EXHIBIT 3

US010933127B2

(12) United States Patent

Ciaramella et al.

(10) Patent No.: US 10,933,127 B2

(45) **Date of Patent:** Mar. 2, 2021

(54) BETACORONAVIRUS MRNA VACCINE

(71) Applicant: **ModernaTX, Inc.**, Cambridge, MA

(72) Inventors: **Giuseppe Ciaramella**, Sudbury, MA (US); **Sunny Himansu**, Winchester,

MA (US)

(73) Assignee: **ModernaTX**, **Inc.**, Cambridge, MA

(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 16/880,829

(22) Filed: May 21, 2020

(65) Prior Publication Data

US 2020/0282046 A1 Sep. 10, 2020

Related U.S. Application Data

- (60) Division of application No. 16/805,587, filed on Feb. 28, 2020, now Pat. No. 10,702,600, which is a continuation of application No. 16/368,270, filed on Mar. 28, 2019, now Pat. No. 10,702,599, which is a continuation of application No. 16/040,981, filed on Jul. 20, 2018, now Pat. No. 10,272,150, which is a continuation of application No. 15/674,599, filed on Aug. 11, 2017, now Pat. No. 10,064,934, which is a continuation of application No. PCT/US2016/058327, filed on Oct. 21, 2016.
- (60) Provisional application No. 62/247,394, filed on Oct. 28, 2015, provisional application No. 62/247,362, filed on Oct. 28, 2015, provisional application No. 62/247,297, filed on Oct. 28, 2015, provisional application No. 62/247,483, filed on Oct. 28, 2015, provisional application No. 62/244,802, filed on Oct. 22, 2015, provisional application No. 62/245,031, filed on Oct. 22, 2015, provisional application No. 62/244,946, filed on Oct. 22, 2015, provisional application No. 62/244,813, filed on Oct. 22, 2015, provisional application No. 62/244,837, filed on Oct. 22, 2015.

(51)	Int. Cl.	
	A61K 39/215	(2006.01)
	A61K 39/12	(2006.01)
	A61P 11/00	(2006.01)
	A61K 39/155	(2006.01)
	C07K 16/10	(2006.01)
	A61K 39/00	(2006.01)

(52) U.S. Cl.

 2317/76 (2013.01); C12N 2760/18034 (2013.01); C12N 2760/18334 (2013.01); C12N 2760/18434 (2013.01); C12N 2760/18534 (2013.01); C12N 2760/18634 (2013.01); C12N 2770/20034 (2013.01); Y02A 50/30 (2018.01)

(58) Field of Classification Search

None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

3,906,092	\mathbf{A}	9/1975	Hilleman et al.
4,790,987	A	12/1988	Compans et al.
5,169,628	A	12/1992	Wathen
5,427,782	A	6/1995	Compans et al.
6,225,091	B1	5/2001	Klein et al.
6,500,419	B1	12/2002	Hone et al.
6,514,948	B1	2/2003	Raz et al.
7,001,890	B1	2/2006	Wagner et al.
7,208,161	B1	4/2007	Murphy et al.
7,449,324	B2	11/2008	Fouchier et al.
7,531,342	B2	5/2009	Fouchier et al.
7,671,186	B2	3/2010	Klein et al.
7,704,720	B2	4/2010	Tang et al.
8,217,016	B2	7/2012	Hoerr et al.
8,252,289	B2	8/2012	Eleouet et al.
8,710,200	B2	4/2014	Schrum et al.
8,722,341	B2	5/2014	Fouchier et al.
8,734,853	B2	5/2014	Sood et al.
8,754,062	B2	6/2014	De Fougerolles et al.
8,822,663	B2	9/2014	Schrum et al.
8,841,433	B2	9/2014	Fouchier et al.
8,889,146	B2	11/2014	Blais et al.
8,927,206	B2	1/2015	De Jong et al.
8,999,380	B2	4/2015	Bancel et al.
9,192,661	B2	11/2015	Jain et al.
9,221,891	B2	12/2015	Bancel et al.
		(Cont	tinued)
		(COII	illiaca,

FOREIGN PATENT DOCUMENTS

CA 2473135 6/2003 EP 1026253 8/2000 (Continued)

OTHER PUBLICATIONS

U.S. Appl. No. 16/048,154, filed Jul. 27, 2018, Ciaramella et al. (Continued)

Primary Examiner — Nicole Kinsey White (74) Attorney, Agent, or Firm — Wolf, Greenfield & Sacks, P.C.

(57) ABSTRACT

The disclosure relates to respiratory virus ribonucleic acid (RNA) vaccines and combination vaccines, as well as methods of using the vaccines and compositions comprising the vaccines.

21 Claims, 24 Drawing Sheets

Specification includes a Sequence Listing.

US 10,933,127 B2 Page 2

(56)	Referen	nces Cited		/0370497 /0378538		12/2014 12/2014	Fouchier et al.
U.S.	PATENT	DOCUMENTS	2015	/0051268	A1	2/2015	Bancel et al.
				7/0093413			Thess et al.
9,283,287 B2		Bancel et al.		5/0126589 5/0141499		5/2015	Geiger et al. Bancel et al.
9,303,079 B2 9,376,726 B2		Bancel et al. Fouchier et al.		/0307542			Roy et al.
9,464,124 B2		Bancel et al.		/0315541			Bancel et al.
9,512,456 B2		Wang et al.		5/0335728		11/2015	Wong et al.
9,567,653 B2		Fouchier et al.		5/0024141 5/0032273		2/2016	Issa et al. Shahrokh et al.
9,597,380 B2 9,623,095 B2		Chakraborty et al. Kallen et al.		0032213			Hoge et al.
9,669,089 B2	6/2017			/0039884			Li et al.
9,790,531 B2		Wang et al.		5/0151474 5/0271272			Kallen et al. Bancel et al.
9,868,691 B2 9,872,900 B2		Benenato et al. Ciaramella et al.		0271272			Ciaramella et al.
9,937,196 B2		Jain et al.		5/0331828			Ciaramella et al.
10,064,934 B2		Ciaramella et al.		1/0065675			Bancel et al.
10,064,935 B2		Ciaramella et al. Ciaramella et al.		7/0130255 7/0202979			Wang et al. Chakraborty et al.
10,124,055 B2 10,207,010 B2		Besin et al.		/0340724		11/2017	
10,273,269 B2		Ciaramella		3/0000953			Almarsson et al.
10,449,244 B2		Ciaramella et al.		3/0002393 3/0008694			Bancel et al. Ciaramella et al.
10,465,190 B1 10,493,143 B2		Chen et al. Ciaramella et al.		3/0028645			Ciaramella et al.
10,526,629 B2		Rabideau et al.		3/0028664			Besin et al.
10,653,712 B2	5/2020			3/0237849		8/2018	Thompson Ciaramella
10,653,767 B2		Ciaramella et al. Ciaramella et al.		3/0243225 3/0243230		8/2018	
10,695,419 B2 2003/0092653 A1		Kisich et al.		3/0256628		9/2018	Hoge et al.
2003/0232061 A1		Fouchier et al.		3/0271970			Ciaramella et al.
2004/0005545 A1		Fouchier et al.		3/0273977 3/0274009			Mousavi et al. Marquardt et al.
2004/0096451 A1 2005/0032730 A1		Young et al. Von Der Mulbe et al.		3/0280496			Ciaramella et al.
2005/0052730 A1 2005/0059624 A1		Hoerr et al.		3/0289792			Ciaramella et al.
2005/0250723 A1		Hoerr et al.		3/0303929			Ciaramella et al.
2006/0002958 A1		Naylor et al. Meers et al.		3/0311336 3/0311343			Ciaramella et al. Huang et al.
2006/0172003 A1 2006/0228367 A1		Ulbrandt et al.		3/0318409			Valiante et al.
2007/0280929 A1		Hoerr et al.		3/0363019		12/2018	
2008/0025944 A1		Hoerr et al.		8/0371047 9/0002890		12/2018 1/2019	Ticho et al. Martini et al.
2008/0171711 A1 2009/0123529 A1		Hoerr et al. Xiaomao		/0002830		1/2019	
2009/0162395 A1	6/2009			/0085368			Bancel et al.
2010/0203076 A1		Fotin-Mleczek et al.)/0099481)/0175517		4/2019 6/2019	Ciaramella et al. Martini et al.
2010/0239608 A1 2010/0272747 A1		Von Der Mulbe et al. Chow et al.		0192646			Cohen et al.
2010/02/2/4/ A1 2010/0291156 A1	11/2010		2019	/0192653	A1	6/2019	Hoge et al.
2010/0305196 A1		Probst et al.		0/0275170 0/0208658		9/2019 10/2019	
2011/0135645 A1 2011/0250225 A1	6/2011 10/2011	Williamson et al. Fotin-Mleczek et al.)/0298658)/0314493		10/2019	
2011/0250225 A1 2011/0269950 A1		Von Der Mulbe et al.		0/0336595		11/2019	Ciaramella
2012/0009221 A1		Hoerr et al.		/0351040			Valiante et al.
2012/0045471 A1		Haller et al.		0/0030432 0/0032274			Ciaramella et al. Mauger et al.
2012/0219573 A1 2013/0022538 A1	1/2013	Baumhof et al. Rossi		0032271			Narayanan et al.
2013/0078281 A1		He et al.		/0054737			Ciaramella et al.
2013/0102034 A1		Schrum et al.)/0069793)/0069794			Ciaramella Ciaramella et al.
2013/0121988 A1 2013/0142818 A1		Hoerr et al. Baumhof et al.		/0005754			Miracco
2013/0183355 A1		Jain et al.		/0109420			Brito et al.
2013/0195867 A1		Hoerr et al.		/0129608		4/2020	Ciaramella et al.
2013/0195967 A1 2013/0195969 A1		Guild et al. Geall et al.		/0129615 /0239869		4/2020 7/2020	Ciaramella et al. Issa et al.
2013/0193909 A1 2013/0202684 A1		Geall et al.	2020	10237607	А	112020	issa et ai.
2013/0236974 A1		De Fougerolles		FOI	REIG	N PATE	NT DOCUMENTS
2013/0243848 A1 2013/0245103 A1		Lobovkina et al.					
2013/0245103 A1 2013/0259923 A1		de Fougerolles et al. Bancel et al.	EP		1083		2/2005
2013/0266640 A1	10/2013	De Fougerolles et al.	EP EP			5844 A2 3960 A1	2/2008 1/2013
2013/0295043 A1		Kallen et al.	WO	WO 198		326 A1	9/1987
2013/0336998 A1 2014/0024076 A1		Kallen et al. Tang et al.	WO	WO 19			10/1990
2014/0037660 A1		Folin-Mleczek et al.	WO WO	WO 19 WO 19			8/1993 9/1995
2014/0147432 A1	5/2014	Bancel et al.	WO	WO 19			10/1995
2014/0148502 A1		Bancel et al.	WO	WO 19	95/33	3835	12/1995
2014/0193482 A1 2014/0206752 A1		Bancel et al. Afeyan et al.	WO WO	WO 199			12/1998
2014/0200732 A1 2014/0271829 A1		Lilja et al.	WO	WO 19 WO 200		982 2720 A2	7/1999 9/2003
		•					

(56)	References Cited	WO WO 2018/089851 A1 5/2018
	FOREIGN PATENT DOCUM	WO WO 2018/107088 A1 6/2018 FNTS WO WO 2018/111967 A1 6/2018
	TOKEION FAIENT DOCUM	WO WO 2018/144082 A1 8/2018
WO	WO 2004/076645 A1 9/2004	WO WO 2018/144778 A1 8/2018
WO	WO 2005/009346 2/2005	WO WO 2018/151816 A1 8/2018
WO	WO 2005/027963 A2 3/2005	WO WO 2018/170245 A1 9/2018
WO	WO 2006/056027 A1 6/2006	WO WO 2018/170256 A1 9/2018 WO WO 2018/170260 A1 9/2018
WO WO	WO 2006/071903 7/2006 WO 2006/095259 9/2006	WO WO 2018/170270 A1 9/2018
WO	WO 2007/038862 A1 4/2007	WO WO 2018/170347 A1 9/2018
WO	WO 2007/095976 A2 8/2007	WO WO 2018/175783 A1 9/2018
WO	WO 2008/052770 A2 5/2008	WO WO 2018/187590 A2 10/2018
WO	WO 2009/030254 A1 3/2009	WO WO 2018/200737 A1 11/2018 WO WO 2018/232355 A1 12/2018
WO WO	WO 2009/030481 A1 3/2009 WO 2009/095226 A1 8/2009	WO WO 2018/232357 A1 12/2018
WO	WO 2009/127230 A1 10/2009	WO WO 2019/036670 A1 2/2019
wo	WO 2010/037408 A1 4/2010	WO WO 2019/036682 A1 2/2019
WO	WO 2010/037539 A1 4/2010	WO WO 2019/036683 A1 2/2019
WO	WO 2010/042877 A1 4/2010	WO WO 2019/036685 A1 2/2019 WO WO 2019/103993 A1 5/2019
WO	WO 2010/054406 A1 5/2010	WO WO 2019/143993 A1 3/2019 WO WO 2019/148101 A1 8/2019
WO WO	WO 2010/088927 A1 8/2010 WO 2010/149743 A2 12/2010	WO WO 2020/006242 A1 1/2020
wo	WO 2011/005799 A2 1/2011	WO WO 2020/056370 A1 3/2020
WO	WO 2011/026641 A9 3/2011	WO WO 2020/061284 A1 3/2020
WO	WO 2011/068810 A1 6/2011	WO WO 2020/061295 A1 3/2020
WO	WO 2011/069529 A1 6/2011	WO WO 2020/061367 A1 3/2020 WO WO 2020/097291 A1 5/2020
WO	WO 2011/069586 A1 6/2011	WO WO 2020/097291 A1 5/2020
WO WO	WO 2011/144358 A1 11/2011 WO 2012/006369 A2 1/2012	
wo	WO 2012/000309 A2 1/2012 WO 2012/019630 A1 2/2012	OTHER PUBLICATIONS
WO	WO 2012/019780 A1 2/2012	II G A 1 N 1 C/450 000 C1 1 I 24 2010 C' 11
WO	WO 2012/031043 A1 3/2012	U.S. Appl. No. 16/450,882, filed Jun. 24, 2019, Ciaramella.
WO	WO 2012/116714 A1 9/2012	U.S. Appl. No. 16/009,880, filed Jun. 15, 2018, Ciaramella et al.
WO	WO 2012/116715 A1 9/2012	U.S. Appl. No. 16/582,621, filed Sep. 25, 2019, Chen et al.
WO WO	WO 2012/116810 A1 9/2012 WO 2012/116811 A1 9/2012	U.S. Appl. No. 16/839,278, filed Apr. 3, 2020, Hoge et al.
WO	WO 2012/110811 A1 9/2012 WO 2013/055905 A1 4/2013	U.S. Appl. No. 16/389,545, filed Apr. 19, 2019, Ciaramella et al.
WO	WO 2013/090186 A1 6/2013	U.S. Appl. No. 16/368,270, filed Mar. 28, 2019, Ciaramella et al.
WO	WO 2013/090648 A1 6/2013	U.S. Appl. No. 16/805,587, filed Feb. 28, 2020, Ciaramella et al.
WO	WO 2013/102203 A1 7/2013	PCT/US2016/058327, Jun. 29, 2017, International Search Report
WO	WO 2013/120628 A1 8/2013	and Written Opinion.
WO WO	WO 2013/120629 A1 8/2013 WO 2013/185069 A1 12/2013	[No Author Listed], "Messenger RNA", Internet: Wikipedia. Jun. 19, 2013, XP002699196, Retrieved from the Internet: URL: http://
wo	WO 2013/183003 AT 12/2013 WO 2014/089486 A1 6/2014	en.wikipedia.org/wiki/Messenger RNA.
WO	WO 2014/144196 A1 9/2014	Archer, S.J., Induction of a T-cell specific antigen on bone marrow
WO	WO 2014/152027 A1 9/2014	lymphocytes with thymus RNA. Immunology. Jan. 1978;34(1):123-
WO	WO 2014/152774 A1 9/2014	9.
WO WO	WO 2014/152940 A1 9/2014 WO 2014/160243 A1 10/2014	Ashley, D.M. et al., Bone marrow-generated dendritic cells pulsed
wo	WO 2015/024668 A2 2/2015	with tumor extracts or tumor RNA induce antitumor immunity
WO	WO 2015/095340 A1 6/2015	against central nervous system tumors. J Exp Med. Oct. 6, 1997;
WO	WO 2015/101414 A2 7/2015	186(7): 1177-82.
WO	WO 2015/101415 A1 7/2015	Bettinger, T. et al., Peptide-mediated RNA delivery: a novel approach
WO WO	WO 2015/130584 A2 9/2015 WO 2016/103238 6/2016	for enhanced transfection of primary and post-mitotic cells. Nucleic
wo	WO 2016/164762 A1 10/2016	Acids Res. Sep. 15, 201;29(18):3882-91.
WO	WO 2016/201377 A1 12/2016	Bogers et al., Potent immune responses in rhesus macaques induced
WO	WO 2017/015457 A1 1/2017	by nonviral delivery of a self-amplifying RNA vaccine expressing
WO	WO 2017/015463 A1 1/2017	HIV type 1 envelope with a cationic nanoemulsion. J Infect Dis. Mar. 15, 2015;211(6):947-55. doi: 10.1093/infdis/jiu522. Epub Sep.
WO WO	WO 2017/019935 A1 2/2017 WO 2017/020026 A1 2/2017	18, 2014.
wo	WO 2017/020020 A1 2/2017 WO 2017/062513 A1 4/2017	Bonehill, A., et al., Single-step antigen loading and activation of
wo	WO 2017/066789 A1 4/2017	dendritic cells by mRNA electroporation for the purpose of thera-
WO	WO 2017/070601 A1 4/2017	peutic vaccination in melanoma patients. Clin Cancer Res. May
WO	WO 2017/070616 A1 4/2017	2009; 15(10): 3366-3375.
WO	WO 2017/070618 A1 4/2017	Bose, S. et al., Role of nucleolin in human parainfluenza virus type
WO WO	WO 2017/070620 A1 4/2017 WO 2017/070622 A1 4/2017	3 infection of human lung epithelial cells. J Viral. Aug.
WO	WO 2017/070622 A1 4/2017 WO 2017/070623 A1 4/2017	2004;78(15):8146-58.
wo	WO 2017/201333 A1 11/2017	Conry, R.M. et al., Characterization of a messenger RNA polynucleotide
WO	WO 2017/201340 A1 11/2017	vaccine vector. Cancer Res. Apr. 1, 1995 ;55 (7):1397-1400.
WO	WO 2017/201342 A1 11/2017	Dahlman, James E. et al., In vivo endothelial siRNA delivery using
WO	WO 2017/201347 A1 11/2017	polymeric nanoparticles with low molecular weight, Nature Nano-
WO WO	WO 2017/201349 A1 11/2017	technology, 2014, No. vol. #, pp. 1-8. Diken et al., Current Developments in Actively Personalized Cancer
WO	WO 2018/053209 A1 3/2018 WO 2018/075980 A1 4/2018	Vaccination with a Focus on RNA as the Drug Format. Prog Tumor
WO	WO 2018/081459 A1 5/2018	Res. 2015;42:44-54. doi: 10.1159/000437184. Epub Sep. 4, 2015.
WO	WO 2018/081462 A1 5/2018	Review.

(56) References Cited

OTHER PUBLICATIONS

Fleeton et al., Self-replicative RNA vaccines elicit protection against influenza A virus, respiratory syncytial virus, and a tickborne encephalitis virus. J Infect Dis. May 1, 2001;183(9):1395-8. Epub Mar. 30, 2001.

Geall et al., Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci U S A. Sep. 4, 2012;109(36):14604-9. doi:10. 1073/pnas.1209367109. Epub Aug. 20, 2012.

GenBank Accession No. AHX22069. First seen on NCBI on May 14, 2014.

Gilboa, E. et al., Cancer immunotherapy with mRNA-transfected dendritic cells. Immunol Rev. Jun. 2004;199:251-63.

Greer et al., Long-term protection in hamsters against human parainfluenza virus type 3 following mucosal or combinations of mucosal and systemic immunizations with chimeric alphavirus-based replicon particles. Scand J Immunol. Dec. 2007;66(6):645-53. Epub Oct. 17, 2007.

Hecker, J.G. et al., Non-Viral DNA and mRNA Gene Delivery to the CNS Pre-Operatively for Neuroprotection and Following Neurotrauma. Molecular Therapy. 2004; 9, S258-S258.

Heiser, A. et al., Induction of polyclonal prostate cancer-specific CTL using dendritic cells transfected with amplified tumor RNA. J Immunol. Mar. 1, 2001; 166(5):2953-60.

Heyes et al., Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. J Control Release. Oct. 3, 2005;107(2):276-87.

Hoerr, I. et al., In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. EurJ Immunol. Jan. 2000;30(1):1-7.

Hoerr, I. et al., Stabilized Messenger RNA (RNActiveTM) as a Tool for Innovative Gene Delivery. Tissue Engineering. Apr. 2007; 13(4): 865-925.

Hoerr, More than a messenger: A new class of drugs-mRNA-based therapeutics. Genetic Engineering & Biotechnology News. Jun. 18, 2013. http://www.genengnews.com/gen-articles/more-than-a-messenger-a-new-class-of-drugs-mrna-based-therapeutics/4916/ [last accessed Mar. 25, 2016].

Holtkamp, S. et al., Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood. Dec. 15, 2006;108(13):4009-17.

Jirikowski, G.F., et al., Reversal of diabetes insipidus in Brattleboro Rats: Intrahypothalamic injection of vasopressin mRNA. Science. Feb. 1992; 255(5047): 996-998.

Kallen et al., A development that may evolve into a revolution in medicine: mRNA as the basis for novel, nucleotide-based vaccines and drugs. Ther Adv Vaccines. Jan. 2014;2(1):10-31. doi: 10.1177/2051013613508729.

Kallen et al., A novel, disruptive vaccination technology: self-adjuvanted RNActive(®) vaccines. Hum Vaccin Immunother. Oct. 2013;9(10):2263-76. doi: 10.4161/hv.25181. Epub Jun. 4, 2013. Review.

Kalra et al., Virosomes: As a Drug Delivery Carrier. American Journal of Advanced Drug Delivery. 2013;1:29-35.

Kanapathipillai, et al., Nanoparticle targeting of anti-cancer drugs that alter intracellular signaling or influence the tumor microenvironment, Adv. Drug Deliv. Rev. (2014), pp. 1-12.

Kariko, K., et al., Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA, Nucleic Acids Research, Oxford University Press, GB, vol. 39, No. 21, Sep. 2, 2011 (Sep. 2, 2011), e142. doi: 10.1093/nar/gkr695. Epub Sep. 2, 2011.

Kauffman et al., Optimization of Lipid Nanoparticle Formulations for mRNA Delivery in Vivo with Fractional Factorial and Definitive Screening Designs. Nano Lett. Nov. 11, 2015;15(11):7300-6. doi: 10.1021/acs.nanolett.5b02497. Epub Oct. 20, 2015.

Kisich et al., Antimycobacterial agent based on mRNA encoding human beta-defensin 2 enables primary macrophages to restrict growth of *Mycobacterium tuberculosis*. Infect Immun. Apr. 2001;69(4):2692-9.

Kozielski et al., Bioreducible cationic polymer-based nanoparticles for efficient and environmentally triggered cytoplasmic siRNA delivery to primary human brain cancer cells. ACS Nano. Apr. 22, 2014;8(4):3232-41. doi: 10.1021/nn500704t. Epub Apr. 3, 2014.

Kreiter, S., et al., Intranodal vaccination with naked antigenencoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res. 2010; 70: 9031-9040.

Kreiter, S., et al., Tumor vaccination using messenger RNA: prospects of a future therapy. Curr Opinion in Immun. Jun. 2011; 23(3): 399-406.

Kuhn, A.N., et al., mRNA as a versatile tool for exogenous protein expression. Current Gene Therapy. Oct. 2012; 12 (5): 347-361. Leitner, W.W. et al., DNA and RNA-based vaccines: principles,

progress and prospects. Vaccine. Dec. 10, 1999;18 (9-10):765-77. Li, L. et al., Overcoming obstacles to develop effective and safe siRNA therapeutics. Expert Opin Biol Ther. May 2009; 9(5):

Lorenzi, J.C., et al., Intranasal vaccination with messenger RNA as a new approach in gene therapy: Use against tuberculosis. BMC Biotechnol. Oct. 2010; 10(77): 1-11.

Mockey et al., mRNA-based cancer vaccine: prevention of B16 melanoma progression and metastasis by systemic injection of MART1 mRNA histidylated lipopolyplexes, Cancer Gene Therapy, 2007, 14, pp. 802-814.

Magini et al., Self-Amplifying mRNA Vaccines Expressing Multiple Conserved Influenza Antigens Confer Protection against Homologous and Heterosubtypic Viral Challenge. PLoS One. Aug. 15, 2016;11(8):e0161193. doi: 10.1371/journal.pone.0161193. eCollection 2016.

Martinon, F. et al., Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. EurJ lmmunol. Jul. 1993;23(7):1719-22.

Midoux et al., Lipid-based mRNA vaccine delivery systems. Expert Rev Vaccines. Feb. 2015;14(2):221-34. doi: 10.1586/14760584. 2015.986104. Epub Dec. 26, 2014. Review.

Mitchell, DA et al., RNA transfected dendritic cells as cancer vaccines. Curr Opin Mal Ther. Apr. 2000;2(2):176-81.

Mitchell, DA et al., RNA-transfected dendritic cells in cancer immunotherapy. J Clin Invest. Nov. 2000;106 (9):1065-9.

Muller, M.R. et al., Transfection of dendritic cells with RNA induces CD4- and COB-mediated T cell immunity against breast carcinomas and reveals the immunodominance of presented T cell epitopes. J Immunol. Jun. 15, 2003;170 (12):5892-6.

Narayanan et al., Interplay between viruses and host mRNA degradation. Biochim Biophys Acta. Jun.-Jul. 2013;1829(6-7):732-41. doi: 10.1016/j.bbagrm.2012.12.003. Epub Dec. 26, 2012.

Petsch et al., Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat Biotechnol. Dec. 2012;30(12):1210-6. doi: 10.1038/nbt.2436. Epub Nov. 25, 2012.

Phua et al., Mesenger RNA (mRNA) nanoparticle tumour vaccination. Nanoscale. Jul. 21, 2014;6(14):7715-29. dsoi: 10.1039/c4nr01346h. Review.

Pulford, B., et al., Liposome-siRNA-peptide complexes cross the blood-brain barrier and significantly decrease PrP'C on neuronal cells and PrP'RES in infected cell cultures. PLoS ONE. 201 O; 5(6): e11085.

Rabinovich, P.M., et al., Synthetic messenger RNA as a tool for gene therapy. Hum. Gene Ther. Oct. 2006; 17: 1027-1035.

Rittig et al., Intradermal vaccinations with RNA coding for TAA generate CD8+ and CD4+ immune responses and induce clinical benefit in vaccinated patients. Mol Ther. May 2011;19(5):990-9. doi: 10.1038/mt.2010.289. Epub Dec. 28, 2010.

Sahin et al., mRNA-based therapeutics—developing a new class of drugs. Nat Rev Drug Discov. Oct. 2014;13(10):759-80. doi: 10.1038/nrd4278. Epub Sep. 19, 2014.

Schmitt, W.E. et al., In vitro induction of a bladder cancer-specific T-cell response by mRNA-transfected dendritic cells. J Cancer Res Clin Oncol. 2001;127(3):203-6.

Schott, J.W., et al., Viral and non-viral approaches for transient delivery of mRNA and proteins. Current Gene Ther. 2011; 11 (5): 382-398.

(56)References Cited

OTHER PUBLICATIONS

Segura, J., et al., Monitoring gene therapy by external imaging of mRNA: Pilot study on murine erythropoietin. Ther Drug Monit. Oct. 2007; 29(5): 612-8.

Smits, E., et al., RNA-based gene transfer for adult stem cells and T cells. Leukemia. 2004; 18: 1898-1902.

Sohn, R.L., et al., In-vivo particle mediated delivery of mRNA to mammalian tissues: ballistic and biological effects. Wound Rep and Regen. Jul.-Aug. 2001; 287-296.

Strong, V.T. et al., Incorporation of beta-globin untranslated regions into a Sindbis virus vector for augmentation of heterologous mRNA expression. Gene Ther. Jun. 1997;4(6):624-7.

Sullenger, BA et al., Emerging clinical applications of RNA. Nature. Jul. 11, 2002;418(6894):252-8.

Tavernier, G., et al., mRNA as gene therapeutic: How to control protein expression. J. of Controlled Release. Mar. 2011; 150(3):

Teufel, R. et al., Human peripheral blood mononuclear cells transfected with messenger RNA stimulate antigen-specific cytotoxic T-lymphocytes in vitro. Cell Mol Life Sci. Aug. 2005;62(15):1755-62. Thess et al., Sequence-engineered mRNA Without Chemical Nucleoside

Modifications Enables an Effective Protein Therapy in Large Animals. Mol Ther. Sep. 2015;23(9):1456-64. doi: 10.1038/mt.2015. 103. Epub Jun. 8, 2015.

Wang et al., Systemic delivery of modified mRNA encoding herpes simplex virus 1 thymidine kinase for targeted cancer gene therapy. Mol Ther. Feb. 2013;21(2):358-67. doi: 10.1038/mt.2012.250. Epub

Wong et al., An mRNA vaccine for influenza. Nat Biotechnol. Dec. 2012;30(12):1202-4. doi: 10.1038/nbt.2439

Yamamoto et al., Current prospects for mRNA gene delivery, European Journal of Pharmaceutics and Biopharmaceutics 71 (2009)

Zhou, W.Z. et al., RNA melanoma vaccine: induction of antitumor immunity by human glycoprotein 100 mRNA immunization. Hum Gene Ther. Nov. 1, 1999;10(16):2719-24.

U.S. Appl. No. 16/036,318, filed Jul. 16, 2018, Ciaramella et al. U.S. Appl. No. 16/144,394, filed Sep. 27, 2018, Ciaramella et al.

U.S. Appl. No. 90/014,395, filed Oct. 24, 2019, Ciaramella et al.

U.S. Appl. No. 15/748,773, filed Jan. 30, 2018, Ciaramella et al.

U.S. Appl. No. 15/753,293, filed Feb. 17, 2018, Smith.

U.S. Appl. No. 15/753,297, filed Feb. 17, 2018, Thompson.

U.S. Appl. No. 15/748,782, filed Jan. 30, 2018, Mousavi et al.

U.S. Appl. No. 15/767,587, filed Apr. 11, 2018, Ciaramella.

U.S. Appl. No. 16/833,409, filed Mar. 27, 2020, Ciaramella. U.S. Appl. No. 15/767,600, filed Apr. 11, 2018, Ciaramella et al.

U.S. Appl. No. 15/769,710, filed Apr. 19, 2018, Ciaramella et al.

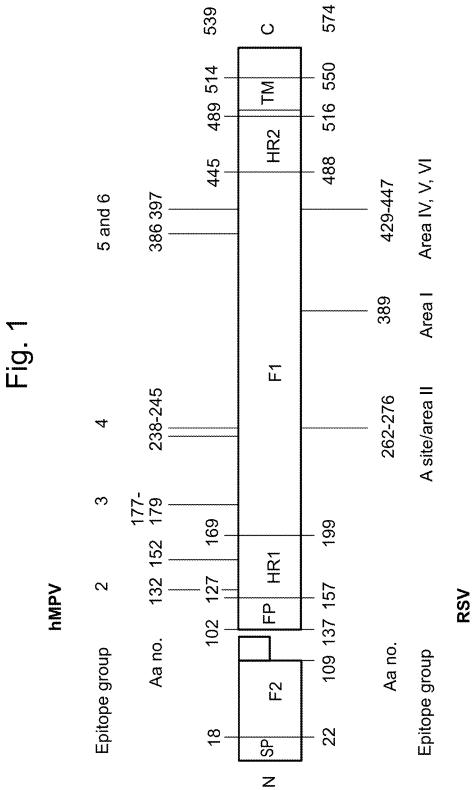
U.S. Appl. No. 15/767,609, filed Apr. 11, 2018, Ciaramella et al.

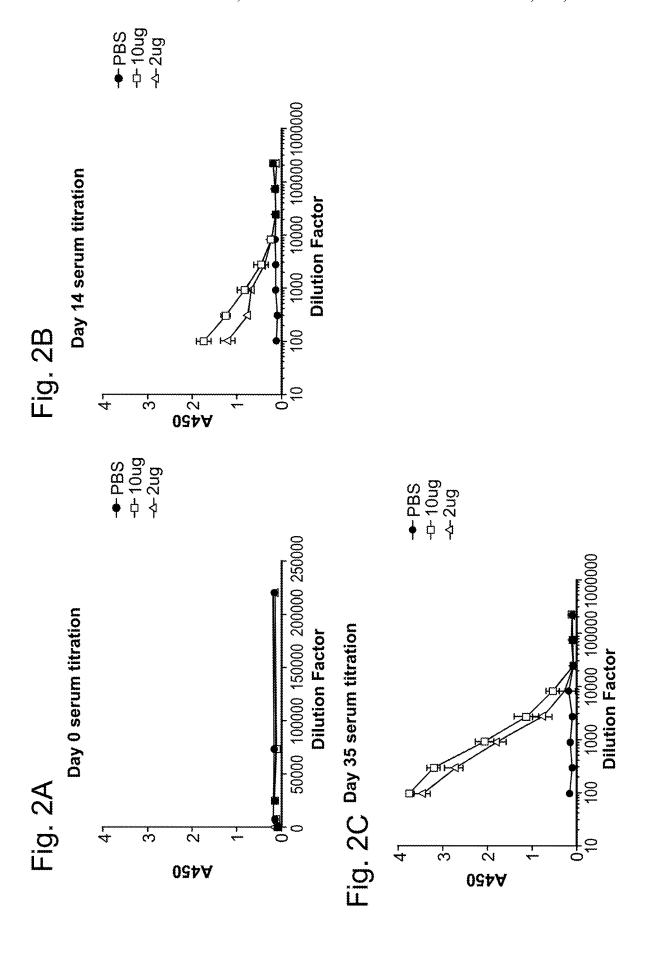
U.S. Appl. No. 15/767,613, filed Apr. 11, 2018, Ciaramella et al.

U.S. Appl. No. 15/767,618, filed Apr. 11, 2018, Ciaramella et al.

U.S. Appl. No. 16/853,973, filed Apr. 21, 2020, Ciaramella et al.

U.S. Appl. No. 16/850,519, filed Apr. 16, 2020, Ciaramella et al. U.S. Appl. No. 15/746,286, filed Jan. 19, 2018, Ciaramella et al. U.S. Appl. No. 16/897,859, filed Jun. 10, 2020, Ciaramella et al. U.S. Appl. No. 16/898,268, filed Jun. 10, 2020, Ciaramella et al. U.S. Appl. No. 15/981,762, filed May 16, 2018, Bancel et al. U.S. Appl. No. 16/599,661, filed Oct. 11, 2019, Besin et al. U.S. Appl. No. 16/333,330, filed Mar. 14, 2019, Hoge et al. U.S. Appl. No. 16/864,566, filed May 1, 2020, Ciaramella et al. U.S. Appl. No. 16/897,734, filed Jun. 10, 2020, Ciaramella et al. U.S. Appl. No. 16/468,838, filed Jun. 12, 2019, Miracco. U.S. Appl. No. 16/001,765, filed Jun. 6, 2018, Marquardt et al. U.S. Appl. No. 16/348,943, filed May 10, 2019, Ciaramella. U.S. Appl. No. 16/467,142, filed Jun. 6, 2019, Ciaramella et al. U.S. Appl. No. 16/603,111, filed Oct. 4, 2019, Brito et al. U.S. Appl. No. 16/482,844, filed Aug. 1, 2019, Valiante et al. U.S. Appl. No. 16/496,135, filed Sep. 20, 2019, Narayanan et al. U.S. Appl. No. 16/483,012, filed Aug. 1, 2019, Mauger et al. U.S. Appl. No. 16/657,122, filed Oct. 18, 2019, Rabideau et al. U.S. Appl. No. 16/362,366, filed Mar. 22, 2019, Ciaramella. U.S. Appl. No. 16/493,986, filed Sep. 13, 2019, Ciaramella et al. U.S. Appl. No. 16/494,130, filed Sep. 13, 2019, Ciaramella et al. U.S. Appl. No. 16/494,103, filed Sep. 13, 2019, Ciaramella et al. U.S. Appl. No. 16/494,162, filed Sep. 13, 2019, Ciaramella. U.S. Appl. No. 16/494,988, filed Sep. 17, 2019, Ciaramella et al. U.S. Appl. No. 16/639,265, filed Feb. 14, 2020, Issa et al. U.S. Appl. No. 16/639,305, filed Feb. 14, 2020, Issa et al. U.S. Appl. No. 16/765,285, filed May 19, 2020, Ciaramella et al. U.S. Appl. No. 16/302,607, filed Nov. 16, 2018, Benenato et al. U.S. Appl. No. 16/623,069, filed Dec. 16, 2019, Hoge et al. U.S. Appl. No. 16/639,403, filed Feb. 14, 2020, Hoge et al. U.S. Appl. No. 16/848,318, filed Apr. 14, 2020, Ciaramella et al. U.S. Appl. No. 16/965,589, filed Jul. 28, 2020, Ciaramella et al. U.S. Appl. No. 16/608,451, filed Oct. 25, 2019, Ciaramella et al. U.S. Appl. No. 16/788,182, filed Feb. 11, 2020, Panther et al. U.S. Appl. No. 16/794,318, filed Feb. 19, 2020, Mauger et al. Byoung-Shik et al., Intranasal immunization with plasmid DNA encoding spike protein of SARS-coronavirus/polyethylenimine nanoparticles elicits antigen-specific humoral and cellular immune responses.BMC Immunol. Dec. 31, 2010;11:65. doi: 10.1186/1471-


Du et al., Recombinant adeno-associated virus expressing the receptor-binding domain of severe acute respiratory syndrome coronavirus S protein elicits neutralizing antibodies: Implication for developing SARS vaccines. Virology. Sep. 15, 2006;353(1):6-16. doi: 10.1016/j.virol.2006.03.049. Epub Jun. 21, 2006.


2172-11-65.

Lu et al., Bat-to-human: spike features determining 'host jump' of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends Microbiol. Aug. 2015;23(8):468-78. doi: 10.1016/j.tim.2015.06.003. Epub Jul. 21, 2015.

Reichmuth et al., mRNA Vaccine Delivery Using Lipid Nanoparticles. Ther Deliv. 2016;7(5):319-34. doi: 10.4155/tde-2016-0006.

Yuan et al., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat Commun. Apr. 10, 2017;8:15092. doi: 10.1038/ncomms15092.

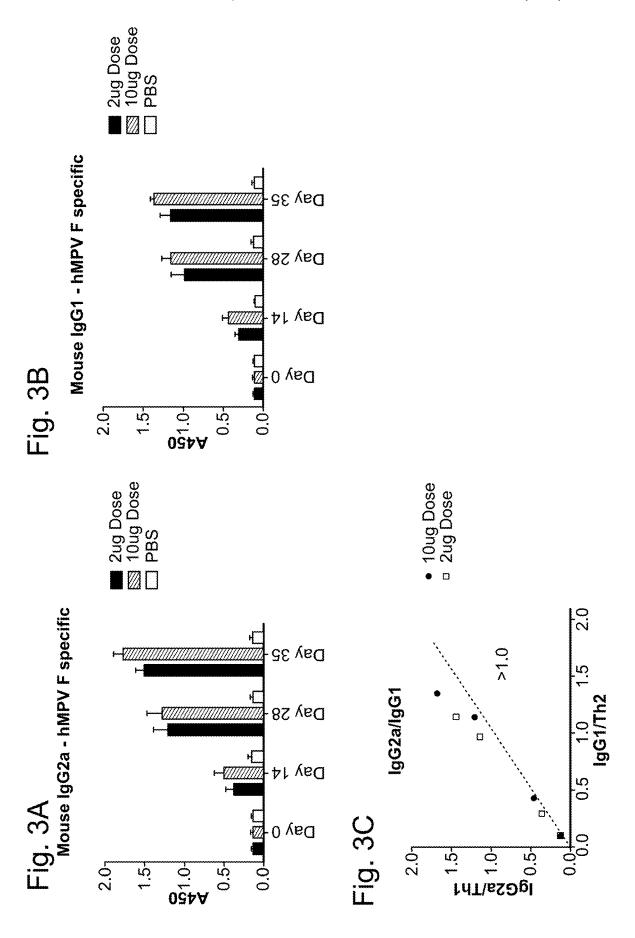
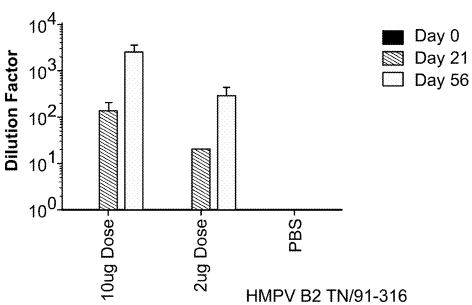
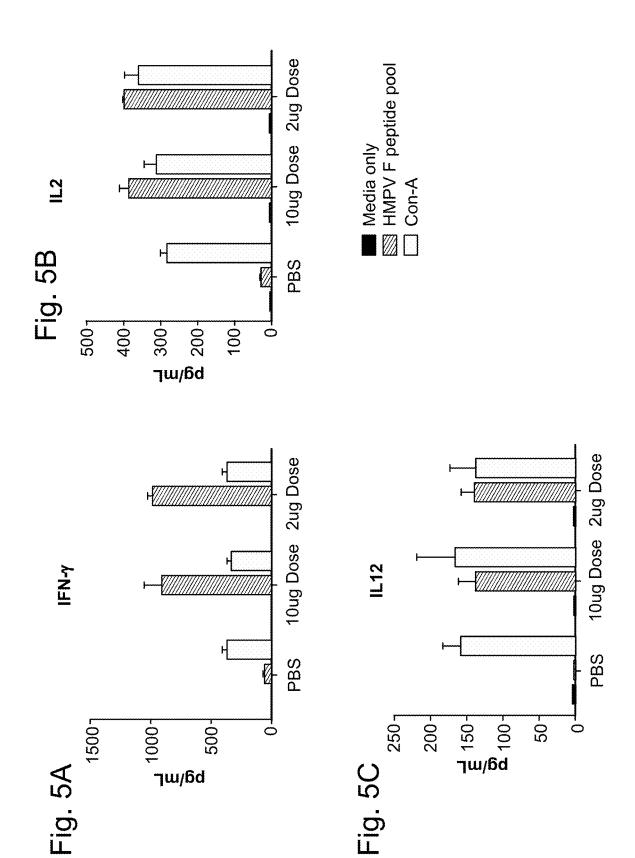
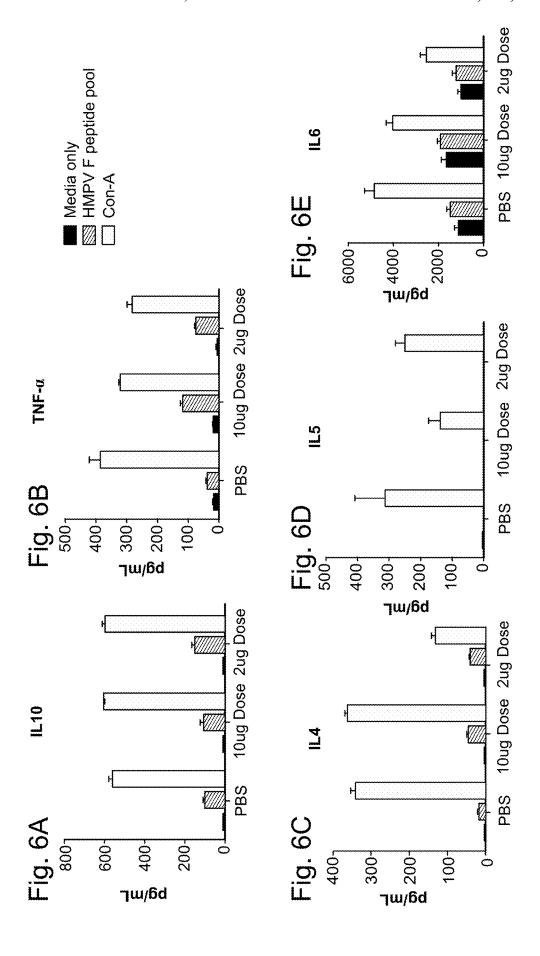





Fig. 4

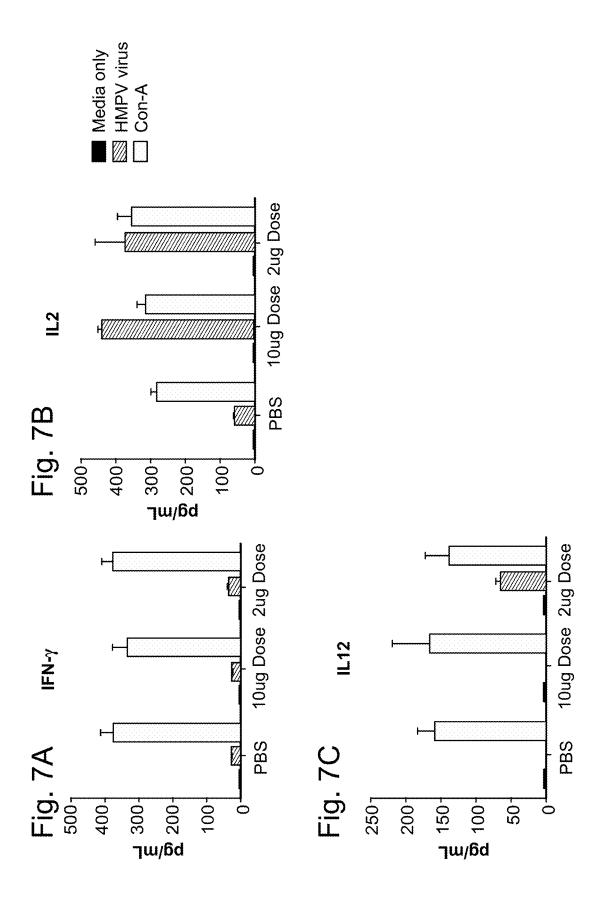


Fig. 9A

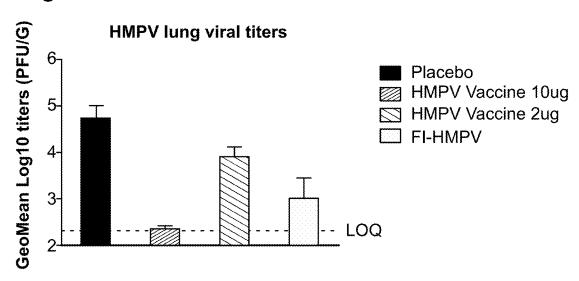
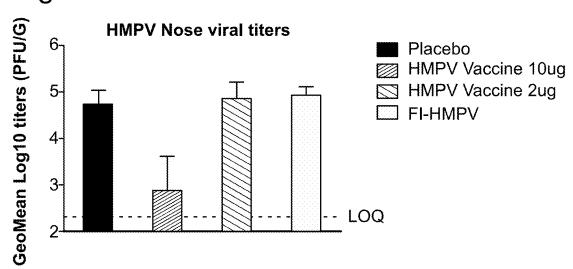



Fig. 9B

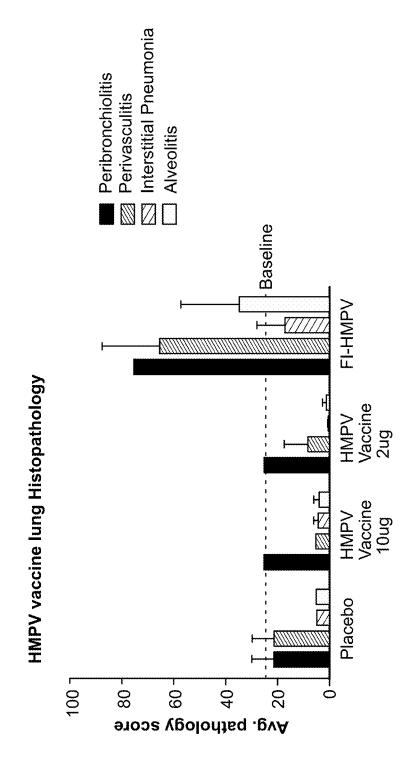
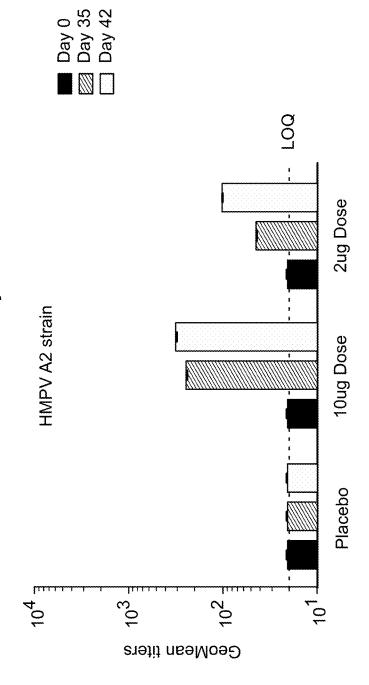
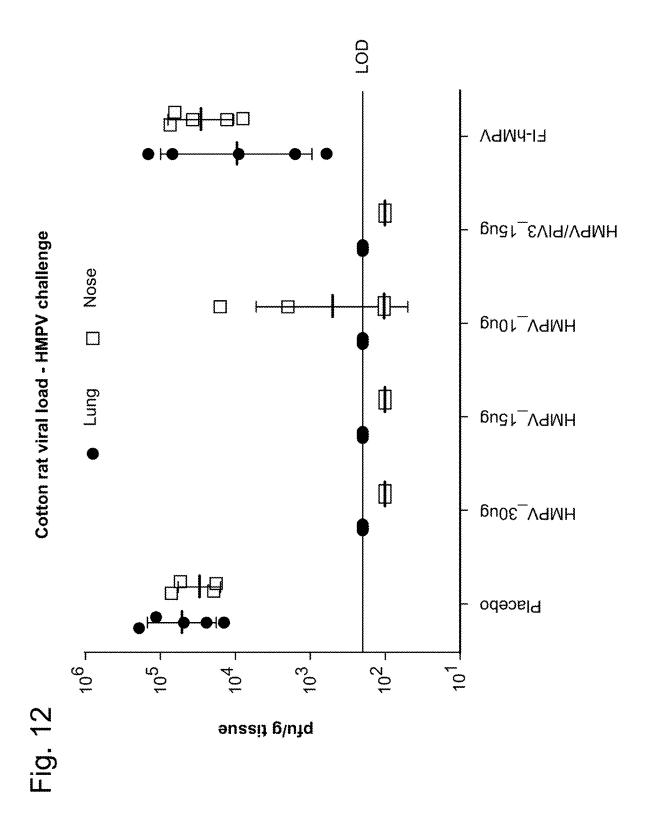




Fig. 10

Fig. 11
HMPV neutralization antibody titers in cotton rats

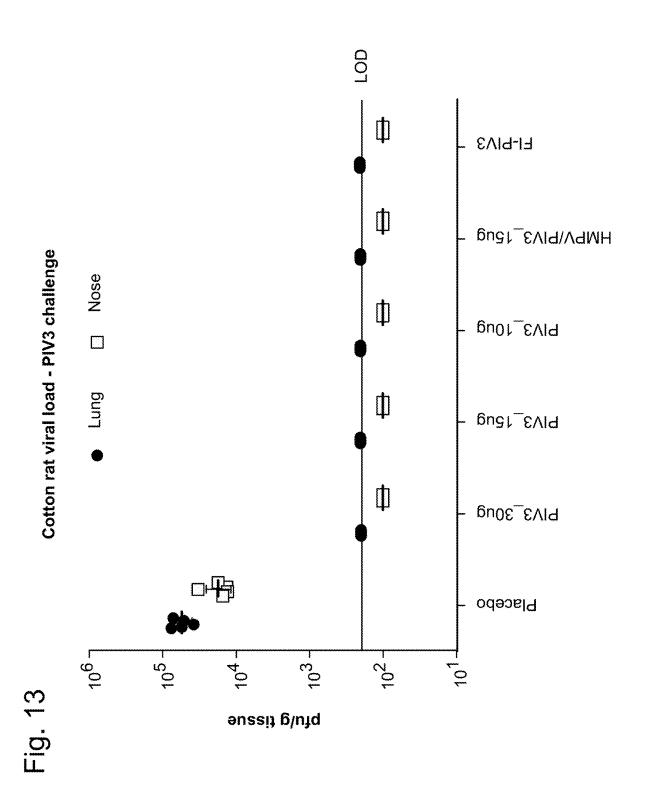


Fig. 14

8.00

7.00

6.00

60% PRNT Log2

5.00

12

7

9

တ

 ∞

Groups

Fig. 16 Cotton rat lung histopathology

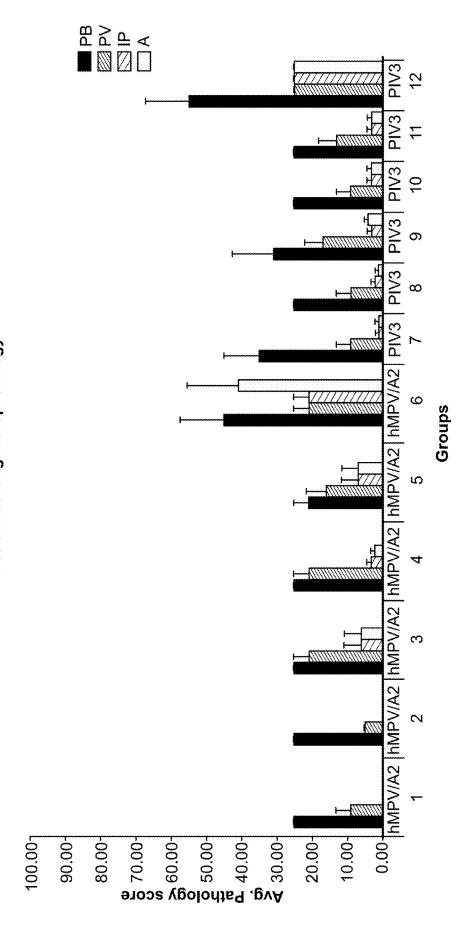
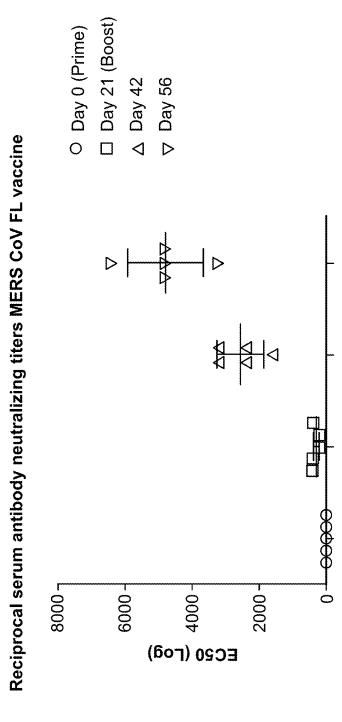
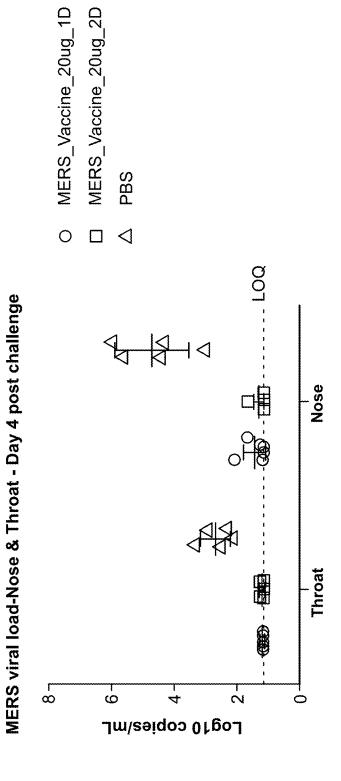
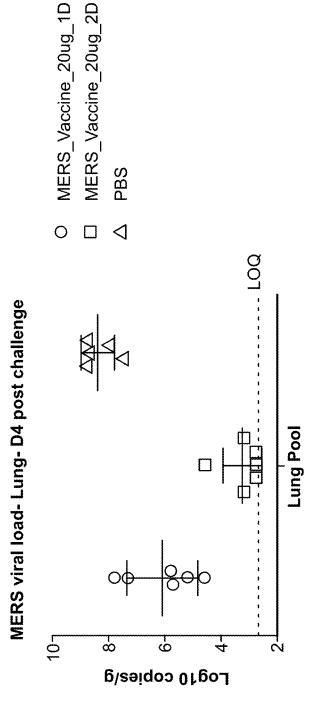
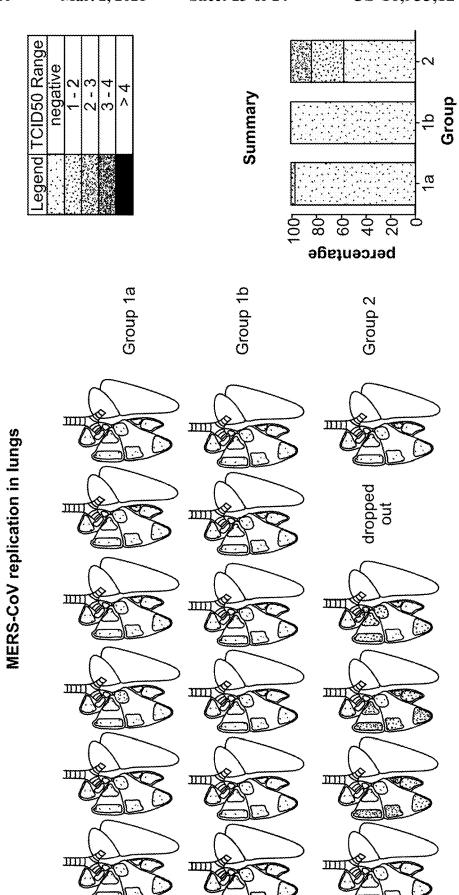



Fig. 17

FL Spike protein S2 spike protein Reciprocal serum antibody neutralizing titers MERS CoV vaccine 99 Day 21(Boost) 0 (Prime) 10000₁ 1000= 100-EC20 (Fod)

Fig. 19/


Fig. 19E

MERS_Vaccine_20ug_1D MERS_Vaccine_20ug_2D PBS 0 \triangleleft MERS viral load- Lung- D4 post challenge Lung Pool 107 8 6 Log10 copies/g

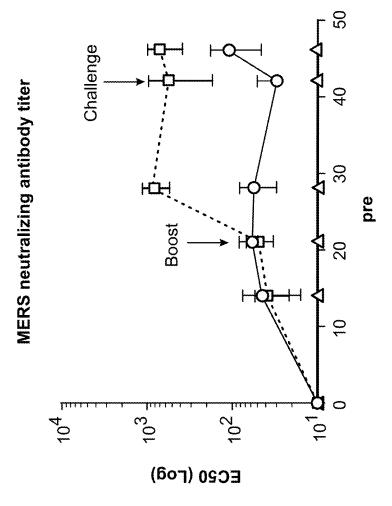

egend PCR Range Summary Group 5-6 percentage 2 6 6 8 Group 1a Group 1b Group 2 MERS-CoV RNA loads in lungs dropped out Ш

Fig. 20A

-O- MERS_20ug_1Dose -□- MERS_20ug_2Doses -△- Placebo

Fig. 21

BETACORONAVIRUS MRNA VACCINE

RELATED APPLICATIONS

This application is a division of U.S. application Ser. No. 5 16/805,587, filed Feb. 28, 2020, now U.S. Pat. No. 10,702, 600, which is a continuation of U.S. application Ser. No. 16/368,270, filed Mar. 28, 2019, now U.S. Pat. No. 10,702, 599, which is a continuation of Ser. No. 16/040,981, filed Jul. 20, 2018, now U.S. Pat. No. 10,272,150, which is a 10 continuation of U.S. application Ser. No. 15/674,599, filed Aug. 11, 2017, now U.S. Pat. No. 10,064,934, which is a continuation of International application number PCT/ US2016/058327, filed Oct. 21, 2016, which claims the benefit under 35 U.S.C. § 119(e) of U.S. provisional appli- 15 cation No. 62/244,802, filed Oct. 22, 2015, U.S. provisional application No. 62/247,297, filed Oct. 28, 2015, U.S. provisional application No. 62/244,946, filed Oct. 22, 2015, U.S. provisional application No. 62/247,362, filed Oct. 28, 2015, U.S. provisional application No. 62/244,813, filed 20 Oct. 22, 2015, U.S. provisional application No. 62/247,394, filed Oct. 28, 2015, U.S. provisional application No. 62/244, 837, filed Oct. 22, 2015, U.S. provisional application No. 62/247,483, filed Oct. 28, 2015, and U.S. provisional application No. 62/245,031, filed Oct. 22, 2015, each of which is 25 incorporated by reference herein in its entirety.

BACKGROUND

Respiratory disease is a medical term that encompasses 30 pathological conditions affecting the organs and tissues that make gas exchange possible in higher organisms, and includes conditions of the upper respiratory tract, trachea, bronchi, bronchioles, alveoli, pleura and pleural cavity, and the nerves and muscles of breathing. Respiratory diseases 35 range from mild and self-limiting, such as the common cold, to life-threatening entities like bacterial pneumonia, pulmonary embolism, acute asthma and lung cancer. Respiratory disease is a common and significant cause of illness and death around the world. In the US, approximately 1 billion 40 "common colds" occur each year. Respiratory conditions are among the most frequent reasons for hospital stays among children.

The human *Metapneumovirus* (hMPV) is a negative-sense, single-stranded RNA virus of the genus *Pneumoviri-nae* and of the family Paramyxoviridae and is closely related to the avian *Metapneumovirus* (AMPV) subgroup C. It was isolated for the first time in 2001 in the Netherlands by using the RAP-PCR (RNA arbitrarily primed PCR) technique for identification of unknown viruses growing in cultured cells. hPMV is second only to RSV as an important cause of viral lower respiratory tract illness (LRI) in young children. The seasonal epidemiology of hMPV appears to be similar to that of RSV, but the incidence of infection and illness appears to be substantially lower.

Parainfluenza virus type 3 (PIV3), like hMPV, is also a negative-sense, single-stranded sense RNA virus of the genus *Pneumovirinae* and of the family Paramyxoviridae and is a major cause of ubiquitous acute respiratory infections of infancy and early childhood. Its incidence peaks 60 around 4-12 months of age, and the virus is responsible for 3-10% of hospitalizations, mainly for bronchiolitis and pneumonia. PIV3 can be fatal, and in some instances is associated with neurologic diseases, such as febrile seizures. It can also result in airway remodeling, a significant cause of 65 morbidity. In developing regions of the world, infants and young children are at the highest risk of mortality, either

2

from primary PIV3 viral infection or a secondary consequences, such as bacterial infections. Human parainfluenza viruses (hPIV) types 1, 2 and 3 (hPIV1, hPIV2 and hPIV3, respectively), also like hMPV, are second only to RSV as important causes of viral LRI in young children.

RSV, too, is a negative-sense, single-stranded RNA virus of the genus Pneumovirinae and of the family Paramyxoviridae. Symptoms in adults typically resemble a sinus infection or the common cold, although the infection may be asymptomatic. In older adults (e.g., >60 years), RSV infection may progress to bronchiolitis or pneumonia. Symptoms in children are often more severe, including bronchiolitis and pneumonia. It is estimated that in the United States, most children are infected with RSV by the age of three. The RSV virion consists of an internal nucleocapsid comprised of the viral RNA bound to nucleoprotein (N), phosphoprotein (P), and large polymerase protein (L). The nucleocapsid is surrounded by matrix protein (M) and is encapsulated by a lipid bilayer into which the viral fusion (F) and attachment (G) proteins as well as the small hydrophobic protein (SH) are incorporated. The viral genome also encodes two nonstructural proteins (NS1 and NS2), which inhibit type I interferon activity as well as the M-2 protein.

The continuing health problems associated with hMPV, PIV3 and RSV are of concern internationally, reinforcing the importance of developing effective and safe vaccine candidates against these virus.

Despite decades of research, no vaccines currently exist (Sato and Wright, *Pediatr. Infect. Dis. J.* 2008; 27(10 Suppl): S123-5). Recombinant technology, however, has been used to target the formation of vaccines for hPIV-1, 2 and 3 serotypes, for example, and has taken the form of several live-attenuated intranasal vaccines. Two vaccines in particular were found to be immunogenic and well tolerated against hPIV-3 in phase I trials. hPIV1 and hPIV2 vaccine candidates remain less advanced (Durbin and Karron, Clinical infectious diseases: an official publication of the Infectious Diseases Society of America 2003; 37(12):1668-77).

disease is a common and significant cause of illness and death around the world. In the US, approximately 1 billion "common colds" occur each year. Respiratory conditions are among the most frequent reasons for hospital stays among children.

The human *Metapneumovirus* (hMPV) is a negativesense, single-stranded RNA virus of the genus *Pneumoviri-tae* and of the family Paramyxoviridae and is closely related to the avian *Metapneumovirus* (AMPV) subgroup C. It was

In additional to hMPV, PIV, RSV and MeV, Betacoronaviruses are known to cause respiratory illnesses. Betacoronaviruses (BetaCoVs) are one of four genera of coronaviruses of the subfamily Coronavirinae in the family Coronaviridae, of the order Nidovirales. They are enveloped, positive-sense, single-stranded RNA viruses of zoonotic origin. The coronavirus genera are each composed of varying viral lineages, with the *Betacoronavirus* genus containing four such lineages. The BetaCoVs of the greatest clinical importance concerning humans are OC43 and HKU1 of the A lineage, SARS-CoV of the B lineage, and MERS-CoV of the C lineage. MERS-CoV is the first *Betacoronavirus* belonging to lineage C that is known to infect humans.

The Middle East respiratory syndrome coronavirus (MERS-CoV), or EMC/2012 (HCoV-EMC/2012), initially referred to as novel coronavirus 2012 or simply novel coronavirus, was first reported in 2012 after genome sequencing of a virus isolated from sputum samples from a person who fell ill during a 2012 outbreak of a new flu. As

of July 2015, MERS-CoV cases have been reported in over 21 countries. The outbreaks of MERS-CoV have raised serious concerns world-wide, reinforcing the importance of developing effective and safe vaccine candidates against MERS-CoV.

Severe acute respiratory syndrome (SARS) emerged in China in 2002 and spread to other countries before brought under control. Because of a concern for reemergence or a deliberate release of the SARS coronavirus, vaccine development was initiated.

Deoxyribonucleic acid (DNA) vaccination is one technique used to stimulate humoral and cellular immune responses to foreign antigens, such as hMPV antigens and/or PIV antigens and/or RSV antigens. The direct injection of genetically engineered DNA (e.g., naked plasmid DNA) into a living host results in a small number of its cells directly producing an antigen, resulting in a protective immunological response. With this technique, however, comes potential problems, including the possibility of insertional mutagenesis, which could lead to the activation of oncogenes or the inhibition of tumor suppressor genes.

SUMMARY

Provided herein are ribonucleic acid (RNA) vaccines that build on the knowledge that RNA (e.g., messenger RNA (mRNA)) can safely direct the body's cellular machinery to produce nearly any protein of interest, from native proteins to antibodies and other entirely novel protein constructs that 30 can have the rapeutic activity inside and outside of cells. The RNA (e.g., mRNA) vaccines of the present disclosure may be used to induce a balanced immune response against $hMPV,\,PIV,\,RSV,\,MeV,\,and/or\,\,BetaCoV$ (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, 35 HCoV-NL, HCoV-NH and/or HCoV-HKU1), or any combination of two or more of the foregoing viruses, comprising both cellular and humoral immunity, without risking the possibility of insertional mutagenesis, for example. hMPV, PIV, RSV, MeV, BetaCoV (e.g., MERS-CoV, SARS-CoV, 40 HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1) and combinations thereof are referred to herein as "respiratory viruses." Thus, the term "respiratory virus RNA vaccines" encompasses hMPV RNA vaccines, PIV RNA vaccines, RSV RNA vaccines, MeV 45 RNA vaccines, BetaCoV RNA vaccines, and any combination of two or more of hMPV RNA vaccines, PIV RNA vaccines, RSV RNA vaccines, MeV RNA vaccines, and BetaCoV RNA vaccines.

The RNA (e.g., mRNA) vaccines may be utilized in 50 various settings depending on the prevalence of the infection or the degree or level of unmet medical need. The RNA (e.g. mRNA) vaccines may be utilized to treat and/or prevent a hMPV, PIV, RSV, MeV, a BetaCoV (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, 55 HCoV-NL, HCoV-NH, HCoV-HKU1), or any combination of two or more of the foregoing viruses, of various genotypes, strains, and isolates. The RNA (e.g., mRNA) vaccines have superior properties in that they produce much larger antibody titers and produce responses earlier than commer- 60 cially available anti-viral therapeutic treatments. While not wishing to be bound by theory, it is believed that the RNA (e.g., mRNA) vaccines, as mRNA polynucleotides, are better designed to produce the appropriate protein conformation upon translation as the RNA (e.g., mRNA) vaccines 65 co-opt natural cellular machinery. Unlike traditional vaccines, which are manufactured ex vivo and may trigger

4

unwanted cellular responses, RNA (e.g., mRNA) vaccines are presented to the cellular system in a more native fashion.

In some aspects the invention is a respiratory virus vaccine, comprising at least one RNA polynucleotide having an open reading frame encoding at least one respiratory virus antigenic polypeptide, formulated in a cationic lipid nanoparticle.

Surprisingly, in some aspects it has also been shown that efficacy of mRNA vaccines can be significantly enhanced when combined with a flagellin adjuvant, in particular, when one or more antigen-encoding mRNAs is combined with an mRNA encoding flagellin.

RNA (e.g., mRNA) vaccines combined with the flagellin adjuvant (e.g., mRNA-encoded flagellin adjuvant) have superior properties in that they may produce much larger antibody titers and produce responses earlier than commercially available vaccine formulations. While not wishing to be bound by theory, it is believed that the RNA (e.g., mRNA) vaccines, for example, as mRNA polynucleotides, are better designed to produce the appropriate protein conformation upon translation, for both the antigen and the adjuvant, as the RNA (e.g., mRNA) vaccines co-opt natural cellular machinery. Unlike traditional vaccines, which are manufactured ex vivo and may trigger unwanted cellular responses, RNA (e.g., mRNA) vaccines are presented to the cellular system in a more native fashion.

Some embodiments of the present disclosure provide RNA (e.g., mRNA) vaccines that include at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one antigenic polypeptide or an immunogenic fragment thereof (e.g., an immunogenic fragment capable of inducing an immune response to the antigenic polypeptide) and at least one RNA (e.g., mRNA polynucleotide) having an open reading frame encoding a flagellin adjuvant.

In some embodiments, at least one flagellin polypeptide (e.g., encoded flagellin polypeptide) is a flagellin protein. In some embodiments, at least one flagellin polypeptide (e.g., encoded flagellin polypeptide) is an immunogenic flagellin fragment. In some embodiments, at least one flagellin polypeptide and at least one antigenic polypeptide are encoded by a single RNA (e.g., mRNA) polynucleotide. In other embodiments, at least one flagellin polypeptide and at least one antigenic polypeptide are each encoded by a different RNA polynucleotide.

In some embodiments at least one flagellin polypeptide has at least 80%, at least 85%, at least 90%, or at least 95% identity to a flagellin polypeptide having a sequence identified by any one of SEQ ID NO: 54-56.

Provided herein, in some embodiments, is a ribonucleic acid (RNA) (e.g., mRNA) vaccine, comprising at least one (e.g., at least 2, 3, 4 or 5) RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one (e.g., at least 2, 3, 4 or 5) hMPV, PIV, RSV, MeV, or a BetaCoV (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH, HCoV-HKU1) antigenic polypeptide, or any combination of two or more of the foregoing antigenic polypeptides. Herein, use of the term "antigenic polypeptide" encompasses immunogenic fragments of the antigenic polypeptide (an immunogenic fragment that is induces (or is capable of inducing) an immune response to hMPV, PIV, RSV, MeV, or a BetaCoV), unless otherwise stated.

Also provided herein, in some embodiments, is a RNA (e.g., mRNA) vaccine comprising at least one (e.g., at least 2, 3, 4 or 5) RNA polynucleotide having an open reading frame encoding at least one (e.g., at least 2, 3, 4 or 5) hMPV,

PIV, RSV, MeV, and/or a BetaCoV (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH, HCoV-HKU1) antigenic polypeptide or an immunogenic fragment thereof, linked to a signal peptide.

Further provided herein, in some embodiments, is a nucleic acid (e.g., DNA) encoding at least one (e.g., at least 2, 3, 4 or 5) hMPV, PIV, RSV, MeV, and/or a BetaCoV (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH, HCoV-HKU1) RNA (e.g., mRNA) polynucleotide.

Further still, provided herein, in some embodiments, is a method of inducing an immune response in a subject, the method comprising administering to the subject a vaccine comprising at least one (e.g., at least 2, 3, 4 or 5) RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one (e.g., at least 2, 3, 4 or 5) hMPV, PIV, RSV, MeV, and/or a BetaCoV (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, 20 HCoV-NH, HCoV-HKU1) antigenic polypeptide, or any combination of two or more of the foregoing antigenic polypeptides.

hMPV/PIV3/RSV

In some embodiments, a RNA (e.g., mRNA) vaccine 25 comprises at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one hMPV, PIV3 or RSV antigenic polypeptide. In some embodiments, at least one antigenic polypeptide is a hMPV, PIV3 or RSV polyprotein. In some embodiments, at least one antigenic 30 polypeptide is major surface glycoprotein G or an immunogenic fragment thereof. In some embodiments, at least one antigenic polypeptide is Fusion (F) glycoprotein (e.g., Fusion glycoprotein F0, F1 or F2) or an immunogenic fragment thereof. In some embodiments, at least one anti- 35 genic polypeptide is major surface glycoprotein G or an immunogenic fragment thereof and F glycoprotein or an immunogenic fragment thereof. In some embodiments, the antigenic polypeptide is nucleoprotein (N) or an immunogenic fragment thereof, phosphoprotein (P) or an immuno- 40 genic fragment thereof, large polymerase protein (L) or an immunogenic fragment thereof, matrix protein (M) or an immunogenic fragment thereof, small hydrophobic protein (SH) or an immunogenic fragment thereof nonstructural protein 1 (NS1) or an immunogenic fragment thereof, or 45 nonstructural protein 2 (NS2) and an immunogenic fragment thereof.

In some embodiments, at least one hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 (Table 3; see also amino acid 50 sequences of Table 4). In some embodiments, the amino acid sequence of the hMPV antigenic polypeptide is, or is a fragment of, or is a homolog or variant having at least 80% (e.g., 85%, 90%, 95%, 98%, 99%) identity to, the amino acid sequence identified by any one of SEQ ID NO: 5-8 (Table 55 3; see also amino acid sequences of Table 4).

In some embodiments, at least one hMPV antigenic polypeptide is encoded by a nucleic acid sequence identified by any one of SEQ ID NO: 1-4 (Table 2).

In some embodiments, at least one hMPV RNA (e.g., 60 mRNA) polynucleotide is encoded by a nucleic acid sequence, or a fragment of a nucleotide sequence, identified by any one of SEQ ID NO: 1-4 (Table 2). In some embodiments, at least one hMPV RNA (e.g., mRNA) polynucleotide comprises a nucleic acid sequence, or a fragment of a 65 nucleotide sequence, identified by any one of SEQ ID NO: 57-60 (Table 2).

6

In some embodiments, at least one antigenic polypeptide is obtained from hMPV strain CAN98-75 (CAN75) or the hMPV strain CAN97-83 (CAN83).

In some embodiments, at least one PIV3 antigenic polypeptide comprises hemagglutinin-neuraminidase, Fusion (F) glycoprotein, matrix protein (M), nucleocapsid protein (N), viral replicase (L), non-structural V protein, or an immunogenic fragment thereof.

In some embodiments, at least one PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 (Table 6; see also amino acid sequences of Table 7). In some embodiments, the amino acid sequence of the PIV3 antigenic polypeptide is, or is a fragment of, or is a homolog or variant having at least 80% (e.g., 85%, 90%, 95%, 98%, 99%) identity to, the amino acid sequence identified by any one of SEQ ID NO: 12-13 (Table 6; see also amino acid sequences of Table 7).

In some embodiments, at least one PIV3 antigenic polypeptide is encoded by a nucleic acid sequence identified by any one of SEQ ID NO: 9-12 (Table 5; see also nucleic acid sequences of Table 7).

In some embodiments, at least one PIV3 RNA (e.g., mRNA) polynucleotide is encoded by a nucleic acid sequence, or a fragment of a nucleotide sequence, identified by any one of SEQ ID NO: 9-12 (Table 5; see also nucleic acid sequences of Table 7). In some embodiments, at least one PIV3 RNA (e.g., mRNA) polynucleotide comprises a nucleic acid sequence, or a fragment of a nucleotide sequence, identified by any one of SEQ ID NO: 61-64 (Table 5)

In some embodiments, at least one antigenic polypeptide is obtained from PIV3 strain HPIV3/Homo sapiens/PER/FLA4815/2008.

In some embodiments, at least one RSV antigenic polypeptide comprises at least one antigenic polypeptide that comprises glycoprotein G, glycoprotein F, or an immunogenic fragment thereof. In some embodiments, at least one RSV antigenic polypeptide comprises at least one antigenic polypeptide that comprises glycoprotein F and at least one or at least two antigenic polypeptide selected from G, M, N, P, L, SH, M2, NS1 and NS2.

MeV

In some embodiments, a RNA (e.g., mRNA) vaccine comprises at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one MeV antigenic polypeptide. In some embodiments, at least one antigenic polypeptide is a hemagglutinin (HA) protein or an immunogenic fragment thereof. The HA protein may be from MeV strain D3 or B8, for example. In some embodiments, at least one antigenic polypeptide is a Fusion (F) protein or an immunogenic fragment thereof. The F protein may be from MeV strain D3 or B8, for example. In some embodiments, a MeV RNA (e.g., mRNA) vaccines comprises a least one RNA polynucleotide encoding a HA protein and a F protein. The HA and F proteins may be from MeV strain D3 or B8, for example.

In some embodiments, at least one MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 (Table 14). In some embodiments, the amino acid sequence of the MeV antigenic polypeptide is, or is a fragment of, or is a homolog or variant having at least 80% (e.g., 85%, 90%, 95%, 98%, 99%) identity to, the amino acid sequence identified by any one of SEQ ID NO: 47-50 (Table 14).

In some embodiments, at least one MeV antigenic polypeptide is encoded by a nucleic acid sequence of SEQ ID NO: 35-46 (Table 13).

In some embodiments, at least one MeV RNA (e.g., mRNA) polynucleotide is encoded by a nucleic acid sequence, or a fragment of a nucleotide sequence, identified by any one of SEQ ID NO: 35-46 (Table 13). In some embodiments, at least one MeV RNA (e.g., mRNA) polynucleotide comprises a nucleic acid sequence, or a fragment of a nucleotide sequence, identified by any one of SEQ ID NO: 69-80 (Table 13).

In some embodiments, at least one antigenic polypeptide is obtained from MeV strain B3/B3.1, C2, D4, D6, D7, D8, 10 G3, H1, Moraten, Rubeovax, MVi/New Jersey.USA/45.05, MVi/Texas.USA/4.07, AIK-C, MVi/New York.USA/26.09/3, MVi/California.USA/16.03, MVi/Virginia.USA/15.09, MVi/California.USA/8.04, or MVi/Pennsylvania.USA/20.09.

BetaCoV

In some embodiments, a RNA (e.g., mRNA) vaccine comprises at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one Beta-CoV antigenic polypeptide. In some embodiments, the Beta-20 CoV is MERS-CoV. In some embodiments, the BetaCoV is SARS-CoV. In some embodiments, the BetaCoV is HCoV-OC43. In some embodiments, the BetaCoV is HCoV-229E. In some embodiments, the BetaCoV is HCoV-NL63. In some embodiments, the BetaCoV is HCoV-HKU1. In some 25 embodiments, at least one antigenic polypeptide is a Betacoronavirus structural protein. For example, a Betacoronavirus structural protein may be spike protein (S), envelope protein (E), nucleocapsid protein (N), membrane protein (M) or an immunogenic fragment thereof. In some embodi- 30 ments, a Betacoronavirus structural protein is a spike protein (S). In some embodiments, a Betacoronavirus structural protein is a S1 subunit or a S2 subunit of spike protein (S) or an immunogenic fragment thereof.

BetaCoV RNA (e.g., mRNA) polynucleotides of the vac- 35 cines provided herein may encode viral protein components of Betacoronaviruses, for example, accessory proteins, replicase proteins and the like are encompassed by the present disclosure. RNA (e.g., mRNA) vaccines may include RNA polynucleotides encoding at least one accessory protein 40 (e.g., protein 3, protein 4a, protein 4b, protein 5), at least one replicase protein (e.g., protein 1a, protein 1b), or a combination of at least one accessory protein and at least one replicase protein. The present disclosure also encompasses RNA (e.g., mRNA) vaccines comprising RNA (e.g., mRNA) 45 polynucleotides encoding an accessory protein and/or a replicase protein in combination with at least one structural protein. Due to their surface expression properties, vaccines featuring RNA polynucleotides encoding structural proteins are believed to have preferred immunogenic activity and, 50 hence, may be most suitable for use in the vaccines of the present disclosure.

Some embodiments of the present disclosure provide *Betacoronavirus* (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH, 55 HCoV-HKU1 or a combination thereof) vaccines that include at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one *Betacoronavirus* (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH, HCoV- 60 HKU1) antigenic polypeptide. Also provided herein are pan-*Betacoronavirus* vaccines. Thus, a *Betacoronavirus* vaccine comprising a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding any one, two, three or four of MERS-CoV, SARS-CoV, HCoV-OC43, HCoV- 65 229E, HCoV-NL63, and HCoV-HKU1, for example, may be effective against any one of, any combination of, or all of,

8

MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1. Other Betacoronaviruses are encompassed by the present disclosure.

In some embodiments, at least one antigenic polypeptide is a MERS-CoV structural protein. For example, a MERS-CoV structural protein may be spike protein (S), envelope protein (E), nucleocapsid protein (N), membrane protein (M) or an immunogenic fragment thereof. In some embodiments, the MERS-CoV structural protein is a spike protein (S) (see, e.g., Coleman C M et al. *Vaccine* 2014; 32:3169-74, incorporated herein by reference). In some embodiments, the MERS-CoV structural protein is a S1 subunit or a S2 subunit of spike protein (S) or an immunogenic fragment thereof (Li J et al. *Viral Immunol* 2013; 26(2):126-32; He Y et al. *Biochem Biophys Res Commun* 2004; 324(2):773-81, each of which is incorporated herein by reference).

In some embodiments, at least one MERS-CoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-28 or 33 (Table 11). In some embodiments, the amino acid sequence of the MERS-CoV antigenic polypeptide is, or is a fragment of, or is a homolog or variant having at least 80% (e.g., 85%, 90%, 95%, 98%, 99%) identity to, the amino acid sequence identified by any one of SEQ ID NO: 24-28 or 33 (Table 11).

In some embodiments, at least one MERS-CoV antigenic polypeptide is encoded by a nucleic acid sequence identified by any one of SEQ ID NO: 20-23 (Table 10).

In some embodiments, at least one MERS-CoV RNA (e.g., mRNA) polynucleotide is encoded by a nucleic acid sequence, or a fragment of a nucleotide sequence, identified by any one of SEQ ID NO: 20-23 (Table 10). In some embodiments, at least one MERS-CoV RNA (e.g., mRNA) polynucleotide comprises a nucleic acid sequence, or a fragment of a nucleotide sequence, identified by any one of SEQ ID NO: 65-68 (Table 10).

In some embodiments, at least one antigenic polypeptide is obtained from MERS-CoV strain Riyadh_14_2013, 2cEMC/2012, or Hasa_1_2013.

In some embodiments, at least one antigenic polypeptide is a SARS-CoV structural protein. For example, a SARS-CoV structural protein may be spike protein (S), envelope protein (E), nucleocapsid protein (N), membrane protein (M) or an immunogenic fragment thereof. In some embodiments, the SARS-CoV structural protein is a spike protein (S). In some embodiments, the SARS-CoV structural protein is a S1 subunit or a S2 subunit of spike protein (S) or an immunogenic fragment thereof.

In some embodiments, at least one SARS-CoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 29, 32 or 34 (Table 11). In some embodiments, the amino acid sequence of the SARS-CoV antigenic polypeptide is, or is a fragment of, or is a homolog or variant having at least 80% (e.g., 85%, 90%, 95%, 98%, 99%) identity to, the amino acid sequence identified by any one of SEQ ID NO: 29, 32 or 34 (Table 11).

In some embodiments, at least one antigenic polypeptide is a HCoV-OC43 structural protein. For example, a HCoV-OC43 structural protein may be spike protein (S), envelope protein (E), nucleocapsid protein (N), membrane protein (M) or an immunogenic fragment thereof. In some embodiments, the HCoV-OC43 structural protein is a spike protein (S). In some embodiments, the HCoV-OC43 structural protein is a S1 subunit or a S2 subunit of spike protein (S) or an immunogenic fragment thereof.

In some embodiments, at least one HCoV-OC43 antigenic polypeptide comprises an amino acid sequence identified by

any one of SEQ ID NO: 30 (Table 11). In some embodiments, the amino acid sequence of the HCoV-OC43 antigenic polypeptide is, or is a fragment of, or is a homolog or variant having at least 80% (e.g., 85%, 90%, 95%, 98%, 99%) identity to, the amino acid sequence identified by any 5 one of SEQ ID NO: 30 (Table 11).

In some embodiments, an antigenic polypeptide is a HCoV-HKU1 structural protein. For example, a HCoV-HKU1 structural protein may be spike protein (S), envelope protein (E), nucleocapsid protein (N), membrane protein (M) or an immunogenic fragment thereof. In some embodiments, the HCoV-HKU1 structural protein is a spike protein (S). In some embodiments, the HCoV-HKU1 structural protein is a S1 subunit or a S2 subunit of spike protein (S) or an immunogenic fragment thereof.

In some embodiments, at least one HCoV-HKU1 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 31 (Table 11). In some embodiments, the amino acid sequence of the HCoV-HKU1 antigenic polypeptide is, or is a fragment of, or is a homolog 20 or variant having at least 80% (e.g., 85%, 90%, 95%, 98%, 99%) identity to, the amino acid sequence identified by any one of SEQ ID NO: 31 (Table 11).

In some embodiments, an open reading frame of a RNA (e.g., mRNA) vaccine is codon-optimized. In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide having an amino acid sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, or 47-50 (Tables 3, 6, 11 and 14; see also amino acid sequences of Tables 4, 7, 12 and 15) and is codon optimized mRNA.

In some embodiments, a RNA (e.g., mRNA) vaccine further comprising an adjuvant.

Tables 4, 7, 12 and 15 provide National Center for Biotechnology Information (NCBI) accession numbers of interest. It should be understood that the phrase "an amino 35 acid sequence of Tables 4, 7, 12 and 15" refers to an amino acid sequence identified by one or more NCBI accession numbers listed in Tables 4, 7, 12 and 15. Each of the amino acid sequences, and variants having greater than 95% identity or greater than 98% identity to each of the amino acid 40 sequences encompassed by the accession numbers of Tables 4, 7, 12 and 15 are included within the constructs (polynucleotides/polypeptides) of the present disclosure.

In some embodiments, at least one mRNA polynucleotide is encoded by a nucleic acid having a sequence identified by 45 any one of SEQ ID NO: 1-4, 9-12, 20-23, or 35-46 (Tables 2, 5, 10 and 13; see also nucleic acid sequences of Table 7) and having less than 80% identity to wild-type mRNA sequence. In some embodiments, at least one mRNA polynucleotide is encoded by a nucleic acid having a sequence 50 identified by any one of SEQ ID NO: 1-4, 9-12, 20-23, or 35-46 (Tables 2, 5, 10 and 13; see also nucleic acid sequences of Table 7) and having less than 75%, 85% or 95% identity to a wild-type mRNA sequence. In some embodiments, at least one mRNA polynucleotide is encoded 55 by a nucleic acid having a sequence identified by any one of SEQ ID NO: 1-4, 9-12, 20-23, or 35-46 (Tables 2, 5, 10 and 13; see also nucleic acid sequences of Table 7) and having less than 50-80%, 60-80%, 40-80%, 30-80%, 70-80%, 75-80% or 78-80% identity to wild-type mRNA sequence. 60 In some embodiments, at least one mRNA polynucleotide is encoded by a nucleic acid having a sequence identified by any one of SEQ ID NO: 1-4, 9-12, 20-23, or 35-46 (Tables 2, 5, 10 and 13; see also nucleic acid sequences of Table 7) and having less than 40-85%, 50-85%, 60-85%, 30-85%, 65 70-85%, 75-85% or 80-85% identity to wild-type mRNA sequence. In some embodiments, at least one mRNA poly10

nucleotide is encoded by a nucleic acid having a sequence identified by any one of SEQ ID NO: 1-4, 9-12, 20-23, or 35-46 (Tables 2, 5, 10 and 13; see also nucleic acid sequences of Table 7) and having less than 40-90%, 50-90%, 60-90%, 30-90%, 70-90%, 75-90%, 80-90%, or 85-90% identity to wild-type mRNA sequence.

In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide having an amino acid sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, or 47-50 (Tables 3, 6, 11 and 14; see also amino acid sequences of Tables 4, 7, 12 and 15) and having at least 80% (e.g., 85%, 90%, 95%, 98%, 99%) identity to wild-type mRNA sequence, but does not include wild-type mRNA sequence.

In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide having an amino acid sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, or 47-50 (Tables 3, 6, 11 and 14; see also amino acid sequences of Tables 4, 7, 12 and 15) and has less than 95%, 90%, 85%, 80% or 75% identity to wild-type mRNA sequence. In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide having an amino acid sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, or 47-50 (Tables 3, 6, 11 and 14; see also amino acid sequences of Tables 4, 7, 12 and 15) and has 30-80%, 40-80%, 50-80%, 60-80%, 70-80%, 75-80% or 78-80%, 30-85%, 40-85%, 50-805%, 60-85%, 70-85%, 75-85% or 78-85%, 30-90%, 40-90%, 50-90%, 60-90%, 70-90%, 75-90%, 80-90% or 85-90% identity to wild-type 30 mRNA sequence.

In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide having at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, or 47-50 (Tables 3, 6, 11 and 14; see also amino acid sequences of Tables 4, 7, 12 and 15). In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide having 95%-99% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, or 47-50 (Tables 3, 6, 11 and 14; see also amino acid sequences of Tables 4, 7, 12 and 15).

In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide having at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, or 47-50 (Tables 3, 6, 11 and 14; see also amino acid sequences of Tables 4, 7, 12 and 15) and having membrane fusion activity. In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide having 95%-99% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, or 47-50 (Tables 3, 6, 11 and 14; see also amino acid sequences of Tables 4, 7, 12 and 15) and having membrane fusion activity.

In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide (e.g., at least one hMPV antigenic polypeptide, at least one PIV3 antigenic polypeptide, at least one RSV antigenic polypeptide, at least one MeV antigenic polypeptide, or at least one BetaCoV antigenic polypeptide, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic polypeptides) that attaches to cell receptors.

In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide (e.g., at least one

hMPV antigenic polypeptide, at least one PIV3 antigenic polypeptide, at least one RSV antigenic polypeptide, at least one MeV antigenic polypeptide, or at least one BetaCoV antigenic polypeptide, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic polypeptides) that causes fusion of viral and cellular membranes.

In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide (e.g., at least one hMPV antigenic polypeptide, at least one PIV3 antigenic polypeptide, at least one RSV antigenic polypeptide, at least 12

ionizable cationic lipid and the non-cationic lipid is a neutral lipid, and the sterol is a cholesterol. In some embodiments, a cationic lipid is selected from the group consisting of 2.2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), di((Z)-non-2-en-1-v1) 9-((4-(dimethylamino)butanovl)oxy)heptadecanedioate (L319). (12Z,15Z)—N,N-dimethyl-2-nonylhenicosa-12,15-dien-1amine (L608), and N,N-dimethyl-1-[(1S,2R)-2-octylcyclopropyl]heptadecan-8-amine (L530).

In some embodiments, the lipid is

one MeV antigenic polypeptide, or at least one BetaCoV 25 antigenic polypeptide, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic polypeptides) that is responsible for binding of the virus to a cell being 30 infected.

Some embodiments of the present disclosure provide a vaccine that includes at least one ribonucleic acid (RNA) (e.g., mRNA) polynucleotide having an open reading frame 35 encoding at least one antigenic polypeptide (e.g., at least one hMPV antigenic polypeptide, at least one PIV3 antigenic polypeptide, at least one RSV antigenic polypeptide, at least one MeV antigenic polypeptide, or at least one BetaCoV SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic polypeptides), at least one 5' terminal cap and at least one chemical modification, formulated within a lipid nanoparticle.

In some embodiments, a 5' terminal cap is 7mG(5')ppp (5')NlmpNp.

In some embodiments, at least one chemical modification is selected from pseudouridine, N1-methylpseudouridine, 50 N1-ethylpseudouridine, 2-thiouridine, 4'-thiouridine. 5-methylcytosine, 5-methyluridine, 2-thio-1-methyl-1deaza-pseudouridine, 2-thio-1-methyl-pseudouridine, 2-thio-5-aza-uridine, 2-thio-dihydropseudouridine, 2-thiodihydrouridine, 2-thio-pseudouridine, 4-methoxy-2-thio-55 pseudouridine, 4-methoxy-pseudouridine, 4-thio-1-methyl-4-thio-pseudouridine, pseudouridine, 5-aza-uridine, dihydropseudouridine, 5-methoxyuridine and 2'-O-methyl uridine. In some embodiments, the chemical modification is in the 5-position of the uracil. In some embodiments, the chemical modification is a N1-methylpseudouridine. In some embodiments, the chemical modification is a N1-ethylpseudouridine.

In some embodiments, a lipid nanoparticle comprises a 65 cationic lipid, a PEG-modified lipid, a sterol and a noncationic lipid. In some embodiments, a cationic lipid is an

In some embodiments, the lipid is

In some embodiments, a lipid nanoparticle comprises compounds of Formula (I) and/or Formula (II), discussed

In some embodiments, a respiratory virus RNA (e.g., antigenic polypeptide, e.g., selected from MERS-CoV, 40 mRNA) vaccine is formulated in a lipid nanoparticle that comprises a compound selected from Compounds 3, 18, 20, 25, 26, 29, 30, 60, 108-112 and 122, described below.

Some embodiments of the present disclosure provide a vaccine that includes at least one RNA (e.g., mRNA) poly-45 nucleotide having an open reading frame encoding at least one antigenic polypeptide (e.g., at least one hMPV antigenic polypeptide, at least one PIV3 antigenic polypeptide, at least one RSV antigenic polypeptide, at least one MeV antigenic polypeptide, or at least one BetaCoV antigenic polypeptide, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic polypeptides), wherein at least 80% (e.g., 85%, 90%, 95%, 98%, 99%) of the uracil in the open reading frame have a chemical modification, optionally wherein the vaccine is formulated in a lipid nanoparticle (e.g., a lipid nanoparticle comprises a cationic lipid, a PEG-modified lipid, a sterol and a non-cationic lipid).

In some embodiments, 100% of the uracil in the open reading frame have a chemical modification. In some embodiments, a chemical modification is in the 5-position of the uracil. In some embodiments, a chemical modification is a N1-methyl pseudouridine. In some embodiments, 100% of the uracil in the open reading frame have a N1-methyl pseudouridine in the 5-position of the uracil.

In some embodiments, an open reading frame of a RNA (e.g., mRNA) polynucleotide encodes at least two antigenic

polypeptides (e.g., at least two hMPV antigenic polypeptides, at least two PIV3 antigenic polypeptides, at least two RSV antigenic polypeptides, at least two MeV antigenic polypeptides, or at least two BetaCoV antigenic polypeptides, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic polypeptides). In some embodiments, the open reading frame encodes at least five or at least ten antigenic polypeptides. In some embodiments, the open reading frame encodes at least 100 antigenic polypeptides. In some embodiments, the open reading frame encodes at least 100 antigenic polypeptides.

In some embodiments, a vaccine comprises at least two RNA (e.g., mRNA) polynucleotides, each having an open reading frame encoding at least one antigenic polypeptide (e.g., at least one hMPV antigenic polypeptide, at least one PIV3 antigenic polypeptide, at least one RSV antigenic polypeptide, at least one MeV antigenic polypeptide, or at 20 least one BetaCoV antigenic polypeptide, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic polypeptides). In some embodiments, the vaccine comprises 25 at least five or at least ten RNA (e.g., mRNA) polynucleotides, each having an open reading frame encoding at least one antigenic polypeptide or an immunogenic fragment thereof. In some embodiments, the vaccine comprises at least 100 RNA (e.g., mRNA) polynucleotides, each having an open reading frame encoding at least one antigenic polypeptide. In some embodiments, the vaccine comprises 2-100 RNA (e.g., mRNA) polynucleotides, each having an open reading frame encoding at least one antigenic polypeptide.

In some embodiments, at least one antigenic polypeptide (e.g., at least one hMPV antigenic polypeptide, at least one PIV3 antigenic polypeptide, at least one RSV antigenic polypeptide, at least one MeV antigenic polypeptide, or at least one BetaCoV antigenic polypeptide, e.g., selected from 40 MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic polypeptides) is fused to a signal peptide. In some embodiments, the signal peptide is selected from: a HuIgGk signal 45 peptide (METPAQLLFLLLLWLPDTTG; SEQ ID NO: 15); IgE heavy chain epsilon-1 signal peptide (MDWTWIL-FLVAAATRVHS; SEQ ID NO: 16); Japanese encephalitis PRM signal sequence (MLGSNSGQRVVFTILLLLVA-PAYS; SEQ ID NO: 17), VSVg protein signal sequence 50 (MKCLLYLAFLFIGVNCA; SEQ ID NO: 18) and Japanese encephalitis JEV signal sequence (MWLVSLAIVTA-CAGA; SEQ ID NO: 19).

In some embodiments, the signal peptide is fused to the N-terminus of at least one antigenic polypeptide. In some 55 embodiments, a signal peptide is fused to the C-terminus of at least one antigenic polypeptide.

In some embodiments, at least one antigenic polypeptide (e.g., at least one hMPV antigenic polypeptide, at least one PIV3 antigenic polypeptide, at least one RSV antigenic 60 polypeptide, at least one MeV antigenic polypeptide, or at least one BetaCoV antigenic polypeptide, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic 65 polypeptides) comprises a mutated N-linked glycosylation site

14

Also provided herein is a RNA (e.g., mRNA) vaccine of any one of the foregoing paragraphs (e.g., a hMPV vaccine, a PIV3 vaccine, a RSV vaccine, a MeV vaccine, or a BetaCoV vaccine, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing vaccines), formulated in a nanoparticle (e.g., a lipid nanoparticle).

In some embodiments, the nanoparticle has a mean diameter of 50-200 nm. In some embodiments, the nanoparticle is a lipid nanoparticle. In some embodiments, the lipid nanoparticle comprises a cationic lipid, a PEG-modified lipid, a sterol and a non-cationic lipid. In some embodiments, the lipid nanoparticle comprises a molar ratio of about 20-60% cationic lipid, 0.5-15% PEG-modified lipid, 25-55% sterol, and 25% non-cationic lipid. In some embodiments, the cationic lipid is an ionizable cationic lipid and the non-cationic lipid is a neutral lipid, and the sterol is a cholesterol. In some embodiments, the cationic lipid is selected from 2.2-dilinoleyl-4-dimethylaminoethyl[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (I.319).

In some embodiments, a lipid nanoparticle comprises compounds of Formula (I) and/or Formula (II), as discussed below.

In some embodiments, a lipid nanoparticle comprises Compounds 3, 18, 20, 25, 26, 29, 30, 60, 108-112, or 122, as discussed below.

In some embodiments, the nanoparticle has a polydispersity value of less than 0.4 (e.g., less than 0.3, 0.2 or 0.1).

In some embodiments, the nanoparticle has a net neutral charge at a neutral pH value.

In some embodiments, the respiratory virus vaccine is multivalent.

Some embodiments of the present disclosure provide methods of inducing an antigen specific immune response in a subject, comprising administering to the subject any of the RNA (e.g., mRNA) vaccine as provided herein in an amount effective to produce an antigen-specific immune response. In some embodiments, the RNA (e.g., mRNA) vaccine is a hMPV vaccine, a PIV3 vaccine, a RSV vaccine, a MeV vaccine, or a BetaCoV vaccine, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1 vaccines. In some embodiments, the RNA (e.g., mRNA) vaccine is a combination vaccine comprising a combination of any two or more of the foregoing vaccines.

In some embodiments, an antigen-specific immune response comprises a T cell response or a B cell response.

In some embodiments, a method of producing an antigen-specific immune response comprises administering to a subject a single dose (no booster dose) of a RNA (e.g., mRNA) vaccine of the present disclosure. In some embodiments, the RNA (e.g., mRNA) vaccine is a hMPV vaccine, a PIV3 vaccine, a RSV vaccine, a MeV vaccine, or a BetaCoV vaccine, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1 vaccines. In some embodiments, the RNA (e.g., mRNA) vaccine is a combination vaccine comprising a combination of any two or more of the foregoing vaccines.

In some embodiments, a method further comprises administering to the subject a second (booster) dose of a RNA (e.g., mRNA) vaccine. Additional doses of a RNA (e.g., mRNA) vaccine may be administered.

15 In some embodiments, the subjects exhibit a seroconver-

sion rate of at least 80% (e.g., at least 85%, at least 90%, or at least 95%) following the first dose or the second (booster)

dose of the vaccine. Seroconversion is the time period

detectable in the blood. After seroconversion has occurred,

a virus can be detected in blood tests for the antibody.

During an infection or immunization, antigens enter the

blood, and the immune system begins to produce antibodies

may not be detectable, but antibodies are considered absent. During seroconversion, antibodies are present but not yet

detectable. Any time after seroconversion, the antibodies can be detected in the blood, indicating a prior or current

in response. Before seroconversion, the antigen itself may or 10

during which a specific antibody develops and becomes 5

In some embodiments, a RNA (e.g., mRNA) vaccine is administered to a subject by intradermal or intramuscular injection.

Some embodiments, of the present disclosure provide methods of inducing an antigen specific immune response in 20 a subject, including administering to a subject a RNA (e.g., mRNA) vaccine in an effective amount to produce an antigen specific immune response in a subject. Antigenspecific immune responses in a subject may be determined, in some embodiments, by assaying for antibody titer (for 25 titer of an antibody that binds to a hMPV, PIV3, RSV, MeV and/or BetaCoV antigenic polypeptide) following administration to the subject of any of the RNA (e.g., mRNA) vaccines of the present disclosure. In some embodiments, the anti-antigenic polypeptide antibody titer produced in the 30 subject is increased by at least 1 log relative to a control. In some embodiments, the anti-antigenic polypeptide antibody titer produced in the subject is increased by 1-3 log relative to a control.

In some embodiments, the anti-antigenic polypeptide 35 antibody titer produced in a subject is increased at least 2 times relative to a control. In some embodiments, the anti-antigenic polypeptide antibody titer produced in the subject is increased at least 5 times relative to a control. In some embodiments, the anti-antigenic polypeptide antibody 40 titer produced in the subject is increased at least 10 times relative to a control. In some embodiments, the anti-antigenic polypeptide antibody titer produced in the subject is increased 2-10 times relative to a control.

In some embodiments, the control is an anti-antigenic 45 polypeptide antibody titer produced in a subject who has not been administered a RNA (e.g., mRNA) vaccine of the present disclosure. In some embodiments, the control is an anti-antigenic polypeptide antibody titer produced in a subject who has been administered a live attenuated or inacti- 50 vated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine (see, e.g., Ren J. et al. J of Gen. Virol. 2015; 96: 1515-1520), or wherein the control is an anti-antigenic polypeptide antibody titer produced in a subject who has been administered a recombinant or purified hMPV, PIV3, RSV, MeV 55 and/or BetaCoV protein vaccine. In some embodiments, the control is an anti-antigenic polypeptide antibody titer produced in a subject who has been administered a hMPV, PIV3, RSV, MeV and/or BetaCoV virus-like particle (VLP) vaccine (see, e.g., Cox R G et al., J Virol. 2014 June; 88(11): 60

A RNA (e.g., mRNA) vaccine of the present disclosure is administered to a subject in an effective amount (an amount effective to induce an immune response). In some embodiments, the effective amount is a dose equivalent to an at least 65 2-fold, at least 4-fold, at least 10-fold, at least 100-fold, at least 1000-fold reduction in the standard of care dose of a

recombinant hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine, wherein the anti-antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine, a purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine, a live attenuated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine, an inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine, or a hMPV, PIV3, RSV, MeV and/or BetaCoV VLP vaccine. In some embodiments, the effective amount is a dose equivalent to 2-1000-fold reduction in the standard of care dose of a recombinant hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine, wherein the anti-antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine, a purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine, a live attenuated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine, an inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine, or a hMPV, PIV3, RSV, MeV and/or BetaCoV VLP vaccine.

16

In some embodiments, the control is an anti-antigenic polypeptide antibody titer produced in a subject who has been administered a virus-like particle (VLP) vaccine comprising structural proteins of hMPV, PIV3, RSV, MeV and/or BetaCoV.

In some embodiments, the RNA (e.g., mRNA) vaccine is formulated in an effective amount to produce an antigen specific immune response in a subject.

In some embodiments, the effective amount is a total dose of 25 μg to 1000 μg , or 50 μg to 1000 μg . In some embodiments, the effective amount is a total dose of 100 µg. In some embodiments, the effective amount is a dose of 25 μg administered to the subject a total of two times. In some embodiments, the effective amount is a dose of 100 µg administered to the subject a total of two times. In some embodiments, the effective amount is a dose of 400 µg administered to the subject a total of two times. In some embodiments, the effective amount is a dose of 500 µg administered to the subject a total of two times.

In some embodiments, the efficacy (or effectiveness) of a RNA (e.g., mRNA) vaccine is greater than 60%. In some embodiments, the RNA (e.g., mRNA) polynucleotide of the vaccine at least one hMPV antigenic polypeptide, at least one PIV3 antigenic polypeptide, at least one RSV antigenic polypeptide, at least one MeV antigenic polypeptide, at least one BetaCoV antigenic polypeptide, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic polypeptides.

Vaccine efficacy may be assessed using standard analyses (see, e.g., Weinberg et al., J Infect Dis. 2010 Jun. 1; 201(11):1607-10). For example, vaccine efficacy may be measured by double-blind, randomized, clinical controlled trials. Vaccine efficacy may be expressed as a proportionate reduction in disease attack rate (AR) between the unvaccinated (ARU) and vaccinated (ARV) study cohorts and can be calculated from the relative risk (RR) of disease among the vaccinated group with use of the following formulas:

Efficacy=(ARU-ARV)/ARU×100; and

Likewise, vaccine effectiveness may be assessed using standard analyses (see, e.g., Weinberg et al., J Infect Dis. 2010 Jun. 1; 201(11):1607-10). Vaccine effectiveness is an assessment of how a vaccine (which may have already proven to have high vaccine efficacy) reduces disease in a population. This measure can assess the net balance of benefits and adverse effects of a vaccination program, not just the vaccine itself, under natural field conditions rather than in a controlled clinical trial. Vaccine effectiveness is proportional to vaccine efficacy (potency) but is also affected by how well target groups in the population are immunized, as well as by other non-vaccine-related factors that influence the 'real-world' outcomes of hospitalizations, ambulatory visits, or costs. For example, a retrospective case control analysis may be used, in which the rates of vaccination among a set of infected cases and appropriate controls are compared. Vaccine effectiveness may be expressed as a rate difference, with use of the odds ratio (OR) for developing infection despite vaccination:

Effectiveness=(1-OR)×100.

In some embodiments, the efficacy (or effectiveness) of a RNA (e.g., mRNA) vaccine is at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, or at least 90%.

In some embodiments, the vaccine immunizes the subject against hMPV, PIV3, RSV, MeV, BetaCoV (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1), or any combination of two or more of the foregoing viruses for 30 up to 2 years. In some embodiments, the vaccine immunizes the subject against hMPV, PIV3, RSV, MeV, BetaCoV (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1), or any combination of two or more of the 35 nucleic acid vaccines are unmodified. foregoing viruses for more than 2 years, more than 3 years, more than 4 years, or for 5-10 years.

In some embodiments, the subject is about 5 years old or younger. For example, the subject may be between the ages of about 1 year and about 5 years (e.g., about 1, 2, 3, 5 or 40 5 years), or between the ages of about 6 months and about 1 year (e.g., about 6, 7, 8, 9, 10, 11 or 12 months). In some embodiments, the subject is about 12 months or younger (e.g., 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 months or 1 month). In some embodiments, the subject is about 6 months or 45 younger.

In some embodiments, the subject was born full term (e.g., about 37-42 weeks). In some embodiments, the subject was born prematurely, for example, at about 36 weeks of gestation or earlier (e.g., about 36, 35, 34, 33, 32, 31, 30, 29, 50 28, 27, 26 or 25 weeks). For example, the subject may have been born at about 32 weeks of gestation or earlier. In some embodiments, the subject was born prematurely between about 32 weeks and about 36 weeks of gestation. In such subjects, a RNA (e.g., mRNA) vaccine may be administered 55 later in life, for example, at the age of about 6 months to about 5 years, or older.

In some embodiments, the subject is pregnant (e.g., in the first, second or third trimester) when administered an RNA (e.g., mRNA) vaccine. Viruses such as hMPV, PIV3 and 60 RSV causes infections of the lower respiratory tract, mainly in infants and young children. One-third of RSV related deaths, for example, occur in the first year of life, with 99 percent of these deaths occurring in low-resource countries. It's so widespread in the United States that nearly all 65 children become infected with the virus before their second birthdays. Thus, the present disclosure provides RNA (e.g.,

18

mRNA) vaccines for maternal immunization to improve mother-to-child transmission of protection against the virus.

In some embodiments, the subject is a young adult between the ages of about 20 years and about 50 years (e.g., about 20, 25, 30, 35, 40, 45 or 50 years old).

In some embodiments, the subject is an elderly subject about 60 years old, about 70 years old, or older (e.g., about 60, 65, 70, 75, 80, 85 or 90 years old).

In some embodiments, the subject is has a chronic pulmonary disease (e.g., chronic obstructive pulmonary disease (COPD) or asthma). Two forms of COPD include chronic bronchitis, which involves a long-term cough with mucus, and emphysema, which involves damage to the lungs over time. Thus, a subject administered a RNA (e.g., mRNA) vaccine may have chronic bronchitis or emphysema.

In some embodiments, the subject has been exposed to hMPV, PIV3, RSV, MeV, BetaCoV (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1), or 20 any combination of two or more of the foregoing viruses; the subject is infected with hMPV, PIV3, RSV, MeV, BetaCoV (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1), or any combination of two or more of the foregoing viruses; or subject is at risk of infection by hMPV, PIV3, RSV, MeV, BetaCoV (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1), or any combination of two or more of the foregoing viruses.

In some embodiments, the subject is immunocompromised (has an impaired immune system, e.g., has an immune disorder or autoimmune disorder).

In some embodiments the nucleic acid vaccines described herein are chemically modified. In other embodiments the

Yet other aspects provide compositions for and methods of vaccinating a subject comprising administering to the subject a nucleic acid vaccine comprising one or more RNA polynucleotides having an open reading frame encoding a first respiratory virus antigenic polypeptide, wherein the RNA polynucleotide does not include a stabilization element, and wherein an adjuvant is not coformulated or co-administered with the vaccine.

In other aspects the invention is a composition for or method of vaccinating a subject comprising administering to the subject a nucleic acid vaccine comprising one or more RNA polynucleotides having an open reading frame encoding a first antigenic polypeptide wherein a dosage of between 10 μg/kg and 400 μg/kg of the nucleic acid vaccine is administered to the subject. In some embodiments the dosage of the RNA polynucleotide is 1-5 µg, 5-10 µg, 10-15 μg , 15-20 μg , 10-25 μg , 20-25 μg , 20-50 μg , 30-50 μg , 40-50 μд, 40-60 μд, 60-80 μд, 60-100 μд, 50-100 μд, 80-120 μд, 40-120 μg, 40-150 μg, 50-150 μg, 50-200 μg, 80-200 μg, 100-200 μg, 120-250 μg, 150-250 μg, 180-280 μg, 200-300 μд, 50-300 μд, 80-300 μд, 100-300 μд, 40-300 μд, 50-350 μд, 100-350 μд, 200-350 μд, 300-350 μд, 320-400 μд, 40-380 μg, 40-100 μg, 100-400 μg, 200-400 μg, or 300-400 μg per dose. In some embodiments, the nucleic acid vaccine is administered to the subject by intradermal or intramuscular injection. In some embodiments, the nucleic acid vaccine is administered to the subject on day zero. In some embodiments, a second dose of the nucleic acid vaccine is administered to the subject on day twenty one.

In some embodiments, a dosage of 25 micrograms of the RNA polynucleotide is included in the nucleic acid vaccine administered to the subject. In some embodiments, a dosage

of 100 micrograms of the RNA polynucleotide is included in the nucleic acid vaccine administered to the subject. In some embodiments, a dosage of 50 micrograms of the RNA polynucleotide is included in the nucleic acid vaccine administered to the subject. In some embodiments, a dosage 5 of 75 micrograms of the RNA polynucleotide is included in the nucleic acid vaccine administered to the subject. In some embodiments, a dosage of 150 micrograms of the RNA polynucleotide is included in the nucleic acid vaccine administered to the subject. In some embodiments, a dosage 10 of 400 micrograms of the RNA polynucleotide is included in the nucleic acid vaccine administered to the subject. In some embodiments, a dosage of 200 micrograms of the RNA polynucleotide is included in the nucleic acid vaccine administered to the subject. In some embodiments, the RNA polynucleotide accumulates at a 100 fold higher level in the local lymph node in comparison with the distal lymph node. In other embodiments the nucleic acid vaccine is chemically modified and in other embodiments the nucleic acid vaccine is not chemically modified.

Aspects of the invention provide a nucleic acid vaccine comprising one or more RNA polynucleotides having an open reading frame encoding a first antigenic polypeptide, wherein the RNA polynucleotide does not include a stabilization element, and a pharmaceutically acceptable carrier 25 or excipient, wherein an adjuvant is not included in the vaccine. In some embodiments, the stabilization element is a histone stem-loop. In some embodiments, the stabilization element is a nucleic acid sequence having increased GC content relative to wild type sequence.

Aspects of the invention provide nucleic acid vaccines comprising one or more RNA polynucleotides having an open reading frame encoding a first antigenic polypeptide, wherein the RNA polynucleotide is present in the formulation for in vivo administration to a host, which confers an 35 antibody titer superior to the criterion for seroprotection for the first antigen for an acceptable percentage of human subjects. In some embodiments, the antibody titer produced by the mRNA vaccines of the invention is a neutralizing antibody titer. In some embodiments the neutralizing anti- 40 body titer is greater than a protein vaccine. In other embodiments the neutralizing antibody titer produced by the mRNA vaccines of the invention is greater than an adjuvanted protein vaccine. In yet other embodiments the neutralizing antibody titer produced by the mRNA vaccines of the 45 invention is 1,000-10,000, 1,200-10,000, 1,400-10,000, 1,500-10,000, 1,000-5,000, 1,000-4,000, 1,800-10,000, 2000-10,000, 2,000-5,000, 2,000-3,000, 2,000-4,000, 3,000-5,000, 3,000-4,000, or 2,000-2,500. A neutralization titer is typically expressed as the highest serum dilution required to 50 achieve a 50% reduction in the number of plaques.

Also provided are nucleic acid vaccines comprising one or more RNA polynucleotides having an open reading frame encoding a first antigenic polypeptide, wherein the RNA polynucleotide is present in a formulation for in vivo administration to a host for eliciting a longer lasting high antibody titer than an antibody titer elicited by an mRNA vaccine having a stabilizing element or formulated with an adjuvant and encoding the first antigenic polypeptide. In some embodiments, the RNA polynucleotide is formulated to 60 produce a neutralizing antibodies within one week of a single administration. In some embodiments, the adjuvant is selected from a cationic peptide and an immunostimulatory nucleic acid. In some embodiments, the cationic peptide is protamine.

Aspects provide nucleic acid vaccines comprising one or more RNA polynucleotides having an open reading frame comprising at least one chemical modification or optionally no nucleotide modification, the open reading frame encoding a first antigenic polypeptide, wherein the RNA polynucleotide is present in the formulation for in vivo administration to a host such that the level of antigen expression in the host significantly exceeds a level of antigen expression produced by an mRNA vaccine having a stabilizing element or formulated with an adjuvant and encoding the first antigenic polypeptide.

20

Other aspects provide nucleic acid vaccines comprising one or more RNA polynucleotides having an open reading frame comprising at least one chemical modification or optionally no nucleotide modification, the open reading frame encoding a first antigenic polypeptide, wherein the vaccine has at least 10 fold less RNA polynucleotide than is required for an unmodified mRNA vaccine to produce an equivalent antibody titer. In some embodiments, the RNA polynucleotide is present in a dosage of 25-100 micrograms.

Aspects of the invention also provide a unit of use vaccine, comprising between 10 ug and 400 ug of one or more RNA polynucleotides having an open reading frame comprising at least one chemical modification or optionally no nucleotide modification, the open reading frame encoding a first antigenic polypeptide, and a pharmaceutically acceptable carrier or excipient, formulated for delivery to a human subject. In some embodiments, the vaccine further comprises a cationic lipid nanoparticle.

Aspects of the invention provide methods of creating, maintaining or restoring antigenic memory to a respiratory virus strain in an individual or population of individuals comprising administering to said individual or population an antigenic memory booster nucleic acid vaccine comprising (a) at least one RNA polynucleotide, said polynucleotide comprising at least one chemical modification or optionally no nucleotide modification and two or more codon-optimized open reading frames, said open reading frames encoding a set of reference antigenic polypeptides, and (b) optionally a pharmaceutically acceptable carrier or excipient. In some embodiments, the vaccine is administered to the individual via a route selected from the group consisting of intramuscular administration, intradermal administration and subcutaneous administration. In some embodiments, the administering step comprises contacting a muscle tissue of the subject with a device suitable for injection of the composition. In some embodiments, the administering step comprises contacting a muscle tissue of the subject with a device suitable for injection of the composition in combination with electroporation.

Aspects of the invention provide methods of vaccinating a subject comprising administering to the subject a single dosage of between 25 ug/kg and 400 ug/kg of a nucleic acid vaccine comprising one or more RNA polynucleotides having an open reading frame encoding a first antigenic polypeptide in an effective amount to vaccinate the subject.

Other aspects provide nucleic acid vaccines comprising one or more RNA polynucleotides having an open reading frame comprising at least one chemical modification, the open reading frame encoding a first antigenic polypeptide, wherein the vaccine has at least 10 fold less RNA polynucleotide than is required for an unmodified mRNA vaccine to produce an equivalent antibody titer. In some embodiments, the RNA polynucleotide is present in a dosage of 25-100 micrograms.

Other aspects provide nucleic acid vaccines comprising an LNP formulated RNA polynucleotide having an open reading frame comprising no nucleotide modifications (unmodified), the open reading frame encoding a first antigenic

polypeptide, wherein the vaccine has at least 10 fold less RNA polynucleotide than is required for an unmodified mRNA vaccine not formulated in a LNP to produce an equivalent antibody titer. In some embodiments, the RNA polynucleotide is present in a dosage of 25-100 micrograms. 5

The data presented in the Examples demonstrate significant enhanced immune responses using the formulations of the invention. Both chemically modified and unmodified RNA vaccines are useful according to the invention. Surprisingly, in contrast to prior art reports that it was preferable 10 to use chemically unmodified mRNA formulated in a carrier for the production of vaccines, it is described herein that chemically modified mRNA-LNP vaccines required a much lower effective mRNA dose than unmodified mRNA, i.e., tenfold less than unmodified mRNA when formulated in 15 carriers other than LNP. Both the chemically modified and unmodified RNA vaccines of the invention produce better immune responses than mRNA vaccines formulated in a different lipid carrier.

In other aspects the invention encompasses a method of 20 treating an elderly subject age 60 years or older comprising administering to the subject a nucleic acid vaccine comprising one or more RNA polynucleotides having an open reading frame encoding a respiratory virus antigenic polypeptide in an effective amount to vaccinate the subject.

In other aspects the invention encompasses a method of treating a young subject age 17 years or younger comprising administering to the subject a nucleic acid vaccine comprising one or more RNA polynucleotides having an open reading frame encoding a respiratory virus antigenic polypeptide in an effective amount to vaccinate the subject.

In other aspects the invention encompasses a method of treating an adult subject comprising administering to the subject a nucleic acid vaccine comprising one or more RNA polynucleotides having an open reading frame encoding a 35 respiratory virus antigenic polypeptide in an effective amount to vaccinate the subject.

In some aspects the invention is a method of vaccinating a subject with a combination vaccine including at least two nucleic acid sequences encoding respiratory antigens 40 wherein the dosage for the vaccine is a combined therapeutic dosage wherein the dosage of each individual nucleic acid encoding an antigen is a sub therapeutic dosage. In some embodiments, the combined dosage is 25 micrograms of the RNA polynucleotide in the nucleic acid vaccine adminis- 45 tered to the subject. In some embodiments, the combined dosage is 100 micrograms of the RNA polynucleotide in the nucleic acid vaccine administered to the subject. In some embodiments the combined dosage is 50 micrograms of the RNA polynucleotide in the nucleic acid vaccine adminis- 50 tered to the subject. In some embodiments, the combined dosage is 75 micrograms of the RNA polynucleotide in the nucleic acid vaccine administered to the subject. In some embodiments, the combined dosage is 150 micrograms of the RNA polynucleotide in the nucleic acid vaccine admin- 55 istered to the subject. In some embodiments, the combined dosage is 400 micrograms of the RNA polynucleotide in the nucleic acid vaccine administered to the subject. In some embodiments, the sub therapeutic dosage of each individual nucleic acid encoding an antigen is 1, 2, 3, 4, 5, 6, 7, 8, 9, 60 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 micrograms. In other embodiments the nucleic acid vaccine is chemically modified and in other embodiments the nucleic acid vaccine is not chemically modified.

The RNA polynucleotide is one of SEQ ID NO: 1-4, 9-12, 65 20-23, 35-46, 57-61, and 64-80 and includes at least one chemical modification. In other embodiments the RNA

polynucleotide is one of SEQ ID NO: 1-4, 9-12, 20-23, 35-46, 57-61, and 64-80 and does not include any nucleotide modifications, or is unmodified. In yet other embodiments the at least one RNA polynucleotide encodes an antigenic protein of any of SEQ ID NO: 5-8, 12-13, 24-34, and 47-50 and includes at least one chemical modification. In other embodiments the RNA polynucleotide encodes an antigenic protein of any of SEQ ID NO: 5-8, 12-13, 24-34, and 47-50 and does not include any nucleotide modifications, or is

22

In preferred aspects, vaccines of the invention (e.g., LNP-encapsulated mRNA vaccines) produce prophylactically- and/or therapeutically-efficacious levels, concentrations and/or titers of antigen-specific antibodies in the blood or serum of a vaccinated subject. As defined herein, the term antibody titer refers to the amount of antigen-specific antibody produces in s subject, e.g., a human subject. In exemplary embodiments, antibody titer is expressed as the inverse of the greatest dilution (in a serial dilution) that still gives a positive result. In exemplary embodiments, antibody titer is determined or measured by enzyme-linked immunosorbent assay (ELISA). In exemplary embodiments, antibody titer is determined or measured by neutralization assay, 25 e.g., by microneutralization assay. In certain aspects, antibody titer measurement is expressed as a ratio, such as 1:40, 1:100, etc.

In exemplary embodiments of the invention, an efficacious vaccine produces an antibody titer of greater than 1:40, greater that 1:100, greater than 1:400, greater than 1:1000, greater than 1:2000, greater than 1:3000, greater than 1:4000, greater than 1:500, greater than 1:6000, greater than 1:7500, greater than 1:10000. In exemplary embodiments, the antibody titer is produced or reached by 10 days following vaccination, by 20 days following vaccination, by 30 days following vaccination, or by 50 or more days following vaccination. In exemplary embodiments, the titer is produced or reached following a single dose of vaccine administered to the subject. In other embodiments, the titer is produced or reached following multiple doses, e.g., following a first and a second dose (e.g., a booster dose.)

In exemplary aspects of the invention, antigen-specific antibodies are measured in units of µg/ml or are measured in units of IU/L (International Units per liter) or mIU/ml (milli International Units per ml). In exemplary embodiments of the invention, an efficacious vaccine produces >0.5 μg/ml, $>0.1 \mu g/ml$, $>0.2 \mu g/ml$, $>0.35 \mu g/ml$, $>0.5 \mu g/ml$, $>1 \mu g/ml$, $>2 \mu g/ml$, $>5 \mu g/ml$ or $>10 \mu g/ml$. In exemplary embodiments of the invention, an efficacious vaccine produces >10 mIU/ml, >20 mIU/ml, >50 mIU/ml, >100 mIU/ml, >200 mIU/ml, >500 mIU/ml or >1000 mIU/ml. In exemplary embodiments, the antibody level or concentration is produced or reached by 10 days following vaccination, by 20 days following vaccination, by 30 days following vaccination, by 40 days following vaccination, or by 50 or more days following vaccination. In exemplary embodiments, the level or concentration is produced or reached following a single dose of vaccine administered to the subject. In other embodiments, the level or concentration is produced or reached following multiple doses, e.g., following a first and a second dose (e.g., a booster dose.) In exemplary embodiments, antibody level or concentration is determined or measured by enzyme-linked immunosorbent assay (ELISA). In exemplary embodiments, antibody level or concentration is determined or measured by neutralization assay, e.g., by microneutralization assay.

canavalin A was included. The cytokines tested include IL-10 (FIG. 8A), TNF-α (FIG. 8B), IL4 (FIG. 8C), IL-5 (FIG. 8D) and IL-6 (FIG. 8E).

24

The details of various embodiments of the disclosure are set forth in the description below. Other features, objects, and advantages of the disclosure will be apparent from the description and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages will be apparent from the following description of particular embodiments of the disclosure, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of various embodiments of the disclosure.

FIG. 1 shows a schematic of one example of a RNA (e.g. mRNA) vaccine construct of the present disclosure. The construct depicts a human *Metapneumovirus* and human respiratory syncytial virus full length fusion protein obtained from wild-type strains (*The Journal of General Virology.* 20 2008; 89(Pt 12): 3113-3118, incorporated herein by reference).

FIGS. 2A-2C are graphs showing the levels of anti-hMPV fusion protein-specific antibodies in the serum of mice immunized with hMPV mRNA vaccines on day 0 (FIG. 2A), 25 day 14 (FIG. 2B) and day 35 (FIG. 2C) post immunization. The mice were immunized with a single dose (2 μ g or 10 μ g) on day 0 and were given a boost dose (2 μ g or 10 μ g) on day 21, hMPV fusion protein-specific antibodies were detected at up to 1:10000 dilution of serum on day 35 for both doses. 30

FIGS. 3A-3C are graphs showing the result of IgG isotyping in the serum of mice immunized with hMPV mRNA vaccines. The levels of hMPV fusion protein-specific IgG2a (FIG. 3A) and IgG1 (FIG. 3B) antibodies in the serum are measured by ELISA. FIG. 3C shows that hMPV fusion 35 protein mRNA vaccine induced a mixed Th1/Th2 cytokine response with a Th1 bias.

FIG. **4** is a graph showing in vitro neutralization of a hMPV B2 strain (TN/91-316) using the sera of mice immunized with a mRNA vaccine encoding hMPV fusion protein. 40 Mouse serum obtained from mice receiving a 10 µg or a 2 µg dose contained hMPV-neutralizing antibodies.

FIGS. 5A-5C are graphs showing a Th1 cytokine response induced by a hMPV fusion peptide pool (15-mers-50 (overlap)) in splenocytes isolated from mice immunized with the 45 hMPV mRNA vaccines. Virus-free media was used as a negative control and Concanavalin A (ConA, a positive control for splenocyte stimulation) was included. The cytokines tested included IFN- γ (FIG. 5A), IL-2 (FIG. 5B) and IL12 (FIG. 5C).

FIGS. 6A-6E are graphs showing the Th2 cytokine response induced by a hMPV fusion peptide pool (15-mers-50) in splenocytes isolated from mice immunized with the hMPV mRNA vaccines. Virus-free media was used as a negative control and Concanavalin A was also included. The 55 cytokines tested included IL-10 (FIG. 6A), TNF-α (FIG. 6B), IL4 (FIG. 6C), IL-5 (FIG. 6D) and IL-6 (FIG. 6E).

FIGS. 7A-7C are graphs showing the Th1 response induced by inactivated hMPV virus in splenocytes isolated from mice immunized with hMPV mRNA vaccines. Virusfree media was used as a negative control and Concanavalin A was included. The cytokines tested included IFN-γ (FIG. 7A), IL-2 (FIG. 7B) and IL12 (FIG. 7C).

FIGS. 8A-8E are graphs showing the Th2 response induced by inactivated hMPV virus in splenocytes isolated from mice immunized with the hMPV mRNA vaccines. Virus-free media was used as a negative control and Con-

FIGS. 9A-9B are graphs showing the results of cotton rat challenge experiments. Two different doses of the hMPV mRNA vaccines were used (2 μg or 10 μg doses) to immunize the cotton rats before challenge. The hMPV mRNA vaccines reduced the viral titer in the lung and nose of the cotton rat, with the 10 μg dose being more effective in reducing viral titer. Use of a 10 μg dose resulted in 100% protection in the lung and a 2 log reduction in nose viral titer. Use of a 2 μg dose resulted in a 1 log reduction in lung vital titer and no reduction in nose viral titer. The vaccine was administered on Day 0, and a boost was administered on Day 21.

FIG. 10 is a graph showing the lung histopathology of cotton rats that received hMPV mRNA vaccines. Pathology associated with vaccine-enhanced disease was not observed in immunized groups.

FIG. 11 is a graph showing hMPV neutralization antibody titers in cotton rats that received hMPV mRNA vaccines (2 μ g or 10 μ g doses) on days 35 and 42 post immunization.

FIG. 12 is a graph showing the lung and nose viral load in cotton rats challenged with a hMPV/A2 strain after immunization with the indicated mRNA vaccines (hMPV mRNA vaccine or hMPV/PIV mRNA combination vaccine). Vaccinated cotton rats showed reduced lung and nose viral loads after challenge, compared to control.

FIG. 13 is a graph showing the lung and nose viral load in cotton rats challenged with PIV3 strain after immunization with indicated mRNA vaccines (PIV mRNA vaccine or hMPV/PIV combination vaccine). Vaccinated cotton rats showed reduced lung and nose viral loads after challenge, compared to control.

FIG. 14 is a graph showing hMPV neutralizing antibody titers in cotton rats that received different dosages of hMPV mRNA vaccines or hMPV/PIV combination mRNA vaccines on day 42 post immunization. The dosages of the vaccine are indicated in Table 9.

FIG. 15 is a graph showing PIV3 neutralizing antibody titers in cotton rats that received different dosages of PIV mRNA vaccines or hMPV/PIV combination mRNA vaccines on day 42 post immunization. The dosages of the vaccine are indicated in Table 9.

FIG. 16 is a graph showing the lung histopathology score of cotton rats immunized with hMPV mRNA vaccines, PIV mRNA vaccines or hMPV/PIV combination mRNA vaccines as indicated in Table 9. Low occurrence of alevolitis and interstitial pneumonia was observed, indicating no antibody-dependent enhancement (ADE) of hMPV associated diseases.

FIG. 17 is a graph showing the reciprocal MERS-CoV neutralizing antibody titers in mice immunized with *Beta-coronavirus* mRNA vaccine encoding the MERS-CoV full-length Spike protein, on days 0, 21, 42, and 56 post immunization.

FIG. 18 is a graph showing the reciprocal MERS-CoV neutralizing antibody titers in mice immunized with *Beta-coronavirus* mRNA vaccine encoding either the MERS-CoV full-length Spike protein, or the S2 subunit of the Spike protein. The full length spike protein induced a stronger immune response compared to the S2 subunit alone.

FIGS. 19A-19C are graphs showing the viral load in the nose and throat, the bronchoalveolar lavage (BAL), or the lungs of New Zealand white rabbits 4 days post challenge with MERS-CoV. The New Zealand white rabbits were immunized with one 20 µg-dose (on day 0) or two 20

µg-doses (on day 0 and 21) of MERS-CoV mRNA vaccine encoding the full-length Spike protein before challenge. FIG. 19A shows that two doses of MERS-CoV mRNA vaccine resulted in a 3 log reduction of viral load in the nose and led to complete protection in the throat of the New Zealand white rabbits. FIG. 19B shows that two doses of MERS-CoV mRNA vaccine resulted in a 4 log reduction of viral load in the BAL of the New Zealand white rabbits. FIG. 19C show one dose of MERS-CoV mRNA vaccine resulted in a 2 log reduction of viral load, while two doses of MERS-CoV mRNA vaccine resulted in an over 4 log reduction of viral load in the lungs of the New Zealand white rabbits

FIGS. **20**A-**20**B are images and graphs showing viral load or replicating virus detected by PCR in the lungs of New Zealand white rabbits 4 days post challenge with MERS-CoV. The New Zealand white rabbits were immunized with a single 20 μg dose (on day 0, Group 1a) of MERS-CoV mRNA vaccine encoding the full-length Spike protein, two 20 μg doses (on day 0 and 21, Group 1b) of MERS-CoV mRNA vaccine encoding the full-length Spike protein, or placebo (Group 2) before challenge. FIG. **20**A shows that two doses of 20 μg a MERS-CoV mRNA vaccine reduced over 99% (2 log) of viruses in the lungs of New Zealand white rabbits. FIG. **20**B shows that the group of New Zealand white rabbits that received 2 doses of 20 μg MERS-CoV mRNA vaccine did not have any detectable replicating MERS-CoV virus in their lungs.

FIG. 21 is a graph showing the MERS-CoV neutralizing 30 antibody titers in New Zealand white rabbits immunized with MERS-CoV mRNA vaccine encoding the full-length Spike protein. Immunization of the in New Zealand white rabbits were carried out as described in FIGS. 21A-21C. The results show that two doses of 20 μ g MERS-CoV mRNA 35 vaccine induced a significant amount of neutralizing antibodies against MERS-CoV (EC50 between 500-1000). The MERS-CoV mRNA vaccine induced antibody titer is 3-5 fold better than any other vaccines tested in the same model.

DETAILED DESCRIPTION

The present disclosure provides, in some embodiments, vaccines that comprise RNA (e.g., mRNA) polynucleotides encoding a human Metapneumovirus (hMPV) antigenic 45 polypeptide, a parainfluenza virus type 3 (PIV3) antigenic polypeptide, a respiratory syncytial virus (RSV) antigenic polypeptide, a measles virus (MeV) antigenic polypeptide, or a Betacoronavirus antigenic polypeptide (e.g., Middle East respiratory syndrome coronavirus (MERS-CoV), 50 SARS-CoV, human coronavirus (HCoV)-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH (New Haven) and HCoV-HKU1) (see, e.g., Esper F. et al. Emerging Infectious Diseases, 12(5), 2006; and Pyrc K. et al. Journal of Virology, 81(7):3051-57, 2007, the contents of each of 55 which is here incorporated by reference in their entirety). The present disclosure also provides, in some embodiments, combination vaccines that comprise at least one RNA (e.g., mRNA) polynucleotide encoding at least two antigenic polypeptides selected from hMPV antigenic polypeptides, 60 PIV3 antigenic polypeptides, RSV antigenic polypeptides, MeV antigenic polypeptides and BetaCoV antigenic polypeptides. Also provided herein are methods of administering the RNA (e.g., mRNA) vaccines, methods of producing the RNA (e.g., mRNA) vaccines, compositions (e.g., pharma- 65 ceutical compositions) comprising the RNA (e.g., mRNA) vaccines, and nucleic acids (e.g., DNA) encoding the RNA

26

(e.g., mRNA) vaccines. In some embodiments, a RNA (e.g., mRNA) vaccine comprises an adjuvant, such as a flagellin adjuvant, as provided herein.

The RNA (e.g., mRNA) vaccines (e.g., hMPV, PIV3, RSV, MeV, BetaCoV RNA vaccines and combinations thereof), in some embodiments, may be used to induce a balanced immune response, comprising both cellular and humoral immunity, without many of the risks associated with DNA vaccination.

The entire contents of International Application No. PCT/US2015/02740 is incorporated herein by reference. Human *Metapneumovirus* (hMPV)

hMPV shares substantial homology with respiratory syncytial virus (RSV) in its surface glycoproteins. hMPV fusion protein (F) is related to other paramyxovirus fusion proteins and appears to have homologous regions that may have similar functions. The hMPV fusion protein amino acid sequence contains features characteristic of other paramyxovirus F proteins, including a putative cleavage site and potential N-linked glycosylation sites. Paramyxovirus fusion proteins are synthesized as inactive precursors (F0) that are cleaved by host cell proteases into the biologically fusion-active F1 and F2 domains (see, e.g., Cseke G. et al. Journal of Virology 2007; 81(2):698-707, incorporated herein by reference). hMPV has one putative cleavage site, in contrast to the two sites established for RSV F, and only shares 34% amino acid sequence identity with RSV F. F2 is extracellular and disulfide linked to F1. Fusion proteins are type I glycoproteins existing as trimers, with two 4-3 heptad repeat domains at the N- and C-terminal regions of the protein (HR1 and HR2), which form coiled-coil alphahelices. These coiled coils become apposed in an antiparallel fashion when the protein undergoes a conformational change into the fusogenic state. There is a hydrophobic fusion peptide N proximal to the N-terminal heptad repeat, which is thought to insert into the target cell membrane. while the association of the heptad repeats brings the trans-40 membrane domain into close proximity, inducing membrane fusion (see, e.g., Baker, K A et al. Mol. Cell 1999; 3:309-319). This mechanism has been proposed for a number of different viruses, including RSV, influenza virus, and human immunodeficiency virus. Fusion proteins are major antigenic determinants for all known paramyxoviruses and for other viruses that possess similar fusion proteins such as human immunodeficiency virus, influenza virus, and Ebola

In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding hMPV fusion protein (F). In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding a F1 or F2 subunit of a hMPV F protein. In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding hMPV glycoprotein (G). In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding hMPV matrix protein (M). In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding hMPV phosphoprotein (P). In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding hMPV nucleoprotein (N). In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding hMPV SH protein (SH).

In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein, M protein, P protein, N protein and SH protein.

In some embodiments, a hMPV vaccine of the present 5 disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and G protein. In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and M protein. In some embodiments, a hMPV vaccine of the 10 present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and P protein. In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and N protein. In some embodiments, a hMPV 15 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and SH protein.

In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding G protein and M protein. In some embodiments, a 20 hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding G protein and P protein. In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding G protein and N protein. In some 25 embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding G protein and SH protein.

In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide 30 encoding F protein, G protein and M protein. In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and P protein. In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA 35 (e.g., mRNA) polynucleotide encoding F protein, G protein and N protein. In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and SH protein.

A hMPV vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one hMPV antigenic polypeptide identified by any one of SEQ ID NO: 5-8 (Table 3; see also amino acid sequences of Table 4).

A hMPV vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide encoded by a nucleic acid (e.g., DNA) identified by any one of SEQ ID NO: 1-4 (Table 2).

The present disclosure is not limited by a particular strain of hMPV. The strain of hMPV used in a vaccine may be any strain of hMPV. Non-limiting examples of strains of hMPV for use as provide herein include the CAN98-75 (CAN75) and the CAN97-83 (CAN83) hMPV strains (Skiadopoulos M H et al. *J Virol.* 20014; 78(13)6927-37, incorporated 55 herein by reference), a hMPV A1, A2, B1 or B2 strain (see, e.g., de Graaf M et al. *The Journal of General Virology* 2008; 89:975-83; Peret T C T et al. *The Journal of Infectious Disease* 2002; 185:1660-63, incorporated herein by reference), a hMPV isolate TN/92-4 (e.g., SEQ ID NO: 1 and 5), 60 a hMPV isolate NL/1/99 (e.g., SEQ ID NO: 2 and 6), or a hMPV isolate PER/CFI0497/2010/B (e.g., SEQ ID NO: 3 and 7).

In some embodiments, at least one hMPV antigenic polypeptide is obtained from a hMPV A1, A2, B1 or B2 65 strain (see, e.g., de Graaf M et al. *The Journal of General Virology* 2008; 89:975-83; Peret T C T et al. *The Journal of*

28

Infectious Disease 2002; 185:1660-63, incorporated herein by reference). In some embodiments, at least one antigenic polypeptide is obtained from the CAN98-75 (CAN75) hMPV strain. In some embodiments, at least one antigenic polypeptide is obtained from the CAN97-83 (CAN83) hMPV strain. In some embodiments, at least one antigenic polypeptide is obtained from hMPV isolate TN/92-4 (e.g., SEQ ID NO: 1 and 5). In some embodiments, at least one antigenic polypeptide is obtained from hMPV isolate NL/1/99 (e.g., SEQ ID NO: 2 and 6). In some embodiments, at least one antigenic polypeptide is obtained from hMPV isolate PER/CFI0497/2010/B (e.g., SEQ ID NO: 3 and 7).

In some embodiments, hMPV vaccines comprise RNA (e.g., mRNA) polynucleotides encoding a hMPV antigenic polypeptides having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with hMPV F protein and having F protein activity.

A protein is considered to have F protein activity if, for example, the protein acts to fuse the viral envelope and host cell plasma membrane, mediates viral entry into a host cell via an interaction with arginine-glycine-aspartate RGD-binding integrins, or a combination thereof (see, e.g., Cox R G et al. *J Virol.* 2012; 88(22):12148-60, incorporated herein by reference).

In some embodiments, hMPV vaccines comprise RNA (e.g., mRNA) polynucleotides encoding hMPV antigenic polypeptides having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with hMPV G protein and having G protein activity.

A protein is considered to have G protein activity if, for example, the protein acts to modulate (e.g., inhibit) hMPV-induced cellular (immune) responses (see, e.g., Bao X et al. *PLoS Pathog.* 2008; 4(5):e1000077, incorporated herein by reference).

Human parainfluenza virus type 3 (PIV3)

Parainfluenza viruses belong to the family Paramyxoviridae. These are enveloped viruses with a negative-sense single-stranded RNA genome. Parainfluenza viruses belong to the subfamily Paramyxoviridae, which is subdivided into 40 three genera: Respirovirus (PIV-1, PIV-3, and Sendai virus (SeV)), Rubulavirus (PIV-2, PIV-4 and mumps virus) and Morbillivirus (measles virus, rinderpest virus and canine distemper virus (CDV)). Their genome, a ~15 500 nucleotide-long negative-sense RNA molecule, encodes two envelope glycoproteins, the hemagglutinin-neuraminidase (HN), the fusion protein (F or F0), which is cleaved into F1 and F2 subunits, a matrix protein (M), a nucleocapsid protein (N) and several nonstructural proteins including the viral replicase (L). All parainfluenza viruses, except for PIV-1, express a non-structural V protein that blocks IFN signaling in the infected cell and acts therefore as a virulence factor (see, e.g., Nishio M et al. J Virol. 2008; 82(13):6130-38).

PIV3 hemagglutinin-neuraminidase (HN), a structural protein, is found on the viral envelope, where it is necessary for attachment and cell entry. It recognizes and binds to sialic acid-containing receptors on the host cell's surface. As a neuroaminidase, HN removes sialic acid from virus particles, preventing self-aggregation of the virus, and promoting the efficient spread of the virus. Furthermore, HN promotes the activity of the fusion (F or F0) protein, contributing to the penetration of the host cell's surface.

PIV3 fusion protein (PIV3 F) is located on the viral envelope, where it facilitates the viral fusion and cell entry. The F protein is initially inactive, but proteolytic cleavage leads to its active forms, F1 and F2, which are linked by disulfide bonds. This occurs when the HN protein binds its receptor on the host cell's surface. During early phases of

infection, the F glycoprotein mediates penetration of the host cell by fusion of the viral envelope to the plasma membrane. In later stages of the infection, the F protein facilitates the fusion of the infected cells with neighboring uninfected cells, which leads to the formation of a syncytium 5 and spread of the infection.

PIV3 matrix protein (M) is found within the viral envelope and assists with viral assembly. It interacts with the nucleocapsid and envelope glycoproteins, where it facilitates the budding of progeny viruses through its interactions with specific sites on the cytoplasmic tail of the viral glycoproteins and nucleocapsid. It also plays a role in transporting viral components to the budding site.

PIV3 phosphoprotein (P) and PIV3 large polymerase protein (L) are found in the nucleocapsid where they form 15 part of the RNA polymerase complex. The L protein, a viral RNA-dependent RNA polymerase, facilitates genomic transcription, while the host cell's ribosomes translate the viral mRNA into viral proteins.

PIV3 V is a non-structural protein that blocks IFN signaling in the infected cell, therefore acting as a virulence factor.

PIV3 nucleoprotein (N) encapsidates the genome in a ratio of 1 N per 6 ribonucleotides, protecting it from nucleases. The nucleocapsid (NC) has a helical structure. 25 The encapsidated genomic RNA is termed the NC and serves as template for transcription and replication. During replication, encapsidation by PIV3 N is coupled to RNA synthesis and all replicative products are resistant to nucleases. PIV3 N homo-multimerizes to form the nucleocapsid 30 and binds to viral genomic RNA. PIV3 N binds the P protein and thereby positions the polymerase on the template.

In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding PIV3 fusion protein (F). In some embodiments, a 35 PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding a F1 or F2 subunit of a PIV3 F protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding PIV3 hemagglutinin-neuramini- 40 dase (HN) (see, e.g., van Wyke Coelingh K L et al. J Virol. 1987; 61(5):1473-77, incorporated herein by reference). In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding PIV3 matrix protein (M). In some embodiments, a PIV3 45 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding PIV3 phosphoprotein (P). In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding PIV3 nucleoprotein (N).

In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, HN protein, M protein, P protein, and N protein.

In some embodiments, a PIV3 vaccine of the present 55 disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and HN protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and M protein. In some embodiments, a PIV3 vaccine of the 60 present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and P protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and N protein.

In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide

30

encoding HN protein and M protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HN protein and P protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HN protein and N protein.

In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, HN protein and M protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, HN protein and P protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, HN protein and N protein.

A PIV3 vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one PIV3 antigenic polypeptide identified by any one of SEQ ID NO: 12-13 (Table 6; see also amino acid sequences of Table 7).

A PIV3 vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide encoded by a nucleic acid (e.g., DNA) identified by any one of SEQ ID NO: 9-12 (Table 5; see also nucleic acid sequences of Table 7).

The present disclosure is not limited by a particular strain of PIV3. The strain of PIV3 used in a vaccine may be any strain of PIV3. A non-limiting example of a strain of PIV3 for use as provide herein includes HPIV3/Homo sapiens/PER/FLA4815/2008.

In some embodiments, PIV3 vaccines comprise RNA (e.g., mRNA) polynucleotides encoding a PIV3 antigenic polypeptides having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with PIV3 F protein and having F protein activity.

In some embodiments, PIV3 vaccines comprise RNA (e.g., mRNA) polynucleotides encoding PIV3 antigenic polypeptides having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with PIV3 hemagglutinin-neuraminidase (HN) and having hemagglutinin-neuraminidase activity.

A protein is considered to have hemagglutinin-neuraminidase activity if, for example, it is capable of both receptor binding and receptor cleaving. Such proteins are major surface glycoproteins that have functional sites for cell attachment and for neuraminidase activity. They are able to cause red blood cells to agglutinate and to cleave the glycosidic linkages of neuraminic acids, so they have the potential to both bind a potential host cell and then release the cell if necessary, for example, to prevent self-aggregation of the virus.

In some embodiments, PIV3 vaccines comprise RNA (e.g., mRNA) polynucleotides encoding PIV3 antigenic polypeptides having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with PIV3 HN, F (e.g., F, F1 or F2), M, N, L or V and having HN, F (e.g., F, F1 or F2), M, N, L or V activity, respectively. Respiratory Syncytial Virus (RSV)

RSV is a negative-sense, single-stranded RNA virus of the genus *Pneumovirinae*. The virus is present in at least two antigenic subgroups, known as Group A and Group B, primarily resulting from differences in the surface G glycoproteins. Two RSV surface glycoproteins—G and F—mediate attachment with and attachment to cells of the respiratory epithelium. F surface glycoproteins mediate coalescence of neighboring cells. This results in the formation of syncytial cells. RSV is the most common cause of bronchiolitis. Most infected adults develop mild cold-like

symptoms such as congestion, low-grade fever, and wheezing. Infants and small children may suffer more severe symptoms such as bronchiolitis and pneumonia. The disease may be transmitted among humans via contact with respiratory secretions.

The genome of RSV encodes at least three surface glycoproteins, including F, G, and SH, four nucleocapsid proteins, including L, P, N, and M2, and one matrix protein, M. Glycoprotein F directs viral penetration by fusion between the virion and the host membrane. Glycoprotein G is a type II transmembrane glycoprotein and is the major attachment protein. SH is a short integral membrane protein. Matrix protein M is found in the inner layer of the lipid bilayer and assists virion formation. Nucleocapsid proteins L, P, N, and M2 modulate replication and transcription of the RSV 15 genome. It is thought that glycoprotein G tethers and stabilizes the virus particle at the surface of bronchial epithelial cells, while glycoprotein F interacts with cellular glycosaminoglycans to mediate fusion and delivery of the RSV virion contents into the host cell (Krzyzaniak M A et al. PLoS 20 of RSV. The strain of RSV used in a vaccine may be any Pathog 2013; 9(4)).

In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) 25 polynucleotide encoding G protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding L protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding P protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding N protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding M2 protein. In some 35 embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding M

In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide 40 encoding F protein, G protein, L protein, P protein, N protein, M2 protein and M protein.

In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and G protein. In some embodiments, a 45 RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and L protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and P protein. In some embodiments, a 50 RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and N protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and M2 protein. In some embodiments, 55 a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and M protein.

In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide 60 encoding G protein and L protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding G protein and P protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide 65 encoding G protein and N protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA

32

(e.g., mRNA) polynucleotide encoding G protein and M2 protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding G protein and M protein.

In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and L protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and P protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and N protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and M2 protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and M protein.

The present disclosure is not limited by a particular strain

In some embodiments, RSV vaccines comprise RNA (e.g., mRNA) polynucleotides encoding a RSV antigenic polypeptides having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with RSV F protein and having F protein activity.

In some embodiments, RSV vaccines comprise RNA (e.g., mRNA) polynucleotides encoding RSV antigenic polypeptides having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with RSV G protein and having G protein activity.

A protein is considered to have G protein activity if, for example, the protein acts to modulate (e.g., inhibit) hMPVinduced cellular (immune) responses (see, e.g., Bao X et al. PLoS Pathog. 2008; 4(5):e1000077, incorporated herein by reference).

Measles Virus (MeV)

Molecular epidemiologic investigations and virologic surveillance contribute notably to the control and prevention of measles. Nearly half of measles-related deaths worldwide occur in India, yet virologic surveillance data are incomplete for many regions of the country. Previous studies have documented the presence of measles virus genotypes D4, D7, and D8 in India, and genotypes D5, D9, D11, H1, and G3 have been detected in neighboring countries. Recently, MeV genotype B3 was detected in India (Kuttiatt V S et al. Emerg Infect Dis. 2014; 20(10): 1764-66).

The glycoprotein complex of paramyxoviruses mediates receptor binding and membrane fusion. In particular, the MeV fusion (F) protein executes membrane fusion, after receptor binding by the hemagglutinin (HA) protein (Muhlebach M D et al. Journal of Virology 2008; 82(22):11437-45). The MeV P gene codes for three proteins: P, an essential polymerase cofactor, and V and C, which have multiple functions but are not strictly required for viral propagation in cultured cells. V shares the amino-terminal domain with P but has a zinc-binding carboxyl-terminal domain, whereas C is translated from an overlapping reading frame. The MeV C protein is an infectivity factor. During replication, the P protein binds incoming monomeric nucleocapsid (N) proteins with its amino-terminal domain and positions them for assembly into the nascent ribonucleocapsid. The P protein amino-terminal domain is natively unfolded (Deveaux P et al. Journal of Virology 2004; 78(21):11632-40).

In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HA protein. In some embodiments, a MeV vaccine

of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding P protein. In some embodiments, a MeV vaccine of the present disclosure 5 comprises a RNA (e.g., mRNA) polynucleotide encoding V protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding C protein.

In some embodiments, a MeV vaccine of the present 10 disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HA protein, F protein, P protein, V protein and C protein.

In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide 15 encoding HA protein and F protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HA protein and P protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide 20 encoding HA protein and V protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HA protein and C protein.

some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and P protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and V protein. In some embodiments, a MeV vaccine of the present disclosure 30 comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and C protein.

In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HA protein, F protein and P protein. In some 35 embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HA protein, F protein and V protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HA protein, F protein and C protein.

In some embodiments, MeV vaccines comprise RNA (e.g., mRNA) encoding a MeV antigenic polypeptide having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with MeV HA protein and having MeV 45 HA protein activity.

In some embodiments, MeV vaccines comprise RNA (e.g., mRNA) encoding a MeV antigenic polypeptide having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with MeV F protein and having MeV F 50 protein activity.

A protein is considered to have HA protein activity if the protein mediates receptor binding and/or membrane fusion. MeV F protein executes membrane fusion, after receptor binding by the MeV HA protein.

A MeV vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one MeV antigenic polypeptide identified by any one of SEQ ID NO: 47-50 (Table 14; see also amino acid sequences of Table 15).

A MeV vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide identified by any one of SEQ ID NO: 37, 40, 43, 46 (Table 13).

A MeV vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide encoded by a nucleic 65 acid (e.g., DNA) identified by any one of SEQ ID NO: 35, 36, 38, 39, 41, 42, 44 and 45 (Table 13).

34

The present disclosure is not limited by a particular strain of MeV. The strain of MeV used in a vaccine may be any strain of MeV. Non-limiting examples of strains of MeV for use as provide herein include B3/B3.1, C2, D4, D6, D7, D8, G3, H1, Moraten, Rubeovax, MVi/New Jersey.USA/45.05, MVi/Texas.USA/4.07, AIK-C, MVi/New York.USA/26.09/3, MVi/California.USA/16.03, MVi/Virginia.USA/15.09, MVi/California.USA/8.04, and MVi/Pennsylvania.USA/20.09.

MeV proteins may be from MeV genotype D4, D5, D7, D8, D9, D11, H1, G3 or B3. In some embodiments, a MeV HA protein or a MeV F protein is from MeV genotype D8. In some embodiments, a MeV HA protein or a MeV F protein is from MeV genotype B3.

Betacoronaviruses (BetaCoV)

MERS-Co V. MERS-CoV is a positive-sense, singlestranded RNA virus of the genus Betacoronavirus. The genomes are phylogenetically classified into two clades, clade A and clade B. It has a strong tropism for non-ciliated bronchial epithelial cells, evades the innate immune response and antagonizes interferon (IFN) production in infected cells. Dipeptyl peptidase 4 (DDP4, also known as CD26) has been identified as a functional cellular receptor for MERS-CoV. Its enzymatic activity is not required for infection, although its amino acid sequence is highly conserved across species and is expressed in the human bronchial epithelium and kidneys. Most infected individuals develop severe acute respiratory illnesses, including fever, cough, and shortness of breath, and the virus can be fatal. The disease may be transmitted among humans, generally among those in close contact.

The genome of MERS-CoV encodes at least four unique accessory proteins, such as 3, 4a, 4b and 5, two replicase proteins (open reading frame 1a and 1b), and four major structural proteins, including spike (S), envelope (E), nucleocapsid (N), and membrane (M) proteins (Almazan F et al. MBio 2013; 4(5):e00650-13). The accessory proteins play nonessential roles in MERS-CoV replication, but they are likely structural proteins or interferon antagonists, modulating in vivo replication efficiency and/or pathogenesis, as in the case of SARS-CoV (Almazan F et al. MBio 2013; 4(5):e00650-13; Totura A L et al. Curr Opin Virol 2012; 2(3):264-75; Scobey T et al. Proc Natl Acad Sci USA 2013; 110(40):16157-62). The other proteins of MERS-CoV maintain different functions in virus replication. The E protein, for example, involves in virulence, and deleting the E-coding gene results in replication-competent and propagation-defective viruses or attenuated viruses (Almazan F et al. MBio 2013; 4(5):e00650-13). The S protein is particularly essential in mediating virus binding to cells expressing receptor dipeptidyl peptidase-4 (DPP4) through receptorbinding domain (RBD) in the S1 subunit, whereas the S2 subunit subsequently mediates virus entry via fusion of the virus and target cell membranes (Li F. J Virol 2015; 89(4): 55 1954-64; Raj V S et al. Nature 2013; 495(7440):251-4).

In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding the S1 subunit of the S protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding the S2 subunit of the S protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding E protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a

RNA (e.g., mRNA) polynucleotide encoding N protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding M protein.

In some embodiments, a MERS-CoV vaccine of the 5 present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2), E protein, N protein and M protein.

In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2) and E protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2) and N protein. In some embodiments, a MERS-CoV vaccine of the 15 present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2) and M protein.

In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) poly-20 nucleotide encoding S protein (S, S1 and/or S2), E protein and M protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2), E protein and N protein. In some embodiments, a 25 MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2), M protein and N protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding E 30 protein, M protein and N protein.

A MERS-CoV vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one MERS-CoV antigenic polypeptide identified by any one of SEQ ID NO: 24-38 or 35 33 (Table 11; see also amino acid sequences of Table 12).

A MERS-CoV vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide encoded by a nucleic acid (e.g., DNA) identified by any one of SEQ ID NO: 20-23 (Table 10).

The present disclosure is not limited by a particular strain of MERS-CoV. The strain of MERS-CoV used in a vaccine may be any strain of MERS-CoV. Non-limiting examples of strains of MERS-CoV for use as provide herein include Riyadh_14_2013, and 2cEMC/2012, Hasa_1_2013.

SARS-CoV. The genome of SARS-CoV includes of a single, positive-strand RNA that is approximately 29,700 nucleotides long. The overall genome organization of SARS-CoV is similar to that of other coronaviruses. The reference genome includes 13 genes, which encode at least 50 14 proteins. Two large overlapping reading frames (ORFs) encompass 71% of the genome. The remainder has 12 potential ORFs, including genes for structural proteins S (spike), E (small envelope), M (membrane), and N (nucleocapsid). Other potential ORFs code for unique putative 55 SARS-CoV-specific polypeptides that lack obvious sequence similarity to known proteins. A detailed analysis of the SARS-CoV genome has been published in *J Mol Biol* 2003; 331: 991-1004.

In some embodiments, a SARS-CoV vaccine of the 60 present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2), E protein, N protein and M protein.

In some embodiments, a SARS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2) and E protein. In some embodiments, a SARS-CoV vaccine of the

36

present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2) and N protein. In some embodiments, a SARS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2) and M protein.

In some embodiments, a SARS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2), E protein and M protein. In some embodiments, a SARS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2), E protein and N protein. In some embodiments, a SARS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2), M protein and N protein. In some embodiments, a SARS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding E protein, M protein and N protein.

A SARS-CoV vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one SARS-CoV antigenic polypeptide identified by any one of SEQ ID NO: 29, 32 or 34 (Table 11; see also amino acid sequences of Table 12).

The present disclosure is not limited by a particular strain of SARS-CoV. The strain of SARS-CoV used in a vaccine may be any strain of SARS-CoV.

HCoV-OC43. Human coronavirus OC43 is an enveloped, positive-sense, single-stranded RNA virus in the species Betacoronavirus-1 (genus Betacoronavirus, subfamily Coronavirinae, family Coronaviridae, order Nidovirales). Four HCoV-OC43 genotypes (A to D), have been identified with genotype D most likely arising from recombination. The complete genome sequencing of two genotype C and D strains and bootscan analysis shows recombination events between genotypes B and C in the generation of genotype D. Of 29 strains identified, none belong to the more ancient genotype A. Along with HCoV-229E, a species in the Alphacoronavirus genus, HCoV-OC43 are among the known viruses that cause the common cold. Both viruses can cause severe lower respiratory tract infections, including pneumonia in infants, the elderly, and immunocompromised individuals such as those undergoing chemotherapy and those with HIV-AIDS.

HCoV-HKU1. Human coronavirus HKU1 (HCoV-HKU1) is a positive-sense, single-stranded RNA virus with the HE gene, which distinguishes it as a group 2, or Betacoronavirus. It was discovered in January 2005 in two patients in Hong Kong. The genome of HCoV-HKU1 is a 29,926-nucleotide, polyadenylated RNA. The GC content is 32%, the lowest among all known coronaviruses. The genome organization is the same as that of other group II coronaviruses, with the characteristic gene order 1a, 1b, HE, S, E, M, and N. Furthermore, accessory protein genes are present between the S and E genes (ORF4) and at the position of the N gene (ORF8). The TRS is presumably located within the AAUCUAAAC sequence, which precedes each ORF except E. As in sialodacryoadenitis virus and mouse hepatitis virus (MHV), translation of the E protein possibly occurs via an internal ribosomal entry site. The 3' untranslated region contains a predicted stem-loop structure immediately downstream of the N ORF (nucleotide position 29647 to 29711). Further downstream, a pseudoknot structure is present at nucleotide position 29708 to 29760. Both RNA structures are conserved in group II coronaviruses and are critical for virus replication.

HCoV-NL63. The RNA genome of human coronavirus NL63 (HCoV-NL63) is 27,553 nucleotides, with a poly(A) tail (FIG. 1). With a GC content of 34%, HCoV-NL63 has one of the lowest GC contents of the coronaviruses, for which GC content ranges from 32 to 42%. Untranslated 5 regions of 286 and 287 nucleotides are present at the 5' and 3' termini, respectively. Genes predicted to encode the S, E, M, and N proteins are found in the 3' part of the HCoV-NL63 genome. The HE gene, which is present in some group II coronaviruses, is absent, and there is only a single, mono- 10 cistronic accessory protein ORF (ORF3) located between the S and E genes. Subgenomic mRNAs are generated for all ORFs (S, ORF3, E, M, and N), and the core sequence of the TRS of HCoV-NL63 is defined as AACUAAA. This sequence is situated upstream of every ORF except for the 15 E ORF, which contains the suboptimal core sequence AAC-UAUA. Interestingly, a 13-nucleotide sequence with perfect homology to the leader sequence is situated upstream of the suboptimal E TRS. Annealing of this 13-nucleotide sequence to the leader sequence may act as a compensatory 20 mechanism for the disturbed leader-TRS/body-TRS interac-

HCoV-229E. Human coronavirus 229E (HCoV-229E) is a single-stranded, positive-sense, RNA virus species in the Alphacoronavirus genus of the subfamily Coronavirinae, in 25 the family Coronaviridae, of the order Nidovirales. Along with Human coronavirus OC43, it is responsible for the common cold. HCoV-NL63 and HCoV-229E are two of the four human coronaviruses that circulate worldwide. These two viruses are unique in their relationship towards each 30 other. Phylogenetically, the viruses are more closely related to each other than to any other human coronavirus, yet they only share 65% sequence identity. Moreover, the viruses use different receptors to enter their target cell. HCoV-NL63 is associated with croup in children, whereas all signs suggest 35 that the virus probably causes the common cold in healthy adults. HCoV-229E is a proven common cold virus in healthy adults, so it is probable that both viruses induce comparable symptoms in adults, even though their mode of infection differs (HCoV-NL63 and HCoV-229E are two of 40 the four human coronaviruses that circulate worldwide. These two viruses are unique in their relationship towards each other. Phylogenetically, the viruses are more closely related to each other than to any other human coronavirus, yet they only share 65% sequence identity. Moreover, the 45 viruses use different receptors to enter their target cell. HCoV-NL63 is associated with croup in children, whereas all signs suggest that the virus probably causes the common cold in healthy adults. HCoV-229E is a proven common cold virus in healthy adults, so it is probable that both viruses 50 induce comparable symptoms in adults, even though their mode of infection differs (Dijkman R. et al. J Formos Med Assoc. 2009 April; 108(4):270-9, the contents of which is incorporated herein by reference in their entirety). Combination Vaccines

Embodiments of the present disclosure also provide combination RNA (e.g., mRNA) vaccines. A "combination RNA (e.g., mRNA) vaccine" of the present disclosure refers to a vaccine comprising at least one (e.g., at least 2, 3, 4, or 5) RNA (e.g., mRNA) polynucleotide having an open reading 60 frame encoding a combination of any two or more (or all of) antigenic polypeptides selected from hMPV antigenic polypeptides, PIV3 antigenic polypeptides, RSV antigenic polypeptides, MeV antigenic polypeptides, and BetaCoV antigenic polypeptides (e.g., selected from MERS-CoV, SARS-65 CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

38

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a PIV3 antigenic polypeptide, a MeV antigenic polypeptide, a MeV antigenic polypeptide, and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide and a PIV3 antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide and a RSV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide and a MeV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide and a BetaCoV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a PIV3 antigenic polypeptide and a RSV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a PIV3 antigenic polypeptide and a MeV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a PIV3 antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a RSV antigenic polypeptide and a MeV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a RSV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a MeV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, 55 HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a PIV3 antigenic polypeptide and a MeV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a PIV3 antigenic polypeptide, a RSV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a PIV3 antigenic polypeptide, a MeV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, 5 SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

39

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a RSV antigenic 10 polypeptide, a MeV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) 15 vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a PIV3 antigenic polypeptide, a RSV antigenic polypeptide, a MeV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, 20 HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a PIV3 antigenic polypeptide and a RSV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a PIV3 antigenic polypeptide and a MeV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) 30 vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a PIV3 antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and 35 HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a RSV antigenic polypeptide and a MeV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a RSV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, 45 HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a MeV antigenic 50 polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) 55 vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a PIV3 antigenic polypeptide, a RSV antigenic polypeptide and a MeV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide 60 encoding a PIV3 antigenic polypeptide, a RSV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide

40

encoding a RSV antigenic polypeptide, a MeV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

Other combination respiratory virus RNA (e.g., mRNA) vaccines are encompassed by the present disclosure.

It has been discovered that the mRNA vaccines described herein are superior to current vaccines in several ways. First, the lipid nanoparticle (LNP) delivery is superior to other formulations including a protamine base approach described in the literature and no additional adjuvants are to be necessary. The use of LNPs enables the effective delivery of chemically modified or unmodified mRNA vaccines. Additionally it has been demonstrated herein that both modified and unmodified LNP formulated mRNA vaccines were superior to conventional vaccines by a significant degree. In some embodiments the mRNA vaccines of the invention are superior to conventional vaccines by a factor of at least 10 fold, 20 fold, 40 fold, 50 fold, 100 fold, 500 fold or 1,000 fold

Although attempts have been made to produce functional RNA vaccines, including mRNA vaccines and self-replicating RNA vaccines, the therapeutic efficacy of these RNA vaccines have not yet been fully established. Quite surprisingly, the inventors have discovered, according to aspects of the invention a class of formulations for delivering mRNA vaccines in vivo that results in significantly enhanced, and in many respects synergistic, immune responses including enhanced antigen generation and functional antibody production with neutralization capability. These results can be achieved even when significantly lower doses of the mRNA are administered in comparison with mRNA doses used in other classes of lipid based formulations. The formulations of the invention have demonstrated significant unexpected in vivo immune responses sufficient to establish the efficacy of functional mRNA vaccines as prophylactic and therapeutic agents. Additionally, self-replicating RNA vaccines rely on viral replication pathways to deliver enough RNA to a cell 40 to produce an immunogenic response. The formulations of the invention do not require viral replication to produce enough protein to result in a strong immune response. Thus, the mRNA of the invention are not self-replicating RNA and do not include components necessary for viral replication.

The invention involves, in some aspects, the surprising finding that lipid nanoparticle (LNP) formulations significantly enhance the effectiveness of mRNA vaccines, including chemically modified and unmodified mRNA vaccines. The efficacy of mRNA vaccines formulated in LNP was examined in vivo using several distinct antigens. The results presented herein demonstrate the unexpected superior efficacy of the mRNA vaccines formulated in LNP over other commercially available vaccines.

In addition to providing an enhanced immune response, the formulations of the invention generate a more rapid immune response with fewer doses of antigen than other vaccines tested. The mRNA-LNP formulations of the invention also produce quantitatively and qualitatively better immune responses than vaccines formulated in a different carriers.

The data described herein demonstrate that the formulations of the invention produced significant unexpected improvements over existing antigen vaccines. Additionally, the mRNA-LNP formulations of the invention are superior to other vaccines even when the dose of mRNA is lower than other vaccines. Mice immunized with either 10 μg or 2 μg doses of an hMPV fusion protein mRNA LNP vaccine or a

PIV3 mRNA LNP vaccine produced neutralizing antibodies which for instance, successfully neutralized the hMPV B2 virus. A 10 μg dose of mRNA vaccine protected 100% of mice from lethal challenge and drastically reduced the viral titer after challenge (~2 log reduction).

41

Two 20 μg doses of MERS-CoV mRNA LNP vaccine significantly reduced viral load and induced significant amount of neutralizing antibodies against MERS-CoV (EC $_{50}$ between 500-1000). The MERS-CoV mRNA vaccine induced antibody titer was 3-5 fold better than any other 10 vaccines tested in the same model.

The LNP used in the studies described herein has been used previously to deliver siRNA in various animal models as well as in humans. In view of the observations made in association with the siRNA delivery of LNP formulations, 15 the fact that LNP is useful in vaccines is quite surprising. It has been observed that therapeutic delivery of siRNA formulated in LNP causes an undesirable inflammatory response associated with a transient IgM response, typically leading to a reduction in antigen production and a compromised immune response. In contrast to the findings observed with siRNA, the LNP-mRNA formulations of the invention are demonstrated herein to generate enhanced IgG levels, sufficient for prophylactic and therapeutic methods rather than transient IgM responses.

Nucleic Acids/Polynucleotides

Respiratory virus vaccines, as provided herein, comprise at least one (one or more) ribonucleic acid (RNA) (e.g., mRNA) polynucleotide having an open reading frame encoding at least one antigenic polypeptide selected from 30 hMPV, PIV3, RSV, MeV and BetaCoV (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1) antigenic polypeptides. The term "nucleic acid" includes any compound and/or substance that comprises a polymer of 35 nucleotides (nucleotide monomer). These polymers are referred to as polynucleotides. Thus, the terms "nucleic acid" and "polynucleotide" are used interchangeably.

