 630	Val	Tyr	Asp	Ala	Tyr 635	Gln	Asn	Leu	Val	Gly 640
Tyr	Tyr	Ser	Asp	Asp 645	Gly	Asn	Tyr	Tyr	650 Cys	Leu	Arg	Ala	CÀa	Val 655	Ser
Val	Pro	Val	Ser 660	Val	Ile	Tyr	Asp	Lys 665	Glu	Thr	Lys	Thr	His 670	Ala	Thr
Leu	Phe	Gly 675	Ser	Val	Ala	Cys	Glu 680	His	Ile	Ser	Ser	Thr 685	Met	Ser	Gln
Tyr	Ser 690	Arg	Ser	Thr	Arg	Ser 695	Met	Leu	Lys	Arg	Arg 700	Asp	Ser	Thr	Tyr
Gly 705	Pro	Leu	Gln	Thr	Pro 710	Val	Gly	Cys	Val	Leu 715	Gly	Leu	Val	Asn	Ser 720
Ser	Leu	Phe	Val	Glu 725	Asp	Cys	Lys	Leu	Pro 730	Leu	Gly	Gln	Ser	Leu 735	Cys
Ala	Leu	Pro	Asp 740	Thr	Pro	Ser	Thr	Leu 745	Thr	Pro	Arg	Ser	Val 750	Arg	Ser
Val	Pro	Gly 755	Glu	Met	Arg	Leu	Ala 760	Ser	Ile	Ala	Phe	Asn 765	His	Pro	Ile
Gln	Val 770	Asp	Gln	Leu	Asn	Ser 775	Ser	Tyr	Phe	Lys	Leu 780	Ser	Ile	Pro	Thr
Asn 785	Phe	Ser	Phe	Gly	Val 790	Thr	Gln	Glu	Tyr	Ile 795	Gln	Thr	Thr	Ile	Gln 800
Lys	Val	Thr	Val	Asp 805	Cys	Lys	Gln	Tyr	Val 810	Cys	Asn	Gly	Phe	Gln 815	Lys
Cys	Glu	Gln	Leu 820	Leu	Arg	Glu	Tyr	Gly 825	Gln	Phe	Cys	Ser	Lys 830	Ile	Asn
Gln	Ala	Leu 835	His	Gly	Ala	Asn	Leu 840	Arg	Gln	Asp	Asp	Ser 845	Val	Arg	Asn
Leu	Phe 850	Ala	Ser	Val	ГÀз	Ser 855	Ser	Gln	Ser	Ser	Pro 860	Ile	Ile	Pro	Gly
Phe 865	Gly	Gly	Asp	Phe	Asn 870	Leu	Thr	Leu	Leu	Glu 875	Pro	Val	Ser	Ile	Ser 880
Thr	Gly	Ser	Arg	Ser 885	Ala	Arg	Ser	Ala	Ile 890	Glu	Asp	Leu	Leu	Phe 895	Asp
Lys	Val	Thr	Ile 900	Ala	Asp	Pro	Gly	Tyr 905	Met	Gln	Gly	Tyr	Asp 910	Asp	Cys
Met	Gln	Gln 915	Gly	Pro	Ala	Ser	Ala 920	Arg	Asp	Leu	Ile	Сув 925	Ala	Gln	Tyr

Val	Ala 930	Gly	Tyr	Lys		Leu 935	Pro	Pro	o Le	eu M		sp Val	l Ası	n Met	Glu
Ala 945	Ala	Tyr	Thr		Ser 950	Leu	Leu	Gl:	y Se		le A 55	la Gly	y Val	l Gly	7 Trp 960
Thr	Ala	Gly	Leu	Ser 965	Ser	Phe	Ala	Ala		le P: 70	ro Pi	he Ala	a Gli	n Sei 975	
Phe	Tyr	Arg	Leu 980	Asn	Gly	Val	Gly	I10 98!		ır G	ln G	ln Val	l Let 990		r Glu
Asn	Gln	Lуs 995	Leu	Ile	Ala .		Lys 100		he <i>l</i>	Asn (	Gln .		eu (	Gly A	Ala Met
Gln	Thr 1010		Phe	Thr	Thr	Thr 101		en (	Glu	Ala	Phe	Gln 1020	_	Val	Gln
Asp	Ala 1025		. Asn	. Asn	ı Asn	Ala 103		ln i	Ala	Leu	Ser	Lys 1035	Leu	Ala	Ser
Glu	Leu 1040		Asn	Thr	Phe	Gly 104		La :	Ile	Ser	Ala	Ser 1050		Gly	Asp
Ile	Ile 1055		a Arg	Leu	. Asp	Val 106		eu (	Glu	Gln	Asp	Ala 1065	Gln	Ile	Asp
Arg	Leu 1070		e Asn	Gly	Arg	Leu 107		ır '	Thr	Leu	Asn	Ala 1080		Val	Ala
Gln	Gln 1085		ı Val	Arg	ser (	Glu 109		er i	Ala	Ala	Leu	Ser 1095	Ala	Gln	Leu
Ala	Lys 1100		Lys	Val	. Asn	Glu 110		/s \	Val	ГÀа	Ala	Gln 1110		Lys	Arg
Ser	Gly 1115		e Cys	Gly	Gln Gln	Gly 112		ır l	His	Ile	Val	Ser 1125	Phe	Val	Val
Asn	Ala 1130		Asn	Gly	Leu	Tyr 113		ne I	Met	His	Val	Gly 1140		Tyr	Pro
Ser	Asn 1145		: Ile	Glu	ı Val	Val 115		er i	Ala	Tyr	Gly	Leu 1155	Cys	Asp	Ala
Ala	Asn 1160		Thr	Asn	. Cys	Ile 116		La 1	Pro	Val	Asn	Gly 1170		Phe	Ile
Lys	Thr 1175		a Asn	Thr	Arg	Ile 118		al i	Asp	Glu	Trp	Ser 1185		Thr	Gly
Ser	Ser 1190		yr Tyr	Ala	Pro	Glu 119		ro :	Ile	Thr	Ser	Leu 1200	Asn	Thr	Lys
	Val 1205		Pro	Gln		Thr 121		/r (	Gln	Asn		Ser 1215		Asn	Leu
Pro	Pro 1220		Leu	Leu	Gly	Asn 122		er '	Thr	Gly	Ile	Asp 1230	Phe	Gln	Asp
Glu	Leu 1235	_	Glu	Phe	Phe	Lys 124		₹n '	Val	Ser	Thr	Ser 1245	Ile	Pro	Asn
Phe	Gly 1250		Leu	Thr	Gln	Ile 125		₹n '	Thr	Thr	Leu	Leu 1260	Asp	Leu	Thr
Tyr	Glu 1265		Leu	Ser	Leu	Gln 127		ln '	Val	Val	Lys	Ala 1275	Leu	Asn	Glu
Ser	Tyr 1280		e Asp	Leu	. Lys	Glu 128		eu (	Gly	Asn	Tyr	Thr 1290	Tyr	Tyr	Asn
Lys	Trp 1295		Trp	Tyr	Ile	Trp		eu (	Gly	Phe	Ile	Ala 1305	Gly	Leu	Val
Ala	Leu 1310		ı Leu	. Cys	Val	Phe		ne :	Ile	Leu	CAa	Cys 1320	Thr	Gly	CÀa
Gly	Thr	Asr	ı Cys	Met	Gly	Lys	Le	∍u l	Lys	Cys	Asn	Arg	Cys	Cys	Asp

Gly Val Thr Gln Glu Tyr Ile Gln Thr Thr Jhr Gln Lys Val Thr V 95  Asp Cys Lys Gln Tyr Val Cys Asn Gly Phe Gln Lys Cys Glu Gln Leu Arg Glu Thr Y Gly Gln Phe Cys Ser Lys Ile Asn Gln Ala Leu H 125  Gly Ala Asn Leu Arg Gln Asp Asp Asp Ser Val Arg Asn Leu Phe Ala S 130  Val Lys Ser Ser Gln Ser Ser Pro Ile Ile Pro Gly Phe Gly Gly Ala Ser Ala Ile Asn Leu Thr Leu Leu Glu Pro Val Ser Ile Ser Thr Gly Ser Ala Asp Asp Asp Leu Pro Ile Ile Pro Asp Lys Val Thr I Ile Ile Pro Asp Lys Val Thr Ile Ile Ile Pro Asp Lys Val Thr Ile Ile Ile Ile Pro Asp Lys Val Thr Ile Ile Ile Ile Ile Ile Ile Ser Thr Gly Ser Ala Asp Asp Leu Ile		1325 1330 1335														
1340		1325	5				133	30				13	335			
<pre> &lt;211&gt; LENGTH: 615 &lt;212&gt; TYPE: PRT </pre> <pre> 223&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Synthetic Polypeptide </pre> <pre> &lt;400&gt; SEQUENCE: 26  Met Ile His Ser Val Phe Leu Leu Met Phe Leu Cys Ala Leu Pro A 20</pre>	Arg	-		ı Glu	и Ту:	r Asl			Lu Pi	co Hi	is Ly			His V	/al I	His
Met         11e         His         Ser         Val         Phe         Leu         Leu         Met         Leu         Leu         Leu         Leu         Leu         Leu         Leu         Leu         Leu         Pho         Leu         Cys         Ala         Leu         Pho         Ala           Ser         Asp         Cys         Lys         Leu         Pho         Leu         Gly         Gln         Ser         Leu         Cys         Ala         Leu         Pho         Ala         Ser         Ala         Pho         Ala         Ala         Pho         Ala         Ala         Pho         Ala	<211 <212 <213 <220	L> LE 2> TY 3> OF 0> FE	ENGTI YPE : RGAN EATUI	H: 61 PRT ISM: RE:	15 Art:			_		oly <u>r</u>	pept:	ide				
1	< 400	O> SI	EQUEI	ICE :	26											
The Pro   Ser   The Leu   The Pro   Arg   Ser   Val   Arg   Ser   Ser   Ser   Ser   Tyr   Phe   Lys   Leu   Ser   Ile   Ser   The Ser   Ser   Ser   Ser   Tyr   Phe   Lys   Leu   Ser   Ile   Ser   The Ser   Se		Ile	His	Ser		Phe	Leu	Leu	Met		Leu	Leu	Thr	Pro		Glu
Met       Arg       Leu       Ala       Ser       Ile       Ala       Phe       Asn       His       Pro       Ile       Gln       Val       Asp       G         Leu       Asn       Ser       Ser       Tyr       Phe       Lys       Leu       Ser       Ile       Pro       Thr       Asn       Phe       Ser       Phe       Lys       Ile       Pro       Thr       Asn       Phe       Gln       Lys       Cys       Glu       Gln       Lys       Phe       Gln       Lys       Cys       Glu       Gln       Lys       Ile       Asn       Lys       Cys       Glu       Gln       Lys       Lys       Ile       Hys       Ile       Asn       Leu       Hys       Ile	Ser	Asp	CÀa		Leu	Pro	Leu	Gly		Ser	Leu	CÀa	Ala		Pro	Asp
50	Thr	Pro		Thr	Leu	Thr	Pro		Ser	Val	Arg	Ser		Pro	Gly	Glu
65	Met	_	Leu	Ala	Ser	Ile		Phe	Asn	His	Pro		Gln	Val	Asp	Gln
Asp       Cys       Lys       Gln       Tyr       Val       Cys       Asn       Gly       Phe       Gln       Lys       Cys       Glu       Gln       Lu         Leu       Arg       Glu       Tyr       Gly       Gln       Phe       Cys       Ser       Lys       Ile       Asn       Glu       Ala       Leu       H         Gly       Ala       Asn       Leu       Arg       Gln       Asp       Asp       Ser       Val       Arg       Asn       Leu       H       Ala       Asp       Asp       Leu       Val       Arg       Asn       Leu       H       Ala       And       Intervention       And       Intervention       And       Intervention		Asn	Ser	Ser	Tyr		ГЛа	Leu	Ser	Ile		Thr	Asn	Phe	Ser	Phe 80
Leu Arg Glu Tyr Gly Gln Phe Cys Ser Lys Ile Asn Gln Ala Leu H Gly Ala Asn Leu Arg Gln Ser Ser Pro Ile Ile Pro Gly Phe Gly Gly Ala 130 Leu Gly Ala Lys Ser Ser Gln Ser Ser Pro Ile Ile Pro Gly Phe Gly Gly Ala 145 Leu Thr Leu Leu Glu Pro Val Ser Ile Ser Thr Gly Ser Ala 180 Asn Leu Thr Leu Leu Glu Pro Val Ser Ile Ser Thr Gly Ser Ala 180 Asn	Gly	Val	Thr	Gln		Tyr	Ile	Gln	Thr		Ile	Gln	ГÀа	Val		Val
115	Asp	Cha	ГÀз		Tyr	Val	CÀa	Asn		Phe	Gln	ГÀв	CAa		Gln	Leu
130	Leu	Arg		Tyr	Gly	Gln	Phe		Ser	Lys	Ile	Asn		Ala	Leu	His
145       150       155       1         Phe Asn Leu Thr Leu 165       Leu Glu Pro Val Ser 11e Ser Thr Gly Ser Arching 175         Ser Ala Arg Ser Ala Ile Glu Asp Leu Leu Leu Phe Asp Lys Val Thr Ingornal         Ala Asp Pro Gly Tyr Met 195         Pro Ala Ser Ala Arg Arg Asp Leu Ile Cys Ala Gln Tyr Val Ala Gly Tyr 200         Pro Ala Ser Ala Arg Arg Asp Leu Ile Cys Ala Gln Tyr Val Ala Gly Tyr 225         Ser Ser Leu Leu Gly Ser Ile Ala Gly Val Gly Trp Thr Ala Gly Leu Cys Ser Ser Phe Ala Ala Ile Pro Phe Ala Gln Ser Ile Phe Tyr Arg Leu Cys Ser Ser Phe Ala Ala Ile Pro Phe Ala Gln Ser Ile Phe Tyr Arg Leu Cys Cys Cys Cys Met Cys Dyn Tyr Arg Leu Cys	Gly		Asn	Leu	Arg	Gln	_	Asp	Ser	Val	Arg		Leu	Phe	Ala	Ser
Ser Ala Arg       Ser Ala Ile       Glu       Asp       Leu       Leu       Phe       Asp       Lys       Val       Thr       Info         Ala Asp       Pro       Gly       Tyr       Asp       Leu       Phe       Asp       Lys       Val       Thr       Info         Ala Asp       Pro       Gly       Tyr       Met       Gln       Gly       Tyr       Asp       Cys       Met       Gln       Gln       Gln       Gln       Gln       Gly       Tyr       T         Lys       Val       Leu       Pro       Pro       Leu       Met       Asp       Val       Ala       Ala       Ala       Tyr       T         Lys       Val       Leu       Pro       Pro       Leu       Met       Asp       Val       Ala       Ala       Ala       Tyr       T         Lys       Val       Leu       Pro       Pro       Leu       Met       Asp       Val       Asp       Wal       Gly       Trp       Thr       Ala       Gly       Lys		Lys	Ser	Ser	Gln		Ser	Pro	Ile	Ile		Gly	Phe	Gly	Gly	Asp 160
Ala Asp Pro Gly Tyr Met Gln Gly Tyr Asp Asp Cys Met Gln Gln Gl 200	Phe	Asn	Leu	Thr		Leu	Glu	Pro	Val		Ile	Ser	Thr	Gly		Arg
Pro Ala Ser Ala Arg Asp Leu Ile Cys Ala Gln Tyr Val Ala Gly T 210	Ser	Ala	Arg		Ala	Ile	Glu	Asp		Leu	Phe	Asp	Lys		Thr	Ile
210 215 220  Lys Val Leu Pro Pro Leu Met Asp Val Asn Met Glu Ala Ala Tyr T 235  Ser Ser Leu Leu Gly Ser Ile Ala Gly Val Gly Trp Thr Ala Gly L 255  Ser Ser Phe Ala Ala Ile Pro Phe Ala Gln Ser Ile Phe Tyr Arg L	Ala	Asp		Gly	Tyr	Met	Gln		Tyr	Asp	Asp	Сув		Gln	Gln	Gly
225 230 235 2  Ser Ser Leu Leu Gly Ser Ile Ala Gly Val Gly Trp Thr Ala Gly L 245 250 250  Ser Ser Phe Ala Ala Ile Pro Phe Ala Gln Ser Ile Phe Tyr Arg L	Pro		Ser	Ala	Arg	Asp		Ile	Cys	Ala	Gln		Val	Ala	Gly	Tyr
245 250 255 Ser Ser Phe Ala Ala Ile Pro Phe Ala Gln Ser Ile Phe Tyr Arg L	_	Val	Leu	Pro	Pro		Met	Asp	Val	Asn		Glu	Ala	Ala	Tyr	Thr 240
	Ser	Ser	Leu	Leu	_	Ser	Ile	Ala	Gly		Gly	Trp	Thr	Ala	_	Leu
	Ser	Ser	Phe		Ala	Ile	Pro	Phe		Gln	Ser	Ile	Phe		Arg	Leu
Asn Gly Val Gly Ile Thr Gln Gln Val Leu Ser Glu Asn Gln Lys L $$275$$ $$280$$ $$285$$	Asn	Gly		Gly	Ile	Thr	Gln		Val	Leu	Ser	Glu		Gln	Lys	Leu
Ile Ala Asn Lys Phe Asn Gln Ala Leu Gly Ala Met Gln Thr Gly P 290 295 300	Ile		Asn	Lys	Phe	Asn		Ala	Leu	Gly	Ala		Gln	Thr	Gly	Phe
Thr Thr Thr Asn Glu Ala Phe Gln Lys Val Gln Asp Ala Val Asn A 305 310 315 3		Thr	Thr	Asn	Glu		Phe	Gln	Lys	Val		Asp	Ala	Val	Asn	Asn 320
Asn Ala Gln Ala Leu Ser Lys Leu Ala Ser Glu Leu Ser Asn Thr P 325 330 335	Asn	Ala	Gln	Ala		Ser	Lys	Leu	Ala		Glu	Leu	Ser	Asn		Phe
Gly Ala Ile Ser Ala Ser Ile Gly Asp Ile Ile Gln Arg Leu Asp V	Gly	Ala	Ile	Ser	Ala	Ser	Ile	Gly	Asp	Ile	Ile	Gln	Arg	Leu	Asp	Val

350

345

340

Leu Glu Gln Asp 355	Ala Gln Ile	Asp Arg Leu 360	Ile Asn Gly 365	
Thr Leu Asn Ala 370	Phe Val Ala 375	Gln Gln Leu	Val Arg Ser 380	Glu Ser Ala
Ala Leu Ser Ala 385	Gln Leu Ala 390	Lys Asp Lys	Val Asn Glu 395	Cys Val Lys 400
Ala Gln Ser Lys	Arg Ser Gly 405	Phe Cys Gly 410	Gln Gly Thr	His Ile Val 415
Ser Phe Val Val 420		Asn Gly Leu 425	Tyr Phe Met	His Val Gly 430
Tyr Tyr Pro Ser 435	Asn His Ile	Glu Val Val 440	Ser Ala Tyr 445	Gly Leu Cys
Asp Ala Ala Asn 450	Pro Thr Asn 455	Cys Ile Ala	Pro Val Asn 460	Gly Tyr Phe
Ile Lys Thr Asn 465	Asn Thr Arg 470	Ile Val Asp	Glu Trp Ser 475	Tyr Thr Gly 480
Ser Ser Phe Tyr	Ala Pro Glu 485	Pro Ile Thr 490	Ser Leu Asn	Thr Lys Tyr 495
Val Ala Pro Gln 500	_	Gln Asn Ile 505	Ser Thr Asn	Leu Pro Pro 510
Pro Leu Leu Gly 515	Asn Ser Thr	Gly Ile Asp 520	Phe Gln Asp 525	Glu Leu Asp
Glu Phe Phe Lys 530	Asn Val Ser 535	Thr Ser Ile	Pro Asn Phe 540	Gly Ser Leu
Thr Gln Ile Asn 545	Thr Thr Leu 550	Leu Asp Leu	Thr Tyr Glu 555	Met Leu Ser 560
Leu Gln Gln Val	Val Lys Ala 565	Leu Asn Glu 570	Ser Tyr Ile	Asp Leu Lys 575
Glu Leu Gly Asn 580		Tyr Asn Lys 585	Trp Pro Asp	Lys Ile Glu 590
Glu Ile Leu Ser 595	Lys Ile Tyr	His Ile Glu 600	Asn Glu Ile 605	Ala Arg Ile
Lys Lys Leu Ile 610	Gly Glu Ala 615			
<210> SEQ ID NO <211> LENGTH: 1	353			
<212> TYPE: PRT <213> ORGANISM:	Middle East	respiratory	syndrome co	ronavirus
<400> SEQUENCE:	27			
Met Ile His Ser 1	Val Phe Leu 5	Leu Met Phe 10	Leu Leu Thr	Pro Thr Glu 15
Ser Tyr Val Asp 20	Val Gly Pro	Asp Ser Val 25	Lys Ser Ala	Cys Ile Glu 30
Val Asp Ile Gln 35	Gln Thr Phe	Phe Asp Lys 40	Thr Trp Pro 45	Arg Pro Ile
Asp Val Ser Lys 50	Ala Asp Gly 55	Ile Ile Tyr	Pro Gln Gly	Arg Thr Tyr
Ser Asn Ile Thr	Ile Thr Tyr	Gln Gly Leu	Phe Pro Tyr 75	Gln Gly Asp 80
His Gly Asp Met	Tyr Val Tyr 85	Ser Ala Gly 90	His Ala Thr	Gly Thr Thr 95

_															
Pro	Gln	Lys	Leu 100	Phe	Val	Ala	Asn	Tyr 105	Ser	Gln	Asp	Val	Lys 110	Gln	Phe
Ala	Asn	Gly 115	Phe	Val	Val	Arg	Ile 120	Gly	Ala	Ala	Ala	Asn 125	Ser	Thr	Gly
Thr	Val 130	Ile	Ile	Ser	Pro	Ser 135	Thr	Ser	Ala	Thr	Ile 140	Arg	Lys	Ile	Tyr
Pro 145	Ala	Phe	Met	Leu	Gly 150	Ser	Ser	Val	Gly	Asn 155	Phe	Ser	Asp	Gly	Lys 160
Met	Gly	Arg	Phe	Phe 165	Asn	His	Thr	Leu	Val 170	Leu	Leu	Pro	Asp	Gly 175	Cys
Gly	Thr	Leu	Leu 180	Arg	Ala	Phe	Tyr	Cys 185	Ile	Leu	Glu	Pro	Arg 190	Ser	Gly
Asn	His	Сув 195	Pro	Ala	Gly	Asn	Ser 200	Tyr	Thr	Ser	Phe	Ala 205	Thr	Tyr	His
Thr	Pro 210	Ala	Thr	Asp	GÀa	Ser 215	Asp	Gly	Asn	Tyr	Asn 220	Arg	Asn	Ala	Ser
Leu 225	Asn	Ser	Phe	Lys	Glu 230	Tyr	Phe	Asn	Leu	Arg 235	Asn	CAa	Thr	Phe	Met 240
Tyr	Thr	Tyr	Asn	Ile 245	Thr	Glu	Asp	Glu	Ile 250	Leu	Glu	Trp	Phe	Gly 255	Ile
Thr	Gln	Thr	Ala 260	Gln	Gly	Val	His	Leu 265	Phe	Ser	Ser	Arg	Tyr 270	Val	Asp
Leu	Tyr	Gly 275	Gly	Asn	Met	Phe	Gln 280	Phe	Ala	Thr	Leu	Pro 285	Val	Tyr	Asp
Thr	Ile 290	Lys	Tyr	Tyr	Ser	Ile 295	Ile	Pro	His	Ser	Ile 300	Arg	Ser	Ile	Gln
Ser 305	Asp	Arg	Lys	Ala	Trp 310	Ala	Ala	Phe	Tyr	Val 315	Tyr	Lys	Leu	Gln	Pro 320
Leu	Thr	Phe	Leu	Leu 325	Asp	Phe	Ser	Val	Asp 330	Gly	Tyr	Ile	Arg	Arg 335	Ala
Ile	Asp	Сув	Gly 340	Phe	Asn	Asp	Leu	Ser 345	Gln	Leu	His	CAa	Ser 350	Tyr	Glu
Ser	Phe	Asp 355	Val	Glu	Ser	Gly	Val 360	Tyr	Ser	Val	Ser	Ser 365	Phe	Glu	Ala
ràa	Pro 370	Ser	Gly	Ser	Val	Val 375	Glu	Gln	Ala	Glu	Gly 380	Val	Glu	CAa	Asp
Phe 385	Ser	Pro	Leu	Leu	Ser 390	Gly	Thr	Pro	Pro	Gln 395	Val	Tyr	Asn	Phe	Lys 400
Arg	Leu	Val	Phe	Thr 405	Asn	CÀa	Asn	Tyr	Asn 410	Leu	Thr	ГÀа	Leu	Leu 415	Ser
Leu	Phe	Ser	Val 420	Asn	Asp	Phe	Thr	Cys 425	Ser	Gln	Ile	Ser	Pro 430	Ala	Ala
Ile	Ala	Ser 435	Asn	Cha	Tyr	Ser	Ser 440	Leu	Ile	Leu	Asp	Tyr 445	Phe	Ser	Tyr
Pro	Leu 450	Ser	Met	Lys	Ser	Asp 455	Leu	Ser	Val	Ser	Ser 460	Ala	Gly	Pro	Ile
Ser 465	Gln	Phe	Asn	Tyr	Lys 470	Gln	Ser	Phe	Ser	Asn 475	Pro	Thr	Сла	Leu	Ile 480
Leu	Ala	Thr	Val	Pro 485	His	Asn	Leu	Thr	Thr 490	Ile	Thr	Lys	Pro	Leu 495	Lys
Tyr	Ser	Tyr	Ile 500	Asn	Lys	Cys	Ser	Arg 505	Leu	Leu	Ser	Asp	Asp 510	Arg	Thr
Glu	Val	Pro	Gln	Leu	Val	Asn	Ala	Asn	Gln	Tyr	Ser	Pro	Cha	Val	Ser

												COII	C III.	aca	
		515					520					525			
Ile	Val 530	Pro	Ser	Thr	Val	Trp 535	Glu	Asp	Gly	Asp	Tyr 540	Tyr	Arg	Lys	Gln
Leu 545	Ser	Pro	Leu	Glu	Gly 550	Gly	Gly	Trp	Leu	Val 555	Ala	Ser	Gly	Ser	Thr 560
Val	Ala	Met	Thr	Glu 565	Gln	Leu	Gln	Met	Gly 570	Phe	Gly	Ile	Thr	Val 575	Gln
Tyr	Gly	Thr	Asp 580	Thr	Asn	Ser	Val	Сув 585	Pro	Lys	Leu	Glu	Phe 590	Ala	Asn
Asp	Thr	Lys 595	Ile	Ala	Ser	Gln	Leu 600	Gly	Asn	Сув	Val	Glu 605	Tyr	Ser	Leu
Tyr	Gly 610	Val	Ser	Gly	Arg	Gly 615	Val	Phe	Gln	Asn	Cys 620	Thr	Ala	Val	Gly
Val 625	Arg	Gln	Gln	Arg	Phe 630	Val	Tyr	Asp	Ala	Tyr 635	Gln	Asn	Leu	Val	Gly 640
Tyr	Tyr	Ser	Asp	Asp 645	Gly	Asn	Tyr	Tyr	Сув 650	Leu	Arg	Ala	Сув	Val 655	Ser
Val	Pro	Val	Ser 660	Val	Ile	Tyr	Asp	Lys 665	Glu	Thr	Lys	Thr	His 670	Ala	Thr
Leu	Phe	Gly 675	Ser	Val	Ala	CAa	Glu 680	His	Ile	Ser	Ser	Thr 685	Met	Ser	Gln
Tyr	Ser 690	Arg	Ser	Thr	Arg	Ser 695	Met	Leu	Lys	Arg	Arg 700	Asp	Ser	Thr	Tyr
Gly 705	Pro	Leu	Gln	Thr	Pro 710	Val	Gly	Cys	Val	Leu 715	Gly	Leu	Val	Asn	Ser 720
Ser	Leu	Phe	Val	Glu 725	Asp	CÀa	Lys	Leu	Pro 730	Leu	Gly	Gln	Ser	Leu 735	CÀa
Ala	Leu	Pro	Asp 740	Thr	Pro	Ser	Thr	Leu 745	Thr	Pro	Arg	Ser	Val 750	Arg	Ser
Val	Pro	Gly 755	Glu	Met	Arg	Leu	Ala 760	Ser	Ile	Ala	Phe	Asn 765	His	Pro	Ile
Gln	Val 770	Asp	Gln	Leu	Asn	Ser 775	Ser	Tyr	Phe	Lys	Leu 780	Ser	Ile	Pro	Thr
Asn 785	Phe	Ser	Phe	Gly	Val 790	Thr	Gln	Glu	Tyr	Ile 795	Gln	Thr	Thr	Ile	Gln 800
ГÀз	Val	Thr	Val		Cys			Tyr		Сув		Gly	Phe	Gln 815	ГЛа
Cys	Glu	Gln	Leu 820	Leu	Arg	Glu	Tyr	Gly 825	Gln	Phe	CAa	Ser	830 FÀa	Ile	Asn
Gln	Ala	Leu 835	His	Gly	Ala	Asn	Leu 840	Arg	Gln	Asp	Asp	Ser 845	Val	Arg	Asn
Leu	Phe 850	Ala	Ser	Val	ГÀа	Ser 855	Ser	Gln	Ser	Ser	Pro 860	Ile	Ile	Pro	Gly
Phe 865	Gly	Gly	Asp	Phe	Asn 870	Leu	Thr	Leu	Leu	Glu 875	Pro	Val	Ser	Ile	Ser 880
Thr	Gly	Ser	Arg	Ser 885	Ala	Arg	Ser	Ala	Ile 890	Glu	Asp	Leu	Leu	Phe 895	Asp
ГÀа	Val	Thr	Ile 900	Ala	Asp	Pro	Gly	Tyr 905	Met	Gln	Gly	Tyr	Asp 910	Asp	Cys
Met	Gln	Gln 915	Gly	Pro	Ala	Ser	Ala 920	Arg	Asp	Leu	Ile	Сув 925	Ala	Gln	Tyr
Val	Ala 930	Gly	Tyr	ГЛа	Val	Leu 935	Pro	Pro	Leu	Met	Asp 940	Val	Asn	Met	Glu

Ala Ala Tyr Thr Ser Ser Leu Leu Gly Ser Ile Ala Gly Val 945 950 955	l Gly Trp 960
Thr Ala Gly Leu Ser Ser Phe Ala Ala Ile Pro Phe Ala Glr 965 970	n Ser Ile 975
Phe Tyr Arg Leu Asn Gly Val Gly Ile Thr Gln Gln Val Leu 980 985 996	
Asn Gln Lys Leu Ile Ala Asn Lys Phe Asn Gln Ala Leu (	Gly Ala Met
Gln Thr Gly Phe Thr Thr Thr Asn Glu Ala Phe Arg Lys 1010 1015	Val Gln
Asp Ala Val Asn Asn Asn Ala Gln Ala Leu Ser Lys Leu 1025 1030 1035	Ala Ser
Glu Leu Ser Asn Thr Phe Gly Ala Ile Ser Ala Ser Ile 1040 1045 1050	Gly Asp
Ile Ile Gln Arg Leu Asp Val Leu Glu Gln Asp Ala Gln 1055 1060 1065	Ile Asp
Arg Leu Ile Asn Gly Arg Leu Thr Thr Leu Asn Ala Phe 1070 1075 1080	Val Ala
Gln Gln Leu Val Arg Ser Glu Ser Ala Ala Leu Ser Ala 1085 1090 1095	Gln Leu
Ala Lys Asp Lys Val Asn Glu Cys Val Lys Ala Gln Ser 1100 1105 1110	Lys Arg
Ser Gly Phe Cys Gly Gln Gly Thr His Ile Val Ser Phe 1115 1120 1125	Val Val
Asn Ala Pro Asn Gly Leu Tyr Phe Met His Val Gly Tyr 1130 1140	Tyr Pro
Ser Asn His Ile Glu Val Val Ser Ala Tyr Gly Leu Cys 1145 1150 1150	Asp Ala
Ala Asn Pro Thr Asn Cys Ile Ala Pro Val Asn Gly Tyr 1160 1165 1170	Phe Ile
Lys Thr Asn Asn Thr Arg Ile Val Asp Glu Trp Ser Tyr 1175 1180 1185	Thr Gly
Ser Ser Phe Tyr Ala Pro Glu Pro Ile Thr Ser Leu Asn 1190 1195 1200	Thr Lys
Tyr Val Ala Pro His Val Thr Tyr Gln Asn Ile Ser Thr 1205 1210 1215	Asn Leu
Pro Pro Pro Leu Leu Gly Asn Ser Thr Gly Ile Asp Phe 1220 1225 1230	Gln Asp
Glu Leu Asp Glu Phe Phe Lys Asn Val Ser Thr Ser Ile 1235 1240 1245	Pro Asn
Phe Gly Ser Leu Thr Gln Ile Asn Thr Thr Leu Leu Asp 1250 1255 1260	Leu Thr
Tyr Glu Met Leu Ser Leu Gln Gln Val Val Lys Ala Leu 1265 1270 1275	Asn Glu
Ser Tyr Ile Asp Leu Lys Glu Leu Gly Asn Tyr Thr Tyr 1280 1285 1290	Tyr Asn
Lys Trp Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly 1295 1300 1305	Leu Val
Ala Leu Ala Leu Cys Val Phe Phe Ile Leu Cys Cys Thr 1310 1315 1320	Gly Cys
Gly Thr Asn Cys Met Gly Lys Leu Lys Cys Asn Arg Cys 1325 1330 1335	Cys Asp

Arg	Tyr 1340		ı Glu	і Туі	. Yal	Let 134		.u Pı	го Ні	ra rŽ		al E	His V	/al H	lis
<211 <212	L> LE 2> T	EQ II ENGTH (PE: RGAN)	H: 13 PRT	353	lle I	East	resp	oirat	ory	sync	lrome	e co:	ronav	virus	3
< 400	)> SI	EQUEN	ICE :	28											
Met 1	Ile	His	Ser	Val 5	Phe	Leu	Leu	Met	Phe 10	Leu	Leu	Thr	Pro	Thr 15	Glu
Ser	Tyr	Val	Asp 20	Val	Gly	Pro	Asp	Ser 25	Val	Lys	Ser	Ala	GÀa	Ile	Glu
Val	Asp	Ile 35	Gln	Gln	Thr	Phe	Phe 40	Asp	Lys	Thr	Trp	Pro 45	Arg	Pro	Ile
Asp	Val 50	Ser	Lys	Ala	Asp	Gly 55	Ile	Ile	Tyr	Pro	Gln 60	Gly	Arg	Thr	Tyr
Ser 65	Asn	Ile	Thr	Ile	Thr 70	Tyr	Gln	Gly	Leu	Phe 75	Pro	Tyr	Gln	Gly	Asp 80
His	Gly	Asp	Met	Tyr 85	Val	Tyr	Ser	Ala	Gly 90	His	Ala	Thr	Gly	Thr 95	Thr
Pro	Gln	Lys	Leu 100	Phe	Val	Ala	Asn	Tyr 105	Ser	Gln	Asp	Val	Lys 110	Gln	Phe
Ala	Asn	Gly 115	Phe	Val	Val	Arg	Ile 120	Gly	Ala	Ala	Ala	Asn 125	Ser	Thr	Gly
Thr	Val 130	Ile	Ile	Ser	Pro	Ser 135	Thr	Ser	Ala	Thr	Ile 140	Arg	Lys	Ile	Tyr
Pro 145	Ala	Phe	Met	Leu	Gly 150	Ser	Ser	Val	Gly	Asn 155	Phe	Ser	Asp	Gly	Lys 160
Met	Gly	Arg	Phe	Phe 165	Asn	His	Thr	Leu	Val 170	Leu	Leu	Pro	Asp	Gly 175	Cys
Gly	Thr	Leu	Leu 180	Arg	Ala	Phe	Tyr	Cys 185	Ile	Leu	Glu	Pro	Arg 190	Ser	Gly
Asn	His	Сув 195	Pro	Ala	Gly	Asn	Ser 200	Tyr	Thr	Ser	Phe	Ala 205	Thr	Tyr	His
Thr	Pro 210	Ala	Thr	Asp	Сув	Ser 215	Asp	Gly	Asn	Tyr	Asn 220	Arg	Asn	Ala	Ser
Leu 225	Asn	Ser	Phe	Lys	Glu 230	Tyr	Phe	Asn	Leu	Arg 235	Asn	Сув	Thr	Phe	Met 240
Tyr	Thr	Tyr	Asn	Ile 245	Thr	Glu	Asp	Glu	Ile 250	Leu	Glu	Trp	Phe	Gly 255	Ile
Thr	Gln	Thr	Ala 260	Gln	Gly	Val	His	Leu 265	Phe	Ser	Ser	Arg	Tyr 270	Val	Asp
Leu	Tyr	Gly 275	Gly	Asn	Met	Phe	Gln 280	Phe	Ala	Thr	Leu	Pro 285	Val	Tyr	Asp
Thr	Ile 290	Lys	Tyr	Tyr	Ser	Ile 295	Ile	Pro	His	Ser	Ile 300	Arg	Ser	Ile	Gln
Ser 305	Asp	Arg	Lys	Ala	Trp 310	Ala	Ala	Phe	Tyr	Val 315	Tyr	Lys	Leu	Gln	Pro 320
Leu	Thr	Phe	Leu	Leu 325	Asp	Phe	Ser	Val	Asp 330	Gly	Tyr	Ile	Arg	Arg 335	Ala
Ile	Asp	Сув	Gly 340	Phe	Asn	Asp	Leu	Ser 345	Gln	Leu	His	Сув	Ser 350	Tyr	Glu
Ser	Phe	Asp 355	Val	Glu	Ser	Gly	Val 360	Tyr	Ser	Val	Ser	Ser 365	Phe	Glu	Ala

Lys	Pro 370	Ser	Gly	Ser	Val	Val 375	Glu	Gln	Ala	Glu	Gly 380	Val	Glu	Cys	Asp
Phe 385	Ser	Pro	Leu	Leu	Ser 390	Gly	Thr	Pro	Pro	Gln 395	Val	Tyr	Asn	Phe	Lys 400
Arg	Leu	Val	Phe	Thr 405	Asn	CÀa	Asn	Tyr	Asn 410	Leu	Thr	rys	Leu	Leu 415	Ser
Leu	Phe	Ser	Val 420	Asn	Asp	Phe	Thr	Cys 425	Ser	Gln	Ile	Ser	Pro 430	Ala	Ala
Ile	Ala	Ser 435	Asn	CÀa	Tyr	Ser	Ser 440	Leu	Ile	Leu	Asp	Tyr 445	Phe	Ser	Tyr
Pro	Leu 450	Ser	Met	ГÀа	Ser	Asp 455	Leu	Ser	Val	Ser	Ser 460	Ala	Gly	Pro	Ile
Ser 465	Gln	Phe	Asn	Tyr	Lys 470	Gln	Ser	Phe	Ser	Asn 475	Pro	Thr	Cys	Leu	Ile 480
Leu	Ala	Thr	Val	Pro 485	His	Asn	Leu	Thr	Thr 490	Ile	Thr	Lys	Pro	Leu 495	Lys
Tyr	Ser	Tyr	Ile 500	Asn	ГÀа	Cys	Ser	Arg 505	Leu	Leu	Ser	Asp	Asp 510	Arg	Thr
Glu	Val	Pro 515	Gln	Leu	Val	Asn	Ala 520	Asn	Gln	Tyr	Ser	Pro 525	Cys	Val	Ser
Ile	Val 530	Pro	Ser	Thr	Val	Trp 535	Glu	Asp	Gly	Asp	Tyr 540	Tyr	Arg	Lys	Gln
Leu 545	Ser	Pro	Leu	Glu	Gly 550	Gly	Gly	Trp	Leu	Val 555	Ala	Ser	Gly	Ser	Thr 560
Val	Ala	Met	Thr	Glu 565	Gln	Leu	Gln	Met	Gly 570	Phe	Gly	Ile	Thr	Val 575	Gln
Tyr	Gly	Thr	Asp 580	Thr	Asn	Ser	Val	Cys 585	Pro	ГÀЗ	Leu	Glu	Phe 590	Ala	Asn
Asp	Thr	Lys 595	Ile	Ala	Ser	Gln	Leu 600	Gly	Asn	Cys	Val	Glu 605	Tyr	Ser	Leu
Tyr	Gly 610	Val	Ser	Gly	Arg	Gly 615	Val	Phe	Gln	Asn	Сув 620	Thr	Ala	Val	Gly
Val 625	Arg	Gln	Gln	Arg	Phe 630	Val	Tyr	Asp	Ala	Tyr 635	Gln	Asn	Leu	Val	Gly 640
Tyr	Tyr	Ser	Asp	Asp 645	Gly	Asn	Tyr	Tyr	650	Leu	Arg	Ala	Cys	Val 655	Ser
Val	Pro	Val	Ser 660	Val	Ile	Tyr	Asp	Lys 665	Glu	Thr	Lys	Thr	His 670	Ala	Thr
Leu	Phe	Gly 675	Ser	Val	Ala	CAa	Glu 680	His	Ile	Ser	Ser	Thr 685	Met	Ser	Gln
Tyr	Ser 690	Arg	Ser	Thr	Arg	Ser 695	Met	Leu	Lys	Arg	Arg 700	Asp	Ser	Thr	Tyr
Gly 705	Pro	Leu	Gln	Thr	Pro 710	Val	Gly	Cys	Val	Leu 715	Gly	Leu	Val	Asn	Ser 720
Ser	Leu	Phe	Val	Glu 725	Asp	CAa	Lys	Leu	Pro 730	Leu	Gly	Gln	Ser	Leu 735	Cys
Ala	Leu	Pro	Asp 740	Thr	Pro	Ser	Thr	Leu 745	Thr	Pro	Arg	Ser	Val 750	Arg	Ser
Val	Pro	Gly 755	Glu	Met	Arg	Leu	Ala 760	Ser	Ile	Ala	Phe	Asn 765	His	Pro	Ile

Asn 785	Phe	Ser	Phe	Gly	Val 790	Thr	Gln	Glu	Tyr	795		n Thi	Thi	: Ile	Gln 800
Lys	Val	Thr	Val	Asp 805	Cys	Lys	Gln	Tyr	Val 810		aA s	n Gly	/ Phe	Gln 815	
CÀa	Glu	Gln	Leu 820	Leu	Arg	Glu	Tyr	Gly 825	Gln	Phe	е Су	s Sei	Lys 830		. Asn
Gln	Ala	Leu 835	His	Gly	Ala	Asn	Leu 840	Arg	Gln	. Asr	As	p Sei 849		. Arg	Asn
Leu	Phe 850	Ala	Ser	Val	Lys	Ser 855	Ser	Gln	Ser	Sei	Pr 86	o Ile O	e Ile	Pro	Gly
Phe 865	Gly	Gly	Asp	Phe	Asn 870	Leu	Thr	Leu	Leu	. Glu 879		o Val	Sei	: Ile	Ser 880
Thr	Gly	Ser	Arg	Ser 885	Ala	Arg	Ser	Ala	Ile 890		ı As	p Leu	ı Lev	Phe 895	_
Lys	Val	Thr	Ile 900	Ala	Asp	Pro	Gly	Tyr 905	Met	Glr	n Gl	у Туг	2 Asp		Cys
Met	Gln	Gln 915	Gly	Pro	Ala	Ser	Ala 920	Arg	Asp	Leu	ı Il	e Cys 925		a Gln	Tyr
Val	Ala 930	Gly	Tyr	Lys	Val	Leu 935	Pro	Pro	Leu	. Met	As 94	p Val 0	Asr	n Met	Glu
Ala 945	Ala	Tyr	Thr	Ser	Ser 950	Leu	Leu	Gly	Ser	11e 955		a Gly	/ Val	Gly	Trp 960
Thr	Ala	Gly	Leu	Ser 965	Ser	Phe	Ala	Ala	Ile 970		> Ph	e Ala	a Glr	ser 975	
Phe	Tyr	Arg	Leu 980	Asn	Gly	Val	Gly	Ile 985	Thr	Glr	n Gl	n Val	Leu 990		Glu
Asn	Gln	Lys 995	Leu	Ile	Ala	Asn	Lys 100		e As	n Gl	ln A		eu (	Sly A	la Met
Gln	Thr 1010		/ Phe	e Thr	Thr	Th:		sn G	lu A	la E		Arg 1020	Lys	Val	Gln
Asp	Ala 1025		l Asr	n Asr	n Asr	n Ala 103		ln A	la L	eu S		Lys 1035	Leu	Ala	Ser
Glu	Leu 1040		Asr	n Thr	: Phe	9 Gly		la I	le S	er A		Ser 1050	Ile	Gly	Asp
Ile	Ile 1055		n Arg	g Leu	ı Asp	Va:		eu G	lu G	ln A		Ala 1065	Gln	Ile	Asp
	Leu 1070		e Asr	n Gly		Lei 10		hr T	hr L	eu A		Ala 1080		Val	Ala
Gln	Gln 1085		ı Val	l Arg	g Ser	Gl: 109		er A	la A	la I		Ser 1095	Ala	Gln	Leu
Ala	Lys 1100		Lys	val	l Asr	110		ys V	al L	ys A		Gln 1110	Ser	Lys	Arg
Ser	Gly 1115		e Cys	Gly	/ Glr	112		hr H	is I	le V		Ser 1125	Phe	Val	Val
Asn	Ala 1130		) Asr	n Gly	/ Let	1 Ty:		he M	et H	is V		Gly 1140	Tyr	Tyr	Pro
Ser	Asn 1145		3 Ile	e Glu	ı Val	l Va:		er A	la T	yr (		Leu 1155	Cys	Asp	Ala
Ala	Asn 1160		> Thi	Asr	n Cys	3 Ile 116		la P	ro V	al A		Gly 1170	Tyr	Phe	Ile
rys	Thr 1175		n Asr	n Thr	a Arg	j Ile 118		al A	ap G	lu 7	_	Ser 1185	Tyr	Thr	Gly
Ser	Ser	Phe	э Туг	r Ala	a Pro	Glı	1 P:	ro I	le T	hr S	Ger	Leu	Asn	Thr	Lys

	1190	)				119	95					1200	1		
Tyr	Val 1205		a Pro	His	8 Val	. Th:		yr G	ln	Asn	Ile	Ser 1215		Asn	Leu
Pro	Pro 1220		) Let	ı Leı	ı Gly	Ası 122		er T	'hr	Gly	Ile	Asp 1230		Gln	Asp
Glu	Leu 1235		Glu	ı Phe	e Phe	Lys 124		sn V	'al	Ser	Thr	Ser 1245		Pro	Asn
Phe	Gly 1250		. Let	ı Thi	Glr.	1 Ile 125		sn I	hr	Thr	Leu	Leu 1260		Leu	Thr
Tyr	Glu 1265		. Leu	ı Sei	r Leu	Gl:		ln V	al	Val	Lys	Ala 1275		Asn	Glu
Ser	Tyr 1280		e Asp	Leu	ı Lys	Gli 128		eu G	ly	Asn	Tyr	Thr 1290		Tyr	Asn
Lys	Trp 1295		Trp	Ту1	: Ile	Trp		eu G	ly	Phe	Ile	Ala 1305		Leu	Val
Ala	Leu 1310		a Leu	ı Cys	val	. Phe		he I	le	Leu	CÀa	Cys 1320		Gly	CAa
Gly	Thr 1325		ı Cys	: Met	Gly	Ly:		eu L	ys	CÀa	Asn	Arg 1335		CÀa	Asp
Arg	Tyr 1340		ı Glu	ι Туз	: Asp	Let 134		lu F	ro	His	Lys	Val 1350		Val	His
<213 <213 <213		ENGTH PE: RGANI	H: 12 PRT [SM:	255 Huma	an SA	ırs (	coro	navi	rus						
< 400	O> SE	COUEL	ICE:	29											
Met 1	Phe	Ile	Phe	Leu 5	Leu	Phe	Leu	Thr	Le 10		nr S	er Gl	y Se	r Ası 15	Leu
Asp	Arg	СЛа	Thr 20	Thr	Phe	Asp	Asp	Val 25	Gl	n Al	la P:	ro As	n Ty:	r Thi	Gln
His	Thr	Ser 35	Ser	Met	Arg	Gly	Val 40	Tyr	Ту	r Pi	ro A	sp G1 45		e Phe	e Arg
Ser	Asp	Thr	Leu	Tyr	Leu	Thr 55	Gln	Asp	Le	u Pl	ne Le		o Ph	е Туз	Ser
Asn 65	Val	Thr	Gly	Phe	His 70	Thr	Ile	Asn	Hi.	s Th		ne Gl	y Ası	n Pro	Val 80
Ile	Pro	Phe	Lys	Asp 85	Gly	Ile	Tyr	Phe	90		la Tl	hr Gl	u Ly	s Sei 95	Asn
Val	Val	Arg	Gly 100	Trp	Val	Phe	Gly	Ser 105		r Me	et A	sn As	n Ly		Gln
Ser	Val	Ile 115	Ile	Ile	Asn	Asn	Ser 120	Thr	As	n Vá	al V	al Il 12		g Ala	a Cys
Asn	Phe 130	Glu	Leu	Cys	_	Asn 135	Pro	Ph∈	Ph	e Al		al Se 40	r Ly	s Pro	) Met
Gly 145	Thr	Gln	Thr	His	Thr 150	Met	Ile	Phe	As	р Ая 15		la Ph	e Ası	n Cys	Thr 160
Phe	Glu	Tyr	Ile	Ser 165	Asp	Ala	Phe	Ser	Le 17		∌p V	al Se	r Gl	ı Ly:	s Ser
Gly	Asn	Phe	Lys 180	His	Leu	Arg	Glu	Phe		l Pł	ne L	ys As	n Ly		Gly
Phe	Leu	Tyr 195	Val	Tyr	Lys	Gly	Tyr 200	Gln	Pr	0 II	Le A	sp Va 20		l Arç	g Asp

Leu	Pro 210	Ser	Gly	Phe	Asn	Thr 215	Leu	Lys	Pro	Ile	Phe 220	Lys	Leu	Pro	Leu
Gly 225	Ile	Asn	Ile	Thr	Asn 230	Phe	Arg	Ala	Ile	Leu 235	Thr	Ala	Phe	Ser	Pro 240
Ala	Gln	Asp	Ile	Trp 245	Gly	Thr	Ser	Ala	Ala 250	Ala	Tyr	Phe	Val	Gly 255	Tyr
Leu	Lys	Pro	Thr 260	Thr	Phe	Met	Leu	Lys 265	Tyr	Asp	Glu	Asn	Gly 270	Thr	Ile
Thr	Asp	Ala 275	Val	Asp	Cys	Ser	Gln 280	Asn	Pro	Leu	Ala	Glu 285	Leu	ГÀЗ	Cya
Ser	Val 290	Lys	Ser	Phe	Glu	Ile 295	Asp	Lys	Gly	Ile	Tyr 300	Gln	Thr	Ser	Asn
Phe 305	Arg	Val	Val	Pro	Ser 310	Gly	Asp	Val	Val	Arg 315	Phe	Pro	Asn	Ile	Thr 320
Asn	Leu	Cya	Pro	Phe 325	Gly	Glu	Val	Phe	Asn 330	Ala	Thr	ГÀа	Phe	Pro 335	Ser
Val	Tyr	Ala	Trp 340	Glu	Arg	LÀa	Lys	Ile 345	Ser	Asn	CÀa	Val	Ala 350	Asp	Tyr
Ser	Val	Leu 355	Tyr	Asn	Ser	Thr	Phe 360	Phe	Ser	Thr	Phe	Lув 365	CÀa	Tyr	Gly
Val	Ser 370	Ala	Thr	ГÀа	Leu	Asn 375	Asp	Leu	Cys	Phe	Ser 380	Asn	Val	Tyr	Ala
Asp 385	Ser	Phe	Val	Val	390 Lys	Gly	Asp	Asp	Val	Arg 395	Gln	Ile	Ala	Pro	Gly 400
Gln	Thr	Gly	Val	Ile 405	Ala	Asp	Tyr	Asn	Tyr 410	Lys	Leu	Pro	Asp	Asp 415	Phe
Met	Gly	Cys	Val 420	Leu	Ala	Trp	Asn	Thr 425	Arg	Asn	Ile	Asp	Ala 430	Thr	Ser
Thr	Gly	Asn 435	Tyr	Asn	Tyr	ГÀз	Tyr 440	Arg	Tyr	Leu	Arg	His 445	Gly	ГÀз	Leu
Arg	Pro 450	Phe	Glu	Arg	Asp	Ile 455	Ser	Asn	Val	Pro	Phe 460	Ser	Pro	Asp	Gly
Lys 465	Pro	Сув	Thr	Pro	Pro 470	Ala	Leu	Asn	Cys	Tyr 475	Trp	Pro	Leu	Asn	Asp 480
Tyr	Gly	Phe	Tyr	Thr 485	Thr	Thr	Gly	Ile	Gly 490	Tyr	Gln	Pro	Tyr	Arg 495	Val
Val	Val	Leu	Ser 500	Phe	Glu	Leu	Leu	Asn 505	Ala	Pro	Ala	Thr	Val 510	Cys	Gly
Pro	Lys	Leu 515	Ser	Thr	Asp	Leu	Ile 520	Lys	Asn	Gln	Cys	Val 525	Asn	Phe	Asn
Phe	Asn 530	Gly	Leu	Thr	Gly	Thr 535	Gly	Val	Leu	Thr	Pro 540	Ser	Ser	Lys	Arg
Phe 545	Gln	Pro	Phe	Gln	Gln 550	Phe	Gly	Arg	Asp	Val 555	Ser	Asp	Phe	Thr	Asp 560
Ser	Val	Arg	Asp	Pro 565	ГÀЗ	Thr	Ser	Glu	Ile 570	Leu	Asp	Ile	Ser	Pro 575	CAa
Ser	Phe	Gly	Gly 580	Val	Ser	Val	Ile	Thr 585	Pro	Gly	Thr	Asn	Ala 590	Ser	Ser
Glu	Val	Ala 595	Val	Leu	Tyr	Gln	Asp	Val	Asn	Cys	Thr	Asp 605	Val	Ser	Thr
Ala	Ile 610	His	Ala	Asp	Gln	Leu 615	Thr	Pro	Ala	Trp	Arg 620	Ile	Tyr	Ser	Thr
Gly	Asn	Asn	Val	Phe	Gln	Thr	Gln	Ala	Gly	Cha	Leu	Ile	Gly	Ala	Glu

625					630					635					640
His	Val	Asp	Thr	Ser 645		Glu	Cys	Asp	Ile 650		Ile	Gly	Ala	Gly 655	Ile
Сув	Ala	Ser	Tyr 660	His	Thr	Val	Ser	Leu 665	Leu	Arg	Ser	Thr	Ser 670	Gln	Lys
Ser	Ile	Val 675	Ala	Tyr	Thr	Met	Ser 680	Leu	Gly	Ala	Asp	Ser 685	Ser	Ile	Ala
Tyr	Ser 690	Asn	Asn	Thr	Ile	Ala 695	Ile	Pro	Thr	Asn	Phe 700	Ser	Ile	Ser	Ile
Thr 705	Thr	Glu	Val	Met	Pro 710	Val	Ser	Met	Ala	Lys 715	Thr	Ser	Val	Asp	Cys 720
Asn	Met	Tyr	Ile	Сув 725	Gly	Asp	Ser	Thr	Glu 730	Сув	Ala	Asn	Leu	Leu 735	Leu
Gln	Tyr	Gly	Ser 740	Phe	Cys	Thr	Gln	Leu 745	Asn	Arg	Ala	Leu	Ser 750	Gly	Ile
Ala	Ala	Glu 755	Gln	Asp	Arg	Asn	Thr 760	Arg	Glu	Val	Phe	Ala 765	Gln	Val	Lys
Gln	Met 770	Tyr	Lys	Thr	Pro	Thr 775	Leu	Lys	Tyr	Phe	Gly 780	Gly	Phe	Asn	Phe
Ser 785	Gln	Ile	Leu	Pro	Asp 790	Pro	Leu	Lys	Pro	Thr 795	ГÀа	Arg	Ser	Phe	Ile 800
Glu	Asp	Leu	Leu	Phe 805	Asn	ГÀв	Val	Thr	Leu 810	Ala	Asp	Ala	Gly	Phe 815	Met
ГÀв	Gln	Tyr	Gly 820	Glu	CÀa	Leu	Gly	Asp 825	Ile	Asn	Ala	Arg	Asp 830	Leu	Ile
CAa	Ala	Gln 835	Lys	Phe	Asn	Gly	Leu 840	Thr	Val	Leu	Pro	Pro 845	Leu	Leu	Thr
Asp	Asp 850	Met	Ile	Ala	Ala	Tyr 855	Thr	Ala	Ala	Leu	Val 860	Ser	Gly	Thr	Ala
Thr 865	Ala	Gly	Trp	Thr	Phe 870	Gly	Ala	Gly	Ala	Ala 875	Leu	Gln	Ile	Pro	Phe 880
Ala	Met	Gln	Met	Ala 885	Tyr	Arg	Phe	Asn	Gly 890	Ile	Gly	Val	Thr	Gln 895	Asn
Val	Leu	Tyr	Glu 900	Asn	Gln	Lys	Gln	Ile 905	Ala	Asn	Gln	Phe	Asn 910	Lys	Ala
Ile	Ser	Gln 915	Ile	Gln	Glu	Ser	Leu 920	Thr	Thr	Thr	Ser	Thr 925	Ala	Leu	Gly
ГÀа	Leu 930	Gln	Asp	Val	Val	Asn 935	Gln	Asn	Ala	Gln	Ala 940	Leu	Asn	Thr	Leu
Val 945	Lys	Gln	Leu	Ser	Ser 950	Asn	Phe	Gly	Ala	Ile 955	Ser	Ser	Val	Leu	Asn 960
Asp	Ile	Leu	Ser	Arg 965	Leu	Asp	Lys	Val	Glu 970	Ala	Glu	Val	Gln	Ile 975	Asp
Arg	Leu	Ile	Thr 980	Gly	Arg	Leu	Gln	Ser 985	Leu	Gln	Thr	Tyr	Val 990	Thr	Gln
Gln	Leu	Ile 995	Arg	Ala	Ala	Glu	Ile 1000		g Ala	a Se:	r Ala	a Ası 100		eu Al	la Ala
Thr	Lys 1010		Se:	r Glu	ı Cyı	7 Va 10		eu G	ly G	ln Se	er Ly 10	ys 1 020	Arg V	/al /	Aap
Phe	Cys 1025	_	y Ly:	s Gly	у Туз	r His		∋u Me	et Se	er Pl	ne P:	ro (	Gln A	Ala <i>l</i>	Ala
Pro	His 1040		y Vai	l Val	L Phe	e Let 104		is Vá	al Tì	nr T	yr Va 10	al 1 050	Pro S	Ser (	3ln

Glu	Arg 1055		Phe	Thr	Thr	Ala 1060		0 A	la	Ile	Cys	His 1065	Glu	Gly	ГÀа
Ala	Tyr 1070		Pro	Arg	g Glu	Gly 1075		1 Pl	ne '	Val	Phe	Asn 1080	Gly	Thr	Ser
Trp	Phe 1085		Thr	Gln	a Arg	Asn 1090		e Pl	ne	Ser	Pro	Gln 1095	Ile	Ile	Thr
Thr	Asp 1100		Thr	Ph∈	val	Ser 1109		у А	sn	Cys	Asp	Val 1110	Val	Ile	Gly
Ile	Ile 1115		Asn	Thr	Val	Tyr 1120		р Р:	ro	Leu	Gln	Pro 1125	Glu	Leu	Asp
Ser	Phe 1130		Glu	. Glu	. Leu	Asp 1135		s T	yr	Phe	Lys	Asn 1140	His	Thr	Ser
Pro	Asp 1145		Asp	Leu	Gly	Asp 1150		e S	er	Gly	Ile	Asn 1155	Ala	Ser	Val
Val	Asn 1160		Gln	. Lys	Glu	Ile 1165		p A:	rg	Leu	Asn	Glu 1170	Val	Ala	ГÀа
Asn	Leu 1175		Glu	. Ser	Leu	Ile 1180		р L	eu '	Gln	Glu	Leu 1185	Gly	Lys	Tyr
Glu	Gln 1190		Ile	Lys	Trp	Pro 1199		рТ	yr	Val	Trp	Leu 1200	Gly	Phe	Ile
Ala	Gly 1205		Ile	Ala	ılle	Val 1210		t V	al	Thr	Ile	Leu 1215	Leu	CÀa	CAa
Met	Thr 1220		CAa	Cys	Ser	Cys 1225		u L	ys '	Gly	Ala	Cys 1230	Ser	CÀa	Gly
Ser	Сув 1235	_	Lys	Ph∈	asp:	Glu 1240		p A	sp	Ser	Glu	Pro 1245	Val	Leu	Lys
Gly	Val 1250		Leu	. His	. Tyr	Thr 1255	5								
<211 <212	)> SE L> LE 2> TY 3> OR	NGTH PE :	: 13 PRT	53	ın co	ronav	/iru	.s							
-400	)> SE	OHEN	CE.	3.0											
			Ile		Leu	Ile S	Ser	Leu	Pr	o Th	nr Ai	La Phe	e Ala	a Val	l Ile
	Asp			_	Thr	Ser A		Asn 25		e As	sn As	ab PA:	a Asi		Gly
Pro		Pro 35	Ile	Ser	Thr				As	p Va	ıl Ti	nr Ası 45	n Gly	y Leu	ı Gly
Thr	Tyr 50	Tyr	Val	Leu	_	Arg V 55	/al	Tyr	Le	u As	n Tl	nr Thi	r Leu	ı Phe	e Leu
Asn 65	Gly	Tyr	Tyr	Pro	Thr 70	Ser (	3ly	Ser	Th	r Ty 75		rg Ası	n Met	: Ala	Leu 80
Lys	Gly	Ser		Leu 85	Leu	Ser A	\rg	Leu	Tr:	p Ph	ne Ly	/s Pro	o Pro	Phe 95	e Leu
Ser	Asp		Ile 100	Asn	Gly	Ile E		Ala 105	Lу	s Va	ıl Ly	va Yai	n Thi		s Val
Ile	_	Asp 115	Arg	Val	Met	-	Ser L20	Glu	Ph	e Pr	:0 A	la Ile 129		r Ile	e Gly
Ser			Val	Asn				Ser	Va	l Va	ıl Va 14	al Glı		o Arg	g Thr
Tle		Ser	Thr	Gln			\an	Δen	Laz	g T.4		io In Gly	, T.01	ı T.01	ı Glu
116	11011	~c1	1111	O 111	roh	JIY F	P	011	υУ	~ ⊔∈	. u. G.	91)	, пес	т пе	. Gru

145					150					155					160
Val	Ser	Val	Cys	Gln 165	Tyr	Asn	Met	Сув	Glu 170	Tyr	Pro	Gln	Thr	Ile 175	СЛа
His	Pro	Asn	Leu 180	Gly	Asn	His	Arg	Lys 185	Glu	Leu	Trp	His	Leu 190	Asp	Thr
Gly	Val	Val 195	Ser	CAa	Leu	Tyr	Lys 200	Arg	Asn	Phe	Thr	Tyr 205	Asp	Val	Asn
Ala	Asp 210	Tyr	Leu	Tyr	Phe	His 215	Phe	Tyr	Gln	Glu	Gly 220	Gly	Thr	Phe	Tyr
Ala 225	Tyr	Phe	Thr	Asp	Thr 230	Gly	Val	Val	Thr	Lys 235	Phe	Leu	Phe	Asn	Val 240
Tyr	Leu	Gly	Met	Ala 245	Leu	Ser	His	Tyr	Tyr 250	Val	Met	Pro	Leu	Thr 255	CÀa
Asn	Ser	Lys	Leu 260	Thr	Leu	Glu	Tyr	Trp 265	Val	Thr	Pro	Leu	Thr 270	Ser	Arg
Gln	Tyr	Leu 275	Leu	Ala	Phe	Asn	Gln 280	Asp	Gly	Ile	Ile	Phe 285	Asn	Ala	Glu
Asp	Сув 290	Met	Ser	Asp	Phe	Met 295	Ser	Glu	Ile	Lys	300 Cys	Lys	Thr	Gln	Ser
Ile 305	Ala	Pro	Pro	Thr	Gly 310	Val	Tyr	Glu	Leu	Asn 315	Gly	Tyr	Thr	Val	Gln 320
Pro	Ile	Ala	Asp	Val 325	Tyr	Arg	Arg	Lys	Pro 330	Asn	Leu	Pro	Asn	Cys 335	Asn
Ile	Glu	Ala	Trp 340	Leu	Asn	Asp	ГЛа	Ser 345	Val	Pro	Ser	Pro	Leu 350	Asn	Trp
Glu	Arg	Lys 355	Thr	Phe	Ser	Asn	360	Asn	Phe	Asn	Met	Ser 365	Ser	Leu	Met
Ser	Phe 370	Ile	Gln	Ala	Asp	Ser 375	Phe	Thr	Cys	Asn	Asn 380	Ile	Asp	Ala	Ala
185 385	Ile	Tyr	Gly	Met	Cys 390	Phe	Ser	Ser	Ile	Thr 395	Ile	Asp	Lys	Phe	Ala 400
Ile	Pro	Asn	Gly	Arg 405	Lys	Val	Asp	Leu	Gln 410	Leu	Gly	Asn	Leu	Gly 415	Tyr
Leu	Gln	Ser	Phe 420	Asn	Tyr	Arg	Ile	Asp 425	Thr	Thr	Ala	Thr	Ser 430	Cys	Gln
Leu	Tyr	Tyr 435	Asn	Leu	Pro	Ala	Ala 440	Asn	Val	Ser	Val	Ser 445	Arg	Phe	Asn
Pro	Ser 450	Thr	Trp	Asn	Lys	Arg 455	Phe	Gly	Phe	Ile	Glu 460	Asp	Ser	Val	Phe
Lys 465	Pro	Arg	Pro	Ala	Gly 470	Val	Leu	Thr	Asn	His 475	Asp	Val	Val	Tyr	Ala 480
Gln	His	Cys	Phe	Lys 485	Ala	Pro	Lys	Asn	Phe 490	Сув	Pro	Cys	Lys	Leu 495	Asn
Gly	Ser	Cys	Val 500	Gly	Ser	Gly	Pro	Gly 505	Lys	Asn	Asn	Gly	Ile 510	Gly	Thr
CAa	Pro	Ala 515	Gly	Thr	Asn	Tyr	Leu 520	Thr	Cys	Asp	Asn	Leu 525	Сла	Thr	Pro
Asp	Pro 530	Ile	Thr	Phe	Thr	Gly 535	Thr	Tyr	Lys	СЛа	Pro 540	Gln	Thr	Lys	Ser
Leu 545	Val	Gly	Ile	Gly	Glu 550	His	СЛа	Ser	Gly	Leu 555	Ala	Val	Lys	Ser	Asp 560
Tyr	Cys	Gly	Gly	Asn 565	Ser	Cys	Thr	Сув	Arg 570	Pro	Gln	Ala	Phe	Leu 575	Gly

Trp	Ser	Ala	Asp 580	Ser	Cys	Leu	Gln	Gly 585	Asp	Lys	СЛв	Asn	Ile 590	Phe	Ala
Asn	Phe	Ile 595	Leu	His	Asp	Val	Asn 600	Ser	Gly	Leu	Thr	Сув 605	Ser	Thr	Asp
Leu	Gln 610	Lys	Ala	Asn	Thr	Asp 615	Ile	Ile	Leu	Gly	Val 620	Cys	Val	Asn	Tyr
Asp 625	Leu	Tyr	Gly	Ile	Leu 630	Gly	Gln	Gly	Ile	Phe 635	Val	Glu	Val	Asn	Ala 640
Thr	Tyr	Tyr	Asn	Ser 645	Trp	Gln	Asn	Leu	Leu 650	Tyr	Asp	Ser	Asn	Gly 655	Asn
Leu	Tyr	Gly	Phe 660	Arg	Asp	Tyr	Ile	Ile 665	Asn	Arg	Thr	Phe	Met 670	Ile	Arg
Ser	Cya	Tyr 675	Ser	Gly	Arg	Val	Ser 680	Ala	Ala	Phe	His	Ala 685	Asn	Ser	Ser
Glu	Pro 690	Ala	Leu	Leu	Phe	Arg 695	Asn	Ile	Lys	Cya	Asn 700	Tyr	Val	Phe	Asn
Asn 705	Ser	Leu	Thr	Arg	Gln 710	Leu	Gln	Pro	Ile	Asn 715	Tyr	Phe	Asp	Ser	Tyr 720
Leu	Gly	Cys	Val	Val 725	Asn	Ala	Tyr	Asn	Ser 730	Thr	Ala	Ile	Ser	Val 735	Gln
Thr	Cys	Asp	Leu 740	Thr	Val	Gly	Ser	Gly 745	Tyr	Cys	Val	Asp	Tyr 750	Ser	ГЛЗ
Asn	Arg	Arg 755	Ser	Arg	Gly	Ala	Ile 760	Thr	Thr	Gly	Tyr	Arg 765	Phe	Thr	Asn
Phe	Glu 770	Pro	Phe	Thr	Val	Asn 775	Ser	Val	Asn	Asp	Ser 780	Leu	Glu	Pro	Val
Gly 785	Gly	Leu	Tyr	Glu	Ile 790	Gln	Ile	Pro	Ser	Glu 795	Phe	Thr	Ile	Gly	Asn 800
Met	Val	Glu	Phe	Ile 805	Gln	Thr	Ser	Ser	Pro 810	Lys	Val	Thr	Ile	Asp 815	CAa
Ala	Ala	Phe	Val 820	CAa	Gly	Asp	Tyr	Ala 825	Ala	Cys	ГÀЗ	Ser	Gln 830	Leu	Val
Glu	Tyr	Gly 835	Ser	Phe	Cys	Asp	Asn 840	Ile	Asn	Ala	Ile	Leu 845	Thr	Glu	Val
Asn	Glu 850	Leu	Leu	Asp	Thr	Thr 855	Gln	Leu	Gln	Val	Ala 860	Asn	Ser	Leu	Met
Asn 865	Gly	Val	Thr		Ser 870		Lys	Leu		Asp 875	Gly	Val	Asn		Asn 880
Val	Asp	Asp	Ile	Asn 885	Phe	Ser	Pro	Val	Leu 890	Gly	CÀa	Leu	Gly	Ser 895	Glu
CÀa	Ser	Lys	Ala 900	Ser	Ser	Arg	Ser	Ala 905	Ile	Glu	Asp	Leu	Leu 910	Phe	Asp
ГÀа	Val	Lys 915	Leu	Ser	Asp	Val	Gly 920	Phe	Val	Glu	Ala	Tyr 925	Asn	Asn	CÀa
Thr	Gly 930	Gly	Ala	Glu	Ile	Arg 935	Asp	Leu	Ile	Cys	Val 940	Gln	Ser	Tyr	ГÀа
Gly 945	Ile	Lys	Val	Leu	Pro 950	Pro	Leu	Leu	Ser	Glu 955	Asn	Gln	Ile	Ser	Gly 960
Tyr	Thr	Leu	Ala	Ala 965	Thr	Ser	Ala	Ser	Leu 970	Phe	Pro	Pro	Trp	Thr 975	Ala
Ala	Ala	Gly	Val 980	Pro	Phe	Tyr	Leu	Asn 985	Val	Gln	Tyr	Arg	Ile 990	Asn	Gly

Leu Gly Val Thr Met Asp Val Leu Ser Gln Asn Gln Lys Leu Ile 995 1000 1005	Ala
Asn Ala Phe Asn Asn Ala Leu Tyr Ala Ile Gln Glu Gly Phe Asp 1010 1015 1020	Þ
Ala Thr Asn Ser Ala Leu Val Lys Ile Gln Ala Val Val Asn Ala 1025 1030 1035	ì
Asn Ala Glu Ala Leu Asn Asn Leu Leu Gln Gln Leu Ser Asn Arg 1040 1045 1050	3
Phe Gly Ala Ile Ser Ala Ser Leu Gln Glu Ile Leu Ser Arg Leu 1055 1060 1065	1
Asp Ala Leu Glu Ala Glu Ala Gln Ile Asp Arg Leu Ile Asn Gly 1070 1075 1080	7
Arg Leu Thr Ala Leu Asn Ala Tyr Val Ser Gln Gln Leu Ser Asy 1085 1090 1095	Þ
Ser Thr Leu Val Lys Phe Ser Ala Ala Gln Ala Met Glu Lys Val	L
Asn Glu Cys Val Lys Ser Gln Ser Ser Arg Ile Asn Phe Cys Gly 1115 1120 1125	7
Asn Gly Asn His Ile Ile Ser Leu Val Gln Asn Ala Pro Tyr Gly 1130 1140	7
Leu Tyr Phe Ile His Phe Ser Tyr Val Pro Thr Lys Tyr Val Thr 1145 1150 1155	£
Ala Arg Val Ser Pro Gly Leu Cys Ile Ala Gly Asp Arg Gly Ile 1160 1165 1170	<del>≥</del>
Ala Pro Lys Ser Gly Tyr Phe Val Asn Val Asn Asn Thr Trp Met 1175 1180 1185	<u>:</u>
Tyr Thr Gly Ser Gly Tyr Tyr Tyr Pro Glu Pro Ile Thr Glu Asr 1190 1195 1200	1
Asn Val Val Wat Ser Thr Cys Ala Val Asn Tyr Thr Lys Ala 1205 1210 1215	à
Pro Tyr Val Met Leu Asn Thr Ser Ile Pro Asn Leu Pro Asp Phe 1220 1225 1230	∌
Lys Glu Glu Leu Asp Gln Trp Phe Lys Asn Gln Thr Ser Val Ala 1235 1240 1245	à
Pro Asp Leu Ser Leu Asp Tyr Ile Asn Val Thr Phe Leu Asp Leu 1250 1255 1260	1
Gln Val Glu Met Asn Arg Leu Gln Glu Ala Ile Lys Val Leu Asr 1265 1270 1275	1
Gln Ser Tyr Ile Asn Leu Lys Asp Ile Gly Thr Tyr Glu Tyr Tyr 1280 1285 1290	£
Val Lys Trp Pro Trp Tyr Val Trp Leu Leu Ile Cys Leu Ala Gly 1295 1300 1305	7
Val Ala Met Leu Val Leu Leu Phe Phe Ile Cys Cys Cys Thr Gly 1310 1315 1320	7
Cys Gly Thr Ser Cys Phe Lys Lys Cys Gly Gly Cys Cys Asp Asp 1325 1330 1335	,
Tyr Thr Gly Tyr Gln Glu Leu Val Ile Lys Thr Ser His Asp Asp 1340 1345 1350	Þ
<210> SEQ ID NO 31 <211> LENGTH: 1351 <212> TYPE: PRT	