Nucleic acids may be or may include, for example, ribonucleic acids (RNAs), deoxyribonucleic acids (DNAs), 40 threose nucleic acids (TNAs), glycol nucleic acids (GNAs), peptide nucleic acids (PNAs), locked nucleic acids (LNAs, including LNA having a β -D-ribo configuration, α -LNA having an α -L-ribo configuration (a diastereomer of LNA), 2'-amino-LNA having a 2'-amino functionalization, and 45 2'-amino- α -LNA having a 2'-amino functionalization), ethylene nucleic acids (ENA), cyclohexenyl nucleic acids (CeNA) or chimeras or combinations thereof.

In some embodiments, polynucleotides of the present disclosure function as messenger RNA (mRNA). "Messen- 50 ger RNA" (mRNA) refers to any polynucleotide that encodes a (at least one) polypeptide (a naturally-occurring, non-naturally-occurring, or modified polymer of amino acids) and can be translated to produce the encoded polypeptide in vitro, in vivo, in situ or ex vivo. The skilled artisan 55 will appreciate that, except where otherwise noted, polynucleotide sequences set forth in the instant application will recite "T"s in a representative DNA sequence but where the sequence represents RNA (e.g., mRNA), the "T"s would be substituted for "U"s. Thus, any of the RNA polynucleotides 60 encoded by a DNA identified by a particular sequence identification number may also comprise the corresponding RNA (e.g., mRNA) sequence encoded by the DNA, where each "T" of the DNA sequence is substituted with "U."

The basic components of an mRNA molecule typically 65 include at least one coding region, a 5' untranslated region (UTR), a 3' UTR, a 5' cap and a poly-A tail. Polynucleotides

42

of the present disclosure may function as mRNA but can be distinguished from wild-type mRNA in their functional and/or structural design features, which serve to overcome existing problems of effective polypeptide expression using nucleic-acid based therapeutics.

In some embodiments, a RNA polynucleotide of an RNA (e.g., mRNA) vaccine encodes 2-10, 2-9, 2-8, 2-7, 2-6, 2-5, 2-4, 2-3, 3-10, 3-9, 3-8, 3-7, 3-6, 3-5, 3-4, 4-10, 4-9, 4-8, 4-7, 4-6, 4-5, 5-10, 5-9, 5-8, 5-7, 5-6, 6-10, 6-9, 6-8, 6-7, 7-10, 7-9, 7-8, 8-10, 8-9 or 9-10 antigenic polypeptides. In some embodiments, a RNA (e.g., mRNA) polynucleotide of a respiratory virus vaccine encodes at least 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 antigenic polypeptides. In some embodiments, a RNA (e.g., mRNA) polynucleotide of a respiratory virus vaccine encodes at least 100 or at least 200 antigenic polypeptides. In some embodiments, a RNA polynucleotide of an respiratory virus vaccine encodes 1-10, 5-15, 10-20, 15-25, 20-30, 25-35, 30-40, 35-45, 40-50, 1-50, 1-100, 2-50 or 2-100 antigenic polypeptides.

Polynucleotides of the present disclosure, in some embodiments, are codon optimized. Codon optimization methods are known in the art and may be used as provided herein. Codon optimization, in some embodiments, may be used to match codon frequencies in target and host organ-25 isms to ensure proper folding; bias GC content to increase mRNA stability or reduce secondary structures; minimize tandem repeat codons or base runs that may impair gene construction or expression; customize transcriptional and translational control regions; insert or remove protein trafficking sequences; remove/add post translation modification sites in encoded protein (e.g. glycosylation sites); add, remove or shuffle protein domains; insert or delete restriction sites; modify ribosome binding sites and mRNA degradation sites; adjust translational rates to allow the various domains of the protein to fold properly; or to reduce or eliminate problem secondary structures within the polynucleotide. Codon optimization tools, algorithms and services are known in the art—non-limiting examples include services from GeneArt (Life Technologies), DNA2.0 (Menlo Park Calif.) and/or proprietary methods. In some embodiments, the open reading frame (ORF) sequence is optimized using optimization algorithms.

In some embodiments, a codon optimized sequence shares less than 95% sequence identity, less than 90% sequence identity, less than 85% sequence identity, less than 80% sequence identity, or less than 75% sequence identity to a naturally-occurring or wild-type sequence (e.g., a naturally-occurring or wild-type mRNA sequence encoding a polypeptide or protein of interest (e.g., an antigenic protein or antigenic polypeptide)).

In some embodiments, a codon-optimized sequence shares between 65% and 85% (e.g., between about 67% and about 85%, or between about 67% and about 80%) sequence identity to a naturally-occurring sequence or a wild-type sequence (e.g., a naturally-occurring or wild-type mRNA sequence encoding a polypeptide or protein of interest (e.g., an antigenic protein or polypeptide)). In some embodiments, a codon-optimized sequence shares between 65% and 75%, or about 80% sequence identity to a naturally-occurring sequence or wild-type sequence (e.g., a naturally-occurring or wild-type mRNA sequence encoding a polypeptide or protein of interest (e.g., an antigenic protein or polypeptide)).

In some embodiments a codon-optimized RNA (e.g., mRNA) may, for instance, be one in which the levels of G/C are enhanced. The G/C-content of nucleic acid molecules may influence the stability of the RNA. RNA having an

increased amount of guanine (G) and/or cytosine (C) residues may be functionally more stable than nucleic acids containing a large amount of adenine (A) and thymine (T) or uracil (U) nucleotides. WO02/098443 discloses a pharmaceutical composition containing an mRNA stabilized by sequence modifications in the translated region. Due to the degeneracy of the genetic code, the modifications work by substituting existing codons for those that promote greater RNA stability without changing the resulting amino acid. The approach is limited to coding regions of the RNA. Antigens/Antigenic Polypeptides

In some embodiments, an antigenic polypeptide (e.g., a hMPV, PIV3, RSV, MeV or BetaCoV antigenic polypeptide) is longer than 25 amino acids and shorter than 50 amino 15 acids. Polypeptides include gene products, naturally occurring polypeptides, synthetic polypeptides, homologs, orthologs, paralogs, fragments and other equivalents, variants, and analogs of the foregoing. A polypeptide may be a single molecule or may be a multi-molecular complex such 20 as a dimer, trimer or tetramer. Polypeptides may also comprise single chain polypeptides or multichain polypeptides, such as antibodies or insulin, and may be associated or linked to each other. Most commonly, disulfide linkages are found in multichain polypeptides. The term "polypeptide" 25 may also apply to amino acid polymers in which at least one amino acid residue is an artificial chemical analogue of a corresponding naturally-occurring amino acid.

A "polypeptide variant" is a molecule that differs in its amino acid sequence relative to a native sequence or a 30 reference sequence. Amino acid sequence variants may possess substitutions, deletions, insertions, or a combination of any two or three of the foregoing, at certain positions within the amino acid sequence, as compared to a native sequence or a reference sequence. Ordinarily, variants possess at least 50% identity to a native sequence or a reference sequence. In some embodiments, variants share at least 80% identity or at least 90% identity with a native sequence or a reference sequence.

In some embodiments "variant mimics" are provided. A 40 "variant mimic" contains at least one amino acid that would mimic an activated sequence. For example, glutamate may serve as a mimic for phosphoro-threonine and/or phosphoro-serine. Alternatively, variant mimics may result in deactivation or in an inactivated product containing the mimic. For 45 example, phenylalanine may act as an inactivating substitution for tyrosine, or alanine may act as an inactivating substitution for serine.

"Orthologs" refers to genes in different species that evolved from a common ancestral gene by speciation. Nor- 50 mally, orthologs retain the same function in the course of evolution. Identification of orthologs is important for reliable prediction of gene function in newly sequenced genomes.

"Analogs" is meant to include polypeptide variants that 55 differ by one or more amino acid alterations, for example, substitutions, additions or deletions of amino acid residues that still maintain one or more of the properties of the parent or starting polypeptide.

The present disclosure provides several types of compositions that are polynucleotide or polypeptide based, including variants and derivatives. These include, for example, substitutional, insertional, deletion and covalent variants and derivatives. The term "derivative" is synonymous with the term "variant" and generally refers to a molecule that has 65 been modified and/or changed in any way relative to a reference molecule or a starting molecule.

44

As such, polynucleotides encoding peptides or polypeptides containing substitutions, insertions and/or additions, deletions and covalent modifications with respect to reference sequences, in particular the polypeptide sequences disclosed herein, are included within the scope of this disclosure. For example, sequence tags or amino acids, such as one or more lysines, can be added to peptide sequences (e.g., at the N-terminal or C-terminal ends). Sequence tags can be used for peptide detection, purification or localization. Lysines can be used to increase peptide solubility or to allow for biotinylation. Alternatively, amino acid residues located at the carboxy and amino terminal regions of the amino acid sequence of a peptide or protein may optionally be deleted providing for truncated sequences. Certain amino acids (e.g., C-terminal residues or N-terminal residues) alternatively may be deleted depending on the use of the sequence, as for example, expression of the sequence as part of a larger sequence that is soluble, or linked to a solid support.

"Substitutional variants" when referring to polypeptides are those that have at least one amino acid residue in a native or starting sequence removed and a different amino acid inserted in its place at the same position. Substitutions may be single, where only one amino acid in the molecule has been substituted, or they may be multiple, where two or more (e.g., 3, 4 or 5) amino acids have been substituted in the same molecule.

As used herein the term "conservative amino acid substitution" refers to the substitution of an amino acid that is normally present in the sequence with a different amino acid of similar size, charge, or polarity. Examples of conservative substitutions include the substitution of a non-polar (hydrophobic) residue such as isoleucine, valine and leucine for another non-polar residue. Likewise, examples of conservative substitutions include the substitution of one polar (hydrophilic) residue for another such as between arginine and lysine, between glutamine and asparagine, and between glycine and serine. Additionally, the substitution of a basic residue such as lysine, arginine or histidine for another, or the substitution of one acidic residue such as aspartic acid or glutamic acid for another acidic residue are additional examples of conservative substitutions. Examples of nonconservative substitutions include the substitution of a nonpolar (hydrophobic) amino acid residue such as isoleucine, valine, leucine, alanine, methionine for a polar (hydrophilic) residue such as cysteine, glutamine, glutamic acid or lysine and/or a polar residue for a non-polar residue.

"Features" when referring to polypeptide or polynucleotide are defined as distinct amino acid sequence-based or nucleotide-based components of a molecule respectively. Features of the polypeptides encoded by the polynucleotides include surface manifestations, local conformational shape, folds, loops, half-loops, domains, half-domains, sites, termini and any combination(s) thereof.

As used herein when referring to polypeptides the term "domain" refers to a motif of a polypeptide having one or more identifiable structural or functional characteristics or properties (e.g., binding capacity, serving as a site for protein-protein interactions).

As used herein when referring to polypeptides the terms "site" as it pertains to amino acid based embodiments is used synonymously with "amino acid residue" and "amino acid side chain." As used herein when referring to polynucleotides the terms "site" as it pertains to nucleotide based embodiments is used synonymously with "nucleotide." A site represents a position within a peptide or polypeptide or

polynucleotide that may be modified, manipulated, altered, derivatized or varied within the polypeptide-based or polynucleotide-based molecules.

As used herein the terms "termini" or "terminus" when referring to polypeptides or polynucleotides refers to an 5 extremity of a polypeptide or polynucleotide respectively. Such extremity is not limited only to the first or final site of the polypeptide or polynucleotide but may include additional amino acids or nucleotides in the terminal regions. Polypeptide-based molecules may be characterized as hav- 10 ing both an N-terminus (terminated by an amino acid with a free amino group (NH2)) and a C-terminus (terminated by an amino acid with a free carboxyl group (COOH)). Proteins are in some cases made up of multiple polypeptide chains brought together by disulfide bonds or by non-covalent 15 forces (multimers, oligomers). These proteins have multiple N- and C-termini. Alternatively, the termini of the polypeptides may be modified such that they begin or end, as the case may be, with a non-polypeptide based moiety such as an organic conjugate.

As recognized by those skilled in the art, protein fragments, functional protein domains, and homologous proteins are also considered to be within the scope of polypeptides of interest. For example, provided herein is any protein fragment (meaning a polypeptide sequence at least one amino 25 acid residue shorter than a reference polypeptide sequence but otherwise identical) of a reference protein having a length of 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 or longer than 100 amino acids. In another example, any protein that includes a stretch of 20, 30, 40, 50, or 100 (contiguous) 30 amino acids that are 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 100% identical to any of the sequences described herein can be utilized in accordance with the disclosure. In some embodiments, a polypeptide includes 2, 3, 4, 5, 6, 7, 8, 9, 10, or more mutations as shown in any of the sequences pro- 35 vided herein or referenced herein. In another example, any protein that includes a stretch of 20, 30, 40, 50, or 100 amino acids that are greater than 80%, 90%, 95%, or 100% identical to any of the sequences described herein, wherein the protein has a stretch of 5, 10, 15, 20, 25, or 30 amino 40 acids that are less than 80%, 75%, 70%, 65% to 60% identical to any of the sequences described herein can be utilized in accordance with the disclosure.

Polypeptide or polynucleotide molecules of the present disclosure may share a certain degree of sequence similarity 45 or identity with the reference molecules (e.g., reference polypeptides or reference polynucleotides), for example, with art-described molecules (e.g., engineered or designed molecules or wild-type molecules). The term "identity," as known in the art, refers to a relationship between the 50 sequences of two or more polypeptides or polynucleotides, as determined by comparing the sequences. In the art, identity also means the degree of sequence relatedness between two sequences as determined by the number of matches between strings of two or more amino acid residues 55 or nucleic acid residues. Identity measures the percent of identical matches between the smaller of two or more sequences with gap alignments (if any) addressed by a particular mathematical model or computer program (e.g., "algorithms"). Identity of related peptides can be readily 60 calculated by known methods. "% identity" as it applies to polypeptide or polynucleotide sequences is defined as the percentage of residues (amino acid residues or nucleic acid residues) in the candidate amino acid or nucleic acid sequence that are identical with the residues in the amino 65 acid sequence or nucleic acid sequence of a second sequence after aligning the sequences and introducing gaps, if neces46

sary, to achieve the maximum percent identity. Methods and computer programs for the alignment are well known in the art. Identity depends on a calculation of percent identity but may differ in value due to gaps and penalties introduced in the calculation. Generally, variants of a particular polynucleotide or polypeptide have at least 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% but less than 100% sequence identity to that particular reference polynucleotide or polypeptide as determined by sequence alignment programs and parameters described herein and known to those skilled in the art. Such tools for alignment include those of the BLAST suite (Stephen F. Altschul, et al. (1997)." Gapped BLAST and PSI-BLAST: a new generation of protein database search programs," Nucleic Acids Res. 25:3389-3402). Another popular local alignment technique is based on the Smith-Waterman algorithm (Smith, T. F. & Waterman, M. S. (1981) "Identification of common molecular subsequences." J. Mol. Biol. 147:195-197). A general global alignment technique based on dynamic programming is the Needleman-Wunsch algorithm (Needleman, S. B. & Wunsch, C. D. (1970) "A general method applicable to the search for similarities in the amino acid sequences of two proteins." J. Mol. Biol. 48:443-453). More recently, a Fast Optimal Global Sequence Alignment Algorithm (FOGSAA) was developed that purportedly produces global alignment of nucleotide and protein sequences faster than other optimal global alignment methods, including the Needleman-Wunsch algorithm. Other tools are described herein, specifically in the definition of "identity" below.

As used herein, the term "homology" refers to the overall relatedness between polymeric molecules, e.g. between nucleic acid molecules (e.g. DNA molecules and/or RNA molecules) and/or between polypeptide molecules. Polymeric molecules (e.g. nucleic acid molecules (e.g. DNA molecules and/or RNA molecules) and/or polypeptide molecules) that share a threshold level of similarity or identity determined by alignment of matching residues are termed homologous. Homology is a qualitative term that describes a relationship between molecules and can be based upon the quantitative similarity or identity. Similarity or identity is a quantitative term that defines the degree of sequence match between two compared sequences. In some embodiments, polymeric molecules are considered to be "homologous" to one another if their sequences are at least 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% identical or similar. The term "homologous" necessarily refers to a comparison between at least two sequences (polynucleotide or polypeptide sequences). Two polynucleotide sequences are considered homologous if the polypeptides they encode are at least 50%, 60%, 70%, 80%, 90%, 95%, or even 99% for at least one stretch of at least 20 amino acids. In some embodiments, homologous polynucleotide sequences are characterized by the ability to encode a stretch of at least 4-5 uniquely specified amino acids. For polynucleotide sequences less than 60 nucleotides in length, homology is determined by the ability to encode a stretch of at least 4-5 uniquely specified amino acids. Two protein sequences are considered homologous if the proteins are at least 50%, 60%, 70%, 80%, or 90% identical for at least one stretch of at least 20 amino acids.

Homology implies that the compared sequences diverged in evolution from a common origin. The term "homolog" refers to a first amino acid sequence or nucleic acid sequence (e.g., gene (DNA or RNA) or protein sequence) that is related to a second amino acid sequence or nucleic acid sequence by descent from a common ancestral sequence.

(1984)), BLASTP, BLASTN, and FASTA Altschul, S. F. et al., *J. Molec. Biol.*, 215, 403 (1990)).

Multiprotein and Multicomponent Vaccines

The present disclosure encompasses respiratory virus vaccines comprising multiple RNA (e.g., mRNA) polynucleotides, each encoding a single antigenic polypeptide, as well as respiratory virus vaccines comprising a single RNA polynucleotide encoding more than one antigenic polypeptide (e.g., as a fusion polypeptide). Thus, a vaccine composition comprising a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a first antigenic polypeptide and a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a second antigenic polypeptide encompasses (a) vaccines that comprise a first RNA polynucleotide encoding a first antigenic polypeptide and a second RNA polynucleotide encoding a second antigenic polypeptide, and (b) vaccines that comprise a single RNA polynucleotide encoding a first and second antigenic polypeptide (e.g., as a fusion polypeptide). RNA (e.g., mRNA) vaccines of the present disclosure, in some embodiments, comprise 2-10 (e.g., 2, 3, 4, 5, 6, 7, 8, 9 or 10), or more, RNA polynucleotides having an open reading frame, each of which encodes a different antigenic polypeptide (or a single RNA polynucleotide encoding 2-10, or more, different antigenic polypeptides). The antigenic polypeptides may be selected from hMPV, PIV3, RSV, MEV and BetaCoV (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1) antigenic polypeptides.

In some embodiments, a respiratory virus vaccine comprises a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a viral capsid protein, a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a viral premembrane/membrane protein, and a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a viral envelope protein. In some embodiments, a respiratory virus vaccine comprises a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a viral fusion (F) protein and a RNA polynucleotide having an open reading frame encoding a viral major surface glycoprotein (G protein). In some embodiments, a vaccine comprises a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a viral F protein. In some embodiments, a vaccine comprises a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a viral G protein. In some embodiments, a vaccine comprises a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a HN protein.

In some embodiments, a multicomponent vaccine comprises at least one RNA (e.g., mRNA) polynucleotide encoding at least one antigenic polypeptide fused to a signal peptide (e.g., any one of SEQ ID NO: 15-19). The signal peptide may be fused at the N-terminus or the C-terminus of an antigenic polypeptide. An antigenic polypeptide fused to a signal peptide may be selected from hMPV, PIV3, RSV, MEV and BetaCoV (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1) antigenic polypeptides. Signal Peptides

In some embodiments, antigenic polypeptides encoded by respiratory virus RNA (e.g., mRNA) polynucleotides comprise a signal peptide. Signal peptides, comprising the N-terminal 15-60 amino acids of proteins, are typically needed for the translocation across the membrane on the secretory pathway and, thus, universally control the entry of most proteins both in eukaryotes and prokaryotes to the secretory pathway. Signal peptides generally include three

The term "homolog" may apply to the relationship between genes and/or proteins separated by the event of speciation or to the relationship between genes and/or proteins separated by the event of genetic duplication. "Orthologs" are genes (or proteins) in different species that evolved from a common ancestral gene (or protein) by speciation. Typically, orthologs retain the same function in the course of evolution. "Paralogs" are genes (or proteins) related by duplication within a genome. Orthologs retain the same function in the course of evolution, whereas paralogs evolve new functions, even if these are related to the original one.

The term "identity" refers to the overall relatedness between polymeric molecules, for example, between polynucleotide molecules (e.g. DNA molecules and/or RNA molecules) and/or between polypeptide molecules. Calculation of the percent identity of two polynucleic acid sequences, for example, can be performed by aligning the two sequences for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second 20 nucleic acid sequences for optimal alignment and nonidentical sequences can be disregarded for comparison purposes). In certain embodiments, the length of a sequence aligned for comparison purposes is at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, 25 at least 90%, at least 95%, or 100% of the length of the reference sequence. The nucleotides at corresponding nucleotide positions are then compared. When a position in the first sequence is occupied by the same nucleotide as the corresponding position in the second sequence, then the 30 molecules are identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which needs to be introduced for optimal alignment of the 35 two sequences. The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. For example, the percent identity between two nucleic acid sequences can be determined using methods such as those described in 40 Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; Computer Analysis 45 of Sequence Data, Part I, Griffin, A. M., and Griffin, H. G., eds., Humana Press, New Jersey, 1994; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991; each of which is incorporated herein by reference. For example, the percent identity 50 between two nucleic acid sequences can be determined using the algorithm of Meyers and Miller (CABIOS, 1989, 4:11-17), which has been incorporated into the ALIGN program (version 2.0) using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4. The 55 percent identity between two nucleic acid sequences can, alternatively, be determined using the GAP program in the GCG software package using an NWSgapdna.CMP matrix. Methods commonly employed to determine percent identity between sequences include, but are not limited to those 60 disclosed in Carillo, H., and Lipman, D., SIAM J Applied Math., 48:1073 (1988); incorporated herein by reference. Techniques for determining identity are codified in publicly available computer programs. Exemplary computer software to determine homology between two sequences 65 include, but are not limited to, GCG program package, Devereux, J., et al., Nucleic Acids Research, 12(1), 387

48

regions: an N-terminal region of differing length, which usually comprises positively charged amino acids; a hydrophobic region; and a short carboxy-terminal peptide region. In eukaryotes, the signal peptide of a nascent precursor protein (pre-protein) directs the ribosome to the rough 5 endoplasmic reticulum (ER) membrane and initiates the transport of the growing peptide chain across it for processing. ER processing produces mature proteins, wherein the signal peptide is cleaved from precursor proteins, typically by a ER-resident signal peptidase of the host cell, or they 10 remain uncleaved and function as a membrane anchor. A signal peptide may also facilitate the targeting of the protein to the cell membrane. The signal peptide, however, is not responsible for the final destination of the mature protein. Secretory proteins devoid of additional address tags in their 15 sequence are by default secreted to the external environment. During recent years, a more advanced view of signal peptides has evolved, showing that the functions and immunodominance of certain signal peptides are much more versatile than previously anticipated.

Respiratory virus vaccines of the present disclosure may comprise, for example, RNA (e.g., mRNA) polynucleotides encoding an artificial signal peptide, wherein the signal peptide coding sequence is operably linked to and is in frame with the coding sequence of the antigenic polypeptide. Thus, 25 respiratory virus vaccines of the present disclosure, in some embodiments, produce an antigenic polypeptide comprising an antigenic polypeptide (e.g., hMPV, PIV3, RSV, MeV or BetaCoV) fused to a signal peptide. In some embodiments, a signal peptide is fused to the N-terminus of the antigenic 30 polypeptide. In some embodiments, a signal peptide is fused to the C-terminus of the antigenic polypeptide.

In some embodiments, the signal peptide fused to the antigenic polypeptide is an artificial signal peptide. In some embodiments, an artificial signal peptide fused to the anti- 35 genic polypeptide encoded by the RNA (e.g., mRNA) vaccine is obtained from an immunoglobulin protein, e.g., an IgE signal peptide or an IgG signal peptide. In some embodiments, a signal peptide fused to the antigenic polypeptide encoded by a RNA (e.g., mRNA) vaccine is an Ig 40 heavy chain epsilon-1 signal peptide (IgE HC SP) having the sequence of: MDWTWILFLVAAATRVHS (SEQ ID NO: 16). In some embodiments, a signal peptide fused to the antigenic polypeptide encoded by the (e.g., mRNA) RNA (e.g., mRNA) vaccine is an IgGk chain V-III region HAH 45 signal peptide (IgGk SP) having the sequence of MET-PAOLLFLLLWLPDTTG (SEO ID NO: 15). In some embodiments, the signal peptide is selected from: Japanese encephalitis PRM signal sequence (MLG-SNSGQRVVFTILLLLVAPAYS; SEQ ID NO: 17), VSVg 50 protein signal sequence (MKCLLYLAFLFIGVNCA; SEQ ID NO: 18) and Japanese encephalitis JEV signal sequence (MWLVSLAIVTACAGA; SEQ ID NO: 19)

In some embodiments, the antigenic polypeptide encoded by a RNA (e.g., mRNA) vaccine comprises an amino acid 55 sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, 47-50 or 54-56 (Tables 3, 6, 11, 14 or 17; see also amino acid sequences of Tables 4, 7, 12 or 15) fused to a signal peptide identified by any one of SEQ ID NO: 15-19 (Table 8). The examples disclosed herein are not meant to be 60 limiting and any signal peptide that is known in the art to facilitate targeting of a protein to ER for processing and/or targeting of a protein to the cell membrane may be used in accordance with the present disclosure.

A signal peptide may have a length of 15-60 amino acids. 65 For example, a signal peptide may have a length of 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,

50

33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, or 60 amino acids. In some embodiments, a signal peptide has a length of 20-60, 25-60, 30-60, 35-60, 40-60, 45-60, 50-60, 55-60, 15-55, 20-55, 25-55, 30-55, 35-55, 40-55, 45-55, 50-55, 15-50, 20-50, 25-50, 30-50, 35-50, 40-50, 45-50, 15-45, 20-45, 25-45, 30-45, 35-45, 40-45, 15-40, 20-40, 25-40, 30-40, 35-40, 15-35, 20-35, 25-35, 30-35, 15-30, 20-30, 25-30, 15-25, 20-25, or 15-20 amino acids.

A signal peptide is typically cleaved from the nascent polypeptide at the cleavage junction during ER processing. The mature antigenic polypeptide produce by a respiratory virus RNA (e.g., mRNA) vaccine of the present disclosure typically does not comprise a signal peptide.

Chemical Modifications

Respiratory virus vaccines of the present disclosure, in some embodiments, comprise at least RNA (e.g. mRNA) polynucleotide having an open reading frame encoding at least one antigenic polypeptide that comprises at least one chemical modification.

The terms "chemical modification" and "chemically modified" refer to modification with respect to adenosine (A), guanosine (G), uridine (U), thymidine (T) or cytidine (C) ribonucleosides or deoxyribnucleosides in at least one of their position, pattern, percent or population. Generally, these terms do not refer to the ribonucleotide modifications in naturally occurring 5'-terminal mRNA cap moieties. With respect to a polypeptide, the term "modification" refers to a modification relative to the canonical set 20 amino acids. Polypeptides, as provided herein, are also considered "modified" of they contain amino acid substitutions, insertions or a combination of substitutions and insertions.

Polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides), in some embodiments, comprise various (more than one) different modifications. In some embodiments, a particular region of a polynucleotide contains one, two or more (optionally different) nucleoside or nucleotide modifications. In some embodiments, a modified RNA polynucleotide (e.g., a modified mRNA polynucleotide), introduced to a cell or organism, exhibits reduced degradation in the cell or organism, respectively, relative to an unmodified polynucleotide. In some embodiments, a modified RNA polynucleotide (e.g., a modified mRNA polynucleotide), introduced into a cell or organism, may exhibit reduced immunogenicity in the cell or organism, respectively (e.g., a reduced innate response).

Modifications of polynucleotides include, without limitation, those described herein. Polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) may comprise modifications that are naturally-occurring, non-naturally-occurring or the polynucleotide may comprise a combination of naturally-occurring and non-naturally-occurring modifications. Polynucleotides may include any useful modification, for example, of a sugar, a nucleobase, or an internucleoside linkage (e.g., to a linking phosphate, to a phosphodiester linkage or to the phosphodiester backbone).

Polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides), in some embodiments, comprise non-natural modified nucleotides that are introduced during synthesis or post-synthesis of the polynucleotides to achieve desired functions or properties. The modifications may be present on an internucleotide linkages, purine or pyrimidine bases, or sugars. The modification may be introduced with chemical synthesis or with a polymerase enzyme at the terminal of a chain or anywhere else in the chain. Any of the regions of a polynucleotide may be chemically modified.

The present disclosure provides for modified nucleosides and nucleotides of a polynucleotide (e.g., RNA polynucleotides, such as mRNA polynucleotides). A "nucleoside" refers to a compound containing a sugar molecule (e.g., a pentose or ribose) or a derivative thereof in combination 5 with an organic base (e.g., a purine or pyrimidine) or a derivative thereof (also referred to herein as "nucleobase"). A nucleotide" refers to a nucleoside, including a phosphate group. Modified nucleotides may by synthesized by any useful method, such as, for example, chemically, enzymatically, or recombinantly, to include one or more modified or non-natural nucleosides. Polynucleotides may comprise a region or regions of linked nucleosides. Such regions may have variable backbone linkages. The linkages may be standard phosphdioester linkages, in which case the poly- 15 nucleotides would comprise regions of nucleotides.

Modified nucleotide base pairing encompasses not only the standard adenosine-thymine, adenosine-uracil, or guanosine-cytosine base pairs, but also base pairs formed between nucleotides and/or modified nucleotides comprising non-standard or modified bases, wherein the arrangement of hydrogen bond donors and hydrogen bond acceptors permits hydrogen bonding between a non-standard base and a standard base or between two complementary non-standard base structures. One example of such non-standard base pairing is the base pairing between the modified nucleotide inosine and adenine, cytosine or uracil. Any combination of base/sugar or linker may be incorporated into polynucleotides of the present disclosure.

Modifications of polynucleotides (e.g., RNA polynucle- 30 otides, such as mRNA polynucleotides) that are useful in the vaccines of the present disclosure include, but are not limited to the following: 2-methylthio-N6-(cis-hydroxyisopentenyl)adenosine; 2-methylthio-N6-methyladenosine; 2-methylthio-N6-threonyl carbamoyladenosine; N6-glyci- 35 nylcarbamovladenosine; N6-isopentenyladenosine; N6-methyladenosine; N6-threonylcarbamoyladeno sine; 1,2'-O-dimethyladenosine; 1-methyladenosine; 2'-O-methyladenosine; 2'-O-ribosyladenosine (phosphate); 2-methyladenosine; 2-methylthio-N6 isopentenyladenosine; 2-meth- 40 ylthio-N6-hydroxynorvalyl carbamoyladenosine; (phosphate); methyladenosine; 2'-O-ribosyladenosine Isopentenyladenosine; N6-(cis-hydroxyisopentenyl)adenosine; N6,2'-O-dimethyladenosine; N6,2'-O-dimethyladenosine; N6,N6,2'-O-trimethyladenosine; N6,N6-dimethylad- 45 N6-acetyladenosine; enosine. N6-hydroxynorvalylcarbamovladenosine: N6-methyl-N6threonylcarbamoyladenosine; 2-methyladenosine; 2-methylthio-N6-isopentenyladenosine; 7-deaza-adenosine; N1-methyl-adenosine; N6,N6 (dimethyl)adenine; N6-cis- 50 hydroxy-isopentenyl-adenosine; α-thio-adenosine; 2 (amino)adenine; 2 (aminopropyl)adenine; 2 (methylthio) N6 (isopentenyl)adenine; 2-(alkyl)adenine; 2-(aminoalkyl)adenine; 2-(aminopropyl)adenine; 2-(halo)adenine; 2-(halo) 2-(propyl)adenine; 2'-Amino-2'-deoxy-ATP; 55 2'-Azido-2'-deoxy-ATP; 2'-Deoxy-2'-a-aminoadenosine TP; 2'-Deoxy-2'-a-azidoadenosine TP; 6 (alkyl)adenine; 6 (methyl)adenine; 6-(alkyl)adenine; 6-(methyl)adenine; 7 (deaza)adenine; 8 (alkenyl)adenine; 8 (alkynyl)adenine; 8 (amino)adenine; 8 (thioalkyl)adenine; 8-(alkenyl)adenine; 60 8-(alkyl)adenine; 8-(alkynyl)adenine; 8-(amino)adenine; 8-(halo)adenine; 8-(hydroxyl)adenine; 8-(thioalkyl)adenine; 8-(thiol)adenine; 8-azido-adeno sine; aza adenine; deaza adenine; N6 (methyl)adenine; N6-(isopentyl)adenine; 7-deaza-8-aza-adenosine; 7-methyladenine; 1-Deazaade- 65 nosine TP; 2'Fluoro-N6-Bz-deoxyadenosine TP; 2'-OMe-2-Amino-ATP; 2'O-methyl-N6-Bz-deoxyadenosine TP; 2'-a52

Ethynyladenosine TP; 2-aminoadenine; 2-Aminoadenosine TP; 2-Amino-ATP; 2'-a-Trifluoromethyladenosine TP; 2-Azidoadenosine TP; 2'-b-Ethynyladenosine TP; 2-Bromoadenosine TP; 2'-b-Trifluoromethyladenosine TP; 2-Chloroadenosine TP; 2'-Deoxy-2',2'-difluoroadenosine TP; 2'-Deoxy-2'-a-mercaptoadenosine TP; 2'-Deoxy-2'-athiomethoxyadenosine TP; 2'-Deoxy-2'-b-aminoadenosine TP; 2'-Deoxy-2'-b-azidoadenosine TP; 2'-Deoxy-2'-b-bromoadenosine TP; 2'-Deoxy-2'-b-chloroadenosine TP; 2'-Deoxy-2'-b-fluoroadenosine TP: 2'-Deoxy-2'-b-iodoadenosine TP; 2'-Deoxy-2'-b-mercaptoadenosine TP; 2'-Deoxy-2'-bthiomethoxyadenosine TP; 2-Fluoroadenosine TP; 2-Iodoadenosine TP; 2-Mercaptoadenosine TP; 2-methoxy-adenine; 2-methylthio-adenine; 2-Trifluoromethyladenosine TP; 3-Deaza-3-bromoadenosine TP; 3-Deaza-3-chloroadenosine TP; 3-Deaza-3-fluoroadenosine TP; 3-Deaza-3-iodoadenosine TP; 3-Deazaadenosine TP; 4'-Azidoadenosine TP; 4'-Carbocyclic adenosine TP; 4'-Ethynyladenosine TP; 5'-Homo-adenosine TP; 8-Aza-ATP; 8-bromo-adenosine TP: 8-Trifluoromethyladenosine TP: 9-Deazaadenosine TP: 2-aminopurine; 7-deaza-2,6-diaminopurine; 7-deaza-8-aza-2,6-diaminopurine; 7-deaza-8-aza-2-aminopurine; 2,6-diaminopurine; 7-deaza-8-aza-adenine, 7-deaza-2-aminopurine; 2-thiocytidine; 3-methylcytidine; 5-formylcytidine; 5-hydroxymethylcytidine; 5-methylcytidine; N4-acetylcytidine; 2'-O-methylcytidine; 2'-O-methylcytidine; 5,2'-O-dimethylcytidine; 5-formyl-2'-O-methylcytidine; Lysidine; N4,2'-O-dimethylcytidine; N4-acetyl-2'-O-methylcytidine; N4-methylcytidine; N4,N4-Dimethyl-2'-OMe-Cytidine TP; 4-methylcytidine; 5-aza-cytidine; Pseudo-iso-cytidine; pyrrolo-cytidine; α-thio-cytidine; 2-(thio)cytosine; 2'-Amino-2'-deoxy-CTP; 2'-Azido-2'-deoxy-CTP; 2'-Deoxy-2'-a-aminocytidine TP; 2'-Deoxy-2'-a-azidocytidine TP; 3 (deaza) 5 (aza)cytosine; 3 (methyl)cytosine; 3-(alkyl)cytosine; 3-(deaza) 5 (aza)cytosine; 3-(methyl)cytidine; 4,2'-O-dimethylcytidine; 5 (halo)cytosine; 5 (methyl)cytosine; 5 (propynyl)cytosine; 5 (trifluoromethyl)cytosine; 5-(alkyl)cytosine; 5-(alkynyl)cytosine; 5-(halo)cytosine; 5-(propynyl) cytosine; 5-(trifluoromethyl)cytosine; 5-bromo-cytidine; 5-iodo-cytidine; 5-propynyl cytosine; 6-(azo)cytosine; 6-aza-cytidine; aza cytosine; deaza cytosine; N4 (acetyl) cytosine; 1-methyl-1-deaza-pseudoisocytidine; 1-methylpseudoisocytidine; 2-methoxy-5-methyl-cytidine; 2-methoxy-cytidine; 2-thio-5-methyl-cytidine; 4-methoxy-1-methyl-pseudoisocytidine; 4-methoxy-pseudoisocytidine; 4-thio-1-methyl-1-deaza-pseudoisocytidine; 4-thio-1methyl-pseudoisocytidine; 4-thio-pseudoisocytidine; 5-azazebularine; 5-methyl-zebularine; pyrrolo-pseudoisocytidine; Zebularine; (E)-5-(2-Bromo-vinyl)cytidine TP; 2,2'-anhydro-cytidine TP hydrochloride; 2'Fluor-N4-Bz-cytidine TP; 2'Fluoro-N4-Acetyl-cytidine TP; 2'-O-Methyl-N4-Acetyl-cytidine TP; 2'O-methyl-N4-Bz-cytidine TP; 2'-a-Ethynylcytidine TP; 2'-a-Trifluoromethylcytidine TP; 2'-b-Ethynylcytidine TP; 2'-b-Trifluoromethylcytidine 2'-Deoxy-2',2'-difluorocytidine TP; 2'-Deoxy-2'-a-mercaptocytidine TP; 2'-Deoxy-2'-a-thiomethoxycytidine TP; 2'-Deoxy-2'-b-aminocytidine TP; 2'-Deoxy-2'-b-azidocytidine TP; 2'-Deoxy-2'-b-bromocytidine TP; 2'-Deoxy-2'-bchlorocytidine TP; 2'-Deoxy-2'-b-fluorocytidine TP; 2'-Deoxy-2'-b-iodocytidine TP; 2'-Deoxy-2'-b-mercaptocytidine TP; 2'-Deoxy-2'-b-thiomethoxycytidine TP; 2'-O-Methyl-5-(1-propynyl)cytidine TP; 3'-Ethynylcytidine TP; 4'-Azidocytidine TP; 4'-Carbocyclic cytidine TP; 4'-Ethynylcytidine TP; 5-(1-Propynyl)ara-cytidine TP; 5-(2-Chloro-phenyl)-2thiocytidine TP; 5-(4-Amino-phenyl)-2-thiocytidine TP; 5-Aminoallyl-CTP; 5-Cyanocytidine TP; 5-Ethynylara-cytidine TP; 5-Ethynylcytidine TP; 5'-Homo-cytidine TP;

54

5-Methoxycytidine TP; 5-Trifluoromethyl-Cytidine TP; N4-Amino-cytidine TP; N4-Benzoyl-cytidine TP; Pseudoisocytidine; 7-methylguanosine; N2,2'-O-dimethylguanosine; N2-methylguanosine; Wyosine; 1,2'-O-dimethylguanosine; 1-methylguanosine; 2'-O-methylguanosine; 5 2'-O-ribosylguanosine (phosphate); 2'-O-methylguanosine; 2'-O-ribosylguanosine (phosphate); 7-aminomethyl-7-deazaguanosine; 7-cyano-7-deazaguanosine; Archaeosine; Methylwyo sine; N2,7-dimethylguanosine; N2,N2,2'-Otrimethylguanosine; N2.N2.7-trimethylguanosine; N2.N2- 10 dimethylguanosine; N2,7,2'-O-trimethylguanosine; 6-thioguanosine; 7-deaza-guanosine; 8-oxo-guanosine; N1-methyl-guanosine; α-thio-guanosine; 2 (propyl)guanine; 2-(alkyl)guanine; 2'-Amino-2'-deoxy-GTP; 2'-Azido-2'-deoxy-GTP; 2'-Deoxy-2'-a-aminoguanosine TP; 2'-Deoxy-2'- 15 a-azidoguanosine TP; 6 (methyl)guanine; 6-(alkyl)guanine; 6-(methyl)guanine; 6-methyl-guanosine; 7 (alkyl)guanine; 7 (deaza)guanine; 7 (methyl)guanine; 7-(alkyl)guanine; 7-(deaza)guanine; 7-(methyl)guanine; 8 (alkyl)guanine; 8 (alkynyl)guanine; 8 (halo)guanine; 8 (thioalkyl)guanine; 20 8-(alkenyl)guanine; 8-(alkyl)guanine; 8-(alkynyl)guanine; 8-(amino)guanine; 8-(halo)guanine; 8-(hydroxyl)guanine; 8-(thioalkyl)guanine; 8-(thiol)guanine; aza guanine; deaza guanine; N (methyl)guanine; N-(methyl)guanine; 1-methyl-6-thio-guanosine; 6-methoxy-guanosine; 6-thio-7-deaza-8- 25 aza-guanosine; 6-thio-7-deaza-guanosine; 6-thio-7-methyl-7-deaza-8-aza-guanosine; 7-methyl-8-oxoguanosine; guanosine; N2,N2-dimethyl-6-thio-guanosine; N2-methyl-6-thio-guanosine; 1-Me-GTP; 2'Fluoro-N2-isobutylguanosine TP; 2'O-methyl-N2-isobutyl-guanosine TP; 2'-a- 30 Ethynylguanosine TP; 2'-a-Trifluoromethylguanosine TP; 2'-b-Ethynylguano sine TP; 2'-b-Trifluoromethylguanosine TP; 2'-Deoxy-2',2'-difluoroguanosine TP; 2'-Deoxy-2'-amercaptoguanosine TP; 2'-Deoxy-2'-a-thiomethoxyguanosine TP; 2'-Deoxy-2'-b-aminoguanosine TP; 2'-Deoxy-2'-b- 35 azidoguanosine TP; 2'-Deoxy-2'-b-bromoguanosine TP; 2'-Deoxy-2'-b-chloroguanosine TP; 2'-Deoxy-2'-b-fluoroguanosine TP; 2'-Deoxy-2'-b-iodoguanosine TP; 2'-Deoxy-2'-b-mercaptoguanosine TP: 2'-Deoxy-2'-b-thiomethoxyguanosine TP; 4'-Azidoguanosine 4'-Carbocyclic guanosine TP; 4'-Ethynylguanosine TP; 5'-Homo-guanosine TP; 8-bromo-guanosine TP; 9-Deazaguanosine TP; N2-isobutyl-guanosine TP; 1-methylinosine; Inosine; 1,2'-O-dimethylinosine; 2'-O-methylinosine; 7-methylinosine; 2'-O-methylinosine; Epoxyqueuosine; 45 galactosyl-queuosine; Mannosylqueuosine; Queuosine; allyamino-thymidine; aza thymidine; deaza thymidine; deoxy-thymidine; 2'-O-methyluridine; 2-thiouridine; 3-methyluridine; 5-carboxymethyluridine; 5-hydroxyuridine; 5-methyluridine; 5-taurinomethyl-2-thiouridine; 5-tau- 50 rinomethyluridine; Dihydrouridine; Pseudouridine; (3-(3amino-3-carboxypropyl)uridine; 1-methyl-3-(3-amino-5carboxypropyl)pseudouridine; 1-methylpseduouridine; 1-methyl-pseudouridine; 2'-O-methyluridine; 2'-O-methylpseudouridine; 2'-O-methyluridine; 2-thio-2'-O-methyluri- 55 dine; 3-(3-amino-3-carboxypropyl)uridine; 3,2'-O-dimethyluridine; 3-Methyl-pseudo-Uridine TP; 4-thiouridine; 5-(carboxyhydroxymethyl)uridine; 5-(carboxyhydroxymethyl)uridine methyl ester; 5,2'-O-dimethyluridine; 5,6-dihydro-uridine; 5-aminomethyl-2-thiouridine; 5-carbamoyl- 60 methyl-2'-O-methyluridine; 5-carbamoylmethyluridine; 5-carboxyhydroxymethyluridine; 5-carboxyhydroxymethyluridine methyl ester; 5-carboxymethylaminomethyl-2'-O-5-carboxymethylaminomethyl-2-thiourimethyluridine; dine; 5-carboxymethylaminomethyl-2-thiouridine; 65 5-carboxymethylaminomethyluridine; 5-carboxymethylaminomethyluridine; 5-Carbamoylmethyluridine

5-methoxycarbonylmethyl-2'-O-methyluridine; 5-methoxycarbonylmethyl-2-thiouridine; 5-methoxycarbonylmethyluridine; 5-methoxyuridine; 5-methyl-2-thiouridine; 5-methylaminomethyl-2-selenouridine; 5-methylaminomethyl-2-5-methylaminomethyluridine; thiouridine; 5-Methyldihydrouridine; 5-Oxyacetic acid-Uridine TP; 5-Oxyacetic acid-methyl ester-Uridine TP; N1-methylpseudo-uridine; uridine 5-oxyacetic acid; uridine 5-oxyacetic acid methyl ester; 3-(3-Amino-3-carboxypropyl)-Uridine TP; 5-(iso-Pentenylaminomethyl)-2-thiouridine TP; 5-(iso-Pentenylaminomethyl)-2'-O-methyluridine 5-(iso-Pentenylaminomethyl)uridine TP; 5-propynyl uracil; α-thio-uridine; 1 (aminoalkylamino-carbonylethylenyl)-2 (thio)-pseudouracil; 1 (aminoalkylaminocarbonylethylenyl)-2,4-(dithio)pseudouracil; 1 (aminoalkylaminocarbonylethylenyl)-4 (thio)pseudouracil; (aminoalkylaminocarbonylethylenyl)-pseudouracil; 1 (aminocarbonylethylenyl)-2(thio)-pseudouracil; 1 (aminocarbonylethylenyl)-2,4-(dithio)pseudouracil; 1 (aminocarbonylethylenyl)-4 (thio)pseudouracil: (aminocarbonylethylenyl)-pseudouracil; substituted 2(thio)-pseudouracil; 1 substituted 2,4-(dithio)pseudouracil; 1 substituted 4 (thio)pseudouracil; 1 substituted pseudouracil: 1-(aminoalkylamino-carbonylethylenyl)-2-(thio)-1-Methyl-3-(3-amino-3-carboxypropyl) pseudouracil; pseudouridine TP; 1-Methyl-3-(3-amino-3-carboxypropyl) pseudo-UTP; 1-Methyl-pseudo-UTP; 2 (thio)pseudouracil; 2' deoxy uridine; 2' fluorouridine; 2-(thio)uracil; 2,4-(dithio) psuedouracil; 2' methyl, 2'amino, 2'azido, 2'fluro-guanosine; 2'-Amino-2'-deoxy-UTP; 2'-Azido-2'-deoxy-UTP; 2'-Azido-deoxyuridine TP; 2'-O-methylpseudouridine; 2' deoxy uridine; 2' fluorouridine; 2'-Deoxy-2'-a-aminouridine TP; 2'-Deoxy-2'-a-azidouridine TP; 2-methylpseudouridine; 3 (3 amino-3 carboxypropyl)uracil; 4 (thio)pseudouracil; 4-(thio)pseudouracil; 4-(thio)uracil; 4-thiouracil; 5 (1,3-diazole-1-alkyl)uracil; 5 (2-aminopropyl)uracil; 5 (aminoalkyl)uracil; 5 (dimethylaminoalkyl)uracil; 5 (guanidiniumalkyl)uracil; 5 (methoxycarbonylmethyl)-2-(thio)uracil; 5 (methoxycarbonyl-methyl)uracil; 5 (methyl) 2 (thio)uracil; 5 (methyl) 2,4 (dithio)uracil; 5 (methyl) 4 (thio)uracil; 5 (methylaminomethyl)-2 (thio)uracil; 5 (methylaminomethyl)-2,4 (dithio)uracil; 5 (methylaminomethyl)-4 (thio) uracil; 5 (propynyl)uracil; 5 (trifluoromethyl)uracil; 5-(2aminopropyl)uracil; 5-(alkyl)-2-(thio)pseudouracil; 5-(alkyl)-2,4 (dithio)pseudouracil; 5-(alkyl)-4 5-(alkyl)uracil; pseudouracil; 5-(alkyl)pseudouracil; 5-(alkynyl)uracil: 5-(allylamino)uracil: 5-(cyanoalkyl)uracil; 5-(dialkylaminoalkyl)uracil; 5-(dimethylaminoalkyl) uracil; 5-(guanidiniumalkyl)uracil; 5-(halo)uracil; 5-(1,3-diazole-1-alkyl)uracil; 5-(methoxy)uracil; 5-(methoxycarbonylmethyl)-2-(thio)uracil; 5-(methoxycarbonyl-methyl)uracil; 5-(methyl) 2(thio)uracil; 5-(methyl) 2,4 (dithio)uracil; 5-(methyl) 4 (thio)uracil; 5-(methyl)-2-(thio)pseudouracil; 5-(methyl)-2,4 (dithio)pseudouracil; 5-(methyl)-4 (thio)pseudouracil; 5-(methyl)pseudouracil; 5-(methylaminomethyl)-2 (thio)uracil; 5-(methylaminomethyl)-2,4(dithio)uracil; 5-(methylaminomethyl)-4-(thio) uracil; 5-(propynyl)uracil; 5-(trifluoromethyl)uracil; 5-aminoallyl-uridine; 5-bromo-uridine; 5-iodo-uridine; 5-uracil; 6 (azo)uracil; 6-(azo)uracil; 6-aza-uridine; allyamino-uracil; aza uracil; deaza uracil; N3 (methyl)uracil; Pseudo-UTP-1-2-ethanoic acid; Pseudouracil; 4-Thio-pseudo-UTP; 1-carboxymethyl-pseudouridine; 1-methyl-1-deaza-pseudouri-1-propynyl-uridine; 1-taurinomethyl-1-methyldine: uridine; 1-taurinomethyl-4-thio-uridine; 1-taurinomethylpseudouridine; 2-methoxy-4-thio-pseudouridine; 2-thio-1methyl-1-deaza-pseudouridine; 2-thio-1-methyl-

56

pseudouridine: 2-thio-5-aza-uridine; 2-thio-2-thio-dihydrouridine; dihydropseudouridine; 2-thiopseudouridine; 4-methoxy-2-thio-pseudouridine; 4-methoxy-pseudouridine; 4-thio-1-methyl-pseudouridine; 4-thio-pseudouridine; 5-aza-uridine; Dihydropseudouridine; 5 (±)1-(2-Hydroxypropyl)pseudouridine TP; (2R)-1-(2-Hydroxypropyl)pseudouridine TP; (2S)-1-(2-Hydroxypropyl) pseudouridine TP; (E)-5-(2-Bromo-vinyl)ara-uridine TP; (E)-5-(2-Bromo-vinyl)uridine TP; (Z)-5-(2-Bromo-vinyl) ara-uridine TP; (Z)-5-(2-Bromo-vinyl)uridine TP; 1-(2,2,2-Trifluoroethyl)-pseudo-UTP; 1-(2,2,3,3,3-Pentafluoropropyl)pseudouridine TP; 1-(2,2-Diethoxyethyl)pseudouridine TP; 1-(2,4,6-Trimethylbenzyl)pseudouridine TP; 1-(2,4,6-Trimethyl-benzyl)pseudo-UTP; 1-(2,4,6-Trimethyl-phenyl) pseudo-UTP: 1-(2-Amino-2-carboxyethyl)pseudo-UTP; 15 1-(2-Amino-ethyl)pseudo-UTP; 1-(2-Hydroxyethyl) pseudouridine TP; 1-(2-Methoxyethyl)pseudouridine TP; 1-(3,4-Bis-trifluoromethoxybenzyl)pseudouridine TP; 1-(3, 4-Dimethoxybenzyl)pseudouridine TP; 1-(3-Amino-3-carboxypropyl)pseudo-UTP; 1-(3-Amino-propyl)pseudo-UTP; 20 1-(3-Cyclopropyl-prop-2-ynyl)pseudouridine TP; Amino-4-carboxybutyl)pseudo-UTP; 1-(4-Amino-benzyl) pseudo-UTP; 1-(4-Amino-butyl)pseudo-UTP; 1-(4-Aminophenyl)pseudo-UTP; 1-(4-Azidobenzyl)pseudouridine TP; 1-(4-Bromobenzyl)pseudouridine TP; 1-(4-Chlorobenzyl) 25 pseudouridine TP; 1-(4-Fluorobenzyl)pseudouridine TP; 1-(4-Iodobenzyl)pseudouridine TP; 1-(4-Methanesulfonylbenzyl)pseudouridine TP; 1-(4-Methoxybenzyl)pseudouridine TP; 1-(4-Methoxy-benzyl)pseudo-UTP; 1-(4-Methoxyphenyl)pseudo-UTP; 1-(4-Methylbenzyl)pseudouridine TP; 30 1-(4-Nitrobenzyl) 1-(4-Methyl-benzyl)pseudo-UTP; pseudouridine TP; 1-(4-Nitro-benzyl)pseudo-UTP; 1(4-Nitro-phenyl)pseudo-UTP; 1-(4-Thiomethoxybenzyl) pseudouridine 1-(4-Trifluoromethoxybenzyl) pseudouridine TP; 1-(4-Trifluoromethylbenzyl) 35 pseudouridine TP; 1-(5-Amino-pentyl)pseudo-UTP; 1-(6-Amino-hexyl)pseudo-UTP: 1,6-Dimethyl-pseudo-UTP; 1-[3-(2-{2-[2-(2-Aminoethoxy)-ethoxy}-ethoxy}-ethoxy)propionyl]pseudouridine TP; 1-{3-[2-(2-Aminoethoxy)ethoxy]-propionyl}pseudouridine TP; 1-Acetylpseudouri- 40 dine TP; 1-Alkyl-6-(1-propynyl)-pseudo-UTP; 1-Alkyl-6-(2-propynyl)-pseudo-UTP; 1-Alkyl-6-allyl-pseudo-UTP; 1-Alkyl-6-ethynyl-pseudo-UTP; 1-Alkyl-6-homoallylpseudo-UTP; 1-Alkyl-6-vinyl-pseudo-UTP; 1-Allylpseudouridine TP; 1-Aminomethyl-pseudo-UTP; 1-Benzo- 45 ylpseudouridine TP; 1-Benzyloxymethylpseudouridine TP; 1-Benzyl-pseudo-UTP: 1-Biotinyl-PEG2-pseudouridine TP: 1-Biotinylpseudouridine TP; 1-Butyl-pseudo-UTP; 1-Cyanomethylpseudouridine TP; 1-Cyclobutylmethyl-pseudo-UTP; 1-Cyclobutyl-pseudo-UTP; 1-Cycloheptylmethyl- 50 1-Cycloheptyl-pseudo-UTP: pseudo-UTP: 1-Cyclohexylmethyl-pseudo-UTP; 1-Cyclohexyl-pseudo-1-Cyclooctylmethyl-pseudo-UTP; 1-Cyclooctylpseudo-UTP; 1-Cyclopentylmethyl-pseudo-UTP; 1-Cyclo-1-Cyclopropylmethyl-pseudo-UTP; 55 pentyl-pseudo-UTP; 1-Cyclopropyl-pseudo-UTP; 1-Ethyl-pseudo-UTP; 1-Hexyl-pseudo-UTP; 1-Homoallylpseudouridine 1-Hydroxymethylpseudouridine TP; 1-iso-propyl-pseudo-UTP; 1-Me-2-thio-pseudo-UTP; 1-Me-4-thio-pseudo-UTP; 1-Me-alpha-thio-pseudo-UTP; 1-Methanesulfonylmethylp- 60 seudouridine TP; 1-Methoxymethylpseudouridine TP; 1-Methyl-6-(2,2,2-Trifluoroethyl)pseudo-UTP; 1-Methyl-6-(4-morpholino)-pseudo-UTP; 1-Methyl-6-(4-thiomorpholino)-pseudo-UTP; 1-Methyl-6-(substituted phenyl) pseudo-UTP; 1-Methyl-6-amino-pseudo-UTP; 1-Methyl-6- 65 azido-pseudo-UTP; 1-Methyl-6-bromo-pseudo-UTP; 1-Methyl-6-butyl-pseudo-UTP; 1-Methyl-6-chloro-pseudo-

UTP; 1-Methyl-6-cyano-pseudo-UTP; 1-Methyl-6-dimeth-1-Methyl-6-ethoxy-pseudo-UTP; ylamino-pseudo-UTP; 1-Methyl-6-ethylcarboxylate-pseudo-UTP; 1-Methyl-6-1-Methyl-6-fluoro-pseudo-UTP; ethyl-pseudo-UTP; 1-Methyl-6-formyl-pseudo-UTP; 1-Methyl-6-hydroxyamino-pseudo-UTP; 1-Methyl-6-hydroxy-pseudo-UTP; 1-Methyl-6-iodo-pseudo-UTP; 1-Methyl-6-iso-propyl-pseudo-UTP; 1-Methyl-6-methoxy-pseudo-UTP; 1-Methyl-6-methylamino-pseudo-UTP; 1-Methyl-6-phenylpseudo-UTP; 1-Methyl-6-propyl-pseudo-UTP; 1-Methyl-6tert-butyl-pseudo-UTP; 1-Methyl-6-trifluoromethoxypseudo-UTP; 1-Methyl-6-trifluoromethyl-pseudo-UTP; 1-Morpholinomethylpseudouridine TP; 1-Pentyl-pseudo-UTP; 1-Phenyl-pseudo-UTP; 1-Pivaloylpseudouridine TP; 1-Propargylpseudouridine TP; 1-Propyl-pseudo-UTP; 1-propynyl-pseudouridine; 1-p-tolyl-pseudo-UTP; 1-tert-Butyl-pseudo-UTP; 1-Thiomethoxymethylpseudouridine TP; 1-Thiomorpholinomethylpseudouridine TP; 1-Trifluoroacetylpseudouridine TP; 1-Trifluoromethyl-pseudo-UTP; 1-Vinylpseudouridine TP: 2.2'-anhydro-uridine 2'-bromo-deoxyuridine TP; 2'-F-5-Methyl-2'-deoxy-UTP; 2'-OMe-5-Me-UTP; 2'-OMe-pseudo-UTP; 2'-a-Ethynyluridine TP; 2'-a-Trifluoromethyluridine TP; 2'-b-Ethynyluridine TP; 2'-b-Trifluoromethyluridine TP; 2'-Deoxy-2',2'-difluorouridine TP; 2'-Deoxy-2'-a-mercaptouridine TP; 2'-Deoxy-2'-a-thiomethoxyuridine TP; 2'-Deoxy-2'-b-aminouridine TP; 2'-Deoxy-2'-b-azidouridine TP; 2'-Deoxy-2'b-bromouridine TP; 2'-Deoxy-2'-b-chlorouridine TP; 2'-Deoxy-2'-b-fluorouridine TP; 2'-Deoxy-2'-b-iodouridine TP; TP; 2'-Deoxy-2'-b-thio-2'-Deoxy-2'-b-mercaptouridine methoxyuridine TP: 2-methoxy-4-thio-uridine; 2-methoxyuridine; 2'-O-Methyl-5-(1-propynyl)uridine TP; 3-Alkyl-pseudo-UTP; 4'-Azidouridine TP; 4'-Carbocyclic uridine TP; 4'-Ethynyluridine TP; 5-(1-Propynyl)ara-uridine TP; 5-(2-Furanyl)uridine TP; 5-Cyanouridine TP; 5-Dimethylaminouridine TP; 5'-Homo-uridine TP; 5-iodo-2'fluoro-deoxyuridine TP; 5-Phenylethynyluridine TP; 5-Trideuteromethyl-6-deuterouridine TP; 5-Trifluoromethyl-Uridine TP; 5-Vinylarauridine TP; 6-(2,2,2-Trifluoroethyl)-6-(4-Morpholino)-pseudo-UTP; pseudo-UTP; Thiomorpholino)-pseudo-UTP; 6-(Substituted-Phenyl)pseudo-UTP; 6-Amino-pseudo-UTP; 6-Azido-pseudo-UTP; 6-Bromo-pseudo-UTP; 6-Butyl-pseudo-UTP; 6-Chloropseudo-UTP; 6-Cyano-pseudo-UTP; 6-Dimethylaminopseudo-UTP; 6-Ethoxy-pseudo-UTP; 6-Ethylcarboxylatepseudo-UTP; 6-Ethyl-pseudo-UTP; 6-Fluoro-pseudo-UTP; 6-Formyl-pseudo-UTP: 6-Hydroxyamino-pseudo-UTP: 6-Hydroxy-pseudo-UTP; 6-Iodo-pseudo-UTP; 6-iso-Pro-6-Methoxy-pseudo-UTP; pyl-pseudo-UTP; 6-Methylamino-pseudo-UTP; 6-Methyl-pseudo-UTP; 6-Phenvlpseudo-UTP; 6-Phenyl-pseudo-UTP; 6-Propyl-pseudo-6-tert-Butyl-pseudo-UTP; 6-Trifluoromethoxy-UTP; pseudo-UTP; 6-Trifluoromethyl-pseudo-UTP; Alpha-thiopseudo-UTP; Pseudouridine 1-(4-methylbenzenesulfonic acid) TP; Pseudouridine 1-(4-methylbenzoic acid) TP; Pseudouridine TP 1-[3-(2-ethoxy)]propionic acid; Pseudou- $1-[3-{2-(2-(2-ethoxy)-ethoxy)-ethoxy}]$ ethoxy}|propionic acid; Pseudouridine TP 1-[3-{2-(2-[2-{2}]) (2-ethoxy)-ethoxy}-ethoxy}-ethoxy}|propionic acid; Pseudouridine TP 1-[3-{2-(2-[2-ethoxy]-ethoxy)ethoxy}]propionic acid; Pseudouridine TP 1-[3-{2-(2ethoxy)-ethoxy}] propionic acid; Pseudouridine TP 1-methylphosphonic acid; Pseudouridine TP 1-methylphosphonic acid diethyl ester; Pseudo-UTP-N1-3-propionic acid; Pseudo-UTP-N1-4-butanoic acid; Pseudo-UTP-N1-5-pentanoic acid; Pseudo-UTP-N1-6-hexanoic acid; Pseudo-UTP-N1-7-heptanoic acid; Pseudo-UTP-N1-methyl-p-ben-

zoic acid; Pseudo-UTP-N1-p-benzoic acid; Wybutosine; Hydroxywybutosine; Isowyosine; Peroxywybutosine; undermodified hydroxywybutosine; 4-demethylwyosine; 2,6-(diamino)purine; 1-(aza)-2-(thio)-3-(aza)-phenoxazin-1-yl: 1.3-(diaza)-2-(oxo)-phenthiazin-1-yl; 1.3-(diaza)-2-(oxo)-phenoxazin-1-vl; 1.3.5-(triaza)-2.6-(dioxa)-naphthalene: 2 (amino)purine: 2,4,5-(trimethyl)phenyl: 2' methyl. 2'amino, 2'azido, 2'fluro-cytidine; 2' methyl, 2'amino, 2'azido, 2'fluro-adenine; 2'methyl, 2'amino, 2'azido, 2'flurouridine; 2'-amino-2'-deoxyribose; 2-amino-6-Chloro-purine; 2-aza-inosinyl; 2'-azido-2'-deoxyribose; 2'fluoro-2'-deoxyribose; 2'-fluoro-modified bases; 2'-O-methyl-ribose; 2-oxo-7-aminopyridopyrimidin-3-yl; 2-oxo-pyridopyrimidine-3yl; 2-pyridinone; 3 nitropyrrole; 3-(methyl)-7-(propynyl) isocarbostyrilyl; 3-(methyl)isocarbostyrilyl; 4-(fluoro)-6-(methyl)benzimidazole; 4-(methyl)benzimidazole; 4-(methyl)indolyl; 4,6-(dimethyl)indolyl; 5 nitroindole; 5 substituted pyrimidines; 5-(methyl)isocarbostyrilyl; 5-nitroindole; 6-(aza)pyrimidine; 6-(azo)thymine; 6-(methyl)-7- 20 (aza)indolyl; 6-chloro-purine; 6-phenyl-pyrrolo-pyrimidin-2-on-3-yl; 7-(aminoalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)phenthiazin-1-yl; 7-(aminoalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phenoxazin-1-yl; 7-(aminoalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenoxazin-1-yl; 7-(aminoalkylhydroxy)-1, 25 3-(diaza)-2-(oxo)-phenthiazin-1-yl; 7-(aminoalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenoxazin-1yl; 7-(aza)indolyl; 7-(guanidiniumalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phenoxazinl-yl; 7-(guanidiniumalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phenthiazin-1-yl; 7-(guanidiniumalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phenoxazin-1-yl; 7-(guanidiniumalkylhydroxy)-1,3-(diaza)-2-

7-(guanidiniumalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phenoxazin-1-yl; 7-(guanidiniumalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenoxazin-1-yl; 7-(guanidiniumalkyl-hydroxy)-1,3-(diaza)-2-(oxo)-phenthiazin-1-yl;

7-(guanidiniumalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenoxazin-1-yl; 7-(propynyl)isocarbostyrilyl; 7-(propynyl)isocarbostyrilyl, propynyl-7-(aza)indolyl; 7-deaza-inosinyl; 7-substituted 1-(aza)-2-(thio)-3-(aza)-phenoxazin-1-yl; 7-substituted 1,3-(diaza)-2-(oxo)-phenoxazin-1-yl; 9-(methyl)-imidizopyridinyl; Aminoindolyl; Anthracenyl; 40 bis-ortho-(aminoalkylhydroxy)-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl; bis-ortho-substituted-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl; Difluorotolyl; Hypoxanthine; Imidizopyridinyl; Inosinyl; Isocarbostyrilyl; Isoguanisine; N2-substituted N6-methyl-2-amino-purine; 45 purines; N6-substituted purines; N-alkylated derivative; Napthalenyl: Nitrobenzimidazolyl: Nitroimidazolyl: Nitroindazolyl: Nitropyrazolyl; Nubularine; 06-substituted purines; O-alkylated derivative; ortho-(aminoalkylhydroxy)-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl; ortho-substituted-6-phenyl-pyr- 50 rolo-pyrimidin-2-on-3-yl; Oxoformycin TP: (aminoalkylhydroxy)-6-phenyl-pyrrolo-pyrimidin-2-on-3yl; para-substituted-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl; Pentacenyl; Phenanthracenyl; Phenyl; propynyl-7-(aza)indolyl; Pyrenyl; pyridopyrimidin-3-yl; pyridopyrimidin-3-yl, 55 2-oxo-7-amino-pyridopyrimidin-3-yl; pyrrolo-pyrimidin-2on-3-yl; Pyrrolopyrimidinyl; Pyrrolopyrizinyl; Stilbenzyl; substituted 1,2,4-triazoles; Tetracenyl; Tubercidine; Xanthine; Xanthosine-5'-TP; 2-thio-zebularine; 5-aza-2-thio-zebularine; 7-deaza-2-amino-purine; pyridin-4-one ribo- 60 nucleoside; 2-Amino-riboside-TP; Formycin A Formycin B TP; Pyrrolosine TP; 2'-OH-ara-adenosine TP; 2'-OH-ara-cytidine TP; 2'-OH-ara-uridine TP; 2'-OH-araguanosine TP; 5-(2-carbomethoxyvinyl)uridine TP; and N6-(19-Amino-pentaoxanonadecyl)adenosine TP.

In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) include a com-

58

bination of at least two (e.g., 2, 3, 4 or more) of the aforementioned modified nucleobases.

In some embodiments, modified nucleobases in polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) are selected from the group consisting of pseudouridine (ψ), N1-methylpseudouridine ($m^1\psi$), N1-ethylpseudouridine, 2-thiouridine, 4'-thiouridine, 5-methylcytosine, 2-thio-1-methyl-1-deaza-pseudouridine, 2-thio-1methyl-pseudouridine, 2-thio-5-aza-uridine, 2-thiodihydropseudouridine, 2-thio-dihydrouridine, 2-thiopseudouridine, 4-methoxy-2-thio-pseudouridine, 4-methoxy-pseudouridine, 4-thio-1-methyl-pseudouridine, 4-thio-pseudouridine, 5-aza-uridine, dihydropseudouridine, 5-methoxyuridine and 2'-O-methyl uridine. In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) include a combination of at least two (e.g., 2, 3, 4 or more) of the aforementioned modified nucleobases.

In some embodiments, modified nucleobases in polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) are selected from the group consisting of 1-methyl-pseudouridine ($m^1\psi$), 5-methoxy-uridine (m^5U), 5-methyl-cytidine (m^5C), pseudouridine (ψ), α -thio-guanosine and α -thio-adenosine. In some embodiments, polynucleotides includes a combination of at least two (e.g., 2, 3, 4 or more) of the aforementioned modified nucleobases.

In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise pseudouridine (ψ) and 5-methyl-cytidine (m⁵C). In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise 1-methylpseudouridine $(m^1\psi)$. In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise 1-methyl-pseudouridine ($m^1\psi$) and 35 5-methyl-cytidine (m⁵C). In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise 2-thiouridine (s²U). In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise 2-thiouridine and 5-methyl-cytidine (m⁵C). In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise methoxy-uridine (mo⁵U). In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise 5-methoxy-uridine (mo⁵U) and 5-methyl-cytidine (m⁵C). In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise 2'-O-methyl uridine. In some embodiments polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise 2'-Omethyl uridine and 5-methyl-cytidine (m⁵C). In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise N6-methyl-adenosine (m⁶A). In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise N6-methyl-adenosine (m⁶A) and 5-methyl-cytidine (m⁵C).

In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) are uniformly modified (e.g., fully modified, modified throughout the entire sequence) for a particular modification. For example, a polynucleotide can be uniformly modified with 5-methylcytidine (m⁵C), meaning that all cytosine residues in the mRNA sequence are replaced with 5-methyl-cytidine (m⁵C). Similarly, a polynucleotide can be uniformly modified for any type of nucleoside residue present in the sequence by replacement with a modified residue such as those set forth above.

Exemplary nucleobases and nucleosides having a modified cytosine include N4-acetyl-cytidine (ac4C), 5-methyl-cytidine (m5C), 5-halo-cytidine (e.g., 5-iodo-cytidine), 5-hydroxymethyl-cytidine (hm5C), 1-methyl-pseudoisocytidine, 2-thio-cytidine (s2C), and 2-thio-5-methyl-cytidine.

In some embodiments, a modified nucleobase is a modified uridine. Exemplary nucleobases and In some embodiments, a modified nucleobase is a modified cytosine. nucleosides having a modified uridine include 5-cyano uridine, and 4'-thio uridine.

In some embodiments, a modified nucleobase is a modified adenine. Exemplary nucleobases and nucleosides having a modified adenine include 7-deaza-adenine, 1-methyladenosine (m1A), 2-methyladenine (m2A), and N6-methyladenosine (m6A).

In some embodiments, a modified nucleobase is a modified guanine. Exemplary nucleobases and nucleosides having a modified guanine include inosine (I), 1-methyl-inosine (m1I), wyosine (imG), methylwyosine (mimG), 7-deazaguanosine, 7-cyano-7-deaza-guanosine (preQ0), 7-aminomethyl-7-deaza-guanosine (preQ1), 7-methyl-guanosine (m7G), 1-methyl-guanosine (m1G), 8-oxo-guanosine, 7-methyl-8-oxo-guanosine.

The polynucleotides of the present disclosure may be partially or fully modified along the entire length of the 25 molecule. For example, one or more or all or a given type of nucleotide (e.g., purine or pyrimidine, or any one or more or all of A, G, U, C) may be uniformly modified in a polynucleotide of the disclosure, or in a given predetermined sequence region thereof (e.g., in the mRNA including or 30 excluding the polyA tail). In some embodiments, all nucleotides X in a polynucleotide of the present disclosure (or in a given sequence region thereof) are modified nucleotides, wherein X may any one of nucleotides A, G, U, C, or any one of the combinations A+G, A+U, A+C, G+U, G+C, U+C, 35 A+G+U, A+G+C, G+U+C or A+G+C.

The polynucleotide may contain from about 1% to about 100% modified nucleotides (either in relation to overall nucleotide content, or in relation to one or more types of nucleotide, i.e., any one or more of A, G, U or C) or any 40 intervening percentage (e.g., from 1% to 20%, from 1% to 25%, from 1% to 50%, from 1% to 60%, from 1% to 70%, from 1% to 80%, from 1% to 90%, from 1% to 95%, from 10% to 20%, from 10% to 25%, from 10% to 50%, from 10% to 60%, from 10% to 70%, from 10% to 80%, from 45 10% to 90%, from 10% to 95%, from 10% to 100%, from 20% to 25%, from 20% to 50%, from 20% to 60%, from 20% to 70%, from 20% to 80%, from 20% to 90%, from 20% to 95%, from 20% to 100%, from 50% to 60%, from 50% to 70%, from 50% to 80%, from 50% to 90%, from 50 50% to 95%, from 50% to 100%, from 70% to 80%, from 70% to 90%, from 70% to 95%, from 70% to 100%, from 80% to 90%, from 80% to 95%, from 80% to 100%, from 90% to 95%, from 90% to 100%, and from 95% to 100%). Any remaining percentage is accounted for by the presence 55 of unmodified A, G, U, or C.

The polynucleotides may contain at a minimum 1% and at maximum 100% modified nucleotides, or any intervening percentage, such as at least 5% modified nucleotides, at least 10% modified nucleotides, at least 25% modified nucleotides, at least 80% modified nucleotides, or at least 90% modified nucleotides. For example, the polynucleotides may contain a modified pyrimidine such as a modified uracil or cytosine. In some embodiments, at least 5%, at least 10%, at least 25%, at least 50%, at least 25%, at least 50%, at least 25%, at least 25%, at least 65%, at least 90% or 100% of the uracil in the polynucleotide is replaced with a modified uracil (e.g., a

60

5-substituted uracil). The modified uracil can be replaced by a compound having a single unique structure, or can be replaced by a plurality of compounds having different structures (e.g., 2, 3, 4 or more unique structures). n some embodiments, at least 5%, at least 10%, at least 25%, at least 50%, at least 80%, at least 90% or 100% of the cytosine in the polynucleotide is replaced with a modified cytosine (e.g., a 5-substituted cytosine). The modified cytosine can be replaced by a compound having a single unique structure, or can be replaced by a plurality of compounds having different structures (e.g., 2, 3, 4 or more unique structures).

Thus, in some embodiments, the RNA (e.g., mRNA) vaccines comprise a 5'UTR element, an optionally codon optimized open reading frame, and a 3'UTR element, a poly(A) sequence and/or a polyadenylation signal wherein the RNA is not chemically modified.

In some embodiments, the modified nucleobase is a modified uracil. Exemplary nucleobases and nucleosides having a modified uracil include pseudouridine (ψ), pyridin-4-one ribonucleoside, 5-aza-uridine, 6-aza-uridine, 2-thio-5-aza-uridine, 2-thio-uridine (s²U), 4-thio-uridine (s⁴U), 4-thio-pseudouridine, 2-thio-pseudouridine, 5-hydroxy-uridine (ho⁵U), 5-aminoallyl-uridine, 5-halo-uridine (e.g., 5-iodo-uridineor 5-bromo-uridine), 3-methyl-uridine (m³U), 5-methoxy-uridine (mo⁵U), uridine 5-oxyacetic acid (cmo⁵U), uridine 5-oxyacetic acid methyl ester (mcmo⁵U), 5-carboxymethyl-uridine (cm⁵U), 1-carboxymethylpseudouridine, 5-carboxyhydroxymethyl-uridine (chm⁵U), 5-carboxyhydroxymethyl-uridine methyl ester (mchm⁵U), 5-methoxycarbonylmethyl-uridine (mcm⁵U), 5-methoxycarbonylmethyl-2-thio-uridine (mcm⁵s²U), 5-aminomethyl-2-thio-uridine (nm⁵s²U), 5-methylaminomethyl-uridine (mnm⁵U), 5-methylaminomethyl-2-thio-uridine (mnm^5s^2U) . 5-methylaminomethyl-2-seleno-uridine (mnm⁵se²U), 5-carbamoylmethyl-uridine (ncm⁵U), 5-carboxymethylaminomethyl-uridine (cmnm⁵U), 5-carboxymethylaminomethyl-2-thio-uridine (cmnm⁵s²U), 5-propynyluridine, 1-propynyl-pseudouridine, 5-taurinomethyl-uridine (τm⁵U), 1-taurinomethyl-pseudouridine, 5-taurinomethyl-2thio-uridine (tm⁵s²U), 1-taurinomethyl-4-thio-pseudouridine, 5-methyl-uridine (m⁵U, i.e., having the nucleobase deoxythymine), 1-methyl-pseudouridine ($m^1\psi$), 5-methyl-2-thio-uridine (m⁵s²U), 1-methyl-4-thio-pseudouridine $(m^1s^4\psi),$ 4-thio-1-methyl-pseudouridine, 3-methylpseudouridine $(m^3\psi)$, 2-thio-1-methyl-pseudouridine, 1-methyl-1-deaza-pseudouridine, 2-thio-1-methyl-1-deazapseudouridine, dihydrouridine (D), dihydropseudouridine, 5,6-dihydrouridine, 5-methyldihydrouridine (m⁵D), 2-thiodihydrouridine, 2-thio-dihydropseudouridine, 2-methoxyuridine, 2-methoxy-4-thio-uridine, 4-methoxy-pseudouri-4-methoxy-2-thio-pseudouridine, dine, N1-methyl-3-(3-amino-3-carboxypropyl)uridine (acp³U), 1-methyl-3-(3-amino-3-carboxypropyl)pseudouridine (acp³ ψ), 5-(isopentenylaminomethyl)uridine (inm⁵U), 5-(isopentenylaminomethyl)-2-thio-uridine (inm^5s^2U) , α-thio-uridine, 2'-O-methyl-uridine (Urn), 5,2'-O-dimethyluridine (m⁵Um), 2'-O-methyl-pseudouridine (ψm), 2-thio-2'-O-methyl-uridine (s²Um), 5-methoxycarbonylmethyl-2'-O-methyl-uridine (mcm⁵Um), 5-carbamoylmethyl-2'-Omethyl-uridine (ncm5Um), 5-carboxymethylaminomethyl-2'-O-methyl-uridine (cmnm⁵Um), 3,2'-O-dimethyl-uridine (m³Um), and 5-(isopentenylaminomethyl)-2'-O-methyl-uridine (inm⁵Um), 1-thio-uridine, deoxythymidine, 2'-F-arauridine. 2'-F-uridine, 2'-0H-ara-uridine, 5-(2-carbomethoxyvinyl) uridine, and 5-[3-(1-E-propenylamino)] uridine.

In some embodiments, the modified nucleobase is a modified cytosine. Exemplary nucleobases and nucleosides having a modified cytosine include 5-aza-cytidine, 6-azacytidine, pseudoisocytidine, 3-methyl-cytidine N4-acetyl-cytidine $(ac^4C),$ 5-formylcytidine $(f^5C), 5$ N4-methyl-cytidine (m⁴C), 5-methyl-cytidine (m^5C) , 5-halo-cytidine (e.g., 5-iodo-cytidine), 5-hydroxymethylcytidine (hm5C), 1-methyl-pseudoisocytidine, pyrrolo-cytidine, pyrrolo-pseudoisocytidine, 2-thio-cytidine (s²C), 2-thio-5-methyl-cytidine, 4-thio-pseudoisocytidine, 4-thio-10 1-methyl-pseudoisocytidine, 4-thio-1-methyl-1-deaza-pseudoisocytidine, 1-methyl-1-deaza-pseudoisocytidine, zebularine, 5-aza-zebularine, 5-methyl-zebularine, 5-aza-2-thiozebularine. 2-thio-zebularine. 2-methoxy-cytidine, 2-methoxy-5-methyl-cytidine, 4-methoxy-pseudoisocyti- 15 4-methoxy-1-methyl-pseudoisocytidine, (k₂C), α-thio-cytidine, 2'-O-methyl-cytidine (Cm), 5,2'-Odimethylcytidine (m⁵Cm), N4-acetyl-2'-O-methyl-cytidine (ac⁴Cm), N4,2'-O-dimethylcytidine (m⁴Cm), 5-formyl-2'-O-methyl-cytidine (f⁵Cm), N4,N4,2'-O-trimethyl-cytidine 20 (m⁴, Cm), 1-thio-cytidine, 2'-F-ara-cytidine, 2'-F-cytidine, and 2'-0H-ara-cytidine.

In some embodiments, the modified nucleobase is a modified adenine. Exemplary nucleobases and nucleosides having a modified adenine include 2-amino-purine, 2,6- 25 diaminopurine, 2-amino-6-halo-purine (e.g., 2-amino-6chloro-purine), 6-halo-purine (e.g., 6-chloro-purine), 2-amino-6-methyl-purine, 8-azido-adenosine, 7-deaza-adenine, 7-deaza-8-aza-adenine, 7-deaza-2-amino-purine, 7-deaza-8-aza-2-amino-purine, 7-deaza-2,6-diaminopurine, 30 7-deaza-8-aza-2,6-diaminopurine, 1-methyl-adenosine (m¹A), 2-methyl-adenine (m²A), N6-methyl-adenosine (m⁶A), 2-methylthio-N6-methyl-adenosine (ms² m⁶A), N6-isopentenyl-adenosine (i⁶A), 2-methylthio-N6-isopentenyl-adenosine (ms²i⁶A), N6-(cis-hydroxyisopentenyl)ad- 35 enosine (io⁶A), 2-methylthio-N6-(cis-hydroxyisopentenyl) adenosine (ms²io⁶A), N6-glycinylcarbamoyl-adenosine (g⁶A), N6-threonylcarbamoyl-adenosine (t⁶A), N6-methyl-N6-threonylcarbamoyl-adenosine (m⁶t⁶A), 2-methylthio-N6-threonylcarbamoyl-adenosine (ms²g⁶A), N6,N6-dim- 40 ethyl-adenosine (m⁶₂A), N6-hydroxynorvalylcarbamoyladenosine $(hn^6A),$ 2-methylthio-N6hydroxynorvalylcarbamoyl-adenosine (ms^2hn^6A) , N6-acetyl-adenosine (ac⁶A), 7-methyl-adenine, 2-methylthio-adenine, 2-methoxy-adenine, α-thio-adenosine, 2'-O- 45 methyl-adenosine (Am), N6,2'-O-dimethyl-adenosine (m⁶Am), N6,N6,2'-O-trimethyl-adenosine (m⁶₂ Am), 1,2'-O-dimethyl-adenosine (m¹Am), 2'-O-ribosyladenosine (phosphate) (Ar(p)), 2-amino-N6-methyl-purine, 1-thio-adenosine, 8-azido-adenosine, 2'-F-ara-adenosine, 2'-F-ad- 50 enosine, 2'-0H-ara-adenosine, and N6-(19-amino-pentaoxanonadecyl)-adenosine.

In some embodiments, the modified nucleobase is a modified guanine. Exemplary nucleobases and nucleosides having a modified guanine include inosine (I), 1-methyl- 55 inosine (m¹I), wyosine (imG), methylwyosine (mimG), 4-demethyl-wyosine (imG-14), isowyosine (imG2), wybutosine (yW), peroxywybutosine (o₂yW), hydroxywybutosine (OhyW), undermodified hydroxywybutosine (OhyW*), 7-deaza-guanosine, queuosine (Q), epoxyqueuosine (oQ), 60 galactosyl-queuosine (galQ), mannosyl-queuosine (manQ), 7-cyano-7-deaza-guanosine (pre Q_0), 7-aminomethyl-7deaza-guanosine (preQ₁), archaeosine (G±), 7-deaza-8-azaguanosine, 6-thio-guanosine, 6-thio-7-deaza-guanosine, 6-thio-7-deaza-8-aza-guanosine, 7-methyl-guanosine 65 6-thio-7-methyl-guanosine, 7-methyl-inosine, 6-methoxy-guanosine, 1-methyl-guanosine (m^1G) ,

N2-methyl-guanosine (m 2 G), N2,N2-dimethyl-guanosine (m 2 ₂G), N2,7-dimethyl-guano sine (m 2 .7G), N2,N2,7-dimethyl-guanosine (m 2 .7G), 8-oxo-guanosine, 7-methyl-8-oxo-guanosine, 1-methyl-6-thio-guanosine, N2-methyl-6-thio-guanosine, N2-methyl-6-thio-guanosine, N2-methyl-guanosine, N2-methyl-guanosine (Gm), N2-methyl-2'-O-methyl-guanosine (m 2 Gm), N2,N2-dimethyl-2'-O-methyl-guanosine (m 2 Gm), 1-methyl-2'-O-methyl-guanosine (m 2 Gm), N2,7-dimethyl-2'-O-methyl-guanosine (m 2 I-O-methyl-inosine (Im), 1,2'-O-dimethyl-inosine (m 1 Im), 2'-O-ribosylguanosine (phosphate) (Gr(p)), 1-thio-guanosine, 06-methyl-guanosine, 2'-F-ara-guanosine, and 2'-F-guanosine.

62

N-Linked Glycosylation Site Mutants

N-linked glycans of viral proteins play important roles in modulating the immune response. Glycans can be important for maintaining the appropriate antigenic conformations, shielding potential neutralization epitopes, and may alter the proteolytic susceptibility of proteins. Some viruses have putative N-linked glycosylation sites. Deletion or modification of an N-linked glycosylation site may enhance the immune response. Thus, the present disclosure provides, in some embodiments, RNA (e.g., mRNA) vaccines comprising nucleic acids (e.g., mRNA) encoding antigenic polypeptides that comprise a deletion or modification at one or more N-linked glycosylation sites.

In Vitro Transcription of RNA (e.g., mRNA)

Respiratory virus vaccines of the present disclosure comprise at least one RNA polynucleotide, such as a mRNA (e.g., modified mRNA). mRNA, for example, is transcribed in vitro from template DNA, referred to as an "in vitro transcription template." In some embodiments, an in vitro transcription template encodes a 5' untranslated (UTR) region, contains an open reading frame, and encodes a 3' UTR and a polyA tail. The particular nucleic acid sequence composition and length of an in vitro transcription template will depend on the mRNA encoded by the template.

A "5' untranslated region" (5'UTR) refers to a region of an mRNA that is directly upstream (i.e., 5') from the start codon (i.e., the first codon of an mRNA transcript translated by a ribosome) that does not encode a polypeptide.

A "3' untranslated region" (3'UTR) refers to a region of an mRNA that is directly downstream (i.e., 3') from the stop codon (i.e., the codon of an mRNA transcript that signals a termination of translation) that does not encode a polypeptide.

An "open reading frame" is a continuous stretch of DNA beginning with a start codon (e.g., methionine (ATG)), and ending with a stop codon (e.g., TAA, TAG or TGA) and encodes a polypeptide.

A "polyA tail" is a region of mRNA that is downstream, e.g., directly downstream (i.e., 3'), from the 3' UTR that contains multiple, consecutive adenosine monophosphates. A polyA tail may contain 10 to 300 adenosine monophosphates. For example, a polyA tail may contain 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290 or 300 adenosine monophosphates. In some embodiments, a polyA tail contains 50 to 250 adenosine monophosphates. In a relevant biological setting (e.g., in cells, in vivo) the poly(A) tail functions to protect mRNA from enzymatic degradation, e.g., in the cytoplasm, and aids in transcription termination, export of the mRNA from the nucleus and translation.

In some embodiments, a polynucleotide includes 200 to 3,000 nucleotides. For example, a polynucleotide may include 200 to 500, 200 to 1000, 200 to 1500, 200 to 3000,

500 to 1000, 500 to 1500, 500 to 2000, 500 to 3000, 1000 to 1500, 1000 to 2000, 1000 to 3000, 1500 to 3000, or 2000 to 3000 nucleotides.

Flagellin Adjuvants

Flagellin is an approximately 500 amino acid monomeric 5 protein that polymerizes to form the flagella associated with bacterial motion. Flagellin is expressed by a variety of flagellated bacteria (*Salmonella typhimurium* for example) as well as non-flagellated bacteria (such as *Escherichia coli*). Sensing of flagellin by cells of the innate immune system 10 (dendritic cells, macrophages, etc.) is mediated by the Toll-like receptor 5 (TLR5) as well as by Nod-like receptors (NLRs) Ipaf and Naip5. TLRs and NLRs have been identified as playing a role in the activation of innate immune response and adaptive immune response. As such, flagellin 15 provides an adjuvant effect in a vaccine.

The nucleotide and amino acid sequences encoding known flagellin polypeptides are publicly available in the NCBI GenBank database. The flagellin sequences from S. Typhimurium, H. Pylori, V. Cholera, S. marcesens, S. 20 flexneri, T. Pallidum, L. pneumophila, B. burgdorferei, C. difficile, R. meliloti, A. tumefaciens, R. lupini, B. clarridgeiae, P. Mirabilis, B. subtilus, L. monocytogenes, P. aeruginosa, and E. coli, among others are known.

A flagellin polypeptide, as used herein, refers to a full 25 length flagellin protein, immunogenic fragments thereof, and peptides having at least 50% sequence identify to a flagellin protein or immunogenic fragments thereof. Exemplary flagellin proteins include flagellin from *Salmonella typhi* (UniPro Entry number: Q56086), *Salmonella typhimu-* 30 rium (A0A0C9DG09), *Salmonella enteritidis* (A0A0C9BAB7), and *Salmonella choleraesuis* (Q6V2X8), and SEQ ID NO: 54-56 (Table 17). In some embodiments, the flagellin polypeptide has at least 60%, 70%, 75%, 80%, 90%, 95%, 97%, 98%, or 99% sequence identify to a 35 flagellin protein or immunogenic fragments thereof.

In some embodiments, the flagellin polypeptide is an immunogenic fragment. An immunogenic fragment is a portion of a flagellin protein that provokes an immune response. In some embodiments, the immune response is a 40 TLR5 immune response. An example of an immunogenic fragment is a flagellin protein in which all or a portion of a hinge region has been deleted or replaced with other amino acids. For example, an antigenic polypeptide may be inserted in the hinge region. Hinge regions are the hyper- 45 variable regions of a flagellin. Hinge regions of a flagellin are also referred to as "D3 domain or region, "propeller domain or region," "hypervariable domain or region" and "variable domain or region." "At least a portion of a hinge region," as used herein, refers to any part of the hinge region 50 of the flagellin, or the entirety of the hinge region. In other embodiments an immunogenic fragment of flagellin is a 20, 25, 30, 35, or 40 amino acid C-terminal fragment of flagel-

The flagellin monomer is formed by domains D0 through 55 D3. D0 and D1, which form the stem, are composed of tandem long alpha helices and are highly conserved among different bacteria. The D1 domain includes several stretches of amino acids that are useful for TLR5 activation. The entire D1 domain or one or more of the active regions within 60 the domain are immunogenic fragments of flagellin. Examples of immunogenic regions within the D1 domain include residues 88-114 and residues 411-431 (in *Salmonella typhimurium* FliC flagellin. Within the 13 amino acids in the 88-100 region, at least 6 substitutions are permitted 65 between *Salmonella* flagellin and other flagellins that still preserve TLR5 activation. Thus, immunogenic fragments of

64

flagellin include flagellin like sequences that activate TLR5 and contain a 13 amino acid motif that is 53% or more identical to the *Salmonella* sequence in 88-100 of FliC (LQRVRELAVQSAN; SEQ ID NO: 84).

In some embodiments, the RNA (e.g., mRNA) vaccine includes an RNA that encodes a fusion protein of flagellin and one or more antigenic polypeptides. A "fusion protein" as used herein, refers to a linking of two components of the construct. In some embodiments, a carboxy-terminus of the antigenic polypeptide is fused or linked to an amino terminus of the flagellin polypeptide. In other embodiments, an amino-terminus of the antigenic polypeptide is fused or linked to a carboxy-terminus of the flagellin polypeptide. The fusion protein may include, for example, one, two, three, four, five, six or more flagellin polypeptides linked to one, two, three, four, five, six or more antigenic polypeptides. When two or more flagellin polypeptides and/or two or more antigenic polypeptides are linked such a construct may be referred to as a "multimer."

Each of the components of a fusion protein may be directly linked to one another or they may be connected through a linker. For instance, the linker may be an amino acid linker. The amino acid linker encoded for by the RNA (e.g., mRNA) vaccine to link the components of the fusion protein may include, for instance, at least one member selected from the group consisting of a lysine residue, a glutamic acid residue, a serine residue and an arginine residue. In some embodiments the linker is 1-30, 1-25, 1-25, 5-10, 5, 15, or 5-20 amino acids in length.

In other embodiments the RNA (e.g., mRNA) vaccine includes at least two separate RNA polynucleotides, one encoding one or more antigenic polypeptides and the other encoding the flagellin polypeptide. The at least two RNA polynucleotides may be co-formulated in a carrier such as a lipid nanoparticle.

Broad Spectrum RNA (e.g., mRNA) Vaccines

There may be situations where persons are at risk for infection with more than one strain of hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1). RNA (e.g., mRNA) therapeutic vaccines are particularly amenable to combination vaccination approaches due to a number of factors including, but not limited to, speed of manufacture, ability to rapidly tailor vaccines to accommodate perceived geographical threat, and the like. Moreover, because the vaccines utilize the human body to produce the antigenic protein, the vaccines are amenable to the production of larger, more complex antigenic proteins, allowing for proper folding, surface expression, antigen presentation, etc. in the human subject. To protect against more than one strain of hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1), a combination vaccine can be administered that includes RNA (e.g., mRNA) encoding at least one antigenic polypeptide protein (or antigenic portion thereof) of a first respiratory virus and further includes RNA encoding at least one antigenic polypeptide protein (or antigenic portion thereof) of a second respiratory virus. RNA (e.g., mRNA) can be co-formulated, for example, in a single lipid nanoparticle (LNP) or can be formulated in separate LNPs for co-administration.

Methods of Treatment

Provided herein are compositions (e.g., pharmaceutical compositions), methods, kits and reagents for prevention and/or treatment of respiratory diseases/infections in

humans and other mammals. Respiratory virus RNA (e.g. mRNA) vaccines can be used as therapeutic or prophylactic agents, alone or in combination with other vaccine(s). They may be used in medicine to prevent and/or treat respiratory disease/infection. In exemplary aspects, the RNA (e.g., 5 mRNA) vaccines of the present disclosure are used to provide prophylactic protection from hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1). Prophylactic protection 10 from hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) can be achieved following administration of a RNA (e.g., mRNA) vaccine of the present disclosure. Respiratory virus 15 RNA (e.g., mRNA) vaccines of the present disclosure may be used to treat or prevent viral "co-infections" containing two or more respiratory infections. Vaccines can be administered once, twice, three times, four times or more, but it is likely sufficient to administer the vaccine once (optionally 20 followed by a single booster). It is possible, although less desirable, to administer the vaccine to an infected individual to achieve a therapeutic response. Dosing may need to be adjusted accordingly.

A method of eliciting an immune response in a subject 25 against hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) is provided in aspects of the present disclosure. The method involves administering to the subject a respiratory virus 30 RNA (e.g., mRNA) vaccine comprising at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH 35 and/or HCoV-HKU1) antigenic polypeptide thereof, thereby inducing in the subject an immune response specific to hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) 40 antigenic polypeptide or an immunogenic fragment thereof, wherein anti-antigenic polypeptide antibody titer in the subject is increased following vaccination relative to antiantigenic polypeptide antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vac- 45 cine against hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1). An "anti-antigenic polypeptide antibody" is a serum antibody the binds specifically to the antigenic polypeptide. 50

In some embodiments, a RNA (e.g., mRNA) vaccine (e.g., a hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1 RNA vaccine) capable of eliciting an immune response is 55 administered intramuscularly via a composition including a compound according to Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (IIe) (e.g., Compound 3, 18, 20, 25, 26, 29, 30, 60, 108-112, or 122).

A prophylactically effective dose is a therapeutically 60 effective dose that prevents infection with the virus at a clinically acceptable level. In some embodiments the therapeutically effective dose is a dose listed in a package insert for the vaccine. A traditional vaccine, as used herein, refers to a vaccine other than the RNA (e.g., mRNA) vaccines of 65 the present disclosure. For instance, a traditional vaccine includes but is not limited to live/attenuated microorganism

66

vaccines, killed/inactivated microorganism vaccines, subunit vaccines, protein antigen vaccines, DNA vaccines, VLP vaccines, etc. In exemplary embodiments, a traditional vaccine is a vaccine that has achieved regulatory approval and/or is registered by a national drug regulatory body, for example the Food and Drug Administration (FDA) in the United States or the European Medicines Agency (EMA).

In some embodiments the anti-antigenic polypeptide anti-body titer in the subject is increased 1 log to 10 log following vaccination relative to anti-antigenic polypeptide antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1).

In some embodiments the anti-antigenic polypeptide anti-body titer in the subject is increased 1 log, 2 log, 3 log, 5 log or 10 log following vaccination relative to anti-antigenic polypeptide antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1).

A method of eliciting an immune response in a subject against hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) is provided in other aspects of the disclosure. The method involves administering to the subject a respiratory virus RNA (e.g., mRNA) vaccine comprising at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) antigenic polypeptide or an immunogenic fragment thereof, thereby inducing in the subject an immune response specific to hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) antigenic polypeptide or an immunogenic fragment thereof, wherein the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine against the hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) at 2 times to 100 times the dosage level relative to the RNA (e.g., mRNA) vaccine.

In some embodiments, the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at 2, 3, 4, 5, 10, 50, 100 times the dosage level relative to the hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) RNA (e.g., mRNA) vaccine.

In some embodiments the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at 10-100 times, or 100-1000 times, the dosage level relative to the hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) RNA (e.g., mRNA) vaccine.

In some embodiments the immune response is assessed by determining [protein] antibody titer in the subject.

Some aspects of the present disclosure provide a method of eliciting an immune response in a subject against a In some embodiments the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at 2, 3, 4, 5, 10, 50, 100 times the dosage level relative to the hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) RNA (e.g., mRNA) vaccine by administering to the subject a respiratory virus RNA (e.g., mRNA) vaccine comprising at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, 15 HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) antigenic polypeptide, thereby inducing in the subject an immune response specific to the antigenic polypeptide or an immunogenic fragment thereof, wherein the immune response in the subject is induced 2 days to 10 weeks earlier 20 relative to an immune response induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against the hMPV, PIV3, RSV, MeV and/or Beta-CoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or 25 HCoV-HKU1). In some embodiments, the immune response in the subject is induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine at 2 times to 100 times the dosage level relative to the RNA (e.g.,

In some embodiments, the immune response in the subject is induced 2 days earlier, or 3 days earlier, relative to an immune response induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine.

In some embodiments the immune response in the subject 35 is induced 1 week, 2 weeks, 3 weeks, 5 weeks, or 10 weeks earlier relative to an immune response induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine.

Also provided herein is a method of eliciting an immune 40 response in a subject against hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) by administering to the subject a respiratory virus RNA (e.g., mRNA) vaccine having an open 45 reading frame encoding a first antigenic polypeptide, wherein the RNA polynucleotide does not include a stabilization element, and wherein an adjuvant is not co-formulated or co-administered with the vaccine.

Therapeutic and Prophylactic Compositions

Provided herein are compositions (e.g., pharmaceutical compositions), methods, kits and reagents for prevention, treatment or diagnosis of hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH 55 and/or HCoV-HKU1) in humans and other mammals, for example. Respiratory virus RNA (e.g. mRNA) vaccines can be used as therapeutic or prophylactic agents. They may be used in medicine to prevent and/or treat infectious disease. In some embodiments, the respiratory RNA (e.g., mRNA) ovaccines of the present disclosure are used fin the priming of immune effector cells, for example, to activate peripheral blood mononuclear cells (PBMCs) ex vivo, which are then infused (re-infused) into a subject.

In some embodiments, respiratory virus vaccine containing RNA (e.g., mRNA) polynucleotides as described herein can be administered to a subject (e.g., a mammalian subject,

such as a human subject), and the RNA (e.g., mRNA) polynucleotides are translated in vivo to produce an antigenic polypeptide.

The respiratory virus RNA (e.g., mRNA) vaccines may be induced for translation of a polypeptide (e.g., antigen or immunogen) in a cell, tissue or organism. In some embodiments, such translation occurs in vivo, although such translation may occur ex vivo, in culture or in vitro. In some embodiments, the cell, tissue or organism is contacted with an effective amount of a composition containing a respiratory virus RNA (e.g., mRNA) vaccine that contains a polynucleotide that has at least one a translatable region encoding an antigenic polypeptide.

An "effective amount" of an respiratory virus RNA (e.g. mRNA) vaccine is provided based, at least in part, on the target tissue, target cell type, means of administration, physical characteristics of the polynucleotide (e.g., size, and extent of modified nucleosides) and other components of the vaccine, and other determinants. In general, an effective amount of the respiratory virus RNA (e.g., mRNA) vaccine composition provides an induced or boosted immune response as a function of antigen production in the cell, preferably more efficient than a composition containing a corresponding unmodified polynucleotide encoding the same antigen or a peptide antigen. Increased antigen production may be demonstrated by increased cell transfection (the percentage of cells transfected with the RNA, e.g., mRNA, vaccine), increased protein translation from the polynucleotide, decreased nucleic acid degradation (as demonstrated, for example, by increased duration of protein translation from a modified polynucleotide), or altered antigen specific immune response of the host cell.

In some embodiments, RNA (e.g. mRNA) vaccines (including polynucleotides their encoded polypeptides) in accordance with the present disclosure may be used for treatment of hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1).

Respiratory RNA (e.g. mRNA) vaccines may be administered prophylactically or therapeutically as part of an active immunization scheme to healthy individuals or early in infection during the incubation phase or during active infection after onset of symptoms. In some embodiments, the amount of RNA (e.g., mRNA) vaccine of the present disclosure provided to a cell, a tissue or a subject may be an amount effective for immune prophylaxis.

Respiratory virus RNA (e.g. mRNA) vaccines may be administrated with other prophylactic or therapeutic com-50 pounds. As a non-limiting example, a prophylactic or therapeutic compound may be an adjuvant or a booster. As used herein, when referring to a prophylactic composition, such as a vaccine, the term "booster" refers to an extra administration of the prophylactic (vaccine) composition. A booster (or booster vaccine) may be given after an earlier administration of the prophylactic composition. The time of administration between the initial administration of the prophylactic composition and the booster may be, but is not limited to, 1 minute, 2 minutes, 3 minutes, 4 minutes, 5 minutes, 6 minutes, 7 minutes, 8 minutes, 9 minutes, 10 minutes, 15 minutes, 20 minutes 35 minutes, 40 minutes, 45 minutes, 50 minutes, 55 minutes, 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 9 hours, 10 hours, 11 hours, 12 hours, 13 hours, 14 hours, 15 hours, 16 hours, 17 hours, 18 hours, 19 hours, 20 hours, 21 hours, 22 hours, 23 hours, 1 day, 36 hours, 2 days, 3 days, 4 days, 5 days, 6 days, 1 week, 10 days, 2 weeks, 3 weeks, 1 month, 2 months, 3

months, 4 months, 5 months, 6 months, 7 months, 8 months, 9 months, 10 months, 11 months, 1 year, 18 months, 2 years, 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 11 years, 12 years, 13 years, 14 years, 15 years, 16 years, 17 years, 18 years, 19 years, 20 years, 25 years, 30 years, 35 years, 40 years, 45 years, 50 years, 55 years, 60 years, 65 years, 70 years, 75 years, 80 years, 85 years, 90 years, 95 years or more than 99 years. In some embodiments, the time of administration between the initial administration of the prophylactic composition and the booster may be, but is not limited to, 1 week, 2 weeks, 3 weeks, 1 month, 2 months, 3 months, 6 months or 1 year.

In some embodiments, respiratory virus RNA (e.g. mRNA) vaccines may be administered intramuscularly or intradermally, similarly to the administration of inactivated vaccines known in the art.

Respiratory virus RNA (e.g. mRNA) vaccines may be utilized in various settings depending on the prevalence of the infection or the degree or level of unmet medical need. 20 As a non-limiting example, the RNA (e.g., mRNA) vaccines may be utilized to treat and/or prevent a variety of respiratory infections. RNA (e.g., mRNA) vaccines have superior properties in that they produce much larger antibody titers and produce responses early than commercially available 25 anti-viral agents/compositions.

Provided herein are pharmaceutical compositions including respiratory virus RNA (e.g. mRNA) vaccines and RNA (e.g. mRNA) vaccine compositions and/or complexes optionally in combination with one or more pharmaceuti- 30 cally acceptable excipients.

Respiratory virus RNA (e.g. mRNA) vaccines may be formulated or administered alone or in conjunction with one or more other components. For instance, hMPV/PIV3/RSV RNA (e.g., mRNA) vaccines (vaccine compositions) may 35 comprise other components including, but not limited to, adjuvants.

In some embodiments, respiratory virus (e.g. mRNA) vaccines do not include an adjuvant (they are adjuvant free).

Respiratory virus RNA (e.g. mRNA) vaccines may be 40 formulated or administered in combination with one or more pharmaceutically-acceptable excipients. In some embodiments, vaccine compositions comprise at least one additional active substances, such as, for example, a therapeutically-active substance, a prophylactically-active substance, 45 or a combination of both. Vaccine compositions may be sterile, pyrogen-free or both sterile and pyrogen-free. General considerations in the formulation and/or manufacture of pharmaceutical agents, such as vaccine compositions, may be found, for example, in Remington: The Science and 50 Practice of Pharmacy 21st ed., Lippincott Williams & Wilkins, 2005 (incorporated herein by reference in its entirety).

In some embodiments, respiratory virus RNA (e.g. mRNA) vaccines are administered to humans, human 55 patients or subjects. For the purposes of the present disclosure, the phrase "active ingredient" generally refers to the RNA (e.g., mRNA) vaccines or the polynucleotides contained therein, for example, RNA polynucleotides (e.g., mRNA polynucleotides) encoding antigenic polypeptides. 60

Formulations of the respiratory virus vaccine compositions described herein may be prepared by any method known or hereafter developed in the art of pharmacology. In general, such preparatory methods include the step of bringing the active ingredient (e.g., mRNA polynucleotide) into 65 association with an excipient and/or one or more other accessory ingredients, and then, if necessary and/or desir-

70

able, dividing, shaping and/or packaging the product into a desired single- or multi-dose unit.

Relative amounts of the active ingredient, the pharmaceutically acceptable excipient, and/or any additional ingredients in a pharmaceutical composition in accordance with the disclosure will vary, depending upon the identity, size, and/or condition of the subject treated and further depending upon the route by which the composition is to be administered. By way of example, the composition may comprise between 0.1% and 100%, e.g., between 0.5 and 50%, between 1-30%, between 5-80%, at least 80% (w/w) active ingredient.

Respiratory virus RNA (e.g. mRNA) vaccines can be formulated using one or more excipients to: (1) increase stability; (2) increase cell transfection; (3) permit the sustained or delayed release (e.g., from a depot formulation); (4) alter the biodistribution (e.g., target to specific tissues or cell types); (5) increase the translation of encoded protein in vivo; and/or (6) alter the release profile of encoded protein (antigen) in vivo. In addition to traditional excipients such as any and all solvents, dispersion media, diluents, or other liquid vehicles, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, excipients can include, without limitation, lipidoids, liposomes, lipid nanoparticles, polymers, lipoplexes, core-shell nanoparticles, peptides, proteins, cells transfected with respiratory virus RNA (e.g. mRNA) vaccines (e.g., for transplantation into a subject), hyaluronidase, nanoparticle mimics and combinations thereof.

Stabilizing Elements

Naturally-occurring eukaryotic mRNA molecules have been found to contain stabilizing elements, including, but not limited to untranslated regions (UTR) at their 5'-end (5'UTR) and/or at their 3'-end (3'UTR), in addition to other structural features, such as a 5'-cap structure or a 3'-poly(A) tail. Both the 5'UTR and the 3'UTR are typically transcribed from the genomic DNA and are elements of the premature mRNA. Characteristic structural features of mature mRNA, such as the 5'-cap and the 3'-poly(A) tail are usually added to the transcribed (premature) mRNA during mRNA processing. The 3'-poly(A) tail is typically a stretch of adenine nucleotides added to the 3'-end of the transcribed mRNA. It can comprise up to about 400 adenine nucleotides. In some embodiments the length of the 3'-poly(A) tail may be an essential element with respect to the stability of the individual mRNA.

In some embodiments the RNA (e.g., mRNA) vaccine may include one or more stabilizing elements. Stabilizing elements may include for instance a histone stem-loop. A stem-loop binding protein (SLBP), a 32 kDa protein has been identified. It is associated with the histone stem-loop at the 3'-end of the histone messages in both the nucleus and the cytoplasm. Its expression level is regulated by the cell cycle; it peaks during the S-phase, when histone mRNA levels are also elevated. The protein has been shown to be essential for efficient 3'-end processing of histone premRNA by the U7 snRNP. SLBP continues to be associated with the stem-loop after processing, and then stimulates the translation of mature histone mRNAs into histone proteins in the cytoplasm. The RNA binding domain of SLBP is conserved through metazoa and protozoa; its binding to the histone stem-loop depends on the structure of the loop. The minimum binding site includes at least three nucleotides 5' and two nucleotides 3' relative to the stem-loop.

In some embodiments, the RNA (e.g., mRNA) vaccines include a coding region, at least one histone stem-loop, and optionally, a poly(A) sequence or polyadenylation signal.

The poly(A) sequence or polyadenylation signal generally should enhance the expression level of the encoded protein. The encoded protein, in some embodiments, is not a histone protein, a reporter protein (e.g. Luciferase, GFP, EGFP, β-Galactosidase, EGFP), or a marker or selection protein (e.g. alpha-Globin, Galactokinase and Xanthine:guanine phosphoribosyl transferase (GPT)).

In some embodiments, the combination of a poly(A) sequence or polyadenylation signal and at least one histone stem-loop, even though both represent alternative mechanisms in nature, acts synergistically to increase the protein expression beyond the level observed with either of the individual elements. It has been found that the synergistic effect of the combination of poly(A) and at least one histone stem-loop does not depend on the order of the elements or 15 the length of the poly(A) sequence.

In some embodiments, the RNA (e.g., mRNA) vaccine does not comprise a histone downstream element (HDE). "Histone downstream element" (HDE) includes a purinerich polynucleotide stretch of approximately 15 to 20 20 nucleotides 3' of naturally occurring stem-loops, representing the binding site for the U7 snRNA, which is involved in processing of histone pre-mRNA into mature histone mRNA. Ideally, the inventive nucleic acid does not include an intron

In some embodiments, the RNA (e.g., mRNA) vaccine may or may not contain a enhancer and/or promoter sequence, which may be modified or unmodified or which may be activated or inactivated. In some embodiments, the histone stem-loop is generally derived from histone genes, 30 and includes an intramolecular base pairing of two neighbored partially or entirely reverse complementary sequences separated by a spacer, including (e.g., consisting of) a short sequence, which forms the loop of the structure. The unpaired loop region is typically unable to base pair with 35 either of the stem loop elements. It occurs more often in RNA, as is a key component of many RNA secondary structures, but may be present in single-stranded DNA as well. Stability of the stem-loop structure generally depends on the length, number of mismatches or bulges, and base 40 composition of the paired region. In some embodiments, wobble base pairing (non-Watson-Crick base pairing) may result. In some embodiments, the at least one histone stemloop sequence comprises a length of 15 to 45 nucleotides.

In other embodiments the RNA (e.g., mRNA) vaccine 45 may have one or more AU-rich sequences removed. These sequences, sometimes referred to as AURES are destabilizing sequences found in the 3'UTR. The AURES may be removed from the RNA (e.g., mRNA) vaccines. Alternatively the AURES may remain in the RNA (e.g., mRNA) 50 vaccine.

Nanoparticle Formulations

In some embodiments, respiratory virus RNA (e.g. mRNA) vaccines are formulated in a nanoparticle. In some embodiments, respiratory virus RNA (e.g. mRNA) vaccines 55 are formulated in a lipid nanoparticle. In some embodiments, respiratory virus RNA (e.g. mRNA) vaccines are formulated in a lipid-polycation complex, referred to as a cationic lipid nanoparticle. As a non-limiting example, the polycation may include a cationic peptide or a polypeptide 60 such as, but not limited to, polylysine, polyornithine and/or polyarginine. In some embodiments, respiratory virus RNA (e.g., mRNA) vaccines are formulated in a lipid nanoparticle that includes a non-cationic lipid such as, but not limited to, cholesterol or dioleoyl phosphatidylethanolamine (DOPE). 65

A lipid nanoparticle formulation may be influenced by, but not limited to, the selection of the cationic lipid com72

ponent, the degree of cationic lipid saturation, the nature of the PEGylation, ratio of all components and biophysical parameters such as size. In one example by Semple et al. (*Nature Biotech.* 2010 28:172-176), the lipid nanoparticle formulation is composed of 57.1% cationic lipid, 7.1% dipalmitoylphosphatidylcholine, 34.3% cholesterol, and 1.4% PEG-c-DMA. As another example, changing the composition of the cationic lipid can more effectively deliver siRNA to various antigen presenting cells (Basha et al. *Mol Ther.* 2011 19:2186-2200).

In some embodiments, lipid nanoparticle formulations may comprise 35 to 45% cationic lipid, 40% to 50% cationic lipid, 50% to 60% cationic lipid and/or 55% to 65% cationic lipid. In some embodiments, the ratio of lipid to RNA (e.g., mRNA) in lipid nanoparticles may be 5:1 to 20:1, 10:1 to 25:1, 15:1 to 30:1 and/or at least 30:1.

In some embodiments, the ratio of PEG in the lipid nanoparticle formulations may be increased or decreased and/or the carbon chain length of the PEG lipid may be modified from C14 to C18 to alter the pharmacokinetics and/or biodistribution of the lipid nanoparticle formulations. As a non-limiting example, lipid nanoparticle formulations may contain 0.5% to 3.0%, 1.0% to 3.5%, 1.5% to 4.0%, 2.0% to 4.5%, 2.5% to 5.0% and/or 3.0% to 6.0% of the lipid molar ratio of PEG-c-DOMG (R-3-[(ω-methoxy-poly(ethyleneglycol)2000)carbamoyl)]-1,2-dimyristyloxypropyl-3amine) (also referred to herein as PEG-DOMG) as compared to the cationic lipid, DSPC and cholesterol. In some embodiments, the PEG-c-DOMG may be replaced with a PEG lipid such as, but not limited to, PEG-DSG (1,2-Distearoyl-snglycerol, methoxypolyethylene glycol), PEG-DMG (1,2-Dimyristoyl-sn-glycerol) and/or PEG-DPG (1,2-Dipalmitoyl-sn-glycerol, methoxypolyethylene glycol). The cationic lipid may be selected from any lipid known in the art such as, but not limited to, DLin-MC3-DMA, DLin-DMA, C12-200 and DLin-KC2-DMA.

In some embodiments, an respiratory virus RNA (e.g. mRNA) vaccine formulation is a nanoparticle that comprises at least one lipid. The lipid may be selected from, but is not limited to, DLin-DMA, DLin-K-DMA, 98N12-5, C12-200, DLin-MC3-DMA, DLin-KC2-DMA, DODMA, PLGA, PEG, PEG-DMG, PEGylated lipids and amino alcohol lipids. In some embodiments, the lipid may be a cationic lipid such as, but not limited to, DLin-DMA, DLin-D-DMA, DLin-MC3-DMA, DLin-KC2-DMA, DODMA and amino alcohol lipids. The amino alcohol cationic lipid may be the lipids described in and/or made by the methods described in U.S. Patent Publication No. US20130150625, herein incorporated by reference in its entirety. As a non-limiting example, the cationic lipid may be 2-amino-3-[(9Z,12Z)octadeca-9,12-dien-1-yloxy]-2-{[(9Z,2Z)-octadeca-9,12dien-1-yloxy]methyl}propan-1-ol (Compound US20130150625); 2-amino-3-[(9Z)-octadec-9-en-1-yloxy]-2-{[(9Z)-octadec-9-en-1-yloxy]methyl}propan-1-ol (Compound 2 in US20130150625); 2-amino-3-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]-2-[(octyloxy)methyl]propan-1-ol (Compound 3 in US20130150625); and 2-(dimethylamino)- $3-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]-2-\{(9Z,12Z)-oc-4\}$ tadeca-9,12-dien-1-yloxy|methyl|propan-1-ol (Compound 4 in US20130150625); or any pharmaceutically acceptable salt or stereoisomer thereof.

Lipid nanoparticle formulations typically comprise a lipid, in particular, an ionizable cationic lipid, for example, 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), or di((Z)-non-2-en-1-yl) 9-((4-

(dimethylamino)butanoyl)oxy)heptadecanedioate (L319),

and further comprise a neutral lipid, a sterol and a molecule capable of reducing particle aggregation, for example a PEG or PEG-modified lipid.

73

In some embodiments, a lipid nanoparticle formulation consists essentially of (i) at least one lipid selected from the 5 group consisting of 2,2-dilinoleyl-4-dimethylaminoethyl-[1, 3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy) heptadecanedioate (L319); (ii) a neutral lipid selected from 10 DSPC, DPPC, POPC, DOPE and SM; (iii) a sterol, e.g., cholesterol; and (iv) a PEG-lipid, e.g., PEG-DMG or PEG-cDMA, in a molar ratio of 20-60% cationic lipid:5-25% neutral lipid:25-55% sterol; 0.5-15% PEG-lipid.

In some embodiments, a lipid nanoparticle formulation 15 includes 25% to 75% on a molar basis of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate 20 (L319), e.g., 35 to 65%, 45 to 65%, 60%, 57.5%, 50% or 40% on a molar basis.

In some embodiments, a lipid nanoparticle formulation includes 0.5% to 15% on a molar basis of the neutral lipid, e.g., 3 to 12%, 5 to 10% or 15%, 10%, or 7.5% on a molar 25 basis. Examples of neutral lipids include, without limitation, DSPC, POPC, DPPC, DOPE and SM. In some embodiments, the formulation includes 5% to 50% on a molar basis of the sterol (e.g., 15 to 45%, 20 to 40%, 40%, 38.5%, 35%, or 31% on a molar basis. A non-limiting example of a sterol 30 is cholesterol. In some embodiments, a lipid nanoparticle formulation includes 0.5% to 20% on a molar basis of the PEG or PEG-modified lipid (e.g., 0.5 to 10%, 0.5 to 5%, 1.5%, 0.5%, 1.5%, 3.5%, or 5% on a molar basis. In some embodiments, a PEG or PEG modified lipid comprises a 35 PEG molecule of an average molecular weight of 2,000 Da. In some embodiments, a PEG or PEG modified lipid comprises a PEG molecule of an average molecular weight of less than 2,000, for example around 1,500 Da, around 1,000 Da, or around 500 Da. Non-limiting examples of PEG- 40 MC3-DMA), modified lipids include PEG-distearoyl glycerol (PEG-DMG) (also referred herein as PEG-C14 or C14-PEG), PEG-cDMA (further discussed in Reyes et al. J. Controlled Release, 107, 276-287 (2005) the contents of which are herein incorporated by reference in their entirety).

In some embodiments, lipid nanoparticle formulations include 25-75% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-50 (dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 0.5-15% of the neutral lipid, 5-50% of the sterol, and 0.5-20% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, lipid nanoparticle formulations include 35-65% of a cationic lipid selected from 2,2-dili-55 noleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 3-12% of the neutral lipid, 15-45% of the sterol, and 60 0.5-10% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, lipid nanoparticle formulations include 45-65% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-65 MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319),

74

5-10% of the neutral lipid, 25-40% of the sterol, and 0.5-10% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, lipid nanoparticle formulations include 60% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 7.5% of the neutral lipid, 31% of the sterol, and 1.5% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, lipid nanoparticle formulations include 50% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 10% of the neutral lipid, 38.5% of the sterol, and 1.5% of the PEG or PEGmodified lipid on a molar basis.

In some embodiments, lipid nanoparticle formulations include 50% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 10% of the neutral lipid, 35% of the sterol, 4.5% or 5% of the PEG or PEG-modified lipid, and 0.5% of the targeting lipid on a molar basis.

In some embodiments, lipid nanoparticle formulations include 40% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 15% of the neutral lipid, 40% of the sterol, and 5% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, lipid nanoparticle formulations include 57.2% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 7.1% of the neutral lipid, 34.3% of the sterol, and 1.4% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, lipid nanoparticle formulations include 57.5% of a cationic lipid selected from the PEG lipid is PEG-cDMA (PEG-cDMA is further discussed in Reyes et al. (J. Controlled Release, 107, 276-287 (2005), the contents of which are herein incorporated by reference in their entirety), 7.5% of the neutral lipid, 31.5% of the sterol, and 3.5% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, lipid nanoparticle formulations consists essentially of a lipid mixture in molar ratios of 20-70% cationic lipid:5-45% neutral lipid:20-55% cholesterol: 0.5-15% PEG-modified lipid. In some embodiments, lipid nanoparticle formulations consists essentially of a lipid mixture in a molar ratio of 20-60% cationic lipid:5-25% neutral lipid: 25-55% cholesterol: 0.5-15% PEG-modified lipid.

In some embodiments, the molar lipid ratio is 50/10/38.5/1.5 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG, PEG-DSG or PEG-DPG), 57.2/7.1134.3/1.4 (mol % cationic lipid/neutral lipid, e.g., DPPC/Chol/PEG-modified lipid, e.g., PEG-cDMA), 40/15/40/5 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG), 50/10/35/4.5/0.5 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DSG), 50/10/35/5 (cationic

lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG), 40/10/40/10 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG or PEG-cDMA), 35/15/40/10 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG or PEG-cDMA) or 52/13/30/5 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG or PEG-cDMA).

Non-limiting examples of lipid nanoparticle compositions and methods of making them are described, for example, in 10 Semple et al. (2010) *Nat. Biotechnol.* 28:172-176; Jayarama et al. (2012), *Angew. Chem. Int. Ed.*, 51: 8529-8533; and Maier et al. (2013) *Molecular Therapy* 21, 1570-1578 (the contents of each of which are incorporated herein by reference in their entirety).

In some embodiments, lipid nanoparticle formulations may comprise a cationic lipid, a PEG lipid and a structural lipid and optionally comprise a non-cationic lipid. As a non-limiting example, a lipid nanoparticle may comprise 40-60% of cationic lipid, 5-15% of a non-cationic lipid, 20 1-2% of a PEG lipid and 30-50% of a structural lipid. As another non-limiting example, the lipid nanoparticle may comprise 50% cationic lipid, 10% non-cationic lipid, 1.5% PEG lipid and 38.5% structural lipid. As yet another non-limiting example, a lipid nanoparticle may comprise 55% cationic lipid, 10% non-cationic lipid, 2.5% PEG lipid and 32.5% structural lipid. In some embodiments, the cationic lipid may be any cationic lipid described herein such as, but not limited to, DLin-KC2-DMA, DLin-MC3-DMA and 1319

In some embodiments, the lipid nanoparticle formulations described herein may be 4 component lipid nanoparticles. The lipid nanoparticle may comprise a cationic lipid, a non-cationic lipid, a PEG lipid and a structural lipid. As a non-limiting example, the lipid nanoparticle may comprise 35 40-60% of cationic lipid, 5-15% of a non-cationic lipid, 1-2% of a PEG lipid and 30-50% of a structural lipid. As another non-limiting example, the lipid nanoparticle may comprise 50% cationic lipid, 10% non-cationic lipid, 1.5% PEG lipid and 38.5% structural lipid. As yet another non- 40 limiting example, the lipid nanoparticle may comprise 55% cationic lipid, 10% non-cationic lipid, 2.5% PEG lipid and 32.5% structural lipid. In some embodiments, the cationic lipid may be any cationic lipid described herein such as, but not limited to, DLin-KC2-DMA, DLin-MC3-DMA and 45 L319.

In some embodiments, the lipid nanoparticle formulations described herein may comprise a cationic lipid, a noncationic lipid, a PEG lipid and a structural lipid. As a non-limiting example, the lipid nanoparticle comprise 50% 50 of the cationic lipid DLin-KC2-DMA, 10% of the noncationic lipid DSPC, 1.5% of the PEG lipid PEG-DOMG and 38.5% of the structural lipid cholesterol. As a nonlimiting example, the lipid nanoparticle comprise 50% of the cationic lipid DLin-MC3-DMA, 10% of the non-cationic 55 lipid DSPC, 1.5% of the PEG lipid PEG-DOMG and 38.5% of the structural lipid cholesterol. As a non-limiting example, the lipid nanoparticle comprise 50% of the cationic lipid DLin-MC3-DMA, 10% of the non-cationic lipid DSPC, 1.5% of the PEG lipid PEG-DMG and 38.5% of the 60 structural lipid cholesterol. As yet another non-limiting example, the lipid nanoparticle comprise 55% of the cationic lipid L319, 10% of the non-cationic lipid DSPC, 2.5% of the PEG lipid PEG-DMG and 32.5% of the structural lipid cholesterol.

Relative amounts of the active ingredient, the pharmaceutically acceptable excipient, and/or any additional ingre76

dients in a vaccine composition may vary, depending upon the identity, size, and/or condition of the subject being treated and further depending upon the route by which the composition is to be administered. For example, the composition may comprise between 0.1% and 99% (w/w) of the active ingredient. By way of example, the composition may comprise between 0.1% and 100%, e.g., between 0.5 and 50%, between 1-30%, between 5-80%, at least 80% (w/w) active ingredient.

In some embodiments, the respiratory virus RNA (e.g. mRNA) vaccine composition may comprise the polynucle-otide described herein, formulated in a lipid nanoparticle comprising MC3, Cholesterol, DSPC and PEG2000-DMG, the buffer trisodium citrate, sucrose and water for injection. As a non-limiting example, the composition comprises: 2.0 mg/mL of drug substance (e.g., polynucleotides encoding H10N8 hMPV), 21.8 mg/mL of MC3, 10.1 mg/mL of cholesterol, 5.4 mg/mL of DSPC, 2.7 mg/mL of PEG2000-DMG, 5.16 mg/mL of trisodium citrate, 71 mg/mL of sucrose and 1.0 mL of water for injection.

In some embodiments, a nanoparticle (e.g., a lipid nanoparticle) has a mean diameter of 10-500 nm, 20-400 nm, 30-300 nm, 40-200 nm. In some embodiments, a nanoparticle (e.g., a lipid nanoparticle) has a mean diameter of 50-150 nm, 50-200 nm, 80-100 nm or 80-200 nm.

Liposomes, Lipoplexes, and Lipid Nanoparticles

The RNA (e.g., mRNA) vaccines of the disclosure can be formulated using one or more liposomes, lipoplexes, or lipid nanoparticles. In some embodiments, pharmaceutical compositions of RNA (e.g., mRNA) vaccines include liposomes. Liposomes are artificially-prepared vesicles which may primarily be composed of a lipid bilayer and may be used as a delivery vehicle for the administration of nutrients and pharmaceutical formulations. Liposomes can be of different sizes such as, but not limited to, a multilamellar vesicle (MLV) which may be hundreds of nanometers in diameter and may contain a series of concentric bilayers separated by narrow aqueous compartments, a small unicellular vesicle (SUV) which may be smaller than 50 nm in diameter, and a large unilamellar vesicle (LUV) which may be between 50 and 500 nm in diameter. Liposome design may include, but is not limited to, opsonins or ligands in order to improve the attachment of liposomes to unhealthy tissue or to activate events such as, but not limited to, endocytosis. Liposomes may contain a low or a high pH in order to improve the delivery of the pharmaceutical formulations.

The formation of liposomes may depend on the physicochemical characteristics such as, but not limited to, the pharmaceutical formulation entrapped and the liposomal ingredients, the nature of the medium in which the lipid vesicles are dispersed, the effective concentration of the entrapped substance and its potential toxicity, any additional processes involved during the application and/or delivery of the vesicles, the optimization size, polydispersity and the shelf-life of the vesicles for the intended application, and the batch-to-batch reproducibility and possibility of large-scale production of safe and efficient liposomal products.

In some embodiments, pharmaceutical compositions described herein may include, without limitation, liposomes such as those formed from 1,2-dioleyloxy-N,N-dimethylaminopropane (DODMA) liposomes, DiLa2 liposomes from Marina Biotech (Bothell, Wash.), 1,2-dilinoleyloxy-3-dimethylaminopropane (DLin-DMA), 2,2-dilinoleyl-4-(2-dimethylaminoethyl)-[1,3]-dioxolane (DLin-KC2-DMA), and MC3 (US20100324120; herein incorporated by reference in its entirety) and liposomes which may deliver small

77 molecule drugs such as, but not limited to, DOXIL® from Janssen Biotech, Inc. (Horsham, Pa.).

In some embodiments, pharmaceutical compositions described herein may include, without limitation, liposomes such as those formed from the synthesis of stabilized plas- 5 mid-lipid particles (SPLP) or stabilized nucleic acid lipid particle (SNALP) that have been previously described and shown to be suitable for oligonucleotide delivery in vitro and in vivo (see Wheeler et al. Gene Therapy. 1999 6:271-281; Zhang et al. Gene Therapy. 1999 6:1438-1447; Jeffs et 10 al. Pharm Res. 2005 22:362-372; Morrissey et al., Nat Biotechnol. 2005 2:1002-1007; Zimmermann et al., Nature. 2006 441:111-114; Heyes et al. J Contr Rel. 2005 107:276-287; Semple et al. Nature Biotech. 2010 28:172-176; Judge et al. J Clin Invest. 2009 119:661-673; deFougerolles Hum 15 Gene Ther. 2008 19:125-132; U.S. Patent Publication No US20130122104; all of which are incorporated herein in their entireties). The original manufacture method by Wheeler et al. was a detergent dialysis method, which was later improved by Jeffs et al. and is referred to as the 20 spontaneous vesicle formation method. The liposome formulations are composed of 3 to 4 lipid components in addition to the polynucleotide. As an example a liposome can contain, but is not limited to, 55% cholesterol, 20% disteroylphosphatidyl choline (DSPC), 10% PEG-S-DSG, 25 1,2-dioleyloxy-N,N-dimethylaminopropane (DODMA), as described by Jeffs et al. As another example, certain liposome formulations may contain, but are not limited to, 48% cholesterol, 20% DSPC, 2% PEG-c-DMA, and 30% cationic lipid, where the cationic lipid can be 30 1,2-distearloxy-N,N-dimethylaminopropane (DSDMA), DODMA, DLin-DMA, or 1,2-dilinolenyloxy-3-dimethylaminopropane (DLenDMA), as described by Heyes et al.

In some embodiments, liposome formulations may comprise from about 25.0% cholesterol to about 40.0% choles- 35 terol, from about 30.0% cholesterol to about 45.0% cholesterol, from about 35.0% cholesterol to about 50.0% cholesterol and/or from about 48.5% cholesterol to about 60% cholesterol. In some embodiments, formulations may comprise a percentage of cholesterol selected from the group 40 consisting of 28.5%, 31.5%, 33.5%, 36.5%, 37.0%, 38.5%, 39.0% and 43.5%. In some embodiments, formulations may comprise from about 5.0% to about 10.0% DSPC and/or from about 7.0% to about 15.0% DSPC.

In some embodiments, the RNA (e.g., mRNA) vaccine 45 pharmaceutical compositions may be formulated in liposomes such as, but not limited to, DiLa2 liposomes (Marina Biotech, Bothell, Wash.), SMARTICLES® (Marina Biotech, Bothell, Wash.), neutral DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) based liposomes (e.g., siRNA deliv- 50 ery for ovarian cancer (Landen et al. Cancer Biology & Therapy 2006 5(12)1708-1713); herein incorporated by reference in its entirety) and hyaluronan-coated liposomes (Quiet Therapeutics, Israel).

In some embodiments, the cationic lipid may be a low 55 molecular weight cationic lipid such as those described in U.S. Patent Application No. 20130090372, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the RNA (e.g., mRNA) vaccines may be formulated in a lipid vesicle, which may have 60 crosslinks between functionalized lipid bilayers.

In some embodiments, the RNA (e.g., mRNA) vaccines may be formulated in a lipid-polycation complex. The formation of the lipid-polycation complex may be accomplished by methods known in the art and/or as described in 65 U.S. Pub. No. 20120178702, herein incorporated by reference in its entirety. As a non-limiting example, the polyca78

tion may include a cationic peptide or a polypeptide such as, but not limited to, polylysine, polyornithine and/or polyarginine. In some embodiments, the RNA (e.g., mRNA) vaccines may be formulated in a lipid-polycation complex, which may further include a non-cationic lipid such as, but not limited to, cholesterol or dioleovl phosphatidylethanolamine (DOPE).

In some embodiments, the ratio of PEG in the lipid nanoparticle (LNP) formulations may be increased or decreased and/or the carbon chain length of the PEG lipid may be modified from C14 to C18 to alter the pharmacokinetics and/or biodistribution of the LNP formulations. As a non-limiting example, LNP formulations may contain from about 0.5% to about 3.0%, from about 1.0% to about 3.5%, from about 1.5% to about 4.0%, from about 2.0% to about 4.5%, from about 2.5% to about 5.0% and/or from about 3.0% to about 6.0% of the lipid molar ratio of PEG-c-DOMG $(R-3-[(\omega-methoxy-poly(ethyleneglycol)$ 2000)carbamoyl)]-1,2-dimyristyloxypropyl-3-amine) (also referred to herein as PEG-DOMG) as compared to the cationic lipid, DSPC and cholesterol. In some embodiments, the PEG-c-DOMG may be replaced with a PEG lipid such as, but not limited to, PEG-DSG (1,2-Distearoyl-sn-glycerol, methoxypolyethylene glycol), PEG-DMG (1,2-Dimyristoyl-sn-glycerol) and/or PEG-DPG (1,2-Dipalmitoyl-sn-glycerol, methoxypolyethylene glycol). The cationic lipid may be selected from any lipid known in the art such as, but not limited to, DLin-MC3-DMA, DLin-DMA, C12-200 and DLin-KC2-DMA.

In some embodiments, the RNA (e.g., mRNA) vaccines may be formulated in a lipid nanoparticle.

In some embodiments, the RNA (e.g., mRNA) vaccine formulation comprising the polynucleotide is a nanoparticle which may comprise at least one lipid. The lipid may be selected from, but is not limited to, DLin-DMA, DLin-K-DMA, 98N12-5, C12-200, DLin-MC3-DMA, DLin-KC2-DMA, DODMA, PLGA, PEG, PEG-DMG, PEGylated lipids and amino alcohol lipids. In another aspect, the lipid may be a cationic lipid such as, but not limited to, DLin-DMA, DLin-D-DMA, DLin-MC3-DMA, DLin-KC2-DMA, DODMA and amino alcohol lipids. The amino alcohol cationic lipid may be the lipids described in and/or made by the methods described in U.S. Patent Publication No. US20130150625, herein incorporated by reference in its entirety. As a non-limiting example, the cationic lipid may 2-amino-3-[(9Z,12Z)-octadeca-9,12-dien-1-vloxy]-2-{ [(9Z,2Z)-octadeca-9,12-dien-1-yloxy]methyl}propan-1-ol (Compound 1 in US20130150625); 2-amino-3-[(9Z)-octadec-9-en-1-yloxy]-2- $\{[(9Z)-octadec-9-en-1-yloxy]$ methyl\propan-1-ol (Compound 2 in US20130150625); 2-amino-3-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]-2-[(octyloxy)methyl]propan-1-ol (Compound US20130150625); and 2-(dimethylamino)-3-[(9Z,12Z)-oc $tadeca-9,12-dien-1-yloxy]-2-\big\{[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]-2-\big\}[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]-2-\big][(9Z,12Z)-octadeca-9,12-0-yloxy]-2-\big][(9$ dien-1-yloxy]methyl}propan-1-ol (Compound US20130150625); or any pharmaceutically acceptable salt or stereoisomer thereof.

Lipid nanoparticle formulations typically comprise a lipid, in particular, an ionizable cationic lipid, for example, 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), or di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), and further comprise a neutral lipid, a sterol and a molecule capable of reducing particle aggregation, for example a PEG or PEG-modified lipid.

In some embodiments, the lipid nanoparticle formulation consists essentially of (i) at least one lipid selected from the group consisting of 2,2-dilinoleyl-4-dimethylaminoethyl-[1, 3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-5 en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy) heptadecanedioate (L319); (ii) a neutral lipid selected from DSPC, DPPC, POPC, DOPE and SM; (iii) a sterol, e.g., cholesterol; and (iv) a PEG-lipid, e.g., PEG-DMG or PEG-cDMA, in a molar ratio of about 20-60% cationic lipid:5-10 25% neutral lipid:25-55% sterol; 0.5-15% PEG-lipid.

In some embodiments, the formulation includes from about 25% to about 75% on a molar basis of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), e.g., from about 35 to about 65%, from about 45 to about 65%, about 60%, about 57.5%, about 50% or about 40% on a molar basis.

In some embodiments, the formulation includes from about 0.5% to about 15% on a molar basis of the neutral lipid e.g., from about 3 to about 12%, from about 5 to about 10% or about 15%, about 10%, or about 7.5% on a molar basis. Examples of neutral lipids include, but are not limited to, 25 DSPC, POPC, DPPC, DOPE and SM. In some embodiments, the formulation includes from about 5% to about 50% on a molar basis of the sterol (e.g., about 15 to about 45%, about 20 to about 40%, about 40%, about 38.5%, about 35%, or about 31% on a molar basis. An exemplary sterol is cholesterol. In some embodiments, the formulation includes from about 0.5% to about 20% on a molar basis of the PEG or PEG-modified lipid (e.g., about 0.5 to about 10%, about 0.5 to about 5%, about 1.5%, about 0.5%, about 1.5%, about 3.5%, or about 5% on a molar basis. In some embodiments, 35 the PEG or PEG modified lipid comprises a PEG molecule of an average molecular weight of 2,000 Da. In other embodiments, the PEG or PEG modified lipid comprises a PEG molecule of an average molecular weight of less than 2,000, for example around 1,500 Da, around 1,000 Da, or 40 around 500 Da. Examples of PEG-modified lipids include, but are not limited to, PEG-distearoyl glycerol (PEG-DMG) (also referred herein as PEG-C14 or C14-PEG), PEGcDMA (further discussed in Reyes et al. J. Controlled Release, 107, 276-287 (2005) the contents of which are 45 herein incorporated by reference in their entirety)

In some embodiments, the formulations of the present disclosure include 25-75% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 0.5-15% of the neutral lipid, 5-50% of the sterol, and 0.5-20% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, the formulations of the present 55 disclosure include 35-65% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 60 3-12% of the neutral lipid, 15-45% of the sterol, and 0.5-10% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, the formulations of the present disclosure include 45-65% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-

80

(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 5-10% of the neutral lipid, 25-40% of the sterol, and 0.5-10% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, the formulations of the present disclosure include about 60% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), about 7.5% of the neutral lipid, about 31% of the sterol, and about 1.5% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, the formulations of the present disclosure include about 50% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), about 10% of the neutral lipid, about 38.5% of the sterol, and about 1.5% of the PEG or PEG-modified lipid on a molar basis

In some embodiments, the formulations of the present disclosure include about 50% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), about 10% of the neutral lipid, about 35% of the sterol, about 4.5% or about 5% of the PEG or PEG-modified lipid, and about 0.5% of the targeting lipid on a molar basis.

In some embodiments, the formulations of the present disclosure include about 40% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), about 15% of the neutral lipid, about 40% of the sterol, and about 5% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, the formulations of the present disclosure include about 57.2% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), about 7.1% of the neutral lipid, about 34.3% of the sterol, and about 1.4% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, the formulations of the present disclosure include about 57.5% of a cationic lipid selected from the PEG lipid is PEG-cDMA (PEG-cDMA is further discussed in Reyes et al. (J. Controlled Release, 107, 276-287 (2005), the contents of which are herein incorporated by reference in their entirety), about 7.5% of the neutral lipid, about 31.5% of the sterol, and about 3.5% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, lipid nanoparticle formulation consists essentially of a lipid mixture in molar ratios of about 20-70% cationic lipid:5-45% neutral lipid:20-55% cholesterol: 0.5-15% PEG-modified lipid; more preferably in a molar ratio of about 20-60% cationic lipid:5-25% neutral lipid:25-55% cholesterol: 0.5-15% PEG-modified lipid.

In some embodiments, the molar lipid ratio is approximately 50/10/38.5/1.5 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG, PEG-DSG or PEG-DPG), 57.2/7.1134.3/1.4 (mol % cationic lipid/neutral lipid, e.g., DPPC/Chol/PEG-modified lipid,

e.g., PEG-cDMA), 40/15/40/5 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG), 50/10/35/4.5/0.5 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DSG), 50/10/35/5 (cationic lipid/neutral lipid, e.g., DSPC/Chol/ 5 PEG-modified lipid, e.g., PEG-DMG), 40/10/40/10 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG or PEG-cDMA), 35/15/40/10 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG or PEG-cDMA) or 52/13/30/5 (mol % 10 cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG or PEG-cDMA).

Examples of lipid nanoparticle compositions and methods of making same are described, for example, in Semple et al. (2010) *Nat. Biotechnol.* 28:172-176; Jayarama et al. (2012), 15 *Angew. Chem. Int. Ed.*, 51: 8529-8533; and Maier et al. (2013) *Molecular Therapy* 21, 1570-1578 (the contents of each of which are incorporated herein by reference in their entirety).

In some embodiments, the lipid nanoparticle formulations 20 described herein may comprise a cationic lipid, a PEG lipid and a structural lipid and optionally comprise a non-cationic lipid. As a non-limiting example, the lipid nanoparticle may comprise about 40-60% of cationic lipid, about 5-15% of a non-cationic lipid, about 1-2% of a PEG lipid and about 25 30-50% of a structural lipid. As another non-limiting example, the lipid nanoparticle may comprise about 50% cationic lipid, about 10% non-cationic lipid, about 1.5% PEG lipid and about 38.5% structural lipid. As yet another non-limiting example, the lipid nanoparticle may comprise 30 about 55% cationic lipid, about 10% non-cationic lipid, about 2.5% PEG lipid and about 32.5% structural lipid. In some embodiments, the cationic lipid may be any cationic lipid described herein such as, but not limited to, DLin-KC2-DMA, DLin-MC3-DMA and L319.

In some embodiments, the lipid nanoparticle formulations described herein may be 4 component lipid nanoparticles. The lipid nanoparticle may comprise a cationic lipid, a non-cationic lipid, a PEG lipid and a structural lipid. As a non-limiting example, the lipid nanoparticle may comprise 40 about 40-60% of cationic lipid, about 5-15% of a noncationic lipid, about 1-2% of a PEG lipid and about 30-50% of a structural lipid. As another non-limiting example, the lipid nanoparticle may comprise about 50% cationic lipid, about 10% non-cationic lipid, about 1.5% PEG lipid and 45 about 38.5% structural lipid. As yet another non-limiting example, the lipid nanoparticle may comprise about 55% cationic lipid, about 10% non-cationic lipid, about 2.5% PEG lipid and about 32.5% structural lipid. In some embodiments, the cationic lipid may be any cationic lipid described 50 herein such as, but not limited to, DLin-KC2-DMA, DLin-MC3-DMA and L319.

In some embodiments, the lipid nanoparticle formulations described herein may comprise a cationic lipid, a non-cationic lipid, a PEG lipid and a structural lipid. As a 55 non-limiting example, the lipid nanoparticle comprise about 50% of the cationic lipid DLin-KC2-DMA, about 10% of the non-cationic lipid DSPC, about 1.5% of the PEG lipid PEG-DOMG and about 38.5% of the structural lipid cholesterol. As a non-limiting example, the lipid nanoparticle comprise about 50% of the cationic lipid DLin-MC3-DMA, about 10% of the non-cationic lipid DSPC, about 1.5% of the PEG lipid PEG-DOMG and about 38.5% of the structural lipid cholesterol. As a non-limiting example, the lipid nanoparticle comprise about 50% of the cationic lipid DLin-MC3-DMA, about 10% of the non-cationic lipid DLin-MC3-DMA, about 10% of the non-cationic lipid DSPC, about 1.5% of the PEG lipid PEG-DMG and about 38.5% of

the structural lipid cholesterol. As yet another non-limiting example, the lipid nanoparticle comprise about 55% of the cationic lipid L319, about 10% of the non-cationic lipid DSPC, about 2.5% of the PEG lipid PEG-DMG and about 32.5% of the structural lipid cholesterol.

As a non-limiting example, the cationic lipid may be selected from (20Z,23Z)—N,N-dimethylnonacosa-20,23dien-10-amine, (17Z,20Z)-N,N-dimemylhexacosa-17,20dien-9-amine, (1Z,19Z)—N5N-dimethylpentacosa-16, 19-dien-8-amine, (13Z,16Z)—N,N-dimethyldocosa-13,16-(12Z,15Z)—N,N-dimethylhenicosa-12,15dien-5-amine, dien-4-amine, (14Z,17Z)—N,N-dimethyltricosa-14,17-(15Z,18Z)—N,N-dimethyltetracosa-15,18dien-6-amine, dien-7-amine, (18Z,21Z)—N,N-dimethylheptacosa-18,21dien-10-amine, (15Z,18Z)—N,N-dimethyltetracosa-15,18dien-5-amine, (14Z,17Z)—N,N-dimethyltricosa-14,17dien-4-amine, (19Z,22Z)—N,N-dimeihyloctacosa-19,22dien-9-amine, (18Z,21 Z)-N,N-dimethylheptacosa-18,21dien-8 amine, (17Z,20Z)—N,N-dimethylhexacosa-17,20dien-7-amine, (16Z,19Z)—N.N-dimethylpentacosa-16,19dien-6-amine, (22Z,25Z)—N,N-dimethylhentriaconta-22, 25-dien-10-amine, (21 Z,24Z)—N,N-dimethyltriaconta-21, 24-dien-9-amine, (18Z)—N,N-dimetylheptacos-18-en-10amine, (17Z)—N,N-dimethylhexacos-17-en-9-amine, (19Z, 22Z)—N,N-dimethyloctacosa-19,22-dien-7-amine, dimethylheptacosan-10-amine, (20Z,23Z)—N-ethyl-Nmethylnonacosa-20,23-dien-10-amine, 1-[(11Z,14Z)-1nonylicosa-11,14-dien-1-yl]pyrrolidine, (20Z)-N.Ndimethylheptacos-20-en-10-amine, (15Z)—N,N-dimethyl eptacos-15-en-10-amine, (14Z)—N,N-dimethylnonacos-14en-10-amine, (17Z)—N,N-dimethylnonacos-17-en-10-(24Z)—N,N-dimethyltritriacont-24-en-10-amine, amine, (20Z)—N,N-dimethylnonacos-20-en-10-amine, (22Z)—N, N-dimethylhentriacont-22-en-10-amine, (16Z)—N,N-dim-35 ethylpentacos-16-en-8-amine, (12Z,15Z)—N,N-dimethyl-2-nonylhenicosa-12,15-dien-1-amine, (13Z,16Z)—N,Ndimethyl-3-nonyldocosa-13,16-dien-1 N,Namine. dimethyl-1-[(1S,2R)-2-octylcyclopropyl]eptadecan-8-1-[(1S,2R)-2-hexylcyclopropyl]-N,Namine, dimethylnonadecan-10-amine, N,N-dimethyl-1-[(1S,2R)-2octylcyclopropyl]nonadecan-10-amine, N,N-dimethyl-21-[(1S,2R)-2-octylcyclopropyl]henicosan-10-amine, dimethyl-1-[(1S,2S)-2-{[(1R,2R)-2-pentylcyclopropyl] methyl\cyclopropyl\nonadecan-10-amine,N,N-dimethyl-1-[(1S,2R)-2-octylcyclopropyl]hexadecan-8-amine, N,Ndimethyl-[(1R,2S)-2-undecylcyclopropyl]tetradecan-5-N,N-dimethyl-3-{7-[(1S,2R)-2-octylcyclopropyl] heptyl\dodecan-1-amine, 1-[(1R,2S)-2-heptylcyclopropyl]-N,N-dimethyloctadecan-9-amine, 1-[(1S,2R)-2decylcyclopropyl]-N,N-dimethylpentadecan-6-amine, N,Ndimethyl-1-R1S,2R)-2-octylcyclopropyllpentadecan-8amine, R—N,N-dimethyl-1-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]-3-(octyloxy)propan-2-amine, S—N,N-dimethyl-1-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]-3-(octyloxy) 1-{2-[(9Z,12Z)-octadeca-9,12-dien-1propan-2-amine, yloxy]-1-[(octyloxy)methyl]ethyl}pyrrolidine, (2S)—N,Ndimethyl-1-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]-3-[(5Z)-oct-5-en-1-yloxy]propan-2-amine, $1-\{2-[(9Z,12Z)-(9Z,12Z)$ octadeca-9,12-dien-1-yloxy]-1-[(octyloxy)methyl] ethyl}azetidine, (2S)-1-(hexyloxy)-N,N-dimethyl-3-R9Z, 12Z)-octadeca-9,12-dien-1-yloxylpropan-2-amine, (2S)-1-(heptyloxy)-N,N-dimethyl-3-R9Z,12Z)-octadeca-9,12dien-1-yloxylpropan-2-amine, N,N-dimethyl-1-(nonyloxy)-3-R9Z,12Z)-octadeca-9,12-dien-1-yloxylpropan-2-amine, N,N-dimethyl-1-[(9Z)-octadec-9-en-1-yloxy]-3-(octyloxy) propan-2-amine; (2S)-N,N-dimethyl-1-[(6Z,9Z,12Z)-octa-

deca-6,9,12-trien-1-yloxy]-3-(octyloxy)propan-2-amine,

(2S)-1-[(11Z,14Z)-icosa-11,14-dien-1-yloxy]-N,N-dimethyl-3-(pentyloxy)propan-2-amine, (2S)-1-(hexyloxy)-3-[(11Z,14Z)-icosa-11,14-dien-1-yloxy]-N,N-dimethylpropan-2-amine, 1-[(11Z,14Z)-icosa-11,14-dien-1-yloxy]-N,N-1-[(13Z,16Z)- 5 dimethyl-3-(octyloxy)propan-2-amine, docosa-13,16-dien-1-yloxy]-N,N-dimethyl-3-(octyloxy) propan-2-amine, (2S)-1-[(13Z,16Z)-docosa-13,16-dien-1yloxy]-3-(hexyloxy)-N,N-dimethylpropan-2-amine, (2S)-1-[(13Z)-docos-13-en-1-yloxy]-3-(hexyloxy)-N,Ndimethylpropan-2-amine, 1-[(13Z)-docos-13-en-1-yloxy]- 10 N,N-dimethyl-3-(octyloxy)propan-2-amine, 1-[(9Z)hexadec-9-en-1-yloxy]-N,N-dimethyl-3-(octyloxy)propan-2-amine, (2R)-N,N-dimethyl-H(1-metoyloctyl)oxy]-3-[(9Z, 12Z)-octadeca-9,12-dien-1-yloxy]propan-2-amine, (2R)-1-[(3,7-dimethyloctyl)oxy]-N,N-dimethyl-3-R9Z,12Z)octadeca-9,12-dien-1-yloxylpropan-2-amine, N,Ndimethyl-1-(octyloxy)-3-({8-R1S,25})-2-{[(1R,2R)-2pentylcyclopropyl]methyl}cyclopropyl]octyl}oxy)propan-2-amine, N,N-dimethyl-1-1 [8-(2-oc1ylcyclopropyl)octyl] oxy\-3-(octyloxy)propan-2-amine and (11E,20Z,23Z)—N, 20 N-dimethylnonacosa-11,20,2-trien-10-amine pharmaceutically acceptable salt or stereoisomer thereof.

In some embodiments, the LNP formulations of the RNA (e.g., mRNA) vaccines may contain PEG-c-DOMG at 3% lipid molar ratio. In some embodiments, the LNP formulations of the RNA (e.g., mRNA) vaccines may contain PEG-c-DOMG at 1.5% lipid molar ratio.

In some embodiments, the pharmaceutical compositions of the RNA (e.g., mRNA) vaccines may include at least one of the PEGylated lipids described in International Publication No. WO2012099755, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the LNP formulation may contain PEG-DMG 2000 (1,2-dimyristoyl-sn-glycero-3-phophoethanolamine-N-[methoxy(polyethylene glycol)-2000). In 35 some embodiments, the LNP formulation may contain PEG-DMG 2000, a cationic lipid known in the art and at least one other component. In some embodiments, the LNP formulation may contain PEG-DMG 2000, a cationic lipid known in the art, DSPC and cholesterol. As a non-limiting example, 40 the LNP formulation may contain PEG-DMG 2000, DLin-DMA, DSPC and cholesterol. As another non-limiting example the LNP formulation may contain PEG-DMG 2000, DLin-DMA, DSPC and cholesterol in a molar ratio of 2:40:10:48 (see e.g., Geall et al., Nonviral delivery of 45 self-amplifying RNA (e.g., mRNA) vaccines, PNAS 2012; PMID: 22908294, the contents of each of which are herein incorporated by reference in their entirety).

The lipid nanoparticles described herein may be made in a sterile environment.

In some embodiments, the LNP formulation may be formulated in a nanoparticle such as a nucleic acid-lipid particle. As a non-limiting example, the lipid particle may comprise one or more active agents or therapeutic agents; one or more cationic lipids comprising from about 50 mol % 55 to about 85 mol % of the total lipid present in the particle; one or more non-cationic lipids comprising from about 13 mol % to about 49.5 mol % of the total lipid present in the particle; and one or more conjugated lipids that inhibit aggregation of particles comprising from about 0.5 mol % to 60 about 2 mol % of the total lipid present in the particle.

The nanoparticle formulations may comprise a phosphate conjugate. The phosphate conjugate may increase in vivo circulation times and/or increase the targeted delivery of the nanoparticle. As a non-limiting example, the phosphate 65 conjugates may include a compound of any one of the formulas described in International Application No.

84

WO2013033438, the contents of which are herein incorporated by reference in its entirety.

The nanoparticle formulation may comprise a polymer conjugate. The polymer conjugate may be a water soluble conjugate. The polymer conjugate may have a structure as described in U.S. Patent Application No. 20130059360, the contents of which are herein incorporated by reference in its entirety. In some embodiments, polymer conjugates with the polynucleotides of the present disclosure may be made using the methods and/or segmented polymeric reagents described in U.S. Patent Application No. 20130072709, the contents of which are herein incorporated by reference in its entirety. In some embodiments, the polymer conjugate may have pendant side groups comprising ring moieties such as, but not limited to, the polymer conjugates described in U.S. Patent Publication No. US20130196948, the contents which are herein incorporated by reference in its entirety.

The nanoparticle formulations may comprise a conjugate to enhance the delivery of nanoparticles of the present disclosure in a subject. Further, the conjugate may inhibit phagocytic clearance of the nanoparticles in a subject. In one aspect, the conjugate may be a "self" peptide designed from the human membrane protein CD47 (e.g., the "self" particles described by Rodriguez et al. (Science 2013 339, 971-975), herein incorporated by reference in its entirety). As shown by Rodriguez et al., the self peptides delayed macrophagemediated clearance of nanoparticles which enhanced delivery of the nanoparticles. In another aspect, the conjugate may be the membrane protein CD47 (e.g., see Rodriguez et al. Science 2013 339, 971-975, herein incorporated by reference in its entirety). Rodriguez et al. showed that, similarly to "self" peptides, CD47 can increase the circulating particle ratio in a subject as compared to scrambled peptides and PEG coated nanoparticles.

In some embodiments, the RNA (e.g., mRNA) vaccines of the present disclosure are formulated in nanoparticles which comprise a conjugate to enhance the delivery of the nanoparticles of the present disclosure in a subject. The conjugate may be the CD47 membrane or the conjugate may be derived from the CD47 membrane protein, such as the "self" peptide described previously. In some embodiments, the nanoparticle may comprise PEG and a conjugate of CD47 or a derivative thereof. In some embodiments, the nanoparticle may comprise both the "self" peptide described above and the membrane protein CD47.

In some embodiments, a "self" peptide and/or CD47 protein may be conjugated to a virus-like particle or pseudovirion, as described herein for delivery of the RNA (e.g., mRNA) vaccines of the present disclosure.

In some embodiments, RNA (e.g., mRNA) vaccine pharmaceutical compositions comprising the polynucleotides of the present disclosure and a conjugate that may have a degradable linkage. Non-limiting examples of conjugates include an aromatic moiety comprising an ionizable hydrogen atom, a spacer moiety, and a water-soluble polymer. As a non-limiting example, pharmaceutical compositions comprising a conjugate with a degradable linkage and methods for delivering such pharmaceutical compositions are described in U.S. Patent Publication No. US20130184443, the contents of which are herein incorporated by reference in their entirety.

The nanoparticle formulations may be a carbohydrate nanoparticle comprising a carbohydrate carrier and a RNA (e.g., mRNA) vaccine. As a non-limiting example, the carbohydrate carrier may include, but is not limited to, an anhydride-modified phytoglycogen or glycogen-type material, phtoglycogen octenyl succinate, phytoglycogen beta-

dextrin, anhydride-modified phytoglycogen beta-dextrin. (See e.g., International Publication No. WO2012109121; the contents of which are herein incorporated by reference in their entirety).

Nanoparticle formulations of the present disclosure may 5 be coated with a surfactant or polymer in order to improve the delivery of the particle. In some embodiments, the nanoparticle may be coated with a hydrophilic coating such as, but not limited to, PEG coatings and/or coatings that have a neutral surface charge. The hydrophilic coatings may help 10 to deliver nanoparticles with larger payloads such as, but not limited to, RNA (e.g., mRNA) vaccines within the central nervous system. As a non-limiting example nanoparticles comprising a hydrophilic coating and methods of making such nanoparticles are described in U.S. Patent Publication 15 No. US20130183244, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the lipid nanoparticles of the present disclosure may be hydrophilic polymer particles. Non-limiting examples of hydrophilic polymer particles and 20 methods of making hydrophilic polymer particles are described in U.S. Patent Publication No. US20130210991, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the lipid nanoparticles of the 25 present disclosure may be hydrophobic polymer particles.

Lipid nanoparticle formulations may be improved by replacing the cationic lipid with a biodegradable cationic lipid which is known as a rapidly eliminated lipid nanoparticle (reLNP). Ionizable cationic lipids, such as, but not 30 limited to, DLinDMA, DLin-KC2-DMA, and DLin-MC3-DMA, have been shown to accumulate in plasma and tissues over time and may be a potential source of toxicity. The rapid metabolism of the rapidly eliminated lipids can improve the tolerability and therapeutic index of the lipid 35 nanoparticles by an order of magnitude from a 1 mg/kg dose to a 10 mg/kg dose in rat. Inclusion of an enzymatically degraded ester linkage can improve the degradation and metabolism profile of the cationic component, while still maintaining the activity of the reLNP formulation. The ester 40 linkage can be internally located within the lipid chain or it may be terminally located at the terminal end of the lipid chain. The internal ester linkage may replace any carbon in the lipid chain.

In some embodiments, the internal ester linkage may be 45 located on either side of the saturated carbon.

In some embodiments, an immune response may be elicited by delivering a lipid nanoparticle which may include a nanospecies, a polymer and an immunogen. (U.S. Publication No. 20120189700 and International Publication No. 50 WO2012099805; each of which is herein incorporated by reference in their entirety). The polymer may encapsulate the nanospecies or partially encapsulate the nanospecies. The immunogen may be a recombinant protein, a modified RNA and/or a polynucleotide described herein. In some 55 embodiments, the lipid nanoparticle may be formulated for use in a vaccine such as, but not limited to, against a pathogen.

Lipid nanoparticles may be engineered to alter the surface properties of particles so the lipid nanoparticles may penetrate the mucosal barrier. Mucus is located on mucosal tissue such as, but not limited to, oral (e.g., the buccal and esophageal membranes and tonsil tissue), ophthalmic, gastrointestinal (e.g., stomach, small intestine, large intestine, colon, rectum), nasal, respiratory (e.g., nasal, pharyngeal, 65 tracheal and bronchial membranes), genital (e.g., vaginal, cervical and urethral membranes). Nanoparticles larger than

86

10-200 nm which are preferred for higher drug encapsulation efficiency and the ability to provide the sustained delivery of a wide array of drugs have been thought to be too large to rapidly diffuse through mucosal barriers. Mucus is continuously secreted, shed, discarded or digested and recycled so most of the trapped particles may be removed from the mucosa tissue within seconds or within a few hours. Large polymeric nanoparticles (200 nm-500 nm in diameter) which have been coated densely with a low molecular weight polyethylene glycol (PEG) diffused through mucus only 4 to 6-fold lower than the same particles diffusing in water (Lai et al. PNAS 2007 104(5):1482-487; Lai et al. Adv Drug Deliv Rev. 2009 61(2): 158-171; each of which is herein incorporated by reference in their entirety). The transport of nanoparticles may be determined using rates of permeation and/or fluorescent microscopy techniques including, but not limited to, fluorescence recovery after photobleaching (FRAP) and high resolution multiple particle tracking (MPT). As a non-limiting example, compositions which can penetrate a mucosal barrier may be made as described in U.S. Pat. No. 8,241,670 or International Patent Publication No. WO2013110028, the contents of each of which are herein incorporated by reference in its entirety.

The lipid nanoparticle engineered to penetrate mucus may comprise a polymeric material (i.e. a polymeric core) and/or a polymer-vitamin conjugate and/or a tri-block co-polymer. The polymeric material may include, but is not limited to, polyamines, polyethers, polyamides, polyesters, polycarbamates, polyureas, polycarbonates, poly(styrenes), polyimides, polysulfones, polyurethanes, polyacetylenes, polyethylenes, polyethyeneimines, polyisocyanates, polyacrylates, polymethacrylates, polyacrylonitriles, and polyarylates. The polymeric material may be biodegradable and/or biocompatible. Non-limiting examples of biocompatible polymers are described in International Patent Publication No. WO2013116804, the contents of which are herein incorporated by reference in their entirety. The polymeric material may additionally be irradiated. As a non-limiting example, the polymeric material may be gamma irradiated (see e.g., International App. No. WO201282165, herein incorporated by reference in its entirety). Non-limiting examples of specific polymers include poly(caprolactone) (PCL), ethylene vinyl acetate polymer (EVA), poly(lactic acid) (PLA), poly(L-lactic acid) (PLLA), poly(glycolic acid) (PGA), poly (lactic acid-co-glycolic acid) (PLGA), poly(L-lactic acidco-glycolic acid) (PLLGA), poly(D,L-lactide) (PDLA), poly (L-lactide) (PLLA), poly(D,L-lactide-co-caprolactone), poly(D,L-lactide-co-caprolactone-co-glycolide), poly(D,Llactide-co-PEO-co-D,L-lactide), poly(D,L-lactide-co-PPOco-D,L-lactide), polyalkyl cyanoacralate, polyurethane, poly-L-lysine (PLL), hydroxypropyl methacrylate (HPMA), polyethyleneglycol, poly-L-glutamic acid, poly(hydroxy acids), polyanhydrides, polyorthoesters, poly(ester amides), polyamides, poly(ester ethers), polycarbonates, polyalkylenes such as polyethylene and polypropylene, polyalkylene glycols such as poly(ethylene glycol) (PEG), polyalkylene oxides (PEO), polyalkylene terephthalates such as poly(ethylene terephthalate), polyvinyl alcohols (PVA), polyvinyl ethers, polyvinyl esters such as poly(vinyl acetate), polyvinyl halides such as poly(vinyl chloride) (PVC), polyvinylpyrrolidone, polysiloxanes, polystyrene (PS), polyurethanes, derivatized celluloses such as alkyl celluloses, hydroxyalkyl celluloses, cellulose ethers, cellulose esters, nitro celluloses, hydroxypropylcellulose, carboxymethylcellulose, polymers of acrylic acids, such as poly(methyl(meth)acrylate) (PMMA), poly(ethyl(meth)

acrylate), poly(butyl(meth)acrylate), poly(isobutyl(meth) acrylate), poly(hexyl(meth)acrylate), poly(isodecyl(meth) acrylate), poly(lauryl(meth)acrylate), poly(phenyl(meth) acrylate), poly(methyl acrylate), poly(isopropyl acrylate), poly(isobutyl acrylate), poly(octadecyl acrylate) and copo- 5 lymers and mixtures thereof, polydioxanone and its copolymers, polyhydroxyalkanoates, polypropylene fumarate, polyoxymethylene, poloxamers, poly(ortho)esters, poly(butyric acid), poly(valeric acid), poly(lactide-co-caprolactone), PEG-PLGA-PEG and trimethylene carbonate, polyvinylpyrrolidone. The lipid nanoparticle may be coated or associated with a co-polymer such as, but not limited to, a block co-polymer (such as a branched polyether-polyamide block copolymer described in International Publication No. WO2013012476, herein incorporated by reference in its 15 entirety), and (poly(ethylene glycol))-(poly(propylene oxide))-(poly(ethylene glycol)) triblock copolymer (see e.g., U.S. Publication 20120121718 and U.S. Publication 20100003337 and U.S. Pat. No. 8,263,665, the contents of each of which is herein incorporated by reference in their 20 entirety). The co-polymer may be a polymer that is generally regarded as safe (GRAS) and the formation of the lipid nanoparticle may be in such a way that no new chemical entities are created. For example, the lipid nanoparticle may comprise poloxamers coating PLGA nanoparticles without 25 forming new chemical entities which are still able to rapidly penetrate human mucus (Yang et al. Angew. Chem. Int. Ed. 2011 50:2597-2600; the contents of which are herein incorporated by reference in their entirety). A non-limiting scalable method to produce nanoparticles which can penetrate 30 human mucus is described by Xu et al. (see, e.g., J Control Release 2013, 170(2):279-86; the contents of which are herein incorporated by reference in their entirety).

The vitamin of the polymer-vitamin conjugate may be vitamin E. The vitamin portion of the conjugate may be 35 substituted with other suitable components such as, but not limited to, vitamin A, vitamin E, other vitamins, cholesterol, a hydrophobic moiety, or a hydrophobic component of other surfactants (e.g., sterol chains, fatty acids, hydrocarbon chains and alkylene oxide chains).

The lipid nanoparticle engineered to penetrate mucus may include surface altering agents such as, but not limited to, polynucleotides, anionic proteins (e.g., bovine serum albumin), surfactants (e.g., cationic surfactants such as for example dimethyldioctadecylammonium bromide), sugars 45 or sugar derivatives (e.g., cyclodextrin), nucleic acids, polymers (e.g., heparin, polyethylene glycol and poloxamer), mucolytic agents (e.g., N-acetylcysteine, mugwort, bromelain, papain, clerodendrum, acetylcysteine, bromhexine, carbocisteine, eprazinone, mesna, ambroxol, sobrerol, domi- 50 odol, letosteine, stepronin, tiopronin, gelsolin, thymosin β4 dornase alfa, neltenexine, erdosteine) and various DNases including rhDNase. The surface altering agent may be embedded or enmeshed in the particle's surface or disposed (e.g., by coating, adsorption, covalent linkage, or other 55 process) on the surface of the lipid nanoparticle. (see e.g., U.S. Publication 20100215580 and U.S. Publication 20080166414 and US20130164343; the contents of each of which are herein incorporated by reference in their entirety).

In some embodiments, the mucus penetrating lipid nanoparticles may comprise at least one polynucleotide described herein. The polynucleotide may be encapsulated in the lipid nanoparticle and/or disposed on the surface of the particle. The polynucleotide may be covalently coupled to the lipid nanoparticle. Formulations of mucus penetrating 65 lipid nanoparticles may comprise a plurality of nanoparticles. Further, the formulations may contain particles which

may interact with the mucus and alter the structural and/or adhesive properties of the surrounding mucus to decrease mucoadhesion, which may increase the delivery of the mucus penetrating lipid nanoparticles to the mucosal tissue.

In some embodiments, the mucus penetrating lipid nanoparticles may be a hypotonic formulation comprising a mucosal penetration enhancing coating. The formulation may be hypotonice for the epithelium to which it is being delivered. Non-limiting examples of hypotonic formulations may be found in International Patent Publication No. WO2013110028, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, in order to enhance the delivery through the mucosal barrier the RNA (e.g., mRNA) vaccine formulation may comprise or be a hypotonic solution. Hypotonic solutions were found to increase the rate at which mucoinert particles such as, but not limited to, mucuspenetrating particles, were able to reach the vaginal epithelial surface (see e.g., Ensign et al. Biomaterials 2013 34(28): 6922-9, the contents of which are herein incorporated by reference in their entirety).

In some embodiments, the RNA (e.g., mRNA) vaccine is formulated as a lipoplex, such as, without limitation, the ATUPLEX™ system, the DACC system, the DBTC system and other siRNA-lipoplex technology from Silence Therapeutics (London, United Kingdom), STEMFECTTM from STEMGENT® (Cambridge, Mass.), and polyethylenimine (PEI) or protamine-based targeted and non-targeted delivery of nucleic acids acids (Aleku et al. Cancer Res. 2008 68:9788-9798; Strumberg et al. Int J Clin Pharmacol Ther 2012 50:76-78; Santel et al., Gene Ther 2006 13:1222-1234; Santel et al., Gene Ther 2006 13:1360-1370; Gutbier et al., Pulm Pharmacol. Ther. 2010 23:334-344; Kaufmann et al. Microvasc Res 2010 80:286-293 Weide et al. J Immunother. 2009 32:498-507; Weide et al. J Immunother. 2008 31:180-188; Pascolo Expert Opin. Biol. Ther. 4:1285-1294; Fotin-Mleczek et al., 2011 J. Immunother. 34:1-15; Song et al., Nature Biotechnol. 2005, 23:709-717; Peer et al., Proc Natl Acad Sci USA. 2007 6; 104:4095-4100; deFougerolles Hum 40 Gene Ther. 2008 19:125-132, the contents of each of which are incorporated herein by reference in their entirety).

In some embodiments, such formulations may also be constructed or compositions altered such that they passively or actively are directed to different cell types in vivo, including but not limited to hepatocytes, immune cells, tumor cells, endothelial cells, antigen presenting cells, and leukocytes (Akinc et al. Mol Ther. 2010 18:1357-1364; Song et al., Nat Biotechnol. 2005 23:709-717; Judge et al., J Clin Invest. 2009 119:661-673; Kaufmann et al., Microvasc Res 2010 80:286-293; Santel et al., Gene Ther 2006 13:1222-1234; Santel et al., Gene Ther 2006 13:1360-1370; Gutbier et al., Pulm Pharmacol. Ther. 2010 23:334-344; Basha et al., Mol. Ther. 2011 19:2186-2200; Fenske and Cullis, Expert Opin Drug Deliv. 2008 5:25-44; Peer et al., Science. 2008 319:627-630; Peer and Lieberman, Gene Ther. 2011 18:1127-1133, the contents of each of which are incorporated herein by reference in their entirety). One example of passive targeting of formulations to liver cells includes the DLin-DMA, DLin-KC2-DMA and DLin-MC3-DMA-based lipid nanoparticle formulations, which have been shown to bind to apolipoprotein E and promote binding and uptake of these formulations into hepatocytes in vivo (Akinc et al. Mol Ther. 2010 18:1357-1364, the contents of which are incorporated herein by reference in their entirety). Formulations can also be selectively targeted through expression of different ligands on their surface as exemplified by, but not limited by, folate, transferrin, N-acetylga-

lactosamine (GalNAc), and antibody targeted approaches (Kolhatkar et al., Curr Drug Discov Technol. 2011 8:197-206; Musacchio and Torchilin, Front Biosci. 2011 16:1388-1412; Yu et al., Mol Membr Biol. 2010 27:286-298; Patil et al., Crit Rev Ther Drug Carrier Syst. 2008 25:1-61; Benoit 5 et al., Biomacromolecules. 2011 12:2708-2714; Zhao et al., Expert Opin Drug Deliv. 2008 5:309-319; Akinc et al., Mol Ther. 2010 18:1357-1364; Srinivasan et al., Methods Mol Biol. 2012 820:105-116; Ben-Arie et al., Methods Mol Biol. 2012 757:497-507; Peer 2010 J Control Release. 20:63-68; 10 Peer et al., Proc Natl Acad Sci USA. 2007 104:4095-4100; Kim et al., Methods Mol Biol. 2011 721:339-353; Subramanya et al., Mol Ther. 2010 18:2028-2037; Song et al., Nat Biotechnol. 2005 23:709-717; Peer et al., Science. 2008 319:627-630; Peer and Lieberman, Gene Ther. 2011 15 18:1127-1133, the contents of each of which are incorporated herein by reference in their entirety)

In some embodiments, the RNA (e.g., mRNA) vaccine is formulated as a solid lipid nanoparticle. A solid lipid nanoparticle (SLN) may be spherical with an average diameter 20 between 10 to 1000 nm. SLN possess a solid lipid core matrix that can solubilize lipophilic molecules and may be stabilized with surfactants and/or emulsifiers. In some embodiments, the lipid nanoparticle may be a self-assembly lipid-polymer nanoparticle (see Zhang et al., ACS Nano, 25 2008, 2 (8), pp 1696-1702; the contents of which are herein incorporated by reference in their entirety). As a nonlimiting example, the SLN may be the SLN described in International Patent Publication No. WO2013105101, the contents of which are herein incorporated by reference in 30 their entirety. As another non-limiting example, the SLN may be made by the methods or processes described in International Patent Publication No. WO2013105101, the contents of which are herein incorporated by reference in their entirety.

Liposomes, lipoplexes, or lipid nanoparticles may be used to improve the efficacy of polynucleotides directed protein production as these formulations may be able to increase cell transfection by the RNA (e.g., mRNA) vaccine; and/or increase the translation of encoded protein. One such 40 example involves the use of lipid encapsulation to enable the effective systemic delivery of polyplex plasmid DNA (Heyes et al., Mol Ther. 2007 15: 713-720; the contents of which are incorporated herein by reference in their entirety). The liposomes, lipoplexes, or lipid nanoparticles may also 45 be used to increase the stability of the polynucleotide.

In some embodiments, the RNA (e.g., mRNA) vaccines of the present disclosure can be formulated for controlled release and/or targeted delivery. As used herein, "controlled release" refers to a pharmaceutical composition or com- 50 pound release profile that conforms to a particular pattern of release to effect a therapeutic outcome. In some embodiments, the RNA (e.g., mRNA) vaccines may be encapsulated into a delivery agent described herein and/or known in the art for controlled release and/or targeted delivery. As 55 used herein, the term "encapsulate" means to enclose, surround or encase. As it relates to the formulation of the compounds of the disclosure, encapsulation may be substantial, complete or partial. The term "substantially encapsulated" means that at least greater than 50, 60, 70, 80, 85, 90, 60 95, 96, 97, 98, 99, 99.9, 99.9 or greater than 99.999% of the pharmaceutical composition or compound of the disclosure may be enclosed, surrounded or encased within the delivery agent. "Partially encapsulation" means that less than 10, 10, 20, 30, 40 50 or less of the pharmaceutical composition or 65 compound of the disclosure may be enclosed, surrounded or encased within the delivery agent. Advantageously, encap-

sulation may be determined by measuring the escape or the activity of the pharmaceutical composition or compound of the disclosure using fluorescence and/or electron micrograph. For example, at least 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 85, 90, 95, 96, 97, 98, 99, 99.9, 99.99 or greater than 99.99% of the pharmaceutical composition or compound of the disclosure are encapsulated in the delivery agent.

In some embodiments, the controlled release formulation may include, but is not limited to, tri-block co-polymers. As a non-limiting example, the formulation may include two different types of tri-block co-polymers (International Pub. No. WO2012131104 and

WO2012131106, the contents of each of which are incorporated herein by reference in their entirety).

In some embodiments, the RNA (e.g., mRNA) vaccines may be encapsulated into a lipid nanoparticle or a rapidly eliminated lipid nanoparticle and the lipid nanoparticles or a rapidly eliminated lipid nanoparticle may then be encapsulated into a polymer, hydrogel and/or surgical sealant described herein and/or known in the art. As a non-limiting example, the polymer, hydrogel or surgical sealant may be PLGA, ethylene vinyl acetate (EVAc), poloxamer, GELSITE® (Nanotherapeutics, Inc. Alachua, Fla.), HYLENEX® (Halozyme Therapeutics, San Diego Calif.), surgical sealants such as fibrinogen polymers (Ethicon Inc. Cornelia, Ga.), TISSELL® (Baxter International, Inc Deerfield, Ill.), PEG-based sealants, and COSEAL® (Baxter International, Inc Deerfield, Ill.).

In some embodiments, the lipid nanoparticle may be encapsulated into any polymer known in the art which may form a gel when injected into a subject. As another non-limiting example, the lipid nanoparticle may be encapsulated into a polymer matrix which may be biodegradable.

In some embodiments, the RNA (e.g., mRNA) vaccine formulation for controlled release and/or targeted delivery may also include at least one controlled release coating. Controlled release coatings include, but are not limited to, OPADRY®, polyvinylpyrrolidone/vinyl acetate copolymer, polyvinylpyrrolidone, hydroxypropyl methylcellulose, hydroxypropyl cellulose, hydroxyethyl cellulose, EUDRAGIT RL®, EUDRAGIT RS® and cellulose derivatives such as ethylcellulose aqueous dispersions (AQUACOAT® and SURELEASE®).

which are incorporated herein by reference in their entirety). The liposomes, lipoplexes, or lipid nanoparticles may also be used to increase the stability of the polynucleotide. In some embodiments, the RNA (e.g., mRNA) vaccines of the present disclosure can be formulated for controlled release and/or targeted delivery. As used herein, "controlled release and/or targeted delivery. As used herein, "controlled release and/or targeted delivery formulation may comprise at least one degradable polyesters include, but are not limited to, poly(serine ester), poly(L-lactide-co-L-lysine), poly(4-hydroxy-L-proline ester), and combinations thereof. In some embodiments, the RNA (e.g., mRNA) vaccine controlled release and/or targeted delivery formulation may contain polycationic side chains. Degradable polyesters include, but are not limited to, poly(serine ester), and combinations thereof. In some embodiments, the RNA (e.g., mRNA) vaccine controlled release and/or targeted delivery formulation may contain polycationic side chains. Degradable polyesters include, but are not limited to, poly(serine ester), and combinations thereof. In some embodiments, the RNA (e.g., mRNA) vaccine controlled release and/or targeted delivery formulation may contain polycationic side chains. Degradable polyesters include, but are not limited to, poly(serine ester), and combinations thereof. In some embodiments, the RNA (e.g., mRNA) vaccines of include, but are not limited to, poly(serine ester), and combinations thereof. In some embodiments, the RNA (e.g., mRNA) vaccines of controlled release and/or targeted delivery formulation may contain polycationic side chains. Degradable polyesters include, but are not limited to, poly(serine ester), and combinations thereof. In some embodiments, the RNA (e.g., mRNA) vaccines controlled release and/or targeted delivery formulation may contain polycationic side chains.

In some embodiments, the RNA (e.g., mRNA) vaccine controlled release and/or targeted delivery formulation comprising at least one polynucleotide may comprise at least one PEG and/or PEG related polymer derivatives as described in U.S. Pat. No. 8,404,222, the contents of which are incorporated herein by reference in their entirety.

In some embodiments, the RNA (e.g., mRNA) vaccine controlled release delivery formulation comprising at least one polynucleotide may be the controlled release polymer system described in US20130130348, the contents of which are incorporated herein by reference in their entirety.

In some embodiments, the RNA (e.g., mRNA) vaccines of the present disclosure may be encapsulated in a therapeutic nanoparticle, referred to herein as "therapeutic nanoparticle RNA (e.g., mRNA) vaccines." Therapeutic nanoparticles

may be formulated by methods described herein and known in the art such as, but not limited to, International Pub Nos. WO2010005740, WO2010030763, WO2010005721, WO2010005723, WO2012054923, U.S. Publication Nos. US20110262491. US20100104645, US20100087337, 5 US20100068285, US20110274759, US20100068286, US20120288541, US20130123351 and US20130230567 and U.S. Pat. Nos. 8,206,747, 8,293,276, 8,318,208 and 8,318,211; the contents of each of which are herein incorporated by reference in their entirety. In some embodiments, therapeutic polymer nanoparticles may be identified by the methods described in US Pub No. US20120140790, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the therapeutic nanoparticle RNA 15 (e.g., mRNA) vaccine may be formulated for sustained release. As used herein, "sustained release" refers to a pharmaceutical composition or compound that conforms to a release rate over a specific period of time. The period of time may include, but is not limited to, hours, days, weeks, 20 months and years. As a non-limiting example, the sustained release nanoparticle may comprise a polymer and a therapeutic agent such as, but not limited to, the polynucleotides of the present disclosure (see International Pub No. 2010075072 and US Pub No. US20100216804, 25 US20110217377 and US20120201859, the contents of each of which are incorporated herein by reference in their entirety). In another non-limiting example, the sustained release formulation may comprise agents which permit persistent bioavailability such as, but not limited to, crystals, 30 macromolecular gels and/or particulate suspensions (see U.S. Patent Publication No US20130150295, the contents of each of which are incorporated herein by reference in their

In some embodiments, the therapeutic nanoparticle RNA 35 (e.g., mRNA) vaccines may be formulated to be target specific. As a non-limiting example, the therapeutic nanoparticles may include a corticosteroid (see International Pub. No. WO2011084518, the contents of which are incorporated herein by reference in their entirety). As a non-limiting example, the therapeutic nanoparticles may be formulated in nanoparticles described in International Pub No. WO2008121949, WO2010005726, WO2010005725, WO2011084521 and US Pub No. US20100069426, US20120004293 and US20100104655, the contents of each 45 of which are incorporated herein by reference in their entirety.

In some embodiments, the nanoparticles of the present disclosure may comprise a polymeric matrix. As a nonlimiting example, the nanoparticle may comprise two or 50 more polymers such as, but not limited to, polyethylenes, polycarbonates, polyanhydrides, polyhydroxyacids, polypropylfumerates, polycaprolactones, polyamides, polyacetals, polyethers, polyesters, poly(orthoesters), polycyanopolyurethanes, 55 acrylates, polyvinyl alcohols, polyacrylates, polyphosphazenes, polymethacrylates, polycyanoacrylates, polyureas, polystyrenes, polyamines, polylysine, poly(ethylene imine), poly(serine ester), poly(Llactide-co-L-lysine), poly(4-hydroxy-L-proline ester) or combinations thereof.

In some embodiments, the therapeutic nanoparticle comprises a diblock copolymer. In some embodiments, the diblock copolymer may include PEG in combination with a polymer such as, but not limited to, polyethylenes, polycarbonates, polyanhydrides, polyhydroxyacids, polypropyl-65 fumerates, polycaprolactones, polyamides, polyacetals, polyethers, polyesters, poly(orthoesters), polycyanoacry-

92

lates, polyvinyl alcohols, polyurethanes, polyphosphazenes, polyacrylates, polymethacrylates, polycyanoacrylates, polyureas, polystyrenes, polyamines, polylysine, poly(ethylene imine), poly(serine ester), poly(L-lactide-co-L-lysine), poly (4-hydroxy-L-proline ester) or combinations thereof. In yet another embodiment, the diblock copolymer may be a high-X diblock copolymer such as those described in International Patent Publication No. WO2013120052, the contents of which are incorporated herein by reference in their entirety.

As a non-limiting example the therapeutic nanoparticle comprises a PLGA-PEG block copolymer (see U.S. Publication No. US20120004293 and U.S. Pat. No. 8,236,330, each of which is herein incorporated by reference in their entirety). In another non-limiting example, the therapeutic nanoparticle is a stealth nanoparticle comprising a diblock copolymer of PEG and PLA or PEG and PLGA (see U.S. Pat. No. 8,246,968 and International Publication No. WO2012166923, the contents of each of which are herein incorporated by reference in their entirety). In yet another non-limiting example, the therapeutic nanoparticle is a stealth nanoparticle or a target-specific stealth nanoparticle as described in U.S. Patent Publication No. US20130172406, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the therapeutic nanoparticle may comprise a multiblock copolymer (see e.g., U.S. Pat. Nos. 8,263,665 and 8,287,910 and U.S. Patent Pub. No. US20130195987, the contents of each of which are herein incorporated by reference in their entirety).

In yet another non-limiting example, the lipid nanoparticle comprises the block copolymer PEG-PLGA-PEG (see e.g., the thermosensitive hydrogel (PEG-PLGA-PEG) was used as a TGF-beta1 gene delivery vehicle in Lee et al. Thermosensitive Hydrogel as a Tgf-β1 Gene Delivery Vehicle Enhances Diabetic Wound Healing. Pharmaceutical Research, 2003 20(12): 1995-2000; as a controlled gene delivery system in Li et al. Controlled Gene Delivery System Based on Thermosensitive Biodegradable Hydrogel. Pharmaceutical Research 2003 20(6):884-888; and Chang et al., Non-ionic amphiphilic biodegradable PEG-PLGA-PEG copolymer enhances gene delivery efficiency in rat skeletal muscle. J Controlled Release. 2007 118:245-253, the contents of each of which are herein incorporated by reference in their entirety). The RNA (e.g., mRNA) vaccines of the present disclosure may be formulated in lipid nanoparticles comprising the PEG-PLGA-PEG block copolymer.

In some embodiments, the therapeutic nanoparticle may comprise a multiblock copolymer (see e.g., U.S. Pat. Nos. 8,263,665 and 8,287,910 and U.S. Patent Pub. No. US20130195987, the contents of each of which are herein incorporated by reference in their entirety).

In some embodiments, the block copolymers described herein may be included in a polyion complex comprising a non-polymeric micelle and the block copolymer. (see e.g., U.S. Publication No. 20120076836, the contents of which are herein incorporated by reference in their entirety).

In some embodiments, the therapeutic nanoparticle may comprise at least one acrylic polymer. Acrylic polymers include but are not limited to, acrylic acid, methacrylic acid, acrylic acid and methacrylic acid copolymers, methyl methacrylate copolymers, ethoxyethyl methacrylates, cyanoethyl methacrylate, amino alkyl methacrylate copolymer, poly (acrylic acid), poly(methacrylic acid), polycyanoacrylates and combinations thereof.

In some embodiments, the therapeutic nanoparticles may comprise at least one poly(vinyl ester) polymer. The poly

(vinyl ester) polymer may be a copolymer such as a random copolymer. As a non-limiting example, the random copolymer may have a structure such as those described in International Application No. WO2013032829 or U.S. Patent Publication No US20130121954, the contents of each of 5 which are herein incorporated by reference in their entirety. In some embodiments, the poly(vinyl ester) polymers may be conjugated to the polynucleotides described herein.

In some embodiments, the therapeutic nanoparticle may comprise at least one diblock copolymer. The diblock copo- 10 lymer may be, but it not limited to, a poly(lactic) acid-poly (ethylene)glycol copolymer (see, e.g., International Patent Publication No. WO2013044219, the contents of which are herein incorporated by reference in their entirety). As a non-limiting example, the therapeutic nanoparticle may be 15 used to treat cancer (see International publication No. WO2013044219, the contents of which are herein incorporated by reference in their entirety).

In some embodiments, the therapeutic nanoparticles may comprise at least one cationic polymer described herein 20 and/or known in the art.

In some embodiments, the therapeutic nanoparticles may comprise at least one amine-containing polymer such as, but not limited to polylysine, polyethylene imine, poly(amidoamine) dendrimers, poly(beta-amino esters) (see, e.g., U.S. 25 Pat. No. 8,287,849, the contents of which are herein incorporated by reference in their entirety) and combinations thereof.

In some embodiments, the nanoparticles described herein may comprise an amine cationic lipid such as those 30 described in International Patent Application No. WO2013059496, the contents of which are herein incorporated by reference in their entirety. In some embodiments, the cationic lipids may have an amino-amine or an aminoamide moiety.

In some embodiments, the therapeutic nanoparticles may comprise at least one degradable polyester which may contain polycationic side chains. Degradeable polyesters include, but are not limited to, poly(serine ester), poly(Llactide-co-L-lysine), poly(4-hydroxy-L-proline ester), and 40 combinations thereof. In some embodiments, the degradable polyesters may include a PEG conjugation to form a PEGylated polymer.

In some embodiments, the synthetic nanocarriers may contain an immunostimulatory agent to enhance the immune 45 response from delivery of the synthetic nanocarrier. As a non-limiting example, the synthetic nanocarrier may comprise a Th1 immunostimulatory agent, which may enhance a Th1-based response of the immune system (see International Pub No. WO2010123569 and U.S. Publication No. 50 US20110223201, the contents of each of which are herein incorporated by reference in their entirety).

In some embodiments, the synthetic nanocarriers may be formulated for targeted release. In some embodiments, the otides at a specified pH and/or after a desired time interval. As a non-limiting example, the synthetic nanoparticle may be formulated to release the RNA (e.g., mRNA) vaccines after 24 hours and/or at a pH of 4.5 (see International Publication Nos. WO2010138193 and WO2010138194 and 60 US Pub Nos. US20110020388 and US20110027217, each of which is herein incorporated by reference in their entireties).

In some embodiments, the synthetic nanocarriers may be formulated for controlled and/or sustained release of the polynucleotides described herein. As a non-limiting 65 example, the synthetic nanocarriers for sustained release may be formulated by methods known in the art, described

herein and/or as described in International Pub No. WO2010138192 and US Pub No. 20100303850, each of which is herein incorporated by reference in their entirety.

94

In some embodiments, the RNA (e.g., mRNA) vaccine may be formulated for controlled and/or sustained release wherein the formulation comprises at least one polymer that is a crystalline side chain (CYSC) polymer. CYSC polymers are described in U.S. Pat. No. 8,399,007, herein incorporated by reference in its entirety.

In some embodiments, the synthetic nanocarrier may be formulated for use as a vaccine. In some embodiments, the synthetic nanocarrier may encapsulate at least one polynucleotide which encode at least one antigen. As a nonlimiting example, the synthetic nanocarrier may include at least one antigen and an excipient for a vaccine dosage form (see International Publication No. WO2011150264 and U.S. Publication No. US20110293723, the contents of each of which are herein incorporated by reference in their entirety). As another non-limiting example, a vaccine dosage form may include at least two synthetic nanocarriers with the same or different antigens and an excipient (see International Publication No. WO2011150249 and U.S. Publication No. US20110293701, the contents of each of which are herein incorporated by reference in their entirety). The vaccine dosage form may be selected by methods described herein, known in the art and/or described in International Publication No. WO2011150258 and U.S. Publication No. US20120027806, the contents of each of which are herein incorporated by reference in their entirety).

In some embodiments, the synthetic nanocarrier may comprise at least one polynucleotide which encodes at least one adjuvant. As non-limiting example, the adjuvant may comprise dimethyldioctadecylammonium-bromide, dimethyldioctadecylammonium-chloride, dimethyldioctadecylam-35 monium-phosphate or dimethyldioctadecylammonium-acetate (DDA) and an apolar fraction or part of said apolar fraction of a total lipid extract of a mycobacterium (see, e.g., U.S. Pat. No. 8,241,610, the content of which is herein incorporated by reference in its entirety). In some embodiments, the synthetic nanocarrier may comprise at least one polynucleotide and an adjuvant. As a non-limiting example, the synthetic nanocarrier comprising and adjuvant may be formulated by the methods described in International Publication No. WO2011150240 and U.S. Publication No. US20110293700, the contents of each of which are herein incorporated by reference in their entirety.

In some embodiments, the synthetic nanocarrier may encapsulate at least one polynucleotide that encodes a peptide, fragment or region from a virus. As a non-limiting example, the synthetic nanocarrier may include, but is not limited to, any of the nanocarriers described in International Publication No. WO2012024621, WO201202629, WO2012024632 and U.S. Publication No. US20120064110, US20120058153 and US20120058154, the contents of each synthetic nanocarrier is formulated to release the polynucle- 55 of which are herein incorporated by reference in their entirety.

> In some embodiments, the synthetic nanocarrier may be coupled to a polynucleotide which may be able to trigger a humoral and/or cytotoxic T lymphocyte (CTL) response (see, e.g., International Publication No. WO2013019669, the contents of which are herein incorporated by reference in their entirety)

> In some embodiments, the RNA (e.g., mRNA) vaccine may be encapsulated in, linked to and/or associated with zwitterionic lipids. Non-limiting examples of zwitterionic lipids and methods of using zwitterionic lipids are described in U.S. Patent Publication No. US20130216607, the con-

tents of which are herein incorporated by reference in their entirety. In some aspects, the zwitterionic lipids may be used in the liposomes and lipid nanoparticles described herein.

In some embodiments, the RNA (e.g., mRNA) vaccine may be formulated in colloid nanocarriers as described in 5 U.S. Patent Publication No. US20130197100, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the nanoparticle may be optimized for oral administration. The nanoparticle may comprise at 10 least one cationic biopolymer such as, but not limited to, chitosan or a derivative thereof. As a non-limiting example, the nanoparticle may be formulated by the methods described in U.S. Publication No. 20120282343, the contents of which are herein incorporated by reference in their 15 entirety.

In some embodiments, LNPs comprise the lipid KL52 (an amino-lipid disclosed in U.S. Application Publication No. 2012/0295832, the contents of which are herein incorporated by reference in their entirety. Activity and/or safety (as 20 measured by examining one or more of ALT/AST, white blood cell count and cytokine induction, for example) of LNP administration may be improved by incorporation of such lipids. LNPs comprising KL52 may be administered intravenously and/or in one or more doses. In some embodiments, administration of LNPs comprising KL52 results in equal or improved mRNA and/or protein expression as compared to LNPs comprising MC3.

In some embodiments, RNA (e.g., mRNA) vaccine may be delivered using smaller LNPs. Such particles may com- 30 prise a diameter from below 0.1 um up to 100 nm such as, but not limited to, less than 0.1 um, less than 1.0 um, less than 5 um, less than 10 um, less than 15 um, less than 20 um, less than 25 um, less than 30 um, less than 35 um, less than 40 um, less than 50 um, less than 55 um, less than 60 um, 35 less than 65 um, less than 70 um, less than 75 um, less than 80 um, less than 85 um, less than 90 um, less than 95 um, less than 100 um, less than 125 um, less than 150 um, less than 175 um, less than 200 um, less than 225 um, less than 250 um, less than 275 um, less than 300 um, less than 325 40 um, less than 350 um, less than 375 um, less than 400 um, less than 425 um, less than 450 um, less than 475 um, less than 500 um, less than 525 um, less than 550 um, less than 575 um, less than 600 um, less than 625 um, less than 650 um, less than 675 um, less than 700 um, less than 725 um, 45 less than 750 um, less than 775 um, less than 800 um, less than 825 um, less than 850 um, less than 875 um, less than 900 um, less than 925 um, less than 950 um, less than 975 um, or less than 1000 um.

In some embodiments, RNA (e.g., mRNA) vaccines may 50 be delivered using smaller LNPs, which may comprise a diameter from about 1 nm to about 100 nm, from about 1 nm to about 10 nm, about 1 nm to about 20 nm, from about 1 nm to about 30 nm, from about 1 nm to about 40 nm, from about 1 nm to about 50 nm, from about 1 nm to about 60 nm, 55 from about 1 nm to about 70 nm, from about 1 nm to about 80 nm, from about 1 nm to about 90 nm, from about 5 nm to about from 100 nm, from about 5 nm to about 10 nm, about 5 nm to about 20 nm, from about 5 nm to about 30 nm, from about 5 nm to about 40 nm, from about 5 nm to about 60 50 nm, from about 5 nm to about 60 nm, from about 5 nm to about 70 nm, from about 5 nm to about 80 nm, from about 5 nm to about 90 nm, about 10 to about 50 nm, from about 20 to about 50 nm, from about 30 to about 50 nm, from about 40 to about 50 nm, from about 20 to about 60 nm, from about 65 30 to about 60 nm, from about 40 to about 60 nm, from about 20 to about 70 nm, from about 30 to about 70 nm, from about

96

40 to about 70 nm, from about 50 to about 70 nm, from about 60 to about 70 nm, from about 20 to about 80 nm, from about 30 to about 80 nm, from about 40 to about 80 nm, from about 50 to about 80 nm, from about 60 to about 80 nm, from about 20 to about 90 nm, from about 30 to about 90 nm, from about 40 to about 90 nm, from about 60 to about 90 nm, from about 50 to about 90 nm, from about 60 to about 90 nm and/or from about 70 to about 90 nm.

In some embodiments, such LNPs are synthesized using methods comprising microfluidic mixers. Examples of microfluidic mixers may include, but are not limited to, a slit interdigital micromixer including, but not limited to those manufactured by Microinnova (Allerheiligen bei Wildon, Austria) and/or a staggered herringbone micromixer (SHM) (Zhigaltsev, I. V. et al., Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing have been published (Langmuir. 2012. 28:3633-40; Belliveau, N. M. et al., Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Molecular Therapy-Nucleic Acids. 2012. 1:e37; Chen. D. et al., Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. J Am Chem Soc. 2012. 134(16):6948-51, the contents of each of which are herein incorporated by reference in their entirety). In some embodiments, methods of LNP generation comprising SHM, further comprise the mixing of at least two input streams wherein mixing occurs by microstructureinduced chaotic advection (MICA). According to this method, fluid streams flow through channels present in a herringbone pattern causing rotational flow and folding the fluids around each other. This method may also comprise a surface for fluid mixing wherein the surface changes orientations during fluid cycling. Methods of generating LNPs using SHM include those disclosed in U.S. Application Publication Nos. 2004/0262223 and 2012/0276209, the contents of each of which are herein incorporated by reference in their entirety.

In some embodiments, the RNA (e.g., mRNA) vaccine of the present disclosure may be formulated in lipid nanoparticles created using a micromixer such as, but not limited to, a Slit Interdigital Microstructured Mixer (SIMM-V2) or a Standard Slit Interdigital Micro Mixer (SSIMM) or Caterpillar (CPMM) or Impinging-jet (IJMM) from the Institut für Mikrotechnik Mainz GmbH, Mainz Germany).

In some embodiments, the RNA (e.g., mRNA) vaccines of the present disclosure may be formulated in lipid nanoparticles created using microfluidic technology (see, e.g., Whitesides, George M. The Origins and the Future of Microfluidics. Nature, 2006 442: 368-373; and Abraham et al. Chaotic Mixer for Microchannels. Science, 2002 295: 647-651; each of which is herein incorporated by reference in its entirety). As a non-limiting example, controlled microfluidic formulation includes a passive method for mixing streams of steady pressure-driven flows in micro channels at a low Reynolds number (see, e.g., Abraham et al. Chaotic Mixer for Microchannels. Science, 2002 295: 647-651, the contents of which are herein incorporated by reference in their entirety).

In some embodiments, the RNA (e.g., mRNA) vaccines of the present disclosure may be formulated in lipid nanoparticles created using a micromixer chip such as, but not limited to, those from Harvard Apparatus (Holliston, Mass.) or Dolomite Microfluidics (Royston, UK). A micromixer chip can be used for rapid mixing of two or more fluid streams with a split and recombine mechanism.

In some embodiments, the RNA (e.g., mRNA) vaccines of the disclosure may be formulated for delivery using the drug

encapsulating microspheres described in International Patent Publication No. WO2013063468 or U.S. Pat. No. 8,440, 614, the contents of each of which are herein incorporated by reference in their entirety. The microspheres may comprise a compound of the formula (I), (II), (III), (IV), (V) or 5 (VI) as described in International Patent Publication No. WO2013063468, the contents of which are herein incorporated by reference in their entirety. In some embodiments, the amino acid, peptide, polypeptide, lipids (APPL) are useful in delivering the RNA (e.g., mRNA) vaccines of the 10 disclosure to cells (see International Patent Publication No. WO2013063468, the contents of which are herein incorporated by reference in their entirety).

In some embodiments, the RNA (e.g., mRNA) vaccines of the disclosure may be formulated in lipid nanoparticles 15 having a diameter from about 10 to about 100 nm such as, but not limited to, about 10 to about 20 nm, about 10 to about 30 nm, about 10 to about 40 nm, about 10 to about 50 nm, about 10 to about 60 nm, about 10 to about 70 nm, about 10 to about 80 nm, about 10 to about 90 nm, about 20 to about 20 30 nm, about 20 to about 40 nm, about 20 to about 50 nm, about 20 to about 60 nm, about 20 to about 70 nm, about 20 to about 80 nm, about 20 to about 90 nm, about 20 to about 100 nm, about 30 to about 40 nm, about 30 to about 50 nm. about 30 to about 60 nm, about 30 to about 70 nm, about 30 25 to about 80 nm, about 30 to about 90 nm, about 30 to about 100 nm, about 40 to about 50 nm, about 40 to about 60 nm, about 40 to about 70 nm, about 40 to about 80 nm, about 40 to about 90 nm, about 40 to about 100 nm, about 50 to about 60 nm, about 50 to about 70 nm about 50 to about 80 nm, 30 about 50 to about 90 nm, about 50 to about 100 nm, about 60 to about 70 nm, about 60 to about 80 nm, about 60 to about 90 nm, about 60 to about 100 nm, about 70 to about 80 nm, about 70 to about 90 nm, about 70 to about 100 nm, about 80 to about 90 nm, about 80 to about 100 nm and/or 35 about 90 to about 100 nm.

In some embodiments, the lipid nanoparticles may have a diameter from about 10 to 500 nm.

In some embodiments, the lipid nanoparticle may have a diameter greater than 100 nm, greater than 150 nm, greater 40 than 200 nm, greater than 250 nm, greater than 300 nm, greater than 350 nm, greater than 400 nm, greater than 450 nm, greater than 500 nm, greater than 550 nm, greater than 600 nm, greater than 650 nm, greater than 700 nm, greater than 750 nm, greater than 800 nm, greater than 850 nm, 45 greater than 900 nm, greater than 950 nm or greater than 1000 nm.

In some embodiments, the lipid nanoparticle may be a limit size lipid nanoparticle described in International Patent Publication No. WO2013059922, the contents of which are 50 herein incorporated by reference in their entirety. The limit size lipid nanoparticle may comprise a lipid bilayer surrounding an aqueous core or a hydrophobic core; where the lipid bilayer may comprise a phospholipid such as, but not limited to, diacylphosphatidylcholine, a diacylphosphatidylethanolamine, a ceramide, a sphingomyelin, a dihydrosphingomyelin, a cephalin, a cerebroside, a C8-C20 fatty acid diacylphophatidylcholine, and 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC). In some embodiments, the limit size lipid nanoparticle may comprise a polyethylene 60 glycol-lipid such as, but not limited to, DLPE-PEG, DMPE-PEG, DPPC-PEG and DSPE-PEG.

In some embodiments, the RNA (e.g., mRNA) vaccines may be delivered, localized and/or concentrated in a specific location using the delivery methods described in International Patent Publication No. WO2013063530, the contents of which are herein incorporated by reference in their

entirety. As a non-limiting example, a subject may be administered an empty polymeric particle prior to, simultaneously with or after delivering the RNA (e.g., mRNA) vaccines to the subject. The empty polymeric particle undergoes a change in volume once in contact with the subject and becomes lodged, embedded, immobilized or entrapped at a specific location in the subject.

98

In some embodiments, the RNA (e.g., mRNA) vaccines may be formulated in an active substance release system (see, e.g., U.S. Patent Publication No. US20130102545, the contents of which are herein incorporated by reference in their entirety). The active substance release system may comprise 1) at least one nanoparticle bonded to an oligonucleotide inhibitor strand which is hybridized with a catalytically active nucleic acid and 2) a compound bonded to at least one substrate molecule bonded to a therapeutically active substance (e.g., polynucleotides described herein), where the therapeutically active substance is released by the cleavage of the substrate molecule by the catalytically active nucleic acid.

In some embodiments, the RNA (e.g., mRNA) vaccines may be formulated in a nanoparticle comprising an inner core comprising a non-cellular material and an outer surface comprising a cellular membrane. The cellular membrane may be derived from a cell or a membrane derived from a virus. As a non-limiting example, the nanoparticle may be made by the methods described in International Patent Publication No. WO2013052167, the contents of which are herein incorporated by reference in their entirety. As another non-limiting example, the nanoparticle described in International Patent Publication No. WO2013052167, the contents of which are herein incorporated by reference in their entirety, may be used to deliver the RNA (e.g., mRNA) vaccines described herein.

In some embodiments, the RNA (e.g., mRNA) vaccines may be formulated in porous nanoparticle-supported lipid bilayers (protocells). Protocells are described in International Patent Publication No. WO2013056132, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the RNA (e.g., mRNA) vaccines described herein may be formulated in polymeric nanoparticles as described in or made by the methods described in U.S. Pat. Nos. 8,420,123 and 8,518,963 and European Patent No. EP2073848B1, the contents of each of which are herein incorporated by reference in their entirety. As a non-limiting example, the polymeric nanoparticle may have a high glass transition temperature such as the nanoparticles described in or nanoparticles made by the methods described in U.S. Pat. No. 8,518,963, the contents of which are herein incorporated by reference in their entirety. As another non-limiting example, the polymer nanoparticle for oral and parenteral formulations may be made by the methods described in European Patent No. EP2073848B1, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the RNA (e.g., mRNA) vaccines described herein may be formulated in nanoparticles used in imaging. The nanoparticles may be liposome nanoparticles such as those described in U.S. Patent Publication No US20130129636, herein incorporated by reference in its entirety. As a non-limiting example, the liposome may comprise gadolinium(III)2-{4,7-bis-carboxymethyl-10-[(N, N-distearylamidomethyl-N'-amido-methyl]-1,4,7,10-tetra-azacyclododec-1-yl}-acetic acid and a neutral, fully saturated phospholipid component (see, e.g., U.S. Patent Publication No US20130129636, the contents of which are herein incorporated by reference in their entirety).

In some embodiments, the nanoparticles which may be used in the present disclosure are formed by the methods described in U.S. Patent Application No. US20130130348, the contents of which are herein incorporated by reference in their entirety.

The nanoparticles of the present disclosure may further include nutrients such as, but not limited to, those which deficiencies can lead to health hazards from anemia to neural tube defects (see, e.g., the nanoparticles described in International Patent Publication No WO2013072929, the contents of which are herein incorporated by reference in their entirety). As a non-limiting example, the nutrient may be iron in the form of ferrous, ferric salts or elemental iron, iodine, folic acid, vitamins or micronutrients.

In some embodiments, the RNA (e.g., mRNA) vaccines of 15 the present disclosure may be formulated in a swellable nanoparticle. The swellable nanoparticle may be, but is not limited to, those described in U.S. Pat. No. 8,440,231, the contents of which are herein incorporated by reference in their entirety. As a non-limiting embodiment, the swellable 20 nanoparticle may be used for delivery of the RNA (e.g., mRNA) vaccines of the present disclosure to the pulmonary system (see, e.g., U.S. Pat. No. 8,440,231, the contents of which are herein incorporated by reference in their entirety).

The RNA (e.g., mRNA) vaccines of the present disclosure 25 may be formulated in polyanhydride nanoparticles such as, but not limited to, those described in U.S. Pat. No. 8,449, 916, the contents of which are herein incorporated by reference in their entirety.

The nanoparticles and microparticles of the present dis- 30 closure may be geometrically engineered to modulate macrophage and/or the immune response. In some embodiments, the geometrically engineered particles may have varied shapes, sizes and/or surface charges in order to incorporated the polynucleotides of the present disclosure for targeted 35 delivery such as, but not limited to, pulmonary delivery (see, e.g., International Publication No WO2013082111, the contents of which are herein incorporated by reference in their entirety). Other physical features the geometrically engineering particles may have include, but are not limited to, 40 fenestrations, angled arms, asymmetry and surface roughness, charge which can alter the interactions with cells and tissues. As a non-limiting example, nanoparticles of the present disclosure may be made by the methods described in International Publication No WO2013082111, the contents 45 of which are herein incorporated by reference in their entirety.

In some embodiments, the nanoparticles of the present disclosure may be water soluble nanoparticles such as, but not limited to, those described in International Publication 50 No. WO2013090601, the contents of which are herein incorporated by reference in their entirety. The nanoparticles may be inorganic nanoparticles which have a compact and zwitterionic ligand in order to exhibit good water solubility. The nanoparticles may also have small hydrodynamic diameters (HD), stability with respect to time, pH, and salinity and a low level of non-specific protein binding.

In some embodiments the nanoparticles of the present disclosure may be developed by the methods described in U.S. Patent Publication No. US20130172406, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the nanoparticles of the present disclosure are stealth nanoparticles or target-specific stealth nanoparticles such as, but not limited to, those described in 65 U.S. Patent Publication No. US20130172406, the contents of which are herein incorporated by reference in their

100

entirety. The nanoparticles of the present disclosure may be made by the methods described in U.S. Patent Publication No. US20130172406, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the stealth or target-specific stealth nanoparticles may comprise a polymeric matrix. The polymeric matrix may comprise two or more polymers such as, but not limited to, polyethylenes, polycarbonates, polyanhydrides, polyhydroxyacids, polypropylfumerates, polycaprolactones, polyamides, polyacetals, polyethers, polyesters, poly(orthoesters), polycyanoacrylates, polyvinyl alcohols, polyurethanes, polyphosphazenes, polyacrylates, polymethacrylates, polycyanoacrylates, polyureas, polystyrenes, polyamines, polyesters, polyamydrides, polyethers, polyurethanes, polymethacrylates, polyacrylates, polycyanoacrylates or combinations thereof.

In some embodiments, the nanoparticle may be a nanoparticle-nucleic acid hybrid structure having a high density nucleic acid layer. As a non-limiting example, the nanoparticle-nucleic acid hybrid structure may made by the methods described in U.S. Patent Publication No. US20130171646, the contents of which are herein incorporated by reference in their entirety. The nanoparticle may comprise a nucleic acid such as, but not limited to, polynucleotides described herein and/or known in the art.

At least one of the nanoparticles of the present disclosure may be embedded in in the core a nanostructure or coated with a low density porous 3-D structure or coating which is capable of carrying or associating with at least one payload within or on the surface of the nanostructure. Non-limiting examples of the nanostructures comprising at least one nanoparticle are described in International Patent Publication No. WO2013123523, the contents of which are herein incorporated by reference in their entirety.

In some embodiments the RNA (e.g., mRNA) vaccine may be associated with a cationic or polycationic compounds, including protamine, nucleoline, spermine or spermidine, or other cationic peptides or proteins, such as poly-L-lysine (PLL), polyarginine, basic polypeptides, cell penetrating peptides (CPPs), including HIV-binding peptides, HIV-1 Tat (HIV), Tat-derived peptides, Penetratin, VP²² derived or analog peptides, Pestivirus Ems, HSV, VP²² (Herpes simplex), MAP, KALA or protein transduction domains (PTDs), PpT620, prolin-rich peptides, arginine-rich peptides, lysine-rich peptides, MPG-peptide(s), Pep-1, L-oligomers, Calcitonin peptide(s), Antennapedia-derived peptides (particularly from *Drosophila* antennapedia), pAntp, plsl, FGF, Lactoferrin, Transportan, Buforin-2, Bac715-24, SynB, SynB(1), pVEC, hCT-derived peptides, SAP, histones, cationic polysaccharides, for example chitosan, polybrene, cationic polymers, e.g. polyethyleneimine (PEI), cationic lipids, e.g. DOTMA: [1-(2,3-sioleyloxy) propyl)]-N,N,N-trimethylammonium chloride, DMRIE, di-C14-amidine, DOTIM, SAINT, DC-Chol, BGTC, CTAP, DOPC, DODAP, DOPE: Dioleyl phosphatidylethanolamine, DOSPA, DODAB, DOIC, DMEPC, DOGS: Dioctadecylamidoglicylspermin, DIMRI: Dimyristooxypropyl dimethyl hydroxyethyl ammonium bromide, DOTAP: dioleoyloxy-3-(trimethylammonio)propane, DC-6-14: O,Oditetradecanoyl-N-.alpha.-trimethylammonioacetyl)diethanolamine chloride, CLIP 1: rac-[(2,3-dioctadecyloxypropyl) (2-hydroxyethyl)]-dimethylammonium chloride, CLIP6: rac-[2(2,3-dihexadecyloxypropyloxymethyloxy)ethyl]trimethylammonium, CLIP9: rac-[2(2,3-dihexadecyloxypropyloxysuccinyloxy)ethyl]-trimethylammonium, oligofectamine, or cationic or polycationic polymers, e.g.

modified polyaminoacids, such as beta-aminoacid-polymers

or reversed polyamides, etc., modified polyethylenes, such as PVP (poly(N-ethyl-4-vinylpyridinium bromide)), etc., modified acrylates, such as pDMAEMA (poly(dimethylaminoethyl methylacrylate)), etc., modified amidoamines such as pAMAM (poly(amidoamine)), etc., modified polybetaminoester (PBAE), such as diamine end modified 1.4 butanediol diacrylate-co-5-amino-1-pentanol polymers, etc., dendrimers, such as polypropylamine dendrimers or pAMAM based dendrimers, etc., polyimine(s), such as PEI: poly (ethyleneimine), poly(propyleneimine), etc., polyallylamine, sugar backbone based polymers, such as cyclodextrin based polymers, dextran based polymers, chitosan, etc., silan backbone based polymers, such as PMOXA-PDMS copolymers, etc., blockpolymers consisting of a combination of one or more cationic blocks (e.g. selected from a cationic polymer as mentioned above) and of one or more hydrophilic or hydrophobic blocks (e.g. polyethyleneglycole), etc.

In other embodiments the RNA (e.g., mRNA) vaccine is 20 not associated with a cationic or polycationic compounds.

In some embodiments, a nanoparticle comprises compounds of Formula (I):

$$R_4$$
 N
 R_1
 R_2
 R_3
 R_4
 R_3

or a salt or isomer thereof, wherein:

 R_1 is selected from the group consisting of $C_{\text{5-30}}$ alkyl, $C_{\text{5-20}}$ alkenyl, —R*YR", —YR", and —R"M'R';

 R_2 and R_3 are independently selected from the group consisting of H, C_{1-14} alkyl, C_{2-14} alkenyl, -R*YR", -YR", and -R*OR", or R_2 and R_3 , together with the atom to which they are attached, form a heterocycle or carbocycle;

 R_4 is selected from the group consisting of a C_{3-6} carbocycle, — $(CH_2)_nQ$, — $(CH_2)_nCHQR$, —CHQR, — $CQ(R)_2$, and unsubstituted C_{1-6} alkyl, where Q is selected from a carbocycle, heterocycle, -OR, $-O(CH_2)_nN(R)_2$, -C(O)OR, -OC(O)R, -CX₃, -CX₂H, -CXH₂, -CN, -N $(R)_2$, $-C(O)N(R)_2$, -N(R)C(O)R, $-N(R)S(O)_2R$, -N(R) $C(O)N(R)_2$, $--N(R)C(S)N(R)_2$, $--N(R)R_8$, $--O(CH_2)_nOR$, $-N(R)C(=NR_9)N(R)_2$, $-N(R)C(=CHR_9)N(R)_2$, -OC $(O)N(R)_2$, -N(R)C(O)OR, -N(OR)C(O)R, -N(OR)S $(\mathrm{O})_2 \ \mathrm{R}, \ --\mathrm{N}(\mathrm{OR})\mathrm{C}(\mathrm{O})\mathrm{OR}, \ --\mathrm{N}(\mathrm{OR})\mathrm{C}(\mathrm{O})\mathrm{N}(\mathrm{R})_2, \ --\mathrm{N}(\mathrm{OR}) \ _{50}$ $C(S)N(R)_2$ $-N(OR)C(=NR_9)N(R)_2$ -N(OR)C $(=CHR_9)N(R)_2$ $-C(=NR_o)N(R)_2$ $-C(=NR_o)R$, -C(O)N(R)O R, and $C(R)N(R)_2C(O)OR$, and each n is independently selected from 1, 2, 3, 4, and 5;

each R_5 is independently selected from the group consisting of $C_{1\text{--}3}$ alkyl, $C_{2\text{--}3}$ alkenyl, and H;

each R_6 is independently selected from the group consisting of $C_{1,3}$ alkyl, $C_{2,3}$ alkenyl, and H;

M and M' are independently selected from —C(O)O—, —OC(O)—, —C(O)N(R')—,

-N(R')C(O), -C(O), -C(S), -C(S)S, -SC(S), -C(S)S, -SC(S), -C(S)S, -S(O), -S(O), -S(O), an aryl group, and a heteroaryl group;

 R_7 is selected from the group consisting of $C_{1\mbox{-}3}$ alkyl, $C_{2\mbox{-}3}$ alkenyl, and H;

 R_8 is selected from the group consisting of C_{3-6} carbocycle and heterocycle;

 R_9 is selected from the group consisting of H, CN, NO_2 , C_{1-6} alkyl, -OR, $-S(O)_2R$, $-S(O)_2N(R)_2$, C_{2-6} alkenyl, C_{3-6} carbocycle and heterocycle;

each R is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H;

each R' is independently selected from the group consisting of C_{1-18} alkyl, C_{2-18} alkenyl, —R*YR", —YR", and H; each R" is independently selected from the group consisting of C_{3-14} alkyl and C_{3-14} alkenyl;

each R* is independently selected from the group consisting of C_{1-12} alkyl and C_{2-12} alkenyl;

each Y is independently a C_{3-6} carbocycle;

each X is independently selected from the group consisting of F, Cl, Br, and I; and

m is selected from 5, 6, 7, 8, 9, 10, 11, 12, and 13.

In some embodiments, a subset of compounds of Formula (I) includes those in which when R_4 is $-(CH_2)_nQ$, $-(CH_2)_nCHQR$, -CHQR, or $-CQ(R)_2$, then (i) Q is not $-N(R)_2$ when n is 1, 2, 3, 4 or 5, or (ii) Q is not 5, 6, or 7-membered heterocycloalkyl when n is 1 or 2.

In some embodiments, another subset of compounds of Formula (I) includes those in which

 R_1 is selected from the group consisting of C_{5-30} alkyl, C_{5-20} alkenyl, —R*YR", —YR", and —R"M'R';

 R_2 and R_3 are independently selected from the group consisting of H, C_{1-14} alkyl, C_{2-14} alkenyl, $-R^*YR^*$, $-YR^*$, and $-R^*OR^*$, or R_2 and R_3 , together with the atom to which they are attached, form a heterocycle or carbocycle;

R₄ is selected from the group consisting of a C₃₋₆ carbo-30 cycle, $-(CH_2)_nQ$, $-(CH_2)_nCHQR$, -CHQR, $-CQ(R)_2$, and unsubstituted C_{1-6} alkyl, where Q is selected from a C_{3-6} carbocycle, a 5- to 14-membered heteroaryl having one or more heteroatoms selected from N, O, and S, -OR, $-O(CH_2)_nN(R)_2$, -C(O)OR, -OC(O)R, 35 $-CX_2H$, $-CXH_2$, -CN, $-C(O)N(R)_2$, -N(R)C(O)R, $-N(R)S(O)_2R$, $-N(R)C(O)N(R)_2$, $-N(R)C(S)N(R)_2$, $-\text{CRN}(R)_2\text{C}(O)\text{OR}, -\text{N}(R)R_8, -\text{O}(CH_2)_n\text{OR}, -\text{N}(R)\text{C}$ $(=NR_9)N(R)_2$, $-N(R)C(=CHR_9)N(R)_2$, $-OC(O)N(R)_2$, -N(OR)C(O)R, $-N(OR)S(O)_2R$, -N(R)C(O)OR-N(OR)C(O)OR, $-N(OR)C(O)N(R)_2$, -N(OR)C(S)N $(R)_2$, $-N(OR)C(=NR_9)N(R)_2$, $-N(OR)C(=CHR_9)N$ $(R)_2$, $-C(=NR_9)N(R)_2$, $-C(=NR_9)R$, -C(O)N(R)OR, and a 5- to 14-membered heterocycloalkyl having one or more heteroatoms selected from N, O, and S which is substituted with one or more substituents selected from oxo =O), OH, amino, mono- or di-alkylamino, and C₁₋₃ alkyl, and each n is independently selected from 1, 2, 3, 4, and 5; each R₅ is independently selected from the group consist-

ing of C_{1-3} alkyl, C_{2-3} alkenyl, and H; each R_6 is independently selected from the group consist-

ing of C_{1-3} alkyl, C_{2-3} alkenyl, and H; M and M' are independently selected from —C(O)O—, —OC(O)—, —C(O)N(R')—, —N(R')C(O)—, —C(O)—, —C(O)—, —C(S)—, —SC(S)—, —CH(OH)—, —P(O) (OR')O—, — $S(O)_2$ —, —S—S—, an aryl group, and a heteroaryl group;

 R_7 is selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H;

 $\rm R_8$ is selected from the group consisting of $\rm C_{3\text{-}6}$ carbo- cycle and heterocycle;

 R_9 is selected from the group consisting of H, CN, NO_2 , C_{1-6} alkyl, -OR, $-S(O)_2R$, $-S(O)_2N(R)_2$, C_{2-6} alkenyl, C_{3-6} carbocycle and heterocycle;

each R is independently selected from the group consist-65 ing of C₁₋₃ alkyl, C₂₋₃ alkenyl, and H;

each R' is independently selected from the group consisting of C_{1-18} alkyl, C_{2-18} alkenyl, —R*YR", —YR", and H;

each R" is independently selected from the group consisting of $\rm C_{3-14}$ alkyl and $\rm C_{3-14}$ alkenyl;

each R^* is independently selected from the group consisting of C_{1-12} alkyl and C_{2-12} alkenyl;

each Y is independently a C₃₋₆ carbocycle;

each X is independently selected from the group consisting of F, Cl, Br, and I; and

m is selected from 5, 6, 7, 8, 9, 10, 11, 12, and 13, or salts or isomers thereof.

In some embodiments, another subset of compounds of Formula (I) includes those in which

 R_1 is selected from the group consisting of C_{5-30} alkyl, C_{5-20} alkenyl, -R*YR", -YR", and -R"M'R';

 R_2 and R_3 are independently selected from the group consisting of H, C_{1-14} alkyl, C_{2-14} alkenyl, — R^*YR^* , — YR^* , and — R^*OR^* , or R_2 and R_3 , together with the atom to which they are attached, form a heterocycle or carbocycle;

 R_4 is selected from the group consisting of a C_{3-6} carbocycle, $-(CH_2)_nQ$, $-(CH_2)_nCHQR$, -CHQR, $-CQ(R)_2$, 20 and unsubstituted C_{1-6} alkyl, where Q is selected from a C_{3-6} carbocycle, a 5- to 14-membered heterocycle having one or more heteroatoms selected from N, O, and S, -OR, —C(O)OR, $-CX_3$, $-O(CH_2)_nN(R)_2$ --OC(O)R, $-CX_2H$, $-CXH_2$, -CN, $-C(O)N(R)_2$, -N(R)C(O)R, 25 $-N(R)S(O)_2R$, $-N(R)C(O)N(R)_2$ $-N(R)C(S)N(R)_2$ $-CRN(R)_2C(O)OR$, $-N(R)R_8$, $-O(CH_2)_nOR$, -N(R)C $(=NR_9)N(R)_2$, $-N(R)C(=CHR_9)N(R)_2$, $-OC(O)N(R)_2$, -N(R)C(O)OR-N(OR)C(O)R $-N(OR)S(O)_2R$, -N(OR)C(O)OR, -N(OR)C(O)N(R)₂, -N(OR)C(S)N-N(OR)C(=CHR_o)N $-N(OR)C(=NR_9)N(R)_2$ $(R)_2$, — $C(=NR_9)R$, —C(O)N(R)OR,

and $-C(=NR_9)N(R)_2$, and each n is independently selected from 1, 2, 3, 4, and 5; and when Q is a 5- to 14-membered heterocycle and (i) R_4 is $-(CH_2)_nQ$ in which n is 1 or 2, or 35 (ii) R_4 is $-(CH_2)_nCHQR$ in which n is 1, or (iii) R_4 is $-(CHQR, and -CQ(R)_2, then Q is either a 5- to 14-membered heteroaryl or 8- to 14-membered heterocycloalkyl;$

each R_5 is independently selected from the group consisting of $C_{1\text{--}3}$ alkyl, $C_{2\text{--}3}$ alkenyl, and H;

each R_6 is independently selected from the group consisting of $C_{1\text{--}3}$ alkyl, $C_{2\text{--}3}$ alkenyl, and H;

M and M' are independently selected from —C(O)O—, —OC(O)—, —C(O)N(R')—, —N(R')C(O)—, —C(O)—, —C(O)—, —C(S)—, —C(S)—, —C(S)—, —C(S)—, —C(S)—, —C(S)—, —C(S)—, —C(S)—, an aryl group, and a heteroaryl group;

 R_7 is selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H;

 R_8 is selected from the group consisting of C_{3-6} carbo- 50 cycle and heterocycle;

 R_9 is selected from the group consisting of H, CN, NO₂, C_{1-6} alkyl, —OR, —S(O)₂R, —S(O)₂N(R)₂, C_{2-6} alkenyl, C_{3-6} carbocycle and heterocycle;

each R is independently selected from the group consist- 55 Formula (I) includes those in which ing of C_{1-3} alkyl, C_{2-3} alkenyl, and H; R_1 is selected from the group consist- R_1 is selected from the group consist- R_2 is selected from the group consist- R_3 is selected from R_3 is selected from the R_3 is the first R_3 is the group

each R' is independently selected from the group consisting of C_{1-18} alkyl, C_{2-18} alkenyl, —R*YR", —YR", and H; each R" is independently selected from the group consisting of C_{3-14} alkyl and C_{3-14} alkenyl;

each R* is independently selected from the group consisting of C_{1-12} alkyl and C_{2-12} alkenyl;

each Y is independently a C₃₋₆ carbocycle;

each X is independently selected from the group consisting of F, Cl, Br, and I; and

m is selected from 5, 6, 7, 8, 9, 10, 11, 12, and 13, or salts or isomers thereof.

104

In some embodiments, another subset of compounds of Formula (I) includes those in which

 R_1 is selected from the group consisting of C_{5-30} alkyl, C_{5-20} alkenyl, -R*YR", -YR", and -R"M'R';

 R_2 and R_3 are independently selected from the group consisting of H, C_{1-14} alkyl, C_{2-14} alkenyl, —R*YR", —YR", and —R*OR", or R_2 and R_3 , together with the atom to which they are attached, form a heterocycle or carbocycle;

 R_4 is selected from the group consisting of a C_{3-6} carbocycle, $-(CH_2)_nQ$, $-(CH_2)_nCHQR$, -CHQR, $(R)_2$, and unsubstituted C_{1-6} alkyl, where Q is selected from a C₃₋₆ carbocycle, a 5- to 14-membered heteroaryl having one or more heteroatoms selected from N, O, and S, —OR, $-\mathrm{O(CH}_2)_n\mathrm{N(R)}_2,$ --OC(O)R, --C(O)OR, $-CX_2H$, $-CXH_2$, -CN, $-C(O)N(R)_2$, -N(R)C(O)R, $-N(R)C(O)N(R)_2$, $-N(R)C(S)N(R)_2$, $-N(R)S(O)_{2}R$ $-CRN(R)_2C(O)OR$, $-N(R)R_8$, $-O(CH_2)_nOR$, -N(R)C $(=NR_9)N(R)_2$, $-N(R)C(=CHR_9)N(R)_2$, $-OC(O)N(R)_2$, $-N(OR)S(O)_2R$ -N(R)C(O)OR-N(OR)C(O)R, -N(OR)C(O)OR, --N(OR)C(O)N(R)₂, --N(OR)C(S)N $(R)_2$, $-N(OR)C(=NR_9)N(R)_2$, $-N(OR)C(=CHR_o)N$ $(R)_2$, $-C(=NR_9)R$, -C(O)N(R)OR, and $-C(=NR_9)N$ $(R)_2$, and each n is independently selected from 1, 2, 3, 4, and 5:

each R_5 is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H;

each R_6 is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H;

M and M' are independently selected from —C(O)O—, —OC(O)—, —C(O)N(R')—, —N(R')C(O)—, —C(O)—, —C(S)—, —C(S)—, —C(S)—, —C(S)—, —C(S)—, —C(S)—, —C(S)—, —C(S)—, an aryl group, and a heteroaryl group;

 R_7 is selected from the group consisting of $C_{1\text{--}3}$ alkyl, $C_{2\text{--}3}$ alkenyl, and H;

 R_8 is selected from the group consisting of C_{3-6} carbocycle and heterocycle;

 R_9 is selected from the group consisting of H, CN, NO $_2,$ $C_{1\mbox{-}6}$ alkyl, —OR, —S(O) $_2$ R, —S(O) $_2$ N(R) $_2$, $C_{2\mbox{-}6}$ alkenyl, $_4$ O $C_{3\mbox{-}6}$ carbocycle and heterocycle;

each R is independently selected from the group consisting of C₁₋₃ alkyl, C₂₋₃ alkenyl, and H;

each R' is independently selected from the group consisting of $C_{1\text{-}18}$ alkyl, $C_{2\text{-}18}$ alkenyl, —R*YR", —YR", and H; each R" is independently selected from the group consisting of $C_{3\text{-}14}$ alkyl and $C_{3\text{-}14}$ alkenyl;

each R^* is independently selected from the group consisting of C_{1-12} alkyl and C_{2-12} alkenyl;

each Y is independently a C₃₋₆ carbocycle;

each X is independently selected from the group consisting of F, Cl, Br, and I; and

m is selected from 5, 6, 7, 8, 9, 10, 11, 12, and 13, or salts or isomers thereof.

In some embodiments, another subset of compounds of Formula (I) includes those in which

 R_1 is selected from the group consisting of C_{5-30} alkyl, C_{5-20} alkenyl, -R*YR", -YR", and -R"M'R';

R₂ and R₃ are independently selected from the group consisting of H, C₂₋₁₄ alkyl, C₂₋₁₄ alkenyl, —R*YR", 60 —YR", and —R*OR", or R₂ and R₃, together with the atom to which they are attached, form a heterocycle or carbocycle; R₄ is —(CH₂)_nQ or —(CH₂)_nCHQR, where Q is —N (R)₂, and n is selected from 3, 4, and 5;

each R_5 is independently selected from the group consist-65 ing of C_{1-3} alkyl, C_{2-3} alkenyl, and H;

each R_6 is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H;

M and M' are independently selected from —C(O)O—, —OC(O)—, —C(O)N(R')—, —N(R')C(O)—, —C(O)—, —C(S)—, —C(S)S—, —SC(S)—, —CH(OH)—, —P(O) (OR')O—, —S(O) $_2$ —, —S—S—, an aryl group, and a heteroaryl group;

 R_7 is selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H;

each R is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H;

each R' is independently selected from the group consisting of C_{1-18} alkyl, C_{2-18} alkenyl, —R*YR", —YR", and H; each R" is independently selected from the group consisting of C_{3-14} alkyl and C_{3-14} alkenyl;

each R^* is independently selected from the group consisting of $C_{1\text{-}12}$ alkyl and $C_{1\text{-}12}$ alkenyl;

each Y is independently a C₃₋₆ carbocycle;

each X is independently selected from the group consisting of F, Cl, Br, and I; and

m is selected from 5, 6, 7, 8, 9, 10, 11, 12, and 13, or salts or isomers thereof.

In some embodiments, another subset of compounds of Formula (I) includes those in which

 R_1 is selected from the group consisting of C_{5-30} alkyl, C_5 -20 alkenyl, -R*YR", -YR", and -R"M'R';

 R_2 and R_3 are independently selected from the group consisting of C_{1-14} alkyl, C_{2-14} alkenyl, —R*YR", —YR", and —R*OR", or R_2 and R_3 , together with the atom to which they are attached, form a heterocycle or carbocycle;

R₄ is selected from the group consisting of —(CH₂)_nQ, —(CH₂)_nCHQR, —CHQR, and —CQ(R)₂, where Q is —N(R)₂, and n is selected from 1, 2, 3, 4, and 5;

each R_5 is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H;

each R_6 is independently selected from the group consisting of $C_{1\text{--}3}$ alkyl, $C_{2\text{--}3}$ alkenyl, and H;

M and M' are independently selected from -C(O)O, -OC(O), -C(O)N(R'), -N(R')C(O), -C(O), -C(O), -C(S), -C(S)S, -SC(S), -CH(OH), -P(O) -(OR')O, $-S(O)_2$, -S, an aryl group, and a heteroaryl group;

 R_7 is selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H;

each R is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H;

each R' is independently selected from the group consisting of C_{1-18} alkyl, C_{2-18} alkenyl, —R*YR", —YR", and H; each R" is independently selected from the group consisting of C_{3-14} alkyl and C_{3-14} alkenyl;

each R^* is independently selected from the group consisting of C_{1-12} alkyl and C_{1-12} alkenyl;

each Y is independently a C₃₋₆ carbocycle;

each X is independently selected from the group consisting of F, Cl, Br, and I; and

m is selected from 5, 6, 7, 8, 9, 10, 11, 12, and 13, or salts or isomers thereof.

In some embodiments, a subset of compounds of Formula (I) includes those of Formula (IA):

(IA)

$$R_4$$
 N
 M_1
 R_2
 R_3

or a salt or isomer thereof, wherein 1 is selected from 1, 2, 3, 4, and 5; m is selected from 5, 6, 7, 8, and 9; M_1 is a bond or M'; R_4 is unsubstituted C_{1-3} alkyl, or $-(CH_2)_nQ$, in which Q is OH, $-NHC(S)N(R)_2$, $-NHC(O)N(R)_2$, -N(R) C(O)R, $-N(R)S(O)_2R$, $-N(R)R_8$, $-NHC(=NR_9)N(R)_2$, $-NHC(=CHR_9)N(R)_2$, $-OC(O)N(R)_2$, -N(R)C(O)OR, heteroaryl or heterocycloalkyl; M and M' are independently selected

from —C(O)O—, —OC(O)—, —C(O)N(R')—, —P(O) (OR')O—, —S—S—, an aryl group, and a heteroaryl group; and R_2 and R_3 are independently selected from the group consisting of H, C_{1-14} alkyl, and C_{2-14} alkenyl.

In some embodiments, a subset of compounds of Formula (I) includes those of Formula (II):

or a salt or isomer thereof, wherein 1 is selected from 1, 2, 3, 4, and 5; M_1 is a bond or M'; R_4 is unsubstituted C_{1-3} alkyl, or $-(CH_2)_nQ$, in which n is 2, 3, or 4, and Q is

OH, —NHC(S)N(R)₂, —NHC(O)N(R)₂, —N(R)C(O)R, —N(R)S(O)₂R, —N(R)R₈, —NHC(=NR₉)N(R)₂, —NHC (=CHR₉)N(R)₂, —OC(O)N(R)₂, —N(R)C(O)OR, heteroaryl or heterocycloalkyl; M and M' are independently selected

from -C(O)O—, -OC(O)—, -C(O)N(R')—, -P(O)(OR')O—, -S—S—, an aryl group, and a heteroaryl group; and R_2 and R_3 are independently selected from the group consisting of H, C_{1-14} alkyl, and C_{2-14} alkenyl.

In some embodiments, a subset of compounds of Formula (I) includes those of Formula (IIa), (IIb), (IIc), or (IIe):

$$\mathbb{R}_4$$
 \mathbb{N} \mathbb{N}

(IIe)

or a salt or isomer thereof, wherein R₄ is as described herein

In some embodiments, a subset of compounds of Formula (I) includes those of Formula (IId):

O
$$R'$$
HO R'
 R'
 R_5
 R_6
 R_7
 R_7
 R_7
 R_7
 R_7
 R_8
 R_8
 R_8
 R_8
 R_8

or a salt or isomer thereof, wherein n is 2, 3, or 4; and m, R', R", and R_2 through R_6 are as described herein. For example, each of R_2 and R_3 may be independently selected from the group consisting of C_{5-14} alkyl and C_{5-14} alkenyl.

In some embodiments, a subset of compounds of Formula (I) includes those of Formula (IIa), (IIb), (IIc), or (IIe):

$$(IIa)$$
 R_4
 N
 S_0
 S_0
 S_0
 S_0
 S_0

$$\begin{array}{c} (IIb) \\ \\ R_4 \end{array}$$

(IIc)

$$\mathbb{R}_4$$
 \mathbb{N} \mathbb{N}

or a salt or isomer thereof, wherein R_4 is as described herein.

In some embodiments, a subset of compounds of Formula (I) includes those of Formula (IId):

O
$$R'$$

HO R'
 R_5
 R_6
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7

or a salt or isomer thereof, wherein n is 2, 3, or 4; and m, R', R", and R_2 through R_6 are as described herein. For example, each of R_2 and R_3 may be independently selected from the group consisting of C_{5-14} alkyl and C_{5-14} alkenyl.

In some embodiments, the compound of Formula (I) is selected from the group consisting of:

40

$$(Compound 37)$$

30

In further embodiments, the compound of Formula (I) is selected from the group consisting of:

In some embodiments, the compound of Formula (I) is selected from the group consisting of:

$$\begin{array}{c} \text{(Compound 71)} \\ \text{N} \\ \text{O} \\ \text{O}$$

$$\begin{array}{c} \text{HO} \\ \text{N} \\ \\ \text{O} \\ \\ \text{O} \\ \end{array}, \\ \begin{array}{c} \text{(Compound 88)} \\ \\ \text{O} \\ \\ \end{array}$$

$$F = \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N}$$

HO
$$\stackrel{\text{N}}{\longrightarrow}$$
 $\stackrel{\text{O}}{\longrightarrow}$ $\stackrel{\text{O}}{\longrightarrow}$

$$\begin{array}{c} O \\ O \\ O \\ N \end{array}$$

$$\begin{array}{c} O_2N \\ N \\ H \end{array}$$

$$(Compound 175)$$

$$\begin{array}{c} O \\ N \\ H \end{array}$$

$$\bigcup_{\mathbf{N}} \bigvee_{\mathbf{N}} \bigvee$$

$$\begin{array}{c} NH \\ H_2N \\ \end{array} \\ N \\ O \\ O \\ \end{array} \\ O \\ O \\ O \\ \end{array}$$

$$(Compound 208)$$

$$N$$

$$N$$

$$N$$

$$O$$

$$O$$

$$O$$

$$O$$

$$\begin{array}{c} O_2N \\ N \\ N \\ H \end{array}$$

$$(Compound\ 210)$$

$$\begin{array}{c} H_2N \\ O = S \\ N \\ H \end{array}$$

$$H_2N$$
 (Compound 221)

 H_2N (Compound 221)

In some embodiments, a nanoparticle comprises the following compound:

or salts and isomers thereof.

In some embodiments, the disclosure features a nanoparticle composition including a lipid component comprising a compound as described herein (e.g., a compound according to Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (IIe)).

In some embodiments, the disclosure features a pharmaceutical composition comprising a nanoparticle composition according to the preceding embodiments and a pharmaceutically acceptable carrier. For example, the pharmaceutically acceptable carrier composition is refrigerated or frozen for storage and/or shipment (e.g., being stored at a temperature of 4° C. or lower, such as a temperature between about -150° C. and about 0° C. or between about -80° C. and about -20° C. (e.g., about -5° C., -10° C., -15° C., -20° C., -25° C., -30° C., -40° C., -50° C., -60° C., -70° C., -80° C., -90° C., 35 -130° C. or -150° C.). For example, the pharmaceutical composition is a solution that is refrigerated for storage and/or shipment at, for example, about -20° C., -30° C., -40° C., -50° C., -60° C., -70° C., or -80° C.

In some embodiments, the disclosure provides a method of delivering a therapeutic and/or prophylactic (e.g., RNA, such as mRNA) to a cell (e.g., a mammalian cell). This method includes the step of administering to a subject (e.g., a mammal, such as a human) a nanoparticle composition including (i) a lipid component including a phospholipid 45 (such as a polyunsaturated lipid), a PEG lipid, a structural lipid, and a compound of Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (lie) and (ii) a therapeutic and/or prophylactic, in which administering involves contacting the cell with the nanoparticle composition, whereby the therapeutic and/or 50 prophylactic is delivered to the cell.

In some embodiments, the disclosure provides a method of producing a polypeptide of interest in a cell (e.g., a mammalian cell). The method includes the step of contacting the cell with a nanoparticle composition including (i) a 55 lipid component including a phospholipid (such as a polyunsaturated lipid), a PEG lipid, a structural lipid, and a compound of Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (IIe) and (ii) an mRNA encoding the polypeptide of interest, whereby the mRNA is capable of being translated 60 in the cell to produce the polypeptide.

In some embodiments, the disclosure provides a method of treating a disease or disorder in a mammal (e.g., a human) in need thereof. The method includes the step of administering to the mammal a therapeutically effective amount of 65 a nanoparticle composition including (i) a lipid component including a phospholipid (such as a polyunsaturated lipid),

a PEG lipid, a structural lipid, and a compound of Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (IIe) and (ii) a therapeutic and/or prophylactic (e.g., an mRNA). In some embodiments, the disease or disorder is characterized by dysfunctional or aberrant protein or polypeptide activity. For example, the disease or disorder is selected from the group consisting of rare diseases, infectious diseases, cancer and proliferative diseases, genetic diseases (e.g., cystic fibrosis), autoimmune diseases, diabetes, neurodegenerative diseases, cardio- and reno-vascular diseases, and metabolic diseases.

In some embodiments, the disclosure provides a method of delivering (e.g., specifically delivering) a therapeutic and/or prophylactic to a mammalian organ (e.g., a liver, spleen, lung, or femur). This method includes the step of administering to a subject (e.g., a mammal) a nanoparticle composition including (i) a lipid component including a phospholipid, a PEG lipid, a structural lipid, and a compound of Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (IIe) and (ii) a therapeutic and/or prophylactic (e.g., an mRNA), in which administering involves contacting the cell with the nanoparticle composition, whereby the therapeutic and/or prophylactic is delivered to the target organ (e.g., a liver, spleen, lung, or femur).

In some embodiments, the disclosure features a method for the enhanced delivery of a therapeutic and/or prophylactic (e.g., an mRNA) to a target tissue (e.g., a liver, spleen, lung, or femur). This method includes administering to a subject (e.g., a mammal) a nanoparticle composition, the composition including (i) a lipid component including a compound of Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (IIe), a phospholipid, a structural lipid, and a PEG lipid; and (ii) a therapeutic and/or prophylactic, the administering including contacting the target tissue with the nanoparticle composition, whereby the therapeutic and/or prophylactic is delivered to the target tissue.

In some embodiments, the disclosure features a method of lowering immunogenicity comprising introducing the nanoparticle composition of the disclosure into cells, wherein the nanoparticle composition reduces the induction of the cellular immune response of the cells to the nanoparticle composition, as compared to the induction of the cellular immune response in cells induced by a reference composition which comprises a reference lipid instead of a compound of Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (IIe). For example, the cellular immune response is an innate immune response, an adaptive immune response, or both.

The disclosure also includes methods of synthesizing a compound of Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (IIe) and methods of making a nanoparticle composition including a lipid component comprising the compound of Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (IIe). Modes of Vaccine Administration

Respiratory virus RNA (e.g. mRNA) vaccines may be administered by any route which results in a therapeutically effective outcome. These include, but are not limited, to intradermal, intramuscular, and/or subcutaneous administration. The present disclosure provides methods comprising administering RNA (e.g., mRNA) vaccines to a subject in need thereof. The exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the disease, the particular composition, its mode of administration, its mode of activity, and the like. Respiratory virus RNA (e.g., mRNA) vaccines compositions are typically formulated in dosage unit form for ease of administration and uniformity 20 of dosage. It will be understood, however, that the total daily usage of RNA (e.g., mRNA) vaccine compositions may be decided by the attending physician within the scope of sound medical judgment. The specific therapeutically effective, prophylactically effective, or appropriate imaging dose level 25 for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time 30 of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed; and like factors well known in the medical arts.

In some embodiments, respiratory virus RNA (e.g. mRNA) vaccines compositions may be administered at dosage levels sufficient to deliver 0.0001 mg/kg to 100 mg/kg, 0.001 mg/kg to 0.05 mg/kg, 0.005 mg/kg to 0.05 mg/kg, 0.001 mg/kg to 0.005 mg/kg, 0.05 mg/kg to 0.5 40 mg/kg, 0.01 mg/kg to 50 mg/kg, 0.1 mg/kg to 40 mg/kg, 0.5 mg/kg to 30 mg/kg, 0.01 mg/kg to 10 mg/kg, 0.1 mg/kg to 10 mg/kg, or 1 mg/kg to 25 mg/kg, of subject body weight per day, one or more times a day, per week, per month, etc. to obtain the desired therapeutic, diagnostic, prophylactic, or 45 imaging effect (see, e.g., the range of unit doses described in International Publication No WO2013078199, the contents of which are herein incorporated by reference in their entirety). The desired dosage may be delivered three times a day, two times a day, once a day, every other day, every 50 third day, every week, every two weeks, every three weeks, every four weeks, every 2 months, every three months, every 6 months, etc. In some embodiments, the desired dosage may be delivered using multiple administrations (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, 55 thirteen, fourteen, or more administrations). When multiple administrations are employed, split dosing regimens such as those described herein may be used. In exemplary embodiments, respiratory virus RNA (e.g., mRNA) vaccines compositions may be administered at dosage levels sufficient to 60 deliver 0.0005 mg/kg to 0.01 mg/kg, e.g., about 0.0005 mg/kg to about 0.0075 mg/kg, e.g., about 0.0005 mg/kg, about 0.001 mg/kg, about 0.002 mg/kg, about 0.003 mg/kg, about 0.004 mg/kg or about 0.005 mg/kg.

In some embodiments, respiratory virus RNA (e.g., 65 mRNA) vaccine compositions may be administered once or twice (or more) at dosage levels sufficient to deliver 0.025

188 mg/kg to 0.250 mg/kg, 0.025 mg/kg to 0.500 mg/kg, 0.025 mg/kg to 0.750 mg/kg, or 0.025 mg/kg to 1.0 mg/kg.

In some embodiments, respiratory virus RNA (e.g., mRNA) vaccine compositions may be administered twice (e.g., Day 0 and Day 7, Day 0 and Day 14, Day 0 and Day 21, Day 0 and Day 28, Day 0 and Day 60, Day 0 and Day 90, Day 0 and Day 120, Day 0 and Day 150, Day 0 and Day 180, Day 0 and 3 months later, Day 0 and 6 months later, Day 0 and 9 months later, Day 0 and 12 months later, Day 0 and 18 months later, Day 0 and 2 years later, Day 0 and 5 years later, or Day 0 and 10 years later) at a total dose of or at dosage levels sufficient to deliver a total dose of 0.0100 mg, 0.025 mg, 0.050 mg, 0.075 mg, 0.100 mg, 0.125 mg, 0.150 mg, 0.175 mg, 0.200 mg, 0.225 mg, 0.250 mg, 0.275 mg, 0.300 mg, 0.325 mg, 0.350 mg, 0.375 mg, 0.400 mg, 0.425 mg, 0.450 mg, 0.475 mg, 0.500 mg, 0.525 mg, 0.550 mg, 0.575 mg, 0.600 mg, 0.625 mg, 0.650 mg, 0.675 mg, 0.700 mg, 0.725 mg, 0.750 mg, 0.775 mg, 0.800 mg, 0.825 mg, 0.850 mg, 0.875 mg, 0.900 mg, 0.925 mg, 0.950 mg, 0.975 mg, or 1.0 mg. Higher and lower dosages and frequency of administration are encompassed by the present disclosure. For example, a respiratory virus RNA (e.g., mRNA) vaccine composition may be administered three or four times.

In some embodiments, respiratory virus RNA (e.g., mRNA) vaccine compositions may be administered twice (e.g., Day 0 and Day 7, Day 0 and Day 14, Day 0 and Day 21, Day 0 and Day 28, Day 0 and Day 60, Day 0 and Day 90, Day 0 and Day 120, Day 0 and Day 150, Day 0 and Day 180, Day 0 and 3 months later, Day 0 and 6 months later, Day 0 and 9 months later, Day 0 and 12 months later, Day 0 and 18 months later, Day 0 and 2 years later, Day 0 and 5 years later, or Day 0 and 10 years later) at a total dose of or at dosage levels sufficient to deliver a total dose of 0.010 mg, 0.025 mg, 0.100 mg or 0.400 mg.

In some embodiments, the respiratory virus RNA (e.g., mRNA) vaccine for use in a method of vaccinating a subject is administered to the subject as a single dosage of between 10 μg/kg and 400 μg/kg of the nucleic acid vaccine (in an effective amount to vaccinate the subject). In some embodiments the RNA (e.g., mRNA) vaccine for use in a method of vaccinating a subject is administered to the subject as a single dosage of between 10 µg and 400 µg of the nucleic acid vaccine (in an effective amount to vaccinate the subject). In some embodiments, a respiratory virus RNA (e.g., mRNA) vaccine for use in a method of vaccinating a subject is administered to the subject as a single dosage of 25-1000 μg (e.g., a single dosage of mRNA encoding hMPV, PIV3, RSV, MeV and/or BetaCoV antigen). In some embodiments, a respiratory virus RNA (e.g., mRNA) vaccine is administered to the subject as a single dosage of 25, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950 or 1000 µg. For example, a respiratory virus RNA (e.g., mRNA) vaccine may be administered to a subject as a single dose of 25-100, 25-500, 50-100, 50-500, 50-1000, 100-500, 100-1000, 250-500, 250-1000, or 500-1000 μg. In some embodiments, a respiratory virus RNA (e.g., mRNA) vaccine for use in a method of vaccinating a subject is administered to the subject as two dosages, the combination of which equals 25-1000 µg of the respiratory virus RNA (e.g., mRNA) vaccine.

A respiratory virus RNA (e.g. mRNA) vaccine pharmaceutical composition described herein can be formulated into a dosage form described herein, such as an intranasal, intratracheal, or injectable (e.g., intravenous, intraocular, intravitreal, intramuscular, intradermal, intracardiac, intraperitoneal, and subcutaneous).

Respiratory Virus RNA (e.g., mRNA) Vaccine Formulations and Methods of Use

Some aspects of the present disclosure provide formulations of the respiratory virus RNA (e.g., mRNA) vaccine, wherein the RNA (e.g., mRNA) vaccine is formulated in an 5 effective amount to produce an antigen specific immune response in a subject (e.g., production of antibodies specific to an hMPV, PIV3, RSV, MeV and/or BetaCoV antigenic polypeptide). "An effective amount" is a dose of an RNA (e.g., mRNA) vaccine effective to produce an antigenspecific immune response. Also provided herein are methods of inducing an antigen-specific immune response in a subject.

In some embodiments, the antigen-specific immune response is characterized by measuring an anti-hMPV, anti-PIV3, anti-RSV, anti-MeV and/or anti-BetaCoV antigenic polypeptide antibody titer produced in a subject administered a respiratory virus RNA (e.g., mRNA) vaccine as provided herein. An antibody titer is a measurement of the amount of antibodies within a subject, for example, antibodies that are specific to a particular antigen (e.g., an anti-hMPV, anti-PIV3, anti-RSV, anti-MeV and/or anti-BetaCoV antigenic polypeptide) or epitope of an antigen. Antibody titer is typically expressed as the inverse of the greatest dilution that provides a positive result. Enzymelinked immunosorbent assay (ELISA) is a common assay for determining antibody titers, for example.

In some embodiments, an antibody titer is used to assess whether a subject has had an infection or to determine whether immunizations are required. In some embodiments, 30 an antibody titer is used to determine the strength of an autoimmune response, to determine whether a booster immunization is needed, to determine whether a previous vaccine was effective, and to identify any recent or prior infections. In accordance with the present disclosure, an 35 antibody titer may be used to determine the strength of an immune response induced in a subject by the respiratory virus RNA (e.g., mRNA) vaccine.

In some embodiments, an anti-antigenic polypeptide (e.g., an anti-hMPV, anti-PIV3, anti-RSV, anti-MeV and/or anti-40 BetaCoV antigenic polypeptide) antibody titer produced in a subject is increased by at least 1 log relative to a control. For example, anti-antigenic polypeptide antibody titer produced in a subject may be increased by at least 1.5, at least 2, at least 2.5, or at least 3 log relative to a control. In some 45 embodiments, the anti-antigenic polypeptide antibody titer produced in the subject is increased by 1, 1.5, 2, 2.5 or 3 log relative to a control. In some embodiments, the anti-antigenic polypeptide antibody titer produced in the subject is increased by 1-3 log relative to a control. For example, the 50 anti-antigenic polypeptide antibody titer produced in a subject may be increased by 1-1.5, 1-2, 1-2.5, 1-3, 1.5-2, 1.5-2.5, 1.5-3, 2-2.5, 2-3, or 2.5-3 log relative to a control.

In some embodiments, the anti-antigenic polypeptide (e.g., an anti-hMPV, anti-PIV3, anti-RSV, anti-MeV and/or 55 anti-BetaCoV antigenic polypeptide) antibody titer produced in a subject is increased at least 2 times relative to a control. For example, the anti-antigenic polypeptide antibody titer produced in a subject may be increased at least 3 times, at least 4 times, at least 5 times, at least 6 times, at least 7 times, at least 8 times, at least 9 times, or at least 10 times relative to a control. In some embodiments, the anti-antigenic polypeptide antibody titer produced in the subject is increased 2, 3, 4, 5, 6, 7, 8, 9, or 10 times relative to a control. In some embodiments, the anti-antigenic polypeptide antibody titer produced in a subject is increased 2-10 times relative to a control. For example, the anti-antigenic

190

polypeptide antibody titer produced in a subject may be increased 2-10, 2-9, 2-8, 2-7, 2-6, 2-5, 2-4, 2-3, 3-10, 3-9, 3-8, 3-7, 3-6, 3-5, 3-4, 4-10, 4-9, 4-8, 4-7, 4-6, 4-5, 5-10, 5-9, 5-8, 5-7, 5-6, 6-10, 6-9, 6-8, 6-7, 7-10, 7-9, 7-8, 8-10, 8-9, or 9-10 times relative to a control.

A control, in some embodiments, is the anti-antigenic polypeptide (e.g., an anti-hMPV, anti-PIV3, anti-RSV, anti-MeV and/or anti-BetaCoV antigenic polypeptide) antibody titer produced in a subject who has not been administered a respiratory virus RNA (e.g., mRNA) vaccine of the present disclosure. In some embodiments, a control is an antiantigenic polypeptide (e.g., an anti-hMPV, anti-PIV3, anti-RSV, anti-MeV and/or anti-BetaCoV antigenic polypeptide) antibody titer produced in a subject who has been administered a live attenuated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine. An attenuated vaccine is a vaccine produced by reducing the virulence of a viable (live). An attenuated virus is altered in a manner that renders it harmless or less virulent relative to live, unmodified virus. In some embodiments, a control is an anti-antigenic polypeptide (e.g., an anti-hMPV, anti-PIV3, anti-RSV, anti-MeV and/or anti-BetaCoV antigenic polypeptide) antibody titer produced in a subject administered inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine. In some embodiments, a control is an anti-antigenic polypeptide (e.g., an antihMPV, anti-PIV3, anti-RSV, anti-MeV and/or anti-BetaCoV antigenic polypeptide) antibody titer produced in a subject administered a recombinant or purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine. Recombinant protein vaccines typically include protein antigens that either have been produced in a heterologous expression system (e.g., bacteria or yeast) or purified from large amounts of the pathogenic organism. In some embodiments, a control is an anti-antigenic polypeptide (e.g., an anti-hMPV, anti-PIV3, anti-RSV, anti-MeV and/or anti-BetaCoV antigenic polypeptide) antibody titer produced in a subject who has been administered an hMPV, PIV3, RSV, MeV and/or BetaCoV virus-like particle (VLP) vaccine. For example, an hMPV VLP vaccine used as a control may be a hMPV VLPs. comprising (or consisting of) viral matrix (M) and fusion (F) proteins, generated by expressing viral proteins in suspension-adapted human embryonic kidney epithelial (293-F) cells (see, e.g., Cox R G et al., J Virol. 2014 June; 88(11): 6368-6379, the contents of which are herein incorporated by reference).

In some embodiments, an effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a dose that is reduced compared to the standard of care dose of a recombinant hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine. A "standard of care," as provided herein, refers to a medical or psychological treatment guideline and can be general or specific. "Standard of care" specifies appropriate treatment based on scientific evidence and collaboration between medical professionals involved in the treatment of a given condition. It is the diagnostic and treatment process that a physician/clinician should follow for a certain type of patient, illness or clinical circumstance. A "standard of care dose," as provided herein, refers to the dose of a recombinant or purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine, or a live attenuated or inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine, that a physician/ clinician or other medical professional would administer to a subject to treat or prevent hMPV, PIV3, RSV, MeV and/or BetaCoV, or a hMPV-, PIV3-, RSV-, MeV- and/or BetaCoVrelated condition, while following the standard of care

guideline for treating or preventing hMPV, PIV3, RSV, MeV and/or BetaCoV, or a hMPV-, PIV3-, RSV-, MeV- and/or BetaCoV-related condition.

In some embodiments, the anti-antigenic polypeptide (e.g., an anti-hMPV, anti-PIV3, anti-RSV, anti-MeV and/or 5 anti-BetaCoV antigenic polypeptide) antibody titer produced in a subject administered an effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is equivalent to an anti-antigenic polypeptide (e.g., an anti-hMPV, anti-PIV3, anti-RSV, anti-MeV and/or anti-BetaCoV antigenic polypeptide) antibody titer produced in a control subject administered a standard of care dose of a recombinant or purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine or a live attenuated or inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine.

In some embodiments, an effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a dose equivalent to an at least 2-fold reduction in a standard of care dose of a recombinant or purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine. For example, an effective amount 20 of a respiratory virus RNA (e.g., mRNA) vaccine may be a dose equivalent to an at least 3-fold, at least 4-fold, at least 5-fold, at least 6-fold, at least 7-fold, at least 8-fold, at least 9-fold, or at least 10-fold reduction in a standard of care dose of a recombinant or purified hMPV, PIV3, RSV, MeV and/or 25 BetaCoV protein vaccine. In some embodiments, an effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a dose equivalent to an at least at least 100-fold, at least 500-fold, or at least 1000-fold reduction in a standard of care dose of a recombinant or purified hMPV, PIV3, RSV, 30 MeV and/or BetaCoV protein vaccine. In some embodiments, an effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a dose equivalent to a 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 20-, 50-, 100-, 250-, 500-, or 1000-fold reduction in a standard of care dose of a recombinant or 35 purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine. In some embodiments, the anti-antigenic polypeptide antibody titer produced in a subject administered an effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is equivalent to an anti-antigenic polypeptide anti- 40 body titer produced in a control subject administered the standard of care dose of a recombinant or protein hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine or a live attenuated or inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine. In some embodiments, an effective 45 amount of a respiratory virus RNA (e.g., mRNA) vaccine is a dose equivalent to a 2-fold to 1000-fold (e.g., 2-fold to 100-fold, 10-fold to 1000-fold) reduction in the standard of care dose of a recombinant or purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine, wherein the anti- 50 antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine or a live attenuated or 55 inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV vac-

In some embodiments, the effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a dose equivalent to a 2 to 1000-, 2 to 900-, 2 to 800-, 2 to 700-, 2 to 600-, 2 60 to 500-, 2 to 400-, 2 to 300-, 2 to 200-, 2 to 100-, 2 to 90-, 2 to 80-, 2 to 70-, 2 to 60-, 2 to 50-, 2 to 40-, 2 to 30-, 2 to 20-, 2 to 10-, 2 to 9-, 2 to 8-, 2 to 7-, 2 to 6-, 2 to 5-, 2 to 4-, 2 to 3-, 3 to 1000-, 3 to 900-, 3 to 800-, 3 to 700-, 3 to 600-, 3 to 500-, 3 to 400-, 3 to 500-, 3 to 500-, 3 to 500-, 3 to 50-, 3 to 50-, 3 to 40-, 3 to 30-, 3 to 20-, 3 to 10-, 3 to 9-, 3 to 8-, 3 to 7-, 3 to 6-, 3 to

192

5-, 3 to 4-, 4 to 1000-, 4 to 900-, 4 to 800-, 4 to 700-, 4 to 600-, 4 to 500-, 4 to 400-, 4 to 4 to 00-, 4 to 200-, 4 to 100-, 4 to 90-, 4 to 80-, 4 to 70-, 4 to 60-, 4 to 50-, 4 to 40-, 4 to 30-, 4 to 20-, 4 to 10-, 4 to 9-, 4 to 8-, 4 to 7-, 4 to 6-, 4 to 5-, 4 to 4-, 5 to 1000-, 5 to 900-, 5 to 800-, 5 to 700-, 5 to 600-, 5 to 500-, 5 to 400-, 5 to 300-, 5 to 200-, 5 to 100-, 5 to 90-, 5 to 80-, 5 to 70-, 5 to 60-, 5 to 50-, 5 to 40-, 5 to 30-, 5 to 20-, 5 to 10-, 5 to 9-, 5 to 8-, 5 to 7-, 5 to 6-, 6 to 1000-, 6 to 900-, 6 to 800-, 6 to 700-, 6 to 600-, 6 to 500-, 6 to 400-, 6 to 300-, 6 to 200-, 6 to 100-, 6 to 90-, 6 to 80-, 6 to 70-, 6 to 60-, 6 to 50-, 6 to 40-, 6 to 30-, 6 to 20-, 6 to 10-, 6 to 9-, 6 to 8-, 6 to 7-, 7 to 1000-, 7 to 900-, 7 to 800-, 7 to 700-, 7 to 600-, 7 to 500-, 7 to 400-, 7 to 300-, 7 to 200-, 7 to 100-, 7 to 90-, 7 to 80-, 7 to 70-, 7 to 60-, 7 to 50-, 7 to 40-, 7 to 30-, 7 to 20-, 7 to 10-, 7 to 9-, 7 to 8-, 8 to 1000-, 8 to 900-, 8 to 800-, 8 to 700-, 8 to 600-, 8 to 500-, 8 to 400-, 8 to 300-, 8 to 200-, 8 to 100-, 8 to 90-, 8 to 80-, 8 to 70-, 8 to 60-, 8 to 50-, 8 to 40-, 8 to 30-, 8 to 20-, 8 to 10-, 8 to 9-, 9 to 1000-, 9 to 900-, 9 to 800-, 9 to 700-, 9 to 600-, 9 to 500-, 9 to 400-, 9 to 300-, 9 to 200-, 9 to 100-, 9 to 90-, 9 to 80-, 9 to 70-, 9 to 60-, 9 to 50-, 9 to 40-, 9 to 30-, 9 to 20-, 9 to 10-, 10 to 1000-, 10 to 900-, 10 to 800-, 10 to 700-, 10 to 600-, 10 to 500-, 10 to 400-, 10 to 300-, 10 to 200-, 10 to 100-, 10 to 90-, 10 to 80-, 10 to 70-, 10 to 60-, 10 to 50-, 10 to 40-, 10 to 30-, 10 to 20-, 20 to 1000-, 20 to 900-, 20 to 800-, 20 to 700-, 20 to 600-, 20 to 500-, 20 to 400-, 20 to 300-, 20 to 200-, 20 to 100-, 20 to 90-, 20 to 80-, 20 to 70-, 20 to 60-, 20 to 50-, 20 to 40-, 20 to 30-, 30 to 1000-, 30 to 900-, 30 to 800-, 30 to 700-, 30 to 600-, 30 to 500-, 30 to 400-, 30 to 300-, 30 to 200-, 30 to 100-, 30 to 90-, 30 to 80-, 30 to 70-, 30 to 60-, 30 to 50-, 30 to 40-, 40 to 1000-, 40 to 900-, 40 to 800-, 40 to 700-, 40 to 600-, 40 to 500-, 40 to 400-, 40 to 300-, 40 to 200-, 40 to 100-, 40 to 90-, 40 to 80-, 40 to 70-, 40 to 60-, 40 to 50-, 50 to 1000-, 50 to 900-, 50 to 800-, 50 to 700-, 50 to 600-, 50 to 500-, 50 to 400-, 50 to 300-, 50 to 200-, 50 to 100-, 50 to 90-, 50 to 80-, 50 to 70-, 50 to 60-, 60 to 1000-, 60 to 900-, 60 to 800-, 60 to 700-, 60 to 600-, 60 to 500-, 60 to 400-, 60 to 300-, 60 to 200-, 60 to 100-, 60 to 90-, 60 to 80-, 60 to 70-, 70 to 1000-, 70 to 900-, 70 to 800-, 70 to 700-, 70 to 600-, 70 to 500-, 70 to 400-, 70 to 300-, 70 to 200-, 70 to 100-, 70 to 90-, 70 to 80-, 80 to 1000-, 80 to 900-, 80 to 800-, 80 to 700-, 80 to 600-, 80 to 500-, 80 to 400-, 80 to 300-, 80 to 200-, 80 to 100-, 80 to 90-, 90 to 1000-, 90 to 900-, 90 to 800-, 90 to 700-, 90 to 600-, 90 to 500-, 90 to 400-, 90 to 300-, 90 to 200-, 90 to 100-, 100 to 1000-, 100 to 900-, 100 to 800-, 100 to 700-, 100 to 600-, 100 to 500-, 100 to 400-, 100 to 300-, 100 to 200-, 200 to 1000-, 200 to 900-, 200 to 800-, 200 to 700-, 200 to 600-, 200 to 500-, 200 to 400-, 200 to 300-, 300 to 1000-, 300 to 900-, 300 to 800-, 300 to 700-, 300 to 600-, 300 to 500-, 300 to 400-, 400 to 1000-, 400 to 900-, 400 to 800-, 400 to 700-, 400 to 600-, 400 to 500-, 500 to 1000-, 500 to 900-, 500 to 800-, 500 to 700-, 500 to 600-, 600 to 1000-, 600 to 900-, 600 to 800-, 600 to 700-, 700 to 1000-, 700 to 900-, 700 to 800-, 800 to 1000-, 800 to 900-, or 900 to 1000-fold reduction in the standard of care dose of a recombinant hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine. In some embodiments, the anti-antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine or a live attenuated or inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine. In some embodiments, the effective amount is a dose equivalent to (or equivalent to an at least) 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 20-, 30-, 40-, 50-, 60-, 70-, 80-, 90-, 100-, 110-, 120-, 130-,

140-, 150-, 160-, 170-, 1280-, 190-, 200-, 210-, 220-, 230-, 240-, 250-, 260-, 270-, 280-, 290-, 300-, 310-, 320-, 330-, 340-, 350-, 360-, 370-, 380-, 390-, 400-, 410-, 420-, 430-, 440-, 450-, 4360-, 470-, 480-, 490-, 500-, 510-, 520-, 530-, 540-, 550-, 560-, 5760-, 580-, 590-, 600-, 610-, 620-, 630-, 5 640-, 650-, 660-, 670-, 680-, 690-, 700-, 710-, 720-, 730-, 740-, 750-, 760-, 770-, 780-, 790-, 800-, 810-, 820-, 830-, 840-, 850-, 860-, 870-, 880-, 890-, 900-, 910-, 920-, 930-, 940-, 950-, 960-, 970-, 980-, 990-, or 1000-fold reduction in the standard of care dose of a recombinant hMPV, PIV3, 10 RSV, MeV and/or BetaCoV protein vaccine. In some embodiments, an anti-antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or 15 purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine or a live attenuated or inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine.

In some embodiments, the effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a total dose of 20 50-1000 µg. In some embodiments, the effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a total dose of 50-1000, 50-900, 50-800, 50-700, 50-600, 50-500, 50-400, 50-300, 50-200, 50-100, 50-90, 50-80, 50-70, 50-60, 60-1000, 60-900, 60-800, 60-700, 60-600, 60-500, 25 60-400, 60-300, 60-200, 60-100, 60-90, 60-80, 60-70, 70-1000, 70-900, 70-800, 70-700, 70-600, 70-500, 70-400, 70-300, 70-200, 70-100, 70-90, 70-80, 80-1000, 80-900, 80-800, 80-700, 80-600, 80-500, 80-400, 80-300, 80-200, 80-100, 80-90, 90-1000, 90-900, 90-800, 90-700, 90-600, 30 90-500, 90-400, 90-300, 90-200, 90-100, 100-1000, 100-900, 100-800, 100-700, 100-600, 100-500, 100-400, 100-300, 100-200, 200-1000, 200-900, 200-800, 200-700, 200-600, 200-500, 200-400, 200-300, 300-1000, 300-900, 300-800, 300-700, 300-600, 300-500, 300-400, 400-1000, 400-35 900, 400-800, 400-700, 400-600, 400-500, 500-1000, 500-900, 500-800, 500-700, 500-600, 600-1000, 600-900, 600-900, 600-700, 700-1000, 700-900, 700-800, 800-1000, 800-900, or 900-1000 µg. In some embodiments, the effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is 40 a total dose of 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950 or 1000 μg. In some embodiments, the effective amount is a dose of 25-500 μg administered to the subject a total of two times. In some embodiments, the effective amount of a respiratory 45 virus RNA (e.g., mRNA) vaccine is a dose of 25-500, 25-400, 25-300, 25-200, 25-100, 25-50, 50-500, 50-400, 50-300, 50-200, 50-100, 100-500, 100-400, 100-300, 100-200, 150-500, 150-400, 150-300, 150-200, 200-500, 200-400, 200-300, 250-500, 250-400, 250-300, 300-500, 300-50 400, 350-500, 350-400, 400-500 or 450-500 μg administered to the subject a total of two times. In some embodiments, the effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a total dose of 25, 50, 100, 150, 200, 250, 300, 350, 400, 450, or 500 μg administered to the subject a total 55 of two times.

Examples of Additional Embodiments of the Disclosure

Additional embodiments of the present disclosure are encompassed by the following numbered paragraphs:

1. A respiratory virus vaccine, comprising: at least one ribonucleic acid (RNA) polynucleotide having an open reading frame encoding at least one, at least two, at least 65 three, at least four or at least five antigenic polypeptides selected from human *Metapneumovirus* (hMPV) antigenic

polypeptides or immunogenic fragments thereof, human parainfluenza virus type 3 (PIV3) antigenic polypeptides or immunogenic fragments thereof, respiratory syncytial virus (RSV) antigenic polypeptides or immunogenic fragments thereof, measles virus (MeV) antigenic polypeptides or immunogenic fragments thereof, and *Betacoronavirus* (BetaCoV) antigenic polypeptides or immunogenic fragments thereof.

2. The respiratory virus vaccine of paragraph 1, comprising: at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof and a PIV3 antigenic polypeptide or an immunogenic fragment thereof; or

at least two RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof and one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof.

3. The respiratory virus vaccine of paragraph 2, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, and/or wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13.

4. The respiratory virus vaccine of paragraph 1, comprising: at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof and a RSV antigenic polypeptide or an immunogenic fragment thereof; or

at least two RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof and one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof.

5. The respiratory virus vaccine of paragraph 4, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8.

6. The respiratory virus vaccine of paragraph 1, comprising: at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof and MeV antigenic polypeptide or an immunogenic fragment thereof; or

at least two RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof and one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof.

7. The respiratory virus vaccine of paragraph 6, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, and/or wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50.

8. The respiratory virus vaccine of paragraph 1, comprising: at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immu-

nogenic fragment thereof and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

9. The respiratory virus vaccine of paragraph 8, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 24-34.

 The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof and a RSV antigenic polypeptide or an immunogenic fragment thereof; or

at least two RNA polynucleotides, one having an open 25 reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof and one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof.

11. The respiratory virus vaccine of paragraph 10, wherein 30 the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13.

12. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof and a MeV antigenic polypeptide 40 or an immunogenic fragment thereof; or

at least two RNA polynucleotides, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof and one having an open reading frame encoding a MeV antigenic polypeptide or an 45 immunogenic fragment thereof.

13. The respiratory virus vaccine of paragraph 12, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to 50 an amino acid sequence identified by any one of SEQ ID NO: 12-13, and/or wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence 55 identified by any one of SEQ ID NO: 47-50.

14. The respiratory virus vaccine of paragraph 1, comprising

at least one RNA polynucleotide having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof and a BetaCoV antigenic

polypeptide or an immunogenic fragment thereof; or at least two RNA polynucleotides, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

196

15. The respiratory virus vaccine of paragraph 14, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 24-34.

16. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof and a MeV antigenic polypeptide or an immunogenic fragment thereof; or

at least two RNA polynucleotides, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof and one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof.

17. The respiratory virus vaccine of paragraph 16, wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50.

18. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two RNA polynucleotides, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

19. The respiratory virus vaccine of paragraph 18, wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 24-34.

20. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two RNA polynucleotides, one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

21. The respiratory virus vaccine of paragraph 20, wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 24-34.

22. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a PIV3 antigenic polypeptide or an immunogenic fragment thereof, and a RSV antigenic polypeptide or an immunogenic fragment thereof; or

at least two or three RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof.

23. The respiratory virus vaccine of paragraph 22, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, and/or wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13.

24. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a PIV3 antigenic polypeptide or 30 an immunogenic fragment thereof, and a MeV antigenic polypeptide or an immunogenic fragment thereof; or

at least two or three RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, one having an open 35 reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof.

25. The respiratory virus vaccine of paragraph 24, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, and/or wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50. 26. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a PIV3 antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two or three RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, and one having an open 65 reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

198

27. The respiratory virus vaccine of paragraph 26, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13 and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 23-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 23-34. 28. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a RSV antigenic polypeptide or an immunogenic fragment thereof, and a MeV antigenic polypeptide or an immunogenic fragment thereof; or

at least two or three RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof.

29. The respiratory virus vaccine of paragraph 28, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, and/or wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50.

30. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a RSV antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two or three RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

31. The respiratory virus vaccine of paragraph 30, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 23-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 23-34.

32. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a MeV antigenic polypeptide or

an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two or three RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, one having an open 5 reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

33. The respiratory virus vaccine of paragraph 32, wherein 10 the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 23-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 23-34. 34. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, a RSV antigenic polypeptide or an immunogenic fragment thereof, and a MeV antigenic polypeptide or an immunogenic fragment thereof; or

at least two or three RNA polynucleotides, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, and one having an open 35 reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof.

35. The respiratory virus vaccine of paragraph 34, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an 40 amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, and/or wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at 45 least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50.

36. The respiratory virus vaccine of paragraph 1, comprising

at least one RNA polynucleotide having an open reading 50 frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, a RSV antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two or three RNA polynucleotides, one having an 55 open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or 60 an immunogenic fragment thereof.

37. The respiratory virus vaccine of paragraph 36, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to 65 an amino acid sequence identified by any one of SEQ ID NO: 12-13, and/or wherein the BetaCoV antigenic polypep-

tide comprises an amino acid sequence identified by any one of SEQ ID NO: 23-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 23-34.

200

38. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, a MeV antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two or three RNA polynucleotides, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

39. The respiratory virus vaccine of paragraph 38, wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 23-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 23-34.

40. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, a MeV antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two or three RNA polynucleotides, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

41. The respiratory virus vaccine of paragraph 40, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 23-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 23-34.

at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a PIV3 antigenic polypeptide or an immunogenic fragment thereof, a RSV antigenic polypeptide or an immunogenic fragment thereof, and a MeV antigenic polypeptide or an immunogenic fragment thereof;

at least two, three or four RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic

polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof.

43. The respiratory virus vaccine of paragraph 42, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% 15 or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, and/or wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50. 44. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a PIV3 antigenic polypeptide or an immunogenic fragment thereof, a RSV antigenic polypeptide or an immunogenic fragment thereof, and a Beta-CoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two, three or four RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

45. The respiratory virus vaccine of paragraph 44, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 24-34.

at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a PIV3 antigenic polypeptide or an immunogenic fragment thereof, a MeV antigenic polypeptide or an immunogenic fragment thereof, and a Beta-CoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two, three or four RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, one hav-

ing an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

47. The respiratory virus vaccine of paragraph 46, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEO ID NO: 24-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 24-34.

48. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a RSV antigenic polypeptide or an immunogenic fragment thereof, a MeV antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two, three or four RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

49. The respiratory virus vaccine of paragraph 48, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 24-34.

at least one RNA polynucleotide having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, a RSV antigenic polypeptide or an immunogenic fragment thereof, a MeV antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two, three or four RNA polynucleotides, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, one hav-

ing an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

51. The respiratory virus vaccine of paragraph 50, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to 10 an amino acid sequence identified by any one of SEQ ID NO: 12-13, wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by 15 any one of SEQ ID NO: 47-50, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 24-34. 20 52. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a PIV3 antigenic polypeptide or an immunogenic fragment thereof, a RSV antigenic polypeptide or an immunogenic fragment thereof, a MeV antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two, three, four or five RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

53. The respiratory virus vaccine of paragraph 52, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to 45 an amino acid sequence identified by any one of SEQ ID NO: 5-8, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any 50 one of SEQ ID NO: 12-13, wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50, and/or 55 wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 24-34.

54. The vaccine of any one of paragraphs 1-53, wherein at least one RNA polynucleotide has less than 80% identity to wild-type mRNA sequence.

55. The vaccine of any one of paragraphs 1-53, wherein at least one RNA polynucleotide has at least 80% identity to 65 wild-type mRNA sequence, but does not include wild-type mRNA sequence.

204

56. The vaccine of any one of paragraphs 1-55, wherein at least one antigenic polypeptide has membrane fusion activity, attaches to cell receptors, causes fusion of viral and cellular membranes, and/or is responsible for binding of the virus to a cell being infected.

57. The vaccine of any one of paragraphs 1-56, wherein at least one RNA polynucleotide comprises at least one chemical modification.

58. The vaccine of paragraph 57, wherein the chemical modification is selected from pseudouridine, N1-methylpseudouridine, N1-ethylpseudouridine, 2-thiouridine, 4'-thiouridine, 5-methylcytosine, 5-methyluridine, 2-thio-1-methyl-1-deaza-pseudouridine, 2-thio-1-methyl-pseudouridine, 2-thio-5-aza-uridine, 2-thio-dihydropseudouridine, 2-thio-pseudouridine, 4-methoxy-2-thio-pseudouridine, 4-methoxy-pseudouridine, 4-thio-1-methyl-pseudouridine, 4-thio-pseudouridine, 5-aza-uridine, dihydropseudouridine, 5-methoxyuridine and 2'-O-methyl uridine.

59. The vaccine of paragraph 57 or 58, wherein the chemical modification is in the 5-position of the uracil.

60. The vaccine of any one of paragraphs 57-59, wherein the chemical modification is a N1-methylpseudouridine or N1-ethylpseudouridine.

61. The vaccine of any one of paragraphs 57-60, wherein at least 80%, at least 90% or 100% of the uracil in the open reading frame have a chemical modification.

62. The vaccine of any one of paragraphs 1-61, wherein at least one RNA polynucleotide further encodes at least one 5' terminal cap, optionally wherein the 5' terminal cap is 7mG(5')ppp(5')NlmpNp.

63. The vaccine of any one of paragraphs 1-62, wherein at least one antigenic polypeptide or immunogenic fragment thereof is fused to a signal peptide selected from: a HuIgGk signal peptide (METPAQLLFLLLWLPDTTG; SEQ ID NO: 15); IgE heavy chain epsilon-1 signal peptide (MDWTWILFLVAAATRVHS; SEQ ID NO: 16); Japanese encephalitis PRM signal sequence (MLG-SNSGQRVVFTILLLLVAPAYS; SEQ ID NO: 17), VSVg protein signal sequence (MKCLLYLAFLFIGVNCA; SEQ ID NO: 18) and Japanese encephalitis JEV signal sequence (MWLVSLAIVTACAGA; SEQ ID NO:19).

64. The vaccine of paragraph 63, wherein the signal peptide is fused to the N-terminus or the C-terminus of at least one antigenic polypeptide.

65. The vaccine of any one of paragraphs 1-64, wherein the antigenic polypeptide or immunogenic fragment thereof comprises a mutated N-linked glycosylation site.

66. The vaccine of any one of paragraphs 1-65 formulated in a nanoparticle, optionally a lipid nanoparticle.

67. The vaccine of paragraph 66, wherein the lipid nanoparticle comprises a cationic lipid, a PEG-modified lipid, a sterol and a non-cationic lipid; optionally wherein the lipid nanoparticle carrier comprises a molar ratio of about 20-60% cationic lipid, 0.5-15% PEG-modified lipid, 25-55% sterol, and 25% non-cationic lipid; optionally wherein the cationic lipid is an ionizable cationic lipid and the non-cationic lipid is a neutral lipid, and the sterol is a cholesterol; and optionally wherein the cationic lipid is selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319). Formula (II)

68. The vaccine of paragraph 66 or 67, wherein the nanoparticle (e.g., lipid nanoparticle) comprises a compound of

Formula (I) and/or Formula (II), optionally Compound 3, 18, 20, 25, 26, 29, 30, 60, 108-112, or 122.

- 69. The vaccine of any one of paragraphs 1-68 further comprising an adjuvant, optionally a flagellin protein or peptide that optionally comprises an amino acid sequence 5 identified by any one of SEQ ID NO: 54-56.
- 70. The vaccine of any one of paragraphs 1-69, wherein the open reading frame is codon-optimized.
- 71. The vaccine of any one of paragraphs 1-70 formulated in an effective amount to produce an antigen-specific immune 10 response.
- 72. A method of inducing an immune response in a subject, the method comprising administering to the subject the vaccine of any one of paragraphs 1-71 in an amount effective to produce an antigen-specific immune response in the 15 subject.
- 73. The method of paragraph 72, wherein the subject is administered a single dose of the vaccine, or wherein the subject is administered a first dose and then a booster dose of the vaccine.
- 74. The method of paragraph 72 or 73, wherein the vaccine is administered to the subject by intradermal injection or intramuscular injection.
- 75. The method of any one of paragraphs 72-74, wherein an anti-antigenic polypeptide antibody titer produced in the 25 subject is increased by at least 1 log relative to a control, and/or wherein the anti-antigenic polypeptide antibody titer produced in the subject is increased at least 2 times relative to a control.
- 76. The method of any one of paragraphs 72-75, wherein the control is an anti-antigenic polypeptide antibody titer produced in a subject who has not been administered a vaccine against the virus, and/or wherein the control is an anti-antigenic polypeptide antibody titer produced in a subject who has been administered a recombinant protein vaccine or purified protein vaccine against the virus, and/or wherein the control is an anti-antigenic polypeptide antibody titer produced in a subject who has been administered a recombinant protein vaccine or purified protein vaccine against the virus, and/or wherein the control is an anti-antigenic polypeptide antibody titer produced in a subject who has been administered a vaccine about 0.5-2 about 0.5-2 (b) com wherein the control is an anti-antigenic polypeptide at least for at least for open reading the virus.
- 77. The method of any one of paragraphs 72-76, wherein the effective amount is a dose equivalent to an at least 2-fold reduction in the standard of care dose of a recombinant 45 protein vaccine or a purified protein vaccine against the virus, and wherein an anti-antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant 50 protein vaccine or a purified protein vaccine against the virus, respectively; and/or wherein the effective amount is a dose equivalent to an at least 2-fold reduction in the standard of care dose of a live attenuated vaccine or an inactivated vaccine against the virus, and wherein an anti-antigenic 55 polypeptide antibody titer produced in the subject is equivalent to an anti-antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a live attenuated vaccine or an inactivated vaccine against the virus, respectively; and/or wherein the effective amount 60 is a dose equivalent to an at least 2-fold reduction in the standard of care dose of a VLP vaccine against the virus, and wherein an anti-antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-antigenic polypeptide antibody titer produced in a control subject 65 administered the standard of care dose of a VLP vaccine against the virus.

- 78. The method of any one of paragraphs 72-77, wherein the effective amount is a total dose of 50 μ g-1000 μ g, optionally wherein the effective amount is a dose of 25 μ g, 100 μ g, 400 μ g, or 500 μ g administered to the subject a total of two times. 79. The method of any one of paragraphs 72-78, wherein the efficacy of the vaccine against the virus is greater than 65%; and/or wherein the vaccine immunizes the subject against the virus for up to 2 years or wherein the vaccine immunizes the subject against the virus for more than 2 years.
- 80. The method of any one of paragraphs 72-79, wherein the subject has an age of about 5 years old or younger or wherein the subject has an age of about 60 years old or older; and/or wherein the subject has a chronic pulmonary disease; and/or the subject has been exposed to the virus, wherein the subject is infected with the virus, or wherein the subject is at risk of infection by the virus; and/or wherein the subject is immunocompromised.
- 81. The respiratory virus vaccine of any one of paragraphs 1-71, comprising at least one (e.g., at least two, at least three, at least four, or at least five) RNA polynucleotide having an open reading frame encoding at least one (e.g., at least two, at least three, at least four, or at least five) antigenic polypeptide selected from hMPV antigenic polypeptides (SEQ ID NO: 5-8), PIV3 antigenic polypeptides (SEQ ID NO: 12-13), RSV antigenic polypeptides, MeV antigenic polypeptides (SEQ ID NO: 47-50) and BetaCoV antigenic polypeptides (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1; (SEQ ID NO: 24-34)), formulated in a cat-30 ionic lipid nanoparticle
 - (a) having a molar ratio of about 20-60% cationic lipid, about 5-25% non-cationic lipid, about 25-55% sterol, and about 0.5-15% PEG-modified lipid, and/or
 - (b) comprising a compound of Formula (I) and/or Formula (II).
 - wherein the at least one (e.g., at least two, at least three, at least four, or at least five) RNA polynucleotide comprises at least one chemical modification.
 - 82. The respiratory virus vaccine of any one of paragraphs 1-71, comprising at least one (e.g., at least two, at least three, at least four, or at least five) RNA polynucleotide having an open reading frame encoding at least one (e.g., at least two, at least three, at least four, or at least five) antigenic polypeptide selected from hMPV antigenic polypeptides (SEQ ID NO: 5-8), PIV3 antigenic polypeptides (SEQ ID NO: 12-13), RSV antigenic polypeptides, MeV antigenic polypeptides (SEQ ID NO: 47-50) and BetaCoV antigenic polypeptides (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1; (SEQ ID NO: 24-34)), formulated in a cationic lipid nanoparticle
 - (a) having a molar ratio of about 20-60% cationic lipid, about 5-25% non-cationic lipid, about 25-55% sterol, and about 0.5-15% PEG-modified lipid, and/or
 - (b) comprising at least one (e.g., at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 14) Compound selected from Compounds 3, 18, 20, 25, 26, 29, 30, 60, 108-112 and 122. 83. The respiratory virus vaccine of paragraphs 81 or 82, wherein the at least one antigenic polypeptide is selected from hMPV antigentic polypeptides (e.g., SEQ ID NO: 5-8). 84. The respiratory virus vaccine of any one of paragraphs 81-83, wherein the at least one antigenic polypeptide is selected from PIV3 antigentic polypeptides (e.g., SEQ ID NO: 12-13).
 - 85. The respiratory virus vaccine of any one of paragraphs 81-84, wherein the at least one antigenic polypeptide is selected from RSV antigentic polypeptides.

86. The respiratory virus vaccine of any one of paragraphs 81-85, wherein the at least one antigenic polypeptide is selected from MeV antigentic polypeptides (e.g., SEQ ID NO: 47-50).

87. The respiratory virus vaccine of any one of paragraphs 5 81-86, wherein the at least one antigenic polypeptide is selected from BetaCoV antigentic polypeptides (e.g., SEQ ID NO: 24-34).

88. The respiratory virus vaccine of paragraph 87, wherein the BetaCoV antigentic polypeptides are MERS antigentic 10 polypeptides.

89. The respiratory virus vaccine of paragraph 87, wherein the BetaCoV antigentic polypeptides are SARS antigentic polypeptides.

90. The respiratory virus vaccine of any one of paragraphs 15 81-89, wherein the at least one (e.g., at least two, at least three, at least four, or at least five) RNA polynucleotide comprises at least one chemical modification (e.g., selected from pseudouridine, N1-methylpseudouridine, N1-ethylpseudouridine, 2-thiouridine, 4'-thiouridine, 5-methylcyto- 20 sine, 5-methyluridine, 2-thio-1-methyl-1-deaza-pseudouridine, 2-thio-1-methyl-pseudouridine, 2-thio-5-aza-uridine, 2-thio-dihydropseudouridine, 2-thio-dihydrouridine, 2-thiopseudouridine, 4-methoxy-2-thio-pseudouridine, 4-thio-pseudouridine, 5-aza-uridine, dihydropseudouridine, 5-methoxyuridine and 2'-O-methyl uridine).

91. A respiratory virus vaccine, comprising:

at least one messenger ribonucleic acid (mRNA) polynucleotide having a 5' terminal cap, an open reading frame 30 encoding at least one respiratory virus antigenic polypeptide, and a 3' polyA tail.

92. The vaccine of paragraph 91, wherein the at least one mRNA polynucleotide comprises a sequence identified by any one of SEQ ID NO: 57-80.

93. The vaccine of paragraph 91 or 92, wherein the 5' terminal cap is or comprises 7mG(5')ppp(5')NlmpNp.

94. The vaccine of any one of paragraphs 91-93, wherein 100% of the uracil in the open reading frame is modified to include N1-methyl pseudouridine at the 5-position of the 40 of a chimeric polynucleotide may be joined or ligated using uracil.

95. The vaccine of any one of paragraphs 91-94, wherein the vaccine is formulated in a lipid nanoparticle comprising: DLin-MC3-DMA; cholesterol; 1,2-Distearoyl-sn-glycero-3phosphocholine (DSPC); and polyethylene glycol (PEG) 45 2000-DMG.

96. The vaccine of paragraph 95, wherein the lipid nanoparticle further comprises trisodium citrate buffer, sucrose and

97. A respiratory syncytial virus (RSV) vaccine, comprising: 50 at least one messenger ribonucleic acid (mRNA) polynucleotide having a 5' terminal cap 7mG(5')ppp(5')NlmpNp, a sequence identified by any one of SEQ ID NO: 57-80 and a 3' polyA tail, formulated in a lipid nanoparticle comprising DLin-MC3-DMA, cholesterol, 1,2-Distearoyl-sn-glycero-3-55 phosphocholine (DSPC), and polyethylene glycol (PEG) 2000-DMG, wherein the uracil nucleotides of the sequence identified by any one of SEQ ID NO: 57-80 are modified to include N1-methyl pseudouridine at the 5-position of the uracil nucleotide.

This disclosure is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The disclosure is capable of other embodiments and of being practiced or of being carried out in various 65 ways. Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as

208

limiting. The use of "including," "comprising," or "having," "containing," "involving," and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.

EXAMPLES

Example 1: Manufacture of Polynucleotides

According to the present disclosure, the manufacture of polynucleotides and/or parts or regions thereof may be accomplished utilizing the methods taught in International Publication WO2014/152027, entitled "Manufacturing Methods for Production of RNA Transcripts," the contents of which is incorporated herein by reference in its entirety.

Purification methods may include those taught in International Publication WO2014/152030 and International Publication WO2014/152031, each of which is incorporated herein by reference in its entirety.

Detection and characterization methods of the polynucleotides may be performed as taught in International Publication WO2014/144039, which is incorporated herein by ref-

Characterization of the polynucleotides of the disclosure 4-methoxy-pseudouridine, 4-thio-1-methyl-pseudouridine, 25 may be accomplished using polynucleotide mapping, reverse transcriptase sequencing, charge distribution analysis, detection of RNA impurities, or any combination of two or more of the foregoing. "Characterizing" comprises determining the RNA transcript sequence, determining the purity of the RNA transcript, or determining the charge heterogeneity of the RNA transcript, for example. Such methods are taught in, for example, International Publication WO2014/ 144711 and International Publication WO2014/144767, the content of each of which is incorporated herein by reference 35 in its entirety.

Example 2: Chimeric Polynucleotide Synthesis

According to the present disclosure, two regions or parts triphosphate chemistry. A first region or part of 100 nucleotides or less is chemically synthesized with a 5' monophosphate and terminal 3'desOH or blocked OH, for example. If the region is longer than 80 nucleotides, it may be synthesized as two strands for ligation.

If the first region or part is synthesized as a non-positionally modified region or part using in vitro transcription (IVT), conversion the 5'monophosphate with subsequent capping of the 3' terminus may follow.

Monophosphate protecting groups may be selected from any of those known in the art.

The second region or part of the chimeric polynucleotide may be synthesized using either chemical synthesis or IVT methods. IVT methods may include an RNA polymerase that can utilize a primer with a modified cap. Alternatively, a cap of up to 130 nucleotides may be chemically synthesized and coupled to the IVT region or part.

For ligation methods, ligation with DNA T4 ligase, followed by treatment with DNase should readily avoid con-60 catenation.

The entire chimeric polynucleotide need not be manufactured with a phosphate-sugar backbone. If one of the regions or parts encodes a polypeptide, then such region or part may comprise a phosphate-sugar backbone.

Ligation is then performed using any known click chemistry, orthoclick chemistry, solulink, or other bioconjugate chemistries known to those in the art.

Synthetic Route

The chimeric polynucleotide may be made using a series of starting segments. Such segments include:

- (a) a capped and protected 5' segment comprising a normal 3'OH (SEG. 1)
- (b) a 5' triphosphate segment, which may include the coding region of a polypeptide and a normal 3'OH (SEG. 2) $\,$
- (c) a 5' monophosphate segment for the 3' end of the chimeric polynucleotide (e.g., the tail) comprising cordycepin or no 3'OH (SEG. 3)

After synthesis (chemical or IVT), segment 3 (SEG. 3) may be treated with cordycepin and then with pyrophosphatase to create the 5' monophosphate.

Segment 2 (SEG. 2) may then be ligated to SEG. 3 using RNA ligase. The ligated polynucleotide is then purified and 15 treated with pyrophosphatase to cleave the diphosphate. The treated SEG. 2-SEG. 3 construct may then be purified and SEG. 1 is ligated to the 5' terminus. A further purification step of the chimeric polynucleotide may be performed.

Where the chimeric polynucleotide encodes a polypeptide, the ligated or joined segments may be represented as: 5'UTR (SEG. 1), open reading frame or ORF (SEG. 2) and 3'UTR+PolyA (SEG. 3).

The yields of each step may be as much as 90-95%.

Example 3: PCR for cDNA Production

PCR procedures for the preparation of cDNA may be performed using $2\times KAPA$ HIFITM HotStart ReadyMix by Kapa Biosystems (Woburn, Mass.). This system includes $_{30}$ 2×KAPA ReadyMix 12.5 $\mu l;$ Forward Primer (10 $\mu M)$ 0.75 $\mu l;$ Reverse Primer (10 $\mu M)$ 0.75 $\mu l;$ Template cDNA 100 ng; and dH $_2O$ diluted to 25.0 $\mu l.$ The reaction conditions may be at 95° C. for 5 min. The reaction may be performed for 25 cycles of 98° C. for 20 sec, then 58° C. for 15 sec, then 72° $_{35}$ C. for 45 sec, then 72° C. for 5 min, then 4° C. to termination.

The reaction may be cleaned up using Invitrogen's PURELINKTM PCR Micro Kit (Carlsbad, Calif.) per manufacturer's instructions (up to 5 μg). Larger reactions may $_{40}$ require a cleanup using a product with a larger capacity. Following the cleanup, the cDNA may be quantified using the NANODROPTM and analyzed by agarose gel electrophoresis to confirm that the cDNA is the expected size. The cDNA may then be submitted for sequencing analysis before $_{45}$ proceeding to the in vitro transcription reaction.

Example 4: In Vitro Transcription (IVT)

The in vitro transcription reaction generates RNA polynucleotides. Such polynucleotides may comprise a region or part of the polynucleotides of the disclosure, including chemically modified RNA (e.g., mRNA) polynucleotides. The chemically modified RNA polynucleotides can be uniformly modified polynucleotides. The in vitro transcription reaction utilizes a custom mix of nucleotide triphosphates (NTPs). The NTPs may comprise chemically modified NTPs, or a mix of natural and chemically modified NTPs, or natural NTPs.

A typical in vitro transcription reaction includes the $_{60}$ following:

1.0 μg

210 -continued

(i	Custom NTPs (25 mM each)	0.2	μl
ŀ)	RNase Inhibitor	20	U
i)	T7 RNA polymerase	3000	U
((dH_20	up to 20.0 ul	. and

Incubation at 37° C. for 3 hr-5 hrs.

The crude IVT mix may be stored at 4° C. overnight for cleanup the next day. 1 U of RNase-free DNase may then be used to digest the original template. After 15 minutes of incubation at 37° C., the mRNA may be purified using Ambion's MEGACLEAR™ Kit (Austin, Tex.) following the manufacturer's instructions. This kit can purify up to 500 μg of RNA. Following the cleanup, the RNA polynucleotide may be quantified using the NanoDrop and analyzed by agarose gel electrophoresis to confirm the RNA polynucleotide is the proper size and that no degradation of the RNA has occurred.

Example 5: Enzymatic Capping

Capping of a RNA polynucleotide is performed as follows where the mixture includes: IVT RNA 60 μ g-180 μ g and ²⁵ dH₂O up to 72 μ l. The mixture is incubated at 65° C. for 5 minutes to denature RNA, and then is transferred immediately to ice.

The protocol then involves the mixing of 10x Capping Buffer (0.5 M Tris-HCl (pH 8.0), 60 mM KCl, 12.5 mM MgCl₂) (10.0 μ l); 20 mM GTP (5.0 μ l); 20 mM S-Adenosyl Methionine (2.5 μ l); RNase Inhibitor (100 U); 2'-O-Methyltransferase (400U); Vaccinia capping enzyme (Guanylyl transferase) (40 U); dH₂O (Up to 28 μ l); and incubation at 37° C. for 30 minutes for 60 μ g RNA or up to 2 hours for 180 μ g of RNA.

The RNA polynucleotide may then be purified using Ambion's MEGACLEARTM Kit (Austin, Tex.) following the manufacturer's instructions. Following the cleanup, the RNA may be quantified using the NANODROPTM (ThermoFisher, Waltham, Mass.) and analyzed by agarose gel electrophoresis to confirm the RNA polynucleotide is the proper size and that no degradation of the RNA has occurred. The RNA polynucleotide product may also be sequenced by running a reverse-transcription-PCR to generate the cDNA for sequencing.

Example 6: PolyA Tailing Reaction

Without a poly-T in the cDNA, a poly-A tailing reaction must be performed before cleaning the final product. This is done by mixing capped IVT RNA (100 μ l); RNase Inhibitor (20 U); $10\times$ Tailing Buffer (0.5 M Tris-HCl (pH 8.0), 2.5 M NaCl, 100 mM MgCl $_2$) (12.0 μ l); 20 mM ATP (6.0 μ l); Poly-A Polymerase (20 U); dH $_2$ O up to 123.5 μ l and incubation at 37° C. for 30 min. If the poly-A tail is already in the transcript, then the tailing reaction may be skipped and proceed directly to cleanup with Ambion's MEGA-CLEARTM kit (Austin, Tex.) (up to 500 μ g). Poly-A Polymerase may be a recombinant enzyme expressed in yeast.

It should be understood that the processivity or integrity of the polyA tailing reaction may not always result in an exact size polyA tail. Hence, polyA tails of approximately between 40-200 nucleotides, e.g., about 40, 50, 60, 70, 80, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 150-165, 155, 156, 157,

Template cDNA

^{2) 10}x transcription buffer (400 mM Tris-HCl pH 8.0, 190 mM MgCl₂, 50 mM DTT, 10 mM Spermidine)

158, 159, 160, 161, 162, 163, 164 or 165 are within the scope of the present disclosure.

Example 7. Natural 5' Caps and 5' Cap Analogues

5'-capping of polynucleotides may be completed concomitantly during the in vitro-transcription reaction using the following chemical RNA cap analogs to generate the 5'-guanosine cap structure according to manufacturer protocols: 3'-O-Me-m7G(5')ppp(5') G [the ARCA cap]; G(5') 10 ppp(5')A; G(5')ppp(5')G; m7G(5')ppp(5')A; m7G(5')ppp (5')G (New England BioLabs, Ipswich, Mass.). 5'-capping of modified RNA may be completed post-transcriptionally using a Vaccinia Virus Capping Enzyme to generate the "Cap 0" structure: m7G(5')ppp(5')G (New England Bio-Labs, Ipswich, Mass.). Cap 1 structure may be generated using both Vaccinia Virus Capping Enzyme and a 2'-O methyl-transferase to generate: m7G(5')ppp(5')G-2'-Omethyl. Cap 2 structure may be generated from the Cap 1 structure followed by the 2'-O-methylation of the 5'-ante-20 penultimate nucleotide using a 2'-O methyl-transferase. Cap 3 structure may be generated from the Cap 2 structure followed by the 2'-O-methylation of the 5'-preantepenultimate nucleotide using a 2'-O methyl-transferase. Enzymes are preferably derived from a recombinant source.

When transfected into mammalian cells, the modified mRNAs have a stability of between 12-18 hours or more than 18 hours, e.g., 24, 36, 48, 60, 72 or greater than 72 hours.

Example 8: Capping Assays

Protein Expression Assay

Polynucleotides (e.g., mRNA) encoding a polypeptide, containing any of the caps taught herein, can be transfected 35 into cells at equal concentrations. The amount of protein secreted into the culture medium can be assayed by ELISA at 6, 12, 24 and/or 36 hours post-transfection. Synthetic polynucleotides that secrete higher levels of protein into the medium correspond to a synthetic polynucleotide with a 40 higher translationally-competent cap structure.

Purity Analysis Synthesis

RNA (e.g., mRNA) polynucleotides encoding a polypeptide, containing any of the caps taught herein can be compared for purity using denaturing Agarose-Urea gel electrophoresis or HPLC analysis. RNA polynucleotides with a single, consolidated band by electrophoresis correspond to the higher purity product compared to polynucleotides with multiple bands or streaking bands. Chemically modified RNA polynucleotides with a single HPLC peak also correspond to a higher purity product. The capping reaction with a higher efficiency provides a more pure polynucleotide population.

Cytokine Analysis

RNA (e.g., mRNA) polynucleotides encoding a polypeptide, containing any of the caps taught herein can be transfected into cells at multiple concentrations. The amount of pro-inflammatory cytokines, such as TNF-alpha and IFN-beta, secreted into the culture medium can be assayed by ELISA at 6, 12, 24 and/or 36 hours post-transfection. RNA 60 polynucleotides resulting in the secretion of higher levels of pro-inflammatory cytokines into the medium correspond to a polynucleotides containing an immune-activating cap structure.

Capping Reaction Efficiency

RNA (e.g., mRNA) polynucleotides encoding a polypeptide, containing any of the caps taught herein can be ana-

212

lyzed for capping reaction efficiency by LC-MS after nuclease treatment. Nuclease treatment of capped polynucleotides yield a mixture of free nucleotides and the capped 5'-5-triphosphate cap structure detectable by LC-MS. The amount of capped product on the LC-MS spectra can be expressed as a percent of total polynucleotide from the reaction and correspond to capping reaction efficiency. The cap structure with a higher capping reaction efficiency has a higher amount of capped product by LC-MS.

Example 9: Agarose Gel Electrophoresis of Modified RNA or RT PCR Products

Individual RNA polynucleotides (200-400 ng in a 20 µl volume) or reverse transcribed PCR products (200-400 ng) may be loaded into a well on a non-denaturing 1.2% Agarose E-Gel (Invitrogen, Carlsbad, Calif.) and run for 12-15 minutes, according to the manufacturer protocol.

Example 10: Nanodrop Modified RNA Quantification and UV Spectral Data

Chemically modified RNA polynucleotides in TE buffer $(1 \mu l)$ are used for Nanodrop UV absorbance readings to quantitate the yield of each polynucleotide from an chemical synthesis or in vitro transcription reaction.

Example 11: Formulation of Modified mRNA Using Lipidoids

RNA (e.g., mRNA) polynucleotides may be formulated for in vitro experiments by mixing the polynucleotides with the lipidoid at a set ratio prior to addition to cells. In vivo formulation may require the addition of extra ingredients to facilitate circulation throughout the body. To test the ability of these lipidoids to form particles suitable for in vivo work, a standard formulation process used for siRNA-lipidoid formulations may be used as a starting point. After formation of the particle, polynucleotide is added and allowed to integrate with the complex. The encapsulation efficiency is determined using a standard dye exclusion assays.

Example 12: Immunogenicity Study

The instant study is designed to test the immunogenicity in mice of candidate hMPV vaccines comprising a mRNA polynucleotide encoding Fusion (F) glycoprotein, major surface glycoprotein G, or a combination thereof, obtained from hMPV.

Mice are immunized intravenously (IV), intramuscularly (IM), or intradermally (ID) with candidate vaccines. Candidate vaccines are chemically modified or unmodified. A total of four immunizations are given at 3-week intervals (i.e., at weeks 0, 3, 6, and 9), and sera are collected after each immunization until weeks 33-51. Serum antibody titers against Fusion (F) glycoprotein or major surface glycoprotein (G) protein are determined by ELISA. Sera collected from each mouse during weeks 10-16 are pooled, and total IgG purified. Purified antibodies are used for immunoelectron microscopy, antibody-affinity testing, and in vitro protection assays.

Example 13: hMPV Rodent Challenge

The instant study is designed to test the efficacy in cotton rats of candidate hMPV vaccines against a lethal challenge using an hMPV vaccine comprising mRNA encoding Fusion

(F) glycoprotein, major surface glycoprotein G, or a combination of both antigens obtained from hMPV. Cotton rats are challenged with a lethal dose of the hMPV.

Animals are immunized intravenously (IV), intramuscularly (IM), or intradermally (ID) at week 0 and week 3 with 5 candidate hMPV vaccines with and without adjuvant. Candidate vaccines are chemically modified or unmodified. The animals are then challenged with a lethal dose of hMPV on week 7 via IV, IM or ID. Endpoint is day 13 post infection, death or euthanasia. Animals displaying severe illness as 10 determined by >30% weight loss, extreme lethargy or paralysis are euthanized. Body temperature and weight are assessed and recorded daily.

In experiments where a lipid nanoparticle (LNP) formulation is used, the formulation may include a cationic lipid, non-cationic lipid, PEG lipid and structural lipid in the ratios 50:10:1.5:38.5. The cationic lipid is DLin-KC2-DMA (50 mol %) or DLin-MC3-DMA (50 mol %), the non-cationic lipid is DSPC (10 mol %), the PEG lipid is PEG-DOMG (1.5 mol %) and the structural lipid is cholesterol (38.5 mol %), ²⁰ for example.

Example 14: Immunogenicity of hMPV mRNA Vaccine in BALB/c Mice

The instant study was designed to test the immunogenicity in BALB/c mice of hMPV vaccines comprising an mRNA polynucleotide encoding the hMPV Fusion (F) glycoprotein. The mRNA polynucleotide encodes the fulllength fusion protein and comprises the wild-type nucleotide 30 sequence obtained from the hMPV A2a strain. Mice were divided into 3 groups (n=8 for each group) and immunized intramuscularly (IM) with PBS, a 10 µg dose of mRNA vaccines encoding hMPV fusion protein, or a 2 µg dose of mRNA vaccines encoding hMPV fusion protein. A total of 35 two immunizations were given at 3-week intervals (i.e., at weeks 0, and 3 weeks), and sera were collected after each immunization according to the schedule described in Table 1. Serum antibody titers against hMPV fusion glycoprotein were determined by ELISA and antibodies were detected in 40 the sera collected on day 14 onward. Both vaccine doses tested induced comparable levels of immune response in mice (FIGS. 2A-2C).

Additionally, mice sera were used for IgG isotyping (FIGS. 3A-3C). Both hMPV fusion protein-specific IgG1 45 and IgG2a were detected in mice sera. hMPV fusion protein mRNA vaccine also induced Th1 and Th2 cytokine responses, with a Th1 bias.

Sera from mice immunized with either $10\,\mu g$ or $2\,\mu g$ doses of the hMPV fusion protein mRNA vaccine contain neutralizing antibodies. The ability of these antibodies to neutralize hMPV B2 strain was also tested. The antibody-containing sera successfully neutralized the hMPV B2 virus (FIG. 4).

Example 15: T-Cell Stimulation

The instant study was designed to test T-cell stimulation in the splenocytes of mice immunized with mRNA vaccines encoding hMPV fusion protein, as described herein. Immunization of BALB/c mice was performed as described in 60 Example 14. The splenocytes for each group were pooled and split into two parts. One part of splenocytes from each group of mice was stimulated with hMPV-free media, Concanavalin A or a hMPV fusion protein peptide pool comprising 15-mers (15 amino acids long); while the other part of splenocytes from each group of mice was stimulated with hMPV-free media, Concanavalin A or inactivated hMPV

214

virus. Secreted mouse cytokines were measured using the Meso Scale Discovery (MSD) assay.

Cytokines specific to Th1 or Th2 responses were measured. For Th1 response, IFN- γ , IL2 and IL12 were detected from splenocytes stimulated with the hMPV fusion protein peptide pool at a level comparable to that of Concanavalin A (FIGS. 5A-5C). For a Th2 response, the hMPV fusion protein peptide pool induced the secretion of detectable IL10, TNF- α , IL4 and IL, but not IL5, while Concanavalin A stimulated the secretion of all the above-mentioned Th2 cytokines (FIGS. 6A-6E) at a much higher level.

In contrast, inactivated hMPV virus only induced the secretion of IL2 in the Th1 response comparable to that of Concanavalin A (FIGS. 7A-7C). For the Th2 response, the inactivated hMPV virus induced the secretion of detectable IL10, TNF-α, IL4 and IL6, but not IL5, while Concanavalin A stimulated the secretion of all the above-mentioned Th2 cytokines (FIGS. 8A-8E) at a much higher level.

Example 16: hMPV Rodent Challenge in Cotton Rats Immunized with mRNA Vaccine Encoding hMPV Fusion Protein

The instant study was designed to test the efficacy in cotton rats of hMPV vaccines against a lethal challenge. mRNA vaccines encoding hMPV fusion protein were used. The mRNA polynucleotide encodes a full-length fusion protein and comprises the wild-type nucleotide sequence obtained from the hMPV A2a strain.

Cotton rats were immunized intramuscularly (IM) at week 0 and week 3 with the mRNA vaccines encoding hMPV fusion protein with either 2 μg or 10 μg doses for each immunization. The animals were then challenged with a lethal dose of hMPV in week 7 post initial immunization via IV, IM or ID. The endpoint was day 13 post infection, death or euthanasia. Viral titers in the noses and lungs of the cotton rats were measured. The results (FIGS. 9A and 9B) show that a 10 μg dose of mRNA vaccine protected the cotton mice 100% in the lung and drastically reduced the viral titer in the nose after challenge (~2 log reduction). Moreover, a 2 μg dose of mRNA vaccine showed a 1 log reduction in lung viral titer in the cotton mice challenged.

Further, the histopathology of the lungs of the cotton mice immunized and challenged showed no pathology associated with vaccine-enhanced disease (FIG. 10).

Example 17. Immunogenicity Study

The instant study is designed to test the immunogenicity in mice of candidate PIV3 vaccines comprising a mRNA polynucleotide encoding hemagglutinin-neuraminidase or fusion protein (F or F0) obtained from PIV3.

Mice are immunized intravenously (IV), intramuscularly (IM), or intradermally (ID) with candidate vaccines. Candidate vaccines are chemically modified or unmodified. A total of four immunizations are given at 3-week intervals (i.e., at weeks 0, 3, 6, and 9), and sera are collected after each immunization until weeks 33-51. Serum antibody titers against hemagglutinin-neuraminidase or fusion protein (F or F0) are determined by ELISA. Sera collected from each mouse during weeks 10-16 are, optionally, pooled, and total IgGs are purified. Purified antibodies are used for immunoelectron microscopy, antibody-affinity testing, and in vitro protection assays.

Example 18: PIV3 Rodent Challenge

The instant study is designed to test the efficacy in cotton rats of candidate PIV3 vaccines against a lethal challenge

using a PIV3 vaccine comprising mRNA encoding hemagglutinin-neuraminidase or fusion protein (F or F0) obtained from PIV3. Cotton rats are challenged with a lethal dose of the PIV3.

Animals are immunized intravenously (IV), intramuscularly (IM), or intradermally (ID) at week 0 and week 3 with candidate PIV3 vaccines with and without adjuvant. Candidate vaccines are chemically modified or unmodified. The animals are then challenged with a lethal dose of PIV3 on week 7 via IV, IM or ID. Endpoint is day 13 post infection, death or euthanasia. Animals displaying severe illness as determined by >30% weight loss, extreme lethargy or paralysis are euthanized. Body temperature and weight are assessed and recorded daily.

In experiments where a lipid nanoparticle (LNP) formulation is used, the formulation may include a cationic lipid, non-cationic lipid, PEG lipid and structural lipid in the ratios 50:10:1.5:38.5. The cationic lipid is DLin-KC2-DMA (50 mol %) or DLin-MC3-DMA (50 mol %), the non-cationic 20 lipid is DSPC (10 mol %), the PEG lipid is PEG-DOMG (1.5 mol %) and the structural lipid is cholesterol (38.5 mol %), for example.

Example 19: hMPV/PIV Cotton Rat Challenge

The instant study was designed to test the efficacy in cotton rats of candidate hMPV mRNA vaccines, PIV3 mRNA vaccines, or hMPV/PIV combination mRNA vaccines against a lethal challenge using PIV3 strain or hMPV/ 30 A2 strain. The study design is shown in Table 9.

Cotton rats of 10-12 weeks old were divided into 12 groups (n=5), and each group was vaccinated with mRNA vaccines indicated in Table 9. The PIV3 vaccine comprises mRNA encoding hemagglutinin-neuraminidase or fusion protein (F or F0) obtained from PIV3. The hMPV mRNA vaccine encodes the full-length hMPV fusion protein. The hMPV/PIV combination mRNA vaccine is a mixture of the PIV3 vaccine and hMPV vaccine at a 1:1 ratio.

Cotton rats were immunized intramuscularly (IM) at week 0 and week 3 with candidate vaccines with the doses indicated in Table 9. Cotton rats immunized with hMPV mRNA vaccines or hMPV/PIV combination mRNA vaccines were challenged with a lethal dose of hMPV/A2 strain 45 on week 7 via IM. Cotton rats immunized with PIV mRNA vaccines or hMPV/PIV combination mRNA vaccines were challenged with a lethal dose of PIV3 strain on week 7 via IM

The endpoint was day 13 post infection, death or euthanasia. Animals displaying severe illness as determined by >30% weight loss, extreme lethargy or paralysis were euthanized. Body temperature and weight were assessed and recorded daily.

Lung and nose hMPV/A2 (FIG. 12) or PIV3 (FIG. 13) 55 viral titers were assessed. Lung histopathology of the immunized and challenged cotton rat immunized and challenged were assessed to determine pathology associated with vaccine enhance disease. Neutralization antibody titers in the serum of immunized cotton rats on day 0 and 42 post 60 immunization were assessed (FIG. 11).

hMPV/A2 (FIG. 14) or PIV3 (FIG. 15) neutralizing antibody titers in the serum samples of the immunized cotton rat 42 days post immunization were measured. All mRNA vaccines tested induced strong neutralizing antibodies cotton rats. Lung histopathology of the immunized cotton rats were also evaluated (FIG. 16). Low occurrence of

216

alevolitis and interstitial pneumonia was observed, indicating no antibody-dependent enhancement (ADE) of hMPV or PIV associated diseases.

Example 20: Betacoronavirus Immunogenicity Study

The instant study is designed to test the immunogenicity in rabbits of candidate *Betacoronavirus* (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1 or a combination thereof) vaccines comprising a mRNA polynucleotide encoding the spike (S) protein, the S1 subunit (S1) of the spike protein, or the S2 subunit (S2) of the spike protein obtained from a *Betacoronavirus* (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1).

Rabbits are vaccinated on week 0 and 3 via intravenous (IV), intramuscular (IM), or intradermal (ID) routes. One group remains unvaccinated and one is administered inactivated *Betacoronavirus*. Serum is collected from each rabbit on weeks 1, 3 (pre-dose) and 5. Individual bleeds are tested for anti-S, anti-S1 or anti-S2 activity via a virus neutralization assay from all three time points, and pooled samples from week 5 only are tested by Western blot using inactivated *Betacoronavirus* (e.g., inactivated MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1).

In experiments where a lipid nanoparticle (LNP) formulation is used, the formulation may include a cationic lipid, non-cationic lipid, PEG lipid and structural lipid in the ratios 50:10:1.5:38.5. The cationic lipid is DLin-KC2-DMA (50 mol %) or DLin-MC3-DMA (50 mol %), the non-cationic lipid is DSPC (10 mol %), the PEG lipid is PEG-DOMG (1.5 mol %) and the structural lipid is cholesterol (38.5 mol %), for example.

Example 21: Betacoronavirus Challenge

The instant study is designed to test the efficacy in rabbits of candidate *Betacoronavirus* (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-HKU1 or a combination thereof) vaccines against a lethal challenge using a *Betacoronavirus* (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-HKU1 or a combination thereof) vaccine comprising mRNA encoding the spike (S) protein, the S1 subunit (S1) of the spike protein, or the S2 subunit (S2) of the spike protein obtained from *Betacoronavirus* (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-1KU1). Rabbits are challenged with a lethal dose (10×LD90; ~100 plaque-forming units; PFU) of *Betacoronavirus* (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL or HCoV-HKU1).

The animals used are 6-8 week old female rabbits in groups of 10. Rabbits are vaccinated on weeks 0 and 3 via an IM, ID or IV route of administration. Candidate vaccines are chemically modified or unmodified. Rabbit serum is tested for microneutralization (see Example 14). Rabbits are then challenged with ~1 LD90 of *Betacoronavirus* (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1) on week 7 via an IN, IM, ID or IV route of administration. Endpoint is day 13 post infection, death or euthanasia. Animals displaying severe illness as determined by >30%

217

weight loss, extreme lethargy or paralysis are euthanized. Body temperature and weight are assessed and recorded daily.

Example 22: Microneutralization Assay

Nine serial 2-fold dilutions (1:50-1:12,800) of rabbit serum are made in 50 µl virus growth medium (VGM) with trypsin in 96 well microtiter plates. Fifty microliters of virus containing ~50 pfu of Betacoronavirus (e.g., MERS-CoV, 10 SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1) is added to the serum dilutions and allowed to incubate for 60 minutes at room temperature (RT). Positive control wells of virus without sera and negative control wells without virus or sera are included in triplicate on each plate. While the serumvirus mixtures incubate, a single cell suspension of Madin-Darby Canine-Kidney cells are prepared by trypsinizing (Gibco 0.5% bovine pancrease trypsin in EDTA) a confluent monolayer and suspended cells are transferred to a 50 ml 20 centrifuge tube, topped with sterile PBS and gently mixed. The cells are then pelleted at 200 g for 5 minutes, supernatant aspirated and cells resuspended in PBS. This procedure is repeated once and the cells are resuspended at a concentration of 3×10⁵/ml in VGM with porcine trypsin. Then, 100 ²⁵ µl of cells are added to the serum-virus mixtures and the plates incubated at 35° C. in CO₂ for 5 days. The plates are fixed with 80% acetone in phosphate buffered saline (PBS) for 15 minutes at RT, air dried and then blocked for 30 minutes containing PBS with 0.5% gelatin and 2% FCS. An antibody to the S proteins, 51 protein or S2 protein is diluted in PBS with 0.5% gelatin/2% FCS/0.5% Tween 20 and incubated at RT for 2 hours. Wells are washed and horseradish peroxidase-conjugated goat anti-mouse IgG added, followed by another 2 hour incubation. After washing, 0-phenylenediamine dihydrochloride is added and the neutralization titer is defined as the titer of serum that reduced color development by 50% compared to the positive control wells.

Example 23: MERS CoV Vaccine Immunogenicity Study in Mice

The instant study was designed to test the immunogenicity in mice of candidate MERS-CoV vaccines comprising a 45 mRNA polynucleotide encoding the full-length Spike (S) protein, or the S2 subunit (S2) of the Spike protein obtained from MERS-CoV.

Mice were vaccinated with a 10 μg dose of MERS-CoV mRNA vaccine encoding either the full-length MERS-CoV 50 Spike (S) protein, or the S2 subunit (S2) of the Spike protein on days 0 and 21. Sera were collected from each mice on days 0, 21, 42, and 56. Individual bleeds were tested for anti-S, anti-S2 activity via a virus neutralization assay from all four time points.

As shown in FIG. 17, the MERS-CoV vaccine encoding the full-length S protein induced strong immune response after the boost dose on day 21. Further, full-length S protein vaccine generated much higher neutralizing antibody titers as compared to S2 alone (FIG. 18).

Example 24: MERS CoV Vaccine Immunogenicity Study in New Zealand White Rabbits

The instant study was designed to test the immunogenicity of candidate MERS-CoV mRNA vaccines encoding the full-length Spike (S) protein. The New Zealand white rabbits 218

used in this study weighed about 4-5 kg. The rabbits were divided into three groups (Group 1a, Group 1b, and Group 2, n=8). Rabbits in Group 1a were immunized intramuscularly (IM) with one 20 µg dose of the MERS-CoV mRNA vaccine encoding the full-length Spike protein on day 0. Rabbits in Group 1b were immunized intramuscularly (IM) with one 20 µg dose of the MERS-CoV mRNA vaccine encoding the full-length Spike protein on day 0, and again on day 21 (booster dose). Group 2 received placebo (PBS). The immunized rabbits were then challenged and samples were collected 4 days after challenge. The viral loads in the lungs, bronchoalveolar lavage (Bal), nose, and throat of the rabbits were determined, e.g., via quantitative PCR. Replicating virus in the lung tissues of the rabbits were also detected. Lung histopathology were evaluated and the neutralizing antibody titers in serum samples of the rabbits were determined.

Two 20 µg doses of MERS-CoV mRNA vaccine resulted in a 3 log reduction of viral load in the nose and led to complete protection in the throat of the New Zealand white rabbits (FIG. 19A). Two 20 µg doses of MERS-CoV mRNA vaccine also resulted in a 4 log reduction of viral load in the BAL of the New Zealand white rabbits (FIG. 19B). One 20 µg dose of MERS-CoV mRNA vaccine resulted in a 2 log reduction of viral load, while two 20 µg doses of MERS-CoV mRNA vaccine resulted in an over 4 log reduction of viral load in the lungs of the New Zealand white rabbits (FIG. 19C).

Quantitative PCR results show that two 20 µg doses of MERS-CoV mRNA vaccine reduced over 99% (2 log) of viruses in the lungs of New Zealand white rabbits (FIG. 20A). No replicating virus were detected in the lungs (FIG. 20B).

Further, as shown in FIG. **21**, two **20** μ g doses of MERS-CoV mRNA vaccine induced significant amount of neutralizing antibodies against MERS-CoV (EC₅₀ between 500-1000). The MERS-CoV mRNA vaccine induced antibody titer is 3-5 fold better than any other vaccines tested in the same model.

Example 25: Immunogenicity Study

The instant study is designed to test the immunogenicity in mice of candidate MeV vaccines comprising a mRNA polynucleotide encoding MeV hemagglutinin (HA) protein, MeV Fusion (F) protein or a combination of both.

Mice are immunized intravenously (IV), intramuscularly (IM), or intradermally (ID) with candidate vaccines. Up to three immunizations are given at 3-week intervals (i.e., at weeks 0, 3, 6, and 9), and sera are collected after each immunization until weeks 33-51. Serum antibody titers against MeV HA protein or MeV F protein are determined by ELISA.

Example 26: MeV Rodent Challenge

The instant study is designed to test the efficacy in transgenic mice of candidate MeV vaccines against a lethal challenge using a MeV vaccine comprising mRNA encoding MeV HA protein or MeV F protein. The transgenic mice express human receptor CD46 or signaling lymphocyte activation molecule (SLAM) (also referred to as CD150). Humans are the only natural host for MeV infection, thus transgenic lines are required for this study. CD46 is a complement regulatory protein that protects host tissue from complement deposition by binding to complement components C3b and C4b. Its expression on murine fibroblast and

lymphoid cell lines renders these otherwise refractory cells permissive for MeV infection, and the expression of CD46 on primate cells parallels the clinical tropism of MeV infection in humans and nonhuman primates (Rall G F et al. *PNAS USA* 1997; 94(9):4659-63). SLAM is a type 1 membrane glycoprotein belonging to the immunoglobulin superfamily. It is expressed on the surface of activated lymphocytes, macrophages, and dendritic cells and is thought to play an important role in lymphocyte signaling. SLAM is a receptor for both wild-type and vaccine MeV strains (Sellin C I et al. *J Virol.* 2006; 80(13):6420-29).

CD46 or SLAM/CD150 transgenic mice are challenged with a lethal dose of the MeV. Animals are immunized intravenously (IV), intramuscularly (IM), or intradermally (ID) at week 0 and week 3 with candidate MeV vaccines

with and without adjuvant. The animals are then challenged with a lethal dose of MeV on week 7 via IV, IM or ID. Endpoint is day 13 post infection, death or euthanasia. Animals displaying severe illness as determined by >30% weight loss, extreme lethargy or paralysis are euthanized. Body temperature and weight are assessed and recorded daily.

220

In experiments where a lipid nanoparticle (LNP) formulation is used, the formulation may include a cationic lipid, non-cationic lipid, PEG lipid and structural lipid in the ratios 50:10:1.5:38.5. The cationic lipid is DLin-KC2-DMA (50 mol %), the non-cationic lipid is DSPC (10 mol %), the PEG lipid is PEG-DOMG (1.5 mol %) and the structural lipid is cholesterol (38.5 mol %), for example.

TABLE 1

	hMPV Immunogenicity studies bleeding schedule									
	Animal groups			Day						
	(n = 8)	vaccine	-2	0	7	14	21	28	35	56
Placebo 10 µg Dose 2 µg Dose	Group 1 (n = 8) Group 2 (n = 8) Group 3 (n = 8)	PBS (IM) 10 µg (IM) 2 µg (IM)	Pre- Bleed	Prime	Bleeds	Bleeds	Bleeds/ Boost	Bleeds	Bleeds	Harvest Spleens/ Terminal Bleeds

Total n = 24

Each of the sequences described herein encompasses a chemically modified sequence or an unmodified sequence which includes no nucleotide modifications.