<212> TYPE: PRT <213> ORGANISM: Human coronavirus

Met 1	Phe	Leu	Ile	Ile 5	Phe	Ile	Leu	Pro	Thr 10	Thr	Leu	Ala	Val	Ile 15	Gly
Asp	Phe	Asn	Суs 20	Thr	Asn	Ser	Phe	Ile 25	Asn	Asp	Tyr	Asn	Lys 30	Thr	Ile
Pro	Arg	Ile 35	Ser	Glu	Asp	Val	Val 40	Asp	Val	Ser	Leu	Gly 45	Leu	Gly	Thr
Tyr	Tyr 50	Val	Leu	Asn	Arg	Val 55	Tyr	Leu	Asn	Thr	Thr 60	Leu	Leu	Phe	Thr
Gly 65	Tyr	Phe	Pro	Lys	Ser 70	Gly	Ala	Asn	Phe	Arg 75	Asp	Leu	Ala	Leu	Eys
Gly	Ser	Ile	Tyr	Leu 85	Ser	Thr	Leu	Trp	Tyr 90	Lys	Pro	Pro	Phe	Leu 95	Ser
Asp	Phe	Asn	Asn 100	Gly	Ile	Phe	Ser	Lys 105	Val	Lys	Asn	Thr	Lys 110	Leu	Tyr
Val	Asn	Asn 115	Thr	Leu	Tyr	Ser	Glu 120	Phe	Ser	Thr	Ile	Val 125	Ile	Gly	Ser
Val	Phe 130	Val	Asn	Thr	Ser	Tyr 135	Thr	Ile	Val	Val	Gln 140	Pro	His	Asn	Gly
Ile 145	Leu	Glu	Ile	Thr	Ala 150	CAa	Gln	Tyr	Thr	Met 155	Càa	Glu	Tyr	Pro	His 160
Thr	Val	Cys	Lys	Ser 165	Lys	Gly	Ser	Ile	Arg 170	Asn	Glu	Ser	Trp	His 175	Ile
Asp	Ser	Ser	Glu 180	Pro	Leu	CAa	Leu	Phe 185	Lys	Lys	Asn	Phe	Thr 190	Tyr	Asn
Val	Ser	Ala 195	Asp	Trp	Leu	Tyr	Phe 200	His	Phe	Tyr	Gln	Glu 205	Arg	Gly	Val
Phe	Tyr 210	Ala	Tyr	Tyr	Ala	Asp 215	Val	Gly	Met	Pro	Thr 220	Thr	Phe	Leu	Phe
Ser 225	Leu	Tyr	Leu	Gly	Thr 230	Ile	Leu	Ser	His	Tyr 235	Tyr	Val	Met	Pro	Leu 240
Thr	Cys	Asn	Ala	Ile 245	Ser	Ser	Asn	Thr	Asp 250	Asn	Glu	Thr	Leu	Glu 255	Tyr
Trp	Val	Thr	Pro 260	Leu	Ser	Arg	Arg	Gln 265	Tyr	Leu	Leu	Asn	Phe 270	Asp	Glu
His	Gly	Val 275	Ile	Thr	Asn	Ala	Val 280	Asp	Cys	Ser	Ser	Ser 285	Phe	Leu	Ser
Glu	Ile 290	Gln	Cys	Lys	Thr	Gln 295		Phe	Ala	Pro	Asn 300	Thr	Gly	Val	Tyr
Asp 305	Leu	Ser	Gly	Phe	Thr 310	Val	Lys	Pro	Val	Ala 315	Thr	Val	Tyr	Arg	Arg 320
Ile	Pro	Asn	Leu	Pro 325	Asp	Cys	Asp	Ile	Asp 330	Asn	Trp	Leu	Asn	Asn 335	Val
Ser	Val	Pro	Ser 340	Pro	Leu	Asn	Trp	Glu 345	Arg	Arg	Ile	Phe	Ser 350	Asn	CAa
Asn	Phe	Asn 355	Leu	Ser	Thr	Leu	Leu 360	Arg	Leu	Val	His	Val 365	Asp	Ser	Phe
Ser	Cys 370	Asn	Asn	Leu	Asp	Lys 375	Ser	Lys	Ile	Phe	Gly 380	Ser	Cys	Phe	Asn
Ser 385	Ile	Thr	Val	Asp	190 290	Phe	Ala	Ile	Pro	Asn 395	Arg	Arg	Arg	Asp	Asp 400
Leu	Gln	Leu	Gly	Ser 405	Ser	Gly	Phe	Leu	Gln 410	Ser	Ser	Asn	Tyr	Lys 415	Ile

Asp	Ile	Ser	Ser 420	Ser	Ser	Cys	Gln	Leu 425	Tyr	Tyr	Ser	Leu	Pro 430	Leu	Val
Asn	Val	Thr 435	Ile	Asn	Asn	Phe	Asn 440	Pro	Ser	Ser	Trp	Asn 445	Arg	Arg	Tyr
Gly	Phe 450	Gly	Ser	Phe	Asn	Leu 455	Ser	Ser	Tyr	Asp	Val 460	Val	Tyr	Ser	Asp
His 465	Сув	Phe	Ser	Val	Asn 470	Ser	Asp	Phe	Сув	Pro 475	СЛа	Ala	Asp	Pro	Ser 480
Val	Val	Asn	Ser	Сув 485	Ala	Lys	Ser	Lys	Pro 490	Pro	Ser	Ala	Ile	Суз 495	Pro
Ala	Gly	Thr	Lys 500	Tyr	Arg	His	Cha	Asp 505	Leu	Asp	Thr	Thr	Leu 510	Tyr	Val
Lys	Asn	Trp 515	Сув	Arg	Cys	Ser	Cys 520	Leu	Pro	Asp	Pro	Ile 525	Ser	Thr	Tyr
Ser	Pro 530	Asn	Thr	CÀa	Pro	Gln 535	Lys	Lys	Val	Val	Val 540	Gly	Ile	Gly	Glu
His 545	Cys	Pro	Gly	Leu	Gly 550	Ile	Asn	Glu	Glu	Lys 555	CÀa	Gly	Thr	Gln	Leu 560
Asn	His	Ser	Ser	Cys	Phe	CÀa	Ser	Pro	Asp 570	Ala	Phe	Leu	Gly	Trp 575	Ser
Phe	Asp	Ser	280 CÀa	Ile	Ser	Asn	Asn	Arg 585	CAa	Asn	Ile	Phe	Ser 590	Asn	Phe
Ile	Phe	Asn 595	Gly	Ile	Asn	Ser	Gly 600	Thr	Thr	Сув	Ser	Asn 605	Asp	Leu	Leu
Tyr	Ser 610	Asn	Thr	Glu	Ile	Ser 615	Thr	Gly	Val	Сув	Val 620	Asn	Tyr	Asp	Leu
Tyr 625	Gly	Ile	Thr	Gly	Gln 630	Gly	Ile	Phe	ГÀа	Glu 635	Val	Ser	Ala	Ala	Tyr 640
Tyr	Asn	Asn	Trp	Gln 645	Asn	Leu	Leu	Tyr	Asp 650	Ser	Asn	Gly	Asn	Ile 655	Ile
Gly	Phe	Lys	Asp 660	Phe	Leu	Thr	Asn	Lys 665	Thr	Tyr	Thr	Ile	Leu 670	Pro	Cya
Tyr	Ser	Gly 675	Arg	Val	Ser	Ala	Ala 680	Phe	Tyr	Gln	Asn	Ser 685	Ser	Ser	Pro
Ala	Leu 690	Leu	Tyr	Arg	Asn	Leu 695	Lys	Cys	Ser	Tyr	Val 700	Leu	Asn	Asn	Ile
Ser 705		Ile	Ser	Gln	Pro 710		Tyr	Phe	Asp	Ser 715	Tyr	Leu	Gly	СЛа	Val 720
Leu	Asn	Ala	Val	Asn 725	Leu	Thr	Ser	Tyr	Ser 730	Val	Ser	Ser	СЛа	Asp 735	Leu
Arg	Met	Gly	Ser 740	Gly	Phe	CÀa	Ile	Asp 745	Tyr	Ala	Leu	Pro	Ser 750	Ser	Arg
Arg	ГÀа	Arg 755	Arg	Gly	Ile	Ser	Ser 760	Pro	Tyr	Arg	Phe	Val 765	Thr	Phe	Glu
Pro	Phe 770	Asn	Val	Ser	Phe	Val 775	Asn	Asp	Ser	Val	Glu 780	Thr	Val	Gly	Gly
Leu 785	Phe	Glu	Ile	Gln	Ile 790	Pro	Thr	Asn	Phe	Thr 795	Ile	Ala	Gly	His	Glu 800
Glu	Phe	Ile	Gln	Thr 805	Ser	Ser	Pro	Lys	Val 810	Thr	Ile	Asp	Сла	Ser 815	Ala
Phe	Val	Cys	Ser 820	Asn	Tyr	Ala	Ala	Cys 825	His	Asp	Leu	Leu	Ser 830	Glu	Tyr
Gly	Thr	Phe	Cys	Asp	Asn	Ile	Asn	Ser	Ile	Leu	Asn	Glu	Val	Asn	Asp

												COII	LC II.	lucu	-
		835					840					845			
Leu	Leu 850	Asp	Ile	Thr	Gln	Leu 855	Gln	Val	Ala	Asn	Ala 860	Leu	Met	Gln	Gly
Val 865	Thr	Leu	Ser	Ser	Asn 870	Leu	Asn	Thr	Asn	Leu 875	His	Ser	Asp	Val	Asp 880
Asn	Ile	Asp	Phe	Lys 885	Ser	Leu	Leu	Gly	690	Leu	Gly	Ser	Glr	Cys 895	Gly
Ser	Ser	Ser	Arg 900	Ser	Leu	Leu	Glu	Asp 905		Leu	Phe	Asn	Lys 910		Lys
Leu	Ser	Asp 915	Val	Gly	Phe	Val	Glu 920	Ala	Tyr	Asn	Asn	Сув 925		Gly	Gly
Ser	Glu 930	Ile	Arg	Asp	Leu	Leu 935	CÀa	Val	Gln	Ser	Phe 940	Asn	Gly	7 Ile	. Lys
Val 945	Leu	Pro	Pro	Ile	Leu 950	Ser	Glu	Thr	Gln	Ile 955	Ser	Gly	Туг	Thr	Thr 960
Ala	Ala	Thr	Val	Ala 965	Ala	Met	Phe	Pro	Pro 970	Trp	Ser	Ala	Ala	Ala 975	Gly
Val	Pro	Phe	Ser 980	Leu	Asn	Val	Gln	Tyr 985	Arg	Ile	Asn	Gly	Leu 990		Val
Thr	Met	Asp 995	Val	Leu	Asn	Lys	Asn 100		n Ly:	s Lei	u Il		а <i>Р</i> 05	sn A	la Phe
Asn	Lys 1010		ı Lev	ı Lev	ı Ser	10:		ln As	en G	ly Pl		hr 020	Ala	Thr	Asn
Ser	Ala 1025		ı Ala	ı Lys	; Il∈	Gl: 103		er Va	al Va	al A		la 035	Asn	Ala	Gln
Ala	Leu 1040		ı Ser	: Lev	ı Lev	1 Gl1		ln Le	eu Pl	ne A		ys 050	Phe	Gly	Ala
Ile	Ser 1055		: Sei	: Lev	ı Glr	100		le Le	eu Se	er A:	_	eu 065	Asp	Asn	Leu
Glu	Ala 1070		ı Val	Glr	ı Ile	Ası 10'		rg Le	eu I	le A:		ly 080	Arg	Leu	Thr
Ala	Leu 1085		n Ala	а Туг	. Val	Ser 109		ln G	ln Le	eu Se		sp 095	Ile	Thr	Leu
Ile	Lys 1100		a Gly	/ Ala	a Ser	110		la I	le G	lu Ly		al 110	Asn	Glu	Cys
Val	Lys 1115		Glr	ı Sei		•	g I: 20		sn Pl		ys G 1	-	Asn	Gly	Asn
His	Ile 1130		ı Ser	: Lev	ı Val	. Gli 113		sn A	la Pi	ro T	•	ly 140	Leu	Leu	Phe
Ile	His 1145		e Ser	ту1	Lys	Pro 115		hr Se	∍r Pl	ne Ly		hr 155	Val	Leu	Val
Ser	Pro 1160		/ Leu	ı Cys	E Leu	116		ly As	sp Ai	rg G		le 170	Ala	Pro	Lys
Gln	Gly 1175	_	Phe	e Ile	e Lys	Gl:		sn As	sp Se	er T:	_	et 185	Phe	Thr	Gly
Ser	Ser 1190	_	туг	ту1	r Pro	Gl:		ro I	le Se	er A		ys 200	Asn	Val	Val
Phe	Met 1205		ı Ser	Cys	s Ser	Va:		sn Pl	ne Th	nr Ly	-	la 215	Pro	Phe	Ile
Tyr	Leu 1220		n Asr	ı Sei	: Ile	Pro		sn Le	eu S∈	er A	_	he 230	Glu	Ala	Glu
Leu	Ser 1235		ı Trp	) Phe	e Lys	8 Ası 124		is Tl	nr Se	er I		la 245	Pro	Asn	Leu

Thr Phe Asn Ser His Ile Asn Ala Thr Phe Leu Asp Leu Tyr Tyr 1255 Glu Met Asn Val Ile Gln Glu Ser Ile Lys Ser Leu Asn Ser Ser 1265 1270 1275 Phe Ile Asn Leu Lys Glu Ile Gly Thr Tyr Glu Met Tyr Val Lys Trp Pro Trp Tyr Ile Trp Leu Leu Ile Val Ile Leu Phe Ile Ile 1300 Phe Leu Met Ile Leu Phe Phe Ile Cys Cys Cys Thr Gly Cys Gly Ser Ala Cys Phe Ser Lys Cys His Asn Cys Cys Asp Glu Tyr Gly Gly His Asn Asp Phe Val Ile Lys Ala Ser His Asp Asp 1345 <210> SEQ ID NO 32 <211> LENGTH: 526 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide <400> SEQUENCE: 32 Met Phe Ile Phe Leu Leu Phe Leu Thr Leu Thr Ser Gly Ser Asp Leu Asp Arg Ala Leu Ser Gly Ile Ala Ala Glu Gln Asp Arg Asn Thr Arg Glu Val Phe Ala Gln Val Lys Gln Met Tyr Lys Thr Pro Thr Leu Lys 40 Tyr Phe Gly Gly Phe Asn Phe Ser Gln Ile Leu Pro Asp Pro Leu Lys Pro Thr Lys Arg Ser Phe Ile Glu Asp Leu Leu Phe Asn Lys Val Thr Leu Ala Asp Ala Gly Phe Met Lys Gln Tyr Gly Glu Cys Leu Gly Asp Ile Asn Ala Arg Asp Leu Ile Cys Ala Gln Lys Phe Asn Gly Leu Thr Val Leu Pro Pro Leu Leu Thr Asp Asp Met Ile Ala Ala Tyr Thr Ala Ala Leu Val Ser Gly Thr Ala Thr Ala Gly Trp Thr Phe Gly Ala Gly Ala Ala Leu Gln Ile Pro Phe Ala Met Gln Met Ala Tyr Arg Phe Asn Gly Ile Gly Val Thr Gln Asn Val Leu Tyr Glu Asn Gln Lys Gln Ile Ala Asn Gln Phe Asn Lys Ala Ile Ser Gln Ile Gln Glu Ser Leu Thr 185 Thr Thr Ser Thr Ala Leu Gly Lys Leu Gln Asp Val Val Asn Gln Asn 200 Ala Gln Ala Leu Asn Thr Leu Val Lys Gln Leu Ser Ser Asn Phe Gly Ala Ile Ser Ser Val Leu Asn Asp Ile Leu Ser Arg Leu Asp Lys Val 230 235 Glu Ala Glu Val Gln Ile Asp Arg Leu Ile Thr Gly Arg Leu Gln Ser 250

-continued

Leu Gln Thr Tyr Val Thr Gln Gln Leu Ile Arg Ala Ala Glu Ile Arg 265 Ala Ser Ala Asn Leu Ala Ala Thr Lys Met Ser Glu Cys Val Leu Gly 280 Gln Ser Lys Arg Val Asp Phe Cys Gly Lys Gly Tyr His Leu Met Ser Phe Pro Gln Ala Ala Pro His Gly Val Val Phe Leu His Val Thr Tyr Val Pro Ser Gln Glu Arg Asn Phe Thr Thr Ala Pro Ala Ile Cys His Glu Gly Lys Ala Tyr Phe Pro Arg Glu Gly Val Phe Val Phe Asn Gly Thr Ser Trp Phe Ile Thr Gln Arg Asn Phe Phe Ser Pro Gln Ile Ile Thr Thr Asp Asn Thr Phe Val Ser Gly Asn Cys Asp Val Val Ile Gly 375 Ile Ile Asn Asn Thr Val Tyr Asp Pro Leu Gln Pro Glu Leu Asp Ser 390 395 Phe Lys Glu Glu Leu Asp Lys Tyr Phe Lys Asn His Thr Ser Pro Asp Val Asp Leu Gly Asp Ile Ser Gly Ile Asn Ala Ser Val Val Asn Ile Gln Lys Glu Ile Asp Arg Leu Asn Glu Val Ala Lys Asn Leu Asn Glu 440 Ser Leu Ile Asp Leu Gln Glu Leu Gly Lys Tyr Glu Gln Tyr Ile Lys 455 Trp Pro Trp Tyr Val Trp Leu Gly Phe Ile Ala Gly Leu Ile Ala Ile Val Met Val Thr Ile Leu Leu Cys Cys Met Thr Ser Cys Cys Ser Cys 490 Leu Lys Gly Ala Cys Ser Cys Gly Ser Cys Cys Lys Phe Asp Glu Asp 505 Asp Ser Glu Pro Val Leu Lys Gly Val Lys Leu His Tyr Thr 520 <210> SEQ ID NO 33 <211> LENGTH: 588 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide <400> SEQUENCE: 33 Met Ile His Ser Val Phe Leu Leu Met Phe Leu Leu Thr Pro Thr Glu 10 Ser Asp Cys Lys Leu Pro Leu Gly Gln Ser Leu Cys Ala Leu Pro Asp Thr Pro Ser Thr Leu Thr Pro Arg Ser Val Arg Ser Val Pro Gly Glu 40 Met Arg Leu Ala Ser Ile Ala Phe Asn His Pro Ile Gln Val Asp Gln 55 Leu Asn Ser Ser Tyr Phe Lys Leu Ser Ile Pro Thr Asn Phe Ser Phe 70 75 Gly Val Thr Gln Glu Tyr Ile Gln Thr Thr Ile Gln Lys Val Thr Val 90

Asp	Cha	Lys	Gln 100	Tyr	Val	CAa	Asn	Gly 105	Phe	Gln	ГÀв	CAa	Glu 110	Gln	Leu
Leu	Arg	Glu 115	Tyr	Gly	Gln	Phe	Cys 120	Ser	Lys	Ile	Asn	Gln 125	Ala	Leu	His
Gly	Ala 130	Asn	Leu	Arg	Gln	Asp 135	Asp	Ser	Val	Arg	Asn 140	Leu	Phe	Ala	Ser
Val 145	Lys	Ser	Ser	Gln	Ser 150	Ser	Pro	Ile	Ile	Pro 155	Gly	Phe	Gly	Gly	Asp 160
Phe	Asn	Leu	Thr	Leu 165	Leu	Glu	Pro	Val	Ser 170	Ile	Ser	Thr	Gly	Ser 175	Arg
Ser	Ala	Arg	Ser 180	Ala	Ile	Glu	Asp	Leu 185	Leu	Phe	Asp	Lys	Val 190	Thr	Ile
Ala	Asp	Pro 195	Gly	Tyr	Met	Gln	Gly 200	Tyr	Asp	Asp	Сув	Met 205	Gln	Gln	Gly
Pro	Ala 210	Ser	Ala	Arg	Asp	Leu 215	Ile	Cys	Ala	Gln	Tyr 220	Val	Ala	Gly	Tyr
Lys 225	Val	Leu	Pro	Pro	Leu 230	Met	Asp	Val	Asn	Met 235	Glu	Ala	Ala	Tyr	Thr 240
Ser	Ser	Leu	Leu	Gly 245	Ser	Ile	Ala	Gly	Val 250	Gly	Trp	Thr	Ala	Gly 255	Leu
Ser	Ser	Phe	Ala 260	Ala	Ile	Pro	Phe	Ala 265	Gln	Ser	Ile	Phe	Tyr 270	Arg	Leu
Asn	Gly	Val 275	Gly	Ile	Thr	Gln	Gln 280	Val	Leu	Ser	Glu	Asn 285	Gln	Lys	Leu
Ile	Ala 290	Asn	Lys	Phe	Asn	Gln 295	Ala	Leu	Gly	Ala	Met 300	Gln	Thr	Gly	Phe
Thr 305	Thr	Thr	Asn	Glu	Ala 310	Phe	Gln	Lys	Val	Gln 315	Asp	Ala	Val	Asn	Asn 320
Asn	Ala	Gln	Ala	Leu 325	Ser	ГÀа	Leu	Ala	Ser 330	Glu	Leu	Ser	Asn	Thr 335	Phe
Gly	Ala	Ile	Ser 340	Ala	Ser	Ile	Gly	Asp 345	Ile	Ile	Gln	Arg	Leu 350	Asp	Val
Leu	Glu	Gln 355	Asp	Ala	Gln	Ile	360	Arg	Leu	Ile	Asn	Gly 365	Arg	Leu	Thr
Thr	Leu 370	Asn	Ala	Phe	Val	Ala 375	Gln	Gln	Leu	Val	Arg 380	Ser	Glu	Ser	Ala
Ala 385	Leu	Ser	Ala	Gln	Leu 390	Ala	Lys	Asp	Lys	Val 395	Asn	Glu	Cys	Val	Lys 400
Ala	Gln	Ser	Lys	Arg 405	Ser	Gly	Phe	Cys	Gly 410	Gln	Gly	Thr	His	Ile 415	Val
Ser	Phe	Val	Val 420	Asn	Ala	Pro	Asn	Gly 425	Leu	Tyr	Phe	Met	His 430	Val	Gly
Tyr	Tyr	Pro 435	Ser	Asn	His	Ile	Glu 440	Val	Val	Ser	Ala	Tyr 445	Gly	Leu	CÀa
Asp	Ala 450	Ala	Asn	Pro	Thr	Asn 455	Cys	Ile	Ala	Pro	Val 460	Asn	Gly	Tyr	Phe
Ile 465	Lys	Thr	Asn	Asn	Thr 470	Arg	Ile	Val	Asp	Glu 475	Trp	Ser	Tyr	Thr	Gly 480
Ser	Ser	Phe	Tyr	Ala 485	Pro	Glu	Pro	Ile	Thr 490	Ser	Leu	Asn	Thr	Lys 495	Tyr
Val	Ala	Pro	Gln 500	Val	Thr	Tyr	Gln	Asn 505	Ile	Ser	Thr	Asn	Leu 510	Pro	Pro

-continued

Pro Leu Leu Gly Asn Ser Thr Gly Ile Asp Phe Gln Asp Glu Leu Asp 520 Glu Phe Phe Lys Asn Val Ser Thr Ser Ile Pro Asn Phe Gly Ser Leu Thr Gln Ile Asn Thr Thr Leu Leu Asp Leu Thr Tyr Glu Met Leu Ser 555 Leu Gln Gln Val Val Lys Ala Leu Asn Glu Ser Tyr Ile Asp Leu Lys Glu Leu Gly Asn Tyr Thr Tyr Tyr Asn Lys Trp Pro <210> SEQ ID NO 34 <211> LENGTH: 526 <212> TYPE: PRT <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide <400> SEQUENCE: 34 Met Phe Ile Phe Leu Leu Phe Leu Thr Leu Thr Ser Gly Ser Asp Leu Asp Arg Ala Leu Ser Gly Ile Ala Ala Glu Gln Asp Arg Asn Thr Arg Glu Val Phe Ala Gln Val Lys Gln Met Tyr Lys Thr Pro Thr Leu Lys Tyr Phe Gly Gly Phe Asn Phe Ser Gln Ile Leu Pro Asp Pro Leu Lys Pro Thr Lys Arg Ser Phe Ile Glu Asp Leu Leu Phe Asn Lys Val Thr 70 Leu Ala Asp Ala Gly Phe Met Lys Gln Tyr Gly Glu Cys Leu Gly Asp Ile Asn Ala Arg Asp Leu Ile Cys Ala Gln Lys Phe Asn Gly Leu Thr 105 Val Leu Pro Pro Leu Leu Thr Asp Asp Met Ile Ala Ala Tyr Thr Ala Ala Leu Val Ser Gly Thr Ala Thr Ala Gly Trp Thr Phe Gly Ala Gly 135 Ala Ala Leu Gln Ile Pro Phe Ala Met Gln Met Ala Tyr Arg Phe Asn Gly Ile Gly Val Thr Gln Asn Val Leu Tyr Glu Asn Gln Lys Gln Ile Ala Asn Gln Phe Asn Lys Ala Ile Ser Gln Ile Gln Glu Ser Leu Thr Thr Thr Ser Thr Ala Leu Gly Lys Leu Gln Asp Val Val Asn Gln Asn Ala Gln Ala Leu Asn Thr Leu Val Lys Gln Leu Ser Ser Asn Phe Gly 215 Ala Ile Ser Ser Val Leu Asn Asp Ile Leu Ser Arg Leu Asp Lys Val Glu Ala Glu Val Gln Ile Asp Arg Leu Ile Thr Gly Arg Leu Gln Ser 250 Leu Gln Thr Tyr Val Thr Gln Gln Leu Ile Arg Ala Ala Glu Ile Arg 265 Ala Ser Ala Asn Leu Ala Ala Thr Lys Met Ser Glu Cys Val Leu Gly 280

_																
Gln	Ser 290	Lys	Arg	Val	Asp	Phe 295	Cys	Gly	Lys	Gly	Tyr 300	His	Leu	Met	Ser	
Phe 305	Pro	Gln	Ala	Ala	Pro 310	His	Gly	Val	Val	Phe 315	Leu	His	Val	Thr	Tyr 320	
Val	Pro	Ser	Gln	Glu 325	Arg	Asn	Phe	Thr	Thr 330	Ala	Pro	Ala	Ile	Сув 335	His	
Glu	Gly	Lys	Ala 340	Tyr	Phe	Pro	Arg	Glu 345	Gly	Val	Phe	Val	Phe 350	Asn	Gly	
Thr	Ser	Trp 355	Phe	Ile	Thr	Gln	Arg 360	Asn	Phe	Phe	Ser	Pro 365	Gln	Ile	Ile	
Thr	Thr 370		Asn	Thr	Phe	Val 375	Ser	Gly	Asn	Сла	Asp 380	Val	Val	Ile	Gly	
Ile 385	Ile	Asn	Asn	Thr	Val 390	Tyr	Asp	Pro	Leu	Gln 395	Pro	Glu	Leu	Asp	Ser 400	
Phe	Lys	Glu	Glu	Leu 405	Asp	Lys	Tyr		Lys 410	Asn	His	Thr	Ser	Pro 415	Asp	
Val	Asp	Leu	Gly 420	Asp	Ile	Ser	Gly	Ile 425	Asn	Ala	Ser	Val	Val 430	Asn	Ile	
Gln	ГЛа	Glu 435	Ile	Asp	Arg	Leu	Asn 440	Glu	Val	Ala	ГЛа	Asn 445	Leu	Asn	Glu	
Ser	Leu 450	Ile	Asp	Leu	Gln	Glu 455	Leu	Gly	Lys	Tyr	Glu 460	Gln	Tyr	Ile	Lys	
Trp 465	Pro	Trp	Tyr	Val	Trp 470	Leu	Gly	Phe	Ile	Ala 475	Gly	Leu	Ile	Ala	Ile 480	
Val	Met	Val	Thr	Ile 485	Leu	Leu	Cys	Cha	Met 490	Thr	Ser	Cya	Cys	Ser 495	Cha	
Leu	Lys	Gly	Ala 500	Cya	Ser	Cys	Gly	Ser 505	Cys	Сла	Lys	Phe	Asp 510	Glu	Asp	
Asp	Ser	Glu 515	Pro	Val	Leu	Lys	Gly 520	Val	Lys	Leu	His	Tyr 525	Thr			
<211 <212 <213 <220 <223	L> LI 2> TY 3> OF 0> FI 3> OT	ENGTI (PE : RGAN: EATUI THER	ISM:	B64 Art: DRMA			-		Polyr	nucle	eotic	de				
tcaa	agctt	tt q	ggaco	cctc	gt a	cagaa	agcta	a ata	acgad	ctca	ctat	aggg	gaa a	ataaq	gagaga	60
aaaq	gaaga	agt a	aagaa	agaaa	at at	aaga	agcca	a cca	atggg	gtct	caaç	ggtga	aac q	gtcto	etgeeg	120
															gcaatc	180
															gttcca	240
															gcacga	300
															gggatg	360 420
		_	_		_						_	_			ggagac	420
															acaatc	540
															ggcagg	600
															gtcta	660
															gatact	720

-continued

atacagaaat cetgteatta tttggeecea geetaeggga eeceatatet geggagatat	
	780
ctatccaggc tttgagttat gcacttggag gagatatcaa taaggtgtta gaaaagctcg	840
gatacagtgg aggcgattta ctaggcatct tagagagcag aggaataaag gctcggataa	900
ctcacgtcga cacagagtcc tacttcatag tcctcagtat agcctatccg acgctgtccg	960
agattaaggg ggtgattgtc caccggctag agggggtctc gtacaacata ggctctcaag	1020
agtggtatac cactgtgccc aagtatgttg caacccaagg gtaccttatc tcgaattttg	1080
atgagtcatc atgtactttc atgccagagg ggactgtgtg cagccaaaat gccttgtacc	1140
cgatgagtcc tctgctccaa gaatgcctcc gggggtccac caagtcctgt gctcgtacac	1200
tegtateegg gtettttggg aaceggttea ttttateaca agggaaceta atageeaatt	1260
gtgcatcaat totttgtaag tgttacacaa caggtacgat tattaatcaa gaccotgaca	1320
agatectaac atacattget geogateget geoeggtagt egaggtgaac ggegtgacca	1380
tocaagtogg gagcaggagg tatocagacg otgtgtactt gcacagaatt gacotoggto	1440
ctcccatatc attggagagg ttggacgtag ggacaaatct ggggaatgca attgccaaat	1500
tggaggatgc caaggaattg ttggaatcat cggaccagat attgagaagt atgaaaggtt	1560
tatogagoac tagoatagto tacatootga ttgcagtgtg tottggaggg ttgataggga	1620
tccccacttt aatatgttgc tgcaggggc gttgtaacaa aaagggagaa caagttggta	1680
tgtcaagacc aggcctaaag cctgacctta caggaacatc aaaatcctat gtaagatcgc	1740
tttgatgata ataggetgga geeteeggtgg eeaagettet tgeecettgg geeteeeee	1800
ageceeteet eccetteetg caccegtace eccgtggtet ttgaataaag tetgagtggg	1860
cggc	1864
<210> SEQ ID NO 36	
<211> LENGTH: 1653 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	60
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 36	60 120
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 36 atgggtctca aggtgaacgt ctctgccgta ttcatggcag tactgttaac tctccaaaca	
<pre>&lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Synthetic Polynucleotide &lt;400&gt; SEQUENCE: 36 atgggtctca aggtgaacgt ctctgccgta ttcatggcag tactgttaac tctccaaaca cccgccggtc aaattcattg gggcaatctc tctaagatag gggtagtagg aataggaagt</pre>	120
<pre>&lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Synthetic Polynucleotide &lt;400&gt; SEQUENCE: 36 atgggtctca aggtgaacgt ctctgccgta ttcatggcag tactgttaac tctccaaaca cccgccggtc aaattcattg gggcaatctc tctaagatag gggtagtagg aataggaagt gcaagctaca aagttatgac tcgttccagc catcaatcat tagtcataaa attaatgccc</pre>	120 180
<pre>&lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Synthetic Polynucleotide &lt;400&gt; SEQUENCE: 36 atgggtctca aggtgaacgt ctctgccgta ttcatggcag tactgttaac tctccaaaca cccgccggtc aaattcattg gggcaatctc tctaagatag gggtagtagg aataggaagt gcaagctaca aagttatgac tcgttccagc catcaatcat tagtcataaa attaatgccc aatataactc tcctcaataa ctgcacgagg gtagagattg cagaatacag gagactacta</pre>	120 180 240
<pre>&lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Synthetic Polynucleotide &lt;400&gt; SEQUENCE: 36 atgggtctca aggtgaacgt ctctgccgta ttcatggcag tactgttaac tctccaaaca cccgccggtc aaattcattg gggcaatctc tctaagatag gggtagtagg aataggaagt gcaagctaca aagttatgac tcgttccagc catcaatcat tagtcataaa attaatgccc aatataactc tcctcaataa ctgcacgagg gtagagattg cagaatacag gagactacta agaacagttt tggaaccaat tagggatgca cttaatgcaa tgacccagaa cataaggccg</pre>	120 180 240 300
<pre>&lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Synthetic Polynucleotide &lt;400&gt; SEQUENCE: 36 atgggtctca aggtgaacgt ctctgccgta ttcatggcag tactgttaac tctccaaaca cccgccggtc aaattcattg gggcaatctc tctaagatag gggtagtagg aataggaagt gcaagctaca aagttatgac tcgttccagc catcaatcat tagtcataaa attaatgccc aatataactc tcctcaataa ctgcacgagg gtagagattg cagaatacag gagactacta agaacagttt tggaaccaat tagggatgca cttaatgcaa tgacccagaa cataaggccg gttcagagcg tagcttcaag taggagacac aagagatttg cgggagtagt cctggcaggt</pre>	120 180 240 300 360
<pre>&lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Synthetic Polynucleotide &lt;400&gt; SEQUENCE: 36 atgggtctca aggtgaacgt ctctgccgta ttcatggcag tactgttaac tctccaaaca cccgccggtc aaattcattg gggcaatctc tctaagatag gggtagtagg aataggaagt gcaagctaca aagttatgac tcgttccagc catcaatcat tagtcataaa attaatgccc aatataactc tcctcaataa ctgcacgagg gtagagattg cagaatacag gagactacta agaacagttt tggaaccaat tagggatgca cttaatgcaa tgacccagaa cataaggccg gttcagagcg tagcttcaag taggagacac aagagatttg cgggagtagt cctggcaggt gcggccctag gtgttgccac agctgctcag ataacagccg gcattgcact tcaccggtcc</pre>	120 180 240 300 360 420
<pre>&lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Synthetic Polynucleotide &lt;400&gt; SEQUENCE: 36  atgggtctca aggtgaacgt ctctgccgta ttcatggcag tactgttaac tctccaaaca cccgccggtc aaattcattg gggcaatctc tctaagatag gggtagtagg aataggaagt gcaagctaca aagttatgac tcgttccagc catcaatcat tagtcataaa attaatgccc aatataactc tcctcaataa ctgcacgagg gtagagattg cagaatacag gagactacta agaacagttt tggaaccaat tagggatgca cttaatgcaa tgacccagaa cataaggccg gttcagagcg tagcttcaag taggagacac aagagatttg cgggagtagt cctggcaggt gcggccctag gtgttgccac agctgctcag ataacagccg gcattgcact tcaccggtcc atgctgaact ctcaggccat cgacaatctg agagcgagcc tggaaactac taatcaggca</pre>	120 180 240 300 360 420
<pre>&lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Synthetic Polynucleotide &lt;400&gt; SEQUENCE: 36  atgggtctca aggtgaacgt ctctgccgta ttcatggcag tactgttaac tctccaaaca cccgccggtc aaattcattg gggcaatctc tctaagatag gggtagtagg aataggaagt gcaagctaca aagttatgac tcgttccagc catcaatcat tagtcataaa attaatgccc aatataactc tcctcaataa ctgcacgagg gtagagattg cagaatacag gagactacta agaacagttt tggaaccaat tagggatgca cttaatgcaa tgacccagaa cataaggccg gttcagagcg tagcttcaag taggagacac aagagatttg cgggagtagt cctggcaggt gcggccctag gtgttgccac agctgctcag ataacagccg gcattgcact tcaccggtcc atgctgaact ctcaggccat cgacaatctg agagcgagcc tggaaactac taatcaggca attgaggcaa tcagacaagc agggcaggag atgatattgg ctgttcaggg tgtccaagac</pre>	120 180 240 300 360 420 480
<pre>&lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Synthetic Polynucleotide &lt;400&gt; SEQUENCE: 36  atgggtctca aggtgaacgt ctctgccgta ttcatggcag tactgttaac tctccaaaca cccgccggtc aaattcattg gggcaatctc tctaagatag gggtagtagg aataggaagt gcaagctaca aagttatgac tcgttccagc catcaatcat tagtcataaa attaatgccc aatataactc tcctcaataa ctgcacgagg gtagagattg cagaatacag gagactacta agaacagttt tggaaccaat tagggatgca cttaatgcaa tgacccagaa cataaggccg gttcagagcg tagcttcaag taggagacac aagagatttg cgggagtagt cctggcaggt gcggccctag gtgttgccac agctgctcag ataacagccg gcattgcact tcaccggtcc atgctgaact ctcaggccat cgacaatctg agagcgagcc tggaaactac taatcaggca attgaggcaa tcagacaagc agggcaggag atgatattgg ctgttcaggg tgtccaagac tacatcaata atgagctgat accgtctatg aaccagctat cttgtgatct aatcggtcag aagctcgggc tcaaattgct tagatactat acagaaatcc tgtcattatt tggccccagc</pre>	120 180 240 300 360 420 480 540 600
<pre>&lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Synthetic Polynucleotide &lt;400&gt; SEQUENCE: 36  atgggtctca aggtgaacgt ctctgccgta ttcatggcag tactgttaac tctccaaaca cccgccggtc aaattcattg gggcaatctc tctaagatag gggtagtagg aataggaagt gcaagctaca aagttatgac tcgttccagc catcaatcat tagtcataaa attaatgccc aatataactc tcctcaataa ctgcacgagg gtagagattg cagaatacag gagactacta agaacagttt tggaaccaat tagggatgca cttaatgcaa tgacccagaa cataaggccg gttcagagcg tagcttcaag taggagacac aagagatttg cgggagtagt cctggcaggt gcggccctag gtgttgccac agctgctcag ataacagccg gcattgcact tcaccggtcc atgctgaact ctcaggccat cgacaatctg agagcgagcc tggaaactac taatcaggca attgaggcaa tcagacaagc agggcaggag atgatattgg ctgttcaggg tgtccaagac tacatcaata atgagctgat accgtctatg aaccagctat cttgtgatct aatcggtcag aagctcgggc tcaaattgct tagatactat acagaaatcc tgtcattatt tggccccagc ctacgggacc ccatatctgc ggagatatct atccaggctt tgagttatgc acttggagga</pre>	120 180 240 300 360 420 480 540 600 660
<pre>&lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Synthetic Polynucleotide &lt;400&gt; SEQUENCE: 36  atgggtctca aggtgaacgt ctctgccgta ttcatggcag tactgttaac tctccaaaca cccgccggtc aaattcattg gggcaatctc tctaagatag gggtagtagg aataggaagt gcaagctaca aagttatgac tcgttccagc catcaatcat tagtcataaa attaatgccc aatataactc tcctcaataa ctgcacgagg gtagagattg cagaatacag gagactacta agaacagttt tggaaccaat tagggatgca cttaatgcaa tgacccagaa cataaggccg gttcagagcg tagcttcaag taggagacac aagagatttg cgggagtagt cctggcaggt gcggccctag gtgttgccac agctgctcag ataacagccg gcattgcact tcaccggtcc atgctgaact ctcaggccat cgacaatctg agagcgagcc tggaaactac taatcaggca attgaggcaa tcagacaagc agggcaggag atgatattgg ctgttcaggg tgtccaagac tacatcaata atgagctgat accgtctatg aaccagctat cttgtgatct aatcggtcag aagctcgggc tcaaattgct tagatactat acagaaatcc tgtcattatt tggccccagc</pre>	120 180 240 300 360 420 480 540 600

900

ctcagtatag cctatccgac gctgtccgag attaaggggg tgattgtcca ccggctagag

ggggtctcgt acaacatagg ctctcaagag tggtatacca ctgtgcccaa gtatgttgca	960
acccaagggt accttatoto gaattttgat gagtcatcat gtactttcat gccagagggg 1	020
actgtgtgca gccaaaatgc cttgtacccg atgagtcctc tgctccaaga atgcctccgg 1	080
gggtccacca agtcctgtgc tcgtacactc gtatccgggt cttttgggaa ccggttcatt 1	140
ttatcacaag ggaacctaat agccaattgt gcatcaattc tttgtaagtg ttacacaaca 1	200
ggtacgatta ttaatcaaga ccctgacaag atcctaacat acattgctgc cgatcgctgc 1	260
ccggtagtcg aggtgaacgg cgtgaccatc caagtcggga gcaggaggta tccagacgct 1	320
gtgtacttgc acagaattga cctcggtcct cccatatcat tggagaggtt ggacgtaggg 1	380
acaaatctgg ggaatgcaat tgccaaattg gaggatgcca aggaattgtt ggaatcatcg 1	440
gaccagatat tgagaagtat gaaaggttta tcgagcacta gcatagtcta catcctgatt 1	500
gcagtgtgtc ttggagggtt gatagggatc cccactttaa tatgttgctg cagggggcgt 1	560
tgtaacaaaa agggagaaca agttggtatg tcaagaccag gcctaaagcc tgaccttaca 1	620
ggaacatcaa aatcctatgt aagatcgctt tga 1	653
<210> SEQ ID NO 37 <211> LENGTH: 1925 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 37	
ggggaaataa gagagaaaag aagagtaaga agaaatataa gagccaccat gggtctcaag	60
	120
attcattggg gcaatctctc taagataggg gtagtaggaa taggaagtgc aagctacaaa	180
gttatgactc gttccagcca tcaatcatta gtcataaaat taatgcccaa tataactctc	240
ctcaataact gcacgagggt agagattgca gaatacagga gactactaag aacagttttg	300
gaaccaatta gggatgcact taatgcaatg acccagaaca taaggccggt tcagagcgta	360
getteaagta ggagacacaa gagatttgeg ggagtagtee tggeaggtge ggeeetaggt	420
gttgccacag ctgctcagat aacagccggc attgcacttc accggtccat gctgaactct	480
caggocatog acaatotgag agogagootg gaaactacta atcaggoaat tgaggoaato	540
agacaagcag ggcaggagat gatattggct gttcagggtg tccaagacta catcaataat	600
gagetgatae egtetatgaa eeagetatet tgtgatetaa teggteagaa getegggete	660
aaattgctta gatactatac agaaatcctg tcattatttg gccccagcct acgggacccc	720
atatetgegg agatatetat ecaggetttg agttatgeae ttggaggaga tateaataag	780
gtgttagaaa agctcggata cagtggaggc gatttactag gcatcttaga gagcagagga	840
ataaaggete ggataaetea egtegacaea gagteetaet teatagteet eagtatagee	900
tatccgacgc tgtccgagat taagggggtg attgtccacc ggctagaggg ggtctcgtac	960
aacataggct ctcaagagtg gtataccact gtgcccaagt atgttgcaac ccaagggtac 1	020
cttatctcga attttgatga gtcatcatgt actttcatgc cagaggggac tgtgtgcagc 1	080
caaaaatgcct tgtacccgat gagtcctctg ctccaagaat gcctccgggg gtccaccaag 1	140
tcctgtgctc gtacactcgt atccgggtct tttgggaacc ggttcatttt atcacaaggg 1	200
aacctaatag ccaattgtgc atcaattctt tgtaagtgtt acacaacagg tacgattatt 1	260

-continued

-continued	
aatcaagacc ctgacaagat cctaacatac attgctgccg atcgctgccc ggtagtcgag	1320
gtgaacggcg tgaccatcca agtcgggagc aggaggtatc cagacgctgt gtacttgcac	1380
agaattgacc teggteetee catateattg gagaggttgg aegtagggae aaatetgggg	1440
aatgcaattg ccaaattgga ggatgccaag gaattgttgg aatcatcgga ccagatattg	1500
agaagtatga aaggtttatc gagcactagc atagtctaca tcctgattgc agtgtgtctt	1560
ggagggttga tagggatccc cactttaata tgttgctgca gggggcgttg taacaaaaag	1620
ggagaacaag ttggtatgtc aagaccaggc ctaaagcctg accttacagg aacatcaaaa	1680
tectatgtaa gategetttg atgataatag getggageet eggtggeeaa gettettgee	1740
ccttgggcct ccccccagcc cctcctcccc ttcctgcacc cgtacccccg tggtctttga	1800
ataaagtetg agtgggegge aaaaaaaaaa aaaaaaaaa aaaaaaaaa aaaaaaa	1860
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaa	1920
tctag	1925
<210> SEQ ID NO 38 <211> LENGTH: 1864 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 38	
tcaagetttt ggaceetegt acagaageta ataegaetea etatagggaa ataagagaga	60
aaagaagagt aagaagaaat ataagagcca ccatgggtct caaggtgaac gtctctgtca	120
tattcatggc agtactgtta actettcaaa cacccaeegg teaaateeat tggggeaate	180
tctctaagat aggggtggta ggggtaggaa gtgcaagcta caaagttatg actcgttcca	240
gccatcaatc attagtcata aagttaatgc ccaatataac teteetcaac aattgcaega	300
gggtagggat tgcagaatac aggagactac tgagaacagt tctggaacca attagagatg	360
cacttaatgc aatgacccag aatataagac cggttcagag tgtagcttca agtaggagac	420
acaagagatt tgcgggagtt gtcctggcag gtgcggccct aggcgttgcc acagctgctc	480
aaataacagc cggtattgca cttcaccagt ccatgctgaa ctctcaagcc atcgacaatc	540
tgagagcgag cctagaaact actaatcagg caattgaggc aatcagacaa gcagggcagg	600
agatgatatt ggctgttcag ggtgtccaag actacatcaa taatgagctg ataccgtcta	660
tgaatcaact atcttgtgat ttaatcggcc agaagctagg gctcaaattg ctcagatact	720
atacagaaat cctgtcatta tttggcccca gcttacggga ccccatatct gcggagatat	780
ctatccaggc tttgagctat gcgcttggag gagatatcaa taaggtgttg gaaaagctcg	840
gatacagtgg aggtgatcta ctgggcatct tagagagcag aggaataaag gcccggataa	900
ctcacgtcga cacagagtcc tacttcattg tactcagtat agcctatccg acgctatccg	960
agattaaggg ggtgattgtc caccggctag agggggtctc gtacaacata ggctctcaag	1020
agtggtatac cactgtgccc aagtatgttg caacccaagg gtaccttatc tcgaattttg	1080
atgagtcatc atgcactttc atgccagagg ggactgtgtg cagccagaat gccttgtacc	1140
cgatgagtcc tctgctccaa gaatgcctcc gggggtccac taagtcctgt gctcgtacac	1200
togtatoogg gtotttoggg aacoggttoa ttttatoaca ggggaacota atagcoaatt	1260
gtgcatcaat cctttgcaag tgttacacaa caggaacaat cattaatcaa gaccctgaca	1320

agatoctaac atacattgot googatoact googgtggt ogaggtgaat ggogtgacca 1380

tccaagtcgg gagcaggagg tatccggacg ctgtgtactt gcacaggatt gacctcggtc	1440
ctcccatatc tttggagagg ttggacgtag ggacaaatct ggggaatgca attgctaagt	1500
tggaggatgc caaggaattg ttggagtcat cggaccagat attgaggagt atgaaaggtt	1560
tatogagoac tagtatagtt tacatootga ttgcagtgtg tottggagga ttgataggga	1620
teccegettt aatatgttge tgeagggge gttgtaacaa gaagggagaa caagttggta	1680
tgtcaagacc aggcctaaag cctgatctta caggaacatc aaaatcctat gtaaggtcac	1740
tetgatgata ataggetgga geeteggtgg ceaagettet tgeecettgg geeteeeee	1800
ageceeteet eccetteetg caccegtace eccgtggtet ttgaataaag tetgagtggg	1860
cggc	1864
<210> SEQ ID NO 39 <211> LENGTH: 1653 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 39	
atgggtotoa aggtgaacgt ototgtoata ttoatggcag tactgttaac tottoaaaca	60
cccaccggtc aaatccattg gggcaatctc tctaagatag gggtggtagg ggtaggaagt	120
gcaagctaca aagttatgac tegtteeage cateaateat tagteataaa gttaatgeed	180
aatataactc tootoaacaa ttgcacgagg gtagggattg cagaatacag gagactactg	240
agaacagtto tggaaccaat tagagatgca ottaatgcaa tgacccagaa tataagaccg	300
gttcagagtg tagcttcaag taggagacac aagagatttg cgggagttgt cctggcaggt	360
geggeeetag gegttgeeac agetgeteaa ataacageeg gtattgeact teaccagtee	420
atgctgaact ctcaagccat cgacaatctg agagcgagcc tagaaactac taatcaggca	480
attgaggcaa tcagacaagc agggcaggag atgatattgg ctgttcaggg tgtccaagac	540
tacatcaata atgagetgat acegtetatg aatcaactat ettgtgattt aateggeeag	600
aagctagggc tcaaattgct cagatactat acagaaatcc tgtcattatt tggccccagc	660
ttacgggacc ccatatctgc ggagatatct atccaggctt tgagctatgc gcttggagga	720
gatatcaata aggtgttgga aaagctcgga tacagtggag gtgatctact gggcatctta	780
gagagcagag gaataaaggc ccggataact cacgtcgaca cagagtccta cttcattgta	840
ctcagtatag cctatccgac gctatccgag attaaggggg tgattgtcca ccggctagag	900
ggggtctcgt acaacatagg ctctcaagag tggtatacca ctgtgcccaa gtatgttgca	960
acccaagggt accttatctc gaattttgat gagtcatcat gcactttcat gccagagggg	1020
actgtgtgca gccagaatgc cttgtacccg atgagtcctc tgctccaaga atgcctccgg	1080
gggtccacta agtcctgtgc tcgtacactc gtatccgggt ctttcgggaa ccggttcatt	1140
ttatcacagg ggaacctaat agccaattgt gcatcaatcc tttgcaagtg ttacacaaca	1200
ggaacaatca ttaatcaaga cootgacaag atootaacat acattgotgo ogatcactgo	1260
ccggtggtcg aggtgaatgg cgtgaccatc caagtcggga gcaggaggta tccggacgct	1320
gtgtacttgc acaggattga cctcggtcct cccatatctt tggagaggtt ggacgtaggg	1380
acaaatctgg ggaatgcaat tgctaagttg gaggatgcca aggaattgtt ggagtcatcg	1440
gaccagatat tgaggagtat gaaaggttta tcgagcacta gtatagttta catcctgatt	
5 5 5 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	

-continued		
gcagtgtgtc ttggaggatt gatagggatc cccgctttaa tatgttgctg cagggggcgt	1560	
tgtaacaaga agggagaaca agttggtatg tcaagaccag gcctaaagcc tgatcttaca	1620	
ggaacatcaa aatcctatgt aaggtcactc tga	1653	
<210> SEQ ID NO 40 <211> LENGTH: 1925 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide		
<400> SEQUENCE: 40		
ggggaaataa gagagaaaag aagagtaaga agaaatataa gagccaccat gggtctcaag	60	
gtgaacgtct ctgtcatatt catggcagta ctgttaactc ttcaaacacc caccggtcaa	120	
atccattggg gcaatctctc taagataggg gtggtagggg taggaagtgc aagctacaaa	180	
gttatgactc gttccagcca tcaatcatta gtcataaagt taatgcccaa tataactctc	240	
ctcaacaatt gcacgagggt agggattgca gaatacagga gactactgag aacagttctg	300	
gaaccaatta gagatgcact taatgcaatg acccagaata taagaccggt tcagagtgta	360	
gcttcaagta ggagacacaa gagatttgcg ggagttgtcc tggcaggtgc ggccctaggc	420	
gttgccacag ctgctcaaat aacagccggt attgcacttc accagtccat gctgaactct	480	
caagccatcg acaatctgag agcgagccta gaaactacta atcaggcaat tgaggcaatc	540	
agacaagcag ggcaggagat gatattggct gttcagggtg tccaagacta catcaataat	600	
gagetgatae egtetatgaa teaaetatet tgtgatttaa teggeeagaa getagggete	660	
aaattgctca gatactatac agaaatcctg tcattatttg gccccagctt acgggacccc	720	
atatotgogg agatatotat ocaggotttg agotatgogo ttggaggaga tatoaataag	780	
gtgttggaaa agctcggata cagtggaggt gatctactgg gcatcttaga gagcagagga	840	
ataaaggccc ggataactca cgtcgacaca gagtcctact tcattgtact cagtatagcc	900	
tatecgaege tatecgagat taagggggtg attgteeace ggetagaggg ggtetegtae	960	
aacatagget eteaagagtg gtataceaet gtgeecaagt atgttgeaae eeaagggtae	1020	
cttatctcga attttgatga gtcatcatgc actttcatgc cagaggggac tgtgtgcagc	1080	
cagaatgoot tgtaccogat gagtoototg otocaagaat gootoogggg gtocactaag	1140	
teetgtgete gtacaetegt ateegggtet ttegggaaee ggtteatttt ateaeagggg	1200	
aacctaatag ccaattgtgc atcaatcett tgcaagtgtt acacaacagg aacaatcatt	1260	
aatcaagace etgacaagat eetaacatae attgetgeeg atcaetgeee ggtggtegag	1320	
gtgaatggcg tgaccatcca agtcgggagc aggaggtatc cggacgctgt gtacttgcac	1380	
aggattgacc teggteetee catatetttg gagaggttgg aegtagggac aaatetgggg	1440	
aatgcaattg ctaagttgga ggatgccaag gaattgttgg agtcatcgga ccagatattg	1500	
aggagtatga aaggtttatc gagcactagt atagtttaca teetgattge agtgtgtett	1560	
ggaggattga tagggatccc cgctttaata tgttgctgca gggggcgttg taacaagaag	1620	
ggagaacaag ttggtatgtc aagaccaggc ctaaagcctg atcttacagg aacatcaaaa	1680	
teetatgtaa ggteaetetg atgataatag getggageet eggtggeeaa gettettgee	1740	
ccttgggcct cccccagcc cctcctcccc ttcctgcacc cgtacccccg tggtctttga	1800	
ataaagtotg agtgggcggc aaaaaaaaaa aaaaaaaaa aaaaaaaaa aaaaaaa	1860	
aaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaa	1920	

-continued

tctag 1925 <210> SEQ ID NO 41 <211> LENGTH: 2065 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 41 tcaagctttt ggaccctcgt acagaagcta atacgactca ctatagggaa ataagagaga 60 aaagaagagt aagaagaaat ataagagcca ccatgtcacc gcaacgagac cggataaatg ccttctacaa agataaccct tatcccaagg gaagtaggat agttattaac agagaacatc 180 240 teggattget ggeaattgea ggeattagae tteateggge agecatetae acegeggaga 300 tccataaaag cctcagtacc aatctggatg tgactaactc catcgagcat caggtcaagg 360 420 acqtqctqac accactcttt aaaatcatcq qqqatqaaqt qqqcctqaqa acacctcaqa qattcactqa cctaqtqaaa ttcatctcqq acaaqattaa attccttaat ccqqataqqq 480 aqtacqactt caqaqatctc acttqqtqca tcaacccqcc aqaqaqqatc aaactaqatt 540 atgatcaata ctgtgcagat gtggctgctg aagagctcat gaatgcattg gtgaactcaa 600 ctctactqqa qaccaqaaca accactcaqt tcctaqctqt ctcaaaqqqa aactqctcaq 660 ggcccactac aatcagaggt caattctcaa acatgtcgct gtccttgttg gacttgtact 720 taggtegagg ttacaatgtg teatetatag teaetatgae ateceaggga atgtatgggg 780 gaacctacct agttgaaaag cctaatctga acagcaaagg gtcagagttg tcacaactga 840 gcatgtaccg agtgtttgaa gtaggtgtga tcagaaaccc gggtttgggg gctccggtgt 900 tocatatgac aaactatttt gagcaaccag toagtaatgg totoggcaac tgtatggtgg 960 ctttggggga gctcaaactc gcagcccttt gtcacgggga cgattctatc ataattccct 1020 atcagggatc agggaaaggt gtcagcttcc agctcgtcaa gctgggtgtc tggaaatccc 1080 caaccgacat gcaatcctgg gtccccttat caacggatga tccagtggta gacaggcttt 1140 acctctcatc tcacagaggt gtcatcgctg acaatcaagc aaaatgggct gtcccgacaa 1200 cacgaacaga tgacaagttg cgaatggaga catgcttcca gcaggcgtgt aaaggtaaaa 1260 tecaageact etgegagaat eeegagtggg taccattgaa ggataacagg atteetteat 1320 acggggtcct gtctgttgat ctgagtctga cggttgagct taaaatcaaa attgcttcgg 1380 gattcgggcc attgatcaca cacggctcag ggatggacct atacaaatcc aactgcaaca 1440 1500 atqtqtattq qctqactatt ccqccaatqa qaaatctaqc cttaqqcqta atcaacacat tggagtggat accgagattc aaggttagtc ccaacctctt cactgtccca attaaggaag 1560 caggogaaga ctgccatgcc ccaacatacc tacctgcgga ggtggacggt gatgtcaaac 1620 tcagttccaa cctggtgatt ctacctggtc aagatctcca atatgttttg gcaacctacg 1680 atacctccag ggttgagcat gctgtggttt attacgttta cagcccaagc cgctcatttt 1740 cttactttta tccttttagg ttgcctataa agggggtccc aatcgaacta caagtggaat 1800 gcttcacatg ggatcaaaaa ctctggtgcc gtcacttctg tgtgcttgcg gactcagaat 1860 ceggtggact tatcactcac tetgggatgg tgggcatggg agtcagetgc acagetacec 1920 gggaagatgg aaccaatcgc agataatgat aataggctgg agcctcggtg gccaagcttc 1980

#### -continued

ttgccccttg	ggcctccccc	cagcccctcc	teceetteet	gcacccgtac	ccccgtggtc	2040	
tttgaataaa	gtctgagtgg	gegge				2065	
<220> FEATU	TH: 1854 : DNA NISM: Artif: URE:	icial Sequer DN: Synthet:		eotide			
<400> SEQUI	ENCE: 42						
atgtcaccgc	aacgagaccg	gataaatgcc	ttctacaaag	ataaccctta	tcccaaggga	60	
agtaggatag	ttattaacag	agaacatctt	atgattgaca	gaccctatgt	tctgctggct	120	
gttctgttcg	tcatgtttct	gagcttgatc	ggattgctgg	caattgcagg	cattagactt	180	
catcgggcag	ccatctacac	cgcggagatc	cataaaagcc	tcagtaccaa	tctggatgtg	240	
actaactcca	tcgagcatca	ggtcaaggac	gtgctgacac	cactctttaa	aatcatcggg	300	
gatgaagtgg	gcctgagaac	acctcagaga	ttcactgacc	tagtgaaatt	catctcggac	360	
aagattaaat	tccttaatcc	ggatagggag	tacgacttca	gagateteae	ttggtgcatc	420	
aacccgccag	agaggatcaa	actagattat	gatcaatact	gtgcagatgt	ggctgctgaa	480	
gagctcatga	atgcattggt	gaactcaact	ctactggaga	ccagaacaac	cactcagttc	540	
ctagctgtct	caaagggaaa	ctgctcaggg	cccactacaa	tcagaggtca	attctcaaac	600	
atgtcgctgt	ccttgttgga	cttgtactta	ggtcgaggtt	acaatgtgtc	atctatagtc	660	
actatgacat	cccagggaat	gtatggggga	acctacctag	ttgaaaagcc	taatctgaac	720	
agcaaagggt	cagagttgtc	acaactgagc	atgtaccgag	tgtttgaagt	aggtgtgatc	780	
agaaacccgg	gtttgggggc	tccggtgttc	catatgacaa	actattttga	gcaaccagtc	840	
agtaatggtc	teggeaactg	tatggtggct	ttgggggagc	tcaaactcgc	agccctttgt	900	
cacggggacg	attctatcat	aattccctat	cagggatcag	ggaaaggtgt	cagcttccag	960	
ctcgtcaagc	tgggtgtctg	gaaatcccca	accgacatgc	aatcctgggt	ccccttatca	1020	
acggatgatc	cagtggtaga	caggetttae	ctctcatctc	acagaggtgt	catcgctgac	1080	
aatcaagcaa	aatgggctgt	cccgacaaca	cgaacagatg	acaagttgcg	aatggagaca	1140	
tgcttccagc	aggcgtgtaa	aggtaaaatc	caagcactct	gcgagaatcc	cgagtgggta	1200	
ccattgaagg	ataacaggat	tccttcatac	ggggtcctgt	ctgttgatct	gagtctgacg	1260	
gttgagctta	aaatcaaaat	tgcttcggga	ttcgggccat	tgatcacaca	cggctcaggg	1320	
atggacctat	acaaatccaa	ctgcaacaat	gtgtattggc	tgactattcc	gccaatgaga	1380	
aatctagcct	taggcgtaat	caacacattg	gagtggatac	cgagattcaa	ggttagtccc	1440	
aacctcttca	ctgtcccaat	taaggaagca	ggcgaagact	gccatgcccc	aacataccta	1500	
cctgcggagg	tggacggtga	tgtcaaactc	agttccaacc	tggtgattct	acctggtcaa	1560	
gatctccaat	atgttttggc	aacctacgat	acctccaggg	ttgagcatgc	tgtggtttat	1620	
tacgtttaca	gcccaagccg	ctcattttct	tacttttatc	cttttaggtt	gcctataaag	1680	
ggggtcccaa	tcgaactaca	agtggaatgc	ttcacatggg	atcaaaaact	ctggtgccgt	1740	
				tcactcactc		1800	
				ccaatcgcag		1854	
22			JJeggaa				

<210> SEQ ID NO 43 <211> LENGTH: 2126

-continued

<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Polynucleotide

<400> SEQUENCE: 43

ggggaaataa	gagagaaaag	aagagtaaga	agaaatataa	gagccaccat	gtcaccgcaa	60
cgagaccgga	taaatgcctt	ctacaaagat	aacccttatc	ccaagggaag	taggatagtt	120
attaacagag	aacatcttat	gattgacaga	ccctatgttc	tgetggetgt	tctgttcgtc	180
atgtttctga	gcttgatcgg	attgctggca	attgcaggca	ttagacttca	tegggeagee	240
atctacaccg	cggagatcca	taaaagcctc	agtaccaatc	tggatgtgac	taactccatc	300
gagcatcagg	tcaaggacgt	gctgacacca	ctctttaaaa	tcatcgggga	tgaagtgggc	360
ctgagaacac	ctcagagatt	cactgaccta	gtgaaattca	tctcggacaa	gattaaattc	420
cttaatccgg	atagggagta	cgacttcaga	gatctcactt	ggtgcatcaa	cccgccagag	480
aggatcaaac	tagattatga	tcaatactgt	gcagatgtgg	ctgctgaaga	gctcatgaat	540
gcattggtga	actcaactct	actggagacc	agaacaacca	ctcagttcct	agctgtctca	600
aagggaaact	gctcagggcc	cactacaatc	agaggtcaat	tctcaaacat	gtcgctgtcc	660
ttgttggact	tgtacttagg	tcgaggttac	aatgtgtcat	ctatagtcac	tatgacatcc	720
cagggaatgt	atgggggaac	ctacctagtt	gaaaagccta	atctgaacag	caaagggtca	780
gagttgtcac	aactgagcat	gtaccgagtg	tttgaagtag	gtgtgatcag	aaacccgggt	840
ttgggggctc	cggtgttcca	tatgacaaac	tattttgagc	aaccagtcag	taatggtctc	900
ggcaactgta	tggtggcttt	gggggagete	aaactcgcag	ccctttgtca	cggggacgat	960
tctatcataa	ttccctatca	gggatcaggg	aaaggtgtca	gcttccagct	cgtcaagctg	1020
ggtgtctgga	aatccccaac	cgacatgcaa	teetgggtee	ccttatcaac	ggatgatcca	1080
gtggtagaca	ggctttacct	ctcatctcac	agaggtgtca	tegetgacaa	tcaagcaaaa	1140
tgggctgtcc	cgacaacacg	aacagatgac	aagttgcgaa	tggagacatg	cttccagcag	1200
gcgtgtaaag	gtaaaatcca	agcactctgc	gagaatcccg	agtgggtacc	attgaaggat	1260
aacaggattc	cttcatacgg	ggtcctgtct	gttgatctga	gtctgacggt	tgagcttaaa	1320
atcaaaattg	cttcgggatt	cgggccattg	atcacacacg	gctcagggat	ggacctatac	1380
aaatccaact	gcaacaatgt	gtattggctg	actattccgc	caatgagaaa	tctagcctta	1440
ggcgtaatca	acacattgga	gtggataccg	agattcaagg	ttagtcccaa	cctcttcact	1500
gtcccaatta	aggaagcagg	cgaagactgc	catgccccaa	catacctacc	tgcggaggtg	1560
gacggtgatg	tcaaactcag	ttccaacctg	gtgattctac	ctggtcaaga	tctccaatat	1620
gttttggcaa	cctacgatac	ctccagggtt	gagcatgctg	tggtttatta	cgtttacagc	1680
ccaagccgct	cattttctta	cttttatcct	tttaggttgc	ctataaaggg	ggtcccaatc	1740
gaactacaag	tggaatgctt	cacatgggat	caaaaactct	ggtgccgtca	cttctgtgtg	1800
cttgcggact	cagaatccgg	tggacttatc	actcactctg	ggatggtggg	catgggagtc	1860
agctgcacag	ctacccggga	agatggaacc	aatcgcagat	aatgataata	ggctggagcc	1920
teggtggeea	agcttcttgc	cccttgggcc	tccccccagc	ccctcctccc	cttcctgcac	1980
ccgtaccccc	gtggtctttg	aataaagtct	gagtgggcgg	caaaaaaaaa	aaaaaaaaa	2040
aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	2100
aaaaaaaaa	aaaaaaaaa	atctag				2126

-continued

<210> SEQ ID NO 44 <211> LENGTH: 2065 <212> TYPE: DNA

<212> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Polynucleotide

<400> SEQUENCE: 44

tcaagctttt	ggaccctcgt	acagaagcta	atacgactca	ctatagggaa	ataagagaga	60
aaagaagagt	aagaagaaat	ataagagcca	ccatgtcacc	acaacgagac	cggataaatg	120
ccttctacaa	agacaacccc	catcctaagg	gaagtaggat	agttattaac	agagaacatc	180
ttatgattga	tagaccttat	gttttgctgg	ctgttctatt	cgtcatgttt	ctgagcttga	240
tegggttget	agccattgca	ggcattagac	ttcatcgggc	agccatctac	accgcagaga	300
tccataaaag	cctcagcacc	aatctggatg	taactaactc	aatcgagcat	caggttaagg	360
acgtgctgac	accactcttc	aagatcatcg	gtgatgaagt	gggcttgagg	acacctcaga	420
gattcactga	cctagtgaag	ttcatctctg	acaagattaa	attccttaat	ccggacaggg	480
aatacgactt	cagagatete	acttggtgta	tcaacccgcc	agagagaatc	aaattggatt	540
atgatcaata	ctgtgcagat	gtggctgctg	aagaactcat	gaatgcattg	gtgaactcaa	600
ctctactgga	gaccagggca	accaatcagt	tectagetgt	ctcaaaggga	aactgctcag	660
ggcccactac	aatcagaggc	caattctcaa	acatgtcgct	gtccctgttg	gacttgtatt	720
taagtcgagg	ttacaatgtg	tcatctatag	tcactatgac	atcccaggga	atgtacgggg	780
gaacttacct	agtggaaaag	cctaatctga	gcagcaaagg	gtcagagttg	tcacaactga	840
gcatgcaccg	agtgtttgaa	gtaggtgtta	tcagaaatcc	gggtttgggg	gctccggtat	900
tccatatgac	aaactatctt	gagcaaccag	tcagtaatga	tttcagcaac	tgcatggtgg	960
ctttggggga	gctcaagttc	gcagccctct	gtcacaggga	agattctatc	acaattccct	1020
atcagggatc	agggaaaggt	gtcagcttcc	agcttgtcaa	gctaggtgtc	tggaaatccc	1080
caaccgacat	gcaatcctgg	gtccccctat	caacggatga	tccagtgata	gacaggettt	1140
acctctcatc	tcacagaggc	gttatcgctg	acaatcaagc	aaaatgggct	gtcccgacaa	1200
cacggacaga	tgacaagttg	cgaatggaga	catgcttcca	gcaggcgtgt	aagggtaaaa	1260
tccaagcact	ttgcgagaat	cccgagtgga	caccattgaa	ggataacagg	attccttcat	1320
acggggtctt	gtctgttgat	ctgagtctga	cagttgagct	taaaatcaaa	attgtttcag	1380
gattcgggcc	attgatcaca	cacggttcag	ggatggacct	atacaaatcc	aaccacaaca	1440
atatgtattg	gctgactatc	ccgccaatga	agaacctggc	cttaggtgta	atcaacacat	1500
tggagtggat	accgagattc	aaggttagtc	ccaacctctt	cactgttcca	attaaggaag	1560
caggcgagga	ctgccatgcc	ccaacatacc	tacctgcgga	ggtggatggt	gatgtcaaac	1620
tcagttccaa	tctggtgatt	ctacctggtc	aagatctcca	atatgttctg	gcaacctacg	1680
atacttccag	agttgaacat	gctgtagttt	attacgttta	cagcccaagc	cgctcatttt	1740
cttactttta	tccttttagg	ttgcctgtaa	ggggggtccc	cattgaatta	caagtggaat	1800
gcttcacatg	ggaccaaaaa	ctctggtgcc	gtcacttctg	tgtgcttgcg	gactcagaat	1860
ctggtggaca	tatcactcac	tctgggatgg	tgggcatggg	agtcagctgc	acagccactc	1920
gggaagatgg	aaccagccgc	agatagtgat	aataggctgg	agcctcggtg	gccaagcttc	1980
ttgccccttg	ggcctcccc	cagcccctcc	tccccttcct	gcacccgtac	ccccgtggtc	2040
tttgaataaa	gtctgagtgg	gegge				2065