TABLE 2

		SEQ
		ID
Description	Sequence	NO:

hMPV Nucleic Acid Sequences

gi|122891979|gb| EF051124.1| Human metapneumo virus isolate TN/92-4 fusion protein gene, complete genome ATGAGCTGGAAGGTGGTGATTATCTTCAGCCTGCTGATTA CACCTCAACACGGCCTGAAGGAGGAGCTACCTGGAAGAGA GCTGCTCCACCATCACCGAGGGCTACCTGAGCGTGCTGC GGACCGGCTGGTACACCAACGTGTTCACCCTGGAGGTGG GCGACGTGGAGAACCTGACCTGCAGCGACGGCCCTAGCC TGATCAAGACCGAGCTGGACCTGACCAAGAGCGCTCTGA GAGAGCTGAAGACCGTGTCCGCCGACCAGCTGGCCAGAG AGGAACAGATCGAGAACCCTCGGCAGAGCAGATTCGTGC $\tt TGGGCGCCATCGCTCTGGGAGTCGCCGCTGCCGCTGCAG$ TGACAGCTGGAGTGGCCATTGCTAAGACCATCAGACTGG ${\tt AAAGCGAGGTGACAGCCATCAACAATGCCCTGAAGAAG}$ ACCAACGAGGCCGTGAGCACCCTGGGCAATGGAGTGAGA $\tt GTGCTGGCCACAGCCGTGCGGGAGCTGAAGGACTTCGTG$ AGCAAGAACCTGACCAGAGCCATCAACAAGAACAAGTG CGACATCGATGACCTGAAGATGGCCGTGAGCTTCTCCCA $\tt GTTCAACAGACGGTTCCTGAACGTGGTGAGACAGTTCTC$ CGACAACGCTGGAATCACACCTGCCATTAGCCTGGACCT GATGACCGACCCGAGCTGGCTAGAGCCGTGCCCAACAT GCCCACCAGCGCTGGCCAGATCAAGCTGATGCTGGAGAA ${\tt CAGAGCCATGGTGCGGAGAAAGGGCTTCGGCATCCTGAT}$ TGGGGTGTATGGAAGCTCCGTGATCTACATGGTGCAGCT GCCCATCTTCGGCGTGATCGACACCCCTGCTGGATCGTG AAGGCCGCTCCTAGCTGCTCCGAGAAGAAAGGAAACTAT GCCTGTCTGCTGAGAGAGGACCAGGGCTGGTACTGCCAG AACGCCGGAAGCACAGTGTACTATCCCAACGAGAAGGAC ${\tt TGCGAGACCAGAGGCGACCACGTGTTCTGCGACACCGCT}$ GCCGGAATCAACGTGGCCGAGCAGGAGCAAGGAGTGCAA CATCAACATCAGCACAACCAACTACCCCTGCAAGGTGAG CACCGGACGCCACCCCATCAGCATGGTGGCTCTGAGCCC TCTGGGCGCTCTGGTGGCCTGCTATAAGGGCGTGTCCTGT AGCATCGGCAGCAATCGGGTGGGCATCATCAAGCAGCTG

TABLE 2 -continued SEO ID NO: Sequence AACAAGGGATGCTCCTACATCACCAACCAGGACGCCGAC

ACCGTGACCATCGACAACACCGTGTACCAGCTGAGCAAG GTGGAGGCGAGCACCTGATCAAGGGCAGACCCGT GAGCTCCAGCTTCGACCCCATCAAGTTCCCTGAGGACCA GTTCAACGTGGCCCTGGACCAGGTGTTTGAGAACATCGA GAACAGCCAGGCCCTGGTGGACCAGAGCAACAGAATCCT GTCCAGCGCTGAGAAGGGCAACACCGGCTTCATCATTGT GATCATTCTGATCGCCGTGCTGGGCAGCTCCATGATCCTG GTGAGCATCTTCATCATTATCAAGAAGACCAAGAAACCC ACCGGAGCCCCTCCTGAGCTGAGCGGCGTGACCAACAAT GGCTTCATTCCCCACAACTGA

qb AY525843.1 : 3065-4684 Human metapneumo virus isolate NL/1/99, complete genome

Description

ATGTCTTGGAAAGTGATGATCATCATTTCGTTACTCATAA CACCCCAGCACGGGCTAAAGGAGAGTTATTTGGAAGAAT CATGTAGTACTATAACTGAGGGATACCTCAGTGTTTTAAG AACAGGCTGGTACACTAATGTCTTCACATTAGAAGTTGGT GATGTTGAAAATCTTACATGTACTGATGGACCTAGCTTAA TCAAAACAGAACTTGATCTAACAAAAAGTGCTTTAAGGG AACTCAAAACAGTCTCTGCTGATCAGTTGGCGAGAGAGG AGCAAATTGAAAATCCCAGACAATCAAGATTTGTCTTAG GTGCGATAGCTCTCGGAGTTGCTACAGCAGCAGCAGTCA CAGCAGGCATTGCAATAGCCAAAACCATAAGGCTTGAGA GTGAGGTGAATGCAATTAAAGGTGCTCTCAAACAAACTA ATGAAGCAGTATCCACATTAGGGAATGGTGTGCGGGTCC TAGCCACTGCAGTGAGAGAGCTAAAAGAATTTGTGAGCA AAAACCTGACTAGTGCAATCAACAGGAACAAATGTGACA TTGCTGATCTGAAGATGGCTGTCAGCTTCAGTCAATTCAA ${\tt CAGAAGATTTCTAAATGTTGTGCGGCAGTTTTCAGACAAT}$ $\tt GCAGGGATAACACCAGCAATATCATTGGACCTGATGACT$ GATGCTGAGTTGGCCAGAGCTGTATCATACATGCCAACA TCTGCAGGGCAGATAAAACTGATGTTGGAGAACCGCGCA $\tt ATGGTAAGGAGAAAAGGATTTGGAATCCTGATAGGGGTC$ TACGGAAGCTCTGTGATTTACATGGTTCAATTGCCGATCT ${\tt TTGGTGTCATAGATACACCTTGTTGGATCATCAAGGCAGC}$ ${\tt TCCCTCTTGCTCAGAAAAAAACGGGAATTATGCTTGCCTC}$ CTAAGAGAGGATCAAGGGTGGTATTGTAAAAATGCAGGA TCTACTGTTTACTACCCAAATGAAAAAGACTGCGAAACA AGAGGTGATCATGTTTTTTGTGACACAGCAGCAGGGATC AATGTTGCTGAGCAATCAAGAGAATGCAACATCAACATA TCTACTACCAACTACCCATGCAAAGTCAGCACAGGAAGA CACCCTATAAGCATGGTTGCACTATCACCTCTCGGTGCTT TGGTGGCTTGCTATAAAGGGGTAAGCTGCTCGATTGGCA GCAATTGGGT

TGGAATCATCAAACAATTACCCAAAGGCTGCTCATACAT AACCAACCAGGATGCAGACACTGTAACAATTGACAATAC $\tt CGTGTATCAACTAAGCAAAGTTGAAGGTGAACAGCATGT$ AATAAAAGGGAGACCAGTTTCAAGCAGTTTTGATCCAAT CAAGTTTCCTGAGGATCAGTTCAATGTTGCGCTTGATCAA GTCTTCGAAAGCATTGAGAACAGTCAGGCACTAGTGGAC CAGTCAAACAAATTCTAAACAGTGCAGAAAAAGGAAA CACTGGTTTCATTATCGTAGTAATTTTTGGTTGCTGTTCTTG GTCTAACCATGATTTCAGTGAGCATCATCATCATAATCAA GAAAACAAGGAAGCCCACAGGAGCACCTCCAGAGCTGA ATGGTGTCACCAACGGCGGTTTCATACCACATAGTTA

qb|KJ627414.1|: 3015-4634 Human metapneumo virus strain hMPV/Homo sapiens/PER/ CFI0497/2010/B complete genome

ATGTCTTGGAAAGTGATGATTATCATTTCGTTACTCATAA CACCTCAGCATGGACTAAAAGAAAGTTATTTAGAAGAAT CATGTAGTACTATAACTGAAGGATATCTCAGTGTTTTTAAG AACAGGTTGGTACACCAATGTCTTTACATTAGAAGTTGGT GATGTTGAAAATCTTACATGTACTGATGGACCTAGCTTAA TCAAAACAGAACTTGACCTAACCAAAAGTGCTTTAAGAG AACTCAAAACAGTTTCTGCTGATCAGTTAGCGAGAGAAG AACAAATTGAAAATCCCAGACAATCAAGGTTTGTCCTAG GTGCAATAGCTCTTGGAGTTGCCACAGCAGCAGCAGTCA CAGCAGGCATTGCAATAGCCAAAACTATAAGGCTTGAGA GTGAAGTGAATGCAATCAAAGGTGCTCTCAAAACAACCA ATGAGGCAGTATCAACACTAGGAAATGGAGTGCGGGTCC TAGCCACTGCAGTAAGAGAGCTGAAAGAATTTGTGAGCA AAAACCTGACTAGTGCGATCAACAAGAACAAGTGTGACA TTGCTGATTTGAAGATGGCTGTCAGCTTCAGTCAGTTCAA CAGAAGATTCCTAAATGTTGTGCGGCAGTTTTCAGACAAT GCAGGGATAACACCAGCAATATCATTGGACCTGATGAAT GATGCTGAGCTGGCCAGAGCTGTATCATACATGCCAACA ${\tt TCTGCAGGACAGATAAAACTAATGTTAGAGAACCGTGCA}$ ATGGTGAGGAGAAAAGGATTTGGAATCTTGATAGGGGTC TACGGAAGCTCTGTGATTTACATGGTCCAGCTGCCGATCT

TABLE 2 -continued

		SEQ
		ID
Description	Sequence	NO:

TTGGTGTCATAAATACACCTTGTTGGATAATCAAGGCAGC TCCCTCTTGTTCAGAAAAAGATGGAAATTATGCTTGCCTC CTAAGAGAGGATCAAGGGTGGTATTGTAAAAATGCAGGA ${\tt TCCACTGTTTACTACCCAAATGAAAAAGACTGCGAAACA}$ AGAGGTGATCATGTTTTTTGTGACACAGCAGCAGGGATC AATGTTGCTGAGCAATCAAGAGAATGCAACATCAACATA TCTACCACCAACTACCCATGCAAAGTCAGCACAGGAAGA ${\tt CACCCTATCAGCATGGTTGCACTATCACCTCTCGGTGCTT}$ TGGTAGCTTGCTACAAAGGGGTTAGCTGCTCGACTGGCA GTAATCAGGTTGGAATAATCAAACAACTACCTAAAGGCT GCTCATACATAACTAACCAGGACGCAGACACTGTAACAA TTGACAACACTGTGTATCAACTAAGCAAAGTTGAGGGTG AACAGCATGTAATAAAAGGGAGACCAGTTTCAAGCAGTT TTGATCCAATCAGGTTTCCTGAGGATCAGTTCAATGTTGC GCTTGATCAAGTCTTTGAAAGCATTGAAAACAGTCAAGC ACTAGTGGACCAGTCAAACAAAATTCTGAACAGTGCAGA AAAAGGAAACACTGGT

TTCATTATTGTAATAATTTTGATTGCTGTTTCTTGGGTTAAC CATGATTTCAGTGAGCATCATCATCATAATCAAAAAAAC AAGGAAGCCCACAGGGGCACCTCCGGAGCTGAATGGTGT TACCAACGGCGGTTTCATACCGCATAGTTAG

gb|KJ723483.1|: 5586-7310 Human respiratory syncytial virus strain RSV A/Homo sapiens/USA/84I-215A-01/1984, complete genome ATGGAGTTGCCAATCCTCAAAACAAATGCAATTACCACA ATCCTTGCTGCAGTCACACTCTGTTTCGCTTCCAGTCAAA TTAGCAAAGGCTATCTTAGTGCTCTAAGAACTGGTTGGTA TACTAGTGTTATAACTATAGAATTAAGTAATATCAAGGA AAATAAGTGTAATGGAACAGATGCTAAGGTAAAATTGAT AAAACAAGAATTAGATAAATATAAAAATGCTGTAACAGA ATTGCAGTTGCTCATGCAAAGCACACCAGCAGCCAACAA TCGAGCCAGAAGAGAACTACCAAGGTTTATGAATTATAC ACTCAATAATACCAAAAATACCAATGTAACATTAAGCAA GAAAAGGAAAAGAAGATTTCTTGGCTTTTTGTTAGGTGTT GGATCTGCAATCGCCAGTGGCATTGCTGTATCTAAGGTCC $\tt TGCACCTAGAAGGGGAAGTGAACAAAATCAAAAGTGCTC$ TACTATCCACAAACAAGGCTGTAGTCAGCTTATCAAATG GAGTTAGTGTCTTAACCAGCAAAGTGTTAGACCTCAAAA ACTATATAGATAAACAGTTGTTACCTATTGTGAACAAGC AAAGCTGCAGCATATCAAACATTGAAACTGTGATAGAGT TCCAACAAAAGAACAACAGACTACTAGAGATTACCAGGG AATTTAGTGTTAATGCAGGTGTAACTACACCTGTAAGCAC TTATATGTTAACTAATAGTGAATTATTATCATTAATCAAT GATATGCCTATAACAAATGATCAGAAAAAGTTAATGTCC AACAATGTTCAAATAGTTAGACAGCAAAGTTACTCTATC ATGTCCATAATAAAGGAGGAAGTCTTAGCATATGTAGTA CAATTACCACTATATGGTGTAATAGATACACCCTGTTGGA AACTGCACACATCCCCTCTATGTACAACCAACACAAAGG AAGGGTCCAACATCTGCTTAACAAGAACCGACAGAGGAT GGTATTGTGACAATGCAGGATCAGTATCTTTCTTCCCACA AGCTGAAACATGTAAAGTTCAATCGAATCGGGTATTTTGT GACACAATGAACAGTTAACATTACCAAGTGAAGTAAAT CTCTGCAACATTGACATATTCAACCCCAAATATGATTGCA AAATTATGACTTCAAAAACAGATGTAAGCAGCTCCGTTA TCACATCTCTAGGAGCCATTGTGTCATGCTATGGCAAAAC TAAATGTACAGCATCCAATAAAAATCGTGGGATCATAAA GACATTTTCTAACGGGTGTGATTATGTATCAAATAAGGG GGTGGATACTGTGTCTGTAGGTAATACATTATATTATGTA AATAAGCAAGAAGGCAAAAGTCTCTATGTAAAAGGTGAA CCAATAATAAATTTCTATGACCCATTAGTGTTCCCCTCTG ATGAATTTGATGCATCAATATCTCAAGTCAATGAGAAGA TTAACCAGAGCCTAGCATTTATTCGTAAATCCGATGAATT ATTACATAATGTAAATGCTGGTAAATCCACCACAAATAT CATGATAACTACTATAATTATAGTGATTATAGTAATATTG TTATCATTAATTGCAGTTGGACTGCTCCTATACTGCAAGG CCAGAAGCACACCAGTCACACTAAGTAAGGATCAACTGA

hMPV mRNA Sequences

GTGGTATAAATAATATTGCATTTAGTAACTGA

gi|122891979|gb| EF051124.11 Human metapneumo virus isolate TN/92-4 fusion protein gene, complete genome AUGAGCUGGAAGGUGGUGAUUAUCUUCAGCCUGCUGAU
UACACCUCAACACGGCCUGAAGAGAGAGCUACCUGGAAG
AGAGCUGCUCCACCAUCACCGAGGGCUACCUGAGCGUG
CUGCGGACCGGCUGGUACACCAACGUGUUCACCCUGGA
GGUGGGCGACGUGGAGACCUGACCGACGACGCC
CUAGCCUGAUCAAGACCGAGCUGGACCUGACCAGAGG
GCUCUGAGAGAGCUGAACGACCGACCAGCU

57

TABLE 2 -continued

 $\begin{array}{ccc} & & & & & \\ & & & & \\ & & & & \\ \text{Description} & & \text{Sequence} & & \\ \text{NO:} & & & \\ \end{array}$

GGCCAGAGAGCAGAUCGAGAACCCUCGGCAGAGCA GAUUCGUGCUGGGCGCCAUCGCUCUGGGAGUCGCCGCU GCCGCUGCAGUGACAGCUGGAGUGGCCAUUGCUAAGAC CAUCAGACUGGAAAGCGAGGUGACAGCCAUCAACAAUG CCCUGAAGAAGACCAACGAGGCCGUGAGCACCCUGGGC AAUGGAGUGAGAGUGCUGGCCACAGCCGUGCGGGAGCU GAAGGACUUCGUGAGCAAGAACCUGACCAGAGCCAUCA ACAAGAACAAGUGCGACAUCGAUGACCUGAAGAUGGCC GUGAGCUUCUCCCAGUUCAACAGACGGUUCCUGAACGU GGUGAGACAGUUCUCCGACAACGCUGGAAUCACACCUG CCAUUAGCCUGGACCUGAUGACCGACGCCGAGCUGGCU AGAGCCGUGCCCAACAUGCCCACCAGCGCUGGCCAGAU CAAGCUGAUGCUGGAGAACAGAGCCAUGGUGCGGAGAA AGGGCUUCGGCAUCCUGAUUGGGGUGUAUGGAAGCUCC GUGAUCUACAUGGUGCAGCUGCCCAUCUUCGGCGUGAU CGACACCCUGCUGGAUCGUGAAGGCCGCUCCUAGCU GCUCCGAGAAGAAAGGAAACUAUGCCUGUCUGCUGAGA GAGGACCAGGGCUGGUACUGCCAGAACGCCGGAAGCAC AGUGUACUAUCCCAACGAGAAGGACUGCGAGACCAGAG GCGACCACGUGUUCUGCGACACCGCUGCCGGAAUCAAC GUGGCCGAGCAGAGCAAGGAGUGCAACAUCAACAUCAG CACAACCAACUACCCCUGCAAGGUGAGCACCGGACGGC ACCCCAUCAGCAUGGUGGCUCUGAGCCCUCUGGGCGCU CUGGUGGCCUGCUAUAAGGGCGUGUCCUGUAGCAUCGG CAGCAAUCGGGUGGGCAUCAUCAAGCAGCUGAACAAGG GAUGCUCCUACAUCACCAACCAGGACGCCGACACCGUG ACCAUCGACAACACCGUGUACCAGCUGAGCAAGGUGGA GGGCGAGCACGUGAUCAAGGGCAGACCCGUGAGCU CCAGCUUCGACCCCAUCAAGUUCCCUGAGGACCAGUUC AACGUGGCCCUGGACCAGGUGUUUGAGAACAUCGAGAA CAGCCAGGCCCUGGUGGACCAGAGCAACAGAAUCCUGU CCAGCGCUGAGAAGGGCAACACCGGCUUCAUCAUUGUG AUCAUUCUGAUCGCCGUGCUGGGCAGCUCCAUGAUCCU GGUGAGCAUCUUCAUCAUUAUCAAGAAGACCAAGAAAC $\tt CCACCGGAGCCCCUCCUGAGCUGAGCGGCGUGACCAAC$ AAUGGCUUCAUUCCCCACAACUGA

gb|AY525843.1|: 3065-4684 Human metapneumo virus isolate NL/1/99, complete genome AUGUCUUGGAAAGUGAUGAUCAUCAUUUCGUUACUCAU AACACCCCAGCACGGGCUAAAGGAGAGUUAUUUGGAAG AAUCAUGUAGUACUAUAACUGAGGGAUACCUCAGUGUU UUAAGAACAGGCUGGUACACUAAUGUCUUCACAUUAGA AGUUGGUGAUGUUGAAAAUCUUACAUGUACUGAUGGA CCUAGCUUAAUCAAAACAGAACUUGAUCUAACAAAAAG UGCUUUAAGGGAACUCAAAACAGUCUCUGCUGAUCAGU UGGCGAGAGAGGAGCAAAUUGAAAAUCCCAGACAAUCA AGAUUUGUCUUAGGUGCGAUAGCUCUCGGAGUUGCUAC AGCAGCAGUCACAGCAGGCAUUGCAAUAGCCAAAA CCAUAAGGCUUGAGAGUGAGGUGAAUGCAAUUAAAGG UGCUCUCAAACAAACUAAUGAAGCAGUAUCCACAUUAG GGAAUGGUGUGCGGGUCCUAGCCACUGCAGUGAGAGAG CUAAAAGAAUUUGUGAGCAAAAACCUGACUAGUGCAAU CAACAGGAACAAAUGUGACAUUGCUGAUCUGAAGAUGG CUGUCAGCUUCAGUCAAUUCAACAGAAGAUUUCUAAAU GUUGUGCGGCAGUUUUCAGACAAUGCAGGGAUAACACC AGCAAUAUCAUUGGACCUGAUGACUGAUGCUGAGUUGG CCAGAGCUGUAUCAUACAUGCCAACAUCUGCAGGGCAG AUAAAACUGAUGUUGGAGAACCGCGCAAUGGUAAGGAG AAAAGGAUUUGGAAUCCUGAUAGGGGUCUACGGAAGCU CUGUGAUUUACAUGGUUCAAUUGCCGAUCUUUGGUGUC AUAGAUACACCUUGUUGGAUCAUCAAGGCAGCUCCCUC UUGCUCAGAAAAAAACGGGAAUUAUGCUUGCCUCCUAA GAGAGGAUCAAGGGUGGUAUUGUAAAAAUGCAGGAUC UACUGUUUACUACCCAAAUGAAAAAGACUGCGAAACAA GAGGUGAUCAUGUUUUUUGUGACACAGCAGCAGGGAUC AAUGUUGCUGAGCAAUCAAGAGAAUGCAACAUCAACAU AUCUACUACCAACUACCCAUGCAAAGUCAGCACAGGAA GACACCCUAUAAGCAUGGUUGCACUAUCACCUCUCGGU GCUUUGGUGGCUUGCUAUAAAGGGGUAAGCUGCUCGAU UGGCAGCAAUUGGGU

UGGAAUCAUCAAACAAUUACCCAAAGGCUGCUCAUACA
UAACCAACCAGGAUGCAGACACUGUAACAAUUGACAAU
ACCGUGUAUCAACUAAGCAAGUUGAAGGAGCA
UGUAAUAAAAGGGAGACCAGUUUCAAGCAGUUUUGAUC
CAAUCAAGUUUCCUGAGGAUCAGUUCAAUGUUGGCCUU
GAUCAAGUCUUCGAAACAUGAGAACAGUCAGGCACU
AGUGGACCAGUCAAACAAAAUUCUAAACAGUGCAGAAA

	TABLE 2 -continued	
Description	Sequence	SEÇ ID NO:
	AAGGAAACACUGGUUUCAUUAUCGUAGUAAUUUUGGU UGCUGUUCUUGGUCUAACCAUGAUUUCAGUGAGCAUCA UCAUCAUAAUCAAGAAAACCAAGGAAGCCCACAGGAGCA CCUCCAGAGCUGAAUGGUGUCACCAACGGCGGUUUCAU ACCACAUAGUUAG	
gb KJ627414.1 : 3015-4634 Human metapneumo virus strain hMPV/Homo sapiens/PER/ CFI0497/2010/B, complete genome	AUGUCUUGGAAAGUGAUUAUCAUUUCGUUACUCAU AACACCUCAGCAUGGACUAAAAGAAAGUUAUUUAGAAG AAUCAUGUAGUACUAUAACUGAAGGAUAUCUCAGUGUU UUAAGAACAGGUUGGUUGAACCCAAUGUCUUUACAUUAGA AGUUGGUGAUGUUGAAAACCGAAUGUCUUUACAUUAGA CCUAGCUUAAUCAAAACAGAACUUGACCUAACCAAAAG UGCUUUAAGAGAACUCAAAACAGAACUUGACCUAACCAAAAG UGCUUUAAGAGAACUCAAAACAGUUUCUGCUGAUCAGU UAGCGAGAGAGAGACUCAAAACAGUUUCUGCUGAUCAGU UAGCGAGAGAGACACAAAUUGAAAAUCCCAGACAAUCA AGGUUUGUCCUAGGUGCAAUAGCUCUUGGAGGUUGCCAC AGCAGCAGCAGCACACACUCAAAACAGUUUCUAGACUAUACA AGGUUUGUCCAAGAGAGAGAGACUUGCAAUAGCCAAAA CUAUAAAGCCUUGAGAGGAGUAGCAAUACAAAC UGCUCUCAAAACAACAAUGAGGCAGUACCAACACUAG GAAAUGGAGUGCGGGUCCUAGCCACUGCAGUAAGAGA CCUGAAAACAACAACAAUGAGGCAGUACCAACACACACAC	59
gb KJ723483.1 : 5586-7310 Human respiratory syncytial virus strain RSVA/Homo sapiens/USA/84I- 215A-01/1984, complete genome	AUGGAGUUGCCAAUCCUCAAAACAAAUGCAAUUACCAC AAUCCUUGCUGCAGUCACACUCUGUUUCGCUUCCAGUC AAAACACCACUGAAGAAUUUUAUCAAUCAACAUGCAGU GCAGUUAGCAAGAUUUUAUCAAUCAACAUGCAGU GCAGUUAGCAAAGAUUUAAUGAAUUAAAACAAGG GUUGGUAGCAAGAGUUAACAAGAAGUAAAAAAAAAA	60

UACCACUAUAUGGUGUAAUAGAUACACCCUGUUGGAAA CUGCACACAUCCCCUCUAUGUACAACCAACACAAAGGA

TABLE 2 -continued

Description	Sequence	SEÇ ID NO:
	AGGGUCCAACAUCUGCUUAACAAGAACCGACAGAGGAU	
	GGUAUUGUGACAAUGCAGGAUCAGUAUCUUUCUUCCCA	
	CAAGCUGAAACAUGUAAAGUUCAAUCGAAUCGGGUAUU	
	UUGUGACACAAUGAACAGUUUAACAUUACCAAGUGAAG	
	UAAAUCUCUGCAACAUUGACAUAUUCAACCCCAAAUAU	
	GAUUGCAAAAUUAUGACUUCAAAAACAGAUGUAAGCAG	
	CUCCGUUAUCACAUCUCUAGGAGCCAUUGUGUCAUGCU	
	AUGGCAAAACUAAAUGUACAGCAUCCAAUAAAAAUCGU	
	GGGAUCAUAAAGACAUUUUCUAACGGGUGUGAUUAUG	
	UAUCAAAUAAGGGGGUGGAUACUGUGUCUGUAGGUAA	
	UACAUUAUAUUAUGUAAAUAAGCAAGAAGGCAAAAGU	
	CUCUAUGUAAAAGGUGAACCAAUAAUAAAUUUCUAUGA	
	CCCAUUAGUGUUCCCCUCUGAUGAAUUUGAUGCAUCAA	
	UAUCUCAAGUCAAUGAGAAGAUUAACCAGAGCCUAGCA	
	UUUAUUCGUAAAUCCGAUGAAUUAUUACAUAAUGUAA	
	AUGCUGGUAAAUCCACCACAAAUAUCAUGAUAACUACU	
	AUAAUUAUAGUGAUUAUAGUAAUAUUGUUAUCAUUAA	
	UUGCAGUUGGACUGCUCCUAUACUGCAAGGCCAGAAGC	
	ACACCAGUCACACUAAGUAAGGAUCAACUGAGUGGUAU	
	AAAUAAUAUUGCAUUUAGUAACUGA	

TABLE 3

TABLE 3			
hMPV Amino Acid Sequences			
Description	Sequence	SEQ ID NO:	
gi 122891979 gb EF051124.1 Human metapneumo virus isolate TN/92-4 fusion protein gene, complete cds	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGW YTNVFTLEVGDVENLTCSDGPSLIKTELDLTKSALRELKTVS ADQLAREEQIENPRQSRFVLGAIALGVAAAAAVTAGVAIAK TIRLESEVTAINNALKKTNEAVSTLGNGVRVLATAVRELKD FVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMFTSAGQIKLMLENRA MVRRKGFGILIGVYGSSVIYMVQLPIFGVIDTPCWIVKAAPS CSEKKGNYACLLREDQGWYCQNAGSTVYYPNEKDCETRG DHVFCDTAAGINVAEQSKECNINISTTNYPCKVSTGRHPISM VALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQF NVALDQVFENIENSQALVDQSNRILSSAEKGNTGFIIVIILIAV LGSSMILVSIFIIIKKTKKPTGAPPELSGVTNNGFIPHN	5	
gb AY525843.1 : 3065-4684 Human metapneumo virus isolate NL/1/99, complete cds	MSWKVMIIISLLITPQHGLKESYLEESCSTITEGYLSVLRTGW YTNVFTLEVGDVENLTCTDGPSLIKTELDLTKSALRELKTVS ADQLAREEQIENPRQSRFVLGAIALGVATAAAVTAGIAIAKT IRLESEVNAIKGALKQTNEAVSTLGNGVRVLATAVRELKEF VSKNLTSAINRNKCDIADLKMAVSFSQFNRRFLNVVRQFSD NAGITPAISLDLMTDAELARAVSYMPTSAGQIKLMLENRAM VRRKGFGILIGVYGSSVIYMVQLPIFGVIDTPCWIIKAAPSCS EKNGNYACLLREDQGWYCKNAGSTVYYPNEKDCETRGDH VFCDTAAGINVAEQSRECNINISTTNYPCKVSTGRHPISMVA LSPLGALVACYKGVSCSIGSNWVGIIKQLPKGCSYITNQDAD TVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFNV ALDQVFESIENSQALVDQSNKILNSAEKGNTGFIIVVILVAVL GLTMISVSIIIIIKKTRKPTGAPPELNGVTNGGFIPHS	6	
gb KJ627414.1 : 3015-4634 Human metapneumo virus strain hMPV/Homo sapiens/PER/CFI04 97/2010/B, complete cds	MSWKVMIIISLLITPQHGLKESYLEESCSTITEGYLSVLRTGW YTNVFTLEVGDVENLTCTDGFSLIKTELDLTKSALRELKTVS ADQLAREEQIENPRQSRFVLGAIALGVATAAAVTAGIAIAKT IRLESEVNAIKGALKTTNEAVSTLGNGVRVLATAVRELKEF VSKNLTSAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSD NAGITPAISLDLMNDAELARAVSYMPTSAGQIKLMLENRAM VRRKGFGILIGVYGSSVIYMVQLPIFGVINTPCWIIKAAPSCS EKDGNYACLLREDQGMYCKNAGSTVYYPNEKDCETRGDH VFCDTAAGINVAEQSRECNINISTTNYPCKVSTGRHPISMVA LSPLGALVACYKGVSCSTGSNQVGIIKQLPKGCSYITNQDAD TVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIRFPEDQFNV ALDQVFESIENSQALVDQSNKILNSAEKGNTGFIIVIILIAVLG	7	
gb KJ723483.1 : 5586-7310 Human	MELPILKTNAITTILAAVTLCFASSQNITEEFYQSTCSAVSKG YLSALRTGWYTSVITIELSNIKENKCNGTDAKVKLIKQELDK	8	

TABLE 3 -continued

hMPV Amino Acid Sequences		
Description	Sequence	SEQ ID NO:
respiratory syncytial virus strain RSVA/Homo sapiens/USA/84I- 215A-01/1984, complete cds	YKNAVTELQLLMQSTPAANNRARRELPRFMNYTLNNTKNT NVTLSKKRKRRPLGFLLGVGSATASGIAVSKVLHLEGEVNKI KSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVN KQSCSISNIETVIEFQQKNNRLLEITREFSVNAGVTTPVSTYM LTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKE EVLAYVVQLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTR TDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLP SEVNLCNIDIFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGK TKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVN KQEGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSL AFIRKSDELLHNVNAGKSTTNIMITTIIIVIIVILLSLIAVGLLL YCKARSTPVTLSKDQLSGINNIAFSN	

TABLE 4

hMPV NCBI Accession Numbers (Amino Acid	l Sequences)
Virus	GenBank Accession
F [Human metapneumovirus] [Human metapneumovirus]	AEK26895.1
fusion glycoprotein [Human metapneumovirus]	ACJ53565.1
fusion glycoprotein [Human metapneumovirus]	ACJ53566.1
fusion glycoprotein [Human metapneumovirus]	ACJ53569.1
fusion protein [Human metapneumovirus]	AEZ52347.1
fusion glycoprotein [Human metapneumovirus]	ACJ53574.1
fusion glycoprotein [Human metapneumovirus]	AHV79473.1
fusion glycoprotein [Human metapneumovirus]	ACJ53570.1
fusion glycoprotein [Human metapneumovirus]	ACJ53567.1
fusion protein [Human metapneumovirus]	AAS22125.1
fusion glycoprotein [Human metapneumovirus]	AHV79795.1
fusion glycoprotein [Human metapneumovirus]	AHV79455.1
fusion glycoprotein [Human metapneumovirus]	ACJ53568.1
fusion protein [Human metapneumovirus]	AAS22109.1
fusion glycoprotein [Human metapneumovirus]	AGU68417.1
fusion glycoprotein [Human metapneumovirus]	AGJ74228.1
fusion glycoprotein [Human metapneumovirus]	ACJ53575.1
fusion protein [Human metapneumovirus]	AAU25820.1
fusion glycoprotein [Human metapneumovirus]	AGU68377.1
fusion glycoprotein [Human metapneumovirus]	AGU68371.1
fusion glycoprotein [Human metapneumovirus]	AGJ74087.1
fusion glycoprotein [Human metapneumovirus]	ACJ53560.1
fusion glycoprotein [Human metapneumovirus]	AHV79858.1
fusion glycoprotein [Human metapneumovirus]	ACJ53577.1
fusion protein [Human metapneumovirus]	AAS22085.1
fusion protein [Human metapneumovirus]	AEZ52348.1
fusion glycoprotein [Human metapneumovirus]	AGJ74044.1
fusion glycoprotein [Human metapneumovirus]	ACJ53563.1
fusion glycoprotein precursor [Human metapneumovirus]	YP_012608.1
fusion glycoprotein [Human metapneumovirus]	AGJ74053.1
fusion protein [Human metapneumovirus]	BAM37562.1
fusion glycoprotein [Human metapneumovirus]	ACJ53561.1
fusion glycoprotein [Human metapneumovirus]	AGU68387.1
fusion [Human metapneumovirus]	AGL74060.1
fusion glycoprotein precursor [Human metapneumovirus]	AAV88364.1
fusion protein [Human metapneumovirus]	AAN52910.1
fusion protein [Human metapneumovirus]	AAN52915.1
fusion protein [Human metapneumovirus]	BAM37564.1
fusion glycoprotein precursor [Human metapneumovirus]	BAH59618.1
fusion protein [Human metapneumovirus]	AAQ90144.1
fusion glycoprotein [Human metapneumovirus]	AHV79446.1
fusion protein [Human metapneumovirus]	AEL87260.1
fusion glycoprotein [Human metapneumovirus] fusion protein [Human metapneumovirus]	AHV79867.1 ABQ66027.2
	•
fusion glycoprotein [Human metapneumovirus] fusion protein [Human metapneumovirus]	ACJ53621.1 AAN52911.1
fusion glycoprotein [Human metapneumovirus]	AHV79536.1
fusion glycoprotein [Human metapneumovirus]	AGU68411.1
fusion protein [Human metapneumovirus]	AEZ52346.1
fusion protein [Human metapneumovirus]	AAN52913.1
fusion protein [Human metapneumovirus]	AAN52913.1 AAN52908.1
fusion glycoprotein [Human metapneumovirus]	ACJ53553.1
ration 5.300protein [trainan metaphetimovirus]	1100000001

TABLE 4-continued

hMPV NCBI Accession Numbers (Amino Acid	l Sequences)
Virus	GenBank Accession
fusion glycoprotein [Human metapneumovirus]	AIY25727.1
fusion protein [Human metapneumovirus] fusion protein [Human metapneumovirus]	ABM67072.1 AEZ52361.1
fusion protein [Human metapneumovirus]	AAS22093.1
fusion glycoprotein [Human metapneumovirus]	AGH27049.1
fusion protein [Human metapneumovirus] fusion glycoprotein [Human metapneumovirus]	AAK62968.2 ACJ53556.1
fusion glycoprotein [Human metapneumovirus]	ACJ53620.1
fusion protein [Human metapneumovirus] F [Human metapneumovirus] [Human metapneumovirus]	ABQ58820.1 AEK26886.1
fusion glycoprotein [Human metapneumovirus]	ACJ53619.1
fusion glycoprotein [Human metapneumovirus]	ACJ53555.1
fusion [Human metapneumovirus] fusion protein [Human metapneumovirus]	AGL74057.1 ABD27850.1
fusion protein [Human metapneumovirus]	AEZ52349.1
fusion protein [Human metapneumovirus]	ABD27848.1
fusion protein [Human metapneumovirus] fusion protein [Human metapneumovirus]	ABD27846.1 ABQ66021.1
fusion protein [Human metapneumovirus]	AFM57710.1
fusion protein [Human metapneumovirus]	AFM57709.1
fusion protein [Human metapneumovirus] fusion protein [Human metapneumovirus]	ABH05968.1 AEZ52350.1
fusion protein [Human metapneumovirus]	AFM57712.1
fusion protein [Human metapneumovirus]	AEZ52364.1
fusion protein [Human metapneumovirus] fusion protein [Human metapneumovirus]	AAN52912.1 AEZ52363.1
fusion [Human metapneumovirus]	AGL74059.1
fusion glycoprotein [Human metapneumovirus]	ACJ53583.1 AEZ52356.1
fusion protein [Human metapneumovirus] fusion protein [Human metapneumovirus]	AEZ52353.1 AEZ52353.1
fusion glycoprotein [Human metapneumovirus]	ACJ53581.1
fusion glycoprotein [Human metapneumovirus]	ACJ53578.1 AAS22117.1
fusion protein [Human metapneumovirus] fusion protein [Human metapneumovirus]	BAN75965.1
fusion protein [Human metapneumovirus]	AGF92105.1
fusion protein [Human metapneumovirus] fusion protein [Human metapneumovirus]	AAS22077.1 AAN52909.1
fusion glycoprotein [Human metapneumovirus]	ACJ53586.1
fusion protein [Human metapneumovirus]	AAQ90145.1
fusion glycoprotein [Human metapneumovirus] fusion [Human metapneumovirus]	AGT75042.1 AGL74058.1
fusion protein [Human metapneumovirus]	AEL87263.1
fusion glycoprotein [Human metapneumovirus]	AGH27057.1
fusion glycoprotein [Human metapneumovirus] F [Human metapneumovirus] [Human metapneumovirus]	AHV79491.1 AEK26906.1
fusion glycoprotein [Human metapneumovirus]	ACJ53580.1
fusion protein [Human metapneumovirus]	AEZ52354.1
fusion protein [Human metapneumovirus] G [Human metapneumovirus] [Human metapneumovirus]	AAN52914.1 AEK26901.1
glycoprotein [Human metapneumovirus]	AFI56738.1
glycoprotein [Human metapneumovirus]	AFI56739.1 AFI56745.1
glycoprotein [Human metapneumovirus] G protein [Human metapneumovirus]	AAQ62718.1
G protein [Human metapneumovirus]	AAQ62719.1
attachment glycoprotein G [Human metapneumovirus] G protein [Human metapneumovirus]	AGH27104.1 AAQ62729.1
G protein [Human metapneumovirus]	AAQ62728.1
glycoprotein [Human metapneumovirus]	AFI56753.1
glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus]	AFI56746.1 AFI56750.1
glycoprotein [Human metapneumovirus]	AFI56747.1
G protein [Human metapneumovirus] glycoprotein [Human metapneumovirus]	AAQ62721.1 AAT46573.1
glycoprotein [Human metapneumovirus]	AFI56748.1
glycoprotein [Human metapneumovirus]	AFI56736.1
glycoprotein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus]	AFI56749.1 AGH27131.1
attachment glycoprotein G [Human metapneumovirus]	AHV79558.1
glycoprotein [Human metapneumovirus]	AFI56740.1
glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus]	AFI56741.1 AFI56744.1
attachment glycoprotein G [Human metapneumovirus]	AHV79790.1
attachment glycoprotein G [Human metapneumovirus]	AGH27122.1
attachment glycoprotein G [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus]	AHV79763.1 AGZ48849.1
glycoprotein [Human metapneumovirus]	AFI56743.1
- •	

attachment glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] datachment glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] attachment surface glycop	hMPV NCBI Accession Numbers (Amino Acid	Sequences)
attachment glycoprotein [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] datachment glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] datachment glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] datachment surface glycoprotein [Human metapneumovirus] datachment glycoprotein [Human metapneumovirus] datachment glycoprotein [Human metapneu		
attachment glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] glycoprotein [Human metapneumovirus] AF156752.1 attachment glycoprotein G [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] G protein [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] G protein [Human metapneumovirus] G protein [Human metapneumovirus] G protein [Human metapneumovirus] AF16742.1 attachment surface glycoprotein [Human metapneumovirus] d protein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] attachment glycoprotein G [Human meta		
attachment glycoprotein [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] dycoprotein [Human metapneumovirus] datachment glycoprotein [Human metapneumovirus] datachment glycoprotein [Human metapneumovirus] datachment glycoprotein [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] datachment surface glycoprotein [Human metapneumovirus] dycoprotein [Human metapneumovirus] datachment surface glycoprotein [Human metapneumovirus] dycoprotein [Human metapneumovirus] datachment surface glycoprotein [Human metapneumovirus] da		
glycoprotein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] AFK49783.1 A		
attachment glycoprotein G [Human metapneumovirus] glycoprotein [Human metapneumovirus] AF156752.1 attachment glycoprotein G [Human metapneumovirus] AF26809.1 attachment glycoprotein G [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] AF47981.1 AF47981.1 BAN75968.1 AF47983.1 GP ortein [Human metapneumovirus] AF487983.1 AF487983.1 GP ortein [Human metapneumovirus] AF48798.3 A		
glycoprotein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] AGW43045.1 AFK49783.1 G protein [Human metapneumovirus] AAC62723.1 attachment surface glycoprotein [Human metapneumovirus] AGW43046.1 G protein [Human metapneumovirus] ATF56735.1 AGW43065.1 AGW	glycoprotein [Human metapneumovirus]	
G protein [Human metapneumovins] attachment glycoprotein G [Human metapneumovins] attachment glycoprotein G [Human metapneumovins] attachment glycoprotein G [Human metapneumovins] attachment surface glycoprotein [Human metapneumovins] attachment surface glycoprotein [Human metapneumovins] attachment surface glycoprotein [Human metapneumovins] ARV4983.1 ARV49306.1		
attachment glycoprotein G [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] dattachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] dattachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] dattachment surface glycoprotein [Human metapneumovirus] dycoprotein [Human metapneumovirus] dattachment surface glycoprotein [Human metapneumovirus] dattachment glycoprotein [Human metapneumovirus] dattachment surface glycoprotein [Human metapneumovirus] dattachment glycop		
attachment glycoprotein G [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] ARW43045.1 ARW479628.1 ARW47962.1 ARW479628.1 ARW47963.1 ARW47963.1 ARW47963.1 ARW47963.1 ARW47963.1 ARW47963.1 ARW479628.1 ARW47963.1 ARW47963.1 ARW47963.1 ARW47963.1 ARW47963.1 ARW479628.1 ARW47963.1 ARW47963.1 ARW47963.1 ARW47963.1 ARW47963.1 ARW47963.1 ARW47963.1 ARW47963.1 ARW479621.1 ARW47963.1 ARW479621.1 ARW479621.		
attachment glycoprotein G [Human metapneumovirus] attachment glycoprotein (Human metapneumovirus] attachment glycoprotein (Human metapneumovirus) AFK49783.1 G protein [Human metapneumovirus] AAC6273.1 ABD27839.1 attachment glycoprotein [Human metapneumovirus] ABD27839.1 attachment glycoprotein [Human metapneumovirus] G protein [Human metapneumovirus] G protein [Human metapneumovirus] G protein [Human metapneumovirus] ABD27839.1 AAC6271.1 glycoprotein [Human metapneumovirus] AAC6271.1 glycoprotein [Human metapneumovirus] ABD27839.1 AAC6271.1 glycoprotein [Human metapneumovirus] AGW43046.1 AFI56735.1 ATtachment protein [Human metapneumovirus] AGW43065.1 AAC62724.1 AAC62724.1 AAC62724.1 AAC62724.1 AAC62724.1 AAC643075.1 AAC62724.1 AAC643075.1 AAC643075.1 AAC64704.1 AAC64704.1 AAC64704.1 AGW43065.1 AGW43065.1 AGW43065.1 AGW43065.1 AGW43066.1 AGW43066.1 AGW43066.1 AGW43066.1 AGW43066.1 AGW43066.1 AGW43066.1 AAC64704.1 AAC64704		
attachment glycoprotein G [Human metapneumovirus] AFK49783.1 ARK49783.1 ARK49783.1 ABD27839.1 ABD27839.1 ABD27839.1 ABD27839.1 ABD27839.1 ABD27839.1 ABD27839.1 ABQ62717.1 glycoprotein [Human metapneumovirus] AGW43046.1 AAQ62717.1 glycoprotein [Human metapneumovirus] AGW43046.1 ARF44936.1		
attachment glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] darkachment surface glycoprotein [Human metapneumovirus] darkachment protein [Human metapneumovirus] darkachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] dattachment surface glycoprotein [Human metapneumovirus] dycoprotein [Human metapneumovirus] dycoprotein [Human metapneumovirus] dycoprotein [Human metapneumovirus] dycoprotein [Human metapneumovirus] dattachment glycoprotein [Human metapneumovirus] dattachment surface glycoprotein [Human metapneumovirus] dattachment surface glycoprotein [Human metapneumovirus] dattachment surface glycoprotein [Human metapneumovirus] dattachment glycoprotein [Human metapneumovirus] dattachment surface glycoprotein [Human metapneumovirus] dattachment glycoprotein [Human metapneu		
G protein [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] AGW43046.1 AGW4306.1 AGW43065.1 AGW43066.1 AGW4306		
attachment surface glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] attachment protein [Human metapneumovirus] AF156732.1 attachment surface glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] attachm	G protein [Human metapneumovirus]	AAQ62723.1
G protein [Human metapneumovirus] glycoprotein [Human metapneumovirus] attachment protein [Human metapneumovirus] ABQ44522.1 ABQ44505.1 AGW43065.1 AGW43065.1 AGW43065.1 AGW43065.1 AGW43065.1 AGW43062.1 AJA746579.1 AAT46579.1 AAT46579.1 AAT46579.1 AT464579.1 AT464578.1 AGW43064.1 AGW43065.1 AGW43064.1 AGW43064.1 AGW43064.1 AGW43064.1 AGW43064.1 AGW43065.1 AGW43064.1 AGW43064.1 AGW43064.1 AGW43064.1 AGW43065.1 AGW43064.1 AGW43064.1 AGW43064.1 AGW43065.1 AGW43064.1 AGW43064.1 AGW43064.1 AGW43065.1 AGW43064.1 AGW43064.1 AGW43066.1 AAT46578.1 AGW43067.1 AAT46578.1 AGW43067.1 AAT46578.1 AGW43061.1 AAT46578.1 AGW43061.1 AAT46578.1 AGW43061.1 AAT46578.1 AGW43061.1 AGW430		
glycoprotein [Human metapneumovirus] attachment protein [Human metapneumovirus] AF156735.1 attachment surface glycoprotein [Human metapneumovirus] AGW43065.1 drachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] AGW43065.1 attachment surface glycoprotein [Human metapneumovirus] G protein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] attachment glycoprotein [Fluman metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment glycopro		
glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] attac	glycoprotein [Human metapneumovirus]	
attachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] attach		
G protein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] AGW43078.1 attachment surface glycoprotein [Human metapneumovirus] AGW43078.1 attachment surface glycoprotein [Human metapneumovirus] AGW43078.1 attachment surface glycoprotein [Human metapneumovirus] AAT46571.1 glycoprotein [Human metapneumovirus] AAT46571.1 glycoprotein [Human metapneumovirus] AAT46578.1 attachment glycoprotein [Human metapneumovirus] AAT46578.1 attachment surface glycoprotein [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] att		
attachment surface glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] AGW43064.1 attachment surface glycoprotein [Human metapneumovirus] AGW43078.1 attachment surface glycoprotein [Human metapneumovirus] AGW43078.1 attachment surface glycoprotein [Human metapneumovirus] AGW43078.1 attachment surface glycoprotein [Human metapneumovirus] AGW43063.1 glycoprotein [Human metapneumovirus] AGW43063.1 glycoprotein [Human metapneumovirus] AAT46571.1 glycoprotein [Human metapneumovirus] AAT46578.1 attachment glycoprotein [Human metapneumovirus] AAT46578.1 attachment surface glycoprotein [Human metapneumovirus] AAT46574.1 attachment surface glycoprotein [Human metapneumovirus] AGW4306.1 glycoprotein [Human metapneumovirus] AGW4306.1 glycoprotein [Human metapneumovirus] AGW4306.1 attachment glycoprotein [Human metapneumovirus] AGW43047.1 glycoprotein [Human metapneumovirus] AGW43047.1 glycoprotein [Human metapneumovirus] AGW43047.1 attachment glycoprotein [Human metapneumovirus] AGW43049.1 attachment glycoprotein [Human metapneumovirus] AGW43048.1 attachment glycoprotein [Human metapneumovirus] AGW43049.1 attachment glycoprotein [Human metapneumovirus] AGW43049.1 attachment glycoprotein [Human metapneumovirus] AGW4305.1 attachment glycoprotein [Human metapneumovirus] AGW4307.1 attachment glycoprotein [Human metapneumovirus] A		
glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] AGW43042.1 attachment surface glycoprotein [Human metapneumovirus] AGW43067.1 G protein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment protein [Human metapneumovirus] attachment protein [Human metapneumovirus] attachment glycoprotein [Human me		
attachment surface glycoprotein [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] attach		
attachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] AGW43067.1 G protein [Human metapneumovirus] AGW43067.1 G protein [Human metapneumovirus] AGW43067.1 G protein [Human metapneumovirus] AGW43067.1 AAQ62722.1 attachment surface glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] AAT46571.1 glycoprotein [Human metapneumovirus] AAT46571.1 glycoprotein [Human metapneumovirus] AAT46578.1 attachment glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] AAT46574.1 attachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] AGW4307.1 AGW43		
attachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] AGW43067.1 G protein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] glycoprotein [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] AGG74048.1 G protein [Human metapneumovirus] AGG74048.1 G protein [Human metapneumovirus] AGG74048.1 AGU68409.1 AGH2709.1 AGW4307.1 AGW43061.1 AGW430452.1 AGW43061.1 AGW430452.1 AGW43061.1 AGW430452.1 AGW43061.1 AGW430452.1 AGW43061.1 AGW430452.1 AGW430452.1 AGW43061.1 AGW430452.1 AGW43061.1 AGW430452.1 AGW43061.1 AGW430452.1 AGW43061.1 AGW430452.1 AGW43061.1 AGW430452.1 AGW43061.1 AGW430452.1 A	attachment surface glycoprotein [Human metapneumovirus]	
attachment surface glycoprotein [Human metapneumovirus] G protein [Human metapneumovirus] glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] AAT46571.1 glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] AAT46578.1 glycoprotein [Human metapneumovirus] AAT46580.1 glycoprotein [Human metapneumovirus] AAT46574.1 attachment surface glycoprotein [Human metapneumovirus] AAT46574.1 attachment glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] AAS48406.1 attachment surface glycoprotein [Human metapneumovirus] AAS48466.1 attachment glycoprotein [Human metapneumovirus] AAS48466.1 attachment glycoprotein [Human metapneumovirus] AAS48466.1 attachment glycoprotein G [Human metapneumovirus] AGW43047.1 glycoprotein glycoprotein [Human metapneumovirus] AGW43048.1 attachment glycoprotein G [Human metapneumovirus] AGW43049.1 attachment glycoprotein G [Human metapneumovirus] AGJ7409.1.1 attachment glycoprotein G [Human metapneumovirus] AGJ7409.1.1 attachment glycoprotein G [Human metapneumovirus] AGJ7409.1.1 attachment glycoprotein G [Human metapneumovirus] AGW43036.1 attachment protein [Human metapneumovirus] AGW43036.1 attachment glycoprotein G [Human metapneumovirus] AGW43036.1 attachment glycoprotein G [Human metapneumovirus] AGW43070.1 glycoprotein [Human metapneumovirus] AAJ4658.1 AGW43070.1 AGW430		
G protein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] AAT46578.1 attachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] AGU74082.1 attachment glycoprotein [H		
glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] AAT46578.1 glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] AAT46578.1 glycoprotein [Human metapneumovirus] AAT46578.1 glycoprotein [Human metapneumovirus] AAT46574.1 attachment surface glycoprotein [Human metapneumovirus] AT46574.1 attachment surface glycoprotein [Human metapneumovirus] AFK49791.1 attachment surface glycoprotein [Human metapneumovirus] ABC26386.1 attachment glycoprotein [Human metapneumovirus] AGW43047.1 glycoprotein [Human metapneumovirus] AGW43047.1 attachment surface glycoprotein [Human metapneumovirus] AGW43048.1 attachment surface glycoprotein [Human metapneumovirus] AGW43049.1 attachment surface glycoprotein [Human metapneumovirus] AGW43049.1 attachment glycoprotein G [Human metapneumovirus] AGW43049.1 attachment glycoprotein G [Human metapneumovirus] AGW43049.1 attachment glycoprotein G [Human metapneumovirus] AGJ74091.1 attachment glycoprotein G [Human metapneumovirus] AGJ74091.1 attachment surface glycoprotein [Human metapneumovirus] AGJ74091.1 attachment protein [Human metapneumovirus] AGJ74091.1 attachment glycoprotein G [Human metapneumovirus] AGW43056.1 attachment glycoprotein G [Human metapneumovirus] AGW43070.1 glycoprotein [Human metapneumovirus] AGJ74048.1 AGJ7408.1 AGJ7408	G protein [Human metapneumovirus]	AAQ62722.1
glycoprotein [Human metapneumovirus] attachment glycoprotein [G [Human metapneumovirus] glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] AGW43061.1 attachment surface glycoprotein [Human metapneumovirus] AGW43047.1 glycoprotein [Human metapneumovirus] AGW43047.1 glycoprotein [Human metapneumovirus] AGW43047.1 glycoprotein [Human metapneumovirus] AGW43048.1 attachment surface glycoprotein [Human metapneumovirus] AGW43048.1 attachment surface glycoprotein [Human metapneumovirus] AGW43048.1 attachment surface glycoprotein [Human metapneumovirus] AGW43049.1 attachment glycoprotein G [Human metapneumovirus] AGJ74082.1 attachment glycoprotein G [Human metapneumovirus] AGJ74081.1 attachment glycoprotein G [Human metapneumovirus] AGJ74082.1 attachment glycoprotein G [Human metapneumovirus] AGW43056.1 attachment surface glycoprotein [Human metapneumovirus] AGW43056.1 attachment glycoprotein G [Human metapneumovirus] AGW43056.1 attachment surface glycoprotein [Human metapneumovirus] AGW43070.1 glycoprotein [Human metapneumovirus] AGW43070.1 glycoprotein [Human metapneumovirus] AGW43070.1 glycoprotein [Human metapneumovirus] AGW43070.1 glycoprotein [Human metapneumovirus] AGJ7408.1 attachment glycoprotein G [Human metapneumovirus] AGJ7408.1 attachment glycoprotein G [Human metapneumovirus] AGJ7408.1 attachment glycoprotein G [Human metapneumovirus] AGJ7408.1 AGJ7408.1 AGJ7408.1 AGJ7408.1 AGJ7408.1 AGJ7408.1 AGJ7408.1 AGW43070.1 AGW43070.1 AGW43070.1 AGW43070.1 AGW43070.1 AGW43070.1 AGW43070.1 AGJ7408.1 AGJ7408.1 AGJ7408.1 AGJ7408.1 AGJ7408.1 AGJ7408.1 AGW43070.1 AGW4		
attachment glycoprotein G [Human metapneumovirus] glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] AGW43061.1 attachment surface glycoprotein [Human metapneumovirus] AGW43047.1 glycoprotein [Human metapneumovirus] AGW43048.1 attachment glycoprotein [Human metapneumovirus] AGW43048.1 attachment surface glycoprotein [Human metapneumovirus] AGW43049.1 attachment glycoprotein G [Human metapneumovirus] AGI74082.1 attachment glycoprotein G [Human metapneumovirus] AGI74091.1 attachment glycoprotein G [Human metapneumovirus] AGI74091.1 attachment surface glycoprotein [Human metapneumovirus] AGW43056.1 attachment protein [Human metapneumovirus] AGW43056.1 attachment protein [Human metapneumovirus] AGW43070.1 glycoprotein [Human metapneumovirus] AGW43070.1 glycoprotein [Human metapneumovirus] AGW43070.1 glycoprotein [Human metapneumovirus] AGU68409.1 attachment glycoprotein G [Human metapneumovirus] AGW43070.1 glycoprotein [Human metapneumovirus] AGU68409.1 attachment glycoprotein G [Human metapneumovirus] AGU68409.1 attachment glycoprotein G [Human metapneumovirus] AGU74048.1 G protein [Human metapneumovirus] AGJ74048.1 G protein [Human metapneumovirus] AGJ74048.1 G protein [Human metapneumovirus] AGJ7408.1 ABC26384.1 attachment glycoprotein G [Human metapneumovirus] AGJ7408.1 AGJ7408.1 AGJ7408.1 AGJ7408.1 AGU68409.1 attachment glycoprotein G [Human metapneumovirus] AGJ7408.1 AGJ7408.1 AGJ7408.1 AGU68409.1 attachment glycoprotein G [Human metapneumovirus] AGJ7408.1 AGJ7408.1 AGU68409.1 AGJ7408.1 AGU68409.1 AGJ7408.1 AGU68409.1 AGJ7408.1 AGJ7408.1 AGU68409.1 AGJ7408.1 AGU		
glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] AGW43047.1 glycoprotein [Human metapneumovirus] AGW43047.1 glycoprotein [Human metapneumovirus] AAS48466.1 attachment surface glycoprotein [Human metapneumovirus] AAS48466.1 attachment glycoprotein G [Human metapneumovirus] AGW43048.1 attachment glycoprotein G [Human metapneumovirus] AGW43049.1 attachment glycoprotein G [Human metapneumovirus] AGJ74082.1 attachment glycoprotein G [Human metapneumovirus] AGJ74091.1 attachment glycoprotein G [Human metapneumovirus] AGJ74091.1 attachment glycoprotein G [Human metapneumovirus] AGW43056.1 attachment surface glycoprotein [Human metapneumovirus] ABQ44523.1 attachment protein [Human metapneumovirus] AGW43070.1 glycoprotein [Human metapneumovirus] AGJ74091.1 attachment glycoprotein G [Human metapneumovirus] AGW43070.1 glycoprotein [Human metapneumovirus] AGU68409.1 attachment glycoprotein G [Human metapneumovirus] AGJ74081.1 attachment glycoprotein G [Human metapneumovirus] AGJ74081.1 attachment glycoprotein G [Human metapneumovirus] AGJ74081.1 attachment glycoprotein G [Human metapneumovirus] AGJ74091.1 attachment glycoprotein G [Human metapneumovirus] AGJ74091.1 attachment glycoprotein G [Human metapneumovirus] AGJ74091.1 attachment glycoprotein G [Human metapneumovirus] AGJ74081.1 AGG26384.1 attachment glycoprotein G [Human metapneumovirus] AGJ74091.1 attachment glycoprotein G [Human metapneumovirus] AGG43071.1 attachment glycoprotein G [Human metapneumovirus] AGW43071.1 attachment glycoprotein G [Human metapneumovirus] AGW43071.1 AGW4307		
attachment surface glycoprotein [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] AGW43047.1 attachment glycoprotein [Human metapneumovirus] AAS48466.1 attachment surface glycoprotein [Human metapneumovirus] AGW43048.1 attachment surface glycoprotein [Human metapneumovirus] AGW43049.1 attachment glycoprotein G [Human metapneumovirus] AGJ74082.1 attachment glycoprotein G [Human metapneumovirus] AGJ7409.1. attachment glycoprotein G [Human metapneumovirus] AGJ7409.1. attachment glycoprotein G [Human metapneumovirus] AGJ7409.1. attachment surface glycoprotein [Human metapneumovirus] AGW43056.1 attachment protein [Human metapneumovirus] AGW43056.1 attachment glycoprotein G [Human metapneumovirus] AGW43070.1 glycoprotein [Human metapneumovirus] AGW43070.1 glycoprotein [Human metapneumovirus] AGU68409.1 attachment glycoprotein G [Human metapneumovirus] AGJ74223.1 attachment glycoprotein G [Human metapneumovirus] AGJ74223.1 attachment glycoprotein G [Human metapneumovirus] AGJ74048.1 G protein [Human metapneumovirus] AGJ74048.1 G protein [Human metapneumovirus] AGJ7409.1 attachment glycoprotein G [Human metapneumovirus] AGJ7409.1 attachment glycoprotein G [Human metapneumovirus] AGJ7409.1 attachment glycoprotein G [Human metapneumovirus] AGJ74023.1 attachment glycoprotein G [Human metapneumovirus] AGJ74025.1 attachment glycoprotein G [Human metapneumovirus] AGJ74026.1 attachment glycoprotein G [Human metapneumovirus] AGJ74027.1 attachment glycoprotein G [Human metapneumovirus] AGJ7408.1 AGJ7408.1 AGU68409.1 AGU68409.1 AGJ7408.1 AGU68409.1 AGJ7408.1 AGU68409.1 AGJ7408.1 AGU68409.1 AGJ7408.1 AGJ740		
attachment glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] AAS22129.1 attachment glycoprotein G [Human metapneumovirus] AAG374048.1 G protein [Human metapneumovirus] AAG465725.1 glycoprotein [Human metapneumovirus] AAC62725.1 glycoprotein G [Human metapneumovirus] AAG44525.1 attachment glycoprotein G [Human metapneumovirus] AAG44525.1 attachment glycoprotein G [Human metapneumovirus] AAG44525.1 attachment glycoprotein G [Human metapneumovirus] AAG468405.1 AAG6894.1 AAV99531.1 G protein [Human metapneumovirus] AAC6894.1 AAV99631.1 phosphoprotein [Human metapneumovirus] AAV79631.1 AHV79631.1		
glycoprotein [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] AGH27140.1 attachment glycoprotein G [Human metapneumovirus] AGH27140.1 attachment glycoprotein G [Human metapneumovirus] AGH27140.1 attachment glycoprotein G [Human metapneumovirus] AGH27082.1 attachment glycoprotein G [Human metapneumovirus] AHV79442.1 attachment glycoprotein G [Human metapneumovirus] AHV79477.1 attachment surface glycoprotein [Human metapneumovirus] ABQ44523.1 attachment protein [Human metapneumovirus] ABQ44523.1 attachment surface glycoprotein [Human metapneumovirus] AGW43070.1 glycoprotein [Human metapneumovirus] AGW43070.1 glycoprotein [Human metapneumovirus] AGU68409.1 attachment glycoprotein G [Human metapneumovirus] AGJ7408.1 dAGJ7408.1 dAGJ74048.1 dAGJ74048.1 dAGJ74048.1 dAGJ74048.1 dAGJ74048.1 dAGJ7405.1 attachment glycoprotein G [Human metapneumovirus] AGJ7408.1 dAGJ7405.1 attachment glycoprotein G [Human metapneumovirus] AGJ7405.1 attachment glycoprotein G [Human metapneumovirus] AGW43071.1 AGW4		
attachment glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] AGW43049.1 attachment surface glycoprotein [Human metapneumovirus] AGJ74082.1 attachment glycoprotein G [Human metapneumovirus] AGJ74082.1 attachment glycoprotein G [Human metapneumovirus] AGJ7409.1. attachment glycoprotein G [Human metapneumovirus] AGJ7409.1. attachment surface glycoprotein [Human metapneumovirus] AGJ7409.1. attachment surface glycoprotein [Human metapneumovirus] AGJ7409.1. attachment protein [Human metapneumovirus] AGW43056.1 attachment glycoprotein [Human metapneumovirus] BAH59622.1 attachment glycoprotein [Human metapneumovirus] AGW43070.1 glycoprotein [Human metapneumovirus] AGJ74223.1 attachment glycoprotein G [Human metapneumovirus] AGJ74223.1 attachment glycoprotein [Human metapneumovirus] AGJ74048.1 G protein [Human metapneumovirus] AAGJ74048.1 G protein [Human metapneumovirus] AAGJ74048.1 G protein [Human metapneumovirus] AAGJ74048.1 G protein [Human metapneumovirus] ABC26384.1 attachment glycoprotein G [Human metapneumovirus] AGJ74051.1 attachment glycoprotein G [Human metapneumovirus] AGJ74162.1 attachment glycoprotein G [Human metapneumovirus] AGJ74223.1 attachment glycoprotein G [Human metapneumovirus] AGJ7408.1 AGJ740		
attachment surface glycoprotein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment protein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] attachment protein [Human metapneumovirus] attachment protein [Human metapneumovirus] attachment protein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] AGI74162.1 attachment glycoprotein G [Human metapneumovirus] AGI74162.1 attachment glycoprotein G [Human metapneumovirus] AGI74162.1 attachment glycoprotein G [Human metapneumovirus] AGI74095.1 attachment glycoprotein [Human metapneumovirus] AGI74095.1 attachment glycoprotein [Human metapneumovirus] AGI74095.1 attachment glycoprotein [Human metapneumovirus] AGI74095.1 AGI74091.1 AGI74091.1		
attachment surface glycoprotein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment protein [Human metapneumovirus] attachment protein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] adGW43070.1 glycoprotein [Human metapneumovirus] adGW43070.1 glycoprotein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] adGW6409.1 attachment glycoprotein G [Human metapneumovirus] adGJ74223.1 attachment glycoprotein [Human metapneumovirus] adAS22129.1 attachment glycoprotein G [Human metapneumovirus] adGJ74048.1 G protein [Human metapneumovirus] attachment protein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] adGJ74162.1 attachment glycoprotein G [Human metapneumovirus] adAQ62726.1 attachment glycoprotein G [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] adAQ62726.1 attachment glycoprotein [Human metapneumovir		
attachment glycoprotein G [Human metapneumovirus] AHV79447.1 attachment surface glycoprotein [Human metapneumovirus] AHV9447.1 attachment surface glycoprotein [Human metapneumovirus] ABQ44523.1 attachment protein [Human metapneumovirus] ABQ44523.1 attachment surface glycoprotein [Human metapneumovirus] BAH59622.1 attachment surface glycoprotein [Human metapneumovirus] AGW43070.1 glycoprotein [Human metapneumovirus] AGW43070.1 glycoprotein [Human metapneumovirus] AGU8409.1 attachment glycoprotein G [Human metapneumovirus] AGU8409.1 attachment glycoprotein [Human metapneumovirus] AAS22129.1 attachment glycoprotein G [Human metapneumovirus] AAG74048.1 G protein [Human metapneumovirus] ABC46384.1 attachment protein [Human metapneumovirus] ABC44525.1 attachment glycoprotein G [Human metapneumovirus] AGW43071.1 attachment glycoprotein G [Human metapneumovirus] AGH74051.1 attachment glycoprotein G [Human metapneumovirus] AGH779531.1 G protein [Human metapneumovirus] AAS48465.1 attachment glycoprotein [Human metapneumovirus] AAS48465.1 attachment glycoprotein [Human metapneumovirus] AAS48465.1 attachment surface glycoprotein [Human metapneumovirus] AAS48465.1 attachment glycoprotein [Human metapneumovirus] AAS48465.1 attachment surface glycoprotein [Human metapneumovirus] AAS48465.1 attachment glycoprotein [Human metapneumovirus] AAS48465.1 attachment glycoprotein [Human metapneumovirus] AAS48465.1 attachment surface glycoprotein [Human metapneumovirus] AAS48465.1 attachment metapneumovirus] AAS48465.1 attachment surface glycoprotein [Human metapneumovirus] AAS48465.1		
attachment glycoprotein G [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] AGJ74091.1 attachment glycoprotein G [Human metapneumovirus] Attachment surface glycoprotein [Human metapneumovirus] AGW43056.1 attachment protein [Human metapneumovirus] AGW43056.1 attachment protein [Human metapneumovirus] ABQ44523.1 attachment surface glycoprotein [Human metapneumovirus] AGW43070.1 glycoprotein [Human metapneumovirus] AGW43070.1 glycoprotein [Human metapneumovirus] AAJ746585.1 attachment glycoprotein G [Human metapneumovirus] AGU68409.1 attachment glycoprotein [Human metapneumovirus] AGJ74223.1 attachment glycoprotein G [Human metapneumovirus] AGJ74048.1 G protein [Human metapneumovirus] AGJ74048.1 G protein [Human metapneumovirus] ABC26384.1 attachment protein [Human metapneumovirus] ABC44525.1 glycoprotein [Human metapneumovirus] ABC44525.1 attachment glycoprotein G [Human metapneumovirus] AGJ74162.1 attachment glycoprotein G [Human metapneumovirus] AGW43071.1 G protein [Human metapneumovirus] AGW43058.1 P [Human metapneumovirus] AAS48465.1 attachment surface glycoprotein [Human metapneumovirus] AGW43058.1 P [Human metapneumovirus] AGW43058.1 P [Human metapneumovirus] AGW43058.1		
attachment glycoprotein G [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment protein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] BAH59622.1 attachment surface glycoprotein [Human metapneumovirus] AGW43070.1 glycoprotein [Human metapneumovirus] AGU68409.1 attachment glycoprotein G [Human metapneumovirus] AGU74223.1 attachment glycoprotein G [Human metapneumovirus] AAS22129.1 attachment glycoprotein G [Human metapneumovirus] AAS22129.1 attachment glycoprotein G [Human metapneumovirus] AAGJ74048.1 G protein [Human metapneumovirus] ABC26384.1 attachment protein [Human metapneumovirus] ABC4525.1 attachment glycoprotein G [Human metapneumovirus] AGW43071.1 attachment glycoprotein G [Human metapneumovirus] AGW43071.1 attachment glycoprotein G [Human metapneumovirus] AGH27095.1 attachment glycoprotein G [Human metapneumovirus] AGH27095.1 attachment glycoprotein G [Human metapneumovirus] AAQ62726.1 attachment glycoprotein [Human metapneumovirus] AAS48465.1 attachment glycoprotein [Human metapneumovirus] AFW79531.1 G protein [Human metapneumovirus] AAS48465.1 attachment surface glycoprotein [Human metapneumovirus] AAS48465.1		
attachment surface glycoprotein [Human metapneumovirus] AGW43056.1 attachment protein [Human metapneumovirus] BAH59622.1 attachment surface glycoprotein [Human metapneumovirus] BAH59622.1 attachment surface glycoprotein [Human metapneumovirus] AGW43070.1 glycoprotein [Human metapneumovirus] AGW43070.1 glycoprotein [Human metapneumovirus] AGU68409.1 attachment glycoprotein G [Human metapneumovirus] AGJ74223.1 attachment glycoprotein [Human metapneumovirus] AGJ74223.1 attachment glycoprotein G [Human metapneumovirus] AGJ74048.1 G protein [Human metapneumovirus] AAQ62725.1 glycoprotein [Human metapneumovirus] ABC26384.1 attachment protein [Human metapneumovirus] ABC26384.1 attachment glycoprotein G [Human metapneumovirus] AGW43071.1 attachment glycoprotein G [Human metapneumovirus] AGH74162.1 attachment glycoprotein G [Human metapneumovirus] AGH74055.1 attachment glycoprotein G [Human metapneumovirus] AGH7405.1 attachment glycoprotein G [Human metapneumovirus] AGH27095.1 attachment glycoprotein G [Human metapneumovirus] AAQ62726.1 attachment glycoprotein [Human metapneumovirus] AAS48465.1 attachment surface glycoprotein [Human metapneumovirus] AGW43058.1 P [Human metapneumovirus] [Human metapneumovirus] ploophoprotein [Human metapneumovirus] AGW43058.1 P [Human metapneumovirus] [Human metapneumovirus] AHV79631.1 phosphoprotein [Human metapneumovirus] AHV79631.1		
attachment protein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] AAT46585.1 attachment glycoprotein G [Human metapneumovirus] AGU68409.1 attachment glycoprotein G [Human metapneumovirus] AGJ74223.1 attachment glycoprotein G [Human metapneumovirus] AAS22129.1 attachment glycoprotein G [Human metapneumovirus] AAGJ74048.1 G protein [Human metapneumovirus] AAGG2725.1 glycoprotein [Human metapneumovirus] ABC26384.1 attachment protein [Human metapneumovirus] ABC44525.1 attachment glycoprotein G [Human metapneumovirus] AGW43071.1 attachment glycoprotein G [Human metapneumovirus] AGH27095.1 attachment glycoprotein G [Human metapneumovirus] AGH27095.1 attachment glycoprotein G [Human metapneumovirus] AAPC2726.1 attachment glycoprotein [Human metapneumovirus] AAPC2726.1 attachment glycoprotein [Human metapneumovirus] AAS48465.1 attachment surface glycoprotein [Human metapneumovirus] AAS48465.1		
attachment glycoprotein G [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] AGJ74223.1 attachment glycoprotein G [Human metapneumovirus] AGJ74223.1 attachment glycoprotein G [Human metapneumovirus] AGJ74048.1 G protein [Human metapneumovirus] AGJ74048.1 G protein [Human metapneumovirus] ABC26384.1 attachment protein [Human metapneumovirus] ABC26384.1 attachment glycoprotein G [Human metapneumovirus] ABQ44525.1 attachment glycoprotein G [Human metapneumovirus] AGJ74162.1 attachment surface glycoprotein [Human metapneumovirus] AGH27095.1 attachment glycoprotein G [Human metapneumovirus] AGH27095.1 attachment glycoprotein G [Human metapneumovirus] AAS48465.1 attachment glycoprotein [Human metapneumovirus] AAS48465.1 attachment glycoprotein [Human metapneumovirus] AAS48465.1 attachment surface glycoprotein [Human metapneumovirus] ABC26384.1 phosphoprotein [Human metapneumovirus] AHV79631.1 phosphoprotein [Human metapneumovirus] AHV79631.1	attachment protein [Human metapneumovirus]	
glycoprotein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus] AAS22129.1 attachment glycoprotein G [Human metapneumovirus] AAGJ74048.1 G protein [Human metapneumovirus] AAQ62725.1 glycoprotein [Human metapneumovirus] ABC26384.1 attachment protein [Human metapneumovirus] ABC455.1 attachment glycoprotein G [Human metapneumovirus] AGW43071.1 attachment glycoprotein G [Human metapneumovirus] AGW43071.1 attachment glycoprotein G [Human metapneumovirus] AGH27095.1 attachment glycoprotein G [Human metapneumovirus] AGH27095.1 attachment glycoprotein G [Human metapneumovirus] AAQ62726.1 attachment glycoprotein [Human metapneumovirus] AAS48465.1 attachment surface glycoprotein [Human metapneumovirus] AAS48465.1 attachment surface glycoprotein [Human metapneumovirus] AAS48465.1 phosphoprotein [Human metapneumovirus] AHV79631.1 phosphoprotein [Human metapneumovirus] AHV79901.1	attachment glycoprotein G [Human metapneumovirus]	
attachment glycoprotein G [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] AGJ74223.1 attachment glycoprotein [Human metapneumovirus] AAS22129.1 attachment glycoprotein G [Human metapneumovirus] AGJ74048.1 G protein [Human metapneumovirus] AAQ62725.1 glycoprotein [Human metapneumovirus] ABC26384.1 attachment protein [Human metapneumovirus] ABQ44525.1 attachment glycoprotein G [Human metapneumovirus] AGW43071.1 attachment glycoprotein G [Human metapneumovirus] AGJ74162.1 attachment glycoprotein G [Human metapneumovirus] AGJ74162.1 attachment glycoprotein G [Human metapneumovirus] AGH27095.1 attachment glycoprotein G [Human metapneumovirus] AGW2726.1 attachment glycoprotein [Human metapneumovirus] AAQ62726.1 attachment glycoprotein [Human metapneumovirus] AAS48465.1 attachment surface glycoprotein [Human metapneumovirus] AAS48465.1		
attachment glycoprotein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] AGJ74048.1 G protein [Human metapneumovirus] AAQ62725.1 glycoprotein [Human metapneumovirus] ABC26384.1 attachment protein [Human metapneumovirus] ABQ44525.1 attachment glycoprotein G [Human metapneumovirus] ATAG44525.1 attachment glycoprotein G [Human metapneumovirus] AGW43071.1 attachment glycoprotein G [Human metapneumovirus] AGJ74162.1 attachment glycoprotein G [Human metapneumovirus] AGH27095.1 attachment glycoprotein G [Human metapneumovirus] AHV79531.1 G protein [Human metapneumovirus] AAQ62726.1 attachment glycoprotein [Human metapneumovirus] AAS48465.1 attachment glycoprotein [Human metapneumovirus] AGW43058.1 P [Human metapneumovirus] [Human metapneumovirus] AHX79631.1 phosphoprotein [Human metapneumovirus] AHV79631.1		
attachment glycoprotein G [Human metapneumovirus] G protein [Human metapneumovirus] AAQ62725.1 glycoprotein [Human metapneumovirus] ABC26384.1 attachment protein [Human metapneumovirus] ABQ44525.1 attachment glycoprotein G [Human metapneumovirus] AGW43071.1 attachment glycoprotein G [Human metapneumovirus] AGW43071.1 attachment glycoprotein G [Human metapneumovirus] AGH27095.1 attachment glycoprotein G [Human metapneumovirus] AHV79531.1 G protein [Human metapneumovirus] AAQ62726.1 attachment glycoprotein [Human metapneumovirus] AAS48465.1 attachment surface glycoprotein [Human metapneumovirus] AFW43058.1 P [Human metapneumovirus] AAS48465.1 attachment surface glycoprotein [Human metapneumovirus] AFW43058.1 P [Human metapneumovirus] AHV79631.1 phosphoprotein [Human metapneumovirus] AHV79901.1	attachment glycoprotein G [Human metapneumovirus]	AGJ74223.1
G protein [Human metapneumovirus] glycoprotein [Human metapneumovirus] attachment protein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] AGH74162.1 attachment glycoprotein G [Human metapneumovirus] APL79531.1 G protein [Human metapneumovirus] AAQ62726.1 attachment glycoprotein [Human metapneumovirus] AAS48465.1 attachment surface glycoprotein [Human metapneumovirus] AGW43058.1 P [Human metapneumovirus] [Human metapneumovirus] AEK26894.1 phosphoprotein [Human metapneumovirus] AHV79631.1 phosphoprotein [Human metapneumovirus] AHV79901.1		
glycoprotein [Human metapneumovirus] attachment protein [Human metapneumovirus] ABC26384.1 attachment protein [Human metapneumovirus] ABC44525.1 attachment glycoprotein G [Human metapneumovirus] AGW43071.1 attachment glycoprotein G [Human metapneumovirus] AGI74162.1 attachment glycoprotein G [Human metapneumovirus] AGH27095.1 attachment glycoprotein G [Human metapneumovirus] AGH27095.1 attachment glycoprotein G [Human metapneumovirus] AAC62726.1 attachment glycoprotein [Human metapneumovirus] AAS48465.1 attachment surface glycoprotein [Human metapneumovirus] AGW43058.1 P [Human metapneumovirus] AGW43058.1 P [Human metapneumovirus] AHV79631.1 phosphoprotein [Human metapneumovirus] AHV79901.1		
attachment glycoprotein G [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus] AGJ74162.1 attachment glycoprotein G [Human metapneumovirus] AHV79531.1 G protein [Human metapneumovirus] AAQ62726.1 attachment glycoprotein [Human metapneumovirus] AAS48465.1 attachment surface glycoprotein [Human metapneumovirus] P [Human metapneumovirus] AGW43058.1 P [Human metapneumovirus] AHV79631.1 phosphoprotein [Human metapneumovirus] AHV79901.1	glycoprotein [Human metapneumovirus]	ABC26384.1
attachment surface glycoprotein [Human metapneumovirus] AGW43071.1 attachment glycoprotein G [Human metapneumovirus] AGI741.62.1 attachment glycoprotein G [Human metapneumovirus] AGH27095.1 attachment glycoprotein G [Human metapneumovirus] AHV79531.1 G protein [Human metapneumovirus] AAQ62726.1 attachment glycoprotein [Human metapneumovirus] AAS48465.1 attachment surface glycoprotein [Human metapneumovirus] AGW43058.1 P [Human metapneumovirus] [Human metapneumovirus] AEK26894.1 phosphoprotein [Human metapneumovirus] AHV79631.1 phosphoprotein [Human metapneumovirus] AHV79901.1		
attachment glycoprotein G [Human metapneumovirus] AGJ74162.1 attachment glycoprotein G [Human metapneumovirus] AGH27095.1 attachment glycoprotein G [Human metapneumovirus] AHV79531.1 G protein [Human metapneumovirus] AAQ62726.1 attachment glycoprotein [Human metapneumovirus] AAS48465.1 attachment surface glycoprotein [Human metapneumovirus] AGW43058.1 P [Human metapneumovirus] [Human metapneumovirus] AEX26894.1 phosphoprotein [Human metapneumovirus] AHV79631.1 phosphoprotein [Human metapneumovirus] AHV79901.1		
attachment glycoprotein G [Human metapneumovirus] G protein [Human metapneumovirus] AAQ62726.1 attachment glycoprotein [Human metapneumovirus] AAS48465.1 attachment surface glycoprotein [Human metapneumovirus] AGW43058.1 P [Human metapneumovirus] [Human metapneumovirus] ABK26894.1 phosphoprotein [Human metapneumovirus] AHV79631.1 phosphoprotein [Human metapneumovirus] AHV79901.1	attachment glycoprotein G [Human metapneumovirus]	
G protein [Human metapneumovirus] AAQ62726.1 attachment glycoprotein [Human metapneumovirus] AAS48465.1 attachment surface glycoprotein [Human metapneumovirus] AGW43058.1 P [Human metapneumovirus] [Human metapneumovirus] AEK26894.1 phosphoprotein [Human metapneumovirus] AHV79631.1 phosphoprotein [Human metapneumovirus] AHV79901.1		
attachment glycoprotein [Human metapneumovirus] AA\$48465.1 attachment surface glycoprotein [Human metapneumovirus] AGW43058.1 P [Human metapneumovirus] [Human metapneumovirus] AEK26894.1 phosphoprotein [Human metapneumovirus] AHV79631.1 phosphoprotein [Human metapneumovirus] AHV79901.1		
attachment surface glycoprotein [Human metapneumovirus] P [Human metapneumovirus] [Human metapneumovirus] AGW43058.1 AEK26894.1 phosphoprotein [Human metapneumovirus] AHV79631.1 phosphoprotein [Human metapneumovirus] AHV79901.1	attachment glycoprotein [Human metapneumovirus]	
phosphoprotein [Human metapneumovirus] AHV79631.1 phosphoprotein [Human metapneumovirus] AHV79901.1		
phosphoprotein [Human metapneumovirus] AHV79901.1		
	phosphoprotein [Human metapneumovirus]	AHV79570.1

237

TABLE 4-continued

TABLE 4-continued		
hMPV NCBI Accession Numbers (A		
Virus	GenBank Accession	
phosphoprotein [Human metapneumovirus]	AGJ74076.1 AAS22123.1	
phosphoprotein [Human metapneumovirus] phosphoprotein [Human metapneumovirus]	AAS22123.1 ABB16895.1	
phosphoprotein [Human metapneumovirus]	AHV79579.1	
phosphoprotein [Human metapneumovirus]	AGJ74244.1	
phosphoprotein [Human metapneumovirus]	AHV79856.1	
phosphoprotein [Human metapneumovirus]	ACJ70113.1	
phosphoprotein [Human metapneumovirus] phosphoprotein [Human metapneumovirus]	AGZ48843.1 AHV79498.1	
phosphoprotein [Human metapneumovirus]	AHV79480.1 AHV79480.1	
phosphoprotein [Human metapneumovirus]	ABQ43382.1	
phosphoprotein [Human metapneumovirus]	AAS22107.1	
phosphoprotein [Human metapneumovirus]	ABB16898.1	
phosphoprotein [Human metapneumovirus] phosphoprotein [Human metapneumovirus]	AGH27134.1 ABB16899.1	
phosphoprotein [Human metapneumovirus]	AGH27098.1	
phosphoprotein [Human metapneumovirus]	AAN52866.1	
phosphoprotein [Human metapneumovirus]	AAS22083.1	
phosphoprotein [Human metapneumovirus]	YP_012606.1	
phosphoprotein [Human metapneumovirus] phosphoprotein [Human metapneumovirus]	AHV79973.1 AHV79462.1	
phosphoprotein [Human metapneumovirus]	AGJ74042.1	
phosphoprotein [Human metapneumovirus]	AAV88362.1	
P [Human metapneumovirus] [Human metapneumov		
phosphoprotein [Human metapneumovirus]	AHV79453.1	
phosphoprotein [Human metapneumovirus] phosphoprotein [Human metapneumovirus]	AGJ74261.1 AGH27116.1	
phosphoprotein [Human metapneumovirus]	ABB16444.1	
phosphoprotein [Human metapneumovirus]	ABB16445.1	
phosphoprotein [Human metapneumovirus]	AHV79507.1	
phosphoprotein [Human metapneumovirus]	BAH59616.1	
phosphoprotein [Human metapneumovirus] phosphoprotein [Human metapneumovirus]	ABB16443.1 ABQ43388.1	
phosphoprotein [Human metapneumovirus]	ABQ43389.1	
phosphoprotein [Human metapneumovirus]	ABQ43395.1	
phosphoprotein [Human metapneumovirus]	ABQ43385.1	
phosphoprotein [Human metapneumovirus]	AAP84042.1	
phosphoprotein [Human metapneumovirus] phosphoprotein [Human metapneumovirus]	AAN52868.1 AAP84041.1	
phosphoprotein [Human metapneumovirus]	AGH27080.1	
phosphoprotein [Human metapneumovirus]	ABQ43387.1	
phosphoprotein [Human metapneumovirus]	AAS22099.1	
phosphoprotein [Human metapneumovirus] phosphoprotein [Human metapneumovirus]	ABB16896.1 AGJ74094.1	
phosphoprotein [Human metapneumovirus]	AEZ68089.1	
phosphoprotein [Human metapneumovirus]	ABK97002.1	
phosphoprotein [Human metapneumovirus]	AAP13486.1	
phosphoprotein [Human metapneumovirus]	AHV79444.1	
phosphoprotein [Human metapneumovirus] phosphoprotein [Human metapneumovirus]	AHV79865.1 AGJ74226.1	
phosphoprotein [Human metapneumovirus]	ABQ43383.1	
phosphoprotein [Human metapneumovirus]	AAN52863.1	
phosphoprotein [Human metapneumovirus]	AHV79775.1	
phosphoprotein [Human metapneumovirus] phosphoprotein [Human metapneumovirus]	AEZ68094.1 AHV79883.1	
phosphoprotein [Human metapneumovirus]	AEZ68092.1	
phosphoprotein [Human metapneumovirus]	ABQ43390.1	
phosphoprotein [Human metapneumovirus]	ABQ43386.1	
phosphoprotein [Human metapneumovirus]	ABQ43391.1	
phosphoprotein [Human metapneumovirus] phosphoprotein [Human metapneumovirus]	ACS16062.1 AEZ68090.1	
phosphoprotein [Human metapneumovirus]	AAK62967.1	
phosphoprotein [Human metapneumovirus]	AEZ68093.1	
phosphoprotein [Human metapneumovirus]	AEZ68088.1	
phosphoprotein [Human metapneumovirus]	ABQ43392.1	
phosphoprotein [Human metapneumovirus] phosphoprotein [Human metapneumovirus]	ABQ43393.1 ABQ43384.1	
phosphoprotein [Human metapneumovirus]	ABQ43394.1 ABQ43394.1	
phosphoprotein [Human metapneumovirus]	ABK96999.1	
phosphoprotein [Human metapneumovirus]	AHV79489.1	
phosphoprotein [Human metapneumovirus] phosphoprotein [Human metapneumovirus]	AGJ74235.1 AAS22075.1	
phosphoprotein [Human metapneumovirus]	AAS22075.1 AAS22115.1	
phosphoprotein [Human metapneumovirus]		
phosphoprotem [Italian metaphetimovirus]	AII17601.1	
phosphoprotein [Human metapneumovirus] phosphoprotein [Human metapneumovirus]	AII17601.1 ABK97000.1 AHV79561.1	

239

TABLE 4-continued

hMPV NCBI Accession Numbers (Amino Acid Sequences)			
Virus	GenBank Accession		
phosphoprotein [Human metapneumovirus] phosphoprotein [Human metapneumovirus]	AGT75040.1 AAN52864.1		
phosphoprotein [Human metapneumovirus]	ABK97001.1		
phosphoprotein [Human metapneumovirus]	AGT74979.1		
phosphoprotein [Human metapneumovirus]	AHV79955.1		
phosphoprotein [Human metapneumovirus]	AGH27055.1		
phosphoprotein [Human metapneumovirus]	AAV88361.1		
phosphoprotein [Human metapneumovirus] phosphoprotein [Human metapneumovirus]	ABQ43397.1 AGJ74173.1		
P [Human metapneumovirus] [Human metapneumovirus]	AEK26904.1		
phosphoprotein [Human metapneumovirus]	ACJ70104.1		
phosphoprotein [Human metapneumovirus]	ABK97003.1		
phosphoprotein [Human metapneumovirus]	AGT74955.1		
phosphoprotein [Human metapneumovirus] phosphoprotein [Human metapneumovirus]	AAN52856.1 AAN52862.1		
phosphoprotein [Human metapneumovirus]	AGJ74138.1		
phosphoprotein [Human metapneumovirus]	AHV79613.1		
phosphoprotein [Human metapneumovirus]	AGJ74060.1		
phosphoprotein [Human metapneumovirus]	AAQ67684.1		
phosphoprotein [Human metapneumovirus] N [Human metapneumovirus] [Human metapneumovirus]	AEA02278.1 AEK26899.1		
nucleoprotein [Human metapneumovirus]	ACS16061.1		
nucleoprotein [Human metapneumovirus]	AAS88425.1		
nucleoprotein [Human metapneumovirus]	YP_012605.1		
nucleoprotein [Human metapneumovirus]	AHV79882.1		
nucleoprotein [Human metapneumovirus] nucleocapsid protein [Human metapneumovirus]	AHV79774.1 AAN52886.1		
nucleoprotein [Human metapneumovirus]	AAN32880.1 AAS22082.1		
nucleoprotein [Human metapneumovirus]	AHV79864.1		
nucleoprotein [Human metapneumovirus]	AHV79828.1		
nucleoprotein [Human metapneumovirus]	AGJ74084.1		
nucleocapsid protein [Human metapneumovirus]	AAN52888.1		
N [Human metapneumovirus] [Human metapneumovirus] nucleoprotein [Human metapneumovirus]	AIL23590.1 AAK62966.1		
nucleoprotein [Human metapneumovirus]	AHV79972.1		
nucleoprotein [Human metapneumovirus]	AHV79470.1		
nucleoprotein [Human metapneumovirus]	AHV79452.1 AGJ74243.1		
nucleoprotein [Human metapneumovirus] nucleoprotein [Human metapneumovirus]	AHV79533.1		
nucleoprotein [Human metapneumovirus]	AGJ74181.1		
nucleoprotein [Human metapneumovirus]	AHV79497.1		
nucleoprotein [Human metapneumovirus] nucleoprotein [Human metapneumovirus]	AHV79702.1 AHV79648.1		
nucleoprotein [Human metapneumovirus]	AHV79435.1		
putative nucleoprotein [Human metapneumovirus]	AGJ74260.1		
nucleocapsid protein [Human metapneumovirus]	AAN52887.1		
nucleoprotein [Human metapneumovirus]	AGU68386.1		
nucleocapsid protein [Human metapneumovirus] nucleoprotein [Human metapneumovirus]	AAN52899.1 AAR17673.1		
nucleocapsid protein [Human metapneumovirus]	AAN52898.1		
nucleoprotein [Human metapneumovirus]	AEA02277.1		
nucleoprotein [Human metapneumovirus]	AHV79612.1		
nucleoprotein [Human metapneumovirus] nucleoprotein [Human metapneumovirus]	AGU68416.1 AGU68408.1		
nucleoprotein [Human metapneumovirus]	AGU68370.1		
nucleoprotein [Human metapneumovirus]	AAQ67683.1		
nucleoprotein [Human metapneumovirus]	AGJ74137.1		
nucleoprotein [Human metapneumovirus]	AGU68344.1		
nucleocapsid protein [Human metapneumovirus] nucleoprotein [Human metapneumovirus]	ABK96997.1 AGU68413.1		
nucleocapsid protein [Human metapneumovirus]	AAN52891.1		
nucleoprotein [Human metapneumovirus]	AGU68360.1		
nucleoprotein [Human metapneumovirus]	AGU68353.1		
nucleocapsid protein [Human metapneumovirus] nucleoprotein [Human metapneumovirus]	ABK96996.1 AAR17666.1		
N [Human metapneumovirus] [Human metapneumovirus]	AEK26903.1		
nucleoprotein [Human metapneumovirus]	AGT75039.1		
nucleoprotein [Human metapneumovirus]	AGU68410.1		
nucleoprotein [Human metapneumovirus] nucleoprotein [Human metapneumovirus]	AAS22074.1 AHV79560.1		
nucleoprotein [Human metapneumovirus]	AGT74978.1		
nucleoprotein [Human metapneumovirus]	AGJ74128.1		
nucleoprotein [Human metapneumovirus]	AAR17663.1		
nucleoprotein [Human metapneumovirus] nucleoprotein [Human metapneumovirus]	AAR17662.1 AAR17664.1		
nucleoprotein [Human metapneumovirus] nucleoprotein [Human metapneumovirus]	AAR1 /664.1 AAR1 7657.1		

241

TABLE 4-continued

Virus	GenBank Accession
nucleoprotein [Human metapneumovirus]	AAR17659.1
nucleoprotein [Human metapheumovirus]	AAR17661.1
nucleoprotein [Human metapneumovirus]	AGU68352.1
nucleoprotein [Human metapneumovirus]	AGU68373.1
nucleoprotein [Human metapneumovirus]	AGU68376.1 AGU68376.1
nucleoprotein [Human metapneumovirus]	AGU68370.1 AGU68342.1
nucleoprotein [Human metapneumovirus]	AGU68342.1 AGU68365.1
nucleoprotein [Human metapneumovirus]	AGU68363.1 AGU68363.1
nucleoprotein [Human metapneumovirus]	AGU68398.1
nucleoprotein [Human metapneumovirus]	AGU68348.1
nucleoprotein [Human metapneumovirus]	AGU68354.1
nucleoprotein [Human metapneumovirus]	AGU68391.1
nucleoprotein [Human metapheumovirus]	AGU68389.1
nucleoprotein [Human metapneumovirus]	AGU68399.1 AGU68399.1
nucleoprotein [Human metapheumovirus]	AGU68337.1
nucleoprotein [Human metapneumovirus]	AAR17660.1
nucleoprotein [Human metapheumovirus]	AAR17667.1
nucleoprotein [Human metapneumovirus]	AGU68402.1
nucleoprotein [Avian metapneumovirus]	CDN30025.1
nucleoprotein [Avian metapheumovirus type C]	AGZ87947.1
Nucleoprotein [Avian metapneumovirus type C]	CAL25113.1
nucleocapsid protein [Avian metapheumovirus]	ABO42286.1
nucleocapsid protein [Avian metapheumovirus]	AAK38430.1
nucleocapsid protein [Avian metapheumovirus]	AAK54155.1
nucleocapsid protein [Avian metapheumovirus]	AAK34133.1 AAK38426.1
nucleocapsid protein [Avian metapheumovirus]	AAK38425.1
nucleocapsid protein [Avian metapheumovirus]	AAK38424.1
nucleocapsid protein [Avian metapheumovirus]	AAK36424.1 AAF05909.1
nucleocapsid protein [Avian metapheumovirus]	AAK38435.1
nucleocapsid protein [Avian metapheumovirus]	AAK38428.1
nucleocapsia protein [Avian metapheumovirus]	AAR17669.1
nucleocapsid protein [Avian metapneumovirus]	AAK38429.1
nucleocapsid protein [Avian metapneumovirus]	AAK38427.1
nucleocapsid protein [Avian metapneumovirus]	AAK38423.1
nucleocapsid protein [Avian metapneumovirus]	AAK38434.1
nucleoprotein [Human metapneumovirus]	AGU68338.1
nucleoprotein [Avian metapneumovirus]	YP_443837.1
nucleoprotein [Human metapneumovirus]	AGU68384.1
nucleocapsid protein [Avian metapneumovirus]	AAK38431.1
nucleoprotein [Human metapneumovirus]	AGU68405.1
nucleoprotein [Human metapneumovirus]	AGU68382.1
nucleoprotein [Human metapneumovirus]	AGU68395.1
nucleocapsid [Human metapneumovirus]	AAL35389.3
nucleoprotein [Human metapneumovirus]	AEZ68064.1

TABLE 5

Description	Sequence	SEQ ID NO:
	PIV3 Nucleic Acid Sequences	
>gb KJ672601.1 : 4990-6609 Human parainfluenza virus 3 strain HPIV3/Homo sapiens/ PER/FLA4815/2008 [fusion glycoprotein F0]	ATGCCAATTTCAATACTGTTAATTATTACAACCATGATC ATGCCATCACACTGCCAAATAGACATCACAAAACTACA GCATGTAGGTGTATTGGTCAACAGTCCCAAAAGGGATGA AGATATCACAAAACTTCGAAACAAGATATCTAATCCTGA GTCTCATACCAAAAACTTCGAAACAAGATATCTAATCCTGA GTCTCATACCAAAAATAGAAGATTCTAACTCTTGTGGTG ACCAACAGATCAAGCAATACAAGAGGTTATTGGATAGA CTGATCATTCCTTTATATGATGGACTAAGATTACAGAAG GATGTGATAGTGACTAATCAAGAATCCAATGAAAACAC TGATCCCAGAACAGAA	9

244

TABLE 5 -continued

 $\begin{array}{ccc} & & & & & \\ & & & & & \\ \text{Description} & & \text{Sequence} & & \text{NO:} \end{array}$

ATTTACAGAATCAATAAAGGTGAGAGTTATAGATGTTGA TTTGAATGATTACTCAATAACCCTCCAAGTCAGACTCCC TTTATTGACCAGACTGCTGAACACTCAAATCTACAAAGT AGATTCCATATCATACAATATCCAAAATAGAGAATGGTA TATCCCTCTTCCCAGCCATATCATGACGAAAGGGGCATT TCTAGGTGGAGCAGATGTCAAAGAATGCATAGAAGCAT TCAGCAGTTATATATGCCCTTCTGATCCAGGATTTGTACT AAACCATGAAATGGAGAGCTGTCTATCAGGAAACATAT CCCAATGTCCAAGAACCACAGTCACATCAGACATAGTTC CTAGGTATGCATTTGTCAATGGAGGAGTGGTTGCGAATT GTATAACAACTACATGTACATGCAATGGTATCGGTAATA GAATCAACCAACCACCTGATCAAGGAGTCAAAATTATA ACACATAAAGAATGTAATACAATAGGTATCAACGGAAT GCTATTCAACACAAACAAAGAAGGAACTCTTGCATTCTA CACACCAGACGACATAACATTAAACAATTCTGTTGCACT TGATCCGATTGACATATCAATCGAGCTCAACAAGGCCAA ATCAGATCTTGAGGAATCAAAAGAATGGATAAGAAGGT CAAATCAAAAGCTAGATTCTATTGGAAGTTGGCATCAAT CTAGCACTACAATCATAGTTATTTTGATAATGATGATTA TATTGTTTATAATTAATATAACAATAATTACAATTGCAA TTAAGTATTACAGAATTCAAAAGAGAAATCGAGTGGAT CAAAATGATAAGCCGTATGTATTAACAAACAAG

ATGGAATACTGGAAGCACCACCAACCACGGAAAGGATGC

gi|612507167|gb| AHX22430.1| hemagglutininneuraminidase [Human parainfluenza virus 3]

TGGTAATGAGCTGGAGACATCCACAGCCACTCATGGCA ACAAGCTCACCAACAAGATAACATATATATTGTGGACG ATAACCCTGGTGTTATTATCAATAGTCTTCATCATAGTG $\tt CTAACTAATTCCATCAAAAGTGAAAAGGCCCGCGAATC$ ${\tt ATTGCTACAAGACATAAATAATGAGTTTATGGAAGTTAC}$ AGAAAAGATCCAAGTGGCATCGGATAATACTAATGATC TAATACAGTCAGGAGTGAATACAAGGCTTCTTACAATTC AGAGTCATGTCCAGAATTATATACCAATATCATTGACAC AACAAATATCGGATCTTAGGAAATTCATTAGTGAAATTA CAATTAGAAATGATAATCAAGAAGTGCCACCACAAAGA ATAACACATGATGTGGGTATAAAACCTTTAAATCCAGAT GATTTCTGGAGATGCACGTCTGGTCTTCCATCTTTGATG AAAACTCCAAAAATAAGATTAATGCCGGGACCAGGATT ATTAGCTATGCCAACGACTGTTGATGGCTGTCTCAGAAC $\tt CCCGTCCTTAGTGATAAATGATCTGATTTATGCTTACAC$ CTCAAATCTAATTACTCGAGGTTGCCAGGATATAGGGAA ATCATATCAAGTATTACAGATAGGGATAATAACTGTAAA CTCAGACTTGGTACCTGACTTAAATCCTAGGATCTCTCA TACCTTCAACATAAATGACAATAGAAAGTCATGTTCTCT AGCACTCCTAAATACAGATGTATATCAACTGTGTTCAAC CCCAAAAGTTGATGAAAGATCAGATTATGCATCATCAG GCATAGAAGATATTGTACTTGATATTGTCAATTATGATG GCTCAATCTCGACAACAAGATTTAAGAATAATAATAA GTTTTGATCAACCATATGCGGCATTATACCCATCTGTTG GACCAGGGATATACTACAAAGGCAAAATAATATTTCTC GGGTATGGAGGTCTTGAACATCCAATAAATGAGAATGC AATCTGCAACACAACTGGGTGTCCTGGGAAAACACAGA GAGACTGTAATCAAGCATCTCATAGTCCATGGTTTTCAG ATAGAAGGATGGTCAACTCTATAATTGTTGTTGACAAGG GCTTGAACTCAGTTCCAAAATTGAAGGTATGGACGATAT CTATGAGACAAAATTACTGGGGGTCAGAAGGAAGATTA CTTCTACTAGGTAACAAGATCTACATATACACAAGATCT ACAAGTTGGCACAGCAAGTTACAATTAGGAATAATTGA CATTACTGACTACAGTGATATAAGGATAAAATGGACAT GGCATAATGTGCTATCAAGACCAGGAAACAATGAATGT CCATGGGGACATTCATGTCCGGATGGATGTATAACGGG AGTATATACCGATGCATATCCACTCAATCCCACAGGAAG CATTGTATCATCTGTCATATTGGACTCACAAAAATCGAG AGTCAACCCAGTCATAACTTACTCAACAGCAACCGAAA GGGTAAACGAGCTGGCTATCCGAAACAAAACACTCTCA GCTGGGTACACAACAACAAGCTGCATTACACACTATAA CAAAGGGTATTGTTTTCATATAGTAGAAATAAATCATAA AAGCTTAAACACATTTCAACCCATGTTGTTCAAAACAGA GATTCCAAAAAGCTGCAGT

HPIV3_HN_Codon
Optimized

10

246

TABLE 5 -continued

SEQ ID Description Sequence NO:

CTGATCCAGAGCGGCGTGAACACCCGGCTGCTGACCATC CAGAGCCACGTGCAGAACTACATCCCCATCAGCCTGACC CAGCAGATCAGCGACCTGCGGAAGTTCATCAGCGAGAT CACCATCCGGAACGACAACCAGGAAGTGCCCCCCAGA GAATCACCCACGACGTGGGCATCAAGCCCCTGAACCCC GACGATTTCTGGCGGTGTACAAGCGGCCTGCCCAGCCTG ATGAAGACCCCCAAGATCCGGCTGATGCCTGGCCCTGG ACTGCTGGCCATGCCTACCACAGTGGATGGCTGTGTGCG GACCCCCAGCCTCGTGATCAACGATCTGATCTACGCCTA CACCAGCAACCTGATCACCCGGGGCTGCCAGGATATCG GCAAGAGCTACCAGGTGCTGCAGATCGGCATCATCACC GTGAACTCCGACCTGGTGCCCGACCTGAACCCTCGGATC AGCCACACCTTCAACATCAACGACAACAGAAAGAGCTG CAGCCTGGCTCTGCTGAACACCGACGTGTACCAGCTGTG CAGCACCCCAAGGTGGACGAGAGAGAGCGACTACGCCA GCAGCGCATCGAGGATATCGTGCTGGACATCGTGAAC TACGACGCAGCATCAGCACCACCCGGTTCAAGAACAA CAACATCAGCTTCGACCAGCCCTACGCCGCCCTGTACCC TTCTGTGGGCCCTGGCATCTACTACAAGGGCAAGATCAT CTTCCTGGGCTACGGCGGCCTGGAACACCCCATCAACGA GAACGCCATCTGCAACACCACCGGCTGCCCTGGCAAGA CCCAGAGAGACTGCAATCAGGCCAGCCACAGCCCCTGG TTCAGCGACCGCAGAATGGTCAACTCTATCATCGTGGTG GACAAGGGCCTGAACAGCGTGCCCAAGCTGAAAGTGTG GACAATCAGCATGCGCCAGAACTACTGGGGCAGCGAGG GCAGACTTCTGCTGCTGGGAAACAAGATCTACATCTACA CCCGGTCCACCAGCTGGCACAGCAAACTGCAGCTGGGA ATCATCGACATCACCGACTACAGCGACATCCGGATCAA GTGGACCTGGCACAACGTGCTGAGCAGACCCGGCAACA ATGAGTGCCCTTGGGGCCACAGCTGCCCCGATGGATGTA TCACCGGCGTGTACACCGACGCCTACCCCCTGAATCCTA $\tt CCGGCTCCATCGTGTCCAGCGTGATCCTGGACAGCCAGA$ AAAGCAGAGTGAACCCCGTGATCACATACAGCACCGCC ACCGAGAGAGTGAACGAACTGGCCATCAGAAACAAGAC CCTGAGCGCCGGCTACACCACCACAAGCTGCATCACAC ACTACAACAAGGGCTACTGCTTCCACATCGTGGAAATCA ACCACAAGTCCCTGAACACCTTCCAGCCCATGCTGTTCA AGACCGAGATCCCCAAGAGCTGCTCC

HPIV3_F_Codon Optimized

ATGCCCATCAGCATCCTGCTGATCATCACCACAATGATC ATGGCCAGCCACTGCCAGATCGACATCACCAAGCTGCA GCACGTGGGCGTGCTCGTGAACAGCCCCAAGGGCATGA AGATCAGCCAGAACTTCGAGACACGCTACCTGATCCTGA GCCTGATCCCCAAGATCGAGGACAGCAACAGCTGCGGC GACCAGCAGATCAAGCAGTACAAGCGGCTGCTGGACAG ACTGATCATCCCCCTGTACGACGGCCTGCGGCTGCAGAA AGACGTGATCGTGACCAACCAGGAAAGCAACGAGAACA $\tt CCGACCCCGGACCGAGAGATTCTTCGGCGGCGTGATCG$ GCACAATCGCCCTGGGAGTGGCCACAAGCGCCCAGATT ACAGCCGCTGTGGCCCTGGTGGAAGCCAAGCAGGCCAG AAGCGACATCGAGAAGCTGAAAGAGGCCATCCGGGACA CCAACAAGGCCGTGCAGAGCGTGCAGTCCAGCGTGGGC AATCTGATCGTGGCCATCAAGTCCGTGCAGGACTACGTG AACAAAGAAATCGTGCCCTCTATCGCCCGGCTGGGCTGT GAAGCTGCCGGACTGCAGCTGGGCATTGCCCTGACACA GCACTACAGCGAGCTGACCAACATCTTCGGCGACAACA TCGGCAGCCTGCAGGAAAAGGGCATTAAGCTGCAGGGA ATCGCCAGCCTGTACCGCACCAACATCACCGAGATCTTC ACCACCAGCACCGTGGATAAGTACGACATCTACGACCT GCTGTTCACCGAGAGCATCAAAGTGCGCGTGATCGACGT GGACCTGAACGACTACAGCATCACCCTGCAAGTGCGGC TGCCCCTGCTGACCAGACTGCTGAACACCCAGATCTACA AGGTGGACAGCATCTCCTACAACATCCAGAACCGCGAG TGGTACATCCCTCTGCCCAGCCACATTATGACCAAGGGC GCCTTTCTGGGCGGAGCCGACGTGAAAGAGTGCATCGA GGCCTTCAGCAGCTACATCTGCCCCAGCGACCCTGGCTT CGTGCTGAACCACGAGATGGAAAGCTGCCTGAGCGGCA ACATCAGCCAGTGCCCCAGAACCACCGTGACCTCCGAC ATCGTGCCCAGATACGCCTTCGTGAATGGCGGCGTGGTG GCCAACTGCATCACCACCACCTGTACCTGCAACGGCATC GGCAACCGGATCAACCAGCCTCCCGATCAGGGCGTGAA GATTATCACCCACAAAGAGTGTAACACCATCGGCATCA ACGGCATGCTGTTCAATACCAACAAGAGGGCACCCTG GCCTTCTACACCCCGACGATATCACCCTGAACAACTCC GTGGCTCTGGACCCCATCGACATCTCCATCGAGCTGAAC AAGGCCAAGAGCGACCTGGAAGAGTCCAAAGAGTGGAT

247

TABLE 5 -continued

		SEQ
Description	Sequence	NO:
	CCGGCGGAGCAACCAGAAGCTGGACTCTATCGGCAGCT	
	GGCACCAGAGCACCACCATCATCGTGATCCTGATTA	
	TGATGATTATCCTGTTCATCATCAACATTACCATCATCAC	
	TATCGCCATTAAGTACTACCGGATCCAGAAACGGAACC	
	GGGTGGACCAGAATGACAAGCCCTACGTGCTGACAAAC	
	AAG	
	PIV3 mRNA Sequences	

>gb|KJ672601.1|: 4990-6609 Human parainfluenza virus 3 strain HPIV3/Homo sapiens/ PER/FLA4815/ 2008 [fusion glycoprotein F0] AUGCCAAUUUCAAUACUGUUAAUUAUUACAACCAUGA UCAUGGCAUCACACUGCCAAAUAGACAUCACAAAACU ACAGCAUGUAGGUGUAUUGGUCAACAGUCCCAAAGGG AUGAAGAUAUCACAAAACUUCGAAACAAGAUAUCUAA UCCUGAGUCUCAUACCAAAAAUAGAAGAUUCUAACUC UUGUGGUGACCAACAGAUCAAGCAAUACAAGAGGUUA UUGGAUAGACUGAUCAUUCCUUUAUAUGAUGGACUAA GAUUACAGAAGGAUGUGAUAGUGACUAAUCAAGAAUC CAAUGAAAACACUGAUCCCAGAACAGAACGAUUCUUU GGAGGGGUAAUUGGAACUAUUGCUCUAGGAGUAGCAA CCUCAGCACAAAUUACAGCAGCAGUUGCUCUGGUUGA AGCCAAGCAGGCAAGAUCAGACAUUGAAAAACUCAAG GAAGCAAUCAGGGACACAAAUAAAGCAGUGCAGUCAG UUCAGAGCUCUGUAGGAAAUUUGAUAGUAGCAAUUAA AUCAGUCCAGGAUUAUGUCAACAAAGAAAUCGUGCCA UCGAUUGCGAGACUAGGUUGUGAAGCAGCAGGACUUC AGUUAGGGAUUGCAUUAACACAGCAUUACUCAGAAUU AACAAAUAUUUGGUGAUAACAUAGGAUCGUUACAA GAAAAAGGAAUAAAAUUACAAGGUAUAGCAUCAUUAU ACCGUACAAAUAUCACAGAAAUAUUCACAACAUCAAC AGUUGACAAAUAUGAUAUUUAUGAUCUAUUAUUUACA GAAUCAAUAAAGGUGAGAGUUAUAGAUGUUGAUUUGA AUGAUUACUCAAUAACCCUCCAAGUCAGACUCCCUUU AUUGACCAGACUGCUGAACACUCAAAUCUACAAAGUA GAUUCCAUAUCAUACAAUAUCCAAAAUAGAGAAUGGU AUAUCCCUCUUCCCAGCCAUAUCAUGACGAAAGGGGC AUUUCUAGGUGGAGCAGAUGUCAAAGAAUGCAUAGAA GCAUUCAGCAGUUAUAUAUGCCCUUCUGAUCCAGGAU UUGUACUAAACCAUGAAAUGGAGAGCUGUCUAUCAGG AAACAUAUCCCAAUGUCCAAGAACCACAGUCACAUCA GACAUAGUUCCUAGGUAUGCAUUUGUCAAUGGAGGAG UGGUUGCGAAUUGUAUAACAACUACAUGUACAUGCAA UGGUAUCGGUAAUAGAAUCAACCAACCACCUGAUCAA GGAGUCAAAAUUAUAACACAUAAAGAAUGUAAUACAA UAGGUAUCAACGGAAUGCUAUUCAACACAAACAAAGA AGGAACUCUUGCAUUCUACACACCAGACGACAUAACA UUAAACAAUUCUGUUGCACUUGAUCCGAUUGACAUAU CAAUCGAGCUCAACAAGGCCAAAUCAGAUCUUGAGGA AUCAAAAGAAUGGAUAAGAAGGUCAAAUCAAAAGCUA GAUUCUAUUGGAAGUUGGCAUCAAUCUAGCACUACAA UCAUAGUUAUUUUGAUAAUGAUGAUUAUAUUGUUUAU AAUUAAUAUAACAAUAAUUACAAUUGCAAUUAAGUAU UACAGAAUUCAAAAGAGAAAUCGAGUGGAUCAAAAUG AUAAGCCGUAUGUAUUAACAAACAAG

gi|612507167|gb|
AHX22430.1|
hemagglutininneuraminidase
[Human
parainfluenza virus
3]

AUGGAAUACUGGAAGCACCACCACCACGGAAAGGAUG CUGGUAAUGAGCUGGAGACAUCCACAGCCACUCAUGG CAACAAGCUCACCAACAAGAUAACAUAUAUAUUGUGG ACGAUAACCCUGGUGUUAUUAUCAAUAGUCUUCAUCA UAGUGCUAACUAAUUCCAUCAAAAGUGAAAAGGCCCG CGAAUCAUUGCUACAAGACAUAAAUAAUGAGUUUAUG GAAGUUACAGAAAAGAUCCAAGUGGCAUCGGAUAAUA CUAAUGAUCUAAUACAGUCAGGAGUGAAUACAAGGCU UCUUACAAUUCAGAGUCAUGUCCAGAAUUAUAUACCA AUAUCAUUGACACAACAAAUAUCGGAUCUUAGGAAAU UCAUUAGUGAAAUUACAAUUAGAAAUGAUAAUCAAGA AGUGCCACCACAAGAAUAACACAUGAUGUGGGUAUA AAACCUUUAAAUCCAGAUGAUUUCUGGAGAUGCACGU CUGGUCUUCCAUCUUUGAUGAAAACUCCAAAAAUAAG AUUAAUGCCGGGACCAGGAUUAUUAGCUAUGCCAACG ACUGUUGAUGGCUGUGUCAGAACCCCGUCCUUAGUGA UAAAUGAUCUGAUUUAUGCUUACACCUCAAAUCUAAU UACUCGAGGUUGCCAGGAUAUAGGGAAAUCAUAUCAA GUAUUACAGAUAGGGAUAAUAACUGUAAACUCAGACU UGGUACCUGACUUAAAUCCUAGGAUCUCUCAUACCUU CAACAUAAAUGACAAUAGAAAGUCAUGUUCUCUAGCA CUCCUAAAUACAGAUGUAUAUCAACUGUGUUCAACCC

61

	TABLE 5 -continued	
Description	Sequence	SEQ ID NO:
	CAAAAGUUGAUGAAAGAUCAGAUUAUGCAUCAUCAGG CAUAGAAGAUAUUGUACUUGAUAUUGUCAAUUAUGAU GGCUCAAUCUCGACAACAAGAUUUAAGAAUAAUAAUA UAAGUUUUGAUCAACAAGAUUUAAGAAUAAUAAUA UAAGUUUUGACCAGGGAUUAUACCCAUC UGUUGGACCAGGGGUUUGAACACAAGGCAAAAUAAUA UUUCUCGGGUAUGGACACAACUGGGUGUCCUGGGAA AACACAGAGAGACUGUGAACAUCUCAAUAAUG UGGUUUUCAGAUAGAAGGAUCUCAUAAUG UUGUUUCAGAUAGAAGGAUGUCAACUCUAUAAUUG UUGUUGACAAGGGCUUGAACUCCAUAAUGGAG GGUAUGGACGAUAUCUAAACUCUAUAAUG UGGUUUCAGAUAGAAGGAUCACUCUAUAAUG UAGAAAGGACGUUCAACACUCUAUAAUG ACAAAUGAACAGAGUUCAACAAUUACAGGGG UCAGAAGGACAUAUCUUCACAGGGAACAAAUUACUGGGGG UCAGAAGAAGAUUACUCAAGUUGCACAACAAGUU ACAAUUAGAAAAAUUACUCAAGUUGCACAACAAGUU ACAAUUAGGAACAAGAUCUACAAGUUGGCACACACAGAGUU ACAAUUAGGAACAACAGACACAGUCCACAGGAGUACACAGAGACACACAC	
HPIV3_HN_Codon Optimized	AUGGAAUACUGGAAGCACACCAACCACGCAACGACGCAACACGCCCCGGCAACGACG	63
HPIV3_F_Codon	CAAGACCGAGAUCCCCAAGAGCUGCUCC AUGCCCAUCAGCAUCCUGCUGAUCAUCACCACAAUGAU	64

Optimized mRNA sequence

CAUGGCCAGCCACUGCCAGAUCGACAUCACCAAGCUGC AGCACGUGGGCGUGCUCGUGAACAGCCCCAAGGGCAU

Description

SEO

252

TABLE 5 -continued

ID Sequence NO: GAAGAUCAGCCAGAACUUCGAGACACGCUACCUGAUC CUGAGCCUGAUCCCCAAGAUCGAGGACAGCAACAGCU GCGGCGACCAGCAGAUCAAGCAGUACAAGCGGCUGCU GGACAGACUGAUCAUCCCCCUGUACGACGGCCUGCGGC UGCAGAAAGACGUGAUCGUGACCAACCAGGAAAGCAA CGAGAACACCGACCCCGGACCGAGAGAUUCUUCGGCG GCGUGAUCGGCACAAUCGCCCUGGGAGUGGCCACAAG CGCCCAGAUUACAGCCGCUGUGGCCCUGGUGGAAGCCA AGCAGGCCAGAAGCGACAUCGAGAAGCUGAAAGAGGC CAUCCGGGACACCAACAAGGCCGUGCAGAGCGUGCAG UCCAGCGUGGGCAAUCUGAUCGUGGCCAUCAAGUCCG UGCAGGACUACGUGAACAAAGAAAUCGUGCCCUCUAU CGCCCGGCUGGGCUGUGAAGCUGCCGGACUGCAGCUG GGCAUUGCCCUGACACAGCACUACAGCGAGCUGACCAA CAUCUUCGGCGACAACAUCGGCAGCCUGCAGGAAAAG GGCAUUAAGCUGCAGGGAAUCGCCAGCCUGUACCGCA CCAACAUCACCGAGAUCUUCACCACCAGCACCGUGGAU AAGUACGACAUCUACGACCUGCUGUUCACCGAGAGCA UCAAAGUGCGCGUGAUCGACGUGGACCUGAACGACUA CAGCAUCACCUGCAAGUGCGGCUGCCCCUGCUGACCA GACUGCUGAACACCCAGAUCUACAAGGUGGACAGCAU CUCCUACAACAUCCAGAACCGCGAGUGGUACAUCCCUC UGCCCAGCCACAUUAUGACCAAGGGCGCCUUUCUGGGC GGAGCCGACGUGAAAGAGUGCAUCGAGGCCUUCAGCA GCUACAUCUGCCCCAGCGACCCUGGCUUCGUGCUGAAC CACGAGAUGGAAAGCUGCCUGAGCGGCAACAUCAGCC AGUGCCCAGAACCACCGUGACCUCCGACAUCGUGCCC AGAUACGCCUUCGUGAAUGGCGGCGUGGUGGCCAACU GCAUCACCACCUGUACCUGCAACGGCAUCGGCAAC CGGAUCAACCAGCCUCCCGAUCAGGGCGUGAAGAUUA UCACCCACAAAGAGUGUAACACCAUCGGCAUCAACGGC AUGCUGUUCAAUACCAACAAAGAGGGCACCCUGGCCU UCUACACCCCGACGAUAUCACCCUGAACAACUCCGUG GCUCUGGACCCCAUCGACAUCUCCAUCGAGCUGAACAA GGCCAAGAGCGACCUGGAAGAGUCCAAAGAGUGGAUC CGGCGGAGCAACCAGAAGCUGGACUCUAUCGGCAGCU GGCACCAGAGCACCACCAUCAUCGUGAUCCUGAUU AUGAUGAUUAUCCUGUUCAUCAUCAACAUUACCAUCA UCACUAUCGCCAUUAAGUACUACCGGAUCCAGAAACG GAACCGGGUGGACCAGAAUGACAAGCCCUACGUGCUG ACAAACAAG

TABLE 6

	PIV3 Amino Acid Sequences	
Description	Sequence	SEQ ID NO:
>gi 612507166 gb AHX22429.1 fusion glycoprotein F0 [Human parainfluenza virus 3]	MPISILLIITTMIMASHCQIDITKLQHVGVLVNSPKGMKISQ NFETRYLILSLIPKIEDSNSCGDQQIKQYKRLLDRLIIPLYDG LRLQKDVIVTNQESNENTDPRTERFFGGVIGTIALGVATSA QITAAVALVEAKQARSDIEKLKEAIRDTNKAVQSVQSSVG NLIVAIKSVQDYVNKEIVPSIARLGCEAAGLQLGIALTQHYS ELTNIFGDNIGSLQEKGIKLQGIASLYRTNITEIFTTSTVDKY DIYDLLFTESIKVRVIDVDLNDYSITLQVRLPLLTRLLNTQIY KVDSISYNIQNREWYIPLPSHIMTKGAFLGGADVKECIEAFS SYICPSDPGFVLNHEMESCLSGNISQCPRTTVTSDIVPRYAF VNGGVVANCITTTCTCNGIGNRINQPPDQGVKIITHKECNTI GINGMLFNTNKEGTLAFYTPDDITLNNSVALDPIDISIELNK AKSDLEESKEWIRRSNQKLDSIGSWHQSSTTIIVILIMMIILFI INITIITIAIKYYRIQKRNRVDQNDKPYVLTNK	13
gi 612507167 gb AHX22430.1 hemagglutinin- neuraminidase [Human parainfluenza virus 3]	MEYWKHTNHGKDAGNELETSTATHGNKLTNKITYILWTIT LVLLSIVFIIVLTNSIKSEKARESLLQDINNEFMEVTEKIQVA SDNTNDLIQSGVNTRLLTIQSHVQNYIPISLTQQISDLRKFIS EITIRNDNQEVPPQRITHDVGIKPLNPDDFWRCTSGLPSLMK TPKIRLMPGPGLLAMPTTVDGCVRTPSLVINDLIYAYTSNLI TRGCQDIGKSYQVLQIGIITVNSDLVPDLNPRISHTFNINDN RKSCSLALLNTDVYQLCSTPKVDERSDYASSGIEDIVLDIV NYDGSISTTRFKNNNISFDQPYAALYPSVGPGIYYKGKIIFL GYGGLEHPINENAICNTTGCPGKTQRDCNQASHSPWFSDR	14

PIV3 Amino Acid Sequences SEQ ID Description Sequence SEQ ID RMVNSIIVVDKGLNSVPKLKVWTISMRQNYWGSEGRLLLL GNKIYIYTRSTSWHSKLQLGIIDITDYSDIRIKWTWHNVLSR PGNNECPWGHSCPDGCITGVYTDAYPLNPTGSIVSSVILDS QKSRVNPVITYSTATERVNELAIRNKTLSAGYTTTSCITHY NKGYCFHIVEINHKSLNTFQPMLFKTEIPKSCS

TABLE 7

Description	
	GenBank Accession
HPIV3/Homo sapiens/PER/FLA4815/2008	KJ672601.1 : 4990-6609 AHX22429
hemagglutinin-neuraminidase [Human parainfluenza virus 3] HPIV3/Homo sapiens/PER/FLA4815/2008	(Fusion protein) KJ672601.1 : 6724-8442 AHX22430
Recombinant PIV3/PIV1 virus fusion glycoprotein (F) and hemagglutinin (HN) genes, complete cds; and RNA dependent RNA polymerase (L) gene, partial cds. Recombinant PIV3/PIV1 virus fusion glycoprotein (F) and hemagglutinin (HN) genes, complete cds; and RNA dependent RNA polymerase (L) gene, partial cds.	(HN protein) AF016281 AAC23947 (hemagglutinin) AF016281 AAC23947 (fusion protein)
hemagglutinin-neuraminidase [Human parainfluenza virus 3] C protein [Human parainfluenza virus 3] C protein [Human parainfluenza virus 3] C protein [Human parainfluenza virus 3]	BAO32044.1 BAO32051.1 NP_599251.1 ABZ85670.1 AGZ8666.1
C protein [Human parainfluenza virus 3]	AAB48686.1 AHX22115.1 AGW51066.1 AGW51162.1 AGT75252.1 AGT75188.1
C protein [Human parainfluenza virus 3]	AGW51218.1 AGW51074.1 AGT75323.1 AGT75307.1 AHX22131.1
C protein [Human parainfluenza virus 3] C protein [Human parainfluenza virus 3] C protein [Human parainfluenza virus 3]	AGW51243.1 AGT75180.1 AGT75212.1 AGW51186.1 AHX22075.1
C protein [Human parainfluenza virus 3] C protein [Human parainfluenza virus 3] C protein [Human parainfluenza virus 3]	AHX22163.1 AGT75196.1 AHX22491.1 AHX22139.1 AGW51138.1
C protein [Human parainfluenza virus 3] C protein [Human parainfluenza virus 3] RecName: Full = Protein C; AltName: Full = VP18 protein	AGW51114.1 AGT75220.1 AHX22251.1 P06165.1 AHX22187.1
C protein [Human parainfluenza virus 3] C protein [Human parainfluenza virus 3] C protein [Human parainfluenza virus 3]	AGT75228.1 AHX22179.1 AHX22427.1 AGW51210.1 BAA00922.1
C protein [Human parainfluenza virus 3]	AHX22315.1 AGW51259.1 AHX22435.1 AHX22123.1
C protein [Human parainfluenza virus 3] unnamed protein product [Human parainfluenza virus 3] C protein [Human parainfluenza virus 3] C protein [Human parainfluenza virus 3]	AHX22299.1 AGW51267.1 CAA28430.1 AGW51178.1 AHX22411.1 P06164.1

TABLE 7-continued

PIV3 NCBI Accession Numbers (Nucleic Acid and Amin	o Acid Sequences)
Description	GenBank Accession
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	NP_067149.1 AAB48685.1
phosphoprotein [Human parainfluenza virus 3]	AHX22498.1
phosphoprotein [Human parainfluenza virus 3]	AHX22490.1 AGT75259.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AGW51137.1
phosphoprotein [Human parainfluenza virus 3]	AGW51145.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AGT75298.1 AGW51113.1
phosphoprotein [Human parainfluenza virus 3]	AGT75203.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AGT75163.1 AHX22506.1
phosphoprotein [Human parainfluenza virus 3]	AGW51129.1
phosphoprotein [Human parainfluenza virus 3]	AHX22194.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AGT75211.1 AHX22258.1
phosphoprotein [Human parainfluenza virus 3]	AGW51121.1
phosphoprotein [Human parainfluenza virus 3]	AGT75282.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AHX22146.1 AHX22138.1
phosphoprotein [Human parainfluenza virus 3]	AHX22322.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AHX22370.1 AHX22098.1
phosphoprotein [Human parainfluenza virus 3]	AHX22130.1
phosphoprotein [Human parainfluenza virus 3]	AHX22418.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AHX22114.1 AHX22410.1
phosphoprotein [Human parainfluenza virus 3]	AGT75306.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AHX22170.1 AHX22266.1
phosphoprotein [Human parainfluenza virus 3]	AHX22200.1 AHX22090.1
phosphoprotein [Human parainfluenza virus 3]	AGT75195.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AHX22226.1 AHX22178.1
phosphoprotein [Human parainfluenza virus 3]	AHX22122.1
phosphoprotein [Human parainfluenza virus 3]	AHX22186.1 AHX22066.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AHX22522.1
phosphoprotein [Human parainfluenza virus 3]	AGW51225.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	BAN29032.1 ABZ85669.1
phosphoprotein [Human parainfluenza virus 3]	AHX22426.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Simian Agent 10]	AHX22058.1 ADR00400.1
phosphoprotein [Human parainfluenza virus 3]	AHX22250.1
phosphoprotein [Human parainfluenza virus 3]	AHX22434.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AHX22298.1 AHX22442.1
phosphoprotein [Human parainfluenza virus 3]	AHX22074.1
phosphoprotein [Human parainfluenza virus 3]	AGW51153.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AGW51241.1 AHX22210.1
phosphoprotein [Human parainfluenza virus 3]	AGW51105.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AGT75251.1 AHX22362.1
phosphoprotein [Human parainfluenza virus 3]	AHX22474.1
phosphoprotein [Human parainfluenza virus 3]	AGW51217.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AIG60038.1 AHX22378.1
phosphoprotein [Human parainfluenza virus 3]	AGW51057.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AGT75187.1 AGW51233.1
phosphoprotein [Human parainfluenza virus 3]	AHX22482.1
phosphoprotein [Human parainfluenza virus 3]	AGW51161.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AHX22306.1 AHX22162.1
phosphoprotein [Human parainfluenza virus 3]	ACJ70087.1
phosphoprotein [Human parainfluenza virus 3]	AHX22466.1 AHX22346.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AGW51089.1
phosphoprotein [Human parainfluenza virus 3]	AGW51073.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AGW51185.1 AGW51065.1
phosphoprotein [Human parainfluenza virus 3]	ABY47603.1
phosphoprotein [Human parainfluenza virus 3]	AGW51049.1
phosphoprotein [Human parainfluenza virus 3]	AHX22330.1

TABLE 7-continued

DIV/2 MODI A	- A -: 1 G
PIV3 NCBI Accession Numbers (Nucleic Acid and Amin	io Acid Sequences)
Description	GenBank Accession
phosphoprotein [Human parainfluenza virus 3]	AGW51250.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AGT75227.1 AGW51282.1
phosphoprotein [Human parainfluenza virus 3]	AGW51209.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AGW51193.1 AGT75322.1
phosphoprotein [Human parainfluenza virus 3]	AGT75322.1 AGT75219.1
phosphoprotein [Human parainfluenza virus 3]	AGW51258.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AGW51041.1 ACD99698.1
phosphoprotein [Human parainfluenza virus 3]	AGW51266.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AGT75179.1 AHX22282.1
phosphoprotein [Human parainfluenza virus 3]	AGW51169.1
phosphoprotein [Human parainfluenza virus 3]	AGW51274.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AGW51201.1 AGW51177.1
RecName: Full = Phosphoprotein; Short = Protein P	P06162.1
P protein [Human parainfluenza virus 3]	AAA66818.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AAA46866.1 BAA00031.1
polymerase-associated nucleocapsid phosphoprotein	RRNZP5
(version 2) - parainfluenza virus type 3 [Human parainfluenza virus 3]	
phosphoprotein [Human parainfluenza virus 3]	AGT75171.1
phosphoprotein [Human parainfluenza virus 3]	BAA00921.1
D protein [Human parainfluenza virus 3] D protein [Human parainfluenza virus 3]	NP_599250.1 AHX22377.1
D protein [Human parainfluenza virus 3]	AHX22121.1
D protein [Human parainfluenza virus 3]	AGT75297.1
D protein [Human parainfluenza virus 3] D protein [Human parainfluenza virus 3]	AGW51136.1 AGW51242.1
D protein [Human parainfluenza virus 3]	AGW51112.1
D protein [Human parainfluenza virus 3] D protein [Human parainfluenza virus 3]	AHX22497.1 AHX22145.1
D protein [Human parainfluenza virus 3]	AGT75202.1
D protein [Human parainfluenza virus 3]	AHX22385.1
D protein [Human parainfluenza virus 3] D protein [Human parainfluenza virus 3]	AGW51216.1 AGT75281.1
D protein [Human parainfluenza virus 3]	AGT75194.1
D protein [Human parainfluenza virus 3] D protein [Human parainfluenza virus 3]	AHX22521.1 AGW51120.1
D protein [Human parainfluenza virus 3]	AGW31120.1 AGT75313.1
D protein [Human parainfluenza virus 3]	AHX22249.1
D protein [Human parainfluenza virus 3] D protein [Human parainfluenza virus 3]	AHX22097.1 AGW51144.1
D protein [Human parainfluenza virus 3]	AHX22089.1
D protein [Human parainfluenza virus 3]	AHX22225.1
D protein [Human parainfluenza virus 3] D protein [Human parainfluenza virus 3]	AHX22137.1 AHX22065.1
D protein [Human parainfluenza virus 3]	AGW51224.1
D protein [Human parainfluenza virus 3] D protein [Human parainfluenza virus 3]	AGT75210.1 AHX22393.1
D protein [Human parainfluenza virus 3]	AGT75258.1
D protein [Human parainfluenza virus 3]	AHX22345.1
D protein [Human parainfluenza virus 3] D protein [Human parainfluenza virus 3]	AGT75250.1 AHX22113.1
D protein [Human parainfluenza virus 3]	AGW51232.1
D protein [Human parainfluenza virus 3] D protein [Human parainfluenza virus 3]	AHX22057.1 AHX22209.1
D protein [Human parainfluenza virus 3] D protein [Human parainfluenza virus 3]	AGW51056.1
D protein [Human parainfluenza virus 3]	AHX22161.1
D protein [Simian Agent 10] D protein [Human parainfluenza virus 3]	ADR00402.1 AHX22361.1
D protein [Human parainfluenza virus 3]	AGW51281.1
D protein [Human parainfluenza virus 3]	AGW51184.1
D protein [Human parainfluenza virus 3] D protein [Human parainfluenza virus 3]	AGW51160.1 AHX22465.1
D protein [Human parainfluenza virus 3]	AHX22329.1
D protein [Human parainfluenza virus 3]	AGW51064.1
D protein [Human parainfluenza virus 3] D protein [Human parainfluenza virus 3]	AGW51040.1 AGT75226.1
D protein [Human parainfluenza virus 3]	AHX22425.1
D protein [Human parainfluenza virus 3]	AHX22305.1
D protein [Human parainfluenza virus 3] D protein [Human parainfluenza virus 3]	AGW51249.1 AHX22481.1

TABLE 7-continued

PIV3 NCBI Accession Numbers (Nucleic Acid a	nd Amino Acid Sequences)
Description	GenBank Accession
D protein [Human parainfluenza virus 3]	AHX22281.1
D protein [Human parainfluenza virus 3]	AGW51048.1
D protein [Human parainfluenza virus 3]	AHX22297.1
D protein [Human parainfluenza virus 3]	AGW51088.1
D protein [Human parainfluenza virus 3]	AGT75305.1
D protein [Human parainfluenza virus 3]	AHX22185.1
D protein [Human parainfluenza virus 3]	AGW51104.1
D protein [Human parainfluenza virus 3]	AHX22081.1
D protein [Human parainfluenza virus 3]	AGW51192.1
D protein [Human parainfluenza virus 3]	AHX22489.1
D protein [Human parainfluenza virus 3]	AHX22441.1
D protein [Human parainfluenza virus 3]	AHX22409.1
D protein [Human parainfluenza virus 3]	AHX22369.1
D protein [Human parainfluenza virus 3]	AHX22321.1
D protein [Human parainfluenza virus 3]	AHX22073.1
D protein [Human parainfluenza virus 3]	AGW51152.1
D protein [Human parainfluenza virus 3]	AGW51072.1
D protein [Human parainfluenza virus 3]	AGT75321.1
D protein [Human parainfluenza virus 3]	AHX22257.1
D protein [Human parainfluenza virus 3]	AHX22129.1
D protein [Human parainfluenza virus 3]	AHX22417.1
D protein [Human parainfluenza virus 3]	AGT75218.1
D protein [Human parainfluenza virus 3]	AHX22265.1
D protein [Human parainfluenza virus 3]	AGT75178.1
D protein [Human parainfluenza virus 3]	AHX22433.1
D protein [Human parainfluenza virus 3]	AGW51273.1
D protein [Human parainfluenza virus 3]	AGW51208.1
D protein [Human parainfluenza virus 3]	AGT75170.1
D protein [Human parainfluenza virus 3]	AGT75162.1
D protein [Human parainfluenza virus 3]	AGW51257.1
D protein [Human parainfluenza virus 3]	AGW51200.1
D protein [Human parainfluenza virus 3]	AGW51176.1
D protein [Human parainfluenza virus 3]	AGT75186.1
D protein [Human parainfluenza virus 3]	AGW51265.1
D protein [Human parainfluenza virus 3]	AGW51168.1

35

TABLE 9 TABLE 9

TABBE 0			IN ADDEE 9					
Signal Peptides			hMPV/PIV Cotton Rat Challenge Study Design					
Description	Sequence	SEQ ID NO:	40	Group	n Test Article	[conc]/μg	Route	Challenge
Harting of many	MEMBAGITELL	15	-	1	5 Placebo	n/a	IM	hMPV/A2
HuIgG _k signal	METPAQLLFLLL LWLPDTTG	15		2	5 hMPV vaccine mRNA	30	IM	hMPV/A2
peptide	LWLPDIIG			3	5 hMPV vaccine mRNA	15	IM	hMPV/A2
IqE heavy chain	MDWTWILFLVAA	16		4	5 hMPV vaccine mRNA	10	IM	hMPV/A2
epsilon -1 signal peptide	ATRVHS	10	45	5	5 hMPV/PIV3 vaccine mRNA (15/15)	30	IM	hMPV/A2
popozac				6	5 FI-hMPV	n/a	IM	hMPV/A2
Japanese	MLGSNSGQRVVF	17		7	5 Placebo	n/a	IM	PIV3
encephalitis PRM	TILLLLVAPAYS			8	5 PIV3 vaccine mRNA	30	IM	PIV3
signal sequence				9	5 PIV3 vaccine mRNA	15	IM	PIV3
			50	10	5 PIV3 vaccine mRNA	10	IM	PIV3
VSVg protein signal sequence	MKCLLYLAFLFI GVNCA	18		11	5 hMPV/PIV3 vaccine mRNA (15/15)	30	IM	PIV3
Japanese encephalitis JEV	MWLVSLAIVTAC AGA	19		12	5 FI-PIV3	n/a	IM	PIV3
signal sequence			55		60			

TABLE 10

		SEQ ID
Strain	Nucleic Acid Sequence	NO:

Betacoronavirus Nucleic Acid Sequence

gb|KJ156934.1|: 21405-25466 Middle East respiratory $\label{eq:total} \begin{minipage}{llll} ATGATACACTCAGTGTTTCTTGTTAACACC\\ TACAGAAAGTTACGTTGATGTAGGCCCAGATTCTGTTAAG\\ TCTGCTTGTATTGAGGTTGATATACAACAGACCTTCTTTGA\\ \end{minipage}$

SEO ID Strain Nucleic Acid Sequence NO:

Riyadh 14 2013, spike protein (nucleotide)

syndrome coronavirus TAAAACTTGGCCTAGGCCAATTGATGTTTCTAAGGCTGAC GGTATTATATACCCTCAAGGCCGTACATATTCTAACATAA CTATCACTTATCAAGGTCTTTTTCCCTATCAGGGAGACCAT GGTGATATGTTTTACTCTGCAGGACATGCTACAGGCA CAACTCCACAAAAGTTGTTTGTAGCTAACTATTCTCAGGA CGTCAAACAGTTTGCTAATGGGTTTGTCGTCCGTATAGGA GCAGCTGCCAATTCCACTGGCACTGTTATTATTAGCCCATC TACCAGCGCTACTATACGAAAAATTTACCCTGCTTTTATGC $\tt TGGGTTCTTCAGTTGGTAATTTCTCAGATGGTAAAATGGG$ CCGCTTCTTCAATCATACTCTAGTTCTTTTGCCCGATGGAT GTGGCACTTTACTTAGAGCTTTTTATTGTATTCTAGAGCCT CGCTCTGGAAATCATTGTCCTGCTGGCAATTCCTATACTTC TTTTGCCACTTATCACACTCCTGCAACAGATTGTTCTGATG GCAATTACAATCGTAATGCCAGTCTGAACTCTTTTAAGGA GTATTTTAATTTACGTAACTGCACCTTTATGTACACTTATA ACATTACCGAAGATGAGATTTTAGAGTGGTTTGGCATTAC ACAAACTGCTCAAGGTGTTCACCTCTTCTCATCTCGGTATG TTGATTTGTACGGCGGCAATATGTTTCAATTTGCCACCTTG CCTGTTTATGATACTATTAAGTATTATTCTATCATTCCTCA CAGTATTCGTTCTATCCAAAGTGATAGAAAAGCTTGGGCT GCCTTCTACGTATATAAACTTCAACCGTTAACTTTCCTGTT GGATTTTTCTGTTGATGGTTATATACGCAGAGCTATAGACT GTGGTTTTAATGATTTGTCACAACTCCACTGCTCATATGAA TCCTTCGATGTTGAATCTGGAGTTTATTCAGTTTCGTCTTT CGAAGCAAAACCTTCTGGCTCAGTTGTGGAACAGGCTGAA GGTGTTGAATGTGATTTTTCACCTCTTCTGTCTGGCACACC TCCTCAGGTTTATAATTTCAAGCGTTTGGTTTTTACCAATT GCAATTATAATCTTACCAAATTGCTTTCACTTTTTTCTGTG AATGATTTTACTTGTAGTCAAATATCTCCAGCAGCAATTGC TAGCAACTGTTATTCTTCACTGATTTTTGGATTATTTTTCAT ACCCACTTAGTATGAAATCCGATCTCAGTGTTAGTTCTGCT GGTCCAATATCCCAGTTTAATTATAAACAGTCCTTTTCTAA ${\tt TCCCACATGTTTGATCTTAGCGACTGTTCCTCATAACCTTA}$ CTACTATTACTAAGCCTCTTAAGTACAGCTATATTAACAA GTGCTCTCGTCTTCTTTCTGATGATCGTACTGAAGTACCTC AGTTAGTGAACGCTAATCAATACTCACCCTGTGTATCCATT GTCCCATCCACTGTGTGGGAAGACGGTGATTATTATAGGA AACAACTATCTCCACTTGAAGGTGGTGGCTGGCTTGTTGC TAGTGGCTCAACTGTTGCCATGACTGAGCAATTACAGATG GGCTTTGGTATTACAGTTCAATATGGTACAGACACCAATA GTGTTTGCCCCAAGCTTGAATTTGCTAATGACACAAAAAT $\tt TGCCTCTCAATTAGGCAATTGCGTGGAATATTCCCTCTATG$ GTGTTTCGGGCCGTGGTGTTTTTCAGAATTGCACAGCTGTA $\tt GGTGTTCGACAGCAGCGCTTTGTTTATGATGCGTACCAGA$ ATTTAGTTGGCTATTATTCTGATGATGGCAACTACTACTGT CTGCGTGCTTGTGTTAGTGTTCCTGTTTCTGTCATCTATGA ${\tt TAAAGAAACTAAAACCCACGCTACTCTATTTGGTAGTGTT}$ GCATGTGAACACATTTCTTCTACCATGTCTCAATACTCCCG TTCTACGCGATCAATGCTTAAACGGCGAGATTCTACATAT GGCCCCCTTCAGACACCTGTTGGTTGTGTCCTAGGACTTGT TAATTCCTCTTTGTTCGTAGAGGACTGCAAGTTGCCTCTCG GTCAATCTCTGTGCTCTTCCTGACACACCTAGTACTCTC ACACCTCGCAGTGTGCGCTCTGTGCCAGGTGAAATGCGCT TGGCATCCATTGCTTTTAATCATCCCATTCAGGTTGATCAA CTTAATAGTAGTTATTTTAAATTAAGTATACCCACTAATTT TTCCTTTGGTGTGACTCAGGAGTACATTCAGACAACCATTC AGAAAGTTACTGTTGATTGTAAACAGTACGTTTGCAATGG TTTCCAGAAGTGTGAGCAATTACTGCGCGAGTATGGCCAG TTTTGTTCCAAAATAAACCAGGCTCTCCATGGTGCCAATTT ACGCCAGGATGATTCTGTACGTAATTTGTTTGCGAGCGTG AAAAGCTCTCAATCATCTCCTATCATACCAGGTTTTGGAG GTGACTTTAATTTGACACTTCTAGAACCTGTTTCTATATCT ACTGGCAGTCGTAGTGCACGTAGTGCTATTGAGGATTTGC TATTTGACAAAGTCACTATAGCTGATCCTGGTTATATGCA AGGTTACGATGATTGTATGCAGCAAGGTCCAGCATCAGCT CGTGATCTTATTTGTGCTCAATATGTGGCTGGTTATAAAGT ATTACCTCCTCTTATGGATGTTAATATGGAAGCCGCGTATA CTTCATCTTTGCTTGGCAGCATAGCAGGTGTTGGCTGGACT GCTGGCTTATCCTCCTTTGCTGCTATTCCATTTGCACAGAG TATYTTTATAGGTTAAACGGTGTTGGCATTACTCAACAG GTTCTTTCAGAGAACCAAAAGCTTATTGCCAATAAGTTTA ATCAGGCTCTGGGAGCTATGCAAACAGGCTTCACTACAAC TAATGAAGCTTTTCGGAAGGTTCAGGATGCTGTGAACAAC AATGCACAGGCTCTATCCAAATTAGCTAGCGAGCTATCTA ATACTTTTGGTGCTATTTCCGCCTCTATTGGAGACATCATA CAACGTCTTGATGTTCTCGAACAGGACGCCCAAATAGACA GACTTATTAATGGCCGTTTGACAACACTAAATGCTTTTGTT

TABLE 10-continued

SEQ ID Strain Nucleic Acid Sequence NO:

GCACAGCAGCTTGTTCGTTCCGAATCAGCTGCTCTTTCCGC TCAATTGGCTAAAGATAAAGTCAATGAGTGTGTCAAGGCA CAATCCAAGCGTTCTGGATTTTGCGGTCAAGGCACACATA TAGTGTCCTTTGTTGTAAATGCCCCTAATGGCCTTTACTTT ATGCATGTTGGTTATTACCCTAGCAACCACATTGAGGTTGT TTCTGCTTATGGTCTTTGCGATGCAGCTAACCCTACTAATT GTATAGCCCCTGTTAATGGCTACTTTATTAAAACTAATAAC ACTAGGATTGTTGATGAGTGGTCATATACTGGCTCGTCCTT CTATGCACCTGAGCCCATCACCTCTCTTAATACTAAGTATG TTGCACCACAGGTGACATACCAAAACATTTCTACTAACCT CCCTCCTCTCTCGGCAATTCCACCGGGATTGACTTCC AAGATGAGTTGGATGAGTTTTTCAAAAATGTTAGCACCAG TATACCTAATTTTGGTTCTCTAACACAGATTAATACTACAT TACTCGATCTTACCTACGAGATGTTGTCTCTTCAACAAGTT GTTAAAGCCCTTAATGAGTCTTACATAGACCTTAAAGAGC TTGGCAATTATACTTATTACAACAAATGGCCGTGGTACAT TTGGCTTGGTTTCATTGCTGGGCTTGTTGCCTTAGCTCTAT GCGTCTTCTTCATACTGTGCTGCACTGGTTGTGGCACAAAC TGTATGGGAAAACTTAAGTGTAATCGTTGTTGTGATAGAT ACGAGGAATACGACCTCGAGCCGCATAAGGTTCATGTTCA CTAA

MERS S FL SPIKE 2cEMC/2012 (XBaI change (T to G)) (nucleotide) ATGATACACTCAGTGTTTCTACTGATGTTCTTGTTAACACC TACAGAAAGTTACGTTGATGTAGGGCCAGATTCTGTTAAG TCTGCTTGTATTGAGGTTGATATACAACAGACTTTCTTTGA TAAAACTTGGCCTAGGCCAATTGATGTTTCTAAGGCTGAC GGTATTATATACCCTCAAGGCCGTACATATTCTAACATAA CTATCACTTATCAAGGTCTTTTTCCCTATCAGGGAGACCAT GGTGATATGTTTACTCTGCAGGACATGCTACAGGCA CAACTCCACAAAAGTTGTTTGTAGCTAACTATTCTCAGGA $\tt CGTCAAACAGTTTGCTAATGGGTTTGTCGTCCGTATAGGA$ GCAGCTGCCAATTCCACTGGCACTGTTATTATTAGCCCATC ${\tt TACCAGCGCTACTATACGAAAAATTTACCCTGCTTTTATGC}$ $\tt TGGGTTCTTCAGTTGGTAATTTCTCAGATGGTAAAATGGG$ $\tt CCGCTTCTTCAATCATACTCTAGTTCTTTTGCCCGATGGAT$ $\tt GTGGCACTTTACTTAGAGCTTTTTATTGTATTCTGGAGCCT$ CGCTCTGGAAATCATTGTCCTGCTGGCAATTCCTATACTTC ${\tt TTTTGCCACTTATCACACTCCTGCAACAGATTGTTCTGATG}$ GCAATTACAATCGTAATGCCAGTCTGAACTCTTTTAAGGA GTATTTTAATTTACGTAACTGCACCTTTATGTACACTTATA ACATTACCGAAGATGAGATTTTAGAGTGGTTTGGCATTAC ACAAACTGCTCAAGGTGTTCACCTCTTCTCATCTCGGTATG TTGATTTGTACGGCGGCAATATGTTTCAATTTGCCACCTTG CCTGTTTATGATACTATTAAGTATTATTCTATCATTCCTCA CAGTATTCGTTCTATCCAAAGTGATAGAAAAGCTTGGGCT GCCTTCTACGTATATAAACTTCAACCGTTAACTTTCCTGTT $\tt GGATTTTTCTGTTGATGGTTATATACGCAGAGCTATAGACT$ GTGGTTTTAATGATTTGTCACAACTCCACTGCTCATATGAA ${\tt TCCTTCGATGTTGAATCTGGAGTTTATTCAGTTTCGTCTTT}$ $\tt CGAAGCAAAACCTTCTGGCTCAGTTGTGGAACAGGCTGAA$ GGTGTTGAATGTGATTTTTCACCTCTTCTGTCTGGCACACC TCCTCAGGTTTATAATTTCAAGCGTTTGGTTTTTACCAATT GCAATTATAATCTTACCAAATTGCTTTCACTTTTTTCTGTG AATGATTTTACTTGTAGTCAAATATCTCCAGCAGCAATTGC TAGCAACTGTTATTCTTCACTGATTTTGGATTACTTTTCAT ACCCACTTAGTATGAAATCCGATCTCAGTGTTAGTTCTGCT GGTCCAATATCCCAGTTTAATTATAAACAGTCCTTTTCTAA TCCCACATGTTTGATTTTAGCGACTGTTCCTCATAACCTTA CTACTATTACTAAGCCTCTTAAGTACAGCTATATTAACAA GTGCTCTCGTCTTCTTCTGATGATCGTACTGAAGTACCTC AGTTAGTGAACGCTAATCAATACTCACCCTGTGTATCCATT GTCCCATCCACTGTGTGGGAAGACGGTGATTATTATAGGA AACAACTATCTCCACTTGAAGGTGGTGGCTGGCTTGTTGC TAGTGGCTCAACTGTTGCCATGACTGAGCAATTACAGATG GGCTTTGGTATTACAGTTCAATATGGTACAGACACCAATA GTGTTTGCCCCAAGCTTGAATTTGCTAATGACACAAAAAT TGCCTCTCAATTAGGCAATTGCGTGGAATATTCCCTCTATG GTGTTTCGGGCCGTGGTGTTTTTCAGAATTGCACAGCTGTA GGTGTTCGACAGCAGCGCTTTGTTTATGATGCGTACCAGA ATTTAGTTGGCTATTATTCTGATGATGGCAACTACTACTGT TTGCGTGCTTGTGTTAGTGTTCCTGTTTCTGTCATCTATGAT AAAGAAACTAAAACCCACGCTACTCTATTTGGTAGTGTTG CATGTGAACACATTTCTTCTACCATGTCTCAATACTCCCGT TCTACGCGATCAATGCTTAAACGGCGAGATTCTACATATG ${\tt GCCCCTTCAGACACCTGTTGGTTGTGTCCTAGGACTTGTT}$ AATTCCTCTTTGTTCGTAGAGGACTGCAAGTTGCCTCTTGG TCAATCTCTGTGCTCTTCCTGACACACCTAGTACTCTCA

SEQ ID Strain Nucleic Acid Sequence NO:

CACCTCGCAGTGTGCGCTCTGTTCCAGGTGAAATGCGCTT GGCATCCATTGCTTTTAATCATCCTATTCAGGTTGATCAAC TTAATAGTAGTTATTTTAAATTAAGTATACCCACTAATTTT TCCTTTGGTGTGACTCAGGAGTACATTCAGACAACCATTC AGAAAGTTACTGTTGATTGTAAACAGTACGTTTGCAATGG TTTCCAGAAGTGTGAGCAATTACTGCGCGAGTATGGCCAG ${\tt TTTTGTTCCAAAATAAACCAGGCTCTCCATGGTGCCAATTT}$ ACGCCAGGATGATTCTGTACGTAATTTGTTTGCGAGCGTG AAAAGCTCTCAATCATCTCCTATCATACCAGGTTTTGGAG GTGACTTTAATTTGACACTTCTGGAACCTGTTTCTATATCT ACTGGCAGTCGTAGTGCACGTAGTGCTATTGAGGATTTGC TATTTGACAAAGTCACTATAGCTGATCCTGGTTATATGCA AGGTTACGATGATTGCATGCAGCAAGGTCCAGCATCAGCT CGTGATCTTATTTGTGCTCAATATGTGGCTGGTTACAAAGT ATTACCTCCTCTTATGGATGTTAATATGGAAGCCGCGTATA CTTCATCTTTGCTTGGCAGCATAGCAGGTGTTGGCTGGACT GCTGGCTTATCCTCCTTTGCTGCTATTCCATTTGCACAGAG TATCTTTATAGGTTAAACGGTGTTGGCATTACTCAACAGG TTCTTTCAGAGAACCAAAAGCTTATTGCCAATAAGTTTAA TCAGGCTCTGGGAGCTATGCAAACAGGCTTCACTACAACT AATGAAGCTTTTCAGAAGGTTCAGGATGCTGTGAACAACA ATGCACAGGCTCTATCCAAATTAGCTAGCGAGCTATCTAA TACTTTTGGTGCTATTTCCGCCTCTATTGGAGACATCATAC AACGTCTTGATGTTCTCGAACAGGACGCCCAAATAGACAG ACTTATTAATGGCCGTTTGACAACACTAAATGCTTTTGTTG CACAGCAGCTTGTTCGTTCCGAATCAGCTGCTCTTTCCGCT CAATTGGCTAAAGATAAAGTCAATGAGTGTGTCAAGGCAC AATCCAAGCGTTCTGGATTTTGCGGTCAAGGCACACATAT AGTGTCCTTTGTTGTAAATGCCCCTAATGGCCTTTACTTCA TGCATGTTGGTTATTACCCTAGCAACCACATTGAGGTTGTT ${\tt TCTGCTTATGGTCTTTGCGATGCAGCTAACCCTACTAATTG}$ TATAGCCCCTGTTAATGGCTACTTTATTAAAACTAATAACA $\tt CTAGGATTGTTGATGAGTGGTCATATACTGGCTCGTCCTTC$ TATGCACCTGAGCCCATTACCTCCCTTAATACTAAGTATGT ${\tt TGCACCACAGGTGACATACCAAAACATTTCTACTAACCTC}$ $\tt CCTCCTCTTCTCGGCAATTCCACCGGGATTGACTTCCA$ AGATGAGTTGGATGAGTTTTTCAAAAATGTTAGCACCAGT ATACCTAATTTTGGTTCCCTAACACAGATTAATACTACATT ACTCGATCTTACCTACGAGATGTTGTCTCTTCAACAAGTTG TTAAAGCCCTTAATGAGTCTTACATAGACCTTAAAGAGCT TGGCAATTATACTTATTACAACAAATGGCCGTGGTACATT $\tt TGGCTTGGTTTCATTGCTGGGCTTGTTGCCTTAGCTCTATG$ CGTCTTCTTCATACTGTGCTGCACTGGTTGTGGCACAAACT CGAGGAATACGACCTCGAGCCGCATAAGGTTCATGTTCAC

Novel_MERS_S2_subunit_trimeric vaccine (nucleotide) ATGATCCACTCCGTGTTCCTCCTCATGTTCCTGTTGACCCC ${\tt CACTGAGTCAGACTGCAAGCTCCCGCTGGGACAGTCCCTG}$ TGTGCGCTGCCTGACACTCCTAGCACTCTGACCCCACGCTC $\tt CGTGCGGTCGGTGCCTGGCGAAATGCGGCTGGCCTCCATC$ GCCTTCAATCACCCAATCCAAGTGGATCAGCTGAATAGCT CGTATTTCAAGCTGTCCATCCCCACGAACTTCTCGTTCGGG GTCACCCAGGAGTACATCCAGACCACAATTCAGAAGGTCA CCGTCGATTGCAAGCAATACGTGTGCAACGGCTTCCAGAA GTGCGAGCAGCTGCTGAGAGAATACGGGCAGTTTTGCAGC AAGATCAACCAGGCGCTGCATGGAGCTAACTTGCGCCAGG ACGACTCCGTGCGCAACCTCTTTGCCTCTGTGAAGTCATCC CAGTCCTCCCCAATCATCCCGGGGTTTCGGAGGGGACTTCA ACCTGACCCTCCTGGAGCCCGTGTCGATCAGCACCGGTAG CAGATCGGCGCTCAGCCATTGAAGATCTTCTGTTCGAC AAGGTCACCATCGCCGATCCGGGCTACATGCAGGGATACG ACGACTGTATGCAGCAGGGACCAGCCTCCGCGAGGGACCT CATCTGCGCGCAATACGTGGCCGGGTACAAAGTGCTGCCT CCTCTGATGGATGTGAACATGGAGGCCGCTTATACTTCGT CCCTGCTCGGCTCTATCGCCGGCGTGGGGTGGACCGCCGG CCTGTCCTCCTTCGCCGCTATCCCCTTTGCACAATCCATTT TCTACCGGCTCAACGGCGTGGGCATTACTCAACAAGTCCT GTCGGAGAACCAGAAGTTGATCGCAAACAAGTTCAATCA GGCCCTGGGGGCCATGCAGACTGGATTCACTACGACTAAC GAAGCGTTCCAGAAGGTCCAGGACGCTGTGAACAACAAC GCCCAGGCGCTCTCAAAGCTGGCCTCCGAACTCAGCAACA CCTTCGGAGCCATCAGCGCATCGATCGGTGACATAATTCA GCGGCTGGACGTGCTGGAGCAGGACGCCCAGATCGACCG ${\tt CCTCATCAACGGACGGCTGACCACCTTGAATGCCTTCGTG}$ GCACAACAGCTGGTCCGGAGCGAATCAGCGGCACTTTCCG CCCAACTCGCCAAGGACAAAGTCAACGAATGCGTGAAGG

SEQ ID Strain Nucleic Acid Sequence NO:

CCCAGTCCAAGAGGTCCGGTTTCTGCGGTCAAGGAACCCA TATTGTGTCCTTCGTCGTGAACGCCCCAACGGTCTGTACT TTATGCACGTCGGCTACTACCCGAGCAATCATATCGAAGT GGTGTCCGCCTACGGCCTGTGCGATGCCGCTAACCCCACT AACTGTATTGCCCCTGTGAACGGATATTTTATTAAGACCA ACAACACCCGCATTGTGGACGAATGGTCATACACCGGTTC GTCCTTCTACGCGCCCGAGCCCATCACTTCACTGAACACC AAATACGTGGCTCCGCAAGTGACCTACCAGAACATCTCCA CCAATTTGCCGCCGCCGCTGCTCGGAAACAGCACCGGAAT TGATTTCCAAGATGAACTGGACGAATTCTTCAAGAACGTG TCCACTTCCATTCCCAACTTCGGAAGCCTGACACAGATCA ACACCACCCTTCTCGACCTGACCTACGAGATGCTGAGCCT TCAACAAGTGGTCAAGGCCCTGAACGAGAGCTACATCGAC CTGAAGGAGCTGGGCAACTATACCTACTACAACAAGTGGC CGGACAAGATTGAGGAGATTCTGTCGAAAATCTACCACAT TGAAAACGAGATCGCCAGAATCAAGAAGCTTATCGGCGA AGCC

MERS_SO_Fulllength Spike protein (nucleotide, codon optimized) ATGGAAACCCCTGCCCAGCTGCTGTTCCTGCTGCTGCTGTG GCTGCCTGATACCACCGGCAGCTATGTGGACGTGGGCCCC GATAGCGTGAAGTCCGCCTGTATCGAAGTGGACATCCAGC AGACCTTTTTCGACAAGACCTGGCCCAGACCCATCGACGT GTCCAAGGCCGACGCATCATCTATCCACAAGGCCGGACC TACAGCAACATCACCATTACCTACCAGGGCCTGTTCCCAT ATCAAGGCGACCACGGCGATATGTACGTGTACTCTGCCGG CCACGCCACCGGCACCACACCCCAGAAACTGTTCGTGGCC AACTACAGCCAGGACGTGAAGCAGTTCGCCAACGGCTTCG TCGTGCGGATTGGCGCCGCTGCCAATAGCACCGGCACAGT GATCATCAGCCCCAGCACCAGCGCCACCATCCGGAAGATC TACCCCGCCTTCATGCTGGGCAGCTCCGTGGGCAATTTCA $\tt GCGACGCCAGATGGGCCGGTTCTTCAACCACACCCTGGT$ GCTGCTGCCCGATGGCTGTGGCACACTGCTGAGAGCCTTC TACTGCATCCTGGAACCCAGAAGCGGCAACCACTGCCCTG CCGGCAATAGCTACACCAGCTTCGCCACCTACCACACCC CGCCACCGATTGCTCCGACGGCAACTACAACCGGAACGCC AGCCTGAACAGCTTCAAAGAGTACTTCAACCTGCGGAACT GCACCTTCATGTACACCTACAATATCACCGAGGACGAGAT CCTGGAATGGTTCGGCATCACCCAGACCGCCCAGGGCGTG CACCTGTTCAGCAGCAGATACGTGGACCTGTACGGCGGCA ACATGTTCCAGTTTGCCACCCTGCCCGTGTACGACACCATC AAGTACTACAGCATCATCCCCCACAGCATCCGGTCCATCC AGAGCGACAGAAAAGCCTGGGCCGCCTTCTACGTGTACAA GCTGCAGCCCTGACCTTCCTGCTGGACTTCAGCGTGGAC $\tt GGCTACATCAGACGGGCCATCGACTGCGGCTTCAACGACC$ TGAGCCAGCTGCACTGCTCCTACGAGAGCTTCGACGTGGA AAGCGGCGTGTACAGCGTGTCCAGCTTCGAGGCCAAGCCT ${\tt AGCGGCAGCGTGGTGGAACAGGCTGAGGGCGTGGAATGC}$ GACTTCAGCCCTCTGCTGAGCGGCACCCCTCCCCAGGTGT ACAACTTCAAGCGGCTGGTGTTCACCAACTGCAATTACAA CCTGACCAAGCTGCTGAGCCTGTTCTCCGTGAACGACTTC ACCTGTAGCCAGATCAGCCCTGCCGCCATTGCCAGCAACT GCTACAGCAGCCTGATCCTGGACTACTTCAGCTACCCCCT GAGCATGAAGTCCGATCTGAGCGTGTCCTCCGCCGGACCC ATCAGCCAGTTCAACTACAAGCAGAGCTTCAGCAACCCTA CCTGCCTGATTCTGGCCACCGTGCCCCACAATCTGACCAC CATCACCAAGCCCCTGAAGTACAGCTACATCAACAAGTGC AGCAGACTGCTGTCCGACGACCGGACCGAAGTGCCCCAGC TCGTGAACGCCAACCAGTACAGCCCCTGCGTGTCCATCGT GCCCAGCACCGTGTGGGAGGACGGCGACTACTACAGAAA GCAGCTGAGCCCCCTGGAAGGCGGCGGATGGCTGGTGGCT TCTGGAAGCACAGTGGCCATGACCGAGCAGCTGCAGATG GGCTTTGGCATCACCGTGCAGTACGGCACCGACACCAACA GCGTGTGCCCCAAGCTGGAATTCGCCAATGACACCAAGAT CGCCAGCCAGCTGGGAAACTGCGTGGAATACTCCCTGTAT GGCGTGTCCGGACGGGGCGTGTTCCAGAATTGCACAGCAG TGGGAGTGCGGCAGCAGAGATTCGTGTACGATGCCTACCA GAACCTCGTGGGCTACTACAGCGACGACGGCAATTACTAC TGCCTGCGGGCCTGTGTGTCCGTGCCCGTGTCCGTGATCTA CGACAAAGACAAAGACCCACGCCACACTGTTCGGCTCC GTGGCCTGCGAGCACATCAGCTCCACCATGAGCCAGTACT CCCGCTCCACCCGGTCCATGCTGAAGCGGAGAGATAGCAC CTACGGCCCCTGCAGACACCTGTGGGATGTGTGCTGGGC CTCGTGAACAGCTCCCTGTTTGTGGAAGATTGCAAGCTGC CCCTGGGCCAGAGCCTGTGTGCCCTGCCAGATACCCCTAG CACCCTGACCCCTAGAAGCGTGCGCTCTGTGCCCGGCGAA ATGCGGCTGGCCTCTATCGCCTTCAATCACCCCATCCAGGT GGACCAGCTGAACTCCAGCTACTTCAAGCTGAGCATCCCC

SEQ ID Strain Nucleic Acid Sequence NO:

ACCAACTTCAGCTTCGGCGTGACCCAGGAGTACATCCAGA CCACAATCCAGAAAGTGACCGTGGACTGCAAGCAGTACGT GTGCAACGGCTTTCAGAAGTGCGAACAGCTGCTGCGCGAG TACGGCCAGTTCTGCAGCAAGATCAACCAGGCCCTGCACG GCGCCAACCTGAGACAGGATGACAGCGTGCGGAACCTGTT CGCCAGCGTGAAAAGCAGCCAGTCCAGCCCCATCATCCCT GGCTTCGGCGGCGACTTTAACCTGACCCTGCTGGAACCTG TGTCCATCAGCACCGGCTCCAGAAGCGCCAGATCCGCCAT CGAGGACCTGCTGTTCGACAAAGTGACCATTGCCGACCCC GGCTACATGCAGGGCTACGACGATTGCATGCAGCAGGGCC CAGCCAGCGCCAGGGATCTGATCTGTGCCCAGTATGTGGC CGGCTACAAGGTGCTGCCCCCCCTGATGGACGTGAACATG GAAGCCGCCTACACCTCCAGCCTGCTGGGCTCTATTGCTG GCGTGGGATGGACAGCCGGCCTGTCTAGCTTTGCCGCCAT CCCTTTCGCCCAGAGCATCTTCTACCGGCTGAACGGCGTG GGCATCACACACAGGTGCTGAGCGAGAACCAGAAGCTG ATCGCCAACAAGTTTAACCAGGCACTGGGCGCCATGCAGA CCGGCTTCACCACCACCAACGAGGCCTTCAGAAAGGTGCA GGACGCCGTGAACAACAACGCCCAGGCTCTGAGCAAGCT GGCCTCCGAGCTGAGCAATACCTTCGGCGCCATCAGCGCC TCCATCGGCGACATCATCCAGCGGCTGGACGTGCTGGAAC AGGACGCCCAGATCGACCGGCTGATCAACGGCAGACTGA CCACCCTGAACGCCTTCGTGGCACAGCAGCTCGTGCGGAG CGAATCTGCCGCTCTGTCTGCTCAGCTGGCCAAGGACAAA GTGAACGAGTGCGTGAAGGCCCAGTCCAAGCGGAGCGGC TTTTGTGGCCAGGGCACCCACATCGTGTCCTTCGTCGTGAA TGCCCCCAACGGCCTGTACTTTATGCACGTGGGCTATTACC CCAGCAACCACATCGAGGTGGTGTCCGCCTATGGCCTGTG $\tt CGACGCCGCCAATCCTACCAACTGTATCGCCCCCGTGAAC$ GGCTACTTCATCAAGACCAACACCCCGGATCGTGGACG AGTGGTCCTACACAGGCAGCAGCTTCTACGCCCCCGAGCC CATCACCTCCCTGAACACCAAATACGTGGCCCCCCAAGTG ACATACCAGAACATCTCCACCAACCTGCCCCCTCCACTGC TGGGAAATTCCACCGGCATCGACTTCCAGGACGAGCTGGA $\tt CGAGTTCTTCAAGAACGTGTCCACCTCCATCCCCAACTTCG$ GCAGCCTGACCCAGATCAACACCACTCTGCTGGACCTGAC CTACGAGATGCTGTCCCTGCAACAGGTCGTGAAAGCCCTG AACGAGAGCTACATCGACCTGAAAGAGCTGGGGAACTAC ACCTACTACAACAAGTGGCCTTGGTACATTTGGCTGGGCT TTATCGCCGGCCTGGTGGCCCTGTGCGTGTTCTTC ATCCTGTGCTGCACCGGCTGCGGCACCAATTGCATGGGCA AGCTGAAATGCAACCGGTGCTGCGACAGATACGAGGAAT ACGACCTGGAACCTCACAAAGTGCATGTGCAC

Betacoronavirus mRNA Sequences

gb|KJ156934.1|: 21405-25466 Middle East respiratory syndrome coronavirus isolate Riyadh_14_2013, spike protein (nucleotide) AUGAUACACUCAGUGUUUCUACUGAUGUUCUUGUUAAC ACCUACAGAAAGUUACGUUGAUGUAGGGCCAGAUUCUG UUAAGUCUGCUUGUAUUGAGGUUGAUAUACAACAGACC UUCUUUGAUAAAACUUGGCCUAGGCCAAUUGAUGUUUC UAAGGCUGACGGUAUUAUAUACCCUCAAGGCCGUACAU AUUCUAACAUAACUAUCACUUAUCAAGGUCUUUUUCCCU AUCAGGGAGACCAUGGUGAUAUGUAUGUUUACUCUGCA GGACAUGCUACAGGCACAACUCCACAAAAGUUGUUUGU AGCUAACUAUUCUCAGGACGUCAAACAGUUUGCUAAUG GGUUUGUCGUCCGUAUAGGAGCAGCUGCCAAUUCCACUG GCACUGUUAUUAUUAGCCCAUCUACCAGCGCUACUAUAC GAAAAAUUUACCCUGCUUUUAUGCUGGGUUCUUCAGUU GGUAAUUUCUCAGAUGGUAAAAUGGGCCGCUUCUUCAA UCAUACUCUAGUUCUUUUGCCCGAUGGAUGUGGCACUU UACUUAGAGCUUUUUAUUGUAUUCUAGAGCCUCGCUCU GGAAAUCAUUGUCCUGCUGGCAAUUCCUAUACUUCUUU UGCCACUUAUCACACUCCUGCAACAGAUUGUUCUGAUGG CAAUUACAAUCGUAAUGCCAGUCUGAACUCUUUUAAGG AGUAUUUUAAUUUACGUAACUGCACCUUUAUGUACACU UAUAACAUUACCGAAGAUGAGAUUUUUAGAGUGGUUUGG CAUUACACAAACUGCUCAAGGUGUUCACCUCUUCUCAUC UCGGUAUGUUGAUUUGUACGGCGGCAAUAUGUUUCAAU UUGCCACCUUGCCUGUUUAUGAUACUAUUAAGUAUUAU UCUAUCAUUCCUCACAGUAUUCGUUCUAUCCAAAGUGAU AGAAAAGCUUGGGCUGCCUUCUACGUAUAUAAACUUCA ACCGUUAACUUUCCUGUUGGAUUUUUUCUGUUGAUGGUU AUAUACGCAGAGCUAUAGACUGUGGUUUUAAUGAUUUG UCACAACUCCACUGCUCAUAUGAAUCCUUCGAUGUUGAA UCUGGAGUUUAUUCAGUUUCGUCUUUCGAAGCAAAACC UUCUGGCUCAGUUGUGGAACAGGCUGAAGGUGUUGAAU GUGAUUUUUCACCUCUUCUGUCUGGCACACCUCCUCAGG

Strain Nucleic Acid Sequence SEQ ID NO:

UUUAUAAUUUCAAGCGUUUGGUUUUUACCAAUUGCAAU UAUAAUCUUACCAAAUUGCUUUCACUUUUUUCUGUGAA UGAUUUUACUUGUAGUCAAAUAUCUCCAGCAGCAAUUG CUAGCAACUGUUAUUCUUCACUGAUUUUUGGAUUAUUUU UCAUACCCACUUAGUAUGAAAUCCGAUCUCAGUGUUAG UUCUGCUGGUCCAAUAUCCCAGUUUAAUUAUAAACAGU CCUUUUCUAAUCCCACAUGUUUGAUCUUAGCGACUGUUC CUCAUAACCUUACUACUAUUACUAAGCCUCUUAAGUACA GCUAUAUUAACAAGUGCUCUCGUCUUCUUUCUGAUGAU CGUACUGAAGUACCUCAGUUAGUGAACGCUAAUCAAUA CUCACCCUGUGUAUCCAUUGUCCCAUCCACUGUGUGGGA AGACGGUGAUUAUUAUAGGAAACAACUAUCUCCACUUG AAGGUGGUGGCUGGCUGUUGCUAGUGGCUCAACUGUU GCCAUGACUGAGCAAUUACAGAUGGGCUUUGGUAUUAC AGUUCAAUAUGGUACAGACACCAAUAGUGUUUGCCCCA AGCUUGAAUUUGCUAAUGACACAAAAAUUGCCUCUCAA UUAGGCAAUUGCGUGGAAUAUUCCCUCUAUGGUGUUUC GGGCCGUGGUGUUUUUCAGAAUUGCACAGCUGUAGGUG UUCGACAGCAGCGCUUUGUUUAUGAUGCGUACCAGAAU UUAGUUGGCUAUUAUUCUGAUGAUGGCAACUACUACUG UCUGCGUGCUUGUGUUAGUGUUCCUGUUUCUGUCAUCU AUGAUAAAGAAACUAAAACCCACGCUACUCUAUUUGGU AGUGUUGCAUGUGAACACAUUUCUUCUACCAUGUCUCA AUACUCCCGUUCUACGCGAUCAAUGCUUAAACGGCGAGA UUCUACAUAUGGCCCCCUUCAGACACCUGUUGGUUGUGU CCUAGGACUUGUUAAUUCCUCUUUGUUCGUAGAGGACU GCAAGUUGCCUCUCGGUCAAUCUCUCUGUGCUCUUCCUG ACACACCUAGUACUCUCACACCUCGCAGUGUGCGCUCUG UGCCAGGUGAAAUGCGCUUGGCAUCCAUUGCUUUUAAU CAUCCCAUUCAGGUUGAUCAACUUAAUAGUAGUUAUUU UAAAUUAAGUAUACCCACUAAUUUUUCCUUUGGUGUGA CUCAGGAGUACAUUCAGACAACCAUUCAGAAAGUUACU GUUGAUUGUAAACAGUACGUUUGCAAUGGUUUCCAGAA GUGUGAGCAAUUACUGCGCGAGUAUGGCCAGUUUUGUU CCAAAAUAAACCAGGCUCUCCAUGGUGCCAAUUUACGCC AGGAUGAUUCUGUACGUAAUUUGUUUGCGAGCGUGAAA AGCUCUCAAUCAUCUCCUAUCAUACCAGGUUUUGGAGGU GACUUUAAUUUGACACUUCUAGAACCUGUUUCUAUAUC UACUGGCAGUCGUAGUGCACGUAGUGCUAUUGAGGAUU UGCUAUUUGACAAAGUCACUAUAGCUGAUCCUGGUUAU AUGCAAGGUUACGAUGAUUGUAUGCAGCAAGGUCCAGC AUCAGCUCGUGAUCUUAUUUGUGCUCAAUAUGUGGCUG GUUAUAAAGUAUUACCUCCUCUUAUGGAUGUUAAUAUG GAAGCCGCGUAUACUUCAUCUUUGCUUGGCAGCAUAGCA GGUGUUGGCUGGACUGCUGGCUUAUCCUCCUUUGCUGCU AUUCCAUUUGCACAGAGUAUYUUUUAUAGGUUAAACGG UGUUGGCAUUACUCAACAGGUUCUUUCAGAGAACCAAA AGCUUAUUGCCAAUAAGUUUAAUCAGGCUCUGGGAGCU AUGCAAACAGGCUUCACUACAACUAAUGAAGCUUUUCG GAAGGUUCAGGAUGCUGUGAACAACAAUGCACAGGCUC UAUCCAAAUUAGCUAGCGAGCUAUCUAAUACUUUUGGU GCUAUUUCCGCCUCUAUUGGAGACAUCAUACAACGUCUU GAUGUUCUCGAACAGGACGCCCAAAUAGACAGACUUAU UAAUGGCCGUUUGACAACACUAAAUGCUUUUGUUGCAC AGCAGCUUGUUCGUUCCGAAUCAGCUGCUCUUUCCGCUC AAUUGGCUAAAGAUAAAGUCAAUGAGUGUGUCAAGGCA CAAUCCAAGCGUUCUGGAUUUUGCGGUCAAGGCACACAU AUAGUGUCCUUUGUUGUAAAUGCCCCUAAUGGCCUUUA CUUUAUGCAUGUUGGUUAUUACCCUAGCAACCACAUUG AGGUUGUUUCUGCUUAUGGUCUUUGCGAUGCAGCUAAC CCUACUAAUUGUAUAGCCCCUGUUAAUGGCUACUUUAU UAAAACUAAUAACACUAGGAUUGUUGAUGAGGGUCAU AUACUGGCUCGUCCUUCUAUGCACCUGAGCCCAUCACCU CUCUUAAUACUAAGUAUGUUGCACCACAGGUGACAUACC AAAACAUUUCUACUAACCUCCCUCCUCCUCUUCUCGGCA AUUCCACCGGGAUUGACUUCCAAGAUGAGUUGGAUGAG UUUUUCAAAAAUGUUAGCACCAGUAUACCUAAUUUUGG UUCUCUAACACAGAUUAAUACUACAUUACUCGAUCUUAC CUACGAGAUGUUGUCUCUUCAACAAGUUGUUAAAGCCC UUAAUGAGUCUUACAUAGACCUUAAAGAGCUUGGCAAU UAUACUUAUUACAACAAAUGGCCGUGGUACAUUUGGCU UGGUUUCAUUGCUGGGCUUGUUGCCUUAGCUCUAUGCG UCUUCUUCAUACUGUGCUGCACUGGUUGUGGCACAAACU GUAUGGGAAAACUUAAGUGUAAUCGUUGUUGUGAUAGA UACGAGGAAUACGACCUCGAGCCGCAUAAGGUUCAUGU UCACUAA

Strain	Nucleic Acid Sequence	SEQ ID NO:
MERS S FL	AUGAUACACUCAGUGUUUCUACUGAUGUUCUUGUUAAC	66
SPIKE	ACCUACAGAAAGUUACGUUGAUGUAGGGCCAGAUUCUG UUAAGUCUGCUUGUAUUGAGGUUGAUAUACAACAGACU	
2cEMC/2012 (XBaI change	UUCUUUGAUAAAACUUGGCCUAGGCCAAUUGAUGUUUC	
(U to G))	UAAGGCUGACGGUAUUAUAUACCCUCAAGGCCGUACAU	
(nucleotide)	AUUCUAACAUAACUAUCACUUAUCAAGGUCUUUUUCCCU	
,	AUCAGGGAGACCAUGGUGAUAUGUAUGUUUACUCUGCA	
	GGACAUGCUACAGGCACAACUCCACAAAAGUUGUUUGU	
	AGCUAACUAUUCUCAGGACGUCAAACAGUUUGCUAAUG	
	GGUUUGUCGUCCGUAUAGGAGCAGCUGCCAAUUCCACUG	
	GCACUGUUAUUAUUAGCCCAUCUACCAGCGCUACUAUAC	
	GAAAAAUUUACCCUGCUUUUAUGCUGGGUUCUUCAGUU GGUAAUUUCUCAGAUGGUAAAAUGGGCCGCUUCUUCAA	
	UCAUACUCUAGUUCUUUUGCCCGAUGGAUGUGGCACUU	
	UACUUAGAGCUUUUUAUUGUAUUCUGGAGCCUCGCUCU	
	GGAAAUCAUUGUCCUGCUGGCAAUUCCUAUACUUCUUU	
	UGCCACUUAUCACACUCCUGCAACAGAUUGUUCUGAUGG	
	CAAUUACAAUCGUAAUGCCAGUCUGAACUCUUUUAAGG	
	AGUAUUUUAAUUUACGUAACUGCACCUUUAUGUACACU	
	UAUAACAUUACCGAAGAUGAGAUUUUAGAGUGGUUUGG	
	CAUUACACAAACUGCUCAAGGUGUUCACCUCUUCUCAUC UCGGUAUGUUGAUUUGUACGGCGCAAUAUGUUUCAAU	
	UUGCCACCUUGCCUGUUUAUGAUACUAUUAAGUAUUAU	
	UCUAUCAUUCCUCACAGUAUUCGUUCUAUCCAAAGUGAU	
	AGAAAAGCUUGGGCUGCCUUCUACGUAUAUAAACUUCA	
	ACCGUUAACUUUCCUGUUGGAUUUUUCUGUUGAUGGUU	
	AUAUACGCAGAGCUAUAGACUGUGGUUUUAAUGAUUUG	
	UCACAACUCCACUGCUCAUAUGAAUCCUUCGAUGUUGAA	
	UCUGGAGUUUAUUCAGUUUCGUCUUUCGAAGCAAAACC	
	UUCUGGCUCAGUUGUGGAACAGGCUGAAGGUGUUGAAU GUGAUUUUUCACCUCUCUGGCACACCUCCUCAGG	
	UUUAUAAUUUCAAGCGUUUGGUUUUUACCAAUUGCAAU	
	UAUAAUCUUACCAAAUUGCUUUCACUUUUUUCUGUGAA	
	UGAUUUUACUUGUAGUCAAAUAUCUCCAGCAGCAAUUG	
	CUAGCAACUGUUAUUCUUCACUGAUUUUGGAUUACUUU	
	UCAUACCCACUUAGUAUGAAAUCCGAUCUCAGUGUUAG	
	UUCUGCUGGUCCAAUAUCCCAGUUUAAUUAUAAACAGU	
	CCUUUUCUAAUCCCACAUGUUUGAUUUUAGCGACUGUUC CUCAUAACCUUACUACUAUUACUAAGCCUCUUAAGUACA	
	GCUAUAUUAACAAGUGCUCUCGUCUUCUUUCUGAUGAU	
	CGUACUGAAGUACCUCAGUUAGUGAACGCUAAUCAAUA	
	CUCACCCUGUGUAUCCAUUGUCCCAUCCACUGUGUGGGA	
	AGACGGUGAUUAUUAUAGGAAACAACUAUCUCCACUUG	
	AAGGUGGUGGCUUGUUGCUAGUGGCUCAACUGUU	
	GCCAUGACUGAGCAAUUACAGAUGGGCUUUGGUAUUAC	
	AGUUCAAUAUGGUACAGACACCAAUAGUGUUUGCCCCA AGCUUGAAUUUGCUAAUGACACAAAAAUUGCCUCUCAA	
	UUAGGCAAUUGCGUGGAAUAUUCCCUCUAUGGUGUUUC	
	GGGCCGUGGUUUUUCAGAAUUGCACAGCUGUAGGUG	
	UUCGACAGCAGCGCUUUGUUUAUGAUGCGUACCAGAAU	
	UUAGUUGGCUAUUAUUCUGAUGAUGGCAACUACUACUG	
	UUUGCGUGCUUGUGUUAGUGUUCCUGUUUCUGUCAUCU	
	AUGAUAAAGAAACUAAAACCCACGCUACUCUAUUUGGU	
	AGUGUUGCAUGUGAACACAUUUCUUCUACCAUGUCUCA	
	AUACUCCCGUUCUACGCGAUCAAUGCUUAAACGGCGAGA UUCUACAUAUGGCCCCCUUCAGACACCUGUUGGUUGUGU	
	CCUAGGACUUGUUAAUUCCUCUUUGUUCGUAGAGGACU	
	GCAAGUUGCCUCUUGGUCAAUCUCUGUGUGCUCUUCCUG	
	ACACACCUAGUACUCUCACACCUCGCAGUGUGCGCUCUG	
	UUCCAGGUGAAAUGCGCUUGGCAUCCAUUGCUUUUAAU	
	CAUCCUAUUCAGGUUGAUCAACUUAAUAGUAGUUAUUU	
	UAAAUUAAGUAUACCCACUAAUUUUUCCUUUGGUGUGA	
	CUCAGGAGUACAUUCAGACAACCAUUCAGAAAGUUACU	
	GUUGAUUGUAAACAGUACGUUUGCAAUGGUUUCCAGAA GUGUGAGCAAUUACUGCGCGAGUAUGGCCAGUUUUGUU	
	CCAAAAUAAACCAGGCUCUCCAUGGUGCCAAUUUACGCC	
	AGGAUGAUUCUGUACGUAAUUUGUUUGCGAGCGUGAAA	
	AGCUCUCAAUCAUCUCCUAUCAUACCAGGUUUUGGAGGU	
	GACUUUAAUUUGACACUUCUGGAACCUGUUUCUAUAUC	
	UACUGGCAGUCGUAGUGCACGUAGUGCUAUUGAGGAUU	
	UGCUAUUUGACAAAGUCACUAUAGCUGAUCCUGGUUAU	
	AUGCAAGGUUACGAUGAUUGCAUGCAGCAAGGUCCAGC	
	AUCAGCUCGUGAUCUUAUUUGUGCUCAAUAUGUGGCUG GUUACAAAGUAUUACCUCCUCUUAUGGAUGUUAAUAUG	
	GAAGCCGCGUAUACUUCAUCUUUGCUUGGCAGCAUAGCA	
	GGUGUUGGCUGGACUGCUUAUCCUCCUUUGCUGCU	
	AUUCCAUUUGCACAGAGUAUCUUUUAUAGGUUAAACGG	

SEQ ID Strain Nucleic Acid Sequence NO:

UGUUGGCAUUACUCAACAGGUUCUUUCAGAGAACCAAA AGCUUAUUGCCAAUAAGUUUAAUCAGGCUCUGGGAGCU AUGCAAACAGGCUUCACUACAACUAAUGAAGCUUUUCA GAAGGUUCAGGAUGCUGUGAACAACAAUGCACAGGCUC UAUCCAAAUUAGCUAGCGAGCUAUCUAAUACUUUUGGU GCUAUUUCCGCCUCUAUUGGAGACAUCAUACAACGUCUU GAUGUUCUCGAACAGGACGCCCAAAUAGACAGACUUAU UAAUGGCCGUUUGACAACACUAAAUGCUUUUGUUGCAC AGCAGCUUGUUCGUUCCGAAUCAGCUGCUCUUUCCGCUC AAUUGGCUAAAGAUAAAGUCAAUGAGUGUGUCAAGGCA CAAUCCAAGCGUUCUGGAUUUUGCGGUCAAGGCACACAU AUAGUGUCCUUUGUUGUAAAUGCCCCUAAUGGCCUUUA CUUCAUGCAUGUUGGUUAUUACCCUAGCAACCACAUUGA GGUUGUUUCUGCUUAUGGUCUUUGCGAUGCAGCUAACC CUACUAAUUGUAUAGCCCCUGUUAAUGGCUACUUUAUU AAAACUAAUAACACUAGGAUUGUUGAUGAGUGGUCAUA UACUGGCUCGUCCUUCUAUGCACCUGAGCCCAUUACCUC CCUUAAUACUAAGUAUGUUGCACCACAGGUGACAUACCA AAACAUUUCUACUAACCUCCCUCCUCCUCUUCUCGGCAA UUCCACCGGGAUUGACUUCCAAGAUGAGUUGGAUGAGU UUUUCAAAAAUGUUAGCACCAGUAUACCUAAUUUUGGU UCCCUAACACAGAUUAAUACUACAUUACUCGAUCUUACC UACGAGAUGUUGUCUCUUCAACAAGUUGUUAAAGCCCU UAAUGAGUCUUACAUAGACCUUAAAGAGCUUGGCAAUU AUACUUAUUACAACAAAUGGCCGUGGUACAUUUGGCUU GGIIIIICAIIIIGCIIGGGCIIIIGIIIIGCCIIIIAGCIICIIAIIGCGII CUUCUUCAUACUGUGCUGCACUGGUUGUGGCACAAACUG UAUGGGAAAACUUAAGUGUAAUCGUUGUUGUGAUAGAU ACGAGGAAUACGACCUCGAGCCGCAUAAGGUUCAUGUUC ACUAA

AUGAUCCACUCCGUGUUCCUCCUCAUGUUCCUGUUGACC

Novel_MERS_S2_subunit_trimeric vaccine (nucleotide)

 $\tt CCCACUGAGUCAGACUGCAAGCUCCCGCUGGGACAGUCC$ CUGUGUGCGCUGACACUCCUAGCACUCUGACCCCA CGCUCCGUGCGGUCGGUGCCUGGCGAAAUGCGGCUGGCC UCCAUCGCCUUCAAUCACCCAAUCCAAGUGGAUCAGCUG AAUAGCUCGUAUUUCAAGCUGUCCAUCCCCACGAACUUC UCGUUCGGGGUCACCCAGGAGUACAUCCAGACCACAAUU CAGAAGGUCACCGUCGAUUGCAAGCAAUACGUGUGCAAC GGCUUCCAGAAGUGCGAGCAGCUGCUGAGAGAAUACGG GCAGUUUUGCAGCAAGAUCAACCAGGCGCUGCAUGGAGC UAACUUGCGCCAGGACGACUCCGUGCGCAACCUCUUUGC CUCUGUGAAGUCAUCCCAGUCCUCCCCAAUCAUCCCGGG AUUCGGAGGGGACUUCAACCUGACCCUCCUGGAGCCCGU GUCGAUCAGCACCGGUAGCAGAUCGGCGCGCUCAGCCAU UGAAGAUCUUCUGUUCGACAAGGUCACCAUCGCCGAUCC GGGCUACAUGCAGGAUACGACGACUGUAUGCAGCAGG GACCAGCCUCGCGAGGGACCUCAUCUGCGCGCAAUACG UGGCCGGGUACAAAGUGCUGCCUCCUCUGAUGGAUGUG AACAUGGAGGCCGCUUAUACUUCGUCCCUGCUCGGCUCU AUCGCCGGCGUGGGGUGGACCGCCGGCCUGUCCUUC GCCGCUAUCCCCUUUGCACAAUCCAUUUUCUACCGGCUC AACGGCGUGGGCAUUACUCAACAAGUCCUGUCGGAGAAC CAGAAGUUGAUCGCAAACAAGUUCAAUCAGGCCCUGGG GGCCAUGCAGACUGGAUUCACUACGACUAACGAAGCGUU CCAGAAGGUCCAGGACGCUGUGAACAACAACGCCCAGGC GCUCUCAAAGCUGGCCUCCGAACUCAGCAACACCUUCGG AGCCAUCAGCGCAUCGAUCGGUGACAUAAUUCAGCGGCU GGACGUGCUGGAGCAGGACGCCCAGAUCGACCGCCUCAU CAACGGACGGCUGACCACCUUGAAUGCCUUCGUGGCACA ACAGCUGGUCCGGAGCGAAUCAGCGGCACUUUCCGCCCA ACUCGCCAAGGACAAAGUCAACGAAUGCGUGAAGGCCCA GUCCAAGAGGUCCGGUUUCUGCGGUCAAGGAACCCAUAU UGUGUCCUUCGUCGUGAACGCCCCAACGGUCUGUACUU UAUGCACGUCGGCUACUACCCGAGCAAUCAUAUCGAAGU GGUGUCCGCCUACGGCCUGUGCGAUGCCGCUAACCCCAC UAACUGUAUUGCCCCUGUGAACGGAUAUUUUAUUAAGA CCAACAACACCCGCAUUGUGGACGAAUGGUCAUACACCG GUUCGUCCUUCUACGCGCCCGAGCCCAUCACUUCACUGA ACACCAAAUACGUGGCUCCGCAAGUGACCUACCAGAACA UCUCCACCAAUUUGCCGCCGCCGCUGCUCGGAAACAGCA CCGGAAUUGAUUUCCAAGAUGAACUGGACGAAUUCUUC AAGAACGUGUCCACUUCCAUUCCCAACUUCGGAAGCCUG ACACAGAUCAACACCACCCUUCUCGACCUGACCUACGAG AUGCUGAGCCUUCAACAAGUGGUCAAGGCCCUGAACGAG AGCUACAUCGACCUGAAGGAGCUGGGCAACUAUACCUAC UACAACAAGUGGCCGGACAAGAUUGAGGAGAUUCUGUC

Strain	Nucleic Acid Sequence	SEQ ID NO:
	GAAAAUCUACCACAUUGAAAACGAGAUCGCCAGAAUCA AGAAGCUUAUCGGCGAAGCC	
MERS_S0_Full- length Spike	AUGGAAACCCCUGCCCAGCUGCUGUUCCUGCUGCUGCUG UGGCUGCCUGAUACCACCGGCAGCUAUGUGGACGUGGGC	68
protein	CCCGAUAGCGUGAAGUCCGCCUGUAUCGAAGUGGACAUC	
(nucleotide,	CAGCAGACCUUUUUCGACAAGACCUGGCCCAGACCCAUC	
codon	GACGUGUCCAAGGCCGACGGCAUCAUCUAUCCACAAGGC CGGACCUACAGCAACAUCACCAUUACCUACCAGGGCCUG	
optimized)	UUCCCAUAUCAGCGACCACGGCGAUAUGUACCUGGGCCUG UUCCCAUAUCAAGGCGACCACGGCGAUAUGUACGUGUAC	
	UCUGCCGGCCACGCCACCGGCACCCCCAGAAACUG	
	UUCGUGGCCAACUACAGCCAGGACGUGAAGCAGUUCGCC	
	AACGGCUUCGUCGUGCGAUUGGCGCCGCUGCCAAUAGC	
	ACCGGCACAGUGAUCAUCAGCCCCAGCACCAGCGCCACC	
	AUCCGGAAGAUCUACCCCGCCUUCAUGCUGGGCAGCUCC GUGGGCAAUUUCAGCGACGGCAAGAUGGGCCGGUUCUU	
	CAACCACACCUGGUGCUGCUGCCGAUGGCUGUGGCAC	
	ACUGCUGAGAGCCUUCUACUGCAUCCUGGAACCCAGAAG	
	CGGCAACCACUGCCCUGCCGGCAAUAGCUACACCAGCUU	
	CGCCACCUACCACACCCGCCACCGAUUGCUCCGACGG CAACUACAACCGGAACGCCAGCCUGAACAGCUUCAAAGA	
	GUACUUCAACCUGCGGAACUGCACCUUCAUGUACACCUA	
	CAAUAUCACCGAGGACGAGAUCCUGGAAUGGUUCGGCA	
	UCACCCAGACCGCCCAGGGCGUGCACCUGUUCAGCAGCA	
	GAUACGUGGACCUGUACGGCGCAACAUGUUCCAGUUU	
	GCCACCCUGCCCGUGUACGACACCAUCAAGUACUACAGC AUCAUCCCCCACAGCAUCCGGUCCAUCCAGAGCGACAGA	
	AAAGCCUGGGCCGCCUUCUACGUGUACAAGCUGCAGCCC	
	CUGACCUUCCUGCUGGACUUCAGCGUGGACGGCUACAUC	
	AGACGGGCCAUCGACUGCGGCUUCAACGACCUGAGCCAG	
	CUGCACUGCUCCUACGAGAGCUUCGACGUGGAAAGCGGC	
	GUGUACAGCGUGUCCAGCUUCGAGGCCAAGCCUAGCGGC AGCGUGGUGGAACAGGCUGAGGGCGUGGAAUGCGACUU	
	CAGCCCUCUGCUGAGCGCCCCCCCCCCCAGGUGUACAA	
	CUUCAAGCGGCUGGUGUUCACCAACUGCAAUUACAACCU	
	GACCAAGCUGCUGAGCCUGUUCUCCGUGAACGACUUCAC	
	CUGUAGCCAGAUCAGCCCUGCCGCCAUUGCCAGCAACUG CUACAGCAGCCUGAUCCUGGACUACUUCAGCUACCCCCU	
	GAGCAUGAAGUCCGAUCUGAGCGUGUCCUCCGCCGGACC	
	CAUCAGCCAGUUCAACUACAAGCAGAGCUUCAGCAACCC	
	UACCUGCCUGAUUCUGGCCACCGUGCCCCACAAUCUGAC	
	CACCAUCACCAAGCCCCUGAAGUACAGCUACAUCAACAA GUGCAGCAGACUGCUGUCCGACGGACCGGAC	
	CCAGCUCGUGAACGCCAACCAGUACAGCCCCUGCGUGUC	
	CAUCGUGCCCAGCACCGUGUGGGAGGACGGCGACUACUA	
	CAGAAAGCAGCUGAGCCCCCUGGAAGGCGGCGGAUGGCU	
	GGUGGCUUCUGGAAGCACAGUGGCCAUGACCGAGCAGCU GCAGAUGGGCUUUGGCAUCACCGUGCAGUACGGCACCGA	
	CACCAACAGCGUGUGCCCCAAGCUGGAAUUCGCCAAUGA	
	CACCAAGAUCGCCAGCCAGCUGGGAAACUGCGUGGAAUA	
	CUCCCUGUAUGGCGUGUCCGGACGGGGCGUGUUCCAGAA	
	UUGCACAGCAGUGGGAGUGCGGCAGCAGAGAUUCGUGU ACGAUGCCUACCAGAACCUCGUGGGCUACUACAGCGACG	
	ACGGCAAUUACUACUGCCUGCGGGCCUGUGUGUCCGUGC	
	CCGUGUCCGUGAUCUACGACAAAGAGACAAAGACCCACG	
	CCACACUGUUCGGCUCCGUGGCCUGCGAGCACAUCAGCU	
	CCACCAUGAGCCAGUACUCCCGCUCCACCCGGUCCAUGC UGAAGCGGAGAGAUAGCACCUACGGCCCCUGCAGACAC	
	CUGUGGGAUGUGUGCUGGGCCUCGUGAACAGCUCCCUGU	
	UUGUGGAAGAUUGCAAGCUGCCCCUGGGCCAGAGCCUGU	
	GUGCCCUGCCAGAUACCCCUAGCACCCUGACCCCUAGAA	
	GCGUGCGCUCUGUGCCCGGCGAAAUGCGGCUGGCCUCUA UCGCCUUCAAUCACCCCAUCCAGGUGGACCAGCUGAACU	
	CCAGCUACUACAGCUGAGCAUCCCACCAACUUCAGCU	
	UCGGCGUGACCCAGGAGUACAUCCAGACCACAAUCCAGA	
	AAGUGACCGUGGACUGCAAGCAGUACGUGUGCAACGGC	
	UUUCAGAAGUGCGAACAGCUGCUGCGCGAGUACGGCCAG	
	UUCUGCAGCAAGAUCAACCAGGCCCUGCACGGCGCCAAC CUGAGACAGGAUGACAGCGUGCGGAACCUGUUCGCCAGC	
	GUGAAAAGCAGCCAGUCCAGCCCAUCAUCCCUGGCUUC	
	GGCGGCGACUUUAACCUGACCCUGCUGGAACCUGUGUCC	
	AUCAGCACCGGCUCCAGAAGCGCCAGAUCCGCCAUCGAG	
	GACCUGCUGUUCGACAAAGUGACCAUUGCCGACCCCGGC UACAUGCAGGGCUACGACGAUUGCAUGCAGCAGGGCCCA	
	GCCAGCGCCAGGAUCUGAUCUGUGCCCAGUAUGUGGCC	
	GGCUACAAGGUGCUGCCCCCCUGAUGGACGUGAACAUG	
	GAAGCCGCCUACACCUCCAGCCUGCUGGGCUCUAUUGCU	

Strain	Nucleic Acid Sequence	SEQ ID NO:
	GGCGUGGGAUGGACAGCCGGCCUGUCUAGCUUUGCCGCC	
	AUCCCUUUCGCCCAGAGCAUCUUCUACCGGCUGAACGGC	
	GUGGGCAUCACACAACAGGUGCUGAGCGAGAACCAGAA	
	GCUGAUCGCCAACAAGUUUAACCAGGCACUGGGCGCCAU	
	GCAGACCGGCUUCACCACCAACGAGGCCUUCAGAAA	
	GGUGCAGGACGCCGUGAACAACAACGCCCAGGCUCUGAG	
	CAAGCUGGCCUCCGAGCUGAGCAAUACCUUCGGCGCCAU	
	CAGCGCCUCCAUCGGCGACAUCAUCCAGCGGCUGGACGU	
	GCUGGAACAGGACGCCCAGAUCGACCGGCUGAUCAACGG	
	CAGACUGACCACCCUGAACGCCUUCGUGGCACAGCAGCU	
	CGUGCGGAGCGAAUCUGCCGCUCUGUCUGCUCAGCUGGC	
	CAAGGACAAAGUGAACGAGUGCGUGAAGGCCCAGUCCA	
	AGCGGAGCGGCUUUUGUGGCCAGGGCACCCACAUCGUGU	
	CCUUCGUCGUGAAUGCCCCCAACGGCCUGUACUUUAUGC	
	ACGUGGGCUAUUACCCCAGCAACCACAUCGAGGUGGUGU	
	CCGCCUAUGGCCUGUGCGACGCCCAAUCCUACCAACU	
	GUAUCGCCCCGUGAACGGCUACUUCAUCAAGACCAACA	
	ACACCCGGAUCGUGGACGAGUGGUCCUACACAGGCAGCA	
	GCUUCUACGCCCCGAGCCCAUCACCUCCCUGAACACCA	
	AAUACGUGGCCCCCAAGUGACAUACCAGAACAUCUCCA	
	CCAACCUGCCCCUCCACUGCUGGGAAAUUCCACCGGCA	
	UCGACUUCCAGGACGAGCUGGACGAGUUCUUCAAGAACG	
	UGUCCACCUCCAUCCCCAACUUCGGCAGCCUGACCCAGA	
	UCAACACCACUCUGCUGGACCUGACCUACGAGAUGCUGU	
	CCCUGCAACAGGUCGUGAAAGCCCUGAACGAGAGCUACA	
	UCGACCUGAAAGAGCUGGGGAACUACACCUACUACAACA	
	AGUGGCCUUGGUACAUUUGGCUGGGCUUUAUCGCCGGCC	
	UGGUGGCCCUGGCCCUGUGCGUGUUCUUCAUCCUGUGCU	
	GCACCGGCUGCGGCACCAAUUGCAUGGGCAAGCUGAAAU	
	GCAACCGGUGCUGCGACAGAUACGAGGAAUACGACCUGG	
	AACCUCACAAAGUGCAUGUGCAC	
	JAJDUDUAJDUDAAAJAJUJJAA	

TABLE 11

TADLE II				
В	etacoronavirus Amino Acid Sequences			
Strain	Amino Acid Sequence	SEQ ID NO:		
gb KJ156934.1 : 21405-25466 Middle East respiratory syndrome coronavirus isolate Riyadh_14_2013, spike protein (amino acid)	MIHSVFLLMFLLTPTESYVDVGPDSVKSACIEVDIQQTFFDK TWPRPIDVSKADGIIYPQGRTYSNITITYQGLFPYQGDHGDM YVYSAGHATGTTPQKLFVANYSQDVKQFANGFVVRIGAAANS TGTVIISPSTSATIRKIYPAFMLGSSVGNFSDGKMGRFFNHT LVLLPDGCGTLLRAFYCILEPRSGNHCPAGNSYTSFATTHTP ATDCSDGNYNRNASLNSFKEYFNLRNCTFMYTYNITEDEILE WFGITQTAQGVHLFSSRYVDLYGGNMFQFATLPVYDTIKYYS IIPHSIRSIQSDRKAWAAAFYVYKLQPLTFLLDFSVDGYIRRA IDCGFNDLSQLHCSYESFDVESGVYSVSSFEAKPSGSVVEQA EGVECDFSPLLSGTPPQVYNFKRLVFTNCNYNLTKLLSLFSV NDFtCSQISPAAIASNCYSSLILDYFSYPLSMKSDLSVSSAG PISQFNYKQSFSNPTCLILATVPHNLTTITKPLKYSYINKCS RLLSDDRTEVPQLVNANQYSPCVSIVPSTVWEDGDYYRKQLS PLEGGGWLVASGSTVANTEQLQMGFGITVQYGTDTNSVCPKL EFANDTKIASQLGNCVEYSLYGVSGRGVFQNCTAVGVRQQRF VYDAYQNLVGYYSDDGMYYCLRACVSVPVSVIYDKETKTHAT LFGSVACEHISSTMSQYSRSTRSMLKRRDSTYGPLQTPVGCV LGLVNSSLFVEDCKLPLGQSLCALPDTPSTLTPRSVRSVPGE MRLASIAFNHPIQVDQLNSSYFKLSIPTNFSFGVTQEYIQTT IQKVTVDCKQYVCNGFQKCEQLLREYGQFCSKINQALHGANL RQDDSVRNLFASVKSSQSPIIPGFGGDFNLTLLEPVSISTG SRSARSAIEDLLFDKVTIADPGYMQGYDDCMQQGPASARDLI CAQYVAGYKULPPLMDVNMEAAYTSSLLGSIAGVGWTAGLSS FAAIPFAQSIFYRLNGVGITQQVLSENQKLIANKFNQALGAM QTGFTTTNEAFTKVQDAVNNNAQALSKLASELSNTFGAISAS IGDIIQRLDVLEQDAQIDRLINGRLTTLNAFVAQQLVRSESA ALSAQLAKDKVNECVKAQSKRSGFCGGGTHIVSFVVNAPNGL YFMHVGYYPSNHIEVVSAYGLCDAANPTNCIAPVNGYFIKN NTRIVDEWSYTGSSFYAPEPITSLNTKYVAPQVTYQNISTNL PPPLLGNSTGIDFQDELDEFFRNVSTSIPNFGSLTQINTTLL DLTYEMLSLQVVKALNESYIDLKELGNYTYYNKWPWYIWLG FIAGLVALACVFFILCCTGCGTNCMGKLKCNRCCDRYEEYD LEPHKVHVH	24		

TABLE 11-continued Betacoronavirus Amino Acid Sequences				
MERS S FL SPIKE 2cEMC/2012 (XBaI change (T to G)) (amino acid)	MIHSVFLLMFLLTPTESYVDVGPDSVKSACIEVDIQQTFFDK TWPRPIDVSKADGIIYPQGRTYSNITITYQGLFPYQGDHGDM YVYSAGHATGTTPQKLFVANYSQDVKQFANGFVVRIGAAANS TGTVIISPSTSATIRKIYPAFMLGSSVGMFSDGKMGRFFNHT LVLLPDGCGTLLRAFYCILEPRSGNHCPAGNSYTSFATYHTP ATDCSDGNYNRNASLNSFKEYFNLRNCTFMYTYNITEDEILE WFGITQTAQGVHLFSSRYVDLYGGMMFQFATLPVYDTIKYYS IIPHSIRSIQSDRKAWAAFYVYKLQPLTFLLDFSVDGYIRRA IDCGFNDLSQLHCSYESFDVESGVYSVSSFEAKPSGSVVEQA EGVECDFSPLLSGTPPQVYNFKRLVFTNCNYNLTKLLSLFSV NDFTCSQISPAAIASNCYSSLILDYFSYPLSMKSDLSVSSAG PISQFNYKQSFSNPTCLILATVPHNLTTITKPLKYSYINKCS RLLSDDRTEVPQLVNANQYSPCVSIVPSTVWEDGDYYRKQLS PLEGGGWLVASGSTVAMTEQLQMGFGITVQYGTDTNSVCPKL EFANDTKIASQLGNCVEYSLYGYSGRGVFQNCTAYGVRQQFP VYDAYQNLVGYYSDDGNYYCLRACVSVPVSVIYDKETKTHAT LFGSVACEHISSTMSQYSRSTRSMLKRRDSTYGPLQTPVGCV LGLVNSSLFVEDCKLPLGQSLCALPDTPSTLTPRSVRSVPGE MRLASIAFNHPIQVDQLNSSYFKLSIPTNFSFGVTQEYIQTT IQKVTVDCKQVVCNGFGKCEQLLREYGQFCSKINQALHGANL RQDDSVRNLFASVKSSQSSPIIPGFGGDFNLTLLEPVSISTG SRSARSAIEDLLFDKVTIADPGTMQGYDDCMQQGPASARDLI CAQYVAGYKVLPPLMDVNMEAAYTSSLLGSIAGVGWTAGLSS FAAIPFAQSIFYRLNGVGITQQVLSENQKLIANKFNQALGAM QTGFTTTNEAFQKVQDAVNNNAQALSKLASELSNTFGAISAS IGDIIQRLDVLEQDAQIDRLINGRLTTLNAFVAQQLVRSESA ALSAQLAKDKVNECVKAQSKRSGFCQGTHIVSFVVNAPNGL YFMHVGYYPSNHIEVVSAYGLCDAANPTNCIAPVNGYFIKTN NTRIVDEWSYTGSSFYAPEPITSLNTKYVAPQVTYQNISTNL PPPLLGNSTGIDFQDELDEFFKNVSTSIPNFGSLTQINTTLL PPPLLGNSTGIDFQDELDEFFKNVSTSIPNFGSLTQINTTLL DLTYYEMLSLQQVVKALMESYIDLKELGNTYYNKFWFYINLG FIAGLVALALCVFFILCCTGCGTNCMGKLKCNRCCDRYEEYD LEPHKVHVH	25		
Novel_MERS_S2_sub- unit_trimeric vaccine (amino acid)	MIHSVFLLMFLLTPTESDCKLPLGQSLCALPDTPSTLTPRSV RSVPGEMRLASIAFNHPIQVDQLNSSYFKLSIPTNFSFGVTQ EYIQTTIQKVTVDCKQYVCNGFQKCEQLLREYGQFCSKINQA LHGANLRQDDSVRNLFASVKSSQSSPIIPGFGGDFNLTLLEP VSISTGSRSARSAIEDLLFDKVTIADPGYMQGYDDCMQQGPA SARDLICAQYVAGYKVLPPLMDVNMEAAYTSSLLGSIAGVGW TAGLSSFAAIPFAQSIFYRLNGVGITQQVLSENQKLIANKFN QALGAMQTGFTTTNEAFQKVQDAVNNNAQALSKLASELSNTF GAISASIGDIIQRLDVLEQDAQIDRLINGRLTTLNAFVAQQL VRSESAALSAQLAKDKVNECVKAQSKRSGFCGQGTHIVSFVV NAPNGLYFMHVGYYPSNHIEVVSAYGLCDAANPTNCIAPVNG YFIKTNNTRIVDEWSYTGSSFYAPEPITSLNTKYVAPQVTYQ NISTNLPPPLLGNSTGIDFQDELDEFFRNVSTSIPNFGSLTQ INTTLLDLTYEMLSLQQVVKALNESYIDLKELGNYTYYNKWP DKIEETLSKIYHIENEIARIKKLIGEA	26		
Isolate A1- Hasa_1_2013 (NCBI accession #AGN70962)	MIHSVFLLMFLLTPTESYVDVGPDSVKSACIEVDIQQTFFDK TWPRPIDVSKADGIIYPQGTFYSNITITTYQGLFFYQGDHGDM YVYSAGHATGTTPQKLFVANYSQDVKQFANGFVVRIGAAANS TGTVIISPSTSATIRKIYPAFMLGSSVGMFSDGKMGRFFNHT LVLLPDGCGTLLRAFYCILEPRSGNHCPAGNSYTSFATYHTP ATDCSDGNYNRNASLNSFKEYFMLRNCTFMYTYNITEDEILE WFGITQTAQGVHLFSSRYVDLYGGMMFQFATLPVYDTIKYYS IIPHSIRSIQSDRKAWAAFYVYKLQPLTFLLDFSVDGYIRRA IDCGFNDLSQLHCSYESFDVESGVYSVSSFEAKPSGSVVEQA EGVECDFSPLLSGTPPQVYNFKRLVFTNCNYNLTKLLSLFSV NDFTCSQISPAAIASNCYSSLILDYFSYPLSMKSDLSVSSAG PISQFNYKQSFSNPTCLILATVPHNLTTITKPLKYSYINKCS RLLSDDRTEVPQLVNANQYSPCVSIVPSTVWEDGDYYRKQLS PLEGGGWLVASGSTVAMTEQLQMGFGITVQYGTDTNSVCPKL EFANDTKIASQLGNCVEYSLYGVSGRGVFQNCTAVGVRQQFF VYDAYQNLVGYYSDDGNYYCLRACVSVPVSVIYDKETKTHAT LFGSVACEHISSTMSQYSRSTRSMLKRRDSTYGPLQTPVGCV LGLVNSSLFVEDCKLPLGQSLCALPDTPSTLTPRSVRSVPGE MRLASIAFNHPIQVDQLNSSYFKLSIPTNFSFGVTQEYIQTT IQKVTVDCKQYVCNGFQKCEQLLREYGGFCSKINQALHGANL RQDDSVRNLFASVKSSQSSPIIPGFGGDFNLTLLEPVSISTG SRSARSAIEDLLFDKVTIADPGYMQGYDDCMQQGPASARDLI	27		

CAQYVAGYKVLPPLMDVNMEAAYTSSLLGSIAGVGWTAGLSS FAAIPFAQSIFYRLNGVGITQQVLSENQKLIANKFNQALGAM

	ZADIE 11 gentinued	
	TABLE 11-continued Betacoronavirus Amino Acid Sequences	
Strain	Amino Acid Sequence	SEQ I
	QTGFTTTNEAFRKVQDAVNNNAQALSKLASELSNTFGAISAS IGDIIQRLDVLEQDAQIDRLINGRLTTLNAFVAQQLVRSESA ALSAQLAKDKVNECVKAQSKRSGFCGQGTHIVSFVVNAPNGL YFMHVGYYPSNHIEVVSAYGLCDAANPTNCIAPVNGYFIKTN NTRIVDEWSYTGSSFYAPEPITSLNTKYVAPHVTYQNISTNL PPPLLGNSTGIDFQDELDEFFKNVSTSIPNFGSLTQINTTLL DLTYEMLSLQQVVKALNESYIDLKELGNYTYYNKWFWYIWLG FIAGLVALALCVFFILCCTGCGTNCMGKLKCNRCCDRYEEYD LEPHKVHVH	
Middle East respiratory syndrome coronavirus S protein UniProtKB- R9UQ53	MIHSVFLLMFLLTPTESYVDVGPDSVKSACIEVDIQQTFFDK TWPRPIDVSKADGIIYPQGRTYSNITITYQGLFPYQGDHGDM YVYSAGHATGTTPQKLFVANYSQDVKQFANGFVVRIGAAANS TGTVIISPSTSATIRKIYPAFMLGSSVGNFSDGKMGRFFNHT LVLLPDGCGTLLRAFYCILEPRSGNHCPAGNSYTSFATYHTP ATDCSDGNYNRNASLNSFKEYFNLRNCTFMYTYNITEDEILE WFGITQTAQGVHLFSSRYVDLYGGNMFQFATLPVYDTIKYYS IIPHSIRSIQSDRKAWAAFYVYKLQPLTFLLDFSVDGYIRRA IDCGFNDLSQLHCSYESFDVESGVYSVSSFEAKPSGSVVEQA EGVECDFSPLLSGTPPQVYNFKRLVFTNCNYNLTKLLSLFSV NDFTCSQISPAAIASNCYSSLILDYFSYPLSMKSDLSVSSAG PISQFNYKQSFSNPTCLILATVPHNLTTITKPLKYSYINKCS RLLSDDRTEVPQLVNANQYSPCVSIVYSTVWEDGDYYRKQLS PLEGGGWLVASGSTVAMTEQLQMGFGITVQYGTDTNSVCPKL EFANDTKIASQLGNCVEYSLYGVSGRGVFQNCTAVGVRQQRF VYDAYQNLVGYYSDDGNYYCLRACVSVPVSVIYDKETKTHAT LFGSVACEHISSTMSQYSRSTRSMLKRRDSTYGPLQTPVGCV LGLVNSSLFVEDCKLPLQGSLCALPDTPSTLTPRSVRSVPGE MRLASIAFNHPIQVDQLNSSYFKLSIPTNFSFGVTQEYIQTT IQKVTVDCKQYVCNGFQKCEQLLREYGQFCSKINQALHGANL RQDDSVRNLFASVKSSQSSPIPGFGGDFNLTLLEPVSISTG SRSARSAIEDLLFDKVTIADPGYMQGYDDCMQQGPASARDLI CAQYVAGYKVLPPLMDVNMEAAYTSSLLGSIAGVGWTAGLSS FAAIPFAQSIFYRLNGVGITQQVLSENQKLIANKFNQALGAM QTGFTTTNEAFRKVQDAVNNNAQALSKLASELSNTFGAISAS IGDIIQRLDVLEQDAQIDRLINGRLTTLNAFVAQQLVRSESA ALSAQLAKDKVNECVKAQSKRSGFCGQGTHIVSFVVNAPNGL YFMHVGYYPSNHIEVVSAYGLCDAANPTNCIAPVNGYFIKTN NTRIVDEWSYTGSSFYAPEBITSLNTKYVAPHVTYQNISTNL PPPLLGNSTGIDFQDELDEFFKNVSTSIPNFGSLTQINTTLL DLTYEMLSLQQVVKALNESYIDLKELGNYTYYNKØPWYIWLG FIAGLVALALCVFFILCCTGCGTNCMGKLKCNRCCDRYEEYD LEPHKVHVH	28
Human SARS coronavirus (SARS-CoV) (Severe acute respiratory syndrome coronavirus) Spike glycoprotein UniProtKB- P59594	MFIFLLFLTLTSGSDLDRCTTFDDVQAPNYTQHTSSMRGVYY PDEIFRSDTLYLTQDLFLPFYSNVTGFHTINHTFGNPVIPFK DGIYFAATEKSNVVRGWVFGSTMNNKSQSVIIINNSTNVVIR ACNFELCDNPFFAVSKPMGTQTHTMIFDNAFNCTFEYISDAF SLDVSEKSGNFKHLREFVFKNKDGFLYVYKGYQPIDVVRDLP SGFNTLKPIFKLPLGINITNFRAILTAFSPAQDIWGTSAAAY FVGYLKPTTFMLKYDENGTITDAVDCSQNPLAELKCSVKSFE IDKGIYQTSNFRVVPSGDVVRFPNITNLCPFGEVFNATKFPS VYAWERKKISNCVADYSVYLNSTFFSTFKCYGVSATKLNDLC FSNVYADSFVVKGDDVRQIAPGQTGVIADYNYKLPDDFMGCV LÄWNTRNIDATSTGNYNYKYRYLRHGKLRPFERDISNVPFSP DGKPCTPPALNCYWPLNDYGFYTTTGIGYQPYRVVVLSFELL NAPATVCGFKLSTDLIKNQCVNFNFNGLTGTGVLTPSSKRFQ PFQQFGRDVSDFTDSVRDPKTSEILDISPCSFGGVSVITPGT NASSEVAVLYQDVNCTDVSTAIHADQLTPAWRIYSTGNNVFQ TQAGCLIGAEHVDTSYECDIPIGAGICASYHTVSLLRSTSQK SIVAYTMSLGADSSIAYSNNTIAIPTNFSISITTEVMPVSMA KTSVDCNMYICGDSTECANLLLQYGSFCTQLNRALSGIAAEQ DRNTREVFAQVKQMYKTPTLKYFGGFNFSQILPDPLKPTKRS FIBDLLFNKVTLADAGFMKQYGECLGDINARDLICAQKFNGL TVLPPLLTDDMIAAYTAALVSGTATAGWTFGAGAALQIPFAM QMAYRFNGIGVTQNVLYENQKQIANQFNKAISQIQESLTTTS TALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRL DKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAA TKMSECVLGQSKRVDFCGKGYHLMSPPQAAPHGVVFLHVTVV PSQERNFTTAPAICHEGKAYFPREGVFVFNGTSWFITQRNFF SPQIITTDNTFVSGNCDVVIGIINNTVYDPLQPELDSFKEEL DKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLL ESLIDLQELGKYEQYIKWPWYVULGFIAGLIAIVMVTILLCC MTSCCSCLKGACSCGSCCKFDEDDSEPVLKGVKLHYT	29

286

TABLE II-CONCINUED	${ t TABLE}$	11-continued	
--------------------	--------------	--------------	--

Betacoronavirus Amino Acid Sequences

SEQ ID
Amino Acid Sequence NO:

Human coronavirus OC43 (HCoV-OC43) Spike glycoprotein UniProtKB-P36334

Strain

MFLILLISLPTAFAVIGDLKCTSDNINDKDTGPPPISTDTVD VTNGLGTYYVLDRVYLNTTLFLNGYYPTSGSTYRNMALKGSV LLSRLWFKPPFLSDFINGIFAKVKNTKVIKDRVMYSEFPAIT IGSTFVNTSYSVVVQPRTINSTQDGDNKLQGLLEVSVCQYNM CEYPQTICHPNLGNHRKELWHLDTGVVSCLYKRNFTYDVNAD YLYFHFYQEGGTFYAYFTDTGVVTKFLFNVYLGMALSHYYVM PLTCNSKLTLEYWVTPLTSRQYLLAFNQDGIIFNAEDCMSDF MSEIKCKTQSIAPPTGVYELNGYTVQPIADVYRRKPNLPNCN IEAWLNDKSVPSPLNWERKTFSNCNFNMSSLMSFIQADSFTC NNIDAAKIYGMCFSSITIDKFAIPNGRKVDLQLGNLGYLQSF NYRIDTTATSCQLYYNLPAANVSVSRFNPSTWNKRFGFIEDS VFKPRPAGVLTNHDVVYAQHCFKAPKNFCPCKLNGSCVGSGP GKNNGIGTCPAGTNYLTCDNLCTPDPITFTGTYKCPQTKSLV GIGEHCSGLAVKSDYCGGNSCTCRPQAFLGWSADSCLQGDKC NIFANFILHDVNSGLTCSTDLOKANTDIILGVCVNYDLYGIL GOGIFVEVNATYYNSWONLLYDSNGNLYGFRDYIINRTFMIR SCYSGRVSAAFHANSSEPALLFRNIKCNYVFNNSLTROLOPI NYFDSYLGCVVNAYNSTAISVOTCDLTVGSGYCVDYSKNRRS RGAITTGYRFTNFEPFTVNSVNDSLEPVGGLYEIOIPSEFTI GNMVEFIOTSSPKVTIDCAAFVCGDYAACKSOLVEYGSFCDN INAILTEVNELLDTTQLQVANSLMNGVTLSTKLKDGVNFNVD DINFSPVLGCLGSECSKASSRSAIEDLLFDKVKLSDVGFVEA YNNCTGGAEIRDLICVQSYKGIKVLPPLLSENQISGYTLAAT SASLFPPWTAAAGVPFYLNVQYRINGLGVTMDVLSQNQKLIA NAFNNALYAIQEGFDATNSALVKIQAVVNANAEALNNLLQQL SNRFGAISASLQEILSRLDALEAEAQIDRLINGRLTALNAYV ${\tt SQQLSDSTLVKFSAAQAMEKVNECVKSQSSRINFCGNGNHII}$ ${\tt SLVQNAPYGLYFIHFSYVPTKYVTARVSPGLCIAGDRGIAPK}$ ${\tt SGYFVNVNNTWMYTGSGYYYPEPITENNVVVMSTCAVNYTKA}$ PYVMLNTSIPNLPDFKEELDQWFKNQTSVAPDLSLDYINVTF LDLQVEMNRLQEAIKVLNQSYINLKDIGTYEYYVKWPWYVWL LICLAGVAMLVLLFFICCCTGCGTSCFKKCGGCCDDYTGYQE LVIKTSHDD

Human coronavirus HKU1 (isolate N5) (HCoV-HKU1) Spike glycoprotein UniProtKB-OOZME7 ${\tt MFLIIFILPTTLAVIGDFNCTNSFINDYNKTIPRISEDVVDV}$ SLGLGTYYVLNRVYLNTTLLFTGYFPKSGANFRDLALKGSIY LSTLWYKPPFLSDFNNGIFSKVKNTKLYVNNTLYSEFSTIVI GSVFVNTSYTIVVQPHNGILEITACQYTMCEYPHTVCKSKGS IRNESWHIDSSEPLCLFKKNFTYNVSADWLYFHFYQERGVFY AYYADVGMPTTFLFSLYLGTILSHYYVMPLTCNAISSNTDNE TLEYWVTPLSRRQYLLNFDEHGVITNAVDCSSSFLSEIQCKT QSFAPNTGVYDLSGFTVKPVATVYRRIPNLPDCDIDNWLNNV SVPSPLNWERRIFSNCNFNLSTLLRLVHVDSFSCNNLDKSKI FGSCFNSITVDKFAIPNRRRDDLQLGSSGFLQSSNYKIDISS SSCQLYYSLPLVNVTINNFNPSSWNRRYGFGSFNLSSYDVVY SDHCFSVNSDFCPCADPSVVNSCAKSKPPSAICPAGTKYRHC DLDTTLYVKNWCRCSCLPDPISTYSPNTCPQKKVVVGIGEHC PGLGINEEKCGTQLNHSSCFCSPDAFLGWSFDSCISNNRCNI FSNFIFNGINSGTTCSNDLLYSNTEISTGVCVNYDLYGITGQ GIFKEVSAAYYNNWQNLLYDSNGNIIGFKDFLTNKTYTILPC YSGRVSAAFYQNSSSPALLYRNLKCSYVLNNISFISQPFYFD SYLGCVLNAVNLTSYSVSSCDLRMGSGFCIDYALPSSRRKRR GISSPYRFVTFEPFNVSFVNDSVETVGGLFEIQIPTNFTIAG HEEFIOTSSPKVTIDCSAFVCSNYAACHDLLSEYGTFCDNIN SILNEVNDLLDITQLQVANALMQGVTLSSNLNTNLHSDVDNI DFKSLLGCLGSQCGSSSRSLLEDLLFNKVKLSDVGFVEAYNN CTGGSEIRDLLCVQSFNGIKVLPPILSETQISGYTTAATVAA MFPPWSAAAGVPFSLNVQYRINGLGVTMDVLNKNQKLIANAF NKALLSIONGFTATNSALAKIOSVVNANAOALNSLLOOLFNK FGAISSSLQEILSRLDNLEAQVQIDRLINGRLTALNAYVSQQ LSDITLIKAGASRAIEKVNECVKSOSPRINFCGNGNHILSLV ONAPYGLLFIHFSYKPTSFKTVLVSPGLCLSGDRGIAPKOGY FIKONDSWMFTGSSYYYPEPISDKNVVFMNSCSVNFTKAPFI YLNNSIPNI.SDFEAELSLWEKNHTSIAPNI.TENSHINATELD LYYEMNVIQESIKSLNSSFINLKEIGTYEMYVKWPWYIWLLI VILFIIFLMILFFICCCTGCGSACFSKCHNCCDEYGGHNDFV IKASHDD

Novel_SARS_S2

MFIFLLFLTLTSGSDLDRALSGIAAEQDRNTREVFAQVKQMY
KTPTLKYFGGFNFSQILPDPLKPTKRSFIEDLLFNKVTLADA
GFMKQYGECLGDINARDLICAQKFNGLTVLPPLLTDDMIAAY
TAALVSGTATAGWTFGAGAALQIPFAMQMAYRFNGIGVTQNV
LYENQKQIANQFNKAISQIQESLTTTSTALGKLQDVVNQNAQ
ALNTLVKQLSSNFGAISSVLMDILSRLDKVEAEVQIDRLTTG
RLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVD

31

TABLE 11-continued

Bet	acoronavirus Amino Acid Sequences	
Strain	Amino Acid Sequence	SEQ ID NO:
	FCGKGYHLMSFPQAAPHGVVFLHVTYVPSQERNFTTAPAICH EGKAYFPREGVFVFNGTSWFITQRNFFSPQIITTDNTFVSGN CDVVIGIINNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLG DISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQY IKWPWYWLGFIAGLIAIVMVTILLCCMTSCCSCLKGACSCG SCCKFDEDDSEPVLKGVKLHYT	
Novel_MERS_S2	MIHSVFLLMFLLTPTESDCKLPLGQSLCALPDTPSTLTPRSV RSVPGEMRLAS1AFNHPTQVDQLMSSYFKLSIPTMFSFGVTQ EYIQTTIQKVTVDCKQYVCNGFQKCEQLLREYGQFCSKINQA LHGANLRQDDSVRNLFASVKSSQSSPIIPGFGGDFNLTLLEP VSISTGSRSARSAIEDLLFDKVTIADPGYMQGYDDCMQQGPA SARDLICAQYVAGYKVLPPLMDVNMEAAYTSSLLGSIAGVGW TAGLSSFAAIPFAQSIFYRLNGVGITQQVLSENQKLIANKFN QALGAMQTGFTTTNEAFQKVQDAVNNNAQALSKLASELSNTF GAISASIGDIIQRLDVLEQDAQIDRLINGRLTTLNAFVAQQL VRSESAALSAQLAKDKVNECVKAQSKRSGFCGQGTHIVSFVV NAPNGLYFMHVGYYPSNHIEVVSAYGLCDAANPTNCIAPVNG YFIKTNNTRIVDEWSYTGSSFYAPEPITSLNTKYVAPQVTYQ NISTNLPPPLLCRSTGIDFQDELDEFFKNVSTSIPNFGSLTQ INTTLLDLTYEMLSLQQVVKALNESYIDLKELGNYTYYNKWP	33
Novel_Trimeric_SARS_S2	MFIFLLFLTLTSGSDLDRALSGIAAEQDRNTREVFAQVKQMY KTPTLKYFGGFNFSQILPDPLKPTKRSFIEDLLFNKVTLADA GFMKQYGECLGDINARDLICAQKFNGLTVLPPLLTDDMIAAY TAALVSGTATAGMTFGAGAALQIPFAMQMAYRFNGIGVTQNV LYENQKQIANQFNKAISQIQESLTTTSTALGKLQDVVNQNAQ ALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITG RLQSLQTTVTQQLIRAAEIRASANLAATKMSECVLGQSKRVD FCGKGYHLMSFPQAAPHGVVFLHVTYVPSQERNFTTAPAICH EGKAYFPREGVFVFNGTSWFITQRNFFSPQIITTDNTFVSGN CDVVIGIINNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLG DISGINASVVNIQKEIDRLMEVAKNLNESLIDLQELGKYBQY IKWPWYVWLGFIAGLIAIVMVTILLCCMTSCCSCLKGACSCG SCCKFDEDDSEPVLKGVKLHYT	34

TABLE 12

F	ull-length S	pike Glycoprotein	Amino Acid Se	quences (Homo sapiens strains)
GenBank Accession	Country	Collection Date	Release Date	Virus Name
AFY13307	United Kingdom	2012 Sep. 11	2012 Dec. 5	Betacoronavirus England 1, complete genome
AFS88936	12mgaviii	2012 Jun. 13	2012 Sep. 27	Human betacoronavirus 2c EMC/2012, complete genome
AGG22542	United Kingdom	2012 Sep. 19	2013 Feb. 27	Human betacoronavirus 2c England- Qatar/2012, complete genome
AHY21469	Jordan	2012	2014 May 4	Human betacoronavirus 2c Jordan- N3/2012 isolate MG167, complete genome
AGH58717	Jordan	2012 April	2013 Mar. 25	Human betacoronavirus 2c Jordan- N3/2012, complete genome
AGV08444	Saudi Arabia	2013 May 7	2013 Sep. 17	Middle East respiratory syndrome coronavirus isolate Al- Hasa_12_2013, complete genome
AGV08546	Saudi Arabia	2013 May 11	2013 Sep. 17	Middle East respiratory syndrome coronavirus isolate Al-
AGV08535	Saudi Arabia	2013 May 12	2013 Sep. 17	Middle East respiratory syndrome coronavirus isolate Al-
AGV08558	Saudi Arabia	2013 May 15	2013 Sep. 17	Hasa_16_2013, complete genome Middle East respiratory syndrome coronavirus isolate Al-
AGV08573	Saudi Arabia	2013 May 23	2013 Sep. 17	Hasa_17_2013, complete genome Middle East respiratory syndrome coronavirus isolate Al- Hasa_18_2013, complete genome
AGV08480	Saudi Arabia	2013 May 23	2013 Sep. 17	Middle East respiratory syndrome coronavirus isolate Al-Hasa_19_2013, complete genome

TABLE 12-continued

F	ull-length S	pike Glycoprotein	Amino Acid Se	quences (Homo sapiens strains)
GenBank Accession	Country	Collection Date	Release Date	Virus Name
AGN70962	Saudi Arabia	2013 May 9	2013 Jun. 10	Middle East respiratory syndrome coronavirus isolate Al- Hasa_1_2013, complete genome
AGV08492	Saudi Arabia	2013 May 30	2013 Sep. 17	Middle East respiratory syndrome coronavirus isolate Al-Hasa_21_2013, complete genome
AHI48517	Saudi Arabia	2013 May 2	2014 Feb. 6	Middle East respiratory syndrome coronavirus isolate Al-
AGN70951	Saudi Arabia	2013 Apr. 21	2013 Jun. 10	Hasa_25_2013, complete genome Middle East respiratory syndrome coronavirus isolate Al-
AGN70973	Saudi Arabia	2013 Apr. 22	2013 Jun. 10	Hasa_2_2013, complete genome Middle East respiratory syndrome coronavirus isolate Al-
AGN70929	Saudi Arabia	2013 May 1	2013 Jun. 10	Hasa_3_2013, complete genome Middle East respiratory syndrome coronavirus isolate Al-
A GV08408	Saudi Arabia	2012 Jun. 19	2013 Sep. 17	Hasa_4_2013, complete genome Middle East respiratory syndrome coronavirus isolate Bisha_1_2012,
AGV08467	Saudi Arabia	2013 May 13	2013 Sep. 17	complete genome Middle East respiratory syndrome coronavirus isolate
AID50418	United Kingdom	2013 Feb. 10	2014 Jun. 18	Buraidah_1_2013, complete genome Middle East respiratory syndrome coronavirus isolate England/2/2013,
AJD81451	United Kingdom	2013 Feb. 10	2015 Jan. 18	complete genome Middle East respiratory syndrome coronavirus isolate England/3/2013,
A JD81440	United Kingdom	2013 Feb. 13	2015 Jan. 18	complete genome Middle East respiratory syndrome coronavirus isolate England/4/2013,
AHB33326	France	2013 May 7	2013 Dec. 7	complete genome Middle East respiratory syndrome coronavirus isolate FRA/UAE,
A IZ48760	USA	2014 June	2014 Dec. 14	complete genome Middle East respiratory syndrome coronavirus isolate Florida/USA- 2_Saudi Arabia_2014, complete
A GV08455	Saudi Arabia	2013 Jun. 4	2013 Sep. 17	genome Middle East respiratory syndrome coronavirus isolate Hafr-Al-
AHI48561	Saudi Arabia	2013 Aug. 5	2014 Feb. 6	Batin_1_2013, complete genome Middle East respiratory syndrome coronavirus isolate Hafr-Al-
A HI48539	Saudi Arabia	2013 Aug. 28	2014 Feb. 6	Batin_2_2013, complete genome Middle East respiratory syndrome coronavirus isolate Hafr-Al-
AIZ74417	France	2013 Apr. 26	2015 Mar. 10	Batin_6_2013, complete genome Middle East respiratory syndrome coronavirus isolate Hu-France (UAE) - FRA1_1627- 2013_BAL_Sanger, complete
A IZ74433	France	2013 May 7	2015 Mar. 10	genome Middle East respiratory syndrome coronavirus isolate Hu-France - FRA2_130569-2013_IS_HTS,
AIZ74439	France	2013 May 7	2015 Mar. 10	complete genome Middle East respiratory syndrome coronavirus isolate Hu-France - FRA2_130569-2013_InSpu_Sanger,
AIZ74450	France	2013 May 7	2015 Mar. 10	complete genome Middle East respiratory syndrome coronavirus isolate Hu-France - FRA2_130569-2013_Isolate_Sanger,
AKK52602	Saudi Arabia	2015 Feb. 10	2015 Jun. 8	complete genome Middle East respiratory syndrome coronavirus isolate Hu/Riyadh_KSA_2959_2015,
AKK52612	Saudi Arabia	2015 Mar. 1	2015 Jun. 8	complete genome Middle East respiratory syndrome coronavirus isolate Hu/Riyadh_KSA_4050_2015, complete genome

291

TABLE 12-continued

F	full-length S		Amino Acid Se	quences (Homo sapiens strains)		
	GenBank					
Accession	Country	Collection Date	Release Date	Virus Name		
AHN10812	Saudi Arabia	2013 Nov. 6	2014 Mar. 24	Middle East respiratory syndrome coronavirus isolate Jeddah_1_2013, complete genome		
AID55071	Saudi Arabia	2014 Apr. 21	2014 Nov. 12	Middle East respiratory syndrome coronavirus isolate Jeddah_C10306/KSA/2014-04-20,		
AID55066	Saudi Arabia	2014	2014 Nov. 12	complete genome Middle East respiratory syndrome coronavirus isolate Jeddah_C7149/KSA/2014-04-05, complete genome		
AID55067	Saudi Arabia	2014	2014 Nov. 12	Middle East respiratory syndrome coronavirus isolate Jeddah_C7569/KSA/2014-04-03,		
AID55068	Saudi Arabia	2014 Apr. 7	2014 Nov. 12	complete genome Middle East respiratory syndrome coronavirus isolate Jeddah_C7770/KSA/2014-04-07, complete genome		
AID55069	Saudi Arabia	2014 Apr. 12	2014 Nov. 12	Middle East respiratory syndrome coronavirus isolate Jeddah_C8826/KSA/2014-04-12, complete genome		
AID55070	Saudi Arabia	2014 Apr. 14	2014 Nov. 12	Middle East respiratory syndrome coronavirus isolate Jeddah_C9055/KSA/2014-04-14, complete genome		
AHE78108	Saudi Arabia	2013 Nov. 5	2014 May 1	Middle East respiratory syndrome coronavirus isolate MERS-CoV- Jeddah-human-1, complete genome		
AKL59401	South Korea	2015 May 20	2015 Jun. 9	Middle East respiratory syndrome coronavirus isolate MERS- CoV/KOR/KNIH/002_05_2015,		
ALD51904	Thailand	2015 Jun. 17	2015 Jul. 7	complete genome Middle East respiratory syndrome coronavirus isolate MERS- CoV/THA/CU/17_06_2015,		
AID55072	Saudi Arabia	2014 Apr. 15	2014 Nov. 12	complete genome Middle East respiratory syndrome coronavirus isolate Makkah_C9355/KSA/Makkah/2014- 04-15, complete genome		
AHC74088	Qatar	2013 Oct. 13	2013 Dec. 23	Middle East respiratory syndrome coronavirus isolate Qatar3, complete		
AHC74098	Qatar	2013 Oct. 17	2013 Dec. 23	genome Middle East respiratory syndrome coronavirus isolate Qatar4, complete genome		
AHI48572	Saudi Arabia	2013 Aug. 15	2014 Feb. 6	Middle East respiratory syndrome coronavirus isolate Riyadh_14_2013, complete genome		
AGV08379	Saudi Arabia	2012 Oct. 23	2013 Sep. 17	Middle East respiratory syndrome coronavirus isolate Riyadh_1_2012, complete genome		
AID55073	Saudi Arabia	2014 Apr. 22	2014 Nov. 12	Middle East respiratory syndrome coronavirus isolate Riyadh_2014KSA_683/KSA/2014, complete genome		
AGV08584	Saudi Arabia	2012 Oct. 30	2013 Sep. 17	Middle East respiratory syndrome coronavirus isolate Riyadh_2_2012, complete genome		
AGV08390	Saudi Arabia	2013 Feb. 5	2013 Sep. 17	Middle East respiratory syndrome coronavirus isolate Riyadh_3_2013, complete genome		
AHI48605	Saudi Arabia	2013 Mar. 1	2014 Feb. 6	Middle East respiratory syndrome coronavirus isolate Riyadh_4_2013, complete genome		
AHI48583	Saudi Arabia	2013 Jul. 2	2014 Feb. 6	Middle East respiratory syndrome coronavirus isolate Riyadh_5_2013, complete genome		
AHI48528	Saudi Arabia	2013 Jul. 17	2014 Feb. 6	Middle East respiratory syndrome coronavirus isolate Riyadh_9_2013, complete genome		

TABLE 12-continued

F	Full-length Spike Glycoprotein Amino Acid Sequences (Homo sapiens strains)				
GenBank Accession	Country	Collection Date	Release Date	Virus Name	
AHI48594	Saudi Arabia	2013 Jun. 12	2014 Feb. 6	Middle East respiratory syndrome coronavirus isolate Taif_1_2013, complete genome	
AHI48550	Saudi Arabia	2013 Jun. 12	2014 Feb. 6	Middle East respiratory syndrome coronavirus isolate Wadi-Ad-Dawasir_1_2013, complete genome	
AIY60558	United Arab Emirates	2014 Mar. 7	2014 Dec. 6	Middle East respiratory syndrome coronavirus strain Abu Dhabi/Gayathi_UAE_2_2014, complete genome	
AIY60538	United Arab Emirates	2014 Apr. 10	2014 Dec. 6	Middle East respiratory syndrome coronavirus strain Abu Dhabi_UAE_16_2014, complete genome	
AIY60528	United Arab Emirates	2014 Apr. 10	2014 Dec. 6	Middle East respiratory syndrome coronavirus strain Abu Dhabi_UAE_18_2014, complete	
AIY60588	United Arab Emirates	2014 Apr. 13	2014 Dec. 6	genome Middle East respiratory syndrome coronavirus strain Abu Dhabi_UAE_26_2014, complete	
AIY60548	United Arab Emirates	2014 Apr. 19	2014 Dec. 6	genome Middle East respiratory syndrome coronavirus strain Abu Dhabi_UAE_30_2014, complete	
AIY60568	United Arab Emirates	2014 Apr. 17	2014 Dec. 6	genome Middle East respiratory syndrome coronavirus strain Abu Dhabi_UAE_33_2014, complete	
AIY60518	United Arab Emirates	2014 Apr. 7	2014 Dec. 6	genome Middle East respiratory syndrome coronavirus strain Abu Dhabi_UAE_8_2014, complete	
AIY60578	United Arab Emirates	2013 Nov. 15	2014 Dec. 6	genome Middle East respiratory syndrome coronavirus strain Abu Dhabi_UAE_9_2013, complete	
AKJ80137	China	2015 May 27	2015 Jun. 5	genome Middle East respiratory syndrome coronavirus strain ChinaGD01, complete genome	
AHZ64057	USA	2014 May 10	2014 May 14	Middle East respiratory syndrome coronavirus strain Florida/USA-2_Saudi Arabia_2014, complete genome	
AKM76229	Oman	2013 Oct. 28	2015 Jun. 23	Middle East respiratory syndrome coronavirus strain Hu/Oman_2285_2013, complete	
AKM76239	Oman	2013 Dec. 28	2015 Jun. 23	genome Middle East respiratory syndrome coronavirus strain Hu/Oman_2874_2013, complete genome	
AKI29284	Saudi Arabia	2015 Jan. 6	2015 May 27	Middle East respiratory syndrome coronavirus strain Hu/Riyadh-KSA- 2049/2015, complete genome	
AKI29265	Saudi Arabia	2015 Jan. 21	2015 May 27	Middle East respiratory syndrome coronavirus strain Hu/Riyadh-KSA-2343/2015, complete genome	
AKI29255	Saudi Arabia	2015 Jan. 21	2015 May 27	Middle East respiratory syndrome coronavirus strain Hu/Riyadh-KSA-2345/2015, complete genome	
AKI29275	Saudi Arabia	2015 Jan. 26	2015 May 27	Middle East respiratory syndrome coronavirus strain Hu/Riyadh-KSA-2466/2015, complete genome	
AKK52582	Saudi Arabia	2015 Feb. 10	2015 Jun. 8	Middle East respiratory syndrome coronavirus strain Hu/Riyadh_KSA_2959_2015, complete genome	
AKK52592	Saudi Arabia	2015 Mar. 1	2015 Jun. 8	Middle East respiratory syndrome coronavirus strain Hu/Riyadh_KSA_4050_2015, complete genome	

TABLE 12-continued

	Full-length S	pike Glycoprotein	Amino Acid Se	quences (Homo sapiens strains)
GenBank Accession	Country	Collection Date	Release Date	Virus Name
AHZ58501	USA	2014 Apr. 30	2014 May 13	Middle East respiratory syndrome coronavirus strain Indiana/USA- 1_Saudi Arabia_2014, complete genome
AGN52936	United Arab Emirates	2013	2013 Jun. 10	Middle East respiratory syndrome coronavirus, complete genome

	TABLE 13	
Description	Sequence	SEQ ID NO:
	MeV Nucleic Acid Sequences	
GC_F_MEASLES_B3.1 Sequence, NT (5' UTR, ORF, 3' UTR) Sequence Length: 1864	-	35
	TGCTGCAGGGGGCGTTGTAACAAAAAGGGAGAACAAG TTGGTATGTCAAGACCAGGCCTAAAGCCTGACCTTACA GGAACATCAAAATCCTATGTAAGATCGCTTTTGATGATA ATAGGCTGGAGCCTCGGTGGCCAAGCTTCTTGCCCCTT GGGCCTCCCCCCCCCTCCCCCTTCCTGCACCCGT ACCCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGC	
GC_F_MEASLES_B3.1 ORF Sequence, NT	ATGGGTCTCAAGGTGAACGTCTCTGCCGTATTCATGGC AGTACTGTTAACTCTCCAAACACCCGCCGGTCAAATTC ATTGGGGCAATCTCTCTAAGATAGGGGTAGTAGGAATA GGAAGTGCAAGCTACAAAGTTATGACTCGTTCCAGCCA TCAATCATTAGTCATAAAATTAATGCCCAATATAACTCT	36

CCTCAATAACTGCACGAGGGTAGAGATTGCAGAATACA GGAGACTACTAAGAACAGTTTTGGAACCAATTAGGGAT

TABLE 13-continued

SEQ ID Description Sequence NO:

GCACTTAATGCAATGACCCAGAACATAAGGCCGGTTCA GAGCGTAGCTTCAAGTAGGAGACACAAGAGATTTGCG GGAGTAGTCCTGGCAGGTGCGGCCCTAGGTGTTGCCAC AGCTGCTCAGATAACAGCCGGCATTGCACTTCACCGGT ${\tt CCATGCTGAACTCTCAGGCCATCGACAATCTGAGAGCG}$ AGCCTGGAAACTACTAATCAGGCAATTGAGGCAATCAG ACAAGCAGGGCAGGAGATGATATTGGCTGTTCAGGGTG TCCAAGACTACATCAATAATGAGCTGATACCGTCTATG AACCAGCTATCTTGTGATCTAATCGGTCAGAAGCTCGG GCTCAAATTGCTTAGATACTATACAGAAATCCTGTCATT ATTTGGCCCCAGCCTACGGGACCCCATATCTGCGGAGA TATCTATCCAGGCTTTGAGTTATGCACTTGGAGGAGAT ATCAATAAGGTGTTAGAAAAGCTCGGATACAGTGGAG GCGATTTACTAGGCATCTTAGAGAGCAGAGGAATAAAG GCTCGGATAACTCACGTCGACACAGAGTCCTACTTCAT AGTCCTCAGTATAGCCTATCCGACGCTGTCCGAGATTA AGGGGGTGATTGTCCACCGGCTAGAGGGGGTCTCGTAC AACATAGGCTCTCAAGAGTGGTATACCACTGTGCCCAA GTATGTTGCAACCCAAGGGTACCTTATCTCGAATTTTGA TGAGTCATCATGTACTTTCATGCCAGAGGGGACTGTGT GCAGCCAAAATGCCTTGTACCCGATGAGTCCTCTGCTC CAAGAATGCCTCCGGGGGTCCACCAAGTCCTGTGCTCG TACACTCGTATCCGGGTCTTTTTGGGAACCGGTTCATTTT ATCACAAGGGAACCTAATAGCCAATTGTGCATCAATTC TTTGTAAGTGTTACACAACAGGTACGATTATTAATCAA GACCCTGACAAGATCCTAACATACATTGCTGCCGATCG CTGCCCGGTAGTCGAGGTGAACGGCGTGACCATCCAAG TCGGGAGCAGGAGGTATCCAGACGCTGTGTACTTGCAC AGAATTGACCTCGGTCCTCCCATATCATTGGAGAGGTT GGACGTAGGGACAAATCTGGGGAATGCAATTGCCAAA TTGGAGGATGCCAAGGAATTGTTGGAATCATCGGACCA GATATTGAGAAGTATGAAAGGTTTATCGAGCACTAGCA ${\tt TAGTCTACATCCTGATTGCAGTGTGTCTTGGAGGGTTGA}$ TAGGGATCCCCACTTTAATATGTTGCTGCAGGGGGGCGT ${\tt TGTAACAAAAAGGGAGAACAAGTTGGTATGTCAAGAC}$ CAGGCCTAAAGCCTGACCTTACAGGAACATCAAAATCC TATGTAAGATCGCTTTGA

GC_F_MEASLES_B3.1 mRNA Sequence (assumes T100 tail) mRNA Sequence Length: 1925 G*GGGAAATAAGAGAGAAAAGAAGAAGTAAGAAGAAAT ATAAGAGCCACCATGGGTCTCAAGGTGAACGTCTCTGC CGTATTCATGGCAGTACTGTTAACTCTCCAAACACCCG $\tt CCGGTCAAATTCATTGGGGCAATCTCTCTAAGATAGGG$ GTAGTAGGAATAGGAAGTGCAAGCTACAAAGTTATGA $\tt CTCGTTCCAGCCATCAATCATTAGTCATAAAATTAATGC$ CCAATATAACTCTCCTCAATAACTGCACGAGGGTAGAG ATTGCAGAATACAGGAGACTACTAAGAACAGTTTTGGA ACCAATTAGGGATGCACTTAATGCAATGACCCAGAACA ${\tt TAAGGCCGGTTCAGAGCGTAGCTTCAAGTAGGAGACAC}$ AAGAGATTTGCGGGAGTAGTCCTGGCAGGTGCGGCCCT AGGTGTTGCCACAGCTGCTCAGATAACAGCCGGCATTG CACTTCACCGGTCCATGCTGAACTCTCAGGCCATCGAC AATCTGAGAGCGAGCCTGGAAACTACTAATCAGGCAAT TGAGGCAATCAGACAAGCAGGGCAGGAGATGATATTG GCTGTTCAGGGTGTCCAAGACTACATCAATAATGAGCT GATACCGTCTATGAACCAGCTATCTTGTGATCTAATCG GTCAGAAGCTCGGGCTCAAATTGCTTAGATACTATACA GAAATCCTGTCATTATTTGGCCCCAGCCTACGGGACCC CATATCTGCGGAGATATCTATCCAGGCTTTGAGTTATGC ACTTGGAGGAGATATCAATAAGGTGTTAGAAAAGCTCG GATACAGTGGAGGCGATTTACTAGGCATCTTAGAGAGC AGAGGAATAAAGGCTCGGATAACTCACGTCGACACAG AGTCCTACTTCATAGTCCTCAGTATAGCCTATCCGACGC TGTCCGAGATTAAGGGGGTGATTGTCCACCGGCTAGAG GGGGTCTCGTACAACATAGGCTCTCAAGAGTGGTATAC CACTGTGCCCAAGTATGTTGCAACCCAAGGGTACCTTA TCTCGAATTTTGATGAGTCATCATGTACTTTCATGCCAG AGGGGACTGTGTGCAGCCAAAATGCCTTGTACCCGATG AGTCCTCTGCTCCAAGAATGCCTCCGGGGGTCCACCAA GTCCTGTGCTCGTACACTCGTATCCGGGTCTTTTGGGAA CCGGTTCATTTTATCACAAGGGAACCTAATAGCCAATT GTGCATCAATTCTTTGTAAGTGTTACACAACAGGTACG ATTATTAATCAAGACCCTGACAAGATCCTAACATACAT $\tt TGCTGCCGATCGCTGCCCGGTAGTCGAGGTGAACGGCG$ TGACCATCCAAGTCGGGAGCAGGAGGTATCCAGACGCT GTGTACTTGCACAGAATTGACCTCGGTCCTCCCATATCA TTGGAGAGGTTGGACGTAGGGACAAATCTGGGGAATG CAATTGCCAAATTGGAGGATGCCAAGGAATTGTTGGAA

	TABLE 13-continued	
Description	Sequence	SEQ ID NO:
	TCATCGGACCAGATATTGAGAAGTATGAAAGGTTTATC GAGCACTAGCATAGTCTACATCCTGATTGCAGTGTGTC TTGGAGGGTTGATAGGGATCCCCACTTTAATATGTTGCT GCAGGGGCGTTGTAACAAAAAGGGAGAAACAAGTTGG TATGTCAAGACCAGGCCTAAAGCCTGACCTTACAGGAA CATCAAAATCCTATGTAAGATCGCTTTGATGATAATAG GCTGGAGCCTCGGTGGCCAAGCTTCTTGCCCCTTGGGC CTCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCC CCGTGGTCTTTGAATAAAAAAAAAA	
GC_F_MEASLES_D8 Sequence, NT (5' UTR, ORF, 3' UTR) Sequence Length: 1864	TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACT CACTATAGGGAAATAAGAGAGAAAAGAAGAGTAAGAA GAAATATAAGAGCCACCATGGGTCTCAAGGTGAACGTC TCTGTCATATTCATGGCAGTACTGTTAACTCTCTAAACA CCCACCGGTCAAATCCATTGGGGCAATCTCTCTAAGAT AGGGGTGGTAGGGTAG	38
GC_F_MEASLES_D8 ORF Sequence, NT	ATGGGTCTCAAGGTGAACGTCTCTGTCATATTCATGGC AGTACTGTTAACTCTTCAAACACCCACCGGTCAAATCC ATTGGGGCAATCTCTCAAGATAGGGGTGGTAGGGGTA GGAAGTGCAAGCTACAAAGTTATGACTCGTTCCAGCCA TCAATCATTAGTCATAAAGTTAATGCCCAATATAACTCT CCTCAACAATTGCACGAGGGTAGGGATTGCAGAATACA GGAGACTACTGAACAACAGTTCTGGAACCAATTAGAGAT GCACTTAATGCAATGACCCAGAATATAAGACCGGTTCA GAGTGTAGCTCAAGTAGGAGACAACAAGAGATTTCGGG GAGTTGTCCTGGCAGGTGCGGCCCTAGGCGTTGCCACA GCTGCTCAAATAACAGCCGGTATTGACACTTCACCAGTC CATGCTGAACTCTCAAGCCATCGACAATCTGAGAGGA GCCTAGAAACTACTAATCAGGCAATTGAGGCAATCAGA CAAGCAGGGCAGG	39

TABLE 13-continued

Description Sequence SEQ ID

CCAAGACTACATCAATAATGAGCTGATACCGTCTATGA ATCAACTATCTTGTGATTTAATCGGCCAGAAGCTAGGG CTCAAATTGCTCAGATACTATACAGAAATCCTGTCATT ATTTGGCCCCAGCTTACGGGACCCCATATCTGCGGAGA TATCTATCCAGGCTTTGAGCTATGCGCTTGGAGGAGAT ATCAATAAGGTGTTGGAAAAGCTCGGATACAGTGGAG GTGATCTACTGGGCATCTTAGAGAGCAGAGGAATAAAG GCCCGGATAACTCACGTCGACACAGAGTCCTACTTCAT TGTACTCAGTATAGCCTATCCGACGCTATCCGAGATTA AGGGGGTGATTGTCCACCGGCTAGAGGGGGTCTCGTAC AACATAGGCTCTCAAGAGTGGTATACCACTGTGCCCAA GTATGTTGCAACCCAAGGGTACCTTATCTCGAATTTTGA TGAGTCATCATGCACTTTCATGCCAGAGGGGACTGTGT GCAGCCAGAATGCCTTGTACCCGATGAGTCCTCTGCTC CAAGAATGCCTCCGGGGGTCCACTAAGTCCTGTGCTCG TACACTCGTATCCGGGTCTTTCGGGAACCGGTTCATTTT ATCACAGGGGAACCTAATAGCCAATTGTGCATCAATCC TTTGCAAGTGTTACACAACAGGAACAATCATTAATCAA GACCCTGACAAGATCCTAACATACATTGCTGCCGATCA CTGCCCGGTGGTCGAGGTGAATGGCGTGACCATCCAAG TCGGGAGCAGGAGGTATCCGGACGCTGTGTACTTGCAC AGGATTGACCTCGGTCCTCCCATATCTTTGGAGAGGTT GGACGTAGGGACAAATCTGGGGAATGCAATTGCTAAGT TGGAGGATGCCAAGGAATTGTTGGAGTCATCGGACCAG ATATTGAGGAGTATGAAAGGTTTATCGAGCACTAGTAT AGTTTACATCCTGATTGCAGTGTGTCTTGGAGGATTGAT AGGGATCCCCGCTTTAATATGTTGCTGCAGGGGGCGTT GTAACAAGAAGGGAGAACAAGTTGGTATGTCAAGACC AGGCCTAAAGCCTGATCTTACAGGAACATCAAAATCCT ATGTAAGGTCACTCTGA

G*GGAAATAAGAGAGAAAAGAAGAGTAAGAAGAAAT

GC_F_MEASLES_D8 mRNA Sequence (assumes T100 tail) Sequence Length: 1925

ATAAGAGCCACCATGGGTCTCAAGGTGAACGTCTCTGT ${\tt CATATTCATGGCAGTACTGTTAACTCTTCAAACACCCAC}$ $\tt CGGTCAAATCCATTGGGGCAATCTCTCTAAGATAGGGG$ $\tt TGGTAGGGGTAGGAAGTGCAAGCTACAAAGTTATGACT$ CGTTCCAGCCATCAATCATTAGTCATAAAGTTAATGCC CAATATAACTCTCCTCAACAATTGCACGAGGGTAGGGA TTGCAGAATACAGGAGACTACTGAGAACAGTTCTGGAA CCAATTAGAGATGCACTTAATGCAATGACCCAGAATAT AAGACCGGTTCAGAGTGTAGCTTCAAGTAGGAGACACA AGAGATTTGCGGGAGTTGTCCTGGCAGGTGCGGCCCTA GGCGTTGCCACAGCTGCTCAAATAACAGCCGGTATTGC ACTTCACCAGTCCATGCTGAACTCTCAAGCCATCGACA ATCTGAGAGCGAGCCTAGAAACTACTAATCAGGCAATT GAGGCAATCAGACAAGCAGGGCAGGAGATGATATTGG CTGTTCAGGGTGTCCAAGACTACATCAATAATGAGCTG ATACCGTCTATGAATCAACTATCTTGTGATTTAATCGGC CAGAAGCTAGGGCTCAAATTGCTCAGATACTATACAGA AATCCTGTCATTATTTGGCCCCAGCTTACGGGACCCCAT ATCTGCGGAGATATCTATCCAGGCTTTGAGCTATGCGC TTGGAGGAGATATCAATAAGGTGTTGGAAAAGCTCGGA TACAGTGGAGGTGATCTACTGGGCATCTTAGAGAGCAG AGGAATAAAGGCCCGGATAACTCACGTCGACACAGAG TCCTACTTCATTGTACTCAGTATAGCCTATCCGACGCTA TCCGAGATTAAGGGGGTGATTGTCCACCGGCTAGAGGG GGTCTCGTACAACATAGGCTCTCAAGAGTGGTATACCA CTGTGCCCAAGTATGTTGCAACCCAAGGGTACCTTATC TCGAATTTTGATGAGTCATCATGCACTTTCATGCCAGAG GGGACTGTGTGCAGCCAGAATGCCTTGTACCCGATGAG TCCTCTGCTCCAAGAATGCCTCCGGGGGTCCACTAAGT CCTGTGCTCGTACACTCGTATCCGGGTCTTTCGGGAACC GGTTCATTTTATCACAGGGGAACCTAATAGCCAATTGT GCATCAATCCTTTGCAAGTGTTACACAACAGGAACAAT CATTAATCAAGACCCTGACAAGATCCTAACATACATTG CTGCCGATCACTGCCCGGTGGTCGAGGTGAATGGCGTG ACCATCCAAGTCGGGAGCAGGAGGTATCCGGACGCTGT GTACTTGCACAGGATTGACCTCGGTCCTCCCATATCTTT GGAGAGGTTGGACGTAGGGACAAATCTGGGGAATGCA ATTGCTAAGTTGGAGGATGCCAAGGAATTGTTGGAGTC ATCGGACCAGATATTGAGGAGTATGAAAGGTTTATCGA $\tt GCACTAGTATAGTTTACATCCTGATTGCAGTGTGTCTTG$ GAGGATTGATAGGGATCCCCGCTTTAATATGTTGCTGC $\tt AGGGGGCGTTGTAACAAGAAGGGAGAACAAGTTGGTA$ TGTCAAGACCAGGCCTAAAGCCTGATCTTACAGGAACA TCAAAATCCTATGTAAGGTCACTCTGATGATAATAGGC TGGAGCCTCGGTGGCCAAGCTTCTTGCCCCTTGGGCCTC

40

Description	Sequence	SEQ II NO:
	CCCCAGCCCTCCTCCCCTTCCTGCACCCGTACCCCCG	
	TGGTCTTTGAATAAAGTCTGAGTGGGCGGCAAAAAAA	
	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
	AAAAAAAAAAAAAAAAATCTAG	
C_H_MEASLES_B3	TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACT	41
Sequence, NT (5'	CACTATAGGGAAATAAGAGAGAAAAGAAGAGTAAGAA	
TR, ORF, 3'	GAAATATAAGAGCCACCATGTCACCGCAACGAGACCG	
TTR)	GATAAATGCCTTCTACAAAGATAACCCTTATCCCAAGG	
Sequence Length:	GAAGTAGGATAGTTATTAACAGAGAACATCTTATGATT	
:065	GACAGACCCTATGTTCTGCTGGCTGTTCTGTTCGTCATG TTTCTGAGCTTGATCGGATTGCTGGCAATTGCAGGCATT	
	AGACTTCATCGGGCAGCCATCTACACCGCGGAGATCCA	
	TAAAAGCCTCAGTACCAATCTGGATGTGACTAACTCCA	
	TCGAGCATCAGGTCAAGGACGTGCTGACACCACTCTTT	
	AAAATCATCGGGGATGAAGTGGGCCTGAGAACACCTC	
	AGAGATTCACTGACCTAGTGAAATTCATCTCGGACAAG	
	ATTAAATTCCTTAATCCGGATAGGGAGTACGACTTCAG	
	AGATCTCACTTGGTGCATCAACCCGCCAGAGAGGATCA	
	AACTAGATTATGATCAATACTGTGCAGATGTGGCTGCT	
	GAAGAGCTCATGAATGCATTGGTGAACTCAACTCTACT	
	GGAGACCAGAACAACCACTCAGTTCCTAGCTGTCTCAA	
	AGGGAAACTGCTCAGGGCCCACTACAATCAGAGGTCA ATTCTCAAACATGTCGCTGTCCTTGTTGGACTTGTACTT	
	AGGTCGAGGTTACAATGTGTCGTTGTTGGACTTGTACTT	
	CATCCCAGGGAATGTATGGGGGGAACCTACCTAGTTGAA	
	AAGCCTAATCTGAACAGCAAAGGGTCAGAGTTGTCACA	
	ACTGAGCATGTACCGAGTGTTTGAAGTAGGTGTGATCA	
	GAAACCCGGGTTTGGGGGCTCCGGTGTTCCATATGACA	
	AACTATTTTGAGCAACCAGTCAGTAATGGTCTCGGCAA	
	CTGTATGGTGGCTTTGGGGGAGCTCAAACTCGCAGCCC	
	TTTGTCACGGGGACGATTCTATCATAATTCCCTATCAGG	
	GATCAGGGAAAGGTGTCAGCTTCCAGCTCGTCAAGCTG	
	GGTGTCTGGAAATCCCCAACCGACATGCAATCCTGGGT CCCCTTATCAACGGATGATCCAGTGGTAGACAGGCTTT	
	ACCTCTCATCACAGAGGTGTCATCGCTGACAATCAA	
	GCAAAATGGGCTGTCCCGACAACACGAACAGATGACA	
	AGTTGCGAATGGAGACATGCTTCCAGCAGGCGTGTAAA	
	GGTAAAATCCAAGCACTCTGCGAGAATCCCGAGTGGGT	
	ACCATTGAAGGATAACAGGATTCCTTCATACGGGGTCC	
	TGTCTGTTGATCTGAGTCTGACGGTTGAGCTTAAAATCA	
	AAATTGCTTCGGGATTCGGGCCATTGATCACACACGGC	
	TCAGGGATGGACCTATACAAATCCAACTGCAACAATGT	
	GTATTGGCTGACTATTCCGCCAATGAGAAATCTAGCCT	
	TAGGCGTAATCAACACATTGGAGTGGATACCGAGATTC AAGGTTAGTCCCAACCTCTTCACTGTCCCAATTAAGGA	
	AGCAGGCGAAGACTGCCCAACTACCTG	
	CGGAGGTGGACGTGATGTCAAACTCAGTTCCAACCTG	
	GTGATTCTACCTGGTCAAGATCTCCAATATGTTTTTGGCA	
	ACCTACGATACCTCCAGGGTTGAGCATGCTGTGGTTTA	
	TTACGTTTACAGCCCAAGCCGCTCATTTTCTTACTTTTA	
	TCCTTTTAGGTTGCCTATAAAGGGGGTCCCAATCGAAC	
	TACAAGTGGAATGCTTCACATGGGATCAAAAACTCTGG	
	TGCCGTCACTTCTGTGTGCTTGCGGACTCAGAATCCGGT	
	GGACTTATCACTCACTCTGGGATGGTGGGCATGGGAGT	
	CAGCTGCACAGCTACCCGGGAAGATGGAACCAATCGC	
	AGATAATGATAATAGGCTGGAGCCTCGGTGGCCAAGCT TCTTGCCCCTTGGGCCTCCCCCAGCCCCTCCTCCCCTT	
	CCTGCACCCGTACCCCCGTGGTCTTTGAATAAAGTCTG	
	AGTGGGCGGC	
C H MEASLES B3	ATGTCACCGCAACGAGACCGGATAAATGCCTTCTACAA	42
RF Sequence, NT	AGATAACCCTTATCCCAAGGGAAGTAGGATAGTTATTA	44
Dogaciico, Mi	ACAGAGAACATCTTATGATTGACAGACCCTATGTTCTG	
	CTGGCTGTTCTGTTCGTCATGTTTCTGAGCTTGATCGGA	
	TTGCTGGCAATTGCAGGCATTAGACTTCATCGGGCAGC	
	CATCTACACCGCGGAGATCCATAAAAGCCTCAGTACCA	
	ATCTGGATGTGACTAACTCCATCGAGCATCAGGTCAAG	
	GACGTGCTGACACCACTCTTTAAAATCATCGGGGATGA	
	AGTGGGCCTGAGAACACCTCAGAGATTCACTGACCTAG	
	TGAAATTCATCTCGGACAAGATTAAATTCCTTAATCCG	
	GATAGGGAGTACGACTTCAGAGATCTCACTTGGTGCAT	
	CAACCCGCCAGAGAGGATCAAACTAGATTATGATCAAT	

TABLE 13-continued

SEQ ID Description Sequence NO:

CCACTACAATCAGAGGTCAATTCTCAAACATGTCGCTG TCCTTGTTGGACTTGTACTTAGGTCGAGGTTACAATGTG TCATCTATAGTCACTATGACATCCCAGGGAATGTATGG GGGAACCTACCTAGTTGAAAAGCCTAATCTGAACAGCA AAGGGTCAGAGTTGTCACAACTGAGCATGTACCGAGTG TTTGAAGTAGGTGTGATCAGAAACCCGGGTTTGGGGGC TCCGGTGTTCCATATGACAAACTATTTTGAGCAACCAG TCAGTAATGGTCTCGGCAACTGTATGGTGGCTTTGGGG GAGCTCAAACTCGCAGCCCTTTGTCACGGGGACGATTC TATCATAATTCCCTATCAGGGATCAGGGAAAGGTGTCA GCTTCCAGCTCGTCAAGCTGGGTGTCTGGAAATCCCCA ACCGACATGCAATCCTGGGTCCCCTTATCAACGGATGA TCCAGTGGTAGACAGGCTTTACCTCTCATCTCACAGAG GTGTCATCGCTGACAATCAAGCAAAATGGGCTGTCCCG ACAACACGAACAGATGACAAGTTGCGAATGGAGACAT GCTTCCAGCAGGCGTGTAAAAGGTAAAATCCAAGCACTC TGCGAGAATCCCGAGTGGGTACCATTGAAGGATAACAG GATTCCTTCATACGGGGTCCTGTCTGTTGATCTGAGTCT GACGGTTGAGCTTAAAATCAAAATTGCTTCGGGATTCG GGCCATTGATCACACACGGCTCAGGGATGGACCTATAC AAATCCAACTGCAACAATGTGTATTGGCTGACTATTCC GCCAATGAGAAATCTAGCCTTAGGCGTAATCAACACAT TGGAGTGGATACCGAGATTCAAGGTTAGTCCCAACCTC TTCACTGTCCCAATTAAGGAAGCAGGCGAAGACTGCCA TGCCCCAACATACCTACCTGCGGAGGTGGACGGTGATG TCAAACTCAGTTCCAACCTGGTGATTCTACCTGGTCAA GATCTCCAATATGTTTTGGCAACCTACGATACCTCCAG GGTTGAGCATGCTGTGGTTTATTACGTTTACAGCCCAA $\tt GCCGCTCATTTCTTACTTTTATCCTTTTAGGTTGCCTAT$ AAAGGGGTCCCAATCGAACTACAAGTGGAATGCTTCA CATGGGATCAAAAACTCTGGTGCCGTCACTTCTGTGTG CTTGCGGACTCAGAATCCGGTGGACTTATCACTCACTCT GGGATGGTGGGCATGGGAGTCAGCTGCACAGCTACCCG GGAAGATGGAACCAATCGCAGATAA

GC_H_MEASLES_B3 mRNA Sequence (assumes T100 tail) Sequence Length: 2126 G*GGGAAATAAGAGAGAAAAGAAGAAGAAAT ATAAGAGCCACCATGTCACCGCAACGAGACCGGATAA ATGCCTTCTACAAAGATAACCCTTATCCCAAGGGAAGT AGGATAGTTATTAACAGAGAACATCTTATGATTGACAG ACCCTATGTTCTGCTGGCTGTTCTGTTCGTCATGTTTCT GAGCTTGATCGGATTGCTGGCAATTGCAGGCATTAGAC ${\tt TTCATCGGGCAGCCATCTACACCGCGGAGATCCATAAA}$ AGCCTCAGTACCAATCTGGATGTGACTAACTCCATCGA GCATCAGGTCAAGGACGTGCTGACACCACTCTTTAAAA TCATCGGGGATGAAGTGGGCCTGAGAACACCTCAGAG ATTCACTGACCTAGTGAAATTCATCTCGGACAAGATTA AATTCCTTAATCCGGATAGGGAGTACGACTTCAGAGAT CTCACTTGGTGCATCAACCCGCCAGAGAGGGATCAAACT AGATTATGATCAATACTGTGCAGATGTGGCTGCTGAAG AGCTCATGAATGCATTGGTGAACTCAACTCTACTGGAG ACCAGAACAACCACTCAGTTCCTAGCTGTCTCAAAGGG AAACTGCTCAGGGCCCACTACAATCAGAGGTCAATTCT CAAACATGTCGCTGTCCTTGTTGGACTTGTACTTAGGTC GAGGTTACAATGTGTCATCTATAGTCACTATGACATCC CAGGGAATGTATGGGGGAACCTACCTAGTTGAAAAGCC TAATCTGAACAGCAAAGGGTCAGAGTTGTCACAACTGA GCATGTACCGAGTGTTTGAAGTAGGTGTGATCAGAAAC CCGGGTTTGGGGGCTCCGGTGTTCCATATGACAAACTA TTTTGAGCAACCAGTCAGTAATGGTCTCGGCAACTGTA TGGTGGCTTTGGGGGAGCTCAAACTCGCAGCCCTTTGT CACGGGGACGATTCTATCATAATTCCCTATCAGGGATC AGGGAAAGGTGTCAGCTTCCAGCTCGTCAAGCTGGGTG TCTGGAAATCCCCAACCGACATGCAATCCTGGGTCCCC TTATCAACGGATGATCCAGTGGTAGACAGGCTTTACCT CTCATCTCACAGAGGTGTCATCGCTGACAATCAAGCAA AATGGGCTGTCCCGACAACACGAACAGATGACAAGTTG CGAATGGAGACATGCTTCCAGCAGGCGTGTAAAGGTAA AATCCAAGCACTCTGCGAGAATCCCGAGTGGGTACCAT TGAAGGATAACAGGATTCCTTCATACGGGGTCCTGTCT GTTGATCTGAGTCTGACGGTTGAGCTTAAAATCAAAAT TGCTTCGGGATTCGGGCCATTGATCACACACGGCTCAG GGATGGACCTATACAAATCCAACTGCAACAATGTGTAT TGGCTGACTATTCCGCCAATGAGAAATCTAGCCTTAGG CGTAATCAACACATTGGAGTGGATACCGAGATTCAAGG TTAGTCCCAACCTCTTCACTGTCCCAATTAAGGAAGCA GGCGAAGACTGCCATGCCCCAACATACCTACCTGCGGA GGTGGACGGTGATGTCAAACTCAGTTCCAACCTGGTGA

	TABLE 13-continued	
Description	Sequence	SEQ II NO:
	TTCTACCTGGTCAAGATCTCCAATATGTTTTTGGCAACCT ACGATACCTCCAGGGTTGAGCATGCTGTGTTTATTAC GTTTACAGCCCAAGCCGCTCATTTTCTTACTTTTATCCT TTTAGGTTGCCTATAAAGGGGGTCCCAATCGAACTACA AGTGGAATGCTTCACATGGGATCAAAAACTCTGGTGCC GTCACTTCTGTGTGCTTGCGGACTCAGAATCCGGTGGA CTTATCACTCACTCTGGGATGGTGGGCATCAGAATCCCAGAT AATGATAATAGGCTGGGCCTCGGTGGCCCAAGCTTCTT GCCCCTTGGGCTCCCCCCAGCCCTCCTCCCCTTCCTG CACCCGTACCCCGTGGTCTTTGAATAAAGTCTGAGTG GCCGCAAAAAAAAAA	
GC_H_MEASLES_D8 Sequence, NT (5' UTR, ORF, 3' UTR) Sequence Length: 2065	TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACT CACTATAGGGAAATAAGAGAGAAAAGAAGATAAGAA GAAATATAAGAGCCACCATGTCACCACAACGAGACCG GATAAATGCCTTCTACAAAAGACAACCCCCATCCTAAGG GAAGTAGGATAGTTATTAACAAGAGAAACCCCCATCCTAAGG GAAGTAGGATAGTTATTATACAAGAGAAACCCCCATCCTAAGG GAAGTAGGATAGTTTTTCTTGCTGGTTTTTATTCGTCATG TTTCTGAGCTTGATCGGGTTGCTAGCCATTGCAGGCATT AGACCTTCATCGGGCAGCCATCTACACCGCAAGAGATCCA TAAAAGCCTCAGCACCAATCTGGATGTAACTAACTCAA TCGAGCATCAGGTAAGGACACCTCTACACCACAAGAATCCAA TCGAGCATCAGGTAAGAGACGTCTGACACCACACTCTTC AAGATCATCGGTGATGAAAGTCACTCCAAGA TCAAATCCCTGACTAGAAGTCATCTCTGACAAGA TTAAATTCCTTAATCCGGACAGGGAATACGACTCCACA GAATTCACTTGATCAGGACAGGA	44
GC_H_MEASLES_D8 ORF Sequence, NT	ATGTCACCACAACGAGACCGGATAAATGCCTTCTACAA AGACAACCCCCATCCTAAGGGAAGTAGGATAGTTATTA ACAGAGAACATCTTATGATTGATAGACCTTATGTTTTGC	45

ATGTCACCACAACGAGACCGGATAAATGCCTTCTACAA AGACAACCCCCATCCTAAGGGAAGTAGGATAGTTATTA ACAGGAACATCTTATGATTGATAGACCTTATGTTTTGC TGGCTGTTCTATTCGTCATGTTTCTGAGCTTGATCGGGT TGCTAGCCATTGCAGGCATTAGACTTCATCGGCAGCC

TABLE 13-continued

SEQ ID Description Sequence NO:

ATCTACACCGCAGAGATCCATAAAAGCCTCAGCACCAA TCTGGATGTAACTAACTCAATCGAGCATCAGGTTAAGG ACGTGCTGACACCACTCTTCAAGATCATCGGTGATGAA GTGGGCTTGAGGACACCTCAGAGATTCACTGACCTAGT GAAGTTCATCTCTGACAAGATTAAATTCCTTAATCCGG ACAGGGAATACGACTTCAGAGATCTCACTTGGTGTATC AACCCGCCAGAGAGAATCAAATTGGATTATGATCAATA CTGTGCAGATGTGGCTGCTGAAGAACTCATGAATGCAT TGGTGAACTCAACTCTACTGGAGACCAGGGCAACCAAT CAGTTCCTAGCTGTCTCAAAGGGAAACTGCTCAGGGCC CACTACAATCAGAGGCCAATTCTCAAACATGTCGCTGT CCCTGTTGGACTTGTATTTAAGTCGAGGTTACAATGTGT CATCTATAGTCACTATGACATCCCAGGGAATGTACGGG GGAACTTACCTAGTGGAAAAGCCTAATCTGAGCAGCAA AGGGTCAGAGTTGTCACAACTGAGCATGCACCGAGTGT TTGAAGTAGGTGTTATCAGAAATCCGGGTTTGGGGGCT CCGGTATTCCATATGACAAACTATCTTGAGCAACCAGT CAGTAATGATTTCAGCAACTGCATGGTGGCTTTGGGGG AGCTCAAGTTCGCAGCCCTCTGTCACAGGGAAGATTCT ATCACAATTCCCTATCAGGGATCAGGGAAAGGTGTCAG CTTCCAGCTTGTCAAGCTAGGTGTCTGGAAATCCCCAA CCGACATGCAATCCTGGGTCCCCCTATCAACGGATGAT CCAGTGATAGACAGGCTTTACCTCTCATCTCACAGAGG CGTTATCGCTGACAATCAAGCAAAATGGGCTGTCCCGA CAACACGGACAGATGACAAGTTGCGAATGGAGACATG CTTCCAGCAGGCGTGTAAGGGTAAAATCCAAGCACTTT GCGAGAATCCCGAGTGGACACCATTGAAGGATAACAG GATTCCTTCATACGGGGTCTTGTCTGTTGATCTGAGTCT ${\tt GACAGTTGAGCTTAAAATCAAAATTGTTTCAGGATTCG}$ GGCCATTGATCACACACGGTTCAGGGATGGACCTATAC AAATCCAACCACAACAATATGTATTGGCTGACTATCCC GCCAATGAAGAACCTGGCCTTAGGTGTAATCAACACAT ${\tt TGGAGTGGATACCGAGATTCAAGGTTAGTCCCAACCTC}$ TTCACTGTTCCAATTAAGGAAGCAGGCGAGGACTGCCA $\tt TGCCCCAACATACCTACCTGCGGAGGTGGATGGTGATG$ ${\tt TCAAACTCAGTTCCAATCTGGTGATTCTACCTGGTCAAG}$ ATCTCCAATATGTTCTGGCAACCTACGATACTTCCAGA $\tt GTTGAACATGCTGTAGTTTATTACGTTTACAGCCCAAGC$ CGCTCATTTTCTTACTTTTATCCTTTTAGGTTGCCTGTAA GGGGGTCCCCATTGAATTACAAGTGGAATGCTTCACA TGGGACCAAAAACTCTGGTGCCGTCACTTCTGTGTGCTT GCGGACTCAGAATCTGGTGGACATATCACTCACTCTGG GATGGTGGGCATGGGAGTCAGCTGCACAGCCACTCGGG AAGATGGAACCAGCCGCAGATAG

GC_H_MEASLES_D8 mRNA Sequence (assumes T100 tail) Sequence Length: 2126

G*GGAAATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGTCACCACAACGAGACCGGATAA ATGCCTTCTACAAAGACAACCCCCATCCTAAGGGAAGT AGGATAGTTATTAACAGAGAACATCTTATGATTGATAG ACCTTATGTTTTGCTGGCTGTTCTATTCGTCATGTTTCTG AGCTTGATCGGGTTGCTAGCCATTGCAGGCATTAGACT TCATCGGGCAGCCATCTACACCGCAGAGATCCATAAAA GCCTCAGCACCAATCTGGATGTAACTAACTCAATCGAG CATCAGGTTAAGGACGTGCTGACACCACTCTTCAAGAT CATCGGTGATGAAGTGGGCTTGAGGACACCTCAGAGAT TCACTGACCTAGTGAAGTTCATCTCTGACAAGATTAAA TTCCTTAATCCGGACAGGGAATACGACTTCAGAGATCT CACTTGGTGTATCAACCCGCCAGAGAGAATCAAATTGG ATTATGATCAATACTGTGCAGATGTGGCTGCTGAAGAA CTCATGAATGCATTGGTGAACTCAACTCTACTGGAGAC CAGGGCAACCAATCAGTTCCTAGCTGTCTCAAAGGGAA ACTGCTCAGGGCCCACTACAATCAGAGGCCAATTCTCA AACATGTCGCTGTCCCTGTTGGACTTGTATTTAAGTCGA GGTTACAATGTGTCATCTATAGTCACTATGACATCCCA GGGAATGTACGGGGGAACTTACCTAGTGGAAAAGCCT AATCTGAGCAGCAAAGGGTCAGAGTTGTCACAACTGAG CATGCACCGAGTGTTTGAAGTAGGTGTTATCAGAAATC CGGGTTTGGGGGCTCCGGTATTCCATATGACAAACTAT CTTGAGCAACCAGTCAGTAATGATTTCAGCAACTGCAT GGTGGCTTTGGGGGAGCTCAAGTTCGCAGCCCTCTGTC ACAGGGAAGATTCTATCACAATTCCCTATCAGGGATCA GGGAAAGGTGTCAGCTTCCAGCTTGTCAAGCTAGGTGT CTGGAAATCCCCAACCGACATGCAATCCTGGGTCCCCC TATCAACGGATGATCCAGTGATAGACAGGCTTTACCTC ${\tt TCATCTCACAGAGGCGTTATCGCTGACAATCAAGCAAA}$ ATGGGCTGTCCCGACAACACGGACAGATGACAAGTTGC GAATGGAGACATGCTTCCAGCAGGCGTGTAAGGGTAA

TABLE 13-continued

Description Sequence SEQ ID NO:

AATCCAAGCACTTTGCGAGAATCCCGAGTGGACACCAT
TGAAGGATTACAGGATTCCTCATACGGGGTCTTGTCT
GTTGATCTGAGTCTGAGTCTGACTCACACAAAAT
TGTTCAGGATTCGGCCATTGAGTCACACGGTTCAG

TGTTTCAGGATTCGGGCCATTGATCACACACGGTTCAG GGATGGACCTATACAAATCCAACCACAACAATATGTAT TGGCTGACTATCCCGCCAATGAAGAACCTGGCCTTAGG TGTAATCAACACATTGGAGTGGATACCGAGATTCAAGG TTAGTCCCAACCTCTTCACTGTTCCAATTAAGGAAGCA GGCGAGGACTGCCATGCCCAACATACCTACCTGCGGA GGTGGATGTGATGTCAAACTCAGTTCCAATCTGGTGA TTCTACCTGGTCAAGATCTCCAATATGTTCTGGCAACCT ACGATACTTCCAGAGTTGAACATGCTGTAGTTTATTAC GTTTACAGCCCAAGCCGCTCATTTTCTTACTTTTATCCT TTTAGGTTGCCTGTAAGGGGGGTCCCCATTGAATTACA AGTGGAATGCTTCACATGGGACCAAAAACTCTGGTGCC GTCACTTCTGTGTGCTTGCGGACTCAGAATCTGGTGGA CATATCACTCACTCTGGGATGGTGGGCATGGGAGTCAG CTGCACAGCCACTCGGGAAGATGGAACCAGCCGCAGA TAGTGATAATAGGCTGGAGCCTCGGTGGCCAAGCTTCT TGCCCCTTGGGCCTCCCCCAGCCCCTCCTCCCCTTCCT GCACCCGTACCCCCGTGGTCTTTGAATAAAGTCTGAGT GGGCGCCAAAAAAAAAAAAAAAAAAAAAAAAAAAA ΤΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

MeV mRNA Sequences

GC_F_MEASLES_B3.1 Sequence, NT (5' UTR, ORF, 3' UTR) Sequence Length: 1864 UCAAGCUUUUGGACCCUCGUACAGAAGCUAAUACGAC UCACUAUAGGGAAAUAAGAGAGAAAAGAAGAGUAAG AAGAAAUAUAAGAGCCACCAUGGGUCUCAAGGUGAA CGUCUCUGCCGUAUUCAUGGCAGUACUGUUAACUCUC CAAACACCCGCCGGUCAAAUUCAUUGGGGCAAUCUCU CUAAGAUAGGGUAGUAGGAAUAGGAAGUGCAAGCU ACAAAGUUAUGACUCGUUCCAGCCAUCAAUCAUUAGU CAUAAAAUUAAUGCCCAAUAUAACUCUCCUCAAUAAC UGCACGAGGGUAGAGAUUGCAGAAUACAGGAGACUA CUAAGAACAGUUUUGGAACCAAUUAGGGAUGCACUU AAUGCAAUGACCCAGAACAUAAGGCCGGUUCAGAGCG UAGCUUCAAGUAGGAGACACAAGAGAUUUGCGGGAG UAGUCCUGGCAGGUGCGGCCCUAGGUGUUGCCACAGC UGCUCAGAUAACAGCCGGCAUUGCACUUCACCGGUCC AUGCUGAACUCUCAGGCCAUCGACAAUCUGAGAGCGA GCCUGGAAACUACUAAUCAGGCAAUUGAGGCAAUCAG ACAAGCAGGCAGGAGAUGAUAUUGGCUGUUCAGGG UGUCCAAGACUACAUCAAUAAUGAGCUGAUACCGUCU AUGAACCAGCUAUCUUGUGAUCUAAUCGGUCAGAAGC UCGGGCUCAAAUUGCUUAGAUACUAUACAGAAAUCCU GUCAUUAUUUGGCCCCAGCCUACGGGACCCCAUAUCU GCGGAGAUAUCUAUCCAGGCUUUGAGUUAUGCACUU GGAGGAGAUAUCAAUAAGGUGUUAGAAAAGCUCGGA UACAGUGGAGGCGAUUUACUAGGCAUCUUAGAGAGC AGAGGAAUAAAGGCUCGGAUAACUCACGUCGACACAG AGUCCUACUUCAUAGUCCUCAGUAUAGCCUAUCCGAC GCUGUCCGAGAUUAAGGGGGUGAUUGUCCACCGGCUA GAGGGGUCUCGUACAACAUAGGCUCUCAAGAGUGG UAUACCACUGUGCCCAAGUAUGUUGCAACCCAAGGGU ACCUUAUCUCGAAUUUUGAUGAGUCAUCAUGUACUU UCAUGCCAGAGGGGACUGUGUGCAGCCAAAAUGCCUU GUACCCGAUGAGUCCUCUGCUCCAAGAAUGCCUCCGG GGGUCCACCAAGUCCUGUGCUCGUACACUCGUAUCCG GGUCUUUUGGGAACCGGUUCAUUUUAUCACAAGGGA ACCUAAUAGCCAAUUGUGCAUCAAUUCUUUGUAAGU GUUACACAACAGGUACGAUUAUUAAUCAAGACCCUGA CAAGAUCCUAACAUACAUUGCUGCCGAUCGCUGCCCG GUAGUCGAGGUGAACGGCGUGACCAUCCAAGUCGGGA GCAGGAGGUAUCCAGACGCUGUGUACUUGCACAGAAU UGACCUCGGUCCUCCCAUAUCAUUGGAGAGGUUGGAC GUAGGGACAAAUCUGGGGAAUGCAAUUGCCAAAUUG GAGGAUGCCAAGGAAUUGUUGGAAUCAUCGGACCAG AUAUUGAGAAGUAUGAAAGGUUUAUCGAGCACUAGC AUAGUCUACAUCCUGAUUGCAGUGUGUCUUGGAGGG UUGAUAGGGAUCCCCACUUUAAUAUGUUGCUGCAGG GGGCGUUGUAACAAAAAGGGAGAACAAGUUGGUAUG UCAAGACCAGGCCUAAAGCCUGACCUUACAGGAACAU CAAAAUCCUAUGUAAGAUCGCUUUGAUGAUAAUAGG CUGGAGCCUCGGUGGCCAAGCUUCUUGCCCCUUGGGC

TABLE 13-continued

	TABLE 13-continued	
Description	Sequence	SEQ II NO:
	CUCCCCCAGCCCCUCCUCCCCUUCCUGCACCCGUACC CCCGUGGUCUUUGAAUAAAGUCUGAGUGGGCGGC	
GC_F_MEASLES_B3.1 ORF Sequence, NT	AUGGGUCUCAAGGUGAACGUCUCUGCCGUAUUCAUGG CAGUACUGUUAACUCUCCAAACACCCGCCGGUCAAAU UCAUUGGGGCAUCUCUCUAAGAUAGGGGUAGUAGG AAUAGGAAGUGCAAGCUACAAAGUUAUGACUCGUUC CAGCAUCAUCAUUAGUCAUAAAAUUAAUGCCCAAU AUAACUCUCUCCAAUAACCCACGAGGGUAGAGAUUG CAGAAUACAGGAGCAUCUAAGAACGUUUUGGAAC CAAUUAGGGAUCACUAAGAACGUUUUGGAAC CAAUUAGGGAUCACUAAGAACAGUUUUGGAAC CAAUUAGGGAUCACUAAGAACAGUUUUGGAAC CAAUUAGGGAUCACACACAGAGGCCCACAACAU AAGACAGUUUCAAGAGCGUACCUAAGAACAGUUUGGAAC CAAUUAGGGAUCCACACACGUGCUCAGAACACU UGCACUUCACCGGUCCAUGCUGAAACUCUCAGGCCAU GGACAUCACACGUGCUCAGAACUACUAAGACAGCCGGCAU UGCACUUCACCGGUCCAUGCUGAAACUACUAAUCAAG CAAUUGAGGCAAUCAAGACCAGGCAGACAA AAGAGAUUUGCCACGGCCAUCGAAACUACAAUA AUGACCUGUUCAGGCCAUCGAAACUACAAUA AUGAGCUGUUCAGGGCGCCCAAGACUACAAUA AUGAGCUGUUCAGGGCGCCCAAGACUACAAUA AUGAGCUGUUCAGGGCGCCCAAGACUACAAUA AUGAGCUGAUACCGUCUAUGAACCAGCUAUCUUGUGA UCUAAUCGGUCAGACACCAGACUACAUCAAUA AUGAGCUGAUACCGUCUAUGAACCAGCUAUCUUGUGA UCUAAUCAGAAAUCCUGUCAUAUUUUGGCCCCAGCC UUUGAGUUAUGCACGUCUAUAUUUUGCCCCAGCC UUUGAGUUAUGCACCUUGAGAGACUAACACAGGC UUUGAGUAACAGAAGACAGAGGAGAAUACAAAAAAGGU GUUAGAAAAUCCUGGAGAGAAAAACAACAACAAAAAAGGU GUUAGAAAAACCCAAGAGUCCUACUUCAUAACGCAAGC UUUGAGUAACAGAAGACAAGAGGAAAAAAGGCUCGAAU AACUCACGUCAACACAAGAGUCCUACUUCAUAAGGCCCAAGAU AACUCAAGAGGAACCAAAGAGGAGAAUAAAGGCUCGAAU AAGCCAACACAAGAGUCCUACUUCAUAAGGGGG UGAUUGCCACCAGGCUGACCAAGAGUCCUCAACAACAU AGGCUCUUAAGAGAGGAGAAUAACAGCUCGAAUUAC AGGCUCUUAAAGAGAGACCUUAUUCAUAAGCCCAAGAUU GUUGCAACCCAAGGGUACCCUUAUCCAACACAU AGGCUCUUAAGAGAGGAGACCUUAUCCAACACAU AGGCUCUUAAGAGAGCACCAAGAGCCUGGUCCCCAAGUAU AGUCACCAAGAGUGCUUAUCAGAACCCUGCC CCAAGAAUGCCUCCCGAGGGGACCAAGACCCAAGGUCCCCAAGUCU AAUUCUUUGUAAGGAACCCAAGGUACCAACACAGGUCCCCAAGACCCCAAGGCACCAAGACCCCAAGGCACGACGA	70
GC_F_MEASLES_B3.1 mRNA Sequence (assumes T100 tail) mRNA Sequence Length: 1925	G*GGAAAUAAGAGAAAAAGAAGAUAAGAAGAAA UAUAAGAGCCACCAUGGGUCUCAAGGUGAACGUCUCU GCCGUAUUCAUGGGCAGUACUGUUAACUCUCCAAACAC CCGCCGGUCAAAUUCAUUGGGCAAUCUCUUCUAAGAU AGGGGUAGAAAUUCAUUGGGCAAUCUCUCUAAGAU UAUGACUCGUUCCAGCAUCAAUCAUUAGUCAUAAAA UUAAUGCCCAAUAUAACUCUCCUCAAUAACUGCACGA GGGUAGAGAUUGCAGAAUACAGAAGCUACUAAGAA UAACGCCAAUAUAACUCUCCUCAAUAACUGCACGA CAGUUUUGGAACCAAUAAGGAGCUACUAAAAA UGACCCAGAACAUAAGGAGCUACUAAAAA UGACCCAGAACAUAAGGCAGCUUCAAGAA CAGUUUUGGAACCAAUAGGGAUGCCUUAAAUCA AGUAGGAGGCCCUAGGUGUUCACGGGAGUAGUCU GGCAGGUGCGGCCUUAGGGAUUUCACCGGUCCUAG AUAACAGCCGGCAUUGCAACACUCCACCGGUCCUAGA ACUCUCAAGCCAGCAAUCUGAGAGCGAGCCUGGA AACUACUAAUCAGGCAAUCUGAGAGCAGCCUGGA GACUACCUAAUCAGGCAAUCUGAGAGCCAGCCUGA GACUACUAAUCAGGCAAUCGAGAACCAGCCUGACAAGCA GGCAGGAGAUGAUAAUCGGUCAGAGCCAGCCUCAA GACUACUAAUCAGGCAAUCGAAAACCCGUCCAAU CUAAAUGACUCAAAUACGGACAAUCUGAGAGCAACC AGCUACCUUAAAUAAUCAGCAAAUCCUGUCAUU AUUUGGCCCCAGCCUACGGGACCCCAUAUCUGCGGCG CAAAUUGCUUAGAUACAGAAAUCCGGCCUGAAGGA AUAUCAAUAAAGGCGGCUUGAGAAGCCAGAGUCCGAGGAGAGAAUCCAGAAACACAUACAGAAAUCCGGAGAAUCCAGAGACACAGAGUCCUAAAUCAAUAAAGGCUUUAGAAAAAGCUCGGACACAGAGUCCUAAAUCAAUAAAGGCUUAAGAAAAGCUCGGACACAGAGUCCU ACUUCAUAGUCCUCAGUAAACCCACCACAGAGUCCU ACUUCAUAGUCCUCAGUAUAGCCCUACAGAGUCCU ACUUCAUAGCCCCCAGAUAUCCCGACCCUGCCCACAGAGUCCU ACUUCAUAGCCCCCAGAUAUCCCGACCCUGCCCAGAGUCCU ACUUCAUAGGCGCUCCAAGAGUCCU ACUUCAUAGGCGGUGAUAACCCCACCAGAGUCCU ACUUCAUAGGCGGUGAUAACCCCACCGGCUAGAGGG GGUCUCGUACAACAUAGGCCUCCAAGAGUCCU	71

TABLE 13-continued

SEQ ID Description Sequence NO:

ACUGUGCCCAAGUAUGUUGCAACCCAAGGGUACCUUA UCUCGAAUUUUGAUGAGUCAUCAUGUACUUUCAUGCC AGAGGGGACUGUGUGCAGCCAAAAUGCCUUGUACCCG AUGAGUCCUCUGCUCCAAGAAUGCCUCCGGGGGUCCA CCAAGUCCUGUGCUCGUACACUCGUAUCCGGGUCUUU UGGGAACCGGUUCAUUUUAUCACAAGGGAACCUAAU AGCCAAUUGUGCAUCAAUUCUUUGUAAGUGUUACAC AACAGGUACGAUUAUUAAUCAAGACCCUGACAAGAUC CUAACAUACAUUGCUGCCGAUCGCUGCCCGGUAGUCG AGGUGAACGGCGUGACCAUCCAAGUCGGGAGCAGGAG GUAUCCAGACGCUGUGUACUUGCACAGAAUUGACCUC GGUCCUCCCAUAUCAUUGGAGAGGUUGGACGUAGGG ACAAAUCUGGGGAAUGCAAUUGCCAAAUUGGAGGAU GCCAAGGAAUUGUUGGAAUCAUCGGACCAGAUAUUG AGAAGUAUGAAAGGUUUAUCGAGCACUAGCAUAGUC UACAUCCUGAUUGCAGUGUGUCUUGGAGGGUUGAUA GGGAUCCCCACUUUAAUAUGUUGCUGCAGGGGGCGUU GUAACAAAAGGGAGAACAAGUUGGUAUGUCAAGAC CAGGCCUAAAGCCUGACCUUACAGGAACAUCAAAAUC CUAUGUAAGAUCGCUUUGAUGAUAAUAGGCUGGAGC CUCGGUGGCCAAGCUUCUUGCCCCUUGGGCCUCCCCC CAGCCCCUCCUCCCUUCCUGCACCCGUACCCCGUGG UCUUUGAAUAAAGUCUGAGUGGGCGGCAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAUCUAG

UCAAGCUUUUGGACCCUCGUACAGAAGCUAAUACGAC

GC_F_MEASLES_D8 Sequence, NT (5' UTR, ORF, 3' UTR) Sequence Length: 1864

UCACUAUAGGGAAAUAAGAGAGAAAAGAAGAGUAAG AAGAAAUAUAAGAGCCACCAUGGGUCUCAAGGUGAA CGUCUCUGUCAUAUUCAUGGCAGUACUGUUAACUCUU CAAACACCCACCGGUCAAAUCCAUUGGGGCAAUCUCU ${\tt CUAAGAUAGGGGUGGUAGGGAAGUGCAAGCU}$ ACAAAGUUAUGACUCGUUCCAGCCAUCAAUCAUUAGU CAUAAAGUUAAUGCCCAAUAUAACUCUCCUCAACAAU UGCACGAGGGUAGGGAUUGCAGAAUACAGGAGACUA CUGAGAACAGUUCUGGAACCAAUUAGAGAUGCACUU AAUGCAAUGACCCAGAAUAUAAGACCGGUUCAGAGU GUAGCUUCAAGUAGGAGACACAAGAGAUUUGCGGGA GUUGUCCUGGCAGGUGCGGCCCUAGGCGUUGCCACAG CUGCUCAAAUAACAGCCGGUAUUGCACUUCACCAGUC CAUGCUGAACUCUCAAGCCAUCGACAAUCUGAGAGCG AGCCUAGAAACUACUAAUCAGGCAAUUGAGGCAAUCA GACAAGCAGGCAGGAGAUGAUAUUGGCUGUUCAGG GUGUCCAAGACUACAUCAAUAAUGAGCUGAUACCGUC UAUGAAUCAACUAUCUUGUGAUUUAAUCGGCCAGAA GCUAGGGCUCAAAUUGCUCAGAUACUAUACAGAAAUC CUGUCAUUAUUUGGCCCCAGCUUACGGGACCCCAUAU CUGCGGAGAUAUCUAUCCAGGCUUUGAGCUAUGCGCU UGGAGGAGAUAUCAAUAAGGUGUUGGAAAAGCUCGG AUACAGUGGAGGUGAUCUACUGGGCAUCUUAGAGAG CAGAGGAAUAAAGGCCCGGAUAACUCACGUCGACACA GAGUCCUACUUCAUUGUACUCAGUAUAGCCUAUCCGA CGCUAUCCGAGAUUAAGGGGGUGAUUGUCCACCGGCU AGAGGGGUCUCGUACAACAUAGGCUCUCAAGAGUG GUAUACCACUGUGCCCAAGUAUGUUGCAACCCAAGGG UACCUUAUCUCGAAUUUUGAUGAGUCAUCAUGCACUU UCAUGCCAGAGGGGACUGUGUGCAGCCAGAAUGCCUU GUACCCGAUGAGUCCUCUGCUCCAAGAAUGCCUCCGG GGGUCCACUAAGUCCUGUGCUCGUACACUCGUAUCCG GGUCUUUCGGGAACCGGUUCAUUUUAUCACAGGGGA ACCUAAUAGCCAAUUGUGCAUCAAUCCUUUGCAAGUG UUACACAACAGGAACAAUCAUUAAUCAAGACCCUGAC AAGAUCCUAACAUACAUUGCUGCCGAUCACUGCCCGG UGGUCGAGGUGAAUGGCGUGACCAUCCAAGUCGGGA GCAGGAGGUAUCCGGACGCUGUGUACUUGCACAGGAU UGACCUCGGUCCUCCCAUAUCUUUGGAGAGGUUGGAC GUAGGGACAAAUCUGGGGAAUGCAAUUGCUAAGUUG GAGGAUGCCAAGGAAUUGUUGGAGUCAUCGGACCAG AUAUUGAGGAGUAUGAAAGGUUUAUCGAGCACUAGU AUAGUUUACAUCCUGAUUGCAGUGUGUCUUGGAGGA UUGAUAGGGAUCCCCGCUUUAAUAUGUUGCUGCAGG GGGCGUUGUAACAAGAAGGGAGAACAAGUUGGUAUG UCAAGACCAGGCCUAAAGCCUGAUCUUACAGGAACAU CAAAAUCCUAUGUAAGGUCACUCUGAUGAUAAUAGG CUGGAGCCUCGGUGGCCAAGCUUCUUGCCCCUUGGGC CUCCCCCAGCCCCUCCUCCCCUUCCUGCACCCGUACC 72

	TABLE 13-continued	
Description	Sequence	SEQ I NO:
	CCCGUGGUCUUUGAAUAAAGUCUGAGUGGGCGGC	
GC_F_MEASLES_D8 ORF Sequence, NT	AUGGGUCUCAAGUGAACGUCUCUGUCAUAUUCAUG GCAGUACUGUUAACUCUUCAAACACCCACCGUCAAA UCCAUUGGGGCAAUCUCUCUAAGAUAGGGGUGGUAG GGGUAGGAAGUGCAAGCUACAAAGUUAUGACUCGUU CCAGCCAUCAAUCAUUAGUCAUAAAGUUAUGACUCGUU CCAGCCAUCAAUCAUUAGUCAUAAAGUUAUGACUCGUU CCAGCAAUCAAUCAUUAGUCAUAAAGUUAUGACCCAA UAUAACUCUCCUCAACAAUUGCACGAGGGAUUCUGGAA CCAAUUAGAGACACAUUUAAUGCAAUGACCCAGAAUA UAAGACCGGUUCAGAGACGUUUCAAGUAGGAACA UAAGACCGGUUCAGAGUGUCAAGUAGCACCCAGAAUA UAAGACCGGUUCAGAGUGUUCAAGUAGGAGC CCCUAGGCGUUGCCACAGCUGCAAAUAACAGCCGG UAUUGCACUUCACCAGUCCAAGCUAACUAAACACCCG AUCGACAAUCAGAGAGCAGCGCUCAAAUAACACCCGG UAUUGCACUUCACCAGUCCAUGCUGAACCUACAACCA AUAAUGAGCUGUUCAAGGCCAGAGCAACAACAACAACAACAACACACCACAACA	73
GC F_MEASLES_D8 mRNA Sequence (assumes T100 tail) Sequence Length: 1925	G*GGAAAUAAGAGAGAAAAGAAGAGUAAAGAAA UAUAAGAGCCACCAUGGGUCUCAAGGUGAACGUCUCU GUCAUAUUCAUGGCAGUACUGUUAACUCUUCAAACAC CCACCGGUCAAAUCCAUUGGGGCAAUCUCUCUAAGAU AGGGGUGGUAGGGGUAGGAAGUGCAAGCUACAAAGU UAUGACCCAAUAUAACCAC GGGUAGGGUUGCAGCAUCAAUCAUAAGUCAAAAGU UAAUGCCCAAUAUAACUCUCCUCAACAAUUGCACGA GGGUAGGGAUUGCAGAAUACACACAUUGCACGA GGGUAGGGAUUGCAGAAUACACACAUUGCACGA CAGUUCUGGAACCAAUAGAGAGACUACUAAUGCAA UGACCCAGAAUAUAAGAGAUGCACUUAAUGCAA AGUACGGAGCCCUAGGCGGUUCAGAGGUUGUCCU GGCAGGGGCCCUAGGCGUUCACACACUGCUCAA AUAACAGCCGGUAUUGCACACACGUGCUCAA ACUCUCAAGCCACACUGCACACGUGCCAA ACUCUCAAGCCAUAUUGAGCAAUCAGAGACAACAGCA GGCAGGAGAUAUUAGAGCAAUCAGAGACAACCA GACUACUAAUCAGGCAUUCACCAGUCCUAUAAACACACAC	74

GGUCUCGUACAACAUAGGCUCUCAAGAGUGGUAUACC ACUGUGCCCAAGUAUGUUGCAACCCAAGGGUACCUUA Sequence

320

SEO ID

NO:

UCUCGAAUUUUGAUGAGUCAUCAUGCACUUUCAUGCC AGAGGGGACUGUGUGCAGCCAGAAUGCCUUGUACCCG AUGAGUCCUCUGCUCCAAGAAUGCCUCCGGGGGUCCA CUAAGUCCUGUGCUCGUACACUCGUAUCCGGGUCUUU CGGGAACCGGUUCAUUUUAUCACAGGGGAACCUAAUA GCCAAUUGUGCAUCAAUCCUUUGCAAGUGUUACACAA CAGGAACAAUCAUUAAUCAAGACCCUGACAAGAUCCU AACAUACAUUGCUGCCGAUCACUGCCCGGUGGUCGAG GUGAAUGGCGUGACCAUCCAAGUCGGGAGCAGGAGG UAUCCGGACGCUGUGUACUUGCACAGGAUUGACCUCG GUCCUCCCAUAUCUUUGGAGAGGUUGGACGUAGGGAC AAAUCUGGGGAAUGCAAUUGCUAAGUUGGAGGAUGC CAAGGAAUUGUUGGAGUCAUCGGACCAGAUAUUGAG GAGUAUGAAAGGUUUAUCGAGCACUAGUAUAGUUUA CAUCCUGAUUGCAGUGUGUCUUGGAGGAUUGAUAGG GAUCCCCGCUUUAAUAUGUUGCUGCAGGGGGCGUUGU AACAAGAAGGGAGAACAAGUUGGUAUGUCAAGACCA GGCCUAAAGCCUGAUCUUACAGGAACAUCAAAAUCCU AUGUAAGGUCACUCUGAUGAUAAUAGGCUGGAGCCU CGGUGGCCAAGCUUCUUGCCCCUUGGGCCUCCCCCCA GCCCUCCUCCCUUCCUGCACCCGUACCCCCGUGGUC UUUGAAUAAAGUCUGAGUGGGCGCCAAAAAAAAAA AAAAAAAAAAAAAAAUCUAG

GC_H_MEASLES_B3 Sequence, NT (5' UTR, ORF, 3' UTR) Sequence Length: 2065

Description

UCAAGCUUUUGGACCCUCGUACAGAAGCUAAUACGAC UCACUAUAGGGAAAUAAGAGAGAAAAGAAGAGUAAG AAGAAAUAUAAGAGCCACCAUGUCACCGCAACGAGAC CGGAUAAAUGCCUUCUACAAAGAUAACCCUUAUCCCA AGGGAAGUAGGAUAGUUAUUAACAGAGAACAUCUUA UGAUUGACAGACCCUAUGUUCUGCUGGCUGUUCUGUU $\tt CGUCAUGUUUCUGAGCUUGAUCGGAUUGCUGGCAAU$ UGCAGGCAUUAGACUUCAUCGGGCAGCCAUCUACACC GCGGAGAUCCAUAAAAGCCUCAGUACCAAUCUGGAUG UGACUAACUCCAUCGAGCAUCAGGUCAAGGACGUGCU GACACCACUCUUUAAAAUCAUCGGGGAUGAAGUGGGC CUGAGAACACCUCAGAGAUUCACUGACCUAGUGAAAU UCAUCUCGGACAAGAUUAAAUUCCUUAAUCCGGAUAG GGAGUACGACUUCAGAGAUCUCACUUGGUGCAUCAAC CCGCCAGAGAGGAUCAAACUAGAUUAUGAUCAAUACU GUGCAGAUGUGGCUGCUGAAGAGCUCAUGAAUGCAU UGGUGAACUCAACUCUACUGGAGACCAGAACAACCAC UCAGUUCCUAGCUGUCUCAAAGGGAAACUGCUCAGGG CCCACUACAAUCAGAGGUCAAUUCUCAAACAUGUCGC UGUCCUUGUUGGACUUGUACUUAGGUCGAGGUUACA AUGUGUCAUCUAUAGUCACUAUGACAUCCCAGGGAAU GUAUGGGGGAACCUACCUAGUUGAAAAGCCUAAUCU GAACAGCAAAGGGUCAGAGUUGUCACAACUGAGCAU GUACCGAGUGUUUGAAGUAGGUGUGAUCAGAAACCC GGGUUUGGGGGCUCCGGUGUUCCAUAUGACAAACUA UUUUGAGCAACCAGUCAGUAAUGGUCUCGGCAACUGU AUGGUGGCUUUGGGGGAGCUCAAACUCGCAGCCCUUU GUCACGGGGACGAUUCUAUCAUAAUUCCCUAUCAGGG AUCAGGGAAAGGUGUCAGCUUCCAGCUCGUCAAGCUG GGUGUCUGGAAAUCCCCAACCGACAUGCAAUCCUGGG UCCCCUUAUCAACGGAUGAUCCAGUGGUAGACAGGCU UUACCUCUCAUCUCACAGAGGUGUCAUCGCUGACAAU CAAGCAAAAUGGGCUGUCCCGACAACACGAACAGAUG ACAAGUUGCGAAUGGAGACAUGCUUCCAGCAGGCGUG UAAAGGUAAAAUCCAAGCACUCUGCGAGAAUCCCGAG UGGGUACCAUUGAAGGAUAACAGGAUUCCUUCAUAC GGGGUCCUGUCUGUUGAUCUGAGUCUGACGGUUGAG CUUAAAAUCAAAAUUGCUUCGGGAUUCGGGCCAUUG AUCACACACGGCUCAGGGAUGGACCUAUACAAAUCCA ACUGCAACAAUGUGUAUUGGCUGACUAUUCCGCCAAU GAGAAAUCUAGCCUUAGGCGUAAUCAACACAUUGGA GUGGAUACCGAGAUUCAAGGUUAGUCCCAACCUCUUC ACUGUCCCAAUUAAGGAAGCAGGCGAAGACUGCCAUG CCCCAACAUACCUACCUGCGGAGGUGGACGGUGAUGU CAAACUCAGUUCCAACCUGGUGAUUCUACCUGGUCAA GAUCUCCAAUAUGUUUUGGCAACCUACGAUACCUCCA GGGUUGAGCAUGCUGUGGUUUAUUACGUUUACAGCC CAAGCCGCUCAUUUUCUUACUUUUAUCCUUUUAGGUU GCCUAUAAAGGGGGUCCCAAUCGAACUACAAGUGGAA UGCUUCACAUGGGAUCAAAAACUCUGGUGCCGUCACU UCUGUGUGCUUGCGGACUCAGAAUCCGGUGGACUUAU

TABLE 13-continued

	TABLE 13-continued	
Description	Sequence	SEQ ID NO:
	CACUCACUCUGGGAUGGUGGGCAUGGGAGUCAGCUGC ACAGCUACCCGGGAAGAUGGAACCAAUCGCAGAUAAU GAUAAUAGGCUGGAGCCUCGGUGGCCAAGCUUCUUGC CCCUUGGGCCUCCCCCCAGCCCCUCCUCCCCCUUCCUGC ACCCGUACCCCCGUGGUCUUUGAAUAAAGUCUGAGUG GGCGGC	
GC_H_MEASLES_B3 ORF Sequence, NT	AUGUCACCGCAACGAGACCGGAUAAAUGCCUUCUACA AAGAUAACCCUUAUCCCAAGGGAAGUAGGAUAGUUA UUAACAGAGAACAUCUUAUGAUUGACAGACCCUAUG UUCUGCUGGCUGUUCUGUU	76
GC_H_MEASLES_B3 mRNA Sequence (assumes T100 Tail) Sequence Length: 2126	G*GGGAAUAAGAGAGAAAAGAAGAUAAGAAGAAA UAUAAGAGCCACCAUGUCACCGCAACGAGACCGGAUA AAUGCCUUCUACAAAGAUAACCCUUAUCCCAAGGGAA GUAGGAUAGUUAUUAACAGAGAAACAUCUUAUGAUUG ACAGACCCUAUGUUCUGCUUCUGUUCUG	77

UACGACUUCAGAGAUCUCACUUGGUGCAUCAACCCGC CAGAGAGGAUCAAACUAGAUUAUGAUCAAUACUGUG ${\tt CAGAUGUGGCUGCUGAAGAGCUCAUGAAUGCAUUGG}$ $\tt UGAACUCAACUCUACUGGAGACCAGAACCACUCA$ GUUCCUAGCUGUCUCAAAGGGAAACUGCUCAGGGCCC ACUACAAUCAGAGGUCAAUUCUCAAACAUGUCGCUGU

TABLE 13-continued

SEQ ID Description Sequence NO:

CCUUGUUGGACUUGUACUUAGGUCGAGGUUACAAUG UGUCAUCUAUAGUCACUAUGACAUCCCAGGGAAUGUA UGGGGGAACCUACCUAGUUGAAAAGCCUAAUCUGAAC AGCAAAGGGUCAGAGUUGUCACAACUGAGCAUGUACC GAGUGUUUGAAGUAGGUGUGAUCAGAAACCCGGGUU UGGGGGCUCCGGUGUUCCAUAUGACAAACUAUUUUG AGCAACCAGUCAGUAAUGGUCUCGGCAACUGUAUGGU GGCUUUGGGGGAGCUCAAACUCGCAGCCCUUUGUCAC GGGGACGAUUCUAUCAUAAUUCCCUAUCAGGGAUCAG GGAAAGGUGUCAGCUUCCAGCUCGUCAAGCUGGGUGU CUGGAAAUCCCCAACCGACAUGCAAUCCUGGGUCCCC UUAUCAACGGAUGAUCCAGUGGUAGACAGGCUUUACC UCUCAUCUCACAGAGGUGUCAUCGCUGACAAUCAAGC AAAAUGGGCUGUCCCGACAACACGAACAGAUGACAAG UUGCGAAUGGAGACAUGCUUCCAGCAGGCGUGUAAA GGUAAAAUCCAAGCACUCUGCGAGAAUCCCGAGUGGG UACCAUUGAAGGAUAACAGGAUUCCUUCAUACGGGG UCCUGUCUGUUGAUCUGAGUCUGACGGUUGAGCUUA AAAUCAAAAUUGCUUCGGGAUUCGGGCCAUUGAUCAC ACACGGCUCAGGGAUGGACCUAUACAAAUCCAACUGC AACAAUGUGUAUUGGCUGACUAUUCCGCCAAUGAGA AAUCUAGCCUUAGGCGUAAUCAACACAUUGGAGUGG AUACCGAGAUUCAAGGUUAGUCCCAACCUCUUCACUG UCCCAAUUAAGGAAGCAGGCGAAGACUGCCAUGCCC AACAUACCUACCUGCGGAGGUGGACGGUGAUGUCAAA CUCAGUUCCAACCUGGUGAUUCUACCUGGUCAAGAUC UCCAAUAUGUUUUGGCAACCUACGAUACCUCCAGGGU UGAGCAUGCUGUGGUUUAUUACGUUUACAGCCCAAGC CGCUCAUUUUCUUACUUUUAUCCUUUUUAGGUUGCCUA UAAAGGGGGUCCCAAUCGAACUACAAGUGGAAUGCU UCACAUGGGAUCAAAAACUCUGGUGCCGUCACUUCUG UGUGCUUGCGGACUCAGAAUCCGGUGGACUUAUCACU CACUCUGGGAUGGUGGGCAUGGGAGUCAGCUGCACAG CUACCCGGGAAGAUGGAACCAAUCGCAGAUAAUGAUA AUAGGCUGGAGCCUCGGUGGCCAAGCUUCUUGCCCCU UGGGCCUCCCCAGCCCCUCCUCCCCUUCCUGCACCC GUACCCCGUGGUCUUUGAAUAAAGUCUGAGUGGGCG GCAAAAAAAAAAAAAAAAAAAAAAAAAAAAA ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ AAAAAAAAAAAAAAAAAAAAAAAAAAAAACUCUAG

GC_H_MEASLES_D8 Sequence, NT (5' UTR, ORF, 3' UTR) Sequence Length: 2065 UCAAGCUUUUGGACCCUCGUACAGAAGCUAAUACGAC UCACUAUAGGGAAAUAAGAGAGAAAAGAAGAGUAAG AAGAAAUAUAAGAGCCACCAUGUCACCACAACGAGAC CGGAUAAAUGCCUUCUACAAAGACAACCCCCAUCCUA AGGGAAGUAGGAUAGUUAUUAACAGAGAACAUCUUA UGAUUGAUAGACCUUAUGUUUUGCUGGCUGUUCUAU UCGUCAUGUUUCUGAGCUUGAUCGGGUUGCUAGCCAU UGCAGGCAUUAGACUUCAUCGGGCAGCCAUCUACACC GCAGAGAUCCAUAAAAGCCUCAGCACCAAUCUGGAUG UAACUAACUCAAUCGAGCAUCAGGUUAAGGACGUGCU GACACCACUCUUCAAGAUCAUCGGUGAUGAAGUGGGC UUGAGGACACCUCAGAGAUUCACUGACCUAGUGAAGU UCAUCUCUGACAAGAUUAAAUUCCUUAAUCCGGACAG GGAAUACGACUUCAGAGAUCUCACUUGGUGUAUCAAC CCGCCAGAGAAUCAAAUUGGAUUAUGAUCAAUAC UGUGCAGAUGUGGCUGCUGAAGAACUCAUGAAUGCA UUGGUGAACUCAACUCUACUGGAGACCAGGGCAACCA AUCAGUUCCUAGCUGUCUCAAAGGGAAACUGCUCAGG GCCCACUACAAUCAGAGGCCAAUUCUCAAACAUGUCG CUGUCCCUGUUGGACUUGUAUUUAAGUCGAGGUUAC AAUGUGUCAUCUAUAGUCACUAUGACAUCCCAGGGAA UGUACGGGGAACUUACCUAGUGGAAAAGCCUAAUC UGAGCAGCAAAGGGUCAGAGUUGUCACAACUGAGCA UGCACCGAGUGUUUGAAGUAGGUGUUAUCAGAAAUC CGGGUUUGGGGGCUCCGGUAUUCCAUAUGACAAACUA UCUUGAGCAACCAGUCAGUAAUGAUUUCAGCAACUGC AUGGUGGCUUUGGGGGAGCUCAAGUUCGCAGCCCUCU GUCACAGGGAAGAUUCUAUCACAAUUCCCUAUCAGGG AUCAGGGAAAGGUGUCAGCUUCCAGCUUGUCAAGCUA GGUGUCUGGAAAUCCCCAACCGACAUGCAAUCCUGGG UCCCCCUAUCAACGGAUGAUCCAGUGAUAGACAGGCU UUACCUCUCAUCUCACAGAGGCGUUAUCGCUGACAAU CAAGCAAAAUGGGCUGUCCCGACAACACGGACAGAUG ACAAGUUGCGAAUGGAGACAUGCUUCCAGCAGGCGUG UAAGGGUAAAAUCCAAGCACUUUGCGAGAAUCCCGAG UGGACACCAUUGAAGGAUAACAGGAUUCCUUCAUACG

TABLE 13-continued

Description Sequence NO:

GGGUCUUGUCUGUUGAUCUGAGUCUGACAGUUGAGC UUAAAAUCAAAAUUGUUUCAGGAUUCGGGCCAUUGA UCACACACGGUUCAGGGAUGGACCUAUACAAAUCCAA CCACAACAAUAUGUAUUGGCUGACUAUCCCGCCAAUG AAGAACCUGGCCUUAGGUGUAAUCAACACAUUGGAG UGGAUACCGAGAUUCAAGGUUAGUCCCAACCUCUUCA CUGUUCCAAUUAAGGAAGCAGGCGAGGACUGCCAUGC CCCAACAUACCUACCUGCGGAGGUGGAUGGUGAUGUC AAACUCAGUUCCAAUCUGGUGAUUCUACCUGGUCAAG AUCUCCAAUAUGUUCUGGCAACCUACGAUACUUCCAG AGUUGAACAUGCUGUAGUUUAUUACGUUUACAGCCC AAGCCGCUCAUUUUCUUACUUUUAUCCUUUUAGGUUG CCUGUAAGGGGGUCCCCAUUGAAUUACAAGUGGAA UGCUUCACAUGGGACCAAAAACUCUGGUGCCGUCACU UCUGUGUGCUUGCGGACUCAGAAUCUGGUGGACAUA UCACUCACUCUGGGAUGGUGGGCAUGGGAGUCAGCUG CACAGCCACUCGGGAAGAUGGAACCAGCCGCAGAUAG UGAUAAUAGGCUGGAGCCUCGGUGGCCAAGCUUCUUG CCCCUUGGGCCUCCCCCAGCCCCUCCUCCCCUUCCUG CACCCGUACCCCGUGGUCUUUGAAUAAAGUCUGAGU GGGCGGC

GC_H_MEASLES_D8
ORF Sequence, NT

AUGUCACCACAACGAGACCGGAUAAAUGCCUUCUACA AAGACAACCCCCAUCCUAAGGGAAGUAGGAUAGUUAU UAACAGAGAACAUCUUAUGAUUGAUAGACCUUAUGU UUUGCUGGCUGUUCUAUUCGUCAUGUUUCUGAGCUU GAUCGGGUUGCUAGCCAUUGCAGGCAUUAGACUUCAU CGGGCAGCCAUCUACACCGCAGAGAUCCAUAAAAGCC UCAGCACCAAUCUGGAUGUAACUAACUCAAUCGAGCA UCAGGUUAAGGACGUGCUGACACCACUCUUCAAGAUC AUCGGUGAUGAGUGGGCUUGAGGACACCUCAGAGA UUCACUGACCUAGUGAAGUUCAUCUCUGACAAGAUUA AAUUCCUUAAUCCGGACAGGGAAUACGACUUCAGAGA UCUCACUUGGUGUAUCAACCCGCCAGAGAGAAUCAAA UUGGAUUAUGAUCAAUACUGUGCAGAUGUGGCUGCU GAAGAACUCAUGAAUGCAUUGGUGAACUCAACUCUAC UGGAGACCAGGGCAACCAAUCAGUUCCUAGCUGUCUC AAAGGGAAACUGCUCAGGGCCCACUACAAUCAGAGGC CAAUUCUCAAACAUGUCGCUGUCCCUGUUGGACUUGU AUUUAAGUCGAGGUUACAAUGUGUCAUCUAUAGUCA CUAUGACAUCCCAGGGAAUGUACGGGGGAACUUACCU AGUGGAAAAGCCUAAUCUGAGCAGCAAAGGGUCAGA GUUGUCACAACUGAGCAUGCACCGAGUGUUUGAAGU AGGUGUUAUCAGAAAUCCGGGUUUGGGGGCUCCGGU AUUCCAUAUGACAAACUAUCUUGAGCAACCAGUCAGU AAUGAUUUCAGCAACUGCAUGGUGGCUUUGGGGGAG CUCAAGUUCGCAGCCCUCUGUCACAGGGAAGAUUCUA UCACAAUUCCCUAUCAGGGAUCAGGGAAAGGUGUCAG CUUCCAGCUUGUCAAGCUAGGUGUCUGGAAAUCCCCA ACCGACAUGCAAUCCUGGGUCCCCCUAUCAACGGAUG AUCCAGUGAUAGACAGGCUUUACCUCUCAUCUCACAG AGGCGUUAUCGCUGACAAUCAAGCAAAAUGGGCUGUC CCGACAACACGGACAGAUGACAAGUUGCGAAUGGAGA CAUGCUUCCAGCAGGCGUGUAAGGGUAAAAUCCAAGC ACUUUGCGAGAAUCCCGAGUGGACACCAUUGAAGGAU AACAGGAUUCCUUCAUACGGGGUCUUGUCUGUUGAUC UGAGUCUGACAGUUGAGCUUAAAAUCAAAAUUGUUU CAGGAUUCGGGCCAUUGAUCACACACGGUUCAGGGAU GGACCUAUACAAAUCCAACCACAACAAUAUGUAUUGG CUGACUAUCCCGCCAAUGAAGAACCUGGCCUUAGGUG UAAUCAACACAUUGGAGUGGAUACCGAGAUUCAAGG UUAGUCCCAACCUCUUCACUGUUCCAAUUAAGGAAGC AGGCGAGGACUGCCAUGCCCAACAUACCUACCUGCG GAGGUGGAUGUGAUGUCAAACUCAGUUCCAAUCUG GUGAUUCUACCUGGUCAAGAUCUCCAAUAUGUUCUGG CAACCUACGAUACUUCCAGAGUUGAACAUGCUGUAGU UUAUUACGUUUACAGCCCAAGCCGCUCAUUUUCUUAC UUUUAUCCUUUUAGGUUGCCUGUAAGGGGGGUCCCCA UUGAAUUACAAGUGGAAUGCUUCACAUGGGACCAAA AACUCUGGUGCCGUCACUUCUGUGUGCUUGCGGACUC AGAAUCUGGUGGACAUAUCACUCACUCUGGGAUGGU GGGCAUGGGAGUCAGCUGCACAGCCACUCGGGAAGAU GGAACCAGCCGCAGAUAG

GC_H_MEASLES_D8
mRNA Sequence
(assumes T100 tail)

G*GGGAAAUAAGAGAGAAAAGAAGAAGAAA UAUAAGAGCCACCAUGUCACCACAACGAGACCGGAUA AAUGCCUUCUACAAAGACAACCCCCAUCCUAAGGGAA 80

TABLE 13-continued

Description	Sequence	SEQ ID NO:
Sequence Length:	GUAGGAUAGUUAUUAACAGAGAACAUCUUAUGAUUG	
2126	AUAGACCUUAUGUUUUGCUGGCUGUUCUAUUCGUCA	
	UGUUUCUGAGCUUGAUCGGGUUGCUAGCCAUUGCAG	
	GCAUUAGACUUCAUCGGGCAGCCAUCUACACCGCAGA	
	GAUCCAUAAAAGCCUCAGCACCAAUCUGGAUGUAACU	
	AACUCAAUCGAGCAUCAGGUUAAGGACGUGCUGACAC	
	CACUCUUCAAGAUCAUCGGUGAUGAAGUGGGCUUGA	
	GGACACCUCAGAGAUUCACUGACCUAGUGAAGUUCAU	
	CUCUGACAAGAUUAAAUUCCUUAAUCCGGACAGGGAA	
	UACGACUUCAGAGAUCUCACUUGGUGUAUCAACCCGC	
	CAGAGAGAAUCAAAUUGGAUUAUGAUCAAUACUGUG	
	CAGAUGUGGCUGCUGAAGAACUCAUGAAUGCAUUGG	
	UGAACUCAACUCUACUGGAGACCAGGGCAACCAAUCA	
	GUUCCUAGCUGUCUCAAAGGGAAACUGCUCAGGGCCC	
	ACUACAAUCAGAGGCCAAUUCUCAAACAUGUCGCUGU	
	CCCUGUUGGACUUGUAUUUAAGUCGAGGUUACAAUG	
	UGUCAUCUAUAGUCACUAUGACAUCCCAGGGAAUGUA	
	CGGGGGAACUUACCUAGUGGAAAAGCCUAAUCUGAGC	
	AGCAAAGGGUCAGAGUUGUCACAACUGAGCAUGCACC	
	GAGUGUUUGAAGUAGGUGUUAUCAGAAAUCCGGGUU	
	UGGGGGCUCCGGUAUUCCAUAUGACAAACUAUCUUGA	
	GCAACCAGUCAGUAAUGAUUUCAGCAACUGCAUGGUG	
	GCUUUGGGGGAGCUCAAGUUCGCAGCCCUCUGUCACA	
	GGGAAGAUUCUAUCACAAUUCCCUAUCAGGGAUCAGG	
	GAAAGGUGUCAGCUUCCAGCUUGUCAAGCUAGGUGUC	
	UGGAAAUCCCCAACCGACAUGCAAUCCUGGGUCCCCC UAUCAACGGAUGAUCCAGUGAUAGACAGGCUUUACCU	
	CUCAUCUCACAGAGGCGUUAUCGCUGACAAUCAAGCA	
	AAAUGGGCUGUCCCGACAACACGGACAGAUGACAAGU	
	UGCGAAUGGAGACAUGCUUCCAGCAGGCGUGUAAGG	
	GUAAAAUCCAAGCACUUUGCGAGAAUCCCGAGUGGAC	
	ACCAUUGAAGGAUAACAGGAUUCCUUCAUACGGGGUC	
	UUGUCUGUUGAUCUGAGUCUGACAGUUGAGCUUAAA	
	AUCAAAAUUGUUUCAGGAUUCGGGCCAUUGAUCACAC	
	ACGGUUCAGGGAUGGACCUAUACAAAUCCAACCACAA	
	CAAUAUGUAUUGGCUGACUAUCCCGCCAAUGAAGAAC	
	CUGGCCUUAGGUGUAAUCAACACAUUGGAGUGGAUA	
	CCGAGAUUCAAGGUUAGUCCCAACCUCUUCACUGUUC	
	CAAUUAAGGAAGCAGGCGAGGACUGCCAUGCCCCAAC	
	AUACCUACCUGCGGAGGUGGAUGGUGAUGUCAAACUC	
	AGUUCCAAUCUGGUGAUUCUACCUGGUCAAGAUCUCC	
	AAUAUGUUCUGGCAACCUACGAUACUUCCAGAGUUGA	
	ACAUGCUGUAGUUUAUUACGUUUACAGCCCAAGCCGC	
	UCAUUUUCUUACUUUUAUCCUUUUAGGUUGCCUGUA	
	AGGGGGGUCCCCAUUGAAUUACAAGUGGAAUGCUUC	
	ACAUGGGACCAAAAACUCUGGUGCCGUCACUUCUGUG	
	UGCUUGCGGACUCAGAAUCUGGUGGACAUAUCACUCA	
	CUCUGGGAUGGGGCAUGGGAGUCAGCUGCACAGCC	
	ACUCGGGAAGAUGGAACCAGCCGCAGAUAGUGAUAA	
	UAGGCUGGAGCCUCGGUGGCCAAGCUUCUUGCCCCUU	
	GGGCCUCCCCAGCCCCCCCCCCUUCCUCCCCUUCCUGCACCCG	
	UACCCCCGUGGUCUUUGAAUAAAGUCUGAGUGGGCGG	
	CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
	AAAAAAAAAAAAAAAAAAAAAAAAAAAUCUAG	

TABLE 14

	MeV Amino Acid Sequences	
Description	Sequence	SEQ ID NO:
GC_F_MEASLES_B3.1 ORF Sequence, AA	MGLKVNVSAVFMAVLLTLQTPAGQIHWGNLSKIGVVG IGSASYKVMTRSSHQSLVIKLMPNITLLNNCTRVEIA EYRRLLRTVLEPIRDALMAMTQNIRPVQSVASSRRHK RFAGVVLAGAALGVATAAQITAGIALHRSMLNSQAID NLRASLETTNQAIEAIRQAGQEMILAVQGVQDYINNE LIPSMNQLSCDLIGQKLGLKLLRYYTEILSLFGPSLR DPISAEISIQALSYALGGDINKVLEKLGYSGGDLLGI LESRGIKARITHVDTESYFIVLSIAYPTLSEIKGVIV HRLEGVSYNIGSQEWYTTVPKYVATQGYLISNFDESS CTFMPEGTVCSQNALYPMSPLLQECLRGSTKSCARTL VSGSFGNRFILSQGNLIANCASILCKCYTTGTIINQD	47

TABLE 14-continued

	MeV Amino Acid Sequences	
Description	Sequence	SEQ ID NO:
	PDKILTYIAADRCPVVEVNGVTIQVGSRRYPDAVYLH RIDLGPPISLERLDVGTNLGNAIAKLEDAKELLESSD QILRSMKGLSSTSIVYILIAVCLGGLIGIPTLICCCR GRCNKKGEQVGMSRPGLKPDLTGTSKSYVRSL*	
GC_F_MEASLES_D8 ORF Sequence, AA	MGLKVNVSVIFMAVLLTLQTPTGQIHWGNLSKIGVVG VGSASYKVMTRSSHQSLVIKLMPNITLLNNCTRVGIA EYRRLLRTVLEPIRDALNAMTQNIRPVQSVASSRRHK RFAGVVLAGAALGVATAAQITAGIALHQSMLNSQAID NLRASLETTNQAIEAIRQAGQEMILAVQGVQDYINNE LIPSMNQLSCDLIGQKLGLKLLRYYTEILSLFGPSLR DPISAEISIQALSVALGGDINKVLEKLGYSGGDLLGI LESRGIKARITHVDTESYFIVLSIAYPTLSEIKGVIV HRLEGVSYNIGSQEWYTTVPKYVATQGYLISNFDESS CTFMPEGTVCSQNALYPMSPLLQECLRGSTKSCARTL VSGSFGNRFILSQGNLIANCASILCKCYTTGTIINQD PDKILTYIAADHCPVVEVNGVTIQVGSRRYPDAVYLH RIDLGPPISLERLDVGTNLGNAIAKLEDAKELLESSD QILRSMKGLSSTSIVYILIAVCLGGLIGIPALICCCR GRCNKKGEQVGMSRPGLKPDLTGTSKSYVRSL*	48
GC_H_MEASLES_B3 ORF Sequence, AA	MSPQRDRINAFYKDNPYPKGSRIVINREHLMIDRPYV LLAVLFVMFLSLIGLLAIAGIRLHRAAIYTABIHKSL STNLDVTNSIEHQVKDVLTPLFKIIGDEVGLRTPQRF TDLVKFISDKIKFLNPDREYDFRDLTWCINPPERIKL DYDQYCADVAAEELMNALVNSTLLETRTTTCPLAVSK GNCSGPTTIRGQFSNMSLSLLDLYLGRGYNVSSIVTM TSQGMYGGTYLVEKPNLNSKGSELSQLSMYRVPEVGV IRNPGLGAPVFHMTNYFEQPVSNGLGNCMVALGELKL AALCHGDDSIIIPYQGSGKGVSFQLVKLGVWKSPTDM QSWVPLSTDDPVVDRLYLSSHRGVIADNQAKWAVPTT RTDDKLRMETCFQQACKGKIQALCENPEWVPLKDNRI PSYGVLSVDLSLTVELKIKIASGFGPLITHGSGMDLY KSNCNNVYWLTIPPMRNLALGVINTLEWIPRFKVSPN LFTVPIKEAGEDCHAPTYLPAEVDGDVKLSSNLVILP GQDLQYVLATYDTSRVEHAVVYYVYSPSRSFSYFYPF RLPIKGVPIELQVECFTWDQKLWCRHPCVLADSESGG LITHSGMVGMGVSCTATREDGTNRR*	49
GC_H_MEASLES_D8 ORF Sequence, AA	MSPQRDRINAFYKDNPHPKGSRIVINREHLMIDRPYV LLAVLFVMFLSLIGLLAIAGIRLHRAAIYTAEIHKSL STNLDVTNSIEHQVKDVLTPLFKIIGDEVGLRTPQRF TDLVKFISDKIKFLNPDREYDFRDLTWCINPPERIKL DYDQYCADVAAEELMNALVNSTLLETRATNQFLAVSK GNCSGPTTIRGQFSNMSLSLLDLYLSRGYNVSSIVTM TSQGMYGGTYLVEKPNLSSKGSELSQLSMHRVFEVGV IRNPGLGAPVFHMTNYLEQPVSNDFSNCMVALGELKF AALCHREDSITIPYQGSGKGVSFQLVKLGVWKSPTDM QSWVPLSTDDPVIDRLYLSSHRGVIADNQAKWAVPTT RTDDKLRMETCFQQACKGKIQALCENPEWTPLKDNRI PSYGVLSVDLSLTVELKIKIVSGFGPLITHGSGMDLY KSNHNNMYWLTIPPMKNLALGVINTLEWIPFKVSPN LFTVPIKEAGEDCHAPTYLPAEVDGDVKLSSNLVILP GQDLQYVLATYDTSRVEHAVVYYVYSPSRSFSYFYPF RLPVRGVPIELQVECFTWDQKLWCRHFCVLADSESGG HITHSGMVGMGVSCTATREDGTSRR*	50

TABLE 15

MeV NCBI Accession Numbers (Amino Acid Sequences)			
Туре	Virus Name	GenBank Accession	
hemagglutinin	hemagglutinin [Measles virus strain Moraten]	AAF85673.1	
hemagglutinin	hemagglutinin [Measles virus strain Rubeovax]	AAF85689.1	
hemagglutinin	hemagglutinin [Measles virus]	AAF89824.1	
hemagglutinin	hemagglutinin protein [Measles virus]	CAA91369.1	
hemagglutinin	hemagglutinin [Measles virus]	BAJ23068.1	
hemagglutinin	hemagglutinin protein [Measles virus]	BAB39848.1	
hemagglutinin	hemagglutinin [Measles virus]	AAA50551.1	
hemagglutinin	RecName: Full = Hemagglutinin glycoprotein	P08362.1	
hemagglutinin	hemagglutinin [Measles virus]	AAB63802.1	

331

TABLE 15-continued

MeV NCBI Accession Numbers (Amino Acid Sequences)		
Туре	Virus Name	GenBank Accession
hemagglutinin	hemagglutinin [Measles virus]	AAA56650.1
hemagglutinin	hemagglutinin [Measles virus]	AAA56642.1
hemagglutinin	hemagglutinin [Measles virus]	AAA74936.1
hemagglutinin	hemagglutinin protein [Measles virus]	BAH56665.1
hemagglutinin	hemagglutinin [Measles virus]	ACC86105.1 AAF85697.1
hemagglutinin hemagglutinin	hemagglutinin [Measles virus strain Edmonston-Zagreb] hemagglutinin [Measles virus]	AAR89413.1
hemagglutinin	hemagglutinin [Measles virus]	AAA56653.1
hemagglutinin	RecName: Full = Hemagglutinin glycoprotein	P35971.1
hemagglutinin	Hemagglutinin [Measles virus]	CAB94916.1
hemagglutinin	hemagglutinin [Measles virus]	AAC03036.1
hemagglutinin	hemagglutinin [Measles virus] Hemagglutinin [Measles virus]	AAF85681.1 CAB94927.1
hemagglutinin hemagglutinin	Hemagglutinin [Measles virus]	CAB94927.1 CAB94925.1
hemagglutinin	hemagglutinin protein [Measles virus]	BAB39835.1
hemagglutinin	Hemagglutinin [Measles virus]	CAB94931.1
hemagglutinin	hemagglutinin [Measles virus genotype A]	AFO84712.1
hemagglutinin	hemagglutinin [Measles virus]	AAA56639.1
hemagglutinin	Hemagglutinin [Measles virus] hemagglutinin protein [Measles virus]	CAB94926.1 BAB39836.1
hemagglutinin hemagglutinin	Hemagglutinin [Measles virus]	CAB94929.1
hemagglutinin	RecName: Full = Hemagglutinin glycoprotein	P06830.1
hemagglutinin	Hemagglutinin [Measles virus]	CAB94928.1
hemagglutinin	hemagglutinin protein [Measles virus]	BAB39837.1
hemagglutinin	hemagglutinin [Measles virus]	AAA74935.1
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43780.1
hemagglutinin hemagglutinin	hemagglutinin [Measles virus] hemagglutinin protein [Measles virus]	BAA09952.1 CAB43815.1
hemagglutinin	hemagglutinin [Measles virus]	AAF28390.1
hemagglutinin	Hemagglutinin [Measles virus]	CAB94923.1
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43785.1
hemagglutinin	hemagglutinin [Measles virus]	ABD34001.1
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43782.1
hemagglutinin hemagglutinin	hemagglutinin protein [Measles virus] hemagglutinin [Measles virus]	CAB43781.1 BAH22353.1
hemagglutinin	hemagglutinin [Measles virus]	AAC35878.2
hemagglutinin	hemagglutinin protein [Measles virus]	AAL86996.1
hemagglutinin	hemagglutinin [Measles virus]	CAA76066.2
hemagglutinin	hemagglutinin [Measles virus]	AAA46428.1
hemagglutinin	hemagglutinin protein [Measles virus] Hemagglutinin [Measles virus]	CAB43803.1 CAB94918.1
hemagglutinin hemagglutinin	hemagglutinin [Measles virus]	AAF72162.1
hemagglutinin	hemagglutinin [Measles virus]	AAM70154.1
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43776.1
hemagglutinin	hemagglutinin [Measles virus genotype D4]	ACT78395.1
hemagglutinin	hemagglutinin [Measles virus genotype D7]	AAL02030.1
hemagglutinin hemagglutinin	hemagglutinin protein [Measles virus] hemagglutinin protein [Measles virus]	CAB43789.1 CAB43774.1
hemagglutinin	Hemagglutinin [Measles virus]	CAB94920.1
hemagglutinin	Hemagglutinin [Measles virus]	CAB94922.1
hemagglutinin	hemagglutinin [Measles virus]	ABB59491.1
hemagglutinin	hemagglutinin protein [Measles virus]	BAB39843.1
hemagglutinin	hemagglutinin protein [Measles virus] hemagglutinin [Measles virus]	CAB43804.1
hemagglutinin hemagglutinin	Hemagglutinin [Measles virus]	AAX52048.1 CAB94930.1
hemagglutinin	hemagglutinin [Measles virus]	AAA74526.1
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43814.1
hemagglutinin	hemagglutinin [Measles virus]	ABB59493.1
hemagglutinin	hemagglutinin [Measles virus genotype D4]	AAL02019.1
hemagglutinin hemagglutinin	Hemagglutinin [Measles virus] hemagglutinin protein [Measles virus]	CAB94919.1
hemagglutinin	hemagglutinin [Measles virus genotype C2]	AAL86997.1 AAL02017.1
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43769.1
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43808.1
hemagglutinin	hemagglutinin [Measles virus]	BAO97032.1
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43805.1
hemagglutinin hemagglutinin	hemagglutinin protein [Measles virus] hemagglutinin [Measles virus]	CAB43777.1 AAL67793.1
hemagglutinin	hemagglutinin [Measles virus]	AAL67793.1 AAF89816.1
hemagglutinin	hemagglutinin [Measles virus genotype D4]	AAL02020.1
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43786.1
hemagglutinin	hemagglutinin protein [Measles virus strain MVi/New Jersey.USA/45.05]	AEP40452.1
hemagglutinin	hemagglutinin [Measles virus]	AAA74531.1
hemagglutinin	hemagglutinin [Measles virus]	AAB63800.1
hemagglutinin	hemagglutinin [Measles virus]	AAO21711.1

TABLE 15-continued

MeV NCBI Accession Numbers (Amino Acid Sequences)		
Туре	Virus Name	GenBank Accession
hemagglutinin	hemagglutinin [Measles virus genotype D8]	ALE27189.1
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43810.1
hemagglutinin	hemagglutinin [Measles virus]	AAF89817.1
hemagglutinin	hemagglutinin [Measles virus genotype D6]	AAL02022.1
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43800.1
hemagglutinin	hemagglutinin protein [Measles virus genotype B3]	AGA17219.1 CAB43770.1
hemagglutinin hemagglutinin	hemagglutinin protein [Measles virus] hemagglutinin protein [Measles virus strain	AEP40444.1
пениярыши	MVi/Texas.USA/4.07]	1221 1011111
hemagglutinin	hemagglutinin [Measles virus]	AAX52047.1
hemagglutinin	hemagglutinin [Measles virus]	AAB63794.1
hemagglutinin	hemagglutinin [Measles virus]	AAB63796.1
hemagglutinin hemagglutinin	hemagglutinin [Measles virus] hemagglutinin [Measles virus]	AAA74528.1 AAB63774.1
hemagglutinin	hemagglutinin [Measles virus]	AAB63795.1
hemagglutinin	hemagglutinin [Measles virus]	AAA74519.1
hemagglutinin	hemagglutinin protein [Measles virus]	CAB43778.1
fusion protein	fusion protein [Measles virus strain Moraten]	AAF85672.1
fasion protein	fusion protein [Measles virus]	AAA56645.1 AAF85688.1
fusion protein fusion protein	fusion protein [Measles virus strain Rubeovax] fusion protein [Measles virus]	AAF85680.1
fusion protein	fusion protein [Measles virus]	AEF30359.1
fusion protein	fusion protein [Measles virus]	BAA09957.1
fusion protein	fusion protein [Measles virus]	AAV84957.1
fusion protein	fusion protein [Measles virus MeV-eGFP_Edm-tag]	AII16636.1
fusion protein	fusion protein [Measles virus]	ABY58018.1
fusion protein fusion protein	fusion protein [Measles virus] fusion protein [Measles virus]	BAA19838.1 AAA56641.1
fusion protein	F protein [Measles virus]	ABK40529.1
fusion protein	fusion protein [Measles virus]	AAA56652.1
fusion protein	fusion protein [Measles virus]	ABY58017.1
fusion protein	fusion protein [Measles virus]	ABB71645.1
fusion protein	fusion protein [Measles virus]	NP_056922.1
fusion protein fusion protein	fusion protein [Measles virus strain AIK-C] fusion protein [Measles virus]	AAF85664.1 BAB60865.1
fusion protein	fusion protein [Measles virus]	BAA09950.1
fusion protein	fusion protein [Measles virus strain	AEP40403.1
0.1	MVi/New York.USA/26.09/3]	
fusion protein	fusion protein [Measles virus]	AAA74934.1 CAB38075.1
fusion protein fusion protein	fusion protein [Measles virus] fusion protein [Measles virus strain	AEP40443.1
rasion protein	MVi/Texas.USA/4.07]	1111 10115.1
fusion protein	fusion protein [Measles virus]	AAF02695.1
fusion protein	fusion protein [Measles virus]	AAF02696.1
fusion protein	fusion protein [Measles virus]	AAT99301.1
fusion protein fusion protein	fusion protein [Measles virus] fusion protein [Measles virus]	ABB71661.1 BAK08874.1
fusion protein	fusion protein [Measles virus]	AAF02697.1
fusion protein	fusion protein [Measles virus genotype D4]	AFY12704.1
fusion protein	fusion protein [Measles virus strain	AEP40467.1
	MVi/California.USA/16.03]	
fusion protein fusion protein	fusion protein [Measles virus genotype D8]	AHN07989.1 AAA46421.1
fusion protein	fusion protein [Measles virus] fusion protein [Measles virus]	AAA40421.1 AAA56638.1
fusion protein	fusion protein [Measles virus strain	AEP40419.1
•	MVi/Virginia.USA/15.09]	
fusion protein	fusion protein [Measles virus genotype D8]	ALE27200.1
fusion protein	fusion protein [Measles virus genotype D8]	AFY12695.1
fusion protein fusion protein	fusion protein [Measles virus genotype D8] fusion protein [Measles virus genotype D8]	ALE27248.1 ALE27224.1
fusion protein	fusion protein [Measles virus]	AAT99300.1
fusion protein	fusion protein [Measles virus]	BAH96592.1
fusion protein	fusion protein [Measles virus strain	AEP40459.1
	MVi/California.USA/8.04]	170010011
fusion protein fusion protein	fusion protein [Measles virus genotype D8] fusion protein [Measles virus]	AIG94081.1 BAA09951.1
fusion protein	fusion protein [Measles virus genotype D8]	ALE27194.1
fusion protein	fusion protein [Measles virus]	BAA33871.1
fusion protein	fusion protein [Measles virus strain	AEP40427.1
	MVi/Washington.USA/18.08/1]	
fusion protein	fusion protein [Measles virus]	ABY21182.1
fusion protein	fusion protein [Measles virus genotype D8]	ALE27284.1
fusion protein fusion protein	fusion protein [Measles virus] fusion protein [Measles virus genotype D8]	ACA09725.1 ALE27314.1
fusion protein	fusion protein [Measles virus genotype G3]	AFY12712.1
fusion protein	fusion protein [Measles virus genotype D8]	ALE27368.1

TABLE 15-continued

MeV NCBI Accession Numbers (Amino Acid Sequences)		
Туре	Virus Name	GenBank Accession
fusion protein	RecName: Full = Fusion glycoprotein F0; Contains:	P35973.1
rasion protein	RecName: Full = Fusion glycoprotein F2; Contains:	133773.1
fusion protein	RecName: Full = Fusion glycoprotein F1; Flags: Precursor fusion protein [Measles virus genotype H1]	AIG53713.1
rusion protein	unnamed protein product [Measles virus]	CAA34588.1
fusion protein	fusion protein [Measles virus]	CAA76888.1
fusion protein	fusion protein [Measles virus genotype B3.1] fusion protein [Measles virus]	AIY55563.1 ADO17330.1
fusion protein fusion protein	fusion protein [Measles virus genotype H1]	AIG53703.1
fusion protein	fusion protein [Measles virus genotype B3]	AGA17208.1
fusion protein	fusion protein [Measles virus]	AAL29688.1
fusion protein fusion protein	fusion protein [Measles virus genotype H1] fusion protein [Measles virus genotype H1]	AIG53706.1 AIG53701.1
fusion protein	fusion protein [Measles virus genotype B3]	ALE27092.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53714.1
fusion protein fusion protein	fusion protein [Measles virus genotype H1] fusion protein [Measles virus genotype H1]	AIG53694.1 AIG53668.1
fusion protein	fusion protein [Measles virus]	ACC86094.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53670.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53707.1
fusion protein fusion protein	fusion protein [Measles virus genotype B3] fusion protein [Measles virus genotype H1]	AGA17216.1 AIG53671.1
fusion protein	fusion protein [Measles virus strain	AEP40451.1
	MVi/New Jersey.USA/45.05]	
fusion protein fusion protein	fusion protein [Measles virus genotype H1] fusion protein [Measles virus genotype H1]	AIG53684.1 AIG53688.1
fusion protein	fusion protein [Measles virus genotype 111]	AGA17214.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53683.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53667.1 AIG53686.1
fusion protein fusion protein	fusion protein [Measles virus genotype H1] fusion protein [Measles virus genotype H1]	AIG53685.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53681.1
	unnamed protein product [Measles virus]	CAA34589.1
fusion protein fusion protein	fusion protein [Measles virus genotype H1] fusion protein [Measles virus genotype H1]	AIG53678.1 AIG53710.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53710.1 AIG53669.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53664.1
fusion protein fusion protein	fusion protein [Measles virus]	AAA50547.1 AIG53679.1
fusion protein	fusion protein [Measles virus genotype H1] fusion protein [Measles virus genotype H1]	AIG53709.1 AIG53709.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53672.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53697.1
fusion protein fusion protein	fusion protein [Measles virus genotype H1] fusion protein [Measles virus genotype H1]	AIG53689.1 AIG53676.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53675.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53663.1
fusion protein fusion protein	fusion protein [Measles virus] fusion protein [Measles virus]	BAA19841.1 AAF02701.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53680.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53674.1
C protein	C protein [Measles virus strain Moraten] RecName: Full = Protein C	AAF85670.1
C protein C protein	C protein [Measles virus]	P03424.1 ACN54404.1
C protein	C protein [Measles virus]	ACN54412.1
C protein	RecName: Full = Protein C	P35977.1
C protein C protein	C protein [Measles virus] C protein [Measles virus]	AAF85678.1 ABD33998.1
C protein	unnamed protein product [Measles virus]	CAA34586.1
C protein	C protein [Measles virus]	BAJ51786.1
C protein C protein	C protein [Measles virus] virulence factor [Measles virus]	BAA33869.1 ABO69700.1
C protein	C protein [Measles virus]	NP_056920.1
C protein	C protein [Measles virus]	ADO17333.1
C protein C protein	C protein [Measles virus] C protein [Measles virus]	ACC86082.1 B A A 33875 1
C protein	C protein [Measles virus]	BAA33875.1 ABY21189.1
C protein	C protein [Measles virus]	BAE98296.1
C protein	C protein [Measles virus]	ADU17782.1
C protein	C protein [Measles virus strain MVi/Virginia.USA/15.09]	AEP40417.1
C protein	C protein [Measles virus]	ADU17814.1
C protein	C protein [Measles virus]	ADU17798.1
C protein C protein	C protein [Measles virus genotype D4] C protein [Measles virus]	AFY12700.1 ADU17784.1
C protein	C protein [Measles virus] C protein [Measles virus strain	AEP40465.1
F	MVi/California.USA/16.03]	<u>.</u>

337

TABLE 15-continued

	MeV NCBI Accession Numbers (Amino Acid Seque	nces)
Туре	Virus Name	GenBank Accession
C protein	C protein [Measles virus]	ABB71643.1
C protein	C protein [Measles virus]	AEI91027.1
C protein	C protein [Measles virus]	ADU17874.1
C protein	C protein [Measles virus]	ADU17903.1
C protein C protein	C protein [Measles virus] C protein [Measles virus]	CAA34579.1 ADU17790.1
C protein	C protein [Measles virus]	ADU17800.1
C protein	C protein [Measles virus]	ABB71667.1
C protein	unnamed protein product [Measles virus]	CAA34572.1
C protein	C protein [Measles virus strain	AEP40433.1
0	MVi/Arizona.USA/11.08/2]	A DV 11 7020 1
C protein C protein	C protein [Measles virus] C protein [Measles virus]	ADU17830.1 ADU17947.1
C protein	C protein [Measles virus]	ADU17818.1
C protein	C protein [Measles virus strain	AEP40449.1
	MVi/New Jersey.USA/45.05]	
C protein	C protein [Measles virus strain	AEP40441.1
0	MVi/Texas.USA/4.07]	A DI 11 70 CA 1
C protein C protein	C protein [Measles virus] C protein [Measles virus]	ADU17864.1 ADU17838.1
C protein	C protein [Measles virus]	ADU17838.1 ADU17881.1
C protein	C protein [Measles virus strain	AEP40425.1
•	MVi/Washington.USA/18.08/1]	
C protein	C protein [Measles virus]	ADU17927.1
C protein	C protein [Measles virus]	ADU17953.1
C protein	C protein [Measles virus]	ADU17889.1
C protein	C protein [Measles virus]	ADU17963.1
C protein	C protein [Measles virus]	ADU17893.1
C protein	C protein [Measles virus]	ADU17820.1
C protein	C protein [Measles virus]	ABB71651.1
C protein C protein	C protein [Measles virus] C protein [Measles virus]	ADU17786.1 ADU17862.1
C protein	C protein [Measles virus]	ADU17802.1 ADU17923.1
C protein	C protein [Measles virus]	ADU17959.1
C protein	C protein [Measles virus]	ADU17951.1
C protein	C protein [Measles virus]	ADU17916.1
C protein	C protein [Measles virus]	ADU17957.1
C protein	C protein [Measles virus]	ADU17925.1
C protein	C protein [Measles virus]	ADU17901.1
C protein	C protein [Measles virus]	ADU17887.1
C protein	C protein [Measles virus]	ADU17832.1
C protein	C protein [Measles virus]	ADU17891.1 ADU17961.1
C protein C protein	C protein [Measles virus] C protein [Measles virus]	ADU17901.1 ADU17872.1
C protein	C protein [Measles virus]	ADU17929.1
C protein	C protein [Measles virus]	ADU17908.1
C protein	C protein [Measles virus]	ADU17910.1
C protein	C protein [Measles virus]	ADU17921.1
C protein	C protein [Measles virus]	ADU17824.1
C protein	C protein [Measles virus strain	AEP40473.1
	MVi/Pennsylvania.USA/20.09]	
C protein	C protein [Measles virus]	ADU17828.1
C protein	C protein [Measles virus]	ADU17812.1
C protein	C protein [Measles virus genotype D8]	AFY12692.1
C protein C protein	nonstructural C protein [Measles virus] RecName: Full = Protein C	ABA59559.1 Q00794.1
C protein	nonstructural C protein [Measles virus]	ADO17934.1
C protein	nonstructural C protein [Measles virus]	ACJ66773.1
C protein	C protein [Measles virus genotype G3]	AFY12708.1
C protein	RecName: Full = Protein C	P26035.1
C protein	C protein [Measles virus]	BAA84128.1
nucleoprotein	RecName: Full = Nucleoprotein; AltName:	Q77M43.1
	Full = Nucleocapsid protein;	
	Short = NP; Short = Protein N	1.1705.004
nucleoprotein	nucleocapsid protein [Measles virus strain Rubeovax]	AAF85683.1
nucleoprotein	RecName: Full = Nucleoprotein; AltName:	Q89933.1
	Full = Nucleocapsid protein; Short = NP: Short = Protein N	
nucleoprotein	Short = NP; Short = Protein N nucleocapsid protein [Measles virus strain AIK-C]	AAF85659.1
nucleoprotein	nucleoprotein [Measles virus]	ABI54102.1
nucleoprotein	nucleoprotein [Measles virus]	AAA56643.1
nucleoprotein	nucleoprotein [Measles virus]	AAC03050.1
nucleoprotein	nucleoprotein [Measles virus]	AAA18990.1
*	•	