<211> LENGTH: 1854 <212> TYPE: DNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 45 atgtcaccac aacgagaccg gataaatgcc ttctacaaag acaaccccca tcctaaggga 60 agtaggatag ttattaacag agaacatett atgattgata gacettatgt tttgctgget 120 gttctattcg tcatgtttct gagcttgatc gggttgctag ccattgcagg cattagactt catcgggcag ccatctacac cgcagagatc cataaaaagcc tcagcaccaa tctggatgta 240 actaactcaa tcgagcatca ggttaaggac gtgctgacac cactcttcaa gatcatcggt 300 gatgaagtgg gcttgaggac acctcagaga ttcactgacc tagtgaagtt catctctgac 360 420 aagattaaat toottaatoo ggacagggaa tacgacttoa gagatotoac ttggtgtato aacccgccag agagaatcaa attggattat gatcaatact gtgcagatgt ggctgctgaa 480 qaactcatqa atqcattqqt qaactcaact ctactqqaqa ccaqqqcaac caatcaqttc 540 ctaqctqtct caaaqqqaaa ctqctcaqqq cccactacaa tcaqaqqcca attctcaaac 600 atgtcgctgt ccctgttgga cttgtattta agtcgaggtt acaatgtgtc atctatagtc 660 actatgacat cccagggaat gtacggggga acttacctag tggaaaagcc taatctgagc 720 agcaaagggt cagagttgtc acaactgagc atgcaccgag tgtttgaagt aggtgttatc 780 agaaatccgg gtttgggggc tccggtattc catatgacaa actatcttga gcaaccagtc 840 agtaatgatt tcagcaactg catggtggct ttgggggagc tcaagttcgc agccctctgt 900 cacagggaag attctatcac aattccctat cagggatcag ggaaaggtgt cagcttccag 960 cttgtcaagc taggtgtctg gaaatcccca accgacatgc aatcctgggt ccccctatca 1020 acggatgatc cagtgataga caggctttac ctctcatctc acagaggcgt tatcgctgac 1080 aatcaagcaa aatgggctgt cccgacaaca cggacagatg acaagttgcg aatggagaca 1140 tgcttccagc aggcgtgtaa gggtaaaatc caagcacttt gcgagaatcc cgagtggaca 1200 ccattgaagg ataacaggat tccttcatac ggggtcttgt ctgttgatct gagtctgaca 1260 gttgagetta aaatcaaaat tgtttcagga ttcgggccat tgatcacaca cggttcaggg 1320 atggacctat acaaatccaa ccacaacaat atgtattggc tgactatccc gccaatgaag 1380 aacctggcct taggtgtaat caacacattg gagtggatac cgagattcaa ggttagtccc 1440 aacctcttca ctgttccaat taaggaagca ggcgaggact gccatgcccc aacataccta 1500 cctgcggagg tggatggtga tgtcaaactc agttccaatc tggtgattct acctggtcaa 1560 gatctccaat atgttctggc aacctacgat acttccagag ttgaacatgc tgtagtttat 1620 tacgtttaca gcccaagccg ctcattttct tacttttatc cttttaggtt gcctgtaagg 1680 ggggtcccca ttgaattaca agtggaatgc ttcacatggg accaaaaact ctggtgccgt 1740 cacttetgtg tgettgegga eteagaatet ggtggacata teacteacte tgggatggtg 1800 ggcatgggag tcagctgcac agccactcgg gaagatggaa ccagccgcag atag 1854

<210> SEQ ID NO 45

<210> SEQ ID NO 46

<211> LENGTH: 2126

<212> TYPE: DNA

<213 > ORGANISM: Artificial Sequence

<220> FEATURE:

-continued

<223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEOUENCE: 46 ggggaaataa gagagaaaag aagagtaaga agaaatataa gagccaccat gtcaccacaa 60 cgagaccgga taaatgcctt ctacaaagac aacccccatc ctaagggaag taggatagtt 120 attaacagag aacatcttat gattgataga ccttatgttt tgctggctgt tctattcgtc 180 atgtttctga gcttgatcgg gttgctagcc attgcaggca ttagacttca tcgggcagcc 240 atctacaccg cagagatcca taaaagcctc agcaccaatc tggatgtaac taactcaatc 300 gagcatcagg ttaaggacgt gctgacacca ctcttcaaga tcatcggtga tgaagtgggc 360 ttgaggacac ctcagagatt cactgaccta gtgaagttca tctctgacaa gattaaattc cttaatccgg acagggaata cgacttcaga gatctcactt ggtgtatcaa cccgccagag agaatcaaat tggattatga tcaatactgt gcagatgtgg ctgctgaaga actcatgaat 540 gcattggtga actcaactct actggagacc agggcaacca atcagttcct agctgtctca 600 aagggaaact gctcagggcc cactacaatc agaggccaat tctcaaacat gtcgctgtcc 660 ctgttggact tgtatttaag tcgaggttac aatgtgtcat ctatagtcac tatgacatcc 720 cagggaatgt acgggggaac ttacctagtg gaaaagccta atctgagcag caaagggtca 780 gagttgtcac aactgagcat gcaccgagtg tttgaagtag gtgttatcag aaatccgggt 840 ttgggggctc cggtattcca tatgacaaac tatcttgagc aaccagtcag taatgatttc 900 agcaactgca tggtggcttt gggggagctc aagttcgcag ccctctgtca cagggaagat 960 totatoacaa ttooctatoa gggatoaggg aaaggtgtoa gottocagot tgtoaagota 1020 ggtgtctgga aatccccaac cgacatgcaa tcctgggtcc ccctatcaac ggatgatcca 1080 gtgatagaca ggctttacct ctcatctcac agaggcgtta tcgctgacaa tcaagcaaaa 1140 tgggctgtcc cgacaacacg gacagatgac aagttgcgaa tggagacatg cttccagcag 1200 gcgtgtaagg gtaaaatcca agcactttgc gagaatcccg agtggacacc attgaaggat 1260 aacaggattc cttcatacgg ggtcttgtct gttgatctga gtctgacagt tgagcttaaa 1320 atcaaaattg tttcaggatt cgggccattg atcacacacg gttcagggat ggacctatac 1380 aaatccaacc acaacaatat gtattggctg actatcccgc caatgaagaa cctggcctta 1440 ggtgtaatca acacattgga gtggataccg agattcaagg ttagtcccaa cctcttcact 1500 1560 gttccaatta aggaagcagg cgaggactgc catgccccaa catacctacc tgcggaggtg gatggtgatg tcaaactcag ttccaatctg gtgattctac ctggtcaaga tctccaatat 1620 gttctggcaa cctacgatac ttccagagtt gaacatgctg tagtttatta cgtttacagc 1680 ccaageeget cattttetta ettttateet tttaggttge etgtaagggg ggteeceatt gaattacaag tggaatgett cacatgggac caaaaactet ggtgeegtea ettetgtgtg 1800 cttqcqqact caqaatctqq tqqacatatc actcactctq qqatqqtqqq catqqqaqtc 1860 agetgeacag ecaeteggga agatggaace ageegeagat agtgataata ggetggagee 1920 teggtggeea agettettge ceettgggee teeceecage ceetceteee etteetgeae 1980 2040 2100 2126 aaaaaaaaaa aaaaaaaaaa atctag

<210> SEQ ID NO 47 <211> LENGTH: 550

<pre>&lt;212&gt; TYPE: PRT &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE:</pre>															
	3 > 0'			ORMA'	TION	: Syı	nthet	cic I	olyp	pept:	ide				
< 40	0> S	EQUEI	NCE:	47											
Met 1	Gly	Leu	Lys	Val 5	Asn	Val	Ser	Ala	Val 10	Phe	Met	Ala	Val	Leu 15	Leu
Thr	Leu	Gln	Thr 20	Pro	Ala	Gly	Gln	Ile 25	His	Trp	Gly	Asn	Leu 30	Ser	Lys
Ile	gly	Val 35	Val	Gly	Ile	Gly	Ser 40	Ala	Ser	Tyr	ГÀа	Val 45	Met	Thr	Arg
Ser	Ser 50	His	Gln	Ser	Leu	Val 55	Ile	Lys	Leu	Met	Pro 60	Asn	Ile	Thr	Leu
Leu 65	. Asn	Asn	Сув	Thr	Arg 70	Val	Glu	Ile	Ala	Glu 75	Tyr	Arg	Arg	Leu	Leu 80
Arg	Thr	Val	Leu	Glu 85	Pro	Ile	Arg	Asp	Ala 90	Leu	Asn	Ala	Met	Thr 95	Gln
Asn	ılle	Arg	Pro 100	Val	Gln	Ser	Val	Ala 105	Ser	Ser	Arg	Arg	His 110	Lys	Arg
Phe	Ala	Gly 115	Val	Val	Leu	Ala	Gly 120	Ala	Ala	Leu	Gly	Val 125	Ala	Thr	Ala
Ala	130	Ile	Thr	Ala	Gly	Ile 135	Ala	Leu	His	Arg	Ser 140	Met	Leu	Asn	Ser
Gln 145	Ala	Ile	Asp	Asn	Leu 150	Arg	Ala	Ser	Leu	Glu 155	Thr	Thr	Asn	Gln	Ala 160
Ile	e Glu	Ala	Ile	Arg 165	Gln	Ala	Gly	Gln	Glu 170	Met	Ile	Leu	Ala	Val 175	Gln
Gly	Val	Gln	Asp 180	Tyr	Ile	Asn	Asn	Glu 185	Leu	Ile	Pro	Ser	Met 190	Asn	Gln
Leu	Ser	Сув 195	Asp	Leu	Ile	Gly	Gln 200	Lys	Leu	Gly	Leu	Lys 205	Leu	Leu	Arg
Tyr	Tyr 210	Thr	Glu	Ile	Leu	Ser 215	Leu	Phe	Gly	Pro	Ser 220	Leu	Arg	Asp	Pro
Ile 225	Ser	Ala	Glu	Ile	Ser 230	Ile	Gln	Ala	Leu	Ser 235	Tyr	Ala	Leu	Gly	Gly 240
Asp	Ile	Asn	Lys	Val 245	Leu	Glu	Lys	Leu	Gly 250	Tyr	Ser	Gly	Gly	Asp 255	Leu
Leu	Gly	Ile	Leu 260	Glu	Ser	Arg	Gly	Ile 265	Lys	Ala	Arg	Ile	Thr 270	His	Val
Asp	Thr	Glu 275	Ser	Tyr	Phe	Ile	Val 280	Leu	Ser	Ile	Ala	Tyr 285	Pro	Thr	Leu
Ser	Glu 290	Ile	Lys	Gly	Val	Ile 295	Val	His	Arg	Leu	Glu 300	Gly	Val	Ser	Tyr
Asn 305	ı Ile	Gly	Ser	Gln	Glu 310	Trp	Tyr	Thr	Thr	Val 315	Pro	ГÀв	Tyr	Val	Ala 320
Thr	Gln	Gly	Tyr	Leu 325	Ile	Ser	Asn	Phe	330	Glu	Ser	Ser	Cys	Thr 335	Phe
Met	Pro	Glu	Gly 340	Thr	Val	CÀa	Ser	Gln 345	Asn	Ala	Leu	Tyr	Pro 350	Met	Ser
Pro	Leu	Leu 355	Gln	Glu	Cys	Leu	Arg 360	Gly	Ser	Thr	Lys	Ser 365	Сув	Ala	Arg
Thr	Leu 370	Val	Ser	Gly	Ser	Phe 375	Gly	Asn	Arg	Phe	Ile 380	Leu	Ser	Gln	Gly

	Leu	Ile	Ala	Asn	390 Cys	Ala	Ser	Ile	Leu	Сув 395	Lys	CAa	Tyr	Thr	Thr 400
Gly	Thr	Ile	Ile	Asn 405	Gln	Asp	Pro	Asp	Lys 410	Ile	Leu	Thr	Tyr	Ile 415	Ala
Ala	Asp	Arg	Cys 420	Pro	Val	Val	Glu	Val 425	Asn	Gly	Val	Thr	Ile 430	Gln	Val
Gly	Ser	Arg 435	Arg	Tyr	Pro	Asp	Ala 440	Val	Tyr	Leu	His	Arg 445	Ile	Asp	Leu
Gly	Pro 450	Pro	Ile	Ser	Leu	Glu 455	Arg	Leu	Asp	Val	Gly 460	Thr	Asn	Leu	Gly
Asn 465	Ala	Ile	Ala	Lys	Leu 470	Glu	Asp	Ala	Lys	Glu 475	Leu	Leu	Glu	Ser	Ser 480
Asp	Gln	Ile	Leu	Arg 485	Ser	Met	Lys	Gly	Leu 490	Ser	Ser	Thr	Ser	Ile 495	Val
Tyr	Ile	Leu	Ile 500	Ala	Val	CÀa	Leu	Gly 505	Gly	Leu	Ile	Gly	Ile 510	Pro	Thr
Leu	Ile	Сув 515	Cys	Cys	Arg	Gly	Arg 520	CÀa	Asn	Lys	Lys	Gly 525	Glu	Gln	Val
Gly	Met 530	Ser	Arg	Pro	Gly	Leu 535	Lys	Pro	Asp	Leu	Thr 540	Gly	Thr	Ser	Lys
Ser 545	Tyr	Val	Arg	Ser	Leu 550										
	)> SE L> LE														
	2 > TY 3 > OF			Art:	ific	ial s	Seaue	ence							
<220	)> FI	EATUR	RE:						Polyp	pept:	ide				
< 400	)> SI	EQUE	ICE :	48											
		-			Asn	Val	Ser	Val	Ile 10	Phe	Met	Ala	Val	Leu 15	Leu
Met 1	Gly	Leu	ГЛа	Val 5										15	
Met 1 Thr	Gly Leu	Leu Gln	Lys Thr 20	Val 5 Pro	Thr	Gly	Gln	Ile 25	10	Trp	Gly	Asn	Leu 30	15 Ser	Lys
Met 1 Thr	Gly Leu Gly	Leu Gln Val 35	Lys Thr 20 Val	Val 5 Pro Gly	Thr Val	Gly Gly	Gln Ser 40	Ile 25 Ala	10 His	Trp Tyr	Gly Lys	Asn Val 45	Leu 30 Met	15 Ser Thr	Lys Arg
Met 1 Thr Ile Ser	Gly Leu Gly Ser	Leu Gln Val 35 His	Lys Thr 20 Val	Val 5 Pro Gly Ser	Thr Val Leu	Gly Gly Val 55	Gln Ser 40 Ile	Ile 25 Ala Lys	10 His Ser	Trp Tyr Met	Gly Lys Pro 60	Asn Val 45 Asn	Leu 30 Met	15 Ser Thr	Lys Arg Leu
Met 1 Thr Ile Ser Leu 65	Gly Gly Ser 50 Asn	Leu Gln Val 35 His	Lys Thr 20 Val Gln Cys	Val 5 Pro Gly Ser	Thr Val Leu Arg 70	Gly Gly Val 55 Val	Gln Ser 40 Ile Gly	Ile 25 Ala Lys Ile	10 His Ser Leu	Trp Tyr Met Glu 75	Gly Lys Pro 60 Tyr	Asn Val 45 Asn Arg	Leu 30 Met Ile Arg	15 Ser Thr Thr	Lys Arg Leu Leu 80
Met 1 Thr Ile Ser Leu 65	Gly Leu Gly Ser 50 Asn	Leu Gln Val 35 His Asn	Lys Thr 20 Val Gln Cys	Val 5 Pro Gly Ser Thr	Thr Val Leu Arg 70 Pro	Gly Val 55 Val	Gln Ser 40 Ile Gly Arg	Ile 25 Ala Lys Ile Asp	10 His Ser Leu Ala	Trp Tyr Met Glu 75 Leu	Gly Lys Pro 60 Tyr	Asn Val 45 Asn Arg	Leu 30 Met Ile Arg	15 Ser Thr Thr Leu Thr 95	Lys Arg Leu Leu 80 Gln
Met 1 Thr Ile Ser Leu 65 Arg	Gly Leu Gly Ser 50 Asn Thr	Leu Gln Val 35 His Asn Val	Lys Thr 20 Val Gln Cys Leu Pro	Val 5 Pro Gly Ser Thr Glu 85 Val	Thr Val Leu Arg 70 Pro Gln	Gly Val 55 Val Ile Ser	Gln Ser 40 Ile Gly Arg	Ile 25 Ala Lys Ile Asp Ala 105	His Ser Leu Ala Ala	Trp Tyr Met Glu 75 Leu Ser	Gly Lys Pro 60 Tyr Asn	Asn Val 45 Asn Arg Ala	Leu 30 Met Ile Arg Met	Ser Thr Thr Leu Thr 95 Lys	Leu Leu 80 Gln
Met 1 Thr Ile Ser Leu 65 Arg Asn	Gly Leu Gly Ser 50 Asn Thr	Leu Gln Val 35 His Asn Val Arg Gly 115	Lys Thr 20 Val Gln Cys Leu Pro 100 Val	Val 5 Pro Gly Ser Thr Glu 85 Val	Thr Val Leu Arg 70 Pro Gln Leu	Gly Val 55 Val Ile Ser Ala	Gln Ser 40 Ile Gly Arg Val Gly 120	Ile 25 Ala Lys Ile Asp Ala 105	10 His Ser Leu Ala Ala 90 Ser	Trp Tyr Met Glu 75 Leu Ser Leu	Gly Lys Pro 60 Tyr Asn Arg	Asn Val 45 Asn Arg Ala Arg Val 125	Leu 30 Met Ile Arg Met His 110	Ser Thr Thr Leu Thr 95 Lys	Lys Arg Leu 80 Gln Arg
Met 1 Thr Ile Ser Leu 65 Arg Asn Phe	Gly Leu Gly Ser 50 Asn Thr Ile Ala Gln 130	Leu Gln Val 35 His Asn Val Arg Gly 115 Ile	Thr 20 Val Gln Cys Leu Pro 100 Val Thr	Val 5 Pro Gly Ser Thr Val Val	Thr Val Leu Arg 70 Pro Gln Leu Gly	Gly Val 55 Val Ile Ser Ala Ile 135	Gln Ser 40 Ile Gly Arg Val Gly 120 Ala	Ile 25 Ala Lys Ile Asp Ala 105 Ala	10 His Ser Leu Ala 90 Ser	Trp Tyr Met Glu 75 Leu Ser Leu Gln	Gly Lys Pro 60 Tyr Asn Arg Gly Ser 140	Asn Val 45 Asn Arg Ala Arg Val 125 Met	Leu 30 Met Ile Arg Met His 110 Ala	15 Ser Thr Thr Leu Thr 95 Lys Thr	Lys Arg Leu 80 Gln Arg Ala Ser
Met 1 Thr Ile Ser Leu 65 Arg Asn Phe Ala Gln 145	Gly Leu Gly Ser 50 Asn Thr Ile Ala Gln 130 Ala	Leu Gln Val 35 His Asn Val Arg Gly 115 Ile	Lys Thr 20 Val Gln Cys Leu Pro 100 Val Thr	Val 5 Pro Gly Ser Thr Glu 85 Val Val	Thr Val Leu Arg 70 Pro Gln Leu Gly Leu 150	Gly Gly Val 55 Val Ile Ser Ala Ile 135	Gln Ser 40 Ile Gly Arg Val Gly 120 Ala Ala	Ile 25 Ala Lys Ile Asp Ala 105 Ala Leu Ser	10 His Ser Leu Ala Ala 90 Ser Ala His	Trp Tyr Met Glu 75 Leu Ser Leu Gln Glu 155	Gly Lys Pro 60 Tyr Asn Arg Gly Ser 140 Thr	Asn Val 45 Asn Arg Ala Arg Thr	Leu 30 Met Ile Arg Met His 110 Ala Leu Asn	15 Ser Thr Thr Leu Thr 95 Lys Thr Asn	Lys Arg Leu 80 Gln Arg Ala Ser Ala 160

-continued

Leu Ser Cys Asp Leu Ile Gly Gln Lys Leu Gly Leu Lys Leu Leu Arg 200 Tyr Tyr Thr Glu Ile Leu Ser Leu Phe Gly Pro Ser Leu Arg Asp Pro Ile Ser Ala Glu Ile Ser Ile Gln Ala Leu Ser Tyr Ala Leu Gly Gly Asp Ile Asn Lys Val Leu Glu Lys Leu Gly Tyr Ser Gly Gly Asp Leu Leu Gly Ile Leu Glu Ser Arg Gly Ile Lys Ala Arg Ile Thr His Val Asp Thr Glu Ser Tyr Phe Ile Val Leu Ser Ile Ala Tyr Pro Thr Leu Ser Glu Ile Lys Gly Val Ile Val His Arg Leu Glu Gly Val Ser Tyr Asn Ile Gly Ser Gln Glu Trp Tyr Thr Thr Val Pro Lys Tyr Val Ala 310 Thr Gln Gly Tyr Leu Ile Ser Asn Phe Asp Glu Ser Ser Cys Thr Phe Met Pro Glu Gly Thr Val Cys Ser Gln Asn Ala Leu Tyr Pro Met Ser 345 Pro Leu Leu Gln Glu Cys Leu Arg Gly Ser Thr Lys Ser Cys Ala Arg 360 Thr Leu Val Ser Gly Ser Phe Gly Asn Arg Phe Ile Leu Ser Gln Gly 375 Asn Leu Ile Ala Asn Cys Ala Ser Ile Leu Cys Lys Cys Tyr Thr Thr Gly Thr Ile Ile Asn Gln Asp Pro Asp Lys Ile Leu Thr Tyr Ile Ala 410 Ala Asp His Cys Pro Val Val Glu Val Asn Gly Val Thr Ile Gln Val 425 Gly Ser Arg Arg Tyr Pro Asp Ala Val Tyr Leu His Arg Ile Asp Leu 440 Gly Pro Pro Ile Ser Leu Glu Arg Leu Asp Val Gly Thr Asn Leu Gly Asn Ala Ile Ala Lys Leu Glu Asp Ala Lys Glu Leu Leu Glu Ser Ser 475 Asp Gln Ile Leu Arg Ser Met Lys Gly Leu Ser Ser Thr Ser Ile Val Tyr Ile Leu Ile Ala Val Cys Leu Gly Gly Leu Ile Gly Ile Pro Ala  $500 \hspace{1.5cm} 505 \hspace{1.5cm} 510 \hspace{1.5cm}$ Leu Ile Cys Cys Cys Arg Gly Arg Cys Asn Lys Lys Gly Glu Gln Val Gly Met Ser Arg Pro Gly Leu Lys Pro Asp Leu Thr Gly Thr Ser Lys Ser Tyr Val Arg Ser Leu <210> SEQ ID NO 49 <211> LENGTH: 617 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide

<400> SEQUENCE: 49

Met 1	Ser	Pro	Gln	Arg 5	Asp	Arg	Ile	Asn	Ala 10	Phe	Tyr	Lys	Asp	Asn 15	Pro
Tyr	Pro	Lys	Gly 20	Ser	Arg	Ile	Val	Ile 25	Asn	Arg	Glu	His	Leu 30	Met	Ile
Asp	Arg	Pro 35	Tyr	Val	Leu	Leu	Ala 40	Val	Leu	Phe	Val	Met 45	Phe	Leu	Ser
Leu	Ile 50	Gly	Leu	Leu	Ala	Ile 55	Ala	Gly	Ile	Arg	Leu 60	His	Arg	Ala	Ala
Ile 65	Tyr	Thr	Ala	Glu	Ile 70	His	Lys	Ser	Leu	Ser 75	Thr	Asn	Leu	Asp	Val 80
Thr	Asn	Ser	Ile	Glu 85	His	Gln	Val	Lys	Asp 90	Val	Leu	Thr	Pro	Leu 95	Phe
ГÀа	Ile	Ile	Gly 100	Asp	Glu	Val	Gly	Leu 105	Arg	Thr	Pro	Gln	Arg 110	Phe	Thr
Asp	Leu	Val 115	ГЛа	Phe	Ile	Ser	Asp 120	Lys	Ile	Lys	Phe	Leu 125	Asn	Pro	Asp
Arg	Glu 130	Tyr	Asp	Phe	Arg	Asp 135	Leu	Thr	Trp	Cya	Ile 140	Asn	Pro	Pro	Glu
Arg 145	Ile	Lys	Leu	Asp	Tyr 150	Asp	Gln	Tyr	Cys	Ala 155	Asp	Val	Ala	Ala	Glu 160
Glu	Leu	Met	Asn	Ala 165	Leu	Val	Asn	Ser	Thr 170	Leu	Leu	Glu	Thr	Arg 175	Thr
Thr	Thr	Gln	Phe 180	Leu	Ala	Val	Ser	Lys 185	Gly	Asn	Cys	Ser	Gly 190	Pro	Thr
Thr	Ile	Arg 195	Gly	Gln	Phe	Ser	Asn 200	Met	Ser	Leu	Ser	Leu 205	Leu	Asp	Leu
Tyr	Leu 210	Gly	Arg	Gly	Tyr	Asn 215	Val	Ser	Ser	Ile	Val 220	Thr	Met	Thr	Ser
Gln 225	Gly	Met	Tyr	Gly	Gly 230	Thr	Tyr	Leu	Val	Glu 235	ГЛа	Pro	Asn	Leu	Asn 240
Ser	ГЛа	Gly	Ser	Glu 245	Leu	Ser	Gln	Leu	Ser 250	Met	Tyr	Arg	Val	Phe 255	Glu
Val	Gly	Val	Ile 260	Arg	Asn	Pro	Gly	Leu 265	Gly	Ala	Pro	Val	Phe 270	His	Met
Thr	Asn	Tyr 275	Phe	Glu	Gln	Pro	Val 280	Ser	Asn	Gly	Leu	Gly 285	Asn	CÀa	Met
	Ala 290	Leu	Gly	Glu	Leu	Lys 295		Ala	Ala		300 CAa		Gly	Aap	Asp
Ser 305	Ile	Ile	Ile	Pro	Tyr 310	Gln	Gly	Ser	Gly	Lys 315	Gly	Val	Ser	Phe	Gln 320
Leu	Val	ГÀа	Leu	Gly 325	Val	Trp	Lys	Ser	Pro 330	Thr	Asp	Met	Gln	Ser 335	Trp
Val	Pro	Leu	Ser 340	Thr	Asp	Asp	Pro	Val 345	Val	Asp	Arg	Leu	Tyr 350	Leu	Ser
Ser	His	Arg 355	Gly	Val	Ile	Ala	Asp 360	Asn	Gln	Ala	ГЛа	Trp 365	Ala	Val	Pro
Thr	Thr 370	Arg	Thr	Asp	Asp	Lys 375	Leu	Arg	Met	Glu	Thr 380	Сув	Phe	Gln	Gln
Ala 385	Cya	Lys	Gly	Lys	Ile 390	Gln	Ala	Leu	Сув	Glu 395	Asn	Pro	Glu	Trp	Val 400
Pro	Leu	Lys	Asp	Asn 405	Arg	Ile	Pro	Ser	Tyr 410	Gly	Val	Leu	Ser	Val 415	Asp
Leu	Ser	Leu	Thr	Val	Glu	Leu	Lys	Ile	Lys	Ile	Ala	Ser	Gly	Phe	Gly

537 538

-continue

425

420

Dwo Iou Ilo Th											
Pro Leu Ile Th	r His Gl	y Ser	Gly 440	Met	Asp	Leu	Tyr	Lys 445	Ser	Asn	CAa
Asn Asn Val Ty 450	r Trp Le	u Thr 455	Ile	Pro	Pro	Met	Arg 460	Asn	Leu	Ala	Leu
Gly Val Ile As: 465	n Thr Le 47		Trp	Ile	Pro	Arg 475	Phe	Lys	Val	Ser	Pro 480
Asn Leu Phe Th	r Val Pr 485	o Ile	Lys	Glu	Ala 490	Gly	Glu	Asp	Cys	His 495	Ala
Pro Thr Tyr Le		a Glu	Val	Asp 505	Gly	Asp	Val	Lys	Leu 510	Ser	Ser
Asn Leu Val II	e Leu Pr	o Gly	Gln 520	Asp	Leu	Gln	Tyr	Val 525	Leu	Ala	Thr
Tyr Asp Thr Se	r Arg Va	1 Glu 535	His	Ala	Val	Val	Tyr 540	Tyr	Val	Tyr	Ser
Pro Ser Arg Se 545	r Phe Se 55	-	Phe	Tyr	Pro	Phe 555	Arg	Leu	Pro	Ile	Lys 560
Gly Val Pro Il	e Glu Le 565	u Gln	Val	Glu	Cys 570	Phe	Thr	Trp	Asp	Gln 575	Lys
Leu Trp Cys Ar	_	e Cys	Val	Leu 585	Ala	Asp	Ser	Glu	Ser 590	Gly	Gly
Leu Ile Thr Hi 595	s Ser Gl	y Met	Val 600	Gly	Met	Gly	Val	Ser 605	Cys	Thr	Ala
Thr Arg Glu As	o Gly Th	r Asn 615	Arg	Arg							
<213> ORGANISM <220> FEATURE: <223> OTHER IN			_		Poly <u>r</u>	pept:	ide				
<220> FEATURE:	FORMATIO		_		Poly <u>r</u>	pept:	ide				
<220> FEATURE: <223> OTHER IN	FORMATIO	N: Sy	nthet	tic I		<del>-</del>		Lys	Asp	Asn 15	Pro
<220> FEATURE: <223> OTHER IN <400> SEQUENCE Met Ser Pro Gl:	FORMATIO : 50 n Arg As 5	N: Sy: p Arg	nthe	tic I Asn	Ala 10	Phe	Tyr			15	
<220> FEATURE: <223> OTHER IN <400> SEQUENCE Met Ser Pro Gl: 1 His Pro Lys Gl:	FORMATIO : 50 n Arg As 5 y Ser Ar	N: Sy: p Arg g Ile	nthe	Asn Ile 25	Ala 10 Asn	Phe Arg	Tyr Glu	His	Leu 30	15 Met	Ile
<220> FEATURE: <223> OTHER IN <400> SEQUENCE  Met Ser Pro Gl: 1  His Pro Lys Gl: 20  Asp Arg Pro Ty	FORMATIO : 50 n Arg As 5 y Ser Ar	N: Sym p Arg g Ile u Leu	Ile Val Ala	Asn Ile 25 Val	Ala 10 Asn Leu	Phe Arg	Tyr Glu Val	His Met 45	Leu 30 Phe	15 Met Leu	Ile Ser
<220> FEATURE: <223> OTHER IN <400> SEQUENCE  Met Ser Pro Gl: 1  His Pro Lys Gl: 20  Asp Arg Pro Ty 35  Leu Ile Gly Lee	FORMATIO : 50 n Arg As 5 y Ser Ar r Val Le	N: Symp Arg g Ile u Leu a Ile 55	Ile Val Ala 40 Ala	Asn Ile 25 Val	Ala 10 Asn Leu	Phe Arg Phe Arg	Tyr Glu Val Leu 60	His Met 45 His	Leu 30 Phe Arg	15 Met Leu Ala	Ile Ser Ala
<pre>&lt;220&gt; FEATURE: &lt;223&gt; OTHER IN &lt;400&gt; SEQUENCE Met Ser Pro GI: 1 His Pro Lys GI: 20 Asp Arg Pro Ty 35 Leu Ile Gly Le: 50 Ile Tyr Thr Al</pre>	FORMATIO : 50 n Arg As 5 y Ser Ar r Val Le 1 Leu Al a Glu Il 70	N: Symp Arg g Ile u Leu a Ile 55	Tile Val Ala 40 Ala Lys	Asn Ile 25 Val Gly Ser	Ala 10 Asn Leu Ile	Phe Arg Phe Arg Ser 75	Tyr Glu Val Leu 60	His Met 45 His	Leu 30 Phe Arg Leu	15 Met Leu Ala Asp	Ile Ser Ala Val
<pre>&lt;220&gt; FEATURE: &lt;223&gt; OTHER IN &lt;400&gt; SEQUENCE Met Ser Pro Gl: 1 His Pro Lys Gl: 20 Asp Arg Pro Ty 35 Leu Ile Gly Le 50 Ile Tyr Thr Al 65</pre>	FORMATIO : 50 n Arg As 5 y Ser Ar r Val Le 1 Leu Al a Glu Il 70 e Glu Hi 85 y Asp Gl	N: Sy: p Arg g Ile u Leu a Ile 55 e His	Ile Val Ala 40 Ala Lys	Asn Ile 25 Val Gly Ser	Ala 10 Asn Leu Ile Leu Asp 90	Phe Arg Phe Arg Val	Tyr Glu Val Leu 60 Thr	His Met 45 His Asn	Leu 30 Phe Arg Leu	15 Met Leu Ala Asp Leu 95	Ile Ser Ala Val 80 Phe
<pre>&lt;220&gt; FEATURE: &lt;223&gt; OTHER IN &lt;400&gt; SEQUENCE Met Ser Pro Gl: 1 His Pro Lys Gl: 20 Asp Arg Pro Ty 35 Leu Ile Gly Le: 50 Ile Tyr Thr Al: 65 Thr Asn Ser Il: Lys Ile Ile Gl:</pre>	FORMATIO : 50  n Arg As 5  y Ser Ar  r Val Le  l Leu Al  a Glu Il 70  e Glu Hi 85  y Asp Gl	N: Sy: p Arg g Ile u Leu a Ile 55 e His s Gln u Val	Ile Val Ala 40 Ala Lys Val Gly	Asn Ile 25 Val Gly Ser Lys Leu 105	Ala 10 Asn Leu Ile Leu Asp 90 Arg	Phe Arg Phe Arg Ser 75 Val	Tyr Glu Val Leu 60 Thr Leu Pro	His Met 45 His Asn Thr	Leu 30 Phe Arg Leu Pro Arg 110	15 Met Leu Ala Asp Leu 95	Ile Ser Ala Val 80 Phe
<pre>&lt;220&gt; FEATURE: &lt;223&gt; OTHER IN &lt;400&gt; SEQUENCE Met Ser Pro GI: 1 His Pro Lys GI: 20 Asp Arg Pro Ty 35 Leu Ile Gly Le: 50 Ile Tyr Thr Al: 65 Thr Asn Ser II: Lys Ile Ile GI: 10</pre> Asp Leu Val Ly	FORMATIO : 50 n Arg As 5 y Ser Ar r Val Le 1 Leu Al a Glu Il 70 e Glu Hi 85 y Asp Gl	N: Sy: p Arg g Ile u Leu a Ile 55 e His s Gln u Val e Ser	Ile Val Ala 40 Ala Lys Val Gly Asp 120	Asn Ile 25 Val Gly Ser Lys Leu 105 Lys	Ala 10 Asn Leu Ile Leu Asp 90 Arg	Phe Arg Phe Arg Ser 75 Val Thr	Tyr Glu Val Leu 60 Thr Leu Pro	His Met 45 His Asn Thr Cln Leu 125	Leu 30 Phe Arg Leu Pro Arg 110	15 Met Leu Ala Asp Leu 95 Phe	Ile Ser Ala Val 80 Phe Thr
<pre>&lt;220&gt; FEATURE: &lt;223&gt; OTHER IN &lt;400&gt; SEQUENCE Met Ser Pro GI: 1 His Pro Lys GI: 20 Asp Arg Pro Ty 35 Leu Ile Gly Le: 50 Ile Tyr Thr Al: 65 Thr Asn Ser Il: Lys Ile Ile GI: 10 Asp Leu Val Ly 115</pre>	FORMATIO  : 50  n Arg As 5  y Ser Ar  r Val Le  1 Leu Al  a Glu Il 70  e Glu Hi 85  y Asp Gl  o Phe Ar	N: Sy:  p Arg g Ile u Leu a Ile 55 e His s Gln u Val e Ser g Asp 135 r Asp	Ile Val Ala 40 Ala Lys Val Gly Asp 120 Leu	Asn Ile 25 Val Gly Ser Lys Leu 105 Lys	Alaa 10 Asn Leu Ile Leu Asp 90 Arg Ile	Phe Arg Phe Arg Ser 75 Val Thr Lys	Tyr Glu Val Leu 60 Thr Leu Pro Phe	His Met 45 His Asn Thr Gln Leu 125	Leu 30 Phe Arg Leu Pro Arg 110 Asn	15 Met Leu Ala Asp Leu 95 Phe Pro	Ile Ser Ala Val 80 Phe Thr Asp
<pre>&lt;220&gt; FEATURE: &lt;223&gt; OTHER IN &lt;400&gt; SEQUENCE Met Ser Pro GI: 1 His Pro Lys GI: 20 Asp Arg Pro Ty 35 Leu Ile Gly Le: 50 Ile Tyr Thr Al: 65 Thr Asn Ser II: Lys Ile Ile GI: 10 Asp Leu Val Ly 115 Arg Glu Tyr As: 130</pre>	FORMATIO  : 50  n Arg As 5  y Ser Ar  r Val Le  l Leu Al  a Glu II  70  e Glu Hi 85  y Asp Gl  s Phe II  p Phe Ar  1 Asp Ty 15	N: Sy: p Arg g Ile u Leu a Ile 55 e His s Gln u Val e Ser g Asp 135 r Asp	Ilee Val Ala 40 Ala Lys Val Gly Asp 120 Leu Gln	Asn Ile 25 Val Gly Ser Lys Leu 105 Lys Thr	Ala 10 Asn Leu Ile Leu Asp 90 Arg Ile Trp	Phe Arg Phe Arg Ser 75 Val Thr Lys Cys Ala 155	Tyr Glu Val Leu 60 Thr Leu Pro Phe 11e 140 Asp	His Met 45 His Asn Thr Gln Leu 125 Asn	Leu 30 Phe Arg Leu Pro Arg 110 Asn Pro	15 Met Leu Ala Asp Leu 95 Phe Pro	Ile Ser Ala Val 80 Phe Thr Asp Glu Glu 160

				165					170					175	
Thr	Asn	Gln	Phe 180	Leu	Ala	Val	Ser	Lys 185	Gly	Asn	СЛа	Ser	Gly 190	Pro	Thr
Thr	Ile	Arg 195	Gly	Gln	Phe	Ser	Asn 200	Met	Ser	Leu	Ser	Leu 205	Leu	Asp	Leu
Tyr	Leu 210	Ser	Arg	Gly	Tyr	Asn 215	Val	Ser	Ser	Ile	Val 220	Thr	Met	Thr	Ser
Gln 225	Gly	Met	Tyr	Gly	Gly 230	Thr	Tyr	Leu	Val	Glu 235	Lys	Pro	Asn	Leu	Ser 240
Ser	Lys	Gly	Ser	Glu 245	Leu	Ser	Gln	Leu	Ser 250	Met	His	Arg	Val	Phe 255	Glu
Val	Gly	Val	Ile 260	Arg	Asn	Pro	Gly	Leu 265	Gly	Ala	Pro	Val	Phe 270	His	Met
Thr	Asn	Tyr 275	Leu	Glu	Gln	Pro	Val 280	Ser	Asn	Asp	Phe	Ser 285	Asn	Сув	Met
Val	Ala 290	Leu	Gly	Glu	Leu	Lys 295	Phe	Ala	Ala	Leu	Cys	His	Arg	Glu	Asp
Ser 305	Ile	Thr	Ile	Pro	Tyr 310	Gln	Gly	Ser	Gly	Lys 315	Gly	Val	Ser	Phe	Gln 320
Leu	Val	Lys	Leu	Gly 325	Val	Trp	Lys	Ser	Pro 330	Thr	Asp	Met	Gln	Ser 335	Trp
Val	Pro	Leu	Ser 340	Thr	Asp	Asp	Pro	Val 345	Ile	Asp	Arg	Leu	Tyr 350	Leu	Ser
Ser	His	Arg 355	Gly	Val	Ile	Ala	Asp 360	Asn	Gln	Ala	Lys	Trp 365	Ala	Val	Pro
Thr	Thr 370	Arg	Thr	Asp	Asp	Lys 375	Leu	Arg	Met	Glu	Thr 380	CÀa	Phe	Gln	Gln
Ala 385	Сла	ГЛа	Gly	ГÀа	Ile 390	Gln	Ala	Leu	Сла	Glu 395	Asn	Pro	Glu	Trp	Thr 400
Pro	Leu	Lys	Asp	Asn 405	Arg	Ile	Pro	Ser	Tyr 410	Gly	Val	Leu	Ser	Val 415	Asp
Leu	Ser	Leu	Thr 420	Val	Glu	Leu	Lys	Ile 425	Lys	Ile	Val	Ser	Gly 430	Phe	Gly
Pro	Leu	Ile 435	Thr	His	Gly	Ser	Gly 440	Met	Asp	Leu	Tyr	Lуs 445	Ser	Asn	His
Asn	Asn 450	Met	Tyr	Trp	Leu	Thr 455	Ile	Pro	Pro	Met	Lys 460	Asn	Leu	Ala	Leu
Gly 465	Val	Ile	Asn	Thr	Leu 470	Glu	Trp	Ile	Pro	Arg 475	Phe	ГÀа	Val	Ser	Pro 480
Asn	Leu	Phe	Thr	Val 485	Pro	Ile	Lys	Glu	Ala 490	Gly	Glu	Asp	CÀa	His 495	Ala
Pro	Thr	Tyr	Leu 500	Pro	Ala	Glu	Val	Asp	Gly	Asp	Val	ГÀа	Leu 510	Ser	Ser
Asn	Leu	Val 515	Ile	Leu	Pro	Gly	Gln 520	Asp	Leu	Gln	Tyr	Val 525	Leu	Ala	Thr
Tyr	Asp 530	Thr	Ser	Arg	Val	Glu 535	His	Ala	Val	Val	Tyr 540	Tyr	Val	Tyr	Ser
Pro 545	Ser	Arg	Ser	Phe	Ser 550	Tyr	Phe	Tyr	Pro	Phe 555	Arg	Leu	Pro	Val	Arg 560
Gly	Val	Pro	Ile	Glu 565	Leu	Gln	Val	Glu	Сув 570	Phe	Thr	Trp	Asp	Gln 575	ГЛа
Leu	Trp	Сув	Arg 580	His	Phe	Cys	Val	Leu 585	Ala	Asp	Ser	Glu	Ser 590	Gly	Gly

-continued

His Ile Thr His Ser Gly Met Val Gly Met Gly Val Ser Cys Thr Ala 595 600 605

Thr Arg Glu Asp Gly Thr Ser Arg Arg 610 615

<210> SEQ ID NO 51

<211> LENGTH: 1729

<212> TYPE: DNA

<213 > ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Polynucleotide

<400> SEQUENCE: 51

tcaagctttt ggaccctcgt acagaagcta atacgactca ctatagggaa ataagagaga aaagaagagt aagaagaaat ataagagcca ccatggcaca agtcattaat acaaacagcc 120 tgtcgctgtt gacccagaat aacctgaaca aatcccagtc cgcactgggc actgctatcg 180 agegtttgtc ttccggtctg cgtatcaaca gcgcgaaaga cgatgcggca ggacaggcga 240 ttgctaaccg ttttaccgcg aacatcaaag gtctgactca ggcttcccgt aacgctaacg 300 acqqtatctc cattqcqcaq accactqaaq qcqcqctqaa cqaaatcaac aacaacctqc 360 agogtqtqcq tqaactqqcq qttcaqtctq cqaatqqtac taactcccaq tctqacctcq 420 actocatoca ggotgaaato accoagggo tgaacgaaat cgaccgtgta tocggocaga 480 ctcagttcaa cggcgtgaaa gtcctggcgc aggacaacac cctgaccatc caggttggtg 540 ccaacgacgg tgaaactatc gatattgatt taaaagaaat cagctctaaa acactgggac 600 ttgataaget taatgteeaa gatgeetaea eeeegaaaga aaetgetgta aeegttgata 660 aaactaccta taaaaatggt acagatccta ttacagccca gagcaatact gatatccaaa 720 ctgcaattgg cggtggtgca acgggggtta ctggggctga tatcaaattt aaagatggtc 780 aatactattt agatgttaaa ggcggtgctt ctgctggtgt ttataaagcc acttatgatg 840 aaactacaaa gaaagttaat attgatacga ctgataaaac tccgttggca actgcggaag 900 ctacagctat teggggaacg gecaetataa eecaeaacca aattgetgaa gtaacaaaag 960 agggtgttga tacgaccaca gttgcggctc aacttgctgc agcaggggtt actggcgccg 1020 ataaggacaa tactagcctt gtaaaactat cgtttgagga taaaaacggt aaggttattg 1080 atggtggcta tgcagtgaaa atgggcgacg atttctatgc cgctacatat gatgagaaaa 1140 caggtgcaat tactgctaaa accactactt atacagatgg tactggcgtt gctcaaactg 1200 gagetgtgaa atttggtgge geaaatggta aatetgaagt tgttaetget acegatggta 1260 agacttactt agcaagcgac cttgacaaac ataacttcag aacaggcggt gagcttaaag 1320 aggttaatac agataagact gaaaacccac tgcagaaaat tgatgctgcc ttggcacagg 1380 ttgatacact tcgttctgac ctgggtgcgg ttcagaaccg tttcaactcc gctatcacca 1440 acctgggcaa taccgtaaat aacctgtctt ctgcccgtag ccgtatcgaa gattccgact 1500 acgcaaccga agtctccaac atgtctcgcg cgcagattct gcagcaggcc ggtacctccg 1560 ttctqqcqca qqcqaaccaq qttccqcaaa acqtcctctc tttactqcqt tqataataqq 1620 ctggagcctc ggtggccatg cttcttgccc cttgggcctc ccccagccc ctcctccct 1680 tectgeacce gtaccecegt ggtetttgaa taaagtetga gtgggegge 1729

<210> SEQ ID NO 52

<211> LENGTH: 1518

<212> TYPE: DNA

-continued

<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 52 atggcacaag tcattaatac aaacagcctg tcgctgttga cccagaataa cctgaacaaa 60 teccagteeg caetgggeae tgetategag egtttgtett eeggtetgeg tateaaeage 120 gcgaaagacg atgcggcagg acaggcgatt gctaaccgtt ttaccgcgaa catcaaaggt 180 ctgactcagg cttcccgtaa cgctaacgac ggtatctcca ttgcgcagac cactgaaggc 240 gcgctgaacg aaatcaacaa caacctgcag cgtgtgcgtg aactggcggt tcagtctgcg 300 aatggtacta actoccagto tgacotogac tocatocagg otgaaatcac ccagogootg aacgaaatcg accgtgtatc cggccagact cagttcaacg gcgtgaaagt cctggcgcag gacaacaccc tgaccatcca ggttggtgcc aacgacggtg aaactatcga tattgattta 480 aaaqaaatca qctctaaaac actqqqactt qataaqctta atqtccaaqa tqcctacacc 540 ccqaaaqaaa ctqctqtaac cqttqataaa actacctata aaaatqqtac aqatcctatt 600 acageceaga geaatactga tatecaaact geaattggeg gtggtgeaac gggggttact 660 720 ggggctgata tcaaatttaa agatggtcaa tactatttag atgttaaagg cggtgcttct qctqqtqttt ataaaqccac ttatqatqaa actacaaaqa aaqttaatat tqatacqact 780 gataaaactc cgttggcaac tgcggaagct acagctattc ggggaacggc cactataacc 840 cacaaccaaa ttgctgaagt aacaaaagag ggtgttgata cgaccacagt tgcggctcaa 900 cttgctgcag caggggttac tggcgccgat aaggacaata ctagccttgt aaaactatcg 960 tttgaggata aaaacggtaa ggttattgat ggtggctatg cagtgaaaat gggcgacgat 1020 ttctatgccg ctacatatga tgagaaaaca ggtgcaatta ctgctaaaac cactacttat 1080 acagatggta ctggcgttgc tcaaactgga gctgtgaaat ttggtggcgc aaatggtaaa 1140 tetgaagttg ttaetgetae egatggtaag aettaettag caagegaeet tgacaaacat 1200 aacttcagaa caggcggtga gcttaaagag gttaatacag ataagactga aaacccactg 1260 cagaaaattg atgctgcctt ggcacaggtt gatacacttc gttctgacct gggtgcggtt 1320 cagaaccgtt tcaactccgc tatcaccaac ctgggcaata ccgtaaataa cctgtcttct 1380 gcccgtagcc gtatcgaaga ttccgactac gcaaccgaag tctccaacat gtctcgcgcg 1440 cagattetge ageaggeegg taceteegtt etggegeagg egaaceaggt teegeaaaae 1500 gteetetett taetgegt 1518 <210> SEQ ID NO 53 <211> LENGTH: 1790 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 53 ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaccau ggcacaaguc auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca 120 cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcgc gaaagacgau 180 geggeaggae aggegauuge uaaceguuuu acegegaaca ucaaaggueu gacucaggeu 240 ucccguaacg cuaacgacgg uaucuccauu gcgcagacca cugaaggcgc gcugaacgaa 300 360 aucaacaaca accuqcaqcq uquqcquqaa cuqqcqquuc aqucuqcqaa uqquacuaac

-continued

																_
ucccaguc	ug a	accuo	gacu	ıc ca	aucca	aggcu	ı gaa	aauca	accc	agco	gccuç	gaa ·	cgaaa	aucgao	2 420	
cguguauc	cg g	gccaç	gacuc	a gi	ucaa	acggo	guç	gaaag	jucc	uggo	gcaç	gga (	caaca	acccuç	480	
accaucca	igg i	ıuggu	ıgcca	a c	gacgo	gugaa	acı	ıaucç	jaua	uuga	auuua	aaa .	agaaa	aucago	540	
ucuaaaac	ac ı	ıggga	cuuç	ja ua	aagcı	ıuaau	ı gud	ccaaç	gaug	ccua	acaco	ecc (	gaaag	gaaacı	1 600	
gcuguaac	cg ı	ıugav	ıaaaa	ic ua	accua	auaaa	ı aaı	ıggua	cag	auco	cuauu	ıac .	agcco	agago	660	
aauacuga	ua i	ıccaa	acuç	jc aa	auuge	geggu	ı ggı	ıgcaa	ecgg	gggu	ıuacı	ıgg (	ggcug	gauau	720	
aaauuuaa	ag a	auggu	ıcaaı	ıa cı	ıauuı	ıagav	ı gui	ıaaaç	ggcg	gugo	cuuci	ıgc 1	uggug	guuuaı	1 780	
aaagccac	uu a	augau	ıgaaa	ic ua	acaaa	agaaa	gui	ıaaua	uug	auac	egacı	ıga 1	uaaaa	acucco	840	
uuggcaac	ug o	eggaa	igcua	ıc aç	gcuat	ıucgo	g gga	aacgg	gcca	cua	ıaaco	cca ·	caaco	caaauı	1 900	
gcugaagu	laa d	caaaa	gagg	g u	guuga	auacç	g acc	cacaç	guug	cgg	cucaa	acu 1	ugcuç	gcagca	a 960	
gggguuac	ug g	gegee	gaua	ıa g	gacaa	auacu	ı ago	ccuuç	guaa	aacı	iauco	guu 1	ugagg	gauaaa	a 1020	
aacgguaa	igg i	ıuauu	ıgauç	g u	ggcua	augca	guç	gaaaa	ugg	gcga	acgaı	ıuu •	cuauç	geegei	1080	
acauauga	ug a	agaaa	acaç	g u	gcaaı	uacu	ı gcı	ıaaaa	acca	cuad	cuuau	ıac .	agauç	gguacı	1140	
ggcguugc	uc a	aaacu	ıggaç	je u	gugaa	aauuu	ı ggı	ıggcç	gcaa	aug	guaaa	auc 1	ugaag	guugui	1200	
acugcuac	cg a	auggu	ıaaga	ıc uı	ıacuı	ıagca	ago	cgaco	cuug	acaa	acau	ıaa	cuuca	agaaca	a 1260	
ggcgguga	igc i	ıuaaa	gago	ju u	aauac	cagau	ı aaç	gacuç	gaaa	acco	cacuç	gca (	gaaaa	auugau	1320	
gcugccuu	ıgg d	cacaç	guuc	ja ua	acacı	ucgu	ı ucı	ıgaco	ugg	gugo	eggui	ıca 🤅	gaaco	guuud	1380	
aacuccgc	ua u	ıcaco	caaco	u g	ggcaa	auaco	gua	aaaua	acc	ugu	cuuci	ıgc (	ccgua	agccgi	1440	
aucgaaga	uu o	ccgac	cuace	jc aa	accga	aaguo	uco	caaca	ugu	cuc	gegeç	gca (	gauud	cugcaç	g 1500	
caggccgg	jua d	ccuco	guuc	u g	gegea	aggcg	g aad	ccago	guuc	cgca	aaaa	cgu ·	ccuci	ıcuuua	a 1560	
cugcguug	jau a	aauaç	gcuc	g a	gccuc	ggug	g gcd	caugo	cuuc	uugo	cccı	ug (	ggccı	ıcccc	1620	
cagececu	icc i	ıccco	cuuco	u go	cacco	guac	ccc	ccguç	gguc	uuuç	gaaua	aaa 🤉	gucuç	gagugg	g 1680	
gcggcaaa	aa a	aaaaa	aaaa	ia a	aaaaa	aaaaa	ı aaa	aaaa	aaa	aaaa	aaaa	aaa .	aaaaa	aaaaa	a 1740	
aaaaaaaa	aa a	aaaaa	aaaa	ia a	aaaaa	aaaaa	ı aaa	aaaaa	aaaa	aaaa	aaucı	ıag			1790	
<210> SE <211> LE <212> TY <213> OR <220> FE <223> OT	NGTI PE: GANI ATUI	H: 50 PRT ISM: RE:	)6 Arti			_		Poly <u>r</u>	o <b>e</b> pt i	ide						
<400> SE	QUE	ICE :	54													
Met Ala 1	Gln	Val	Ile 5	Asn	Thr	Asn	Ser	Leu 10	Ser	Leu	Leu	Thr	Gln 15	Asn		
Asn Leu	Asn	Lys 20	Ser	Gln	Ser	Ala	Leu 25	Gly	Thr	Ala	Ile	Glu 30	Arg	Leu		
Ser Ser	Gly 35	Leu	Arg	Ile	Asn	Ser 40	Ala	Lys	Asp	Asp	Ala 45	Ala	Gly	Gln		
Ala Ile 50	Ala	Asn	Arg	Phe	Thr 55	Ala	Asn	Ile	ГÀа	Gly 60	Leu	Thr	Gln	Ala		
Ser Arg 65	Asn	Ala	Asn	Asp 70	Gly	Ile	Ser	Ile	Ala 75	Gln	Thr	Thr	Glu	Gly 80		
Ala Leu	Asn	Glu	Ile 85	Asn	Asn	Asn	Leu	Gln 90	Arg	Val	Arg	Glu	Leu 95	Ala		

Val Gln Ser Ala Asn Gly Thr Asn Ser Gln Ser Asp Leu Asp Ser Ile 100 105 110

Gln A	Ala	Glu 115	Ile	Thr	Gln	Arg	Leu 120	Asn	Glu	Ile	Asp	Arg 125	Val	Ser	Gly
Gln 1	Thr 130	Gln	Phe	Asn	Gly	Val 135	Lys	Val	Leu	Ala	Gln 140	Asp	Asn	Thr	Leu
Thr 1	Ile	Gln	Val	Gly	Ala 150	Asn	Asp	Gly	Glu	Thr 155	Ile	Asp	Ile	Asp	Leu 160
Lys (	Glu	Ile	Ser	Ser 165	ГЛа	Thr	Leu	Gly	Leu 170	Asp	ГÀа	Leu	Asn	Val 175	Gln
Asp A	Ala	Tyr	Thr 180	Pro	Lys	Glu	Thr	Ala 185	Val	Thr	Val	Asp	Lys 190	Thr	Thr
Tyr I	ŗÀa	Asn 195	Gly	Thr	Asp	Pro	Ile 200	Thr	Ala	Gln	Ser	Asn 205	Thr	Asp	Ile
Gln 1	Thr 210	Ala	Ile	Gly	Gly	Gly 215	Ala	Thr	Gly	Val	Thr 220	Gly	Ala	Asp	Ile
Lys I 225	Phe	Lys	Asp	Gly	Gln 230	Tyr	Tyr	Leu	Asp	Val 235	Lys	Gly	Gly	Ala	Ser 240
Ala C			-	245			-	_	250				•	255	
Ile A	-		260	-	-			265					270		
Ile A		275					280					285			
Lys C	31u 290	Gly	Val	Asp	Thr	Thr 295	Thr	Val	Ala	Ala	Gln 300	Leu	Ala	Ala	Ala
Gly V 305	Val	Thr	Gly	Ala	Asp 310	Lys	Asp	Asn	Thr	Ser 315	Leu	Val	Lys	Leu	Ser 320
Phe C	Glu	Asp	Lys	Asn 325	Gly	Lys	Val	Ile	330	Gly	Gly	Tyr	Ala	Val 335	Lys
Met 0	Gly	Asp	Asp 340	Phe	Tyr	Ala	Ala	Thr 345	Tyr	Asp	Glu	rys	Thr 350	Gly	Ala
Ile T	Thr	Ala 355	Lys	Thr	Thr	Thr	Tyr 360	Thr	Asp	Gly	Thr	Gly 365	Val	Ala	Gln
Thr C	31y 370	Ala	Val	ГÀа	Phe	Gly 375	Gly	Ala	Asn	Gly	380 TÀa	Ser	Glu	Val	Val
Thr <i>I</i> 385	Ala	Thr	Aap	Gly	390 TÀa	Thr	Tyr	Leu	Ala	Ser 395	Asp	Leu	Asp	Lys	His 400
Asn E	Phe	Arg	Thr	Gly 405	Gly	Glu	Leu	Lys	Glu 410	Val	Asn	Thr	Asp	Lys 415	Thr
Glu A	Asn	Pro	Leu 420	Gln	ràa	Ile	Asp	Ala 425	Ala	Leu	Ala	Gln	Val 430	Asp	Thr
Leu A	Arg	Ser 435	Asp	Leu	Gly	Ala	Val 440	Gln	Asn	Arg	Phe	Asn 445	Ser	Ala	Ile
Thr A	Asn 450	Leu	Gly	Asn	Thr	Val 455	Asn	Asn	Leu	Ser	Ser 460	Ala	Arg	Ser	Arg
Ile (	Glu	Asp	Ser	Asp	Tyr 470	Ala	Thr	Glu	Val	Ser 475	Asn	Met	Ser	Arg	Ala 480
Gln 1	Ile	Leu	Gln	Gln 485	Ala	Gly	Thr	Ser	Val 490	Leu	Ala	Gln	Ala	Asn 495	Gln
Val E	Pro	Gln	Asn 500	Val	Leu	Ser	Leu	Leu 505	Arg						

	-continued														
	2 > T														
	3 > OI O > FI		ISM: RE:	Art	ific:	ial :	Seque	ence							
<223	3 > O.	THER	INF	ORMA'	TION	: Syı	nthet	ic I	olyp	ept:	ide				
< 400	D> SI	EQUEI	NCE:	55											
Met 1	Ala	Gln	Val	Ile 5	Asn	Thr	Asn	Ser	Leu 10	Ser	Leu	Leu	Thr	Gln 15	Asn
Asn	Leu	Asn	Lys 20	Ser	Gln	Ser	Ala	Leu 25	Gly	Thr	Ala	Ile	Glu 30	Arg	Leu
Ser	Ser	Gly 35	Leu	Arg	Ile	Asn	Ser 40	Ala	Lys	Asp	Asp	Ala 45	Ala	Gly	Gln
Ala	Ile 50	Ala	Asn	Arg	Phe	Thr 55	Ala	Asn	Ile	Lys	Gly 60	Leu	Thr	Gln	Ala
Ser 65	Arg	Asn	Ala	Asn	Asp 70	Gly	Ile	Ser	Ile	Ala 75	Gln	Thr	Thr	Glu	Gly 80
Ala	Leu	Asn	Glu	Ile 85	Asn	Asn	Asn	Leu	Gln 90	Arg	Val	Arg	Glu	Leu 95	Ala
Val	Gln	Ser	Ala 100	Asn	Ser	Thr	Asn	Ser 105	Gln	Ser	Asp	Leu	Asp 110	Ser	Ile
Gln	Ala	Glu 115	Ile	Thr	Gln	Arg	Leu 120	Asn	Glu	Ile	Asp	Arg 125	Val	Ser	Gly
Gln	Thr 130	Gln	Phe	Asn	Gly	Val 135	Lys	Val	Leu	Ala	Gln 140	Asp	Asn	Thr	Leu
Thr 145	Ile	Gln	Val	Gly	Ala 150	Asn	Asp	Gly	Glu	Thr 155	Ile	Aap	Ile	Asp	Leu 160
Lys	Gln	Ile	Asn	Ser 165	Gln	Thr	Leu	Gly	Leu 170	Asp	Thr	Leu	Asn	Val 175	Gln
Gln	Lys	Tyr	Lys 180	Val	Ser	Asp	Thr	Ala 185	Ala	Thr	Val	Thr	Gly 190	Tyr	Ala
Asp	Thr	Thr 195	Ile	Ala	Leu	Asp	Asn 200	Ser	Thr	Phe	Lys	Ala 205	Ser	Ala	Thr
Gly	Leu 210	Gly	Gly	Thr	Asp	Gln 215	Lys	Ile	Asp	Gly	Asp 220	Leu	Lys	Phe	Asp
Asp 225	Thr	Thr	Gly	ГÀа	Tyr 230	Tyr	Ala	Lys	Val	Thr 235	Val	Thr	Gly	Gly	Thr 240
Gly	Lys	Asp	Gly	Tyr 245	Tyr	Glu	Val	Ser	Val 250	Asp	Lys	Thr	Asn	Gly 255	Glu
Val	Thr	Leu	Ala 260	Gly	Gly	Ala	Thr	Ser 265	Pro	Leu	Thr	Gly	Gly 270	Leu	Pro
Ala	Thr	Ala 275	Thr	Glu	Asp	Val	Lys 280	Asn	Val	Gln	Val	Ala 285	Asn	Ala	Asp
Leu	Thr 290	Glu	Ala	Lys	Ala	Ala 295	Leu	Thr	Ala	Ala	Gly 300	Val	Thr	Gly	Thr
Ala 305	Ser	Val	Val	ГÀв	Met 310	Ser	Tyr	Thr	Asp	Asn 315	Asn	Gly	Lys	Thr	Ile 320
Asp	Gly	Gly	Leu	Ala 325	Val	Lys	Val	Gly	Asp 330	Asp	Tyr	Tyr	Ser	Ala 335	Thr
Gln	Asn	Lys	Asp 340	Gly	Ser	Ile	Ser	Ile 345	Asn	Thr	Thr	ГÀа	Tyr 350	Thr	Ala
Asp	Asp	Gly 355	Thr	Ser	Lys	Thr	Ala 360	Leu	Asn	Lys	Leu	Gly 365	Gly	Ala	Asp

Gly Lys Thr Glu Val Val Ser Ile Gly Gly Lys Thr Tyr Ala Ala Ser  $370 \ \ 375 \ \ 380$ 

#### -continued

Lys Ala Glu Gly His Asn Phe Lys Ala Gln Pro Asp Leu Ala Glu Ala 390 395 Ala Ala Thr Thr Glu Asn Pro Leu Gln Lys Ile Asp Ala Ala Leu Ala Gln Val Asp Thr Leu Arg Ser Asp Leu Gly Ala Val Gln Asn Arg 425 Phe Asn Ser Ala Ile Thr Asn Leu Gly Asn Thr Val Asn Asn Leu Thr Ser Ala Arg Ser Arg Ile Glu Asp Ser Asp Tyr Ala Thr Glu Val Ser Asn Met Ser Arg Ala Gln Ile Leu Gln Gln Ala Gly Thr Ser Val Leu Ala Gln Ala Asn Gln Val Pro Gln Asn Val Leu Ser Leu Leu Arg Gly Gly Gly Gly Ser Gly Gly Gly Ser Met Met Ala Pro Asp Pro Asn Ala Asn Pro Asn 535 Ala Asn Pro Asn Ala Asn Pro Asn Ala Asn Pro Asn Ala Asn Pro Asn 550 555 Ala Asn Pro Asn Ala Asn Pro Asn Ala Asn Pro Asn Ala Asn Pro Asn 565 570 Ala Asn Pro Asn Ala Asn Pro Asn Ala Asn Pro Asn Lys Asn Asn Gln 585 Gly Asn Gly Gln Gly His Asn Met Pro Asn Asp Pro Asn Arg Asn Val 600 Asp Glu Asn Ala Asn Ala Asn Asn Ala Val Lys Asn Asn Asn Asn Glu 615 Glu Pro Ser Asp Lys His Ile Glu Gln Tyr Leu Lys Lys Ile Lys Asn 630 Ser Ile Ser Thr Glu Trp Ser Pro Cys Ser Val Thr Cys Gly Asn Gly Ile Gln Val Arg Ile Lys Pro Gly Ser Ala Asn Lys Pro Lys Asp Glu 665 Leu Asp Tyr Glu Asn Asp Ile Glu Lys Lys Ile Cys Lys Met Glu Lys Cys Ser Ser Val Phe Asn Val Val Asn Ser <210> SEQ ID NO 56 <211> LENGTH: 692 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide <400> SEQUENCE: 56 Met Met Ala Pro Asp Pro Asn Ala Asn Pro Asn Ala Asn Pro Asn Ala 5 Asn Pro Asn Ala Asn Pro Asn Ala Asn Pro Asn Ala Asn Pro Asn Ala 25 Asn Pro Asn Ala Asn Pro Asn Ala Asn Pro Asn Ala Asn Pro Asn Ala 40

Asn	Pro 50	Asn	Ala	Asn	Pro	Asn 55	Ala	Asn	Pro	Asn	Ala 60	Asn	Pro	Asn	Ala
Asn 65	Pro	Asn	Ala	Asn	Pro 70	Asn	Ala	Asn	Pro	Asn 75	Ala	Asn	Pro	Asn	Ala 80
Asn	Pro	Asn	Lys	Asn 85	Asn	Gln	Gly	Asn	Gly 90	Gln	Gly	His	Asn	Met 95	Pro
Asn	Asp	Pro	Asn 100	Arg	Asn	Val	Asp	Glu 105	Asn	Ala	Asn	Ala	Asn 110	Asn	Ala
Val	Lys	Asn 115	Asn	Asn	Asn	Glu	Glu 120	Pro	Ser	Asp	Lys	His 125	Ile	Glu	Gln
Tyr	Leu 130	Lys	Lys	Ile	Lys	Asn 135	Ser	Ile	Ser	Thr	Glu 140	Trp	Ser	Pro	Cys
Ser 145	Val	Thr	Cys	Gly	Asn 150	Gly	Ile	Gln	Val	Arg 155	Ile	ГÀв	Pro	Gly	Ser 160
Ala	Asn	Lys	Pro	Lys 165	Asp	Glu	Leu	Asp	Tyr 170	Glu	Asn	Asp	Ile	Glu 175	Lys
ГÀа	Ile	Сув	Lys 180	Met	Glu	Lys	Сув	Ser 185	Ser	Val	Phe	Asn	Val 190	Val	Asn
Ser	Arg	Pro 195	Val	Thr	Met	Ala	Gln 200	Val	Ile	Asn	Thr	Asn 205	Ser	Leu	Ser
Leu	Leu 210	Thr	Gln	Asn	Asn	Leu 215	Asn	ГЛа	Ser	Gln	Ser 220	Ala	Leu	Gly	Thr
Ala 225	Ile	Glu	Arg	Leu	Ser 230	Ser	Gly	Leu	Arg	Ile 235	Asn	Ser	Ala	Lys	Asp 240
Asp	Ala	Ala	Gly	Gln 245	Ala	Ile	Ala	Asn	Arg 250	Phe	Thr	Ala	Asn	Ile 255	ГЛЗ
Gly	Leu	Thr	Gln 260	Ala	Ser	Arg	Asn	Ala 265	Asn	Asp	Gly	Ile	Ser 270	Ile	Ala
Gln	Thr	Thr 275	Glu	Gly	Ala	Leu	Asn 280	Glu	Ile	Asn	Asn	Asn 285	Leu	Gln	Arg
Val	Arg 290	Glu	Leu	Ala	Val	Gln 295	Ser	Ala	Asn	Ser	Thr 300	Asn	Ser	Gln	Ser
Asp 305	Leu	Asp	Ser	Ile	Gln 310	Ala	Glu	Ile	Thr	Gln 315	Arg	Leu	Asn	Glu	Ile 320
Asp	Arg	Val	Ser	Gly 325	Gln	Thr	Gln	Phe	Asn 330	Gly	Val	Lys	Val	Leu 335	Ala
Gln	Asp	Asn	Thr 340		Thr	Ile		Val 345		Ala	Asn	Asp	Gly 350	Glu	Thr
Ile	Asp	Ile 355	Asp	Leu	Lys	Gln	Ile 360	Asn	Ser	Gln	Thr	Leu 365	Gly	Leu	Asp
Thr	Leu 370	Asn	Val	Gln	Gln	Lys 375	Tyr	Lys	Val	Ser	Asp 380	Thr	Ala	Ala	Thr
Val 385	Thr	Gly	Tyr	Ala	390	Thr	Thr	Ile	Ala	Leu 395	Asp	Asn	Ser	Thr	Phe 400
ГÀа	Ala	Ser	Ala	Thr 405	Gly	Leu	Gly	Gly	Thr 410	Asp	Gln	Lys	Ile	Asp 415	Gly
Asp	Leu	Lys	Phe 420	Asp	Asp	Thr	Thr	Gly 425	Lys	Tyr	Tyr	Ala	Lys 430	Val	Thr
Val	Thr	Gly 435	Gly	Thr	Gly	Lys	Asp 440	Gly	Tyr	Tyr	Glu	Val 445	Ser	Val	Asp
ГÀа	Thr 450	Asn	Gly	Glu	Val	Thr 455	Leu	Ala	Gly	Gly	Ala 460	Thr	Ser	Pro	Leu
Thr	Gly	Gly	Leu	Pro	Ala	Thr	Ala	Thr	Glu	Asp	Val	Lys	Asn	Val	Gln

-continued

	-concinued
465 470 475	480
Val Ala Asn Ala Asp Leu Thr Glu Ala Lys Ala 485 490	a Ala Leu Thr Ala Ala 495
Gly Val Thr Gly Thr Ala Ser Val Val Lys Met	: Ser Tyr Thr Asp Asn 510
Asn Gly Lys Thr Ile Asp Gly Gly Leu Ala Val	. Lys Val Gly Asp Asp 525
Tyr Tyr Ser Ala Thr Gln Asn Lys Asp Gly Ser 530 535	: Ile Ser Ile Asn Thr 540
Thr Lys Tyr Thr Ala Asp Asp Gly Thr Ser Lys 545 550	
Leu Gly Gly Ala Asp Gly Lys Thr Glu Val Val 565 570	. Ser Ile Gly Gly Lys 575
Thr Tyr Ala Ala Ser Lys Ala Glu Gly His Asn 580 585	n Phe Lys Ala Gln Pro 590
Asp Leu Ala Glu Ala Ala Ala Thr Thr Thr Glu	ı Asn Pro Leu Gln Lys 605
Ile Asp Ala Ala Leu Ala Gln Val Asp Thr Leu 610 615	Arg Ser Asp Leu Gly 620
Ala Val Gln Asn Arg Phe Asn Ser Ala Ile Thr 625 630 635	
Val Asn Asn Leu Thr Ser Ala Arg Ser Arg Ile 645 650	e Glu Asp Ser Asp Tyr 655
Ala Thr Glu Val Ser Asn Met Ser Arg Ala Gln 660 665	n Ile Leu Gln Gln Ala 670
Gly Thr Ser Val Leu Ala Gln Ala Asn Gln Val 675 680	. Pro Gln Asn Val Leu 685
Ser Leu Leu Arg 690	
<210> SEQ ID NO 57 <211> LENGTH: 1620 <212> TYPE: RNA <213> ORGANISM: Human metapneumovirus	
<400> SEQUENCE: 57	
augagcugga agguggugau uaucuucagc cugcugauua	ı caccucaaca cqqccuqaaq 60
gagagcuacc uggaagagag cugcuccacc aucaccgagg	
accggcuggu acaccaacgu guucacccug gaggugggcg	g acguggagaa ccugaccugc 180
agegaeggee cuagecugau caagaeegag cuggaeeuga	ccaagagcgc ucugagagag 240
cugaagaccg uguccgccga ccagcuggcc agagaggaac	agaucgagaa cccucggcag 300
agcagauucg ugcugggege cauegeueug ggaguegeeg	g cugeegeuge agugaeageu 360
ggaguggcca uugcuaagac caucagacug gaaagcgagg	g ugacagecau caacaaugec 420
cugaagaaga ccaacgaggc cgugagcacc cugggcaaug	g gagugagagu gcuggccaca 480
geegugeggg ageugaagga euuegugage aagaaceuga	a ccagagccau caacaagaac 540
aagugcgaca ucgaugaccu gaagauggcc gugagcuucu	ı cccaguucaa cagacgguuc 600
cugaacgugg ugagacaguu cuccgacaac gcuggaauca	caccugccau uagccuggac 660
cugaugaccg acgccgagcu ggcuagagcc gugcccaaca	ugcccaccag cgcuggccag 720
aucaagcuga ugcuggagaa cagagccaug gugcggagaa	agggcuucgg cauccugauu 780

gggguguaug gaagcuccgu gaucuacaug gugcagcugc ccaucuucgg cgugaucgac

840

acacccugcu ggaucgugaa	ggccgcuccu	agcugcuccg	agaagaaagg	aaacuaugcc	900
ugucugcuga gagaggacca	gggcugguac	ugccagaacg	ccggaagcac	aguguacuau	960
cccaacgaga aggacugcga	gaccagaggc	gaccacgugu	ucugcgacac	cgcugccgga	1020
aucaacgugg ccgagcagag	caaggagugc	aacaucaaca	ucagcacaac	caacuacccc	1080
ugcaagguga gcaccggacg	gcaccccauc	agcauggugg	cucugageee	ucugggcgcu	1140
cugguggccu gcuauaaggg	cguguccugu	agcaucggca	gcaaucgggu	gggcaucauc	1200
aagcagcuga acaagggaug	cuccuacauc	accaaccagg	acgccgacac	cgugaccauc	1260
gacaacaccg uguaccagcu	gagcaaggug	gagggcgagc	agcacgugau	caagggcaga	1320
cccgugagcu ccagcuucga	ccccaucaag	uucccugagg	accaguucaa	cguggcccug	1380
gaccaggugu uugagaacau	cgagaacagc	caggcccugg	uggaccagag	caacagaauc	1440
cuguccagcg cugagaaggg	caacaccggc	uucaucauug	ugaucauucu	gaucgccgug	1500
cugggcagcu ccaugauccu	ggugagcauc	uucaucauua	ucaagaagac	caagaaaccc	1560
accggagccc cuccugagcu	gagcggcgug	accaacaaug	gcuucauucc	ccacaacuga	1620
<210> SEQ ID NO 58 <211> LENGTH: 1620 <212> TYPE: RNA <213> ORGANISM: Human <400> SEQUENCE: 58	metapneumo	<i>v</i> irus			
augucuugga aagugaugau	caucauuucg	uuacucauaa	caccccagca	cgggcuaaag	60
gagaguuauu uggaagaauc	auguaguacu	auaacugagg	gauaccucag	uguuuuaaga	120
acaggcuggu acacuaaugu	cuucacauua	gaaguuggug	auguugaaaa	ucuuacaugu	180
acugauggac cuagcuuaau	caaaacagaa	cuugaucuaa	caaaaagugc	uuuaagggaa	240
cucaaaacag ucucugcuga	ucaguuggcg	agagaggagc	aaauugaaaa	ucccagacaa	300
ucaagauuug ucuuaggugc	gauagcucuc	ggaguugcua	cagcagcagc	agucacagca	360
ggcauugcaa uagccaaaac	cauaaggcuu	gagagugagg	ugaaugcaau	uaaaggugcu	420
cucaaacaaa cuaaugaagc	aguauccaca	uuagggaaug	gugugcgggu	ccuagccacu	480
gcagugagag agcuaaaaga	auuugugagc	aaaaaccuga	cuagugcaau	caacaggaac	540
aaaugugaca uugcugaucu	gaagauggcu	gucagcuuca	gucaauucaa	cagaagauuu	600
cuaaauguug ugcggcaguu	uucagacaau	gcagggauaa	caccagcaau	aucauuggac	660
cugaugacug augcugaguu	ggccagagcu	guaucauaca	ugccaacauc	ugcagggcag	720
auaaaacuga uguuggagaa	ccgcgcaaug	guaaggagaa	aaggauuugg	aauccugaua	780
ggggucuacg gaagcucugu	gauuuacaug	guucaauugc	cgaucuuugg	ugucauagau	840
acaccuuguu ggaucaucaa	ggcagcuccc	ucuugcucag	aaaaaaacgg	gaauuaugcu	900
ugccuccuaa gagaggauca	agggugguau	uguaaaaaug	caggaucuac	uguuuacuac	960
ccaaaugaaa aagacugcga	aacaagaggu	gaucauguuu	uuugugacac	agcagcaggg	1020
aucaauguug cugagcaauc	aagagaaugc	aacaucaaca	uaucuacuac	caacuaccca	1080
ugcaaaguca gcacaggaag	acacccuaua	agcaugguug	cacuaucacc	ucucggugcu	1140
uugguggcuu gcuauaaagg	gguaagcugc	ucgauuggca	gcaauugggu	uggaaucauc	1200
aaacaauuac ccaaaggcug	cucauacaua	accaaccagg	augcagacac	uguaacaauu	1260
gacaauaccg uguaucaacu	aagcaaaguu	gaaggugaac	agcauguaau	aaaagggaga	1320