TABLE 15-continued

	MeV NCBI Accession Numbers (Amino Acid S	equences)
Туре	Virus Name	GenBank Accession
nucleoprotein	nucleoprotein [Measles virus]	AAA56640.1
nucleoprotein	RecName: Full = Nucleoprotein; AltName: Full = Nucleocapsid protein;	P35972.1
	Short = NP; Short = Protein N	
nucleoprotein	RecName: Full=Nucleoprotein; AltName:	P10050.1
	Full = Nucleocapsid protein; Short = NP; Short = Protein N	
nucleoprotein	N protein [Measles virus]	BAB60956.1
nucleoprotein	RecName: Full = Nucleoprotein; AltName:	B1AAA7.1
	Full = Nucleocapsid protein; Short = NP; Short = Protein N	
nucleoprotein	nucleoprotein [Measles virus]	AAA18991.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46894.1 CAB46871.1
nucleoprotein nucleoprotein	nucleoprotein [Measles virus] nucleoprotein [Measles virus]	CAB46871.1 CAB46872.1
nucleoprotein	nucleoprotein [Measles virus]	ABU49606.1
nucleoprotein	nucleocapsid protein [Measles virus]	AAA75494.1
nucleoprotein nucleoprotein	nucleoprotein [Measles virus] nucleoprotein [Measles virus]	CAB46883.1 CAB46892.1
nucleoprotein	unnamed protein product [Measles virus]	CAA34584.1
nucleoprotein	nucleoprotein [Measles virus]	AAA18997.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46863.1
nucleoprotein nucleoprotein	nucleoprotein [Measles virus] nucleoprotein [Measles virus]	AEF30352.1 ABI54103.1
nucleoprotein	nucleocapsid protein [Measles virus]	AAA46433.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46902.1
nucleoprotein nucleoprotein	nucleoprotein [Measles virus] nucleoprotein [Measles virus]	CAB46873.1 CAB46906.1
nucleoprotein	nucleoprotein [Measles virus]	AAA74547.1
nucleoprotein	nucleoprotein [Measles virus]	AAA74537.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46862.1
nucleoprotein nucleoprotein	nucleocapsid protein [Measles virus] nucleoprotein [Measles virus]	BAA09961.1 AAO15875.1
nucleoprotein	nucleoprotein [Measles virus]	AAO15871.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46882.1
nucleoprotein nucleoprotein	nucleoprotein [Measles virus] nucleoprotein [Measles virus]	CAB60124.1 ABI54104.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46869.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46880.1
nucleoprotein	nucleoprotein [Measles virus]	AAA74541.1 AEP40446.1
nucleoprotein	nucleocapsid protein [Measles virus strain MVi/New Jersey.USA/45.05]	AEF40440.1
nucleoprotein	nucleoprotein [Measles virus]	ABI54110.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46903.1
nucleoprotein nucleoprotein	nucleoprotein [Measles virus] nucleoprotein [Measles virus]	CAB46899.1 CAB46901.1
nucleoprotein	nucleocapsid protein [Measles virus]	ABB71640.1
nucleoprotein	nucleoprotein [Measles virus]	CAB60113.1
nucleoprotein	nucleoprotein [Measles virus] nucleoprotein [Measles virus]	CAB60114.1 CAB60116.1
nucleoprotein nucleoprotein	nucleoprotein [Measles virus]	CAB46895.1
nucleoprotein	nucleoprotein [Measles virus]	CAB60121.1
nucleoprotein	nucleoprotein [Measles virus]	ABI54111.1
nucleoprotein nucleoprotein	nucleoprotein [Measles virus] nucleoprotein [Measles virus]	CAB46889.1 CAB46898.1
nucleoprotein	nucleoprotein [Measles virus genotype B3]	ALE27083.1
nucleoprotein	nucleoprotein [Measles virus]	CAB60118.1
nucleoprotein nucleoprotein	nucleocapsid protein [Measles virus] nucleoprotein [Measles virus]	CAA34570.1 AAC29443.1
nucleoprotein	nucleocapsid protein [Measles virus strain	AEP40422.1
-	MVi/Washington.USA/18.08/1]	
nucleoprotein	nucleoprotein [Measles virus]	AAO15872.1
nucleoprotein nucleoprotein	nucleoprotein [Measles virus] nucleoprotein [Measles virus]	CAB46874.1 AAA74550.1
nucleoprotein	nucleocapsid protein [Measles virus]	ABB71648.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46900.1
nucleoprotein nucleoprotein	nucleoprotein [Measles virus] nucleocapsid protein [Measles virus]	BAH22440.1 AAA46432.1
nucleoprotein	nucleocapsid protein [Measles virus]	BAA33867.1
nucleoprotein	nucleoprotein [Measles virus]	AAA74539.1
nucleoprotein	nucleoprotein [Measles virus]	CAB60115.1
nucleoprotein nucleoprotein	nucleoprotein [Measles virus] nucleocapsid protein [Measles virus]	CAB60123.1 ABB71664.1
nucleoprotein	nucleoprotein [Measles virus]	CAB60125.1
nucleoprotein	nucleoprotein [Measles virus]	AAA74546.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46886.1

341

TABLE 15-continued

MeV NCBI Accession Numbers (Amino Acid Sequences)		
Туре	Virus Name	GenBank Accession
nucleoprotein	nucleoprotein [Measles virus]	BAH22350.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46867.1
nucleoprotein	nucleocapsid protein [Measles virus]	BAA09954.1
nucleoprotein	nucleoprotein [Measles virus]	AAO15873.1
nucleoprotein nucleoprotein	nucleocapsid protein [Measles virus] nucleoprotein [Measles virus]	AEP95735.1 AAL37726.1
nucleoprotein	nucleoprotein [Measles virus]	AAA74549.1
nucleoprotein	RecName: Full = Nucleoprotein; AltName:	P26030.1
r	Full = Nucleocapsid protein; Short = NP; Short = Protein N	
nucleoprotein	nucleoprotein [Measles virus ETH55/99]	AAK07777.1
nucleoprotein	nucleoprotein [Measles virus genotype B3]	AGA17238.1
nucleoprotein	nucleoprotein [Measles virus]	AEF30351.1
nucleoprotein	nucleoprotein [Measles virus genotype B3]	AGA17242.1
nucleoprotein	nucleoprotein [Measles virus ETH54/98] nucleoprotein [Measles virus]	AAK07776.1 AAA74548.1
nucleoprotein nucleoprotein	nucleoprotein [Measles virus]	AAA19221.1
nucleoprotein	nucleoprotein [Measles virus]	AAC03039.1
nucleoprotein	nucleoprotein [Measles virus]	AAA19223.1
nucleoprotein	nucleoprotein [Measles virus genotype B3]	AGA17241.1
nucleoprotein	nucleoprotein [Measles virus]	CAB60122.1
nucleoprotein	nucleoprotein [Measles virus]	CAC34599.1
nucleoprotein	nucleoprotein [Measles virus]	AAC03042.1
nucleoprotein	nucleoprotein [Measles virus]	CAC34604.1
nucleoprotein	nucleoprotein [Measles virus]	AAA74544.1
nucleoprotein	nucleocapsid protein [Measles virus]	NP_056918.1
V Protein	RecName: Full = Non-structural protein V	Q9IC37.1
V Protein V Protein	RecName: Full = Non-structural protein V V protein [Measles virus]	Q9EMA9.1 ACN54411.1
V Protein	V protein [Measles virus]	ACN54403.1
V Protein	V protein [Measles virus]	AEP95742.1
V Protein	V protein [Measles virus strain	AEP40416.1
	MVi/Virginia.USA/15.09]	111111111111111111111111111111111111111
V Protein	V protein [Measles virus]	ADU17801.1
V Protein	V protein [Measles virus]	ADU17849.1
V Protein	V protein [Measles virus]	ABB71642.1
V Protein	V protein [Measles virus genotype D8]	AFY12693.1
V Protein	V protein [Measles virus]	YP_003873249.2
V Protein	V protein [Measles virus strain MVi/Arizona.USA/11.08/2]	AEP40432.1
V Protein	RecName: Full = Non-structural protein V	P26036.1
V Protein	V protein [Measles virus strain	AEP40464.1
	MVi/California.USA/16.03]	
V Protein	V protein [Measles virus strain	AEP40456.1
	MVi/California.USA/8.04]	
V Protein	V protein [Measles virus]	ABY21188.1
V Protein	V protein [Measles virus strain	AEP40424.1
TID . :	MVi/Washington.USA/18.08/1]	D 11106501 1
V Protein	V protein [Measles virus]	BAH96581.1
V Protein V Protein	V protein [Measles virus] RecName: Full = Non-structural protein V	ABB71666.1 P60168.1
V Protein	V protein [Measles virus]	BAH96589.1
V Protein	V protein [Measles virus]	ADU17954.1
V Protein	V protein [Measles virus strain	AEP40400.1
v 110tem	MVi/New York.USA/26.09/3]	ALI 40400.1
V Protein	V protein [Measles virus]	ABY21196.1
V Protein	virulence factor [Measles virus]	ABO69701.1
V Protein	V protein [Measles virus]	ABB71650.1
V Protein	V protein [Measles virus]	ACC86086.1
V Protein	V protein [Measles virus genotype D4]	AFY12702.1
V Protein	V protein [Measles virus strain	AEP40448.1
	MVi/New Jersey.USA/45.05]	
V Protein	V protein [Measles virus]	BAE98295.1
V Protein	V protein [Measles virus]	ACC86083.1
V Protein	V protein [Measles virus]	ACU5139.1
V Protein	V protein [Measles virus]	ADO17334.1
V Protein	V protein [Measles virus]	ADU17930.1
V Protein	V protein [Measles virus genotype G3]	AFY12710.1
V Protein	V protein [Measles virus strain	AEP40472.1
V Dont-1-	MVi/Pennsylvania.USA/20.09]	A DI 11 7020 1
V Protein	phosphoprotein [Measles virus]	ADU17839.1
V Protein V Protein	V protein [Measles virus] V protein [Measles virus]	ADU17894.1 ACN50010.1
* 110mm	· protein [wieasies vitus]	ACN30010.1

343

TABLE 15-continued

MeV NCBI Accession Numbers (Amino Acid Sequences)			
Туре	Virus Name	GenBank Accession	
V Protein	V protein [Measles virus]	ADU17892.1	
	unnamed protein product [Measles virus]	CAA34585.1	
V Protein	V protein [Measles virus]	ABD33997.1	

TABLE 16

Name	Sequence	SEQ ID NO:
	Flagellin Nucleic Acid Sequences	
NT (5' UTR, ORF, 3' UTR)	Flagellin Nucleic Acid Sequences TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTAT AGGGAAATAAGAGAAAAGAAGAAGAAGAAAAAAGAGAGCACATGGCACATGGCCACATGGCCACATGGCCACATGGCCACAAGTCATTAATACAAACAGCCTGTCGCTG TTGACCCAGAATAACCTGAACAAATCCCAGTCCGCACTGGCCA CTGCCTATCGACCAGTTGTCTTCCGGTCTGCTTACACCAGCGCGCAAAGACAAATCCCAGTTCCCGTATCAACAGCGCGCAAAGACAAATCCCAGTTCCCGTAACCGTTTACCG CGAACATCCAAAGGCTCGACACGACA	51
	CACCCGTACCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCGG C	
ORF	ATGGCACAAGTCATTAATACAAACAGCCTGTCGCTGTTGACCC	52

Sequence,

AGAATAACCTGAACAAATCCCAGTCCGCACTGGGCACTGCTAT CGAGCGTTTGTCTTCCGGTCTGCGTATCAACAGCGCGAAAGAC GATGCGGCAGGACAGGCGATTGCTAACCGTTTTACCGCGAACA ${\tt TCAAAGGTCTGACTCAGGCTTCCCGTAACGCTAACGACGGTAT}$ $\tt CTCCATTGCGCAGACCACTGAAGGCGCGCTGAACGAAATCAAC$ $\verb|AACAACCTGCAGCGTGTGCGTGAACTGGCGGTTCAGTCTGCGA|$ $\tt ATGGTACTAACTCCCAGTCTGACCTCGACTCCATCCAGGCTGAA$ $\verb|ATCACCCAGCGCCTGAACGAAATCGACCGTGTATCCGGCCAGA||$ $\tt CTCAGTTCAACGGCGTGAAAGTCCTGGCGCAGGACAACACCCT$ ${\tt GACCATCCAGGTTGGTGCCAACGACGGTGAAACTATCGATATT}$ GATTTAAAAGAAATCAGCTCTAAAACACTGGGACTTGATAAGC ${\tt TTAATGTCCAAGATGCCTACACCCCGAAAGAAACTGCTGTAAC}$ CGTTGATAAAACTACCTATAAAAATGGTACAGATCCTATTACA ${\tt GCCCAGAGCAATACTGATATCCAAACTGCAATTGGCGGTGGTG}$ ${\tt CAACGGGGGTTACTGGGGCTGATATCAAATTTAAAGATGGTCA}$ $\tt ATACTATTTAGATGTTAAAGGCGGTGCTTCTGCTGGTGTTTATA$ ${\tt AAGCCACTTATGATGAAACTACAAAGAAAGTTAATATTGATAC}$ GACTGATAAAACTCCGTTGGCAACTGCGGAAGCTACAGCTATT CGGGGAACGGCCACTATAACCCACAACCAAATTGCTGAAGTAA

SEO ID

NO:

346

CAAAAGAGGGTTTGATACGACCACAGTTGCGGCTCAACTTGC
TGCAGCAGGGGTTACTGGCGCCGATAAGGACAATACTAGCCTT
GTAAAACTATCGTTTGAGGATAAAAACGGTAAGGTTATTGATG
GTGGCTATGCAGTGAAAATGGGCGACGATTTCTATGCCGCTAC
ATATGATGAGAAAACAGGTGCAATTACTGCTAAAACCACTACT
TATACAGATGGTACTGGCGTTGCTCAAACTGGAGCTGTGAAAT
TTGGTGGCGCAAATGGTAAATCTGAAGTTGTTACTGCTACCGAT
GGTAAGACTTACTTAGCAAGCGACCTTGACAAACATAACTTCA
GAACAGGCGGTGAGCTTAAAGAGGTTAATACAGATAAGACTG
AAAACCCACTGCAGAAAATTGATGCTGCCTTGGCACAGGTTGA
TACACTTCGTTCTGACCTGGGCGGTTCAGAACCGTTTCAACT
CCGCTATCACCAACCTGGGCAATACCGTAAATAACCTGTCTTCT
GCCCGTAGCCGTATCGAAGCGTTTCGACTAGCAACCGAAGTCT

 ${\tt CCAACATGTCTCGCGCGCAGATTCTGCAGCAGGCCGGTACCTC}\\ {\tt CGTTCTGGCGCAGGCGAACCAGGTTCCGCAAAACGTCCTCTCTT}\\$

345

Sequence

TACTGCGT

mRNA Sequence (assumes T100 tail)

Name

G*GGGAAAUAAGAGAGAAAAGAAGAGGAAGAAAUAUAA GAGCCACCAUGGCACAAGUCAUUAAUACAAACAGCCUGUCGC UGUUGACCCAGAAUAACCUGAACAAAUCCCAGUCCGCACUGG GCACUGCUAUCGAGCGUUUGUCUUCCGGUCUGCGUAUCAACA GCGCGAAAGACGAUGCGGCAGGACAGGCGAUUGCUAACCGUU UUACCGCGAACAUCAAAGGUCUGACUCAGGCUUCCCGUAACG CUAACGACGGUAUCUCCAUUGCGCAGACCACUGAAGGCGCGC UGAACGAAAUCAACAACAACCUGCAGCGUGUGCGUGAACUGG CGGUUCAGUCUGCGAAUGGUACUAACUCCCAGUCUGACCUCG ACUCCAUCCAGGCUGAAAUCACCCAGCGCCUGAACGAAAUCG ACCGUGUAUCCGGCCAGACUCAGUUCAACGGCGUGAAAGUCC UGGCGCAGGACAACACCCUGACCAUCCAGGUUGGUGCCAACG ACGGUGAAACUAUCGAUAUUGAUUUAAAAGAAAUCAGCUCU AAAACACUGGGACUUGAUAAGCUUAAUGUCCAAGAUGCCUAC ACCCCGAAAGAACUGCUGUAACCGUUGAUAAAACUACCUAU AAAAAUGGUACAGAUCCUAUUACAGCCCAGAGCAAUACUGAU AUCCAAACUGCAAUUGGCGGUGGUGCAACGGGGGUUACUGG GGCUGAUAUCAAAUUUAAAGAUGGUCAAUACUAUUUAGAUG UUAAAGGCGGUGCUUCUGCUGGUGUUUAUAAAGCCACUUAU GAUGAAACUACAAAGAAAGUUAAUAUUGAUACGACUGAUAA AACUCCGUUGGCAACUGCGGAAGCUACAGCUAUUCGGGGAAC GGCCACUAUAACCCACAACCAAAUUGCUGAAGUAACAAAAGA GGGUGUUGAUACGACCACAGUUGCGGCUCAACUUGCUGCAGC AGGGGUUACUGGCGCCGAUAAGGACAAUACUAGCCUUGUAA AACUAUCGUUUGAGGAUAAAAACGGUAAGGUUAUUGAUGGU GGCUAUGCAGUGAAAAUGGGCGACGAUUUCUAUGCCGCUACA UAUGAUGAGAAAACAGGUGCAAUUACUGCUAAAACCACUAC UUAUACAGAUGGUACUGGCGUUGCUCAAACUGGAGCUGUGA AAUUUGGUGGCGCAAAUGGUAAAUCUGAAGUUGUUACUGCU ACCGAUGGUAAGACUUACUUAGCAAGCGACCUUGACAAACAU AACUUCAGAACAGGCGGUGAGCUUAAAGAGGUUAAUACAGA UAAGACUGAAAACCCACUGCAGAAAAUUGAUGCUGCCUUGGC ACAGGUUGAUACACUUCGUUCUGACCUGGGUGCGGUUCAGAA CCGUUUCAACUCCGCUAUCACCAACCUGGGCAAUACCGUAAA UAACCUGUCUUCUGCCCGUAGCCGUAUCGAAGAUUCCGACUA CGCAACCGAAGUCUCCAACAUGUCUCGCGCGCAGAUUCUGCA GCAGGCCGGUACCUCCGUUCUGGCGCAGGCGAACCAGGUUCC GCAAAACGUCCUCUUUACUGCGUUGAUAAUAGGCUGGAGC CUCGGUGGCCAUGCUUCUUGCCCCUUGGGCCUCCCCCCAGCC CCUCCUCCCUUCCUGCACCCGUACCCCCGUGGUCUUUGAAU

Flagellin mRNA Sequences

NT (5' UTR, ORF, 3' UTR) 53

TABLE 16-continued

Name Sequence SEQ ID

UAAAACACUGGGACUUGAUAAGCUUAAUGUCCAAGAUGCCU

ACACGCGCAAACAAACUGGUUGAUAAGCUUAAUGUCCAAGAUGCCU

ACACCCGAAAGAAACUGCUGUAACCGUUGAUAAAACUACCU AUAAAAAUGGUACAGAUCCUAUUACAGCCCAGAGCAAUACUG AUAUCCAAACUGCAAUUGGCGGUGGUGCAACGGGGGUUACU GGGGCUGAUAUCAAAUUUAAAGAUGGUCAAUACUAUUUAGA UGUUAAAGGCGGUGCUUCUGCUGGUGUUUAUAAAGCCACUU AUGAUGAAACUACAAAGAAAGUUAAUAUUGAUACGACUGAU AAAACUCCGUUGGCAACUGCGGAAGCUACAGCUAUUCGGGGA ACGGCCACUAUAACCCACAACCAAAUUGCUGAAGUAACAAAA GAGGGUGUUGAUACGACCACAGUUGCGGCUCAACUUGCUGCA GCAGGGGUUACUGGCGCCGAUAAGGACAAUACUAGCCUUGUA AAACUAUCGUUUGAGGAUAAAAACGGUAAGGUUAUUGAUGG UGGCUAUGCAGUGAAAAUGGGCGACGAUUUCUAUGCCGCUAC AUAUGAUGAGAAAACAGGUGCAAUUACUGCUAAAACCACUA CUUAUACAGAUGGUACUGGCGUUGCUCAAACUGGAGCUGUG AAAUUUGGUGGCGCAAAUGGUAAAUCUGAAGUUGUUACUGC UACCGAUGGUAAGACUUACUUAGCAAGCGACCUUGACAAACA UAACUUCAGAACAGGCGGUGAGCUUAAAGAGGGUUAAUACAG AUAAGACUGAAAACCCACUGCAGAAAAUUGAUGCUGCCUUGG CACAGGUUGAUACACUUCGUUCUGACCUGGGUGCGGUUCAGA ACCGUUUCAACUCCGCUAUCACCAACCUGGGCAAUACCGUAA AUAACCUGUCUUCUGCCCGUAGCCGUAUCGAAGAUUCCGACU ACGCAACCGAAGUCUCCAACAUGUCUCGCGCGCAGAUUCUGC AGCAGGCCGGUACCUCCGUUCUGGCGCAGGCGAACCAGGUUC CGCAAAACGUCCUCUUUUACUGCGUUGAUAAUAGGCUGGAG CCUCGGUGGCCAUGCUUCUUGCCCCUUGGGCCUCCCCCCAGC CCCUCCUCCCUUCCUGCACCCGUACCCCGUGGUCUUUGAA UAAAGUCUGAGUGGGCGGC

ORF Sequence, AUGGCACAAGUCAUUAAUACAAACAGCCUGUCGCUGUUGACC CAGAAUAACCUGAACAAAUCCCAGUCCGCACUGGGCACUGCU AUCGAGCGUUUGUCUUCCGGUCUGCGUAUCAACAGCGCGAAA GACGAUGCGGCAGGACAGGCGAUUGCUAACCGUUUUACCGCG AACAUCAAAGGUCUGACUCAGGCUUCCCGUAACGCCUAACGAC GGUAUCUCCAUUGCGCAGACCACUGAAGGCGCGCUGAACGAA AUCAACAACAACCUGCAGCGUGUGCGUGAACUGGCGGUUCAG UCUGCGAAUGGUACUAACUCCCAGUCUGACCUCGACUCCAUC CAGGCUGAAAUCACCCAGCGCCUGAACGAAAUCGACCGUGUA UCCGGCCAGACUCAGUUCAACGGCGUGAAAGUCCUGGCGCAG GACAACACCCUGACCAUCCAGGUUGGUGCCAACGACGGUGAA ACUAUCGAUAUUGAUUUAAAAGAAAUCAGCUCUAAAACACU GGGACUUGAUAAGCUUAAUGUCCAAGAUGCCUACACCCCGAA AGAAACUGCUGUAACCGUUGAUAAAACUACCUAUAAAAAUG GUACAGAUCCUAUUACAGCCCAGAGCAAUACUGAUAUCCAAA CUGCAAUUGGCGGUGGUGCAACGGGGGUUACUGGGGCUGAU AUCAAAUUUAAAGAUGGUCAAUACUAUUUAGAUGUUAAAGG CGGUGCUUCUGCUGGUGUUUAUAAAGCCACUUAUGAUGAAA CUACAAAGAAAGUUAAUAUUGAUACGACUGAUAAAACUCCG UUGGCAACUGCGGAAGCUACAGCUAUUCGGGGAACGGCCACU AUAACCCACAACCAAAUUGCUGAAGUAACAAAAGAGGGUGU UGAUACGACCACAGUUGCGGCUCAACUUGCUGCAGCAGGGGU UACUGGCGCCGAUAAGGACAAUACUAGCCUUGUAAAACUAUC GUUUGAGGAUAAAAACGGUAAGGUUAUUGAUGGUGGCUAUG CAGUGAAAAUGGGCGACGAUUUCUAUGCCGCUACAUAUGAU GAGAAAACAGGUGCAAUUACUGCUAAAACCACUACUUAUACA GAUGGUACUGGCGUUGCUCAAACUGGAGCUGUGAAAUUUGG UGGCGCAAAUGGUAAAUCUGAAGUUGUUACUGCUACCGAUG GUAAGACUUACUUAGCAAGCGACCUUGACAAACAUAACUUCA GAACAGGCGGUGAGCUUAAAGAGGUUAAUACAGAUAAGACU GAAAACCCACUGCAGAAAAUUGAUGCUGCCUUGGCACAGGUU GAUACACUUCGUUCUGACCUGGGUGCGGUUCAGAACCGUUUC AACUCCGCUAUCACCAACCUGGGCAAUACCGUAAAUAACCUG UCUUCUGCCCGUAGCCGUAUCGAAGAUUCCGACUACGCAACC GAAGUCUCCAACAUGUCUCGCGCGCAGAUUCUGCAGCAGGCC GGUACCUCCGUUCUGGCGCAGGCGAACCAGGUUCCGCAAAAC GUCCUCUCUUUACUGCGU

mRNA Sequence (assumes T100 tail) 82

Name

TABLE 16-continued

!	Sequence	SEQ ID NO:
	ACCGUGUAUCCGGCCAGACUCAGUUCAACGGCGUGAAAGUCC	
	UGGCGCAGGACAACACCCUGACCAUCCAGGUUGGUGCCAACG	
	ACGGUGAAACUAUCGAUAUUGAUUUAAAAGAAAUCAGCUCU	
	AAAACACUGGGACUUGAUAAGCUUAAUGUCCAAGAUGCCUAC	
	ACCCCGAAAGAAACUGCUGUAACCGUUGAUAAAACUACCUAU	
	AAAAAUGGUACAGAUCCUAUUACAGCCCAGAGCAAUACUGAU	
	AUCCAAACUGCAAUUGGCGGUGGUGCAACGGGGGUUACUGG	
	GGCUGAUAUCAAAUUUAAAGAUGGUCAAUACUAUUUAGAUG	
	UUAAAGGCGGUGCUUCUGCUGGUGUUUAUAAAGCCACUUAU	
	GAUGAAACUACAAAGAAAGUUAAUAUUGAUACGACUGAUAA	
	AACUCCGUUGGCAACUGCGGAAGCUACAGCUAUUCGGGGAAC	
	GGCCACUAUAACCCACAACCAAAUUGCUGAAGUAACAAAAGA	
	GGGUGUUGAUACGACCACAGUUGCGGCUCAACUUGCUGCAGC	
	AGGGGUUACUGGCGCCGAUAAGGACAAUACUAGCCUUGUAA	
	AACUAUCGUUUGAGGAUAAAAACGGUAAGGUUAUUGAUGGU	
	GGCUAUGCAGUGAAAAUGGGCGACGAUUUCUAUGCCGCUACA	
	UAUGAUGAGAAAACAGGUGCAAUUACUGCUAAAACCACUAC	
	UUAUACAGAUGGUACUGGCGUUGCUCAAACUGGAGCUGUGA	
	AAUUUGGUGGCGCAAAUGGUAAAUCUGAAGUUGUUACUGCU	
	ACCGAUGGUAAGACUUACUUAGCAAGCGACCUUGACAAACAU	
	AACUUCAGAACAGGCGGUGAGCUUAAAGAGGUUAAUACAGA	
	UAAGACUGAAAACCCACUGCAGAAAAUUGAUGCUGCCUUGGC	
	ACAGGUUGAUACACUUCGUUCUGACCUGGGUGCGGUUCAGAA	
	CCGUUUCAACUCCGCUAUCACCAACCUGGGCAAUACCGUAAA	
	UAACCUGUCUUCUGCCCGUAGCCGUAUCGAAGAUUCCGACUA	
	CGCAACCGAAGUCUCCAACAUGUCUCGCGCGCAGAUUCUGCA	
	GCAGGCCGGUACCUCCGUUCUGGCGCAGGCGAACCAGGUUCC	
	GCAAAACGUCCUCUUUACUGCGUUGAUAAUAGGCUGGAGC	
	CUCGGUGGCCAUGCUUCUUGCCCCUUGGGCCUCCCCCAGCC	
	CCUCCUCCCUUCCUGCACCCGUACCCCCGUGGUCUUUGAAU	
	AAAGUCUGAGUGGGCGGCAAAAAAAAAAAAAAAAAAAAA	
	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	

TABLE 17

	Flagellin Amino Acid Sequences	
Name	Sequence	SEQ ID NO:
ORF Sequence, AA	MAQVINTNSLSLLTQNNLNKSQSALGTAIERLSSGLRINSAKDDAA GQAIANRFTANIKGLTQASRNANDGISIAQTTEGALNEINNNLQRV RELAVQSANGTNSQSDLDSIQAEITQRLNEIDRVSGQTQFNGVKVL AQDNTLTIQVGANDGETIDIDLKEISSKTLGLDKLNVQDAYTFKET AVTVDKTTYKNGTDPITAQSNTDIQTAIGGGATGVTGADIKFKDGQ YYLDVKGGASAGVYKATYDETTKKVNIDTTDKTPLATAEATAIRGT ATITHNQIAEVTKEGVDTTTVAQQLAAAGVTGADKDNTSLVKLSFE DKNGKVIDGGYAVKMGDDFYAATYDEKTGAITAKTTTYTDGTGVAQ TGAVKFGGANGKSEVVTATDGKTYLASDLDKHNFRTGGELKEVNTD KTENPLQKIDAALAQVDTLRSDLGAVQNRFNSAITNLGNTVNNLSS ARSRIEDSDYATEVSNMSRAQILQQAGTSVLAQANQVPQNVLSLLR	54
Flagellin- GS linker- circumspor ozoite protein (CSP)	MAQVINTNSLSLLTQNNLNKSQSALGTAIERLSSGLRINSAKDDAA GQAIANRFTANIKGLTQASRNANDGISIAQTTEGALNEINNNLQRV RELAVQSANSTNSQSDLDSIQAEITQRLNEIDRVSGQTQFNGVKVL AQDNTLTIQVGANDGETIDIDLKQINSQTLGLDTLNVQQKYKVSDT AATVTGYADTTIALDNSTFKASATGLGGTDQKIDGDLKFDDTTGKY YAKVTVTGGTGKDGYYEVSVDKTNGEVTLAGGATSPLTGGLPATAT EDVKNVQVANADLTEAKAALTAAGVTGTASVVKMSYTDNNGKTIDG GLAVKVGDDYYSATQNKDGSISINTTKYTADDGTSKTALNKLGGAD GKTEVVSIGGKTYAASKAEGHNFKAQPDLAEAAATTTENPLQKIDA ALAQVDTLRSDLGAVQNRFNSAITNLGNTVNNLTSARSRIEDSDYA TEVSNMSRAQILQQAGTSVLAQANQVPQNVLSLLRGGGGSGGGSM MAPDPNANPNANPNANPNANPNANPNANPNANPNANPNANP	55
Flagellin- <u>RPVT</u> <u>linker</u> -	mmapdpnanpnanpnanpnanpnanpnanpnanpnanpnanp	56

TABLE 17-continued

Name	Sequence	SEQ ID NO:
circumspor ozoite protein (CSP)	TEWSPCSVTCGNGIQVRIKPGSANKPKDELDYENDIEKKICKMEKC SSVFNVVNSRPVTMAQVINTNSLSLLTQNNLNKSQSALGTAIERLS SGLRINSAKDDAAGQAIANRFTANIKGLTQASRNANDGISIAQTTE GALNEINNNLQRVRELAVQSANSTNSQSDLDSIQAEITQRLNEIDR VSGQTQFNGVKVLAQDNTLTIQVGANDGETIDIDLKQINSQTLGLD TLNVQQKYKVSDTAATVTGYADTTIALDNSTPKASATGLGGTDQKI DGDLKFDDTTGKYYAKVTVTGGTGKDGYYEVSVDKTNGEVTLAGGA TSPLTGGLPATATEDVKNVQVANADLTEAKAALTAAGVTGTASVVK MSYTDNNGKTIDGGLAVKVGDDYYSATQNKDGSISINTTKYTADDG	
	TSKTALNKLGGADGKTEVVSIGGKTYAASKAEGHNFKAQPDLAEAA ATTTENPLQKIDAALAQVDTLRSDLGAVQNRPNSAITNLGNTVNNL TSARSRIEDSDYATEVSNMSRAQILQQAGTSVLAQANQVPQNVLSL LR	

TABLE 18

Human Metapneumovirus Mutant Amino Acid Sequences			
Strain	Sequence	SEQ ID NO:	
HMPV_SC_DSCAV1_4MMV	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLE VGDVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGS FVLGAIALGVAAAAAVTAGVAICKTIRLESEVTAINNALKKTNEAVSTLGN GVRVLAFAVRELKDFVSKNLTRALNKNKCDIDDLKMAVSFSQFNRRFLNVV RQPSDNAGITPAISLDLMTDAELLARAVPNMPTSAGQIKLMLENRAMVRRKG FGILCGVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLRED QGWYCQNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTT NYPCKVSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCS YITNQDADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFNVA LDQVFENIENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSI FIIIKKTKKPTGAPPELSGVTNNGFIPHN	: : : :	
HMPV_SC_DSTRIC_4MMV	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLE VGDVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGS FVLGAIALGVAAAAAVTAGVAICKTIRLESEVTAINNALKKTNEAVSTLGN GVRVLATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVV RQFSDNAGITPAISLDLMTDAELARAVPMMPTSAGQIKLMLENRAMVRRGG FGILCGVYGSSVYYMVQLPIFGVIDTPCWUVKAAPSCSEKKGNYACLLRED QGWYCQNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTT NYPCKVSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCS YITNQDADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEHQMHVA LDQVFENIENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSI FIIIKKTKKPTGAPPELSGVTNNGFIPHN		
HMPV_SC_DM_Krarup_T74LD185P	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLE VGDVENLTCSDGPSLIKTELDLLKSALRELKTVSADQLAREEQIENPGSGS FVLGAIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGN GVRVLATAVRELKDFVSKNLTRAINKNKCDIPDLKMAVSFSQFNRRFLNVV RQFSDNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKG FGILIGVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLRED QGWYCQNAGSTVYYPPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTT NYPCKVSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCS YITNQDADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDDPGVA LDQVFENIENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSI FIIIKKTKKPTGAPPELSGVTNNGFIPHN	; ; ;	
HMPV_SC_TM_Krarup_T74LD185PD454N	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLE VGDVENLTCSDGPSLIKTELDLLKSALRELKTVSADQLAREEQIENPGSGS FVLGAIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGN GVRVLATAVRELKDFVSKNLTRAINKNKCDIPDLKMAVSFSQFNRRFLNVV RQFSDNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKG FGILIGVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLRED QGWYCQNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTT NYPCKVSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCS YITNQDADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPENQFQVA LDQVFENIENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSI FIIIKKTKKPTGAPPELSGVTNNGFIPHN	; ; ;	
HMPV_SC_4M_Krarup_T74LS170LD185P	mswkvviifsllitpqhglkesyleescstitegylsvlrtgwytnvftle vgbvenltcsdgpslikteldl <u>l</u> ksalrelktvsadqlareeqienp <u>gss</u> fvlgaialgvaaaaavtagvaiaktirlesevtainnalkktneavstign	<u>!</u>	

TABLE 18-continued

		SEQ II
Strain	Sequence	NO:
	GVRVLATAVRELKDFVLKNLTRAINKNKCDIPDLKMAVSFSQFNRRFLNVV RQFSDNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKG FGILIGVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLRED QGWYCQNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTT NYPCKVSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCS YITNQDADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVA LDQVFENIENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSI FIIIKKTKKPTGAPPELSGVTNNGFIPHN	
HMPV_SC_5M_Krarup_T74LS170LD185PD454N	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLE VGDVENLTCSDGPSLIKTELDLLKSALRELKTVSADQLAREEGIENPGSGS FVLGAIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGN GVRVLATAVRELKDFVLKNLTRAINKNKCDIPDLKMAVSFSQFNRRFLNVV ROFSDNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRKG FGILIGVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLRED QGWYCQNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTT NYPCKVSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCS YITNQDADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPENQPQVA LDQVFENIENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSI FIIIKKTKKPTGAPPELSGVTNNGFIPHN	90
HMPV_SC_DM_Krarup_E51PT74L	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLP VGDVENLTCSDGPSLIKTELDLLKSALRELKTVSADQLAREEGIENPGSGS FVLGAIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGN GVRVLATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVV RQFSDNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRKG FGILIGVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLRED QGWYCQNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTT NYPCKVSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCS YITNQDADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVA LDQVFENIENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSI FIIIKKTKKPTGAPPELSGVTNNGFIPHN	91
HMPV_SC_TM_Krarup_E51PT74LD454N	$\label{eq:mswkvviifsllitpqhglkesyleescstitegylsvlrtgwytnvftlevgdvenltcsdgpslikteldl\underline{L}$ ksalrelktvsadqlareeqienpgsgs fylgaialgvaaaavtagvaiaktirlesevtainnalkktneavstlgn gvrvlatavrelkdfysknltrainknkcdiddlkmavsfsgpnrrflnvv rqfsdnagitpaisldlmtdaelaravpnmptsagqiklmlenramvrkg fgiligyygssviymvqlpifgvidtpcwivkaapscsekkgnyacllred qgwycqnagstvyypnekdcetrgdhyfcdtaaginvaeqskecninistt nypckvstgrhpismvalsplgalvacykgvscsigsnrvgiikqlnkgcs yitnqdadtvtidntvyqlskvegeqhvikgrpvsssfdpikfpenqpqva ldqvfeniensqalvdgsnrilssaekcntgfiiviiliavlgssmilvsi filikktkkptgappelsgvtnngfiphn	92
HMPV_SC_StabilizeAlpha_T74L	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLE VGDVENLTCSDGPSLIKTELDLLKSALRELKTVSADQLAREEQIENPGSGS FVLGAIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGN GVRVLATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVV RQFSDNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKG FGILIGVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLRED QGWYCQNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEGXECNINISTT NYPCKVSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCS YITNQDADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVA LDQVFENIENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSI FIIIKKTKKPTGAPPELSGVTNNGFIPHN	93
HMPV_SC_StabilizeAlpha_V55L	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLE VGDLENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGS FVLGAIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGN GVRVLATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVV RQFSDNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKG FGILIGVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLRED QGWYCQNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEGKECNINISTT NYPCKVSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCS YITNQDADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVA LDQVFENIENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSI FIIIKKTKKPTGAPPELSGVTNNGFIPHN	94
HMPV_SC_StabilizeAlpha_S170L	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLE VGDVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGS FVLGAIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGN GVRVLATAVRELKDFVLKNLTRAINKNKCDIDDLKMAVSFSQPNRRFLMVV RQFSDNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKG FGILIGVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLRED	95

TABLE 18-continued

Strain	Sequence	SEQ I
	QGWYCQNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTT NYPCKVSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCS YITNQDADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVA LDQVFENIENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSI FIIIKKTKKPTGAPPELSGVTNNGFIPHN	
HMPV_SC_StabilizeAlpha_T174W	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLE VGDVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGS FVLGAIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGN GVRVLATAVRELKDFVSKNLWRAINKNKCDIDDLKMAVSFSQFNRRFLMVV RQFSDNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKG FGILIGVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLRED QGWYCQNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTT NYPCKVSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCS YITNQDADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVA LDQVFENIENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSI FIIIKKTKKRPTGAPPELSGVTNNGFIPHN	
HMPV_SC_4M_Stabilize- Alpha_V55LT74LS170LT174W	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLE VGDLENLTCSDGPSLIKTELDLLKSALRELKTVSADQLAREEQIENPGSGS FVLGAIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGN GVRVLATAVRELKDFVLKNLWRAINKNKCDIDDLKMAVSFSQFNRRFLNVV RQFSDNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRKG FGILIGVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLRED QGWYCQNAGSTVYYPMEKDCETRGDHVFCDTAAGINVAEQSKECNINISTT NYPCKVSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCS YITNQDADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVA LDQVFENIENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSI FIIIKKTKKPTGAPPELSGVTNNGFIPHN	
HMPV_ProlineStab_E51P	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLP VGDVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGS FVLGAIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGN GVRVLATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLMVV RQFSDNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKG FGILIGVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLRED QGWYCQNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTT NYPCKVSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCS YITNQDADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVA LDQVFENIENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSI FIIIKKTKKPTGAPPELSGVTNNGFIPHN	
HMPV_ProlineStab_D185P	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLE VGDVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGS FVLGATALGVAAAAAVTAGVATAKTIRLESEVTAINNALKKTNEAVSTLGN GVRVLATAVRELKDFVSKNLTRAINKNKCDIPDLKMAVSFSQFNRRFLNVV RQFSDNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKG FGILIGVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLRED QGWYCQNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTI NYPCKVSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCS YITNQDADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVA LDQVFENIENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSI FIIIKKTKKPTGAPPELSGVTNNGFIPHN	
HMPV_ProlineStab_D183P	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLE VGDVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGS PVLGAIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGN GVRVLATAVRELKDFYSKNLTRAINKNKCPIDDLKMAVSFSQFNRRFLINVV RQFSDNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKG FGILIGVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLRED QGWYCQNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTI NYPCKVSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCS YITNQDADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVA LDQVFENIENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSI FIIIKKTKKPTGAPPELSGVTNNGFIPHN	
HMPV_ProlineStab_E131P	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLE VGDVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENP <u>GSGS</u> FVLGAIALGVAAAAAVTAGVAIAKTIRL <u>P</u> SEVTAINNALKKTNEAVSTLGN GVRVLATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLINVV RQFSDNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKG FGILIGVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLRED QGWYCQNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTT NYPCKVSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCS YITNQDADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVA	

TABLE 18-continued

Strain	Sequence	SEQ II NO:
	LDQVFENIENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSI FIIIKKTKKPTGAPPELSGVTNNGFIPHN	
HMPV_ProlineStab_D447P	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLE VGDVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGS FVLGAIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGN GVRVLATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVV RQFSDNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKG FGILIGVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLEED QGWYCQNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTT NYPCKVSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCS YITNQDADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFPPIKFPEDQFQVA LDQVFENIENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSI FIIIKKTKKPTGAPPELSGVTNNGFIPHN	
HMPV_TrimerRepulsionD454N	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLE VGDVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGS FVLGAIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGN GVRVLATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLINVV RQFSDNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKG FGILIGVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGMYACLLRED QGWYCQNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTT NYPCKVSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCS YITNQDADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPENQFQVA LDQVFENIENSQALVDQSNRILSSABKGNTGFIIVIILIAVLGSSMILVSI FIIIKKTKKPTGAPPELSGVTNNGFIPHN	
HMPV_TrimerRepulsionE453N	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLE VGDVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGS FVLGAIALGVAAAAAVTAGVAIAKTTRLESEVTAINNALKKTNEAVSTLGN GVRVLATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVV RQFSDNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKG FGILIGVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLEED QGWYCQNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTT NYPCKVSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCS YITNQDADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPQDQFQVA LDQVFENIENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSI FIIIKKTKKPTGAPPELSGVTNNGFIPHN	
HMPV_StabilizeAlphaF196W	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLE VGDVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGS FVLGAIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGN GVRVLATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQWNRRFLNVV RQFSDNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKG FGILIGVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLRED QGWYCQNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTT NYPCKVSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCS YITNQDADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVA LDQVFENIENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSI FIIIKKTKKPTGAPPELSGVTNNGFIPHN	

TABLE 19

Strain	Nucleic Acid Sequence	SEQ ID NO:
Human Meta	apneumovirus Mutant Nucleic Acid Sequences	
HMPV_SC_DSCAV1_4MMV	ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA CACCTCAGCACGGCCTGAAAGAAGAGTTACCTGGAAGAAGT CCTGCAGCACCACCACCAGAGGGCTACCTGTCTGTGTGAG AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGC GACGTCGAGAATCTGACCAAGAGGCGCCCTGAGCCTGA TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGA ACTCAAGACCTGACTGCCGATCAGCTGGCCAGAGAGG CCATTGCTCTTGGAGTGGCTGCTGAGCTGTTACAG CAGGCGTGGCCATCTGCAGACCTGTACAG AAGTCACGCATCACACACCCCTGAAGAAGACAAACG AGGCGTCAGCACTCGCAACTAGACTTAGACTGGC CTTTGCCGTCGCGACTGAAGACACTCGGTTACAGACC	106

TABLE 19-continued

SEQ ID Strain Nucleic Acid Sequence NO:

GACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGC GGTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGG AATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCT GAGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCG GCCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCG ACGGAAAGGCTTCGGCATTCTGTGTGGCGTGTACGGCAGC AGCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGA TCGACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTG TAGCGAGAAGAAGGGCAATTACGCCTGCCTGAGAGA GGACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTG TACTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGAC CACGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCG AGCAGAGCAAAGAGTGCAACATCAACATCAGCACCACCA ACTATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTC TATGGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTT ATAAGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGG GCATCATCAAGCAGCTGAACAAGGGCTGCAGCTACATCAC CAACCAGGACGCCGATACCGTGACCATCGACAACACCGTG TATCAGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATC AAGGGCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGT TCCCTGAGGATCAGTTCAACGTGGCCCTGGACCAGGTGTT CGAGAACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCC AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC TTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTC CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG ACCAACAATGGCTTCATCCCTCACAAC

HMPV_SC_DSTRIC_4MMV

ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT $\tt CCTGCAGCACCATCACAGAGGGGCTACCTGTCTGTGCTGAG$ AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA ${\tt TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG}$ AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG ${\tt CAGGCGTGGCCATCTGCAAGACCATCAGACTGGAAAGCG}$ AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGC CACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAAC $\tt CTGACACGGGCCATTAACAAGAACAAGTGCGACATCGAC$ GACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGC GGTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGG AATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCT GAGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCG GCCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCG ACGGAAAGGCTTCGGCATTCTGTGTGGCGTGTACGGCAGC AGCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGA TCGACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTG TAGCGAGAAGAAGGGCAATTACGCCTGCCTGAGAGA GGACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTG TACTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGAC CACGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCG AGCAGAGCAAAGAGTGCAACATCAACATCAGCACCACCA ACTATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTC TATGGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTT ATAAGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGG GCATCATCAAGCAGCTGAACAAGGGCTGCAGCTACATCAC CAACCAGGACGCCGATACCGTGACCATCGACAACACCGTG TATCAGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATC AAGGGCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGT TCCCTGAGCACCAGTGGCATGTGGCCCTGGACCAGGTGTT CGAGAACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCC AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC TTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTC CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG ACCAACAATGGCTTCATCCCTCACAAC

HMPV_SC_DM_Krarup_T74LD185P

ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA
CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT
CCTGCAGCACCATCACAGAGGGCTACCTGTGTGTGAG
AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC
GACGTCGAGAATCTGACATGCTCTGATGGCCCTGA
TCAAGACCGAGCTGGATCTCCTCAAGAGCGCCCTGAGAGA
ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGAA

107

TABLE 19-continued

Strain Nucleic Acid Sequence NO:

CAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGAG CCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAGC AGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCGA AGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACGA $\tt GGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGCC$ ACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAACC TGACACGGGCCATTAACAAGAACAAGTGCGACATCCCTGA CCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCGG TTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGAA TCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTGA GCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGGC CAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGAC GGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCAG CGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATCG ACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTAG CGAGAAGAAGGCCAATTACGCCTGCCTGAGAGAGAGA CCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTAC TACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCAC GTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAGC AGAGCAAAGAGTGCAACATCAACATCAGCACCACCAACT ATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC TGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA CAATGGCTTCATCCCTCACAAC

109

HMPV_SC_TM_Krarup_T74LD185PD454N

ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT $\tt CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG$ AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGAA CAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGAG $\tt CCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAGC$ AGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCGA AGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACGA $\tt GGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGCC$ ACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAACC TGACACGGGCCATTAACAAGAACAAGTGCGACATCCCTGA CCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCGG TTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGAA TCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTGA GCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGGC CAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGAC GGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCAG CGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATCG ACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTAG CGAGAAGAAGGCCAATTACGCCTGCCTGCTGAGAGAGAA CCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTAC TACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCAC GTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAGC AGAGCAAAGAGTGCAACATCAACATCAGCACCACCAACT ATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC TGAGAACCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA CAATGGCTTCATCCCTCACAAC

TABLE 19-continued

SEO ID Strain Nucleic Acid Sequence NO: HMPV SC 4M Krarup T74LS170LD185P ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGAAA CAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGAG $\tt CCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAGC$ AGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCGA AGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACGA GGCCGTCAGCACTCGGCAATGGCGTTAGAGTGCTGGCC ACAGCCGTGCGCGAGCTGAAGGACTTCGTGCTTAAGAACC TGACACGGGCCATTAACAAGAACAAGTGCGACATCCCTGA CCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCGG TTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGAA TCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTGA GCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGGC CAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGAC GGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCAG CGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATCG ACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTAG CCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTAC TACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCAC GTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAGC AGAGCAAAGAGTGCAACATCAACATCAGCACCACCAACT ATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT ${\tt CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC}$ CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC ${\tt AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG}$ GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC ${\tt TGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG}$ AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA CAATGGCTTCATCCCTCACAAC HMPV SC 5M Krarup T74LS170LD185PD454N ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGAA CAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGAG CCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAGC AGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCGA AGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACGA GGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGCC ACAGCCGTGCGCGAGCTGAAGGACTTCGTGCTTAAGAACC TGACACGGGCCATTAACAAGAACAAGTGCGACATCCCTGA CCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCGG TTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGAA TCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTGA GCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGGC CAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGAC GGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCAG CGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATCG ACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTAG CCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTAC TACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCAC GTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAGC AGAGCAAAGAGTGCAACATCAACATCAGCACCACCAACT ATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA

AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT
CATCAACCAGCTGAACAAGGGCTGCAGCTACCATCACCAAC
CAGGACGCCGATACCGTGATCACCATCGACAACAACAACAGGTGATCAAG
GCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG
GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC
TGAGAACCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG

TABLE 19-continued

SEO ID Nucleic Acid Sequence Strain NO: AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA CAATGGCTTCATCCCTCACAAC ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA HMPV SC DM Krarup E51PT74L CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG AACCGGCTGGTACACCAACGTGTTCACACTGCCTGTGGGC GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGAA CAGATCGAGAATCCTGGCAGCGCAGCTTTGTGCTGGGAG CCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAGC AGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCGA AGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACGA GGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGCC ACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAACC TGACACGGGCCATTAACAAGAACAAGTGCGACATCGACG ACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCG GTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGA ATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTG AGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGG CCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGA CGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCA GCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATC GACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTA GCGAGAAGAGGGCAATTACGCCTGCCTGAGAGAGAGG ACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTA CTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCA $\tt CGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAG$ CAGAGCAAAGAGTGCAACATCAACATCAGCACCACCAAC TATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC ${\tt TGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG}$ AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA CAATGGCTTCATCCCTCACAAC HMPV SC TM Krarup E51PT74LD454N ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG AACCGGCTGGTACACCAACGTGTTCACACTGCCTGTGGGC GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGAA CAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGAG CCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAGC AGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCGA AGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACGA GGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGCC ACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAACC TGACACGGGCCATTAACAAGAACAAGTGCGACATCGACG ACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCG GTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGA ATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTG AGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGG CCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGA CGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCA GCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATC GACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTA GCGAGAAGAGGGCAATTACGCCTGCCTGAGAGAGG ACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTA $\tt CTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCA$ $\tt CGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAG$ CAGAGCAAAGAGTGCAACATCAACATCAGCACCACCAAC

TATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT

TABLE 19-continued

SEQ ID Strain Nucleic Acid Sequence NO:

GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA
AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGCAT
CATCAAGCAGCTGAACAAGAGGCTTGCACTAC
CAGGACGCCGATACCAGAC
AGCTGAGCAAGGCTGACCAACACCGTGATCA
AGCTGAGCAAGGTGGAAGGCGAACACCGTGATCAAGG
GCAGACCTGTGTCCAGCAGCTTCGACCAGGTGTTCCAG
AACATCGAGAATTCCCAGGCTCTGGTGGACCAGGTGTCCAACA
GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT
CATCGTGATCATCTGATCGCCTGGCAGCAGCTCCATG
ATCCTGGTCCATCTCTCATCATTATCAAGAAGACCAAGA
AGCCCACCGGCGTCCTCCAGAACTGAGCGAGTGACCAA
CAATGGCTTCATCCTCACAAC

HMPV_SC_StabilizeAlpha_T74L

ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA CACCTCAGCACGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGAA CAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGAG CCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAGC AGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCGA AGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACGA GGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGCC ACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAACC TGACACGGGCCATTAACAAGAACAAGTGCGACATCGACG ACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCG GTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGA ATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTG AGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGG CCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGA CGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCA GCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATC GACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTA GCGAGAAGAAGGCCAATTACGCCTGCCTGAGAGAGG ACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTA CTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCA CGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAG CAGAGCAAAGAGTGCAACATCAACATCAGCACCACCAAC TATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC ${\tt AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG}$ GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC TGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA CAATGGCTTCATCCCTCACAAC

HMPV SC StabilizeAlpha V55L

ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC GACCTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG CAGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCG AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGC CACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAAC CTGACACGGCCATTAACAAGAACAAGTGCGACATCGAC GACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGC GGTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGG AATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCT GAGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCG ${\tt GCCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCG}$ ACGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGC AGCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGA

114

TABLE 19-continued

SEQ ID Strain Nucleic Acid Sequence NO:

TCGACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTG TAGCGAGAAGAAGGGCAATTACGCCTGCCTGAGAGA GGACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTG TACTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGAC ${\tt CACGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCG}$ AGCAGAGCAAAGAGTGCAACATCAACATCAGCACCACCA ACTATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTC TATGGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTT ATAAGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGG GCATCATCAAGCAGCTGAACAAGGGCTGCAGCTACATCAC CAACCAGGACGCCGATACCGTGACCATCGACAACACCGTG TATCAGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATC AAGGGCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGT TCCCTGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTT CGAGAACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCC AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC TTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTC CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG ACCAACAATGGCTTCATCCCTCACAAC

ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA

HMPV_SC_StabilizeAlpha_S170L

CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG ${\tt CAGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCG}$ AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGC CACAGCCGTGCGCGAGCTGAAGGACTTCGTGCTTAAGAAC $\tt CTGACACGGGCCATTAACAAGAACAAGTGCGACATCGAC$ GACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGC GGTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGG AATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCT GAGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCG GCCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCG ACGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGC AGCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGA TCGACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTG ${\tt TAGCGAGAAGAAGGGCAATTACGCCTGCTGAGAGA}$ GGACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTG TACTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGAC ${\tt CACGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCG}$ AGCAGAGCAAAGAGTGCAACATCAACATCAGCACCACCA ACTATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTC TATGGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTT ATAAGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGG GCATCATCAAGCAGCTGAACAAGGGCTGCAGCTACATCAC CAACCAGGACGCCGATACCGTGACCATCGACAACACCGTG TATCAGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATC AAGGGCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGT TCCCTGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTT CGAGAACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCC AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC TTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTC CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG ACCAACAATGGCTTCATCCCTCACAAC

HMPV_SC_StabilizeAlpha_T174W

116

TABLE 19-continued

SEQ ID Strain Nucleic Acid Sequence NO:

GACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGC GGTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGG AATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCT GAGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCG GCCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCG ACGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGC AGCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGA TCGACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTG TAGCGAGAAGAAGGGCAATTACGCCTGCCTGAGAGA GGACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTG TACTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGAC CACGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCG AGCAGAGCAAAGAGTGCAACATCAACATCAGCACCACCA ACTATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTC TATGGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTT ATAAGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGG GCATCATCAAGCAGCTGAACAAGGGCTGCAGCTACATCAC CAACCAGGACGCCGATACCGTGACCATCGACAACACCGTG TATCAGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATC AAGGGCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGT TCCCTGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTT CGAGAACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCC AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC TTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTC CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG ACCAACAATGGCTTCATCCCTCACAAC

ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA

HMPV_SC_4M_Stabilize-Alpha_V55LT74LS170LT174W

CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT $\tt CCTGCAGCACCATCACAGAGGGGCTACCTGTCTGTGCTGAG$ AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC GACCTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGAA CAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGAG CCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAGC AGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCGA AGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACGA GGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGCC ACAGCCGTGCGCGAGCTGAAGGACTTCGTGCTTAAGAACC ${\tt TGTGGCGGGCCATTAACAAGAACAAGTGCGACATCGACG}$ ACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCG GTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGA ATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTG AGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGG ${\tt CCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGA}$ CGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCA GCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATC GACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTA GCGAGAAGAAGGCCAATTACGCCTGCCTGAGAGAGG ACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTA CTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCA CGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAG CAGAGCAAAGAGTGCAACATCAACATCAGCACCACCAAC TATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC TGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA CAATGGCTTCATCCCTCACAAC

HMPV_ProlineStab_E51P

 118

TABLE 19-continued

Strain Nucleic Acid Sequence NO:

ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG CAGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCG AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG ${\tt AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGC}$ CACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAAC CTGACACGGGCCATTAACAAGAACAAGTGCGACATCGAC GACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGC GGTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGG AATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCT GAGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCG GCCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCG ACGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGC AGCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGA TCGACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTG TAGCGAGAAGAAGGGCAATTACGCCTGCCTGAGAGA GGACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTG TACTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGAC CACGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCG AGCAGAGCAAAGAGTGCAACATCAACATCAGCACCACCA ACTATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTC TATGGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTT ATAAGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGG GCATCATCAAGCAGCTGAACAAGGGCTGCAGCTACATCAC CAACCAGGACGCCGATACCGTGACCATCGACAACACCGTG TATCAGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATC AAGGGCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGT TCCCTGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTT $\tt CGAGAACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCC$ AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG ACCAACAATGGCTTCATCCCTCACAAC

HMPV_ProlineStab_D185P

ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT $\tt CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG$ AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG CAGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCG AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG ${\tt AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGC}$ CACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAAC CTGACACGGGCCATTAACAAGAACAAGTGCGACATCCCTG ACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCG GTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGA ATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTG AGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGG CCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGA CGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCA GCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATC GACACCCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTA GCGAGAAGAGGGCAATTACGCCTGCCTGCTGAGAGAGG ACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTA CTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCA CGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAG CAGAGCAAAGAGTGCAACATCAACATCAGCACCACCAAC TATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC TGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA CAATGGCTTCATCCCTCACAAC

120

375

TABLE 19-continued

SEO ID Nucleic Acid Sequence Strain NO: HMPV ProlineStab D183P ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA ACAGATCGAGAATCCTGGCAGCGCAGCTTTGTGCTGGGA GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG CAGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCG AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGC CACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAAC CTGACACGGGCCATTAACAAGAACAAGTGCCCTATCGACG ACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCG GTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGA ATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTG AGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGG CCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGA CGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCA GCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATC GACACCCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTA GCGAGAAGAGGGCAATTACGCCTGCCTGCTGAGAGAGG ACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTA CTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCA CGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAG CAGAGCAAAGAGTGCAACATCAACATCAGCACCACCAAC TATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT ${\tt CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC}$ CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC ${\tt AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG}$ GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC ${\tt TGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG}$ AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA CAATGGCTTCATCCCTCACAAC HMPV ProlineStab E131P ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA ${\tt CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT}$ CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA ${\tt TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG}$ AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA ACAGATCGAGAATCCTGGCAGCGCAGCTTTGTGCTGGGA GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG CAGGCGTGGCCATCGCTAAGACCATCAGACTGCCTAGCGA AGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACGA GGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGCC ACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAACC TGACACGGGCCATTAACAAGAACAAGTGCGACATCGACG ACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCG GTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGA ATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTG AGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGG CCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGA CGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCA GCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATC GACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTA GCGAGAAGAGGGCAATTACGCCTGCCTGAGAGAGAG ACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTA CTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCA CGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAG CAGAGCAAAGAGTGCAACATCAACATCAGCACCACCAAC TATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA ${\tt AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT}$ CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC

CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC ${\tt AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG}$ GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC TGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG

TABLE 19-continued

SEO ID Nucleic Acid Sequence Strain NO: AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA CAATGGCTTCATCCCTCACAAC HMPV ProlineStab D447P ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA 123 CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG CAGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCG AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGC CACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAAC CTGACACGGGCCATTAACAAGAACAAGTGCGACATCGAC GACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGC GGTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGG AATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCT GAGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCG GCCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCG ACGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGC AGCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGA ${\tt TCGACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTG}$ TAGCGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGA GGACCAAGGCTGTATTGTCAGAACGCCGGCAGCACCGTG TACTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGAC ${\tt CACGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCG}$ AGCAGAGCAAAGAGTGCAACATCAACATCAGCACCACCA ACTATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTC ${\tt TATGGTGGCTCTGTCTCTCTGGGAGCCCTGGTGGCTTGTT}$ ATAAGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGG GCATCATCAAGCAGCTGAACAAGGGCTGCAGCTACATCAC CAACCAGGACGCCGATACCGTGACCATCGACAACACCGTG TATCAGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATC AAGGGCAGACCTGTGTCCAGCAGCTTCCCACCTATCAAGT ${\tt TCCCTGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTT}$ CGAGAACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCC AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC TTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTC CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG ACCAACAATGGCTTCATCCCTCACAAC HMPV TrimerRepulsionD454N ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG CAGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCG AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGC CACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAAC CTGACACGGGCCATTAACAAGAACAAGTGCGACATCGAC GACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGC GGTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGG AATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCT GAGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCG GCCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCG ACGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGC AGCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGA TCGACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTG TAGCGAGAAGAAGGGCAATTACGCCTGCCTGAGAGA GGACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTG ${\tt TACTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGAC}$ ${\tt CACGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCG}$ AGCAGAGCAAAGAGTGCAACATCAACATCAGCACCACCA

ACTATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTC

TABLE 19-continued

SEQ ID Strain Nucleic Acid Sequence NO:

TATGGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTT
ATAAGGGCGTGTCCTTATAGCATCGGCAGCAACAGAGTGG
GCATCATCAAGCAGCTGAACAAGAGGTGC
CAACCAGGACCGCGATACCGTGACCATCACACCAC
CAACCAGGACGCCGATACCGTGACCATCGACCACACCGTGATC
AAGGGCAGACCTGTGTCCAGCAGCTTCGACCAGGTGTT
TCCCTGAGAACCAGTTCCAAGCCTTGGACCAGGTGTC
CGAGAACCATCCAAGAATTCCCAGGCTCTGGTCGACCAGGTCC
AACAGAATCCTGTCTACCGCCCAGAAGGGAAACACCGGC
TTCATCATCGTGATCATCCTGATCGCCTGGGCAGCTC
CATGATCCTGGTGTCCATCTCATCATTATCAAGAAGACC
AAGAAGCCCACCGCGCTTCCTCCAGAACTGAGCGGAGTG
ACCAACAATGGCTTCATCCTCACAC

HMPV TrimerRepulsionE453N

ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG CAGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCG AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGC CACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAAC CTGACACGGCCATTAACAAGAACAAGTGCGACATCGAC ${\tt GACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGC}$ GGTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGG AATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCT GAGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCG GCCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCG ACGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGC AGCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGA ${\tt TCGACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTG}$ TAGCGAGAAGAAGGGCAATTACGCCTGCCTGAGAGA GGACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTG TACTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGAC CACGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCG AGCAGAGCAAAGAGTGCAACATCAACATCAGCACCACCA ACTATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTC TATGGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTT ATAAGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGG GCATCATCAAGCAGCTGAACAAGGGCTGCAGCTACATCAC CAACCAGGACGCCGATACCGTGACCATCGACAACACCGTG ${\tt TATCAGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATC}$ AAGGGCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGT ${\tt TCCCTCAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTT}$ CGAGAACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCC AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC TTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTC CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG ACCAACAATGGCTTCATCCCTCACAAC

HMPV StabilizeAlphaF196W

ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG CAGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCG AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGC CACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAAC CTGACACGGCCATTAACAAGAACAAGTGCGACATCGAC GACCTGAAGATGGCCGTGTCCTTTAGCCAGTGGAACCGGC GGTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGG AATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCT GAGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCG GCCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCG ACGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGC AGCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGA 125

TABLE 19-continued

SEQ ID Strain Nucleic Acid Sequence NO:

TCGACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTG TAGCGAGAAGAAGGGCAATTACGCCTGCCTGAGAGA GGACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTG TACTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGAC ${\tt CACGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCG}$ AGCAGAGCAAAGAGTGCAACATCAACATCAGCACCACCA ACTATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTC TATGGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTT ATAAGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGG GCATCATCAAGCAGCTGAACAAGGGCTGCAGCTACATCAC CAACCAGGACGCCGATACCGTGACCATCGACAACACCGTG TATCAGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATC AAGGGCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGT TCCCTGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTT CGAGAACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCC AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC TTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTC CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG ACCAACAATGGCTTCATCCCTCACAAC

Human Metapneumovirus mRNA Sequences

HMPV_SC_DSCAV1_4MMV

AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCUGCAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACUCGGCAAUGGCGUU AGAGUGCUGGCCUUUGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCCUGAACAAGAACAAG UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGUUUCUGAACGUCGUGCGGCAGUUU AGCGACAACGCCGGAAUCACCAGCCAUCAGCCUGGAC CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU GUGUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC AGCUGCCUAUCUUCGGCGUGAUCGACACCCCUGCUGGA UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC AAUUACGCCUGCCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGGAUCAGUUCAACGUGGCCCUGGACCAGGUGUUCG AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU UCAUCAUCGUGAUCCUGAUCGCCGUGCUGGGCAGCU CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG UGACCAACAAUGGCUUCAUCCCUCACAAC

HMPV_SC_DSURIC_4MMV

AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU
CACACCUCAGCACGGCCUGAAAGAAGACCUACCUGGAAGA
GUCCUGCAGCACAUCACAGAGGGCUACCUGUCUGUGCU
GAGAACCGGCUGGUACACACGUGUUCACACUGGAAGA
GGCGACGUCGAGAAUCUGACAUGCUCUGAUGGACCUAG
CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU
GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCGCAGCUGUG
UGCUGGGAGCAUUGGCUUUGGAGCGCAGCUGUG
GCUGGUACAGACGCUUUGGAGUGCUGCAGCGCACGCGCACUUUG
GCUGGUACAGACCGUUGCCAGAGACCGCAUCAGA
CCUGUACAGACGCGUGGCCAUCACAAGACCCAUCAGA
CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG

127

TABLE 19-continued

SEQ ID Strain Nucleic Acid Sequence NO:

AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU AGCGACAACGCCGGAAUCACCAGCCAUCAGCCUGGAC CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU GUGUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC AAUUACGCCUGCCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGCACCAGUGGCAUGUGGCCCUGGACCAGGUGUUCGA GAACATICGAGAATIITCCCAGGCTICTIGGTIGGACCAGTICCAA CAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCUU CAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCUC CAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGAC CAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAGU ${\tt GACCAACAAUGGCUUCAUCCCUCACAAC}$

HMPV_SC_DM_Krarup_U74LD185P

AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGCUCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACUCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG UGCGACAUCCCUGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU AGCGACAACGCCGGAAUCACCAGCCAUCAGCCUGGAC CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU UCAUCAUCGUGAUCCUGAUCGCCGUGCUGGGCAGCU CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG UGACCAACAAUGGCUUCAUCCCUCACAAC

TABLE 19-continued

Strain Nucleic Acid Sequence NO:

GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGCUCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG UGCGACAUCCCUGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGUUUCUGAACGUCGUGCGGCAGUUU AGCGACAACGCCGGAAUCACCAGCCAUCAGCCUGGAC CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGCC AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGAACCAGUUCCAGGUGGCCCUGGACCAGGUGUUCGA GAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCAA CAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCUU CAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCUC CAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGAC CAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAGU GACCAACAAUGGCUUCAUCCCUCACAAC

HMPV_SC_4M_Krarup_U74LS170LD185P

AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGCUCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGCUUAAGAACCUGACACGGGCCAUUAACAAGAACAA GUGCGACAUCCCUGACCUGAAGAUGGCCGUGUCCUUUAG CCAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUU UAGCGACAACGCCGGAAUCACCACCAGCCAUCAGCCUGGA CCUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAA CAUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGA GAAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUC UGAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUG CAGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGG AUUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGG CAAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG $\tt CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG$ CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG

TABLE 19-continued

SEO ID Nucleic Acid Sequence Strain NO: AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU UCAUCAUCGUGAUCCUGAUCGCCGUGCUGGGCAGCU CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG UGACCAACAAUGGCUUCAUCCCUCACAAC HMPV SC 5M Krarup U74LS170LD185PD454N AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU 132 CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGCUCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGCUUAAGAACCUGACACGGGCCAUUAACAAGAACAA GUGCGACAUCCCUGACCUGAAGAUGGCCGUGUCCUUUAG CCAGUUCAACCGGCGUUUCUGAACGUCGUGCGGCAGUU UAGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGA CCUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAA CAUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGA GAAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUC UGAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUG CAGCUGCCUAUCUUCGGCGUGAUCGACACCCCUGCUGG AUUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGG CAAUUACGCCUGCCUGAGAGAGAGCCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGAACCAGUUCCAGGUGGCCCUGGACCAGGUGUUCGA GAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCAA CAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCUU CAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCUC CAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGAC CAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAGU GACCAACAAUGGCUUCAUCCCUCACAAC HMPV SC DM Krarup E51PU74L AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGCCUGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGCUCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACCCCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU AGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGAC CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC AGCUGCCUAUCUUCGGCGUGAUCGACACCCCUGCUGGA UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGAGGGC AAUUACGCCUGCCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG

AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG

TABLE 19-continued

SEQ ID Strain Nucleic Acid Sequence NO:

AGUGCAACAUCAACAUCAGCACCAACUAUCCCUGCA
AGGUGUCCACCGGCAGGCACCUAUUUUCUAUGGUGGCUC
UGUCUCCUCUGGGAGCCCUGUUGUUAUAUGGUGCUC
UGUCUCCUCUGGAGCCCUGGUGGCUUGUUAUAAGGGC
GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC
AAGCAGCUGAACAAGGGCUGCAGCUACAACACAG
GACGCCGAUACCGUGACCAUCGACACACCGUGUAUCAG
CUGAGCAAGGUGGACGAACAGCACGUGAUCAAGGG
CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC
UGAGGAUCAGUUCCAGGUUCGACCCUAUCAAGUUCCA
ACAGAUCCAGAAUUCCCAGGCUCUGGACCAGUGUUCG
AGAACAUCGAGAAUUCCCAGGCUCUGGACCAGGUCCA
ACAGAAUCCUGUCUAGCCCGAGAAGGGAAACACCGGCU
UCAUCAUCGUGAUCCUCAUCAUAUCAAGAAGA
CCAAGAAGCCCACCGGCGCUCUCCAGAACUGAGCGGAG
UGACCAACAAUGGCUUCAUCACAAC

HMPV_SC_UM_Krarup_E51PU74LD454N

AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGCCUGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGCUCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGCCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU AGCGACAACGCCGGAAUCACCAGCCAUCAGCCUGGAC CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGAACCAGUUCCAGGUGGCCCUGGACCAGGUGUUCGA GAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCAA CAGAAUCCUGUCUAGCGCCGAGAAGGGGAAACACCGGCUU CAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCUC CAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGAC CAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAGU GACCAACAAUGGCUUCAUCCCUCACAAC

HMPV_SC_SUabilizeAlpha_U74L

AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGCUCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACCCCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU AGCGACAACGCCGGAAUCACCAGCCAUCAGCCUGGAC CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC

134

TABLE 19-continued

SEQ ID Strain Nucleic Acid Sequence NO:

AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC AGCUGCCUAUCUUCGGCGUGAUCGACACCCCUGCUGGA $\tt UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC$ AAUUACGCCUGCCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG UGACCAACAAUGGCUUCAUCCCUCACAAC

AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU

 ${\tt HMPV_SC_SUabilizeAlpha_V55L}$

CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU GGGCGACCUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA $\tt CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG$ AAGACAAACGAGGCCGUCAGCACUCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU AGCGACAACGCCGGAAUCACCAGCCAUCAGCCUGGAC CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG UGACCAACAAUGGCUUCAUCCCUCACAAC

HMPV_SC_SUabilizeAlpha_S170L

AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU
CACACCUCAGCACGGCCUGAAAGAAGACUACCUGGAAGA
GUCCUGCAGCACAUCACAGAGGGCUACCUGUCUGUGCU
GAGAACCGGCUGGUACCAACGUGUUCACACUGGCAGG
GGGCGACGUCGAGAAUCUGACCAACGUCUUGAUCAGCCCUAG
CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU
GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGCCAG
AGAGGAACAGAUCGAGAAUCCUGGCAGCAGCUUUG
UGCUGGGAGGACAUUGCCUGCCA

136

TABLE 19-continued

SEQ ID Strain Nucleic Acid Sequence NO:

GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGCUUAAGAACCUGACACGGGCCAUUAACAAGAACAA GUGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAG CCAGUUCAACCGGCGUUUCUGAACGUCGUGCGGCAGUU UAGCGACAACGCCGGAAUCACCAGCCAUCAGCCUGGA CCUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAA CAUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGA GAAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUC UGAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUG CAGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGG AUUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGG CAAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG UGACCAACAAUGGCUUCAUCCCUCACAAC

HMPV_SC_SUabilizeAlpha_U174W

AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGUGGCGGGCCAUUAACAAGAACAA GUGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAG CCAGUUCAACCGGCGUUUCUGAACGUCGUGCGGCAGUU UAGCGACAACGCCGGAAUCACCACCAGCCAUCAGCCUGGA CCUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAA CAUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGA GAAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUC UGAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUG CAGCUGCCUAUCUUCGGCGUGAUCGACACCCCUGCUGG AUUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGG CAAUUACGCCUGCCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG UGACCAACAAUGGCUUCAUCCCUCACAAC

TABLE 19-continued

SEQ ID Nucleic Acid Sequence Strain NO: HMPV SC 4M SUabilize-AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU 139 Alpha_V55LU74LS170LU174W CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU GGGCGACCUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGCUCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGCUUAAGAACCUGUGGCGGGCCAUUAACAAGAACAA GUGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAG CCAGUUCAACCGGCGUUUCUGAACGUCGUGCGGCAGUU UAGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGA CCUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAA CAUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGA GAAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUC UGAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUG CAGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGG AUUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGG CAAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG UGACCAACAAUGGCUUCAUCCCUCACAAC HMPV_ProlineSUab_E51P AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU 140 CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGCCUGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU AGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGAC CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU GAUUGGCGUGACGGCAGCAGCGUGAUCUAUAUGGUGC AGCUGCCUAUCUUCGGCGUGAUCGACACCCCUGCUGGA UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGACGC AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG

CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG

TABLE 19-continued

SEO ID Nucleic Acid Sequence Strain NO: CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU UCAUCAUCGUGAUCGUGGUGCUGGGCAGCU CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG UGACCAACAAUGGCUUCAUCCCUCACAAC HMPV ProlineSUab D185P AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU 141 CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACCCCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG UGCGACAUCCCUGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGCAGUUU AGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGAC CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC AAUUACGCCUGCCUGAGAGAGAGCCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA ACAGAAUCCUGUCUAGCGCCGAGAAGGGGAAACACCGGCU UCAUCAUCGUGAUCGUGGUGGGCAGCU CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG UGACCAACAAUGGCUUCAUCCCUCACAAC HMPV ProlineSUab D183P AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU 142 CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACCCCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG UGCCCUAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU AGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGAC CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC AGCUGCCUAUCUUCGGCGUGAUCGACACCCCUGCUGGA $\tt UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC$ AAUUACGCCUGCCUGAGAGAGAGCCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA

TABLE 19-continued

SEQ ID Strain Nucleic Acid Sequence NO:

GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU UCAUCAUCGUGAUCGUGAUCGCCGUGCUGGGCAGCU CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG UGACCAACAAUGGCUUCAUCCCUCACAAC

HMPV_ProlineSUab_E131P

AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA $\tt CUGCCUAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG$ AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGUUUCUGAACGUCGUGCGGCAGUUU AGCGACAACGCCGGAAUCACCAGCCAUCAGCCUGGAC CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC AAUUACGCCUGCCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU UCAUCAUCGUGAUCGUGAUCGCCGUGCUGGGCAGCU CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG UGACCAACAAUGGCUUCAUCCCUCACAAC

HMPV_ProlineSUab_D447P

AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACUCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGUUUCUGAACGUCGUGCGGCAGUUU

143

TABLE 19-continued

SEQ ID Strain Nucleic Acid Sequence NO:

AGCGACAACGCCGGAAUCACCAGCCAUCAGCCUGGAC CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC AGCUGCCUAUCUUCGGCGUGAUCGACACCCCUGCUGGA UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC AAUUACGCCUGCCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCCCACCUAUCAAGUUCCC UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU UCAUCAUCGUGAUCCUGAUCGCCGUGCUGGGCAGCU CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG UGACCAACAAUGGCUUCAUCCCUCACAAC

AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU

HMPV_UrimerRepulsionD454N

CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACUCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU AGCGACAACGCCGGAAUCACCAGCCAUCAGCCUGGAC CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC AAUUACGCCUGCCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGAACCAGUUCCAGGUGGCCCUGGACCAGGUGUUCGA GAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCAA CAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCUU CAUCAUCGUGAUCCUGAUCGCCGUGCUGGGCAGCUC CAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGAC CAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAGU GACCAACAAUGGCUUCAUCCCUCACAAC

HMPV_UrimerRepulsionE453N

AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU
CACACCUCAGCAGCCUGAAAGAGAGCUACCUGGAAGA
GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU
GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU
GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG
CCUGAUCAAGACCGAGCUGGAUCUGACAGAGGGCCCU
GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG

145

TABLE 19-continued

Strain Nucleic Acid Sequence NO:

AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACUCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGUUUCUGAACGUCGUGCGGCAGUUU AGCGACAACGCCGGAAUCACCAGCCAUCAGCCUGGAC CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UCAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCGA GAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCAA CAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCUU CAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCUC CAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGAC CAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAGU GACCAACAAUGGCUUCAUCCCUCACAAC

HMPV SUabilizeAlphaF196W

AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACCCCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUGGAACCGGCGGUUUCUGAACGUCGUGCGGCAGUU UAGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGA CCUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAA CAUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGA GAAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUC UGAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUG CAGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGG AUUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGG CAAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG $\tt CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG$ CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU UCAUCAUCGUGAUCGUGAUCGCCGUGCUGGGCAGCU

10

TABLE 19-continued

Strain	Nucleic Acid Sequence	SEQ ID NO:
	CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA CCAAGAAGCCCACCGGCGCUCCUCAGAACUGAGCGGAG UGACCAACAAUGGCUUCAUCCCUCACAAC	

EQUIVALENTS

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the disclosure described herein. Such equivalents are intended to be 15 encompassed by the following claims.

All references, including patent documents, disclosed herein are incorporated by reference in their entirety.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 147 <210> SEO ID NO 1 <211> LENGTH: 1620 <212> TYPE: DNA <213 > ORGANISM: Unknown <220> FEATURE: <223> OTHER INFORMATION: Human metapneumovirus <400> SEQUENCE: 1 atgagctgga aggtggtgat tatcttcagc ctgctgatta cacctcaaca cggcctgaag 60 gagagetace tggaagagag etgeteeace ateacegagg getacetgag egtgetgegg 120 accggctggt acaccaacgt gttcaccctg gaggtgggcg acgtggagaa cctgacctgc 180 agegaeggee ctageetgat caagaeegag etggaeetga eeaagagege tetgagagag 240 ctgaagaccg tgtccgccga ccagctggcc agagaggaac agatcgagaa ccctcggcag 300 agcagattcg tgctgggcgc catcgctctg ggagtcgccg ctgccgctgc agtgacagct 360 ggagtggcca ttgctaagac catcagactg gaaagcgagg tgacagccat caacaatgcc 420 ctgaagaaga ccaacgaggc cgtgagcacc ctgggcaatg gagtgagagt gctggccaca gccgtgcggg agctgaagga cttcgtgagc aagaacctga ccagagccat caacaagaac aagtgcgaca tcgatgacct gaagatggcc gtgagcttct cccagttcaa cagacggttc ctgaacgtgg tgagacagtt ctccgacaac gctggaatca cacctgccat tagcctggac 660 ctgatgaccg acgccgagct ggctagagcc gtgcccaaca tgcccaccag cgctggccag 720 atcaagctga tgctggagaa cagagccatg gtgcggagaa agggcttcgg catcctgatt 780 qqqqtqtatq qaaqctccqt qatctacatq qtqcaqctqc ccatcttcqq cqtqatcqac 840 acaccetqct qqatcqtqaa qqccqctcct aqctqctccq aqaaqaaaqq aaactatqcc 900 tgtctgctga gagaggacca gggctggtac tgccagaacg ccggaagcac agtgtactat 960 1020 cccaacgaga aggactgcga gaccagaggc gaccacgtgt tctgcgacac cgctgccgga atcaacgtgg ccgagcagag caaggagtgc aacatcaaca tcagcacaac caactacccc 1080 tgcaaggtga gcaccggacg gcaccccatc agcatggtgg ctctgagccc tctgggcgct 1140 ctggtggcct gctataaggg cgtgtcctgt agcatcggca gcaatcgggt gggcatcatc 1200 aagcagetga acaagggatg etectacate accaaceagg aegeegacae egtgaeeate 1260 gacaacaccg tgtaccagct gagcaaggtg gagggcgagc agcacgtgat caagggcaga

cccgt	gaget ecagettega	ccccatcaag	ttccctgagg	accagttcaa	cgtggccctg	1380	
gacca	ggtgt ttgagaacat	cgagaacagc	caggccctgg	tggaccagag	caacagaatc	1440	
ctgtc	cagcg ctgagaaggg	caacaccggc	ttcatcattg	tgatcattct	gatcgccgtg	1500	
ctggg	caget ecatgateet	ggtgagcatc	ttcatcatta	tcaagaagac	caagaaaccc	1560	
accgg	agccc ctcctgagct	gagcggcgtg	accaacaatg	gcttcattcc	ccacaactga	1620	
<211><212><213><223>	SEQ ID NO 2 LENGTH: 1620 TYPE: DNA ORGANISM: Unkno FEATURE: OTHER INFORMATI		etapneumovi	rus			
<400>	SEQUENCE: 2						
atgtc	ttgga aagtgatgat	catcatttcg	ttactcataa	caccccagca	cgggctaaag	60	
gagag	ttatt tggaagaatc	atgtagtact	ataactgagg	gatacctcag	tgttttaaga	120	
acagg	ctggt acactaatgt	cttcacatta	gaagttggtg	atgttgaaaa	tcttacatgt	180	
actga	tggac ctagcttaat	caaaacagaa	cttgatctaa	caaaaagtgc	tttaagggaa	240	
ctcaa	aacag tetetgetga	tcagttggcg	agagaggagc	aaattgaaaa	tcccagacaa	300	
tcaag	atttg tettaggtge	gatagetete	ggagttgcta	cagcagcagc	agtcacagca	360	
ggcat	tgcaa tagccaaaac	cataaggctt	gagagtgagg	tgaatgcaat	taaaggtgct	420	
ctcaa	acaaa ctaatgaagc	agtatccaca	ttagggaatg	gtgtgcgggt	cctagccact	480	
gcagt	gagag agctaaaaga	atttgtgagc	aaaaacctga	ctagtgcaat	caacaggaac	540	
aaatg	tgaca ttgctgatct	gaagatggct	gtcagcttca	gtcaattcaa	cagaagattt	600	
ctaaa	tgttg tgcggcagtt	ttcagacaat	gcagggataa	caccagcaat	atcattggac	660	
ctgat	gactg atgctgagtt	ggccagagct	gtatcataca	tgccaacatc	tgcagggcag	720	
ataaa	actga tgttggagaa	ccgcgcaatg	gtaaggagaa	aaggatttgg	aatcctgata	780	
ggggt	ctacg gaagctctgt	gatttacatg	gttcaattgc	cgatctttgg	tgtcatagat	840	
acacc	ttgtt ggatcatcaa	ggcagctccc	tcttgctcag	aaaaaaacgg	gaattatgct	900	
tgcct	cctaa gagaggatca	agggtggtat	tgtaaaaatg	caggatctac	tgtttactac	960	
ccaaa	tgaaa aagactgcga	aacaagaggt	gatcatgttt	tttgtgacac	agcagcaggg	1020	
atcaa	tgttg ctgagcaatc	aagagaatgc	aacatcaaca	tatctactac	caactaccca	1080	
tgcaa	agtca gcacaggaag	acaccctata	agcatggttg	cactatcacc	tctcggtgct	1140	
ttggt	ggctt gctataaagg	ggtaagctgc	tegattggca	gcaattgggt	tggaatcatc	1200	
aaaca	attac ccaaaggctg	ctcatacata	accaaccagg	atgcagacac	tgtaacaatt	1260	
gacaa	taccg tgtatcaact	aagcaaagtt	gaaggtgaac	agcatgtaat	aaaagggaga	1320	
ccagt	ttcaa gcagttttga	tccaatcaag	tttcctgagg	atcagttcaa	tgttgcgctt	1380	
gatca	agtet tegaaageat	tgagaacagt	caggcactag	tggaccagtc	aaacaaaatt	1440	
ctaaa	cagtg cagaaaaagg	aaacactggt	ttcattatcg	tagtaatttt	ggttgctgtt	1500	
	tctaa ccatgatttc					1560	
	agcac ctccagagct					1620	
59	J	J 950500		5240400		2 2	

<210> SEQ ID NO 3 <211> LENGTH: 1620 <212> TYPE: DNA <213> ORGANISM: Unknown

-continued

<220> FEATURE: <223> OTHER INFORMATION: Human metapneumovirus <400> SEOUENCE: 3 atgtcttgga aagtgatgat tatcatttcg ttactcataa cacctcagca tggactaaaa 60 gaaagttatt tagaagaatc atgtagtact ataactgaag gatatctcag tgttttaaga 120 acaggttggt acaccaatgt ctttacatta gaagttggtg atgttgaaaa tcttacatgt 180 actgatggac ctagcttaat caaaacagaa cttgacctaa ccaaaagtgc tttaagagaa 240 ctcaaaacag tttctgctga tcagttagcg agagaagaac aaattgaaaa tcccagacaa 300 tcaaggtttg tcctaggtgc aatagctctt ggagttgcca cagcagcagc agtcacagca ggcattgcaa tagccaaaac tataaggctt gagagtgaag tgaatgcaat caaaggtgct 480 ctcaaaacaa ccaatqaqqc aqtatcaaca ctaqqaaatq qaqtqcqqqt cctaqccact gcagtaagag agctgaaaga atttgtgagc aaaaacctga ctagtgcgat caacaagaac 540 aagtgtgaca ttgctgattt gaagatggct gtcagcttca gtcagttcaa cagaagattc 600 ctaaatgttg tgcggcagtt ttcagacaat gcagggataa caccagcaat atcattggac 660 720 ctqatqaatq atqctqaqct qqccaqaqct qtatcataca tqccaacatc tqcaqqacaq ataaaactaa tqttaqaqaa ccqtqcaatq qtqaqqaqaa aaqqatttqq aatcttqata 780 ggggtctacg gaagctctgt gatttacatg gtccagctgc cgatctttgg tgtcataaat 840 900 acaccttqtt qqataatcaa qqcaqctccc tcttqttcaq aaaaaqatqq aaattatqct tgcctcctaa gagaggatca agggtggtat tgtaaaaatg caggatccac tgtttactac 960 ccaaatgaaa aagactgcga aacaagaggt gatcatgttt tttgtgacac agcagcaggg 1020 atcaatgttg ctgagcaatc aagagaatgc aacatcaaca tatctaccac caactaccca 1080 tgcaaagtca gcacaggaag acaccctatc agcatggttg cactatcacc tctcggtgct 1140 ttggtagctt gctacaaagg ggttagctgc tcgactggca gtaatcaggt tggaataatc 1200 aaacaactac ctaaaggctg ctcatacata actaaccagg acgcagacac tgtaacaatt 1260 gacaacactg tgtatcaact aagcaaagtt gagggtgaac agcatgtaat aaaagggaga 1320 ccagtttcaa gcagttttga tccaatcagg tttcctgagg atcagttcaa tgttgcgctt 1380 gatcaagtct ttgaaagcat tgaaaacagt caagcactag tggaccagtc aaacaaaatt 1440 ctgaacagtg cagaaaaagg aaacactggt ttcattattg taataatttt gattgctgtt 1500 cttgggttaa ccatgatttc agtgagcatc atcatcataa tcaaaaaaaac aaggaagccc acaggggcac ctccggagct gaatggtgtt accaacggcg gtttcatacc gcatagttag <210> SEQ ID NO 4 <211> LENGTH: 1725 <212> TYPE: DNA <213 > ORGANISM: Human respiratory syncytial virus <400> SEOUENCE: 4 atggagttgc caatcctcaa aacaaatgca attaccacaa tccttgctgc agtcacactc 60 tgtttcgctt ccagtcaaaa catcactgaa gaattttatc aatcaacatg cagtgcagtt 120 agcaaaggct atcttagtgc tctaagaact ggttggtata ctagtgttat aactatagaa 180 ttaagtaata tcaaggaaaa taagtgtaat ggaacagatg ctaaggtaaa attgataaaa 240 caagaattag ataaatataa aaatgctgta acagaattgc agttgctcat gcaaagcaca 300 ccagcagcca acaatcgagc cagaagagaa ctaccaaggt ttatgaatta tacactcaat 360

-continued

aataccaaaa a	taccaatgt	aacattaagc	aagaaaagga	aaagaagatt	tcttggcttt	420
ttgttaggtg t	tggatctgc	aatcgccagt	ggcattgctg	tatctaaggt	cctgcaccta	480
gaaggggaag t	gaacaaaat	caaaagtgct	ctactatcca	caaacaaggc	tgtagtcagc	540
ttatcaaatg g	gagttagtgt	cttaaccagc	aaagtgttag	acctcaaaaa	ctatatagat	600
aaacagttgt t	acctattgt	gaacaagcaa	agctgcagca	tatcaaacat	tgaaactgtg	660
atagagttcc a	acaaaagaa	caacagacta	ctagagatta	ccagggaatt	tagtgttaat	720
gcaggtgtaa c	tacacctgt	aagcacttat	atgttaacta	atagtgaatt	attatcatta	780
atcaatgata t	gcctataac	aaatgatcag	aaaaagttaa	tgtccaacaa	tgttcaaata	840
gttagacagc a	aagttactc	tatcatgtcc	ataataaagg	aggaagtctt	agcatatgta	900
gtacaattac c	actatatgg	tgtaatagat	acaccctgtt	ggaaactgca	cacatcccct	960
ctatgtacaa c	caacacaaa	ggaagggtcc	aacatctgct	taacaagaac	cgacagagga	1020
tggtattgtg a	caatgcagg	atcagtatct	ttcttcccac	aagctgaaac	atgtaaagtt	1080
caatcgaatc g	ggtattttg	tgacacaatg	aacagtttaa	cattaccaag	tgaagtaaat	1140
ctctgcaaca t	tgacatatt	caaccccaaa	tatgattgca	aaattatgac	ttcaaaaaca	1200
gatgtaagca g	ctccgttat	cacatctcta	ggagccattg	tgtcatgcta	tggcaaaact	1260
aaatgtacag c	atccaataa	aaatcgtggg	atcataaaga	cattttctaa	cgggtgtgat	1320
tatgtatcaa a	ıtaagggggt	ggatactgtg	tctgtaggta	atacattata	ttatgtaaat	1380
aagcaagaag g	gcaaaagtct	ctatgtaaaa	ggtgaaccaa	taataaattt	ctatgaccca	1440
ttagtgttcc c	ctctgatga	atttgatgca	tcaatatctc	aagtcaatga	gaagattaac	1500
cagageetag e	atttattcg	taaatccgat	gaattattac	ataatgtaaa	tgctggtaaa	1560
tccaccacaa a	ıtatcatgat	aactactata	attatagtga	ttatagtaat	attgttatca	1620
ttaattgcag t	tggactgct	cctatactgc	aaggccagaa	gcacaccagt	cacactaagt	1680
aaggatcaac t	gagtggtat	aaataatatt	gcatttagta	actga		1725
<210> SEQ ID <211> LENGTH <212> TYPE: <213> ORGANI <220> FEATUR <223> OTHER	I: 539 PRT SM: Unknov RE:		etapneumovii	rus isolate		
<400> SEQUEN	ICE: 5					
Met Ser Trp 1	Lys Val Va 5	al Ile Ile	Phe Ser Leu 10	Leu Ile Thr	Pro Gln 15	
His Gly Leu	Lys Glu Se 20	-	Glu Glu Ser 25	Cys Ser Thr	Ile Thr	
Glu Gly Tyr 35	Leu Ser Va	al Leu Arg 40	Thr Gly Trp	Tyr Thr Asn 45	Val Phe	
Thr Leu Glu 50	Val Gly As	p Val Glu 55	Asn Leu Thr	Cys Ser Asp 60	Gly Pro	
Ser Leu Ile 65	Lys Thr Gl	_	Leu Thr Lys 75	Ser Ala Leu	Arg Glu 80	
Leu Lys Thr	Val Ser Al 85	la Asp Gln	Leu Ala Arg 90	Glu Glu Gln	ı Ile Glu 95	
Asn Pro Arg	Gln Ser Ar 100		Leu Gly Ala 105	Ile Ala Leu 110		

Ala Ala Ala Ala Val Thr Ala Gly Val Ala Ile Ala Lys Thr Ile 115 120 125

Arg	Leu 130	Glu	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	Lys	Lys	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	Lys	Asp	Phe	Val	Ser 170	Lys	Asn	Leu	Thr	Arg 175	Ala
Ile	Asn	ГЛа	Asn 180	ГЛа	CAa	Asp	Ile	Asp 185	Asp	Leu	ГЛа	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Сув	Trp	Ile 285	Val	Lys	Ala
Ala	Pro 290	Ser	CÀa	Ser	Glu	Lys 295	ГЛа	Gly	Asn	Tyr	Ala 300	CÀa	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	CAa	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	ГÀа	Asp 325	CAa	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Сув 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	ГÀЗ	Glu	Сув 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Сув	ГÀа	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	CÀa
Tyr 385	Lys	Gly	Val	Ser	390	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
ГÀа	Gln	Leu	Asn	Lys 405	Gly	CAa	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	Lys	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile	Lys 450	Phe	Pro	Glu	Asp	Gln 455	Phe	Asn	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Asn	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu	Ser	Ser	Ala	Glu 485	ГÀа	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu	Ile	Ala	Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile	Ile	Lys 515	Lys	Thr	Lys	Lys	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser
Gly	Val 530	Thr	Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					

<211 <212 <213 <220)> SE L> LE 2> TY 3> OF 0> FE 3> OT	ENGTH PE: RGANI EATUR	H: 53 PRT [SM: RE:	9 Unkr		: Hur	nan m	neta <u>r</u>	neur	novi	cus				
< 400)> SE	EQUEN	ICE :	6											
Met 1	Ser	Trp	Lys	Val 5	Met	Ile	Ile	Ile	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln
His	Gly	Leu	Lys 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	Cys	Ser	Thr 30	Ile	Thr
Glu	Gly	Tyr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr	Leu 50	Glu	Val	Gly	Asp	Val 55	Glu	Asn	Leu	Thr	Gys	Thr	Asp	Gly	Pro
Ser 65	Leu	Ile	Lys	Thr	Glu 70	Leu	Asp	Leu	Thr	Lys 75	Ser	Ala	Leu	Arg	Glu 80
Leu	Lys	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Arg	Gln 100	Ser	Arg	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val
Ala	Thr	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Ile	Ala	Ile	Ala 125	Lys	Thr	Ile
Arg	Leu 130	Glu	Ser	Glu	Val	Asn 135	Ala	Ile	Lys	Gly	Ala 140	Leu	Lys	Gln	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	Lys	Glu	Phe	Val	Ser 170	Lys	Asn	Leu	Thr	Ser 175	Ala
Ile	Asn	Arg	Asn 180	Lys	Cys	Asp	Ile	Ala 185	Asp	Leu	Lys	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Ser	Tyr	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu					Arg						Lys		
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Cys	Trp	Ile 285	Ile	Lys	Ala
Ala	Pro 290	Ser	Cys	Ser	Glu	Lys 295	Asn	Gly	Asn	Tyr	Ala 300	Càa	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	CÀa	Lys	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	ГЛа	Asp 325	СЛа	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	335 235	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Arg	Glu	Cys 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Cys	Lys	Val	Ser	Thr 365	Gly	Arg	His

-continued

Pro Ile Ser Met Val Ala Leu Ser Pro Leu Gly Ala Leu Val Ala Cys 375 380 Tyr Lys Gly Val Ser Cys Ser Ile Gly Ser Asn Trp Val Gly Ile Ile Lys Gln Leu Pro Lys Gly Cys Ser Tyr Ile Thr Asn Gln Asp Ala Asp Thr Val Thr Ile Asp Asn Thr Val Tyr Gln Leu Ser Lys Val Glu Gly Glu Gln His Val Ile Lys Gly Arg Pro Val Ser Ser Ser Phe Asp Pro 435 440 445 Ile Lys Phe Pro Glu Asp Gln Phe Asn Val Ala Leu Asp Gln Val Phe Glu Ser Ile Glu Asn Ser Gln Ala Leu Val Asp Gln Ser Asn Lys Ile Leu Asn Ser Ala Glu Lys Gly Asn Thr Gly Phe Ile Ile Val Val Ile Leu Val Ala Val Leu Gly Leu Thr Met Ile Ser Val Ser Ile Ile Ile Ile Ile Lys Lys Thr Arg Lys Pro Thr Gly Ala Pro Pro Glu Leu Asn 520 Gly Val Thr Asn Gly Gly Phe Ile Pro His Ser 530 <210> SEO ID NO 7 <211> LENGTH: 539 <212> TYPE: PRT <213> ORGANISM: Unknown <220> FEATURE: <223> OTHER INFORMATION: Human metapneumovirus <400> SEQUENCE: 7 Met Ser Trp Lys Val Met Ile Ile Ile Ser Leu Leu Ile Thr Pro Gln His Gly Leu Lys Glu Ser Tyr Leu Glu Glu Ser Cys Ser Thr Ile Thr Glu Gly Tyr Leu Ser Val Leu Arg Thr Gly Trp Tyr Thr Asn Val Phe Thr Leu Glu Val Gly Asp Val Glu Asn Leu Thr Cys Thr Asp Gly Pro Ser Leu Ile Lys Thr Glu Leu Asp Leu Thr Lys Ser Ala Leu Arg Glu Leu Lys Thr Val Ser Ala Asp Gln Leu Ala Arg Glu Glu Gln Ile Glu Asn Pro Arg Gln Ser Arg Phe Val Leu Gly Ala Ile Ala Leu Gly Val Ala Thr Ala Ala Ala Val Thr Ala Gly Ile Ala Ile Ala Lys Thr Ile 120 Arg Leu Glu Ser Glu Val Asn Ala Ile Lys Gly Ala Leu Lys Thr Thr 135 Asn Glu Ala Val Ser Thr Leu Gly Asn Gly Val Arg Val Leu Ala Thr Ala Val Arg Glu Leu Lys Glu Phe Val Ser Lys Asn Leu Thr Ser Ala 170 Ile Asn Lys Asn Lys Cys Asp Ile Ala Asp Leu Lys Met Ala Val Ser 185

Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Asn	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Ser	Tyr	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asn 280	Thr	Pro	Cys	Trp	Ile 285	Ile	Lys	Ala
Ala	Pro 290	Ser	Cys	Ser	Glu	Lys 295	Asp	Gly	Asn	Tyr	Ala 300	Cys	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	Cys	Lys	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	Lys	Asp 325	Cys	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Cys 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Arg	Glu	Сув 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Сув	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Cys
Tyr 385	Lys	Gly	Val	Ser	390	Ser	Thr	Gly	Ser	Asn 395	Gln	Val	Gly	Ile	Ile 400
Lys	Gln	Leu	Pro	Lys 405	Gly	Cys	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	Lys	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile	Arg 450	Phe	Pro	Glu	Asp	Gln 455	Phe	Asn	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Ser	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Lys	Ile 480
Leu	Asn	Ser	Ala	Glu 485	Lys	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu	Ile	Ala	Val 500	Leu	Gly	Leu	Thr	Met 505	Ile	Ser	Val	Ser	Ile 510	Ile	Ile
Ile	Ile	Lys 515	Lys	Thr	Arg	Lys	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Asn
Gly	Val 530	Thr	Asn	Gly	Gly	Phe 535	Ile	Pro	His	Ser					
<210)> SI	EQ II	ои с	8											
<212	2 > T	PE:			an re	espi	ratoi	rv st	znavi	ial	virı	ıs			
			ICE:					•	. 4	-					
					Len	Lare	Thr	Zan	Δls	Tle	Thr	Thr	Tle	Leu	Δla
1				5					10					Leu 15	
Ala	Val	Thr	Leu 20	Cys	Phe	Ala	Ser	Ser 25	Gln	Asn	Ile	Thr	Glu 30	Glu	Phe

Tyr	Gln	Ser 35	Thr	Cya	Ser	Ala	Val 40	Ser	Lys	Gly	Tyr	Leu 45	Ser	Ala	Leu
Arg	Thr 50	Gly	Trp	Tyr	Thr	Ser 55	Val	Ile	Thr	Ile	Glu 60	Leu	Ser	Asn	Ile
Lys 65	Glu	Asn	Lys	Сув	Asn 70	Gly	Thr	Asp	Ala	Lys 75	Val	Lys	Leu	Ile	80 Lys
Gln	Glu	Leu	Aap	Eys Lys	Tyr	Lys	Asn	Ala	Val 90	Thr	Glu	Leu	Gln	Leu 95	Leu
Met	Gln	Ser	Thr 100	Pro	Ala	Ala	Asn	Asn 105	Arg	Ala	Arg	Arg	Glu 110	Leu	Pro
Arg	Phe	Met 115	Asn	Tyr	Thr	Leu	Asn 120	Asn	Thr	Lys	Asn	Thr 125	Asn	Val	Thr
Leu	Ser 130	Lys	Lys	Arg	Lys	Arg 135	Arg	Phe	Leu	Gly	Phe 140	Leu	Leu	Gly	Val
Gly 145	Ser	Ala	Ile	Ala	Ser 150	Gly	Ile	Ala	Val	Ser 155	Lys	Val	Leu	His	Leu 160
Glu	Gly	Glu	Val	Asn 165	Lys	Ile	Lys	Ser	Ala 170	Leu	Leu	Ser	Thr	Asn 175	Lys
Ala	Val	Val	Ser 180	Leu	Ser	Asn	Gly	Val 185	Ser	Val	Leu	Thr	Ser 190	Lys	Val
Leu	Asp	Leu 195	Lys	Asn	Tyr	Ile	Asp 200	Lys	Gln	Leu	Leu	Pro 205	Ile	Val	Asn
Lys	Gln 210	Ser	Cys	Ser	Ile	Ser 215	Asn	Ile	Glu	Thr	Val 220	Ile	Glu	Phe	Gln
Gln 225	Lys	Asn	Asn	Arg	Leu 230	Leu	Glu	Ile	Thr	Arg 235	Glu	Phe	Ser	Val	Asn 240
Ala	Gly	Val	Thr	Thr 245	Pro	Val	Ser	Thr	Tyr 250	Met	Leu	Thr	Asn	Ser 255	Glu
Leu	Leu	Ser	Leu 260	Ile	Asn	Asp	Met	Pro 265	Ile	Thr	Asn	Asp	Gln 270	Lys	ГÀз
Leu	Met	Ser 275	Asn	Asn	Val	Gln	Ile 280	Val	Arg	Gln	Gln	Ser 285	Tyr	Ser	Ile
Met	Ser 290	Ile	Ile	Lys	Glu	Glu 295	Val	Leu	Ala	Tyr	Val 300	Val	Gln	Leu	Pro
Leu 305	Tyr	Gly	Val	Ile	Asp 310	Thr	Pro	Cys	Trp	Lys 315	Leu	His	Thr	Ser	Pro 320
Leu	Cys	Thr	Thr	Asn 325		Lys	Glu	Gly	Ser 330		Ile	CÀa	Leu	Thr 335	Arg
Thr	Asp	Arg	Gly 340	Trp	Tyr	Cys	Asp	Asn 345	Ala	Gly	Ser	Val	Ser 350	Phe	Phe
Pro	Gln	Ala 355	Glu	Thr	CÀa	Lys	Val 360	Gln	Ser	Asn	Arg	Val 365	Phe	Cys	Asp
Thr	Met 370	Asn	Ser	Leu	Thr	Leu 375	Pro	Ser	Glu	Val	Asn 380	Leu	Cys	Asn	Ile
Asp 385	Ile	Phe	Asn	Pro	390 390	Tyr	Asp	Cys	Lys	Ile 395	Met	Thr	Ser	Lys	Thr 400
Asp	Val	Ser	Ser	Ser 405	Val	Ile	Thr	Ser	Leu 410	Gly	Ala	Ile	Val	Ser 415	CAa
Tyr	Gly	Lys	Thr 420	Lys	Cys	Thr	Ala	Ser 425	Asn	Lys	Asn	Arg	Gly 430	Ile	Ile
Lys	Thr	Phe 435	Ser	Asn	Gly	Сув	Asp 440	Tyr	Val	Ser	Asn	Lys 445	Gly	Val	Asp

423 424

-continued

Thr Val Ser Val Gly Asn Thr Leu Tyr Tyr Val Asn Lys Gln Glu Gly 450 Lys Ser Leu Tyr Val Lys Gly Glu Pro Ile Ile Asn Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln Val Asn 490 Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu His Asn Val Asn Ala Gly Lys Ser Thr Thr Asn Ile Met Ile Thr Thr Ile Ile Ile Val Ile Ile Val Ile Leu Leu Ser Leu Ile Ala Val Gly Leu Leu Tyr Cys Lys Ala Arg Ser Thr Pro Val Thr Leu Ser Lys Asp Gln Leu Ser Gly Ile Asn Asn Ile Ala Phe Ser Asn <210> SEQ ID NO 9 <211> LENGTH: 1617 <212> TYPE: DNA <213 > ORGANISM: Human parainfluenza virus 3 <400> SEOUENCE: 9 atgccaattt caatactgtt aattattaca accatgatca tggcatcaca ctgccaaata 60 120 qacatcacaa aactacaqca tqtaqqtqta ttqqtcaaca qtcccaaaqq qatqaaqata tcacaaaact tcqaaacaaq atatctaatc ctqaqtctca taccaaaaat aqaaqattct 180 aactcttgtg gtgaccaaca gatcaagcaa tacaagaggt tattggatag actgatcatt 240 cctttatatg atggactaag attacagaag gatgtgatag tgactaatca agaatccaat 300 gaaaacactg atcccagaac agaacgattc tttggagggg taattggaac tattgctcta 360 ggagtagcaa ceteageaca aattaeagea geagttgete tggttgaage eaageaggea 420 agatcagaca ttgaaaaact caaggaagca atcagggaca caaataaagc agtgcagtca 480 gttcagagct ctgtaggaaa tttgatagta gcaattaaat cagtccagga ttatgtcaac 540 600 aaagaaatcg tgccatcgat tgcgagacta ggttgtgaag cagcaggact tcagttaggg attgcattaa cacagcatta ctcagaatta acaaatatat ttggtgataa cataggatcg 660 ttacaagaaa aaggaataaa attacaaggt atagcatcat tataccgtac aaatatcaca 720 gaaatattca caacatcaac agttgacaaa tatgatattt atgatctatt atttacagaa 780 tcaataaagg tgagagttat agatgttgat ttgaatgatt actcaataac cctccaagtc agactccctt tattgaccag actgctgaac actcaaatct acaaagtaga ttccatatca tacaatatee aaaatagaga atggtatate eetetteeea geeatateat gacgaaaggg 960 1020 qcatttctaq qtqqaqcaqa tqtcaaaqaa tqcataqaaq cattcaqcaq ttatatatqc cettetgate caggatttgt actaaaccat gaaatggaga getgtetate aggaaacata 1080 teccaatgte caagaaceae agteacatea gacatagtte etaggtatge atttgteaat ggaggagtgg ttgcgaattg tataacaact acatgtacat gcaatggtat cggtaataga 1200 atcaaccaac cacctgatca aggagtcaaa attataacac ataaagaatg taatacaata 1260 qqtatcaacq qaatqctatt caacacaaac aaaqaaqqaa ctcttqcatt ctacacacca 1320 gacgacataa cattaaacaa ttctgttgca cttgatccga ttgacatatc aatcgagctc 1380

aacaaqqcca aatcaqatct tqaqqaatca aaaqaatqqa taaqaaqqtc aaatcaaaaq

ctagattcta ttggaagttg	gcatcaatct	agcactacaa	tcatagttat	tttgataatg	1500
atgattatat tgtttataat	taatataaca	ataattacaa	ttgcaattaa	gtattacaga	1560
attcaaaaga gaaatcgagt	ggatcaaaat	gataagccgt	atgtattaac	aaacaag	1617
<210 > SEQ ID NO 10 <211 > LENGTH: 1716 <212 > TYPE: DNA <213 > ORGANISM: Human	parainflue	nza virus 3			
<400> SEQUENCE: 10					
atggaatact ggaagcacac	caaccacgga	aaggatgctg	gtaatgagct	ggagacatcc	60
acagccactc atggcaacaa	gctcaccaac	aagataacat	atatattgtg	gacgataacc	120
ctggtgttat tatcaatagt	cttcatcata	gtgctaacta	attccatcaa	aagtgaaaag	180
gecegegaat cattgetaca	agacataaat	aatgagttta	tggaagttac	agaaaagatc	240
caagtggcat cggataatac	taatgatcta	atacagtcag	gagtgaatac	aaggcttctt	300
acaattcaga gtcatgtcca	gaattatata	ccaatatcat	tgacacaaca	aatatcggat	360
cttaggaaat tcattagtga	aattacaatt	agaaatgata	atcaagaagt	gccaccacaa	420
agaataacac atgatgtggg	tataaaacct	ttaaatccag	atgatttctg	gagatgcacg	480
tctggtcttc catctttgat	gaaaactcca	aaaataagat	taatgccggg	accaggatta	540
ttagctatgc caacgactgt	tgatggctgt	gtcagaaccc	cgtccttagt	gataaatgat	600
ctgatttatg cttacacctc	aaatctaatt	actcgaggtt	gccaggatat	agggaaatca	660
tatcaagtat tacagatagg	gataataact	gtaaactcag	acttggtacc	tgacttaaat	720
cctaggatct ctcatacctt	caacataaat	gacaatagaa	agtcatgttc	tctagcactc	780
ctaaatacag atgtatatca	actgtgttca	accccaaaag	ttgatgaaag	atcagattat	840
gcatcatcag gcatagaaga	tattgtactt	gatattgtca	attatgatgg	ctcaatctcg	900
acaacaagat ttaagaataa	taatataagt	tttgatcaac	catatgcggc	attataccca	960
tctgttggac cagggatata	ctacaaaggc	aaaataatat	ttctcgggta	tggaggtctt	1020
gaacatccaa taaatgagaa	tgcaatctgc	aacacaactg	ggtgtcctgg	gaaaacacag	1080
agagactgta atcaagcatc	tcatagtcca	tggttttcag	atagaaggat	ggtcaactct	1140
ataattgttg ttgacaaggg	cttgaactca	gttccaaaat	tgaaggtatg	gacgatatct	1200
atgagacaaa attactgggg	gtcagaagga	agattacttc	tactaggtaa	caagatctac	1260
atatacacaa gatctacaag	ttggcacagc	aagttacaat	taggaataat	tgacattact	1320
gactacagtg atataaggat	aaaatggaca	tggcataatg	tgctatcaag	accaggaaac	1380
aatgaatgtc catggggaca	ttcatgtccg	gatggatgta	taacgggagt	atataccgat	1440
gcatatccac tcaatcccac	aggaagcatt	gtatcatctg	tcatattgga	ctcacaaaaa	1500
tcgagagtca acccagtcat	aacttactca	acagcaaccg	aaagggtaaa	cgagctggct	1560
atccgaaaca aaacactctc	agctgggtac	acaacaacaa	gctgcattac	acactataac	1620
aaagggtatt gttttcatat	agtagaaata	aatcataaaa	gcttaaacac	atttcaaccc	1680
atgttgttca aaacagagat	tccaaaaagc	tgcagt			1716

<210> SEQ ID NO 11 <211> LENGTH: 1716 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:

<223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 11	
atggaatact ggaagcacac caaccacggc aaggacgccg gcaacgagct ggaaaccagc	60
acagccacac acggcaacaa gctgaccaac aagatcacct acatcctgtg gaccatcacc	120
ctggtgctgc tgagcatcgt gttcatcatc gtgctgacca atagcatcaa gagcgagaag	180
gccagagaga gcctgctgca ggacatcaac aacgagttca tggaagtgac cgagaagatc	240
caggtggcca gcgacaacac caacgacctg atccagagcg gcgtgaacac ccggctgctg	300
accatccaga gccacgtgca gaactacatc cccatcagcc tgacccagca gatcagcgac	360
ctgcggaagt tcatcagcga gatcaccatc cggaacgaca accaggaagt gccccccag	420
agaatcaccc acgacgtggg catcaagccc ctgaaccccg acgatttctg gcggtgtaca	480
ageggeetge ceageetgat gaagaceeee aagateegge tgatgeetgg ceetggaetg	540
ctggccatgc ctaccacagt ggatggctgt gtgcggaccc ccagcctcgt gatcaacgat	600
ctgatctacg cctacaccag caacctgatc acceggggct gccaggatat cggcaagagc	660
taccaggtgc tgcagategg catcatcacc gtgaactceg acctggtgcc cgacetgaac	720
ceteggatea gecacacett caacateaac gacaacagaa agagetgeag cetggetetg	780
ctgaacaccg acgtgtacca gctgtgcagc acccccaagg tggacgagag aagcgactac	840
gecageageg geategagga tategtgetg gacategtga actaegaegg cageateage	900
accacceggt teaagaacaa caacateage ttegaceage eetacgeege eetgtaceet	960
tetgtgggee etggeateta etacaaggge aagateatet teetgggeta eggeggeetg	1020
gaacacccca tcaacgagaa cgccatctgc aacaccaccg gctgccctgg caagacccag	1080
agagactgca atcaggccag ccacagcccc tggttcagcg accgcagaat ggtcaactct	1140
atcatcgtgg tggacaaggg cctgaacagc gtgcccaagc tgaaagtgtg gacaatcagc	1200
atgcgccaga actactgggg cagcgagggc agacttctgc tgctgggaaa caagatctac	1260
atctacaccc ggtccaccag ctggcacagc aaactgcagc tgggaatcat cgacatcacc	1320
gactacageg acateeggat caagtggaee tggcacaaeg tgetgageag acceggeaae	1380
aatgagtgcc cttggggcca cagctgcccc gatggatgta tcaccggcgt gtacaccgac	1440
gectacecce tgaatectae eggetecate gtgtecageg tgateetgga cagecagaaa	1500
agcagagtga accccgtgat cacatacagc accgccaccg agagagtgaa cgaactggcc	1560
atcagaaaca agaccctgag cgccggctac accaccacaa gctgcatcac acactacaac	1620
aagggctact gettecacat egtggaaate aaccacaagt eeetgaacae ettecageee	1680
atgctgttca agaccgagat ccccaagagc tgctcc	1716
<210> SEQ ID NO 12 <211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 12	
atgcccatca gcatcctgct gatcatcacc acaatgatca tggccagcca ctgccagatc	60
gacatcacca agetgeagea egtgggegtg etegtgaaca geeccaaggg catgaagate	120
agccagaact tcgagacacg ctacctgatc ctgagcctga tccccaagat cgaggacagc	180
aacagetgeg gegaecagea gateaageag tacaagegge tgetggaeag aetgateate	240

cccctgtacg	acggcctgcg	gctgcagaaa	ı gacgtgatcg	tgaccaacca	ggaaagcaac	300
gagaacaccg	acccccggac	cgagagatto	tteggeggeg	tgatcggcac	aatcgccctg	360
ggagtggcca	caagcgccca	gattacagco	getgtggeee	tggtggaagc	caagcaggcc	420
agaagcgaca	tcgagaagct	gaaagaggcc	atccgggaca	ccaacaaggc	cgtgcagagc	480
gtgcagtcca	gcgtgggcaa	tctgatcgtg	gccatcaagt	ccgtgcagga	ctacgtgaac	540
aaagaaatcg	tgccctctat	cgcccggctg	ggctgtgaag	ctgccggact	gcagctgggc	600
attgccctga	cacagcacta	cagcgagctg	g accaacatct	tcggcgacaa	catcggcagc	660
ctgcaggaaa	agggcattaa	gctgcaggga	atcgccagcc	tgtaccgcac	caacatcacc	720
gagatettea	ccaccagcac	cgtggataag	g tacgacatct	acgacctgct	gttcaccgag	780
agcatcaaag	tgcgcgtgat	cgacgtggac	ctgaacgact	acagcatcac	cctgcaagtg	840
cggctgcccc	tgctgaccag	actgctgaac	acccagatct	acaaggtgga	cagcatctcc	900
tacaacatcc	agaaccgcga	gtggtacato	cctctgccca	gccacattat	gaccaagggc	960
geetttetgg	gcggagccga	cgtgaaagag	g tgcatcgagg	ccttcagcag	ctacatctgc	1020
cccagcgacc	ctggcttcgt	gctgaaccac	gagatggaaa	gctgcctgag	cggcaacatc	1080
agccagtgcc	ccagaaccac	cgtgacctcc	gacatcgtgc	ccagatacgc	cttcgtgaat	1140
ggcggcgtgg	tggccaactg	catcaccacc	acctgtacct	gcaacggcat	cggcaaccgg	1200
atcaaccagc	ctcccgatca	gggcgtgaag	, attatcaccc	acaaagagtg	taacaccatc	1260
ggcatcaacg	gcatgctgtt	caataccaac	: aaagagggca	ccctggcctt	ctacaccccc	1320
gacgatatca	ccctgaacaa	ctccgtggct	ctggacccca	tcgacatctc	catcgagctg	1380
aacaaggcca	agagcgacct	ggaagagtco	: aaagagtgga	tccggcggag	caaccagaag	1440
ctggactcta	teggeagetg	gcaccagago	agcaccacca	tcatcgtgat	cctgattatg	1500
atgattatcc	tgttcatcat	caacattacc	atcatcacta	tegecattaa	gtactaccgg	1560
atccagaaac	ggaaccgggt	ggaccagaat	gacaagccct	acgtgctgac	aaacaag	1617
<210> SEQ 1 <211> LENG' <212> TYPE <213> ORGAI <400> SEQUI	TH: 539 : PRT NISM: Human	parainflue	enza virus 3			
Met Pro Ile	e Ser Ile L 5	eu Leu Ile	Ile Thr Thr	Met Ile Met	Ala Ser 15	
		le Thr Lvs	Leu Gln His	Val Glv Val		
	20		25	30		
Asn Ser Pro	D Lys Gly M	et Lys Ile 40	Ser Gln Asn	Phe Glu Thi 45	Arg Tyr	
Leu Ile Let 50	ı Ser Leu I	le Pro Lys 55	Ile Glu Asp	Ser Asn Ser 60	Cys Gly	
Asp Gln Gli 65	_	ln Tyr Lys O	Arg Leu Leu 75	Asp Arg Let	ı Ile Ile 80	
Pro Leu Ty:	r Asp Gly L 85	eu Arg Leu	Gln Lys Asp 90	Val Ile Val	Thr Asn 95	
Gln Glu Se	r Asn Glu A 100	sn Thr Asp	Pro Arg Thr 105	Glu Arg Phe		
Gly Val Ile		le Ala Leu 120	Gly Val Ala	Thr Ser Ala	a Gln Ile	

Thr	Ala 130	Ala	Val	Ala	Leu	Val 135	Glu	Ala	Lys	Gln	Ala 140	Arg	Ser	Asp	Ile
Glu 145	Lys	Leu	Lys	Glu	Ala 150	Ile	Arg	Asp	Thr	Asn 155	ГЛа	Ala	Val	Gln	Ser 160
Val	Gln	Ser	Ser	Val 165	Gly	Asn	Leu	Ile	Val 170	Ala	Ile	Lys	Ser	Val 175	Gln
Asp	Tyr	Val	Asn 180	Lys	Glu	Ile	Val	Pro 185	Ser	Ile	Ala	Arg	Leu 190	Gly	Cys
Glu	Ala	Ala 195	Gly	Leu	Gln	Leu	Gly 200	Ile	Ala	Leu	Thr	Gln 205	His	Tyr	Ser
Glu	Leu 210	Thr	Asn	Ile	Phe	Gly 215	Asp	Asn	Ile	Gly	Ser 220	Leu	Gln	Glu	Lys
Gly 225	Ile	Lys	Leu	Gln	Gly 230	Ile	Ala	Ser	Leu	Tyr 235	Arg	Thr	Asn	Ile	Thr 240
Glu	Ile	Phe	Thr	Thr 245	Ser	Thr	Val	Asp	Lys 250	Tyr	Asp	Ile	Tyr	Asp 255	Leu
Leu	Phe	Thr	Glu 260	Ser	Ile	ГЛа	Val	Arg 265	Val	Ile	Asp	Val	Asp 270	Leu	Asn
Asp	Tyr	Ser 275	Ile	Thr	Leu	Gln	Val 280	Arg	Leu	Pro	Leu	Leu 285	Thr	Arg	Leu
Leu	Asn 290	Thr	Gln	Ile	Tyr	Lys 295	Val	Asp	Ser	Ile	Ser 300	Tyr	Asn	Ile	Gln
Asn 305	Arg	Glu	Trp	Tyr	Ile 310	Pro	Leu	Pro	Ser	His 315	Ile	Met	Thr	Lys	Gly 320
Ala	Phe	Leu	Gly	Gly 325	Ala	Asp	Val	Lys	Glu 330	Сув	Ile	Glu	Ala	Phe 335	Ser
Ser	Tyr	Ile	Cys 340	Pro	Ser	Asp	Pro	Gly 345	Phe	Val	Leu	Asn	His 350	Glu	Met
Glu	Ser	Сув 355	Leu	Ser	Gly	Asn	Ile 360	Ser	Gln	Сла	Pro	Arg 365	Thr	Thr	Val
Thr	Ser 370	Asp	Ile	Val	Pro	Arg 375	Tyr	Ala	Phe	Val	Asn 380	Gly	Gly	Val	Val
Ala 385	Asn	СЛа	Ile	Thr	Thr 390	Thr	Cys	Thr	СЛа	Asn 395	Gly	Ile	Gly	Asn	Arg 400
Ile	Asn	Gln	Pro	Pro 405	Asp	Gln	Gly	Val	Lys 410	Ile	Ile	Thr	His	Lys 415	Glu
CAa	Asn		Ile 420		Ile	Asn		Met 425		Phe	Asn		Asn 430		Glu
Gly	Thr	Leu 435	Ala	Phe	Tyr	Thr	Pro 440	Asp	Asp	Ile	Thr	Leu 445	Asn	Asn	Ser
Val	Ala 450	Leu	Asp	Pro	Ile	Asp 455	Ile	Ser	Ile	Glu	Leu 460	Asn	Lys	Ala	Lys
Ser 465	Asp	Leu	Glu	Glu	Ser 470	Lys	Glu	Trp	Ile	Arg 475	Arg	Ser	Asn	Gln	Lys 480
Leu	Asp	Ser	Ile	Gly 485	Ser	Trp	His	Gln	Ser 490	Ser	Thr	Thr	Ile	Ile 495	Val
Ile	Leu	Ile	Met 500	Met	Ile	Ile	Leu	Phe 505	Ile	Ile	Asn	Ile	Thr 510	Ile	Ile
Thr	Ile	Ala 515	Ile	Lys	Tyr	Tyr	Arg 520	Ile	Gln	Lys	Arg	Asn 525	Arg	Val	Asp
Gln	Asn 530	Asp	Lys	Pro	Tyr	Val 535	Leu	Thr	Asn	Lys					

		EQ II ENGTI													
		YPE : RGANI		Huma	an pa	arain	nflue	enza	vir	ıs 3					
< 400)> SI	EQUEI	ICE :	14											
Met 1	Glu	Tyr	Trp	Lys 5	His	Thr	Asn	His	Gly 10	Lys	Asp	Ala	Gly	Asn 15	Glu
Leu	Glu	Thr	Ser 20	Thr	Ala	Thr	His	Gly 25	Asn	Lys	Leu	Thr	Asn 30	Lys	Ile
Thr	Tyr	Ile 35	Leu	Trp	Thr	Ile	Thr 40	Leu	Val	Leu	Leu	Ser 45	Ile	Val	Phe
Ile	Ile 50	Val	Leu	Thr	Asn	Ser 55	Ile	Lys	Ser	Glu	Lys 60	Ala	Arg	Glu	Ser
Leu 65	Leu	Gln	Asp	Ile	Asn 70	Asn	Glu	Phe	Met	Glu 75	Val	Thr	Glu	Lys	Ile 80
Gln	Val	Ala	Ser	Asp 85	Asn	Thr	Asn	Asp	Leu 90	Ile	Gln	Ser	Gly	Val 95	Asn
Thr	Arg	Leu	Leu 100	Thr	Ile	Gln	Ser	His 105	Val	Gln	Asn	Tyr	Ile 110	Pro	Ile
Ser	Leu	Thr 115	Gln	Gln	Ile	Ser	Asp 120	Leu	Arg	Lys	Phe	Ile 125	Ser	Glu	Ile
Thr	Ile 130	Arg	Asn	Asp	Asn	Gln 135	Glu	Val	Pro	Pro	Gln 140	Arg	Ile	Thr	His
Asp 145	Val	Gly	Ile	ГÀа	Pro 150	Leu	Asn	Pro	Asp	Asp 155	Phe	Trp	Arg	CÀa	Thr 160
Ser	Gly	Leu	Pro	Ser 165	Leu	Met	ГÀв	Thr	Pro 170	Lys	Ile	Arg	Leu	Met 175	Pro
Gly	Pro	Gly	Leu 180	Leu	Ala	Met	Pro	Thr 185	Thr	Val	Asp	Gly	Суs 190	Val	Arg
Thr	Pro	Ser 195	Leu	Val	Ile	Asn	Asp 200	Leu	Ile	Tyr	Ala	Tyr 205	Thr	Ser	Asn
Leu	Ile 210	Thr	Arg	Gly	CAa	Gln 215	Asp	Ile	Gly	Lys	Ser 220	Tyr	Gln	Val	Leu
Gln 225	Ile	Gly	Ile	Ile	Thr 230	Val	Asn	Ser	Asp	Leu 235	Val	Pro	Asp	Leu	Asn 240
Pro	Arg	Ile	Ser	His 245	Thr	Phe	Asn	Ile	Asn 250	Asp	Asn	Arg	Lys	Ser 255	Cys
Ser	Leu	Ala	Leu 260	Leu	Asn	Thr	Asp	Val 265	Tyr	Gln	Leu	Сув	Ser 270	Thr	Pro
Lys	Val	Asp 275	Glu	Arg	Ser	Asp	Tyr 280	Ala	Ser	Ser	Gly	Ile 285	Glu	Asp	Ile
Val	Leu 290	Asp	Ile	Val	Asn	Tyr 295	Asp	Gly	Ser	Ile	Ser 300	Thr	Thr	Arg	Phe
Lys 305	Asn	Asn	Asn	Ile	Ser 310	Phe	Asp	Gln	Pro	Tyr 315	Ala	Ala	Leu	Tyr	Pro 320
Ser	Val	Gly	Pro	Gly 325	Ile	Tyr	Tyr	Lys	Gly 330	Lys	Ile	Ile	Phe	Leu 335	Gly
Tyr	Gly	Gly	Leu 340	Glu	His	Pro	Ile	Asn 345	Glu	Asn	Ala	Ile	350	Asn	Thr
Thr	Gly	Сув 355	Pro	Gly	Lys	Thr	Gln 360	Arg	Asp	Сув	Asn	Gln 365	Ala	Ser	His
Ser	Pro 370	Trp	Phe	Ser	Asp	Arg 375	Arg	Met	Val	Asn	Ser 380	Ile	Ile	Val	Val

```
Asp Lys Gly Leu Asn Ser Val Pro Lys Leu Lys Val Trp Thr Ile Ser
                390
                                      395
Met Arg Gln Asn Tyr Trp Gly Ser Glu Gly Arg Leu Leu Leu Gly
Asn Lys Ile Tyr Ile Tyr Thr Arg Ser Thr Ser Trp His Ser Lys Leu
                     425
Gln Leu Gly Ile Ile Asp Ile Thr Asp Tyr Ser Asp Ile Arg Ile Lys
Trp Thr Trp His Asn Val Leu Ser Arg Pro Gly Asn Asn Glu Cys Pro
Trp Gly His Ser Cys Pro Asp Gly Cys Ile Thr Gly Val Tyr Thr Asp
Ala Tyr Pro Leu Asn Pro Thr Gly Ser Ile Val Ser Ser Val Ile Leu
Asp Ser Gln Lys Ser Arg Val Asn Pro Val Ile Thr Tyr Ser Thr Ala
Thr Glu Arg Val Asn Glu Leu Ala Ile Arg Asn Lys Thr Leu Ser Ala
Gly Tyr Thr Thr Thr Ser Cys Ile Thr His Tyr Asn Lys Gly Tyr Cys
                     535
Phe His Ile Val Glu Ile Asn His Lys Ser Leu Asn Thr Phe Gln Pro
                 550
                                     555
Met Leu Phe Lys Thr Glu Ile Pro Lys Ser Cys Ser
              565
<210> SEO ID NO 15
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Polypeptide
<400> SEQUENCE: 15
Met Glu Thr Pro Ala Gln Leu Leu Phe Leu Leu Leu Trp Leu Pro
Asp Thr Thr Gly
<210> SEQ ID NO 16
<211> LENGTH: 18
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Polypeptide
<400> SEQUENCE: 16
Met Asp Trp Thr Trp Ile Leu Phe Leu Val Ala Ala Ala Thr Arg Val
His Ser
<210> SEQ ID NO 17
<211> LENGTH: 24
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Polypeptide
<400> SEQUENCE: 17
Met Leu Gly Ser Asn Ser Gly Gln Arg Val Val Phe Thr Ile Leu Leu
                            10
```

```
Leu Leu Val Ala Pro Ala Tyr Ser
            2.0
<210> SEQ ID NO 18
<211> LENGTH: 17
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Polypeptide
<400> SEQUENCE: 18
Met Lys Cys Leu Leu Tyr Leu Ala Phe Leu Phe Ile Gly Val Asn Cys
Ala
<210> SEQ ID NO 19
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: Synthetic Polypeptide
<400> SEQUENCE: 19
Met Trp Leu Val Ser Leu Ala Ile Val Thr Ala Cys Ala Gly Ala
                                    10
<210> SEQ ID NO 20
<211> LENGTH: 4062
<212> TYPE: DNA
<213 > ORGANISM: Unknown
<220> FEATURE:
<223> OTHER INFORMATION: Middle East respiratory syndrome coronavirus
<400> SEQUENCE: 20
atgatacact cagtgtttct actgatgttc ttgttaacac ctacagaaag ttacgttgat
                                                                       60
gtagggccag attctgttaa gtctgcttgt attgaggttg atatacaaca gaccttcttt
                                                                      120
gataaaactt ggcctaggcc aattgatgtt tctaaggctg acggtattat ataccctcaa
                                                                      180
ggccgtacat attctaacat aactatcact tatcaaggtc tttttcccta tcagggagac
                                                                      240
catggtgata tgtatgttta ctctgcagga catgctacag gcacaactcc acaaaagttg
                                                                      300
tttgtagcta actattctca ggacgtcaaa cagtttgcta atgggtttgt cgtccgtata
ggagcagctg ccaattccac tggcactgtt attattagcc catctaccag cgctactata
cgaaaaattt accctgcttt tatgctgggt tcttcagttg gtaatttctc agatggtaaa
atgggccgct tcttcaatca tactctagtt cttttgcccg atggatgtgg cactttactt
agagettttt attgtattet agageetege tetggaaate attgteetge tggeaattee
tatacttett ttgecaetta teacaeteet geaacagatt gttetgatgg eaattacaat
                                                                      660
cqtaatqcca qtctqaactc ttttaaqqaq tattttaatt tacqtaactq cacctttatq
                                                                      720
tacacttata acattacega agatgagatt ttagagtggt ttggcattac acaaactgct
                                                                      780
caaggtgttc acctettete ateteggtat gttgatttgt acggeggeaa tatgtttcaa
tttgccacct tgcctgttta tgatactatt aagtattatt ctatcattcc tcacagtatt
                                                                      900
cgttctatcc aaagtgatag aaaagcttgg gctgccttct acgtatataa acttcaaccg
                                                                      960
ttaactttcc tgttggattt ttctgttgat ggttatatac gcagagctat agactgtggt
                                                                     1020
tttaatgatt tgtcacaact ccactgctca tatgaatcct tcgatgttga atctggagtt
                                                                     1080
tattcagttt cgtctttcga agcaaaacct tctggctcag ttgtggaaca ggctgaaggt
```

gttgaatgtg	atttttcacc	tcttctgtct	ggcacacctc	ctcaggttta	taatttcaag	1200
cgtttggttt	ttaccaattg	caattataat	cttaccaaat	tgctttcact	tttttctgtg	1260
aatgatttta	cttgtagtca	aatatctcca	gcagcaattg	ctagcaactg	ttattcttca	1320
ctgattttgg	attattttc	atacccactt	agtatgaaat	ccgatctcag	tgttagttct	1380
gctggtccaa	tatcccagtt	taattataaa	cagtcctttt	ctaatcccac	atgtttgatc	1440
ttagcgactg	ttcctcataa	ccttactact	attactaagc	ctcttaagta	cagctatatt	1500
aacaagtgct	ctcgtcttct	ttctgatgat	cgtactgaag	tacctcagtt	agtgaacgct	1560
aatcaatact	caccctgtgt	atccattgtc	ccatccactg	tgtgggaaga	cggtgattat	1620
tataggaaac	aactatctcc	acttgaaggt	ggtggctggc	ttgttgctag	tggctcaact	1680
gttgccatga	ctgagcaatt	acagatgggc	tttggtatta	cagttcaata	tggtacagac	1740
accaatagtg	tttgccccaa	gcttgaattt	gctaatgaca	caaaaattgc	ctctcaatta	1800
ggcaattgcg	tggaatattc	cctctatggt	gtttcgggcc	gtggtgtttt	tcagaattgc	1860
acagctgtag	gtgttcgaca	gcagcgcttt	gtttatgatg	cgtaccagaa	tttagttggc	1920
tattattctg	atgatggcaa	ctactactgt	ctgcgtgctt	gtgttagtgt	tectgtttet	1980
gtcatctatg	ataaagaaac	taaaacccac	gctactctat	ttggtagtgt	tgcatgtgaa	2040
cacatttctt	ctaccatgtc	tcaatactcc	cgttctacgc	gatcaatgct	taaacggcga	2100
gattctacat	atggccccct	tcagacacct	gttggttgtg	tcctaggact	tgttaattcc	2160
tctttgttcg	tagaggactg	caagttgcct	ctcggtcaat	ctctctgtgc	tcttcctgac	2220
acacctagta	ctctcacacc	tcgcagtgtg	cgctctgtgc	caggtgaaat	gcgcttggca	2280
tccattgctt	ttaatcatcc	cattcaggtt	gatcaactta	atagtagtta	ttttaaatta	2340
agtataccca	ctaattttc	ctttggtgtg	actcaggagt	acattcagac	aaccattcag	2400
aaagttactg	ttgattgtaa	acagtacgtt	tgcaatggtt	tccagaagtg	tgagcaatta	2460
ctgcgcgagt	atggccagtt	ttgttccaaa	ataaaccagg	ctctccatgg	tgccaattta	2520
cgccaggatg	attctgtacg	taatttgttt	gcgagcgtga	aaagctctca	atcatctcct	2580
atcataccag	gttttggagg	tgactttaat	ttgacacttc	tagaacctgt	ttctatatct	2640
actggcagtc	gtagtgcacg	tagtgctatt	gaggatttgc	tatttgacaa	agtcactata	2700
gctgatcctg	gttatatgca	aggttacgat	gattgtatgc	agcaaggtcc	agcatcagct	2760
cgtgatctta	tttgtgctca	atatgtggct	ggttataaag	tattacctcc	tcttatggat	2820
gttaatatgg	aagccgcgta	tacttcatct	ttgcttggca	gcatagcagg	tgttggctgg	2880
actgctggct	tatcctcctt	tgctgctatt	ccatttgcac	agagtatytt	ttataggtta	2940
aacggtgttg	gcattactca	acaggttctt	tcagagaacc	aaaagcttat	tgccaataag	3000
tttaatcagg	ctctgggagc	tatgcaaaca	ggcttcacta	caactaatga	agcttttcgg	3060
aaggttcagg	atgctgtgaa	caacaatgca	caggctctat	ccaaattagc	tagcgagcta	3120
tctaatactt	ttggtgctat	ttccgcctct	attggagaca	tcatacaacg	tcttgatgtt	3180
ctcgaacagg	acgcccaaat	agacagactt	attaatggcc	gtttgacaac	actaaatgct	3240
tttgttgcac	agcagcttgt	tegtteegaa	tcagctgctc	tttccgctca	attggctaaa	3300
gataaagtca	atgagtgtgt	caaggcacaa	tccaagcgtt	ctggattttg	cggtcaaggc	3360
acacatatag	tgtcctttgt	tgtaaatgcc	cctaatggcc	tttactttat	gcatgttggt	3420
tattacccta	gcaaccacat	tgaggttgtt	tctgcttatg	gtctttgcga	tgcagctaac	3480

-continued

-continued						
cctactaatt gtatagcccc tgttaatggc tactttatta aaactaataa cactaggatt	3540					
gttgatgagt ggtcatatac tggctcgtcc ttctatgcac ctgagcccat cacctctctt	3600					
aatactaagt atgttgcacc acaggtgaca taccaaaaca tttctactaa cctccctcct	3660					
cetetteteg geaatteeac egggattgae ttecaagatg agttggatga gttttteaaa	3720					
aatgttagca ccagtatacc taattttggt tctctaacac agattaatac tacattactc	3780					
gatettaeet aegagatgtt gtetetteaa eaagttgtta aageeettaa tgagtettae	3840					
atagacetta aagagettgg caattatact tattacaaca aatggeegtg gtacatttgg	3900					
cttggtttca ttgctgggct tgttgcctta gctctatgcg tcttcttcat actgtgctgc	3960					
actggttgtg gcacaaactg tatgggaaaa cttaagtgta atcgttgttg tgatagatac	4020					
gaggaatacg acctcgagcc gcataaggtt catgttcact aa	4062					
<210> SEQ ID NO 21 <211> LENGTH: 4062 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 21						
atgatacact cagtgtttct actgatgttc ttgttaacac ctacagaaag ttacgttgat	60					
gtagggccag attctgttaa gtctgcttgt attgaggttg atatacaaca gactttcttt	120					
gataaaactt ggcctaggcc aattgatgtt tctaaggctg acggtattat ataccctcaa	180					
ggccgtacat attctaacat aactatcact tatcaaggtc tttttcccta tcagggagac	240					
catggtgata tgtatgttta ctctgcagga catgctacag gcacaactcc acaaaagttg	300					
tttgtagcta actattctca ggacgtcaaa cagtttgcta atgggtttgt cgtccgtata	360					
ggagcagctg ccaattccac tggcactgtt attattagcc catctaccag cgctactata	420					
cgaaaaattt accctgcttt tatgctgggt tcttcagttg gtaatttctc agatggtaaa	480					
atgggccgct tottcaatca tactotagtt ottttgcccg atggatgtgg cactttactt	540					
agagettttt attgtattet ggageetege tetggaaate attgteetge tggeaattee	600					
tatacttctt ttgccactta tcacactcct gcaacagatt gttctgatgg caattacaat	660					
egtaatgeca gtetgaacte ttttaaggag tattttaatt taegtaactg eacetttatg	720					
tacacttata acattaccga agatgagatt ttagagtggt ttggcattac acaaactgct	780					
caaggtgttc acctettetc ateteggtat gttgatttgt acggeggcaa tatgtttcaa	840					
tttgccacct tgcctgttta tgatactatt aagtattatt ctatcattcc tcacagtatt	900					
cgttctatcc aaagtgatag aaaagcttgg gctgccttct acgtatataa acttcaaccg	960					
ttaactttcc tgttggattt ttctgttgat ggttatatac gcagagctat agactgtggt	1020					
tttaatgatt tgtcacaact ccactgctca tatgaatcet tcgatgttga atctggagtt	1080					
tattcagttt cgtctttcga agcaaaacct tctggctcag ttgtggaaca ggctgaaggt	1140					
gttgaatgtg atttttcacc tcttctgtct ggcacacctc ctcaggttta taatttcaag	1200					
cgtttggttt ttaccaattg caattataat cttaccaaat tgctttcact tttttctgtg	1260					
aatgatttta cttgtagtca aatatctcca gcagcaattg ctagcaactg ttattcttca	1320					
ctgattttgg attacttttc atacccactt agtatgaaat ccgatctcag tgttagttct	1380					
gctggtccaa tatcccagtt taattataaa cagtcctttt ctaatcccac atgtttgatt	1440					
	4500					

ttagcgactg ttcctcataa ccttactact attactaagc ctcttaagta cagctatatt 1500

aacaagtgct	ctcgtcttct	ttctgatgat	cgtactgaag	tacctcagtt	agtgaacgct	1560
aatcaatact	caccctgtgt	atccattgtc	ccatccactg	tgtgggaaga	cggtgattat	1620
tataggaaac	aactatctcc	acttgaaggt	ggtggctggc	ttgttgctag	tggctcaact	1680
gttgccatga	ctgagcaatt	acagatgggc	tttggtatta	cagttcaata	tggtacagac	1740
accaatagtg	tttgccccaa	gcttgaattt	gctaatgaca	caaaaattgc	ctctcaatta	1800
ggcaattgcg	tggaatattc	cctctatggt	gtttcgggcc	gtggtgtttt	tcagaattgc	1860
acagctgtag	gtgttcgaca	gcagcgcttt	gtttatgatg	cgtaccagaa	tttagttggc	1920
tattattctg	atgatggcaa	ctactactgt	ttgcgtgctt	gtgttagtgt	tcctgtttct	1980
gtcatctatg	ataaagaaac	taaaacccac	gctactctat	ttggtagtgt	tgcatgtgaa	2040
cacatttctt	ctaccatgtc	tcaatactcc	cgttctacgc	gatcaatgct	taaacggcga	2100
gattctacat	atggccccct	tcagacacct	gttggttgtg	tcctaggact	tgttaattcc	2160
tctttgttcg	tagaggactg	caagttgcct	cttggtcaat	ctctctgtgc	tcttcctgac	2220
acacctagta	ctctcacacc	tegeagtgtg	cgctctgttc	caggtgaaat	gcgcttggca	2280
tccattgctt	ttaatcatcc	tattcaggtt	gatcaactta	atagtagtta	ttttaaatta	2340
agtataccca	ctaattttc	ctttggtgtg	actcaggagt	acattcagac	aaccattcag	2400
aaagttactg	ttgattgtaa	acagtacgtt	tgcaatggtt	tccagaagtg	tgagcaatta	2460
ctgcgcgagt	atggccagtt	ttgttccaaa	ataaaccagg	ctctccatgg	tgccaattta	2520
cgccaggatg	attctgtacg	taatttgttt	gcgagcgtga	aaagctctca	atcatctcct	2580
atcataccag	gttttggagg	tgactttaat	ttgacacttc	tggaacctgt	ttctatatct	2640
actggcagtc	gtagtgcacg	tagtgctatt	gaggatttgc	tatttgacaa	agtcactata	2700
gctgatcctg	gttatatgca	aggttacgat	gattgcatgc	agcaaggtcc	agcatcagct	2760
cgtgatctta	tttgtgctca	atatgtggct	ggttacaaag	tattacctcc	tcttatggat	2820
gttaatatgg	aagccgcgta	tacttcatct	ttgcttggca	gcatagcagg	tgttggctgg	2880
actgctggct	tatcctcctt	tgctgctatt	ccatttgcac	agagtatett	ttataggtta	2940
aacggtgttg	gcattactca	acaggttctt	tcagagaacc	aaaagcttat	tgccaataag	3000
tttaatcagg	ctctgggagc	tatgcaaaca	ggcttcacta	caactaatga	agcttttcag	3060
aaggttcagg	atgctgtgaa	caacaatgca	caggetetat	ccaaattagc	tagcgagcta	3120
tctaatactt	ttggtgctat	ttccgcctct	attggagaca	tcatacaacg	tcttgatgtt	3180
ctcgaacagg	acgcccaaat	agacagactt	attaatggcc	gtttgacaac	actaaatgct	3240
tttgttgcac	agcagcttgt	tegtteegaa	tcagctgctc	tttccgctca	attggctaaa	3300
gataaagtca	atgagtgtgt	caaggcacaa	tccaagcgtt	ctggattttg	cggtcaaggc	3360
acacatatag	tgtcctttgt	tgtaaatgcc	cctaatggcc	tttacttcat	gcatgttggt	3420
tattacccta	gcaaccacat	tgaggttgtt	tctgcttatg	gtctttgcga	tgcagctaac	3480
cctactaatt	gtatagcccc	tgttaatggc	tactttatta	aaactaataa	cactaggatt	3540
gttgatgagt	ggtcatatac	tggctcgtcc	ttctatgcac	ctgagcccat	tacctccctt	3600
aatactaagt	atgttgcacc	acaggtgaca	taccaaaaca	tttctactaa	cctccctcct	3660
cctcttctcg	gcaattccac	cgggattgac	ttccaagatg	agttggatga	gtttttcaaa	3720
aatgttagca	ccagtatacc	taattttggt	tccctaacac	agattaatac	tacattactc	3780
gatettaeet	acgagatgtt	gtctcttcaa	caagttgtta	aagcccttaa	tgagtcttac	3840

-concinued	
atagacctta aagagcttgg caattatact tattacaaca aatggccgtg gtacatttgg	3900
cttggtttca ttgctgggct tgttgcctta gctctatgcg tcttcttcat actgtgctgc	3960
actggttgtg gcacaaactg tatgggaaaa cttaagtgta atcgttgttg tgatagatac	4020
gaggaatacg acctcgagcc gcataaggtt catgttcact aa	4062
<210> SEQ ID NO 22 <211> LENGTH: 1845 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 22	
atgatccact ccgtgttcct cctcatgttc ctgttgaccc ccactgagtc agactgcaag	60
etceegetgg gacagteeet gtgtgegetg cetgacaete etageaetet gaceecaege	120
teegtgeggt eggtgeetgg egaaatgegg etggeeteea tegeetteaa teacceaate	180
caagtggate agetgaatag etegtattte aagetgteea teeccaegaa ettetegtte	240
ggggtcaccc aggagtacat ccagaccaca attcagaagg tcaccgtcga ttgcaagcaa	300
tacgtgtgca acggetteca gaagtgcgag cagetgetga gagaatacgg gcagttttge	360
agcaagatca accaggogot goatggagot aacttgogoo aggacgacto ogtgogoaac	420
ctctttgcct ctgtgaagtc atcccagtcc tccccaatca tcccgggatt cggaggggac	480
ttcaacctga ccctcctgga gcccgtgtcg atcagcaccg gtagcagatc ggcgcgctca	540
gccattgaag atcttctgtt cgacaaggtc accatcgccg atccgggcta catgcaggga	600
tacgacgact gtatgcagca gggaccagcc tccgcgaggg acctcatctg cgcgcaatac	660
gtggccgggt acaaagtgct gcctcctctg atggatgtga acatggaggc cgcttatact	720
tegtecetge teggetetat egeeggegtg gggtggaeeg eeggeetgte eteettegee	780
gctatcccct ttgcacaatc cattttctac cggctcaacg gcgtgggcat tactcaacaa	840
gtcctgtcgg agaaccagaa gttgatcgca aacaagttca atcaggccct gggggccatg	900
cagactggat tcactacgac taacgaagcg ttccagaagg tccaggacgc tgtgaacaac	960
aacgcccagg cgctctcaaa gctggcctcc gaactcagca acaccttcgg agccatcagc	1020
gcatcgatcg gtgacataat tcagcggctg gacgtgctgg agcaggacgc ccagatcgac	1080
egecteatea aeggaegget gaccacettg aatgeetteg tggcacaaca getggteegg	1140
agcgaatcag cggcactttc cgcccaactc gccaaggaca aagtcaacga atgcgtgaag	1200
gcccagtcca agaggtccgg tttctgcggt caaggaaccc atattgtgtc cttcgtcgtg	1260
aacgcgccca acggtctgta ctttatgcac gtcggctact acccgagcaa tcatatcgaa	1320
gtggtgtccg cctacggcct gtgcgatgcc gctaacccca ctaactgtat tgcccctgtg	1380
aacggatatt ttattaagac caacaacacc cgcattgtgg acgaatggtc atacaccggt	1440
togtoottot acgogocoga goocatoact toactgaaca ccaaatacgt ggotoogcaa	1500
gtgacctacc agaacatete caccaatttg eegeegeege tgeteggaaa eageacegga	1560
attgatttcc aagatgaact ggacgaattc ttcaagaacg tgtccacttc cattcccaac	1620
ttcggaagcc tgacacagat caacaccacc cttctcgacc tgacctacga gatgctgagc	1680
cttcaacaag tggtcaaggc cctgaacgag agctacatcg acctgaagga gctgggcaac	1740
tatacetact acaacaagtg geoggacaag attgaggaga ttetgtegaa aatetaceae	1800
attgaaaacg agatcgccag aatcaagaag cttatcggcg aagcc	1845

<210> SEQ ID NO 23
<211> LENGTH: 4071
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Polynucleotide

<400> SEQUENCE: 23

atggaaaccc	ctgcccagct	gctgttcctg	ctgctgctgt	ggctgcctga	taccaccggc	60
agctatgtgg	acgtgggccc	cgatagcgtg	aagtccgcct	gtatcgaagt	ggacatccag	120
cagacctttt	tcgacaagac	ctggcccaga	cccatcgacg	tgtccaaggc	cgacggcatc	180
atctatccac	aaggccggac	ctacagcaac	atcaccatta	cctaccaggg	cctgttccca	240
tatcaaggcg	accacggcga	tatgtacgtg	tactctgccg	gccacgccac	cggcaccaca	300
ccccagaaac	tgttcgtggc	caactacagc	caggacgtga	agcagttcgc	caacggcttc	360
gtcgtgcgga	ttggcgccgc	tgccaatagc	accggcacag	tgatcatcag	ccccagcacc	420
agcgccacca	tccggaagat	ctaccccgcc	ttcatgctgg	gcagctccgt	gggcaatttc	480
agcgacggca	agatgggccg	gttcttcaac	cacaccctgg	tgctgctgcc	cgatggctgt	540
ggcacactgc	tgagagcctt	ctactgcatc	ctggaaccca	gaagcggcaa	ccactgccct	600
gccggcaata	gctacaccag	cttcgccacc	taccacacac	ccgccaccga	ttgctccgac	660
ggcaactaca	accggaacgc	cagcctgaac	agcttcaaag	agtacttcaa	cctgcggaac	720
tgcaccttca	tgtacaccta	caatatcacc	gaggacgaga	tcctggaatg	gttcggcatc	780
acccagaccg	cccagggcgt	gcacctgttc	agcagcagat	acgtggacct	gtacggcggc	840
aacatgttcc	agtttgccac	cctgcccgtg	tacgacacca	tcaagtacta	cagcatcatc	900
ccccacagca	teeggteeat	ccagagcgac	agaaaagcct	gggccgcctt	ctacgtgtac	960
aagctgcagc	ccctgacctt	cctgctggac	ttcagcgtgg	acggctacat	cagacgggcc	1020
atcgactgcg	gcttcaacga	cctgagccag	ctgcactgct	cctacgagag	cttcgacgtg	1080
gaaagcggcg	tgtacagcgt	gtccagcttc	gaggccaagc	ctagcggcag	cgtggtggaa	1140
caggetgagg	gcgtggaatg	cgacttcagc	cctctgctga	geggeaeeee	tececaggtg	1200
tacaacttca	ageggetggt	gttcaccaac	tgcaattaca	acctgaccaa	gctgctgagc	1260
ctgttctccg	tgaacgactt	cacctgtagc	cagatcagcc	ctgccgccat	tgccagcaac	1320
tgctacagca	gcctgatcct	ggactacttc	agctaccccc	tgagcatgaa	gtccgatctg	1380
agegtgteet	ccgccggacc	catcagccag	ttcaactaca	agcagagctt	cagcaaccct	1440
acctgcctga	ttctggccac	cgtgccccac	aatctgacca	ccatcaccaa	gcccctgaag	1500
tacagctaca	tcaacaagtg	cagcagactg	ctgtccgacg	accggaccga	agtgccccag	1560
ctcgtgaacg	ccaaccagta	cagcccctgc	gtgtccatcg	tgcccagcac	cgtgtgggag	1620
gacggcgact	actacagaaa	gcagctgagc	cccctggaag	geggeggatg	gctggtggct	1680
tctggaagca	cagtggccat	gaccgagcag	ctgcagatgg	gctttggcat	caccgtgcag	1740
tacggcaccg	acaccaacag	cgtgtgcccc	aagctggaat	tcgccaatga	caccaagatc	1800
gccagccagc	tgggaaactg	cgtggaatac	tccctgtatg	gcgtgtccgg	acggggcgtg	1860
ttccagaatt	gcacagcagt	gggagtgcgg	cagcagagat	tcgtgtacga	tgcctaccag	1920
aacctcgtgg	gctactacag	cgacgacggc	aattactact	gcctgcgggc	ctgtgtgtcc	1980
gtgcccgtgt	ccgtgatcta	cgacaaagag	acaaagaccc	acgccacact	gttcggctcc	2040

```
gtggcctgcg agcacatcag ctccaccatg agccagtact cccgctccac ccggtccatg
                                                                    2100
ctgaagcgga gagatagcac ctacggcccc ctgcagacac ctgtgggatg tgtgctgggc
                                                                    2160
ctcgtgaaca gctccctgtt tgtggaagat tgcaagctgc ccctgggcca gagcctgtgt
                                                                    2220
gecetgecag ataccectag caccetgace ectagaageg tgegetetgt geceggegaa
                                                                    2280
atgeggetgg cetetatege etteaateae eccateeagg tggaceaget gaacteeage
                                                                    2340
tacttcaagc tgagcatccc caccaacttc agcttcggcg tgacccagga gtacatccag
                                                                    2400
accacaatcc agaaagtgac cgtggactgc aagcagtacg tgtgcaacgg ctttcagaag
                                                                    2460
tgcgaacagc tgctgcgcga gtacggccag ttctgcagca agatcaacca ggccctgcac
                                                                    2520
ggcgccaacc tgagacagga tgacagcgtg cggaacctgt tcgccagcgt gaaaagcagc
                                                                    2580
cagtocagec ccatcatece tggcttegge ggegaettta acetgaecet getggaacet
gtgtccatca gcaccggctc cagaagcgcc agatccgcca tcgaggacct gctgttcgac
                                                                    2700
aaaqtqacca ttqccqaccc cqqctacatq caqqqctacq acqattqcat qcaqcaqqqc
                                                                    2760
ccaqccaqcq ccaqqqatct qatctqtqcc caqtatqtqq ccqqctacaa qqtqctqccc
                                                                    2820
                                                                    2880
cccctgatgg acgtgaacat ggaagccgcc tacacctcca gcctgctggg ctctattgct
ggcgtgggat ggacagccgg cctgtctagc tttgccgcca tccctttcgc ccagagcatc
                                                                    2940
ttctaccggc tgaacggcgt gggcatcaca caacaggtgc tgagcgagaa ccagaagctg
                                                                    3000
atogocaaca agtttaacca ggcactgggc gccatgcaga coggettcac caccaccaac
                                                                    3060
                                                                    3120
qaqqccttca qaaaqqtqca qqacqccqtq aacaacaacq cccaqqctct qaqcaaqctq
                                                                    3180
gcctccgagc tgagcaatac cttcggcgcc atcagcgcct ccatcggcga catcatccag
cggctggacg tgctggaaca ggacgcccag atcgaccggc tgatcaacgg cagactgacc
                                                                    3240
accetgaacg cettegtgge acageagete gtgeggageg aatetgeege tetgtetget
                                                                    3300
cagetggeca aggacaaagt gaacgagtge gtgaaggeee agtecaageg gageggettt
                                                                    3360
tgtggccagg gcacccacat cgtgtccttc gtcgtgaatg cccccaacgg cctgtacttt
                                                                    3420
atgcacgtgg gctattaccc cagcaaccac atcgaggtgg tgtccgccta tggcctgtgc
                                                                    3480
gacgccgcca atcctaccaa ctgtatcgcc cccgtgaacg gctacttcat caagaccaac
                                                                    3540
aacacccgga tcgtggacga gtggtcctac acaggcagca gcttctacgc ccccgagccc
                                                                    3600
atcacetece tgaacaceaa atacgtggee eeccaagtga cataceagaa cateteeace
                                                                    3660
aacctgcccc ctccactgct gggaaattcc accggcatcg acttccagga cgagctggac
                                                                    3720
gagttettea agaaegtgte caectecate eccaaetteg geageetgae ecagateaae
                                                                    3780
accactctgc tggacctgac ctacgagatg ctgtccctgc aacaggtcgt gaaagccctg
                                                                    3840
aacgagagct acategacct gaaagagctg gggaactaca cctactacaa caagtggcct
tggtacattt ggctgggctt tatcgccggc ctggtggccc tggccctgtg cgtgttcttc
                                                                    3960
atcctqtqct qcaccqqctq cqqcaccaat tqcatqqqca aqctqaaatq caaccqqtqc
                                                                    4020
tgcgacagat acgaggaata cgacctggaa cctcacaaag tgcatgtgca c
                                                                    4071
```

```
<210> SEQ ID NO 24
```

<211> LENGTH: 1353

<212> TYPE: PRT

<213> ORGANISM: Unknown

<220> FEATURE:

<223> OTHER INFORMATION: Middle East respiratory syndrome coronavirus

<400> SEQUENCE: 24

1				5					10					15	
Ser	Tyr	Val	Asp 20	Val	Gly	Pro	Asp	Ser 25	Val	ГÀа	Ser	Ala	30 CAa	Ile	Glu
Val	Asp	Ile 35	Gln	Gln	Thr	Phe	Phe 40	Asp	Lys	Thr	Trp	Pro 45	Arg	Pro	Ile
Asp	Val 50	Ser	Lys	Ala	Asp	Gly 55	Ile	Ile	Tyr	Pro	Gln 60	Gly	Arg	Thr	Tyr
Ser 65	Asn	Ile	Thr	Ile	Thr 70	Tyr	Gln	Gly	Leu	Phe 75	Pro	Tyr	Gln	Gly	Asp 80
His	Gly	Asp	Met	Tyr 85	Val	Tyr	Ser	Ala	Gly 90	His	Ala	Thr	Gly	Thr 95	Thr
Pro	Gln	Lys	Leu 100	Phe	Val	Ala	Asn	Tyr 105	Ser	Gln	Asp	Val	Lys 110	Gln	Phe
Ala	Asn	Gly 115	Phe	Val	Val	Arg	Ile 120	Gly	Ala	Ala	Ala	Asn 125	Ser	Thr	Gly
Thr	Val 130	Ile	Ile	Ser	Pro	Ser 135	Thr	Ser	Ala	Thr	Ile 140	Arg	Lys	Ile	Tyr
Pro 145	Ala	Phe	Met	Leu	Gly 150	Ser	Ser	Val	Gly	Asn 155	Phe	Ser	Asp	Gly	Lys 160
Met	Gly	Arg	Phe	Phe 165	Asn	His	Thr	Leu	Val 170	Leu	Leu	Pro	Asp	Gly 175	CÀa
Gly	Thr	Leu	Leu 180	Arg	Ala	Phe	Tyr	Cys 185	Ile	Leu	Glu	Pro	Arg 190	Ser	Gly
Asn	His	Cys 195	Pro	Ala	Gly	Asn	Ser 200	Tyr	Thr	Ser	Phe	Ala 205	Thr	Tyr	His
Thr	Pro 210	Ala	Thr	Asp	CAa	Ser 215	Asp	Gly	Asn	Tyr	Asn 220	Arg	Asn	Ala	Ser
Leu 225	Asn	Ser	Phe	Lys	Glu 230	Tyr	Phe	Asn	Leu	Arg 235	Asn	Cys	Thr	Phe	Met 240
Tyr	Thr	Tyr	Asn	Ile 245	Thr	Glu	Asp	Glu	Ile 250	Leu	Glu	Trp	Phe	Gly 255	Ile
Thr	Gln	Thr	Ala 260	Gln	Gly	Val	His	Leu 265	Phe	Ser	Ser	Arg	Tyr 270	Val	Asp
Leu	Tyr	Gly 275	Gly	Asn	Met	Phe	Gln 280	Phe	Ala	Thr	Leu	Pro 285	Val	Tyr	Asp
Thr	Ile 290	ГÀз	Tyr	Tyr	Ser	Ile 295	Ile	Pro	His	Ser	Ile 300	Arg	Ser	Ile	Gln
Ser 305	Asp	Arg	Lys	Ala	Trp 310	Ala	Ala	Phe	Tyr	Val 315	Tyr	ГÀа	Leu	Gln	Pro 320
Leu	Thr	Phe	Leu	Leu 325	Asp	Phe	Ser	Val	Asp 330	Gly	Tyr	Ile	Arg	Arg 335	Ala
Ile	Asp	CÀa	Gly 340	Phe	Asn	Asp	Leu	Ser 345	Gln	Leu	His	CÀa	Ser 350	Tyr	Glu
Ser	Phe	Asp 355	Val	Glu	Ser	Gly	Val 360	Tyr	Ser	Val	Ser	Ser 365	Phe	Glu	Ala
Lys	Pro 370	Ser	Gly	Ser	Val	Val 375	Glu	Gln	Ala	Glu	Gly 380	Val	Glu	Cha	Asp
Phe 385	Ser	Pro	Leu	Leu	Ser 390	Gly	Thr	Pro	Pro	Gln 395	Val	Tyr	Asn	Phe	Lys 400
Arg	Leu	Val	Phe	Thr 405	Asn	Cys	Asn	Tyr	Asn 410	Leu	Thr	Lys	Leu	Leu 415	Ser
Leu	Phe	Ser	Val 420	Asn	Asp	Phe	Thr	Cys 425	Ser	Gln	Ile	Ser	Pro 430	Ala	Ala

Ile	Ala	Ser 435	Asn	Cys	Tyr	Ser	Ser 440	Leu	Ile	Leu	Asp	Tyr 445	Phe	Ser	Tyr
Pro	Leu 450	Ser	Met	Lys	Ser	Asp 455	Leu	Ser	Val	Ser	Ser 460	Ala	Gly	Pro	Ile
Ser 465	Gln	Phe	Asn	Tyr	Lys 470	Gln	Ser	Phe	Ser	Asn 475	Pro	Thr	Сла	Leu	Ile 480
Leu	Ala	Thr	Val	Pro 485	His	Asn	Leu	Thr	Thr 490	Ile	Thr	Lys	Pro	Leu 495	Lys
Tyr	Ser	Tyr	Ile 500	Asn	ГÀа	Cys	Ser	Arg 505	Leu	Leu	Ser	Asp	Asp 510	Arg	Thr
Glu	Val	Pro 515	Gln	Leu	Val	Asn	Ala 520	Asn	Gln	Tyr	Ser	Pro 525	CAa	Val	Ser
Ile	Val 530	Pro	Ser	Thr	Val	Trp 535	Glu	Asp	Gly	Asp	Tyr 540	Tyr	Arg	Lys	Gln
Leu 545	Ser	Pro	Leu	Glu	Gly 550	Gly	Gly	Trp	Leu	Val 555	Ala	Ser	Gly	Ser	Thr 560
Val	Ala	Met	Thr	Glu 565	Gln	Leu	Gln	Met	Gly 570	Phe	Gly	Ile	Thr	Val 575	Gln
Tyr	Gly	Thr	Asp 580	Thr	Asn	Ser	Val	Cys	Pro	Lys	Leu	Glu	Phe 590	Ala	Asn
Asp	Thr	Lys 595	Ile	Ala	Ser	Gln	Leu 600	Gly	Asn	Cys	Val	Glu 605	Tyr	Ser	Leu
Tyr	Gly 610	Val	Ser	Gly	Arg	Gly 615	Val	Phe	Gln	Asn	Cys 620	Thr	Ala	Val	Gly
Val 625	Arg	Gln	Gln	Arg	Phe 630	Val	Tyr	Asp	Ala	Tyr 635	Gln	Asn	Leu	Val	Gly 640
Tyr	Tyr	Ser	Asp	Asp 645	Gly	Asn	Tyr	Tyr	Сув 650	Leu	Arg	Ala	Cys	Val 655	Ser
Val	Pro	Val	Ser 660	Val	Ile	Tyr	Asp	Lys 665	Glu	Thr	Lys	Thr	His 670	Ala	Thr
Leu	Phe	Gly 675	Ser	Val	Ala	Cys	Glu 680	His	Ile	Ser	Ser	Thr 685	Met	Ser	Gln
Tyr	Ser 690	Arg	Ser	Thr	Arg	Ser 695	Met	Leu	Lys	Arg	Arg 700	Asp	Ser	Thr	Tyr
Gly 705	Pro	Leu	Gln	Thr	Pro 710	Val	Gly	Cys	Val	Leu 715	Gly	Leu	Val	Asn	Ser 720
Ser	Leu	Phe	Val	Glu 725		CAa	Lys	Leu	Pro 730		Gly	Gln	Ser	Leu 735	
Ala	Leu	Pro	Asp 740	Thr	Pro	Ser	Thr	Leu 745	Thr	Pro	Arg	Ser	Val 750	Arg	Ser
Val	Pro	Gly 755	Glu	Met	Arg	Leu	Ala 760	Ser	Ile	Ala	Phe	Asn 765	His	Pro	Ile
Gln	Val 770	Asp	Gln	Leu	Asn	Ser 775	Ser	Tyr	Phe	Lys	Leu 780	Ser	Ile	Pro	Thr
Asn 785	Phe	Ser	Phe	Gly	Val 790	Thr	Gln	Glu	Tyr	Ile 795	Gln	Thr	Thr	Ile	Gln 800
ГÀа	Val	Thr	Val	Asp 805	CÀa	Lys	Gln	Tyr	Val 810	Сла	Asn	Gly	Phe	Gln 815	Lys
Сув	Glu	Gln	Leu 820	Leu	Arg	Glu	Tyr	Gly 825	Gln	Phe	Cys	Ser	Lys 830	Ile	Asn
Gln	Ala	Leu 835	His	Gly	Ala	Asn	Leu 840	Arg	Gln	Asp	Asp	Ser 845	Val	Arg	Asn

-continue

Leu	Phe 850	Ala	Ser	Val	Lys	Ser 855	Ser	Gln	Ser	Ser	Pro 860		: Ile	Pro	Gly	
Phe 865	Gly	Gly	Asp	Phe	Asn 870	Leu	Thr	Leu	Leu	Glu 875	Pro	Val	. Sei	: Ile	Ser 880	
Thr	Gly	Ser	Arg	Ser 885	Ala	Arg	Ser	Ala	Ile 890	Glu	Asp	Leu	. Lev	Phe 895	-	
Lys	Val	Thr	Ile 900	Ala	Asp	Pro	Gly	Tyr 905	Met	Gln	Gly	Туг	Asp 910	_	Cys	
Met	Gln	Gln 915	Gly	Pro	Ala	Ser	Ala 920	Arg	Asp	Leu	Ile	925		a Gln	Tyr	
Val	Ala 930	Gly	Tyr	Lys	Val	Leu 935	Pro	Pro	Leu	Met	Asp 940		. Asr	n Met	Glu	
Ala 945	Ala	Tyr	Thr	Ser	Ser 950	Leu	Leu	Gly	Ser	Ile 955	Ala	Gly	Va]	. Gly	Trp 960	
Thr	Ala	Gly	Leu	Ser 965	Ser	Phe	Ala	Ala	Ile 970	Pro	Phe	Ala	Glr	975		
Phe	Tyr	Arg	Leu 980	Asn	Gly	Val	Gly	Ile 985	Thr	Gln	Gln	ı Val	. Leu 990		Glu	
Asn	Gln	Lys 995	Leu	Ile	Ala	Asn	Lys 1000		e Ası	n Gl	n Al		u (Sly A	la Met	
Gln	Thr 1010	-	Phe	e Thr	Thr	Thr 101		en G	lu A	la Pi		rg .020	Lys	Val	Gln	
Asp	Ala 1025		. Asr	n Asr	a Asn	103		ln A	la L	eu S		ys .035	Leu	Ala	Ser	
Glu	Leu 1040		: Asr	n Thr	Phe	Gly 104		la I	le S	er A		er .050	Ile	Gly	Asp	
Ile	Ile 1055		a Arg	g Leu	ı Asp	Val 106		eu G	lu G	ln A		la .065	Gln	Ile	Asp	
Arg	Leu 1070		e Asr	n Gly	/ Arg	Leu 107		nr Tl	nr Le	eu A		la .080	Phe	Val	Ala	
Gln	Gln 1085		ı Val	l Arg	g Ser	Glu 109		er A	la A	la L		er .095	Ala	Gln	Leu	
Ala	Lys 1100		Lys	val	. Asn	Glu 110		∕a V	al L	ys A		ln 110	Ser	ГÀа	Arg	
Ser	Gly 1115		е Суя	Gly	/ Gln	Gly 112		nr H	is I	le V		er 125	Phe	Val	Val	
Asn	Ala 1130		Asr	n Gly	/ Leu	. Tyr 113		ne Me	et H	is V		ly .140	Tyr	Tyr	Pro	
Ser	Asn 1145		; Ile	e Glu	ı Val	Val 115		er A	la T	yr G		eu .155	Cys	Asp	Ala	
Ala	Asn 1160		Thi	Asr	n Cys	116 116		La P:	ro V	al A		1y .170	Tyr	Phe	Ile	
Lys	Thr 1175		ı Asr	n Thr	Arg	11e		al A	ap G	lu T		er 185	Tyr	Thr	Gly	
Ser	Ser 1190		ту1	Ala	Pro	Glu 119		ro I	le Tl	nr S		eu .200	Asn	Thr	Lys	
Tyr	Val 1205		Pro	Glr	ı Val	Thr 121		yr G	ln A	en I		er .215	Thr	Asn	Leu	
Pro	Pro 1220		Let	ı Lev	ı Gly	Asr		er Tl	nr G	ly I		sp .230	Phe	Gln	Asp	
Glu	Leu 1235	_	Glu	ı Phe	Phe	Lys 124		en V	al S	∍r Tl		er .245	Ile	Pro	Asn	
Phe	Gly	Ser	: Let	ı Thr	Gln	ıIl∈	e As	≅n Tl	nr Tl	nr L	eu L	ieu	Asp	Leu	Thr	