				-0011011	iueu		
ccaguuucaa	gcaguuuuga	uccaaucaag	uuuccugagg	aucaguucaa	uguugcgcuu	1380	
gaucaagucu	ucgaaagcau	ugagaacagu	caggcacuag	uggaccaguc	aaacaaaauu	1440	
cuaaacagug	cagaaaaagg	aaacacuggu	uucauuaucg	uaguaauuuu	gguugcuguu	1500	
cuuggucuaa	ccaugauuuc	agugagcauc	aucaucauaa	ucaagaaaac	aaggaagccc	1560	
acaggagcac	cuccagagcu	gaaugguguc	accaacggcg	guuucauacc	acauaguuag	1620	
<210> SEQ : <211> LENG' <212> TYPE <213> ORGAI	TH: 1620	metapneumo	virus				
<400> SEQUI	ENCE: 59						
augucuugga	aagugaugau	uaucauuucg	uuacucauaa	caccucagca	uggacuaaaa	60	
gaaaguuauu	uagaagaauc	auguaguacu	auaacugaag	gauaucucag	uguuuuaaga	120	
acagguuggu	acaccaaugu	cuuuacauua	gaaguuggug	auguugaaaa	ucuuacaugu	180	
acugauggac	cuagcuuaau	caaaacagaa	cuugaccuaa	ccaaaagugc	uuuaagagaa	240	
cucaaaacag	uuucugcuga	ucaguuagcg	agagaagaac	aaauugaaaa	ucccagacaa	300	
ucaagguuug	uccuaggugc	aauagcucuu	ggaguugcca	cagcagcagc	agucacagca	360	
ggcauugcaa	uagccaaaac	uauaaggcuu	gagagugaag	ugaaugcaau	caaaggugcu	420	
cucaaaacaa	ccaaugaggc	aguaucaaca	cuaggaaaug	gagugcgggu	ccuagccacu	480	
gcaguaagag	agcugaaaga	auuugugagc	aaaaaccuga	cuagugcgau	caacaagaac	540	
aagugugaca	uugcugauuu	gaagauggcu	gucagcuuca	gucaguucaa	cagaagauuc	600	
cuaaauguug	ugcggcaguu	uucagacaau	gcagggauaa	caccagcaau	aucauuggac	660	
cugaugaaug	augcugagcu	ggccagagcu	guaucauaca	ugccaacauc	ugcaggacag	720	
auaaaacuaa	uguuagagaa	ccgugcaaug	gugaggagaa	aaggauuugg	aaucuugaua	780	
ggggucuacg	gaagcucugu	gauuuacaug	guccagcugc	cgaucuuugg	ugucauaaau	840	
acaccuuguu	ggauaaucaa	ggcagcuccc	ucuuguucag	aaaaagaugg	aaauuaugcu	900	
ugccuccuaa	gagaggauca	agggugguau	uguaaaaaug	caggauccac	uguuuacuac	960	
ccaaaugaaa	aagacugcga	aacaagaggu	gaucauguuu	uuugugacac	agcagcaggg	1020	
aucaauguug	cugagcaauc	aagagaaugc	aacaucaaca	uaucuaccac	caacuaccca	1080	
ugcaaaguca	gcacaggaag	acacccuauc	agcaugguug	cacuaucacc	ucucggugcu	1140	
uugguagcuu	gcuacaaagg	gguuagcugc	ucgacuggca	guaaucaggu	uggaauaauc	1200	
aaacaacuac	cuaaaggcug	cucauacaua	acuaaccagg	acgcagacac	uguaacaauu	1260	
gacaacacug	uguaucaacu	aagcaaaguu	gagggugaac	agcauguaau	aaaagggaga	1320	
ccaguuucaa	gcaguuuuga	uccaaucagg	uuuccugagg	aucaguucaa	uguugcgcuu	1380	
gaucaagucu	uugaaagcau	ugaaaacagu	caagcacuag	uggaccaguc	aaacaaaauu	1440	
cugaacagug	cagaaaaagg	aaacacuggu	uucauuauug	uaauaauuuu	gauugcuguu	1500	
cuuggguuaa	ccaugauuuc	agugagcauc	aucaucauaa	ucaaaaaaac	aaggaagccc	1560	
acaggggcac	cuccggagcu	gaaugguguu	accaacggcg	guuucauacc	gcauaguuag	1620	
<210> SEQ :	ID NO 60						

<210> SEQ ID NO 60 <211> LENGTH: 1725 <212> TYPE: RNA

<213> ORGANISM: Human respiratory syncytial virus

auggaguugc	caauccucaa	aacaaaugca	auuaccacaa	uccuugcugc	agucacacuc	60
uguuucgcuu	ccagucaaaa	caucacugaa	gaauuuuauc	aaucaacaug	cagugcaguu	120
agcaaaggcu	aucuuagugc	ucuaagaacu	gguugguaua	cuaguguuau	aacuauagaa	180
uuaaguaaua	ucaaggaaaa	uaaguguaau	ggaacagaug	cuaagguaaa	auugauaaaa	240
caagaauuag	auaaauauaa	aaaugcugua	acagaauugc	aguugcucau	gcaaagcaca	300
ccagcagcca	acaaucgagc	cagaagagaa	cuaccaaggu	uuaugaauua	uacacucaau	360
aauaccaaaa	auaccaaugu	aacauuaagc	aagaaaagga	aaagaagauu	ucuuggcuuu	420
uuguuaggug	uuggaucugc	aaucgccagu	ggcauugcug	uaucuaaggu	ccugcaccua	480
gaaggggaag	ugaacaaaau	caaaagugcu	cuacuaucca	caaacaaggc	uguagucagc	540
uuaucaaaug	gaguuagugu	cuuaaccagc	aaaguguuag	accucaaaaa	cuauauagau	600
aaacaguugu	uaccuauugu	gaacaagcaa	agcugcagca	uaucaaacau	ugaaacugug	660
auagaguucc	aacaaaagaa	caacagacua	cuagagauua	ccagggaauu	uaguguuaau	720
gcagguguaa	cuacaccugu	aagcacuuau	auguuaacua	auagugaauu	auuaucauua	780
aucaaugaua	ugccuauaac	aaaugaucag	aaaaaguuaa	uguccaacaa	uguucaaaua	840
guuagacagc	aaaguuacuc	uaucaugucc	auaauaaagg	aggaagucuu	agcauaugua	900
guacaauuac	cacuauaugg	uguaauagau	acacccuguu	ggaaacugca	cacauccccu	960
cuauguacaa	ccaacacaaa	ggaagggucc	aacaucugcu	uaacaagaac	cgacagagga	1020
ugguauugug	acaaugcagg	aucaguaucu	uucuucccac	aagcugaaac	auguaaaguu	1080
caaucgaauc	ggguauuuug	ugacacaaug	aacaguuuaa	cauuaccaag	ugaaguaaau	1140
cucugcaaca	uugacauauu	caaccccaaa	uaugauugca	aaauuaugac	uucaaaaaca	1200
gauguaagca	gcuccguuau	cacaucucua	ggagccauug	ugucaugcua	uggcaaaacu	1260
aaauguacag	cauccaauaa	aaaucguggg	aucauaaaga	cauuuucuaa	cgggugugau	1320
uauguaucaa	auaagggggu	ggauacugug	ucuguaggua	auacauuaua	uuauguaaau	1380
aagcaagaag	gcaaaagucu	cuauguaaaa	ggugaaccaa	uaauaaauuu	cuaugaccca	1440
uuaguguucc	ccucugauga	auuugaugca	ucaauaucuc	aagucaauga	gaagauuaac	1500
cagagccuag	cauuuauucg	uaaauccgau	gaauuauuac	auaauguaaa	ugcugguaaa	1560
uccaccacaa	auaucaugau	aacuacuaua	auuauaguga	uuauaguaau	auuguuauca	1620
uuaauugcag	uuggacugcu	ccuauacugc	aaggccagaa	gcacaccagu	cacacuaagu	1680
aaggaucaac	ugagugguau	aaauaauauu	gcauuuagua	acuga		1725
<210> SEQ 1 <211> LENG <212> TYPE <213> ORGAI	ΓH: 1617	parainflue	nza virus			
<400> SEQUI	ENCE: 61					
augccaauuu	caauacuguu	aauuauuaca	accaugauca	uggcaucaca	cugccaaaua	60
gacaucacaa	aacuacagca	uguaggugua	uuggucaaca	gucccaaagg	gaugaagaua	120
ucacaaaacu	ucgaaacaag	auaucuaauc	cugagucuca	uaccaaaaau	agaagauucu	180
aacucuugug	gugaccaaca	gaucaagcaa	uacaagaggu	uauuggauag	acugaucauu	240
ccuuuauaug	auggacuaag	auuacagaag	gaugugauag	ugacuaauca	agaauccaau	300

gaaaacacug aucccagaac agaacgauuc uuuggagggg uaauuggaac uauugcucua

-continued

			-conti	nued		
ggaguagcaa ccucago	caca aauuacagca	gcaguugcuc	ugguugaagc	caagcaggca	420	
agaucagaca uugaaa	aacu caaggaagca	a aucagggaca	caaauaaagc	agugcaguca	480	
guucagagcu cuguago	gaaa uuugauagua	a gcaauuaaau	caguccagga	uuaugucaac	540	
aaagaaaucg ugccau	cgau ugcgagacua	a gguugugaag	cagcaggacu	ucaguuaggg	600	
auugcauuaa cacagca	auua cucagaauua	a acaaauauau	uuggugauaa	cauaggaucg	660	
uuacaagaaa aaggaa	uaaa auuacaaggu	ı auagcaucau	uauaccguac	aaauaucaca	720	
gaaauauuca caacau	caac aguugacaaa	a uaugauauuu	augaucuauu	auuuacagaa	780	
ucaauaaagg ugagagu	uuau agauguugau	ı uugaaugauu	acucaauaac	ccuccaaguc	840	
agacucccuu uauugad	ccag acugcugaac	c acucaaaucu	acaaaguaga	uuccauauca	900	
uacaauaucc aaaaua	gaga augguauauc	ccucuuccca	gccauaucau	gacgaaaggg	960	
gcauuucuag guggago	caga ugucaaagaa	a ugcauagaag	cauucagcag	uuauauaugc	1020	
ccuucugauc caggau	uugu acuaaaccau	ı gaaauggaga	gcugucuauc	aggaaacaua	1080	
ucccaauguc caagaad	ccac agucacauca	a gacauaguuc	cuagguaugc	auuugucaau	1140	
ggaggagugg uugcgaa	auug uauaacaacu	ı acauguacau	gcaaugguau	cgguaauaga	1200	
aucaaccaac caccuga	auca aggagucaaa	a auuauaacac	auaaagaaug	uaauacaaua	1260	
gguaucaacg gaaugcu	uauu caacacaaac	aaagaaggaa	cucuugcauu	cuacacacca	1320	
gacgacauaa cauuaaa	acaa uucuguugca	a cuugauccga	uugacauauc	aaucgagcuc	1380	
aacaaggcca aaucaga	aucu ugaggaauca	a aaagaaugga	uaagaagguc	aaaucaaaag	1440	
cuagauucua uuggaaq	guug gcaucaaucu	ı agcacuacaa	ucauaguuau	uuugauaaug	1500	
augauuauau uguuua	uaau uaauauaaca	a auaauuacaa	uugcaauuaa	guauuacaga	1560	
auucaaaaga gaaauc	gagu ggaucaaaau	ı gauaagccgu	auguauuaac	aaacaag	1617	
<210> SEQ ID NO 62 <211> LENGTH: 171 <212> TYPE: RNA <213> ORGANISM: Hu	6 uman parainflue	enza virus 3				
<400> SEQUENCE: 62	2					
auggaauacu ggaagca					60	
acagccacuc auggcaa	acaa gcucaccaac	c aagauaacau	auauauugug	gacgauaacc	120	
cugguguuau uaucaai	uagu cuucaucaua	a gugcuaacua	auuccaucaa	aagugaaaag	180	
geeegegaau cauuge	uaca agacauaaau	ı aaugaguuua	uggaaguuac	agaaaagauc	240	
caaguggcau cggauaa	auac uaaugaucua	a auacagucag	gagugaauac	aaggcuucuu	300	
acaauucaga gucaugu	ucca gaauuauaua	a ccaauaucau	ugacacaaca	aauaucggau	360	
cuuaggaaau ucauua	guga aauuacaauu	ı agaaaugaua	aucaagaagu	gccaccacaa	420	
agaauaacac augaugi	uggg uauaaaaccu	ı uuaaauccag	augauuucug	gagaugcacg	480	
ucuggucuuc caucuui	ugau gaaaacucca	a aaaauaagau	uaaugccggg	accaggauua	540	
uuagcuaugc caacgad	cugu ugauggcugu	ı gucagaaccc	cguccuuagu	gauaaaugau	600	
cugauuuaug cuuacad	ccuc aaaucuaauu	ı acucgagguu	gccaggauau	agggaaauca	660	
uaucaaguau uacaga	uagg gauaauaacu	ı guaaacucag	acuugguacc	ugacuuaaau	720	
ccuaggaucu cucaua	ccuu caacauaaau	ı gacaauagaa	agucauguuc	ucuagcacuc	780	
cuaaauacag auguau	auca acuguguuca	a accccaaaag	uugaugaaag	aucagauuau	840	

900

gcaucaucag gcauagaaga uauuguacuu gauauuguca auuaugaugg cucaaucucg

acaacaagau	uuaagaauaa	uaauauaagu	uuugaucaac	cauaugcggc	auuauaccca	960
ucuguuggac	cagggauaua	cuacaaaggc	aaaauaauau	uucucgggua	uggaggucuu	1020
gaacauccaa	uaaaugagaa	ugcaaucugc	aacacaacug	gguguccugg	gaaaacacag	1080
agagacugua	aucaagcauc	ucauagucca	ugguuuucag	auagaaggau	ggucaacucu	1140
auaauuguug	uugacaaggg	cuugaacuca	guuccaaaau	ugaagguaug	gacgauaucu	1200
augagacaaa	auuacugggg	gucagaagga	agauuacuuc	uacuagguaa	caagaucuac	1260
auauacacaa	gaucuacaag	uuggcacagc	aaguuacaau	uaggaauaau	ugacauuacu	1320
gacuacagug	auauaaggau	aaaauggaca	uggcauaaug	ugcuaucaag	accaggaaac	1380
aaugaauguc	cauggggaca	uucauguccg	gauggaugua	uaacgggagu	auauaccgau	1440
gcauauccac	ucaaucccac	aggaagcauu	guaucaucug	ucauauugga	cucacaaaaa	1500
ucgagaguca	acccagucau	aacuuacuca	acagcaaccg	aaaggguaaa	cgagcuggcu	1560
auccgaaaca	aaacacucuc	agcuggguac	acaacaacaa	gcugcauuac	acacuauaac	1620
aaaggguauu	guuuucauau	aguagaaaua	aaucauaaaa	gcuuaaacac	auuucaaccc	1680
auguuguuca	aaacagagau	uccaaaaagc	ugcagu			1716
<220> FEAT	TH: 1716 : RNA NISM: Artif: URE: R INFORMATIO	icial Sequer DN: Synthet:		eotide		
		caaccacggc	aaqqacqccq	gcaacgagcu	ggaaaccagc	60
		gcugaccaac				120
		guucaucauc				180
		ggacaucaac				240
		caacgaccug				300
		gaacuacauc				360
		gaucaccauc				420
		caucaagccc				480
		gaagaccccc				540
		ggauggcugu				600
		caaccugauc				660
		caucaucacc				720
ccucggauca	gccacaccuu	caacaucaac	gacaacagaa	agagcugcag	ccuggcucug	780
cugaacaccg	acguguacca	gcugugcagc	acccccaagg	uggacgagag	aagcgacuac	840
		uaucgugcug				900
		caacaucage				960
						1020
		cuacaagggc				
		cgccaucugc				1080
agagacugca	aucaggccag	ccacagcccc	ugguucagcg	accgcagaau	ggucaacucu	1140

aucaucgugg uggacaaggg ccugaacagc gugcccaagc ugaaagugug gacaaucagc 1200

-continued

-continued	
augcgccaga acuacugggg cagcgagggc agacuucugc ugcugggaaa caagaucuac	1260
aucuacaccc gguccaccag cuggcacagc aaacugcagc ugggaaucau cgacaucacc	1320
gacuacageg acauceggau caaguggaee uggeacaaeg ugeugageag acceggeaae	1380
aaugagugee euuggggeea eageugeeee gauggaugua ueaeeggegu guacaeegae	1440
gccuaccccc ugaauccuac cggcuccauc guguccagcg ugauccugga cagccagaaa	1500
agcagaguga accccgugau cacauacagc accgccaccg agagagugaa cgaacuggcc	1560
aucagaaaca agacccugag cgccggcuac accaccacaa gcugcaucac acacuacaac	1620
aagggcuacu gcuuccacau cguggaaauc aaccacaagu cccugaacac cuuccagccc	1680
augcuguuca agaccgagau ccccaagagc ugcucc	1716
<210> SEQ ID NO 64 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 64	
augeccauca geauceugeu gaucaucace acaaugauca uggecageca eugecagaue	60
gacaucacca agcugcagca cgugggcgug cucgugaaca gccccaaggg caugaagauc	120
agccagaacu ucgagacacg cuaccugauc cugagccuga uccccaagau cgaggacagc	180
aacagcugcg gcgaccagca gaucaagcag uacaagcggc ugcuggacag acugaucauc	240
ccccuguacg acggccugcg gcugcagaaa gacgugaucg ugaccaacca ggaaagcaac	300
gagaacaccg acccccggac cgagagauuc uucggcggcg ugaucggcac aaucgcccug	360
ggaguggcca caagcgccca gauuacagcc gcuguggccc ugguggaagc caagcaggcc	420
agaagcgaca ucgagaagcu gaaagaggcc auccgggaca ccaacaaggc cgugcagagc	480
gugcagucca gcgugggcaa ucugaucgug gccaucaagu ccgugcagga cuacgugaac	540
aaagaaaucg ugcccucuau cgcccggcug ggcugugaag cugccggacu gcagcugggc	600
auugeeeuga cacageacua cagegageug accaacaucu ueggegacaa caueggeage	660
cugcaggaaa agggcauuaa gcugcaggga aucgccagcc uguaccgcac caacaucacc	720
gagaucuuca ccaccagcac cguggauaag uacgacaucu acgaccugcu guucaccgag	780
agcaucaaag ugcgcgugau cgacguggac cugaacgacu acagcaucac ccugcaagug	840
eggeugeece ugeugaceag acugeugaac acceagaueu acaaggugga eageaueuee	900
uacaacauce agaacegega gugguacauc ecucugecea gecacauuau gaccaaggge	960
gccuuucugg gcggagccga cgugaaagag ugcaucgagg ccuucagcag cuacaucugc	1020
cccagcgacc cuggcuucgu gcugaaccac gagauggaaa gcugccugag cggcaacauc	1080
agccagugcc ccagaaccac cgugaccucc gacaucgugc ccagauacgc cuucgugaau	1140
ggcggcgugg uggccaacug caucaccacc accuguaccu gcaacggcau cggcaaccgg	1200
aucaaccagc cucccgauca gggcgugaag auuaucaccc acaaagagug uaacaccauc	1260
ggcaucaacg gcaugcuguu caauaccaac aaagagggca cccuggccuu cuacaccccc	1320
gacgauauca cocugaacaa cuccguggcu cuggacccca ucgacaucuc caucgagcug	1380
aacaaggcca agagcgaccu ggaagagucc aaagagugga uccggcggag caaccagaag	1440
cuggacucua ucggcagcug gcaccagagc agcaccacca ucaucgugau ccugauuaug	1500

augauuaucc uguucaucau caacauuacc aucaucacua ucgccauuaa guacuaccgg 1560

auccagaaac	ggaaccgggu	ggaccagaau	gacaagcccu	acgugcugac	aaacaag	1617
<210 > SEQ 1 <211 > LENGT <212 > TYPE: <213 > ORGAN	H: 4062 RNA	e East resp:	iratory syno	drome corona	avirus	
<400> SEQUE	ENCE: 65					
augauacacu	caguguuucu	acugauguuc	uuguuaacac	cuacagaaag	uuacguugau	60
guagggccag	auucuguuaa	gucugcuugu	auugagguug	auauacaaca	gaccuucuuu	120
gauaaaacuu	ggccuaggcc	aauugauguu	ucuaaggcug	acgguauuau	auacccucaa	180
ggccguacau	auucuaacau	aacuaucacu	uaucaagguc	uuuuucccua	ucagggagac	240
cauggugaua	uguauguuua	cucugcagga	caugcuacag	gcacaacucc	acaaaaguug	300
uuuguagcua	acuauucuca	ggacgucaaa	caguuugcua	auggguuugu	cguccguaua	360
ggagcagcug	ccaauuccac	uggcacuguu	auuauuagcc	caucuaccag	cgcuacuaua	420
cgaaaaauuu	acccugcuuu	uaugcugggu	ucuucaguug	guaauuucuc	agaugguaaa	480
augggccgcu	ucuucaauca	uacucuaguu	cuuuugcccg	auggaugugg	cacuuuacuu	540
agagcuuuuu	auuguauucu	agagccucgc	ucuggaaauc	auuguccugc	uggcaauucc	600
uauacuucuu	uugccacuua	ucacacuccu	gcaacagauu	guucugaugg	caauuacaau	660
cguaaugcca	gucugaacuc	uuuuaaggag	uauuuuaauu	uacguaacug	caccuuuaug	720
uacacuuaua	acauuaccga	agaugagauu	uuagaguggu	uuggcauuac	acaaacugcu	780
caagguguuc	accucuucuc	aucucgguau	guugauuugu	acggcggcaa	uauguuucaa	840
uuugccaccu	ugccuguuua	ugauacuauu	aaguauuauu	cuaucauucc	ucacaguauu	900
cguucuaucc	aaagugauag	aaaagcuugg	gcugccuucu	acguauauaa	acuucaaccg	960
uuaacuuucc	uguuggauuu	uucuguugau	gguuauauac	gcagagcuau	agacuguggu	1020
uuuaaugauu	ugucacaacu	ccacugcuca	uaugaauccu	ucgauguuga	aucuggaguu	1080
uauucaguuu	cgucuuucga	agcaaaaccu	ucuggcucag	uuguggaaca	ggcugaaggu	1140
guugaaugug	auuuuucacc	ucuucugucu	ggcacaccuc	cucagguuua	uaauuucaag	1200
cguuugguuu	uuaccaauug	caauuauaau	cuuaccaaau	ugcuuucacu	uuuuucugug	1260
aaugauuuua	cuuguaguca	aauaucucca	gcagcaauug	cuagcaacug	uuauucuuca	1320
cugauuuugg	auuauuuuc	auacccacuu	aguaugaaau	ccgaucucag	uguuaguucu	1380
gcugguccaa	uaucccaguu	uaauuauaaa	caguccuuuu	cuaaucccac	auguuugauc	1440
uuagcgacug	uuccucauaa	ccuuacuacu	auuacuaagc	cucuuaagua	cagcuauauu	1500
aacaagugcu	cucgucuucu	uucugaugau	cguacugaag	uaccucaguu	agugaacgcu	1560
aaucaauacu	cacccugugu	auccauuguc	ccauccacug	ugugggaaga	cggugauuau	1620
uauaggaaac	aacuaucucc	acuugaaggu	gguggcuggc	uuguugcuag	uggcucaacu	1680
guugccauga	cugagcaauu	acagaugggc	uuugguauua	caguucaaua	ugguacagac	1740
accaauagug	uuugccccaa	gcuugaauuu	gcuaaugaca	caaaaauugc	cucucaauua	1800
ggcaauugcg	uggaauauuc	ccucuauggu	guuucgggcc	gugguguuuu	ucagaauugc	1860
acagcuguag	guguucgaca	gcagcgcuuu	guuuaugaug	cguaccagaa	uuuaguuggc	1920
uauuauucug	augauggcaa	cuacuacugu	cugegugeuu	guguuagugu	uccuguuucu	1980
			gcuacucuau			2040

cacauuucuu	cuaccauguc	ucaauacucc	cguucuacgc	gaucaaugcu	uaaacggcga	2100
gauucuacau	auggcccccu	ucagacaccu	guugguugug	uccuaggacu	uguuaauucc	2160
ucuuuguucg	uagaggacug	caaguugccu	cucggucaau	cucucugugc	ucuuccugac	2220
acaccuagua	cucucacacc	ucgcagugug	cgcucugugc	caggugaaau	gegeuuggea	2280
uccauugcuu	uuaaucaucc	cauucagguu	gaucaacuua	auaguaguua	uuuuaaauua	2340
aguauaccca	cuaauuuuuc	cuuuggugug	acucaggagu	acauucagac	aaccauucag	2400
aaaguuacug	uugauuguaa	acaguacguu	ugcaaugguu	uccagaagug	ugagcaauua	2460
cugcgcgagu	auggccaguu	uuguuccaaa	auaaaccagg	cucuccaugg	ugccaauuua	2520
cgccaggaug	auucuguacg	uaauuuguuu	gcgagcguga	aaagcucuca	aucaucuccu	2580
aucauaccag	guuuuggagg	ugacuuuaau	uugacacuuc	uagaaccugu	uucuauaucu	2640
acuggcaguc	guagugcacg	uagugcuauu	gaggauuugc	uauuugacaa	agucacuaua	2700
gcugauccug	guuauaugca	agguuacgau	gauuguaugc	agcaaggucc	agcaucagcu	2760
cgugaucuua	uuugugcuca	auauguggcu	gguuauaaag	uauuaccucc	ucuuauggau	2820
guuaauaugg	aagccgcgua	uacuucaucu	uugcuuggca	gcauagcagg	uguuggcugg	2880
acugcuggcu	uauccuccuu	ugcugcuauu	ccauuugcac	agaguauyuu	uuauagguua	2940
aacgguguug	gcauuacuca	acagguucuu	ucagagaacc	aaaagcuuau	ugccaauaag	3000
uuuaaucagg	cucugggagc	uaugcaaaca	ggcuucacua	caacuaauga	agcuuuucgg	3060
aagguucagg	augcugugaa	caacaaugca	caggcucuau	ccaaauuagc	uagcgagcua	3120
ucuaauacuu	uuggugcuau	uuccgccucu	auuggagaca	ucauacaacg	ucuugauguu	3180
cucgaacagg	acgcccaaau	agacagacuu	auuaauggcc	guuugacaac	acuaaaugcu	3240
uuuguugcac	agcagcuugu	ucguuccgaa	ucagcugcuc	uuuccgcuca	auuggcuaaa	3300
gauaaaguca	augagugugu	caaggcacaa	uccaagcguu	cuggauuuug	cggucaaggc	3360
acacauauag	uguccuuugu	uguaaaugcc	ccuaauggcc	uuuacuuuau	gcauguuggu	3420
uauuacccua	gcaaccacau	ugagguuguu	ucugcuuaug	gucuuugcga	ugcagcuaac	3480
ccuacuaauu	guauagcccc	uguuaauggc	uacuuuauua	aaacuaauaa	cacuaggauu	3540
guugaugagu	ggucauauac	uggcucgucc	uucuaugcac	cugagcccau	caccucucuu	3600
aauacuaagu	auguugcacc	acaggugaca	uaccaaaaca	uuucuacuaa	ccucccuccu	3660
ccucuucucg	gcaauuccac	cgggauugac	uuccaagaug	aguuggauga	guuuuucaaa	3720
aauguuagca	ccaguauacc	uaauuuuggu	ucucuaacac	agauuaauac	uacauuacuc	3780
gaucuuaccu	acgagauguu	gucucuucaa	caaguuguua	aagcccuuaa	ugagucuuac	3840
auagaccuua	aagagcuugg	caauuauacu	uauuacaaca	aauggccgug	guacauuugg	3900
cuugguuuca	uugcugggcu	uguugccuua	gcucuaugcg	ucuucuucau	acugugcugc	3960
acugguugug	gcacaaacug	uaugggaaaa	cuuaagugua	aucguuguug	ugauagauac	4020
gaggaauacg	accucgagcc	gcauaagguu	cauguucacu	aa		4062
<210 > SEQ 1 <211 > LENG?	TH: 4062					

<400> SEQUENCE: 66

<212> TYPE: RNA <213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Polynucleotide

-						
guagggccag	auucuguuaa	gucugcuugu	auugagguug	auauacaaca	gacuuucuuu	120
gauaaaacuu	ggccuaggcc	aauugauguu	ucuaaggcug	acgguauuau	auacccucaa	180
ggccguacau	auucuaacau	aacuaucacu	uaucaagguc	uuuuucccua	ucagggagac	240
cauggugaua	uguauguuua	cucugcagga	caugcuacag	gcacaacucc	acaaaaguug	300
uuuguagcua	acuauucuca	ggacgucaaa	caguuugcua	auggguuugu	cguccguaua	360
ggagcagcug	ccaauuccac	uggcacuguu	auuauuagcc	caucuaccag	cgcuacuaua	420
cgaaaaauuu	acccugcuuu	uaugcugggu	ucuucaguug	guaauuucuc	agaugguaaa	480
augggccgcu	ucuucaauca	uacucuaguu	cuuuugcccg	auggaugugg	cacuuuacuu	540
agagcuuuuu	auuguauucu	ggagccucgc	ucuggaaauc	auuguccugc	uggcaauucc	600
uauacuucuu	uugccacuua	ucacacuccu	gcaacagauu	guucugaugg	caauuacaau	660
cguaaugcca	gucugaacuc	uuuuaaggag	uauuuuaauu	uacguaacug	caccuuuaug	720
uacacuuaua	acauuaccga	agaugagauu	uuagaguggu	uuggcauuac	acaaacugcu	780
caagguguuc	accucuucuc	aucucgguau	guugauuugu	acggcggcaa	uauguuucaa	840
uuugccaccu	ugccuguuua	ugauacuauu	aaguauuauu	cuaucauucc	ucacaguauu	900
cguucuaucc	aaagugauag	aaaagcuugg	gcugccuucu	acguauauaa	acuucaaccg	960
uuaacuuucc	uguuggauuu	uucuguugau	gguuauauac	gcagagcuau	agacuguggu	1020
uuuaaugauu	ugucacaacu	ccacugcuca	uaugaauccu	ucgauguuga	aucuggaguu	1080
uauucaguuu	cgucuuucga	agcaaaaccu	ucuggcucag	uuguggaaca	ggcugaaggu	1140
guugaaugug	auuuuucacc	ucuucugucu	ggcacaccuc	cucagguuua	uaauuucaag	1200
cguuugguuu	uuaccaauug	caauuauaau	cuuaccaaau	ugcuuucacu	uuuuucugug	1260
aaugauuuua	cuuguaguca	aauaucucca	gcagcaauug	cuagcaacug	uuauucuuca	1320
cugauuuugg	auuacuuuuc	auacccacuu	aguaugaaau	ccgaucucag	uguuaguucu	1380
gcugguccaa	uaucccaguu	uaauuauaaa	caguccuuuu	cuaaucccac	auguuugauu	1440
uuagcgacug	uuccucauaa	ccuuacuacu	auuacuaagc	cucuuaagua	cagcuauauu	1500
aacaagugcu	cucgucuucu	uucugaugau	cguacugaag	uaccucaguu	agugaacgcu	1560
aaucaauacu	cacccugugu	auccauuguc	ccauccacug	ugugggaaga	cggugauuau	1620
uauaggaaac	aacuaucucc	acuugaaggu	gguggcuggc	uuguugcuag	uggcucaacu	1680
guugccauga	cugagcaauu	acagaugggc	uuugguauua	caguucaaua	ugguacagac	1740
accaauagug	uuugccccaa	gcuugaauuu	gcuaaugaca	caaaaauugc	cucucaauua	1800
ggcaauugcg	uggaauauuc	ccucuauggu	guuucgggcc	gugguguuuu	ucagaauugc	1860
acagcuguag	guguucgaca	gcagcgcuuu	guuuaugaug	cguaccagaa	uuuaguuggc	1920
uauuauucug	augauggcaa	cuacuacugu	uugcgugcuu	guguuagugu	uccuguuucu	1980
gucaucuaug	auaaagaaac	uaaaacccac	gcuacucuau	uugguagugu	ugcaugugaa	2040
cacauuucuu	cuaccauguc	ucaauacucc	cguucuacgc	gaucaaugcu	uaaacggcga	2100
gauucuacau	auggcccccu	ucagacaccu	guugguugug	uccuaggacu	uguuaauucc	2160
ucuuuguucg	uagaggacug	caaguugccu	cuuggucaau	cucucugugc	ucuuccugac	2220
acaccuagua	cucucacacc	ucgcagugug	cgcucuguuc	caggugaaau	gegeuuggea	2280
	uuaaucaucc					2340
_	cuaauuuuuc					2400
						_100

-continued

-continued	
aaaguuacug uugauuguaa acaguacguu ugcaaugguu uccagaagug ugagcaauua	2460
cugcgcgagu auggccaguu uuguuccaaa auaaaccagg cucuccaugg ugccaauuua	2520
cgccaggaug auucuguacg uaauuuguuu gcgagcguga aaagcucuca aucaucuccu	2580
aucauaccag guuuuggagg ugacuuuaau uugacacuuc uggaaccugu uucuauaucu	2640
acuggcaguc guagugcacg uagugcuauu gaggauuugc uauuugacaa agucacuaua	2700
gcugauccug guuauaugca agguuacgau gauugcaugc agcaaggucc agcaucagcu	2760
cgugaucuua uuugugcuca auauguggcu gguuacaaag uauuaccucc ucuuauggau	2820
guuaauaugg aagccgcgua uacuucaucu uugcuuggca gcauagcagg uguuggcugg	2880
acugcuggcu uauccuccuu ugcugcuauu ccauuugcac agaguaucuu uuauagguua	2940
aacgguguug gcauuacuca acagguucuu ucagagaacc aaaagcuuau ugccaauaag	3000
uuuaaucagg cucugggagc uaugcaaaca ggcuucacua caacuaauga agcuuuucag	3060
aagguucagg augcugugaa caacaaugca caggcucuau ccaaauuagc uagcgagcua	3120
ucuaauacuu uuggugcuau uuccgccucu auuggagaca ucauacaacg ucuugauguu	3180
cucgaacagg acgcccaaau agacagacuu auuaauggcc guuugacaac acuaaaugcu	3240
uuuguugcac agcagcuugu ucguuccgaa ucagcugcuc uuuccgcuca auuggcuaaa	3300
gauaaaguca augagugugu caaggcacaa uccaagcguu cuggauuuug cggucaaggc	3360
acacauauag uguccuuugu uguaaaugcc ccuaauggcc uuuacuucau gcauguuggu	3420
uauuacccua gcaaccacau ugagguuguu ucugcuuaug gucuuugcga ugcagcuaac	3480
ccuacuaauu guauagcccc uguuaauggc uacuuuauua aaacuaauaa cacuaggauu	3540
guugaugagu ggucauauac uggcucgucc uucuaugcac cugagcccau uaccucccuu	3600
aauacuaagu auguugcacc acaggugaca uaccaaaaca uuucuacuaa ccucccuccu	3660
ccucuucucg gcaauuccac cgggauugac uuccaagaug aguuggauga guuuuucaaa	3720
aauguuagca ccaguauacc uaauuuuggu ucccuaacac agauuaauac uacauuacuc	3780
gaucuuaccu acgagauguu gucucuucaa caaguuguua aagcccuuaa ugagucuuac	3840
auagaccuua aagagcuugg caauuauacu uauuacaaca aauggccgug guacauuugg	3900
cuugguuuca uugcugggcu uguugccuua gcucuaugcg ucuucuucau acugugcugc	3960
acugguugug gcacaaacug uaugggaaaa cuuaagugua aucguuguug ugauagauac	4020
gaggaauacg accucgagcc gcauaagguu cauguucacu aa	4062
<210> SEQ ID NO 67 <211> LENGTH: 1845 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 67	
augauccacu ccguguuccu ccucauguuc cuguugaccc ccacugaguc agacugcaag	60
cuccegeugg gacagueceu gugugegeug ceugacacue euageacueu gaceecaege	120
uccgugcggu cggugccugg cgaaaugcgg cuggccucca ucgccuucaa ucacccaauc	180
caaguggauc agcugaauag cucguauuuc aagcugucca uccccacgaa cuucucguuc	240
ggggucaccc aggaguacau ccagaccaca auucagaagg ucaccgucga uugcaagcaa	300
uacgugugca acggcuucca gaagugcgag cagcugcuga gagaauacgg gcaguuuugc	360

420

agcaagauca accaggegeu geauggageu aacuugegee aggaegaeue egugegeaae

cucuuugccu	cugugaaguc	aucccagucc	uccccaauca	ucccgggauu	cggaggggac	480
uucaaccuga	cccuccugga	gcccgugucg	aucagcaccg	guagcagauc	ggcgcgcuca	540
gccauugaag	aucuucuguu	cgacaagguc	accaucgccg	auccgggcua	caugcaggga	600
uacgacgacu	guaugcagca	gggaccagcc	uccgcgaggg	accucaucug	cgcgcaauac	660
guggccgggu	acaaagugcu	gccuccucug	auggauguga	acauggaggc	cgcuuauacu	720
ucgucccugc	ucggcucuau	cgccggcgug	ggguggaccg	ccggccuguc	cuccuucgcc	780
gcuauccccu	uugcacaauc	cauuuucuac	cggcucaacg	gcgugggcau	uacucaacaa	840
guccugucgg	agaaccagaa	guugaucgca	aacaaguuca	aucaggcccu	gggggccaug	900
cagacuggau	ucacuacgac	uaacgaagcg	uuccagaagg	uccaggacgc	ugugaacaac	960
aacgcccagg	cgcucucaaa	geuggeeuee	gaacucagca	acaccuucgg	agccaucagc	1020
gcaucgaucg	gugacauaau	ucageggeug	gacgugcugg	agcaggacgc	ccagaucgac	1080
cgccucauca	acggacggcu	gaccaccuug	aaugccuucg	uggcacaaca	gcugguccgg	1140
agcgaaucag	cggcacuuuc	cgcccaacuc	gccaaggaca	aagucaacga	augcgugaag	1200
gcccagucca	agagguccgg	uuucugcggu	caaggaaccc	auauuguguc	cuucgucgug	1260
aacgcgccca	acggucugua	cuuuaugcac	gucggcuacu	acccgagcaa	ucauaucgaa	1320
gugguguccg	ccuacggccu	gugcgaugcc	gcuaacccca	cuaacuguau	ugccccugug	1380
aacggauauu	uuauuaagac	caacaacacc	cgcauugugg	acgaaugguc	auacaccggu	1440
ucguccuucu	acgcgcccga	gcccaucacu	ucacugaaca	ccaaauacgu	ggcuccgcaa	1500
gugaccuacc	agaacaucuc	caccaauuug	cegeegeege	ugcucggaaa	cagcaccgga	1560
auugauuucc	aagaugaacu	ggacgaauuc	uucaagaacg	uguccacuuc	cauucccaac	1620
uucggaagcc	ugacacagau	caacaccacc	cuucucgacc	ugaccuacga	gaugcugagc	1680
cuucaacaag	uggucaaggc	ccugaacgag	agcuacaucg	accugaagga	gcugggcaac	1740
uauaccuacu	acaacaagug	gccggacaag	auugaggaga	uucugucgaa	aaucuaccac	1800
auugaaaacg	agaucgccag	aaucaagaag	cuuaucggcg	aagcc		1845
<210> SEQ ID NO 68 <211> LENGTH: 4071 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide						
<400> SEQUI	ENCE: 68					
auggaaaccc	cugcccagcu	geuguueeug	cugcugcugu	ggcugccuga	uaccaccggc	60
agcuaugugg	acgugggccc	cgauagcgug	aaguccgccu	guaucgaagu	ggacauccag	120
cagaccuuuu	ucgacaagac	cuggcccaga	cccaucgacg	uguccaaggc	cgacggcauc	180
aucuauccac	aaggccggac	cuacagcaac	aucaccauua	ccuaccaggg	ccuguuccca	240
uaucaaggcg	accacggcga	uauguacgug	uacucugccg	gccacgccac	cggcaccaca	300
ccccagaaac	uguucguggc	caacuacagc	caggacguga	agcaguucgc	caacggcuuc	360
gucgugcgga	uuggegeege	ugccaauagc	accggcacag	ugaucaucag	ccccagcacc	420
agcgccacca	uccggaagau	cuaccccgcc	uucaugcugg	gcagcuccgu	gggcaauuuc	480
agcgacggca	agaugggccg	guucuucaac	cacacccugg	ugcugcugcc	cgauggcugu	540

ggcacacugc ugagagccuu cuacugcauc cuggaaccca gaagcggcaa ccacugcccu

gccggcaaua	gcuacaccag	cuucgccacc	uaccacacac	ccgccaccga	uugcuccgac	660	
ggcaacuaca	accggaacgc	cagccugaac	agcuucaaag	aguacuucaa	ccugcggaac	720	
ugcaccuuca	uguacaccua	caauaucacc	gaggacgaga	uccuggaaug	guucggcauc	780	
acccagaccg	cccagggcgu	gcaccuguuc	agcagcagau	acguggaccu	guacggcggc	840	
aacauguucc	aguuugccac	ccugcccgug	uacgacacca	ucaaguacua	cagcaucauc	900	
ccccacagca	uccgguccau	ccagagcgac	agaaaagccu	gggccgccuu	cuacguguac	960	
aagcugcagc	cccugaccuu	ccugcuggac	uucagcgugg	acggcuacau	cagacgggcc	1020	
aucgacugcg	gcuucaacga	ccugagccag	cugcacugcu	ccuacgagag	cuucgacgug	1080	
gaaagcggcg	uguacagcgu	guccagcuuc	gaggccaagc	cuageggeag	cgugguggaa	1140	
caggcugagg	gcguggaaug	cgacuucagc	ccucugcuga	geggeacece	uccccaggug	1200	
uacaacuuca	ageggeuggu	guucaccaac	ugcaauuaca	accugaccaa	gcugcugagc	1260	
cuguucuccg	ugaacgacuu	caccuguagc	cagaucagcc	cugccgccau	ugccagcaac	1320	
ugcuacagca	gccugauccu	ggacuacuuc	agcuaccccc	ugagcaugaa	guccgaucug	1380	
agcguguccu	ccgccggacc	caucagccag	uucaacuaca	agcagagcuu	cagcaacccu	1440	
accugccuga	uucuggccac	cgugccccac	aaucugacca	ccaucaccaa	gccccugaag	1500	
uacagcuaca	ucaacaagug	cagcagacug	cuguccgacg	accggaccga	agugccccag	1560	
cucgugaacg	ccaaccagua	cagccccugc	guguccaucg	ugcccagcac	cgugugggag	1620	
gacggcgacu	acuacagaaa	gcagcugagc	ccccuggaag	gcggcggaug	gcugguggcu	1680	
ucuggaagca	caguggccau	gaccgagcag	cugcagaugg	gcuuuggcau	caccgugcag	1740	
uacggcaccg	acaccaacag	cgugugcccc	aagcuggaau	ucgccaauga	caccaagauc	1800	
gccagccagc	ugggaaacug	cguggaauac	ucccuguaug	gcguguccgg	acggggcgug	1860	
uuccagaauu	gcacagcagu	gggagugcgg	cagcagagau	ucguguacga	ugccuaccag	1920	
aaccucgugg	gcuacuacag	cgacgacggc	aauuacuacu	gccugcgggc	cugugugucc	1980	
gugcccgugu	ccgugaucua	cgacaaagag	acaaagaccc	acgccacacu	guucggcucc	2040	
guggccugcg	agcacaucag	cuccaccaug	agccaguacu	cccgcuccac	ccgguccaug	2100	
cugaagcgga	gagauagcac	cuacggcccc	cugcagacac	cugugggaug	ugugcugggc	2160	
cucgugaaca	gcucccuguu	uguggaagau	ugcaagcugc	cccugggcca	gagccugugu	2220	
gcccugccag	auaccccuag	cacccugacc	ccuagaagcg	ugegeueugu	gcccggcgaa	2280	
augeggeugg	ccucuaucgc	cuucaaucac	cccauccagg	uggaccagcu	gaacuccagc	2340	
uacuucaagc	ugagcauccc	caccaacuuc	agcuucggcg	ugacccagga	guacauccag	2400	
accacaaucc	agaaagugac	cguggacugc	aagcaguacg	ugugcaacgg	cuuucagaag	2460	
ugcgaacagc	ugcugcgcga	guacggccag	uucugcagca	agaucaacca	ggcccugcac	2520	
ggcgccaacc	ugagacagga	ugacagcgug	cggaaccugu	ucgccagcgu	gaaaagcagc	2580	
caguccagcc	ccaucauccc	uggcuucggc	ggcgacuuua	accugacccu	gcuggaaccu	2640	
guguccauca	gcaccggcuc	cagaagcgcc	agauccgcca	ucgaggaccu	gcuguucgac	2700	
aaagugacca	uugccgaccc	cggcuacaug	cagggcuacg	acgauugcau	gcagcagggc	2760	
ccagccagcg	ccagggaucu	gaucugugcc	caguaugugg	ccggcuacaa	ggugcugccc	2820	
	acgugaacau					2880	
	ggacagccgg					2940	
	ugaacggcgu					3000	
	5 55-54	555		5 5-5-5-4	J J g		

-continued

aucgccaaca	aguuuaacca	ggcacugggc	gccaugcaga	ccggcuucac	caccaccaac	3060
gaggccuuca	gaaaggugca	ggacgccgug	aacaacaacg	cccaggcucu	gagcaagcug	3120
gccuccgagc	ugagcaauac	cuucggcgcc	aucagcgccu	ccaucggcga	caucauccag	3180
cggcuggacg	ugcuggaaca	ggacgcccag	aucgaccggc	ugaucaacgg	cagacugacc	3240
acccugaacg	ccuucguggc	acagcagcuc	gugeggageg	aaucugeege	ucugucugcu	3300
cagcuggcca	aggacaaagu	gaacgagugc	gugaaggccc	aguccaagcg	gagcggcuuu	3360
uguggccagg	gcacccacau	cguguccuuc	gucgugaaug	cccccaacgg	ccuguacuuu	3420
augcacgugg	gcuauuaccc	cagcaaccac	aucgaggugg	uguccgccua	uggccugugc	3480
gacgccgcca	auccuaccaa	cuguaucgcc	cccgugaacg	gcuacuucau	caagaccaac	3540
aacacccgga	ucguggacga	gugguccuac	acaggcagca	gcuucuacgc	ccccgagccc	3600
aucaccuccc	ugaacaccaa	auacguggcc	ccccaaguga	cauaccagaa	caucuccacc	3660
aaccugcccc	cuccacugcu	gggaaauucc	accggcaucg	acuuccagga	cgagcuggac	3720
gaguucuuca	agaacguguc	caccuccauc	cccaacuucg	gcagccugac	ccagaucaac	3780
accacucugc	uggaccugac	cuacgagaug	cugucccugc	aacaggucgu	gaaagcccug	3840
aacgagagcu	acaucgaccu	gaaagagcug	gggaacuaca	ccuacuacaa	caaguggccu	3900
ugguacauuu	ggcugggcuu	uaucgccggc	cugguggccc	uggcccugug	cguguucuuc	3960
auccugugcu	gcaccggcug	cggcaccaau	ugcaugggca	agcugaaaug	caaccggugc	4020
ugcgacagau	acgaggaaua	cgaccuggaa	ccucacaaag	ugcaugugca	С	4071
<210> SEQ 1						
<220> FEATU	: RNA NISM: Artifi URE: R INFORMATIO	_		eotide		
<213> ORGAN <220> FEATU <223> OTHER <400> SEQUE	: RNA NISM: Artifi URE: R INFORMATIO	ON: Synthet:	ic Polynucle		auaagagaga	60
<213> ORGAN <220> FEATU <223> OTHER <400> SEQUE ucaagcuuuu	: RNA NISM: Artif; URE: R INFORMATIC ENCE: 69	DN: Synthet:	ic Polynucle	cuauagggaa		60 120
<213> ORGAI <220> FEATU <223> OTHER <400> SEQUI ucaagcuuuu aaagaagagu	: RNA NISM: Artif: JRE: R INFORMATIO ENCE: 69	ON: Synthet: acagaagcua auaagagcca	ic Polynucle auacgacuca ccaugggucu	cuauagggaa caaggugaac	gucucugccg	
<213> ORGAN <220> FEATU <223> OTHEN <400> SEQUN ucaagcuuuu aaagaagagu uauucauggc	: RNA NISM: Artifi URE: R INFORMATIO ENCE: 69 ggacccucgu aagaagaaau	ON: Synthet: acagaagcua auaagagcca acucuccaaa	ic Polynucle auacgacuca ccaugggucu cacccgccgg	cuauagggaa caaggugaac ucaaauucau	gucucugccg	120
<213> ORGAN <220> FEATT <223> OTHER <400> SEQUE ucaagcuuuu aaagaagagu uauucauggc ucucuaagau	: RNA NISM: Artif: URE: R INFORMATIO ENCE: 69 ggacccucgu aagaagaaau aguacuguua	ON: Synthet:  acagaagcua auaagagcca acucuccaaa ggaauaggaa	auacgacuca ccaugggucu cacccgccgg	cuauagggaa caaggugaac ucaaauucau caaaguuaug	gucucugccg uggggcaauc acucguucca	120 180
<213> ORGAN <220> FEATT <223> OTHER <400> SEQUE ucaagcuuuu aaagaagagu uauucauggc ucucuaagau gccaucaauc	RNA NISM: Artifi URE: R INFORMATIO ENCE: 69 ggacccucgu aagaagaaau aguacuguua agggguagua	ON: Synthet:  acagaagcua auaagagcca acucuccaaa ggaauaggaa aaauuaaugc	auacgacuca ccaugggucu cacccgccgg gugcaagcua ccaauauaac	cuauagggaa caaggugaac ucaaauucau caaaguuaug ucuccucaau	gucucugccg uggggcaauc acucguucca aacugcacga	120 180 240
<213> ORGAN <220> FEATT <223> OTHER <400> SEQUE ucaagcuuuu aaagaagagu uauucauggc ucucuaagau gccaucaauc ggguagagau	RNA NISM: Artifi TRE: R INFORMATIO ENCE: 69 ggacccucgu aagaagaaau aguacuguua aguguguua agggguagua auuagucaua	ON: Synthet:  acagaagcua auaagagcca acucuccaaa ggaauaggaa aaauuaaugc aggagacuac	auacgacuca ccaugggucu caccegcegg gugcaagcua ccaauauaac uaagaacagu	cuauagggaa caaggugaac ucaaauucau caaaguuaug ucuccucaau uuuggaacca	gucucugccg uggggcaauc acucguucca aacugcacga auuagggaug	120 180 240 300
<213> ORGAN <220> FEATT <223> OTHER <400> SEQUE ucaagcuuuu aaagaagagu uauucauggc ucucuaagau gccaucaauc ggguagagau cacuuaaugc	RNA NISM: Artifi URE: R INFORMATIO ENCE: 69 ggacccucgu aagaagaaau aguacuguua agugguagua auuagucaua ugcagaauac	ON: Synthet:  acagaagcua auaagagcca acucuccaaa ggaauaggaa aaauuaaugc aggagacuac aacauaaggc	auacgacuca ccaugggucu caccegcegg gugcaagcua ccaauauaac uaagaacagu	cuauagggaa caaggugaac ucaaauucau caaaguuaug ucuccucaau uuuggaacca cguagcuuca	gucucugccg uggggcaauc acucguucca aacugcacga auuagggaug aguaggagac	120 180 240 300 360
<213> ORGAN <220> FEATT <223> OTHER <400> SEQUE ucaageuuuu aaagaagagu uauucaugge ucucuaagau gccaucaauc ggguagagau cacuuaauge acauuaauge acauaauge	RNA NISM: Artifi URE: R INFORMATIO ENCE: 69 ggacccucgu aagaagaaau aguacuguua aguggguagua auuagucaua ugcagaauac	ON: Synthet:  acagaagcua auaagagcca acucuccaaa ggaauaggaa aaauuaaugc aggagacuac aacauaaggc	auacgacuca ccaugggucu caccegeegg gugcaagcua ccaauauaac uaagaacagu egguucagag	cuauagggaa caaggugaac ucaaauucau caaaguuaug ucuccucaau uuuggaacca cguagcuuca agguguugcc	gucucugccg uggggcaauc acucguucca aacugcacga auuagggaug aguaggagac acagcugcuc	120 180 240 300 360 420
<213> ORGAN <220> FEATT <223> OTHER <400> SEQUE ucaagcuuuu aaagaagagu uauucauggc ucucuaagau gccaucaauc ggguagagau cacuuaaugc acauuaaugc acauuaaugc acauuaaugc	RNA NISM: Artif: URE: R INFORMATIO ENCE: 69 ggacccucgu aagaagaaau aguacuguua aguacuguua ugcagaauac ugcagaauac ugcagaauac ugcagaauac	acagaagcua auaagagcca acucuccaaa ggaauaggaa aaauuaaugc aggagacuac aacauaaggc guccuggcag cuucaccggu	auacgacuca ccaugggucu cacccgccgg gugcaagcua ccaauauaac uaagaacagu cgguucagag gugcggcccu ccaugcugaa	cuauagggaa caaggugaac ucaaauucau caaaguuaug ucuccucaau uuuggaacca cguagcuuca agguguugcc cucucaggcc	gucucugccg uggggcaauc acucguucca aacugcacga auuagggaug aguaggagac acagcugcuc aucgacaauc	120 180 240 300 360 420
<213> ORGAN <220> FEATT <223> OTHER <400> SEQUE ucaagcuuuu aaagaagagu uauucauggc ucucuaagau gccaucaauc ggguagagau cacuuaaugc acauuaaugc acaagagauu agauaacagc ugagagagag	RNA NISM: Artifi URE: R INFORMATIO ENCE: 69 ggacccucgu aagaagaaau aguacuguua aguacuguua auguguagua auuagucaua ugcagaauac aaugacccag ugcgggagua cggcauugca	ON: Synthet:  acagaagcua auaagagcca acucuccaaa ggaauaggaa aaauuaaugc aggagacuac aacauaaggc guccuggcag cuucaccggu acuaaucagg	auacgacuca ccaugggucu caccegeegg gugcaagcua ccaauauaac uaagaacagu cgguucagag gugcggcccu ccaugcugaa caauugaggc	cuauagggaa caaggugaac ucaaauucau caaaguuaug ucuccucaau uuuggaacca cguagcuuca agguguugcc cucucaggcc aaucagacaa	gucucugceg uggggcaauc acucguucca aacugcacga auuagggaug aguaggagac acagcugcuc aucgacaauc gcagggcagg	120 180 240 300 360 420 480
<213> ORGAN <220> FEATT <223> OTHER <400> SEQUE ucaagcuuuu aaagaagagu uauucauggc ucucuaagau gccaucaauc ggguagagau cacuuaaugc acauuaaugc ucauuaaugc ucauuaaugc acauuaaugc	ENNA NISM: Artifi URE: R INFORMATIO ENCE: 69 ggacccucgu aagaagaaau aguacuguua aguacuguua auuagucaua ugcagaauac ugcagaauac ugcagaauac cagggagua cggcauugca ccuggaaacu	acagaagcua auaagagcca acucuccaaa ggaauaggaa aaauuaaugc aggagacuac aacauaaggc guccuggcag cuucaccggu acuaaucagg	auacgacuca ccaugggucu caccegcegg gugcaagcua ccaauauaac uaagaacagu egguucagag gugcggeccu ccaugcugaa caauugagge	cuauagggaa caaggugaac ucaaauucau caaaguuaug ucuccucaau uuuggaacca cguagcuuca agguguugcc cucucaggcc aaucagacaa uaaugagcug	gucucugccg uggggcaauc acucguucca aacugcacga auuagggaug aguaggagac acagcugcuc aucgacaauc gcagggcagg	120 180 240 300 360 420 480 540
<213> ORGAN <220> FEATT <223> OTHER <400> SEQUE ucaagcuuuu aaagaagagu uauucauggc ucucuaagau gccaucaauc ggguagagau cacuuaaugc acauuaaugc ucacuuaaugc ugagagagauu agauaacagc ugagagcgag agaugauauu ugaaccagcu	RNA NISM: Artifi URE: R INFORMATIO ENCE: 69 ggacccucgu aagaagaaau aguacuguua aguacuguua agggguagua auuagucaua ugcagaauac aaugacccag ugcgggagua cggcauugca ccuggaaacu ggcuguucag	acagaagcua auaagagcca acucuccaaa ggaauaggaa aaauuaaugc aggagacuac aacauaaggc guccuggcag cuucaccggu acuaaucagg	auacgacuca ccaugggucu caccegeegg gugcaagcua ccaauauaac uaagaacagu egguucagag gugcggeecu ccaugcugaa caauugagge acuacaucaa	cuauagggaa caaggugaac ucaaauucau caaaguuaug ucuccucaau uuuggaacca cguagcuuca agguguugcc cucucaggcc aaucagacaa uaaugagcug	gucucugceg uggggcaauc acucguucca aacugcacga auuagggaug aguaggagac acagcugcuc aucgacaauc gcagggcagg	120 180 240 300 360 420 480 540 600
<213> ORGAN <220> FEATT <223> OTHER <400> SEQUE ucaagcuuuu aaagaagagu uauucauggc ucucuaagau gccaucaauc ggguagagau cacuuaaugc acaagagauu agauaacagc ugagagcgag agaugauauu ugaaccagcu auacagaaau	RNA NISM: Artifi URE: R INFORMATIO ENCE: 69 ggacccucgu aagaagaaau aguacuguua aguacuguua agggguagua auuagucaua ugcagaauac aaugacccag ugcgggagua cggcauugca ccuggaaacu ggcuguucag aucuugugau	acagaagcua auaagagcca acucuccaaa ggaauaggaa aaauuaaugc aggagacuac aacauaaggc guccuggcag cuucaccggu acuaaucagg gguguccaag cuaaucgguc uuuggccca	auacgacuca ccaugggucu caccegeegg gugcaagcua ccaauauaac uaagaacagu egguucagag gugcggeccu ccaugcugaa caauugagge acuacaucaa agaagcuegg	cuauagggaa caaggugaac ucaaauucau caaaguuaug ucuccucaau uuuggaacca cguagcuuca agguguugcc cucucaggcc aaucagacaa uaaugagcug gcucaaauug	gucucugccg uggggcaauc acucguucca aacugcacga auuagggaug aguaggagac acagcugcuc aucgacaauc gcagggcagg	120 180 240 300 360 420 480 540 600 660 720
<213> ORGAN <220> FEATT <223> OTHER <400> SEQUE ucaagcuuuu aaagaagagu uauucauggc ucucuaagau gccaucaauc ggguagagau cacuuaaugc acauuaaugc acagagagauu agauaacagc ugagagcgag agaugauauu ugaaccagcu auacagaaau cuauccaggc	RNA NISM: Artif: URE: R INFORMATIO ENCE: 69 ggacccucgu aagaagaaau aguacuguua aguacuguua auuagucaua ugcagaauac aaugacccag ugcggagua cggcauugca ccuggaaacu ggcuguucag aucuugugau ccugucauua	acagaagcua auaagagcca acucuccaaa ggaauaggaa aaauuaaugc aggagacuac aacauaaggc guccuggcag cuucaccggu acuaaucagg gguguccaag cuaaucgguc uuuggcccca	auacgacuca ccaugggucu caccegcegg gugcaagcua ccaauauaac uaagaacagu egguucagag gugcggeceu ccaugcugaa caauugagge acuacaucaa agaagcucgg gecuacggga gagauaucaa	cuauagggaa caaggugaac ucaaauucau caaaguuaug ucuccucaau uuuggaacca cguagcuuca agguguugcc cucucaggcc aaucagacaa uaaugagcug gcucaaauug ccccauaucu uaagguguua	gucucugccg uggggcaauc acucguucca aacugcacga auuagggaug aguaggagac acagcugcuc aucgacaauc gcagggcagg	120 180 240 300 360 420 480 540 600 720

cucacgucga cacagagucc uacuucauag uccucaguau agccuauccg acgcuguccg

-continued

-continued	
agauuaaggg ggugauuguc caccggcuag agggggucuc guacaacaua ggcucucaag	1020
agugguauac cacugugccc aaguauguug caacccaagg guaccuuauc ucgaauuuug	1080
augagucauc auguacuuuc augccagagg ggacugugug cagccaaaau gccuuguacc	1140
cgaugaguce ucugcuccaa gaaugccuce ggggguccae caaguccugu gcucguacae	1200
ucguauccgg gucuuuuggg aaccgguuca uuuuaucaca agggaaccua auagccaauu	1260
gugcaucaau ucuuuguaag uguuacacaa cagguacgau uauuaaucaa gacccugaca	1320
agauccuaac auacauugcu gccgaucgcu gcccgguagu cgaggugaac ggcgugacca	1380
uccaagucgg gagcaggagg uauccagacg cuguguacuu gcacagaauu gaccucgguc	1440
cucccauauc auuggagagg uuggacguag ggacaaaucu ggggaaugca auugccaaau	1500
uggaggaugc caaggaauug uuggaaucau cggaccagau auugagaagu augaaagguu	1560
uaucgagcac uagcauaguc uacauccuga uugcagugug ucuuggaggg uugauaggga	1620
uccccacuuu aauauguugc ugcagggggc guuguaacaa aaagggagaa caaguuggua	1680
ugucaagacc aggccuaaag ccugaccuua caggaacauc aaaauccuau guaagaucgc	1740
uuugaugaua auaggeugga geeueggugg eeaageuueu ugeeeeuugg geeueeeeee	1800
agececuccu ececuuccug caeceguace eceguggueu uugaauaaag ueugaguggg	1860
cggc	1864
<210> SEQ ID NO 70 <211> LENGTH: 1653 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence	
<pre>&lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Synthetic Polynucleotide</pre>	
<223> OTHER INFORMATION: Synthetic Polynucleotide	60
<223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 70	120
<223> OTHER INFORMATION: Synthetic Polynucleotide  <400> SEQUENCE: 70  augggucuca aggugaacgu cucugccgua uucauggcag uacuguuaac ucuccaaaca cccgccgguc aaauucauug gggcaaucuc ucuaagauag ggguaguagg aauaggaagu gcaagcuaca aaguuaugac ucguuccagc caucaaucau uagucauaaa auuaaugccc	120 180
<223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 70 augggucuca aggugaacgu cucugccgua uucauggcag uacuguuaac ucuccaaaca cccgccgguc aaauucauug gggcaaucuc ucuaagauag ggguaguagg aauaggaagu gcaagcuaca aaguuaugac ucguuccagc caucaaucau uagucauaaa auuaaugccc aauauaacuc uccucaauaa cugcacgagg guagagauug cagaauacag gagacuacua	120 180 240
<223> OTHER INFORMATION: Synthetic Polynucleotide  <400> SEQUENCE: 70  augggucuca aggugaacgu cucugccgua uucauggcag uacuguuaac ucuccaaaca cccgccgguc aaauucauug gggcaaucuc ucuaagauag ggguaguagg aauaggaagu gcaagcuaca aaguuaugac ucguuccagc caucaaucau uagucauaaa auuaaugccc	120 180 240 300
<223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 70 augggucuca aggugaacgu cucugccgua uucauggcag uacuguuaac ucuccaaaca cccgccgguc aaauucauug gggcaaucuc ucuaagauag ggguaguagg aauaggaagu gcaagcuaca aaguuaugac ucguuccagc caucaaucau uagucauaaa auuaaugccc aauauaacuc uccucaauaa cugcacgagg guagagauug cagaauacag gagacuacua	120 180 240 300 360
<223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 70 augggucuca aggugaacgu cucugccgua uucauggcag uacuguuaac ucuccaaaca cccgccgguc aaauucauug gggcaaucuc ucuaagauag ggguaguagg aauaggaagu gcaagcuaca aaguuaugac ucguuccagc caucaaucau uagucauaaa auuaaugccc aauauaacuc uccucaauaa cugcacgagg guagagauug cagaauacag gagacuacua agaacaguuu uggaaccaau uagggaugca cuuaaugcaa ugacccagaa cauaaggccg	120 180 240 300 360 420
<223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 70 augggucuca aggugaacgu cucugccgua uucauggcag uacuguuaac ucuccaaaca cccgccgguc aaauucauug gggcaaucuc ucuaagauag ggguaguagg aauaggaagu gcaagcuaca aaguuaugac ucguuccagc caucaaucau uagucauaaa auuaaugccc aauauaacuc uccucaauaa cugcacgagg guagagauug cagaauacag gagacuacua agaacaguuu uggaaccaau uagggaugca cuuaaugcaa ugacccagaa cauaaggccg guucagagcg uagcuucaag uaggagacac aagagauuug cgggaguagu ccuggcaggu gcggcccuag guguugccac agcugcucag auaacagccg gcauugcacu ucaccggucc augcugaacu cucaggccau cgacaaucug agagcgagcc uggaaacuac uaaucaggca	120 180 240 300 360 420
<223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 70 augggucuca aggugaacgu cucugccgua uucauggcag uacuguuaac ucuccaaaca cccgccgguc aaauucauug gggcaaucuc ucuaagauag ggguaguagg aauaggaagu gcaagcuaca aaguuaugac ucguuccagc caucaaucau uagucauaaa auuaaugccc aauauaacuc uccucaauaa cugcacgagg guagagauug cagaauacag gagacuacua agaacaguuu uggaaccaau uagggaugca cuuaaugcaa ugacccagaa cauaaggccg guucagagcg uagcuucaag uaggagacac aagagauuug cgggaguagu ccuggcaggu gcgggcccuag guguugccac agcugcucag auaacagccg gcauugcacu ucaccggucc	120 180 240 300 360 420 480 540
<223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 70 augggucuca aggugaacgu cucugccgua uucauggcag uacuguuaac ucuccaaaca cccgccgguc aaauucauug gggcaaucuc ucuaagauag ggguaguagg aauaggaagu gcaagcuaca aaguuaugac ucguuccagc caucaaucau uagucauaaa auuaaugccc aauauaacuc uccucaauaa cugcacgagg guagagauug cagaauacag gagacuacua agaacaguuu uggaaccaau uagggaugca cuuaaugcaa ugacccagaa cauaaggccg guucagagcg uagcuucaag uaggagacac aagagauuug cgggaguagu ccuggcaggu gcggcccuag guguugccac agcugcucag auaacagccg gcauugcacu ucaccggucc augcugaacu cucaggccau cgacaaucug agagcgagcc uggaaacuac uaaucaggca	120 180 240 300 360 420 480 540 600
<223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 70 augggucuca aggugaacgu cucugccgua uucauggcag uacuguuaac ucuccaaaca cccgccgguc aaauucauug gggcaaucuc ucuaagauag ggguaguagg aauaggaagu gcaagcuaca aaguuaugac ucguuccagc caucaaucau uagucauaaa auuaaugccc aauauaacuc uccucaauaa cugcacgagg guagagauug cagaauacag gagacuacua agaacaguuu uggaaccaau uagggaugca cuuaaugcaa ugacccagaa cauaaggccg guucagagcg uagcuucaag uaggagacac aagagauuug cgggaguagu ccuggcaggu gcggcccuag guguugccac agcugcucag auaacagccg gcauugcacu ucaccggucc augcugaacu cucaggccau cgacaaucug agagcgagcc uggaaacuac uaaucaggca auugaggcaa ucagacaagc agggcaggag augauauuug cuguucaggg uguccaagac uacaucaaua augagcugau accgucuaug aaccagcuau cuugugaucu aaucggucag aagcucgggc ucaaauugcu uagauacuau acagaaaucc ugucauuauu uggccccagc	120 180 240 300 360 420 480 540 600 660
<223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 70 augggucuca aggugaacgu cucugccgua uucauggcag uacuguuaac ucuccaaaca cccgccgguc aaauucauug gggcaaucuc ucuaagauag ggguaguagg aauaggaagu gcaagcuaca aaguuaugac ucguuccagc caucaaucau uagucauaaa auuaaugccc aauauaaacuc uccucaauaa cugcacgagg guagagauug cagaauacag gagacuacua agaacaguuu uggaaccaau uagggaugca cuuaaugcaa ugacccagaa cauaaggccg guucagagcg uagcuucaag uaggagacac aagagauuug cgggaguagu ccuggcaggu gcggcccuag guguugccac agcugcucag auaacagccg gcauugcacu ucaccggucc augcugaacu cucaggccau cgacaaucug agagcgagcc uggaaacuac uaaucaggca auugaggcaa ucagacaagc agggcaggag augauauugg cuguucaggg uguccaagac uacaucaaua augagcugau accgucuaug aaccagcuau cuugugaucu aaucggucag	120 180 240 300 360 420 480 540 600
<223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 70 augggucuca aggugaacgu cucugccgua uucauggcag uacuguuaac ucuccaaaca cccgccgguc aaauucauug gggcaaucuc ucuaagauag ggguaguagg aauaggaagu gcaagcuaca aaguuaugac ucguuccagc caucaaucau uagucauaaa auuaaugccc aauauaacuc uccucaauaa cugcacgagg guagagauug cagaauacag gagacuacua agaacaguuu uggaaccaau uagggaugca cuuaaugcaa ugacccagaa cauaaggccg guucagagcg uagcuucaag uaggagacac aagagauuug cgggaguagu ccuggcaggu gcggcccuag guguugccac agcugcucag auaacagccg gcauugcacu ucaccggucc augcugaacu cucaggccau cgacaaucug agagcgagcc uggaaacuac uaaucaggca auugaggcaa ucagacaagc agggcaggag augauauuug cuguucaggg uguccaagac uacaucaaua augagcugau accgucuaug aaccagcuau cuugugaucu aaucggucag aagcucgggc ucaaauugcu uagauacuau acagaaaucc ugucauuauu uggccccagc	120 180 240 300 360 420 480 540 600 660
<223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 70 augggucuca aggugaacgu cucugccgua uucauggcag uacuguuaac ucuccaaaca cccgccgguc aaauucauug gggcaaucuc ucuaagauag ggguaguagg aauaggaagu gcaagcuaca aaguuaugac ucguuccagc caucaaucau uagucauaaa auuaaugccc aauauaaacuc uccucaauaa cugcacgagg guagagauug cagaauacag gagacuacua agaacaguuu uggaaccaau uagggaugca cuuaaugcaa ugacccagaa cauaaggccg guucagagcg uagcuucaag uaggagacac aagagauuug cgggaguagu ccuggcaggu gcggcccuag guguugccac agcugcucag auaacagccg gcauugcacu ucaccggucc augcugaacu cucaggccau cgacaaucug agagcgagcc uggaaacuac uaaucaggca auugaggcaa ucagacaagc agggcaggag augauauugg cuguucaggg uguccaagac uacaucaaua augagcugau accgucuaug aaccagcuau cuugugaucu aaucggucag aagcucgggc ucaaauugcu uagauacuau acagaaaucc ugucauuauu uggccccagc cuacgggacc ccauaucugc ggagauaucu auccaggcuu ugaguuaugc acuuggagga	120 180 240 300 360 420 480 540 600 660
<223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 70 augggucuca aggugaacgu cucugccgua uucauggcag uacuguuaac ucuccaaaca cccgccgguc aaauucauug gggcaaucuc ucuaagauag ggguaguagg aauaggaagu gcaagcuaca aaguuaugac ucguuccagc caucaaucau uagucauaaa auuaaugccc aauauaacuc uccucaauaa cugcacgagg guagagauug cagaauacag gagacuacua agaacaguuu uggaaccaau uagggaugca cuuaaugcaa ugacccagaa cauaaggccg guucagagcg uagcuucaag uaggagacac aagagauuug cgggaguagu ccuggcaggu gcggcccuag guguugccac agcugcucag auaacagccg gcauugcacu ucaccggucc augcugaacu cucaggccau cgacaaucug agagcgagcc uggaaacuac uaaucaggca auugaggcaa ucagacaagc agggcaggag augauauugg cuguucaggg uguccaagac uacaucaaua augagcugau accgucuaug aaccagcuau cuugugaucu aaucggucag aagcucgggc ucaaauugcu uagauacuau accagcuau cuugugaucu aaucggucag cuacgggacc ccauaucugc ggagauaucu auccaggcuu ugaguuaugc acuuggagga gauaucaaua agguguuaga aaagcucgga uacaguggag gcgauuuacu aggcaucuua	120 180 240 300 360 420 480 540 600 660 720
<223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 70 augggucuca aggugaacgu cucugccgua uucauggcag uacuguuaac ucuccaaaca cccgccgguc aaauucauug gggcaaucuc ucuaagauag ggguaguagg aauaggaagu gcaagcuaca aaguuaugac ucguuccagc caucaaucau uagucauaaa auuaaugccc aauaauaacuc uccucaauaa cugcacgagg guaggaguug cagaauacag gagacuacua agaacaguuu uggaaccaau uagggaugca cuuaaugcaa ugacccagaa cauaaggccg guucagagcg uagcuucaag uaggagacac aagagauuug cgggaguagu ccuggcaggu gcgggcccuag guguugccac agcugcucag auaacagccg gcauugcacu ucaccggucc augcugaacu cucaggccau cgacaaucug agagcgagcc uggaaacuac uaaucaggca auugaggcaa ucagacaagc agggcaggag augauauugg cuguucaggg uguccaagac uacaucaaua augagcugau accgucuaug aaccagcuau cuugugaucu aaucggucag aagcucgggc ucaaauugcu uagauacuau acagacaaucc ugucauuauu uggccccagc cuacgggacc ccauaucugc ggagauaucu auccaggcuu ugaguuauca acuuggagga gauaucaaua agguguuaga aaagcucgga uacaguggag gcgauuuacu aggcaucuua gagagacagag gaauacaaua agguguuaga aaagcucgga uacaguggag gcgauuuacu auccaugucgagagagagagagagagagagagagagagag	120 180 240 300 360 420 480 540 600 660 720 780
<223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 70 augggucuca aggugaacgu cucugccgua uucauggcag uacuguuaac ucuccaaaca cccgccgguc aaauucauug gggcaaucuc ucuaagauag ggguaguagg aauaggaagu gcaagcuaca aaguuaugac ucguuccagc caucaaucau uagucauaaa auuaaugccc aauaaacau uccucaauaa cugcacgagg guagagauug cagaauacag gagacuacua agaacaguuu uggaaccaau uagggaugca cuuaaugcaa ugacccagaa cauaaggccg guucagagcg uagcuucaag uaggagacac aagagauuug cgggaguagu ccuggcaggu gcggcccuag guguugccac agcugcucag auaacagccg gcauugcacu ucaccggucc augcugaacu cucaggccau cgacaaucug agagcgagcc uggaaacuac uaaucaggca auugaggcaa ucagacaagc agggcaggag augauauugg cuguucaggg uguccaagac uacaucaaua augagcugau accgucuaug aaccagcuau cuugugaucu aaucggucag aagcucgggc ucaaauucgc ggagauaucu accaggcuu ugaguuaug acuuggagga gauaucaaua agguguuaga aaagcucgga uacaagggag gcgauuuacu aggcaccagc cuacgggacc ccauaucugc ggagauaucu auccaggcuu ugaguuaucu aggcaccagc gauaucaaua agguguuaga aaagcucgga uacagugag gcgauuuacu auccauggaga gaaaacaag cuucuua gagagagagag gaauaaaaggc ucggauaacu cacgucgaca cagaguccua cuucauaguc cucaguauag ccuauccgac gcuguccgag auuaaggggg ugauugucca ccggcuagag cucaguauaga ccuauccgac gcuguccgag auuaaggggg ugauugucca ccggcuagag	120 180 240 300 360 420 480 540 600 660 720 780 840

1080

1140

acugugugca gccaaaaugc cuuguacccg augaguccuc ugcuccaaga augccuccgg

ggguccacca aguccugugc ucguacacuc guauccgggu cuuuugggaa ccgguucauu

-continued

uuaucacaag	ggaaccuaau	agccaauugu	gcaucaauuc	uuuguaagug	uuacacaaca	1200
gguacgauua	uuaaucaaga	cccugacaag	auccuaacau	acauugcugc	cgaucgcugc	1260
ccgguagucg	aggugaacgg	cgugaccauc	caagucggga	gcaggaggua	uccagacgcu	1320
guguacuugc	acagaauuga	ccucgguccu	cccauaucau	uggagagguu	ggacguaggg	1380
acaaaucugg	ggaaugcaau	ugccaaauug	gaggaugcca	aggaauuguu	ggaaucaucg	1440
gaccagauau	ugagaaguau	gaaagguuua	ucgagcacua	gcauagucua	cauccugauu	1500
gcaguguguc	uuggaggguu	gauagggauc	cccacuuuaa	uauguugcug	cagggggcgu	1560
uguaacaaaa	agggagaaca	aguugguaug	ucaagaccag	gccuaaagcc	ugaccuuaca	1620
ggaacaucaa	aauccuaugu	aagaucgcuu	uga			1653
<220> FEAT	TH: 1925 : RNA NISM: Artif: JRE: R INFORMATIO	_		eotide		
_	gagagaaaag	22020112202	202221121122	a2aaaaaaa	aaananassa	60
	cugccguauu					120
	gcaaucucuc					180
	guuccagcca					240
	gcacgagggu					300
	gggaugcacu					360
	ggagacacaa					420
	cugcucagau					480
	acaaucugag					540
	ggcaggagau					600
	cgucuaugaa					660
	gauacuauac					720
	agauaucuau					780
	agcucggaua					840
	ggauaacuca					900
	uguccgagau					960
	cucaagagug					1020
	auuuugauga					1080
	uguacccgau					1140
	guacacucgu					1200
	ccaauugugc					1260
	cugacaagau					1320
_						1320
	ugaccaucca					
agaauugacc	ucgguccucc	cauaucauug	gagagguugg	acguagggac	aaaucugggg	1440
	0000011110000	aganagassa	@ 2 2 1 1 1 1 2 1 1 1 2 2 2	221142114444	aaaaa11211112	1500

aaugcaauug ccaaauugga ggaugccaag gaauuguugg aaucaucgga ccagauauug 1500

-continued

-continued					
agaaguauga aagguuuauc gagcacuagc auagucuaca uccugauugc agugugucuu	1560				
ggaggguuga uagggauccc cacuuuaaua uguugcugca gggggcguug uaacaaaaag	1620				
ggagaacaag uugguauguc aagaccaggc cuaaagccug accuuacagg aacaucaaaa	1680				
uccuauguaa gaucgcuuug augauaauag gcuggagccu cgguggccaa gcuucuugcc	1740				
ccuugggccu cccccagcc ccuccuccc uuccugcacc cguacccccg uggucuuuga	1800				
auaaagucug agugggcggc aaaaaaaaaa aaaaaaaaa aaaaaaaaa aaaaaaa	1860				
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaa	1920				
ucuag	1925				
<210> SEQ ID NO 72 <211> LENGTH: 1864 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide					
<400> SEQUENCE: 72					
ucaagcuuuu ggacccucgu acagaagcua auacgacuca cuauagggaa auaagagaga	60				
aaagaagagu aagaagaaau auaagagcca ccaugggucu caaggugaac gucucuguca	120				
uauucaugge aguacuguua acucuucaaa cacccaccgg ucaaauccau uggggcaauc	180				
ucucuaagau agggguggua gggguaggaa gugcaagcua caaaguuaug acucguucca	240				
gccaucaauc auuagucaua aaguuaaugc ccaauauaac ucuccucaac aauugcacga	300				
ggguagggau ugcagaauac aggagacuac ugagaacagu ucuggaacca auuagagaug	360				
cacuuaaugc aaugacccag aauauaagac cgguucagag uguagcuuca aguaggagac	420				
acaagagauu ugcgggaguu guccuggcag gugcggcccu aggcguugcc acagcugcuc	480				
aaauaacage egguauugea euucaeeagu eeaugeugaa eucucaagee auegaeaaue	540				
ugagagcgag ccuagaaacu acuaaucagg caauugaggc aaucagacaa gcagggcagg	600				
agaugauauu ggcuguucag gguguccaag acuacaucaa uaaugagcug auaccgucua	660				
ugaaucaacu aucuugugau uuaaucggcc agaagcuagg gcucaaauug cucagauacu	720				
auacagaaau ccugucauua uuuggcccca gcuuacggga ccccauaucu gcggagauau	780				
cuauccaggc uuugagcuau gcgcuuggag gagauaucaa uaagguguug gaaaagcucg	840				
gauacagugg aggugaucua cugggcaucu uagagagcag aggaauaaag gcccggauaa	900				
cucacgucga cacagagucc uacuucauug uacucaguau agccuauccg acgcuauccg	960				
agauuaaggg ggugauuguc caccggcuag agggggucuc guacaacaua ggcucucaag	1020				
agugguauac cacugugccc aaguauguug caacccaagg guaccuuauc ucgaauuuug	1080				
augagucauc augcacuuuc augccagagg ggacugugug cagccagaau gccuuguacc	1140				
cgaugagucc ucugcuccaa gaaugccucc ggggguccac uaaguccugu gcucguacac	1200				
ucguauccgg gucuuucggg aaccgguuca uuuuaucaca ggggaaccua auagccaauu	1260				
gugcaucaau ccuuugcaag uguuacacaa caggaacaau cauuaaucaa gacccugaca	1320				
agauccuaac auacauugcu gccgaucacu gcccgguggu cgaggugaau ggcgugacca	1380				
uccaagucgg gagcaggagg uauccggacg cuguguacuu gcacaggauu gaccucgguc	1440				
cucccauauc uuuggagagg uuggacguag ggacaaaucu ggggaaugca auugcuaagu	1500				
uggaggaugc caaggaauug uuggagucau cggaccagau auugaggagu augaaagguu	1560				

uaucgagcac uaguauaguu uacauccuga uugcagugug ucuuggagga uugauaggga 1620

1653

-continued

uccccgcuuu aauauguugc ugcaggggc guuguaacaa gaagggagaa caaguuggua 1680 ugucaagacc aggccuaaag ccugaucuua caggaacauc aaaauccuau guaaggucac 1740 ucugaugaua auaggcugga gccucggugg ccaagcuucu ugccccuugg gccuccccc 1800 agececuccu ecceuuccug caeceguace eceguggueu uugaauaaag ueugaguggg 1860 cggc 1864 <210> SEQ ID NO 73 <211> LENGTH: 1653 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 73 60 auqqqucuca aqquqaacqu cucuqucaua uucauqqcaq uacuquuaac ucuucaaaca 120 cccaccgguc aaauccauug gggcaaucuc ucuaaqauag gggugguagg gguaggaagu 180 qcaaqcuaca aaquuauqac ucquuccaqc caucaaucau uaqucauaaa quuaauqccc aauauaacuc uccucaacaa uuqcacqaqq quaqqqauuq caqaauacaq qaqacuacuq 240 aqaacaquuc uqqaaccaau uaqaqauqca cuuaauqcaa uqacccaqaa uauaaqaccq 300 quucaqaquq uaqcuucaaq uaqqaqacac aaqaqauuuq cqqqaquuqu ccuqqcaqqu 360 420 qeqqeecuaq qequuqeeac aqeuqeueaa auaacaqeeq quauuqeacu ucaecaquee augcugaacu cucaagccau cgacaaucug agagcgagcc uagaaacuac uaaucaggca 480 auugaggcaa ucagacaagc agggcaggag augauauugg cuguucaggg uguccaagac 540 uacaucaaua augagcugau accgucuaug aaucaacuau cuugugauuu aaucggccag 600 aagcuagggc ucaaauugcu cagauacuau acagaaaucc ugucauuauu uggccccagc 660 uuacgggacc ccauaucugc ggagauaucu auccaggcuu ugagcuaugc gcuuggagga 720 gauaucaaua agguguugga aaagcucgga uacaguggag gugaucuacu gggcaucuua 780 gagagcagag gaauaaaggc ccggauaacu cacgucgaca cagaguccua cuucauugua 840 cucaguauag ccuauccgac gcuauccgag auuaaggggg ugauugucca ccggcuagag 900 960 ggggucucgu acaacauagg cucucaagag ugguauacca cugugcccaa guauguugca acccaagggu accuuaucuc gaauuuugau gagucaucau gcacuuucau gccagagggg 1020 acugugugca gccagaaugc cuuguacceg augaguccuc ugcuccaaga augccuccgg 1080 ggguccacua aguccugugc ucguacacuc guauccgggu cuuucgggaa ccgguucauu 1140 uuaucacagg ggaaccuaau agccaauugu gcaucaaucc uuugcaagug uuacacaaca 1200 1260 qqaacaauca uuaaucaaqa cccuqacaaq auccuaacau acauuqcuqc cqaucacuqc ccgguggucg aggugaaugg cgugaccauc caagucggga gcaggaggua uccggacgcu 1320 guguacuuge acaggauuga ccucgguccu cccauaucuu uggagagguu ggacguaggg 1380 acaaaucugg ggaaugcaau ugcuaaguug gaggaugcca aggaauuguu ggagucaucg 1440 1500 gaccagauau ugaggaguau gaaagguuua ucgagcacua guauaguuua cauccugauu gcaguguguc uuggaggauu gauagggauc cccgcuuuaa uauguugcug caggggggu 1560 uguaacaaga agggagaaca aguugguaug ucaagaccag gccuaaagcc ugaucuuaca 1620

ggaacaucaa aauccuaugu aaggucacuc uga

-continued

<211> LENGTH: 1925 <212> TYPE: RNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Polynucleotide

<400> SEQUENCE: 74

60 ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaccau gggucucaag gugaacgucu cugucauauu cauggcagua cuguuaacuc uucaaacacc caccggucaa 120 auccauuggg gcaaucucuc uaagauaggg gugguagggg uaggaagugc aagcuacaaa guuaugacuc guuccagcca ucaaucauua gucauaaagu uaaugcccaa uauaacucuc 240 cucaacaauu gcacgagggu agggauugca gaauacagga gacuacugag aacaguucug gaaccaauua gagaugcacu uaaugcaaug acccagaaua uaagaccggu ucagagugua gcuucaaqua qqaqacacaa qaqauuuqcq qqaquuqucc uqqcaqquqc qqcccuaqqc 420 quuqccacaq cuqcucaaau aacaqccqqu auuqcacuuc accaquccau qcuqaacucu 480 caagccaucg acaaucugag agcgagccua gaaacuacua aucaggcaau ugaggcaauc 540 600 agacaagcag ggcaggaqau gauauuggcu guucagggug uccaagacua caucaauaau 660 qaqcuqauac cqucuauqaa ucaacuaucu uquqauuuaa ucqqccaqaa qcuaqqqcuc aaauugcuca gauacuauac agaaauccug ucauuauuug gccccagcuu acgggacccc 720 auaucugcgg agauaucuau ccaggcuuug agcuaugcgc uuggaggaga uaucaauaag 780 guguuggaaa agcucggaua caguggaggu gaucuacugg gcaucuuaga gagcagagga 840 900 auaaaqqccc qqauaacuca cqucqacaca qaquccuacu ucauuquacu caquauaqcc uauccgacgc uauccgagau uaagggggug auuguccacc ggcuagaggg ggucucguac 960 aacauaggcu cucaagagug guauaccacu gugcccaagu auguugcaac ccaaggguac 1020 cuuaucucga auuuugauga gucaucaugc acuuucaugc cagaggggac ugugugcagc 1080 cagaaugecu uguaccegau gaguccucug cuccaagaau gecucegggg guccacuaag 1140 uccugugcuc guacacucgu auccgggucu uucgggaacc gguucauuuu aucacagggg 1200 aaccuaauag ccaauugugc aucaauccuu ugcaaguguu acacaacagg aacaaucauu 1260 1320 aaucaagace cugacaagau ccuaacauac auugcugceg aucacugeee ggugguegag 1380 gugaauggcg ugaccaucca agucgggagc aggagguauc cggacgcugu guacuugcac aggauugacc ucgguccucc cauaucuuug gagagguugg acguagggac aaaucugggg 1440 aaugcaauug cuaaguugga ggaugccaag gaauuguugg agucaucgga ccagauauug 1500 aggaguauga aagguuuauc gagcacuagu auaguuuaca uccugauugc agugugucuu 1560 ggaggauuga uagggauccc cgcuuuaaua uguugcugca gggggcguug uaacaagaag 1620 qqaqaacaaq uuqquauquc aaqaccaqqc cuaaaqccuq aucuuacaqq aacaucaaaa 1680 1740 uccuauquaa qqucacucuq auqauaauaq qcuqqaqccu cqquqqccaa qcuucuuqcc ccuugggccu cccccagcc ccuccuccc uuccugcacc cguacccccg uggucuuuga 1800 1920 ucuag 1925

<210> SEQ ID NO 75

<211> LENGTH: 2065

<212> TYPE: RNA

<213 > ORGANISM: Artificial Sequence

-continued

<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Polynucleotide

<400> SEQUENCE: 75

						~
60	auaagagaga	cuauagggaa	auacgacuca	acagaagcua	ggacccucgu	ucaagcuuuu
120	cggauaaaug	gcaacgagac	ccaugucacc	auaagagcca	aagaagaaau	aaagaagagu
180	agagaacauc	aguuauuaac	gaaguaggau	uaucccaagg	agauaacccu	ccuucuacaa
240	cugagcuuga	cgucauguuu	cuguucuguu	guucugcugg	cagacccuau	uuaugauuga
300	accgcggaga	agccaucuac	uucaucgggc	ggcauuagac	ggcaauugca	ucggauugcu
360	caggucaagg	caucgagcau	ugacuaacuc	aaucuggaug	ccucaguacc	uccauaaaag
420	acaccucaga	gggccugaga	gggaugaagu	aaaaucaucg	accacucuuu	acgugcugac
480	ccggauaggg	auuccuuaau	acaagauuaa	uucaucucgg	ccuagugaaa	gauucacuga
540	aaacuagauu	agagaggauc	ucaacccgcc	acuuggugca	cagagaucuc	aguacgacuu
600	gugaacucaa	gaaugcauug	aagagcucau	guggcugcug	cugugcagau	augaucaaua
660	aacugcucag	cucaaaggga	uccuagcugu	accacucagu	gaccagaaca	cucuacugga
720	gacuuguacu	guccuuguug	acaugucgcu	caauucucaa	aaucagaggu	ggcccacuac
780	auguaugggg	aucccaggga	ucacuaugac	ucaucuauag	uuacaaugug	uaggucgagg
840	ucacaacuga	gucagaguug	acagcaaagg	ccuaaucuga	aguugaaaag	gaaccuaccu
900	gcuccggugu	ggguuugggg	ucagaaaccc	guagguguga	aguguuugaa	gcauguaccg
960	uguauggugg	ucucggcaac	ucaguaaugg	gagcaaccag	aaacuauuuu	uccauaugac
1020	auaauucccu	cgauucuauc	gucacgggga	gcagcccuuu	gcucaaacuc	cuuuggggga
1080	uggaaauccc	gcuggguguc	agcucgucaa	gucagcuucc	agggaaaggu	aucagggauc
1140	gacaggcuuu	uccaguggua	caacggauga	guccccuuau	gcaauccugg	caaccgacau
1200	gucccgacaa	aaaaugggcu	acaaucaagc	gucaucgcug	ucacagaggu	accucucauc
1260	aaagguaaaa	gcaggcgugu	caugcuucca	cgaauggaga	ugacaaguug	cacgaacaga
1320	auuccuucau	ggauaacagg	uaccauugaa	cccgaguggg	cugcgagaau	uccaagcacu
1380	auugcuucgg	uaaaaucaaa	cgguugagcu	cugagucuga	gucuguugau	acgggguccu
1440	aacugcaaca	auacaaaucc	ggauggaccu	cacggcucag	auugaucaca	gauucgggcc
1500	aucaacacau	cuuaggcgua	gaaaucuagc	ccgccaauga	gcugacuauu	auguguauug
1560	auuaaggaag	cacuguccca	ccaaccucuu	aagguuaguc	accgagauuc	uggaguggau
1620	gaugucaaac	gguggacggu	uaccugcgga	ccaacauacc	cugccaugcc	caggcgaaga
1680	gcaaccuacg	auauguuuug	aagaucucca	cuaccugguc	ccuggugauu	ucaguuccaa
1740	cgcucauuuu	cagcccaagc	auuacguuua	gcugugguuu	gguugagcau	auaccuccag
1800	caaguggaau	aaucgaacua	aggggguccc	uugccuauaa	uccuuuuagg	cuuacuuuua
1860	gacucagaau	ugugcuugcg	gucacuucug	cucuggugcc	ggaucaaaaa	gcuucacaug
1920	acagcuaccc	agucagcugc	ugggcauggg	ucugggaugg	uaucacucac	ccgguggacu
1980	gccaagcuuc	agccucggug	aauaggcugg	agauaaugau	aaccaaucgc	gggaagaugg
2040	cccgugguc	gcacccguac	uccccuuccu	cagececuee	ggccuccccc	uugccccuug
2065				gegge	gucugagugg	uuugaauaaa

<210> SEQ ID NO 76 <211> LENGTH: 1854 <212> TYPE: RNA

-continued

<213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 76 augucaccgc aacgagaccg gauaaaugcc uucuacaaag auaacccuua ucccaaggga 60 aguaggauag uuauuaacag agaacaucuu augauugaca gacccuaugu ucugcuggcu 120 guucuguucg ucauguuucu gagcuugauc ggauugcugg caauugcagg cauuagacuu 180 caucgggcag ccaucuacac cgcggagauc cauaaaagcc ucaguaccaa ucuggaugug 240 acuaacucca ucgagcauca ggucaaggac gugcugacac cacucuuuaa aaucaucggg 300 gaugaagugg gccugagaac accucagaga uucacugacc uagugaaauu caucucggac aagauuaaau uccuuaaucc ggauagggag uacgacuuca gagaucucac uuggugcauc aacccgccag agaggaucaa acuagauuau gaucaauacu gugcagaugu ggcugcugaa 480 540 gaqcucauga augcauuggu gaacucaacu cuacuggaga ccagaacaac cacucaguuc cuagcugucu caaagggaaa cugcucaggg cccacuacaa ucagagguca auucucaaac 600 660 augucgcugu ccuuguugga cuuguacuua ggucgagguu acaauguguc aucuauaguc 720 acuaugacau cccagggaau guauggggga accuaccuag uugaaaagcc uaaucugaac agcaaagggu cagaguuguc acaacugagc auguaccgag uguuugaagu aggugugauc 780 agaaacccgg guuugggggc uccgguguuc cauaugacaa acuauuuuga gcaaccaguc 840 900 aguaaugguc ucggcaacug uaugguggcu uugggggagc ucaaacucgc agcccuuugu 960 cacggggacg auucuaucau aauucccuau cagggaucag ggaaaggugu cagcuuccag cucgucaage ugggugucug gaaaucccca accgacauge aauccugggu ccccuuauca 1020 acggaugauc cagugguaga caggcuuuac cucucaucuc acagaggugu caucgcugac 1080 aaucaagcaa aaugggcugu cccgacaaca cgaacagaug acaaguugcg aauggagaca 1140 ugcuuccagc aggcguguaa agguaaaauc caagcacucu gcgagaaucc cgagugggua 1200 ccauugaagg auaacaggau uccuucauac gggguccugu cuguugaucu gagucugacg 1260 guugagcuua aaaucaaaau ugcuucggga uucgggccau ugaucacaca cggcucaggg 1320 auggaccuau acaaauccaa cugcaacaau guguauuggc ugacuauucc gccaaugaga 1380 aaucuagccu uaggcguaau caacacauug gaguggauac cgagauucaa gguuaguccc 1440 aaccucuuca cugucccaau uaaggaagca ggcgaagacu gccaugcccc aacauaccua 1500 ccugcggagg uggacgguga ugucaaacuc aguuccaacc uggugauucu accuggucaa 1560 gaucuccaau auguuuuggc aaccuacgau accuccaggg uugagcaugc ugugguuuau uacguuuaca gcccaagccg cucauuuucu uacuuuuauc cuuuuagguu gccuauaaag 1680 gggqucccaa ucgaacuaca agugqaaugc uucacauggg aucaaaaacu cuggugccgu 1740 cacuucuquq uqcuuqcqqa cucaqaaucc qquqqacuua ucacucacuc uqqqauqquq 1800 ggcaugggag ucagcugcac agcuacccgg gaagauggaa ccaaucgcag auaa 1854 <210> SEQ ID NO 77 <211> LENGTH: 2126 <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide

<400> SEQUENCE: 77

60

<212> TYPE: RNA

cgagaccgga	uaaaugccuu	cuacaaagau	aacccuuauc	ccaagggaag	uaggauaguu	120
auuaacagag	aacaucuuau	gauugacaga	cccuauguuc	ugcuggcugu	ucuguucguc	180
auguuucuga	gcuugaucgg	auugcuggca	auugcaggca	uuagacuuca	ucgggcagcc	240
aucuacaccg	cggagaucca	uaaaagccuc	aguaccaauc	uggaugugac	uaacuccauc	300
gagcaucagg	ucaaggacgu	gcugacacca	cucuuuaaaa	ucaucgggga	ugaagugggc	360
cugagaacac	cucagagauu	cacugaccua	gugaaauuca	ucucggacaa	gauuaaauuc	420
cuuaauccgg	auagggagua	cgacuucaga	gaucucacuu	ggugcaucaa	cccgccagag	480
aggaucaaac	uagauuauga	ucaauacugu	gcagaugugg	cugcugaaga	gcucaugaau	540
gcauugguga	acucaacucu	acuggagacc	agaacaacca	cucaguuccu	agcugucuca	600
aagggaaacu	gcucagggcc	cacuacaauc	agaggucaau	ucucaaacau	guegeuguee	660
uuguuggacu	uguacuuagg	ucgagguuac	aaugugucau	cuauagucac	uaugacaucc	720
cagggaaugu	augggggaac	cuaccuaguu	gaaaagccua	aucugaacag	caaaggguca	780
gaguugucac	aacugagcau	guaccgagug	uuugaaguag	gugugaucag	aaacccgggu	840
uugggggcuc	cgguguucca	uaugacaaac	uauuuugagc	aaccagucag	uaauggucuc	900
ggcaacugua	ugguggcuuu	gggggagcuc	aaacucgcag	cccuuuguca	cggggacgau	960
ucuaucauaa	uucccuauca	gggaucaggg	aaagguguca	gcuuccagcu	cgucaagcug	1020
ggugucugga	aauccccaac	cgacaugcaa	uccugggucc	ccuuaucaac	ggaugaucca	1080
gugguagaca	ggcuuuaccu	cucaucucac	agagguguca	ucgcugacaa	ucaagcaaaa	1140
ugggcugucc	cgacaacacg	aacagaugac	aaguugcgaa	uggagacaug	cuuccagcag	1200
gcguguaaag	guaaaaucca	agcacucugc	gagaaucccg	aguggguacc	auugaaggau	1260
aacaggauuc	cuucauacgg	gguccugucu	guugaucuga	gucugacggu	ugagcuuaaa	1320
aucaaaauug	cuucgggauu	cgggccauug	aucacacacg	gcucagggau	ggaccuauac	1380
aaauccaacu	gcaacaaugu	guauuggcug	acuauuccgc	caaugagaaa	ucuagccuua	1440
ggcguaauca	acacauugga	guggauaccg	agauucaagg	uuagucccaa	ccucuucacu	1500
gucccaauua	aggaagcagg	cgaagacugc	caugececaa	cauaccuacc	ugcggaggug	1560
gacggugaug	ucaaacucag	uuccaaccug	gugauucuac	cuggucaaga	ucuccaauau	1620
guuuuggcaa	ccuacgauac	cuccaggguu	gagcaugcug	ugguuuauua	cguuuacagc	1680
ccaagccgcu	cauuuucuua	cuuuuauccu	uuuagguugc	cuauaaaggg	ggucccaauc	1740
gaacuacaag	uggaaugcuu	cacaugggau	caaaaacucu	ggugccguca	cuucugugug	1800
cuugeggaeu	cagaauccgg	uggacuuauc	acucacucug	ggaugguggg	caugggaguc	1860
agcugcacag	cuacccggga	agauggaacc	aaucgcagau	aaugauaaua	ggcuggagcc	1920
ucgguggcca	agcuucuugc	cccuugggcc	uccccccagc	cccuccuccc	cuuccugcac	1980
ccguaccccc	guggucuuug	aauaaagucu	gagugggcgg	caaaaaaaaa	aaaaaaaaa	2040
aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	2100
aaaaaaaaa	aaaaaaaaa	aucuag				2126

<210> SEQ ID NO 78 <211> LENGTH: 2065

<212> TYPE: RNA <213> ORGANISM: Artificial Sequence

<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Polynucleotide

<400> SEQU	ENCE: 78					
ucaagcuuuu	ggacccucgu	acagaagcua	auacgacuca	cuauagggaa	auaagagaga	60
aaagaagagu	aagaagaaau	auaagagcca	ccaugucacc	acaacgagac	cggauaaaug	120
ccuucuacaa	agacaacccc	cauccuaagg	gaaguaggau	aguuauuaac	agagaacauc	180
uuaugauuga	uagaccuuau	guuuugcugg	cuguucuauu	cgucauguuu	cugagcuuga	240
ucggguugcu	agccauugca	ggcauuagac	uucaucgggc	agccaucuac	accgcagaga	300
uccauaaaag	ccucagcacc	aaucuggaug	uaacuaacuc	aaucgagcau	cagguuaagg	360
acgugcugac	accacucuuc	aagaucaucg	gugaugaagu	gggcuugagg	acaccucaga	420
gauucacuga	ccuagugaag	uucaucucug	acaagauuaa	auuccuuaau	ccggacaggg	480
aauacgacuu	cagagaucuc	acuuggugua	ucaacccgcc	agagagaauc	aaauuggauu	540
augaucaaua	cugugcagau	guggcugcug	aagaacucau	gaaugcauug	gugaacucaa	600
cucuacugga	gaccagggca	accaaucagu	uccuagcugu	cucaaaggga	aacugcucag	660
ggcccacuac	aaucagaggc	caauucucaa	acaugucgcu	gucccuguug	gacuuguauu	720
uaagucgagg	uuacaaugug	ucaucuauag	ucacuaugac	aucccaggga	auguacgggg	780
gaacuuaccu	aguggaaaag	ccuaaucuga	gcagcaaagg	gucagaguug	ucacaacuga	840
gcaugcaccg	aguguuugaa	guagguguua	ucagaaaucc	ggguuugggg	gcuccgguau	900
uccauaugac	aaacuaucuu	gagcaaccag	ucaguaauga	uuucagcaac	ugcauggugg	960
cuuuggggga	gcucaaguuc	gcagcccucu	gucacaggga	agauucuauc	acaauucccu	1020
aucagggauc	agggaaaggu	gucagcuucc	agcuugucaa	gcuagguguc	uggaaauccc	1080
caaccgacau	gcaauccugg	gucccccuau	caacggauga	uccagugaua	gacaggcuuu	1140
accucucauc	ucacagaggc	guuaucgcug	acaaucaagc	aaaaugggcu	gucccgacaa	1200
cacggacaga	ugacaaguug	cgaauggaga	caugcuucca	gcaggcgugu	aaggguaaaa	1260
uccaagcacu	uugcgagaau	cccgagugga	caccauugaa	ggauaacagg	auuccuucau	1320
acggggucuu	gucuguugau	cugagucuga	caguugagcu	uaaaaucaaa	auuguuucag	1380
gauucgggcc	auugaucaca	cacgguucag	ggauggaccu	auacaaaucc	aaccacaaca	1440
auauguauug	gcugacuauc	ccgccaauga	agaaccuggc	cuuaggugua	aucaacacau	1500
uggaguggau	accgagauuc	aagguuaguc	ccaaccucuu	cacuguucca	auuaaggaag	1560
caggcgagga	cugccaugcc	ccaacauacc	uaccugcgga	gguggauggu	gaugucaaac	1620
ucaguuccaa	ucuggugauu	cuaccugguc	aagaucucca	auauguucug	gcaaccuacg	1680
auacuuccag	aguugaacau	gcuguaguuu	auuacguuua	cagcccaagc	cgcucauuuu	1740
cuuacuuuua	uccuuuuagg	uugccuguaa	gggggguccc	cauugaauua	caaguggaau	1800
gcuucacaug	ggaccaaaaa	cucuggugcc	gucacuucug	ugugcuugcg	gacucagaau	1860
cugguggaca	uaucacucac	ucugggaugg	ugggcauggg	agucagcugc	acagccacuc	1920
gggaagaugg	aaccagccgc	agauagugau	aauaggcugg	agccucggug	gccaagcuuc	1980
uugccccuug	ggccuccccc	cagccccucc	uccccuuccu	gcacccguac	ccccgugguc	2040
uuugaauaaa	gucugagugg	gegge				2065

<210> SEQ ID NO 79

<211> LENGTH: 1854 <212> TYPE: RNA

<213> ORGANISM: Artificial Sequence <220> FEATURE:

<223> OTHER INFORMATION: Synthetic Polynucleotide

<400> SEQUI	ENCE: 79					
augucaccac	aacgagaccg	gauaaaugcc	uucuacaaag	acaaccccca	uccuaaggga	60
aguaggauag	uuauuaacag	agaacaucuu	augauugaua	gaccuuaugu	uuugcuggcu	120
guucuauucg	ucauguuucu	gagcuugauc	ggguugcuag	ccauugcagg	cauuagacuu	180
caucgggcag	ccaucuacac	cgcagagauc	cauaaaagcc	ucagcaccaa	ucuggaugua	240
acuaacucaa	ucgagcauca	gguuaaggac	gugcugacac	cacucuucaa	gaucaucggu	300
gaugaagugg	gcuugaggac	accucagaga	uucacugacc	uagugaaguu	caucucugac	360
aagauuaaau	uccuuaaucc	ggacagggaa	uacgacuuca	gagaucucac	uugguguauc	420
aacccgccag	agagaaucaa	auuggauuau	gaucaauacu	gugcagaugu	ggcugcugaa	480
gaacucauga	augcauuggu	gaacucaacu	cuacuggaga	ccagggcaac	caaucaguuc	540
cuagcugucu	caaagggaaa	cugcucaggg	cccacuacaa	ucagaggcca	auucucaaac	600
augucgcugu	cccuguugga	cuuguauuua	agucgagguu	acaauguguc	aucuauaguc	660
acuaugacau	cccagggaau	guacggggga	acuuaccuag	uggaaaagcc	uaaucugagc	720
agcaaagggu	cagaguuguc	acaacugagc	augcaccgag	uguuugaagu	agguguuauc	780
agaaauccgg	guuugggggc	uccgguauuc	cauaugacaa	acuaucuuga	gcaaccaguc	840
aguaaugauu	ucagcaacug	caugguggcu	uugggggagc	ucaaguucgc	agcccucugu	900
cacagggaag	auucuaucac	aauucccuau	cagggaucag	ggaaaggugu	cagcuuccag	960
cuugucaagc	uaggugucug	gaaaucccca	accgacaugc	aauccugggu	ccccuauca	1020
acggaugauc	cagugauaga	caggcuuuac	cucucaucuc	acagaggcgu	uaucgcugac	1080
aaucaagcaa	aaugggcugu	cccgacaaca	cggacagaug	acaaguugcg	aauggagaca	1140
ugcuuccagc	aggcguguaa	ggguaaaauc	caagcacuuu	gcgagaaucc	cgaguggaca	1200
ccauugaagg	auaacaggau	uccuucauac	ggggucuugu	cuguugaucu	gagucugaca	1260
guugagcuua	aaaucaaaau	uguuucagga	uucgggccau	ugaucacaca	cgguucaggg	1320
auggaccuau	acaaauccaa	ccacaacaau	auguauuggc	ugacuauccc	gccaaugaag	1380
aaccuggccu	uagguguaau	caacacauug	gaguggauac	cgagauucaa	gguuaguccc	1440
aaccucuuca	cuguuccaau	uaaggaagca	ggcgaggacu	gccaugcccc	aacauaccua	1500
ccugcggagg	uggaugguga	ugucaaacuc	aguuccaauc	uggugauucu	accuggucaa	1560
gaucuccaau	auguucuggc	aaccuacgau	acuuccagag	uugaacaugc	uguaguuuau	1620
uacguuuaca	gcccaagccg	cucauuuucu	uacuuuuauc	cuuuuagguu	gccuguaagg	1680
ggggucccca	uugaauuaca	aguggaaugc	uucacauggg	accaaaaacu	cuggugccgu	1740
cacuucugug	ugcuugcgga	cucagaaucu	gguggacaua	ucacucacuc	ugggauggug	1800
ggcaugggag	ucagcugcac	agccacucgg	gaagauggaa	ccagccgcag	auag	1854
<220> FEATU	TH: 2126 : RNA NISM: Artif: URE: R INFORMATIO	-		eotide		

60 ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaccau gucaccacaa cgagaccgga uaaaugccuu cuacaaagac aacccccauc cuaagggaag uaggauaguu

### -continued

auuaacagag	aacaucuuau	gauugauaga	ccuuauguuu	ugcuggcugu	ucuauucguc	180	
auguuucuga	gcuugaucgg	guugcuagcc	auugcaggca	uuagacuuca	ucgggcagcc	240	
aucuacaccg	cagagaucca	uaaaagccuc	agcaccaauc	uggauguaac	uaacucaauc	300	
gagcaucagg	uuaaggacgu	gcugacacca	cucuucaaga	ucaucgguga	ugaagugggc	360	
uugaggacac	cucagagauu	cacugaccua	gugaaguuca	ucucugacaa	gauuaaauuc	420	
cuuaauccgg	acagggaaua	cgacuucaga	gaucucacuu	gguguaucaa	cccgccagag	480	
agaaucaaau	uggauuauga	ucaauacugu	gcagaugugg	cugcugaaga	acucaugaau	540	
gcauugguga	acucaacucu	acuggagacc	agggcaacca	aucaguuccu	agcugucuca	600	
aagggaaacu	gcucagggcc	cacuacaauc	agaggccaau	ucucaaacau	gucgcugucc	660	
cuguuggacu	uguauuuaag	ucgagguuac	aaugugucau	cuauagucac	uaugacaucc	720	
cagggaaugu	acgggggaac	uuaccuagug	gaaaagccua	aucugagcag	caaaggguca	780	
gaguugucac	aacugagcau	gcaccgagug	uuugaaguag	guguuaucag	aaauccgggu	840	
uugggggcuc	cgguauucca	uaugacaaac	uaucuugagc	aaccagucag	uaaugauuuc	900	
agcaacugca	ugguggcuuu	gggggagcuc	aaguucgcag	cccucuguca	cagggaagau	960	
ucuaucacaa	uucccuauca	gggaucaggg	aaagguguca	gcuuccagcu	ugucaagcua	1020	
ggugucugga	aauccccaac	cgacaugcaa	uccugggucc	cccuaucaac	ggaugaucca	1080	
gugauagaca	ggcuuuaccu	cucaucucac	agaggcguua	ucgcugacaa	ucaagcaaaa	1140	
ugggcugucc	cgacaacacg	gacagaugac	aaguugcgaa	uggagacaug	cuuccagcag	1200	
gcguguaagg	guaaaaucca	agcacuuugc	gagaaucccg	aguggacacc	auugaaggau	1260	
aacaggauuc	cuucauacgg	ggucuugucu	guugaucuga	gucugacagu	ugagcuuaaa	1320	
aucaaaauug	uuucaggauu	cgggccauug	aucacacacg	guucagggau	ggaccuauac	1380	
aaauccaacc	acaacaauau	guauuggcug	acuaucccgc	caaugaagaa	ccuggccuua	1440	
gguguaauca	acacauugga	guggauaccg	agauucaagg	uuagucccaa	ccucuucacu	1500	
guuccaauua	aggaagcagg	cgaggacugc	caugececaa	cauaccuacc	ugcggaggug	1560	
gauggugaug	ucaaacucag	uuccaaucug	gugauucuac	cuggucaaga	ucuccaauau	1620	
guucuggcaa	ccuacgauac	uuccagaguu	gaacaugcug	uaguuuauua	cguuuacagc	1680	
ccaagccgcu	cauuuucuua	cuuuuauccu	uuuagguugc	cuguaagggg	gguccccauu	1740	
gaauuacaag	uggaaugcuu	cacaugggac	caaaaacucu	ggugccguca	cuucugugug	1800	
cuugcggacu	cagaaucugg	uggacauauc	acucacucug	ggaugguggg	caugggaguc	1860	
agcugcacag	ccacucggga	agauggaacc	agccgcagau	agugauaaua	ggcuggagcc	1920	
ucgguggcca	agcuucuugc	cccuugggcc	uccccccagc	cccuccuccc	cuuccugcac	1980	
ccguaccccc	guggucuuug	aauaaagucu	gagugggcgg	caaaaaaaaa	aaaaaaaaa	2040	
aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	2100	
aaaaaaaaa	aaaaaaaaa	aucuag				2126	
<210> SEQ 1 <211> LENGT <212> TYPE:	ΓH: 1729						

<400> SEQUENCE: 81

<212> TYPE: RNA <213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Polynucleotide

aaagaagagu	aagaagaaau	auaagagcca	ccauggcaca	agucauuaau	acaaacagcc	120
ugucgcuguu	gacccagaau	aaccugaaca	aaucccaguc	cgcacugggc	acugcuaucg	180
agcguuuguc	uuccggucug	cguaucaaca	gcgcgaaaga	cgaugcggca	ggacaggcga	240
uugcuaaccg	uuuuaccgcg	aacaucaaag	gucugacuca	ggcuucccgu	aacgcuaacg	300
acgguaucuc	cauugcgcag	accacugaag	gcgcgcugaa	cgaaaucaac	aacaaccugc	360
agcgugugcg	ugaacuggcg	guucagucug	cgaaugguac	uaacucccag	ucugaccucg	420
acuccaucca	ggcugaaauc	acccagcgcc	ugaacgaaau	cgaccgugua	uccggccaga	480
cucaguucaa	cggcgugaaa	guccuggcgc	aggacaacac	ccugaccauc	cagguuggug	540
ccaacgacgg	ugaaacuauc	gauauugauu	uaaaagaaau	cagcucuaaa	acacugggac	600
uugauaagcu	uaauguccaa	gaugccuaca	ccccgaaaga	aacugcugua	accguugaua	660
aaacuaccua	uaaaaauggu	acagauccua	uuacagccca	gagcaauacu	gauauccaaa	720
cugcaauugg	cgguggugca	acggggguua	cuggggcuga	uaucaaauuu	aaagaugguc	780
aauacuauuu	agauguuaaa	ggcggugcuu	cugcuggugu	uuauaaagcc	acuuaugaug	840
aaacuacaaa	gaaaguuaau	auugauacga	cugauaaaac	uccguuggca	acugcggaag	900
cuacagcuau	ucggggaacg	gccacuauaa	cccacaacca	aauugcugaa	guaacaaaag	960
aggguguuga	uacgaccaca	guugeggeue	aacuugcugc	agcagggguu	acuggcgccg	1020
auaaggacaa	uacuagccuu	guaaaacuau	cguuugagga	uaaaaacggu	aagguuauug	1080
augguggcua	ugcagugaaa	augggcgacg	auuucuaugc	cgcuacauau	gaugagaaaa	1140
caggugcaau	uacugcuaaa	accacuacuu	auacagaugg	uacuggcguu	gcucaaacug	1200
gagcugugaa	auuugguggc	gcaaauggua	aaucugaagu	uguuacugcu	accgauggua	1260
agacuuacuu	agcaagcgac	cuugacaaac	auaacuucag	aacaggcggu	gagcuuaaag	1320
agguuaauac	agauaagacu	gaaaacccac	ugcagaaaau	ugaugcugcc	uuggcacagg	1380
uugauacacu	ucguucugac	cugggugcgg	uucagaaccg	uuucaacucc	gcuaucacca	1440
accugggcaa	uaccguaaau	aaccugucuu	cugcccguag	ccguaucgaa	gauuccgacu	1500
acgcaaccga	agucuccaac	augucucgcg	cgcagauucu	gcagcaggcc	gguaccuccg	1560
uucuggcgca	ggcgaaccag	guuccgcaaa	acguccucuc	uuuacugcgu	ugauaauagg	1620
cuggagccuc	gguggccaug	cuucuugccc	cuugggccuc	cccccagccc	cuccuccccu	1680
uccugcaccc	guacccccgu	ggucuuugaa	uaaagucuga	gugggcggc		1729
<220> FEAT	TH: 1518 : RNA NISM: Artif: JRE: R INFORMATIO	_		eotide		
	ucauuaauac	aaadaddcud	ncachannas	cccadaailaa	ccugaacaaa	60
	cacugggcac					120
	augcggcagg					180
cugacucagg	cuucccguaa	cgcuaacgac	gguaucucca	uugcgcagac	cacugaaggc	240
gcgcugaacg	aaaucaacaa	caaccugcag	cgugugcgug	aacuggcggu	ucagucugcg	300

aaugguacua acucccaguc ugaccucgac uccauccagg cugaaaucac ccagcgccug

-continued

-continued	
aacgaaaucg accguguauc cggccagacu caguucaacg gcgugaaagu ccuggcgcag	420
gacaacaccc ugaccaucca gguuggugcc aacgacggug aaacuaucga uauugauuua	480
aaagaaauca gcucuaaaac acugggacuu gauaagcuua auguccaaga ugccuacacc	540
ccgaaagaaa cugcuguaac cguugauaaa acuaccuaua aaaaugguac agauccuauu	600
acageecaga geaauacuga uauceaaacu geaauuggeg guggugeaac ggggguuacu	660
ggggcugaua ucaaauuuaa agauggucaa uacuauuuag auguuaaagg cggugcuucu	720
gcugguguuu auaaagccac uuaugaugaa acuacaaaga aaguuaauau ugauacgacu	780
gauaaaacuc cguuggcaac ugcggaagcu acagcuauuc ggggaacggc cacuauaacc	840
cacaaccaaa uugcugaagu aacaaaagag gguguugaua cgaccacagu ugcggcucaa	900
cuugcugcag cagggguuac uggcgccgau aaggacaaua cuagccuugu aaaacuaucg	960
uuugaggaua aaaacgguaa gguuauugau gguggcuaug cagugaaaau gggcgacgau	1020
uucuaugeeg euacauauga ugagaaaaca ggugeaauua eugeuaaaac eacuacuuau	1080
acagauggua cuggcguugc ucaaacugga gcugugaaau uugguggcgc aaaugguaaa	1140
ucugaaguug uuacugcuac cgaugguaag acuuacuuag caagcgaccu ugacaaacau	1200
aacuucagaa caggcgguga gcuuaaagag guuaauacag auaagacuga aaacccacug	1260
cagaaaauug augcugccuu ggcacagguu gauacacuuc guucugaccu gggugcgguu	1320
cagaaccguu ucaacuccgc uaucaccaac cugggcaaua ccguaaauaa ccugucuucu	1380
gcccguagcc guaucgaaga uuccgacuac gcaaccgaag ucuccaacau gucucgcgcg	1440
cagauucugc agcaggccgg uaccuccguu cuggcgcagg cgaaccaggu uccgcaaaac	1500
guccucucuu uacugcgu	1518
guccucucuu uacugcgu  <210> SEQ ID NO 83 <211> LENGTH: 1790 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	1518
<210> SEQ ID NO 83 <211> LENGTH: 1790 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE:	1518
<210> SEQ ID NO 83 <211> LENGTH: 1790 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	1518
<210> SEQ ID NO 83 <211> LENGTH: 1790 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 83	
<pre>&lt;210&gt; SEQ ID NO 83 &lt;211&gt; LENGTH: 1790 &lt;212&gt; TYPE: RNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Synthetic Polynucleotide &lt;400&gt; SEQUENCE: 83 ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaccau ggcacaaguc</pre>	60
<pre>&lt;210&gt; SEQ ID NO 83 &lt;211&gt; LENGTH: 1790 &lt;212&gt; TYPE: RNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Synthetic Polynucleotide &lt;400&gt; SEQUENCE: 83 ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaccau ggcacaaguc auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca</pre>	60 120
<pre>&lt;210&gt; SEQ ID NO 83 &lt;211&gt; LENGTH: 1790 &lt;212&gt; TYPE: RNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Synthetic Polynucleotide &lt;400&gt; SEQUENCE: 83 ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaccau ggcacaaguc auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcgc gaaagacgau</pre>	60 120 180
<pre>&lt;210&gt; SEQ ID NO 83 &lt;211&gt; LENGTH: 1790 &lt;212&gt; TYPE: RNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Synthetic Polynucleotide &lt;400&gt; SEQUENCE: 83  ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaccau ggcacaaguc auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcgc gaaagacgau gcggcaggac aggcgauugc uaaccguuuu accgcgaaca ucaaaggucu gacucaggcu</pre>	60 120 180 240
<pre>&lt;210&gt; SEQ ID NO 83 &lt;211&gt; LENGTH: 1790 &lt;212&gt; TYPE: RNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Synthetic Polynucleotide &lt;400&gt; SEQUENCE: 83 ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaccau ggcacaaguc auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcgc gaaagacgau gcggcaggac aggcgauugc uaaccguuuu accgcgaaca ucaaaggucu gacucaggcu ucccguaacg cuaacgacgg uaucuccauu gcgcagacca cugaaggcgc gcugaacgaa</pre>	60 120 180 240 300
<pre>&lt;210&gt; SEQ ID NO 83 &lt;211&gt; LENGTH: 1790 &lt;212&gt; TYPE: RNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Synthetic Polynucleotide &lt;400&gt; SEQUENCE: 83  ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaccau ggcacaaguc auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcgc gaaagacgau gcggcaggac aggcgauugc uaaccguuuu accgcgaaca ucaaaggucu gacucaggcu ucccguaacg cuaacgacgg uaucuccauu gcgcagacca cugaaggcgc gcugaacgaa aucaacaaca accugcagcg ugugcgugaa cuggcgguuc agucugcgaa ugguacuaac</pre>	60 120 180 240 300 360
<pre>&lt;210&gt; SEQ ID NO 83 &lt;211&gt; LENGTH: 1790 &lt;212&gt; TYPE: RNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Synthetic Polynucleotide &lt;400&gt; SEQUENCE: 83 ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaccau ggcacaaguc auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcgc gaaagacgau gcggcaggac aggcgauugc uaaccguuuu accgcgaaca ucaaaggucu gacucaggcu ucccguaacg cuaacgacgg uaucuccauu gcgcagacca cugaaggcgc gcugaacgaa aucaacaaca accugcagcg ugugcgugaa cuggcgguuc agucugcgaa ugguacuaac ucccagucug accucgacuc cauccaggcu gaaaucacc agcgccugaa cgaaaucgac</pre>	60 120 180 240 300 360 420
<pre>&lt;210&gt; SEQ ID NO 83 &lt;211&gt; LENGTH: 1790 &lt;212&gt; TYPE: RNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Synthetic Polynucleotide &lt;400&gt; SEQUENCE: 83  ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaccau ggcacaaguc auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcgc gaaagacgau gcggcaggac aggcgauugc uaaccguuuu accgcgaaca ucaaaggucu gacucaggcu ucccguaacg cuaacgacgg uaucuccauu gcgcagacca cugaaggcgc gcugaacgaa aucaacaaca accugcagcg ugugcgugaa cuggcgguuc agucugcgaa ugguacuaac ucccagucug accucgacuc cauccaggcu gaaaucacc agcgccugaa cgaaaucgac cguguauccg gccagacuca guucaacggc gugaaagucc uggcgcagga caacacccug</pre>	60 120 180 240 300 360 420 480
<pre>&lt;210&gt; SEQ ID NO 83 &lt;211&gt; LENGTH: 1790 &lt;212&gt; TYPE: RNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Synthetic Polynucleotide &lt;400&gt; SEQUENCE: 83  ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaccau ggcacaaguc auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcgc gaaagacgau gcggcaggac aggcgauugc uaaccguuuu accgcgaaca ucaaaggucu gacucaggcu ucccguaacg cuaacgacgg uaucuccauu gcgcagacca cugaaggcg gcugaacgaa aucaacaaca accugcagcg ugugcgugaa cuggcgguuc agucugcgaa ugguacuaac ucccagucug accucgacuc cauccaggcu gaaaucaccc agcgccugaa cgaaaucgac cguguauccg gccagacuca guucaacggc gugaaagucc uggcgcagga caacacccug accauccagg uuggugccaa cgacggugaa acuaucgaua uugauuuaaa agaaaucagc</pre>	60 120 180 240 300 360 420 480
<pre>&lt;210&gt; SEQ ID NO 83 &lt;211&gt; LENGTH: 1790 &lt;212&gt; TYPE: RNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Synthetic Polynucleotide &lt;400&gt; SEQUENCE: 83  ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaccau ggcacaaguc auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcgc gaaagacgau gcggcaggac aggcgauugc uaaccguuuu accgcgaaca ucaaaggucu gacucaggcu ucccguaacg cuaacgacgg uaucuccauu gcgcagacca cugaaggcg gcugaacgaa aucaacaaca accugcagcg ugugcgugaa cuggcgguuc agucugcgaa ugguacuaac ucccagucug accucgacuc cauccaggcu gaaaucacc agcgccugaa cgaaaucgac cguguauccg gccagacuca guucaacggc gugaaagucc uggcgcagga caacacccug accauccagg uuggugccaa cgacggugaa acuaucgaua uugauuuaaa agaaaucagc ucuaaaaaca ugggacuuga uaagcuuaau guccaagaug ccuacacccc gaaagaaacu ucuaaaaacac ugggacuuga uaagcuuaau guccaagaug ccuacacccc gaaagaaacu</pre>	60 120 180 240 300 360 420 480 540
<pre>&lt;210&gt; SEQ ID NO 83 &lt;211&gt; LENGTH: 1790 &lt;212&gt; TYPE: RNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Synthetic Polynucleotide &lt;400&gt; SEQUENCE: 83  ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaccau ggcacaaguc auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcgc gaaagacgau gcggcaggac aggcgauugc uaaccguuuu accgcgaaca ucaaaggucu gacucaggcu ucccguaacg cuaacgacgg uaucuccauu gcgcagacca cugaaggcgc gcugaacgaa aucaacaaca accugcagcg ugugcgugaa cuggcgguuc agucugcgaa ugguacuaac ucccagucug accucgacuc cauccaggcu gaaaucaccc agcgccugaa cgaaaucgac cguguauccg gccagacuca guucaacggc gugaaagucc uggcgcagga caacacccug accauccagg uuggugccaa cgacggugaa acuaucgaua uugauuuaaa agaaaucagc ucuaaaacac ugggacuuga uaagcuuaau guccaagaug ccuacaccc gaaagaaacu gcuguaaccg uugauaaaaac uaccuauaaa aaugguacag auccuauuac agcccagagc</pre>	60 120 180 240 300 360 420 480 540 600
<pre>&lt;210&gt; SEQ ID NO 83 &lt;211&gt; LENGTH: 1790 &lt;212&gt; TYPE: RNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Synthetic Polynucleotide &lt;400&gt; SEQUENCE: 83  ggggaaauaa gagagaaaag aagaguaaga agaauuauaa gagccaccau ggcacaaguc auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcgc gaaagacgau gcggcaggac aggcgauugc uaaccguuuu accgcgaaca ucaaaggucu gacucaggcu ucccguaacg cuaacgacgg uaucuccauu gcgcagacca cugaaggcgc gcugaacgaa aucaacaaca accugcagcg ugugcgugaa cuggcgguuc agucugcgaa ugguacuaac ucccagucug accucgacuc cauccaggcu gaaaucaccc agcgccugaa cgaaaucgac cguguauccg gccagacuca guucaacggc gugaaagucc uggcgcagga caacacccug accauccagg uuggugccaa cgacggugaa acuaucgaua uugauuuaaa agaaaucagc ucuaaaacac ugggacuuga uaagcuuaau guccaagaug ccuacacccc gaaagaaacu gcuguaaccg uugauaaaac uaccuauaaa aaugguacag auccuauuac agcccagagc aauacugaua uccaaacugc aauuggcggu ggugcaacgg ggguuacugg ggcugauauc gcuguaaccg uugauaaaac uaccuauaaa aaugguacag ggguuacugg ggcugauauc aauacugaua uccaaacugc aauuggcggu ggugcaacgg ggguuacugg ggcugauauc</pre>	60 120 180 240 300 360 420 480 540 600 660

900

uuggcaacug cggaagcuac agcuauucgg ggaacggcca cuauaaccca caaccaaauu

gcuç	jaagu	ıaa o	caaaa	agagg	gg ug	guuga	uacg	g acc	cacaç	juug	cgg	cucaa	acu ı	ıgcuç	gcagca	960
gggg	juuac	cug ç	geged	gaua	aa g	gacaa	auacu	ı ago	ccuuç	guaa	aacı	ıaucç	guu ı	ıgagç	gauaaa	1020
aaco	guaa	agg u	ıuauı	ıgauç	gg ug	ggcua	ugca	guç	gaaaa	ugg	gcga	acgau	ıuu o	cuauç	gccgcu	1080
acau	ıauga	aug a	agaaa	acaç	gg ug	gcaaı	ıuacu	ı gcı	ıaaaa	ecca	cua	cuuau	iac a	agauç	gguacu	1140
ggcg	guugo	cuc a	aaacı	ıggaç	ge ug	gugaa	auuu	ı ggı	ıggcç	gcaa	aug	guaaa	auc i	ıgaaç	guuguu	1200
acuç	gcuac	eeg a	auggı	ıaaga	ac ui	ıacuı	ıagca	ago	egaco	cuug	acaa	aacau	ıaa o	cuuca	agaaca	1260
ggcg	guga	agc u	ıuaaa	agagg	gu ua	aauac	agau	ı aaç	gacus	jaaa	acco	cacuç	gca g	gaaaa	auugau	1320
gcug	gccui	ıgg d	cacaç	gguug	ga ua	acacı	ıucgu	ı ucı	ıgaco	ugg	gug	egguu	ıca ç	gaaco	eguuuc	1380
aacu	ıccgo	cua u	ıcaco	caaco	cu go	ggcaa	uacc	gua	aaaua	acc	ugu	cuucu	ıgc (	ccgua	agccgu	1440
auco	jaaga	auu o	ccgac	cuaco	gc aa	accga	aguc	uco	caaca	ugu	cuc	gegeg	gca g	gauud	cugcag	1500
cago	geege	gua o	ccuc	guud	eu ge	gegea	ggcg	, aac	ccago	guuc	cgca	aaaac	gu o	ccuci	ıcuuua	1560
cugo	guug	gau a	aauag	ggcug	gg ag	geeuc	ggug	ged	caugo	cuuc	uug	ecccu	ug g	ggccı	ıcccc	1620
cago	cccı	icc i	ıccc	cuuco	eu ge	cacco	guac	ccc	ccguç	gguc	uuuç	gaaua	aaa q	gucuç	gagugg	1680
gege	gcaaa	aaa a	aaaaa	aaaa	aa aa	aaaa	aaaa	ı aaa	aaaa	aaa	aaaa	aaaa	aaa a	aaaaa	aaaaa	1740
aaaa	aaaa	aaa a	aaaaa	aaaa	aa aa	aaaa	aaaa	ı aaa	aaaa	aaaa	aaaa	aaucu	ıag			1790
		-	NO H: 13													
<212	:> T	PE:	PRT			17 ~ +	:yphi	m113c3								
			ICE:		lione.	LIA	-урп	marı	Lam							
					Glu	I.eu	Ala	Val	Gln	Ser	Δla	Δan				
1	OIII	9	vai	5	Olu	Dou	1114	V 44 ±	10	DCI	1114	11011				
<211	.> LE	ENGTI	NO 1: 53													
<213	> OF		ISM:	Arti	lfic	ial S	Seque	ence								
		EATUF CHER		RMAT	CION	: Syr	nthet	ic E	oly <u>r</u>	ept:	ide					
< 400	)> SE	EQUE	ICE :	85												
Met 1	Ser	Trp	Lys	Val 5	Val	Ile	Ile	Phe	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln	
His	Gly	Leu	Lys 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	CÀa	Ser	Thr	Ile	Thr	
Glu	Gly	Tyr	Leu	Ser	Val	Leu	Arg	Thr	Gly	Trp	Tyr	Thr	Asn	Val	Phe	
		35					40					45				
Thr	Leu 50	Glu	Val	Gly	Aap	Val 55	Glu	Asn	Leu	Thr	60 Càa	Ser	Asp	Gly	Pro	
Ser 65	Leu	Ile	Lys	Thr	Glu 70	Leu	Asp	Leu	Thr	Lys 75	Ser	Ala	Leu	Arg	Glu 80	
Leu	Lys	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu	
Asn	Pro	Gly	Ser	Gly	Ser	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val	
Ala	Ala	Ala		Ala	۷al	Thr	Ala		Val	Ala	Ile	Cvs		Thr	Ile	
		115					120	1				125	_, ~		<del>-</del>	
Arg	Leu 130	Glu	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	Lys	Lys	Thr	

_															
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Phe 160
Ala	Val	Arg	Glu	Leu 165	Lys	Asp	Phe	Val	Ser 170	Lys	Asn	Leu	Thr	Arg 175	Ala
Leu	Asn	Lys	Asn 180	Lys	CÀa	Asp	Ile	Asp 185	Asp	Leu	ГÀа	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	ГХа	Gly 255	Phe
Gly	Ile	Leu	Cys 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Cys	Trp	Ile 285	Val	Lys	Ala
Ala	Pro 290	Ser	CÀa	Ser	Glu	Lys 295	Lys	Gly	Asn	Tyr	Ala 300	CÀa	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	Cys	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	Lys	Asp 325	CAa	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Cys 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	ГÀв	Glu	Сув 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	CÀa	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	CAa
Tyr 385	Lys	Gly	Val	Ser	390	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
Lys	Gln	Leu	Asn	Lys 405	Gly	CAa	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	ГÀа	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile	Lуs 450	Phe	Pro	Glu	Asp	Gln 455	Phe	Asn	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Asn	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu	Ser	Ser	Ala	Glu 485	Lys	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu	Ile	Ala	Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile	Ile	Lys 515	Lys	Thr	Lys	Lys	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser
Gly	Val 530	Thr	Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					

<210> SEQ ID NO 86 <211> LENGTH: 539 <212> TYPE: PRT

		RGAN: EATUI		Art:	ific:	ial s	Seque	ence							
<223	3 > 01	THER	INF	ORMA'	rion	: Syı	nthet	cic E	olyr	ept:	ide				
< 400	)> SI	EQUEI	ICE :	86											
Met 1	Ser	Trp	Lys	Val 5	Val	Ile	Ile	Phe	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln
His	Gly	Leu	Lys 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	CAa	Ser	Thr 30	Ile	Thr
Glu	Gly	Tyr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr	Leu 50	Glu	Val	Gly	Asp	Val 55	Glu	Asn	Leu	Thr	60 CÀa	Ser	Asp	Gly	Pro
Ser 65	Leu	Ile	Lys	Thr	Glu 70	Leu	Asp	Leu	Thr	Lys 75	Ser	Ala	Leu	Arg	Glu 80
Leu	Lys	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Gly	Ser 100	Gly	Ser	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val
Ala	Ala	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Val	Ala	Ile	Cys 125	Lys	Thr	Ile
Arg	Leu 130	Glu	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	ГÀа	ГÀа	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	ГÀз	Asp	Phe	Val	Ser 170	Lys	Asn	Leu	Thr	Arg 175	Ala
Ile	Asn	Lys	Asn 180	ГÀв	CAa	Asp	Ile	Asp 185	Asp	Leu	Lys	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly	Ile		Cys 260		Val	Tyr		Ser 265		Val	Ile		Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	СЛа	Trp	Ile 285	Val	Lys	Ala
Ala	Pro 290	Ser	Cys	Ser	Glu	Lys 295	Lys	Gly	Asn	Tyr	Ala 300	CÀa	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	CAa	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	Lys	Asp 325	Cys	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Сув 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	ГÀЗ	Glu	Сув 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Cys	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Cys
Tyr	Lys	Gly	Val	Ser	Cys	Ser	Ile	Gly	Ser	Asn	Arg	Val	Gly	Ile	Ile

385													
			390					395					400
Lys Gln Le	ı Asn	Lys 405	Gly	Сув	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr Val Th	1le 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	Lys	Val 430	Glu	Gly
Glu Gln Hi		Ile	Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile Lys Pho 450	e Pro	Glu	His	Gln 455	Trp	His	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu Asn Il 465	e Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu Ser Se	Ala	Glu 485	ràa	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu Ile Al	a Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile Ile Ly: 51		Thr	ràa	ГÀа	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser
Gly Val Th	Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					
<210> SEQ : <211> LENG <212> TYPE <213> ORGA <220> FEAT <223> OTHE	TH: 5: : PRT NISM: JRE:	39 Art:			-		oly <u>r</u>	pept:	ide				
<400> SEQU	ENCE:	87											
Met Ser Tr	. Lys	Val 5	Val	Ile	Ile	Phe	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln
His Gly Le		Glu	Ser	Tyr	Leu	Glu	Glu	Ser	Cys	Ser	Thr	Tle	Thr
	20			•		25			-		30		
Glu Gly Ty: 35		Ser	Val	-	Arg 40	25			-		30		
	Leu			Leu	40	25 Thr	Gly	Trp	Tyr	Thr 45	30 Asn	Val	Phe
35 Thr Leu Gl	Leu 1 Val	Gly	Asp	Leu Val 55	40 Glu	25 Thr Asn	Gly Leu	Trp Thr	Tyr Cys 60	Thr 45 Ser	30 Asn Asp	Val Gly	Phe Pro
Thr Leu Gloson 50  Ser Leu Ile	c Leu 1 Val	Gly Thr	Asp Glu 70	Leu Val 55 Leu	40 Glu Asp	25 Thr Asn Leu	Gly Leu Leu	Trp Thr Lys 75	Tyr Cys 60 Ser	Thr 45 Ser Ala	30 Asn Asp Leu	Val Gly Arg	Phe Pro Glu 80
35 Thr Leu Gl 50 Ser Leu Ill 65	Leu Val Lys	Gly Thr Ser 85	Asp Glu 70 Ala	Leu Val 55 Leu Asp	40 Glu Asp Gln	25 Thr Asn Leu Leu	Gly Leu Leu Ala 90	Trp Thr Lys 75 Arg	Tyr Cys 60 Ser	Thr 45 Ser Ala Glu	30 Asn Asp Leu Gln	Val Gly Arg Ile 95	Phe Pro Glu 80 Glu
Thr Leu Glr 50 Ser Leu Il. 65 Leu Lys Th:	Leu Val	Gly Thr Ser 85 Gly	Asp Glu 70 Ala Ser	Leu Val 55 Leu Asp	40 Glu Asp Gln Val	25 Thr Asn Leu Leu Leu	Gly Leu Leu Ala 90 Gly	Trp Thr Lys 75 Arg	Tyr Cys 60 Ser Glu	Thr 45 Ser Ala Glu	Asn Asp Leu Gln Leu 110	Val Gly Arg Ile 95	Phe Pro Glu 80 Glu Val
35 Thr Leu Glr 50 Ser Leu Il 65 Leu Lys Th	Leu Val Lys Val Val Val Ala	Gly Thr Ser 85 Gly Ala	Asp Glu 70 Ala Ser Val	Leu Val 55 Leu Asp Phe	40 Glu Asp Gln Val Ala 120	Thr Asn Leu Leu Gly	Gly Leu Leu Ala 90 Gly Val	Trp Thr Lys 75 Arg Ala Ala	Tyr Cys 60 Ser Glu Ile	Thr 45 Ser Ala Glu Ala Ala 125	30 Asn Asp Leu Gln Leu 110	Val Gly Arg Ile 95 Gly Thr	Phe Pro Glu 80 Glu Val Ile
Ser Leu II. 65 Leu Lys Th: Asn Pro Gl; Ala Ala Al. Arg Leu Gl;	Leu Val	Gly Thr Ser 85 Gly Ala Glu	Asp Glu 70 Ala Ser Val	Leu Val 55 Leu Asp Phe Thr	40 Glu Asp Gln Val Ala 120 Ala	25 Thr Asn Leu Leu 105 Gly Ile	Gly Leu Leu Ala 90 Gly Val	Trp Thr Lys 75 Arg Ala Ala Asn	Tyr Cys 60 Ser Glu Ile Ile Ala 140	Thr 45 Ser Ala Glu Ala Ala 125 Leu	30 Asn Asp Leu Gln Leu 110 Lys	Val Gly Arg Ile 95 Gly Thr	Phe Pro Glu 80 Glu Val Ile
Ser Leu III 65 Leu Lys Th Asn Pro GI Ala Ala Ala 111 Arg Leu GI 130 Asn Glu Al	Leu Val	Gly Thr Ser 85 Gly Ala Glu Ser	Asp Glu 70 Ala Ser Val Val Thr 150	Leu Val 55 Leu Asp Phe Thr Thr 135 Leu	40 Glu Asp Gln Val Ala 120 Ala Gly	25 Thr Asn Leu Leu 105 Gly Ile Asn	Gly Leu Leu Ala 90 Gly Val Asn Gly	Trp Thr Lys 75 Arg Ala Ala Asn Val 155	Tyr Cys 60 Ser Glu Ile Ile Ala 140 Arg	Thr 45 Ser Ala Glu Ala 125 Leu	30 Asn Asp Leu Gln Lu Lu Ly Ly Ly Ly Ly Ly	Val Gly Arg Ile 95 Gly Thr Lys Ala	Phe Pro Glu 80 Glu Val Ile Thr
Thr Leu Gly 50 Ser Leu II. 65 Leu Lys Th: Asn Pro Gly Ala Ala Al. 11: Arg Leu Gly 130 Asn Glu Al. 145	Leu Val	Gly Thr Ser 85 Gly Ala Glu Ser Leu 165	Asp Glu 70 Ala Ser Val Val Thr 150	Leu Val 55 Leu Asp Phe Thr Leu Asp	40 Glu Asp Gln Val Ala 120 Ala Gly Phe	25 Thr Asn Leu Leu 105 Gly Ile Asn Val	Gly Leu Leu Ala 90 Gly Val Asn Gly Ser 170	Trp Thr Lys 75 Arg Ala Ala Asn Val 155 Lys	Tyr Cys 60 Ser Glu Ile Ile Ala 140 Arg	Thr 45 Ser Ala Glu Ala Ala 125 Leu Val	30 Asn Asp Leu Gln Leu 110 Lys Lys Leu Thr	Val Gly Arg Ile 95 Gly Thr Lys Ala Arg 175	Phe Pro Glu 80 Glu Val Ile Thr Ala
Asn Pro Gly Ala Ala Ala 11: Arg Leu Glu 130 Asn Glu Ala 145 Ala Val Arg	Leu Val	Gly Thr Ser 85 Gly Ala Glu Ser Leu 165 Lys	Asp Glu 70 Ala Ser Val Val Thr 150 Lys	Leu Val 55 Leu Asp Phe Thr Thr Leu Asp	40 Glu Asp Gln Val Ala 120 Ala Gly Phe	25 Thr Asn Leu Leu 105 Gly Ile Asn Val	Gly Leu Leu Ala 90 Gly Val Asn Gly Ser 170 Asp	Trp Thr Lys 75 Arg Ala Ala Asn Val 155 Lys Leu	Tyr  Cys 60  Ser  Glu Ile Ile Ala 140  Arg  Asn	Thr 45 Ser Ala Glu Ala 125 Leu Val Leu Met	30 Asn Asp Leu Gln Lys Lys Lys Leu Thr Ala 190	Val Gly Arg Ile 95 Gly Thr Lys Ala Arg 175 Val	Phe Pro Glu 80 Glu Val Ile Thr Ala Ser

-continued

												con	tin	uea	
	210					215					220				
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Сув	Trp	Ile 285	Val	Lys	Ala
Ala	Pro 290	Ser	Cya	Ser	Glu	Lys 295	ГЛа	Gly	Asn	Tyr	Ala 300	CÀa	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	Càa	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	Lys	Asp 325	Сув	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Сув 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	ГÀа	Glu	Сув 350	Asn	Ile
		355					360					365		Arg	
	370					375					380			Ala	
385					390					395				Ile	400
				405					410					Ala 415	
			420	_				425				-	430	Glu	_
		435					440					445		Asp	
	450					455					460			Val	
465					470					475				Arg	480
				485					490					Ile 495	
			500		_			505					510	Phe	
		515					520				Pro	Pro 525	Glu	Leu	Ser
Gly	Val 530	Thr	Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					
<211 <212 <213 <220	> LE > T\ > OF > FE	EATUF	H: 53 PRT [SM: RE:	39 Art:		ial S	-		?oly <u>r</u>	pepti	lde				
		EQUEN				-									
Met 1	Ser	Trp	Lys	Val 5	Val	Ile	Ile	Phe	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln
His	Gly	Leu	Lys 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	Cys	Ser	Thr 30	Ile	Thr