												COII	L III	lued	
	1250)				125	55				1	260			
Tyr	Glu 1265		. Le	ı Sei	. Leu	1 Gl1 12		ln Va	al Va	al L	•	la 275	Leu	Asn	Glu
Ser	Tyr 1280		e Ası	Let	ı Lys	Gl: 128		eu G	ly A	sn T		hr 290	Tyr	Tyr	Asn
Lys	Trp 1295		o Trp	туз	: Ile	Trp		eu G	ly Pl	ne I		la 305	Gly	Leu	Val
Ala	Leu 1310		a Let	ı Cys	val	131		ne I	le L	eu C		ys 320	Thr	Gly	Cys
Gly	Thr 1325		n Cys	s Met	Gl _y	/ Lys		eu Ly	ys C	ys A		rg 335	Cys	CÀa	Asp
Arg	Tyr 1340		ı Glu	а Туг	r Asp	Le:		lu Pi	ro H	is L		al 350	His	Val	His
<211 <212 <213 <220	L> LE 2> T\ 3> OF 0> FE	ENGTI PE: RGAN: EATUI	ISM: RE:	353 Art:	ifici		-		Polyj	pept	ide				
< 400)> SE	EQUE	ICE :	25											
Met 1	Ile	His	Ser	Val 5	Phe	Leu	Leu	Met	Phe 10	Leu	Leu	Thr	Pro	Thr 15	Glu
Ser	Tyr	Val	Asp 20	Val	Gly	Pro	Asp	Ser 25	Val	Lys	Ser	Ala	Суs 30	: Ile	Glu
Val	Asp	Ile 35	Gln	Gln	Thr	Phe	Phe 40	Asp	Lys	Thr	Trp	Pro 45	Arg	pro	Ile
Asp	Val 50	Ser	ГÀв	Ala	Asp	Gly 55	Ile	Ile	Tyr	Pro	Gln 60	Gly	Arg	f Thr	Tyr
Ser 65	Asn	Ile	Thr	Ile	Thr 70	Tyr	Gln	Gly	Leu	Phe 75	Pro	Tyr	Gln	Gly	80
His	Gly	Asp	Met	Tyr 85	Val	Tyr	Ser	Ala	Gly 90	His	Ala	Thr	Gly	Thr 95	Thr
Pro	Gln	Lys	Leu 100	Phe	Val	Ala	Asn	Tyr 105	Ser	Gln	Asp	Val	Lys 110		Phe
Ala	Asn	Gly 115	Phe	Val	Val	Arg	Ile 120	Gly	Ala	Ala	Ala	Asn 125	Ser	Thr	Gly
Thr	Val 130	Ile	Ile	Ser	Pro	Ser 135	Thr	Ser	Ala	Thr	Ile 140		Lys	: Ile	Tyr
Pro 145	Ala	Phe	Met	Leu	Gly 150	Ser	Ser	Val	Gly	Asn 155	Phe	Ser	Asp	Gly	Lys 160
Met	Gly	Arg	Phe	Phe 165	Asn	His	Thr	Leu	Val 170	Leu	Leu	Pro	Asp	Gly 175	Cys
Gly	Thr	Leu	Leu 180	Arg	Ala	Phe	Tyr	Cys 185	Ile	Leu	Glu	Pro	Arg		Gly
Asn	His	Cys 195	Pro	Ala	Gly	Asn	Ser 200	Tyr	Thr	Ser	Phe	Ala 205		Tyr	His
Thr	Pro 210	Ala	Thr	Asp	Cys	Ser 215	Asp	Gly	Asn	Tyr	Asn 220		Asn	n Ala	Ser
Leu 225	Asn	Ser	Phe	Lys	Glu 230	Tyr	Phe	Asn	Leu	Arg 235	Asn	CAa	Thr	Phe	Met 240
Tyr	Thr	Tyr	Asn	Ile 245	Thr	Glu	Asp	Glu	Ile 250	Leu	Glu	Trp	Phe	Gly 255	Ile
Thr	Gln	Thr	Ala	Gln	Gly	Val	His	Leu	Phe	Ser	Ser	Arg	Tyr	· Val	Asp

													C III	aca	
			260					265					270		
Leu	Tyr	Gly 275	Gly	Asn	Met	Phe	Gln 280	Phe	Ala	Thr	Leu	Pro 285	Val	Tyr	Asp
Thr	Ile 290	Lys	Tyr	Tyr	Ser	Ile 295	Ile	Pro	His	Ser	Ile 300	Arg	Ser	Ile	Gln
Ser 305	Asp	Arg	Lys	Ala	Trp 310	Ala	Ala	Phe	Tyr	Val 315	Tyr	Lys	Leu	Gln	Pro 320
Leu	Thr	Phe	Leu	Leu 325	Asp	Phe	Ser	Val	Asp 330	Gly	Tyr	Ile	Arg	Arg 335	Ala
Ile	Asp	Cys	Gly 340	Phe	Asn	Asp	Leu	Ser 345	Gln	Leu	His	CAa	Ser 350	Tyr	Glu
Ser	Phe	Asp 355	Val	Glu	Ser	Gly	Val 360	Tyr	Ser	Val	Ser	Ser 365	Phe	Glu	Ala
Lys	Pro 370	Ser	Gly	Ser	Val	Val 375	Glu	Gln	Ala	Glu	Gly 380	Val	Glu	Сув	Asp
Phe 385	Ser	Pro	Leu	Leu	Ser 390	Gly	Thr	Pro	Pro	Gln 395	Val	Tyr	Asn	Phe	Lys 400
Arg	Leu	Val	Phe	Thr 405	Asn	CÀa	Asn	Tyr	Asn 410	Leu	Thr	Lys	Leu	Leu 415	Ser
Leu	Phe	Ser	Val 420	Asn	Asp	Phe	Thr	Сув 425	Ser	Gln	Ile	Ser	Pro 430	Ala	Ala
Ile	Ala	Ser 435	Asn	CÀa	Tyr	Ser	Ser 440	Leu	Ile	Leu	Asp	Tyr 445	Phe	Ser	Tyr
Pro	Leu 450	Ser	Met	ГÀв	Ser	Asp 455	Leu	Ser	Val	Ser	Ser 460	Ala	Gly	Pro	Ile
Ser 465	Gln	Phe	Asn	Tyr	Lys 470	Gln	Ser	Phe	Ser	Asn 475	Pro	Thr	Cha	Leu	Ile 480
Leu	Ala	Thr	Val	Pro 485	His	Asn	Leu	Thr	Thr 490	Ile	Thr	ГÀЗ	Pro	Leu 495	Lys
Tyr	Ser	Tyr	Ile 500	Asn	rys	CAa	Ser	Arg 505	Leu	Leu	Ser	Asp	Asp 510	Arg	Thr
Glu	Val	Pro 515	Gln	Leu	Val	Asn	Ala 520	Asn	Gln	Tyr	Ser	Pro 525	Cha	Val	Ser
Ile	Val 530	Pro	Ser	Thr	Val	Trp 535	Glu	Asp	Gly	Asp	Tyr 540	Tyr	Arg	Lys	Gln
Leu 545	Ser	Pro	Leu	Glu	Gly 550		Gly		Leu	Val 555		Ser	Gly	Ser	Thr 560
Val	Ala	Met	Thr	Glu 565	Gln	Leu	Gln	Met	Gly 570	Phe	Gly	Ile	Thr	Val 575	Gln
Tyr	Gly	Thr	Asp 580	Thr	Asn	Ser	Val	Сув 585	Pro	Lys	Leu	Glu	Phe 590	Ala	Asn
Asp	Thr	Lys 595	Ile	Ala	Ser	Gln	Leu 600	Gly	Asn	CAa	Val	Glu 605	Tyr	Ser	Leu
Tyr	Gly 610	Val	Ser	Gly	Arg	Gly 615	Val	Phe	Gln	Asn	Сув 620	Thr	Ala	Val	Gly
Val 625	Arg	Gln	Gln	Arg	Phe 630	Val	Tyr	Asp	Ala	Tyr 635	Gln	Asn	Leu	Val	Gly 640
Tyr	Tyr	Ser	Asp	Asp 645	Gly	Asn	Tyr	Tyr	Сув 650	Leu	Arg	Ala	СЛа	Val 655	Ser
Val	Pro	Val	Ser 660	Val	Ile	Tyr	Asp	Lys 665	Glu	Thr	ГÀа	Thr	His 670	Ala	Thr
Leu	Phe	Gly 675	Ser	Val	Ala	Cys	Glu 680	His	Ile	Ser	Ser	Thr 685	Met	Ser	Gln

Ser 690	Arg	Ser	Thr	Arg	Ser 695	Met	Leu	Lys	Arg	Arg 700	Asp	Ser	Thr	Tyr
Pro	Leu	Gln	Thr	Pro 710	Val	Gly	Cha	Val	Leu 715	Gly	Leu	Val	Asn	Ser 720
Leu	Phe	Val	Glu 725	Asp	CÀa	Lys	Leu	Pro 730	Leu	Gly	Gln	Ser	Leu 735	Cys
Leu	Pro	Asp 740	Thr	Pro	Ser	Thr	Leu 745	Thr	Pro	Arg	Ser	Val 750	Arg	Ser
Pro	Gly 755	Glu	Met	Arg	Leu	Ala 760	Ser	Ile	Ala	Phe			Pro	Ile
Val 770	Asp	Gln	Leu	Asn	Ser 775	Ser	Tyr	Phe	Lys	Leu 780	Ser	Ile	Pro	Thr
Phe	Ser	Phe	Gly	Val 790	Thr	Gln	Glu	Tyr	Ile 795	Gln	Thr	Thr	Ile	Gln 800
Val	Thr	Val	Asp 805	CAa	Lys	Gln	Tyr	Val 810	Cys	Asn	Gly	Phe	Gln 815	Lys
Glu	Gln	Leu 820	Leu	Arg	Glu	Tyr	Gly 825	Gln	Phe	Cys	Ser	Lys	Ile	Asn
Ala	Leu 835	His	Gly	Ala	Asn	Leu 840	Arg	Gln	Asp	Asp			Arg	Asn
Phe 850	Ala	Ser	Val	rya	Ser 855	Ser	Gln	Ser	Ser	Pro 860	Ile	Ile	Pro	Gly
Gly	Gly	Asp	Phe	Asn 870	Leu	Thr	Leu	Leu	Glu 875	Pro	Val	Ser	Ile	Ser 880
Gly	Ser	Arg	Ser 885	Ala	Arg	Ser	Ala	Ile 890	Glu	Asp	Leu	Leu	Phe 895	Asp
Val	Thr	Ile 900	Ala	Asp	Pro	Gly	Tyr 905	Met	Gln	Gly	Tyr	Asp 910	Asp	Cys
Gln	Gln 915	Gly	Pro	Ala	Ser	Ala 920	Arg	Asp	Leu	Ile			Gln	Tyr
Ala 930	Gly	Tyr	rys	Val	Leu 935	Pro	Pro	Leu	Met	Asp 940	Val	Asn	Met	Glu
Ala	Tyr	Thr	Ser	Ser 950	Leu	Leu	Gly	Ser	Ile 955	Ala	Gly	Val	Gly	Trp 960
Ala	Gly	Leu	Ser 965	Ser	Phe	Ala	Ala	Ile 970	Pro	Phe	Ala	Gln	Ser 975	Ile
Tyr	Arg	Leu 980	Asn	Gly	Val	Gly	Ile 985	Thr	Gln	Gln	Val	Leu 990	Ser	Glu
Gln	Lys 995	Leu	Ile	Ala	Asn			e Asr	n Gli	n Al			ly A	la Met
Thr 1010		Phe	Thr	Thr			en Gl	lu Al	La Pl			Lys 7	Val (Gln
Ala 1025		. Asr	n Asr	n Asn	103		ln Al	la Le	eu Se		035 9	Leu i	Ala :	Ser
	Ser			n Asn	103	30 7 Al				1 la S	035	Leu i		
1025 Leu	Ser Glr	: Asr	n Thr		103 Gly 104	30 / Al 15 L Le		Le Se	er Al	la S 1 sp A	035 er 050		Gly A	Asp
1025 Leu 1040 Ile	Ser Glr	: Asr	n Thr	r Phe	103 Gly 104 Val	30 / Al 15 L Le 50	la Il	le Se	er Al	la S 1 sp A 1	er 050 1a 065	Ile (Gly A	Aap
	690 Pro Leu Leu Pro Val Glu Ala Phe 850 Gly Val Gln Ala Ala Tyr Gln Thr	Pro Leu Leu Phe Leu Pro Pro Gly 755 Val Asp 770 Phe Ser Val Thr Glu Gln Ala Leu 835 Phe Ala 850 Gly Gly Gly Ser Val Thr Gln Gln 915 Ala Gly 930 Ala Tyr Ala Gly Tyr Arg Gln Lys 995	690 Pro Leu Gln Leu Phe Val Leu Pro Asp 740 Pro Gly Glu 755 Val Asp Gln 770 Phe Ser Phe Val Thr Val Glu Gln Leu 820 Ala Leu His 835 Phe Ala Ser 850 Gly Gly Asp Gly Gly Asp Gly Gly Asp Gly Gly Tyr 915 Ala Gly Tyr 930 Ala Gly Tyr Ala Gly Leu Tyr Arg Leu 995 Thr Gly Phe Gly Phe Gly Phe	Pro Leu Gln Thr Leu Phe Val Glu 725 Leu Pro Asp Thr 740 Pro Gly Glu Met 775 Glu Met 775 Gln Leu Phe Ser Phe Gly Val Thr Val Asp 805 Glu Gln Leu Leu 820 Ala Leu His Gly 835 Phe Ala Ser Val 850 Gly Gly Asp Phe Gly Ser Arg Ser 885 Val Thr Ile Ala 900 Gln Gln Gly Pro 915 Ala Gly Tyr Lys 930 Ala Tyr Thr Ser Ala Gly Leu Ser 965 Tyr Arg Leu Asn 980 Gln Lys Leu Ile 995 Thr Gly Phe Thr	690 Fro Leu Gln Thr Pro 710 Leu Phe Val Glu Asp Asp Thr Pro Asp Pro Asp Pro Asp Pro Asp Pro Ala Asp Asp	695 Pro Leu Gln Thr Pro Val 710 Leu Phe Val Glu Asp Cys 725 Leu Pro Asp Thr Pro Ser 740 Pro Gly Glu Met Arg Leu 755 Phe Ser Phe Gly Val Thr 770 Val Thr Val Asp Cys Lys 805 Glu Gln Leu Arg Glu 820 Ala Leu His Gly Ala Asn 835 Phe Ala Ser Val Lys Ser 855 Gly Gly Asp Phe Asn Leu 870 Ala Thr Ile Ala Asp Pro 900 Gln Gln Gly Pro Ala Ser 915 Ala Gly Leu Ser Ser Leu 930 Ala Gly Leu Ser Ser Phe 965 Tyr Arg Leu Asn Gly Val 995 Thr Gly Phe Thr Thr Thr	690 695 Pro Leu Gln Thr Pro Val Gly 710 Leu Phe Val Glu Asp Cys Lys 725 Leu Pro Asp Thr Pro Ser Thr 740 Pro Gly Glu Met Arg Leu Ala 755 Phe Ser Phe Gly Val Thr Gln 790 Val Asp Gln Leu Arg Glu Tyr 805 Glu Gln Leu Leu Arg Glu Tyr 820 Ala Leu His Gly Ala Asn Leu 835 Gly Gly Asp Phe Asn Leu Thr 870 Gly Gly Asp Phe Asn Leu Thr 870 Gly Ser Arg Ser Ala Arg Ser 885 Gly Gly Asp Phe Asn Leu Thr 870 Gln Gln Gln Gly Pro Ala Ser Ala 915 Ala Gly Tyr Lys Val Leu Pro 930 Ala Gly Tyr Lys Val Leu Pro 930 Ala Gly Leu Ser Ser Leu Leu 950 Ala Gly Leu Ser Ser Phe Ala 965 Tyr Arg Leu Asn Gly Val Gly 995 Cln Gln Lys Leu Ile Ala Asn Lys 995 Thr Gly Phe Thr Thr Thr As	690 695 Pro Leu Gln Thr Pro Val Gly Cys 710 Leu Phe Val Glu Asp Cys Lys Leu 725 Leu Pro Asp Thr Pro Ser Thr Leu 740 Pro Gly Glu Met Arg Leu Ala Ser 755 Val Asp Gln Leu Asn Ser Ser Tyr 775 Phe Ser Phe Gly Val Thr Gln Glu 790 Val Thr Val Asp Cys Lys Gln Tyr 805 Glu Gln Leu Leu Arg Glu Tyr Gly 820 Ala Leu His Gly Ala Asn Leu Arg 835 Ala Ser Val Lys Ser Ser Gln 855 Gly Gly Asp Phe Asn Leu Thr Leu 870 Gly Gly Asp Phe Asn Leu Thr Leu 885 Gly Gly Asp Phe Asn Leu Thr Leu 885 Gly Gly Asp Phe Asn Leu Thr Leu 870 Gli Gln Gln Gly Pro Ala Ser Ala Arg 905 Ala Gly Tyr Lys Val Leu Pro Pro 935 Ala Tyr Thr Ser Ser Leu Leu Gly 950 Ala Gly Leu Ser Ser Phe Ala Ala Gly Leu Ser Ser Phe Ala Ala Gly Leu Ser Ser Phe Ala Ala Gly Leu Ser Ser Phe Ala Ala Gly Leu Ser Ser Phe Ala Ala Gly Leu Ser Ser Phe Ala Ala Gly Leu Ser Ser Phe Ala Ala Gly Leu Ser Ser Phe Ala Ala Gly Leu Ser Ser Phe Ala Ala Gly Leu Asn Gly Val Gly Ile 980 Gln Lys Leu Ile Ala Asn Lys Phe 1000 Thr Gly Phe Thr Thr Thr Asn G	690 695 Pro Leu Gln Thr Pro Val Gly Cys Val 710 Leu Phe Val Glu Asp Cys Lys Leu Pro 725 Leu Pro Asp Thr Pro Ser Thr Leu Thr 745 Pro Gly Glu Met Arg Leu Ala Ser Ile 760 Val Asp Gln Leu Asn Ser Ser Tyr Phe 775 Phe Ser Phe Gly Val Thr Gln Glu Tyr 790 Val Thr Val Asp Cys Lys Gln Tyr Val 810 Glu Gln Leu Leu Arg Glu Tyr Gly Gln 825 Ala Leu His Gly Ala Asn Leu Arg Gln 825 Ala Leu His Gly Ala Asn Leu Arg Gln Ser 850 Gly Gly Asp Phe Asn Leu Thr Leu Leu 870 Gly Gly Asp Phe Asn Leu Thr Leu Leu 885 Gly Gly Asp Phe Asn Leu Thr Leu Leu 880 Gli Gln Gln Gly Pro Ala Ser Ala Arg Asp 900 Ala Gly Tyr Lys Val Leu Pro Pro Leu 930 Ala Gly Tyr Lys Val Leu Pro Pro Leu 930 Ala Gly Leu Ser Ser Leu Leu Gly Ser 950 Ala Gly Leu Ser Ser Phe Ala Ala Ile 965 Tyr Arg Leu Asn Gly Val Gly Ile Thr 985 Gln Lys Leu Ile Ala Asn Lys Phe Asn 1000 Thr Gly Phe Thr Thr Thr Asn Glu Asn 1000 Thr Gly Phe Thr Thr Thr Asn Glu Asn 1000 Thr Gly Phe Thr Thr Thr Asn Glu Asn 1000	690	690 695 700 Pro Leu Gln Thr Pro Val Gly Cys Val Leu Gly 715 Leu Phe Val Glu Asp Cys Lys Leu Pro Leu Gly 725 Leu Pro Asp Thr Pro Ser Thr Leu Thr Pro Arg 740 Pro Gly Glu Met Arg Leu Ala Ser Ile Ala Phe 755 Val Asp Cys Lys Gln Tyr Phe Lys Leu 770 Phe Ser Phe Gly Val Thr Gln Glu Tyr Ile Gln 790 Val Thr Val Asp Cys Lys Gln Tyr Val Cys Asn 810 Glu Gln Leu Leu Arg Glu Tyr Gly Gln Phe Cys 820 Ala Leu His Gly Ala Asn Leu Arg Gln Asp Asp 835 Gly Gly Asp Phe Asn Leu Thr Leu Glu Pro 870 Gly Gly Asp Phe Asn Leu Thr Leu Glu Pro 870 Gly Ser Arg Ser Ala Arg Ser Ala Ile Glu Asp 885 Val Thr Ile Ala Asp Pro Gly Tyr Met Gln Gly 900 Gln Gln Gly Pro Ala Ser Ala Arg Asp Leu Ile 915 Ala Gly Tyr Lys Val Leu Pro Pro Leu Met Asp 930 Ala Tyr Thr Ser Ser Leu Leu Gly Ser Ile Ala 950 Tyr Arg Leu Asn Gly Val Gly Ile Thr Gln Gln 1985 Tyr Arg Leu Asn Gly Val Gly Ile Thr Gln Gln 1995 Thr Gly Phe Thr Thr Thr Asn Glu Ala Phe G	690 695 700 Pro Leu Gln Thr Pro Val Gly Cys Val Leu Gly Leu 715 Leu Phe Val Glu Asp Cys Lys Leu Pro Leu Gly Gln 725 Leu Pro Asp Thr Pro Ser Thr Leu Thr Pro Arg Ser 740 Pro Gly Glu Met Arg Leu Ala Ser Ile Ala Phe Asn 765 Val Asp Gln Leu Asn Ser Ser Tyr Phe Lys Leu Ser 770 Phe Ser Phe Gly Val Thr Gln Glu Tyr Ile Gln Thr 790 Val Thr Val Asp Cys Lys Gln Tyr Val Cys Asn Gly 805 Glu Gln Leu Leu Arg Glu Tyr Gly Gln Phe Cys Ser 825 Ala Leu His Gly Ala Asn Leu Arg Gln Asp Asp Ser 840 Phe Ala Ser Val Lys Ser Ser Gln Ser Ser Pro Ile 850 Gly Gly Asp Phe Asn Leu Thr Leu Leu Glu Pro Val 870 Gly Ser Arg Ser Ala Arg Ser Ala Ile Glu Asp Leu 885 Val Thr Ile Ala Asp Pro Gly Tyr Met Gln Gly Tyr 900 Gln Gln Gly Pro Ala Ser Ala Arg Asp Leu Ile Cys 915 Ala Gly Tyr Lys Val Leu Pro Pro Leu Met Asp Val 935 Ala Gly Leu Ser Ser Phe Ala Ala Ile Pro Phe Ala 965 Ala Gly Leu Ser Ser Phe Ala Ala Ile Pro Phe Ala 965 Ala Gly Leu Ser Ser Phe Ala Ala Ile Pro Phe Ala 980 Tyr Arg Leu Asn Gly Val Gly Ile Thr Gln Gln Val 985 Gln Lys Leu Ile Ala Asn Lys Phe Asn Gln Ala Le 100 Thr Gly Phe Thr Thr Thr Asn Glu Ala Phe Gln	690 695 700 697 Pro Leu Gln Thr Pro Val Gly Cys Val Leu Gly Leu Val 710 Leu Phe Val Glu Asp Cys Lys Leu Pro Leu Gly Gln Ser 725 Leu Pro Asp Thr Pro Ser Thr Leu Thr Pro Arg Ser Val 740 Pro Gly Glu Met Arg Leu Ala Ser Ile Ala Phe Asn His 765 Val Asp Gln Leu Asn Ser Ser Tyr Phe Lys Leu Ser Ile 770 Phe Ser Phe Gly Val Thr Gln Glu Tyr Ile Gln Thr Thr 790 Val Thr Val Asp Cys Lys Gln Tyr Val Cys Asn Gly Phe 805 Glu Gln Leu Leu Arg Glu Tyr Gly Gln Phe Cys Ser Lys 825 Ala Leu His Gly Ala Asn Leu Arg Gln Asp Asp Ser Val 835 Gly Gly Asp Phe Asn Leu Thr Leu Leu Glu Pro Val Ser 870 Gly Ser Arg Ser Ala Arg Ser Ala Ile Glu Asp Leu Leu 885 Gly Gly Asp Phe Asn Leu Thr Leu Leu Glu Pro Val Ser 875 Gli Gln Gli Gly Pro Ala Ser Ala Arg Asp Leu Ile Cys Ala 915 Ala Gly Tyr Lys Val Leu Pro Pro Leu Met Asp 940 Ala Gly Tyr Lys Val Leu Pro Pro Leu Met Asp Val Asn 930 Ala Cys Cys Leu Leu Gly Ser Ile Ala Gly Val 955 Ala Gly Leu Ser Ser Phe Ala Ala Ile Pro Phe Ala Gln 965 Clu Gli Gly Leu Ser Ser Phe Ala Ala Ile Pro Phe Ala Gln 965 Clu Gly Leu Ser Ser Phe Ala Ala Ile Pro Phe Ala Gln 965 Clu Gly Leu Ser Ser Phe Ala Ala Ile Pro Phe Ala Gln 965 Clu Lys Leu Ile Ala Asn Lys Phe Asn Gln Ala Leu Gly Pro Pro Pro Pro Phe Ala Gln 965 Clu Lys Leu Ile Ala Asn Lys Phe Asn Gln Ala Leu Gly 995 Clu Lys Leu Ile Ala Asn Lys Phe Asn Gln Ala Leu Gly 995 Clu Lys Leu Ile Ala Asn Lys Phe Asn Gln Ala Leu Gly 995 Clu Lys Leu Ile Ala Asn Lys Phe Asn Gln Ala Leu Gly 995 Clu Lys Leu Ile Ala Asn Lys Phe Asn Gln Ala Leu Gly 995 Clu Lys Leu Ile Ala Asn Lys Phe Asn Gln Ala Leu Gly 995 Clu Lys Leu Ile Ala Asn Lys Phe Asn Gln Ala Leu Gly Phe Thr Thr Thr Asn Glu Ala Phe Gln Lys Phe	Pro Leu Gln Thr Pro Val Gly Cys Val Leu Gly Leu Gly Leu Gly Leu Val Asp Cys Lys Leu Pro Leu Gly Gln Ser Leu Pro Arg Gly Asp Thr Pro Ser Thr Leu Thr Pro Arg Ser Val Arg Asp Thr Pro Arg Fro 765 Val Asp Glu Met Arg Leu Ala Ser Thr Pro Arg Ser Val Arg Fro 765 765 765 775

												-001	ILTI	iuec	ı
Ala	Lys 1100		Lys	Val	Asn	Glu 1105		Va	1 I	Jys	Ala	Gln 1110	Ser	Lys	Arg
Ser	Gly 1115		Cys	Gly	Gln	Gly 1120		Hi	s I	[le	Val	Ser 1125	Phe	Val	Val
Asn	Ala 1130		Asn	Gly	Leu	Tyr 1135		e Me	t F	lis	Val	Gly 1140	Tyr	Tyr	Pro
Ser	Asn 1145		Ile	Glu	Val	Val 1150		Al	a T	Гуr	Gly	Leu 1155	Сув	Asp	Ala
Ala	Asn 1160		Thr	Asn	Cys	Ile 1165		ı Pr	7 O	/al	Asn	Gly 1170	Tyr	Phe	Ile
ГÀз	Thr 1175		Asn	Thr	Arg	Ile 1180		. As	pc	3lu	Trp	Ser 1185	Tyr	Thr	Gly
Ser	Ser 1190	Phe	Tyr	Ala	Pro	Glu 1195) Il	e T	Chr	Ser	Leu 1200	Asn	Thr	Lys
Tyr	Val 1205		Pro	Gln	Val	Thr 1210		Gl	n A	Asn	Ile	Ser 1215	Thr	Asn	Leu
Pro	Pro 1220		Leu	Leu	Gly	Asn 1225		Th	ır G	3ly	Ile	Asp 1230	Phe	Gln	Asp
Glu	Leu 1235	_	Glu	Phe	Phe	Lys 1240		ı Va	.1 S	Ser	Thr	Ser 1245	Ile	Pro	Asn
Phe	Gly 1250		Leu	Thr	Gln	Ile 1255		1 Th	ır T	Chr	Leu	Leu 1260	Asp	Leu	Thr
Tyr	Glu 1265		Leu	Ser	Leu	Gln 1270		ı Va	.1 V	/al	Lys	Ala 1275	Leu	Asn	Glu
Ser	Tyr 1280		Asp	Leu	Lys	Glu 1285		ı Gl	y F	Asn	Tyr	Thr 1290	Tyr	Tyr	Asn
ГÀв	Trp 1295		Trp	Tyr	Ile	Trp 1300		ı Gl	y F	Phe	Ile	Ala 1305	Gly	Leu	Val
Ala	Leu 1310		Leu	Cys	Val	Phe 1315		: Il	e I	Leu	Cys	Сув 1320	Thr	Gly	Сув
Gly	Thr 1325		Cys	Met	Gly	Lys		ι Ьу	s (Cys	Asn	Arg 1335	Сув	Cys	Asp
Arg	Tyr 1340		Glu	Tyr	Asp	Leu 1345		ı Pr	o F	lis	Lys	Val 1350	His	Val	His
<211 <212 <213 <220 <223	0> SE L> LE 2> TY 3> OR 0> FE 3> OT	NGTH PE: GANI ATUR HER	: 61! PRT SM: 2 E: INFO	5 Arti RMAT			-		oly	/pep	otid€	=			
< 400)> SE	QUEN	CE: 2	26											
Met 1	Ile	His		Val :	Phe 1	Leu I	eu M	let	Phe 10	e Le	eu Le	eu Thi	r Pro	15	Glu
Ser	Asp	_	Lys 1 20	Leu :	Pro 1	Leu G	_	ln 5	Ser	c Le	eu Cy	ys Ala	a Let 30	ı Pro	Asp
Thr		Ser 35	Thr 1	Leu '	Thr 1		arg S	er	Val	L Aı	g Se	er Val	l Pro	o Gly	/ Glu
Met	Arg 50	Leu .	Alas	Ser		Ala F 55	he A	sn	His	e Pi	:0 I	le Gli	n Vai	l Asj	Gln
Leu 65	Asn	Ser	Ser '		Phe 1	Lys I	eu S	er	Il∈	e Pi 75		nr Ası	n Phe	e Sei	Phe
Gly	Val	Thr	Gln (Glu '	Tyr :	Ile G	3ln T	hr	Thr	: I]	Le G	ln Lys	s Vai	l Thi	. Val

Asp	Cha	ГÀв	Gln 100	Tyr	Val	CAa	Asn	Gly 105	Phe	Gln	ГÀа	CAa	Glu 110	Gln	Leu
Leu	Arg	Glu 115	Tyr	Gly	Gln	Phe	Cys 120	Ser	ГÀа	Ile	Asn	Gln 125	Ala	Leu	His
Gly	Ala 130	Asn	Leu	Arg	Gln	Asp 135	Asp	Ser	Val	Arg	Asn 140	Leu	Phe	Ala	Ser
Val 145	Lys	Ser	Ser	Gln	Ser 150	Ser	Pro	Ile	Ile	Pro 155	Gly	Phe	Gly	Gly	Asp 160
Phe	Asn	Leu	Thr	Leu 165	Leu	Glu	Pro	Val	Ser 170	Ile	Ser	Thr	Gly	Ser 175	Arg
Ser	Ala	Arg	Ser 180	Ala	Ile	Glu	Asp	Leu 185	Leu	Phe	Asp	Lys	Val 190	Thr	Ile
Ala	Asp	Pro 195	Gly	Tyr	Met	Gln	Gly 200	Tyr	Asp	Asp	CÀa	Met 205	Gln	Gln	Gly
Pro	Ala 210	Ser	Ala	Arg	Asp	Leu 215	Ile	Cys	Ala	Gln	Tyr 220	Val	Ala	Gly	Tyr
Lys 225	Val	Leu	Pro	Pro	Leu 230	Met	Asp	Val	Asn	Met 235	Glu	Ala	Ala	Tyr	Thr 240
Ser	Ser	Leu	Leu	Gly 245	Ser	Ile	Ala	Gly	Val 250	Gly	Trp	Thr	Ala	Gly 255	Leu
Ser	Ser	Phe	Ala 260	Ala	Ile	Pro	Phe	Ala 265	Gln	Ser	Ile	Phe	Tyr 270	Arg	Leu
Asn	Gly	Val 275	Gly	Ile	Thr	Gln	Gln 280	Val	Leu	Ser	Glu	Asn 285	Gln	Lys	Leu
Ile	Ala 290	Asn	Lys	Phe	Asn	Gln 295	Ala	Leu	Gly	Ala	Met 300	Gln	Thr	Gly	Phe
Thr 305	Thr	Thr	Asn	Glu	Ala 310	Phe	Gln	Lys	Val	Gln 315	Asp	Ala	Val	Asn	Asn 320
Asn	Ala	Gln	Ala	Leu 325	Ser	Lys	Leu	Ala	Ser 330	Glu	Leu	Ser	Asn	Thr 335	Phe
Gly	Ala	Ile	Ser 340	Ala	Ser	Ile	Gly	Asp 345	Ile	Ile	Gln	Arg	Leu 350	Asp	Val
Leu	Glu	Gln 355	Asp	Ala	Gln	Ile	Asp 360	Arg	Leu	Ile	Asn	Gly 365	Arg	Leu	Thr
Thr	Leu 370	Asn	Ala	Phe	Val	Ala 375	Gln	Gln	Leu	Val	Arg 380	Ser	Glu	Ser	Ala
Ala 385	Leu	Ser	Ala	Gln	Leu 390	Ala	Lys	Asp	Lys	Val 395	Asn	Glu	Càa	Val	Lys 400
Ala	Gln	Ser	Lys	Arg 405	Ser	Gly	Phe	Сув	Gly 410	Gln	Gly	Thr	His	Ile 415	Val
Ser	Phe	Val	Val 420	Asn	Ala	Pro	Asn	Gly 425	Leu	Tyr	Phe	Met	His 430	Val	Gly
Tyr	Tyr	Pro 435	Ser	Asn	His	Ile	Glu 440	Val	Val	Ser	Ala	Tyr 445	Gly	Leu	Cys
Asp	Ala 450	Ala	Asn	Pro	Thr	Asn 455	СЛа	Ile	Ala	Pro	Val 460	Asn	Gly	Tyr	Phe
Ile 465	Lys	Thr	Asn	Asn	Thr 470	Arg	Ile	Val	Asp	Glu 475	Trp	Ser	Tyr	Thr	Gly 480
Ser	Ser	Phe	Tyr	Ala 485	Pro	Glu	Pro	Ile	Thr 490	Ser	Leu	Asn	Thr	Lys 495	Tyr
Val	Ala	Pro	Gln 500	Val	Thr	Tyr	Gln	Asn 505	Ile	Ser	Thr	Asn	Leu 510	Pro	Pro
Pro	Leu	Leu	Gly	Asn	Ser	Thr	Gly	Ile	Asp	Phe	Gln	Asp	Glu	Leu	Asp

		515					520					525			
Glu	Phe 530	Phe	Lys	Asn	Val	Ser 535	Thr	Ser	Ile	Pro	Asn 540	Phe	Gly	Ser	Leu
Thr 545	Gln	Ile	Asn	Thr	Thr 550	Leu	Leu	Asp	Leu	Thr 555	Tyr	Glu	Met	Leu	Ser 560
Leu	Gln	Gln	Val	Val 565	Lys	Ala	Leu	Asn	Glu 570	Ser	Tyr	Ile	Asp	Leu 575	Lys
Glu	Leu	Gly	Asn 580	Tyr	Thr	Tyr	Tyr	Asn 585	Lys	Trp	Pro	Asp	Lys 590	Ile	Glu
Glu	Ile	Leu 595	Ser	Lys	Ile	Tyr	His 600	Ile	Glu	Asn	Glu	Ile 605	Ala	Arg	Ile
ràa	Lys 610	Leu	Ile	Gly	Glu	Ala 615									
<211 <212 <213 <220)> FI	ENGTH (PE: RGAN) EATUR	H: 13 PRT ISM: RE:	353 Unki		: Mi	ddle	East	: re:	spira	atory	i syi	ndror	me co	pronavirus
< 400)> SI	EQUE	ICE:	27											
Met 1	Ile	His	Ser	Val 5	Phe	Leu	Leu	Met	Phe 10	Leu	Leu	Thr	Pro	Thr 15	Glu
Ser	Tyr	Val	Asp 20	Val	Gly	Pro	Asp	Ser 25	Val	Lys	Ser	Ala	Сув 30	Ile	Glu
Val	Asp	Ile 35	Gln	Gln	Thr	Phe	Phe 40	Asp	Lys	Thr	Trp	Pro 45	Arg	Pro	Ile
Asp	Val 50	Ser	Lys	Ala	Asp	Gly 55	Ile	Ile	Tyr	Pro	Gln 60	Gly	Arg	Thr	Tyr
Ser 65	Asn	Ile	Thr	Ile	Thr 70	Tyr	Gln	Gly	Leu	Phe 75	Pro	Tyr	Gln	Gly	Asp 80
His	Gly	Asp	Met	Tyr 85	Val	Tyr	Ser	Ala	Gly 90	His	Ala	Thr	Gly	Thr 95	Thr
Pro	Gln	ГÀа	Leu 100	Phe	Val	Ala	Asn	Tyr 105	Ser	Gln	Asp	Val	Lys 110	Gln	Phe
Ala	Asn	Gly 115	Phe	Val	Val	Arg	Ile 120	Gly	Ala	Ala	Ala	Asn 125	Ser	Thr	Gly
Thr	Val 130	Ile	Ile	Ser		Ser 135		Ser	Ala		Ile 140	Arg	ГÀа	Ile	Tyr
Pro 145	Ala	Phe	Met	Leu	Gly 150	Ser	Ser	Val	Gly	Asn 155	Phe	Ser	Asp	Gly	Lys 160
Met	Gly	Arg	Phe	Phe 165	Asn	His	Thr	Leu	Val 170	Leu	Leu	Pro	Asp	Gly 175	CAa
Gly	Thr	Leu	Leu 180	Arg	Ala	Phe	Tyr	Cys 185	Ile	Leu	Glu	Pro	Arg 190	Ser	Gly
Asn	His	Суз 195	Pro	Ala	Gly	Asn	Ser 200	Tyr	Thr	Ser	Phe	Ala 205	Thr	Tyr	His
Thr	Pro 210	Ala	Thr	Asp	Сув	Ser 215	Asp	Gly	Asn	Tyr	Asn 220	Arg	Asn	Ala	Ser
Leu 225	Asn	Ser	Phe	Lys	Glu 230	Tyr	Phe	Asn	Leu	Arg 235	Asn	СЛа	Thr	Phe	Met 240
Tyr	Thr	Tyr	Asn	Ile 245	Thr	Glu	Asp	Glu	Ile 250	Leu	Glu	Trp	Phe	Gly 255	Ile
Thr	Gln	Thr	Ala	Gln	Gly	Val	His	Leu	Phe	Ser	Ser	Arg	Tyr	Val	Asp

			260					265					270		
			200					203					2,0		
Leu	Tyr	Gly 275	Gly	Asn	Met	Phe	Gln 280	Phe	Ala	Thr	Leu	Pro 285	Val	Tyr	Asp
Thr	Ile 290	ГÀз	Tyr	Tyr	Ser	Ile 295	Ile	Pro	His	Ser	Ile 300	Arg	Ser	Ile	Gln
Ser 305	Asp	Arg	Lys	Ala	Trp 310	Ala	Ala	Phe	Tyr	Val 315	Tyr	ГÀа	Leu	Gln	Pro 320
Leu	Thr	Phe	Leu	Leu 325	Asp	Phe	Ser	Val	330	Gly	Tyr	Ile	Arg	Arg 335	Ala
Ile	Asp	CÀa	Gly 340	Phe	Asn	Asp	Leu	Ser 345	Gln	Leu	His	CAa	Ser 350	Tyr	Glu
Ser	Phe	Asp 355	Val	Glu	Ser	Gly	Val 360	Tyr	Ser	Val	Ser	Ser 365	Phe	Glu	Ala
Lys	Pro 370	Ser	Gly	Ser	Val	Val 375	Glu	Gln	Ala	Glu	Gly 380	Val	Glu	Cys	Asp
Phe 385	Ser	Pro	Leu	Leu	Ser 390	Gly	Thr	Pro	Pro	Gln 395	Val	Tyr	Asn	Phe	Lys 400
Arg	Leu	Val	Phe	Thr 405	Asn	Cys	Asn	Tyr	Asn 410	Leu	Thr	Lys	Leu	Leu 415	Ser
Leu	Phe	Ser	Val 420	Asn	Asp	Phe	Thr	Сув 425	Ser	Gln	Ile	Ser	Pro 430	Ala	Ala
Ile	Ala	Ser 435	Asn	Cya	Tyr	Ser	Ser 440	Leu	Ile	Leu	Asp	Tyr 445	Phe	Ser	Tyr
Pro	Leu 450	Ser	Met	ГÀа	Ser	Asp 455	Leu	Ser	Val	Ser	Ser 460	Ala	Gly	Pro	Ile
Ser 465	Gln	Phe	Asn	Tyr	Lys 470	Gln	Ser	Phe	Ser	Asn 475	Pro	Thr	CAa	Leu	Ile 480
Leu	Ala	Thr	Val	Pro 485	His	Asn	Leu	Thr	Thr 490	Ile	Thr	Lys	Pro	Leu 495	Lys
Tyr	Ser	Tyr	Ile 500	Asn	ràa	CÀa	Ser	Arg 505	Leu	Leu	Ser	Asp	Asp 510	Arg	Thr
Glu	Val	Pro 515	Gln	Leu	Val	Asn	Ala 520	Asn	Gln	Tyr	Ser	Pro 525	Cha	Val	Ser
Ile	Val 530	Pro	Ser	Thr	Val	Trp 535	Glu	Asp	Gly	Asp	Tyr 540	Tyr	Arg	ГÀЗ	Gln
Leu 545	Ser	Pro	Leu	Glu	Gly 550	Gly	Gly	Trp	Leu	Val 555	Ala	Ser	Gly	Ser	Thr 560
Val	Ala	Met	Thr	Glu 565	Gln	Leu	Gln	Met	Gly 570	Phe	Gly	Ile	Thr	Val 575	Gln
Tyr	Gly	Thr	Asp 580	Thr	Asn	Ser	Val	Cys 585	Pro	Lys	Leu	Glu	Phe 590	Ala	Asn
Asp	Thr	Lys 595	Ile	Ala	Ser	Gln	Leu 600	Gly	Asn	Cys	Val	Glu 605	Tyr	Ser	Leu
Tyr	Gly 610	Val	Ser	Gly	Arg	Gly 615	Val	Phe	Gln	Asn	Cys 620	Thr	Ala	Val	Gly
Val 625	Arg	Gln	Gln	Arg	Phe 630	Val	Tyr	Asp	Ala	Tyr 635	Gln	Asn	Leu	Val	Gly 640
Tyr	Tyr	Ser	Asp	Asp 645	Gly	Asn	Tyr	Tyr	Cys 650	Leu	Arg	Ala	Cys	Val 655	Ser
Val	Pro	Val	Ser 660	Val	Ile	Tyr	Asp	Lys 665	Glu	Thr	Lys	Thr	His 670	Ala	Thr
Leu	Phe	Gly 675	Ser	Val	Ala	Cys	Glu 680	His	Ile	Ser	Ser	Thr 685	Met	Ser	Gln

Tyr	Ser 690	Arg	Ser	Thr	Arg	Ser 695	Met	Leu	Lys	Arg	Arg 700	Asp	Ser	Thr	Tyr
Gly 705	Pro	Leu	Gln	Thr	Pro 710	Val	Gly	Сув	Val	Leu 715	Gly	Leu	Val	Asn	Ser 720
Ser	Leu	Phe	Val	Glu 725	Asp	Cys	Lys	Leu	Pro 730	Leu	Gly	Gln	Ser	Leu 735	Cha
Ala	Leu	Pro	Asp 740	Thr	Pro	Ser	Thr	Leu 745	Thr	Pro	Arg	Ser	Val 750	Arg	Ser
Val	Pro	Gly 755	Glu	Met	Arg	Leu	Ala 760	Ser	Ile	Ala	Phe	Asn 765	His	Pro	Ile
Gln	Val 770	Asp	Gln	Leu	Asn	Ser 775	Ser	Tyr	Phe	Lys	Leu 780	Ser	Ile	Pro	Thr
Asn 785	Phe	Ser	Phe	Gly	Val 790	Thr	Gln	Glu	Tyr	Ile 795	Gln	Thr	Thr	Ile	Gln 800
Lys	Val	Thr	Val	Asp 805	CAa	Lys	Gln	Tyr	Val 810	Cys	Asn	Gly	Phe	Gln 815	Lys
Cys	Glu	Gln	Leu 820	Leu	Arg	Glu	Tyr	Gly 825	Gln	Phe	Cys	Ser	Lys	Ile	Asn
Gln	Ala	Leu 835	His	Gly	Ala	Asn	Leu 840	Arg	Gln	Asp	Asp	Ser 845	Val	Arg	Asn
Leu	Phe 850	Ala	Ser	Val	ГÀа	Ser 855	Ser	Gln	Ser	Ser	Pro 860	Ile	Ile	Pro	Gly
Phe 865	Gly	Gly	Asp	Phe	Asn 870	Leu	Thr	Leu	Leu	Glu 875	Pro	Val	Ser	Ile	Ser 880
Thr	Gly	Ser	Arg	Ser 885	Ala	Arg	Ser	Ala	Ile 890	Glu	Asp	Leu	Leu	Phe 895	Asp
Lys	Val	Thr	Ile 900	Ala	Asp	Pro	Gly	Tyr 905	Met	Gln	Gly	Tyr	Asp 910	Asp	Cya
Met	Gln	Gln 915	Gly	Pro	Ala	Ser	Ala 920	Arg	Asp	Leu	Ile	Cys 925	Ala	Gln	Tyr
Val	Ala 930	Gly	Tyr	Lys	Val	Leu 935	Pro	Pro	Leu	Met	Asp 940	Val	Asn	Met	Glu
Ala 945	Ala	Tyr	Thr	Ser	Ser 950	Leu	Leu	Gly	Ser	Ile 955	Ala	Gly	Val	Gly	Trp 960
Thr	Ala	Gly	Leu	Ser 965	Ser	Phe	Ala	Ala	Ile 970	Pro	Phe	Ala	Gln	Ser 975	Ile
Phe	Tyr	Arg	Leu 980	Asn	Gly	Val	Gly	Ile 985	Thr	Gln	Gln	Val	Leu 990	Ser	Glu
Asn	Gln	995 995	Leu	Ile	Ala	Asn	Lys 1000		e Ası	n Gli	n Al		u G: 05	ly A	la Met
Gln	Thr 1010		Phe	e Thr	Thr	Th:		en G	Lu A	la Pl		rg 020	Lys V	Val (Gln
Asp	Ala 1025		. Asr	n Asr	n Asn	103		ln A	la Le	eu Se		035 9	Leu i	Ala s	Ser
Glu	Leu 1040		: Asr	n Thr	Phe	Gly		la II	Le Se	er Al		er 050	Ile	Gly A	Aap.
Ile	Ile 1055		n Arg	g Leu	ı Asp	Va:		eu G	Lu G	ln A:		la 065	Gln :	Ile A	Asp
Arg	Leu 1070		e Asr	n Gly	⁄ Arg	Le:		ır Th	ır Le	eu Ai		la 080	Phe ^v	Val i	Ala
Gln	Gln 1085		ı Val	l Arg	g Ser	Gl:		er Al	La Ai	la L		er 095	Ala (Gln 1	Leu

Ala Lys
Asn Ala Pro Asn Gly Leu Tyr 1135 Phe Met His Val Gly Tyr Tyr Pro 1140 Pro 1155 Pro Try Phe Ile 1155 Pro Ile Thr Ser Leu Asn Thr Arg Ile Val Asp Glu Try Ser Tyr Thr Gly 1150 Pro Ile Thr Ser Leu Asn Thr Lys 1195 Pro Ile Thr Ser Leu Asn Thr Lys 1195 Pro Ile Thr Ser Leu Asn Thr Lys 1195 Pro Pro Ile Thr Ser Leu 1215 Pro Pro Pro Leu Leu Gly Asn Ser Thr Gly Ile Asp Phe Gln Asp 1220 Pro Leu Leu Gly Asn Val Ser Thr Ser Ile Pro Asn 1235 Pro Asn 1245 Pro Asn 1245 Pro Ile Thr Leu Leu Asp Leu Thr 1250 Pro Ile Met Leu Ser Leu Gln Gln Val Val Lys Ala Leu Asn Glu 1270 Pro Ile Asp Leu Asn Glu 1270 Pro Ile Asp 1290 Pro Ile Asn Ile Ser Tyr Ile Asp Leu Lys Glu Lys Gla Leu Gly Asn Tyr Thr Tyr Tyr Asn 1280 Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Val 1285 Pro Trp Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Val 1295 Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Val 1295 Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Val 1295 Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Val 1295 Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Val 1295 Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Val 1295 Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Val 1295 Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Val 1295 Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Val 1295 Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Val 1295 Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Val 1295 Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Val 1290 Pro His Lys Val His Val His
1130
1145
1160
1175
1190 1195 1200 Tyr Val 1205 Ala Pro His Val Thr 1210 Tyr Gln Asn Ile Ser Thr Asn Leu 1215 Thr Asn Leu 1215 Pro Pro Pro Pro Leu Leu Gly Asn 1225 Ser Thr Gly Ile Asp 1230 Phe Gln Asp 1230 Glu Leu Asp Glu Phe Phe Lys 1235 Asn Val Ser Thr Ser 1245 Ile Pro Asn 1245 Phe Gly Ser Leu Thr Gln Ile 1255 Asn Thr Thr Leu Leu Leu Asp Leu Thr 1260 Tyr Glu Met Leu Ser Leu Gln 1270 Gln Val Val Lys Ala 1275 Leu Asn Glu 1275 Ser Tyr Ile Asp Leu Lys Glu 1285 Leu Gly Asn Tyr Thr Tyr Tyr Asn 1290 Lys Trp Pro Trp Tyr Ile Trp 1300 Leu Gly Phe Ile Ala 1305 Gly Leu Val 1305 Ala Leu Ala Leu Cys Val Phe 1315 Phe Ile Leu Cys Cys Thr Gly Cys 1320 Gly Thr Asp Cys Met Gly Lys 1330 Leu Lys Cys Asn Arg Cys Cys Asp 1335 Arg Tyr Glu Glu Tyr Asp Leu Glu Pro His Lys Val His Val His
1210 1215 1210 1215
1220 1225 1230
1235 1240 1245 Phe Gly 1250 Ser Leu Thr Gln Ile 1255 Asn Thr Thr Leu Leu Leu Leu Leu 1260 Asp Leu Thr 1260 Tyr Glu 1265 Met Leu Ser Leu Gln 1270 Gln Val Val Lys Ala 1275 Leu Asn Glu 1275 Ser Tyr 1265 Ile Asp Leu Lys Glu 1285 Leu Gly Asn Tyr Thr 1290 Tyr Tyr Asn 1290 Lys Trp 1295 Pro Trp Tyr Ile Trp 1300 Leu Gly Phe Ile Ala 1305 Gly Leu Val 1305 Ala Leu Ala Leu Cys Val Phe 1315 Phe Ile Leu Cys Cys 1320 Thr Gly Cys 1320 Gly Thr Asn Cys Met Gly Lys 1330 Leu Lys Cys Asn Arg 1335 Cys Cys Asp 1335 Arg Tyr Glu Glu Tyr Asp Leu Glu Pro His Lys Val His Val His
Tyr Glu Met Leu Ser Leu Gln Gln Val Val Lys Ala Leu Asn Glu 1265 Ser Tyr Ile Asp Leu Lys Glu Leu Gly Asn Tyr Thr Tyr Tyr Asn 1280 Lys Trp Pro Trp Tyr Ile Trp 1300 Leu Gly Phe Ile Ala Gly Leu Val 1305 Ala Leu Ala Leu Cys Val Phe Phe Ile Leu Cys Cys Thr Gly Cys 1310 Gly Thr Asn Cys Met Gly Lys Leu Lys Cys Asn Arg Cys Cys Asp 1335 Arg Tyr Glu Glu Tyr Asp Leu Glu Pro His Lys Val His Val His
Ser Tyr Ile Asp Leu Lys Glu Leu Gly Asn Tyr Thr 1290 Lys Trp Pro Trp Tyr Ile Trp 1300 Leu Gly Phe Ile Ala Gly Leu Val 1305 Ala Leu Ala Leu Cys Val Phe 1315 Gly Thr Asn Cys Met Gly Lys Leu Lys Cys Asn Arg 1325 Arg Tyr Glu Glu Tyr Asp Leu Glu Pro His Lys Val His Val His
Lys Trp Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Val 1295 Ala Leu Ala Leu Cys Val Phe Phe Ile Leu Cys Cys Thr Gly Cys 1310 Gly Thr Asn Cys Met Gly Lys Leu Lys Cys Asn Arg Cys Cys Asp 1325 Arg Tyr Glu Glu Tyr Asp Leu Glu Pro His Lys Val His Val His
1295 1300 1305 Ala Leu Ala Leu Cys Val Phe Phe Ile Leu Cys Cys Thr Gly Cys 1310 Gly Thr Asn Cys Met Gly Lys Leu Lys Cys Asn Arg Cys Cys Asp 1325 Arg Tyr Glu Glu Tyr Asp Leu Glu Pro His Lys Val His Val His
1310 1315 1320 Gly Thr Asn Cys Met Gly Lys Leu Lys Cys Asn Arg Cys Cys Asp 1325 1330 Arg Tyr Glu Glu Tyr Asp Leu Glu Pro His Lys Val His Val His
1325 1330 1335 Arg Tyr Glu Glu Tyr Asp Leu Glu Pro His Lys Val His Val His
<210> SEQ ID NO 28 <211> LENGTH: 1353 <212> TYPE: PRT <213> ORGANISM: Unknown <220> FEATURE: <223> OTHER INFORMATION: Middle East respiratory syndrome coronavirus
<400> SEQUENCE: 28
Met Ile His Ser Val Phe Leu Leu Met Phe Leu Leu Thr Pro Thr Glu 1 10 15
Ser Tyr Val Asp Val Gly Pro Asp Ser Val Lys Ser Ala Cys Ile Glu 20 25 30
Val Asp Ile Gln Gln Thr Phe Phe Asp Lys Thr Trp Pro Arg Pro Ile 35 40 45
Asp Val Ser Lys Ala Asp Gly Ile Ile Tyr Pro Gln Gly Arg Thr Tyr 50 55 60
Ser Asn Ile Thr Ile Thr Tyr Gln Gly Leu Phe Pro Tyr Gln Gly Asp 65 70 75 80
His Gly Asp Met Tyr Val Tyr Ser Ala Gly His Ala Thr Gly Thr Thr 85 90 95

Pro	Gln	Lys	Leu 100	Phe	Val	Ala	Asn	Tyr 105	Ser	Gln	Asp	Val	Lys 110	Gln	Phe
Ala	Asn	Gly 115	Phe	Val	Val	Arg	Ile 120	Gly	Ala	Ala	Ala	Asn 125	Ser	Thr	Gly
Thr	Val 130	Ile	Ile	Ser	Pro	Ser 135	Thr	Ser	Ala	Thr	Ile 140	Arg	Lys	Ile	Tyr
Pro 145	Ala	Phe	Met	Leu	Gly 150	Ser	Ser	Val	Gly	Asn 155	Phe	Ser	Asp	Gly	Lys 160
Met	Gly	Arg	Phe	Phe 165	Asn	His	Thr	Leu	Val 170	Leu	Leu	Pro	Asp	Gly 175	Сув
Gly	Thr	Leu	Leu 180	Arg	Ala	Phe	Tyr	Суз 185	Ile	Leu	Glu	Pro	Arg 190	Ser	Gly
Asn	His	Сув 195	Pro	Ala	Gly	Asn	Ser 200	Tyr	Thr	Ser	Phe	Ala 205	Thr	Tyr	His
Thr	Pro 210	Ala	Thr	Asp	CAa	Ser 215	Asp	Gly	Asn	Tyr	Asn 220	Arg	Asn	Ala	Ser
Leu 225	Asn	Ser	Phe	Lys	Glu 230	Tyr	Phe	Asn	Leu	Arg 235	Asn	Cys	Thr	Phe	Met 240
Tyr	Thr	Tyr	Asn	Ile 245	Thr	Glu	Asp	Glu	Ile 250	Leu	Glu	Trp	Phe	Gly 255	Ile
Thr	Gln	Thr	Ala 260	Gln	Gly	Val	His	Leu 265	Phe	Ser	Ser	Arg	Tyr 270	Val	Asp
Leu	Tyr	Gly 275	Gly	Asn	Met	Phe	Gln 280	Phe	Ala	Thr	Leu	Pro 285	Val	Tyr	Asp
Thr	Ile 290	Lys	Tyr	Tyr	Ser	Ile 295	Ile	Pro	His	Ser	Ile 300	Arg	Ser	Ile	Gln
Ser 305	Asp	Arg	ГÀа	Ala	Trp 310	Ala	Ala	Phe	Tyr	Val 315	Tyr	ГÀЗ	Leu	Gln	Pro 320
Leu	Thr	Phe	Leu	Leu 325	Asp	Phe	Ser	Val	330	Gly	Tyr	Ile	Arg	Arg 335	Ala
Ile	Asp	Cys	Gly 340	Phe	Asn	Asp	Leu	Ser 345	Gln	Leu	His	CAa	Ser 350	Tyr	Glu
Ser	Phe	Asp 355	Val	Glu	Ser	Gly	Val 360	Tyr	Ser	Val	Ser	Ser 365	Phe	Glu	Ala
Lys	Pro 370	Ser	Gly	Ser	Val	Val 375	Glu	Gln	Ala	Glu	Gly 380	Val	Glu	Cys	Asp
Phe 385	Ser	Pro	Leu	Leu	Ser 390		Thr	Pro	Pro	Gln 395		Tyr	Asn	Phe	Lys 400
Arg	Leu	Val	Phe	Thr 405	Asn	Cys	Asn	Tyr	Asn 410	Leu	Thr	Lys	Leu	Leu 415	Ser
Leu	Phe	Ser	Val 420	Asn	Asp	Phe	Thr	Cys 425	Ser	Gln	Ile	Ser	Pro 430	Ala	Ala
Ile	Ala	Ser 435	Asn	Cya	Tyr	Ser	Ser 440	Leu	Ile	Leu	Asp	Tyr 445	Phe	Ser	Tyr
Pro	Leu 450	Ser	Met	Lys	Ser	Asp 455	Leu	Ser	Val	Ser	Ser 460	Ala	Gly	Pro	Ile
Ser 465	Gln	Phe	Asn	Tyr	Lys 470	Gln	Ser	Phe	Ser	Asn 475	Pro	Thr	Сла	Leu	Ile 480
Leu	Ala	Thr	Val	Pro 485	His	Asn	Leu	Thr	Thr 490	Ile	Thr	Lys	Pro	Leu 495	Lys
Tyr	Ser	Tyr	Ile 500	Asn	Lys	Cys	Ser	Arg 505	Leu	Leu	Ser	Asp	Asp 510	Arg	Thr
Glu	Val	Pro	Gln	Leu	Val	Asn	Ala	Asn	Gln	Tyr	Ser	Pro	Cys	Val	Ser

_		515					520					525			
Ile	Val 530	Pro	Ser	Thr	Val	Trp 535	Glu	Asp	Gly	Asp	Tyr 540	Tyr	Arg	Lys	Gln
Leu 545	Ser	Pro	Leu	Glu	Gly 550	Gly	Gly	Trp	Leu	Val 555	Ala	Ser	Gly	Ser	Thr 560
Val	Ala	Met	Thr	Glu 565	Gln	Leu	Gln	Met	Gly 570	Phe	Gly	Ile	Thr	Val 575	Gln
Tyr	Gly	Thr	Asp 580	Thr	Asn	Ser	Val	Сув 585	Pro	Lys	Leu	Glu	Phe 590	Ala	Asn
Asp	Thr	Lys 595	Ile	Ala	Ser	Gln	Leu 600	Gly	Asn	Сув	Val	Glu 605	Tyr	Ser	Leu
Tyr	Gly 610	Val	Ser	Gly	Arg	Gly 615	Val	Phe	Gln	Asn	Cys 620	Thr	Ala	Val	Gly
Val 625	Arg	Gln	Gln	Arg	Phe 630	Val	Tyr	Asp	Ala	Tyr 635	Gln	Asn	Leu	Val	Gly 640
Tyr	Tyr	Ser	Asp	Asp 645	Gly	Asn	Tyr	Tyr	Сув 650	Leu	Arg	Ala	Cys	Val 655	Ser
Val	Pro	Val	Ser 660	Val	Ile	Tyr	Asp	Lys 665	Glu	Thr	Lys	Thr	His 670	Ala	Thr
Leu	Phe	Gly 675	Ser	Val	Ala	CAa	Glu 680	His	Ile	Ser	Ser	Thr 685	Met	Ser	Gln
Tyr	Ser 690	Arg	Ser	Thr	Arg	Ser 695	Met	Leu	Lys	Arg	Arg 700	Asp	Ser	Thr	Tyr
Gly 705	Pro	Leu	Gln	Thr	Pro 710	Val	Gly	Cys	Val	Leu 715	Gly	Leu	Val	Asn	Ser 720
Ser	Leu	Phe	Val	Glu 725	Asp	GÀa	Lys	Leu	Pro 730	Leu	Gly	Gln	Ser	Leu 735	CÀa
Ala	Leu	Pro	Asp 740	Thr	Pro	Ser	Thr	Leu 745	Thr	Pro	Arg	Ser	Val 750	Arg	Ser
Val	Pro	Gly 755	Glu	Met	Arg	Leu	Ala 760	Ser	Ile	Ala	Phe	Asn 765	His	Pro	Ile
Gln	Val 770	Asp	Gln	Leu	Asn	Ser 775	Ser	Tyr	Phe	Lys	Leu 780	Ser	Ile	Pro	Thr
Asn 785	Phe	Ser	Phe	Gly	Val 790	Thr	Gln	Glu	Tyr	Ile 795	Gln	Thr	Thr	Ile	Gln 800
Lys	Val	Thr	Val	Asp 805	Cys	Lys	Gln	Tyr	Val 810	Сув	Asn	Gly	Phe	Gln 815	ГЛа
Cys	Glu	Gln	Leu 820	Leu	Arg	Glu	Tyr	Gly 825	Gln	Phe	CAa	Ser	830	Ile	Asn
Gln	Ala	Leu 835	His	Gly	Ala	Asn	Leu 840	Arg	Gln	Asp	Asp	Ser 845	Val	Arg	Asn
Leu	Phe 850	Ala	Ser	Val	Lys	Ser 855	Ser	Gln	Ser	Ser	Pro 860	Ile	Ile	Pro	Gly
Phe 865	Gly	Gly	Asp	Phe	Asn 870	Leu	Thr	Leu	Leu	Glu 875	Pro	Val	Ser	Ile	Ser 880
Thr	Gly	Ser	Arg	Ser 885	Ala	Arg	Ser	Ala	Ile 890	Glu	Asp	Leu	Leu	Phe 895	Asp
Lys	Val	Thr	Ile 900	Ala	Asp	Pro	Gly	Tyr 905	Met	Gln	Gly	Tyr	Asp 910	Asp	Cya
Met	Gln	Gln 915	Gly	Pro	Ala	Ser	Ala 920	Arg	Asp	Leu	Ile	Сув 925	Ala	Gln	Tyr
Val	Ala 930	Gly	Tyr	Lys	Val	Leu 935	Pro	Pro	Leu	Met	Asp 940	Val	Asn	Met	Glu

Ala 945	Ala	Tyr	Thr		Ser 1 950	Leu L	eu G	ly S		le A: 55	la Gly	/ Val	l Gl	7 Trp 960
	Ala	Gly	Leu			Phe A	la A	la I			ne Ala	a Glr	n Sei	
Die e	Ma	3		965	G] 1	7-1 G	1 T		70	J G.	1 17-1		975	
Pne	ıyr	Arg	980	ASII	GIY	/al G		1e 1 35	nr G	III G.	ln Val	990		GIU
Asn	Gln	995 995	Leu	Ile	Ala A		000 ys 1	Phe .	Asn (Gln A		eu (Gly A	Ala Met
Gln	Thr 1010	-	Phe	Thr	Thr	Thr 1015		Glu	Ala	Phe	Arg 1020	Lys	Val	Gln
Asp	Ala 1025		. Asn	. Asn	Asn	Ala 1030		Ala	Leu	Ser	Lys 1035	Leu	Ala	Ser
Glu	Leu 1040		Asn	Thr	Phe	Gly 1045		Ile	Ser	Ala	Ser 1050	Ile	Gly	Aap
Ile	Ile 1055		Arg	Leu	Asp	Val 1060		Glu	Gln	Asp	Ala 1065	Gln	Ile	Aap
Arg	Leu 1070		Asn	Gly	Arg	Leu 1075		Thr	Leu	Asn	Ala 1080	Phe	Val	Ala
Gln	Gln 1085		Val	Arg	Ser	Glu 1090		Ala	Ala	Leu	Ser 1095	Ala	Gln	Leu
Ala	Lys 1100		Lys	Val	Asn	Glu 1105		Val	Lys	Ala	Gln 1110	Ser	Lys	Arg
Ser	Gly 1115		Cys	Gly	Gln	Gly 1120		His	Ile	Val	Ser 1125	Phe	Val	Val
Asn	Ala 1130		Asn	. Gly	Leu	Tyr 1135		Met	His	Val	Gly 1140	Tyr	Tyr	Pro
Ser	Asn 1145		Ile	Glu	Val	Val 1150		Ala	Tyr	Gly	Leu 1155	Сув	Asp	Ala
Ala	Asn 1160		Thr	Asn	. Сув	Ile 1165		Pro	Val	Asn	Gly 1170	Tyr	Phe	Ile
Lys	Thr 1175		. Asn	Thr	Arg	Ile 1180		Asp	Glu	Trp	Ser 1185	Tyr	Thr	Gly
Ser	Ser 1190		Tyr	Ala	Pro	Glu 1195		Ile	Thr	Ser	Leu 1200	Asn	Thr	Lys
Tyr	Val 1205		Pro	His	Val	Thr 1210		Gln	Asn	Ile	Ser 1215	Thr	Asn	Leu
Pro	Pro 1220		Leu	Leu	Gly	Asn 1225	Ser	Thr	Gly	Ile	Asp 1230	Phe	Gln	Asp
Glu	Leu 1235		Glu	Phe	Phe	Lys 1240		Val	Ser	Thr	Ser 1245	Ile	Pro	Asn
Phe	Gly 1250		Leu	Thr	Gln	Ile 1255		Thr	Thr	Leu	Leu 1260	Asp	Leu	Thr
Tyr	Glu 1265		Leu	. Ser	Leu	Gln 1270		Val	Val	ГЛа	Ala 1275	Leu	Asn	Glu
Ser	Tyr 1280		Asp	Leu	Lys	Glu 1285		Gly	Asn	Tyr	Thr 1290	Tyr	Tyr	Asn
Lys	Trp 1295		Trp	Tyr	Ile	Trp 1300		Gly	Phe	Ile	Ala 1305	Gly	Leu	Val
Ala	Leu 1310		Leu	. Сув	Val	Phe 1315		Ile	Leu	Cys	Cys 1320	Thr	Gly	Cys
Gly	Thr 1325		. CAa	Met	Gly	Lys 1330		Lys	CÀa	Asn	Arg 1335	Сла	СЛа	Asp

Arg	Tyr 1340		ı Glı	и Ту:	r Asl	2 Let 134		lu Pi	10 H:	is Ly		al I 350	His V	/al I	lis
<211 <212 <213 <220	L> LE 2> TY 3> OF 0> FE	EQ II ENGTI YPE: RGANI EATUI THER	H: 12 PRT ISM: RE:	255 Unki	nown FION	: Hur	man S	SARS	cor	onav:	irus				
< 400)> SI	EQUEI	ICE :	29											
Met 1	Phe	Ile	Phe	Leu 5	Leu	Phe	Leu	Thr	Leu 10	Thr	Ser	Gly	Ser	Asp 15	Leu
Asp	Arg	Cys	Thr 20	Thr	Phe	Asp	Asp	Val 25	Gln	Ala	Pro	Asn	Tyr 30	Thr	Gln
His	Thr	Ser 35	Ser	Met	Arg	Gly	Val 40	Tyr	Tyr	Pro	Asp	Glu 45	Ile	Phe	Arg
Ser	50	Thr	Leu	Tyr	Leu	Thr 55	Gln	Asp	Leu	Phe	Leu 60	Pro	Phe	Tyr	Ser
Asn 65	Val	Thr	Gly	Phe	His 70	Thr	Ile	Asn	His	Thr 75	Phe	Gly	Asn	Pro	Val 80
Ile	Pro	Phe	Lys	Asp 85	Gly	Ile	Tyr	Phe	Ala 90	Ala	Thr	Glu	Lys	Ser 95	Asn
Val	Val	Arg	Gly 100	Trp	Val	Phe	Gly	Ser 105	Thr	Met	Asn	Asn	Lys 110	Ser	Gln
Ser	Val	Ile 115	Ile	Ile	Asn	Asn	Ser 120	Thr	Asn	Val	Val	Ile 125	Arg	Ala	CÀa
Asn	Phe 130	Glu	Leu	CAa	Asp	Asn 135	Pro	Phe	Phe	Ala	Val 140	Ser	Lys	Pro	Met
Gly 145	Thr	Gln	Thr	His	Thr 150	Met	Ile	Phe	Asp	Asn 155	Ala	Phe	Asn	Сув	Thr 160
Phe	Glu	Tyr	Ile	Ser 165	Asp	Ala	Phe	Ser	Leu 170	Asp	Val	Ser	Glu	Lys 175	Ser
Gly	Asn	Phe	Lys 180	His	Leu	Arg	Glu	Phe 185	Val	Phe	Lys	Asn	Lys 190	Asp	Gly
Phe	Leu	Tyr 195	Val	Tyr	ràa	Gly	Tyr 200	Gln	Pro	Ile	Asp	Val 205	Val	Arg	Asp
Leu	Pro 210	Ser	Gly	Phe	Asn	Thr 215	Leu	Lys	Pro	Ile	Phe 220	ГÀа	Leu	Pro	Leu
Gly 225	Ile	Asn	Ile	Thr	Asn 230	Phe	Arg	Ala	Ile	Leu 235	Thr	Ala	Phe	Ser	Pro 240
Ala	Gln	Asp	Ile	Trp 245	Gly	Thr	Ser	Ala	Ala 250	Ala	Tyr	Phe	Val	Gly 255	Tyr
Leu	Lys	Pro	Thr 260	Thr	Phe	Met	Leu	Lys 265	Tyr	Asp	Glu	Asn	Gly 270	Thr	Ile
Thr	Asp	Ala 275	Val	Asp	CAa	Ser	Gln 280	Asn	Pro	Leu	Ala	Glu 285	Leu	Lys	Cys
Ser	Val 290	ГЛа	Ser	Phe	Glu	Ile 295	Asp	Lys	Gly	Ile	Tyr 300	Gln	Thr	Ser	Asn
Phe 305	Arg	Val	Val	Pro	Ser 310	Gly	Asp	Val	Val	Arg 315	Phe	Pro	Asn	Ile	Thr 320
Asn	Leu	Сув	Pro	Phe 325	Gly	Glu	Val	Phe	Asn 330	Ala	Thr	Lys	Phe	Pro 335	Ser
Val	Tyr	Ala	Trp 340	Glu	Arg	Lys	Lys	Ile 345	Ser	Asn	Сув	Val	Ala 350	Asp	Tyr

Ser	Val	Leu 355	Tyr	Asn	Ser	Thr	Phe 360	Phe	Ser	Thr	Phe	Lys 365	CÀa	Tyr	Gly
Val	Ser 370	Ala	Thr	Lys	Leu	Asn 375	Asp	Leu	CAa	Phe	Ser 380	Asn	Val	Tyr	Ala
Asp 385	Ser	Phe	Val	Val	390 Lys	Gly	Asp	Asp	Val	Arg 395	Gln	Ile	Ala	Pro	Gly 400
Gln	Thr	Gly	Val	Ile 405	Ala	Asp	Tyr	Asn	Tyr 410	Lys	Leu	Pro	Asp	Asp 415	Phe
Met	Gly	Cys	Val 420	Leu	Ala	Trp	Asn	Thr 425	Arg	Asn	Ile	Asp	Ala 430	Thr	Ser
Thr	Gly	Asn 435	Tyr	Asn	Tyr	Lys	Tyr 440	Arg	Tyr	Leu	Arg	His 445	Gly	Lys	Leu
Arg	Pro 450	Phe	Glu	Arg	Asp	Ile 455	Ser	Asn	Val	Pro	Phe 460	Ser	Pro	Asp	Gly
Lys 465	Pro	Cha	Thr	Pro	Pro 470	Ala	Leu	Asn	Cys	Tyr 475	Trp	Pro	Leu	Asn	Asp 480
Tyr	Gly	Phe	Tyr	Thr 485	Thr	Thr	Gly	Ile	Gly 490	Tyr	Gln	Pro	Tyr	Arg 495	Val
Val	Val	Leu	Ser 500	Phe	Glu	Leu	Leu	Asn 505	Ala	Pro	Ala	Thr	Val 510	Cys	Gly
Pro	Lys	Leu 515	Ser	Thr	Asp	Leu	Ile 520	Lys	Asn	Gln	Cys	Val 525	Asn	Phe	Asn
Phe	Asn 530	Gly	Leu	Thr	Gly	Thr 535	Gly	Val	Leu	Thr	Pro 540	Ser	Ser	Lys	Arg
Phe 545	Gln	Pro	Phe	Gln	Gln 550	Phe	Gly	Arg	Asp	Val 555	Ser	Asp	Phe	Thr	Asp 560
Ser	Val	Arg	Asp	Pro 565	ГÀз	Thr	Ser	Glu	Ile 570	Leu	Asp	Ile	Ser	Pro 575	Сув
Ser	Phe	Gly	Gly 580	Val	Ser	Val	Ile	Thr 585	Pro	Gly	Thr	Asn	Ala 590	Ser	Ser
Glu	Val	Ala 595	Val	Leu	Tyr	Gln	Asp 600	Val	Asn	CAa	Thr	Asp 605	Val	Ser	Thr
Ala	Ile 610	His	Ala	Asp	Gln	Leu 615	Thr	Pro	Ala	Trp	Arg 620	Ile	Tyr	Ser	Thr
Gly 625	Asn	Asn	Val	Phe	Gln 630	Thr	Gln	Ala	Gly	Сув 635	Leu	Ile	Gly	Ala	Glu 640
His	Val	Asp	Thr	Ser 645	Tyr	Glu	Cys	Asp	Ile 650	Pro	Ile	Gly	Ala	Gly 655	Ile
CÀa	Ala	Ser	Tyr 660	His	Thr	Val	Ser	Leu 665	Leu	Arg	Ser	Thr	Ser 670	Gln	Lys
Ser	Ile	Val 675	Ala	Tyr	Thr	Met	Ser 680	Leu	Gly	Ala	Asp	Ser 685	Ser	Ile	Ala
Tyr	Ser 690	Asn	Asn	Thr	Ile	Ala 695	Ile	Pro	Thr	Asn	Phe 700	Ser	Ile	Ser	Ile
Thr 705	Thr	Glu	Val	Met	Pro 710	Val	Ser	Met	Ala	Lys 715	Thr	Ser	Val	Asp	Cys 720
Asn	Met	Tyr	Ile	Сув 725	Gly	Asp	Ser	Thr	Glu 730	Сув	Ala	Asn	Leu	Leu 735	Leu
Gln	Tyr	Gly	Ser 740	Phe	СЛа	Thr	Gln	Leu 745	Asn	Arg	Ala	Leu	Ser 750	Gly	Ile
Ala	Ala	Glu 755	Gln	Asp	Arg	Asn	Thr 760	Arg	Glu	Val	Phe	Ala 765	Gln	Val	Lys
Gln	Met	Tyr	Lys	Thr	Pro	Thr	Leu	Lys	Tyr	Phe	Gly	Gly	Phe	Asn	Phe

-continued
-concinued

	770					775					780				
Ser 785		Ile	Leu	Pro	Asp 790		Leu	Lys	Pro	Thr		Arg	Ser	Phe	Ile 800
Glu	Asp	Leu	Leu	Phe 805	Asn	Lys	Val	Thr	Leu 810	Ala	Asp	Ala	Gly	Phe	
Lys	Gln	Tyr	Gly 820	Glu	Cys	Leu	Gly	Asp 825	Ile	Asn	Ala	Arg	Asp 830	Leu	Ile
Cys	Ala	Gln 835	Lys	Phe	Asn	Gly	Leu 840	Thr	Val	Leu	Pro	Pro 845	Leu	Leu	Thr
Asp	Asp 850	Met	Ile	Ala	Ala	Tyr 855	Thr	Ala	Ala	Leu	Val 860	Ser	Gly	Thr	Ala
Thr 865	Ala	Gly	Trp	Thr	Phe 870	Gly	Ala	Gly	Ala	Ala 875	Leu	Gln	Ile	Pro	Phe 880
Ala	Met	Gln	Met	Ala 885	Tyr	Arg	Phe	Asn	Gly 890	Ile	Gly	Val	Thr	Gln 895	Asn
Val	Leu	Tyr	Glu 900	Asn	Gln	Lys	Gln	Ile 905	Ala	Asn	Gln	Phe	Asn 910	ГÀа	Ala
Ile	Ser	Gln 915	Ile	Gln	Glu	Ser	Leu 920	Thr	Thr	Thr	Ser	Thr 925	Ala	Leu	Gly
Lys	Leu 930	Gln	Asp	Val	Val	Asn 935	Gln	Asn	Ala	Gln	Ala 940	Leu	Asn	Thr	Leu
Val 945	Lys	Gln	Leu	Ser	Ser 950	Asn	Phe	Gly	Ala	Ile 955	Ser	Ser	Val	Leu	Asn 960
Asp	Ile	Leu	Ser	Arg 965	Leu	Asp	Lys	Val	Glu 970	Ala	Glu	Val	Gln	Ile 975	Aap
Arg	Leu	Ile	Thr 980	Gly	Arg	Leu	Gln	Ser 985	Leu	Gln	Thr	Tyr	Val 990	Thr	Gln
Gln	Leu	Ile 995	Arg	Ala	Ala	Glu	Ile 1000		g Al	a Se	r Ala	a As		eu A	la Ala
Thr	Lys 1010		Sei	Glu	ı Cys	Val 101		eu Gi	ly G	ln S	er Ly 10	ys 020	Arg '	Val	Asp
Phe	Cys 1025	-	/ Lys	Gly	/ Tyr	His 103		eu Me	et S	er Pl	he P:	ro 035	Gln .	Ala	Ala
Pro	His 1040		/ Val	l Val	l Phe	Let 104		Ls Va	al T	hr T		al 050	Pro	Ser	Gln
Glu	Arg 1055		n Phe	e Thi	Thr	106		ro Ai	la I	le C	ys H: 10	is 065	Glu	Gly	Lys
Ala	Tyr 1070		e Pro	Arg	g Glu	1 Gly		al Pl	ne V	al P		sn 080	Gly	Thr	Ser
Trp	Phe 1085		e Thi	Glr	n Arg	J Asr 109		ne Pl	ne S	er P		ln 095	Ile	Ile	Thr
Thr	Asp 1100		1 Thi	: Phe	e Val	Sei 110		Ly As	≅n C	ys A		al 110	Val	Ile	Gly
Ile	Ile 1115		n Asr	n Thi	. Val	1 Ty:		sp Pi	ro L	eu G		ro 125	Glu :	Leu	Asp
Ser	Phe 1130	_	g Glu	ı Glu	ı Lev	1 Ası 113	_	/s Ty	yr Pl	he L	_	sn 140	His	Thr	Ser
Pro	Asp 1145		l Asp) Let	ı Gly	/ Asp		Le Se	∍r G	ly I		sn . 155	Ala	Ser	Val
Val	Asn 1160		e Glr	ı Lys	s Glu	1 Ile 116		ep Ai	rg L	eu A		lu 170	Val .	Ala	Lys
Asn	Leu 1175		ı Glu	ı Sei	. Leu	1 Ile 118		sp Le	∋u G	ln G		eu 185	Gly :	Lys	Tyr

-continued

Glu Gln Tyr Ile Lys Trp Pro Trp Tyr Val Trp Leu Gly Phe Ile 1190 1195 1200 Ala Gly Leu Ile Ala Ile Val Met Val Thr Ile Leu Leu Cys Cys 1210 Met Thr Ser Cys Cys Ser Cys Leu Lys Gly Ala Cys Ser Cys Gly 1225 Ser Cys Cys Lys Phe Asp Glu Asp Asp Ser Glu Pro Val Leu Lys 1240 Gly Val Lys Leu His Tyr Thr <210> SEQ ID NO 30 <211> LENGTH: 1353 <212> TYPE: PRT <213 > ORGANISM: Human coronavirus <400> SEQUENCE: 30 Met Phe Leu Ile Leu Leu Ile Ser Leu Pro Thr Ala Phe Ala Val Ile Gly Asp Leu Lys Cys Thr Ser Asp Asn Ile Asn Asp Lys Asp Thr Gly Pro Pro Pro Ile Ser Thr Asp Thr Val Asp Val Thr Asn Gly Leu Gly 40 Thr Tyr Tyr Val Leu Asp Arg Val Tyr Leu Asn Thr Thr Leu Phe Leu Asn Gly Tyr Tyr Pro Thr Ser Gly Ser Thr Tyr Arg Asn Met Ala Leu Lys Gly Ser Val Leu Leu Ser Arg Leu Trp Phe Lys Pro Pro Phe Leu Ser Asp Phe Ile Asn Gly Ile Phe Ala Lys Val Lys Asn Thr Lys Val 105 Ile Lys Asp Arg Val Met Tyr Ser Glu Phe Pro Ala Ile Thr Ile Gly 120 Ser Thr Phe Val Asn Thr Ser Tyr Ser Val Val Val Gln Pro Arg Thr Ile Asn Ser Thr Gln Asp Gly Asp Asn Lys Leu Gln Gly Leu Leu Glu 155 Val Ser Val Cys Gln Tyr Asn Met Cys Glu Tyr Pro Gln Thr Ile Cys His Pro Asn Leu Gly Asn His Arg Lys Glu Leu Trp His Leu Asp Thr Gly Val Val Ser Cys Leu Tyr Lys Arg Asn Phe Thr Tyr Asp Val Asn Ala Asp Tyr Leu Tyr Phe His Phe Tyr Gln Glu Gly Gly Thr Phe Tyr Ala Tyr Phe Thr Asp Thr Gly Val Val Thr Lys Phe Leu Phe Asn Val 230 Tyr Leu Gly Met Ala Leu Ser His Tyr Tyr Val Met Pro Leu Thr Cys 250 Asn Ser Lys Leu Thr Leu Glu Tyr Trp Val Thr Pro Leu Thr Ser Arg Gln Tyr Leu Leu Ala Phe Asn Gln Asp Gly Ile Ile Phe Asn Ala Glu Asp Cys Met Ser Asp Phe Met Ser Glu Ile Lys Cys Lys Thr Gln Ser

_	290					295					300				
Ile 305		Pro	Pro	Thr	Gly 310		Tyr	Glu	Leu	Asn 315		Tyr	Thr	Val	Gln 320
Pro	Ile	Ala	Asp	Val 325	Tyr	Arg	Arg	Lys	Pro 330	Asn	Leu	Pro	Asn	Сув 335	Asn
Ile	Glu	Ala	Trp 340	Leu	Asn	Asp	Lys	Ser 345	Val	Pro	Ser	Pro	Leu 350	Asn	Trp
Glu	Arg	Lys 355	Thr	Phe	Ser	Asn	Сув 360	Asn	Phe	Asn	Met	Ser 365	Ser	Leu	Met
Ser	Phe 370	Ile	Gln	Ala	Asp	Ser 375	Phe	Thr	Cys	Asn	Asn 380	Ile	Asp	Ala	Ala
385 Lys	Ile	Tyr	Gly	Met	Cys	Phe	Ser	Ser	Ile	Thr 395	Ile	Asp	Lys	Phe	Ala 400
Ile	Pro	Asn	Gly	Arg 405	Lys	Val	Asp	Leu	Gln 410	Leu	Gly	Asn	Leu	Gly 415	Tyr
Leu	Gln	Ser	Phe 420	Asn	Tyr	Arg	Ile	Asp 425	Thr	Thr	Ala	Thr	Ser 430	Cys	Gln
Leu	Tyr	Tyr 435	Asn	Leu	Pro	Ala	Ala 440	Asn	Val	Ser	Val	Ser 445	Arg	Phe	Asn
Pro	Ser 450	Thr	Trp	Asn	Lys	Arg 455	Phe	Gly	Phe	Ile	Glu 460	Asp	Ser	Val	Phe
Lys 465	Pro	Arg	Pro	Ala	Gly 470	Val	Leu	Thr	Asn	His 475	Asp	Val	Val	Tyr	Ala 480
Gln	His	Сув	Phe	Lys 485	Ala	Pro	Lys	Asn	Phe 490	Сув	Pro	CAa	Lys	Leu 495	Asn
Gly	Ser	Сув	Val 500	Gly	Ser	Gly	Pro	Gly 505	Lys	Asn	Asn	Gly	Ile 510	Gly	Thr
CAa	Pro	Ala 515	Gly	Thr	Asn	Tyr	Leu 520	Thr	Cys	Asp	Asn	Leu 525	Cys	Thr	Pro
Asp	Pro 530	Ile	Thr	Phe	Thr	Gly 535	Thr	Tyr	Lys	Сув	Pro 540	Gln	Thr	Lys	Ser
Leu 545	Val	Gly	Ile	Gly	Glu 550	His	Cys	Ser	Gly	Leu 555	Ala	Val	Lys	Ser	Asp 560
Tyr	Сув	Gly	Gly	Asn 565	Ser	Cys	Thr	Cys	Arg 570	Pro	Gln	Ala	Phe	Leu 575	Gly
Trp	Ser	Ala	Asp 580	Ser	Cys	Leu	Gln	Gly 585	Asp	Lys	Cys	Asn	Ile 590	Phe	Ala
Asn	Phe	Ile 595	Leu	His	Asp	Val	Asn 600	Ser	Gly	Leu	Thr	605	Ser	Thr	Asp
Leu	Gln 610	Lys	Ala	Asn	Thr	Asp 615	Ile	Ile	Leu	Gly	Val 620	CAa	Val	Asn	Tyr
Asp 625	Leu	Tyr	Gly	Ile	Leu 630	Gly	Gln	Gly	Ile	Phe 635	Val	Glu	Val	Asn	Ala 640
Thr	Tyr	Tyr	Asn	Ser 645	Trp	Gln	Asn	Leu	Leu 650	Tyr	Asp	Ser	Asn	Gly 655	Asn
Leu	Tyr	Gly	Phe 660	Arg	Asp	Tyr	Ile	Ile 665	Asn	Arg	Thr	Phe	Met 670	Ile	Arg
Ser	Сув	Tyr 675	Ser	Gly	Arg	Val	Ser 680	Ala	Ala	Phe	His	Ala 685	Asn	Ser	Ser
Glu	Pro 690	Ala	Leu	Leu	Phe	Arg 695	Asn	Ile	Lys	Сув	Asn 700	Tyr	Val	Phe	Asn
Asn 705	Ser	Leu	Thr	Arg	Gln 710	Leu	Gln	Pro	Ile	Asn 715	Tyr	Phe	Asp	Ser	Tyr 720

Leu	Gly	Cys	Val	Val 725	Asn	Ala	Tyr	Asn	Ser 730	Thr	Ala	Ile	Ser	Val 735	Gln
Thr	Cya	Asp	Leu 740		Val	Gly	Ser	Gly 745		Сла	Val	Asp	Tyr 750		ГЛа
Asn	Arg	Arg 755	Ser	Arg	Gly	Ala	Ile 760	Thr	Thr	Gly	Tyr	Arg		Thr	Asn
Phe	Glu 770	Pro	Phe	Thr	Val	Asn 775	Ser	Val	Asn	Asp	Ser 780	Leu	Glu	Pro	Val
Gly 785	Gly	Leu	Tyr	Glu	Ile 790	Gln	Ile	Pro	Ser	Glu 795	Phe	Thr	Ile	Gly	Asn 800
Met	Val	Glu	Phe	Ile 805	Gln	Thr	Ser	Ser	Pro 810	Lys	Val	Thr	Ile	Asp 815	Cys
Ala	Ala	Phe	Val 820	CÀa	Gly	Asp	Tyr	Ala 825	Ala	СЛа	rys	Ser	Gln 830	Leu	Val
Glu	Tyr	Gly 835	Ser	Phe	CAa	Asp	Asn 840	Ile	Asn	Ala	Ile	Leu 845		Glu	Val
Asn	Glu 850	Leu	Leu	Asp	Thr	Thr 855	Gln	Leu	Gln	Val	Ala 860	Asn	Ser	Leu	Met
Asn 865	Gly	Val	Thr	Leu	Ser 870	Thr	Lys	Leu	Lys	Asp 875	Gly	Val	Asn	Phe	Asn 880
Val	Asp	Asp	Ile	Asn 885	Phe	Ser	Pro	Val	Leu 890	Gly	CÀa	Leu	Gly	Ser 895	Glu
CÀa	Ser	ГÀа	Ala 900	Ser	Ser	Arg	Ser	Ala 905	Ile	Glu	Asp	Leu	Leu 910	Phe	Asp
ГÀз	Val	Lys 915	Leu	Ser	Asp	Val	Gly 920	Phe	Val	Glu	Ala	Tyr 925		Asn	СЛа
Thr	Gly 930	Gly	Ala	Glu	Ile	Arg 935	Asp	Leu	Ile	СЛа	Val 940	Gln	Ser	Tyr	ГЛЗ
Gly 945	Ile	ГÀз	Val	Leu	Pro 950	Pro	Leu	Leu	Ser	Glu 955	Asn	Gln	Ile	Ser	Gly 960
Tyr	Thr	Leu	Ala	Ala 965	Thr	Ser	Ala	Ser	Leu 970	Phe	Pro	Pro	Trp	Thr 975	Ala
Ala	Ala	Gly	Val 980	Pro	Phe	Tyr	Leu	Asn 985	Val	Gln	Tyr	Arg	Ile 990	Asn	Gly
Leu	Gly	Val 995	Thr	Met	Asp	Val	Leu 1000		Glı	n Ası	n Gl	n Ly 10		eu I	le Ala
Asn	Ala 1010		e Asr	n Asr	n Ala	Let 101		/r A	La I	le G		lu 020	Gly	Phe I	Aap
Ala	Thr 1025		n Ser	Ala	ı Lev	103	_	/s I.	Le G	ln A		al 035	Val .	Asn i	Ala
Asn	Ala 1040		ı Ala	ı Lev	ı Asr	Asr 104		eu Le	eu G	ln G		eu 050	Ser .	Asn i	Arg
Phe	Gly 1055		a Il∈	e Ser	Ala	Sei 106		eu G	ln G	lu I		eu 065	Ser .	Arg 1	Leu
Asp	Ala 1070		ı Glu	ı Ala	a Glu	107		ln I	Le As	ep A:	-	eu 080	Ile .	Asn (Gly
Arg	Leu 1085		Ala	ı Lev	ı Asr	109	-	yr Va	al Se	er G		ln 095	Leu	Ser A	Aap
Ser	Thr		ı Val	. Lys	Phe	Se:		La A	La G	ln A		et 110	Glu :	Lys ¹	Val
Asn	Glu 1115		val	. Lys	Ser	Glr 112		er Se	er Ai	rg I		sn 125	Phe	Cys (Gly

Asn	Gly 1130		His	Il∈	· Ile	Ser 113		∋u V	al (Gln	Asn	Ala 1140		ro	Tyr	Gly
Leu	Tyr 1145		lle	His	Phe	Ser 115		yr V	al I	Pro	Thr	Lys 1155		yr	Val	Thr
Ala	Arg 1160		Ser	Pro	Gly	Leu 116		ys I	le A	Ala	Gly	Asp 1170		rg	Gly	Ile
Ala	Pro 1175		Ser	Gly	Tyr	Ph∈		al A	sn 7	Val	Asn	Asn 1185		hr	Trp	Met
Tyr	Thr 1190		Ser	Gly	Tyr	Туг 119		yr P	ro (Glu	Pro	Ile 1200		hr	Glu	Asn
Asn	Val 1205		. Val	Met	Ser	Thr 121		ys A	la V	Val	Asn	Tyr 1215		hr	Lys	Ala
Pro	Tyr 1220		. Met	Leu	. Asn	Thr 122		∍r I	le 1	Pro	Asn	Leu 1230		ro	Asp	Phe
ГÀа	Glu 1235		Leu	Asp	Gln	Trp 124		ne L	Aa 1	Asn	Gln	Thr 1245		er	Val	Ala
Pro	Asp 1250		Ser	Leu	. Asp	Tyr 125		le A	sn \	Val	Thr	Phe 1260		eu	Asp	Leu
Gln	Val 1265		Met	Asr	Arg	Leu 127		ln G	lu 2	Ala	Ile	Lys 1275		al	Leu	Asn
Gln	Ser 1280		Ile	Asr	Leu	Lys 128		ab I	le (Gly	Thr	Tyr 1290		lu	Tyr	Tyr
Val	Lys 1295		Pro	Trp	Tyr	Val		rp L	eu 1	Leu	Ile	1305 Cys		eu	Ala	Gly
Val	Ala 1310		Leu	Val	. Leu	Leu 131		ne P	he :	Ile	CAa	Cys 1320		уs	Thr	Gly
CAa	Gly 1325		Ser	Cys	Phe	Lys 133		Aa C	ys (Gly	Gly	1335 Cys		ys	Asp	Asp
Tyr	Thr 1340		Tyr	Gln	ı Glu	Leu 134		al I	le 1	ГÀа	Thr	Ser 1350		is	Asp	Asp
<211 <212)> SE L> LE 2> TY 3> OR	NGTH PE:	: 13 PRT	51	ın cc	rona	ıvirı	ıs								
< 400)> SE	QUEN	ICE:	31												
Met 1	Phe	Leu	Ile	Ile 5	Phe	Ile	Leu	Pro	Th: 10	r Th	ır L	eu Al	la '	Val	Ile 15	Gly
Asp	Phe	Asn	Cys 20	Thr	Asn	Ser	Phe	Ile 25	Ası	n As	эр Т	yr As		go Pàs	Thr	Ile
Pro	Arg	Ile 35	Ser	Glu	Asp	Val	Val 40	Asp	Va:	l S∈	er L	eu G] 45		Leu	Gly	Thr
Tyr	Tyr 50	Val	Leu	Asn	Arg	Val 55	Tyr	Leu	Ası	n Th	nr T		eu I	Leu	Phe	Thr
Gly 65	Tyr	Phe	Pro	Lys	Ser 70	Gly	Ala	Asn	Phe	e Ar 75		sp Le	eu I	Ala	Leu	Lys 80
Gly	Ser	Ile	Tyr	Leu 85	Ser	Thr	Leu	Trp	Ту: 90	r Ly	s P	ro Pı	ro 1	Phe	Leu 95	. Ser
Asp	Phe	Asn	Asn 100	Gly	Ile	Phe	Ser	Lys 105	Va:	l Ly	/s A	sn Th		նչs 110		ı Tyr
Val	Asn	Asn 115	Thr	Leu	Tyr	Ser	Glu 120	Phe	Sei	r Th	nr I	le Va		Ile	Gly	Ser
Val	Phe 130	Val	Asn	Thr	Ser	Tyr 135	Thr	Ile	Va:	l Va		ln Pi 40	:o 1	His	Asr	Gly

Ile 145	Leu	Glu	Ile	Thr	Ala 150	Сув	Gln	Tyr	Thr	Met 155	СЛа	Glu	Tyr	Pro	His 160
Thr	Val	Сув	Lys	Ser 165	Lys	Gly	Ser	Ile	Arg 170	Asn	Glu	Ser	Trp	His 175	Ile
Asp	Ser	Ser	Glu 180	Pro	Leu	Cys	Leu	Phe 185	Lys	Lys	Asn	Phe	Thr 190	Tyr	Asn
Val	Ser	Ala 195	Asp	Trp	Leu	Tyr	Phe 200	His	Phe	Tyr	Gln	Glu 205	Arg	Gly	Val
Phe	Tyr 210	Ala	Tyr	Tyr	Ala	Asp 215	Val	Gly	Met	Pro	Thr 220	Thr	Phe	Leu	Phe
Ser 225	Leu	Tyr	Leu	Gly	Thr 230	Ile	Leu	Ser	His	Tyr 235	Tyr	Val	Met	Pro	Leu 240
Thr	Сув	Asn	Ala	Ile 245	Ser	Ser	Asn	Thr	Asp 250	Asn	Glu	Thr	Leu	Glu 255	Tyr
Trp	Val	Thr	Pro 260	Leu	Ser	Arg	Arg	Gln 265	Tyr	Leu	Leu	Asn	Phe 270	Asp	Glu
His	Gly	Val 275	Ile	Thr	Asn	Ala	Val 280	Asp	Càa	Ser	Ser	Ser 285	Phe	Leu	Ser
Glu	Ile 290	Gln	CÀa	Lys	Thr	Gln 295	Ser	Phe	Ala	Pro	Asn 300	Thr	Gly	Val	Tyr
Asp 305	Leu	Ser	Gly	Phe	Thr 310	Val	Lys	Pro	Val	Ala 315	Thr	Val	Tyr	Arg	Arg 320
Ile	Pro	Asn	Leu	Pro 325	Asp	CÀa	Aap	Ile	330 Asp	Asn	Trp	Leu	Asn	Asn 335	Val
Ser	Val	Pro	Ser 340	Pro	Leu	Asn	Trp	Glu 345	Arg	Arg	Ile	Phe	Ser 350	Asn	Cys
Asn	Phe	Asn 355	Leu	Ser	Thr	Leu	Leu 360	Arg	Leu	Val	His	Val 365	Asp	Ser	Phe
Ser	Cys 370	Asn	Asn	Leu	Asp	Lys 375	Ser	Lys	Ile	Phe	Gly 380	Ser	Cya	Phe	Asn
Ser 385	Ile	Thr	Val	Asp	390 Lys	Phe	Ala	Ile	Pro	Asn 395	Arg	Arg	Arg	Asp	Asp 400
Leu	Gln	Leu	Gly	Ser 405	Ser	Gly	Phe	Leu	Gln 410	Ser	Ser	Asn	Tyr	Lys 415	Ile
Asp	Ile	Ser	Ser 420	Ser	Ser	Cys	Gln	Leu 425	Tyr	Tyr	Ser	Leu	Pro 430	Leu	Val
Asn	Val	Thr 435	Ile	Asn	Asn	Phe	Asn 440	Pro	Ser	Ser	Trp	Asn 445	Arg	Arg	Tyr
Gly	Phe 450	Gly	Ser	Phe	Asn	Leu 455	Ser	Ser	Tyr	Asp	Val 460	Val	Tyr	Ser	Asp
His 465	Cya	Phe	Ser	Val	Asn 470	Ser	Aap	Phe	Cys	Pro 475	CÀa	Ala	Asp	Pro	Ser 480
Val	Val	Asn	Ser	Cys 485	Ala	Lys	Ser	Lys	Pro 490	Pro	Ser	Ala	Ile	Cys 495	Pro
Ala	Gly	Thr	500	Tyr	Arg	His	Cys	Asp 505	Leu	Asp	Thr	Thr	Leu 510	Tyr	Val
ГЛа	Asn	Trp 515	CÀa	Arg	CAa	Ser	Cys 520	Leu	Pro	Asp	Pro	Ile 525	Ser	Thr	Tyr
Ser	Pro 530	Asn	Thr	Сла	Pro	Gln 535	Lys	Lys	Val	Val	Val 540	Gly	Ile	Gly	Glu
His 545	Сув	Pro	Gly	Leu	Gly 550	Ile	Asn	Glu	Glu	Lуз 555	СЛа	Gly	Thr	Gln	Leu 560

Asn	His	Ser	Ser	Сув 565	Phe	Cys	Ser	Pro	Asp 570	Ala	Phe	Leu	Gly	Trp 575	Ser
Phe	Asp	Ser	580	Ile	Ser	Asn	Asn	Arg 585	Cys	Asn	Ile	Phe	Ser 590	Asn	Phe
Ile	Phe	Asn 595	Gly	Ile	Asn	Ser	Gly 600	Thr	Thr	Суз	Ser	Asn 605	Asp	Leu	Leu
Tyr	Ser 610	Asn	Thr	Glu	Ile	Ser 615	Thr	Gly	Val	Суз	Val 620	Asn	Tyr	Asp	Leu
Tyr 625	Gly	Ile	Thr	Gly	Gln 630	Gly	Ile	Phe	Lys	Glu 635	Val	Ser	Ala	Ala	Tyr 640
Tyr	Asn	Asn	Trp	Gln 645	Asn	Leu	Leu	Tyr	Asp 650	Ser	Asn	Gly	Asn	Ile 655	Ile
Gly	Phe	ГÀа	Asp	Phe	Leu	Thr	Asn	Lys	Thr	Tyr	Thr	Ile	Leu 670	Pro	CAa
Tyr	Ser	Gly 675	Arg	Val	Ser	Ala	Ala 680	Phe	Tyr	Gln	Asn	Ser 685	Ser	Ser	Pro
Ala	Leu 690	Leu	Tyr	Arg	Asn	Leu 695	ГЛа	Cys	Ser	Tyr	Val 700	Leu	Asn	Asn	Ile
Ser 705	Phe	Ile	Ser	Gln	Pro 710	Phe	Tyr	Phe	Asp	Ser 715	Tyr	Leu	Gly	CÀa	Val 720
Leu	Asn	Ala	Val	Asn 725	Leu	Thr	Ser	Tyr	Ser 730	Val	Ser	Ser	Cha	Asp 735	Leu
Arg	Met	Gly	Ser 740	Gly	Phe	Cys	Ile	Asp 745	Tyr	Ala	Leu	Pro	Ser 750	Ser	Arg
Arg	Lys	Arg 755	Arg	Gly	Ile	Ser	Ser 760	Pro	Tyr	Arg	Phe	Val 765	Thr	Phe	Glu
Pro	Phe 770	Asn	Val	Ser	Phe	Val 775	Asn	Asp	Ser	Val	Glu 780	Thr	Val	Gly	Gly
Leu 785	Phe	Glu	Ile	Gln	Ile 790	Pro	Thr	Asn	Phe	Thr 795	Ile	Ala	Gly	His	Glu 800
Glu	Phe	Ile	Gln	Thr 805	Ser	Ser	Pro	Lys	Val 810	Thr	Ile	Asp	Cys	Ser 815	Ala
Phe	Val	Cys	Ser 820	Asn	Tyr	Ala	Ala	Сув 825	His	Asp	Leu	Leu	Ser 830	Glu	Tyr
Gly	Thr	Phe 835	Cys	Asp	Asn	Ile	Asn 840	Ser	Ile	Leu	Asn	Glu 845	Val	Asn	Asp
Leu	Leu 850	Asp	Ile	Thr	Gln	Leu 855		Val	Ala	Asn	Ala 860	Leu	Met	Gln	Gly
Val 865	Thr	Leu	Ser	Ser	Asn 870	Leu	Asn	Thr	Asn	Leu 875	His	Ser	Asp	Val	Asp
Asn	Ile	Asp	Phe	Lys 885	Ser	Leu	Leu	Gly	690	Leu	Gly	Ser	Gln	Cys 895	Gly
Ser	Ser	Ser	Arg 900	Ser	Leu	Leu	Glu	Asp 905	Leu	Leu	Phe	Asn	Lys 910	Val	ГÀа
Leu	Ser	Asp 915	Val	Gly	Phe	Val	Glu 920	Ala	Tyr	Asn	Asn	Сув 925	Thr	Gly	Gly
Ser	Glu 930	Ile	Arg	Asp	Leu	Leu 935	Cys	Val	Gln	Ser	Phe 940	Asn	Gly	Ile	ГХз
Val 945	Leu	Pro	Pro	Ile	Leu 950	Ser	Glu	Thr	Gln	Ile 955	Ser	Gly	Tyr	Thr	Thr 960
Ala	Ala	Thr	Val	Ala 965	Ala	Met	Phe	Pro	Pro 970	Trp	Ser	Ala	Ala	Ala 975	Gly
Val	Pro	Phe	Ser	Leu	Asn	Val	Gln	Tyr	Arg	Ile	Asn	Gly	Leu	Gly	Val

	980	985	990
Thr Met Asp 995	Val Leu Asn	Lys Asn Gln L 1000	Lys Leu Ile Ala Asn Ala Phe 1005
Asn Lys Ala	Leu Leu Ser	Ile Gln Asn	Gly Phe Thr Ala Thr Asn
1010		1015	1020
Ser Ala Leu	Ala Lys Ile	Gln Ser Val	Val Asn Ala Asn Ala Gln
1025		1030	1035
Ala Leu Asn	Ser Leu Leu	Gln Gln Leu	Phe Asn Lys Phe Gly Ala
1040		1045	1050
Ile Ser Ser	Ser Leu Gln	Glu Ile Leu	Ser Arg Leu Asp Asn Leu
1055		1060	1065
Glu Ala Gln	Val Gln Ile	Asp Arg Leu	Ile Asn Gly Arg Leu Thr
1070		1075	1080
Ala Leu Asn	Ala Tyr Val	Ser Gln Gln	Leu Ser Asp Ile Thr Leu
1085		1090	1095
Ile Lys Ala	Gly Ala Ser	Arg Ala Ile	Glu Lys Val Asn Glu Cys
1100		1105	1110
Val Lys Ser	Gln Ser Pro	Arg Ile Asn	Phe Cys Gly Asn Gly Asn
1115		1120	1125
His Ile Leu	Ser Leu Val	Gln Asn Ala	Pro Tyr Gly Leu Leu Phe
1130		1135	1140
Ile His Phe	Ser Tyr Lys	Pro Thr Ser	Phe Lys Thr Val Leu Val
1145		1150	1155
Ser Pro Gly	Leu Cys Leu	Ser Gly Asp	Arg Gly Ile Ala Pro Lys
1160		1165	1170
Gln Gly Tyr	Phe Ile Lys	Gln Asn Asp	Ser Trp Met Phe Thr Gly
1175		1180	1185
Ser Ser Tyr	Tyr Tyr Pro	Glu Pro Ile	Ser Asp Lys Asn Val Val
1190		1195	1200
Phe Met Asn	Ser Cys Ser	Val Asn Phe	Thr Lys Ala Pro Phe Ile
1205		1210	1215
Tyr Leu Asn	Asn Ser Ile	Pro Asn Leu	Ser Asp Phe Glu Ala Glu
1220		1225	1230
Leu Ser Leu	Trp Phe Lys	Asn His Thr	Ser Ile Ala Pro Asn Leu
1235		1240	1245
Thr Phe Asn	Ser His Ile	Asn Ala Thr	Phe Leu Asp Leu Tyr Tyr
1250		1255	1260
Glu Met Asn	Val Ile Gln	Glu Ser Ile	Lys Ser Leu Asn Ser Ser
1265		1270	1275
Phe Ile Asn	Leu Lys Glu	Ile Gly Thr	Tyr Glu Met Tyr Val Lys
1280		1285	1290
Trp Pro Trp	Tyr Ile Trp	Leu Leu Ile	Val Ile Leu Phe Ile Ile
1295		1300	1305
Phe Leu Met	Ile Leu Phe	Phe Ile Cys	Cys Cys Thr Gly Cys Gly
1310		1315	1320
Ser Ala Cys	Phe Ser Lys	Cys His Asn	Cys Cys Asp Glu Tyr Gly
1325		1330	1335
Gly His Asn	Asp Phe Val	Ile Lys Ala	Ser His Asp Asp
1340		1345	1350
<210> SEQ ID	NO 32		

<210> SEQ ID NO 32 <211> LENGTH: 526 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence

	-continued														
	<pre><220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide</pre>														
< 40	0 > SI	EQUEI	ICE:	32											
Met 1	Phe	Ile	Phe	Leu 5	Leu	Phe	Leu	Thr	Leu 10	Thr	Ser	Gly	Ser	Asp 15	Leu
Asp	Arg	Ala	Leu 20	Ser	Gly	Ile	Ala	Ala 25	Glu	Gln	Asp	Arg	Asn 30	Thr	Arg
Glu	Val	Phe 35	Ala	Gln	Val	Lys	Gln 40	Met	Tyr	Lys	Thr	Pro 45	Thr	Leu	Lys
Tyr	Phe 50	Gly	Gly	Phe	Asn	Phe 55	Ser	Gln	Ile	Leu	Pro 60	Asp	Pro	Leu	Lys
Pro 65	Thr	Lys	Arg	Ser	Phe 70	Ile	Glu	Asp	Leu	Leu 75	Phe	Asn	Lys	Val	Thr 80
Leu	Ala	Asp	Ala	Gly 85	Phe	Met	Lys	Gln	Tyr 90	Gly	Glu	CAa	Leu	Gly 95	Asp
Ile	Asn	Ala	Arg 100	Asp	Leu	Ile	CÀa	Ala 105	Gln	Lys	Phe	Asn	Gly 110	Leu	Thr
Val	Leu	Pro 115	Pro	Leu	Leu	Thr	Asp 120	Asp	Met	Ile	Ala	Ala 125	Tyr	Thr	Ala
Ala	Leu 130	Val	Ser	Gly	Thr	Ala 135	Thr	Ala	Gly	Trp	Thr 140	Phe	Gly	Ala	Gly
Ala 145	Ala	Leu	Gln	Ile	Pro 150	Phe	Ala	Met	Gln	Met 155	Ala	Tyr	Arg	Phe	Asn 160
Gly	Ile	Gly	Val	Thr 165	Gln	Asn	Val	Leu	Tyr 170	Glu	Asn	Gln	Lys	Gln 175	Ile
Ala	Asn	Gln	Phe 180	Asn	rAa	Ala	Ile	Ser 185	Gln	Ile	Gln	Glu	Ser 190	Leu	Thr
Thr	Thr	Ser 195	Thr	Ala	Leu	Gly	Lys 200	Leu	Gln	Asp	Val	Val 205	Asn	Gln	Asn
Ala	Gln 210	Ala	Leu	Asn	Thr	Leu 215	Val	ГÀЗ	Gln	Leu	Ser 220	Ser	Asn	Phe	Gly
Ala 225	Ile	Ser	Ser	Val	Leu 230	Asn	Asp	Ile	Leu	Ser 235	Arg	Leu	Asp	Lys	Val 240
Glu	Ala	Glu	Val	Gln 245	Ile	Asp	Arg	Leu	Ile 250	Thr	Gly	Arg	Leu	Gln 255	Ser
Leu	Gln		Tyr 260		Thr	Gln		Leu 265			Ala		Glu 270		Arg
Ala	Ser	Ala 275	Asn	Leu	Ala	Ala	Thr 280	Lys	Met	Ser	Glu	Сув 285	Val	Leu	Gly
Gln	Ser 290	Lys	Arg	Val	Asp	Phe 295	Cys	Gly	Lys	Gly	Tyr 300	His	Leu	Met	Ser
Phe 305	Pro	Gln	Ala	Ala	Pro 310	His	Gly	Val	Val	Phe 315	Leu	His	Val	Thr	Tyr 320
Val	Pro	Ser	Gln	Glu 325	Arg	Asn	Phe	Thr	Thr 330	Ala	Pro	Ala	Ile	Сув 335	His
Glu	Gly	Lys	Ala 340	Tyr	Phe	Pro	Arg	Glu 345	Gly	Val	Phe	Val	Phe 350	Asn	Gly
Thr	Ser	Trp 355	Phe	Ile	Thr	Gln	Arg 360	Asn	Phe	Phe	Ser	Pro 365	Gln	Ile	Ile
Thr	Thr 370	Asp	Asn	Thr	Phe	Val 375	Ser	Gly	Asn	Сув	Asp	Val	Val	Ile	Gly
Ile 385	Ile	Asn	Asn	Thr	Val 390	Tyr	Asp	Pro	Leu	Gln 395	Pro	Glu	Leu	Asp	Ser 400

Phe Lys Glu Glu Leu Asp Lys Tyr Phe Lys Asn His Thr Ser Pro Asp 410 Val Asp Leu Gly Asp Ile Ser Gly Ile Asn Ala Ser Val Val Asn Ile 425 Gln Lys Glu Ile Asp Arg Leu Asn Glu Val Ala Lys Asn Leu Asn Glu Ser Leu Ile Asp Leu Gln Glu Leu Gly Lys Tyr Glu Gln Tyr Ile Lys Trp Pro Trp Tyr Val Trp Leu Gly Phe Ile Ala Gly Leu Ile Ala Ile Val Met Val Thr Ile Leu Leu Cys Cys Met Thr Ser Cys Cys Ser Cys Leu Lys Gly Ala Cys Ser Cys Gly Ser Cys Cys Lys Phe Asp Glu Asp Asp Ser Glu Pro Val Leu Lys Gly Val Lys Leu His Tyr Thr <210> SEO ID NO 33 <211> LENGTH: 588 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223 > OTHER INFORMATION: Synthetic Polypeptide <400> SEQUENCE: 33 Met Ile His Ser Val Phe Leu Leu Met Phe Leu Leu Thr Pro Thr Glu 10 Ser Asp Cys Lys Leu Pro Leu Gly Gln Ser Leu Cys Ala Leu Pro Asp 25 Thr Pro Ser Thr Leu Thr Pro Arg Ser Val Arg Ser Val Pro Gly Glu Met Arg Leu Ala Ser Ile Ala Phe Asn His Pro Ile Gln Val Asp Gln Leu Asn Ser Ser Tyr Phe Lys Leu Ser Ile Pro Thr Asn Phe Ser Phe 75 Gly Val Thr Gln Glu Tyr Ile Gln Thr Thr Ile Gln Lys Val Thr Val Asp Cys Lys Gln Tyr Val Cys Asn Gly Phe Gln Lys Cys Glu Gln Leu Leu Arg Glu Tyr Gly Gln Phe Cys Ser Lys Ile Asn Gln Ala Leu His Gly Ala Asn Leu Arg Gln Asp Asp Ser Val Arg Asn Leu Phe Ala Ser Val Lys Ser Ser Gln Ser Ser Pro Ile Ile Pro Gly Phe Gly Gly Asp 155 Phe Asn Leu Thr Leu Leu Glu Pro Val Ser Ile Ser Thr Gly Ser Arg Ser Ala Arg Ser Ala Ile Glu Asp Leu Leu Phe Asp Lys Val Thr Ile 185 Ala Asp Pro Gly Tyr Met Gln Gly Tyr Asp Asp Cys Met Gln Gly 200 Pro Ala Ser Ala Arg Asp Leu Ile Cys Ala Gln Tyr Val Ala Gly Tyr 215 220 Lys Val Leu Pro Pro Leu Met Asp Val Asn Met Glu Ala Ala Tyr Thr 230

Ser Ser Leu Leu Gly Ser Ile Ala Gly Val Gly Trp Thr Ala Gly Leu 250 Ser Ser Phe Ala Ala Ile Pro Phe Ala Gln Ser Ile Phe Tyr Arg Leu 265 Asn Gly Val Gly Ile Thr Gln Gln Val Leu Ser Glu Asn Gln Lys Leu Ile Ala Asn Lys Phe Asn Gln Ala Leu Gly Ala Met Gln Thr Gly Phe Thr Thr Thr Asn Glu Ala Phe Gln Lys Val Gln Asp Ala Val Asn Asn Asn Ala Gln Ala Leu Ser Lys Leu Ala Ser Glu Leu Ser Asn Thr Phe Gly Ala Ile Ser Ala Ser Ile Gly Asp Ile Ile Gln Arg Leu Asp Val Leu Glu Gln Asp Ala Gln Ile Asp Arg Leu Ile Asn Gly Arg Leu Thr 360 Thr Leu Asn Ala Phe Val Ala Gln Gln Leu Val Arg Ser Glu Ser Ala 375 Ala Leu Ser Ala Gln Leu Ala Lys Asp Lys Val Asn Glu Cys Val Lys Ala Gln Ser Lys Arg Ser Gly Phe Cys Gly Gln Gly Thr His Ile Val 410 Ser Phe Val Val Asn Ala Pro Asn Gly Leu Tyr Phe Met His Val Gly 425 Tyr Tyr Pro Ser Asn His Ile Glu Val Val Ser Ala Tyr Gly Leu Cys 440 Asp Ala Ala Asn Pro Thr Asn Cys Ile Ala Pro Val Asn Gly Tyr Phe Ile Lys Thr Asn Asn Thr Arg Ile Val Asp Glu Trp Ser Tyr Thr Gly 470 475 Ser Ser Phe Tyr Ala Pro Glu Pro Ile Thr Ser Leu Asn Thr Lys Tyr Val Ala Pro Gln Val Thr Tyr Gln Asn Ile Ser Thr Asn Leu Pro Pro 505 Pro Leu Leu Gly Asn Ser Thr Gly Ile Asp Phe Gln Asp Glu Leu Asp Glu Phe Phe Lys Asn Val Ser Thr Ser Ile Pro Asn Phe Gly Ser Leu 535 Thr Gln Ile Asn Thr Thr Leu Leu Asp Leu Thr Tyr Glu Met Leu Ser Leu Gln Gln Val Val Lys Ala Leu Asn Glu Ser Tyr Ile Asp Leu Lys Glu Leu Gly Asn Tyr Thr Tyr Tyr Asn Lys Trp Pro 580 <210> SEQ ID NO 34 <211> LENGTH: 526 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide <400> SEQUENCE: 34 Met Phe Ile Phe Leu Leu Phe Leu Thr Leu Thr Ser Gly Ser Asp Leu

5

Asp	Arg	Ala	Leu 20	Ser	Gly	Ile	Ala	Ala 25	Glu	Gln	Asp	Arg	Asn 30	Thr	Arg
Glu	Val	Phe 35	Ala	Gln	Val	Lys	Gln 40	Met	Tyr	Lys	Thr	Pro 45	Thr	Leu	Lys
Tyr	Phe 50	Gly	Gly	Phe	Asn	Phe 55	Ser	Gln	Ile	Leu	Pro 60	Asp	Pro	Leu	Lys
Pro 65	Thr	Lys	Arg	Ser	Phe 70	Ile	Glu	Asp	Leu	Leu 75	Phe	Asn	Lys	Val	Thr 80
Leu	Ala	Asp	Ala	Gly 85	Phe	Met	Lys	Gln	Tyr 90	Gly	Glu	Cys	Leu	Gly 95	Asp
Ile	Asn	Ala	Arg 100	Asp	Leu	Ile	Cys	Ala 105	Gln	Lys	Phe	Asn	Gly 110	Leu	Thr
Val	Leu	Pro 115	Pro	Leu	Leu	Thr	Asp 120	Asp	Met	Ile	Ala	Ala 125	Tyr	Thr	Ala
Ala	Leu 130	Val	Ser	Gly	Thr	Ala 135	Thr	Ala	Gly	Trp	Thr 140	Phe	Gly	Ala	Gly
Ala 145	Ala	Leu	Gln	Ile	Pro 150	Phe	Ala	Met	Gln	Met 155	Ala	Tyr	Arg	Phe	Asn 160
Gly	Ile	Gly	Val	Thr 165	Gln	Asn	Val	Leu	Tyr 170	Glu	Asn	Gln	ГЛа	Gln 175	Ile
Ala	Asn	Gln	Phe 180	Asn	Lys	Ala	Ile	Ser 185	Gln	Ile	Gln	Glu	Ser 190	Leu	Thr
Thr	Thr	Ser 195	Thr	Ala	Leu	Gly	Lys 200	Leu	Gln	Asp	Val	Val 205	Asn	Gln	Asn
Ala	Gln 210	Ala	Leu	Asn	Thr	Leu 215	Val	Lys	Gln	Leu	Ser 220	Ser	Asn	Phe	Gly
Ala 225	Ile	Ser	Ser	Val	Leu 230	Asn	Asp	Ile	Leu	Ser 235	Arg	Leu	Asp	Lys	Val 240
Glu	Ala	Glu	Val	Gln 245	Ile	Asp	Arg	Leu	Ile 250	Thr	Gly	Arg	Leu	Gln 255	Ser
Leu	Gln	Thr	Tyr 260	Val	Thr	Gln	Gln	Leu 265	Ile	Arg	Ala	Ala	Glu 270	Ile	Arg
Ala	Ser	Ala 275	Asn	Leu	Ala	Ala	Thr 280	Lys	Met	Ser	Glu	Сув 285	Val	Leu	Gly
Gln	Ser 290	Lys	Arg	Val	Asp	Phe 295	Cys	Gly	Lys	Gly	Tyr 300	His	Leu	Met	Ser
Phe 305	Pro	Gln	Ala	Ala	Pro 310	His	Gly	Val	Val	Phe 315	Leu	His	Val	Thr	Tyr 320
Val	Pro	Ser	Gln	Glu 325	Arg	Asn	Phe	Thr	Thr 330	Ala	Pro	Ala	Ile	Сув 335	His
Glu	Gly	Lys	Ala 340	Tyr	Phe	Pro	Arg	Glu 345	Gly	Val	Phe	Val	Phe 350	Asn	Gly
Thr	Ser	Trp 355	Phe	Ile	Thr	Gln	Arg 360	Asn	Phe	Phe	Ser	Pro 365	Gln	Ile	Ile
Thr	Thr 370	Asp	Asn	Thr	Phe	Val 375	Ser	Gly	Asn	Cys	Asp 380	Val	Val	Ile	Gly
Ile 385	Ile	Asn	Asn	Thr	Val 390	Tyr	Asp	Pro	Leu	Gln 395	Pro	Glu	Leu	Asp	Ser 400
Phe	Lys	Glu	Glu	Leu 405	Asp	Lys	Tyr	Phe	Lys 410	Asn	His	Thr	Ser	Pro 415	Asp
Val	Asp	Leu	Gly 420	Asp	Ile	Ser	Gly	Ile 425	Asn	Ala	Ser	Val	Val 430	Asn	Ile

Gln Lys Gl 43		rg Leu Asn 440	Glu Val Ala	Lys Asn Let 445	ı Asn Glu	
Ser Leu Il 450	e Asp Leu G	ln Glu Leu 455	Gly Lys Tyr	Glu Gln Tyr 460	r Ile Lys	
Trp Pro Tr		rp Leu Gly 70	Phe Ile Ala	_	e Ala Ile 480	
Val Met Va	l Thr Ile L 485	eu Leu Cys	Cys Met Thr	Ser Cys Cys	s Ser Cys 495	
Leu Lys Gl	y Ala Cys S 500	er Cys Gly	Ser Cys Cys	Lys Phe Asp		
Asp Ser Gl		eu Lys Gly 520	Val Lys Leu	His Tyr Thi	r	
<220> FEAT	TH: 1864 : DNA NISM: Artif URE: R INFORMATI	-	ence tic Polynucl	eotide		
		acagaagct	a atacgactca	ctatagggaa	ataagagaga	60
			a ccatgggtct			120
			a cacccgccgg			180
tctctaagat	aggggtagta	ggaatagga	a gtgcaagcta	caaagttatg	actcgttcca	240
gccatcaatc	attagtcata	aaattaatg	c ccaatataac	tctcctcaat	aactgcacga	300
gggtagagat	tgcagaatac	aggagacta	c taagaacagt	tttggaacca	attagggatg	360
cacttaatgc	aatgacccag	aacataagg	c cggttcagag	cgtagcttca	agtaggagac	420
acaagagatt	tgcgggagta	gteetggea	g gtgcggccct	aggtgttgcc	acagctgctc	480
agataacagc	cggcattgca	cttcaccgg	t ccatgctgaa	ctctcaggcc	atcgacaatc	540
tgagagcgag	cctggaaact	actaatcag	g caattgaggo	aatcagacaa	gcagggcagg	600
agatgatatt	ggctgttcag	ggtgtccaa	g actacatcaa	taatgagctg	ataccgtcta	660
tgaaccagct	atcttgtgat	ctaatcggt	c agaagctcgg	gctcaaattg	cttagatact	720
atacagaaat	cctgtcatta	tttggcccc	a geetaeggga	ccccatatct	gcggagatat	780
ctatccaggc	tttgagttat	gcacttgga	g gagatatcaa	taaggtgtta	gaaaagctcg	840
gatacagtgg	aggcgattta	ctaggcatc	t tagagagcag	aggaataaag	gctcggataa	900
ctcacgtcga	cacagagtco	tacttcata	g teeteagtat	agcctatccg	acgctgtccg	960
agattaaggg	ggtgattgto	caccggcta	g agggggtctc	gtacaacata	ggctctcaag	1020
agtggtatac	cactgtgccc	aagtatgtt	g caacccaagg	gtaccttatc	tcgaattttg	1080
atgagtcatc	atgtactttc	atgccagag	g ggactgtgtg	cagccaaaat	gccttgtacc	1140
cgatgagtcc	tctgctccaa	gaatgeete	c gggggtccac	caagtcctgt	gctcgtacac	1200
tcgtatccgg	gtcttttggg	aaccggttc	a ttttatcaca	agggaaccta	atagccaatt	1260
gtgcatcaat	tetttgtaag	tgttacaca	a caggtacgat	tattaatcaa	gaccctgaca	1320
agatcctaac	atacattgct	geegatege	t gcccggtagt	cgaggtgaac	ggcgtgacca	1380
tccaagtcgg	gagcaggagg	tatccagac	g ctgtgtactt	gcacagaatt	gacctcggtc	1440
ctcccatatc	attggagagg	ttggacgta	g ggacaaatct	ggggaatgca	attgccaaat	1500
tggaggatgc	caaggaattg	ttggaatca	t cggaccagat	attgagaagt	atgaaaggtt	1560

tatcgagcac t	agcatagtc	tacatcctga	ttgcagtgtg	tcttggaggg	ttgataggga	1620
tccccacttt a	aatatgttgc	tgcagggggc	gttgtaacaa	aaagggagaa	caagttggta	1680
tgtcaagacc a	aggcctaaag	cctgacctta	caggaacatc	aaaatcctat	gtaagatcgc	1740
tttgatgata a	ataggctgga	gcctcggtgg	ccaagcttct	tgccccttgg	gcctccccc	1800
ageceeteet e	cccttcctg	cacccgtacc	cccgtggtct	ttgaataaag	tctgagtggg	1860
cggc						1864
<210> SEQ II <211> LENGTH <212> TYPE: <213> ORGANI <220> FEATUR <223> OTHER	H: 1653 DNA ISM: Artifi RE:			eotide		
<400> SEQUEN	NCE: 36					
atgggtctca a	aggtgaacgt	ctctgccgta	ttcatggcag	tactgttaac	tctccaaaca	60
cccgccggtc a	aaattcattg	gggcaatctc	tctaagatag	gggtagtagg	aataggaagt	120
gcaagctaca a	aagttatgac	tcgttccagc	catcaatcat	tagtcataaa	attaatgccc	180
aatataactc t	cctcaataa	ctgcacgagg	gtagagattg	cagaatacag	gagactacta	240
agaacagttt t	ggaaccaat	tagggatgca	cttaatgcaa	tgacccagaa	cataaggccg	300
gttcagagcg t	agcttcaag	taggagacac	aagagatttg	cgggagtagt	cctggcaggt	360
geggeeetag g	gtgttgccac	agctgctcag	ataacagccg	gcattgcact	tcaccggtcc	420
atgctgaact c	ctcaggccat	cgacaatctg	agagcgagcc	tggaaactac	taatcaggca	480
attgaggcaa t	cagacaagc	agggcaggag	atgatattgg	ctgttcaggg	tgtccaagac	540
tacatcaata a	atgagctgat	accgtctatg	aaccagctat	cttgtgatct	aatcggtcag	600
aagctcgggc t	caaattgct	tagatactat	acagaaatcc	tgtcattatt	tggccccagc	660
ctacgggacc c	ccatatctgc	ggagatatct	atccaggctt	tgagttatgc	acttggagga	720
gatatcaata a	aggtgttaga	aaagctcgga	tacagtggag	gcgatttact	aggcatctta	780
gagagcagag g	gaataaaggc	tcggataact	cacgtcgaca	cagagtccta	cttcatagtc	840
ctcagtatag c	ectatecgae	gctgtccgag	attaaggggg	tgattgtcca	ccggctagag	900
ggggtetegt a	acaacatagg	ctctcaagag	tggtatacca	ctgtgcccaa	gtatgttgca	960
acccaagggt a	accttatctc	gaattttgat	gagtcatcat	gtactttcat	gccagagggg	1020
actgtgtgca g	gccaaaatgc	cttgtacccg	atgagtcctc	tgctccaaga	atgcctccgg	1080
gggtccacca a	agtcctgtgc	tcgtacactc	gtatccgggt	cttttgggaa	ccggttcatt	1140
ttatcacaag g	ggaacctaat	agccaattgt	gcatcaattc	tttgtaagtg	ttacacaaca	1200
ggtacgatta t	taatcaaga	ccctgacaag	atcctaacat	acattgctgc	cgatcgctgc	1260
ccggtagtcg a	aggtgaacgg	cgtgaccatc	caagteggga	gcaggaggta	tccagacgct	1320
gtgtacttgc a	acagaattga	cctcggtcct	cccatatcat	tggagaggtt	ggacgtaggg	1380
acaaatctgg g	ggaatgcaat	tgccaaattg	gaggatgcca	aggaattgtt	ggaatcatcg	1440
gaccagatat t	gagaagtat	gaaaggttta	tcgagcacta	gcatagtcta	catcctgatt	1500
gcagtgtgtc t	tggagggtt	gatagggatc	cccactttaa	tatgttgctg	cagggggcgt	1560
tgtaacaaaa a						1620
ggaacatcaa a				-	-	1653
Januara Coud C			- 5~			1000

-continued

<210> SEQ ID NO 37 <211> LENGTH: 1925 <212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Polynucleotide

<400> SEQUENCE: 37

ggggaaataa gagagaaaag aagagtaaga agaaatataa gagccaccat gggtctcaag 60 gtgaacgtct ctgccgtatt catggcagta ctgttaactc tccaaacacc cgccggtcaa 120 attcattggg gcaatctctc taagataggg gtagtaggaa taggaagtgc aagctacaaa 180 gttatgactc gttccagcca tcaatcatta gtcataaaat taatgcccaa tataactctc ctcaataact gcacgagggt agagattgca gaatacagga gactactaag aacagttttg gaaccaatta gggatgcact taatgcaatg acccagaaca taaggccggt tcagagcgta 360 gcttcaagta ggagacacaa gagatttgcg ggagtagtcc tggcaggtgc ggccctaggt 420 qttqccacaq ctqctcaqat aacaqccqqc attqcacttc accqqtccat qctqaactct 480 caggicateg acaatetgag agegageetg gaaactaeta ateaggeaat tgaggeaate 540 agacaagcag ggcaggagat gatattggct gttcagggtg tccaagacta catcaataat 600 gagetgatae egtetatgaa eeagetatet tgtgatetaa teggteagaa getegggete 660 aaattqctta qatactatac aqaaatcctq tcattatttq qccccaqcct acqqqacccc 720 atatctgcgg agatatctat ccaggctttg agttatgcac ttggaggaga tatcaataag 780 840 gtgttagaaa agctcggata cagtggaggc gatttactag gcatcttaga gagcagagga ataaaggete ggataaetea egtegaeaca gagteetaet teatagteet eagtatagee 900 tatccgacgc tgtccgagat taagggggtg attgtccacc ggctagaggg ggtctcgtac 960 aacatagget eteaagagtg gtataceaet gtgeecaagt atgttgeaae eeaagggtae 1020 cttatctcga attttgatga gtcatcatgt actttcatgc cagaggggac tgtgtgcagc 1080 caaaatgcct tgtacccgat gagtcctctg ctccaagaat gcctccgggg gtccaccaag 1140 teetgtgete gtacaetegt atcegggtet tttgggaace ggtteatttt atcacaaggg 1200 aacctaatag ccaattgtgc atcaattctt tgtaagtgtt acacaacagg tacgattatt 1260 aatcaagacc ctgacaagat cctaacatac attgctgccg atcgctgccc ggtagtcgag 1320 1380 gtgaacggcg tgaccatcca agtcgggagc aggaggtatc cagacgctgt gtacttgcac agaattgacc tcggtcctcc catatcattg gagaggttgg acgtagggac aaatctgggg 1440 aatgcaattg ccaaattgga ggatgccaag gaattgttgg aatcatcgga ccagatattg 1500 agaagtatga aaggtttatc gagcactagc atagtctaca tcctgattgc agtgtgtctt ggagggttga tagggatccc cactttaata tgttgctgca gggggcgttg taacaaaaag 1620 qqaqaacaaq ttqqtatqtc aaqaccaqqc ctaaaqcctq accttacaqq aacatcaaaa 1680 tectatgtaa gategetttg atgataatag getggageet eggtggeeaa gettettgee 1740 cettgggeet eccecagee ectecteece tteetgeace egtaceeceg tggtetttga 1860 1920 1925 tctaq

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Polynucleotide

<400> SEOUENCE: 38

tcaagctttt ggaccctcgt acagaagcta atacgactca ctatagggaa ataagagaga 60 aaagaagagt aagaagaaat ataagagcca ccatgggtct caaggtgaac gtctctgtca 120 tattcatggc agtactgtta actcttcaaa cacccaccgg tcaaatccat tggggcaatc 180 tetetaagat aggggtggta ggggtaggaa gtgcaageta caaagttatg aetegtteea 240 gccatcaatc attagtcata aagttaatgc ccaatataac tctcctcaac aattgcacga gggtagggat tgcagaatac aggagactac tgagaacagt tctggaacca attagagatg cacttaatgc aatgacccag aatataagac cggttcagag tgtagcttca agtaggagac 420 acaagagatt tgcgggagtt gtcctggcag gtgcggccct aggcgttgcc acagctgctc 480 aaataacago oggtattgca ottoaccagt coatgotgaa ototcaagoo atogacaato 540 600 agatgatatt ggctgttcag ggtgtccaag actacatcaa taatgagctg ataccgtcta 660 tqaatcaact atcttqtqat ttaatcqqcc aqaaqctaqq qctcaaattq ctcaqatact 720 atacagaaat cctgtcatta tttggcccca gcttacggga ccccatatct gcggagatat 780 ctatccaggc tttgagctat gcgcttggag gagatatcaa taaggtgttg gaaaagctcg 840 gatacagtgg aggtgatcta ctgggcatct tagagagcag aggaataaag gcccggataa 900 ctcacgtcga cacagagtcc tacttcattg tactcagtat agcctatccg acgctatccg 960 agattaaggg ggtgattgtc caccggctag agggggtctc gtacaacata ggctctcaag 1020 agtggtatac cactgtgccc aagtatgttg caacccaagg gtaccttatc tcgaattttg 1080 atgagtcatc atgcactttc atgccagagg ggactgtgtg cagccagaat gccttgtacc 1140 cgatgagtcc tctgctccaa gaatgcctcc gggggtccac taagtcctgt gctcgtacac 1200 togtatoogg gtotttoggg aacoggttoa ttttatoaca ggggaacota atagcoaatt 1260 gtgcatcaat cctttgcaag tgttacacaa caggaacaat cattaatcaa gaccctgaca 1320 agatectaac atacattget geogateact geoeggtggt egaggtgaat ggegtgaeca 1380 tecaagtegg gageaggagg tateeggaeg etgtgtaett geacaggatt gaeeteggte 1440 ctcccatatc tttggagagg ttggacgtag ggacaaatct ggggaatgca attgctaagt 1500 tggaggatgc caaggaattg ttggagtcat cggaccagat attgaggagt atgaaaggtt 1560 tatcgagcac tagtatagtt tacatcctga ttgcagtgtg tcttggagga ttgataggga 1620 1680 tecceqettt aatatqttqe tqeaqqqqqe qttqtaacaa qaaqqqaqaa caaqttqqta tgtcaagacc aggcctaaag cctgatctta caggaacatc aaaatcctat gtaaggtcac 1740 tetgatgata ataggetgga geeteggtgg ceaagettet tgeecettgg geeteeeeee 1800 agcccctcct ccccttcctg cacccgtacc cccgtggtct ttgaataaag tctgagtggg 1860 1864 caac

<210> SEQ ID NO 39

<211> LENGTH: 1653

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Polynucleotide

-continued

<400> SEQUENCE: 39						
atgggtctca aggtgaacgt	ctctgtcata	ttcatggcag	tactgttaac	tcttcaaaca	60	
cccaccggtc aaatccattg	gggcaatctc	tctaagatag	gggtggtagg	ggtaggaagt	120	
gcaagctaca aagttatgac	tegttecage	catcaatcat	tagtcataaa	gttaatgccc	180	
aatataactc tcctcaacaa	ttgcacgagg	gtagggattg	cagaatacag	gagactactg	240	
agaacagttc tggaaccaat	tagagatgca	cttaatgcaa	tgacccagaa	tataagaccg	300	
gttcagagtg tagcttcaag	taggagacac	aagagatttg	cgggagttgt	cctggcaggt	360	
geggeeetag gegttgeeae	agctgctcaa	ataacagccg	gtattgcact	tcaccagtcc	420	
atgctgaact ctcaagccat	cgacaatctg	agagcgagcc	tagaaactac	taatcaggca	480	
attgaggcaa tcagacaagc	agggcaggag	atgatattgg	ctgttcaggg	tgtccaagac	540	
tacatcaata atgagetgat	accgtctatg	aatcaactat	cttgtgattt	aatcggccag	600	
aagctagggc tcaaattgct	cagatactat	acagaaatcc	tgtcattatt	tggccccagc	660	
ttacgggacc ccatatctgc	ggagatatct	atccaggctt	tgagctatgc	gcttggagga	720	
gatatcaata aggtgttgga	aaagctcgga	tacagtggag	gtgatctact	gggcatctta	780	
gagagcagag gaataaaggc	ccggataact	cacgtcgaca	cagagtccta	cttcattgta	840	
ctcagtatag cctatccgac	gctatccgag	attaaggggg	tgattgtcca	ccggctagag	900	
ggggtctcgt acaacatagg	ctctcaagag	tggtatacca	ctgtgcccaa	gtatgttgca	960	
acccaagggt accttatctc	gaattttgat	gagtcatcat	gcactttcat	gccagagggg	1020	
actgtgtgca gccagaatgc	cttgtacccg	atgagtcctc	tgctccaaga	atgcctccgg	1080	
gggtccacta agtcctgtgc	tcgtacactc	gtatccgggt	ctttcgggaa	ccggttcatt	1140	
ttatcacagg ggaacctaat	agccaattgt	gcatcaatcc	tttgcaagtg	ttacacaaca	1200	
ggaacaatca ttaatcaaga	ccctgacaag	atcctaacat	acattgctgc	cgatcactgc	1260	
ccggtggtcg aggtgaatgg	cgtgaccatc	caagtcggga	gcaggaggta	tccggacgct	1320	
gtgtacttgc acaggattga	cctcggtcct	cccatatctt	tggagaggtt	ggacgtaggg	1380	
acaaatctgg ggaatgcaat	tgctaagttg	gaggatgcca	aggaattgtt	ggagtcatcg	1440	
gaccagatat tgaggagtat	gaaaggttta	tcgagcacta	gtatagttta	catcctgatt	1500	
gcagtgtgtc ttggaggatt	gatagggatc	cccgctttaa	tatgttgctg	cagggggcgt	1560	
tgtaacaaga agggagaaca	agttggtatg	tcaagaccag	gcctaaagcc	tgatcttaca	1620	
ggaacatcaa aatcctatgt	aaggtcactc	tga			1653	
<pre><210> SEQ ID NO 40 <211> LENGTH: 1925 <212> TYPE: DNA <213> ORGANISM: Artifi <220> FEATURE: <223> OTHER INFORMATIO</pre> <400> SEQUENCE: 40	_		c otide			
-	2202012200	20222+0+0	anaganant.	agatatass=	60	
ggggaaataa gagagaaaag						
gtgaacgtct ctgtcatatt					120	
atccattggg gcaatctctc					180	
gttatgactc gttccagcca	tcaatcatta	gtcataaagt	taatgcccaa	tataactctc	240	
ctcaacaatt gcacgagggt	agggattgca	gaatacagga	gactactgag	aacagttctg	300	
and the second s					260	

gaaccaatta gagatgcact taatgcaatg acccagaata taagaccggt tcagagtgta

getteaagta ggagacacaa gagatttgeg	ggagttgtcc	tggcaggtgc	ggccctaggc	420					
gttgccacag ctgctcaaat aacagccggt	attgcacttc	accagtccat	gctgaactct	480					
caagccatcg acaatctgag agcgagccta	gaaactacta	atcaggcaat	tgaggcaatc	540					
agacaagcag ggcaggagat gatattggct	gttcagggtg	tccaagacta	catcaataat	600					
gagetgatae egtetatgaa teaactatet	tgtgatttaa	teggeeagaa	gctagggctc	660					
aaattgctca gatactatac agaaatcctg	tcattatttg	gccccagctt	acgggacccc	720					
atatetgegg agatatetat ceaggetttg	agctatgcgc	ttggaggaga	tatcaataag	780					
gtgttggaaa agctcggata cagtggaggt	gatctactgg	gcatcttaga	gagcagagga	840					
ataaaggccc ggataactca cgtcgacaca	gagtcctact	tcattgtact	cagtatagcc	900					
tatccgacgc tatccgagat taagggggtg	attgtccacc	ggctagaggg	ggtctcgtac	960					
aacataggct ctcaagagtg gtataccact	gtgcccaagt	atgttgcaac	ccaagggtac	1020					
cttatctcga attttgatga gtcatcatgc	actttcatgc	cagaggggac	tgtgtgcagc	1080					
cagaatgeet tgtaccegat gagteetetg	ctccaagaat	gcctccgggg	gtccactaag	1140					
teetgtgete gtacaetegt ateegggtet	ttcgggaacc	ggttcatttt	atcacagggg	1200					
aacctaatag ccaattgtgc atcaatcctt	tgcaagtgtt	acacaacagg	aacaatcatt	1260					
aatcaagacc ctgacaagat cctaacatac	attgctgccg	atcactgccc	ggtggtcgag	1320					
gtgaatggcg tgaccatcca agtcgggagc	aggaggtatc	cggacgctgt	gtacttgcac	1380					
aggattgacc tcggtcctcc catatctttg	gagaggttgg	acgtagggac	aaatctgggg	1440					
aatgcaattg ctaagttgga ggatgccaag	gaattgttgg	agtcatcgga	ccagatattg	1500					
aggagtatga aaggtttatc gagcactagt	atagtttaca	tcctgattgc	agtgtgtctt	1560					
ggaggattga tagggatccc cgctttaata	tgttgctgca	gggggcgttg	taacaagaag	1620					
ggagaacaag ttggtatgtc aagaccaggc	ctaaagcctg	atcttacagg	aacatcaaaa	1680					
teetatgtaa ggteaetetg atgataatag	gctggagcct	cggtggccaa	gcttcttgcc	1740					
cettgggeet ecceecagee cetecteece	ttcctgcacc	cgtacccccg	tggtctttga	1800					
ataaagtctg agtgggcggc aaaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	1860					
aaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	1920					
tctag				1925					
<210> SEQ ID NO 41 <211> LENGTH: 2065 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide									
<400> SEQUENCE: 41				6.0					
tcaagctttt ggaccctcgt acagaagcta	_			60					
aaagaagagt aagaagaaat ataagagcca				120					
ccttctacaa agataaccct tatcccaagg	gaagtaggat	agttattaac	agagaacatc	180					
ttatgattga cagaccctat gttctgctgg	ctgttctgtt	cgtcatgttt	ctgagcttga	240					
teggattget ggeaattgea ggeattagae	ttcatcgggc	agccatctac	accgcggaga	300					
tccataaaag cctcagtacc aatctggatg	tgactaactc	catcgagcat	caggtcaagg	360					

acgtgctgac accactcttt aaaatcatcg gggatgaagt gggcctgaga acacctcaga

-continued

-concinued								
gattcactga cctagtgaaa ttcatctcgg acaagattaa attccttaat ccggataggg	480							
agtacgactt cagagatete aettggtgea teaaceegee agagaggate aaactagatt	540							
atgatcaata ctgtgcagat gtggctgctg aagagctcat gaatgcattg gtgaactcaa	600							
ctctactgga gaccagaaca accactcagt tcctagctgt ctcaaaggga aactgctcag	660							
ggcccactac aatcagaggt caattetcaa acatgteget gteettgttg gaettgtact	720							
taggtcgagg ttacaatgtg tcatctatag tcactatgac atcccaggga atgtatgggg	780							
gaacctacct agttgaaaag cctaatctga acagcaaagg gtcagagttg tcacaactga	840							
gcatgtaccg agtgtttgaa gtaggtgtga tcagaaaccc gggtttgggg gctccggtgt	900							
tccatatgac aaactatttt gagcaaccag tcagtaatgg tctcggcaac tgtatggtgg	960							
ctttggggga geteaaacte geageeettt gteaegggga egattetate ataatteeet	1020							
atcagggatc agggaaaggt gtcagcttcc agctcgtcaa gctgggtgtc tggaaatccc	1080							
caaccgacat gcaatcctgg gtccccttat caacggatga tccagtggta gacaggcttt	1140							
accteteate teacagaggt gteategetg acaateaage aaaatggget gteeegacaa	1200							
cacgaacaga tgacaagttg cgaatggaga catgcttcca gcaggcgtgt aaaggtaaaa	1260							
tccaagcact ctgcgagaat cccgagtggg taccattgaa ggataacagg attccttcat	1320							
acggggtcct gtctgttgat ctgagtctga cggttgagct taaaatcaaa attgcttcgg	1380							
gattcgggcc attgatcaca cacggctcag ggatggacct atacaaatcc aactgcaaca	1440							
atgtgtattg gctgactatt ccgccaatga gaaatctagc cttaggcgta atcaacacat	1500							
tggagtggat accgagattc aaggttagtc ccaacctctt cactgtccca attaaggaag	1560							
caggcgaaga ctgccatgcc ccaacatacc tacctgcgga ggtggacggt gatgtcaaac	1620							
tcagttccaa cctggtgatt ctacctggtc aagatctcca atatgttttg gcaacctacg	1680							
atacctccag ggttgagcat gctgtggttt attacgttta cagcccaagc cgctcatttt	1740							
cttactttta tccttttagg ttgcctataa agggggtccc aatcgaacta caagtggaat	1800							
getteacatg ggateaaaaa etetggtgee gteacttetg tgtgettgeg gaeteagaat	1860							
ccggtggact tatcactcac tctgggatgg tgggcatggg agtcagctgc acagctaccc	1920							
gggaagatgg aaccaatcgc agataatgat aataggctgg agcctcggtg gccaagcttc	1980							
ttgccccttg ggcctccccc cagcccctcc tccccttcct gcacccgtac ccccgtggtc	2040							
tttgaataaa gtctgagtgg gcggc	2065							
<210> SEQ ID NO 42 <211> LENGTH: 1854 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide								
<400> SEQUENCE: 42								
atgtcaccgc aacgagaccg gataaatgcc ttctacaaag ataaccctta tcccaaggga	60							
agtaggatag ttattaacag agaacatett atgattgaca gaccetatgt tetgetgget	120							
gttetgtteg teatgtttet gagettgate ggattgetgg caattgeagg cattagaett	180							
catcgggcag ccatctacac cgcggagatc cataaaagcc tcagtaccaa tctggatgtg	240							
actaactcca tcgagcatca ggtcaaggac gtgctgacac cactctttaa aatcatcggg	300							
gatgaagtgg geetgagaae aeeteagaga tteaetgaee tagtgaaatt eateteggae	360							

aagattaaat teettaatee ggatagggag taegaettea gagateteae ttggtgeate

aacccgccag	agaggatcaa	actagattat	gatcaatact	gtgcagatgt	ggctgctgaa	480		
gagctcatga	atgcattggt	gaactcaact	ctactggaga	ccagaacaac	cactcagttc	540		
ctagctgtct	caaagggaaa	ctgctcaggg	cccactacaa	tcagaggtca	attctcaaac	600		
atgtcgctgt	ccttgttgga	cttgtactta	ggtcgaggtt	acaatgtgtc	atctatagtc	660		
actatgacat	cccagggaat	gtatggggga	acctacctag	ttgaaaagcc	taatctgaac	720		
agcaaagggt	cagagttgtc	acaactgagc	atgtaccgag	tgtttgaagt	aggtgtgatc	780		
agaaacccgg	gtttgggggc	teeggtgtte	catatgacaa	actattttga	gcaaccagtc	840		
agtaatggtc	tcggcaactg	tatggtggct	ttgggggagc	tcaaactcgc	agccctttgt	900		
cacggggacg	attctatcat	aattccctat	cagggatcag	ggaaaggtgt	cagcttccag	960		
ctcgtcaagc	tgggtgtctg	gaaatcccca	accgacatgc	aatcctgggt	ccccttatca	1020		
acggatgatc	cagtggtaga	caggctttac	ctctcatctc	acagaggtgt	catcgctgac	1080		
aatcaagcaa	aatgggctgt	cccgacaaca	cgaacagatg	acaagttgcg	aatggagaca	1140		
tgcttccagc	aggcgtgtaa	aggtaaaatc	caagcactct	gcgagaatcc	cgagtgggta	1200		
ccattgaagg	ataacaggat	tccttcatac	ggggtcctgt	ctgttgatct	gagtctgacg	1260		
gttgagctta	aaatcaaaat	tgcttcggga	ttcgggccat	tgatcacaca	cggctcaggg	1320		
atggacctat	acaaatccaa	ctgcaacaat	gtgtattggc	tgactattcc	gccaatgaga	1380		
aatctagcct	taggcgtaat	caacacattg	gagtggatac	cgagattcaa	ggttagtccc	1440		
aacctcttca	ctgtcccaat	taaggaagca	ggcgaagact	gccatgcccc	aacataccta	1500		
cctgcggagg	tggacggtga	tgtcaaactc	agttccaacc	tggtgattct	acctggtcaa	1560		
gatctccaat	atgttttggc	aacctacgat	acctccaggg	ttgagcatgc	tgtggtttat	1620		
tacgtttaca	gcccaagccg	ctcattttct	tacttttatc	cttttaggtt	gcctataaag	1680		
ggggtcccaa	tcgaactaca	agtggaatgc	ttcacatggg	atcaaaaact	ctggtgccgt	1740		
cacttctgtg	tgcttgcgga	ctcagaatcc	ggtggactta	tcactcactc	tgggatggtg	1800		
ggcatgggag	tcagctgcac	agctacccgg	gaagatggaa	ccaatcgcag	ataa	1854		
<210> SEQ ID NO 43 <211> LENGTH: 2126 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide								
<400> SEQUE		aagagtaaga	agaaatataa	gagccaccat	gtcaccgcaa	60		
				ccaagggaag		120		
				tgctggctgt		180		
						240		
				tagactica		300		
				tggatgtgac				
				tcatcgggga		360		
				tctcggacaa		420		
cttaatccgg	atagggagta	cgacttcaga	gatctcactt	ggtgcatcaa	cccgccagag	480		
aggatcaaac	tagattatga	tcaatactgt	gcagatgtgg	ctgctgaaga	gctcatgaat	540		

gcattggtga actcaactct actggagacc agaacaacca ctcagttcct agctgtctca

-continued								
aagggaaact gctcagggcc cactacaatc agaggtcaat tctcaaacat gtcgctgtcc	660							
ttgttggact tgtacttagg tcgaggttac aatgtgtcat ctatagtcac tatgacatcc	720							
cagggaatgt atgggggaac ctacctagtt gaaaagccta atctgaacag caaagggtca	780							
gagttgtcac aactgagcat gtaccgagtg tttgaagtag gtgtgatcag aaacccgggt	840							
ttgggggctc cggtgttcca tatgacaaac tattttgagc aaccagtcag taatggtctc	900							
ggcaactgta tggtggcttt gggggagctc aaactcgcag ccctttgtca cggggacgat	960							
tctatcataa ttccctatca gggatcaggg aaaggtgtca gcttccagct cgtcaagctg	1020							
ggtgtctgga aatccccaac cgacatgcaa tcctgggtcc ccttatcaac ggatgatcca	1080							
gtggtagaca ggctttacct ctcatctcac agaggtgtca tcgctgacaa tcaagcaaaa	1140							
tgggctgtcc cgacaacacg aacagatgac aagttgcgaa tggagacatg cttccagcag	1200							
gcgtgtaaag gtaaaatcca agcactctgc gagaatcccg agtgggtacc attgaaggat	1260							
aacaggattc cttcatacgg ggtcctgtct gttgatctga gtctgacggt tgagcttaaa	1320							
atcaaaattg cttcgggatt cgggccattg atcacacacg gctcagggat ggacctatac	1380							
aaatccaact gcaacaatgt gtattggctg actattccgc caatgagaaa tctagcctta	1440							
ggcgtaatca acacattgga gtggataccg agattcaagg ttagtcccaa cctcttcact	1500							
gtcccaatta aggaagcagg cgaagactgc catgccccaa catacctacc tgcggaggtg	1560							
gacggtgatg tcaaactcag ttccaacctg gtgattctac ctggtcaaga tctccaatat	1620							
gttttggcaa cctacgatac ctccagggtt gagcatgctg tggtttatta cgtttacagc	1680							
ccaagccgct cattttctta cttttatcct tttaggttgc ctataaaggg ggtcccaatc	1740							
gaactacaag tggaatgott cacatgggat caaaaactot ggtgccgtca cttctgtgtg	1800							
cttgcggact cagaatccgg tggacttatc actcactctg ggatggtggg catgggagtc	1860							
agctgcacag ctacccggga agatggaacc aatcgcagat aatgataata ggctggagcc	1920							
teggtggeca agettettge ecettgggee tecececage ecetectece etteetgeae	1980							
ccgtaccccc gtggtctttg aataaagtct gagtgggcgg caaaaaaaaaa	2040							
аааааааааа аааааааааа аааааааааа аааааа	2100							
aaaaaaaaaa aaaaaaaaaa atctag	2126							
<210> SEQ ID NO 44 <211> LENGTH: 2065 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide								
<400> SEQUENCE: 44								
tcaagctttt ggaccctcgt acagaagcta atacgactca ctatagggaa ataagagaga	60							
aaagaagagt aagaagaaat ataagagcca ccatgtcacc acaacgagac cggataaatg	120							
ccttctacaa agacaacccc catcctaagg gaagtaggat agttattaac agagaacatc	180							
ttatgattga tagaccttat gttttgctgg ctgttctatt cgtcatgttt ctgagcttga	240							
tegggttget agecattgea ggeattagae tteateggge agecatetae acegeagaga	300							
tocataaaag cotcagcaco aatotggatg taactaacto aatogagcat caggttaagg	360							
acgtgctgac accactcttc aagatcatcg gtgatgaagt gggcttgagg acacctcaga	420							
gattcactga cctagtgaag ttcatctctg acaagattaa attccttaat ccggacaggg	480							

540

aatacgactt cagagatete acttggtgta teaaccegee agagagaate aaattggatt

atgatcaata	ctgtgcagat	gtggctgctg	aagaactcat	gaatgcattg	gtgaactcaa	600		
ctctactgga	gaccagggca	accaatcagt	tcctagctgt	ctcaaaggga	aactgctcag	660		
ggcccactac	aatcagaggc	caattctcaa	acatgtcgct	gtccctgttg	gacttgtatt	720		
taagtcgagg	ttacaatgtg	tcatctatag	tcactatgac	atcccaggga	atgtacgggg	780		
gaacttacct	agtggaaaag	cctaatctga	gcagcaaagg	gtcagagttg	tcacaactga	840		
gcatgcaccg	agtgtttgaa	gtaggtgtta	tcagaaatcc	gggtttgggg	gctccggtat	900		
tccatatgac	aaactatctt	gagcaaccag	tcagtaatga	tttcagcaac	tgcatggtgg	960		
ctttggggga	gctcaagttc	gcagccctct	gtcacaggga	agattctatc	acaattccct	1020		
atcagggatc	agggaaaggt	gtcagcttcc	agcttgtcaa	gctaggtgtc	tggaaatccc	1080		
caaccgacat	gcaatcctgg	gtccccctat	caacggatga	tccagtgata	gacaggettt	1140		
acctctcatc	tcacagaggc	gttatcgctg	acaatcaagc	aaaatgggct	gtcccgacaa	1200		
cacggacaga	tgacaagttg	cgaatggaga	catgcttcca	gcaggcgtgt	aagggtaaaa	1260		
tccaagcact	ttgcgagaat	cccgagtgga	caccattgaa	ggataacagg	attccttcat	1320		
acggggtctt	gtctgttgat	ctgagtctga	cagttgagct	taaaatcaaa	attgtttcag	1380		
gattcgggcc	attgatcaca	cacggttcag	ggatggacct	atacaaatcc	aaccacaaca	1440		
atatgtattg	gctgactatc	ccgccaatga	agaacctggc	cttaggtgta	atcaacacat	1500		
tggagtggat	accgagattc	aaggttagtc	ccaacctctt	cactgttcca	attaaggaag	1560		
caggcgagga	ctgccatgcc	ccaacatacc	tacctgcgga	ggtggatggt	gatgtcaaac	1620		
tcagttccaa	tctggtgatt	ctacctggtc	aagatctcca	atatgttctg	gcaacctacg	1680		
atacttccag	agttgaacat	gctgtagttt	attacgttta	cagcccaagc	cgctcatttt	1740		
cttactttta	tccttttagg	ttgcctgtaa	ggggggtccc	cattgaatta	caagtggaat	1800		
gcttcacatg	ggaccaaaaa	ctctggtgcc	gtcacttctg	tgtgcttgcg	gactcagaat	1860		
ctggtggaca	tatcactcac	tctgggatgg	tgggcatggg	agtcagctgc	acagccactc	1920		
gggaagatgg	aaccagccgc	agatagtgat	aataggctgg	agcctcggtg	gccaagcttc	1980		
ttgccccttg	ggcctccccc	cagcccctcc	tccccttcct	gcacccgtac	ccccgtggtc	2040		
tttgaataaa	gtctgagtgg	gegge				2065		
<210> SEQ ID NO 45 <211> LENGTH: 1854 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide								
<400> SEQUI	ENCE: 45							
		gataaatgcc				60		
agtaggatag	ttattaacag	agaacatctt	atgattgata	gaccttatgt	tttgctggct	120		
gttctattcg	tcatgtttct	gagcttgatc	gggttgctag	ccattgcagg	cattagactt	180		
catcgggcag	ccatctacac	cgcagagatc	cataaaagcc	tcagcaccaa	tctggatgta	240		
actaactcaa	tcgagcatca	ggttaaggac	gtgctgacac	cactcttcaa	gatcatcggt	300		
gatgaagtgg	gcttgaggac	acctcagaga	ttcactgacc	tagtgaagtt	catctctgac	360		
aagattaaat	tccttaatcc	ggacagggaa	tacgacttca	gagateteae	ttggtgtatc	420		

aacccgccag agagaatcaa attggattat gatcaatact gtgcagatgt ggctgctgaa

					-0011011	iueu 		
	gaactcatga	atgcattggt	gaactcaact	ctactggaga	ccagggcaac	caatcagttc	540	
	ctagctgtct	caaagggaaa	ctgctcaggg	cccactacaa	tcagaggcca	attctcaaac	600	
	atgtcgctgt	ccctgttgga	cttgtattta	agtcgaggtt	acaatgtgtc	atctatagtc	660	
	actatgacat	cccagggaat	gtacggggga	acttacctag	tggaaaagcc	taatctgagc	720	
	agcaaagggt	cagagttgtc	acaactgagc	atgcaccgag	tgtttgaagt	aggtgttatc	780	
	agaaatccgg	gtttgggggc	tccggtattc	catatgacaa	actatcttga	gcaaccagtc	840	
	agtaatgatt	tcagcaactg	catggtggct	ttgggggagc	tcaagttcgc	agccctctgt	900	
	cacagggaag	attctatcac	aattccctat	cagggatcag	ggaaaggtgt	cagcttccag	960	
	cttgtcaagc	taggtgtctg	gaaatcccca	accgacatgc	aatcctgggt	ccccctatca	1020	
	acggatgatc	cagtgataga	caggctttac	ctctcatctc	acagaggcgt	tatcgctgac	1080	
	aatcaagcaa	aatgggctgt	cccgacaaca	cggacagatg	acaagttgcg	aatggagaca	1140	
	tgcttccagc	aggcgtgtaa	gggtaaaatc	caagcacttt	gcgagaatcc	cgagtggaca	1200	
	ccattgaagg	ataacaggat	tccttcatac	ggggtcttgt	ctgttgatct	gagtctgaca	1260	
	gttgagctta	aaatcaaaat	tgtttcagga	ttcgggccat	tgatcacaca	cggttcaggg	1320	
	atggacctat	acaaatccaa	ccacaacaat	atgtattggc	tgactatccc	gccaatgaag	1380	
	aacctggcct	taggtgtaat	caacacattg	gagtggatac	cgagattcaa	ggttagtccc	1440	
	aacctcttca	ctgttccaat	taaggaagca	ggcgaggact	gccatgcccc	aacataccta	1500	
	cctgcggagg	tggatggtga	tgtcaaactc	agttccaatc	tggtgattct	acctggtcaa	1560	
	gatctccaat	atgttctggc	aacctacgat	acttccagag	ttgaacatgc	tgtagtttat	1620	
	tacgtttaca	gcccaagccg	ctcattttct	tacttttatc	cttttaggtt	gcctgtaagg	1680	
	ggggtcccca	ttgaattaca	agtggaatgc	ttcacatggg	accaaaaact	ctggtgccgt	1740	
	cacttctgtg	tgcttgcgga	ctcagaatct	ggtggacata	tcactcactc	tgggatggtg	1800	
	ggcatgggag	tcagctgcac	agccactcgg	gaagatggaa	ccagccgcag	atag	1854	
<pre>ggcatgggag tcagctgcac agccactcgg gaagatggaa ccagccgcag atag 1854 <210> SEQ ID NO 46 <211> LENGTH: 2126 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide</pre>								
	<400> SEQUI	ENCE: 46						
	ggggaaataa	gagagaaaag	aagagtaaga	agaaatataa	gagccaccat	gtcaccacaa	60	
	cgagaccgga	taaatgcctt	ctacaaagac	aacccccatc	ctaagggaag	taggatagtt	120	
	attaacagag	aacatcttat	gattgataga	ccttatgttt	tgctggctgt	tctattcgtc	180	
	atgtttctga	gcttgatcgg	gttgctagcc	attgcaggca	ttagacttca	tegggeagee	240	
	atctacaccg	cagagatcca	taaaagcctc	agcaccaatc	tggatgtaac	taactcaatc	300	
	gagcatcagg	ttaaggacgt	gctgacacca	ctcttcaaga	tcatcggtga	tgaagtgggc	360	
	ttgaggacac	ctcagagatt	cactgaccta	gtgaagttca	tctctgacaa	gattaaattc	420	
	cttaatccgg	acagggaata	cgacttcaga	gatctcactt	ggtgtatcaa	cccgccagag	480	
	agaatcaaat	tggattatga	tcaatactgt	gcagatgtgg	ctgctgaaga	actcatgaat	540	
	gcattggtga	actcaactct	actggagacc	agggcaacca	atcagttcct	agctgtctca	600	
	aagggaaact	gctcagggcc	cactacaatc	agaggccaat	tctcaaacat	gtegetgtee	660	

720

ctgttggact tgtatttaag tcgaggttac aatgtgtcat ctatagtcac tatgacatcc

cagggaatgt	acgggggaac	ttacctagtg	gaaaagccta	atctgagcag	caaagggtca	780
gagttgtcac	aactgagcat	gcaccgagtg	tttgaagtag	gtgttatcag	aaatccgggt	840
ttgggggctc	cggtattcca	tatgacaaac	tatcttgago	aaccagtcag	taatgatttc	900
agcaactgca	tggtggcttt	gggggagctc	aagttcgcag	ccctctgtca	cagggaagat	960
tctatcacaa	ttccctatca	gggatcaggg	aaaggtgtca	gcttccagct	tgtcaagcta	1020
ggtgtctgga	aatccccaac	cgacatgcaa	teetgggtee	ccctatcaac	ggatgatcca	1080
gtgatagaca	ggctttacct	ctcatctcac	agaggcgtta	. tcgctgacaa	tcaagcaaaa	1140
tgggctgtcc	cgacaacacg	gacagatgac	aagttgcgaa	. tggagacatg	cttccagcag	1200
gcgtgtaagg	gtaaaatcca	agcactttgc	gagaatcccg	agtggacacc	attgaaggat	1260
aacaggattc	cttcatacgg	ggtcttgtct	gttgatctga	gtctgacagt	tgagcttaaa	1320
atcaaaattg	tttcaggatt	cgggccattg	atcacacaco	gttcagggat	ggacctatac	1380
aaatccaacc	acaacaatat	gtattggctg	actatecego	caatgaagaa	cctggcctta	1440
ggtgtaatca	acacattgga	gtggataccg	agattcaagg	ttagtcccaa	cctcttcact	1500
gttccaatta	aggaagcagg	cgaggactgc	catgccccaa	catacctacc	tgcggaggtg	1560
gatggtgatg	tcaaactcag	ttccaatctg	gtgattctac	ctggtcaaga	tctccaatat	1620
gttctggcaa	cctacgatac	ttccagagtt	gaacatgcto	tagtttatta	cgtttacagc	1680
ccaagccgct	cattttctta	cttttatcct	tttaggttgc	ctgtaagggg	ggtccccatt	1740
gaattacaag	tggaatgctt	cacatgggac	caaaaactct	ggtgccgtca	cttctgtgtg	1800
cttgcggact	cagaatctgg	tggacatatc	actcactctc	ggatggtggg	catgggagtc	1860
agctgcacag	ccactcggga	agatggaacc	agccgcagat	agtgataata	ggctggagcc	1920
tcggtggcca	agcttcttgc	cccttgggcc	tcccccago	ccctcctccc	cttcctgcac	1980
ccgtaccccc	gtggtctttg	aataaagtct	gagtgggcgg	caaaaaaaaa	aaaaaaaaa	2040
aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	2100
aaaaaaaaa	aaaaaaaaa	atctag				2126
<220> FEATU	TH: 550 : PRT NISM: Artif:	_		iđe		
<400> SEQUI	ENCE: 47					
Met Gly Lev 1	ı Lys Val A: 5	en Val Ser	Ala Val Phe 10	Met Ala Val	Leu Leu 15	
Thr Leu Gli	n Thr Pro A		Ile His Trp 25	Gly Asn Let 30	ı Ser Lys	
Ile Gly Val	l Val Gly I	le Gly Ser 40	Ala Ser Tyr	Lys Val Met 45	Thr Arg	
Ser Ser His	s Gln Ser Le	eu Val Ile 55	Lys Leu Met	Pro Asn Ile	Thr Leu	
Leu Asn Ası 65	n Cys Thr A:	-	Ile Ala Glu 75	. Tyr Arg Arg	g Leu Leu 80	
Arg Thr Val	l Leu Glu P: 85	ro Ile Arg	Asp Ala Leu 90	. Asn Ala Met	Thr Gln 95	

Asn Ile Arg Pro Val Gln Ser Val Ala Ser Ser Arg Arg His Lys Arg 100 105 110

Phe	Ala	Gly 115	Val	Val	Leu	Ala	Gly 120	Ala	Ala	Leu	Gly	Val 125	Ala	Thr	Ala
Ala	Gln 130	Ile	Thr	Ala	Gly	Ile 135	Ala	Leu	His	Arg	Ser 140	Met	Leu	Asn	Ser
Gln 145	Ala	Ile	Asp	Asn	Leu 150	Arg	Ala	Ser	Leu	Glu 155	Thr	Thr	Asn	Gln	Ala 160
Ile	Glu	Ala	Ile	Arg 165	Gln	Ala	Gly	Gln	Glu 170	Met	Ile	Leu	Ala	Val 175	Gln
Gly	Val	Gln	Asp 180	Tyr	Ile	Asn	Asn	Glu 185	Leu	Ile	Pro	Ser	Met 190	Asn	Gln
Leu	Ser	Суз 195	Asp	Leu	Ile	Gly	Gln 200	Lys	Leu	Gly	Leu	Lys 205	Leu	Leu	Arg
Tyr	Tyr 210	Thr	Glu	Ile	Leu	Ser 215	Leu	Phe	Gly	Pro	Ser 220	Leu	Arg	Asp	Pro
Ile 225	Ser	Ala	Glu	Ile	Ser 230	Ile	Gln	Ala	Leu	Ser 235	Tyr	Ala	Leu	Gly	Gly 240
Asp	Ile	Asn	Lys	Val 245	Leu	Glu	Lys	Leu	Gly 250	Tyr	Ser	Gly	Gly	Asp 255	Leu
Leu	Gly	Ile	Leu 260	Glu	Ser	Arg	Gly	Ile 265	Lys	Ala	Arg	Ile	Thr 270	His	Val
Asp	Thr	Glu 275	Ser	Tyr	Phe	Ile	Val 280	Leu	Ser	Ile	Ala	Tyr 285	Pro	Thr	Leu
Ser	Glu 290	Ile	Lys	Gly	Val	Ile 295	Val	His	Arg	Leu	Glu 300	Gly	Val	Ser	Tyr
Asn 305	Ile	Gly	Ser	Gln	Glu 310	Trp	Tyr	Thr	Thr	Val 315	Pro	ГÀа	Tyr	Val	Ala 320
Thr	Gln	Gly	Tyr	Leu 325	Ile	Ser	Asn	Phe	330	Glu	Ser	Ser	CÀa	Thr 335	Phe
Met	Pro	Glu	Gly 340	Thr	Val	CÀa	Ser	Gln 345	Asn	Ala	Leu	Tyr	Pro 350	Met	Ser
Pro	Leu	Leu 355	Gln	Glu	CAa	Leu	Arg 360	Gly	Ser	Thr	Lys	Ser 365	CÀa	Ala	Arg
Thr	Leu 370	Val	Ser	Gly	Ser	Phe 375	Gly	Asn	Arg	Phe	Ile 380	Leu	Ser	Gln	Gly
Asn 385	Leu	Ile	Ala	Asn	390 CAa	Ala	Ser	Ile	Leu	Cys 395	ГÀа	CAa	Tyr	Thr	Thr 400
Gly	Thr	Ile	Ile	Asn 405	Gln	Asp	Pro	Asp	Lys 410	Ile	Leu	Thr	Tyr	Ile 415	Ala
Ala	Asp	Arg	Cys 420	Pro	Val	Val	Glu	Val 425	Asn	Gly	Val	Thr	Ile 430	Gln	Val
Gly	Ser	Arg 435	Arg	Tyr	Pro	Asp	Ala 440	Val	Tyr	Leu	His	Arg 445	Ile	Asp	Leu
Gly	Pro 450	Pro	Ile	Ser	Leu	Glu 455	Arg	Leu	Asp	Val	Gly 460	Thr	Asn	Leu	Gly
Asn 465	Ala	Ile	Ala	Lys	Leu 470	Glu	Asp	Ala	Lys	Glu 475	Leu	Leu	Glu	Ser	Ser 480
Asp	Gln	Ile	Leu	Arg 485	Ser	Met	Lys	Gly	Leu 490	Ser	Ser	Thr	Ser	Ile 495	Val
Tyr	Ile	Leu	Ile 500	Ala	Val	СЛа	Leu	Gly 505	Gly	Leu	Ile	Gly	Ile 510	Pro	Thr
Leu	Ile	Сув 515	Cys	Сла	Arg	Gly	Arg 520	Cys	Asn	Lys	Lys	Gly 525	Glu	Gln	Val