Glu Gly Tyr Leu Ser Val Leu Arg Thr Gly Trp Tyr Thr Asn Val Phe

												COII	CIII	aca	
		35					40					45			
Thr	Leu 50	Glu	Val	Gly	Asp	Val 55	Glu	Asn	Leu	Thr	60 CÀa	Ser	Asp	Gly	Pro
Ser 65	Leu	Ile	Lys	Thr	Glu 70	Leu	Asp	Leu	Leu	Lys 75	Ser	Ala	Leu	Arg	Glu 80
Leu	Lys	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Gly	Ser 100	Gly	Ser	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val
Ala	Ala	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Val	Ala	Ile	Ala 125	Lys	Thr	Ile
Arg	Leu 130	Glu	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	Lys	ГÀа	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	ГÀа	Asp	Phe	Val	Ser 170	ГÀа	Asn	Leu	Thr	Arg 175	Ala
Ile	Asn	ГЛа	Asn 180	ГÀа	CAa	Asp	Ile	Pro 185	Asp	Leu	ГÀа	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Cys	Trp	Ile 285	Val	ГÀЗ	Ala
Ala	Pro 290	Ser	Сув	Ser	Glu	Lуs 295	Lys	Gly	Asn	Tyr	Ala 300	CAa	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	Сув	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu			CAa		Thr			Asp		Val		Cys 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	ГÀЗ	Glu	Сув 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Cys	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Cha
Tyr 385	Lys	Gly	Val	Ser	390 Cys	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
ГÀа	Gln	Leu	Asn	Lys 405	Gly	Cys	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	Lys	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile	Lys 450	Phe	Pro	Glu	Asn	Gln 455	Phe	Gln	Val	Ala	Leu 460	Asp	Gln	Val	Phe

#### -continued

Glu Asn Ile Glu Asn Ser Gln Ala Leu Val Asp Gln Ser Asn Arg Ile 470 Leu Ser Ser Ala Glu Lys Gly Asn Thr Gly Phe Ile Ile Val Ile Ile Leu Ile Ala Val Leu Gly Ser Ser Met Ile Leu Val Ser Ile Phe Ile Ile Ile Lys Lys Thr Lys Lys Pro Thr Gly Ala Pro Pro Glu Leu Ser Gly Val Thr Asn Asn Gly Phe Ile Pro His Asn <210> SEQ ID NO 89 <211> LENGTH: 539 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223 > OTHER INFORMATION: Synthetic Polypeptide <400> SEQUENCE: 89 Met Ser Trp Lys Val Val Ile Ile Phe Ser Leu Leu Ile Thr Pro Gln His Gly Leu Lys Glu Ser Tyr Leu Glu Glu Ser Cys Ser Thr Ile Thr Glu Gly Tyr Leu Ser Val Leu Arg Thr Gly Trp Tyr Thr Asn Val Phe Thr Leu Glu Val Gly Asp Val Glu Asn Leu Thr Cys Ser Asp Gly Pro Ser Leu Ile Lys Thr Glu Leu Asp Leu Leu Lys Ser Ala Leu Arg Glu Leu Lys Thr Val Ser Ala Asp Gln Leu Ala Arg Glu Glu Gln Ile Glu Asn Pro Gly Ser Gly Ser Phe Val Leu Gly Ala Ile Ala Leu Gly Val Ala Ala Ala Ala Val Thr Ala Gly Val Ala Ile Ala Lys Thr Ile 120 Arg Leu Glu Ser Glu Val Thr Ala Ile Asn Asn Ala Leu Lys Lys Thr Asn Glu Ala Val Ser Thr Leu Gly Asn Gly Val Arg Val Leu Ala Thr Ala Val Arg Glu Leu Lys Asp Phe Val Leu Lys Asn Leu Thr Arg Ala Ile Asn Lys Asn Lys Cys Asp Ile Pro Asp Leu Lys Met Ala Val Ser Phe Ser Gln Phe Asn Arg Arg Phe Leu Asn Val Val Arg Gln Phe Ser 200 Asp Asn Ala Gly Ile Thr Pro Ala Ile Ser Leu Asp Leu Met Thr Asp Ala Glu Leu Ala Arg Ala Val Pro Asn Met Pro Thr Ser Ala Gly Gln 230 Ile Lys Leu Met Leu Glu Asn Arg Ala Met Val Arg Arg Lys Gly Phe 250 Gly Ile Leu Ile Gly Val Tyr Gly Ser Ser Val Ile Tyr Met Val Gln 265 Leu Pro Ile Phe Gly Val Ile Asp Thr Pro Cys Trp Ile Val Lys Ala

-continued

Ala Pro Ser Cys Ser Glu Lys Lys Gly Asn Tyr Ala Cys Leu Leu Arg

295 Glu Asp Gln Gly Trp Tyr Cys Gln Asn Ala Gly Ser Thr Val Tyr Tyr Pro Asn Glu Lys Asp Cys Glu Thr Arg Gly Asp His Val Phe Cys Asp Thr Ala Ala Gly Ile Asn Val Ala Glu Gln Ser Lys Glu Cys Asn Ile Asn Ile Ser Thr Thr Asn Tyr Pro Cys Lys Val Ser Thr Gly Arg His Pro Ile Ser Met Val Ala Leu Ser Pro Leu Gly Ala Leu Val Ala Cys Tyr Lys Gly Val Ser Cys Ser Ile Gly Ser Asn Arg Val Gly Ile Ile Lys Gln Leu Asn Lys Gly Cys Ser Tyr Ile Thr Asn Gln Asp Ala Asp 410 Thr Val Thr Ile Asp Asn Thr Val Tyr Gln Leu Ser Lys Val Glu Gly 425 420 Glu Gln His Val Ile Lys Gly Arg Pro Val Ser Ser Ser Phe Asp Pro 440 Ile Lys Phe Pro Glu Asp Gln Phe Gln Val Ala Leu Asp Gln Val Phe 455 Glu Asn Ile Glu Asn Ser Gln Ala Leu Val Asp Gln Ser Asn Arg Ile 470 Leu Ser Ser Ala Glu Lys Gly Asn Thr Gly Phe Ile Ile Val Ile Ile 485 490 Leu Ile Ala Val Leu Gly Ser Ser Met Ile Leu Val Ser Ile Phe Ile 505 Ile Ile Lys Lys Thr Lys Lys Pro Thr Gly Ala Pro Pro Glu Leu Ser 520 Gly Val Thr Asn Asn Gly Phe Ile Pro His Asn 535 <210> SEQ ID NO 90 <211> LENGTH: 539 <212> TYPE: PRT <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide <400> SEQUENCE: 90 Met Ser Trp Lys Val Val Ile Ile Phe Ser Leu Leu Ile Thr Pro Gln His Gly Leu Lys Glu Ser Tyr Leu Glu Glu Ser Cys Ser Thr Ile Thr Glu Gly Tyr Leu Ser Val Leu Arg Thr Gly Trp Tyr Thr Asn Val Phe Thr Leu Glu Val Gly Asp Val Glu Asn Leu Thr Cys Ser Asp Gly Pro 55 Ser Leu Ile Lys Thr Glu Leu Asp Leu Leu Lys Ser Ala Leu Arg Glu Leu Lys Thr Val Ser Ala Asp Gln Leu Ala Arg Glu Glu Gln Ile Glu 90 Asn Pro Gly Ser Gly Ser Phe Val Leu Gly Ala Ile Ala Leu Gly Val 105

Ala	Ala	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Val	Ala	Ile	Ala 125	Lys	Thr	Ile
Arg	Leu 130	Glu	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	Lys	Lys	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	Lys	Asp	Phe	Val	Leu 170	Lys	Asn	Leu	Thr	Arg 175	Ala
Ile	Asn	Lys	Asn 180	Lys	CAa	Asp	Ile	Pro 185	Asp	Leu	Lys	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	ГÀв	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Cys	Trp	Ile 285	Val	ГÀа	Ala
Ala	Pro 290	Ser	Cys	Ser	Glu	Lys 295	Lys	Gly	Asn	Tyr	Ala 300	Сув	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	Càa	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	Lys	Asp 325	Càa	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Lys	Glu	350 Cys	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	CÀa	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	CAa
Tyr 385	ГЛа	Gly	Val	Ser	390 Cys	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
ГЛа	Gln	Leu	Asn	Lys 405	Gly	CÀa	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	ГÀа	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	ràa	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile	Lys 450	Phe	Pro	Glu	Asn	Gln 455	Phe	Gln	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Asn	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu	Ser	Ser	Ala	Glu 485	Lys	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu	Ile	Ala	Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile	Ile	Lys 515	Lys	Thr	Lys	Lys	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser

												COII	CIII	uea	
Gly	Val 530	Thr	Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					
<213 <213 <213 <220	)> FI	ENGTI YPE : RGAN : EATUI	H: 50 PRT ISM: RE:	39 Art:		ial : : Syı	_		Poly]	p <b>e</b> pt:	ide				
< 40	D> SI	EQUEI	NCE:	91											
Met 1	Ser	Trp	Lys	Val 5	Val	Ile	Ile	Phe	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln
His	Gly	Leu	Lys 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	Сув	Ser	Thr 30	Ile	Thr
Glu	Gly	Tyr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr	Leu 50	Pro	Val	Gly	Asp	Val 55	Glu	Asn	Leu	Thr	60 CAa	Ser	Asp	Gly	Pro
Ser 65	Leu	Ile	Lys	Thr	Glu 70	Leu	Asp	Leu	Leu	Lys 75	Ser	Ala	Leu	Arg	Glu 80
Leu	ГÀв	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Gly	Ser 100	Gly	Ser	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val
Ala	Ala	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Val	Ala	Ile	Ala 125	ГÀв	Thr	Ile
Arg	Leu 130	Glu	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	ГÀз	ГÀз	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	ГÀЗ	Asp	Phe	Val	Ser 170	Lys	Asn	Leu	Thr	Arg 175	Ala
Ile	Asn	Lys	Asn 180	Lys	Cys	Asp	Ile	Asp 185	Asp	Leu	Lys	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Сув	Trp	Ile 285	Val	Lys	Ala
Ala	Pro 290	Ser	Cys	Ser	Glu	Lys 295	Lys	Gly	Asn	Tyr	Ala 300	CÀa	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	CÀa	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	Lys	Asp 325	Сув	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Сув 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Lys	Glu	Сув 350	Asn	Ile

Asn Ile														
	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Cha	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Cys
Tyr Lys 385	Gly	Val	Ser	390 390	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
Lys Gln	Leu	Asn	Lys 405	Gly	Cys	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	Lys	Val 430	Glu	Gly
Glu Gln	His 435	Val	Ile	Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile Lys 450	Phe	Pro	Glu	Asp	Gln 455	Phe	Gln	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu Asn 465	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu Ser	Ser	Ala	Glu 485	Lys	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu Ile	Ala	Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile Ile	Lys 515	Lys	Thr	Lys	Lys	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser
Gly Val 530	Thr	Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					
<220> FI <223> O	EATUR	RE:		lfic: TION		_		Polyp	pept:	ide				
<220> F	EATUF CHER	RE: INFO	ORMA:			_		Poly <u>r</u>	pept:	ide				
<220> FI <223> O'	EATUF CHER EQUEN	RE: INFO	ORMA:	rion	: Syr	nthet	ic I		_		Ile	Thr	Pro 15	Gln
<220 > F1 <223 > O' <400 > SI Met Ser	EATUF THER EQUEN	RE: INFO ICE: Lys	ORMA: 92 Val 5	rion Val	: Syr Ile	nthet	ic F	Ser 10	Leu	Leu			15	
<220> F) <223> O' <400> S) Met Ser 1	EATUF THER EQUEN Trp Leu	RE: INFO ICE: Lys Lys 20	92 Val 5 Glu	Val Ser	: Syr Ile Tyr	Ile Leu	Phe Glu 25	Ser 10 Glu	Leu	Leu Cys	Ser	Thr 30	15 Ile	Thr
<220> FI <223> O' <400> SI Met Ser 1 His Gly	EATUR THER Trp Leu Tyr 35	RE: INFO ICE: Lys Lys 20 Leu	92 Val 5 Glu Ser	Val Ser Val	: Syr Ile Tyr Leu	Ile Leu Arg	Phe Glu 25 Thr	Ser 10 Glu Gly	Leu Ser Trp	Leu Cys Tyr	Ser Thr 45	Thr 30 Asn	15 Ile Val	Thr Phe
<220> FF <223> O' <400> SI Met Ser 1 His Gly Glu Gly	EATUR THER Trp Leu Tyr 35	E: INFO ICE: Lys Lys 20 Leu Val	92 Val 5 Glu Ser	Val Ser Val Asp	: Syr Ile Tyr Leu Val 55	Ile Leu Arg 40	Phe Glu 25 Thr	Ser 10 Glu Gly Leu	Leu Ser Trp	Leu Cys Tyr Cys	Ser Thr 45 Ser	Thr 30 Asn Asp	15 Ile Val Gly	Thr Phe Pro
<220> FF <223> O' <400> SI Met Ser 1 His Gly Glu Gly Thr Leu 50 Ser Leu	EATURER THER TYP Leu Tyr 35 Pro Ile	RE: INFO ICE: Lys Lys 20 Leu Val	92 Val 5 Glu Ser Gly	Val Ser Val Asp Glu 70	: Syr Ile Tyr Leu Val 55 Leu	Ile Leu Arg 40 Glu Asp	Phe Glu 25 Thr Asn	Ser 10 Glu Gly Leu	Leu Ser Trp Thr	Leu Cys Tyr Cys 60 Ser	Ser Thr 45 Ser	Thr 30 Asn Asp	15 Ile Val Gly Arg	Thr Phe Pro Glu 80
<220> FF <223> O' <400> SI Met Ser 1 His Gly Glu Gly Thr Leu 50 Ser Leu 65	EATURE THER SQUENT Trp Leu Tyr 35 Pro Ile Thr	RE: INFC UCE: Lys Lys 20 Leu Val Lys	92 Val 5 Glu Ser Gly Thr	Val Ser Val Asp Glu 70 Ala	: Syr Ile Tyr Leu Val 55 Leu Asp	Ile Leu Arg 40 Glu Asp	Phe Glu 25 Thr Asn Leu Leu	Ser 10 Glu Gly Leu Leu	Leu Ser Trp Thr Lys 75 Arg	Leu Cys Tyr Cys 60 Ser	Ser Thr 45 Ser Ala	Thr 30 Asn Asp Leu	15 Ile Val Gly Arg Ile 95	Thr Phe Pro Glu 80 Glu
<220> FF <223> O' <400> SI Met Ser 1 His Gly Glu Gly Thr Leu 50 Ser Leu Lys	EATUR FHER GQUEN Trp Leu Tyr 35 Pro Ile Thr	RE: INFC UCE: Lys Lys 20 Leu Val Lys Val	92 Val 5 Glu Ser Gly Thr Ser 85	Val Ser Val Asp Glu 70 Ala	: Syr Ile Tyr Leu Val 55 Leu Asp	Ile Leu Arg 40 Glu Asp Gln Val	Phe Glu 25 Thr Asn Leu Leu Leu 105	Ser 10 Glu Gly Leu Leu Ala 90 Gly	Leu Ser Trp Thr Lys 75 Arg	Leu Cys Tyr Cys 60 Ser Glu	Ser Thr 45 Ser Ala Glu Ala	Thr 30 Asn Asp Leu Gln Leu 110	15 Ile Val Gly Arg Ile 95 Gly	Thr Phe Pro Glu 80 Glu Val
<220> FF <223> O' <400> SI Met Ser 1  His Gly Glu Gly Thr Leu 50 Ser Leu 65 Leu Lys Asn Pro	EATUR FHER EQUEN Trp Leu Tyr 35 Pro Ile Thr Gly Ala 115	RE: INFO NCE: Lys Lys 20 Leu Val Lys Val Ser 100	PRMA: 92 Val 5 Glu Ser Gly Thr Ser 85 Gly Ala	Val Ser Val Asp Glu 70 Ala Ser Val	: Syr Ile Tyr Leu Val 55 Leu Asp	Ile Leu Arg 40 Glu Asp Gln Val	Phe Glu 25 Thr Asn Leu Leu Los Gly	Ser 10 Glu Gly Leu Leu Ala 90 Gly Val	Leu Ser Trp Thr Lys 75 Arg Ala	Leu Cys Tyr Cys 60 Ser Glu Ile	Ser Thr 45 Ser Ala Glu Ala Ala 125	Thr 30 Asn Asp Leu Gln Leu 110	15 Ile Val Gly Arg Ile 95 Gly Thr	Thr Phe Pro Glu 80 Glu Val
<220> FF <223> O' <400> SI Met Ser 1 His Gly Glu Gly Thr Leu 50 Ser Leu 65 Leu Lys Asn Pro Ala Ala Arg Leu	EATUH FHER EQUEN Trp Leu Tyr 35 Pro Ile Thr Gly Ala 115 Glu	RE: INFO NCE: Lys Lys 20 Leu Val Lys Val Ser 100 Ala	PRMA: 92 Val 5 Glu Ser Gly Thr Ser 85 Gly Ala	Val Ser Val Asp Glu 70 Ala Ser Val	: Syr Ile Tyr Leu Val 55 Leu Asp Phe Thr	Ile Leu Arg 40 Glu Asp Gln Val Ala 120 Ala	Phe Glu 25 Thr Asn Leu Leu 105 Gly Ile	Ser 10 Glu Gly Leu Leu Ala 90 Gly Val Asn	Leu Ser Trp Thr Lys 75 Arg Ala Ala	Leu Cys Tyr Cys 60 Ser Glu Ile Ile Ala 140	Ser Thr 45 Ser Ala Glu Ala Ala 125 Leu	Thr 30 Asn Asp Leu Gln Lys Lys	15 Ile Val Gly Arg Ile 95 Gly Thr	Thr Phe Pro Glu 80 Glu Val Ile
<220> FF <223> O' <400> SI Met Ser 1 His Gly Glu Gly Thr Leu 50 Ser Leu 65 Leu Lys Asn Pro Ala Ala Arg Leu 130 Asn Glu	EATUR FHER EQUEN Trp Leu Tyr 35 Pro Ile Thr Gly Ala 115 Glu	RE: INFO ICE: Lys Lys 20 Leu Val Lys Val Ser 100 Ala Ser Val	PRMA: 92 Val 5 Glu Ser Gly Thr Ser 85 Gly Ala Glu Ser	Val Ser Val Asp Glu 70 Ala Ser Val Thr 150	Ile Tyr Leu Val 55 Leu Asp Phe Thr Thr 135	Ile Leu Arg 40 Glu Asp Gln Val Ala 120 Ala Gly	Phe Glu 25 Thr Asn Leu Leu 105 Gly Ile Asn	Ser 10 Glu Gly Leu Leu Ala 90 Gly Val Asn Gly	Leu Ser Trp Thr Lys 75 Arg Ala Ala Asn Val 155	Leu Cys Tyr Cys 60 Ser Glu Ile Ala 140 Arg	Ser Thr 45 Ser Ala Glu Ala 125 Leu Val	Thr 30 Asn Asp Leu Gln Leu 110 Lys Lys	15 Ile Val Gly Arg Ile 95 Gly Thr Lys Ala	Thr Phe Pro Glu 80 Glu Val Ile Thr

-continued

Ile Asn Lys Asn Lys Cys Asp Ile Asp Asp Leu Lys Met Ala Val Ser 185 Phe Ser Gln Phe Asn Arg Arg Phe Leu Asn Val Val Arg Gln Phe Ser Asp Asn Ala Gly Ile Thr Pro Ala Ile Ser Leu Asp Leu Met Thr Asp Ala Glu Leu Ala Arg Ala Val Pro Asn Met Pro Thr Ser Ala Gly Gln Ile Lys Leu Met Leu Glu Asn Arg Ala Met Val Arg Arg Lys Gly Phe Gly Ile Leu Ile Gly Val Tyr Gly Ser Ser Val Ile Tyr Met Val Gln \$260\$Leu Pro Ile Phe Gly Val Ile Asp Thr Pro Cys Trp Ile Val Lys Ala Ala Pro Ser Cys Ser Glu Lys Lys Gly Asn Tyr Ala Cys Leu Leu Arg Glu Asp Gln Gly Trp Tyr Cys Gln Asn Ala Gly Ser Thr Val Tyr Tyr Pro Asn Glu Lys Asp Cys Glu Thr Arg Gly Asp His Val Phe Cys Asp 325 330 335 Thr Ala Ala Gly Ile Asn Val Ala Glu Gln Ser Lys Glu Cys Asn Ile 345 Asn Ile Ser Thr Thr Asn Tyr Pro Cys Lys Val Ser Thr Gly Arg His 360 Pro Ile Ser Met Val Ala Leu Ser Pro Leu Gly Ala Leu Val Ala Cys Tyr Lys Gly Val Ser Cys Ser Ile Gly Ser Asn Arg Val Gly Ile Ile Lys Gln Leu Asn Lys Gly Cys Ser Tyr Ile Thr Asn Gln Asp Ala Asp 410 Thr Val Thr Ile Asp Asn Thr Val Tyr Gln Leu Ser Lys Val Glu Gly Glu Gln His Val Ile Lys Gly Arg Pro Val Ser Ser Ser Phe Asp Pro Ile Lys Phe Pro Glu Asn Gln Phe Gln Val Ala Leu Asp Gln Val Phe Glu Asn Ile Glu Asn Ser Gln Ala Leu Val Asp Gln Ser Asn Arg Ile Leu Ser Ser Ala Glu Lys Gly Asn Thr Gly Phe Ile Ile Val Ile Ile 485 490 495 Leu Ile Ala Val Leu Gly Ser Ser Met Ile Leu Val Ser Ile Phe Ile Ile Ile Lys Lys Thr Lys Lys Pro Thr Gly Ala Pro Pro Glu Leu Ser Gly Val Thr Asn Asn Gly Phe Ile Pro His Asn 535 <210> SEQ ID NO 93 <211> LENGTH: 539 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide

<400> SEQUENCE: 93

Met 1	Ser	Trp	Lys	Val 5	Val	Ile	Ile	Phe	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln
His	Gly	Leu	Lys 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	Cys	Ser	Thr 30	Ile	Thr
Glu	Gly	Tyr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr	Leu 50	Glu	Val	Gly	Asp	Val 55	Glu	Asn	Leu	Thr	60 CÀa	Ser	Asp	Gly	Pro
Ser 65	Leu	Ile	Lys	Thr	Glu 70	Leu	Asp	Leu	Leu	Lys 75	Ser	Ala	Leu	Arg	Glu 80
Leu	Lys	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Gly	Ser 100	Gly	Ser	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val
Ala	Ala	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Val	Ala	Ile	Ala 125	Lys	Thr	Ile
Arg	Leu 130	Glu	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	Lys	Lys	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	Lys	Asp	Phe	Val	Ser 170	Lys	Asn	Leu	Thr	Arg 175	Ala
Ile	Asn	ГÀв	Asn 180	ГÀв	GÀa	Asp	Ile	Asp 185	Asp	Leu	ГÀв	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	ГÀа	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	CAa	Trp	Ile 285	Val	Lys	Ala
Ala	Pro 290	Ser	Сув	Ser	Glu	Lys 295	Lys	Gly	Asn	Tyr	Ala 300	CAa	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	CAa	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	ГÀа	Asp 325	CÀa	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	335 Cys	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Lys	Glu	Сув 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	CAa	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Сув
Tyr 385	Lys	Gly	Val	Ser	Cys 390	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
Lys	Gln	Leu	Asn	Lуs 405	Gly	Cys	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile	Asp	Asn	Thr	Val	Tyr	Gln	Leu	Ser	Lys	Val	Glu	Gly

		420					425					430		
Glu Gln	His 435	Val	Ile	Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile Lys 450	Phe	Pro	Glu	Asp	Gln 455	Phe	Gln	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu Asn 465	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu Ser	Ser.	Ala	Glu 485	Lys	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu Ile		Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile Ile	Lys 515	ГЛа	Thr	ГЛа	ГÀа	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser
Gly Val 530	Thr	Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					
<210 > S. <211 > L. <212 > T <213 > O. <220 > F. <223 > O.	ENGTH YPE: RGANI EATUR THER	: 53 PRT SM: E: INFO	Art: DRMA:			-		Polyr	p <b>e</b> pt:	ide				
<400> S	EQUEN	CE:	94											
Met Ser 1	Trp	ГЛа	Val 5	Val	Ile	Ile	Phe	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln
His Gly		Lys 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	Càa	Ser	Thr 30	Ile	Thr
Glu Gly	Tyr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr Leu 50	Glu	Val	Gly	Asp	Leu 55	Glu	Asn	Leu	Thr	60 Gàa	Ser	Asp	Gly	Pro
Ser Leu 65	Ile	Lys	Thr	Glu 70	Leu	Asp	Leu	Thr	Lys 75	Ser	Ala	Leu	Arg	Glu 80
Leu Lys	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn Pro		Ser 100	Gly	Ser	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val
Ala Ala	Ala 115				Thr								Thr	Ile
Arg Leu 130	Glu	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	Lys	Lys	Thr
Asn Glu 145	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala Val	Arg	Glu	Leu 165	Lys	Asp	Phe	Val	Ser 170	Lys	Asn	Leu	Thr	Arg 175	Ala
Ile Asn	_	Asn 180	Lys	Сув	Asp	Ile	Asp 185	Asp	Leu	Lys	Met	Ala 190	Val	Ser
Phe Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala Glu 225	Leu .	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile Lys	Leu :	Met	Leu	Glu	Asn	Arg	Ala	Met	Val	Arg	Arg	Lys	Gly	Phe

												COII	C III.	aca	
				245					250					255	
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Cys	Trp	Ile 285	Val	Lys	Ala
Ala	Pro 290	Ser	Сув	Ser	Glu	Lys 295	Lys	Gly	Asn	Tyr	Ala 300	Сув	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	СЛа	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	Lys	Asp 325	CAa	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Cys 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Lys	Glu	Сув 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Cys	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Cys
Tyr 385	Lys	Gly	Val	Ser	390 CAa	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
Lys	Gln	Leu	Asn	Lys 405	Gly	CAa	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	ГÀа	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	rys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile	Lys 450	Phe	Pro	Glu	Asp	Gln 455	Phe	Gln	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Asn	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu	Ser	Ser	Ala	Glu 485	rys	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu	Ile	Ala	Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile	Ile	Lys 515	Lys	Thr	rys	Lys	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser
Gly	Val 530	Thr	Asn	Asn	Gly	Phe 535		Pro	His	Asn					
<213 <213 <223	0 > SI L > LI 2 > T\ 3 > OI 0 > FI 3 > O\	ENGTH (PE: RGAN) EATUR	H: 53 PRT [SM: RE:	39 Art:			-		oly <u>i</u>	pept:	ide				
< 400	)> SI	EQUE	ICE:	95											
Met 1	Ser	Trp	Lys	Val 5	Val	Ile	Ile	Phe	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln
His	Gly	Leu	Lys 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	Сув	Ser	Thr 30	Ile	Thr
Glu	Gly	Tyr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr	Leu 50	Glu	Val	Gly	Asp	Val 55	Glu	Asn	Leu	Thr	Cys	Ser	Asp	Gly	Pro
Ser	Leu	Ile	Lys	Thr	Glu	Leu	Asp	Leu	Thr	Lys	Ser	Ala	Leu	Arg	Glu

					70					75					0.0
65					70					75					80
Leu	ГÀа	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Gly	Ser 100	Gly	Ser	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val
Ala	Ala	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Val	Ala	Ile	Ala 125	Lys	Thr	Ile
Arg	Leu 130	Glu	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	Lys	Lys	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	Lys	Asp	Phe	Val	Leu 170	Lys	Asn	Leu	Thr	Arg 175	Ala
Ile	Asn	Lys	Asn 180	Lys	Cys	Asp	Ile	Asp 185	Asp	Leu	Lys	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Cys	Trp	Ile 285	Val	Lys	Ala
Ala	Pro 290	Ser	Сув	Ser	Glu	Lys 295	Lys	Gly	Asn	Tyr	Ala 300	Cys	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	Cys	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	Lys	Asp 325	Сув	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Cys 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	ГÀз	Glu	Сув 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Сув	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	CÀa
Tyr 385	ГÀа	Gly	Val	Ser	Cys 390	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
Lys	Gln	Leu	Asn	Lys 405	Gly	Cys	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	Lys	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile	Lys 450	Phe	Pro	Glu	Asp	Gln 455	Phe	Gln	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Asn	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu	Ser	Ser	Ala	Glu 485	Lys	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile

#### -continued

Leu Ile Ala Val Leu Gly Ser Ser Met Ile Leu Val Ser Ile Phe Ile 505 Ile Ile Lys Lys Thr Lys Lys Pro Thr Gly Ala Pro Pro Glu Leu Ser 520 Gly Val Thr Asn Asn Gly Phe Ile Pro His Asn <210> SEQ ID NO 96 <211> LENGTH: 539 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide <400> SEQUENCE: 96 Met Ser Trp Lys Val Val Ile Ile Phe Ser Leu Leu Ile Thr Pro Gln His Gly Leu Lys Glu Ser Tyr Leu Glu Glu Ser Cys Ser Thr Ile Thr Glu Gly Tyr Leu Ser Val Leu Arg Thr Gly Trp Tyr Thr Asn Val Phe Thr Leu Glu Val Gly Asp Val Glu Asn Leu Thr Cys Ser Asp Gly Pro Ser Leu Ile Lys Thr Glu Leu Asp Leu Thr Lys Ser Ala Leu Arg Glu Leu Lys Thr Val Ser Ala Asp Gln Leu Ala Arg Glu Glu Gln Ile Glu Asn Pro Gly Ser Gly Ser Phe Val Leu Gly Ala Ile Ala Leu Gly Val 105 Ala Ala Ala Ala Val Thr Ala Gly Val Ala Ile Ala Lys Thr Ile 120 Arg Leu Glu Ser Glu Val Thr Ala Ile Asn Asn Ala Leu Lys Lys Thr Asn Glu Ala Val Ser Thr Leu Gly Asn Gly Val Arg Val Leu Ala Thr 155 Ala Val Arg Glu Leu Lys Asp Phe Val Ser Lys Asn Leu Trp Arg Ala Ile Asn Lys Asn Lys Cys Asp Ile Asp Asp Leu Lys Met Ala Val Ser Phe Ser Gln Phe Asn Arg Arg Phe Leu Asn Val Val Arg Gln Phe Ser Asp Asn Ala Gly Ile Thr Pro Ala Ile Ser Leu Asp Leu Met Thr Asp Ala Glu Leu Ala Arg Ala Val Pro Asn Met Pro Thr Ser Ala Gly Gln Ile Lys Leu Met Leu Glu Asn Arg Ala Met Val Arg Arg Lys Gly Phe Gly Ile Leu Ile Gly Val Tyr Gly Ser Ser Val Ile Tyr Met Val Gln 265 Leu Pro Ile Phe Gly Val Ile Asp Thr Pro Cys Trp Ile Val Lys Ala Ala Pro Ser Cys Ser Glu Lys Lys Gly Asn Tyr Ala Cys Leu Leu Arg 295 300 Glu Asp Gln Gly Trp Tyr Cys Gln Asn Ala Gly Ser Thr Val Tyr Tyr 310 315

-continued

Pro Asn Glu Lys Asp Cys Glu Thr Arg Gly Asp His Val Phe Cys Asp

Thr Ala Ala Gly Ile Asn Val Ala Glu Gln Ser Lys Glu Cys Asn Ile Asn Ile Ser Thr Thr Asn Tyr Pro Cys Lys Val Ser Thr Gly Arg His Pro Ile Ser Met Val Ala Leu Ser Pro Leu Gly Ala Leu Val Ala Cys Tyr Lys Gly Val Ser Cys Ser Ile Gly Ser Asn Arg Val Gly Ile Ile Lys Gln Leu Asn Lys Gly Cys Ser Tyr Ile Thr Asn Gln Asp Ala Asp Thr Val Thr Ile Asp Asn Thr Val Tyr Gln Leu Ser Lys Val Glu Gly Glu Gln His Val Ile Lys Gly Arg Pro Val Ser Ser Ser Phe Asp Pro 440 Ile Lys Phe Pro Glu Asp Gln Phe Gln Val Ala Leu Asp Gln Val Phe 455 Glu Asn Ile Glu Asn Ser Gln Ala Leu Val Asp Gln Ser Asn Arg Ile Leu Ser Ser Ala Glu Lys Gly Asn Thr Gly Phe Ile Ile Val Ile Ile 490 Leu Ile Ala Val Leu Gly Ser Ser Met Ile Leu Val Ser Ile Phe Ile 505 Ile Ile Lys Lys Thr Lys Lys Pro Thr Gly Ala Pro Pro Glu Leu Ser 520 Gly Val Thr Asn Asn Gly Phe Ile Pro His Asn 530 <210> SEQ ID NO 97 <211> LENGTH: 539 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide <400> SEQUENCE: 97 Met Ser Trp Lys Val Val Ile Ile Phe Ser Leu Leu Ile Thr Pro Gln His Gly Leu Lys Glu Ser Tyr Leu Glu Glu Ser Cys Ser Thr Ile Thr Glu Gly Tyr Leu Ser Val Leu Arg Thr Gly Trp Tyr Thr Asn Val Phe Thr Leu Glu Val Gly Asp Leu Glu Asn Leu Thr Cys Ser Asp Gly Pro Ser Leu Ile Lys Thr Glu Leu Asp Leu Leu Lys Ser Ala Leu Arg Glu Leu Lys Thr Val Ser Ala Asp Gln Leu Ala Arg Glu Glu Gln Ile Glu Asn Pro Gly Ser Gly Ser Phe Val Leu Gly Ala Ile Ala Leu Gly Val Ala Ala Ala Ala Val Thr Ala Gly Val Ala Ile Ala Lys Thr Ile 120 125 Arg Leu Glu Ser Glu Val Thr Ala Ile Asn Asn Ala Leu Lys Lys Thr 135

Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	Lys	Asp	Phe	Val	Leu 170	Lys	Asn	Leu	Trp	Arg 175	Ala
Ile	Asn	Lys	Asn 180	Lys	CÀa	Asp	Ile	Asp 185	Asp	Leu	Lys	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	ГÀа	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Cya	Trp	Ile 285	Val	ГÀа	Ala
Ala	Pro 290	Ser	Cys	Ser	Glu	Lys 295	Lys	Gly	Asn	Tyr	Ala 300	CÀa	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	Cys	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	Lys	Asp 325	CAa	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	335 CAa	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Lys	Glu	Сув 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Сув	ГЛЗ	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Cha
Tyr 385	ГÀв	Gly	Val	Ser	390 CAa	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
Lys	Gln	Leu	Asn	Lys 405	Gly	Cys	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	ГÀа	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	ràa	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile	Lys 450	Phe	Pro	Glu	Asp	Gln 455	Phe	Gln	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Asn	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu	Ser	Ser	Ala	Glu 485	ràa	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu	Ile	Ala	Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile	Ile	Lys 515	Lys	Thr	ГЛа	Lys	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser
Gly	Val 530	Thr	Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					

<213	2 > T 3 > OF 0 > FF	RGAN:	ISM:	Art:	ific:	ial s	Seque	ence							
	3 > 01			ORMA'	rion	: Syı	nthet	ic I	Poly	pept:	ide				
< 400	O> SI	EQUEI	ICE:	98											
Met 1	Ser	Trp	Lys	Val 5	Val	Ile	Ile	Phe	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln
His	Gly	Leu	Lys 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	CÀa	Ser	Thr 30	Ile	Thr
Glu	Gly	Tyr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr	Leu 50	Pro	Val	Gly	Asp	Val 55	Glu	Asn	Leu	Thr	CAa	Ser	Asp	Gly	Pro
Ser 65	Leu	Ile	ГÀа	Thr	Glu 70	Leu	Asp	Leu	Thr	Lys 75	Ser	Ala	Leu	Arg	Glu 80
Leu	ГÀа	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Gly	Ser 100	Gly	Ser	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val
Ala	Ala	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Val	Ala	Ile	Ala 125	ГÀа	Thr	Ile
Arg	Leu 130	Glu	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	Lys	Lys	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	Lys	Asp	Phe	Val	Ser 170	Lys	Asn	Leu	Thr	Arg 175	Ala
Ile	Asn	Lys	Asn 180	Lys	CAa	Asp	Ile	Asp 185	Asp	Leu	ГÀЗ	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Сув	Trp	Ile 285	Val	Lys	Ala
Ala	Pro 290	Ser	Cys	Ser	Glu	Lys 295	Lys	Gly	Asn	Tyr	Ala 300	CAa	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	CAa	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	Lys	Asp 325	CÀa	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	335 Cys	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Lys	Glu	Cys 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	СЛа	Lys	Val	Ser	Thr	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Сув

Tyr 385	Lys	Gly	Val	Ser	390	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
ГÀа	Gln	Leu	Asn	Lys 405	Gly	Cys	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	Lys	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile	Lys 450	Phe	Pro	Glu	Asp	Gln 455	Phe	Gln	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Asn	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu	Ser	Ser	Ala	Glu 485	Lys	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu	Ile	Ala	Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile	Ile	Lys 515	Lys	Thr	Lys	Lys	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser
Gly	Val 530	Thr	Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					
<211 <212 <213 <220	0 > SE L > LE 2 > TY 3 > OF 0 > FE 3 > OT	ENGTH PE: RGANI EATUR	H: 53 PRT [SM: RE:	39 Art:			-		Polyr	pepti	lde				
< 400	)> SE	EQUEN	ICE :	99											
Met 1	Ser	Trp	Lys	Val 5	Val	Ile	Ile	Phe	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln
His	Gly	Leu	Lys 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	Cys	Ser		Ile	Thr
													30		
Glu	Gly	Tyr 35	Leu	Ser	Val	Leu	Arg 40		Gly	Trp	Tyr	Thr 45		Val	Phe
	Gly Leu 50	35					40	Thr	-	-	-	45	Asn		
Thr	Leu	35 Glu	Val	Gly	Asp	Val 55	40 Glu	Thr Asn	Leu	Thr	60 CÀa	45 Ser	Asn Asp	Gly	Pro
Thr Ser 65	Leu 50	35 Glu Ile	Val Lys	Gly Thr	Asp Glu 70	Val 55 Leu	40 Glu Asp	Thr Asn Leu	Leu Thr	Thr Lys 75	Cys 60 Ser	45 Ser Ala	Asn Asp Leu	Gly Arg	Pro Glu 80
Thr Ser 65 Leu	Leu 50 Leu	35 Glu Ile Thr	Val Lys Val	Gly Thr Ser 85	Asp Glu 70 Ala	Val 55 Leu Asp	40 Glu Asp Gln	Thr Asn Leu Leu	Leu Thr Ala	Thr Lys 75 Arg	Cys 60 Ser	45 Ser Ala Glu	Asn Asp Leu Gln	Gly Arg Ile 95	Pro Glu 80 Glu
Thr Ser 65 Leu Asn	Leu 50 Leu Lys	35 Glu Ile Thr	Val Lys Val Ser	Gly Thr Ser 85 Gly	Asp Glu 70 Ala Ser	Val 55 Leu Asp	40 Glu Asp Gln Val	Thr Asn Leu Leu Leu 105	Leu Thr Ala 90 Gly	Thr Lys 75 Arg	Cys 60 Ser Glu	45 Ser Ala Glu Ala	Asn Asp Leu Gln Leu 110	Gly Arg Ile 95 Gly	Pro Glu 80 Glu Val
Thr Ser 65 Leu Asn	Leu 50 Leu Lys Pro	35 Glu Ile Thr Gly Ala 115	Val Lys Val Ser 100	Gly Thr Ser 85 Gly Ala	Asp Glu 70 Ala Ser Val	Val 55 Leu Asp Phe	40 Glu Asp Gln Val Ala 120	Thr Asn Leu Leu Leu Gly	Leu Thr Ala 90 Gly Val	Thr Lys 75 Arg Ala	Cys 60 Ser Glu Ile	45 Ser Ala Glu Ala Ala 125	Asn Asp Leu Gln Leu 110	Gly Arg Ile 95 Gly Thr	Pro Glu 80 Glu Val
Thr Ser 65 Leu Asn Ala Arg	Leu 50 Leu Lys Pro Ala	35 Glu Ile Thr Gly Ala 115 Glu	Val Lys Val Ser 100 Ala	Gly Thr Ser 85 Gly Ala Glu	Asp Glu 70 Ala Ser Val	Val 55 Leu Asp Phe Thr	40 Glu Asp Gln Val Ala 120	Thr Asn Leu Leu 105 Gly Ile	Leu Thr Ala 90 Gly Val	Thr Lys 75 Arg Ala Ala Asn	Cys 60 Ser Glu Ile Ile Ala 140	45 Ser Ala Glu Ala Ala 125 Leu	Asn Asp Leu Gln Leu 110 Lys	Gly Arg Ile 95 Gly Thr	Pro Glu 80 Glu Val Ile
Thr Ser 65 Leu Asn Ala Arg Asn 145	Leu 50 Leu Lys Pro Ala Leu 130	35 Glu Ile Thr Gly Ala 115 Glu	Val Lys Val Ser 100 Ala Ser	Gly Thr Ser 85 Gly Ala Glu Ser	Asp Glu 70 Ala Ser Val Thr 150	Val 55 Leu Asp Phe Thr 135 Leu	40 Glu Asp Gln Val Ala 120 Ala Gly	Thr Asn Leu Leu 105 Gly Ile Asn	Leu Thr Ala 90 Gly Val Asn	Thr Lys 75 Arg Ala Ala Asn Val 155	Cys 60 Ser Glu Ile Ile Ala 140 Arg	45 Ser Ala Glu Ala 125 Leu Val	Asn Asp Leu Gln Leu 110 Lys Lys	Gly Arg Ile 95 Gly Thr Lys Ala	Pro Glu 80 Glu Val Ile Thr
Thr Ser 65 Leu Asn Ala Arg Asn 145 Ala	Leu 50 Leu Lys Pro Ala Leu 130	35 Glu Ile Thr Gly Ala 115 Glu Ala	Val Lys Val Ser 100 Ala Ser Val	Gly Thr Ser 85 Gly Ala Glu Ser Leu 165	Asp Glu 70 Ala Ser Val Thr 150 Lys	Val 55 Leu Asp Phe Thr 135 Leu	40 Glu Asp Gln Val Ala 120 Ala Gly Phe	Thr Asn Leu Leu 105 Gly Ile Asn Val	Leu Thr Ala 90 Gly Val Asn Gly Ser 170	Thr Lys 75 Arg Ala Ala Asn Val 155 Lys	Cys 60 Ser Glu Ile Ile Ala 140 Arg	45 Ser Ala Glu Ala 125 Leu Val	Asn Asp Leu Gln Leu 110 Lys Lys Lys Leu Thr	Gly Arg Ile 95 Gly Thr Lys Ala Arg 175	Pro Glu 80 Glu Val Ile Thr Thr 160 Ala

-continued

Asp Asn Ala Gly Ile Thr Pro Ala Ile Ser Leu Asp Leu Met Thr Asp 215 Ala Glu Leu Ala Arg Ala Val Pro Asn Met Pro Thr Ser Ala Gly Gln Ile Lys Leu Met Leu Glu Asn Arg Ala Met Val Arg Arg Lys Gly Phe 250 Gly Ile Leu Ile Gly Val Tyr Gly Ser Ser Val Ile Tyr Met Val Gln Leu Pro Ile Phe Gly Val Ile Asp Thr Pro Cys Trp Ile Val Lys Ala Ala Pro Ser Cys Ser Glu Lys Lys Gly Asn Tyr Ala Cys Leu Leu Arg Glu Asp Gln Gly Trp Tyr Cys Gln Asn Ala Gly Ser Thr Val Tyr Tyr Pro Asn Glu Lys Asp Cys Glu Thr Arg Gly Asp His Val Phe Cys Asp 325 330 335 Thr Ala Ala Gly Ile Asn Val Ala Glu Gln Ser Lys Glu Cys Asn Ile Asn Ile Ser Thr Thr Asn Tyr Pro Cys Lys Val Ser Thr Gly Arg His Pro Ile Ser Met Val Ala Leu Ser Pro Leu Gly Ala Leu Val Ala Cys 375 Tyr Lys Gly Val Ser Cys Ser Ile Gly Ser Asn Arg Val Gly Ile Ile 390 395 Lys Gln Leu Asn Lys Gly Cys Ser Tyr Ile Thr Asn Gln Asp Ala Asp Thr Val Thr Ile Asp Asn Thr Val Tyr Gln Leu Ser Lys Val Glu Gly 425 Glu Gln His Val Ile Lys Gly Arg Pro Val Ser Ser Ser Phe Asp Pro 440 Ile Lys Phe Pro Glu Asp Gln Phe Gln Val Ala Leu Asp Gln Val Phe 455 Glu Asn Ile Glu Asn Ser Gln Ala Leu Val Asp Gln Ser Asn Arg Ile Leu Ser Ser Ala Glu Lys Gly Asn Thr Gly Phe Ile Ile Val Ile Ile 490 Leu Ile Ala Val Leu Gly Ser Ser Met Ile Leu Val Ser Ile Phe Ile Ile Ile Lys Lys Thr Lys Lys Pro Thr Gly Ala Pro Pro Glu Leu Ser Gly Val Thr Asn Asn Gly Phe Ile Pro His Asn <210> SEQ ID NO 100 <211> LENGTH: 539 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide <400> SEQUENCE: 100 Met Ser Trp Lys Val Val Ile Ile Phe Ser Leu Leu Ile Thr Pro Gln 10 His Gly Leu Lys Glu Ser Tyr Leu Glu Glu Ser Cys Ser Thr Ile Thr 25

Glu	Gly	Tyr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr	Leu 50	Glu	Val	Gly	Asp	Val 55	Glu	Asn	Leu	Thr	60 Cys	Ser	Asp	Gly	Pro
Ser 65	Leu	Ile	Lys	Thr	Glu 70	Leu	Asp	Leu	Thr	Lys 75	Ser	Ala	Leu	Arg	Glu 80
Leu	Lys	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Gly	Ser 100	Gly	Ser	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val
Ala	Ala	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Val	Ala	Ile	Ala 125	Lys	Thr	Ile
Arg	Leu 130	Glu	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	Lys	Lys	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	Lys	Asp	Phe	Val	Ser 170	Lys	Asn	Leu	Thr	Arg 175	Ala
Ile	Asn	ГÀа	Asn 180	ГÀа	CÀa	Pro	Ile	Asp 185	Asp	Leu	ГÀа	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Cys	Trp	Ile 285	Val	ГЛа	Ala
Ala	Pro 290	Ser	CAa	Ser	Glu	Lys 295	Lys	Gly	Asn	Tyr	Ala 300	CAa	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	CAa	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	ГÀв	Asp 325	CAa	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Сув 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	ГÀа	Glu	Сув 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Cys	ГÀв	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	CAa
Tyr 385	Lys	Gly	Val	Ser	Cys 390	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
Lys	Gln	Leu	Asn	Lys 405	Gly	Сув	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	Гла	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile	Lys	Phe	Pro	Glu	Asp	Gln	Phe	Gln	Val	Ala	Leu	Asp	Gln	Val	Phe

	450					455					460				
Glu 465	Asn	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu	Ser	Ser	Ala	Glu 485	Lys	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu	Ile	Ala	Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile	Ile	Lys 515	Lys	Thr	Lys	Lys	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser
Gly	Val 530	Thr	Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					
<210> SEQ ID NO 101 <211> LENGTH: 539 <212> TYPE: PRT															
<213	> OF	RGANI	SM:	Arti	lfici	icial Sequence									
		EATUF		RMAT	ON:	Syr	nthet	ic F	olyp	epti	ide				
<400> SEQUENCE: 101															
Met 1	Ser	Trp	Lys	Val 5	Val	Ile	Ile	Phe	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln
His	Gly	Leu	Lys 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	Cys	Ser	Thr 30	Ile	Thr
Glu	Gly	Tyr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr	Leu 50	Glu	Val	Gly	Asp	Val 55	Glu	Asn	Leu	Thr	60 GÀa	Ser	Asp	Gly	Pro
Ser 65	Leu	Ile	Lys	Thr	Glu 70	Leu	Asp	Leu	Thr	Lys 75	Ser	Ala	Leu	Arg	Glu 80
Leu	Lys	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Gly	Ser 100	Gly	Ser	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val
Ala	Ala	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Val	Ala	Ile	Ala 125	Lys	Thr	Ile
Arg	Leu 130	Pro	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	Lys	Lys	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	Lys	Asp	Phe	Val	Ser 170	Lys	Asn	Leu	Thr	Arg 175	Ala
Ile	Asn	ГЛа	Asn 180	rys	CAa	Aap	Ile	Asp 185	Asp	Leu	ГÀа	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile	Phe	Gly	Val	Ile	Asp	Thr	Pro	Cys	Trp	Ile	Val	Lys	Ala

285

## -continued

280

275

Ala	Pro 290	Ser	СЛа	Ser	Glu	Lys 295	Lys	Gly	Asn	Tyr	Ala 300	СЛа	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	Сув	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	Lys	Asp 325	Сув	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Сув 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Lys	Glu	Cys 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Cys	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Cys
Tyr 385	Lys	Gly	Val	Ser	390 CAa	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
Lys	Gln	Leu	Asn	Lys 405	Gly	Cys	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	ГÀа	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile	Lys 450	Phe	Pro	Glu	Asp	Gln 455	Phe	Gln	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Asn	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu	Ser	Ser	Ala	Glu 485	ГÀа	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu	Ile	Ala	Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile	Ile	Lys 515	Lys	Thr	Lys	Lys	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser
Gly	Val 530	Thr	Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					
<210> SEQ ID NO 102 <211> LENGTH: 539 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide															
<400> SEQUENCE: 102															
Met 1	Ser	Trp	Lys	Val 5	Val	Ile	Ile	Phe	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln
His	Gly	Leu	Lys 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	Cys	Ser	Thr 30	Ile	Thr
Glu	Gly	Tyr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr	Leu 50	Glu	Val	Gly	Asp	Val 55	Glu	Asn	Leu	Thr	Cys	Ser	Asp	Gly	Pro
Ser 65	Leu	Ile	Lys	Thr	Glu 70	Leu	Asp	Leu	Thr	Lys 75	Ser	Ala	Leu	Arg	Glu 80
Leu	Lys	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Gly	Ser	Gly	Ser	Phe	Val	Leu	Gly	Ala	Ile	Ala	Leu	Gly	Val

			100					105					110		
Ala	Ala	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Val	Ala	Ile	Ala 125	Lys	Thr	Ile
Arg	Leu 130	Glu	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	ГÀз	Lys	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	ГÀЗ	Asp	Phe	Val	Ser 170	Lys	Asn	Leu	Thr	Arg 175	Ala
Ile	Asn	Lys	Asn 180	Lys	CÀa	Asp	Ile	Asp 185	Asp	Leu	Lys	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Cys	Trp	Ile 285	Val	Lys	Ala
Ala	Pro 290	Ser	Cys	Ser	Glu	Lys 295	Lys	Gly	Asn	Tyr	Ala 300	CÀa	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	CÀa	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	Lys	Asp 325	CAa	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Сув 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Lys	Glu	Сув 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Cys	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	CÀa
Tyr 385	Lys	Gly	Val	Ser	390	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
Lys	Gln	Leu	Asn	Lys 405	Gly	CAa	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	ГÀа	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Pro	Pro
Ile	Lys 450	Phe	Pro	Glu	Asp	Gln 455	Phe	Gln	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Asn	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu	Ser	Ser	Ala	Glu 485	Lys	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu	Ile	Ala	Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile	Ile	Lys 515	Lys	Thr	Lys	Lys	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser

Gly	Val 530	Thr	Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					
<213 <213 <213 <220	)> FI	ENGTI PE: RGAN EATUI	H: 50 PRT ISM: RE:	39 Art:	ific: TION		_		?oly]	pept:	ide				
< 40	)> SI	EQUEI	ICE :	103											
Met 1	Ser	Trp	Lys	Val 5	Val	Ile	Ile	Phe	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln
His	Gly	Leu	Lys 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	Cys	Ser	Thr 30	Ile	Thr
Glu	Gly	Tyr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr	Leu 50	Glu	Val	Gly	Asp	Val 55	Glu	Asn	Leu	Thr	Cys	Ser	Asp	Gly	Pro
Ser 65	Leu	Ile	Lys	Thr	Glu 70	Leu	Asp	Leu	Thr	Lys 75	Ser	Ala	Leu	Arg	Glu 80
Leu	Lys	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Gly	Ser 100	Gly	Ser	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val
Ala	Ala	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Val	Ala	Ile	Ala 125	ГÀв	Thr	Ile
Arg	Leu 130	Glu	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	ГÀв	ГÀв	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	Lys	Asp	Phe	Val	Ser 170	Lys	Asn	Leu	Thr	Arg 175	Ala
Ile	Asn	Lys	Asn 180	Lys	CAa	Asp	Ile	Asp 185	Asp	Leu	Lys	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	ГЛа	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	ГÀа	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Cys	Trp	Ile 285	Val	Lys	Ala
Ala	Pro 290	Ser	Cys	Ser	Glu	Lys 295	Lys	Gly	Asn	Tyr	Ala 300	CAa	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	Cys	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	Lys	Asp 325	Сув	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Сув 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Lys	Glu	Сув 350	Asn	Ile

-continued

Asn Ile Ser Thr Thr Asn Tyr Pro Cys Lys Val Ser Thr Gly Arg His

360 Pro Ile Ser Met Val Ala Leu Ser Pro Leu Gly Ala Leu Val Ala Cys 375 Tyr Lys Gly Val Ser Cys Ser Ile Gly Ser Asn Arg Val Gly Ile Ile Lys Gln Leu Asn Lys Gly Cys Ser Tyr Ile Thr Asn Gln Asp Ala Asp Thr Val Thr Ile Asp Asn Thr Val Tyr Gln Leu Ser Lys Val Glu Gly Glu Gln His Val Ile Lys Gly Arg Pro Val Ser Ser Ser Phe Asp Pro Ile Lys Phe Pro Glu Asn Gln Phe Gln Val Ala Leu Asp Gln Val Phe Glu Asn Ile Glu Asn Ser Gln Ala Leu Val Asp Gln Ser Asn Arg Ile Leu Ser Ser Ala Glu Lys Gly Asn Thr Gly Phe Ile Ile Val Ile Ile 485 490 Leu Ile Ala Val Leu Gly Ser Ser Met Ile Leu Val Ser Ile Phe Ile 505 Ile Ile Lys Lys Thr Lys Lys Pro Thr Gly Ala Pro Pro Glu Leu Ser 520 Gly Val Thr Asn Asn Gly Phe Ile Pro His Asn <210> SEQ ID NO 104 <211> LENGTH: 539 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide <400> SEQUENCE: 104 Met Ser Trp Lys Val Val Ile Ile Phe Ser Leu Leu Ile Thr Pro Gln 10 His Gly Leu Lys Glu Ser Tyr Leu Glu Glu Ser Cys Ser Thr Ile Thr Glu Gly Tyr Leu Ser Val Leu Arg Thr Gly Trp Tyr Thr Asn Val Phe Thr Leu Glu Val Gly Asp Val Glu Asn Leu Thr Cys Ser Asp Gly Pro Ser Leu Ile Lys Thr Glu Leu Asp Leu Thr Lys Ser Ala Leu Arg Glu Leu Lys Thr Val Ser Ala Asp Gln Leu Ala Arg Glu Glu Gln Ile Glu Asn Pro Gly Ser Gly Ser Phe Val Leu Gly Ala Ile Ala Leu Gly Val Ala Ala Ala Ala Val Thr Ala Gly Val Ala Ile Ala Lys Thr Ile 120 Arg Leu Glu Ser Glu Val Thr Ala Ile Asn Asn Ala Leu Lys Lys Thr 135 Asn Glu Ala Val Ser Thr Leu Gly Asn Gly Val Arg Val Leu Ala Thr 150 155 Ala Val Arg Glu Leu Lys Asp Phe Val Ser Lys Asn Leu Thr Arg Ala 170

Ile Asn Lys Asn Lys Cys Asp Ile Asp Asp Leu Lys Met Ala Val Ser Phe Ser Gln Phe Asn Arg Arg Phe Leu Asn Val Val Arg Gln Phe Ser 200 Asp Asn Ala Gly Ile Thr Pro Ala Ile Ser Leu Asp Leu Met Thr Asp Ala Glu Leu Ala Arg Ala Val Pro Asn Met Pro Thr Ser Ala Gly Gln Ile Lys Leu Met Leu Glu Asn Arg Ala Met Val Arg Arg Lys Gly Phe Gly Ile Leu Ile Gly Val Tyr Gly Ser Ser Val Ile Tyr Met Val Gln Leu Pro Ile Phe Gly Val Ile Asp Thr Pro Cys Trp Ile Val Lys Ala Ala Pro Ser Cys Ser Glu Lys Lys Gly Asn Tyr Ala Cys Leu Leu Arg 295 Glu Asp Gln Gly Trp Tyr Cys Gln Asn Ala Gly Ser Thr Val Tyr Tyr 305  $\phantom{\bigg|}$  310  $\phantom{\bigg|}$  315  $\phantom{\bigg|}$  320 Pro Asn Glu Lys Asp Cys Glu Thr Arg Gly Asp His Val Phe Cys Asp Thr Ala Ala Gly Ile Asn Val Ala Glu Gln Ser Lys Glu Cys Asn Ile 345 Asn Ile Ser Thr Thr Asn Tyr Pro Cys Lys Val Ser Thr Gly Arg His 360 Pro Ile Ser Met Val Ala Leu Ser Pro Leu Gly Ala Leu Val Ala Cys 375 Tyr Lys Gly Val Ser Cys Ser Ile Gly Ser Asn Arg Val Gly Ile Ile Lys Gln Leu Asn Lys Gly Cys Ser Tyr Ile Thr Asn Gln Asp Ala Asp 410 Thr Val Thr Ile Asp Asn Thr Val Tyr Gln Leu Ser Lys Val Glu Gly 425 Glu Gln His Val Ile Lys Gly Arg Pro Val Ser Ser Ser Phe Asp Pro Ile Lys Phe Pro Gln Asp Gln Phe Gln Val Ala Leu Asp Gln Val Phe Glu Asn Ile Glu Asn Ser Gln Ala Leu Val Asp Gln Ser Asn Arg Ile Leu Ser Ser Ala Glu Lys Gly Asn Thr Gly Phe Ile Ile Val Ile Ile Leu Ile Ala Val Leu Gly Ser Ser Met Ile Leu Val Ser Ile Phe Ile Ile Ile Lys Lys Thr Lys Lys Pro Thr Gly Ala Pro Pro Glu Leu Ser 520 Gly Val Thr Asn Asn Gly Phe Ile Pro His Asn <210> SEQ ID NO 105

<211> LENGTH: 539

<212> TYPE: PRT

<213 > ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Polypeptide

Met 1	Ser	Trp	Lys	Val 5	Val	Ile	Ile	Phe	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln
His	Gly	Leu	Lys 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	CAa	Ser	Thr 30	Ile	Thr
Glu	Gly	Tyr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr	Leu 50	Glu	Val	Gly	Asp	Val 55	Glu	Asn	Leu	Thr	Cys	Ser	Asp	Gly	Pro
Ser 65	Leu	Ile	Lys	Thr	Glu 70	Leu	Asp	Leu	Thr	Lys 75	Ser	Ala	Leu	Arg	Glu 80
Leu	ГЛа	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Gly	Ser 100	Gly	Ser	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val
Ala	Ala	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Val	Ala	Ile	Ala 125	Lys	Thr	Ile
Arg	Leu 130	Glu	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	Lys	Lys	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	Lys	Asp	Phe	Val	Ser 170	Lys	Asn	Leu	Thr	Arg 175	Ala
Ile	Asn	Lys	Asn 180	ГÀа	CAa	Asp	Ile	Asp 185	Asp	Leu	Lys	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Trp	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	СЛа	Trp	Ile 285	Val	rys	Ala
Ala	Pro 290	Ser	Cys	Ser	Glu	Lys 295		Gly	Asn		Ala 300		Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	CAa	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	Lys	Asp 325	CAa	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Сув 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Lys	Glu	Сув 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Cys	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	CAa
Tyr 385	Lys	Gly	Val	Ser	Cys 390	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
ГÀа	Gln	Leu	Asn	Lys 405	Gly	CÀa	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp

-continued

Thr Val Thr Ile Asp Asn Thr Val Tyr Gln Leu Ser Lys Val Glu Gly 420 Glu Gln His Val Ile Lys Gly Arg Pro Val Ser Ser Ser Phe Asp Pro Ile Lys Phe Pro Glu Asp Gln Phe Gln Val Ala Leu Asp Gln Val Phe 455 Glu Asn Ile Glu Asn Ser Gln Ala Leu Val Asp Gln Ser Asn Arg Ile Leu Ser Ser Ala Glu Lys Gly Asn Thr Gly Phe Ile Ile Val Ile Ile Leu Ile Ala Val Leu Gly Ser Ser Met Ile Leu Val Ser Ile Phe Ile Ile Ile Lys Lys Thr Lys Lys Pro Thr Gly Ala Pro Pro Glu Leu Ser Gly Val Thr Asn Asn Gly Phe Ile Pro His Asn <210> SEQ ID NO 106 <211> LENGTH: 1617 <212> TYPE: DNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEOUENCE: 106 60 atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa qaqaqctacc tqqaaqaqtc ctqcaqcacc atcacaqaqq qctacctqtc tqtqctqaqa 120 accggctggt acaccaacgt gttcacactg gaagtgggcg acgtcgagaa tctgacatgc 180 tetgatggee etageetgat caagacegag etggatetga ecaagagege eetgagagaa 240 ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcagc 300 ggcagetttg tgetgggage eattgetett ggagtggetg etgetgeage tgttaeagea 360 ggcgtggcca tctgcaagac catcagactg gaaagcgaag tgaccgccat caacaacgcc 420 ctgaagaaga caaacgaggc cgtcagcaca ctcggcaatg gcgttagagt gctggccttt 480 540 geegtgegeg agetgaagga ettegtgtee aagaaeetga eaegggeeet gaacaagaae 600 aagtgcgaca tcgacgacct gaagatggcc gtgtccttta gccagttcaa ccggcggttt ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac ctgatgacag atgctgagct ggctagagcc gtgcctaaca tgcctacatc tgccggccag 720 atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgtgt ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac acaccetqct qqattqtqaa qqccqctcct aqctqtaqcq aqaaqaaqqq caattacqcc 900 tgcctqctqa qaqaqqacca aqqctqqtat tqtcaqaacq ccqqcaqcac cqtqtactac 960 cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga 1020 atcaatgtgg ccgagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc 1140 ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc 1200 aaqcaqctqa acaaqqqctq caqctacatc accaaccaqq acqccqatac cqtqaccatc 1260 gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga 1320

cctqtqtcca qcaqcttcqa ccctatcaaq ttccctqaqq atcaqttcaa cqtqqccctq

1380

gaccaggtgt	tcgagaacat	cgagaattcc	caggetetgg	tggaccagtc	caacagaatc	1440
ctgtctagcg	ccgagaaggg	aaacaccggc	ttcatcatcg	tgatcatcct	gatcgccgtg	1500
ctgggcagct	ccatgatcct	ggtgtccatc	ttcatcatta	tcaagaagac	caagaagccc	1560
accggcgctc	ctccagaact	gagcggagtg	accaacaatg	gcttcatccc	tcacaac	1617
<220> FEATU	TH: 1617 : DNA NISM: Artif:	_		eotide		
<400> SEQUE	ENCE: 107					
atgagctgga	aggtggtcat	catcttcagc	ctgctgatca	cacctcagca	cggcctgaaa	60
gagagctacc	tggaagagtc	ctgcagcacc	atcacagagg	gctacctgtc	tgtgctgaga	120
accggctggt	acaccaacgt	gttcacactg	gaagtgggcg	acgtcgagaa	tctgacatgc	180
tctgatggcc	ctagcctgat	caagaccgag	ctggatctga	ccaagagcgc	cctgagagaa	240
ctcaagaccg	tgtctgccga	tcagctggcc	agagaggaac	agatcgagaa	tcctggcagc	300
ggcagctttg	tgctgggagc	cattgctctt	ggagtggctg	ctgctgcagc	tgttacagca	360
ggcgtggcca	tetgeaagae	catcagactg	gaaagcgaag	tgaccgccat	caacaacgcc	420
ctgaagaaga	caaacgaggc	cgtcagcaca	ctcggcaatg	gcgttagagt	gctggccaca	480
gccgtgcgcg	agctgaagga	cttcgtgtcc	aagaacctga	cacgggccat	taacaagaac	540
aagtgcgaca	tegaegaeet	gaagatggcc	gtgtccttta	gccagttcaa	ccggcggttt	600
ctgaacgtcg	tgcggcagtt	tagcgacaac	gccggaatca	caccagccat	cagcctggac	660
ctgatgacag	atgctgagct	ggctagagcc	gtgcctaaca	tgcctacatc	tgccggccag	720
atcaagctga	tgctcgagaa	tagagccatg	gtccgacgga	aaggcttcgg	cattctgtgt	780
ggcgtgtacg	gcagcagcgt	gatctatatg	gtgcagctgc	ctatcttcgg	cgtgatcgac	840
acaccctgct	ggattgtgaa	ggccgctcct	agctgtagcg	agaagaaggg	caattacgcc	900
tgcctgctga	gagaggacca	aggctggtat	tgtcagaacg	ccggcagcac	cgtgtactac	960
cctaacgaga	aggactgcga	gacaagaggc	gaccacgtgt	tctgtgatac	cgccgctgga	1020
atcaatgtgg	ccgagcagag	caaagagtgc	aacatcaaca	tcagcaccac	caactatccc	1080
tgcaaggtgt	ccaccggcag	gcaccctatt	tctatggtgg	ctctgtctcc	tctgggagcc	1140
ctggtggctt	gttataaggg	cgtgtcctgt	agcatcggca	gcaacagagt	gggcatcatc	1200
aagcagctga	acaagggctg	cagctacatc	accaaccagg	acgccgatac	cgtgaccatc	1260
gacaacaccg	tgtatcagct	gagcaaggtg	gaaggcgaac	agcacgtgat	caagggcaga	1320
cctgtgtcca	gcagcttcga	ccctatcaag	ttccctgagc	accagtggca	tgtggccctg	1380
gaccaggtgt	tcgagaacat	cgagaattcc	caggetetgg	tggaccagtc	caacagaatc	1440
ctgtctagcg	ccgagaaggg	aaacaccggc	ttcatcatcg	tgatcatcct	gatcgccgtg	1500
ctgggcagct	ccatgatcct	ggtgtccatc	ttcatcatta	tcaagaagac	caagaagccc	1560
accggcgctc	ctccagaact	gagcggagtg	accaacaatg	gcttcatccc	tcacaac	1617

<210> SEQ ID NO 108 <211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:

<223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 108	
atgagetgga aggtggteat catetteage etgetgatea eaceteagea eggeetgaaa	60
gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga	120
accggctggt acaccaacgt gttcacactg gaagtgggcg acgtcgagaa tctgacatgc	180
totgatggco otagootgat caagacogag otggatotgo toaagagogo ootgagagaa	240
ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcagc	300
ggcagctttg tgctgggagc cattgctctt ggagtggctg ctgctgcagc tgttacagca	360
ggcgtggcca tcgctaagac catcagactg gaaagcgaag tgaccgccat caacaacgcc	420
ctgaagaaga caaacgaggc cgtcagcaca ctcggcaatg gcgttagagt gctggccaca	480
gccgtgcgcg agctgaagga cttcgtgtcc aagaacctga cacgggccat taacaagaac	540
aagtgcgaca tccctgacct gaagatggcc gtgtccttta gccagttcaa ccggcggttt	600
ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac	660
ctgatgacag atgctgagct ggctagagcc gtgcctaaca tgcctacatc tgccggccag	720
atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgatt	780
ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac	840
acaccctgct ggattgtgaa ggccgctcct agctgtagcg agaagaaggg caattacgcc	900
tgcctgctga gagaggacca aggctggtat tgtcagaacg ccggcagcac cgtgtactac	960
cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga	1020
atcaatgtgg cogagoagag caaagagtgo aacatcaaca toagoaccao caactatoco	1080
tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc	1140
ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc	1200
aagcagctga acaagggetg cagctacatc accaaccagg acgccgatac cgtgaccatc	1260
gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga	1320
cctgtgtcca gcagcttcga ccctatcaag ttccctgagg atcagttcca ggtggccctg	1380
gaccaggtgt togagaacat ogagaattoo caggototgg tggaccagto caacagaato	1440
ctgtctagcg ccgagaaggg aaacaccggc ttcatcatcg tgatcatcct gatcgccgtg	1500
ctgggcagct ccatgatect ggtgtccate tteateatta teaagaagae caagaageee	1560
accggcgctc ctccagaact gagcggagtg accaacaatg gcttcatccc tcacaac	1617
<210> SEQ ID NO 109 <211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 109	
atgagetgga aggtggteat catetteage etgetgatea eaceteagea eggeetgaaa	60
gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga	120
accggctggt acaccaacgt gttcacactg gaagtgggcg acgtcgagaa tctgacatgc	180
totgatggcc ctagcctgat caagaccgag ctggatctgc tcaagagcgc cctgagagaa	240
ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcagc	300
ggcagctttg tgctgggagc cattgctctt ggagtggctg ctgctgcagc tgttacagca	360

-continued

ggcgtggcca	tegetaagae	catcagactg	gaaagcgaag	tgaccgccat	caacaacgcc	420
ctgaagaaga	caaacgaggc	cgtcagcaca	ctcggcaatg	gcgttagagt	gctggccaca	480
gccgtgcgcg	agctgaagga	cttcgtgtcc	aagaacctga	cacgggccat	taacaagaac	540
aagtgcgaca	tccctgacct	gaagatggcc	gtgtccttta	gccagttcaa	ccggcggttt	600
ctgaacgtcg	tgcggcagtt	tagcgacaac	gccggaatca	caccagccat	cagcctggac	660
ctgatgacag	atgctgagct	ggctagagcc	gtgcctaaca	tgcctacatc	tgccggccag	720
atcaagctga	tgctcgagaa	tagagccatg	gtccgacgga	aaggcttcgg	cattctgatt	780
ggcgtgtacg	gcagcagcgt	gatctatatg	gtgcagctgc	ctatcttcgg	cgtgatcgac	840
acaccctgct	ggattgtgaa	ggccgctcct	agctgtagcg	agaagaaggg	caattacgcc	900
tgcctgctga	gagaggacca	aggctggtat	tgtcagaacg	ccggcagcac	cgtgtactac	960
cctaacgaga	aggactgcga	gacaagaggc	gaccacgtgt	tctgtgatac	cgccgctgga	1020
atcaatgtgg	ccgagcagag	caaagagtgc	aacatcaaca	tcagcaccac	caactatccc	1080
tgcaaggtgt	ccaccggcag	gcaccctatt	tctatggtgg	ctctgtctcc	tctgggagcc	1140
ctggtggctt	gttataaggg	cgtgtcctgt	agcatcggca	gcaacagagt	gggcatcatc	1200
aagcagctga	acaagggctg	cagctacatc	accaaccagg	acgccgatac	cgtgaccatc	1260
gacaacaccg	tgtatcagct	gagcaaggtg	gaaggcgaac	agcacgtgat	caagggcaga	1320
cctgtgtcca	gcagcttcga	ccctatcaag	ttccctgaga	accagttcca	ggtggccctg	1380
gaccaggtgt	tcgagaacat	cgagaattcc	caggctctgg	tggaccagtc	caacagaatc	1440
ctgtctagcg	ccgagaaggg	aaacaccggc	ttcatcatcg	tgatcatcct	gatcgccgtg	1500
ctgggcagct	ccatgatcct	ggtgtccatc	ttcatcatta	tcaagaagac	caagaagccc	1560
accggcgctc	ctccagaact	gagcggagtg	accaacaatg	gcttcatccc	tcacaac	1617
<220> FEATU	TH: 1617 : DNA NISM: Artif: JRE:	icial Sequer DN: Synthet:		eotide		
<400> SEQUI	ENCE: 110					
atgagctgga	aggtggtcat	catcttcagc	ctgctgatca	cacctcagca	cggcctgaaa	60
gagagetace	tggaagagtc	ctgcagcacc	atcacagagg	gctacctgtc	tgtgctgaga	120
accggctggt	acaccaacgt	gttcacactg	gaagtgggcg	acgtcgagaa	tctgacatgc	180
tctgatggcc	ctagcctgat	caagaccgag	ctggatctgc	tcaagagcgc	cctgagagaa	240
ctcaagaccg	tgtctgccga	tcagctggcc	agagaggaac	agatcgagaa	tcctggcagc	300
ggcagctttg	tgctgggagc	cattgctctt	ggagtggctg	ctgctgcagc	tgttacagca	360
ggcgtggcca	tegetaagae	catcagactg	gaaagcgaag	tgaccgccat	caacaacgcc	420
ctgaagaaga	caaacgaggc	cgtcagcaca	ctcggcaatg	gcgttagagt	gctggccaca	480
gccgtgcgcg	agctgaagga	cttcgtgctt	aagaacctga	cacgggccat	taacaagaac	540
aagtgcgaca	tccctgacct	gaagatggcc	gtgtccttta	gccagttcaa	ccggcggttt	600
ctgaacgtcg	tgeggeagtt	tagcgacaac	gccggaatca	caccagccat	cagcctggac	660
		ggctagagcc				720
			at againe		aattataatt	700

atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgatt

-continued

-continued	
ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac	840
acaccetget ggattgtgaa ggeegeteet agetgtageg agaagaaggg caattaegee	900
tgcctgctga gagaggacca aggctggtat tgtcagaacg ccggcagcac cgtgtactac	960
cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga	1020
atcaatgtgg ccgagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc	1080
tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc	1140
ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc	1200
aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc	1260
gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga	1320
cctgtgtcca gcagcttcga ccctatcaag ttccctgagg atcagttcca ggtggccctg	1380
gaccaggtgt tegagaacat egagaattee eaggetetgg tggaccagte caacagaate	1440
ctgtctagcg ccgagaaggg aaacaccggc ttcatcatcg tgatcatcct gatcgccgtg	1500
ctgggcagct ccatgatcct ggtgtccatc ttcatcatta tcaagaagac caagaagccc	1560
accggcgctc ctccagaact gagcggagtg accaacaatg gcttcatccc tcacaac	1617
<210> SEQ ID NO 111 <211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
ACC. CROMPNOR 111	
<400> SEQUENCE: 111	
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa	60
	60 120
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa	
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga	120
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaceaacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge	120 180
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaceaacgt gtteacactg gaagtgggeg aegtegagaa tetgacatge tetgatggee etageetgat caagacegag etggatetge teaagagege eetgagagaa	120 180 240
atgagetgga aggtggteat catetteage etgetgatea eaceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaceacegt gtteacactg gaagtgggeg aegtegagaa tetgacatge tetgatggee etageetgat eaagacegag etggatetge teaagagege eetgaagaa eteegagagaa	120 180 240 300
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga acceggetggt acaceaacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etageetgat caagacegag etggatetge teaagagege eetgagagaa eteaagaceg tgtetgeega teagetggee agagaggaac agategagaa teetggeage ggeagetttg tgetgggage eattgetett ggagtggetg etgetgeage tgttacagea	120 180 240 300 360
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaceacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etageetgat caagacegag etggatetge teaagagege eetgagagaa etceaagageg ggeagetttg tgetgegga teagetggee agagaggaac agategagaa teetggeage ggeagetttg tgetgggage eattgetett ggagtggetg etgetgeage tgttacagea ggegtggeea tegetaagac eateagactg gaaagegaag tgacegeeat eaacaacgee	120 180 240 300 360 420
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaceacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etagagege etggatetge teaagagege ectgagagaa etegagagaa etegagagaa etegagagaa eteaagagege ggeagetttg tgetgeega teagetggee agaagaggaac agategagaa teetggeage ggeagetttg tgetgggage eattgetett ggagtggetg etgetgeage tgttacagea ggegtggeea tegetaagae eateagaetg gaaagegaag tgacegeeat caacaacgee etgaagaaga caaacgagge egteageaca eteggeaatg gegttagagt getggeeaca	120 180 240 300 360 420
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaceacegt gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etagagege eetgagagaa eteegagagaa eggeagetttg tgetgggage eattgetett ggagtggetg etgetgeage tgttacagea etgagagaaa etgagagaaa etgagagaa etgagagaaa etgagagaa etgagagaa etgagagaa etgagagaaa etgagagaa etgagagaaa etgagagaa etgagagaa etgagagaaa etgagagaa etgagagaaa etgagagaa etgagaaaa etgagagaa etgagagaaa etgagagaa etgagagaaa etgagagaaa etgagagaaa etgagagaaa etgagagaaa et	120 180 240 300 360 420 480
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaceacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etagaegege etggatetge teaagagege eetgagagaa etetgacage etcaagaegeg tgtetgeega teagetggee agagaggaac agategagaa teetggeage ggeagetttg tgetgggage eattgetett ggagtggetg etgetgeage tgttacagea ggegtggeea tegetaagae eateagaetg gaaagegaag tgacegeeat eaacaaegee etgaagaaga caaacgagge egteageaca eteggeaatg gegttagagt getggeeaca geegtgeege agetgaagga ettegtgett aagaaeetga eaegggeeat taacaagaac aagtgegaca teeetgacet gaagatggee gtgteettta geeagtteaa eeggeggttt	120 180 240 300 360 420 480 540 600
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaceacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etageetgat caagacegag etggatetge teaagagege eetgagagaa etceagagaga etcaagaceg tgtetgeega teagetggee agagaggaac agategagaa teetggeage ggeagetttg tgetgggage eattgetett ggaagtggetg etgetgeage tgttacagea ggegtggeea tegetaagae eatcagaceg gaaagegaaag tgacegeeat eaacaacgee etgaagaaga eaaacgagge egteageaca eteggeaatg gegttagagt getggeeaca geegtgegeg agetgaagga ettegtgett aagaacetga eacggeeat taacaagaac aagtgegaca teeetgacet gaagatggee gtgteettta geeagtteaa eeggeggttt tageggatt tageggeatt tagegacaac eteggaatea eaceageeat eageetggae	120 180 240 300 360 420 480 540 600 660
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa gagagetaee tggaagagte etgeageaee ateacagagg getacetgte tgtgetgaga aceggetggt acaceacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etagaegege etggatetge teaagagege eetgagagaa etetgaegaga etcaagaegegegegegegegegegegegegegegegegege	120 180 240 300 360 420 480 540 600 660
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga acceggetggt acaceacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etageetgat caagacegag etggatetge teaagagege eetgagagaa etceagagaga etcaagaceg ggeagetttg tgetgeega teagetggee agagaggaac agategagaa teetggeage ggeagetttg tgetgggage eattgetett ggagtggetg etgetgeage tgttacagea ggegtggeea tegetaagac eateagaceg gaaagegaag tgacegeeat eaacaacgee etgaagaaga eaaacgagge egteageaca etceggeaatg gegttagagt getggeeaca geegtgeege agetgaagga etteetgeet aagaacetga eacggeeat taacaagaac aagtgegaca teeetgaceg gaagatggee gtgeettta geeagtteaa eeggeggttt etgaacgteg tgeeggaate tageagaace etgaacgteg tgeeggaate tageagace etgaacgteg tgeeggaate tageagace etgaacgae etgaacgteg tgeeggaate tageeggaea etgaacgtggae etgeetgaac eaccageeat eageetggae etgaagacegtagaea etgaacgtga eaccageeat eageetggae etgaagacaga tgeetgaaca tgeetgaaca tgeetgagae etgaacagea etgaacgaa tgeetgagae etgaacaac eaccageeat eageetggae etgaagacagaa tgeetgagaa tagaageeagaa eaccageeaa eaccageeaa eaccageeagaa etgaacaagaac etgaacaacaageeagaa eaccageeaa eaccageeagaa atgeetgagaa atgaagacaa tagaacaagaa eaccageeaa eaccageeaa eaccageeaa etgaacaagaacaagaacaagaacaagaacaaagaacaaagaacaaagaacaaagaacaaagaacaaagaacaaaacaagaacaaacaaacagaacaaacaac	120 180 240 300 360 420 480 540 600 660 720
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaceacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etagagege etggatetge teaagagege eetgagagaa eteegagagaa etggaggagegegaggagegegegegegegegegegegeg	120 180 240 300 360 420 480 540 600 660 720 780
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga acceggetggt acaceaacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etageetgat caagacegag etggatetge teaagagege eetgagagaa etceagagaga etcaagaceg ggeagetttg tgetgggage cattgetett ggagtggetg etgetgeage tgttacagea ggeggtggeea tegetaagae eateagaetg gaaagegaag tgacegeeat eaacaacgee etggatetge tgetgagaga eteggagaa teetggagaga ggeggtggeea tegetaagae eateagaetg gaaagegaag tgacegeeat eaacaacgee etgaagaaga eaaacgagge egteageaa eteggeaatg gegttagagt getggeeaca geeggtgegeg agetgaagga etteggett aagaacetga eaegggeeat taacaagaac aagtgegaea teeetgaeet gaagatggee gtgteettta geeagtteaa eeggeggttt etgaacgteg tgeggeagt tagegacaac geeggaatea eaccageeat eageetggae etgatgaea atgetgaget ggetagagee gtgeetaaca tgeetacate tgeeggeeag ateaagetga tgetegagaa tagageeatg gteegaega aaggettegg eattetgatt ggeggtgtaeg geageagetg gatetatatg gteeagetge etatettegg egtgategae acacectget ggetgtaeg gatetatatg gteeagetge etatettegg egtgategae acacectget ggattgtgaa ggeegeteet agetgageg agaagaaggg eaattaegee	120 180 240 300 360 420 480 540 600 660 720 780 840 900
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa gagagetaee tggaagagte etgeageaee ateacagagg getacetgte tgtgetgaga aceggetggt acaceaacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etageetgat caagacegag etggatetge teaagagege eetgagagaa eteaagagege ggeagetttg tgetgegga teagetggee agagaggaae agategagaa teetggeage ggeagetttg tgetgggage eattgetett ggaagtggetg etgetgeage tgttacagea ggegtggeea tegetaagae eatcagaetg gaaagegaaag tgacegeeat caacaacgee etgaagaaga eaaacgagge egteageaea eteeggaaga teetggeege etgaagaaga etgaagaaga etgaagaaga etgaagaaga etgaagagaaga	120 180 240 300 360 420 480 540 600 660 720 780 840 900
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaceaacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etageetgat caagacegag etggatetge teaagagege eetgaagaa eteegaagaa eagaegeegageega	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960
atgagetgga aggtggteat eatetteage etgetgatea eaceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaccaacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etagetgat eaagacegag etggatetge teaagagege eetgaagaa teetgaagaa etcaaagaceg tgtetgeega teagetggee agagaggaac agategagaa teetggeage ggeagetttg tgetggeage eattgetett ggagtggetg etgetgeage tgttacagea ggegtggeea tegetaagae eatcagactg gaaagegaag tgacegeeat eaacaacgee etgaagaaa eaaacgagge egteageaca etcggeaatg gegttagagt getggeeaca geegtggeeg agetgaagga ettegtgett aagaacetga eacgggeeat taacaagaac aaagtgegaca teeetgaaga ettegtgett aagaacetga eacgggeeat taacaagaac aagtgegaca teeetgacet gaagatggee gtgteettta geeagtteaa eeggeggttt etgaacgteg tgeggeagtt tagegacaac geeggaatea eaceageeat eageetggae etgatgacag atgatgacag atgatgacag ggetagagee gtgeetaaca tgeetaacate tgeeggeeag ateaageetg tgetggaaa tagageeatg gteegaacaa tgeetaacate tgeeggeeag ateaageetg geageageat gatetatatg gtgeagetge etatettegg egtgategac acaccetget ggattgaag gacegeteet agetggaee etatettegg egtgategac acaccetget ggattgtaa ggeeggeteet agetgaage eagaagaage eaattacgee tgeetgetga gagaaggaca aggactggaa aggactgeg eacaccetget tetgtgatae egeegetggaa acaccetget gaagagaaga gacaagage gaccacgtgt tetgtgatae egeegetggaa ateaacgaga aggactgega gacaagagge gaccacgtgt tetgtgatae egeegetggaa ateaacgaga aggactgeag gacaagagge gaccacgtgt tetgtgatae egeegetggaa ateaacaccetget gagagaagag caaagaagge gaccacgtgt tetgtgatae egeegetggaa ateaacacgaga egeagaagaga eaacacgtgt eegeegetggaa acacaccac eaactateec	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020

aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc 1260

-continued

gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga 1320 cctgtgtcca gcagcttcga ccctatcaag ttccctgaga accagttcca ggtggccctg 1380 gaccaggtgt tcgagaacat cgagaattcc caggctctgg tggaccagtc caacagaatc 1440 ctgtctagcg ccgagaaggg aaacaccggc ttcatcatcg tgatcatcct gatcgccgtg 1500 ctgggcagct ccatgatcct ggtgtccatc ttcatcatta tcaagaagac caagaagccc 1560 accggcgctc ctccagaact gagcggagtg accaacaatg gcttcatccc tcacaac 1617 <210> SEQ ID NO 112 <211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 112 60 atqaqctqqa aqqtqqtcat catcttcaqc ctqctqatca cacctcaqca cqqcctqaaa 120 qaqaqctacc tqqaaqaqtc ctqcaqcacc atcacaqaqq qctacctqtc tqtqctqaqa accqqctqqt acaccaacqt qttcacactq cctqtqqqcq acqtcqaqaa tctqacatqc 180 tctqatqqcc ctaqcctqat caaqaccqaq ctqqatctqc tcaaqaqcqc cctqaqaqaa 240 ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcagc 300 ggcagctttg tgctgggagc cattgctctt ggagtggctg ctgctgcagc tgttacagca 360 ggegtggeca tegetaagac catcagactg gaaagegaag tgacegecat caacaaegee 420 ctgaagaaga caaacgaggc cgtcagcaca ctcggcaatg gcgttagagt gctggccaca 480 gccgtgcgcg agctgaagga cttcgtgtcc aagaacctga cacgggccat taacaagaac 540 aagtgcgaca tcgacgacct gaagatggcc gtgtccttta gccagttcaa ccggcggttt 600 ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac 660 ctgatgacag atgctgagct ggctagagcc gtgcctaaca tgcctacatc tgccggccag 720 atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgatt 780 ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac 840 acaccctgct ggattgtgaa ggccgctcct agctgtagcg agaagaaggg caattacgcc 900 tgcctgctga gagaggacca aggctggtat tgtcagaacg ccggcagcac cgtgtactac 960 cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga 1020 atcaatgtgg ccgagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc 1080 tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc 1140 1200 ctqqtqqctt qttataaqqq cqtqtcctqt aqcatcqqca qcaacaqaqt qqqcatcatc aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc 1260 1320 gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga cctgtgtcca gcagcttcga ccctatcaag ttccctgagg atcagttcca ggtggccctg 1380 gaccaggtgt tcgagaacat cgagaattcc caggctctgg tggaccagtc caacagaatc 1440 ctgtctagcg ccgagaaggg aaacaccggc ttcatcatcg tgatcatcct gatcgccgtg 1500 ctgggcagct ccatgatcct ggtgtccatc ttcatcatta tcaagaagac caagaagccc 1560

accggcgctc ctccagaact gagcggagtg accaacaatg gcttcatccc tcacaac

1617

-continued

<211> LENGTH: 1617 <212> TYPE: DNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 113 atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa 60 gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga 120 accggctggt acaccaacgt gttcacactg cctgtgggcg acgtcgagaa tctgacatgc 180 tetgatggee etageetgat caagacegag etggatetge teaagagege eetgagagaa 240 ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcagc ggcagctttg tgctgggagc cattgctctt ggagtggctg ctgctgcagc tgttacagca ggcgtggcca tcgctaaqac catcagactg gaaagcgaag tgaccgccat caacaacgcc 420 ctqaaqaaqa caaacqaqqc cqtcaqcaca ctcqqcaatq qcqttaqaqt qctqqccaca 480 geogtgegeg agetgaagga ettegtgtee aagaacetga caegggeeat taacaagaac 540 aagtgcgaca tcgacgacct gaagatggcc gtgtccttta gccagttcaa ccggcggttt 600 660 ctgaacqtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac ctgatgacag atgctgagct ggctagagcc gtgcctaaca tgcctacatc tgccggccag 720 atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgatt 780 ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac 840 900 acaccetget ggattgtgaa ggeegeteet agetgtageg agaagaaggg caattaegee tgcctgctga gagaggacca aggctggtat tgtcagaacg ccggcagcac cgtgtactac 960 cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga 1020 atcaatgtgg cegageagag caaagagtge aacatcaaca teageaceae caactateee 1080 tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc 1140 ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc 1200 aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc 1260 gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga 1320 cctgtgtcca gcagcttcga ccctatcaag ttccctgaga accagttcca ggtggccctg 1380 gaccaggtgt tcgagaacat cgagaattcc caggctctgg tggaccagtc caacagaatc 1440 ctgtctagcg ccgagaaggg aaacaccggc ttcatcatcg tgatcatcct gatcgccgtg 1500 ctgggcagct ccatgatcct ggtgtccatc ttcatcatta tcaagaagac caagaagcc 1560 accggcgctc ctccagaact gagcggagtg accaacaatg gcttcatccc tcacaac 1617 <210> SEQ ID NO 114 <211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 114 atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa 60 120 qaqaqctacc tqqaaqaqtc ctqcaqcacc atcacaqaqq qctacctqtc tqtqctqaqa accggctggt acaccaacgt gttcacactg gaagtgggcg acgtcgagaa tctgacatgc 180 tetgatggee etageetgat caagacegag etggatetge teaagagege eetgagagaa 240

-continued

ctcaagaccg	tgtctgccga	tcagctggcc	agagaggaac	agatcgagaa	tcctggcagc	300
ggcagctttg	tgctgggagc	cattgctctt	ggagtggctg	ctgctgcagc	tgttacagca	360
ggcgtggcca	tcgctaagac	catcagactg	gaaagcgaag	tgaccgccat	caacaacgcc	420
ctgaagaaga	caaacgaggc	cgtcagcaca	ctcggcaatg	gcgttagagt	gctggccaca	480
gccgtgcgcg	agctgaagga	cttcgtgtcc	aagaacctga	cacgggccat	taacaagaac	540
aagtgcgaca	tcgacgacct	gaagatggcc	gtgtccttta	gccagttcaa	ccggcggttt	600
ctgaacgtcg	tgcggcagtt	tagcgacaac	gccggaatca	caccagccat	cagcctggac	660
ctgatgacag	atgctgagct	ggctagagcc	gtgcctaaca	tgcctacatc	tgccggccag	720
atcaagctga	tgctcgagaa	tagagccatg	gtccgacgga	aaggettegg	cattctgatt	780
ggcgtgtacg	gcagcagcgt	gatctatatg	gtgcagctgc	ctatcttcgg	cgtgatcgac	840
acaccctgct	ggattgtgaa	ggccgctcct	agctgtagcg	agaagaaggg	caattacgcc	900
tgcctgctga	gagaggacca	aggctggtat	tgtcagaacg	ccggcagcac	cgtgtactac	960
cctaacgaga	aggactgcga	gacaagaggc	gaccacgtgt	tctgtgatac	cgccgctgga	1020
atcaatgtgg	ccgagcagag	caaagagtgc	aacatcaaca	tcagcaccac	caactatccc	1080
tgcaaggtgt	ccaccggcag	gcaccctatt	tctatggtgg	ctctgtctcc	tctgggagcc	1140
ctggtggctt	gttataaggg	cgtgtcctgt	agcatcggca	gcaacagagt	gggcatcatc	1200
aagcagctga	acaagggctg	cagctacatc	accaaccagg	acgccgatac	cgtgaccatc	1260
gacaacaccg	tgtatcagct	gagcaaggtg	gaaggcgaac	agcacgtgat	caagggcaga	1320
cctgtgtcca	gcagcttcga	ccctatcaag	ttccctgagg	atcagttcca	ggtggccctg	1380
gaccaggtgt	tcgagaacat	cgagaattcc	caggctctgg	tggaccagtc	caacagaatc	1440
ctgtctagcg	ccgagaaggg	aaacaccggc	ttcatcatcg	tgatcatcct	gatcgccgtg	1500
ctgggcagct	ccatgatcct	ggtgtccatc	ttcatcatta	tcaagaagac	caagaagccc	1560
accggcgctc	ctccagaact	gagcggagtg	accaacaatg	gcttcatccc	tcacaac	1617
<220> FEAT	TH: 1617 : DNA NISM: Artif: JRE:	_	nce ic Polynucle	eotide		
<400> SEQUI	ENCE: 115					
atgagctgga	aggtggtcat	catcttcagc	ctgctgatca	cacctcagca	cggcctgaaa	60
gagagctacc	tggaagagtc	ctgcagcacc	atcacagagg	gctacctgtc	tgtgctgaga	120
accggctggt	acaccaacgt	gttcacactg	gaagtgggcg	acctcgagaa	tctgacatgc	180
tctgatggcc	ctagcctgat	caagaccgag	ctggatctga	ccaagagcgc	cctgagagaa	240
ctcaagaccg	tgtctgccga	tcagctggcc	agagaggaac	agatcgagaa	tcctggcagc	300
ggcagctttg	tgctgggagc	cattgctctt	ggagtggctg	ctgctgcagc	tgttacagca	360
ggcgtggcca	tegetaagae	catcagactg	gaaagcgaag	tgaccgccat	caacaacgcc	420
ctgaagaaga	caaacgaggc	cgtcagcaca	ctcggcaatg	gcgttagagt	gctggccaca	480
gccgtgcgcg	agctgaagga	cttcgtgtcc	aagaacctga	cacgggccat	taacaagaac	540
aagtgcgaca	tcgacgacct	gaagatggcc	gtgtccttta	gccagttcaa	ccggcggttt	600

ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac

-continued

720	
780	
840	
900	
960	
1020	
1080	
1140	
1200	
1260	
1320	
1380	
1440	
1500	
1560	
1617	
60	
60 120	
120	
120 180	
120 180 240	
120 180 240 300	
120 180 240 300 360	
120 180 240 300 360 420	
120 180 240 300 360 420	
120 180 240 300 360 420 480	
120 180 240 300 360 420 480 540 600	
120 180 240 300 360 420 480 540 600 660	
120 180 240 300 360 420 480 540 600 660 720	
120 180 240 300 360 420 480 540 600 660 720	
120 180 240 300 360 420 480 540 600 660 720 780	
120 180 240 300 360 420 480 540 600 660 720 780 840	
	780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500

tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc 1140

		_
ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt	gggcatcatc 120	00
aagcagetga acaagggetg cagetacate accaaccagg acgecgatac	cgtgaccatc 126	60
gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat	caagggcaga 132	20
cctgtgtcca gcagcttcga ccctatcaag ttccctgagg atcagttcca	ggtggccctg 138	80
gaccaggtgt tegagaacat egagaattee caggetetgg tggaccagte	caacagaatc 144	40
ctgtctagcg ccgagaaggg aaacaccggc ttcatcatcg tgatcatcct	gategeegtg 150	00
ctgggcagct ccatgatect ggtgtecate tteateatta teaagaagae	caagaagccc 156	60
accggcgctc ctccagaact gagcggagtg accaacaatg gcttcatccc	tcacaac 163	17
<210> SEQ ID NO 117 <211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide		
<400> SEQUENCE: 117		
atgagetgga aggtggteat catetteage etgetgatea eaceteagea	cggcctgaaa 6	60
gagagetace tggaagagte etgeageace ateacagagg getacetgte	tgtgctgaga 12	20
accggctggt acaccaacgt gttcacactg gaagtgggcg acgtcgagaa	tctgacatgc 18	80
tetgatggee etageetgat caagacegag etggatetga ecaagagege	cctgagagaa 24	40
ctcaagaceg tgtetgeega teagetggee agagaggaac agategagaa	teetggeage 30	00
ggcagetttg tgetgggage eattgetett ggagtggetg etgetgeage	tgttacagca 36	60
ggcgtggcca tcgctaagac catcagactg gaaagcgaag tgaccgccat	caacaacgcc 42	20
ctgaagaaga caaacgaggc cgtcagcaca ctcggcaatg gcgttagagt (	gctggccaca 48	80
geegtgegeg agetgaagga ettegtgtee aagaacetgt ggegggeeat i	taacaagaac 54	40
aagtgegaea tegaegaeet gaagatggee gtgteettta geeagtteaa	ccggcggttt 60	00
ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat	cagcctggac 60	60
ctgatgacag atgctgagct ggctagagce gtgcctaaca tgcctacate	tgccggccag 72	20
atcaagetga tgetegagaa tagageeatg gteegaegga aaggettegg		80
ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg	3 3 3	40
acaccetget ggattgtgaa ggeegeteet agetgtageg agaagaaggg		00
tgcctgctga gagaggacca aggctggtat tgtcagaacg ccggcagcac	- 5 - 5	60
cctaacgaga aggactgcga gacaagaggc gaccacgtgt tetgtgatac		
atcaatgtgg ccgagcagag caaagagtgc aacatcaaca tcagcaccac		
tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc	tetgggagee 114	40
ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt	gggcatcatc 120	00
aagcagotga acaagggotg cagotacato accaaccagg acgoogatac	cgtgaccatc 126	60
gacaacaceg tgtatcaget gagcaaggtg gaaggegaac agcaegtgat o	caagggcaga 132	20
cetgtgteca geagettega ecetateaag tteeetgagg ateagtteea g	ggtggccctg 138	80
gaccaggtgt tcgagaacat cgagaattcc caggctctgg tggaccagtc	caacagaatc 144	40
ctgtctagcg ccgagaaggg aaacaccggc ttcatcatcg tgatcatcct	gategeegtg 150	00
ctgggcagct ccatgatect ggtgtccate tteatcatta teaagaagae	caagaagccc 150	60

accggcgctc ctccagaact	gagcggagtg	accaacaatq	gcttcatccc	tcacaac	1617
	3-3-33-3-3		J		
<pre>&lt;210&gt; SEQ ID NO 118 &lt;211&gt; LENGTH: 1617 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artif &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATI</pre>			eotide		
<400> SEQUENCE: 118		101711401	500140		
atgagetgga aggtggteat	catcttcage	ctactaatca	cacctcacca	caacctaaaa	60
gagagetace tggaagagte					120
accggctggt acaccaacgt					180
totgatggcc ctagcotgat					240
ctcaagaccg tgtctgccga					300
ggcagctttg tgctgggagc	cattgctctt	ggagtggctg	ctgctgcagc	tgttacagca	360
ggcgtggcca tcgctaagac	catcagactg	gaaagcgaag	tgaccgccat	caacaacgcc	420
ctgaagaaga caaacgaggc	cgtcagcaca	ctcggcaatg	gcgttagagt	gctggccaca	480
gccgtgcgcg agctgaagga	cttcgtgctt	aagaacctgt	ggcgggccat	taacaagaac	540
aagtgegaea tegaegaeet	gaagatggcc	gtgtccttta	gccagttcaa	ccggcggttt	600
ctgaacgtcg tgcggcagtt	tagcgacaac	gccggaatca	caccagccat	cagcctggac	660
ctgatgacag atgctgagct	ggctagagcc	gtgcctaaca	tgcctacatc	tgccggccag	720
atcaagctga tgctcgagaa	tagagccatg	gtccgacgga	aaggettegg	cattctgatt	780
ggcgtgtacg gcagcagcgt	gatctatatg	gtgcagctgc	ctatcttcgg	cgtgatcgac	840
acaccctgct ggattgtgaa	ggccgctcct	agctgtagcg	agaagaaggg	caattacgcc	900
tgcctgctga gagaggacca	aggctggtat	tgtcagaacg	ccggcagcac	cgtgtactac	960
cctaacgaga aggactgcga	gacaagaggc	gaccacgtgt	tctgtgatac	cgccgctgga	1020
atcaatgtgg ccgagcagag	caaagagtgc	aacatcaaca	tcagcaccac	caactatccc	1080
tgcaaggtgt ccaccggcag	gcaccctatt	tctatggtgg	ctctgtctcc	tctgggagcc	1140
ctggtggctt gttataaggg	cgtgtcctgt	agcatcggca	gcaacagagt	gggcatcatc	1200
aagcagctga acaagggctg	cagctacatc	accaaccagg	acgccgatac	cgtgaccatc	1260
gacaacaccg tgtatcagct	gagcaaggtg	gaaggcgaac	agcacgtgat	caagggcaga	1320
cctgtgtcca gcagcttcga	ccctatcaag	ttccctgagg	atcagttcca	ggtggccctg	1380
gaccaggtgt tcgagaacat	cgagaattcc	caggetetgg	tggaccagtc	caacagaatc	1440
ctgtctagcg ccgagaaggg	aaacaccggc	ttcatcatcg	tgatcatcct	gatcgccgtg	1500
ctgggcagct ccatgatcct	ggtgtccatc	ttcatcatta	tcaagaagac	caagaagccc	1560
accggcgctc ctccagaact	gagcggagtg	accaacaatg	getteateee	tcacaac	1617
<210> SEQ ID NO 119 <211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artif. <220> FEATURE: <223> OTHER INFORMATIC			eotide		
atgagetgga aggtggteat	catcttcage	ctqctqatca	cacctcaqca	cqqcctqaaa	60
gagagetace tggaagagte					120
2 2 2 2 2 2 2 2 2 2 3 4 3 4 5	-3-25-00		5	3-3-55-54	

-continued

accggctggt	acaccaacgt	gttcacactg	cctgtgggcg	acgtcgagaa	tctgacatgc	180
tctgatggcc	ctagcctgat	caagaccgag	ctggatctga	ccaagagcgc	cctgagagaa	240
ctcaagaccg	tgtctgccga	tcagctggcc	agagaggaac	agatcgagaa	tcctggcagc	300
ggcagctttg	tgctgggagc	cattgetett	ggagtggctg	ctgctgcagc	tgttacagca	360
ggcgtggcca	tcgctaagac	catcagactg	gaaagcgaag	tgaccgccat	caacaacgcc	420
ctgaagaaga	caaacgaggc	cgtcagcaca	ctcggcaatg	gcgttagagt	gctggccaca	480
gccgtgcgcg	agctgaagga	cttcgtgtcc	aagaacctga	cacgggccat	taacaagaac	540
aagtgcgaca	tcgacgacct	gaagatggcc	gtgtccttta	gccagttcaa	ccggcggttt	600
ctgaacgtcg	tgcggcagtt	tagcgacaac	gccggaatca	caccagccat	cagcctggac	660
ctgatgacag	atgctgagct	ggctagagcc	gtgcctaaca	tgcctacatc	tgccggccag	720
atcaagctga	tgctcgagaa	tagagccatg	gtccgacgga	aaggcttcgg	cattctgatt	780
ggcgtgtacg	gcagcagcgt	gatctatatg	gtgcagctgc	ctatcttcgg	cgtgatcgac	840
acaccctgct	ggattgtgaa	ggccgctcct	agctgtagcg	agaagaaggg	caattacgcc	900
tgcctgctga	gagaggacca	aggctggtat	tgtcagaacg	ccggcagcac	cgtgtactac	960
cctaacgaga	aggactgcga	gacaagaggc	gaccacgtgt	tctgtgatac	cgccgctgga	1020
atcaatgtgg	ccgagcagag	caaagagtgc	aacatcaaca	tcagcaccac	caactatccc	1080
tgcaaggtgt	ccaccggcag	gcaccctatt	tctatggtgg	ctctgtctcc	tctgggagcc	1140
ctggtggctt	gttataaggg	cgtgtcctgt	agcatcggca	gcaacagagt	gggcatcatc	1200
aagcagctga	acaagggctg	cagctacatc	accaaccagg	acgccgatac	cgtgaccatc	1260
gacaacaccg	tgtatcagct	gagcaaggtg	gaaggcgaac	agcacgtgat	caagggcaga	1320
cctgtgtcca	gcagcttcga	ccctatcaag	ttccctgagg	atcagttcca	ggtggccctg	1380
gaccaggtgt	tcgagaacat	cgagaattcc	caggetetgg	tggaccagtc	caacagaatc	1440
ctgtctagcg	ccgagaaggg	aaacaccggc	ttcatcatcg	tgatcatcct	gatcgccgtg	1500
ctgggcagct	ccatgatcct	ggtgtccatc	ttcatcatta	tcaagaagac	caagaagccc	1560
accggcgctc	ctccagaact	gagcggagtg	accaacaatg	gcttcatccc	tcacaac	1617
<220> FEATU	TH: 1617 : DNA NISM: Artif: JRE: R INFORMATIO	icial Sequer DN: Synthet:		eotide		
atgagctgga	aggtggtcat	catcttcagc	ctgctgatca	cacctcagca	cggcctgaaa	60
gagagetace	tggaagagtc	ctgcagcacc	atcacagagg	gctacctgtc	tgtgctgaga	120
accggctggt	acaccaacgt	gttcacactg	gaagtgggcg	acgtcgagaa	tctgacatgc	180
tctgatggcc	ctagcctgat	caagaccgag	ctggatctga	ccaagagcgc	cctgagagaa	240
ctcaagaccg	tgtctgccga	tcagctggcc	agagaggaac	agatcgagaa	tcctggcagc	300
ggcagctttg	tgctgggagc	cattgctctt	ggagtggctg	ctgctgcagc	tgttacagca	360
ggcgtggcca	tcgctaagac	catcagactg	gaaagcgaag	tgaccgccat	caacaacgcc	420
		cgtcagcaca				480
		-	_			

gccgtgcgcg agctgaagga cttcgtgtcc aagaacctga cacgggccat taacaagaac

-continued

-continued	
aagtgcgaca teeetgacet gaagatggee gtgteettta geeagtteaa eeggeggttt	600
ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac	660
ctgatgacag atgctgagct ggctagagcc gtgcctaaca tgcctacatc tgccggccag	720
atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgatt	780
ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac	840
acaccetget ggattgtgaa ggeegeteet agetgtageg agaagaaggg caattaegee	900
tgcctgctga gagaggacca aggctggtat tgtcagaacg ccggcagcac cgtgtactac	960
cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga	1020
atcaatgtgg ccgagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc	1080
tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc	1140
ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc	1200
aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc	1260
gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga	1320
cctgtgtcca gcagcttcga ccctatcaag ttccctgagg atcagttcca ggtggccctg	1380
gaccaggtgt tcgagaacat cgagaattcc caggctctgg tggaccagtc caacagaatc	1440
ctgtctagcg ccgagaaggg aaacaccggc ttcatcatcg tgatcatcct gatcgccgtg	1500
ctgggcagct ccatgatect ggtgtccate tteateatta teaagaagae caagaagee	1560
accggcgctc ctccagaact gagcggagtg accaacaatg gcttcatccc tcacaac	1617
<210> SEQ ID NO 121 <211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 121	
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa	60
gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga	120
accggctggt acaccaacgt gttcacactg gaagtgggcg acgtcgagaa tctgacatgc	180
tctgatggcc ctagcctgat caagaccgag ctggatctga ccaagagcgc cctgagagaa	240
ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcagc	300
ggcagetttg tgctgggage cattgetett ggagtggetg etgctgcage tgttacagea	360
ggcgtggcca tcgctaagac catcagactg gaaagcgaag tgaccgccat caacaacgcc	420
ctgaagaaga caaacgaggc cgtcagcaca ctcggcaatg gcgttagagt gctggccaca	480
gccgtgcgcg agctgaagga cttcgtgtcc aagaacctga cacgggccat taacaagaac	540
aagtgeeeta tegaegaeet gaagatggee gtgteettta geeagtteaa eeggeggttt	600
ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac	660
ctgatgacag atgctgagct ggctagagcc gtgcctaaca tgcctacatc tgccggccag	720
atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgatt	780
ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac	840
acaccetget ggattgtgaa ggccgctcct agetgtageg agaagaaggg caattacgcc	900

cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga 1020

atcaatgtgg	ccgagcagag	caaagagtgc	aacatcaaca	tcagcaccac	caactatccc	1080
tgcaaggtgt	ccaccggcag	gcaccctatt	tctatggtgg	ctctgtctcc	tctgggagcc	1140
ctggtggctt	gttataaggg	cgtgtcctgt	agcatcggca	gcaacagagt	gggcatcatc	1200
aagcagctga	acaagggctg	cagctacatc	accaaccagg	acgccgatac	cgtgaccatc	1260
gacaacaccg	tgtatcagct	gagcaaggtg	gaaggcgaac	agcacgtgat	caagggcaga	1320
cctgtgtcca	gcagcttcga	ccctatcaag	ttccctgagg	atcagttcca	ggtggccctg	1380
gaccaggtgt	tcgagaacat	cgagaattcc	caggetetgg	tggaccagtc	caacagaatc	1440
ctgtctagcg	ccgagaaggg	aaacaccggc	ttcatcatcg	tgatcatcct	gatcgccgtg	1500
ctgggcagct	ccatgatcct	ggtgtccatc	ttcatcatta	tcaagaagac	caagaagccc	1560
accggcgctc	ctccagaact	gagcggagtg	accaacaatg	gcttcatccc	tcacaac	1617
<220> FEATU	TH: 1617 : DNA NISM: Artif: JRE: R INFORMATIO	icial Sequer DN: Synthet:	nce ic Polynucle	eotiđe		
atgagctgga	aggtggtcat	catcttcagc	ctgctgatca	cacctcagca	cggcctgaaa	60
			atcacagagg			120
			gaagtgggcg			180
tctgatggcc	ctagcctgat	caagaccgag	ctggatctga	ccaagagcgc	cctgagagaa	240
ctcaagaccg	tgtctgccga	tcagctggcc	agagaggaac	agatcgagaa	tcctggcagc	300
ggcagctttg	tgctgggagc	cattgctctt	ggagtggctg	ctgctgcagc	tgttacagca	360
ggcgtggcca	tcgctaagac	catcagactg	cctagcgaag	tgaccgccat	caacaacgcc	420
ctgaagaaga	caaacgaggc	cgtcagcaca	ctcggcaatg	gcgttagagt	gctggccaca	480
gccgtgcgcg	agctgaagga	cttcgtgtcc	aagaacctga	cacgggccat	taacaagaac	540
aagtgcgaca	tegaegaeet	gaagatggcc	gtgtccttta	gccagttcaa	ccggcggttt	600
ctgaacgtcg	tgcggcagtt	tagcgacaac	gccggaatca	caccagccat	cagcctggac	660
ctgatgacag	atgctgagct	ggctagagcc	gtgcctaaca	tgcctacatc	tgccggccag	720
atcaagctga	tgctcgagaa	tagagccatg	gtccgacgga	aaggcttcgg	cattctgatt	780
ggcgtgtacg	gcagcagcgt	gatctatatg	gtgcagctgc	ctatcttcgg	cgtgatcgac	840
acaccctgct	ggattgtgaa	ggccgctcct	agctgtagcg	agaagaaggg	caattacgcc	900
tgcctgctga	gagaggacca	aggctggtat	tgtcagaacg	ccggcagcac	cgtgtactac	960
cctaacgaga	aggactgcga	gacaagaggc	gaccacgtgt	tctgtgatac	cgccgctgga	1020
atcaatgtgg	ccgagcagag	caaagagtgc	aacatcaaca	tcagcaccac	caactatccc	1080
tgcaaggtgt	ccaccggcag	gcaccctatt	tctatggtgg	ctctgtctcc	tctgggagcc	1140
ctggtggctt	gttataaggg	cgtgtcctgt	agcatcggca	gcaacagagt	gggcatcatc	1200
aagcagctga	acaagggctg	cagctacatc	accaaccagg	acgccgatac	cgtgaccatc	1260
gacaacaccg	tgtatcagct	gagcaaggtg	gaaggcgaac	agcacgtgat	caagggcaga	1320
cctgtgtcca	gcagcttcga	ccctatcaag	ttccctgagg	atcagttcca	ggtggccctg	1380
gaccaggtgt	tcgagaacat	cgagaattcc	caggctctgg	tggaccagtc	caacagaatc	1440

_								
ct	gtctagcg	ccgagaaggg	aaacaccggc	ttcatcatcg	tgatcatcct	gatcgccgtg	1500	
ct	gggcagct	ccatgatcct	ggtgtccatc	ttcatcatta	tcaagaagac	caagaagccc	1560	
ac	eggegete	ctccagaact	gagcggagtg	accaacaatg	gcttcatccc	tcacaac	1617	
<2 <2 <2 <2	211> LENG 212> TYPE 213> ORGA 220> FEAT	: DNA NISM: Artif	_		eotide			
< 4	100> SEQU	ENCE: 123						
at	gagetgga	aggtggtcat	catcttcagc	ctgctgatca	cacctcagca	cggcctgaaa	60	
ga	gagctacc	tggaagagtc	ctgcagcacc	atcacagagg	gctacctgtc	tgtgctgaga	120	
ac	eggetggt	acaccaacgt	gttcacactg	gaagtgggcg	acgtcgagaa	tctgacatgc	180	
to	tgatggcc	ctagcctgat	caagaccgag	ctggatctga	ccaagagcgc	cctgagagaa	240	
ct	caagaccg	tgtctgccga	tcagctggcc	agagaggaac	agatcgagaa	teetggeage	300	
gg	gcagetttg	tgctgggagc	cattgctctt	ggagtggctg	ctgctgcagc	tgttacagca	360	
gg	jegtggeca	tcgctaagac	catcagactg	gaaagcgaag	tgaccgccat	caacaacgcc	420	
ct	gaagaaga	caaacgaggc	cgtcagcaca	ctcggcaatg	gcgttagagt	gctggccaca	480	
gc	egtgegeg	agctgaagga	cttcgtgtcc	aagaacctga	cacgggccat	taacaagaac	540	
aa	ıgtgcgaca	tcgacgacct	gaagatggcc	gtgtccttta	gccagttcaa	ccggcggttt	600	
ct	gaacgtcg	tgcggcagtt	tagcgacaac	gccggaatca	caccagccat	cagcctggac	660	
ct	gatgacag	atgctgagct	ggctagagcc	gtgcctaaca	tgcctacatc	tgccggccag	720	
at	caagctga	tgctcgagaa	tagagccatg	gtccgacgga	aaggettegg	cattctgatt	780	
gg	gcgtgtacg	gcagcagcgt	gatctatatg	gtgcagctgc	ctatcttcgg	cgtgatcgac	840	
ac	accctgct	ggattgtgaa	ggccgctcct	agctgtagcg	agaagaaggg	caattacgcc	900	
tg	jcctgctga	gagaggacca	aggctggtat	tgtcagaacg	ccggcagcac	cgtgtactac	960	
CC	taacgaga	aggactgcga	gacaagaggc	gaccacgtgt	tctgtgatac	cgccgctgga	1020	
at	caatgtgg	ccgagcagag	caaagagtgc	aacatcaaca	tcagcaccac	caactatccc	1080	
tg	gcaaggtgt	ccaccggcag	gcaccctatt	tctatggtgg	ctctgtctcc	tctgggagcc	1140	
ct	ggtggctt	gttataaggg	cgtgtcctgt	agcatcggca	gcaacagagt	gggcatcatc	1200	
aa	ıgcagctga	acaagggctg	cagctacatc	accaaccagg	acgccgatac	cgtgaccatc	1260	
ga	ıcaacaccg	tgtatcagct	gagcaaggtg	gaaggcgaac	agcacgtgat	caagggcaga	1320	
CC	tgtgtcca	gcagcttccc	acctatcaag	ttccctgagg	atcagttcca	ggtggccctg	1380	
ga	ıccaggtgt	tcgagaacat	cgagaattcc	caggctctgg	tggaccagtc	caacagaatc	1440	
ct	gtctagcg	ccgagaaggg	aaacaccggc	ttcatcatcg	tgatcatcct	gatcgccgtg	1500	
ct	gggcagct	ccatgatcct	ggtgtccatc	ttcatcatta	tcaagaagac	caagaagccc	1560	
ac	cggcgctc	ctccagaact	gagcggagtg	accaacaatg	gcttcatccc	tcacaac	1617	
< 2	10> SEQ :							

<211> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Polynucleotide

-continued

atgagctgga	aggtggtcat	catcttcagc	ctgctgatca	cacctcagca	cggcctgaaa	60
gagagctacc	tggaagagtc	ctgcagcacc	atcacagagg	gctacctgtc	tgtgctgaga	120
accggctggt	acaccaacgt	gttcacactg	gaagtgggcg	acgtcgagaa	tctgacatgc	180
tctgatggcc	ctagcctgat	caagaccgag	ctggatctga	ccaagagcgc	cctgagagaa	240
ctcaagaccg	tgtctgccga	tcagctggcc	agagaggaac	agatcgagaa	tcctggcagc	300
ggcagctttg	tgctgggagc	cattgctctt	ggagtggctg	ctgctgcagc	tgttacagca	360
ggcgtggcca	tegetaagae	catcagactg	gaaagcgaag	tgaccgccat	caacaacgcc	420
ctgaagaaga	caaacgaggc	cgtcagcaca	ctcggcaatg	gcgttagagt	gctggccaca	480
gccgtgcgcg	agctgaagga	cttcgtgtcc	aagaacctga	cacgggccat	taacaagaac	540
aagtgcgaca	tcgacgacct	gaagatggcc	gtgtccttta	gccagttcaa	ccggcggttt	600
ctgaacgtcg	tgcggcagtt	tagcgacaac	gccggaatca	caccagccat	cagcctggac	660
ctgatgacag	atgctgagct	ggctagagcc	gtgcctaaca	tgcctacatc	tgccggccag	720
atcaagctga	tgctcgagaa	tagagccatg	gtccgacgga	aaggcttcgg	cattctgatt	780
ggcgtgtacg	gcagcagcgt	gatctatatg	gtgcagctgc	ctatcttcgg	cgtgatcgac	840
acaccctgct	ggattgtgaa	ggeegeteet	agctgtagcg	agaagaaggg	caattacgcc	900
tgcctgctga	gagaggacca	aggctggtat	tgtcagaacg	ccggcagcac	cgtgtactac	960
cctaacgaga	aggactgcga	gacaagaggc	gaccacgtgt	tctgtgatac	cgccgctgga	1020
atcaatgtgg	ccgagcagag	caaagagtgc	aacatcaaca	tcagcaccac	caactatccc	1080
tgcaaggtgt	ccaccggcag	gcaccctatt	tctatggtgg	ctctgtctcc	tctgggagcc	1140
ctggtggctt	gttataaggg	cgtgtcctgt	agcatcggca	gcaacagagt	gggcatcatc	1200
aagcagctga	acaagggctg	cagctacatc	accaaccagg	acgccgatac	cgtgaccatc	1260
gacaacaccg	tgtatcagct	gagcaaggtg	gaaggcgaac	agcacgtgat	caagggcaga	1320
cctgtgtcca	gcagcttcga	ccctatcaag	ttccctgaga	accagttcca	ggtggccctg	1380
gaccaggtgt	tcgagaacat	cgagaattcc	caggctctgg	tggaccagtc	caacagaatc	1440
ctgtctagcg	ccgagaaggg	aaacaccggc	ttcatcatcg	tgatcatcct	gatcgccgtg	1500
ctgggcagct	ccatgatcct	ggtgtccatc	ttcatcatta	tcaagaagac	caagaagccc	1560
accggcgctc	ctccagaact	gagcggagtg	accaacaatg	gcttcatccc	tcacaac	1617
<220> FEAT	TH: 1617 : DNA NISM: Artif: URE: R INFORMATIO	-		eotide		
<400> SEQUI						
				cacctcagca		60
gagagctacc	tggaagagtc	ctgcagcacc	atcacagagg	gctacctgtc	tgtgctgaga	120
accggctggt	acaccaacgt	gttcacactg	gaagtgggcg	acgtcgagaa	tctgacatgc	180
tctgatggcc	ctagcctgat	caagaccgag	ctggatctga	ccaagagcgc	cctgagagaa	240
ctcaagaccg	tgtctgccga	tcagctggcc	agagaggaac	agatcgagaa	tcctggcagc	300
ggcagctttg	tgctgggagc	cattgctctt	ggagtggctg	ctgctgcagc	tgttacagca	360

ggcgtggcca tcgctaagac catcagactg gaaagcgaag tgaccgccat caacaacgcc

420

-continued

-continued	
ctgaagaaga caaacgaggc cgtcagcaca ctcggcaatg gcgttagagt gctggccaca	480
gccgtgcgcg agctgaagga cttcgtgtcc aagaacctga cacgggccat taacaagaac	540
aagtgegaca tegaegacet gaagatggee gtgteettta geeagtteaa eeggeggttt	600
ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac	660
ctgatgacag atgctgagct ggctagagcc gtgcctaaca tgcctacatc tgccggccag	720
atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgatt	780
ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac	840
acaccetget ggattgtgaa ggeegeteet agetgtageg agaagaaggg caattaegee	900
tgcctgctga gagaggacca aggctggtat tgtcagaacg ccggcagcac cgtgtactac	960
cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga	1020
atcaatgtgg ccgagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc	1080
tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc	1140
ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc	1200
aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc	1260
gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga	1320
cctgtgtcca gcagcttcga ccctatcaag ttccctcagg atcagttcca ggtggccctg	1380
gaccaggtgt tcgagaacat cgagaattcc caggctctgg tggaccagtc caacagaatc	1440
ctgtctagcg ccgagaaggg aaacaccggc ttcatcatcg tgatcatcct gatcgccgtg	1500
ctgggcagct ccatgatcct ggtgtccatc ttcatcatta tcaagaagac caagaagcc	1560
accggcgctc ctccagaact gagcggagtg accaacaatg gcttcatccc tcacaac	1617
<210> SEQ ID NO 126 <211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 126	
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa	60
gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga	120
accggctggt acaccaacgt gttcacactg gaagtgggcg acgtcgagaa tctgacatgc	180
tetgatggce etageetgat caagacegag etggatetga ecaagagege eetgagagaa	240
ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcagc	300
ggcagetttg tgctgggage cattgctctt ggagtggctg ctgctgcage tgttacagea	360
ggcgtggcca tcgctaagac catcagactg gaaagcgaag tgaccgccat caacaacgcc	420
ctgaagaaga caaacgaggc cgtcagcaca ctcggcaatg gcgttagagt gctggccaca	480
gccgtgcgcg agctgaagga cttcgtgtcc aagaacctga cacgggccat taacaagaac	540
aagtgcgaca tcgacgacct gaagatggcc gtgtccttta gccagtggaa ccggcggttt	600
ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac	660
ctgatgacag atgctgagct ggctagagcc gtgcctaaca tgcctacatc tgccggccag	720
atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgatt	780
atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgatt ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac	780 840

900

acaccctgct ggattgtgaa ggccgctcct agctgtagcg agaagaaggg caattacgcc

-continued

tgcctgctga gagaggacca aggctggtat tgtcagaacg ccggcagcac cgtgtactac	960
cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga	1020
atcaatgtgg ccgagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc	1080
tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc	1140
ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc	1200
aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc	1260
gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga	1320
cetgtgteca geagettega ecetateaag tteeetgagg ateagtteea ggtggeeetg	1380
gaccaggtgt tcgagaacat cgagaattcc caggctctgg tggaccagtc caacagaatc	1440
ctgtctagcg ccgagaaggg aaacaccggc ttcatcatcg tgatcatcct gatcgccgtg	1500
ctgggcagct ccatgatcct ggtgtccatc ttcatcatta tcaagaagac caagaagccc	1560
accggcgctc ctccagaact gagcggagtg accaacaatg gcttcatccc tcacaac	1617
<pre>&lt;210&gt; SEQ ID NO 127 &lt;211&gt; LENGTH: 1617 &lt;212&gt; TYPE: RNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Synthetic Polynucleotide</pre>	
<400> SEQUENCE: 127	
augageugga agguggucau caucuucage eugeugauca eaceucagea eggeeugaaa	60
gagageuace uggaagague eugeageace aucacagagg geuaceugue ugugeugaga	120
accggcuggu acaccaacgu guucacacug gaagugggcg acgucgagaa ucugacaugc	180
ucugauggee cuageeugau caagaeegag euggaueuga eeaagagege eeugagagaa	240
cucaagaccg ugucugccga ucagcuggcc agagaggaac agaucgagaa uccuggcagc	300
ggcagcuuug ugcugggagc cauugcucuu ggaguggcug cugcugcagc uguuacagca	360
ggcguggcca ucugcaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc	420
cugaagaaga caaacgaggc cgucagcaca cucggcaaug gcguuagagu gcuggccuuu	480
geegugegeg ageugaagga euueguguee aagaaeeuga eaegggeeeu gaacaagaae	540
aagugegaca uegaegaeeu gaagauggee gugueeuuua geeaguueaa eeggegguuu	600
cugaacgucg ugcggcaguu uagcgacaac gccggaauca caccagccau cagccuggac	660
cugaugacag augcugagcu ggcuagagcc gugccuaaca ugccuacauc ugccggccag	720
aucaagcuga ugcucgagaa uagagccaug guccgacgga aaggcuucgg cauucugugu	780
ggcguguacg gcagcagcgu gaucuauaug gugcagcugc cuaucuucgg cgugaucgac	840
acacccugcu ggauugugaa ggccgcuccu agcuguagcg agaagaaggg caauuacgcc	900
ugccugcuga gagaggacca aggcugguau ugucagaacg ccggcagcac cguguacuac	960
ccuaacgaga aggacugcga gacaagaggc gaccacgugu ucugugauac cgccgcugga	1020
aucaaugugg ccgagcagag caaagagugc aacaucaaca ucagcaccac caacuauccc	1080
ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagcc	1140
cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc	1200
aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc	1260
	1220

gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga 1320

		-concinued	
ccugugucca gcagcuucga	. cccuaucaag uucccuga	gg aucaguucaa cguggcccug	1380
gaccaggugu ucgagaacau	. cgagaauucc caggcucu	gg uggaccaguc caacagaauc	1440
cugucuageg eegagaaggg	aaacaccggc uucaucau	cg ugaucauccu gaucgccgug	1500
cugggcagcu ccaugauccu	. gguguccauc uucaucau	ua ucaagaagac caagaagccc	1560
accggcgcuc cuccagaacu	. gagcggagug accaacaa	ug gcuucauccc ucacaac	1617
<210> SEQ ID NO 128 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artif <220> FEATURE: <223> OTHER INFORMATI		cleotide	
<400> SEQUENCE: 128			
augagcugga agguggucau	. caucuucagc cugcugau	ca caccucagca cggccugaaa	60
gagagcuacc uggaagaguc	cugcagcacc aucacaga	gg gcuaccuguc ugugcugaga	120
accggcuggu acaccaacgu	. guucacacug gaaguggg	cg acgucgagaa ucugacaugc	180
ucugauggcc cuagccugau	. caagaccgag cuggaucu	ga ccaagagcgc ccugagagaa	240
cucaagaccg ugucugccga	ucagcuggcc agagagga	ac agaucgagaa uccuggcagc	300
ggcagcuuug ugcugggagc	cauugcucuu ggaguggc	ug cugcugcagc uguuacagca	360
ggcguggcca ucugcaagac	caucagacug gaaagcga	ag ugaccgccau caacaacgcc	420
cugaagaaga caaacgaggo	cgucagcaca cucggcaa	ug gcguuagagu gcuggccaca	480
gccgugcgcg agcugaagga	. cuucgugucc aagaaccu	ga cacgggccau uaacaagaac	540
aagugcgaca ucgacgaccu	. gaagauggee gugueeuu	ua gecaguucaa eeggegguuu	600
cugaacgucg ugcggcaguu	. uagcgacaac gccggaau	ca caccagecau cagecuggae	660
cugaugacag augcugagcu	. ggcuagagcc gugccuaa	ca ugccuacauc ugccggccag	720
aucaagcuga ugcucgagaa	. uagagccaug guccgacg	ga aaggcuucgg cauucugugu	780
ggcguguacg gcagcagcgu	. gaucuauaug gugcagcu	gc cuaucuucgg cgugaucgac	840
acacccugcu ggauugugaa	. ggccgcuccu agcuguag	cg agaagaaggg caauuacgcc	900
ugccugcuga gagaggacca	. aggcugguau ugucagaa	cg ccggcagcac cguguacuac	960
ccuaacgaga aggacugcga	. gacaagaggc gaccacgu	gu ucugugauac cgccgcugga	1020
aucaaugugg ccgagcagag	caaagagugc aacaucaa	ca ucagcaccac caacuauccc	1080
ugcaaggugu ccaccggcag	gcacccuauu ucuauggu	gg cucugucucc ucugggagcc	1140
cugguggcuu guuauaaggg	cguguccugu agcaucgg	ca gcaacagagu gggcaucauc	1200
aagcagcuga acaagggcug	cagcuacauc accaacca	gg acgccgauac cgugaccauc	1260
gacaacaccg uguaucagcu	. gagcaaggug gaaggcga	ac agcacgugau caagggcaga	1320
ccugugucca gcagcuucga	. cccuaucaag uucccuga	gc accaguggca uguggcccug	1380
gaccaggugu ucgagaacau	. cgagaauucc caggcucu	gg uggaccaguc caacagaauc	1440
cugucuagcg ccgagaaggg	, aaacaccggc uucaucau	cg ugaucauccu gaucgeegug	1500
		ua ucaagaagac caagaagccc	1560
accggcgcuc cuccagaacu			1617
useggegede edecagdaed	gageggagag accadead	ag goudoudoco dodoado	±0±/

<210> SEQ ID NO 129 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence

-continued

<220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEOUENCE: 129 augagcugga agguggucau caucuucagc cugcugauca caccucagca cggccugaaa 60 gagagcuacc uggaagaguc cugcagcacc aucacagagg gcuaccuguc ugugcugaga 120 accggcuggu acaccaacgu guucacacug gaagugggcg acgucgagaa ucugacaugc 180 ucugauggee cuagecugau caagacegag cuggaucuge ucaagagege ceugagagaa 240 cucaagaccg ugucugccga ucagcuggcc agagaggaac agaucgagaa uccuggcagc 300 ggcagcuuug ugcugggagc cauugcucuu ggaguggcug cugcugcagc uguuacagca ggcguggcca ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc 480 cuqaaqaaqa caaacqaqqc cqucaqcaca cucqqcaauq qcquuaqaqu qcuqqccaca 540 qccquqcqcq aqcuqaaqqa cuucququcc aaqaaccuqa cacqqqccau uaacaaqaac aagugcgaca ucccugaccu gaagauggcc guguccuuua gccaguucaa ccggcgguuu 600 660 cuqaacqueq uqeqqeaquu uaqeqacaac qeeqqaauca caccaqeeau caqeeuqqae cuqauqacaq auqcuqaqcu qqcuaqaqcc quqccuaaca uqccuacauc uqccqqccaq 720 aucaaqcuqa uqcucqaqaa uaqaqccauq quccqacqqa aaqqcuucqq cauucuqauu 780 qqcququacq qcaqcaqcqu qaucuauauq quqcaqcuqc cuaucuucqq cquqaucqac 840 900 acacccuqcu qqauuquqaa qqccqcuccu aqcuquaqcq aqaaqaaqqq caauuacqcc ugccugcuga gagaggacca aggcugguau ugucagaacg ccggcagcac cguguacuac 960 1020 ccuaacgaga aggacugcga gacaagaggc gaccacgugu ucugugauac cgccgcugga aucaaugugg ccgagcagag caaagagugc aacaucaaca ucagcaccac caacuauccc 1080 ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagcc 1140 cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc 1200 aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc 1260 gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga 1320 ccugugueca gcagcuucga cccuaucaag uucccugagg aucaguucca gguggeecug 1380 gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc 1440 cugucuageg cegagaaggg aaacacegge uucaucaueg ugaucauecu gauegeegug 1500 cugggcagcu ccaugauccu gguguccauc uucaucauua ucaagaagac caagaagcc 1560 accggcgcuc cuccagaacu gagcggagug accaacaaug gcuucauccc ucacaac 1617 <210> SEQ ID NO 130 <211> LENGTH: 1617 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 130 augagcugga agguggucau caucuucagc cugcugauca caccucagca cggccugaaa 60 gagagcuacc uggaagaguc cugcagcacc aucacagagg gcuaccuguc ugugcugaga 120 accggcuggu acaccaacgu guucacacug gaagugggcg acgucgagaa ucugacaugc 180 ucugauggec cuagecugau caagacegag cuggaucuge ucaagagege ceugagagaa 240

cucaagaceg ugucugeega ucageuggee agagaggaae agauegagaa uccuggeage

300

-continued

-continued		
ggcagcuuug ugcugggagc cauugcucuu ggaguggcug cugcugcagc uguuacagca	360	
ggcguggcca ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc	420	
cugaagaaga caaacgaggc cgucagcaca cucggcaaug gcguuagagu gcuggccaca	480	
gccgugcgcg agcugaagga cuucgugucc aagaaccuga cacgggccau uaacaagaac	540	
aagugcgaca ucccugaccu gaagauggcc guguccuuua gccaguucaa ccggcgguuu	600	
cugaacgucg ugcggcaguu uagcgacaac gccggaauca caccagccau cagccuggac	660	
cugaugacag augcugagcu ggcuagagcc gugccuaaca ugccuacauc ugccggccag	720	
aucaagcuga ugcucgagaa uagagccaug guccgacgga aaggcuucgg cauucugauu	780	
ggcguguacg gcagcagcgu gaucuauaug gugcagcugc cuaucuucgg cgugaucgac	840	
acacccugcu ggauugugaa ggccgcuccu agcuguagcg agaagaaggg caauuacgcc	900	
ugccugcuga gagaggacca aggcugguau ugucagaacg ccggcagcac cguguacuac	960	
ccuaacgaga aggacugcga gacaagagge gaccacgugu ucugugauac cgccgcugga	1020	
aucaaugugg ccgagcagag caaagagugc aacaucaaca ucagcaccac caacuauccc	1080	
ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagcc	1140	
cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc	1200	
aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc	1260	
gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga	1320	
ccugugucca gcagcuucga cccuaucaag uucccugaga accaguucca gguggcccug	1380	
gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc	1440	
cugucuageg eegagaaggg aaacacegge uucaucaueg ugaucaueeu gauegeegug	1500	
cugggcagcu ccaugauccu gguguccauc uucaucauua ucaagaagac caagaagccc	1560	
accggcgcuc cuccagaacu gagcggagug accaacaaug gcuucauccc ucacaac	1617	
<210> SEQ ID NO 131 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 131		
	60	
augageugga agguggueau caucuucage eugeugauca caecucagea eggeeugaaa	120	
gagageuace uggaagague eugeageace aucacagagg geuaceugue ugugeugaga	180	
accggcuggu acaccaacgu guucacacug gaagugggcg acgucgagaa ucugacaugc	240	
cucaagaccg ugucugccga ucagcuggcc agagaggaac agaucgagaa uccuggcagc	300	
ggcagcuuug ugcugggagc cauugcucuu ggaguggcug cugcugcagc uguuacagca	360	
	420	
ggcguggcca ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc	480	
cugaagaaga caaacgaggc cgucagcaca cucggcaaug gcguuagagu gcuggccaca		
gccgugcgcg agcugaagga cuucgugcuu aagaaccuga cacgggccau uaacaagaac	540	
aagugegaca ueeeugaeeu gaagauggee gugueeuuua geeaguueaa eeggegguuu	600	
cugaacgucg ugcggcaguu uagcgacaac gccggaauca caccagccau cagccuggac	660	
cugaugacag augcugagcu ggcuagagcc gugccuaaca ugccuacauc ugccggccag	720	

780

aucaagcuga ugcucgagaa uagagccaug guccgacgga aaggcuucgg cauucugauu

-continued

ggcguguacg	gcagcagcgu	gaucuauaug	gugcagcugc	cuaucuucgg	cgugaucgac	840
acacccugcu	ggauugugaa	ggccgcuccu	agcuguagcg	agaagaaggg	caauuacgcc	900
ugccugcuga	gagaggacca	aggcugguau	ugucagaacg	ccggcagcac	cguguacuac	960
ccuaacgaga	aggacugcga	gacaagaggc	gaccacgugu	ucugugauac	cgccgcugga	1020
aucaaugugg	ccgagcagag	caaagagugc	aacaucaaca	ucagcaccac	caacuauccc	1080
ugcaaggugu	ccaccggcag	gcacccuauu	ucuauggugg	cucugucucc	ucugggagcc	1140
cugguggcuu	guuauaaggg	cguguccugu	agcaucggca	gcaacagagu	gggcaucauc	1200
aagcagcuga	acaagggcug	cagcuacauc	accaaccagg	acgccgauac	cgugaccauc	1260
gacaacaccg	uguaucagcu	gagcaaggug	gaaggcgaac	agcacgugau	caagggcaga	1320
ccugugucca	gcagcuucga	cccuaucaag	uucccugagg	aucaguucca	gguggcccug	1380
gaccaggugu	ucgagaacau	cgagaauucc	caggcucugg	uggaccaguc	caacagaauc	1440
cugucuageg	ccgagaaggg	aaacaccggc	uucaucaucg	ugaucauccu	gaucgccgug	1500
cugggcagcu	ccaugauccu	gguguccauc	uucaucauua	ucaagaagac	caagaagccc	1560
accggcgcuc	cuccagaacu	gagcggagug	accaacaaug	gcuucauccc	ucacaac	1617
<220> FEAT	TH: 1617 : RNA NISM: Artif: JRE: R INFORMATIO	icial Sequer DN: Syntheti		eotide		
211626611662						
augagcugga	agguggucau	caucuucagc	cugcugauca	caccucagca	cggccugaaa	60
		caucuucagc				60 120
gagagcuacc	uggaagaguc		aucacagagg	gcuaccuguc	ugugcugaga	
gagagcuacc	uggaagaguc acaccaacgu	cugcagcacc	aucacagagg gaagugggcg	gcuaccuguc	ugugcugaga ucugacaugc	120
gagagcuacc accggcuggu ucugauggcc	uggaagaguc acaccaacgu cuagccugau	cugcagcacc	aucacagagg gaagugggcg cuggaucugc	gcuaccuguc acgucgagaa ucaagagcgc	ugugcugaga ucugacaugc ccugagagaa	120 180
gagagcuacc accggcuggu ucugauggcc cucaagaccg	uggaagaguc acaccaacgu cuagccugau ugucugccga	cugcagcacc guucacacug caagaccgag	aucacagagg gaagugggcg cuggaucugc agagaggaac	gcuaccuguc acgucgagaa ucaagagcgc agaucgagaa	ugugcugaga ucugacaugc ccugagagaa uccuggcagc	120 180 240
gagagcuacc accggcuggu ucugauggcc cucaagaccg	uggaagaguc acaccaacgu cuagccugau ugucugccga ugcugggagc	cugcagcacc guucacacug caagaccgag ucagcuggcc	aucacagagg gaagugggcg cuggaucugc agagaggaac ggaguggcug	gcuaccuguc acgucgagaa ucaagagcgc agaucgagaa cugcugcagc	ugugcugaga ucugacaugc ccugagagaaa uccuggcagc uguuacagca	120 180 240 300
gagagcuacc accggcuggu ucugauggcc ggcagcuuug ggcguggcca	uggaagaguc acaccaacgu cuagccugau ugucugccga ugcugggagc ucgcuaagac	cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu	aucacagagg gaagugggcg cuggaucugc agagaggaac ggaguggcug	gcuaccuguc acgucgagaa ucaagagegc agaucgagaa cugcugcagc ugaccgccau	ugugcugaga ucugacaugc ccugagagaaa uccuggcagc uguuacagca caacaacgcc	120 180 240 300 360
gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcagcuuug ggcguggcca cugaagaaga	uggaagaguc acaccaacgu cuagccugau ugucugccga ugcugggagc ucgcuaagac caaacgaggc	cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu caucagacug	aucacagagg gaagugggcg cuggaucugc agaguggcug gaaagcgaag cucggcaaug	gcuaccuguc acgucgagaa ucaagagcgc agaucgagaa cugcugcagc ugaccgccau gcguuagagu	ugugcugaga ucugacaugc ccugagagaaa uccuggcagc uguuacagca caacaacgcc gcuggccaca	120 180 240 300 360 420
gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcagcuuug ggcguggcca cugaagaaga gccgugcgcg	uggaagaguc acaccaacgu cuagccugau ugucugccga ugcugggagc ucgcuaagac caaacgaggc agcugaagga	cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu caucagacug cgucagcaca	aucacagagg gaagugggcg cuggaucugc agaguggcug gaaagcgaag cucggcaaug aagaaccuga	gcuaccuguc acgucgagaa ucaagagcgc agaucgagaa cugcugcagc ugaccgccau gcguuagagu cacgggccau	ugugcugaga ucugacaugc ccugagagaaa uccuggcagc uguuacagca caacaacgcc gcuggccaca uaacaagaac	120 180 240 300 360 420 480
gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcagcuuug ggcguggcca cugaagaaga aga	uggaagaguc acaccaacgu cuagccugau ugucugccga ugcugggagc ucgcuaagac caaacgaggc agcugaagga	cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu caucagacug cgucagcaca cuucgugcuu	aucacagagg gaagugggcg cuggaucugc agaguggcug gaaagcgaag cucggcaaug aagaaccuga	gcuaccuguc acgucgagaa ucaagagcgc agaucgagaa cugcugcagc ugaccgccau gcguuagagu cacgggccau gcacggccau	ugugcugaga ucugacaugc ccugagagaaa uccuggcagc uguuacagca caacaacgcc gcuggccaca uaacaagaac ccggcgguuu	120 180 240 300 360 420 480 540
gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcagcuuug ggcguggcca cugaagaaga gccgugcgcg aagugcgaca cugaacgucg	uggaagaguc acaccaacgu cuagccugau ugucugccga ugcugggagc ucgcuaagac caaacgaggc agcugaagga ucccugaccu ugcggcaguu	cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu caucagacug cgucagcaca cuucgugcuu gaagauggcc	aucacagagg gaagugggcg cuggaucugc agaguggcug gaaagcgaag cucggcaaug aagaaccuga guguccuuua gccggaauca	gcuaccuguc acgucgagaa ucaagagcgc agaucgagaa cugcugcagc ugaccgccau gcguuagagu cacgggccau gccaguucaa caccagccau	ugugcugaga ucugacaugc ccugagagaaa uccuggcagc uguuacagca caacaacgcc gcuggccaca uaacaagaac ccggcgguuu cagccuggac	120 180 240 300 360 420 480 540
gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcguggcca cugaagaaga gccgugcgcg aagugcgaca cugaacgucg	uggaagaguc acaccaacgu cuagccugau ugucugccga ugcugggagc ucgcuaagac caaacgaggc agcugaagga ucccugaccu ugcggcaguu augcggcaguu	cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu caucagacug cgucagcaca cuucgugcuu gaagauggcc uagcgacaac	aucacagagg gaagugggcg agagaggaac ggaguggcug gaaagcgaaug aagaaccuga guguccuuua gccggaauca guguccuuaa	gcuaccuguc acgucgagaa ucaagagcgc agaucgagaa cugcugcagc ugaccgccau gcguuagagu cacgggccau gccaguucaa caccagccau ugccuacauc	ugugcugaga ucugacaugc ccugagagaa uccuggcagc uguuacagca caacaacgcc gcuggccaca uaacaagaac ccggcgguuu cagccuggac ugccggccag	120 180 240 300 360 420 480 540 600
gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcguggcca cugaagaaga gccgugcgcg aagugcgaca cugaacgucg cugaugacag	uggaagaguc acaccaacgu cuagccugau ugucugccga ugcugggagc ucgcuaagac caaacgaggc agcugaagga ucccugaccu ugcggcaguu augcugagcu ugcugagcu	cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu caucagacug cgucagcaca cuucgugcuu gaagauggcc uagcgacaac	aucacagagg gaagugggcg cuggaucugc agaguggcug gaaagcgaaug cucggcaaug auguccuuua gccggaauca gugccuaaca	gcuaccuguc acgucgagaa ucaagagcgc agaucgagaa cugcugcagc ugaccgccau gcguuagagu cacgggccau gccaguucaa caccagccau ugccuacauc	ugugcugaga ucugacaugc ccugagagaaa uccuggcagc uguuacagca caacaacgcc gcuggccaca uaacaagaac ccggcgguuu cagccuggac ugccggccag cauucugauu	120 180 240 300 360 420 480 540 600 720
gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcagcuuug ggcguggcca cugaagaaga gccgugcgcg aagugcgaca cugaacgucg aucaagcuga	uggaagaguc acaccaacgu cuagccugau ugucugccga ugcugggagc ucgcuaagac caaacgaggc agcugaagga ucccugaccu ugcggcaguu augcugagcu ugcucgagaa gcagcagcgu	cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu caucagacug cgucagcaca cuucgugcuu gaagauggcc uagcgacaac ggcuagagcc	aucacagagg gaagugggcg cuggaucugc agaguggcug gaaagcgaag cucggcaaug aagaaccuga guguccuuua gccggaauca gugccuaaca gugccuaaca	gcuaccuguc acgucgagaa ucaagagcgc agaucgagaa cugcugcagc ugaccgccau gcguuagagu cacgggccau gccaguucaa caccagccau ugccuacauc aaggcuucgg	ugugcugaga ucugacaugc ccugagagaa uccuggcagc uguuacagca caacaacgcc gcuggccaca uaacaagaac ccggcgguuu cagccuggac ugccggccag cauucugauu cgugaucgac	120 180 240 300 360 420 480 540 600 720 780
gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcagcuuug ggcguggcca cugaagaaga gccgugcgcg aagugcgaca cugaugacag aucaagcuga ggcguguacag agcguguacg	uggaagaguc acaccaacgu cuagccugau ugucugccga ugcugggagc ucgcuaagac caaacgaggc agcugaagga ucccugaccu ugcggcaguu augcugagcu ugcucgagaa gcagcagcgu	cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu caucagacug cgucagcaca cuucgugcuu gaagauggcc uagcgacaac ggcuagagcc uagagccaug gaucuauaug	aucacagagg gaagugggcg cuggaucugc agaguggcaaug aagaaccuga guguccuuua gccggaauca gugccuaaca gugccuaaca gugccuaaca	gcuaccuguc acgucgagaa ucaagagcgc agaucgagaa cugcugcagc ugaccgccau gcguuagagu cacgggccau gccaguucaa caccagccau ugccuacauc aaggcuucgg cuaucuucgg	ugugcugaga ucugacaugc ccugagagaaa uccuggcagc uguuacagca caacaacgcc gcuggccaca uaacaagaac ccggcgguuu cagccuggac ugccggccag cauucugauu cgugaucgac caauuacgcc	120 180 240 300 360 420 480 540 660 720 780 840
gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcagcuuug ggcguggcca cugaagaaga gccgugcgcg aagugcgaca cugaacgucg cugaugacag aucaagcuga aucaagcuga acacccugcu ugccugcugaug	uggaagaguc acaccaacgu cuagccugau ugucugccga ugcugggagc ucgcuaagac caaacgaggc agcugaagga ucccugaccu ugcugagacu ugcucgagaa gcagcagcu ggauugugaa gagaggacca	cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu caucagacug cgucagcaca cuucgugcuu gaagauggcc uagcgacaac ggcuagagcc uagagccaug gaucuauaug	aucacagagg gaagugggcg cuggaucugc agaguggcug gaaagcgaaug cucggcaaug auguccuuua gccggaauca gugccuaaca gugccuaaca gugcagcugc agcugacgga ugucagacgga	gcuaccuguc acgucgagaa ucaagagcgc agaucgagaa cugcugcagc ugaccgccau gcguuagagu cacgggccau gccaguucaa caccagccau ugccuacauc aaggcuucgg cuaucuucgg agaagaaggg ccggcagcac	ugugcugaga ucugacaugc ccugagagaaa uccuggcagc uguuacagca caacaacgcc gcuggccaca uaacaagaac ccggcgguuu cagccuggac ugccggccag cauucugauu cgugaucgac caauuacgcc	120 180 240 300 360 420 480 540 600 720 780 840 900
gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcagcuuug ggcguggcca cugaagaaga gccgugcgcg aagugcgaca cugaacgucg cugaugacag aucaagcuga agcguguacg acacccugcu ugccugcuga ccuaacgaga	uggaagaguc acaccaacgu cuagccugau ugucugccga ugcugggagc ucgcuaagac aagcugaagga ucccugaccu ugcggcaguu augcugagcu ugcucgagaa gcagcagcgu ggauugugaa gagaggacca aggacugcga	cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu caucagacug cgucagcaca cuucgugcuu gaagauggcc uagcgacaac ggcuagagcc uagagccaug gaucuauaug ggccgcuccu aggcugguau	aucacagagg gaagugggcg agagaggaac ggaguggcug gaaagcgaag cucggcaaug aagaaccuga gugccuuua gccggaauca gugccuaaca gugccuaaca gugcagcugc agcuguagcg agcuguagcg	gcuaccuguc acgucgagaa ucaagagcgc agaucgagaa cugcugcagc ugaccgccau gcguuagagu cacgggccau ugccuacau cacagccau ugccuacauc aaggcuucgg cuaucuucgg agaagaaggg ccggcagcac ucugugauac	ugugcugaga ucugacaugc ccugagagaa uccuggcagc uguuacagca caacaacgcc gcuggccaca uaacaagaac ccggcgguuu cagccuggac ugccggccag cauucugauu cgugaucgac caauuacgcc cguguacuac	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960
gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcagcuuug ggcguggcca cugaagaaga gccgugcgcg aagugcgaca cugaugacag aucaagcuga ggcguguacg acacccugcu ugccugcuga ccuaacgaga aucaaugugg	uggaagaguc acaccaacgu cuagccugau ugucugccga ugcugggagc ucgcuaagac caaacgaggc agcugaagga ucccugaccu ugcggcaguu augcugagacu ugcucgagaa gcagcagcgu ggauugugaa gagaggacca aggacugcga ccgagcagag	cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu caucagacug cgucagcaca cuucgugcuu gaagauggcc uagcgacaac ggcuagagcc uagagccaug gaucuauaug ggccgcuccu aggcugguau gacaagaggc	aucacagagg gaagugggcg cuggaucugc agaguggcug gaaagcgaag cucggcaaug aagaaccuga guguccuuua gccggaauca gugccuaaca guccgacgga gugcagcugc agcuguagcg ugucagaacg agcuguagcg	gcuaccuguc acgucgagaa ucaagagcgc agaucgagaa cugcugcagc ugaccgccau gcguuagagu cacgggccau gccaguucaa caccagccau ugccuacauc aaggcuucgg cuaucuucgg agaagaaggg ccggcagcac ucugugauac ucagcaccac	ugugcugaga ucugacaugc ccugagagaaa uccuggcagc uguuacagca caacaacgcc gcuggccaca uaacaagaac ccggcgguuu cagccuggac ugccggccag cauucugauu cgugaucgac caauuacgcc cguguacuac cggcgcugga caacuauccc	120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020

cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc 1200

				-contir	nuea		 	
aagcagcuga	acaagggcug	cagcuacauc	accaaccagg	acgccgauac	cgugaccauc	1260		
gacaacaccg	uguaucagcu	gagcaaggug	gaaggcgaac	agcacgugau	caagggcaga	1320		
ccugugucca	gcagcuucga	cccuaucaag	uucccugaga	accaguucca	gguggcccug	1380		
gaccaggugu	ucgagaacau	cgagaauucc	caggcucugg	uggaccaguc	caacagaauc	1440		
cugucuagcg	ccgagaaggg	aaacaccggc	uucaucaucg	ugaucauccu	gaucgccgug	1500		
cugggcagcu	ccaugauccu	gguguccauc	uucaucauua	ucaagaagac	caagaagccc	1560		
accggcgcuc	cuccagaacu	gagcggagug	accaacaaug	gcuucauccc	ucacaac	1617		
<220> FEAT	TH: 1617 : RNA NISM: Artif: URE: R INFORMATIC	_		eotide				
<400> SEQUI	ENCE: 133							
	agguggucau					60		
	uggaagaguc					120		
	acaccaacgu					180		
	cuagccugau					240		
	ugucugccga					300		
	ugcugggagc					360		
	ucgcuaagac					420		
	caaacgaggc					480		
	agcugaagga					540 600		
	ucgacgaccu ugcggcaguu					660		
	augcugagcu					720		
	ugcucgagaa			_		780		
	gcagcagcgu					840		
	ggauugugaa					900		
	gagaggacca					960		
	aggacugcga					1020		
	ccgagcagag					1080		
	ccaccggcag					1140		
	guuauaaggg					1200		
	acaagggcug					1260		
gacaacaccg	uguaucagcu	gagcaaggug	gaaggcgaac	agcacgugau	caagggcaga	1320		
	gcagcuucga					1380		
	ucgagaacau					1440		
	ccgagaaggg					1500		
						1560		
	cuccagaacu					1617		
accygcgcuc	cuccagaacu	gageggagug	accaacaaug	geuueaueee	ucacaac	T0T/		

-continued

715 716

<210> SEQ ID NO 134 <211> LENGTH: 1617

<212> TYPE: RNA

<213 > ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Polynucleotide

<400> SEQUENCE: 134

augageugga agguggueau caucuucage eugeugauca caccucagea eggeeugaaa 60 gagageuaee uggaagague eugeageaee aucaeagagg geuaeeugue ugugeugaga 120 accggcuggu acaccaacgu guucacacug ccugugggcg acgucgagaa ucugacaugc 180 ucugauggcc cuagccugau caagaccgag cuggaucugc ucaagagcgc ccugagagaa cucaagaccg ugucugccga ucagcuggcc agagaggaac agaucgagaa uccuggcagc 300 360 qqcaqcuuuq uqcuqqqaqc cauuqcucuu qqaquqqcuq cuqcuqcaqc uquuacaqca ggcguggcca ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc 420 cugaagaaga caaacgaggc cgucagcaca cucggcaaug gcguuagagu gcuggccaca 480 540 geegugegeg ageugaagga euucguguee aagaaceuga eacgggeeau uaacaagaac aaquqcqaca ucqacqaccu qaaqauqqcc ququccuuua qccaquucaa ccqqcqquuu 600 cuqaacqucq uqcqqcaquu uaqcqacaac qccqqaauca caccaqccau caqccuqqac 660 cugaugacag augcugagcu ggcuagagcc gugccuaaca ugccuacauc ugccggccag 720 780 aucaaqcuqa uqcucqaqaa uaqaqccauq quccqacqqa aaqqcuucqq cauucuqauu ggcguguacg gcagcagcgu gaucuauaug gugcagcugc cuaucuucgg cgugaucgac 840 acacccugcu ggauugugaa ggccgcuccu agcuguagcg agaagaaggg caauuacgcc 900 ugccugcuga gagaggacca aggcugguau ugucagaacg ccggcagcac cguguacuac 960 ccuaacgaga aggacugcga gacaagaggc gaccacgugu ucugugauac cgccgcugga 1020 aucaaugugg ccgagcagag caaagagugc aacaucaaca ucagcaccac caacuauccc 1080 ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagcc 1140 cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc 1200 aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc 1260 gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga 1320 ccugugucca gcagcuucga cccuaucaag uucccugaga accaguucca gguggcccug 1380 gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc 1440 cugucuageg cegagaaggg aaacacegge uucaucaueg ugaucauecu gauegeegug 1500 cugggcagcu ccaugauccu gguguccauc uucaucauua ucaagaagac caagaagcc 1560 accggcgcuc cuccagaacu gagcggagug accaacaaug gcuucauccc ucacaac 1617

<210> SEQ ID NO 135

<400> SEQUENCE: 135

augagcugga agguggucau caucuucagc cugcugauca caccucagca cggccugaaa gagagcuacc uggaagaguc cugcagcacc aucacagagg gcuaccuguc ugugcugaga 120 accggcuggu acaccaacgu guucacacug gaagugggcg acgucgagaa ucugacaugc 180

<211> LENGTH: 1617

<212> TYPE: RNA

<213 > ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Polynucleotide

-continued

-continued	
ucugauggcc cuagccugau caagaccgag cuggaucugc ucaagagcgc ccugagagaa	240
cucaagaccg ugucugccga ucagcuggcc agagaggaac agaucgagaa uccuggcagc	300
ggcagcuuug ugcugggagc cauugcucuu ggaguggcug cugcugcagc uguuacagca	360
ggcguggcca ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc	420
cugaagaaga caaacgaggc cgucagcaca cucggcaaug gcguuagagu gcuggccaca	480
gccgugcgcg agcugaagga cuucgugucc aagaaccuga cacgggccau uaacaagaac	540
aagugegaca uegaegaeeu gaagauggee gugueeuuua geeaguucaa eeggegguuu	600
cugaacgucg ugcggcaguu uagcgacaac gccggaauca caccagccau cagccuggac	660
cugaugacag augcugagcu ggcuagagcc gugccuaaca ugccuacauc ugccggccag	720
aucaagcuga ugcucgagaa uagagccaug guccgacgga aaggcuucgg cauucugauu	780
ggcguguacg gcagcagcgu gaucuauaug gugcagcugc cuaucuucgg cgugaucgac	840
acacccugcu ggauugugaa ggccgcuccu agcuguagcg agaagaaggg caauuacgcc	900
ugccugcuga gagaggacca aggcugguau ugucagaacg ccggcagcac cguguacuac	960
ccuaacgaga aggacugcga gacaagaggc gaccacgugu ucugugauac cgccgcugga	1020
aucaaugugg ccgagcagag caaagagugc aacaucaaca ucagcaccac caacuauccc	1080
ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagcc	1140
cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc	1200
aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc	1260
gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga	1320
ccugugucca gcagcuucga cccuaucaag uucccugagg aucaguucca gguggcccug	1380
gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc	1440
cugucuageg cegagaaggg aaacacegge uucaucaueg ugaucauecu gauegeegug	1500
cugggcagcu ccaugauccu gguguccauc uucaucauua ucaagaagac caagaagcc	1560
accggcgcuc cuccagaacu gagcggagug accaacaaug gcuucauccc ucacaac	1617
<210> SEQ ID NO 136 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 136	
augageugga agguggueau caucuucage eugeugauca caceucagea eggeeugaaa	60
gagagcuacc uggaagaguc cugcagcacc aucacagagg gcuaccuguc ugugcugaga	120
aceggeuggu acaccaacgu guucacacug gaagugggeg accucgagaa ucugacauge	180
ucugauggcc cuagccugau caagaccgag cuggaucuga ccaagagcgc ccugagagaa	240
cucaagaccg ugucugccga ucagcuggcc agagaggaac agaucgagaa uccuggcagc	300
ggcagcuuug ugcugggagc cauugcucuu ggaguggcug cugcugcagc uguuacagca	360
ggcguggcca ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc	420
cugaagaaga caaacgaggc cgucagcaca cucggcaaug gcguuagagu gcuggccaca	480
geegugegeg ageugaagga euueguguee aagaaeeuga eaegggeeau uaacaagaae	540
	500

600

660

aagugcgaca ucgacgaccu gaagauggcc guguccuuua gccaguucaa ccggcgguuu

cugaacgucg ugcggcaguu uagcgacaac gccggaauca caccagccau cagccuggac

720

-continued

cugaugacag augcugagcu ggcuagagcc gugccuaaca ugccuacauc ugccggccag

				•		
aucaagcuga	ugcucgagaa	uagagccaug	guccgacgga	aaggcuucgg	cauucugauu	780
ggcguguacg	gcagcagcgu	gaucuauaug	gugcagcugc	cuaucuucgg	cgugaucgac	840
acacccugcu	ggauugugaa	ggccgcuccu	agcuguagcg	agaagaaggg	caauuacgcc	900
ugccugcuga	gagaggacca	aggcugguau	ugucagaacg	ccggcagcac	cguguacuac	960
ccuaacgaga	aggacugcga	gacaagaggc	gaccacgugu	ucugugauac	cgccgcugga	1020
aucaaugugg	ccgagcagag	caaagagugc	aacaucaaca	ucagcaccac	caacuauccc	1080
ugcaaggugu	ccaccggcag	gcacccuauu	ucuauggugg	cucugucucc	ucugggagcc	1140
cugguggcuu	guuauaaggg	cguguccugu	agcaucggca	gcaacagagu	gggcaucauc	1200
aagcagcuga	acaagggcug	cagcuacauc	accaaccagg	acgccgauac	cgugaccauc	1260
gacaacaccg	uguaucagcu	gagcaaggug	gaaggcgaac	agcacgugau	caagggcaga	1320
ccugugucca	gcagcuucga	cccuaucaag	uucccugagg	aucaguucca	gguggcccug	1380
gaccaggugu	ucgagaacau	cgagaauucc	caggcucugg	uggaccaguc	caacagaauc	1440
cugucuagcg	ccgagaaggg	aaacaccggc	uucaucaucg	ugaucauccu	gaucgccgug	1500
cugggcagcu	ccaugauccu	gguguccauc	uucaucauua	ucaagaagac	caagaagccc	1560
accggcgcuc	cuccagaacu	gagcggagug	accaacaaug	gcuucauccc	ucacaac	1617
<220> FEAT	: RNA NISM: Artif:			eotide		
-400 CEOU	ENCE. 127					
<400> SEQU						
augagcugga	agguggucau					60
augagcugga gagagcuacc	agguggucau uggaagaguc	cugcagcacc	aucacagagg	gcuaccuguc	ugugcugaga	120
augagcugga gagagcuacc accggcuggu	agguggucau uggaagaguc acaccaacgu	cugcagcacc guucacacug	aucacagagg gaagugggcg	gcuaccuguc	ugugcugaga ucugacaugc	120 180
augagcugga gagagcuacc accggcuggu ucugauggcc	agguggucau uggaagaguc acaccaacgu cuagccugau	cugcagcacc guucacacug caagaccgag	aucacagagg gaagugggcg cuggaucuga	gcuaccuguc acgucgagaa ccaagagcgc	ugugcugaga ucugacaugc ccugagagaa	120 180 240
augagcugga gagagcuacc accggcuggu ucugauggcc cucaagaccg	agguggucau uggaagaguc acaccaacgu cuagccugau ugucugccga	cugcagcacc guucacacug caagaccgag ucagcuggcc	aucacagagg gaagugggcg cuggaucuga agagaggaac	gcuaccuguc acgucgagaa ccaagagcgc agaucgagaa	ugugcugaga ucugacaugc ccugagagaa uccuggcagc	120 180 240 300
augagcugga gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcagcuuug	agguggucau uggaagaguc acaccaacgu cuagccugau ugucugccga ugcugggagc	cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu	aucacagagg gaagugggcg cuggaucuga agagaggaac ggaguggcug	gcuaccuguc acgucgagaa ccaagagcgc agaucgagaa cugcugcagc	ugugcugaga ucugacaugc ccugagagaaa uccuggcagc uguuacagca	120 180 240 300 360
augagcugga gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcagcuuug	agguggucau uggaagaguc acaccaacgu cuagccugau ugucugccga ugcugggagc	cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu caucagacug	aucacagagg gaagugggcg cuggaucuga agagaggaac ggaguggcug gaaagcgaag	gcuaccuguc acgucgagaa ccaagagegc agaucgagaa cugcugcagc ugaccgccau	ugugcugaga ucugacaugc ccugagagaaa uccuggcagc uguuacagca caacaacgcc	120 180 240 300 360 420
augagcugga gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcagcuuug ggcguggcca cugaagaaga	agguggucau uggaagaguc acaccaacgu cuagccugau ugucugccga ugcugggagc ucgcuaagac caaacgaggc	cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu caucagacug cgucagcaca	aucacagagg gaagugggcg cuggaucuga agagaggcug gaaagcgaag cucggcaaug	gcuaccuguc acgucgagaa ccaagagcgc agaucgagaa cugcugcagc ugaccgccau gcguuagagu	ugugcugaga ucugacaugc ccugagagaaa uccuggcagc uguuacagca caacaacgcc gcuggccaca	120 180 240 300 360 420 480
augagcugga gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcagcuuug ggcguggcca cugaagaaga	agguggucau uggaagaguc acaccaacgu cuagccugau ugucugccga ugcugggagc ucgcuaagac caaacgaggc	cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu caucagacug cgucagcaca cuucgugcuu	aucacagagg gaagugggcg cuggaucuga agagaggaac ggaguggcug gaaagcgaag cucggcaaug aagaaccuga	gcuaccuguc acgucgagaa ccaagagcgc agaucgagaa cugcugcagc ugaccgccau gcguuagagu cacgggccau	ugugcugaga ucugacaugc ccugagagaaa uccuggcagc uguuacagca caacaacgcc gcuggccaca uaacaagaac	120 180 240 300 360 420 480
augagcugga gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcagcuuug ggcguggcca cugaagaaga gccgugcgcg	agguggucau uggaagaguc acaccaacgu cuagccugau ugucugccga ugcugggagc ucgcuaagac caaacgaggc agcugaagga	cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu caucagacug cgucagcaca cuucgugcuu gaagauggcc	aucacagagg gaagugggcg cuggaucuga agagaggaac ggaauggcug cucggcaaug aagaaccuga guguccuuua	gcuaccuguc acgucgagaa ccaagagcgc agaucgagaa cugcugcagc ugaccgccau gcguuagagu cacgggccau	ugugcugaga ucugacaugc ccugagagaaa uccuggcagc uguuacagca caacaacgcc gcuggccaca uaacaagaac ccggcgguuu	120 180 240 300 360 420 480 540
augagcugga gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcagcuuug ggcguggcca cugaagaaga gccgugcgcg aagugcgaca	agguggucau uggaagaguc acaccaacgu cuagccugau ugucugccga ugcugggagc ucgcuaagac caaacgaggc agcugaagga ucgacgaccu uggggagcu	cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu caucagacug cgucagcaca cuucgugcuu gaagauggcc uagcgacaac	aucacagagg gaaguggcg cuggaucuga agaguggcug gaaagcgaag cucggcaaug aagaaccuga guguccuuua	gcuaccuguc acgucgagaa ccaagagcgc agaucgagaa cugcugcagc ugaccgccau gcguuagagu cacgggccau gccaguucaa caccagccau	ugugcugaga ucugacaugc ccugagagaaa uccuggcagc uguuacagca caacaacgcc gcuggccaca uaacaagaac ccggcgguuu cagccuggac	120 180 240 300 360 420 480 540 600
augagcugga gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcagcuuug ggcguggcca cugaagaaga gccgugcgcg aagugcgaca cugaacgucg	agguggucau uggaagaguc acaccaacgu cuagccugau ugucugccga ugcugggagc ucgcuaagac caaacgaggc agcugaagga ucgacgaccu ugcggcaguu augcugagcu	cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu caucagacug cgucagcaca cuucgugcuu gaagauggcc uagcgacaac	aucacagagg gaagugggcg cuggaucuga agaguggcug gaaagcgaag cucggcaaug aagaaccuga guguccuuua gccggaauca gugccuaaca	gcuaccuguc acgucgagaa ccaagagcgc agaucgagaa cugcugcagc ugaccgccau gcguuagagu cacgggccau gccaguucaa caccagccau ugccuacauc	ugugcugaga ucugacaugc ccugagagaa uccuggcagc uguuacagca caacaacgcc gcuggccaca uaacaagaac ccggcgguuu cagccuggac ugccggcag	120 180 240 300 360 420 480 540 600 660
augagcugga gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcagcuuug ggcguggcca cugaagaaga gccgugcgcg aagugcgaca cugaacgucg	agguggucau uggaagaguc acaccaacgu cuagccugau ugucugccga ugcugggagc ucgcuaagac caaacgaggc agcugaagga ucgacgaccu ugcggcaguu augcugagcu	cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu caucagacug cgucagcaca cuucgugcuu gaagauggcc uagcgacaac	aucacagagg gaagugggcg cuggaucuga agagaggaac ggaauggcaaug aagaaccuga guguccuuua gccggaauca gugccuaaca	gcuaccuguc acgucgagaa ccaagagcgc agaucgagaa cugcugcagc ugaccgccau gcguuagagu cacgggccau gccaguucaa caccagccau ugccuacauc	ugugcugaga ucugacaugc ccugagagaaa uccuggcagc uguuacagca caacaacgcc gcuggccaca uaacaagaac ccggcgguuu cagccuggac ugccggccag cauucugauu	120 180 240 300 360 420 480 540 600 720 780
augagcugga gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcagcuuug ggcguggcca cugaagaaga gccgugcgcg aagugcgaca cugaacgucg cugaucacag aucaagcuga	agguggucau uggaagaguc acaccaacgu cuagccugau ugucugccga ugcugggagc ucgcuaagac caaacgaggc agcugaagga ucgacgaccu ugcggcaguu augcugagcu ugcucgagaa gcagcagcgu	cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu caucagacug cgucagcaca cuucgugcuu gaagauggcc uagcgacaac ggcuagagcc	aucacagagg gaagugggcg cuggaucuga agagaggaac ggaguggcug gaaagcgaag cucggcaaug aagaaccuga guguccuuua gccggaauca gugccuaaca guccgacgga gugcagcugc	gcuaccuguc acgucgagaa ccaagagcgc agaucgagaa cugcugcagc ugaccgccau gcguuagagu cacgggccau gccaguucaa caccagccau ugccuacauc aaggcuucgg	ugugcugaga ucugacaugc ccugagagaa uccuggcagc uguuacagca caacaacgcc gcuggccaca uaacaagaac ccggcgguuu cagccuggac ugccggccag cauucugauu cgugaucgac	120 180 240 300 360 420 480 540 600 720 780 840
augagcugga gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcagcuuug ggcguggcca cugaagaaga gccgugcgcg aagugcgaca cugaacgucg cugaucacag aucaagcuga	agguggucau uggaagaguc acaccaacgu cuagccugau ugucugccga ugcugggagc ucgcuaagac caaacgaggc agcugaagga ucgacgaccu ugcggcaguu augcugagcu	cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu caucagacug cgucagcaca cuucgugcuu gaagauggcc uagcgacaac ggcuagagcc	aucacagagg gaagugggcg cuggaucuga agagaggaac ggaguggcug gaaagcgaag cucggcaaug aagaaccuga guguccuuua gccggaauca gugccuaaca guccgacgga gugcagcugc	gcuaccuguc acgucgagaa ccaagagcgc agaucgagaa cugcugcagc ugaccgccau gcguuagagu cacgggccau gccaguucaa caccagccau ugccuacauc aaggcuucgg	ugugcugaga ucugacaugc ccugagagaa uccuggcagc uguuacagca caacaacgcc gcuggccaca uaacaagaac ccggcgguuu cagccuggac ugccggccag cauucugauu cgugaucgac	120 180 240 300 360 420 480 540 600 720 780 840 900
augagcugga gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcagcuuug ggcguggcca cugaagaaga gccgugcgcg aagugcgaca cugaacgucg ggagcaucg aucaagcuga ggcguguacg acacccugcu	agguggucau uggaagaguc acaccaacgu cuagccugau ugucugccga ugcugggagc ucgcuaagac caaacgaggc agcugaagga ucgacgaccu ugcggcaguu augcugagcu ugcucgagaa gcagcagcgu	cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu caucagacug cgucagcaca cuucgugcuu gaagauggcc uagcgacaac ggcuagagcc uagagccaug gaucuauaug	aucacagagg gaagugggcg cuggaucuga agaguggcug gaaagcgaag cucggcaaug augccuuua gccggaauca gugccuaaca gugccuaaca gugccuaaca	gcuaccuguc acgucgagaa ccaagagcgc agaucgagaa cugcugcagc ugaccgccau gcguuagagu cacgggccau gccaguucaa caccagccau ugccuacauc aaggcuucgg cuaucuucgg	ugugcugaga ucugacaugc ccugagagaa uccuggcagc uguuacagca caacaacgcc gcuggccaca uaacaagaac ccggcgguuu cagccuggac ugccggccag cauucugauu cgugaucgac caauuacgcc	120 180 240 300 360 420 480 540 600 720 780 840
augagcugga gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcagcuuug ggcguggcca cugaagaaga gccgugcgcg aagugcgaca cugaacgucg cugaugacag aucaagcuga ggcguguacg acacccugcu ugccugcugaug	agguggucau uggaagaguc acaccaacgu cuagccugau ugucugccga ugcugggagc ucgcuaagac caaacgaggc agcugaagga ucgacgaccu ugcggcaguu augcugagacu ugcucgagaa gcagcagcgu	cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu caucagacug cgucagcaca cuucgugcuu gaagauggcc uagcgacaac ggcuagagcc uagagccaug gaucuauaug ggccgcuccu aggcugguau	aucacagagg gaagugggcg cuggaucuga agagagggaac ggaguggcug gaaagcgaaug aagaaccuga guguccuuua gccggaauca gugccuaaca guccgacgga gugcagcugc agcuguagcg ugucagaacg	gcuaccuguc acgucgagaa ccaagagcgc agaucgagaa cugcugcagc ugaccgccau gcguuagagu cacgggccau gccaguucaa caccagccau ugccuacauc aaggcuucgg cuaucuucgg agaagaaggg ccggcagcac	ugugcugaga ucugacaugc ccugagagaaa uccuggcagc uguuacagca caacaacgcc gcuggccaca uaacaagaac ccggcgguuu cagccuggac ugccggccag cauucugauu cgugaucgac caauuacgcc cguguacuac	120 180 240 300 360 420 480 540 600 720 780 840 900

-continued

-continued		
ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagcc	1140	
cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc	1200	
aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc	1260	
gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga	1320	
ccugugucca gcagcuucga cccuaucaag uucccugagg aucaguucca gguggcccug	1380	
gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc	1440	
cugucuageg eegagaaggg aaacacegge uucaucaueg ugaucaueeu gaucgeegug	1500	
cugggcagcu ccaugauccu gguguccauc uucaucauua ucaagaagac caagaagccc	1560	
accggcgcuc cuccagaacu gagcggagug accaacaaug gcuucauccc ucacaac	1617	
<210> SEQ ID NO 138 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide		
<400> SEQUENCE: 138		
augagcugga agguggucau caucuucagc cugcugauca caccucagca cggccugaaa	60	
gagagcuacc uggaagaguc cugcagcacc aucacagagg gcuaccuguc ugugcugaga	120	
accggcuggu acaccaacgu guucacacug gaagugggcg acgucgagaa ucugacaugc	180	
ucugauggcc cuagccugau caagaccgag cuggaucuga ccaagagcgc ccugagagaa	240	
cucaagaceg ugucugeega ucageuggee agagaggaac agauegagaa uccuggeage	300	
ggcagcuuug ugcugggagc cauugcucuu ggaguggcug cugcugcagc uguuacagca	360	
ggcguggcca ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc	420	
cugaagaaga caaacgaggc cgucagcaca cucggcaaug gcguuagagu gcuggccaca	480	
gccgugcgcg agcugaagga cuucgugucc aagaaccugu ggcgggccau uaacaagaac	540	
aagugcgaca ucgacgaccu gaagauggcc guguccuuua gccaguucaa ccggcgguuu	600	
cugaacgueg ugeggeaguu uagegacaac geeggaauca caccagecau cageeuggae	660	
cugaugacag augeugageu ggeuagagee gugeeuaaca ugeeuacaue ugeeggeeag	720	
aucaagcuga ugcucgagaa uagagccaug guccgacgga aaggcuucgg cauucugauu	780	
ggcguguacg gcagcagcgu gaucuauaug gugcagcugc cuaucuucgg cgugaucgac	840	
acacccugcu ggauugugaa ggccgcuccu agcuguagcg agaagaaggg caauuacgcc	900	
ugccugcuga gagaggacca aggcugguau ugucagaacg ccggcagcac cguguacuac	960	
ccuaacgaga aggacugcga gacaagaggc gaccacgugu ucugugauac cgccgcugga	1020	
aucaaugugg ccgagcagag caaagagugc aacaucaaca ucagcaccac caacuauccc	1080	
ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagcc	1140	
cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc	1200	
aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc	1260	
gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga	1320	
ccugugucca gcagcuucga cccuaucaag uucccugagg aucaguucca gguggcccug	1380	
gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc	1440	
cugucuageg eegagaaggg aaacaeegge uucaucaueg ugaucaueeu gauegeegug	1500	

cugggcagcu ccaugauccu gguguccauc uucaucauua ucaagaagac caagaagccc 1560

## -continued

accggcgcuc cuccagaacu gagcggagug accaacaaug gcuucauccc ucacaac 1617 <210> SEQ ID NO 139 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 139 augageugga agguggueau caucuucage eugeugauca caccucagea eggeeugaaa 60 gagagcuacc uggaagaguc cugcagcacc aucacagagg gcuaccuguc ugugcugaga accggcuggu acaccaacgu guucacacug gaagugggcg accucgagaa ucugacaugc 180 240 ucuqauqqcc cuaqccuqau caaqaccqaq cuqqaucuqc ucaaqaqcqc ccuqaqaqaa cucaagaccg ugucugccga ucagcuggcc agagaggaac agaucgagaa uccuggcagc 300 ggcagcuuug ugcugggagc cauugcucuu ggaguggcug cugcugcagc uguuacagca 360 420 qqcquqqcca ucqcuaaqac caucaqacuq qaaaqcqaaq uqaccqccau caacaacqcc cuqaaqaaqa caaacqaqqc cqucaqcaca cucqqcaauq qcquuaqaqu qcuqqccaca 480 qccquqcqcq aqcuqaaqqa cuucquqcuu aaqaaccuqu qqcqqqccau uaacaaqaac 540 aagugcgaca ucgacgaccu gaagauggcc guguccuuua gccaguucaa ccggcgguuu 600 660 cuqaacqueq uqeqqeaquu uaqeqacaac qeeqqaauca caccaqecau caqecuqqae cugaugacag augcugagcu ggcuagagcc gugccuaaca ugccuacauc ugccggccag 720 780 aucaagcuga ugcucgagaa uagagccaug guccgacgga aaggcuucgg cauucugauu ggcguguacg gcagcagcgu gaucuauaug gugcagcugc cuaucuucgg cgugaucgac 840 acacccugcu ggauugugaa ggccgcuccu agcuguagcg agaagaaggg caauuacgcc 900 ugccugcuga gagaggacca aggcugguau ugucagaacg ccggcagcac cguguacuac 960 ccuaacgaga aggacugcga gacaagaggc gaccacgugu ucugugauac cgccgcugga 1020 aucaaugugg ccgagcagag caaagagugc aacaucaaca ucagcaccac caacuauccc 1080 ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagcc 1140 cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc 1200 aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc 1260 gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga 1320 ccugugucca gcagcuucga cccuaucaag uucccugagg aucaguucca gguggcccug 1380 gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc 1440 1500 cuqucuaqeq ceqaqaaqqq aaacaceqqe uucaucaucq uqaucauccu qaucqeequq cugggcagcu ccaugauccu gguguccauc uucaucauua ucaagaagac caagaagcc 1560 accggcgcuc cuccagaacu gagcggagug accaacaaug gcuucauccc ucacaac 1617 <210> SEQ ID NO 140 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 140

augagcugga agguggucau caucuucagc cugcugauca caccucagca cggccugaaa

60

-continued

-continued	
gagagcuacc uggaagaguc cugcagcacc aucacagagg gcuaccuguc ugugcugaga	120
accggcuggu acaccaacgu guucacacug ccugugggcg acgucgagaa ucugacaugc	180
ucugauggcc cuagccugau caagaccgag cuggaucuga ccaagagcgc ccugagagaa	240
cucaagaccg ugucugccga ucagcuggcc agagaggaac agaucgagaa uccuggcagc	300
ggcagcuuug ugcugggagc cauugcucuu ggaguggcug cugcugcagc uguuacagca	360
ggcguggcca ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc	420
cugaagaaga caaacgaggc cgucagcaca cucggcaaug gcguuagagu gcuggccaca	480
gccgugcgcg agcugaagga cuucgugucc aagaaccuga cacgggccau uaacaagaac	540
aagugcgaca ucgacgaccu gaagauggcc guguccuuua gccaguucaa ccggcgguuu	600
cugaacgucg ugcggcaguu uagcgacaac gccggaauca caccagccau cagccuggac	660
cugaugacag augcugagcu ggcuagagcc gugccuaaca ugccuacauc ugccggccag	720
aucaagcuga ugcucgagaa uagagccaug guccgacgga aaggcuucgg cauucugauu	780
ggcguguacg gcagcagcgu gaucuauaug gugcagcugc cuaucuucgg cgugaucgac	840
acacccugcu ggauugugaa ggccgcuccu agcuguagcg agaagaaggg caauuacgcc	900
ugccugcuga gagaggacca aggcugguau ugucagaacg ccggcagcac cguguacuac	960
ccuaacgaga aggacugcga gacaagaggc gaccacgugu ucugugauac cgccgcugga	1020
aucaaugugg ccgagcagag caaagagugc aacaucaaca ucagcaccac caacuauccc	1080
ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagcc	1140
cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc	1200
aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc	1260
gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga	1320
ccugugucca gcagcuucga cccuaucaag uucccugagg aucaguucca gguggcccug	1380
gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc	1440
cugucuageg cegagaaggg aaacacegge uucaucaueg ugaucauecu gauegeegug	1500
cugggcagcu ccaugauccu gguguccauc uucaucauua ucaagaagac caagaagcc	1560
accggcgcuc cuccagaacu gagcggagug accaacaaug gcuucauccc ucacaac	1617
<210> SEQ ID NO 141 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 141	
augageugga agguggueau caucuucage eugeugauea eaceucagea eggeeugaaa	60
gagageuace uggaagague eugeageace aucaeagagg geuaeeugue ugugeugaga	120
accggcuggu acaccaacgu guucacacug gaagugggcg acgucgagaa ucugacaugc	180
ucugauggcc cuagccugau caagaccgag cuggaucuga ccaagagcgc ccugagagaa	240
cucaagaccg ugucugccga ucagcuggcc agagaggaac agaucgagaa uccuggcagc	300
ggcagcuuug ugcugggagc cauugcucuu ggaguggcug cugcugcagc uguuacagca	360
ggcguggcca ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc	420
cugaagaaga caaacgaggc cgucagcaca cucggcaaug gcguuagagu gcuggccaca	480

540

gccgugcgcg agcugaagga cuucgugucc aagaaccuga cacgggccau uaacaagaac

-continued

aagugcgaca						
	ucccugaccu	gaagauggcc	guguccuuua	gccaguucaa	ccggcgguuu	600
cugaacgucg	ugcggcaguu	uagcgacaac	gccggaauca	caccagccau	cagccuggac	660
cugaugacag	augcugagcu	ggcuagagcc	gugccuaaca	ugccuacauc	ugccggccag	720
aucaagcuga	ugcucgagaa	uagagccaug	guccgacgga	aaggcuucgg	cauucugauu	780
ggcguguacg	gcagcagcgu	gaucuauaug	gugcagcugc	cuaucuucgg	cgugaucgac	840
acacccugcu	. ggauugugaa	ggccgcuccu	agcuguagcg	agaagaaggg	caauuacgcc	900
ugccugcuga	. gagaggacca	aggcugguau	ugucagaacg	ccggcagcac	cguguacuac	960
ccuaacgaga	. aggacugcga	gacaagaggc	gaccacgugu	ucugugauac	cgccgcugga	1020
aucaaugugg	ccgagcagag	caaagagugc	aacaucaaca	ucagcaccac	caacuauccc	1080
ugcaaggugu	. ccaccggcag	gcacccuauu	ucuauggugg	cucugucucc	ucugggagcc	1140
cugguggcuu	. guuauaaggg	cguguccugu	agcaucggca	gcaacagagu	gggcaucauc	1200
aagcagcuga	acaagggcug	cagcuacauc	accaaccagg	acgccgauac	cgugaccauc	1260
gacaacacco	uguaucagcu	gagcaaggug	gaaggcgaac	agcacgugau	caagggcaga	1320
ccugugucca	gcagcuucga	cccuaucaag	uucccugagg	aucaguucca	gguggcccug	1380
gaccaggugu	. ucgagaacau	cgagaauucc	caggcucugg	uggaccaguc	caacagaauc	1440
cugucuagco	ccgagaaggg	aaacaccggc	uucaucaucg	ugaucauccu	gaucgccgug	1500
cugggcagcu	. ccaugauccu	gguguccauc	uucaucauua	ucaagaagac	caagaagccc	1560
accggcgcuc	cuccagaacu	gagcggagug	accaacaaug	gcuucauccc	ucacaac	1617
<211> LENG	TH: 1617					
<212> TYPE <213> ORGA <220> FEAT	: RNA NISM: Artif: URE: R INFORMATIO	_		eotide		
<pre>&lt;212&gt; TYPE &lt;213&gt; ORGF &lt;220&gt; FEAT &lt;223&gt; OTHE &lt;400&gt; SEQU</pre>	: RNA NISM: Artif: URE: R INFORMATIO	ON: Synthet:	ic Polynucle		cggccugaaa	60
<pre>&lt;212&gt; TYPE &lt;213&gt; ORGF &lt;220&gt; FEAT &lt;223&gt; OTHE &lt;400&gt; SEQU augagcugga</pre>	: RNA NISM: Artif PURE: R INFORMATION	ON: Synthet:	ic Polynucle	caccucagca		60 120
<212> TYPE <213> ORGE <220> FEAT <223> OTHE <400> SEQU augageugga	: RNA NISM: Artif: URE: R INFORMATIO ENCE: 142	ON: Synthet:	ic Polynucle cugcugauca aucacagagg	caccucagca gcuaccuguc	ugugcugaga	
<pre>&lt;212&gt; TYPE &lt;213&gt; ORGF &lt;220&gt; FEAT &lt;223&gt; OTHE &lt;400&gt; SEQU augagcugga gagagcuacc accggcuggu</pre>	: RNA NISM: Artif: URE: R INFORMATIO ENCE: 142 . agguggucau	ON: Synthet:  caucuucagc  cugcagcacc  guucacacug	ic Polynucle cugcugauca aucacagagg gaagugggcg	caccucagca gcuaccuguc acgucgagaa	ugugcugaga ucugacaugc	120
<pre>&lt;212&gt; TYPE &lt;213&gt; ORGF &lt;220&gt; FEAT &lt;223&gt; OTHE &lt;400&gt; SEQU augagcugga gagagcuacc accggcuggu ucugauggco</pre>	E: RNA NISM: Artif: URE: R INFORMATIO ENCE: 142 agguggucau uggaagaguc acaccaacgu	Caucuucage cugcagcace guucacacug caagaccgag	cugcugauca aucacagagg gaagugggcg cuggaucuga	caccucagca gcuaccuguc acgucgagaa ccaagagcgc	ugugcugaga ucugacaugc ccugagagaa	120 180
<pre>&lt;212&gt; TYPE &lt;213&gt; ORGF &lt;220&gt; FEAT &lt;223&gt; OTHE &lt;400&gt; SEQU augageugga gagageuace aceggeuggu ucugauggee cucaagaceg</pre>	E: RNA NISM: Artif: UNE: R: INFORMATIO ENCE: 142 agguggucau uggaagaguc acaccaacgu cuagccugau	caucuucagc cugcagcacc guucacacug caagaccgag ucagcuggcc	cugcugauca aucacagagg gaagugggcg cuggaucuga agagaggaac	caccucagca gcuaccuguc acgucgagaa ccaagagcgc agaucgagaa	ugugcugaga ucugacaugc ccugagagaa uccuggcagc	120 180 240
<pre>&lt;212&gt; TYPE &lt;213&gt; ORGF &lt;220&gt; FEAT &lt;223&gt; OTHE &lt;400&gt; SEQU augageugga gagageuace accggeuggu ucugauggec cucaagaceg ggcageuuug ggcageuuug</pre>	E: RNA NISM: Artif: URE: R INFORMATIO ENCE: 142 agguggucau uggaagaguc acaccaacgu cuagccugau ugucugccga	Caucuucage cugcagcace guucacacug caagaccgag ucagcuggce cauugcucuu	cugcugauca aucacagagg gaagugggcg cuggaucuga agagaggaac ggaguggcug	caccucagca gcuaccuguc acgucgagaa ccaagagcgc agaucgagaa cugcugcagc	ugugcugaga ucugacaugc ccugagagaaa uccuggcagc uguuacagca	120 180 240 300
<pre>&lt;212&gt; TYPE &lt;213&gt; ORGF &lt;220&gt; FEAT &lt;223&gt; OTHE &lt;400&gt; SEQU augageugge gagageuace aceggeugge ucugauggee cucaagaceg ggcageuuug ggcageuuug ggcguggeea</pre>	E: RNA NISM: Artif: UNE: R: INFORMATIO ENCE: 142 agguggucau uggaagaguc acaccaacgu cuagccugau ugucugccga	caucuucagc cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu caucagacug	cugcugauca aucacagagg gaagugggcg cuggaucuga agagaggaac ggaguggcug gaaagcgaag	caccucagca gcuaccuguc acgucgagaa ccaagagcgc agaucgagaa cugcugcagc ugaccgccau	ugugcugaga ucugacaugc ccugagagaa uccuggcagc uguuacagca caacaacgcc	120 180 240 300 360
<pre>&lt;212&gt; TYPE &lt;213&gt; ORGF &lt;220&gt; FEAT &lt;223&gt; OTHE &lt;400&gt; SEQU augagcugga gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcagcuuug ggcguggcca cugaagaaga</pre>	E: RNA NISM: Artif: URE: R INFORMATIO ENCE: 142 agguggucau uggaagaguc acaccaacgu cuagccugau ugucugccga ugcugggagc	caucuucagc cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu caucagacug	cugcugauca aucacagagg gaagugggcg cuggaucuga agagaggaac ggaguggcug gaaagcgaag cucggcaaug	caccucagca gcuaccuguc acgucgagaa ccaagagcgc agaucgagaa cugcugcagc ugaccgccau gcguuagagu	ugugcugaga ucugacaugc ccugagagaaa uccuggcagc uguuacagca caacaacgcc gcuggccaca	120 180 240 300 360 420
<pre>&lt;212&gt; TYPE &lt;213&gt; ORGE &lt;220&gt; FEAT &lt;223&gt; OTHE &lt;400&gt; SEQU augagcugga gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcagcuuug ggcguggcca cugaagaaga gccgugcgcg gccgugcgcg gccgugcgcg</pre>	E: RNA NISM: Artif: UNE: R: INFORMATIO ENCE: 142 agguggucau uggaagaguc cuagccugau ugucugccga ugucugccga ugcugggagc	caucuucagc cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu caucagacug cgucagcaca	cugcugauca aucacagagg gaagugggcg cuggaucuga agagaggaac ggaguggcug gaaagcgaag cucggcaaug aagaaccuga	caccucagca gcuaccuguc acgucgagaa ccaagagcgc agaucgagaa cugcugcagc ugaccgccau gcguuagagu cacgggccau	ugugcugaga ucugacaugc ccugagagaaa uccuggcagc uguuacagca caacaacgcc gcuggccaca uaacaagaac	120 180 240 300 360 420 480
<pre>&lt;212&gt; TYPE &lt;213&gt; ORGF &lt;220&gt; FEAT &lt;220&gt; FEAT &lt;220&gt; OTHE &lt;400&gt; SEQU augagcugga gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcagcuuug ggcguggcca cugaagaaga gccgugcgca aagugccua aagugccua</pre>	E: RNA NISM: Artif: URE: R: INFORMATIO ENCE: 142 agguggucau uggaagaguc acaccaacgu cuagccugau ugucugccga ugcugggagc ucgcugaggc cuagcaggagc	caucuucage cugeageace guucacacug caagacegag ucageuggee cauugeucuu caucagacug egucageaca cuucguguee	cugcugauca aucacagagg gaagugggcg cuggaucuga agagaggaac ggaguggcug gaaagcgaag cucggcaaug aagaaccuga	caccucagca gcuaccuguc acgucgagaa ccaagagcgc agaucgagaa cugcugcagc ugaccgccau gcguuagagu cacgggccau	ugugcugaga ucugacaugc ccugagagaaa uccuggcagc uguuacagca caacaacgcc gcuggccaca uaacaagaac ccggcgguuu	120 180 240 300 360 420 480 540
<pre>&lt;212&gt; TYPE &lt;213&gt; ORGE &lt;220&gt; FEAT &lt;220&gt; FEAT &lt;220&gt; OTHE &lt;400&gt; SEQU augageugge gagageugge ucugauggee cucaagaceg ggcageuuug ggcguggeea cugaagaaga gecguggeea cugaagaaga gecgugeeea augugeeeua cugaacguegee augaacguegee augaacguegee augaacguegeea cugaacguegee augaacguegeea cugaacguegeea cugaacguegeea cugaacguegeea cugaacguegeea cugaacguegeea cugaacguegeea cugaacguegeea cugaacguegeea cugaacguegeea</pre>	E: RNA NISM: Artif: UNE: R: INFORMATIO ENCE: 142  agguggucau  uggaagaguc  cuagccugau  ugucugccga  ugucugccga  ugcugggagc  ucgcuaagac  caaacgaggc  agcugaagga	Caucuucage cugeageace guucacacug caagacegag ucageuggee cauugeucuu caucagacug egucageaca cuucguguee gaagauggee uagegacaac	cugcugauca aucacagagg gaagugggcg cuggaucuga agagaggaac ggaguggcug gaaagcgaag cucggcaaug aagaaccuga guguccuuua	caccucagca gcuaccuguc acgucgagaa ccaagagcgc agaucgagaa cugcugcagc ugaccgccau gcguuagagu cacgggccau gccaguucaa	ugugcugaga ucugacaugc ccugagagaaa uccuggcagc uguuacagca caacaacgcc gcuggccaca uaacaagaac ccggcgguuu cagccuggac	120 180 240 300 360 420 480 540
<pre>&lt;212&gt; TYPE &lt;213&gt; ORGE &lt;220&gt; FEAT &lt;223&gt; OTHE &lt;400&gt; SEQU augageugge gagageuace aceggeugge ucugauggee cucaagaceg ggcageuuug ggcguggee cugaagaaga gccgugegee aagugeeeu cugaacguee cugaugacag</pre>	E: RNA NISM: Artif: UNE: R: INFORMATIO ENCE: 142  agguggucau  uggaagaguc  cuagccugau  ugucugccga  ugcugggagc  ucgcuaagac  caaacgaggc  acaacgaggc  ucgcuaagac  ucgcuaagac  ucgcuaagac  ucgcuaagac  uugcugggagc	caucuucagc cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu caucagacug cgucagcaca cuucgugucc gaagauggcc uagcgacaac	cugcugauca aucacagagg gaagugggcg cuggaucuga agagaggaac ggaguggcug gaaagcgaag cucggcaaug aagaaccuga guguccuuua gccggaauca	caccucagca gcuaccuguc acgucgagaa ccaagagcgc agaucgagaa cugcugcagc ugaccgccau gcguuagagu cacgggccau gccaguucaa caccagccau ugccuacauc	ugugcugaga ucugacaugc ccugagagaaa uccuggcagc uguuacagca caacaacgcc gcuggccaca uaacaagaac ccggcgguuu cagccuggac ugccggccag	120 180 240 300 360 420 480 540 600
<pre>&lt;212&gt; TYPE &lt;213&gt; ORGF &lt;220&gt; FEAT &lt;220&gt; FEAT &lt;220&gt; OTHE &lt;400&gt; SEQU augagcugga gagagcuacc accggcuggu ucugauggcc cucaagaccc ggcagcuuuc ggcguggcca cugaagaaga gccgugcgcc aagugcccua cugaacgucc cugaacgucc cugaacgucc aucaagcuga aucaagcuga aucaagcuga aucaagcuga aucaagcuga</pre>	E: RNA NISM: Artif: URE: R: INFORMATIO ENCE: 142 agguggucau uggaagaguc acaccaacgu cuagccugau ugucugccga ugcugggagc ucgcuaagac caaacgaggc agcugaagga ucgcugaagga ucgcugaagga uugugggagc	caucuucage cugeageace guucacacug caagacegag ucageuggee cauugeucuu caucagacug egucageaca cuucguguee gaagauggee uagegacaac ggeuagagee uagegacaac	cugcugauca aucacagagg gaagugggcg cuggaucuga agagagggaac ggaguggcug gaaagcgaag cucggcaaug auguccuuua gccggaauca gugccuaaca	caccucagca gcuaccuguc acgucgagaa ccaagagcgc agaucgagaa cugcugcagc ugaccgccau gcguuagagu cacgggccau gccaguucaa caccagccau ugccuacauc	ugugcugaga ucugacaugc ccugagagaaa uccuggcagc uguuacagca caacaacgcc gcuggccaca uaacaagaac ccggcgguuu cagccuggac ugccggccag cauucugauu	120 180 240 300 360 420 480 540 600 660 720
<pre>&lt;212&gt; TYPE &lt;213&gt; ORGE &lt;220&gt; FEAT &lt;220&gt; FEAT &lt;220&gt; FEAT &lt;220&gt; OTHE &lt;400&gt; SEQU augagguagguagguagguagguagguagguagguaggu</pre>	E: RNA NISM: Artif: UNE: R: INFORMATIO ENCE: 142  agguggucau  uggaagaguc  cuagccugau  ugucugcga  ugcugggagc  ucgcuaagac  caaacgaggc  agcugaagac  ucgcuaagac  ucgcuaagac  ucgcuaagac  ucgcuaagac  ucgcuaagac  uugcuggagac  uugcugagaga	Caucuucage caucuucage cugeageace guucacacug caagacegag ucageuggee cauugeucuu caucagacug egucageaca cuucguguee gaagauggee uagegacaac gucageaca cuucguguee gaagauggee uagegacaac ggcuagagee uagagecaug gaucuauaug	cugcugauca aucacagagg gaagugggcg cuggaucuga agagaggaac ggaguggcug gaaagcgaag cucggcaaug aagaaccuga guguccuuua gccggaauca gugccuaaca guccgacgga	caccucagca gcuaccuguc acgucgagaa ccaagagcgc agaucgagaa cugcugcagc ugaccgccau gcguuagagu cacgggccau gccaguucaa caccagccau ugccuacauc aaggcuucgg	ugugcugaga ucugacaugc ccugagagaaa uccuggcagc uguuacagca caacaacgcc gcuggccaca uaacaagaac ccggcgguuu cagccuggac ugccggccag cauucugauu cgugaucgac	120 180 240 300 360 420 480 540 600 720 780

ugccugcuga gagaggacca aggcugguau ugucagaacg ccggcagcac cguguacuac

ccuaacgaga aggacugcg	a gacaagaggc gaccacgugu	ı ucugugauac cgccgcugga	1020
aucaaugugg ccgagcaga	g caaagagugc aacaucaaca	ucagcaccac caacuauccc	1080
ugcaaggugu ccaccggca	g gcacccuauu ucuauggugg	cucugucuce ucugggagce	1140
cugguggcuu guuauaagg	g cguguccugu agcaucggca	gcaacagagu gggcaucauc	1200
aagcagcuga acaagggcu	g cagcuacauc accaaccagg	acgeegauae egugaeeaue	1260
gacaacaccg uguaucagc	ı gagcaaggug gaaggcgaac	agcacgugau caagggcaga	1320
ccugugucca gcagcuucg	a cccuaucaag uucccugagg	aucaguucca gguggcccug	1380
gaccaggugu ucgagaaca	ı cgagaauucc caggcucugg	uggaccaguc caacagaauc	1440
cugucuageg cegagaagg	g aaacaccggc uucaucaucg	ugaucauccu gaucgccgug	1500
cugggcagcu ccaugaucc	ı gguguccauc uucaucauua	ucaagaagac caagaagccc	1560
accggcgcuc cuccagaac	u gageggagug accaacaaug	gcuucauccc ucacaac	1617
<210> SEQ ID NO 143 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Arti: <220> FEATURE: <223> OTHER INFORMAT	ficial Sequence ION: Synthetic Polynucl	eotide	
<400> SEQUENCE: 143			
augagcugga aggugguca	ı caucuucage cugcugauca	caccucagca cggccugaaa	60
gagagcuacc uggaagagu	c cugcagcacc aucacagagg	gcuaccuguc ugugcugaga	120
accggcuggu acaccaacg	ı guucacacug gaagugggcg	acgucgagaa ucugacaugc	180
ucugauggcc cuagccuga	ı caagaccgag cuggaucuga	ccaagagcgc ccugagagaa	240
cucaagaccg ugucugccg	a ucagcuggcc agagaggaac	agaucgagaa uccuggcagc	300
ggcagcuuug ugcugggag	c cauugcucuu ggaguggcug	cugcugcagc uguuacagca	360
ggcguggcca ucgcuaaga	c caucagacug ccuagcgaag	ugaccgccau caacaacgcc	420
cugaagaaga caaacgagg	c cgucagcaca cucggcaaug	gcguuagagu gcuggccaca	480
gccgugcgcg agcugaagg	a cuucgugucc aagaaccuga	cacgggccau uaacaagaac	540
aagugcgaca ucgacgacc	ı gaagauggee gugueeuuua	gccaguucaa ccggcgguuu	600
cugaacgucg ugcggcagu	ı uagcgacaac gccggaauca	caccagccau cagccuggac	660
cugaugacag augcugage	u ggcuagagee gugeeuaaea	ugccuacauc ugccggccag	720
aucaagcuga ugcucgaga	a uagagccaug guccgacgga	aaggcuucgg cauucugauu	780
ggcguguacg gcagcagcg	u gaucuauaug gugcagcugc	cuaucuucgg cgugaucgac	840
acacccugcu ggauuguga	a ggccgcuccu agcuguagcg	agaagaaggg caauuacgcc	900
ugccugcuga gagaggacca	a aggcugguau ugucagaacg	ccggcagcac cguguacuac	960
ccuaacgaga aggacugcg	a gacaagaggc gaccacgugu	ucugugauac cgccgcugga	1020
aucaaugugg ccgagcaga	g caaagagugc aacaucaaca	ucagcaccac caacuauccc	1080
ugcaaggugu ccaccggca	g gcacccuauu ucuauggugg	cucugucucc ucugggagcc	1140
cugguggcuu guuauaagg	g cguguccugu agcaucggca	gcaacagagu gggcaucauc	1200
aagcagcuga acaagggcu	g cagcuacauc accaaccagg	acgeegauae egugaeeaue	1260
gacaacaccg uguaucagc	u gagcaaggug gaaggcgaac	agcacgugau caagggcaga	1320
ccugugucca gcagcuucg	a cccuaucaag uucccugagg	aucaguucca gguggcccug	1380
gaccaggugu ucgagaaca	u cgagaauucc caggcucugg	uggaccaguc caacagaauc	1440

cugucuageg eegagaaggg aaacaeegge uucaue	aucg ugaucauccu gaucgccgug 1500
cugggcagcu ccaugauccu gguguccauc uucauca	auua ucaagaagac caagaagccc 1560
accggcgcuc cuccagaacu gagcggagug accaaca	aaug gcuucauccc ucacaac 1617
<210> SEQ ID NO 144 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polyn	nucleotide
<400> SEQUENCE: 144	
augagcugga agguggucau caucuucagc cugcuga	auca caccucagca cggccugaaa 60
gagagcuacc uggaagaguc cugcagcacc aucacag	gagg gcuaccuguc ugugcugaga 120
accggcuggu acaccaacgu guucacacug gaagugg	ggcg acgucgagaa ucugacaugc 180
ucugauggcc cuagccugau caagaccgag cuggau	cuga ccaagagcgc ccugagagaa 240
cucaagaccg ugucugccga ucagcuggcc agagagg	gaac agaucgagaa uccuggcagc 300
ggcagcuuug ugcugggagc cauugcucuu ggagugg	gcug cugcugcagc uguuacagca 360
ggcguggcca ucgcuaagac caucagacug gaaagcg	gaag ugaccgccau caacaacgcc 420
cugaagaaga caaacgaggc cgucagcaca cucggca	aaug gcguuagagu gcuggccaca 480
gccgugcgcg agcugaagga cuucgugucc aagaacc	cuga cacgggccau uaacaagaac 540
aagugegaca uegaegaeeu gaagauggee gugueeu	uuua gccaguucaa ccggcgguuu 600
cugaacgucg ugcggcaguu uagcgacaac gccggaa	auca caccagccau cagccuggac 660
cugaugacag augcugagcu ggcuagagcc gugccua	aaca ugccuacauc ugccggccag 720
aucaagcuga ugcucgagaa uagagccaug guccga	cgga aaggcuucgg cauucugauu 780
ggcguguacg gcagcagcgu gaucuauaug gugcago	cuge cuaucuucgg egugaucgae 840
acacccugcu ggauugugaa ggccgcuccu agcugua	agcg agaagaaggg caauuacgcc 900
ugccugcuga gagaggacca aggcugguau ugucaga	aacg ccggcagcac cguguacuac 960
ccuaacgaga aggacugcga gacaagaggc gaccacg	gugu ucugugauac cgccgcugga 1020
aucaaugugg ccgagcagag caaagagugc aacauca	aaca ucagcaccac caacuauccc 1080
ugcaaggugu ccaccggcag gcacccuauu ucuaugg	gugg cucugucucc ucugggagcc 1140
cugguggcuu guuauaaggg cguguccugu agcauc	ggca gcaacagagu gggcaucauc 1200
aagcagcuga acaagggcug cagcuacauc accaacc	cagg acgccgauac cgugaccauc 1260
gacaacaccg uguaucagcu gagcaaggug gaaggc	gaac agcacgugau caagggcaga 1320
ccugugucca gcagcuuccc accuaucaag uucccug	gagg aucaguucca gguggcccug 1380
gaccaggugu ucgagaacau cgagaauucc caggcud	cugg uggaccaguc caacagaauc 1440
cugucuageg cegagaaggg aaacacegge uucauca	
cugggcagcu ccaugauccu gguguccauc uucauca	
accggcgcuc cuccagaacu gagcggagug accaaca	
ассуусусис сиссауааси уаусууауиу ассааса	aday yeuucaucee ucacaac 161/
<210> SEQ ID NO 145 <211> LENGTH: 1617 <212> TYPE: RNA	

<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Polynucleotide

-continued

<400> SEQUE	ENCE: 145						
augagcugga	agguggucau	caucuucagc	cugcugauca	caccucagca	cggccugaaa	60	
gagagcuacc	uggaagaguc	cugcagcacc	aucacagagg	gcuaccuguc	ugugcugaga	120	
accggcuggu	acaccaacgu	guucacacug	gaagugggeg	acgucgagaa	ucugacaugc	180	
ucugauggcc	cuagccugau	caagaccgag	cuggaucuga	ccaagagcgc	ccugagagaa	240	
cucaagaccg	ugucugccga	ucagcuggcc	agagaggaac	agaucgagaa	uccuggcagc	300	
ggcagcuuug	ugcugggagc	cauugcucuu	ggaguggcug	cugcugcagc	uguuacagca	360	
ggcguggcca	ucgcuaagac	caucagacug	gaaagcgaag	ugaccgccau	caacaacgcc	420	
cugaagaaga	caaacgaggc	cgucagcaca	cucggcaaug	gcguuagagu	gcuggccaca	480	
gccgugcgcg	agcugaagga	cuucgugucc	aagaaccuga	cacgggccau	uaacaagaac	540	
aagugcgaca	ucgacgaccu	gaagauggcc	guguccuuua	gccaguucaa	ccggcgguuu	600	
cugaacgucg	ugcggcaguu	uagcgacaac	gccggaauca	caccagccau	cagccuggac	660	
cugaugacag	augcugagcu	ggcuagagcc	gugccuaaca	ugccuacauc	ugccggccag	720	
aucaagcuga	ugcucgagaa	uagagccaug	guccgacgga	aaggcuucgg	cauucugauu	780	
ggcguguacg	gcagcagcgu	gaucuauaug	gugcagcugc	cuaucuucgg	cgugaucgac	840	
acacccugcu	ggauugugaa	ggccgcuccu	agcuguagcg	agaagaaggg	caauuacgcc	900	
ugccugcuga	gagaggacca	aggcugguau	ugucagaacg	ccggcagcac	cguguacuac	960	
ccuaacgaga	aggacugcga	gacaagaggc	gaccacgugu	ucugugauac	cgccgcugga	1020	
aucaaugugg	ccgagcagag	caaagagugc	aacaucaaca	ucagcaccac	caacuauccc	1080	
ugcaaggugu	ccaccggcag	gcacccuauu	ucuauggugg	cucugucucc	ucugggagcc	1140	
cugguggcuu	guuauaaggg	cguguccugu	agcaucggca	gcaacagagu	gggcaucauc	1200	
aagcagcuga	acaagggcug	cagcuacauc	accaaccagg	acgccgauac	cgugaccauc	1260	
gacaacaccg	uguaucagcu	gagcaaggug	gaaggcgaac	agcacgugau	caagggcaga	1320	
ccugugucca	gcagcuucga	cccuaucaag	uucccugaga	accaguucca	gguggcccug	1380	
gaccaggugu	ucgagaacau	cgagaauucc	caggcucugg	uggaccaguc	caacagaauc	1440	
cugucuagcg	ccgagaaggg	aaacaccggc	uucaucaucg	ugaucauccu	gaucgccgug	1500	
cugggcagcu	ccaugauccu	gguguccauc	uucaucauua	ucaagaagac	caagaagccc	1560	
accggcgcuc	cuccagaacu	gagcggagug	accaacaaug	gcuucauccc	ucacaac	1617	
<210> SEQ ID NO 146 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide							
<400> SEQUE	ENCE: 146						
augagcugga	agguggucau	caucuucagc	cugcugauca	caccucagca	cggccugaaa	60	
gagagcuacc	uggaagaguc	cugcagcacc	aucacagagg	gcuaccuguc	ugugcugaga	120	
accggcuggu	acaccaacgu	guucacacug	gaagugggcg	acgucgagaa	ucugacaugc	180	
ucugauggcc	cuagccugau	caagaccgag	cuggaucuga	ccaagagcgc	ccugagagaa	240	
			agagaggaac			300	
			ggaguggcug			360	
Jacageaaag		- naagoaoaa	2242429449		Junuougea	200	

ggcguggcca ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc

-continued

cugaagaaga	caaacgaggc	cgucagcaca	cucggcaaug	gcguuagagu	gcuggccaca	480		
geegugegeg	agcugaagga	cuucgugucc	aagaaccuga	cacgggccau	uaacaagaac	540		
aagugcgaca	ucgacgaccu	gaagauggcc	guguccuuua	gccaguucaa	ccggcgguuu	600		
cugaacgucg	ugcggcaguu	uagcgacaac	gccggaauca	caccagccau	cagccuggac	660		
cugaugacag	augcugagcu	ggcuagagcc	gugccuaaca	ugccuacauc	ugccggccag	720		
aucaagcuga	ugcucgagaa	uagagccaug	guccgacgga	aaggcuucgg	cauucugauu	780		
ggcguguacg	gcagcagcgu	gaucuauaug	gugcagcugc	cuaucuucgg	cgugaucgac	840		
acacccugcu	ggauugugaa	ggeegeueeu	agcuguagcg	agaagaaggg	caauuacgcc	900		
ugccugcuga	gagaggacca	aggcugguau	ugucagaacg	ccggcagcac	cguguacuac	960		
ccuaacgaga	aggacugcga	gacaagaggc	gaccacgugu	ucugugauac	cgccgcugga	1020		
aucaaugugg	ccgagcagag	caaagagugc	aacaucaaca	ucagcaccac	caacuauccc	1080		
ugcaaggugu	ccaccggcag	gcacccuauu	ucuauggugg	cucugucucc	ucugggagcc	1140		
cugguggcuu	guuauaaggg	cguguccugu	agcaucggca	gcaacagagu	gggcaucauc	1200		
aagcagcuga	acaagggcug	cagcuacauc	accaaccagg	acgccgauac	cgugaccauc	1260		
gacaacaccg	uguaucagcu	gagcaaggug	gaaggcgaac	agcacgugau	caagggcaga	1320		
ccugugucca	gcagcuucga	cccuaucaag	uucccucagg	aucaguucca	gguggcccug	1380		
gaccaggugu	ucgagaacau	cgagaauucc	caggcucugg	uggaccaguc	caacagaauc	1440		
cugucuagcg	ccgagaaggg	aaacaccggc	uucaucaucg	ugaucauccu	gaucgccgug	1500		
cugggcagcu	ccaugauccu	gguguccauc	uucaucauua	ucaagaagac	caagaagccc	1560		
accggcgcuc	cuccagaacu	gagcggagug	accaacaaug	gcuucauccc	ucacaac	1617		
<210> SEQ ID NO 147 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide								
<400> SEQU	ENCE: 147							
augagcugga	agguggucau	caucuucagc	cugcugauca	caccucagca	cggccugaaa	60		
gagagcuacc	uggaagaguc	cugcagcacc	aucacagagg	gcuaccuguc	ugugcugaga	120		
accggcuggu	acaccaacgu	guucacacug	gaagugggcg	acgucgagaa	ucugacaugc	180		
ucugauggcc	cuagccugau	caagaccgag	cuggaucuga	ccaagagcgc	ccugagagaa	240		
cucaagaccg	ugucugccga	ucagcuggcc	agagaggaac	agaucgagaa	uccuggcagc	300		
ggcagcuuug	ugcugggagc	cauugcucuu	ggaguggcug	cugcugcagc	uguuacagca	360		
ggcguggcca	ucgcuaagac	caucagacug	gaaagcgaag	ugaccgccau	caacaacgcc	420		
cugaagaaga	caaacgaggc	cgucagcaca	cucggcaaug	gcguuagagu	gcuggccaca	480		
gccgugcgcg	agcugaagga	cuucgugucc	aagaaccuga	cacgggccau	uaacaagaac	540		
aagugcgaca	ucgacgaccu	gaagauggcc	guguccuuua	gccaguggaa	ccggcgguuu	600		
cugaacgucg	ugcggcaguu	uagcgacaac	gccggaauca	caccagccau	cagccuggac	660		
cugaugacag	augcugagcu	ggcuagagcc	gugccuaaca	ugccuacauc	ugccggccag	720		
aucaagcuga	ugcucgagaa	uagagccaug	guccgacgga	aaggcuucgg	cauucugauu	780		

ggcguguacg gcagcagcgu gaucuauaug gugcagcugc cuaucuucgg cgugaucgac

## -continued

acacccugcu	ggauugugaa	ggccgcuccu	agcuguagcg	agaagaaggg	caauuacgcc	900	
ugccugcuga	gagaggacca	aggcugguau	ugucagaacg	ccggcagcac	cguguacuac	960	
ccuaacgaga	aggacugcga	gacaagaggc	gaccacgugu	ucugugauac	cgccgcugga	1020	
aucaaugugg	ccgagcagag	caaagagugc	aacaucaaca	ucagcaccac	caacuauccc	1080	
ugcaaggugu	ccaccggcag	gcacccuauu	ucuauggugg	cucugucucc	ucugggagcc	1140	
cugguggcuu	guuauaaggg	cguguccugu	agcaucggca	gcaacagagu	gggcaucauc	1200	
aagcagcuga	acaagggcug	cagcuacauc	accaaccagg	acgccgauac	cgugaccauc	1260	
gacaacaccg	uguaucagcu	gagcaaggug	gaaggcgaac	agcacgugau	caagggcaga	1320	
ccugugucca	gcagcuucga	cccuaucaag	uucccugagg	aucaguucca	gguggcccug	1380	
gaccaggugu	ucgagaacau	cgagaauucc	caggcucugg	uggaccaguc	caacagaauc	1440	
cugucuagcg	ccgagaaggg	aaacaccggc	uucaucaucg	ugaucauccu	gaucgccgug	1500	
cugggcagcu	ccaugauccu	gguguccauc	uucaucauua	ucaagaagac	caagaagccc	1560	
accggcgcuc	cuccagaacu	gagcggagug	accaacaaug	gcuucauccc	ucacaac	1617	

What is claimed is:

- 1. A composition, comprising: a messenger ribonucleic acid (mRNA) comprising an open reading frame encoding a betacoronavirus (BetaCoV) S protein or S protein subunit formulated in a lipid nanoparticle.
- 2. The composition of claim 1, wherein the open reading ³⁰ frame encodes a BetaCoV S protein.
- **3.** The composition of claim **1**, wherein the open reading frame encodes an S protein subunit selected from an S1 subunit and an S2 subunit.
- **4**. The composition of claim **1**, wherein the mRNA further 35 comprising a 5' untranslated region (UTR) and a 3' UTR.
- 5. The composition of claim 4, wherein the mRNA further comprises a poly(A) tail.
- The composition of claim 4, wherein the mRNA further comprises a 5' cap analog.
- 7. The composition of claim 6, wherein the 5' cap analog is 7mG(5')ppp(5')NImpNp.
- 8. The composition of claim 1, wherein the mRNA comprises a chemical modification.
- **9.** The composition of claim **8**, wherein the chemical 45 modification is a 1-methylpseudouridine modification or a 1-ethylpseudouridine modification.
- 10. The composition of claim 8, wherein at least 80% of the uracil in the open reading frame has a chemical modification.
- 11. The composition of claim 1, wherein the lipid nanoparticle comprises an ionizable cationic lipid, a neutral lipid, a sterol, and a PEG-modified lipid.
- 12. The composition of claim 11, wherein the lipid nanoparticle comprises 20-60% ionizable cationic lipid, 55 5-25% neutral lipid, 25-55% cholesterol, and 0.5-15% PEG-modified lipid.
- 13. The composition of claim 12, wherein the lipid nanoparticle comprises 50% ionizable cationic lipid, 10% neutral lipid, 38.5% sterol, and 1.5% PEG-modified lipid.
- **14**. The composition of claim **11**, wherein the ionizable cationic lipid is Compound 25.
- **15**. The composition of claim **11**, wherein the neutral lipid is 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), the sterol is cholesterol, and the PEG-modified lipid is 1,2-dimyristoyl-racalycero-3-methoxypolyethylene glycol-2000 (PEG-DMG) or PEG-cDMA.

- 16. A composition, comprising: a messenger ribonucleic acid (mRNA) comprising a 5' untranslated region (UTR), an open reading frame encoding a betacoronavirus (BetaCoV) S protein or S protein subunit, a 3' UTR, and a poly(A) tail, formulated in a lipid nanoparticle that comprises 20-60% ionizable cationic lipid, 5-25% neutral lipid, 25-55% cholesterol, and 0.5-15% PEG-modified lipid.
- 17. The composition of claim 16, wherein the open reading frame encodes a BetaCoV S protein.
- **18**. The composition of claim **16**, wherein the open reading frame encodes an S protein subunit selected from an S1 subunit and an S2 subunit.
- **19**. The composition of claim **16**, wherein the mRNA further comprises 5' cap analog 7mG(5')ppp(5')NlmpNp.
- 20. The composition of claim 16, wherein at least 80% of the uracil in the open reading frame has a chemical modification.
- **21**. The composition of claim **20**, wherein the chemical modification is a 1-methylpseudouridine modification or a 1-ethylpseudouridine modification.
- 22. The composition of claim 16, wherein the ionizable cationic lipid is Compound 25.
- 23. The composition of claim 16, wherein the neutral lipid is DSPC, the sterol is cholesterol, and the PEG-modified lipid is PEG-DMG.
- 24. A composition, comprising: a messenger ribonucleic acid (mRNA) comprising a 5' cap analog, a 5' untranslated region (UTR), an open reading frame encoding a betacoronavirus (BetaCoV) S protein, a 3' UTR, and a poly(A) tail, formulated in a lipid nanoparticle that comprises 20-60% ionizable cationic lipid, 5-25% DSPC, 25-55% cholesterol, and 0.5-15% PEG-DMG, wherein the ionizable cationic lipid has the structure of Compound 25, and wherein at least 80% of the uracil in the open reading frame has a 1-methylpseudouridine modification.
- **25**. The composition of claim **24**, wherein the 5' cap analog is 7mG(5')ppp(5')NlmpNp.
- **26**. A lipid nanoparticle, comprising: a messenger ribonucleic acid (mRNA) comprising an open reading frame encoding a betacoronavirus (BetaCoV) S protein or S protein subunit; wherein the lipid nanoparticle comprises

20-60% ionizable cationic lipid, 5-25% neutral lipid, 25-55% cholesterol, and 0.5-15% PEG-modified lipid.

* * * * *