Gly Met Ser Arg Pro Gly Leu Lys Pro Asp Leu Thr Gly Thr Ser Lys 535 Ser Tyr Val Arg Ser Leu <210> SEQ ID NO 48 <211> LENGTH: 550 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide <400> SEQUENCE: 48 Met Gly Leu Lys Val Asn Val Ser Val Ile Phe Met Ala Val Leu Leu Thr Leu Gln Thr Pro Thr Gly Gln Ile His Trp Gly Asn Leu Ser Lys Ile Gly Val Val Gly Val Gly Ser Ala Ser Tyr Lys Val Met Thr Arg 40 Ser Ser His Gln Ser Leu Val Ile Lys Leu Met Pro Asn Ile Thr Leu 55 Leu Asn Asn Cys Thr Arg Val Gly Ile Ala Glu Tyr Arg Arg Leu Leu Arg Thr Val Leu Glu Pro Ile Arg Asp Ala Leu Asn Ala Met Thr Gln Asn Ile Arg Pro Val Gln Ser Val Ala Ser Ser Arg Arg His Lys Arg 105 Phe Ala Gly Val Val Leu Ala Gly Ala Ala Leu Gly Val Ala Thr Ala 120 Ala Gln Ile Thr Ala Gly Ile Ala Leu His Gln Ser Met Leu Asn Ser Gln Ala Ile Asp Asn Leu Arg Ala Ser Leu Glu Thr Thr Asn Gln Ala 155 Ile Glu Ala Ile Arg Gln Ala Gly Gln Glu Met Ile Leu Ala Val Gln Gly Val Gln Asp Tyr Ile Asn Asn Glu Leu Ile Pro Ser Met Asn Gln Leu Ser Cys Asp Leu Ile Gly Gln Lys Leu Gly Leu Lys Leu Leu Arg Tyr Tyr Thr Glu Ile Leu Ser Leu Phe Gly Pro Ser Leu Arg Asp Pro Ile Ser Ala Glu Ile Ser Ile Gln Ala Leu Ser Tyr Ala Leu Gly Gly Asp Ile Asn Lys Val Leu Glu Lys Leu Gly Tyr Ser Gly Gly Asp Leu Leu Gly Ile Leu Glu Ser Arg Gly Ile Lys Ala Arg Ile Thr His Val 265 Asp Thr Glu Ser Tyr Phe Ile Val Leu Ser Ile Ala Tyr Pro Thr Leu Ser Glu Ile Lys Gly Val Ile Val His Arg Leu Glu Gly Val Ser Tyr 295 Asn Ile Gly Ser Gln Glu Trp Tyr Thr Thr Val Pro Lys Tyr Val Ala 310 Thr Gln Gly Tyr Leu Ile Ser Asn Phe Asp Glu Ser Ser Cys Thr Phe 330

-continued

Met Pro Glu Gly Thr Val Cys Ser Gln Asn Ala Leu Tyr Pro Met Ser Pro Leu Leu Gln Glu Cys Leu Arg Gly Ser Thr Lys Ser Cys Ala Arg Thr Leu Val Ser Gly Ser Phe Gly Asn Arg Phe Ile Leu Ser Gln Gly Asn Leu Ile Ala Asn Cys Ala Ser Ile Leu Cys Lys Cys Tyr Thr Thr Gly Thr Ile Ile Asn Gln Asp Pro Asp Lys Ile Leu Thr Tyr Ile Ala Ala Asp His Cys Pro Val Val Glu Val Asn Gly Val Thr Ile Gln Val Gly Ser Arg Arg Tyr Pro Asp Ala Val Tyr Leu His Arg Ile Asp Leu Gly Pro Pro Ile Ser Leu Glu Arg Leu Asp Val Gly Thr Asn Leu Gly 455 Asn Ala Ile Ala Lys Leu Glu Asp Ala Lys Glu Leu Leu Glu Ser Ser Asp Gln Ile Leu Arg Ser Met Lys Gly Leu Ser Ser Thr Ser Ile Val Tyr Ile Leu Ile Ala Val Cys Leu Gly Gly Leu Ile Gly Ile Pro Ala 505 Leu Ile Cys Cys Cys Arg Gly Arg Cys Asn Lys Lys Gly Glu Gln Val 520 Gly Met Ser Arg Pro Gly Leu Lys Pro Asp Leu Thr Gly Thr Ser Lys 535 Ser Tyr Val Arg Ser Leu <210> SEQ ID NO 49 <211> LENGTH: 617 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide <400> SEQUENCE: 49 Met Ser Pro Gln Arg Asp Arg Ile Asn Ala Phe Tyr Lys Asp Asn Pro Tyr Pro Lys Gly Ser Arg Ile Val Ile Asn Arg Glu His Leu Met Ile Asp Arg Pro Tyr Val Leu Leu Ala Val Leu Phe Val Met Phe Leu Ser Leu Ile Gly Leu Leu Ala Ile Ala Gly Ile Arg Leu His Arg Ala Ala 50 55 60 Ile Tyr Thr Ala Glu Ile His Lys Ser Leu Ser Thr Asn Leu Asp Val Thr Asn Ser Ile Glu His Gln Val Lys Asp Val Leu Thr Pro Leu Phe Lys Ile Ile Gly Asp Glu Val Gly Leu Arg Thr Pro Gln Arg Phe Thr 105 Asp Leu Val Lys Phe Ile Ser Asp Lys Ile Lys Phe Leu Asn Pro Asp 120 Arg Glu Tyr Asp Phe Arg Asp Leu Thr Trp Cys Ile Asn Pro Pro Glu 135

Arg	Ile	Lys	Leu	Asp	Tyr 150	Asp	Gln	Tyr	Cys	Ala 155	Asp	Val	Ala	Ala	Glu 160
Glu	Leu	Met	Asn	Ala 165	Leu	Val	Asn	Ser	Thr	Leu	Leu	Glu	Thr	Arg 175	Thr
Thr	Thr	Gln	Phe 180	Leu	Ala	Val	Ser	Lys 185	Gly	Asn	Сув	Ser	Gly 190	Pro	Thr
Thr	Ile	Arg 195	Gly	Gln	Phe	Ser	Asn 200	Met	Ser	Leu	Ser	Leu 205	Leu	Asp	Leu
Tyr	Leu 210	Gly	Arg	Gly	Tyr	Asn 215	Val	Ser	Ser	Ile	Val 220	Thr	Met	Thr	Ser
Gln 225	Gly	Met	Tyr	Gly	Gly 230	Thr	Tyr	Leu	Val	Glu 235	Lys	Pro	Asn	Leu	Asn 240
Ser	ГЛа	Gly	Ser	Glu 245	Leu	Ser	Gln	Leu	Ser 250	Met	Tyr	Arg	Val	Phe 255	Glu
Val	Gly	Val	Ile 260	Arg	Asn	Pro	Gly	Leu 265	Gly	Ala	Pro	Val	Phe 270	His	Met
Thr	Asn	Tyr 275	Phe	Glu	Gln	Pro	Val 280	Ser	Asn	Gly	Leu	Gly 285	Asn	CÀa	Met
Val	Ala 290	Leu	Gly	Glu	Leu	Lys 295	Leu	Ala	Ala	Leu	300 Cys	His	Gly	Asp	Asp
Ser 305	Ile	Ile	Ile	Pro	Tyr 310	Gln	Gly	Ser	Gly	Lys 315	Gly	Val	Ser	Phe	Gln 320
Leu	Val	Lys	Leu	Gly 325	Val	Trp	Lys	Ser	Pro 330	Thr	Asp	Met	Gln	Ser 335	Trp
Val	Pro	Leu	Ser 340	Thr	Asp	Asp	Pro	Val 345	Val	Asp	Arg	Leu	Tyr 350	Leu	Ser
Ser	His	Arg 355	Gly	Val	Ile	Ala	Asp 360	Asn	Gln	Ala	Lys	Trp 365	Ala	Val	Pro
Thr	Thr 370	Arg	Thr	Asp	Asp	Lys 375	Leu	Arg	Met	Glu	Thr 380	CAa	Phe	Gln	Gln
Ala 385	Сув	Lys	Gly	Lys	Ile 390	Gln	Ala	Leu	CAa	Glu 395	Asn	Pro	Glu	Trp	Val 400
Pro	Leu	ГЛа	Asp	Asn 405	Arg	Ile	Pro	Ser	Tyr 410	Gly	Val	Leu	Ser	Val 415	Asp
Leu	Ser	Leu	Thr 420	Val	Glu	Leu	Lys	Ile 425	ГЛа	Ile	Ala	Ser	Gly 430	Phe	Gly
Pro		Ile 435		His	Gly	Ser	Gly 440		Asp	Leu		Lys 445	Ser	Asn	Cys
Asn	Asn 450	Val	Tyr	Trp	Leu	Thr 455	Ile	Pro	Pro	Met	Arg 460	Asn	Leu	Ala	Leu
Gly 465	Val	Ile	Asn	Thr	Leu 470	Glu	Trp	Ile	Pro	Arg 475	Phe	ГÀа	Val	Ser	Pro 480
Asn	Leu	Phe	Thr	Val 485	Pro	Ile	Lys	Glu	Ala 490	Gly	Glu	Asp	Cha	His 495	Ala
Pro	Thr	Tyr	Leu 500	Pro	Ala	Glu	Val	Asp 505	Gly	Asp	Val	Lys	Leu 510	Ser	Ser
Asn	Leu	Val 515	Ile	Leu	Pro	Gly	Gln 520	Asp	Leu	Gln	Tyr	Val 525	Leu	Ala	Thr
Tyr	Asp 530	Thr	Ser	Arg	Val	Glu 535	His	Ala	Val	Val	Tyr 540	Tyr	Val	Tyr	Ser
Pro 545	Ser	Arg	Ser	Phe	Ser 550	Tyr	Phe	Tyr	Pro	Phe 555	Arg	Leu	Pro	Ile	Lys 560
Gly	Val	Pro	Ile	Glu	Leu	Gln	Val	Glu	Сув	Phe	Thr	Trp	Asp	Gln	Lys

-continued

Leu Trp Cys Arg His Phe Cys Val Leu Ala Asp Ser Glu Ser Gly Gly 585 Leu Ile Thr His Ser Gly Met Val Gly Met Gly Val Ser Cys Thr Ala 600 Thr Arg Glu Asp Gly Thr Asn Arg Arg <210> SEQ ID NO 50 <211> LENGTH: 617 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <223> OTHER INFORMATION: Synthetic Polypeptide <400> SEQUENCE: 50 Met Ser Pro Gln Arg Asp Arg Ile Asn Ala Phe Tyr Lys Asp Asn Pro His Pro Lys Gly Ser Arg Ile Val Ile Asn Arg Glu His Leu Met Ile Asp Arg Pro Tyr Val Leu Leu Ala Val Leu Phe Val Met Phe Leu Ser Leu Ile Gly Leu Leu Ala Ile Ala Gly Ile Arg Leu His Arg Ala Ala 55 Ile Tyr Thr Ala Glu Ile His Lys Ser Leu Ser Thr Asn Leu Asp Val 70 Thr Asn Ser Ile Glu His Gln Val Lys Asp Val Leu Thr Pro Leu Phe Lys Ile Ile Gly Asp Glu Val Gly Leu Arg Thr Pro Gln Arg Phe Thr 105 Asp Leu Val Lys Phe Ile Ser Asp Lys Ile Lys Phe Leu Asn Pro Asp $\hbox{Arg Glu Tyr Asp Phe Arg Asp Leu Thr Trp Cys Ile Asn Pro Pro Glu } \\$ Arg Ile Lys Leu Asp Tyr Asp Gln Tyr Cys Ala Asp Val Ala Ala Glu Glu Leu Met Asn Ala Leu Val Asn Ser Thr Leu Leu Glu Thr Arg Ala 170 Thr Asn Gln Phe Leu Ala Val Ser Lys Gly Asn Cys Ser Gly Pro Thr Thr Ile Arg Gly Gln Phe Ser Asn Met Ser Leu Ser Leu Leu Asp Leu Tyr Leu Ser Arg Gly Tyr Asn Val Ser Ser Ile Val Thr Met Thr Ser Gln Gly Met Tyr Gly Gly Thr Tyr Leu Val Glu Lys Pro Asn Leu Ser Ser Lys Gly Ser Glu Leu Ser Gln Leu Ser Met His Arg Val Phe Glu Val Gly Val Ile Arg Asn Pro Gly Leu Gly Ala Pro Val Phe His Met 265 Thr Asn Tyr Leu Glu Gln Pro Val Ser Asn Asp Phe Ser Asn Cys Met Val Ala Leu Gly Glu Leu Lys Phe Ala Ala Leu Cys His Arg Glu Asp Ser Ile Thr Ile Pro Tyr Gln Gly Ser Gly Lys Gly Val Ser Phe Gln

305 310 315	320
Leu Val Lys Leu Gly Val Trp Lys Ser Pro Thi 325 330	r Asp Met Gln Ser Trp 335
Val Pro Leu Ser Thr Asp Asp Pro Val Ile Asp 340 345	Arg Leu Tyr Leu Ser 350
Ser His Arg Gly Val Ile Ala Asp Asn Gln Ala 355 360	a Lys Trp Ala Val Pro 365
Thr Thr Arg Thr Asp Asp Lys Leu Arg Met Glu 370 375	ı Thr Cys Phe Gln Gln 380
Ala Cys Lys Gly Lys Ile Gln Ala Leu Cys Glu 385 390 395	
Pro Leu Lys Asp Asn Arg Ile Pro Ser Tyr Gly 405 410	y Val Leu Ser Val Asp 415
Leu Ser Leu Thr Val Glu Leu Lys Ile Lys Ile 420 425	e Val Ser Gly Phe Gly 430
Pro Leu Ile Thr His Gly Ser Gly Met Asp Leu 435 440	ı Tyr Lys Ser Asn His 445
Asn Asn Met Tyr Trp Leu Thr Ile Pro Pro Met 450 455	Lys Asn Leu Ala Leu 460
Gly Val Ile Asn Thr Leu Glu Trp Ile Pro Arc 465 470 475	
Asn Leu Phe Thr Val Pro Ile Lys Glu Ala Gly 485 490	y Glu Asp Cys His Ala 495
Pro Thr Tyr Leu Pro Ala Glu Val Asp Gly Asp 500 505	o Val Lys Leu Ser Ser 510
Asn Leu Val Ile Leu Pro Gly Gln Asp Leu Glr 515 520	n Tyr Val Leu Ala Thr 525
Tyr Asp Thr Ser Arg Val Glu His Ala Val Val	l Tyr Tyr Val Tyr Ser 540
Pro Ser Arg Ser Phe Ser Tyr Phe Tyr Pro Phe 545 550 555	
Gly Val Pro Ile Glu Leu Gln Val Glu Cys Phe 565 570	e Thr Trp Asp Gln Lys 575
Leu Trp Cys Arg His Phe Cys Val Leu Ala Asp 580 585	Ser Glu Ser Gly Gly 590
His Ile Thr His Ser Gly Met Val Gly Met Gly 595 600	y Val Ser Cys Thr Ala 605
Thr Arg Glu Asp Gly Thr Ser Arg Arg 610 615	
<210> SEQ ID NO 51 <211> LENGTH: 1729 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucl	Leotide
tcaagctttt ggaccctcgt acagaagcta atacgactca	a ctatagggaa ataagagaga 60
aaagaagagt aagaagaaat ataagagcca ccatggcaca	a agtcattaat acaaacagcc 120
tgtcgctgtt gacccagaat aacctgaaca aatcccagtc	c cgcactgggc actgctatcg 180
agegtttgte tteeggtetg egtateaaca gegegaaaga	a cgatgcggca ggacaggcga 240
ttgctaaccg ttttaccgcg aacatcaaag gtctgactca	a ggcttcccgt aacgctaacg 300

-continued

-concinued	
acggtatete cattgegeag accaetgaag gegegetgaa egaaateaac aacaaeetge	360
agegtgtgeg tgaactggeg gttcagtetg egaatggtac taacteecag tetgaceteg	420
actocatoca ggotgaaato accoagogoo tgaacgaaat cgaccgtgta tooggocaga	480
ctcagttcaa cggcgtgaaa gtcctggcgc aggacaacac cctgaccatc caggttggtg	540
ccaacgacgg tgaaactatc gatattgatt taaaagaaat cagctctaaa acactgggac	600
ttgataagct taatgtccaa gatgcctaca ccccgaaaga aactgctgta accgttgata	660
aaactaccta taaaaatggt acagatccta ttacagccca gagcaatact gatatccaaa	720
ctgcaattgg cggtggtgca acgggggtta ctggggctga tatcaaattt aaagatggtc	780
aatactattt agatgttaaa ggcggtgctt ctgctggtgt ttataaagcc acttatgatg	840
aaactacaaa gaaagttaat attgatacga ctgataaaac teegttggca actgeggaag	900
ctacagctat tcggggaacg gccactataa cccacaacca aattgctgaa gtaacaaaag	960
agggtgttga tacgaccaca gttgcggctc aacttgctgc agcaggggtt actggcgccg	1020
ataaggacaa tactagcctt gtaaaactat cgtttgagga taaaaacggt aaggttattg	1080
atggtggcta tgcagtgaaa atgggcgacg atttctatgc cgctacatat gatgagaaaa	1140
caggtgcaat tactgctaaa accactactt atacagatgg tactggcgtt gctcaaactg	1200
gagctgtgaa atttggtggc gcaaatggta aatctgaagt tgttactgct accgatggta	1260
agacttactt agcaagcgac cttgacaaac ataacttcag aacaggcggt gagcttaaag	1320
aggttaatac agataagact gaaaacccac tgcagaaaat tgatgctgcc ttggcacagg	1380
ttgatacact tcgttctgac ctgggtgcgg ttcagaaccg tttcaactcc gctatcacca	1440
acctgggcaa taccgtaaat aacctgtctt ctgcccgtag ccgtatcgaa gattccgact	1500
acgcaaccga agtctccaac atgtctcgcg cgcagattct gcagcaggcc ggtacctccg	1560
ttctggcgca ggcgaaccag gttccgcaaa acgtcctctc tttactgcgt tgataatagg	1620
ctggagcete ggtggceatg ettettgeee ettgggeete eecceageee etceteeeet	1680
teetgeacee gtaceeeegt ggtetttgaa taaagtetga gtgggegge	1729
<210> SEQ ID NO 52 <211> LENGTH: 1518 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 52	
atggcacaag tcattaatac aaacagcctg tcgctgttga cccagaataa cctgaacaaa	60
teccagteeg caetgggeae tgetategag egtttgtett eeggtetgeg tateaacage	120
gcgaaagacg atgcggcagg acaggcgatt gctaaccgtt ttaccgcgaa catcaaaggt	180
ctgactcagg cttcccgtaa cgctaacgac ggtatctcca ttgcgcagac cactgaaggc	240
gcgctgaacg aaatcaacaa caacctgcag cgtgtgcgtg aactggcggt tcagtctgcg	300
aatggtacta acteecagte tgacetegae tecatecagg etgaaateae eeagegeetg	360
aacgaaatcg accgtgtatc cggccagact cagttcaacg gcgtgaaagt cctggcgcag	420
gacaacaccc tgaccatcca ggttggtgcc aacgacggtg aaactatcga tattgattta	480
aaagaaatca gctctaaaac actgggactt gataagctta atgtccaaga tgcctacacc	540
ccgaaagaaa ctgctgtaac cgttgataaa actacctata aaaatggtac agatcctatt	600

660

acageceaga geaataetga tatecaaaet geaattggeg gtggtgeaae gggggttaet

ggggctgata tcaaatttaa agatggtcaa tactatttag atgttaaagg cggtgcttct	720
gctggtgttt ataaagccac ttatgatgaa actacaaaga aagttaatat tgatacgact	780
gataaaacte egttggcaac tgeggaaget acagetatte ggggaacgge cactataace	840
cacaaccaaa ttgctgaagt aacaaaagag ggtgttgata cgaccacagt tgcggctcaa	900
cttgctgcag caggggttac tggcgccgat aaggacaata ctagccttgt aaaactatcg	960
tttgaggata aaaacggtaa ggttattgat ggtggctatg cagtgaaaat gggcgacgat	1020
ttctatgccg ctacatatga tgagaaaaca ggtgcaatta ctgctaaaac cactacttat	1080
acagatggta ctggcgttgc tcaaactgga gctgtgaaat ttggtggcgc aaatggtaaa	1140
totgaagttg ttactgotac ogatggtaag acttacttag caagogacot tgacaaacat	1200
aacttcagaa caggcggtga gcttaaagag gttaatacag ataagactga aaacccactg	1260
cagaaaattg atgctgcctt ggcacaggtt gatacacttc gttctgacct gggtgcggtt	1320
cagaaccgtt tcaactccgc tatcaccaac ctgggcaata ccgtaaataa cctgtcttct	1380
gecegtagee gtategaaga tteegaetae geaaeegaag teteeaaeat gtetegegeg	1440
cagattetge ageaggeegg taceteegtt etggegeagg egaaceaggt teegeaaaac	1500
gtcctctctt tactgcgt	1518
<210> SEQ ID NO 53 <211> LENGTH: 1790 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 53	
1100 DEGUERCE. 33	
dddaaallaa dadadaaad aadadlaada adaallallaa dadccaccall ddcacaadlic	60
ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaccau ggcacaaguc	60 120
auuaauacaa acagecugue geuguugaee eagaauaaee ugaacaaaue eeagueegea	120
auuaauacaa acagecugue geuguugace cagaauaace ugaacaaaue ecagueegea cugggeacug cuauegageg uuugueuuce ggueugegua ucaacagege gaaagaegau	120 180
auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcgc gaaagacgau gcggcaggac aggcgauugc uaaccguuuu accgcgaaca ucaaaggucu gacucaggcu	120 180 240
auuaauacaa acagecugue geuguugace cagaauaace ugaacaaaue ecagueegea cugggeacug cuaucgageg uuugueuuce ggucugegua ucaacagege gaaagacgau gegggeaggac aggeegauuge uaaceguuuu acegegaaca ucaaaggueu gacucaggeu ucceguaacg cuaacgacgg uaucuecauu gegeagacea cugaaggege geugaacgaa	120 180 240 300
auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcgc gaaagacgau gcggcaggac aggcgauugc uaaccguuuu accgcgaaca ucaaaggucu gacucaggcu ucccguaacg cuaacgacgg uaucuccauu gcgcagacca cugaaggcgc gcugaacgaa aucaacaaca accugcagcg ugugcgugaa cuggcgguuc agucugcgaa ugguacuaac	120 180 240 300 360
auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcgc gaaagacgau gcggcaggac aggcgauugc uaaccguuuu accgggaaca ucaaaggucu gacucaggcu ucccguaacg cuaacgacgg uaucuccauu gcgcagacca cugaaggcgc gcugaacgaa aucaacaaca accugcagcg ugugcgugaa cuggcgguuc agucugcgaa ugguacuaac ucccagucug accucgacuc cauccaggcu gaaaucaccc agcgccugaa cgaaaucgac	120 180 240 300 360 420
auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcgc gaaagacgau gcggcaggac aggcgauugc uaaccguuuu accgcgaaca ucaaaggucu gacucaggcu uccccguaacg cuaacgacgg uaucuccauu gcgcagacca cugaaggcgc gcugaacgaa aucaacaaca accugcagcg ugugcgugaa cuggcgguuc agucugcgaa ugguacuaac ucccagucug accucgacuc cauccaggcu gaaaucaccc agcgccugaa cgaaaucgac cguguauccg gccagacuca guucaacggc gugaaagucc uggcgcagga caacacccug	120 180 240 300 360 420
auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcgc gaaagacgau gcggcaggac aggcgauugc uaaccguuuu accgcgaaca ucaaaggucu gacucaggcu ucccgguaacg cuaacgacgg uaucuccauu gcgcagacca cugaaggcgc gcugaacgaa aucaacaaca accugcagcg ugugcgugaa cuggcgguuc agucugcgaa ugguacuaac ucccagucug accucgacuc cauccaggcu gaaaucaccc agcgccugaa cgaaaucgac cguguauccg gccagacuca guucaacggc gugaaagucc uggcgcagga caacacccug accauccagg uuggugccaa cgacggugaa acuaucgaua uugauuuaaa agaaaucagc	120 180 240 300 360 420 480
auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcgc gaaagacgau gcggcaggac aggcgauugc uaaccguuuu accgcgaaca ucaaaggucu gacucaggcu ucccguaacg cuaacgacgg uaucuccauu gcgcagacca cugaaggcgc gcugaacgaa aucaacaaca accugcagcg ugugcgugaa cuggcgguuc agucugcgaa ugguacuaac ucccagucug accucgacuc cauccaggcu gaaaucaccc agcgccugaa cgaaaucgac cguguauccg gccagacuca guucaacggc gugaaagucc uggcgcagga caacacccug accauccagg uuggugccaa cgacggugaa acuaucgaua uugauuuaaa agaaaucagc ucuaaaacac uggggacuuga uaagcuuaau guccaagaug ccuacacccc gaaagaaacu	120 180 240 300 360 420 480 540
auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcgc gaaagacgau gcggcaggac aggcgauugc uaaccguuuu accgcgaaca ucaaaggucu gacucaggcu ucccgguaacg cuaacgacgg uaucuccauu gcgcagacca cugaaggcgc gcugaacgaa aucaacaaca accugcagcg ugugcgugaa cuggcgguuc agucugcgaa ugguacuaac ucccagucug accucgacuc cauccaggcu gaaaucaccc agcgccugaa cgaaaucgac cguguauccg gccagacuca guucaacggc gugaaagucc uggcgcagga caacacccug accauccagg uuggugcaa cgacggugaa acuaucgaua uugauuuaaa agaaaucagc ucuaaaacac ugggacuuga uaagcuuaau guccaagaug ccuacaccc gaaagaaacu gcuguaaccg uugauaaaac uaccuauaaa aaugguacag auccuauuac agcccagagc	120 180 240 300 360 420 480 540 600
auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcgc gaaagacgau gcggcaggac aggcgauugc uaaccguuuu accgcgaaca ucaaaggucu gacucaggcu ucccguaacg cuaacgacgg uaucuccauu gcgcagacca cugaaggcgc gcugaacgaa aucaacaaca accugcagcg ugugcgugaa cuggcgguuc agucugcgaa ugguacuaac ucccagucug accucgacuc cauccaggcu gaaaucaccc agcgccugaa cgaaaucgac cguguauccg gccagacuca guucaacggc gugaaagucc uggcgcagga caacacccug accauccagg uuggugccaa cgacggugaa acuaucgaua uugauuuaaa agaaaucagc ucuaaaacac uggggacuuga uaagcuuaau guccaagaug ccuacacccc gaaagaaacu	120 180 240 300 360 420 480 540 600 660
auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcgc gaaagacgau gcggcaggac aggcgauugc uaaccguuuu accgcgaaca ucaaaggucu gacucaggcu ucccgguaacg cuaacgacgg uaucuccauu gcgcagacca cugaaggcgc gcugaacgaa aucaacaaca accugcagcg ugugcgugaa cuggcgguuc agucugcgaa ugguacuaac ucccagucug accucgacuc cauccaggcu gaaaucaccc agcgccugaa cgaaaucgac cguguauccg gccagacuca guucaacggc gugaaagucc uggcgcagga caacacccug accauccagg uuggugcaa cgacggugaa acuaucgaua uugauuuaaa agaaaucagc ucuaaaacac ugggacuuga uaagcuuaau guccaagaug ccuacaccc gaaagaaacu gcuguaaccg uugauaaaac uaccuauaaa aaugguacag auccuauuac agcccagagc	120 180 240 300 360 420 480 540 600
auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcgc gaaagacgau gcggcaggac aggcgauugc uaaccguuuu accgcgaacaa ucaaaggucu gacucaggcu uccccguaacg cuaacgacgg ugugcgugaa cuggcgguuc agucugcgaa ugguacuaac ucccagucug accucgacuc cauccaggcu gaaaucaccc agcgccugaa cgaaaucgac cguguauccg gccagacuca guucaacggc gugaaagucc uggcgcagga caacacccug accauccagg uuggugccaa cgacggugaa acuaucgaua uugauuuaaa agaaaucagc ucuaaaaacac ugggacuuga uaagcuuaau guccaagaug ccuacacccc gaaagaaacu gcuguaaccg uugauaaaac uaccuauaaa aaugguacag auccuauuac agcccagagc aauacugaua uccaaacug gggguuacugg ggugaaacgg ggguuacugg ggcugauauc	120 180 240 300 360 420 480 540 600 660
auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcgc gaaagacgau gcggcaggac aggcgauugc uaaccguuuu accgcgaaca ucaaaggucu gacucaggcu ucccguaacg cuaacgacgg uaucuccauu gcgcagacca cugaaggcgc gcugaacgaa aucaacaaca accugcagcg ugugcgugaa cuggcgguuc agucugcgaa ugguacuaac ucccagucug accucgacuc cauccaggcu gaaaucaccc agcgccugaa cgaaaucgac cguguauccg gccagacuca guucaacggc gugaaagucc uggcgcagga caacacccug accauccagg uuggugcaaa cgacggugaa acuaucgaua uugauuuaaa agaaaucagc ucuaaaacac uggggacuuga uaagcuuaau guccaagaug ccuacacccc gaaagaaacu gcuguaaccg uugauaaaac uaccuauaaa aaugguacag auccuauuac agcccagagc aauacugaua uccaaacugc aauuggcggu ggugcaacgg ggguuacugg ggcugauauc aaauuuaaag auggucaaua cuauuuagau guuaaaggcg gugcuucugc ugguguuuau	120 180 240 300 360 420 480 540 600 660 720
auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcgc gaaagacgau gcggcaggac aggcgauugc uaaccguuuu accgcgaaca ucaaaggucu gacucaggcu ucccguaacg cuaacgacgg uaucuccauu gcgcagacca cugaaggcgc gcugaacgaa aucaacaaca accugcagcg ugugcgugaa cuggcgguuc agucugcgaa ugguacuaac cguguauccg gccagacuca guucaacggc gugaaagucc uggcgcugaa cgaaaucgac cguguauccg gccagacuca guucaacggc gugaaagucc uggcgcagga caacacccug accauccagg uuggugccaa cgacggugaa acuaucgaua uugauuuaaa agaaaucagc ucuaaaacac uggggacuuga uaagcuuaau guccaagaug ccuacacccc gaaagaaacu gcuguaaccg uugauaaaac uaccuauaaa aaugguacag auccuauuac agcccagagc aauacugaua uccaaacugc aauuggcggu ggugcaacgg ggguuacugg ggcugauauc aaauuuaaag auggucaaua cuauuuagau guuaaaggcg gugcuucugc ugguguuuau aaagccacuu augaugaaac uacaaagaaa guuaauauug auacgacuga uaaaacuccg	120 180 240 300 360 420 480 540 660 720 780 840
auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcgc gaaagacgau gcggcaggac aggcgauugc uaaccguuuu accgcgaacaa ucaaaggucu gacucaggcu uccccguaacg cuaacgacgg uaucuccauu gcgcagacca cugaaggcgc gcugaacgaa aucaacaaca accugcagcg ugugcgugaa cuggcgguuc agucugcgaa ugguacuaac cguguauccg gccagacuca guucaacggc gugaaagucc agcgcugaa cgaaaucgac cguguauccg gccagacuca guucaacggc gugaaagucc uggcgcagga caacacccug accauccagg uuggugccaa cgacggugaa acuaucgaua uugauuuaaa agaaaucagc ucuaaaacac ugggacuuga uaagcuuaau guccaagaug ccuacacccc gaaagaaacu gcuguaaccg uugauaaaac uaccuauaaa aaugguacag ggguuacugg ggcugauauc aaauuuaaaa auggucaaua cuauuuagau guuaaaggcg gugcuucugc ugguguuuau aaagccacuu augaugaaac uacaaagaaa guuaauauug auacgacuga uaaaacuccg uuggcaacug cggaagcuac agcuauucgg ggaacggcca cuauaacca caaccaaauu	120 180 240 300 360 420 480 540 660 720 780 840 900
auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcgc gaaagacgau gcggcaggac aggcgauugc uaaccguuuu accgcgaaca ucaaaggucu gacucaggcu ucccguaacg cuaacgacgg uaucuccauu gcgcagacca cugaaggcgc gcugaacgaa aucaacaaca accugcagcg ugugcgugaa cuggcgguuc agucugcgaa ugguacuaac ucccagucug accucgacuc cauccaggcu gaaaucaccc agcgccugaa cgaaaucgac cguguauccg gccagacuca guucaacggc gugaaagucc uggcgcagga caacacccug accauccagg uuggugcaaa cgacggugaa acuaucgaua uugauuuaaa agaaaucagc ucuaaaacac uggggacuuga uaagcuuaau guccaagaug ccuacacccc gaaagaaacu gcuguaaccg uugauaaaac uaccuauaaa aaugguacag auccuauuac agcccagagc aauacugaua uccaaacugc aauuggcggu ggugcaacgg ggguuacugg ggcugauauc aaauuuaaag auggucaaua cuauuuagau guuaaaggcg gugcuucugc ugguguuuau aaagccacuu augaugaaac uacaaagaaa guuaauauug auacgacuga uaaaacuccg uuggcaacug cggaagcuac agcuauucgg ggaacggcca cuauaaccca caaccaaauu gcugaaguaa caaaagaggg uguugauacg accacaguug cggcucaacu ugcugcagca	120 180 240 300 360 420 480 540 660 720 780 840 900
auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcgc gaaagacgau gcggcaggac aggcgauugc uaaccguuuu accgcgaacaa ucaacagcgc gaaagacgau uccccguaacg cuaacgacgg uaucuccauu gcgcagacca cugaaggcgc gcugaacgaa aucaacaaca accugcagcg ugugcgugaa cuggcgguuc agucugcgaa ugguacuaac cguguauccg gccagacuca guucaacggc gaaaucaccc agcgccugaa cgaaaucgac cguguauccg gccagacuca guucaacggc gugaaagucc uggcgcagga caacacccug accauccagg uuggugccaa cgacggugaa acuaucgaua uugauuuaaa agaaaucagc ucuaaaacac uggggacuuga uaagcuuaau guccaagaug ccuacacccc gaaagaaacu gcuguaaccg uugauaaaac uaccuauaaa aaugguacag ggguuacugg ggcugauauc aaauuuaaaa auggucaaua cuauuuagau guuaaaggcg gugcuucugc ugguguuuau aaagccacuu augaugaaac uacaaagaaa guuaauauug auacgacuga uaaaacuccg uuggcaacuu cgaaagaaacu gcugaagcaacuu augaugaaac agcuauucgg ggaacggcca cuauaacca caaccaaauu gcugaaaguaa caaaagaggg uguugauacg accacaguug cggcucaacu ugcugcagca ggggguuacug gcgcaacuu ggcgcaacaa agcuauucgg accacaguug cggcucaacu ugcugcagca ggggguuacug gggguuacug gggguuacug gggguuacug aacacacaaauu gcugaaguaa caaaagaggg uguugauacg accacaguug cggcucaacu ugcugcagca ggggguuacug gggguuacug gggguuacug ggggaaagaca aacacaaauu gcugaaguaa caaaagaaggg agacaauacu agccuuguaa aacuaccgu ugcugcagca ggggguuacug gggguuacug gggguuacug ggggguuacug aacacacuu ugcugcagca ggggguuacug gggguuacug ggggguuacug aacacacuu ugcugcagca gggggggggg	120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020

ggcg	guugo	cuc a	aaacı	ıggaç	ge u	gugaa	aauuu	ı ggı	ıggcç	gcaa	aug	guaaa	auc 1	ugaaç	guuguu	1200
acuç	gcuad	ccg a	auggı	ıaaga	ac ui	ıacuı	ıagca	a ago	cgaco	cuug	acaa	acau	ıaa (cuuca	agaaca	1260
ggcg	gguga	agc 1	uaaa	agago	gu ua	aauao	cagau	ı aaç	gacuç	gaaa	acco	cacuç	gca 🤅	gaaaa	auugau	1320
gcu	gccui	ıgg (cacaç	gguug	ga ua	acacı	ıucgu	ı ucı	ıgaco	cugg	gug	eggui	ıca ç	gaaco	eguuuc	1380
aacı	ıccgo	cua 1	ıcaco	caaco	cu gọ	ggcaa	auaco	gua	aaaua	aacc	ugu	cuucı	ıgc (ccgua	agccgu	1440
auco	gaaga	auu (ccga	cuacç	gc aa	accga	aaguo	uco	caaca	augu	cuc	gegeç	gca q	gauud	cugcag	1500
cago	geegg	gua (ccuc	guu	cu g	gegea	aggcg	g aad	ccago	guuc	cgca	aaaa	cgu (ccucı	ıcuuua	1560
cugo	eguug	gau a	aauaç	ggcu	gg ag	gccu	eggue	g gco	caugo	cuuc	uug	cccı	ug 9	ggccı	ıccccc	1620
cago	cccu	icc i	iccc	cuuc	cu go	cacco	cguac	000	ccgu	gguc	uuuç	gaaua	aaa 🤉	gucuç	gagugg	1680
gegg	gcaaa	aaa a	aaaa	aaaa	aa aa	aaaa	aaaa	a aaa	aaaa	aaaa	aaaa	aaaa	aaa a	aaaaa	aaaaaa	1740
aaaa	aaaa	aaa a	aaaa	aaaa	aa aa	aaaaa	aaaa	a aaa	aaaa	aaaa	aaaa	aaucı	ıag			1790
<211 <212 <213 <220 <223	L> LE 2> TY 3> OF 0> FE 3> OT	ENGTI YPE : RGAN: EATUI THER	ISM: RE: INFO	D6 Art: DRMA:			-		?oly <u>r</u>	oept:	ide					
		_	VCE:													
Met 1	Ala	Gln	Val	Ile 5	Asn	Thr	Asn	Ser	Leu 10	Ser	Leu	Leu	Thr	Gln 15	Asn	
Asn	Leu	Asn	Lys 20	Ser	Gln	Ser	Ala	Leu 25	Gly	Thr	Ala	Ile	Glu 30	Arg	Leu	
Ser	Ser	Gly 35	Leu	Arg	Ile	Asn	Ser 40	Ala	Lys	Asp	Asp	Ala 45	Ala	Gly	Gln	
Ala	Ile 50	Ala	Asn	Arg	Phe	Thr 55	Ala	Asn	Ile	Lys	Gly 60	Leu	Thr	Gln	Ala	
Ser 65	Arg	Asn	Ala	Asn	Asp 70	Gly	Ile	Ser	Ile	Ala 75	Gln	Thr	Thr	Glu	Gly 80	
Ala	Leu	Asn	Glu	Ile 85	Asn	Asn	Asn	Leu	Gln 90	Arg	Val	Arg	Glu	Leu 95	Ala	
Val	Gln	Ser	Ala 100	Asn	Gly	Thr	Asn	Ser 105	Gln	Ser	Asp	Leu	Asp 110	Ser	Ile	
Gln	Ala	Glu 115	Ile	Thr	Gln	Arg	Leu 120	Asn	Glu	Ile	Asp	Arg 125	Val	Ser	Gly	
Gln	Thr 130	Gln	Phe	Asn	Gly	Val 135	Lys	Val	Leu	Ala	Gln 140	Asp	Asn	Thr	Leu	
Thr 145	Ile	Gln	Val	Gly	Ala 150	Asn	Asp	Gly	Glu	Thr 155	Ile	Asp	Ile	Asp	Leu 160	
Lys	Glu	Ile	Ser	Ser 165	Lys	Thr	Leu	Gly	Leu 170	Asp	Lys	Leu	Asn	Val 175	Gln	
Asp	Ala	Tyr	Thr 180	Pro	Lys	Glu	Thr	Ala 185	Val	Thr	Val	Asp	Lys 190	Thr	Thr	
Tyr	Lys	Asn 195	Gly	Thr	Asp	Pro	Ile 200	Thr	Ala	Gln	Ser	Asn 205	Thr	Asp	Ile	
Gln	Thr 210	Ala	Ile	Gly	Gly	Gly 215	Ala	Thr	Gly	Val	Thr 220	Gly	Ala	Asp	Ile	
Lys 225	Phe	Lys	Asp	Gly	Gln 230	Tyr	Tyr	Leu	Asp	Val 235	ГЛа	Gly	Gly	Ala	Ser 240	
Ala	Gly	Val	Tyr	Lys 245	Ala	Thr	Tyr	Asp	Glu 250	Thr	Thr	Lys	Lys	Val 255	Asn	

Ile As	p Thr	Thr 260	Asp	Lys	Thr	Pro	Leu 265	Ala	Thr	Ala	Glu	Ala 270	Thr	Ala
Ile Ar	g Gly 275	Thr	Ala	Thr	Ile	Thr 280	His	Asn	Gln	Ile	Ala 285	Glu	Val	Thr
Lys Gl 29		Val	Asp	Thr	Thr 295	Thr	Val	Ala	Ala	Gln 300	Leu	Ala	Ala	Ala
Gly Va 305	l Thr	Gly	Ala	Asp 310	Lys	Asp	Asn	Thr	Ser 315	Leu	Val	Lys	Leu	Ser 320
Phe Gl	u Asp	Lys	Asn 325	Gly	Lys	Val	Ile	Asp 330	Gly	Gly	Tyr	Ala	Val 335	ГÀа
Met Gl	y Asp	Asp 340	Phe	Tyr	Ala	Ala	Thr 345	Tyr	Asp	Glu	Lys	Thr 350	Gly	Ala
Ile Th	r Ala 355	Lys	Thr	Thr	Thr	Tyr 360	Thr	Asp	Gly	Thr	Gly 365	Val	Ala	Gln
Thr Gl	_	Val	ГÀа	Phe	Gly 375	Gly	Ala	Asn	Gly	380	Ser	Glu	Val	Val
Thr Al 385	a Thr	Asp	Gly	390 TÀa	Thr	Tyr	Leu	Ala	Ser 395	Asp	Leu	Asp	Lys	His 400
Asn Ph	e Arg	Thr	Gly 405	Gly	Glu	Leu	Lys	Glu 410	Val	Asn	Thr	Asp	Lys 415	Thr
Glu As	n Pro	Leu 420	Gln	ГÀа	Ile	Asp	Ala 425	Ala	Leu	Ala	Gln	Val 430	Asp	Thr
Leu Ar	g Ser 435	Asp	Leu	Gly	Ala	Val 440	Gln	Asn	Arg	Phe	Asn 445	Ser	Ala	Ile
Thr As		Gly	Asn	Thr	Val 455	Asn	Asn	Leu	Ser	Ser 460	Ala	Arg	Ser	Arg
Ile Gl 465	u Asp	Ser	Asp	Tyr 470	Ala	Thr	Glu	Val	Ser 475	Asn	Met	Ser	Arg	Ala 480
Gln Il	e Leu	Gln	Gln 485	Ala	Gly	Thr	Ser	Val 490	Leu	Ala	Gln	Ala	Asn 495	Gln
Val Pr	o Gln	Asn 500	Val	Leu	Ser	Leu	Leu 505	Arg						
<210><211><211><212><213><220><223>	LENGT TYPE : ORGAN FEATU	H: 6: PRT ISM: RE:	98 Art:			_		Poly <u>r</u>	pept:	ide				
<400>	SEQUE	NCE :	55											
Met Al 1	a Gln	Val	Ile 5	Asn	Thr	Asn	Ser	Leu 10	Ser	Leu	Leu	Thr	Gln 15	Asn
Asn Le	u Asn	Lys 20	Ser	Gln	Ser	Ala	Leu 25	Gly	Thr	Ala	Ile	Glu 30	Arg	Leu
Ser Se	r Gly 35	Leu	Arg	Ile	Asn	Ser 40	Ala	Lys	Asp	Asp	Ala 45	Ala	Gly	Gln
Ala Il 50	e Ala	Asn	Arg	Phe	Thr 55	Ala	Asn	Ile	Lys	Gly 60	Leu	Thr	Gln	Ala
Ser Ar 65	g Asn	Ala	Asn	Asp 70	Gly	Ile	Ser	Ile	Ala 75	Gln	Thr	Thr	Glu	Gly 80
Ala Le	u Asn	Glu	Ile 85	Asn	Asn	Asn	Leu	Gln 90	Arg	Val	Arg	Glu	Leu 95	Ala
Val Gl	n Ser	Ala 100	Asn	Ser	Thr	Asn	Ser 105	Gln	Ser	Asp	Leu	Asp 110	Ser	Ile

Gln	Ala	Glu 115	Ile	Thr	Gln	Arg	Leu 120	Asn	Glu	Ile	Asp	Arg 125	Val	Ser	Gly
Gln	Thr	Gln	Phe	Asn	Gly	Val 135	ГЛа	Val	Leu	Ala	Gln 140	Asp	Asn	Thr	Leu
Thr 145	Ile	Gln	Val	Gly	Ala 150	Asn	Asp	Gly	Glu	Thr 155	Ile	Asp	Ile	Asp	Leu 160
Lys	Gln	Ile	Asn	Ser 165	Gln	Thr	Leu	Gly	Leu 170	Asp	Thr	Leu	Asn	Val 175	Gln
Gln	Lys	Tyr	Lys 180	Val	Ser	Asp	Thr	Ala 185	Ala	Thr	Val	Thr	Gly 190	Tyr	Ala
Asp	Thr	Thr 195	Ile	Ala	Leu	Asp	Asn 200	Ser	Thr	Phe	Lys	Ala 205	Ser	Ala	Thr
Gly	Leu 210	Gly	Gly	Thr	Asp	Gln 215	Lys	Ile	Asp	Gly	Asp 220	Leu	Lys	Phe	Asp
Asp 225	Thr	Thr	Gly	ГÀа	Tyr 230	Tyr	Ala	Lys	Val	Thr 235	Val	Thr	Gly	Gly	Thr 240
Gly	Lys	Asp	Gly	Tyr 245	Tyr	Glu	Val	Ser	Val 250	Asp	Lys	Thr	Asn	Gly 255	Glu
Val	Thr	Leu	Ala 260	Gly	Gly	Ala	Thr	Ser 265	Pro	Leu	Thr	Gly	Gly 270	Leu	Pro
Ala	Thr	Ala 275	Thr	Glu	Asp	Val	Lys 280	Asn	Val	Gln	Val	Ala 285	Asn	Ala	Asp
Leu	Thr 290	Glu	Ala	ГÀа	Ala	Ala 295	Leu	Thr	Ala	Ala	Gly 300	Val	Thr	Gly	Thr
Ala 305	Ser	Val	Val	rys	Met 310	Ser	Tyr	Thr	Asp	Asn 315	Asn	Gly	Lys	Thr	Ile 320
Asp	Gly	Gly	Leu	Ala 325	Val	Lys	Val	Gly	Asp 330	Asp	Tyr	Tyr	Ser	Ala 335	Thr
Gln	Asn	Lys	Asp 340	Gly	Ser	Ile	Ser	Ile 345	Asn	Thr	Thr	Lys	Tyr 350	Thr	Ala
Asp	Asp	Gly 355	Thr	Ser	ГÀз	Thr	Ala 360	Leu	Asn	Lys	Leu	Gly 365	Gly	Ala	Asp
Gly	Lys 370	Thr	Glu	Val	Val	Ser 375	Ile	Gly	Gly	Lys	Thr 380	Tyr	Ala	Ala	Ser
385 Tàs	Ala	Glu	Gly	His	Asn 390	Phe	Lys	Ala	Gln	Pro 395	Asp	Leu	Ala	Glu	Ala 400
Ala	Ala	Thr	Thr	Thr 405	Glu	Asn	Pro	Leu	Gln 410	Lys	Ile	Asp	Ala	Ala 415	Leu
Ala	Gln	Val	Asp 420	Thr	Leu	Arg	Ser	Asp 425	Leu	Gly	Ala	Val	Gln 430	Asn	Arg
Phe	Asn	Ser 435	Ala	Ile	Thr	Asn	Leu 440	Gly	Asn	Thr	Val	Asn 445	Asn	Leu	Thr
Ser	Ala 450	Arg	Ser	Arg	Ile	Glu 455	Asp	Ser	Asp	Tyr	Ala 460	Thr	Glu	Val	Ser
Asn 465	Met	Ser	Arg	Ala	Gln 470	Ile	Leu	Gln	Gln	Ala 475	Gly	Thr	Ser	Val	Leu 480
Ala	Gln	Ala	Asn	Gln 485	Val	Pro	Gln	Asn	Val 490	Leu	Ser	Leu	Leu	Arg 495	Gly
Gly	Gly	Gly	Ser 500	Gly	Gly	Gly	Gly	Ser 505	Met	Met	Ala	Pro	Asp 510	Pro	Asn
Ala	Asn	Pro 515	Asn	Ala	Asn	Pro	Asn 520	Ala	Asn	Pro	Asn	Ala 525	Asn	Pro	Asn

Ala Asn 530														
	Pro	Asn	Ala	Asn	Pro 535	Asn	Ala	Asn	Pro	Asn 540	Ala	Asn	Pro	Asn
Ala Asn 545	Pro	Asn	Ala	Asn 550	Pro	Asn	Ala	Asn	Pro 555	Asn	Ala	Asn	Pro	Asn 560
Ala Asn	Pro	Asn	Ala 565	Asn	Pro	Asn	Ala	Asn 570	Pro	Asn	Ala	Asn	Pro 575	Asn
Ala Asn	Pro	Asn 580	Ala	Asn	Pro	Asn	Ala 585	Asn	Pro	Asn	Lys	Asn 590	Asn	Gln
Gly Asn	Gly 595	Gln	Gly	His	Asn	Met 600	Pro	Asn	Asp	Pro	Asn 605	Arg	Asn	Val
Asp Glu 610	Asn	Ala	Asn	Ala	Asn 615	Asn	Ala	Val	Lys	Asn 620	Asn	Asn	Asn	Glu
Glu Pro 625	Ser	Asp	ГЛа	His 630	Ile	Glu	Gln	Tyr	Leu 635	ГЛа	ГЛа	Ile	Lys	Asn 640
Ser Ile	Ser	Thr	Glu 645	Trp	Ser	Pro	Cys	Ser 650	Val	Thr	Cys	Gly	Asn 655	Gly
Ile Gln	Val	Arg 660	Ile	Lys	Pro	Gly	Ser 665	Ala	Asn	Lys	Pro	Lys 670	Asp	Glu
Leu Asp	Tyr 675	Glu	Asn	Asp	Ile	Glu 680	Lys	ГЛа	Ile	CÀa	Lys 685	Met	Glu	Lys
Cys Ser 690	Ser	Val	Phe	Asn	Val 695	Val	Asn	Ser						
<220> F <223> O			DRMA:	CION	: Svi	nthet	ia I	20111						
<223> 0	IHER	TMFC	JKMA.	I TON										
<400> S	EQUE	ICE :			2 -		.10 1	POTAF	рерс.	ide				
<400> S Met Met 1	-		56						_		Asn	Pro	Asn 15	Ala
Met Met	Ala	Pro	56 Asp 5	Pro	Asn	Ala	Asn	Pro 10	Asn	Ala			15	
Met Met 1	Ala Asn	Pro Ala 20	56 Asp 5 Asn	Pro Pro	Asn Asn	Ala Ala	Asn Asn 25	Pro 10	Asn Asn	Ala Ala	Asn	Pro 30	15 Asn	Ala
Met Met 1 Asn Pro	Ala Asn Asn 35	Pro Ala 20 Ala	56 Asp 5 Asn Asn	Pro Pro	Asn Asn Asn	Ala Ala Ala 40	Asn Asn 25 Asn	Pro 10 Pro	Asn Asn Asn	Ala Ala Ala	Asn Asn 45	Pro 30 Pro	15 Asn Asn	Ala Ala
Met Met 1 Asn Pro Asn Pro	Ala Asn Asn 35 Asn	Pro Ala 20 Ala Ala	Asp 5 Asn Asn Asn	Pro Pro Pro	Asn Asn Asn Asn 55	Ala Ala Ala 40 Ala	Asn Asn 25 Asn Asn	Pro 10 Pro Pro	Asn Asn Asn	Ala Ala Ala Ala	Asn Asn 45 Asn	Pro 30 Pro	15 Asn Asn Asn	Ala Ala Ala
Met Met 1 Asn Pro Asn Pro Asn Pro So Asn Pro	Ala Asn Asn 35 Asn	Pro Ala 20 Ala Ala Ala	Asp 5 Asn Asn Asn	Pro Pro Pro Pro 70	Asn Asn Asn 55 Asn	Ala Ala Ala 40 Ala	Asn 25 Asn Asn	Pro 10 Pro Pro	Asn Asn Asn Asn 75	Ala Ala Ala Ala 60	Asn 45 Asn Asn	Pro 30 Pro Pro	Asn Asn Asn Asn	Ala Ala Ala Ala
Met 1 Asn Pro Asn Pro 50 Asn Pro 65	Ala Asn Asn S Asn Asn Asn	Pro Ala 20 Ala Ala Ala Lys	Asn Asn Asn Asn Asn	Pro Pro Pro Asn	Asn Asn Asn Asn Gln	Ala Ala Ala Ala Ala	Asn 25 Asn Asn Asn	Pro 10 Pro Pro Gly 90	Asn Asn Asn Asn Gln	Ala Ala Ala 60 Ala	Asn 45 Asn Asn	Pro 30 Pro Pro Pro	Asn Asn Asn Met	Ala Ala Ala Ala 80 Pro
Met Met 1 Asn Pro Asn Pro 50 Asn Pro 65 Asn Pro	Ala Asn Asn Asn Asn Pro	Pro Ala 20 Ala Ala Lys Asn 100	Asp Asn Asn Asn Asn Asn	Pro Pro Pro Pro Asn	Asn Asn Asn Asn Gln Val	Ala Ala Ala Ala Ala Ala Ala Ala	Asn 25 Asn Asn Asn Glu 105	Pro 10 Pro Pro Pro Asn	Asn Asn Asn Asn Gln	Ala Ala Ala Ala Gly Asn	Asn Asn Asn Asn Ala	Pro 30 Pro Pro Asn Asn	Asn Asn Asn Met 95 Asn	Ala Ala Ala 80 Pro
Met 1 Asn Pro Asn Pro 50 Asn Pro 65 Asn Pro Asn Asn	Ala Asn Asn 35 Asn Asn Asn Asn	Pro Ala 20 Ala Ala Ala Ala Lys Asn 100 Asn	Asp 5 Asn Asn Asn Asn Asn	Pro Pro Pro Pro Asn Asn	Asn Asn Asn S5 Asn Gln Val	Ala Ala Ala Ala Ala Ala Ala Gly Asp Glu 120	Asn 25 Asn Asn Asn Glu 105 Pro	Pro 10 Pro Pro Pro Asn Ser	Asn Asn Asn Asn 75 Gln Ala	Ala Ala Ala Ala 60 Ala Gly Asn	Asn Asn Asn Asn Asn His Ala	Pro Pro Pro Asn Asn 110	Asn Asn Asn Asn Glu	Ala Ala Ala Ala Pro Ala Gln
Met 1 Asn Pro Asn Pro 50 Asn Pro 65 Asn Pro Asn Asp Val Lys Tyr Leu	Ala Asn Asn Asn Asn Asn Asn Lys	Pro Ala 20 Ala Ala Ala Lys Asn 100 Asn	Asp Asn Asn Asn Asn Asn Asn Ile	Pro Pro Pro Pro Asn Asn Lys	Asn Asn Asn Asn Cln Cln Clu Asn Clu Asn	Ala Ala Ala Ala Ala Ala Gly Asp Glu 120 Ser	Asn 25 Asn Asn Asn Fro	Pro 10 Pro Pro Pro Asn Ser	Asn Asn Asn Asn Asn Thr	Ala Ala Ala Ala 60 Ala Gly Asn Lys Glu 140	Asn Asn 45 Asn Asn Ala His 125	Pro 30 Pro Pro Asn Asn 110	Asn Asn Asn Asn Asn Glu Pro	Ala Ala Ala Ala Pro Ala Gln Cys
Met 1 Asn Pro Asn Pro 65 Asn Pro Asn Pro 4sn Pro 4sn Asp Val Lys Tyr Leu 130 Ser Val	Ala Asn Asn Asn Asn Asn Lys	Pro Ala 20 Ala Ala Ala Ala Lys Asn 100 Asn Lys	Asp Asn Asn Asn Asn Asn Ile	Pro Pro Pro Pro Asn Asn Lys Asn 150	Asn Asn Asn 55 Asn Gln Val Glu Asn 135	Ala Ala Ala Ala Ala Ala Cly Asp Clu 120 Ser Ile	Asn 25 Asn Asn Asn Clu 105 Pro Ile Gln	Pro 10 Pro Pro Pro Gly 90 Asn Ser Val	Asn Asn Asn Asn Asn Thr Arg 155	Ala Ala Ala 60 Ala Gly Asn Lys Glu 140 Ile	Asn Asn Asn Asn Asn Trp Lys	Pro 30 Pro Pro Asn Asn 110 Ile Ser	Asn Asn Asn Met 95 Asn Glu Pro	Ala Ala Ala Ala 80 Pro Ala Gln Cys Ser 160
Met 1 Asn Pro Asn Pro 50 Asn Pro 65 Asn Pro Asn Asp Val Lys Tyr Leu 130 Ser Val	Ala Asn Asn Asn Asn Asn Lys Lys	Pro Ala 20 Ala Ala Ala Ala Lys Asn 100 Asn Lys	Asn Asn Asn Asn Asn Ile Gly Lys 165	Pro Pro Pro Pro Asn Asn Asn Asn Asn Asn	Asn Asn Asn Asn S5 Asn Gln Val Glu Asn 135 Gly Glu	Ala Ala Ala Ala Ala Ala Gly Asp Glu 120 Ser Ile	Asn 25 Asn Asn Asn Glu 105 Pro Ile Gln Asp	Pro 10 Pro Pro Pro Asn Ser Val	Asn Asn Asn Asn Asn Thr Arg 155 Glu	Ala Ala Ala Ala 60 Ala Gly Asn Lys Glu 140 Ile Asn	Asn Asn Asn Asn Asn His Ala His Lys Asp	Pro 30 Pro Pro Asn Asn 110 Ile Fro Ile	Asn Asn Asn Asn Glu Pro Gly Glu 175	Ala Ala Ala Ala Pro Ala Gln Cys Ser 160 Lys

Ser	Arg	Pro 195	Val	Thr	Met	Ala	Gln 200	Val	Ile	Asn	Thr	Asn 205	Ser	Leu	Ser
Leu	Leu 210	Thr	Gln	Asn	Asn	Leu 215	Asn	Lys	Ser	Gln	Ser 220	Ala	Leu	Gly	Thr
Ala 225	Ile	Glu	Arg	Leu	Ser 230	Ser	Gly	Leu	Arg	Ile 235	Asn	Ser	Ala	Lys	Asp 240
Asp	Ala	Ala	Gly	Gln 245	Ala	Ile	Ala	Asn	Arg 250	Phe	Thr	Ala	Asn	Ile 255	Lys
Gly	Leu	Thr	Gln 260	Ala	Ser	Arg	Asn	Ala 265	Asn	Asp	Gly	Ile	Ser 270	Ile	Ala
Gln	Thr	Thr 275	Glu	Gly	Ala	Leu	Asn 280	Glu	Ile	Asn	Asn	Asn 285	Leu	Gln	Arg
Val	Arg 290	Glu	Leu	Ala	Val	Gln 295	Ser	Ala	Asn	Ser	Thr 300	Asn	Ser	Gln	Ser
Asp 305	Leu	Asp	Ser	Ile	Gln 310	Ala	Glu	Ile	Thr	Gln 315	Arg	Leu	Asn	Glu	Ile 320
Asp	Arg	Val	Ser	Gly 325	Gln	Thr	Gln	Phe	Asn 330	Gly	Val	ГÀа	Val	Leu 335	Ala
Gln	Asp	Asn	Thr 340	Leu	Thr	Ile	Gln	Val 345	Gly	Ala	Asn	Asp	Gly 350	Glu	Thr
Ile	Asp	Ile 355	Asp	Leu	ГÀа	Gln	Ile 360	Asn	Ser	Gln	Thr	Leu 365	Gly	Leu	Asp
Thr	Leu 370	Asn	Val	Gln	Gln	Lys 375	Tyr	Lys	Val	Ser	Asp 380	Thr	Ala	Ala	Thr
Val 385	Thr	Gly	Tyr	Ala	Asp 390	Thr	Thr	Ile	Ala	Leu 395	Asp	Asn	Ser	Thr	Phe 400
ГÀв	Ala	Ser	Ala	Thr 405	Gly	Leu	Gly	Gly	Thr 410	Asp	Gln	Lys	Ile	Asp 415	Gly
Asp	Leu	Lys	Phe 420	Asp	Asp	Thr	Thr	Gly 425	Lys	Tyr	Tyr	Ala	Lys 430	Val	Thr
Val	Thr	Gly 435	Gly	Thr	Gly	Lys	Asp 440	Gly	Tyr	Tyr	Glu	Val 445	Ser	Val	Asp
rya	Thr 450	Asn	Gly	Glu	Val	Thr 455	Leu	Ala	Gly	Gly	Ala 460	Thr	Ser	Pro	Leu
Thr 465	Gly	Gly	Leu	Pro	Ala 470	Thr	Ala	Thr	Glu	Asp 475	Val	Lys	Asn	Val	Gln 480
Val	Ala	Asn	Ala	Asp 485	Leu	Thr	Glu	Ala	Lys 490	Ala	Ala	Leu	Thr	Ala 495	Ala
Gly	Val	Thr	Gly 500	Thr	Ala	Ser	Val	Val 505	Lys	Met	Ser	Tyr	Thr 510	Asp	Asn
Asn	Gly	Lys 515	Thr	Ile	Asp	Gly	Gly 520	Leu	Ala	Val	Lys	Val 525	Gly	Asp	Asp
Tyr	Tyr 530	Ser	Ala	Thr	Gln	Asn 535	Lys	Asp	Gly	Ser	Ile 540	Ser	Ile	Asn	Thr
Thr 545	Lys	Tyr	Thr	Ala	Asp 550	Asp	Gly	Thr	Ser	Lys 555	Thr	Ala	Leu	Asn	Lys 560
Leu	Gly	Gly	Ala	Asp 565	Gly	Lys	Thr	Glu	Val 570	Val	Ser	Ile	Gly	Gly 575	ГЛа
Thr	Tyr	Ala	Ala 580	Ser	Lys	Ala	Glu	Gly 585	His	Asn	Phe	Lys	Ala 590	Gln	Pro
Asp	Leu	Ala 595	Glu	Ala	Ala	Ala	Thr	Thr	Thr	Glu	Asn	Pro 605	Leu	Gln	Lys
Ile	Asp	Ala	Ala	Leu	Ala	Gln	Val	Asp	Thr	Leu	Arg	Ser	Asp	Leu	Gly

120

180 240

300

360

420

480

540

600

660

720

780

840

900

1320

1380

1440

1500

1560

559 560

-continued 610 615 Ala Val Gln Asn Arg Phe Asn Ser Ala Ile Thr Asn Leu Gly Asn Thr 625 630 635 Val Asn Asn Leu Thr Ser Ala Arg Ser Arg Ile Glu Asp Ser Asp Tyr 650 Ala Thr Glu Val Ser Asn Met Ser Arg Ala Gln Ile Leu Gln Gln Ala Gly Thr Ser Val Leu Ala Gln Ala Asn Gln Val Pro Gln Asn Val Leu Ser Leu Leu Arg <210> SEQ ID NO 57 <211> LENGTH: 1620 <212> TYPE: RNA <213 > ORGANISM: Unknown <220> FEATURE: <223 > OTHER INFORMATION: Human metapneumovirus <400> SEQUENCE: 57 augagcugga agguggugau uaucuucagc cugcugauua caccucaaca cggccugaag qaqaqcuacc uqqaaqaqaq cuqcuccacc aucaccqaqq qcuaccuqaq cquqcuqcqq accggcuggu acaccaacgu guucacccug qaggugggcg acguggagaa ccugaccugc agegacggee cuagecugau caagacegag cuggaccuga ccaagagege ucugagagag cugaagaceg ugucegeega ceageuggee agagaggaac agauegagaa cecueggeag agcagauucg ugcugggege caucgeucug ggaguegeeg cugeegeuge agugacageu ggaguggcca uugcuaagac caucagacug gaaagcgagg ugacagccau caacaaugcc cugaagaaga ccaacgaggc cgugagcacc cugggcaaug gagugagagu gcuggccaca gccgugcggg agcugaagga cuucgugagc aagaaccuga ccagagccau caacaagaac aagugcgaca ucgaugaccu gaagauggcc gugagcuucu cccaguucaa cagacgguuc cugaacgugg ugagacaguu cuccgacaac gcuggaauca caccugccau uagccuggac cugaugaccg acgccgagcu ggcuagagcc gugcccaaca ugcccaccag cgcuggccag aucaagcuga ugcuggagaa cagagccaug gugcggagaa agggcuucgg cauccugauu gggguguaug gaagcuccgu gaucuacaug gugcagcugc ccaucuucgg cgugaucgac acacccugcu ggaucgugaa ggccgcuccu agcugcuccg agaagaaagg aaacuaugcc ugucugcuga gagaggacca gggcugguac ugccagaacg ccggaagcac aguguacuau cccaacgaga aggacugcga gaccagaggc gaccacgugu ucugcgacac cgcugccgga 1020 1080 aucaacquqq ccqaqcaqaq caaqqaquqc aacaucaaca ucaqcacaac caacuacccc ugcaagguga gcaccggacg gcaccccauc agcauggugg cucugagccc ucugggcgcu 1140 1200 cugguggccu gcuauaaggg cguguccugu agcaucggca gcaaucgggu gggcaucauc aagcagcuga acaagggaug cuccuacauc accaaccagg acgccgacac cgugaccauc 1260

gacaacaccg uguaccagcu gagcaaggug gagggcgagc agcacgugau caagggcaga cccgugagcu ccagcuucga ccccaucaag uucccugagg accaguucaa cguggcccug

gaccaggugu uugagaacau cgagaacagc caggcccugg uggaccagag caacagaauc

cuguccageg cugagaaggg caacacegge uucaucauug ugaucauucu gaucgeegug

cugggcagcu ccaugauccu ggugagcauc uucaucauua ucaagaagac caagaaaccc

-continued

accggagccc cuccugagcu gagcggcgug accaacaaug gcuucauucc ccacaacuga 1620 <210> SEQ ID NO 58 <211> LENGTH: 1620 <212> TYPE: RNA <213> ORGANISM: Unknown <220> FEATURE: <223> OTHER INFORMATION: Human metapneumovirus <400> SEQUENCE: 58 augucuugga aagugaugau caucauuucg uuacucauaa caccccagca cgggcuaaag 60 gagaguuauu uggaagaauc auguaguacu auaacugagg gauaccucag uguuuuaaga 120 acaggcuggu acacuaaugu cuucacauua gaaguuggug auguugaaaa ucuuacaugu acugauggac cuagcuuaau caaaacagaa cuugaucuaa caaaaagugc uuuaagggaa 240 300 cucaaaacag ucucugcuga ucaguuggcg agagaggagc aaauugaaaa ucccagacaa ucaagauuug ucuuaggugc gauagcucuc ggaguugcua cagcagcagc agucacagca 360 ggcauugcaa uagccaaaac cauaaggcuu gagagugagg ugaaugcaau uaaaggugcu 420 480 cucaaacaaa cuaaugaagc aguauccaca uuagggaaug gugugcgggu ccuagccacu qcaquqaqaq aqcuaaaaqa auuuquqaqc aaaaaccuqa cuaquqcaau caacaqqaac 540 aaaugugaca uugcugaucu gaagauggcu gucagcuuca gucaauucaa cagaagauuu 600 cuaaauguug ugcggcaguu uucagacaau gcagggauaa caccagcaau aucauuggac 660 cugaugacug augcugaguu ggccagagcu guaucauaca ugccaacauc ugcagggcag 720 780 auaaaacuga uguuggagaa ccgcgcaaug guaaggagaa aaggauuugg aauccugaua ggggucuacg gaagcucugu gauuuacaug guucaauugc cgaucuuugg ugucauagau 840 acaccuuguu ggaucaucaa ggcagcuccc ucuugcucag aaaaaaacgg gaauuaugcu 900 ugccuccuaa gagaggauca agggugguau uguaaaaaug caggaucuac uguuuacuac 960 ccaaaugaaa aagacugcga aacaagaggu gaucauguuu uuugugacac agcagcaggg 1020 aucaauguug cugagcaauc aagagaaugc aacaucaaca uaucuacuac caacuaccca 1080 ugcaaaguca gcacaggaag acacccuaua agcaugguug cacuaucacc ucucggugcu 1140 1200 uugguggcuu gcuauaaagg gguaagcugc ucgauuggca gcaauugggu uggaaucauc 1260 aaacaauuac ccaaaggcug cucauacaua accaaccagg augcagacac uguaacaauu gacaauaccg uguaucaacu aagcaaaguu gaaggugaac agcauguaau aaaagggaga 1320 ccaguuucaa gcaguuuuga uccaaucaag uuuccugagg aucaguucaa uguugcgcuu 1380 gaucaagucu ucgaaagcau ugagaacagu caggcacuag uggaccaguc aaacaaaauu 1440 cuaaacagug cagaaaaagg aaacacuggu uucauuaucg uaguaauuuu gguugcuguu 1500 cuuqqucuaa ccauqauuuc aguqaqcauc aucaucauaa ucaaqaaaac aaqqaaqccc 1560 acaqqaqcac cuccaqaqcu qaauqququc accaacqqcq quuucauacc acauaquuaq 1620 <210> SEQ ID NO 59 <211> LENGTH: 1620 <212> TYPE: RNA <213 > ORGANISM: Unknown <220> FEATURE: <223> OTHER INFORMATION: Human metapneumovirus <400> SEQUENCE: 59 augucuugga aagugaugau uaucauuucg uuacucauaa caccucagca uggacuaaaa 60 120 qaaaquuauu uaqaaqaauc auquaquacu auaacuqaaq qauaucucaq uquuuuaaqa

acagguuggu	acaccaaugu	cuuuacauua	gaaguuggug	auguugaaaa	ucuuacaugu	180
acugauggac	cuagcuuaau	caaaacagaa	cuugaccuaa	ccaaaagugc	uuuaagagaa	240
cucaaaacag	uuucugcuga	ucaguuagcg	agagaagaac	aaauugaaaa	ucccagacaa	300
ucaagguuug	uccuaggugc	aauagcucuu	ggaguugcca	cagcagcagc	agucacagca	360
ggcauugcaa	uagccaaaac	uauaaggcuu	gagagugaag	ugaaugcaau	caaaggugcu	420
cucaaaacaa	ccaaugaggc	aguaucaaca	cuaggaaaug	gagugcgggu	ccuagccacu	480
gcaguaagag	agcugaaaga	auuugugagc	aaaaaccuga	cuagugcgau	caacaagaac	540
aagugugaca	uugcugauuu	gaagauggcu	gucagcuuca	gucaguucaa	cagaagauuc	600
cuaaauguug	ugcggcaguu	uucagacaau	gcagggauaa	caccagcaau	aucauuggac	660
cugaugaaug	augcugagcu	ggccagagcu	guaucauaca	ugccaacauc	ugcaggacag	720
auaaaacuaa	uguuagagaa	ccgugcaaug	gugaggagaa	aaggauuugg	aaucuugaua	780
ggggucuacg	gaagcucugu	gauuuacaug	guccagcugc	cgaucuuugg	ugucauaaau	840
acaccuuguu	ggauaaucaa	ggcagcuccc	ucuuguucag	aaaaagaugg	aaauuaugcu	900
ugccuccuaa	gagaggauca	agggugguau	uguaaaaaug	caggauccac	uguuuacuac	960
ccaaaugaaa	aagacugcga	aacaagaggu	gaucauguuu	uuugugacac	agcagcaggg	1020
aucaauguug	cugagcaauc	aagagaaugc	aacaucaaca	uaucuaccac	caacuaccca	1080
ugcaaaguca	gcacaggaag	acacccuauc	agcaugguug	cacuaucacc	ucucggugcu	1140
uugguagcuu	gcuacaaagg	gguuagcugc	ucgacuggca	guaaucaggu	uggaauaauc	1200
aaacaacuac	cuaaaggcug	cucauacaua	acuaaccagg	acgcagacac	uguaacaauu	1260
gacaacacug	uguaucaacu	aagcaaaguu	gagggugaac	agcauguaau	aaaagggaga	1320
ccaguuucaa	gcaguuuuga	uccaaucagg	uuuccugagg	aucaguucaa	uguugcgcuu	1380
gaucaagucu	uugaaagcau	ugaaaacagu	caagcacuag	uggaccaguc	aaacaaaauu	1440
cugaacagug	cagaaaaagg	aaacacuggu	uucauuauug	uaauaauuuu	gauugcuguu	1500
cuuggguuaa	ccaugauuuc	agugagcauc	aucaucauaa	ucaaaaaaac	aaggaagccc	1560
acaggggcac	cuccggagcu	gaaugguguu	accaacggcg	guuucauacc	gcauaguuag	1620
<210> SEQ I <211> LENG <212> TYPE <213> ORGAI	ΓH: 1725	respiratory	y syncytial	virus		
<400> SEQUI	ENCE: 60					
auggaguugc	caauccucaa	aacaaaugca	auuaccacaa	uccuugcugc	agucacacuc	60
uguuucgcuu	ccagucaaaa	caucacugaa	gaauuuuauc	aaucaacaug	cagugcaguu	120
agcaaaggcu	aucuuagugc	ucuaagaacu	gguugguaua	cuaguguuau	aacuauagaa	180
uuaaguaaua	ucaaggaaaa	uaaguguaau	ggaacagaug	cuaagguaaa	auugauaaaa	240
caagaauuag	auaaauauaa	aaaugcugua	acagaauugc	aguugcucau	gcaaagcaca	300
ccagcagcca	acaaucgagc	cagaagagaa	cuaccaaggu	uuaugaauua	uacacucaau	360
aauaccaaaa	auaccaaugu	aacauuaagc	aagaaaagga	aaagaagauu	ucuuggcuuu	420
uuguuaggug	uuggaucugc	aaucgccagu	ggcauugcug	uaucuaaggu	ccugcaccua	480
gaagggaag	ugaacaaaau	caaaagugcu	cuacuaucca	caaacaaggc	uguagucagc	540

uuaucaaaug gaguuagugu cuuaaccagc aaaguguuag accucaaaaa cuauauagau

aaacaguugu uaccuauug	ı gaacaagcaa	agcugcagca	uaucaaacau	ugaaacugug	660	
auagaguucc aacaaaaga	a caacagacua	cuagagauua	ccagggaauu	uaguguuaau	720	
gcagguguaa cuacaccug	ı aagcacuuau	auguuaacua	auagugaauu	auuaucauua	780	
aucaaugaua ugccuauaa	c aaaugaucag	aaaaaguuaa	uguccaacaa	uguucaaaua	840	
guuagacagc aaaguuacu	c uaucaugucc	auaauaaagg	aggaagucuu	agcauaugua	900	
guacaauuac cacuauaug	g uguaauagau	acacccuguu	ggaaacugca	cacauccccu	960	
cuauguacaa ccaacacaa	a ggaagggucc	aacaucugcu	uaacaagaac	cgacagagga	1020	
ugguauugug acaaugcag	g aucaguaucu	uucuucccac	aagcugaaac	auguaaaguu	1080	
caaucgaauc ggguauuuu	g ugacacaaug	aacaguuuaa	cauuaccaag	ugaaguaaau	1140	
cucugcaaca uugacauau	ı caaccccaaa	uaugauugca	aaauuaugac	uucaaaaaca	1200	
gauguaagca gcuccguua	ı cacaucucua	ggagccauug	ugucaugcua	uggcaaaacu	1260	
aaauguacag cauccaaua	a aaaucguggg	aucauaaaga	cauuuucuaa	cgggugugau	1320	
uauguaucaa auaaggggg	ı ggauacugug	ucuguaggua	auacauuaua	uuauguaaau	1380	
aagcaagaag gcaaaaguc	ı cuauguaaaa	ggugaaccaa	uaauaaauuu	cuaugaccca	1440	
uuaguguucc ccucugaug	a auuugaugca	ucaauaucuc	aagucaauga	gaagauuaac	1500	
cagagecuag cauuuauuc	g uaaauccgau	gaauuauuac	auaauguaaa	ugcugguaaa	1560	
uccaccacaa auaucauga	ı aacuacuaua	auuauaguga	uuauaguaau	auuguuauca	1620	
uuaauugcag uuggacugc	ı ccuauacugc	aaggccagaa	gcacaccagu	cacacuaagu	1680	
aaggaucaac ugaguggua	ı aaauaauauu	gcauuuagua	acuga		1725	
<210> SEQ ID NO 61 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Huma:	n parainflue	nza virus 3				
<211> LENGTH: 1617 <212> TYPE: RNA	n parainflue	nza virus 3				
<211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Huma:			uggcaucaca	cugccaaaua	60	
<211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Huma: <400> SEQUENCE: 61	ı aauuauuaca	accaugauca		_	60 120	
<211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Huma: <400> SEQUENCE: 61 augccaauuu caauacugu	ı aauuauuaca a uguaggugua	accaugauca uuggucaaca	gucccaaagg	gaugaagaua		
<211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Huma: <400> SEQUENCE: 61 augccaauuu caauacugu gacaucacaa aacuacagc	ı aauuauuaca a uguaggugua g auaucuaauc	accaugauca uuggucaaca cugagucuca	gucccaaagg	gaugaagaua agaagauucu	120	
<211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Huma: <400> SEQUENCE: 61 augccaauuu caauacugu: gacaucacaa aacuacagc. ucacaaaacu ucgaaacaa	ı aauuauuaca a uguaggugua g auaucuaauc a gaucaagcaa	accaugauca uuggucaaca cugagucuca uacaagaggu	gucccaaagg uaccaaaaau uauuggauag	gaugaagaua agaagauucu acugaucauu	120 180	
<211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Huma: <400> SEQUENCE: 61 augccaauuu caauacugu: gacaucacaa aacuacagc ucacaaaacu ucgaaacaacaaaacu ucgaaacaacaaaacu ucgaaacaacaa	a uguaggugua a uguaggugua g auaucuaauc a gaucaagcaa g auuacagaag	accaugauca uuggucaaca cugagucuca uacaagaggu gaugugauag	gucccaaagg uaccaaaaau uauuggauag ugacuaauca	gaugaagaua agaagauucu acugaucauu agaauccaau	120 180 240	
<211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Huma: <400> SEQUENCE: 61 augccaauuu caauacugu: gacaucacaa aacuacagc ucacaaaacu ucgaaacaa aacucuugug gugaccaac. ccuuuauaug auggacuaa	a aauuauuaca a uguaggugua g auaucuaauc a gaucaagcaa g auuacagaag	accaugauca uuggucaaca cugagucuca uacaagaggu gaugugauag uuuggagggg	gucccaaagg uaccaaaaau uauuggauag ugacuaauca uaauuggaac	gaugaagaua agaagauucu acugaucauu agaauccaau uauugcucua	120 180 240 300	
<211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Huma: <400> SEQUENCE: 61 augccaauuu caauacugu gacaucacaa aacuacagc ucacaaaacu ucgaaacaac aacucuugug gugaccaac ccuuuauaug auggacuaac gaaaacacug aucccagaac gaaaacacug aucccagaac	a aauuauuaca a uguaggugua g auaucuaauc a gaucaagcaa g auuacagaag c agaacgauuc	accaugauca uuggucaaca cugagucuca uacaagaggu gaugugauag uuuggagggg	gucccaaagg uaccaaaaau uauuggauag ugacuaauca uaauuggaac ugguugaagc	gaugaagaua agaagauucu acugaucauu agaauccaau uauugcucua caagcaggca	120 180 240 300 360	
<211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Huma: <400> SEQUENCE: 61 augccaauuu caauacugu: gacaucacaa aacuacagc ucacaaaacu ucgaaacaa aacucuugug gugaccaac ccuuuauaug auggacuaac gaaaacacug aucccagaac ggaguagcaa ccucagcac	a aauuauuaca a uguaggugua g auaucuaauc a gaucaagcaa g auuacagaag c agaacgauuc a aauuacagca	accaugauca uuggucaaca cugagucuca uacaagaggu gaugugauag uuuggagggg gcaguugcuc aucagggaca	gucccaaagg uaccaaaaau uauuggauag ugacuaauca uaauuggaac ugguugaagc caaauaaagc	gaugaagaua agaagauucu acugaucauu agaauccaau uauugcucua caagcaggca agugcaguca	120 180 240 300 360 420	
<pre><211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Huma: <400> SEQUENCE: 61 augccaauuu caauacugu gacaucacaa aacuacago ucacaaaacu ucgaaacaac aacucuugug gugaccaac ccuuuauaug auggacuaac gaaaacacug aucccagaac ggaguagcaa ccucagcac agaucagaca uugaaaaaac</pre>	a auuauuaca a uguaggugua g auaucuaauc a gaucaagcaa g auuacagaag c agaacgauuc a aauuacagca a caaggaagca	accaugauca uuggucaaca cugagucuca uacaagaggu gaugugauag uuuggagggg gcaguugcuc aucagggaca gcaauuaaau	gucccaaagg uaccaaaaau uauuggauag ugacuaauca uaauuggaac ugguugaagc caaauaaagc caguccagga	gaugaagaua agaagauucu acugaucaau agaauccaau uauugcucua caagcaggca agugcaguca uuaugucaac	120 180 240 300 360 420 480	
<pre><211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Huma: <400> SEQUENCE: 61 augccaauuu caauacugu: gacaucacaa aacuacagc: ucacaaaacu ucgaaacaa: aacucuugug gugaccaac: ccuuuauaug auggacuaac: gaaaacacug aucccagaa: ggaguagcaa ccucagcac: agaucagaca uugaaaaaac: guucagagcu cuguaggaa: guucagagcu cuguaggaa.</pre>	a aauuauuaca a uguaggugua g auaucuaauc a gaucaagcaa g auuacagaag c agaacgauuc a aauuacagca u caaggaagca a uuugauagua	accaugauca uuggucaaca cugagucuca uacaagaggu gaugugauag uuuggagggg gcaguugcuc aucagggaca gcaauuaaau gguugugaag	gucccaaagg uaccaaaaau uauuggauag ugacuaauca uaauuggaac ugguugaagc caaauaaagc caaguccagga cagcaggacu	gaugaagaua agaagauucu acugaucauu agaauccaau uauugcucua caagcaggca agugcaguca uuaugucaac ucaguuaggg	120 180 240 300 360 420 480 540	
<pre><211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Huma: <400> SEQUENCE: 61 augccaauuu caauacugu: gacaucacaa aacuacagc: ucacaaaacu ucgaaacaa: aacucuugug gugaccaac: ccuuuauaug auggacuaa: gaaaacacug aucccagaa: ggaguagcaa ccucagcac: agaucagaca uugaaaaaac: guucagagcu cuguaggaa: aaagaaaucg ugccaucga: aaagaaaucg ugccaucga: aaagaaaucg ugccaucga:</pre>	a aauuauuaca a uguaggugua g auaucuaauc a gaucaagcaa g auuacagaag c agaacgauuc a aauuacagca a caaggaagca a uuugauagua u ugcgagacua a cucagaauua	accaugauca uuggucaaca cugagucuca uacaagaggu gaugugauag uuuggagggg gcaguugcuc aucagggaca gcaauuaaau gguugugaag	gucccaaaagg uaccaaaaau uauuggauag ugacuaauca uaauuggaac ugguugaagc caaauaaagc caguccagga cagcaggacu uuggugauaa	gaugaagaua agaagauucu acugaucaau uauugcucua caagcaggca agugcaguca uuaugucaac ucaguuaggg	120 180 240 300 360 420 480 540	
<pre><211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Huma: <400> SEQUENCE: 61 augccaauuu caauacugu: gacaucacaa aacuacagc: ucacaaaacu ucgaaacaa: aacucuugug gugaccaac: ccuuuauaug auggacuaac: gaaaacacug aucccagaa: ggaguagcaa ccucagcac: agaucagaca uugaaaaac: guucagagcu cuguaggaa: aaagaaaucg ugccaucga: auugcauuaa cacagcauu;</pre>	a auuauuaca a uguaggugua g auaucuaauc a gaucaagcaa g auuacagaag c agaacgauuc a aauuacagca 1 caaggaagca a uuugauagua 1 ugcgagacua a cucagaauua	accaugauca uuggucaaca cugagucuca uacaagaggu gaugugauag uuuggagggg gcaguugcuc aucagggaca gcaauuaaau gguugugaag acaaauauau auagcaucau	gucccaaagg uaccaaaaau uauuggauag ugacuaauca uaauuggaac ugguugaagc caaauaaagc caguccagga cagcaggacu uuggugauaa uauaccguac	gaugaagaua agaagauucu acugaucauu agaauccaau uauugcucua caagcaggca agugcaguca uuaugucaac ucaguuaggg cauaggaucg	120 180 240 300 360 420 480 540 600	
<pre><211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Huma: <400> SEQUENCE: 61 augccaauuu caauacugu: gacaucacaa aacuacagc: ucacaaaacu ucgaaacaa: aacucuugug gugaccaac: ccuuuauaug auggacuaac: gaaaacacug aucccagaa: ggaguagcaa ccucagcac: agaucagaca uugaaaaaac: guucagagcu cuguaggaa: aaagaaaucg ugccaucga: auugcauuaa cacagcauu: uuacaagaaa aaggaauaa</pre>	a aauuauuaca a uguaggugua g auaucuaauc a gaucaagcaa g auuacagaag c agaacgauuc a aauuacagca u caaggaagca a uuugauagua u ugcgagacua a cucagaauua a auuacaaggu	accaugauca uuggucaaca cugagucuca uacaagaggu gaugugauag uuuggagggg gcaguugcuc aucagggaca gcaauuaaau gguugugaag acaaauauau auagcaucau uaugauauuu	gucccaaagg uaccaaaaau uauuggauag ugacuaauca uaauuggaac ugguugaagc caaauaaagc caguccagga cagcaggacu uuggugauaa uauaccguac augaucuauu	gaugaagaua agaagaucauu agaauccaau uauugcucua caagcaggca agugcaguca uuaugucaac ucaguuaggg cauaggaucg aaauaucaca	120 180 240 300 360 420 480 540 600 660	
<pre><211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Huma: <400> SEQUENCE: 61 augccaauuu caauacugu gacaucacaa aacuacagc ucacaaaacu ucgaaacaac aacucuugug gugaccaac ccuuuauaug auggacuaac gaaaacacug aucccagaac ggaguagcaa ccucagcac agaucagaca uugaaaaaac guucagagcu cuguaggaa aaagaaaucg ugccaucga auugcauuaa cacagcauu uuacaagaaa aaggaauaa gaaauauuca caacaucaac gaaauauca caacaucaac gaaauaacacacacacacacacacacacacacacacacac</pre>	a aauuauuaca a uguaggugua g auaucuaauc a gaucaagcaa g auuacagaag c agaacgauuc a aauuacagca a uuugauagua u ugcgagacua a cucagaauua a auuacaaggu c aguugacaaa u agauguugau	accaugauca uuggucaaca cugagucuca uacaagaggu gaugugauag uuuggagggg gcaguugcuc aucagggaca gcaauuaaau gguugugaag acaaauauau auagcaucau uaugauauuu uugaaugauu	gucccaaagg uaccaaaaau uauuggauag ugacuaauca uaauuggaac ugguugaagc caaauaaagc caguccagga cagcaggacu uuggugauaa uauaccguac augaucuauu acucaauaac	gaugaagaua agaagauucu acugaucaau uauugcucua caagcaggca agugcaguca uuaugucaac ucaguuaggg cauaggaucg aaauaucaca auuuacagaa ccuccaaguc	120 180 240 300 360 420 480 540 600 720 780	

gcauuucuag guggagcaga ugucaaagaa ugcauagaag cauucagcag uuauauaugc 1020

ccuucugauc	caggauuugu	acuaaaccau	gaaauggaga	gcugucuauc	aggaaacaua	1080
ucccaauguc	caagaaccac	agucacauca	gacauaguuc	cuagguaugc	auuugucaau	1140
ggaggagugg	uugcgaauug	uauaacaacu	acauguacau	gcaaugguau	cgguaauaga	1200
aucaaccaac	caccugauca	aggagucaaa	auuauaacac	auaaagaaug	uaauacaaua	1260
gguaucaacg	gaaugcuauu	caacacaaac	aaagaaggaa	cucuugcauu	cuacacacca	1320
gacgacauaa	cauuaaacaa	uucuguugca	cuugauccga	uugacauauc	aaucgagcuc	1380
aacaaggcca	aaucagaucu	ugaggaauca	aaagaaugga	uaagaagguc	aaaucaaaag	1440
cuagauucua	uuggaaguug	gcaucaaucu	agcacuacaa	ucauaguuau	uuugauaaug	1500
augauuauau	uguuuauaau	uaauauaaca	auaauuacaa	uugcaauuaa	guauuacaga	1560
auucaaaaga	gaaaucgagu	ggaucaaaau	gauaagccgu	auguauuaac	aaacaag	1617
<210 > SEQ : <211 > LENG' <212 > TYPE <213 > ORGAI <400 > SEQUI	IH: 1716 : RNA NISM: Human	parainflue	nza virus 3			
auggaauacu	ggaagcacac	caaccacgga	aaggaugcug	guaaugagcu	ggagacaucc	60
acagccacuc	auggcaacaa	gcucaccaac	aagauaacau	auauauugug	gacgauaacc	120
cugguguuau	uaucaauagu	cuucaucaua	gugcuaacua	auuccaucaa	aagugaaaag	180
gcccgcgaau	cauugcuaca	agacauaaau	aaugaguuua	uggaaguuac	agaaaagauc	240
caaguggcau	cggauaauac	uaaugaucua	auacagucag	gagugaauac	aaggcuucuu	300
acaauucaga	gucaugucca	gaauuauaua	ccaauaucau	ugacacaaca	aauaucggau	360
cuuaggaaau	ucauuaguga	aauuacaauu	agaaaugaua	aucaagaagu	gccaccacaa	420
agaauaacac	augauguggg	uauaaaaccu	uuaaauccag	augauuucug	gagaugcacg	480
ucuggucuuc	caucuuugau	gaaaacucca	aaaauaagau	uaaugccggg	accaggauua	540
uuagcuaugc	caacgacugu	ugauggcugu	gucagaaccc	cguccuuagu	gauaaaugau	600
cugauuuaug	cuuacaccuc	aaaucuaauu	acucgagguu	gccaggauau	agggaaauca	660
uaucaaguau	uacagauagg	gauaauaacu	guaaacucag	acuugguacc	ugacuuaaau	720
ccuaggaucu	cucauaccuu	caacauaaau	gacaauagaa	agucauguuc	ucuagcacuc	780
cuaaauacag	auguauauca	acuguguuca	accccaaaag	uugaugaaag	aucagauuau	840
gcaucaucag	gcauagaaga	uauuguacuu	gauauuguca	auuaugaugg	cucaaucucg	900
acaacaagau	uuaagaauaa	uaauauaagu	uuugaucaac	cauaugegge	auuauaccca	960
ucuguuggac	cagggauaua	cuacaaaggc	aaaauaauau	uucucgggua	uggaggucuu	1020
gaacauccaa	uaaaugagaa	ugcaaucugc	aacacaacug	gguguccugg	gaaaacacag	1080
agagacugua	aucaagcauc	ucauagucca	ugguuuucag	auagaaggau	ggucaacucu	1140
auaauuguug	uugacaaggg	cuugaacuca	guuccaaaau	ugaagguaug	gacgauaucu	1200
augagacaaa	auuacugggg	gucagaagga	agauuacuuc	uacuagguaa	caagaucuac	1260
auauacacaa	gaucuacaag	uuggcacagc	aaguuacaau	uaggaauaau	ugacauuacu	1320
gacuacagug	auauaaggau	aaaauggaca	uggcauaaug	ugcuaucaag	accaggaaac	1380
aaugaauguc	cauggggaca	uucauguccg	gauggaugua	uaacgggagu	auauaccgau	1440

gcauauccac ucaaucccac aggaagcauu guaucaucug ucauauugga cucacaaaaa 1500

-continued

					1404		
ucgagaguca	acccagucau	aacuuacuca	acagcaaccg	aaaggguaaa	cgagcuggcu	1560	
auccgaaaca	aaacacucuc	agcuggguac	acaacaacaa	gcugcauuac	acacuauaac	1620	
aaaggguauu	guuuucauau	aguagaaaua	aaucauaaaa	gcuuaaacac	auuucaaccc	1680	
auguuguuca	aaacagagau	uccaaaaagc	ugcagu			1716	
<220> FEATU	TH: 1716 : RNA NISM: Artif: JRE:	icial Sequer DN: Syntheti		eotide			
<400> SEQUE	ENCE: 63						
auggaauacu	ggaagcacac	caaccacggc	aaggacgccg	gcaacgagcu	ggaaaccagc	60	
acagccacac	acggcaacaa	gcugaccaac	aagaucaccu	acauccugug	gaccaucacc	120	
cuggugcugc	ugagcaucgu	guucaucauc	gugcugacca	auagcaucaa	gagcgagaag	180	
gccagagaga	gccugcugca	ggacaucaac	aacgaguuca	uggaagugac	cgagaagauc	240	
cagguggcca	gcgacaacac	caacgaccug	auccagagcg	gcgugaacac	ccggcugcug	300	
accauccaga	gccacgugca	gaacuacauc	cccaucagcc	ugacccagca	gaucagcgac	360	
cugcggaagu	ucaucagcga	gaucaccauc	cggaacgaca	accaggaagu	gccccccag	420	
agaaucaccc	acgacguggg	caucaagccc	cugaaccccg	acgauuucug	gcgguguaca	480	
ageggeeuge	ccagccugau	gaagaccccc	aagauccggc	ugaugccugg	cccuggacug	540	
cuggccaugc	cuaccacagu	ggauggcugu	gugeggaeee	ccagccucgu	gaucaacgau	600	
cugaucuacg	ccuacaccag	caaccugauc	acccggggcu	gccaggauau	cggcaagagc	660	
uaccaggugc	ugcagaucgg	caucaucacc	gugaacuccg	accuggugcc	cgaccugaac	720	
ccucggauca	gccacaccuu	caacaucaac	gacaacagaa	agagcugcag	ccuggcucug	780	
cugaacaccg	acguguacca	gcugugcagc	acccccaagg	uggacgagag	aagcgacuac	840	
gccagcagcg	gcaucgagga	uaucgugcug	gacaucguga	acuacgacgg	cagcaucagc	900	
accacccggu	ucaagaacaa	caacaucagc	uucgaccagc	ccuacgccgc	ccuguacccu	960	
ucugugggcc	cuggcaucua	cuacaagggc	aagaucaucu	uccugggcua	cggcggccug	1020	
gaacacccca	ucaacgagaa	cgccaucugc	aacaccaccg	gcugcccugg	caagacccag	1080	
agagacugca	aucaggccag	ccacagcccc	ugguucagcg	accgcagaau	ggucaacucu	1140	
aucaucgugg	uggacaaggg	ccugaacagc	gugcccaagc	ugaaagugug	gacaaucagc	1200	
augegeeaga	acuacugggg	cagcgagggc	agacuucugc	ugcugggaaa	caagaucuac	1260	
aucuacaccc	gguccaccag	cuggcacagc	aaacugcagc	ugggaaucau	cgacaucacc	1320	
gacuacagcg	acauccggau	caaguggacc	uggcacaacg	ugcugagcag	acccggcaac	1380	
aaugagugcc	cuuggggcca	cagcugcccc	gauggaugua	ucaccggcgu	guacaccgac	1440	
gccuaccccc	ugaauccuac	cggcuccauc	guguccagcg	ugauccugga	cagccagaaa	1500	
agcagaguga	accccgugau	cacauacage	accgccaccg	agagagugaa	cgaacuggcc	1560	
aucagaaaca	agacccugag	cgccggcuac	accaccacaa	gcugcaucac	acacuacaac	1620	
aagggcuacu	gcuuccacau	cguggaaauc	aaccacaagu	cccugaacac	cuuccagccc	1680	
augcuguuca	agaccgagau	ccccaagagc	ugcucc			1716	

<210> SEQ ID NO 64 <211> LENGTH: 1617

571 572

<212> TYPE: RNA <213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Polynucleotide

<400> SEOUENCE: 64

augeccauca geauceugeu gaucaucace acaaugauca uggecageea eugecagaue 60 gacaucacca agcugcagca cgugggcgug cucgugaaca gccccaaggg caugaagauc 120 agccagaacu ucgagacacg cuaccugauc cugagccuga uccccaagau cgaggacagc 180 aacagcugcg gcgaccagca gaucaagcag uacaagcggc ugcuggacag acugaucauc 240 ccccuguacg acggccugcg gcugcagaaa gacgugaucg ugaccaacca ggaaagcaac gagaacaccg acccccggac cgagagauuc uucggcggcg ugaucggcac aaucgcccug 360 420 qqaquqqcca caaqcqccca qauuacaqcc qcuquqqccc uqquqqaaqc caaqcaqqcc agaagegaca ucgagaageu gaaagaggee aucegggaca ecaacaagge egugeagage 480 gugcagucca gcgugggcaa ucugaucgug gccaucaagu ccgugcagga cuacgugaac 540 600 aaaqaaaucq uqcccucuau cqcccqqcuq qqcuquqaaq cuqccqqacu qcaqcuqqqc auugeeeuga cacageaeua cagegageug accaaeaueu ueggegaeaa caueggeage 660 cuqcaqqaaa aqqqcauuaa qcuqcaqqqa aucqccaqcc uquaccqcac caacaucacc 720 gagaucuuca ccaccagcac cguggauaag uacgacaucu acgaccugcu guucaccgag 780 840 aqcaucaaaq uqcqcquqau cqacquqqac cuqaacqacu acaqcaucac ccuqcaaquq eggeugeece ugeugaceag acugeugaac acceagaueu acaaggugga eageaueuee 900 960 uacaacauce agaacegega gugguacauc ceucugeeca gecacauuau gaccaaggge gccuuucugg gcggagccga cgugaaagag ugcaucgagg ccuucagcag cuacaucugc 1020 cccagcgacc cuggcuucgu gcugaaccac gagauggaaa gcugccugag cggcaacauc 1080 agccagugec ccagaaccac egugaccuce gacaueguge ecagauaege euuegugaau 1140 ggcggcgugg uggccaacug caucaccacc accuguaccu gcaacggcau cggcaaccgg 1200 aucaaccage cuccegauca gggegugaag auuaucaeee acaaagagug uaacaecaue 1260 ggcaucaacg gcaugcuguu caauaccaac aaagagggca cccuggccuu cuacaccccc 1320 gacgauauca cccugaacaa cuccguggcu cuggacccca ucgacaucuc caucgagcug 1380 aacaaggcca agagcgaccu ggaagagucc aaagagugga uccggcggag caaccagaag 1440 cuggacucua ucggcagcug gcaccagagc agcaccacca ucaucgugau ccugauuaug 1500 augauuaucc uguucaucau caacauuacc aucaucacua ucgccauuaa guacuaccgg 1560 auccagaaac ggaaccgggu ggaccagaau gacaagcccu acgugcugac aaacaag 1617

<400> SEQUENCE: 65

augauacacu	caguguuucu	acugauguuc	uuguuaacac	cuacagaaag	uuacguugau	60
guagggccag	auucuguuaa	gucugcuugu	auugagguug	auauacaaca	gaccuucuuu	120
gauaaaacuu	ggccuaggcc	aauugauguu	ucuaaggcug	acgguauuau	auacccucaa	180
ggccguacau	auucuaacau	aacuaucacu	uaucaagguc	uuuuucccua	ucagggagac	240

<210> SEQ ID NO 65

<211> LENGTH: 4062

<212> TYPE: RNA

<213 > ORGANISM: Unknown

<220> FEATURE:

<223> OTHER INFORMATION: Middle East respiratory syndrome coronavirus

cauggugaua	uguauguuua	cucugcagga	caugcuacag	gcacaacucc	acaaaaguug	300
uuuguagcua	acuauucuca	ggacgucaaa	caguuugcua	auggguuugu	cguccguaua	360
ggagcagcug	ccaauuccac	uggcacuguu	auuauuagcc	caucuaccag	cgcuacuaua	420
cgaaaaauuu	acccugcuuu	uaugcugggu	ucuucaguug	guaauuucuc	agaugguaaa	480
augggccgcu	ucuucaauca	uacucuaguu	cuuuugcccg	auggaugugg	cacuuuacuu	540
agagcuuuuu	auuguauucu	agagccucgc	ucuggaaauc	auuguccugc	uggcaauucc	600
uauacuucuu	uugccacuua	ucacacuccu	gcaacagauu	guucugaugg	caauuacaau	660
cguaaugcca	gucugaacuc	uuuuaaggag	uauuuuaauu	uacguaacug	caccuuuaug	720
uacacuuaua	acauuaccga	agaugagauu	uuagaguggu	uuggcauuac	acaaacugcu	780
caagguguuc	accucuucuc	aucucgguau	guugauuugu	acggcggcaa	uauguuucaa	840
uuugccaccu	ugccuguuua	ugauacuauu	aaguauuauu	cuaucauucc	ucacaguauu	900
cguucuaucc	aaagugauag	aaaagcuugg	gcugccuucu	acguauauaa	acuucaaccg	960
uuaacuuucc	uguuggauuu	uucuguugau	gguuauauac	gcagagcuau	agacuguggu	1020
uuuaaugauu	ugucacaacu	ccacugcuca	uaugaauccu	ucgauguuga	aucuggaguu	1080
uauucaguuu	cgucuuucga	agcaaaaccu	ucuggcucag	uuguggaaca	ggcugaaggu	1140
guugaaugug	auuuuucacc	ucuucugucu	ggcacaccuc	cucagguuua	uaauuucaag	1200
cguuugguuu	uuaccaauug	caauuauaau	cuuaccaaau	ugcuuucacu	uuuuucugug	1260
aaugauuuua	cuuguaguca	aauaucucca	gcagcaauug	cuagcaacug	uuauucuuca	1320
cugauuuugg	auuauuuuc	auacccacuu	aguaugaaau	ccgaucucag	uguuaguucu	1380
gcugguccaa	uaucccaguu	uaauuauaaa	caguccuuuu	cuaaucccac	auguuugauc	1440
uuagcgacug	uuccucauaa	ccuuacuacu	auuacuaagc	cucuuaagua	cagcuauauu	1500
aacaagugcu	cucgucuucu	uucugaugau	cguacugaag	uaccucaguu	agugaacgcu	1560
aaucaauacu	cacccugugu	auccauuguc	ccauccacug	ugugggaaga	cggugauuau	1620
uauaggaaac	aacuaucucc	acuugaaggu	gguggcuggc	uuguugcuag	uggcucaacu	1680
guugccauga	cugagcaauu	acagaugggc	uuugguauua	caguucaaua	ugguacagac	1740
accaauagug	uuugccccaa	gcuugaauuu	gcuaaugaca	caaaaauugc	cucucaauua	1800
ggcaauugcg	uggaauauuc	ccucuauggu	guuucgggcc	gugguguuuu	ucagaauugc	1860
acagcuguag	guguucgaca	gcagcgcuuu	guuuaugaug	cguaccagaa	uuuaguuggc	1920
uauuauucug	augauggcaa	cuacuacugu	cugcgugcuu	guguuagugu	uccuguuucu	1980
gucaucuaug	auaaagaaac	uaaaacccac	gcuacucuau	uugguagugu	ugcaugugaa	2040
cacauuucuu	cuaccauguc	ucaauacucc	cguucuacgc	gaucaaugcu	uaaacggcga	2100
gauucuacau	auggcccccu	ucagacaccu	guugguugug	uccuaggacu	uguuaauucc	2160
ucuuuguucg	uagaggacug	caaguugccu	cucggucaau	cucucugugc	ucuuccugac	2220
acaccuagua	cucucacacc	ucgcagugug	cgcucugugc	caggugaaau	gcgcuuggca	2280
uccauugcuu	uuaaucaucc	cauucagguu	gaucaacuua	auaguaguua	uuuuaaauua	2340
aguauaccca	cuaauuuuuc	cuuuggugug	acucaggagu	acauucagac	aaccauucag	2400
aaaguuacug	uugauuguaa	acaguacguu	ugcaaugguu	uccagaagug	ugagcaauua	2460
cugcgcgagu	auggccaguu	uuguuccaaa	auaaaccagg	cucuccaugg	ugccaauuua	2520
cgccaggaug	auucuguacg	uaauuuguuu	gcgagcguga	aaagcucuca	aucaucuccu	2580
aucauaccag	guuuuggagg	ugacuuuaau	uugacacuuc	uagaaccugu	uucuauaucu	2640

acuggcaguc	guagugcacg	uagugcuauu	gaggauuugc	uauuugacaa	agucacuaua	2700		
gcugauccug	guuauaugca	agguuacgau	gauuguaugc	agcaaggucc	agcaucagcu	2760		
cgugaucuua	uuugugcuca	auauguggcu	gguuauaaag	uauuaccucc	ucuuauggau	2820		
guuaauaugg	aagccgcgua	uacuucaucu	uugcuuggca	gcauagcagg	uguuggcugg	2880		
acugcuggcu	uauccuccuu	ugcugcuauu	ccauuugcac	agaguauyuu	uuauagguua	2940		
aacgguguug	gcauuacuca	acagguucuu	ucagagaacc	aaaagcuuau	ugccaauaag	3000		
uuuaaucagg	cucugggagc	uaugcaaaca	ggcuucacua	caacuaauga	agcuuuucgg	3060		
aagguucagg	augcugugaa	caacaaugca	caggcucuau	ccaaauuagc	uagcgagcua	3120		
ucuaauacuu	uuggugcuau	uuccgccucu	auuggagaca	ucauacaacg	ucuugauguu	3180		
cucgaacagg	acgcccaaau	agacagacuu	auuaauggcc	guuugacaac	acuaaaugcu	3240		
uuuguugcac	agcagcuugu	ucguuccgaa	ucagcugcuc	uuuccgcuca	auuggcuaaa	3300		
gauaaaguca	augagugugu	caaggcacaa	uccaagcguu	cuggauuuug	cggucaaggc	3360		
acacauauag	uguccuuugu	uguaaaugcc	ccuaauggcc	uuuacuuuau	gcauguuggu	3420		
uauuacccua	gcaaccacau	ugagguuguu	ucugcuuaug	gucuuugcga	ugcagcuaac	3480		
ccuacuaauu	guauagcccc	uguuaauggc	uacuuuauua	aaacuaauaa	cacuaggauu	3540		
guugaugagu	ggucauauac	uggcucgucc	uucuaugcac	cugagcccau	caccucucuu	3600		
aauacuaagu	auguugcacc	acaggugaca	uaccaaaaca	uuucuacuaa	ccucccuccu	3660		
ccucuucucg	gcaauuccac	cgggauugac	uuccaagaug	aguuggauga	guuuuucaaa	3720		
aauguuagca	ccaguauacc	uaauuuuggu	ucucuaacac	agauuaauac	uacauuacuc	3780		
gaucuuaccu	acgagauguu	gucucuucaa	caaguuguua	aagcccuuaa	ugagucuuac	3840		
auagaccuua	aagagcuugg	caauuauacu	uauuacaaca	aauggccgug	guacauuugg	3900		
cuugguuuca	uugcugggcu	uguugccuua	gcucuaugcg	ucuucuucau	acugugcugc	3960		
acugguugug	gcacaaacug	uaugggaaaa	cuuaagugua	aucguuguug	ugauagauac	4020		
gaggaauacg	accucgagcc	gcauaagguu	cauguucacu	aa		4062		
<211> LENG <212> TYPE <213> ORGAI <220> FEATU	<210> SEQ ID NO 66 <211> LENGTH: 4062 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide							
<400> SEQUI	ENCE: 66							
augauacacu	caguguuucu	acugauguuc	uuguuaacac	cuacagaaag	uuacguugau	60		
guagggccag	auucuguuaa	gucugcuugu	auugagguug	auauacaaca	gacuuucuuu	120		
gauaaaacuu	ggccuaggcc	aauugauguu	ucuaaggcug	acgguauuau	auacccucaa	180		
ggccguacau	auucuaacau	aacuaucacu	uaucaagguc	uuuuucccua	ucagggagac	240		
cauggugaua	uguauguuua	cucugcagga	caugcuacag	gcacaacucc	acaaaaguug	300		
uuuguagcua	acuauucuca	ggacgucaaa	caguuugcua	auggguuugu	cguccguaua	360		
ggagcagcug	ccaauuccac	uggcacuguu	auuauuagcc	caucuaccag	cgcuacuaua	420		
cgaaaaauuu	acccugcuuu	uaugcugggu	ucuucaguug	guaauuucuc	agaugguaaa	480		
augggccgcu	ucuucaauca	uacucuaguu	cuuuugcccg	auggaugugg	cacuuuacuu	540		

agagcuuuuu auuguauucu ggagccucgc ucuggaaauc auuguccugc uggcaauucc

uauacuucuu	uugccacuua	ucacacuccu	gcaacagauu	guucugaugg	caauuacaau	660
cguaaugcca	gucugaacuc	uuuuaaggag	uauuuuaauu	uacguaacug	caccuuuaug	720
uacacuuaua	acauuaccga	agaugagauu	uuagaguggu	uuggcauuac	acaaacugcu	780
caagguguuc	accucuucuc	aucucgguau	guugauuugu	acggcggcaa	uauguuucaa	840
uuugccaccu	ugccuguuua	ugauacuauu	aaguauuauu	cuaucauucc	ucacaguauu	900
cguucuaucc	aaagugauag	aaaagcuugg	gcugccuucu	acguauauaa	acuucaaccg	960
uuaacuuucc	uguuggauuu	uucuguugau	gguuauauac	gcagagcuau	agacuguggu	1020
uuuaaugauu	ugucacaacu	ccacugcuca	uaugaauccu	ucgauguuga	aucuggaguu	1080
uauucaguuu	cgucuuucga	agcaaaaccu	ucuggcucag	uuguggaaca	ggcugaaggu	1140
guugaaugug	auuuuucacc	ucuucugucu	ggcacaccuc	cucagguuua	uaauuucaag	1200
cguuugguuu	uuaccaauug	caauuauaau	cuuaccaaau	ugcuuucacu	uuuuucugug	1260
aaugauuuua	cuuguaguca	aauaucucca	gcagcaauug	cuagcaacug	uuauucuuca	1320
cugauuuugg	auuacuuuuc	auacccacuu	aguaugaaau	ccgaucucag	uguuaguucu	1380
gcugguccaa	uaucccaguu	uaauuauaaa	caguccuuuu	cuaaucccac	auguuugauu	1440
uuagcgacug	uuccucauaa	ccuuacuacu	auuacuaagc	cucuuaagua	cagcuauauu	1500
aacaagugcu	cucgucuucu	uucugaugau	cguacugaag	uaccucaguu	agugaacgcu	1560
aaucaauacu	cacccugugu	auccauuguc	ccauccacug	ugugggaaga	cggugauuau	1620
uauaggaaac	aacuaucucc	acuugaaggu	gguggcuggc	uuguugcuag	uggcucaacu	1680
guugccauga	cugagcaauu	acagaugggc	uuugguauua	caguucaaua	ugguacagac	1740
accaauagug	uuugccccaa	gcuugaauuu	gcuaaugaca	caaaaauugc	cucucaauua	1800
ggcaauugcg	uggaauauuc	ccucuauggu	guuucgggcc	gugguguuuu	ucagaauugc	1860
acagcuguag	guguucgaca	gcagcgcuuu	guuuaugaug	cguaccagaa	uuuaguuggc	1920
uauuauucug	augauggcaa	cuacuacugu	uugcgugcuu	guguuagugu	uccuguuucu	1980
gucaucuaug	auaaagaaac	uaaaacccac	gcuacucuau	uugguagugu	ugcaugugaa	2040
cacauuucuu	cuaccauguc	ucaauacucc	cguucuacgc	gaucaaugcu	uaaacggcga	2100
gauucuacau	auggeeeecu	ucagacaccu	guugguugug	uccuaggacu	uguuaauucc	2160
ucuuuguucg	uagaggacug	caaguugccu	cuuggucaau	cucucugugc	ucuuccugac	2220
acaccuagua	cucucacacc	ucgcagugug	cgcucuguuc	caggugaaau	gcgcuuggca	2280
uccauugcuu	uuaaucaucc	uauucagguu	gaucaacuua	auaguaguua	uuuuaaauua	2340
aguauaccca	cuaauuuuuc	cuuuggugug	acucaggagu	acauucagac	aaccauucag	2400
aaaguuacug	uugauuguaa	acaguacguu	ugcaaugguu	uccagaagug	ugagcaauua	2460
cugcgcgagu	auggccaguu	uuguuccaaa	auaaaccagg	cucuccaugg	ugccaauuua	2520
cgccaggaug	auucuguacg	uaauuuguuu	gcgagcguga	aaagcucuca	aucaucuccu	2580
aucauaccag	guuuuggagg	ugacuuuaau	uugacacuuc	uggaaccugu	uucuauaucu	2640
acuggcaguc	guagugcacg	uagugcuauu	gaggauuugc	uauuugacaa	agucacuaua	2700
gcugauccug	guuauaugca	agguuacgau	gauugcaugc	agcaaggucc	agcaucagcu	2760
cgugaucuua	uuugugcuca	auauguggcu	gguuacaaag	uauuaccucc	ucuuauggau	2820
guuaauaugg	aagccgcgua	uacuucaucu	uugcuuggca	gcauagcagg	uguuggcugg	2880
	uauccuccuu					2940
	gcauuacuca					3000
ეეე	J				.,	

-continued

uuuaaucagg	cucugggagc	uaugcaaaca	ggcuucacua	caacuaauga	agcuuuucag	3060
aagguucagg	augcugugaa	caacaaugca	caggcucuau	ccaaauuagc	uagcgagcua	3120
ucuaauacuu	uuggugcuau	uuccgccucu	auuggagaca	ucauacaacg	ucuugauguu	3180
cucgaacagg	acgcccaaau	agacagacuu	auuaauggcc	guuugacaac	acuaaaugcu	3240
uuuguugcac	agcagcuugu	ucguuccgaa	ucagcugcuc	uuuccgcuca	auuggcuaaa	3300
gauaaaguca	augagugugu	caaggcacaa	uccaagcguu	cuggauuuug	cggucaaggc	3360
acacauauag	uguccuuugu	uguaaaugcc	ccuaauggcc	uuuacuucau	gcauguuggu	3420
uauuacccua	gcaaccacau	ugagguuguu	ucugcuuaug	gucuuugcga	ugcagcuaac	3480
ccuacuaauu	guauagcccc	uguuaauggc	uacuuuauua	aaacuaauaa	cacuaggauu	3540
guugaugagu	ggucauauac	uggcucgucc	uucuaugcac	cugageceau	uaccucccuu	3600
aauacuaagu	auguugcacc	acaggugaca	uaccaaaaca	uuucuacuaa	ccuccuccu	3660
ccucuucucg	gcaauuccac	cgggauugac	uuccaagaug	aguuggauga	guuuuucaaa	3720
aauguuagca	ccaguauacc	uaauuuuggu	ucccuaacac	agauuaauac	uacauuacuc	3780
gaucuuaccu	acgagauguu	gucucuucaa	caaguuguua	aagcccuuaa	ugagucuuac	3840
auagaccuua	aagagcuugg	caauuauacu	uauuacaaca	aauggccgug	guacauuugg	3900
cuugguuuca	uugcugggcu	uguugccuua	gcucuaugcg	ucuucuucau	acugugcugc	3960
acugguugug	gcacaaacug	uaugggaaaa	cuuaagugua	aucguuguug	ugauagauac	4020
gaggaauacg	accucgagcc	gcauaagguu	cauguucacu	aa		4062
<220> FEATU <223> OTHER	TH: 1845 RNA RISM: Artifi RE: RINFORMATIO	icial Sequer DN: Synthet:	nce ic Polynucle	eotide		
<400> SEQUE						
			cuguugaccc			60
			ccugacacuc			120
			cuggccucca			180
			aagcugucca			240
			auucagaagg			300
			cagcugcuga			360
			aacuugcgcc			420
			uccccaauca			480
			aucagcaccg			540
gccauugaag	aucuucuguu	cgacaagguc	accaucgccg	auccgggcua	caugcaggga	600
uacgacgacu	guaugcagca	gggaccagcc	uccgcgaggg	accucaucug	cgcgcaauac	660
guggccgggu	acaaagugcu	gccuccucug	auggauguga	acauggaggc	cgcuuauacu	720
ucgucccugc	ucggcucuau	cgccggcgug	ggguggaccg	ccggccuguc	cuccuucgcc	780
gcuauccccu	uugcacaauc	cauuuucuac	cggcucaacg	gcgugggcau	uacucaacaa	840
guccugucgg	agaaccagaa	guugaucgca	aacaaguuca	aucaggcccu	gggggccaug	900

cagacuggau ucacuacgac uaacgaagcg uuccagaagg uccaggacgc ugugaacaac

-continued

aacgcccagg cgcucucaaa gcuggccucc gaacucagca acaccuucgg agccaucagc	1020
gcaucgaucg gugacauaau ucagcggcug gacgugcugg agcaggacgc ccagaucgac	1080
egecucauca aeggaeggeu gaccaecuug aaugeeuueg uggeacaaca geuggueegg	1140
agcgaaucag cggcacuuuc cgcccaacuc gccaaggaca aagucaacga augcgugaag	1200
gcccagucca agagguccgg uuucugcggu caaggaaccc auauuguguc cuucgucgug	1260
aacgcgccca acggucugua cuuuaugcac gucggcuacu acccgagcaa ucauaucgaa	1320
gugguguccg ccuacggccu gugcgaugcc gcuaacccca cuaacuguau ugccccugug	1380
aacggauauu uuauuaagac caacaacac cgcauugugg acgaaugguc auacaccggu	1440
ucguccuucu acgegeeega geecaucacu ucacugaaca ecaaauaegu ggeucegeaa	1500
gugaccuacc agaacaucuc caccaauuug ccgccgccgc ugcucggaaa cagcaccgga	1560
auugauuucc aagaugaacu ggacgaauuc uucaagaacg uguccacuuc cauucccaac	1620
uucggaagcc ugacacagau caacaccacc cuucucgacc ugaccuacga gaugcugagc	1680
cuucaacaag uggucaagge ccugaacgag agcuacaucg accugaagga gcugggcaac	1740
uauaccuacu acaacaagug gccggacaag auugaggaga uucugucgaa aaucuaccac	1800
auugaaaacg agaucgccag aaucaagaag cuuaucggcg aagcc	1845
<211> LENGTH: 4071 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 68	
auggaaaccc cugcccagcu gcuguuccug cugcugcugu ggcugccuga uaccaccggc	60
auggaaaccc cugcccagcu gcuguuccug cugcugcugu ggcugccuga uaccaccggc agcuaugugg acgugggccc cgauagcgug aaguccgccu guaucgaagu ggacauccag	60 120
agcuaugugg acgugggccc cgauagcgug aaguccgccu guaucgaagu ggacauccag	120
agcuaugugg acgugggccc cgauagcgug aaguccgccu guaucgaagu ggacauccag cagaccuuuu ucgacaagac cuggcccaga cccaucgacg uguccaaggc cgacggcauc	120 180
agcuaugugg acgugggcc cgauagcgug aaguccgccu guaucgaagu ggacauccag cagaccuuuu ucgacaagac cuggcccaga cccaucgacg uguccaaggc cgacggcauc aucuauccac aaggccggac cuacagcaac aucaccauua ccuaccaggg ccuguuccca	120 180 240
agcuaugugg acgugggcc cgauagcgug aaguccgccu guaucgaagu ggacauccag cagaccuuuu ucgacaagac cuggcccaga cccaucgacg uguccaaggc cgacggcauc aucuauccac aaggccggac cuacagcaac aucaccauua ccuaccaggg ccuguuccca uaucaaggcg accacggcga uauguacgug uacucugccg gccacgccac	120 180 240 300
agcuaugugg acgugggcc cgauagcgug aaguccgccu guaucgaagu ggacauccag cagaccuuuu ucgacaagac cuggcccaga cccaucgacg uguccaaggg cgacggcauc aucuauccac aaggccggac cuacagcaac aucaccauua ccuaccaggg ccuguuccca uaucaaggcg accacggcga uauguacgug uacucugccg gccacgccac	120 180 240 300 360
agcuaugugg acgugggcc cgauagcgug aaguccgccu guaucgaagu ggacauccag cagaccuuuu ucgacaagac cuggcccaga cccaucgacg uguccaaggg cgacggcauc aucuauccac aaggccggac cuacagcaac aucaccauua ccuaccaggg ccuguuccca uaucaaggcg accacggcga uauguacgug uacucugccg gccacgccac	120 180 240 300 360 420
agcuaugugg acgugggcc cgauagcgug aaguccgccu guaucgaagu ggacauccag cagaccuuuu ucgacaagac cuggcccaga cccaucgacg uguccaaggc cgacggcauc aucuauccac aaggccggac cuacagcaac aucaccauua ccuaccaggg ccuguuccca uaucaaggcg accacggcga uauguacgug uacucugccg gccacgccac	120 180 240 300 360 420
agcuaugugg acgugggcc cgauagcgug aaguccgccu guaucgaagu ggacauccag cagaccuuuu ucgacaagac cuggcccaga cccaucgacg uguccaaggg cgacggcauc aucuauccac aaggccggac cuacagcaac aucaccauuu ccuaccaggg ccuguuccca uaucaaggcg accacggcga uauguacgug uacucugccg gccacgccac	120 180 240 300 360 420 480
agcuaugugg acgugggcc cgauagcgug aaguccgccu guaucgaagu ggacauccag cagaccuuuu ucgacaagac cuggcccaga cccaucgacg uguccaaggc cgacggcauc aucuauccac aaggccggac cuacagcaac aucaccauua ccuaccaggg ccuguuccca uaucaaggcg accacggcga uauguacgug uacucugccg gccacgccac	120 180 240 300 360 420 480 540 600
agcuaugugg acgugggcc cgauagcgug aaguccgccu guaucgaagu ggacauccag cagaccuuuu ucgacaagac cuggcccaga cccaucgacg uguccaaggg cgacggcauc aucuauccac aaggccggac cuacagcaac aucaccauuu ccuaccaggg ccuguuccca uaucaaggcg accacggga uauguacgug uacucugccg gccacgccac	120 180 240 300 360 420 480 540 600 660
agcuaugugg acgugggcc cgauagcgug aaguccgccu guaucgaagu ggacauccag cagaccuuuu ucgacaagac cuggcccaga cccaucgacg uguccaaggc cgacggcauc aucuauccac aaggccggac cuacagcaac aucaccauua ccuaccaggg ccuguuccca uaucaaggcg accacggcga uauguacgug uacucugccg gccacgccac	120 180 240 300 360 420 480 540 600 660
agcuaugugg acgugggcc cgauagcgug aaguccgccu guaucgaagu ggacauccag cagaccuuuu ucgacaagac cuggcccaga cccaucgacg uguccaaggc cgacggcauc aucuauccac aaggccggac cuacagcaac aucaccauuu ccuaccaggg ccuguuccca uaucaaggcg accacggcga uauguacgug uacucugccg gccacgccac	120 180 240 300 360 420 480 540 600 660 720
agcuaugugg acgugggccc cgauagcgug aaguccgccu guaucgaagu ggacauccag cagaccuuuu ucgacaagac cuggccaga cccaucgacg uguccaaggc cgacggcauc aucuauccac aaggccggac cuacagcaac aucaccauuu ccuaccaggg ccuguuccca uaucaaggcg accacggcga uauguacgug uacucugccg gccacgccac	120 180 240 300 360 420 480 540 600 660 720 780
agcuaugugg acgugggccc cgauagcgug aaguccgccu guaucgaagu ggacauccag cagaccuuuu ucgacaagac cuggccaga cccaucgacg uguccaaggc cgacggcauc aucuauccac aaggccggac cuacagcaac aucaccauuu ccuaccaggg ccuguuccca uaucaaggcg accacggcga uauguacgug uacucugccg gccacgccac	120 180 240 300 360 420 480 540 600 660 720 780 840
agcuaugugg acgugggcc cgauagcgug aaguccgccu guaucgaagu ggacauccag cagaccuuuu ucgacaagac cuggcccaga cccaucgacg uguccaaggc cgacggcauc aucuauccac aaggccggac cuacagcaac aucaccauuu ccuaccaggg ccuguuccca ucuauauccac aaggccggac cuacuacgacg uacucugccg gccacgccac	120 180 240 300 360 420 480 540 600 660 720 780 840 900
agcuaugugg acgugggccc cgauagcgug aaguccgccu guaucgaagu ggacauccag cagaccuuuu ucgacaagac cuggccaga cccaucgacg uguccaaggc cgacggcauc aucuauccac aaggccggac cuacagcaac aucaccauua ccuaccaggg ccuguuccca uaucaaggcg accacggcga uauguacgug uacucugccg gccacgccac	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960

1200

caggeugagg geguggaaug egaeuucage ceucugeuga geggeacece uccceaggug

uacaacuuca	ageggeuggu	guucaccaac	ugcaauuaca	accugaccaa	gcugcugagc	1260
cuguucuccg	ugaacgacuu	caccuguage	cagaucagcc	cugccgccau	ugccagcaac	1320
ugcuacagca	gccugauccu	ggacuacuuc	agcuaccccc	ugagcaugaa	guccgaucug	1380
agcguguccu	ccgccggacc	caucagccag	uucaacuaca	agcagagcuu	cagcaacccu	1440
accugccuga	uucuggccac	cgugccccac	aaucugacca	ccaucaccaa	gccccugaag	1500
uacagcuaca	ucaacaagug	cagcagacug	cuguccgacg	accggaccga	agugccccag	1560
cucgugaacg	ccaaccagua	cagccccugc	guguccaucg	ugcccagcac	cgugugggag	1620
gacggcgacu	acuacagaaa	gcagcugagc	ccccuggaag	geggeggaug	gcugguggcu	1680
ucuggaagca	caguggccau	gaccgagcag	cugcagaugg	gcuuuggcau	caccgugcag	1740
uacggcaccg	acaccaacag	cgugugcccc	aagcuggaau	ucgccaauga	caccaagauc	1800
gccagccagc	ugggaaacug	cguggaauac	ucccuguaug	gcguguccgg	acggggcgug	1860
uuccagaauu	gcacagcagu	gggagugcgg	cagcagagau	ucguguacga	ugccuaccag	1920
aaccucgugg	gcuacuacag	cgacgacggc	aauuacuacu	gccugcgggc	cugugugucc	1980
gugcccgugu	ccgugaucua	cgacaaagag	acaaagaccc	acgccacacu	guucggcucc	2040
guggccugcg	agcacaucag	cuccaccaug	agccaguacu	cccgcuccac	ccgguccaug	2100
cugaagcgga	gagauagcac	cuacggcccc	cugcagacac	cugugggaug	ugugcugggc	2160
cucgugaaca	gcucccuguu	uguggaagau	ugcaagcugc	cccugggcca	gagccugugu	2220
gcccugccag	auaccccuag	cacccugacc	ccuagaagcg	ugcgcucugu	gcccggcgaa	2280
augcggcugg	ccucuaucgc	cuucaaucac	cccauccagg	uggaccagcu	gaacuccagc	2340
uacuucaagc	ugagcauccc	caccaacuuc	agcuucggcg	ugacccagga	guacauccag	2400
accacaaucc	agaaagugac	cguggacugc	aagcaguacg	ugugcaacgg	cuuucagaag	2460
ugcgaacagc	ugcugcgcga	guacggccag	uucugcagca	agaucaacca	ggcccugcac	2520
ggcgccaacc	ugagacagga	ugacagcgug	cggaaccugu	ucgccagcgu	gaaaagcagc	2580
caguccagcc	ccaucauccc	uggcuucggc	ggcgacuuua	accugacccu	gcuggaaccu	2640
guguccauca	gcaccggcuc	cagaagcgcc	agauccgcca	ucgaggaccu	gcuguucgac	2700
aaagugacca	uugccgaccc	cggcuacaug	cagggcuacg	acgauugcau	gcagcagggc	2760
ccagccagcg	ccagggaucu	gaucugugcc	caguaugugg	ccggcuacaa	ggugcugccc	2820
ccccugaugg	acgugaacau	ggaagccgcc	uacaccucca	gccugcuggg	cucuauugcu	2880
ggcgugggau	ggacagccgg	ccugucuagc	uuugccgcca	ucccuuucgc	ccagagcauc	2940
uucuaccggc	ugaacggcgu	gggcaucaca	caacaggugc	ugagcgagaa	ccagaagcug	3000
aucgccaaca	aguuuaacca	ggcacugggc	gccaugcaga	ccggcuucac	caccaccaac	3060
gaggccuuca	gaaaggugca	ggacgccgug	aacaacaacg	cccaggcucu	gagcaagcug	3120
gccuccgagc	ugagcaauac	cuucggcgcc	aucagegeeu	ccaucggcga	caucauccag	3180
cggcuggacg	ugcuggaaca	ggacgcccag	aucgaccggc	ugaucaacgg	cagacugacc	3240
acccugaacg	ccuucguggc	acagcagcuc	gugcggagcg	aaucugccgc	ucugucugcu	3300
cagcuggcca	aggacaaagu	gaacgagugc	gugaaggccc	aguccaagcg	gagcggcuuu	3360
uguggccagg	gcacccacau	cguguccuuc	gucgugaaug	ccccaacgg	ccuguacuuu	3420
augcacgugg	gcuauuaccc	cagcaaccac	aucgaggugg	uguccgccua	uggccugugc	3480
gacgccgcca	auccuaccaa	cuguaucgcc	cccgugaacg	gcuacuucau	caagaccaac	3540

-continued

-continued	
aacaccegga ueguggaega gugguecuae acaggeagea geuucuaege eecegageee	3600
aucaccucce ugaacaccaa auacguggee eeccaaguga cauaccagaa caucuccaec	3660
aaccugcccc cuccacugcu gggaaauucc accggcaucg acuuccagga cgagcuggac	3720
gaguucuuca agaacguguc caccuccauc cccaacuucg gcagccugac ccagaucaac	3780
accacucuge uggaccugae cuacgagaug cugucccuge aacaggucgu gaaagcccug	3840
aacgagagcu acaucgaccu gaaagagcug gggaacuaca ccuacuacaa caaguggccu	3900
ugguacauuu ggcugggcuu uaucgccggc cugguggccc uggcccugug cguguucuuc	3960
auccugugcu gcaccggcug cggcaccaau ugcaugggca agcugaaaug caaccggugc	4020
ugcgacagau acgaggaaua cgaccuggaa ccucacaaag ugcaugugca c	4071
<210> SEQ ID NO 69 <211> LENGTH: 1864 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 69	
ucaagcuuuu ggacccucgu acagaagcua auacgacuca cuauagggaa auaagagaga aaaqaaqaqu aaqaagaaau auaaqagcca ccaugggucu caaggugaac gucucugccg	120
uauucauggo aguacuguua acucuccaaa cacccgccgg ucaaauucau uggggcaauc	180
ucucuaagau agggguagua ggaauaggaa gugcaagcua caaaguuaug acucguucca	240
gccaucaauc auuagucaua aaauuaaugc ccaauauaac ucuccucaau aacugcacga	300
ggguagagau ugcagaauac aggagacuac uaagaacagu uuuggaacca auuagggaug	360
cacuuaaugc aaugacccag aacauaaggc cgguucagag cguagcuuca aguaggagac	420
acaagagauu ugcgggagua guccuggcag gugcggcccu agguguugcc acagcugcuc	480
agauaacage eggeauugea euucaeeggu eeaugeugaa eucucaggee auegaeaaue	540
ugagagcgag ccuggaaacu acuaaucagg caauugaggc aaucagacaa gcagggcagg	600
agaugauauu ggcuguucag gguguccaag acuacaucaa uaaugagcug auaccgucua	660
ugaaccagcu aucuugugau cuaaucgguc agaagcucgg gcucaaauug cuuagauacu	720
auacagaaau ccugucauua uuuggcccca gccuacggga ccccauaucu gcggagauau	780
cuauccaggc uuugaguuau gcacuuggag gagauaucaa uaagguguua gaaaagcucg	840
gauacagugg aggcgauuua cuaggcaucu uagagagcag aggaauaaag gcucggauaa	900
cucacguega cacagaguee uacuucauag uecucaguau agecuaueeg aegeugueeg	960
agauuaaggg ggugauuguc caccggcuag agggggucuc guacaacaua ggcucucaag	1020
agugguauac cacugugccc aaguauguug caacccaagg guaccuuauc ucgaauuuug	1080
augagucauc auguacuuuc augccagagg ggacugugug cagccaaaau gccuuguacc	1140
cgaugaguce ucugcuccaa gaaugccuce ggggguccae caaguccugu gcucguacae	1200
ucguauccgg gucuuuuggg aaccgguuca uuuuaucaca agggaaccua auagccaauu	1260
gugcaucaau ucuuuguaag uguuacacaa cagguacgau uauuaaucaa gacccugaca	1320
agauccuaac auacauugcu gccgaucgcu gcccgguagu cgaggugaac ggcgugacca	1380
uccaagucgg gagcaggagg uauccagacg cuguguacuu gcacagaauu gaccucgguc	1440
cucccauauc auuggagagg uuggacguag ggacaaaucu ggggaaugca auugccaaau	1500

uggaggaugc caaggaauug uuggaaucau cggaccagau auugagaagu augaaagguu 1560

587 588

-continued

uaucgagcac	uagcauaguc	uacauccuga	uugcagugug	ucuuggaggg	uugauaggga	1620	
uccccacuuu	aauauguugc	ugcagggggc	guuguaacaa	aaagggagaa	caaguuggua	1680	
ugucaagacc	aggccuaaag	ccugaccuua	caggaacauc	aaaauccuau	guaagaucgc	1740	
uuugaugaua	auaggcugga	gccucggugg	ccaagcuucu	ugccccuugg	gccuccccc	1800	
agccccuccu	ccccuuccug	cacccguacc	cccguggucu	uugaauaaag	ucugaguggg	1860	
cggc						1864	
<211> LENG' <212> TYPE <213> ORGAL <220> FEAT	<210> SEQ ID NO 70 <211> LENGTH: 1653 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide						
<400> SEQUI	ENCE: 70						
augggucuca	aggugaacgu	cucugeegua	uucauggcag	uacuguuaac	ucuccaaaca	60	
cccgccgguc	aaauucauug	gggcaaucuc	ucuaagauag	ggguaguagg	aauaggaagu	120	
gcaagcuaca	aaguuaugac	ucguuccagc	caucaaucau	uagucauaaa	auuaaugccc	180	
aauauaacuc	uccucaauaa	cugcacgagg	guagagauug	cagaauacag	gagacuacua	240	
agaacaguuu	uggaaccaau	uagggaugca	cuuaaugcaa	ugacccagaa	cauaaggccg	300	
guucagagcg	uagcuucaag	uaggagacac	aagagauuug	cgggaguagu	ccuggcaggu	360	
gcggcccuag	guguugccac	agcugcucag	auaacagccg	gcauugcacu	ucaccggucc	420	
augcugaacu	cucaggccau	cgacaaucug	agagcgagcc	uggaaacuac	uaaucaggca	480	
auugaggcaa	ucagacaagc	agggcaggag	augauauugg	cuguucaggg	uguccaagac	540	
uacaucaaua	augagcugau	accgucuaug	aaccagcuau	cuugugaucu	aaucggucag	600	
aagcucgggc	ucaaauugcu	uagauacuau	acagaaaucc	ugucauuauu	uggccccagc	660	
cuacgggacc	ccauaucugc	ggagauaucu	auccaggcuu	ugaguuaugc	acuuggagga	720	
gauaucaaua	agguguuaga	aaagcucgga	uacaguggag	gcgauuuacu	aggcaucuua	780	
gagagcagag	gaauaaaggc	ucggauaacu	cacgucgaca	cagaguccua	cuucauaguc	840	
cucaguauag	ccuauccgac	gcuguccgag	auuaaggggg	ugauugucca	ccggcuagag	900	
ggggucucgu	acaacauagg	cucucaagag	ugguauacca	cugugcccaa	guauguugca	960	
acccaagggu	accuuaucuc	gaauuuugau	gagucaucau	guacuuucau	gccagagggg	1020	
acugugugca	gccaaaaugc	cuuguacccg	augaguccuc	ugcuccaaga	augccuccgg	1080	
ggguccacca	aguccugugc	ucguacacuc	guauccgggu	cuuuugggaa	ccgguucauu	1140	
uuaucacaag	ggaaccuaau	agccaauugu	gcaucaauuc	uuuguaagug	uuacacaaca	1200	
gguacgauua	uuaaucaaga	cccugacaag	auccuaacau	acauugcugc	cgaucgcugc	1260	
ccgguagucg	aggugaacgg	cgugaccauc	caagucggga	gcaggaggua	uccagacgcu	1320	
guguacuugc	acagaauuga	ccucgguccu	cccauaucau	uggagagguu	ggacguaggg	1380	
acaaaucugg	ggaaugcaau	ugccaaauug	gaggaugcca	aggaauuguu	ggaaucaucg	1440	
	ugagaaguau					1500	
	uuggaggguu					1560	
						1620	
uyuaacaada	agggagaaca	ayuuyguaug	ucaayaccag	geedaaagee	ugaccuuaca	1020	

ggaacaucaa aauccuaugu aagaucgcuu uga

-continued

<210> SEQ ID NO 71

<211> LENGTH: 1925

<212> TYPE: RNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Polynucleotide

<400> SEQUENCE: 71

60 ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaccau gggucucaag gugaacgucu cugccguauu cauggcagua cuguuaacuc uccaaacacc cgccggucaa 120 auucauuggg gcaaucucuc uaagauaggg guaguaggaa uaggaagugc aagcuacaaa 180 guuaugacuc guuccagcca ucaaucauua gucauaaaau uaaugcccaa uauaacucuc cucaauaacu gcacgaggu agagauugca gaauacagga gacuacuaag aacaguuuug gaaccaauua gggaugcacu uaaugcaaug acccagaaca uaaggccggu ucagagcgua 360 420 gcuucaagua ggagacacaa gagauuugcg ggaguagucc uggcaggugc ggcccuaggu guugccacag cugcucagau aacagccggc auugcacuuc accgguccau gcugaacucu 480 caggecaucg acaaucugag agegagecug gaaacuacua aucaggeaau ugaggeaauc 540 600 agacaagcag ggcaggagau gauauuggcu guucagggug uccaagacua caucaauaau gagcugauac cgucuaugaa ccagcuaucu ugugaucuaa ucggucagaa gcucgggcuc 660 aaauugcuua gauacuauac agaaauccug ucauuauuug gccccagccu acgggacccc 720 780 auaucuqcqq aqauaucuau ccaqqcuuuq aquuauqcac uuqqaqqaqa uaucaauaaq guguuagaaa agcucggaua caguggaggc gauuuacuag gcaucuuaga gagcagagga 840 auaaaggcuc ggauaacuca cgucgacaca gaguccuacu ucauaguccu caguauagcc 900 uauccgacgc uguccgagau uaagggggug auuguccacc ggcuagaggg ggucucguac 960 aacauaggcu cucaagagug guauaccacu gugcccaagu auguugcaac ccaaggguac 1020 cuuaucucga auuuugauga gucaucaugu acuuucaugc cagaggggac ugugugcagc 1080 caaaaugeeu uguaceegau gagueeueug cuccaagaau geeueegggg gueeaeeaag 1140 uccugugcuc guacacucgu auccgggucu uuugggaacc gguucauuuu aucacaaggg 1200 1260 aaccuaauag ccaauugugc aucaauucuu uguaaguguu acacaacagg uacgauuauu aaucaagacc cugacaagau ccuaacauac auugcugccg aucgcugccc gguagucgag 1320 1380 gugaacggcg ugaccaucca agucgggagc aggagguauc cagacgcugu guacuugcac agaauugacc ucgguccucc cauaucauug gagagguugg acguagggac aaaucugggg 1440 aaugcaauug ccaaauugga ggaugccaag gaauuguugg aaucaucgga ccagauauug 1500 agaaguauga aagguuuauc gagcacuagc auagucuaca uccugauugc agugugucuu 1560 ggaggguuga uagggauccc cacuuuaaua uguugcugca gggggcguug uaacaaaaag 1620 1680 qqaqaacaaq uuqquauquc aaqaccaqqc cuaaaqccuq accuuacaqq aacaucaaaa uccuauguaa gaucgcuuug augauaauag gcuggagccu cgguggccaa gcuucuugcc 1740 ccuugggccu cccccagcc ccuccuccc uuccugcacc cguacccccg uggucuuuga 1800 1860 1920 1925 ucuaq

<212> TYPE: RNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Polynucleotide

<400> SEQUENCE: 72

ucaagcuuuu ggacccucgu acagaagcua auacgacuca cuauagggaa auaagagaga 60 aaagaagagu aagaagaaau auaagagcca ccaugggucu caaggugaac gucucuguca 120 uauucauggc aguacuguua acucuucaaa cacccaccgg ucaaauccau uggggcaauc 180 ucucuaagau agggguggua gggguaggaa gugcaagcua caaaguuaug acucguucca 240 gccaucaauc auuagucaua aaguuaaugc ccaauauaac ucuccucaac aauugcacga ggguagggau ugcagaauac aggagacuac ugagaacagu ucuggaacca auuagagaug 360 420 cacuuaauqc aauqacccaq aauauaaqac cqquucaqaq uquaqcuuca aquaqqaqac 480 acaaqaqauu uqcqqqaquu quccuqqcaq quqcqqcccu aqqcquuqcc acaqcuqcuc aaauaacagc cgguauugca cuucaccagu ccaugcugaa cucucaagcc aucgacaauc 540 600 aqauqauauu qqcuquucaq qququccaaq acuacaucaa uaauqaqcuq auaccqucua 660 uqaaucaacu aucuuquqau uuaaucqqcc aqaaqcuaqq qcucaaauuq cucaqauacu 720 auacagaaau ccugucauua uuuggcccca gcuuacggga ccccauaucu gcggagauau 780 840 cuauccaqqc uuuqaqcuau qcqcuuqqaq qaqauaucaa uaaqququuq qaaaaqcucq gauacagugg aggugaucua cugggcaucu uagagagcag aggaauaaag gcccggauaa 900 cucacguega cacagaguec uacuucauug uacucaguau agecuauceg acgcuauceg 960 agauuaaggg ggugauuguc caccggcuag agggggucuc guacaacaua ggcucucaag 1020 agugguauac cacugugccc aaguauguug caacccaagg guaccuuauc ucgaauuuug 1080 augagucauc augcacuuuc augccagagg ggacugugug cagccagaau gccuuguacc 1140 cgaugagucc ucugcuccaa gaaugccucc ggggguccac uaaguccugu gcucguacac 1200 ucguauccgg gucuuucggg aaccgguuca uuuuaucaca ggggaaccua auagccaauu 1260 gugcaucaau ccuuugcaag uguuacacaa caggaacaau cauuaaucaa gacccugaca 1320 agauccuaac auacauugcu geegaucacu geeegguggu egaggugaau ggegugaeca 1380 uccaaguegg gageaggagg uauceggaeg cuguguacuu geacaggauu gaccueggue 1440 cucccauauc uuuggagagg uuggacguag ggacaaaucu ggggaaugca auugcuaagu 1500 uggaggaugc caaggaauug uuggagucau cggaccagau auugaggagu augaaagguu 1560 uaucgagcac uaguauaguu uacauccuga uugcagugug ucuuggagga uugauaggga 1620 1680 uccccgcuuu aauauguugc ugcagggggc guuguaacaa gaagggagaa caaguuggua ugucaagacc aggccuaaag ccugaucuua caggaacauc aaaauccuau guaaggucac 1740 ucugaugaua auaggcugga gccucggugg ccaagcuucu ugccccuugg gccuccccc 1800 agececuccu ececuuccug caeceguace eceguggueu uugaauaaag ueugaguggg 1860 1864 cggc

<210> SEQ ID NO 73

<211> LENGTH: 1653

<212> TYPE: RNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223 > OTHER INFORMATION: Synthetic Polynucleotide

-continued

<400> SEQUENCE: 73	
augggucuca aggugaacgu cucugucaua uucauggcag uacuguuaac ucuucaaaca	60
cccaccgguc aaauccauug gggcaaucuc ucuaagauag gggugguagg gguaggaagu	120
gcaagcuaca aaguuaugac ucguuccagc caucaaucau uagucauaaa guuaaugccc	180
aauauaacuc uccucaacaa uugcacgagg guagggauug cagaauacag gagacuacug	240
agaacaguuc uggaaccaau uagagaugca cuuaaugcaa ugacccagaa uauaagaccg	300
guucagagug uagcuucaag uaggagacac aagagauuug cgggaguugu ccuggcaggu	360
geggeecuag geguugeeac ageugeucaa auaacageeg guauugeacu ucaecaguee	420
augcugaacu cucaagccau cgacaaucug agagcgagcc uagaaacuac uaaucaggca	480
auugaggcaa ucagacaagc agggcaggag augauauugg cuguucaggg uguccaagac	540
uacaucaaua augagcugau accgucuaug aaucaacuau cuugugauuu aaucggccag	600
aagcuagggc ucaaauugcu cagauacuau acagaaaucc ugucauuauu uggccccagc	660
uuacgggacc ccauaucugc ggagauaucu auccaggcuu ugagcuaugc gcuuggagga	720
gauaucaaua agguguugga aaagcucgga uacaguggag gugaucuacu gggcaucuua	780
gagagcagag gaauaaaggc ccggauaacu cacgucgaca cagaguccua cuucauugua	840
cucaguauag ccuauccgac gcuauccgag auuaaggggg ugauugucca ccggcuagag	900
ggggucucgu acaacauagg cucucaagag ugguauacca cugugcccaa guauguugca	960
acccaagggu accuuaucuc gaauuuugau gagucaucau gcacuuucau gccagagggg	1020
acugugugca gccagaaugc cuuguacceg augaguccuc ugcuccaaga augccuccgg	1080
ggguccacua aguccugugc ucguacacuc guauccgggu cuuucgggaa ccgguucauu	1140
uuaucacagg ggaaccuaau agccaauugu gcaucaaucc uuugcaagug uuacacaaca	1200
ggaacaauca uuaaucaaga cccugacaag auccuaacau acauugcugc cgaucacugc	1260
ccgguggucg aggugaaugg cgugaccauc caagucggga gcaggaggua uccggacgcu	1320
guguacuugc acaggauuga ccucgguccu cccauaucuu uggagagguu ggacguaggg	1380
acaaaucugg ggaaugcaau ugcuaaguug gaggaugcca aggaauuguu ggagucaucg	1440
gaccagauau ugaggaguau gaaagguuua ucgagcacua guauaguuua cauccugauu	1500
gcaguguguc uuggaggauu gauagggauc cccgcuuuaa uauguugcug cagggggcgu	1560
uguaacaaga agggagaaca aguugguaug ucaagaccag gccuaaagcc ugaucuuaca	1620
ggaacaucaa aauccuaugu aaggucacuc uga	1653
<210> SEQ ID NO 74 <211> LENGTH: 1925 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 74	
ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaccau gggucucaag	60
gugaacgucu cugucauauu cauggcagua cuguuaacuc uucaaacacc caccggucaa	120
auccauuggg gcaaucucuc uaagauaggg gugguagggg uaggaagugc aagcuacaaa	180
guuaugacuc guuccagoca ucaaucauua gucauaaagu uaaugoccaa uauaacucuc	240
cucaacaauu gcacgagggu agggauugca gaauacagga gacuacugag aacaguucug	300

gaaccaauua gagaugcacu uaaugcaaug acccagaaua uaagaccggu ucagagugua

gcuucaagua	ggagacacaa	gagauuugcg	ggaguugucc	uggcaggugc	ggcccuaggc	420
guugccacag	cugcucaaau	aacagccggu	auugcacuuc	accaguccau	gcugaacucu	480
caagccaucg	acaaucugag	agegageeua	gaaacuacua	aucaggcaau	ugaggcaauc	540
agacaagcag	ggcaggagau	gauauuggcu	guucagggug	uccaagacua	caucaauaau	600
gagcugauac	cgucuaugaa	ucaacuaucu	ugugauuuaa	ucggccagaa	gcuagggcuc	660
aaauugcuca	gauacuauac	agaaauccug	ucauuauuug	gccccagcuu	acgggacccc	720
auaucugcgg	agauaucuau	ccaggcuuug	agcuaugcgc	uuggaggaga	uaucaauaag	780
guguuggaaa	agcucggaua	caguggaggu	gaucuacugg	gcaucuuaga	gagcagagga	840
auaaaggccc	ggauaacuca	cgucgacaca	gaguccuacu	ucauuguacu	caguauagcc	900
uauccgacgc	uauccgagau	uaagggggug	auuguccacc	ggcuagaggg	ggucucguac	960
aacauaggcu	cucaagagug	guauaccacu	gugcccaagu	auguugcaac	ccaaggguac	1020
cuuaucucga	auuuugauga	gucaucaugc	acuuucaugc	cagaggggac	ugugugcagc	1080
cagaaugccu	uguacccgau	gaguccucug	cuccaagaau	gccuccgggg	guccacuaag	1140
uccugugcuc	guacacucgu	auccgggucu	uucgggaacc	gguucauuuu	aucacagggg	1200
aaccuaauag	ccaauugugc	aucaauccuu	ugcaaguguu	acacaacagg	aacaaucauu	1260
aaucaagacc	cugacaagau	ccuaacauac	auugcugccg	aucacugccc	gguggucgag	1320
gugaauggcg	ugaccaucca	agucgggagc	aggagguauc	cggacgcugu	guacuugcac	1380
aggauugacc	ucgguccucc	cauaucuuug	gagagguugg	acguagggac	aaaucugggg	1440
aaugcaauug	cuaaguugga	ggaugccaag	gaauuguugg	agucaucgga	ccagauauug	1500
aggaguauga	aagguuuauc	gagcacuagu	auaguuuaca	uccugauugc	agugugucuu	1560
ggaggauuga	uagggauccc	cgcuuuaaua	uguugcugca	gggggcguug	uaacaagaag	1620
ggagaacaag	uugguauguc	aagaccaggc	cuaaagccug	aucuuacagg	aacaucaaaa	1680
uccuauguaa	ggucacucug	augauaauag	gcuggagccu	cgguggccaa	gcuucuugcc	1740
ccuugggccu	cccccagcc	ccuccucccc	uuccugcacc	cguacccccg	uggucuuuga	1800
auaaagucug	agugggcggc	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	1860
aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	1920
ucuag						1925
<220> FEATU <223> OTHER	TH: 2065 : RNA NISM: Artif: JRE: R INFORMATIO	_		eotide		
<400> SEQUI						
ucaagcuuuu	ggacccucgu	acagaagcua	auacgacuca	cuauagggaa	auaagagaga	60
aaagaagagu	aagaagaaau	auaagagcca	ccaugucacc	gcaacgagac	cggauaaaug	120
ccuucuacaa	agauaacccu	uaucccaagg	gaaguaggau	aguuauuaac	agagaacauc	180
uuaugauuga	cagacccuau	guucugcugg	cuguucuguu	cgucauguuu	cugagcuuga	240
ucggauugcu	ggcaauugca	ggcauuagac	uucaucgggc	agccaucuac	accgcggaga	300
uccauaaaag	ccucaguacc	aaucuggaug	ugacuaacuc	caucgagcau	caggucaagg	360

acgugcugac accacucuuu aaaaucaucg gggaugaagu gggccugaga acaccucaga

-continued

gauucacuga ccuagugaaa uucaucucgg acaagauuaa auuccuuaau ccggauaggg	480
aguacgacuu cagagaucuc acuuggugca ucaacccgcc agagaggauc aaacuagauu	540
augaucaaua cugugcagau guggcugcug aagagcucau gaaugcauug gugaacucaa	600
cucuacugga gaccagaaca accacucagu uccuagcugu cucaaaggga aacugcucag	660
ggcccacuac aaucagaggu caauucucaa acaugucgcu guccuuguug gacuuguacu	720
uaggucgagg uuacaaugug ucaucuauag ucacuaugac aucccaggga auguaugggg	780
gaaccuaccu aguugaaaag ccuaaucuga acagcaaagg gucagaguug ucacaacuga	840
gcauguaccg aguguuugaa guagguguga ucagaaaccc ggguuugggg gcuccggugu	900
uccauaugac aaacuauuuu gagcaaccag ucaguaaugg ucucggcaac uguauggugg	960
cuuuggggga gcucaaacuc gcagcccuuu gucacgggga cgauucuauc auaauucccu	1020
aucagggauc agggaaaggu gucagcuucc agcucgucaa gcuggguguc uggaaauccc	1080
caaccgacau gcaauccugg guccccuuau caacggauga uccaguggua gacaggcuuu	1140
accucucauc ucacagaggu gucaucgcug acaaucaagc aaaaugggcu gucccgacaa	1200
cacgaacaga ugacaaguug cgaauggaga caugcuucca gcaggcgugu aaagguaaaa	1260
uccaagcacu cugcgagaau cccgaguggg uaccauugaa ggauaacagg auuccuucau	1320
acgggguccu gucuguugau cugagucuga cgguugagcu uaaaaucaaa auugcuucgg	1380
gauucgggcc auugaucaca cacggcucag ggauggaccu auacaaaucc aacugcaaca	1440
auguguauug gcugacuauu ccgccaauga gaaaucuagc cuuaggcgua aucaacacau	1500
uggaguggau accgagauuc aagguuaguc ccaaccucuu cacuguccca auuaaggaag	1560
caggcgaaga cugccaugcc ccaacauacc uaccugcgga gguggacggu gaugucaaac	1620
ucaguuccaa ccuggugauu cuaccugguc aagaucucca auauguuuug gcaaccuacg	1680
auaccuccag gguugagcau gcugugguuu auuacguuua cagcccaagc cgcucauuuu	1740
cuuacuuuua uccuuuuagg uugccuauaa aggggguccc aaucgaacua caaguggaau	1800
gcuucacaug ggaucaaaaa cucuggugcc gucacuucug ugugcuugcg gacucagaau	1860
ccgguggacu uaucacucac ucugggaugg ugggcauggg agucagcugc acagcuaccc	1920
gggaagaugg aaccaaucgc agauaaugau aauaggcugg agccucggug gccaagcuuc	1980
uugeeceuug ggeeuceece cageeceuce uceecuuceu gcaceeguae ecceguggue	2040
uuugaauaaa gucugagugg gegge	2065
<210> SEQ ID NO 76 <211> LENGTH: 1854 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 76	
augucaccgc aacgagaccg gauaaaugcc uucuacaaag auaacccuua ucccaaggga	60
aguaggauag uuauuaacag agaacaucuu augauugaca gacccuaugu ucugcuggcu	120
guucuguucg ucauguuucu gagcuugauc ggauugcugg caauugcagg cauuagacuu	180
caucgggcag ccaucuacac cgcggagauc cauaaaagcc ucaguaccaa ucuggaugug	240
acuaacucca ucgagcauca ggucaaggac gugcugacac cacucuuuaa aaucaucggg	300
gaugaagugg gecugagaac accucagaga uucacugace uagugaaauu caucucggac	360
5 5 5 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	

420

aagauuaaau uccuuaaucc ggauagggag uacgacuuca gagaucucac uuggugcauc

aacccgccag	agaggaucaa	acuagauuau	gaucaauacu	gugcagaugu	ggcugcugaa	480
gagcucauga	augcauuggu	gaacucaacu	cuacuggaga	ccagaacaac	cacucaguuc	540
cuagcugucu	caaagggaaa	cugcucaggg	cccacuacaa	ucagagguca	auucucaaac	600
augucgcugu	ccuuguugga	cuuguacuua	ggucgagguu	acaauguguc	aucuauaguc	660
acuaugacau	cccagggaau	guauggggga	accuaccuag	uugaaaagcc	uaaucugaac	720
agcaaagggu	cagaguuguc	acaacugagc	auguaccgag	uguuugaagu	aggugugauc	780
agaaacccgg	guuugggggc	uccgguguuc	cauaugacaa	acuauuuuga	gcaaccaguc	840
aguaaugguc	ucggcaacug	uaugguggcu	uugggggagc	ucaaacucgc	agcccuuugu	900
cacggggacg	auucuaucau	aauucccuau	cagggaucag	ggaaaggugu	cagcuuccag	960
cucgucaagc	ugggugucug	gaaaucccca	accgacaugc	aauccugggu	ccccuuauca	1020
acggaugauc	cagugguaga	caggcuuuac	cucucaucuc	acagaggugu	caucgcugac	1080
aaucaagcaa	aaugggcugu	cccgacaaca	cgaacagaug	acaaguugcg	aauggagaca	1140
ugcuuccagc	aggcguguaa	agguaaaauc	caagcacucu	gcgagaaucc	cgagugggua	1200
ccauugaagg	auaacaggau	uccuucauac	gggguccugu	cuguugaucu	gagucugacg	1260
guugagcuua	aaaucaaaau	ugcuucggga	uucgggccau	ugaucacaca	cggcucaggg	1320
auggaccuau	acaaauccaa	cugcaacaau	guguauuggc	ugacuauucc	gccaaugaga	1380
aaucuagccu	uaggcguaau	caacacauug	gaguggauac	cgagauucaa	gguuaguccc	1440
aaccucuuca	cugucccaau	uaaggaagca	ggcgaagacu	gccaugcccc	aacauaccua	1500
ccugcggagg	uggacgguga	ugucaaacuc	aguuccaacc	uggugauucu	accuggucaa	1560
gaucuccaau	auguuuuggc	aaccuacgau	accuccaggg	uugagcaugc	ugugguuuau	1620
uacguuuaca	gcccaagccg	cucauuuucu	uacuuuuauc	cuuuuagguu	gccuauaaag	1680
ggggucccaa	ucgaacuaca	aguggaaugc	uucacauggg	aucaaaaacu	cuggugccgu	1740
cacuucugug	ugcuugcgga	cucagaaucc	gguggacuua	ucacucacuc	ugggauggug	1800
ggcaugggag	ucagcugcac	agcuacccgg	gaagauggaa	ccaaucgcag	auaa	1854
<220> FEATU <223> OTHER	TH: 2126 : RNA NISM: Artif: JRE: R INFORMATIO	_	nce ic Polynucle	eotide		
<400> SEQUI						
			agaaauauaa			60
			aacccuuauc			120
auuaacagag	aacaucuuau	gauugacaga	cccuauguuc	ugcuggcugu	ucuguucguc	180
auguuucuga	gcuugaucgg	auugcuggca	auugcaggca	uuagacuuca	ucgggcagcc	240
aucuacaccg	cggagaucca	uaaaagccuc	aguaccaauc	uggaugugac	uaacuccauc	300
gagcaucagg	ucaaggacgu	gcugacacca	cucuuuaaaa	ucaucgggga	ugaagugggc	360
cugagaacac	cucagagauu	cacugaccua	gugaaauuca	ucucggacaa	gauuaaauuc	420
cuuaauccgg	auagggagua	cgacuucaga	gaucucacuu	ggugcaucaa	cccgccagag	480
aggaucaaac	uagauuauga	ucaauacugu	gcagaugugg	cugcugaaga	gcucaugaau	540

gcauugguga acucaacucu acuggagacc agaacaacca cucaguuccu agcugucuca

-continued

				-contir	iuea		
aagggaaacu	gcucagggcc	cacuacaauc	agaggucaau	ucucaaacau	gucgcugucc	660	
uuguuggacu	uguacuuagg	ucgagguuac	aaugugucau	cuauagucac	uaugacaucc	720	
cagggaaugu	augggggaac	cuaccuaguu	gaaaagccua	aucugaacag	caaaggguca	780	
gaguugucac	aacugagcau	guaccgagug	uuugaaguag	gugugaucag	aaacccgggu	840	
uugggggcuc	cgguguucca	uaugacaaac	uauuuugagc	aaccagucag	uaauggucuc	900	
ggcaacugua	ugguggcuuu	gggggagcuc	aaacucgcag	cccuuuguca	cggggacgau	960	
ucuaucauaa	uucccuauca	gggaucaggg	aaagguguca	gcuuccagcu	cgucaagcug	1020	
ggugucugga	aauccccaac	cgacaugcaa	uccugggucc	ccuuaucaac	ggaugaucca	1080	
gugguagaca	ggcuuuaccu	cucaucucac	agagguguca	ucgcugacaa	ucaagcaaaa	1140	
ugggcugucc	cgacaacacg	aacagaugac	aaguugcgaa	uggagacaug	cuuccagcag	1200	
gcguguaaag	guaaaaucca	agcacucugc	gagaaucccg	aguggguacc	auugaaggau	1260	
aacaggauuc	cuucauacgg	gguccugucu	guugaucuga	gucugacggu	ugagcuuaaa	1320	
aucaaaauug	cuucgggauu	cgggccauug	aucacacacg	gcucagggau	ggaccuauac	1380	
aaauccaacu	gcaacaaugu	guauuggcug	acuauuccgc	caaugagaaa	ucuagccuua	1440	
ggcguaauca	acacauugga	guggauaccg	agauucaagg	uuagucccaa	ccucuucacu	1500	
gucccaauua	aggaagcagg	cgaagacugc	caugececaa	cauaccuacc	ugcggaggug	1560	
gacggugaug	ucaaacucag	uuccaaccug	gugauucuac	cuggucaaga	ucuccaauau	1620	
guuuuggcaa	ccuacgauac	cuccaggguu	gagcaugcug	ugguuuauua	cguuuacagc	1680	
ccaagccgcu	cauuuucuua	cuuuuauccu	uuuagguugc	cuauaaaggg	ggucccaauc	1740	
gaacuacaag	uggaaugcuu	cacaugggau	caaaaacucu	ggugccguca	cuucugugug	1800	
cuugcggacu	cagaauccgg	uggacuuauc	acucacucug	ggaugguggg	caugggaguc	1860	
agcugcacag	cuacccggga	agauggaacc	aaucgcagau	aaugauaaua	ggcuggagcc	1920	
ucgguggcca	agcuucuugc	cccuugggcc	uccccccagc	cccuccuccc	cuuccugcac	1980	
ccguaccccc	guggucuuug	aauaaagucu	gagugggcgg	caaaaaaaaa	aaaaaaaaa	2040	
aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	2100	
aaaaaaaaa	aaaaaaaaa	aucuag				2126	
<220> FEATU	TH: 2065 : RNA NISM: Artifi	-		eotide			
<400> SEQUI	ENCE: 78						
ucaagcuuuu	ggacccucgu	acagaagcua	auacgacuca	cuauagggaa	auaagagaga	60	
aaagaagagu	aagaagaaau	auaagagcca	ccaugucacc	acaacgagac	cggauaaaug	120	
ccuucuacaa	agacaacccc	cauccuaagg	gaaguaggau	aguuauuaac	agagaacauc	180	
uuaugauuga	uagaccuuau	guuuugcugg	cuguucuauu	cgucauguuu	cugagcuuga	240	
ucggguugcu	agccauugca	ggcauuagac	uucaucgggc	agccaucuac	accgcagaga	300	
uccauaaaag	ccucagcacc	aaucuggaug	uaacuaacuc	aaucgagcau	cagguuaagg	360	
acgugcugac	accacucuuc	aagaucaucg	gugaugaagu	gggcuugagg	acaccucaga	420	
gauucacuga	ccuagugaag	uucaucucug	acaagauuaa	auuccuuaau	ccggacaggg	480	
-		3	-		. 555		

540

aauacgacuu cagagaucuc acuuggugua ucaacccgcc agagagaauc aaauuggauu

-continued

augaucaaua	cugugcagau	guggcugcug	aagaacucau	gaaugcauug	gugaacucaa	600
cucuacugga	gaccagggca	accaaucagu	uccuagcugu	cucaaaggga	aacugcucag	660
ggcccacuac	aaucagaggc	caauucucaa	acaugucgcu	gucccuguug	gacuuguauu	720
uaagucgagg	uuacaaugug	ucaucuauag	ucacuaugac	aucccaggga	auguacgggg	780
gaacuuaccu	aguggaaaag	ccuaaucuga	gcagcaaagg	gucagaguug	ucacaacuga	840
gcaugcaccg	aguguuugaa	guagguguua	ucagaaaucc	ggguuugggg	gcuccgguau	900
uccauaugac	aaacuaucuu	gagcaaccag	ucaguaauga	uuucagcaac	ugcauggugg	960
cuuuggggga	gcucaaguuc	gcagcccucu	gucacaggga	agauucuauc	acaauucccu	1020
aucagggauc	agggaaaggu	gucagcuucc	agcuugucaa	gcuagguguc	uggaaauccc	1080
caaccgacau	gcaauccugg	gucccccuau	caacggauga	uccagugaua	gacaggcuuu	1140
accucucauc	ucacagaggc	guuaucgcug	acaaucaagc	aaaaugggcu	gucccgacaa	1200
cacggacaga	ugacaaguug	cgaauggaga	caugcuucca	gcaggcgugu	aaggguaaaa	1260
uccaagcacu	uugcgagaau	cccgagugga	caccauugaa	ggauaacagg	auuccuucau	1320
acggggucuu	gucuguugau	cugagucuga	caguugagcu	uaaaaucaaa	auuguuucag	1380
gauucgggcc	auugaucaca	cacgguucag	ggauggaccu	auacaaaucc	aaccacaaca	1440
auauguauug	gcugacuauc	ccgccaauga	agaaccuggc	cuuaggugua	aucaacacau	1500
uggaguggau	accgagauuc	aagguuaguc	ccaaccucuu	cacuguucca	auuaaggaag	1560
caggcgagga	cugccaugcc	ccaacauacc	uaccugcgga	gguggauggu	gaugucaaac	1620
ucaguuccaa	ucuggugauu	cuaccugguc	aagaucucca	auauguucug	gcaaccuacg	1680
auacuuccag	aguugaacau	gcuguaguuu	auuacguuua	cagcccaagc	cgcucauuuu	1740
cuuacuuuua	uccuuuuagg	uugccuguaa	gggggguccc	cauugaauua	caaguggaau	1800
gcuucacaug	ggaccaaaaa	cucuggugcc	gucacuucug	ugugcuugcg	gacucagaau	1860
cugguggaca	uaucacucac	ucugggaugg	ugggcauggg	agucagcugc	acagccacuc	1920
gggaagaugg	aaccagccgc	agauagugau	aauaggcugg	agccucggug	gccaagcuuc	1980
uugccccuug	ggccuccccc	cageceeuce	uccccuuccu	gcacccguac	ccccgugguc	2040
uuugaauaaa	gucugagugg	gegge				2065
<220> FEATU <223> OTHER	TH: 1854 : RNA NISM: Artif: URE: R INFORMATIO	icial Sequer DN: Synthet:		eotide		
<400> SEQUI						
augucaccac	aacgagaccg	gauaaaugcc	uucuacaaag	acaaccccca	uccuaaggga	60
aguaggauag	uuauuaacag	agaacaucuu	augauugaua	gaccuuaugu	uuugcuggcu	120
guucuauucg	ucauguuucu	gagcuugauc	ggguugcuag	ccauugcagg	cauuagacuu	180
caucgggcag	ccaucuacac	cgcagagauc	cauaaaagcc	ucagcaccaa	ucuggaugua	240
acuaacucaa	ucgagcauca	gguuaaggac	gugcugacac	cacucuucaa	gaucaucggu	300
gaugaagugg	gcuugaggac	accucagaga	uucacugacc	uagugaaguu	caucucugac	360
aagauuaaau	uccuuaaucc	ggacagggaa	uacgacuuca	gagaucucac	uugguguauc	420

aacccgccag agagaaucaa auuggauuau gaucaauacu gugcagaugu ggcugcugaa

-continued

				COIICII	iaca		
gaacucauga	augcauuggu	gaacucaacu	cuacuggaga	ccagggcaac	caaucaguuc	540	
cuagcugucu	caaagggaaa	cugcucaggg	cccacuacaa	ucagaggcca	auucucaaac	600	
augucgcugu	cccuguugga	cuuguauuua	agucgagguu	acaauguguc	aucuauaguc	660	
acuaugacau	cccagggaau	guacggggga	acuuaccuag	uggaaaagcc	uaaucugagc	720	
agcaaagggu	cagaguuguc	acaacugagc	augcaccgag	uguuugaagu	agguguuauc	780	
agaaauccgg	guuugggggc	uccgguauuc	cauaugacaa	acuaucuuga	gcaaccaguc	840	
aguaaugauu	ucagcaacug	caugguggcu	uugggggagc	ucaaguucgc	ageceueugu	900	
cacagggaag	auucuaucac	aauucccuau	cagggaucag	ggaaaggugu	cagcuuccag	960	
cuugucaagc	uaggugucug	gaaaucccca	accgacaugc	aauccugggu	ccccuauca	1020	
acggaugauc	cagugauaga	caggcuuuac	cucucaucuc	acagaggcgu	uaucgcugac	1080	
aaucaagcaa	aaugggcugu	cccgacaaca	cggacagaug	acaaguugcg	aauggagaca	1140	
ugcuuccagc	aggcguguaa	ggguaaaauc	caagcacuuu	gcgagaaucc	cgaguggaca	1200	
ccauugaagg	auaacaggau	uccuucauac	ggggucuugu	cuguugaucu	gagucugaca	1260	
guugagcuua	aaaucaaaau	uguuucagga	uucgggccau	ugaucacaca	cgguucaggg	1320	
auggaccuau	acaaauccaa	ccacaacaau	auguauuggc	ugacuauccc	gccaaugaag	1380	
aaccuggccu	uagguguaau	caacacauug	gaguggauac	cgagauucaa	gguuaguccc	1440	
aaccucuuca	cuguuccaau	uaaggaagca	ggcgaggacu	gccaugcccc	aacauaccua	1500	
ccugcggagg	uggaugguga	ugucaaacuc	aguuccaauc	uggugauucu	accuggucaa	1560	
gaucuccaau	auguucuggc	aaccuacgau	acuuccagag	uugaacaugc	uguaguuuau	1620	
uacguuuaca	gcccaagccg	cucauuuucu	uacuuuuauc	cuuuuagguu	gccuguaagg	1680	
ggggucccca	uugaauuaca	aguggaaugc	uucacauggg	accaaaaacu	cuggugccgu	1740	
cacuucugug	ugcuugcgga	cucagaaucu	gguggacaua	ucacucacuc	ugggauggug	1800	
ggcaugggag	ucagcugcac	agccacucgg	gaagauggaa	ccagccgcag	auag	1854	
<220> FEATU	TH: 2126 : RNA NISM: Artif:			eotide			
<400> SEQUI	ENCE: 80						
ggggaaauaa	gagagaaaag	aagaguaaga	agaaauauaa	gagccaccau	gucaccacaa	60	
cgagaccgga	uaaaugccuu	cuacaaagac	aacccccauc	cuaagggaag	uaggauaguu	120	
auuaacagag	aacaucuuau	gauugauaga	ccuuauguuu	ugcuggcugu	ucuauucguc	180	
auguuucuga	gcuugaucgg	guugcuagcc	auugcaggca	uuagacuuca	ucgggcagcc	240	
aucuacaccg	cagagaucca	uaaaagccuc	agcaccaauc	uggauguaac	uaacucaauc	300	
gagcaucagg	uuaaggacgu	gcugacacca	cucuucaaga	ucaucgguga	ugaagugggc	360	
uugaggacac	cucagagauu	cacugaccua	gugaaguuca	ucucugacaa	gauuaaauuc	420	
cuuaauccgg	acagggaaua	cgacuucaga	gaucucacuu	gguguaucaa	cccgccagag	480	
agaaucaaau	uggauuauga	ucaauacugu	gcagaugugg	cugcugaaga	acucaugaau	540	
gcauugguga	acucaacucu	acuggagacc	agggcaacca	aucaguuccu	agcugucuca	600	
	gcucagggcc					660	
5555	5 5555		5 55 2 244		555		

720

cuguuggacu uguauuuaag ucgagguuac aaugugucau cuauagucac uaugacaucc

-continued

cagggaaugu	acgggggaac	uuaccuagug	gaaaagccua	aucugagcag	caaaggguca	780
gaguugucac	aacugagcau	gcaccgagug	uuugaaguag	guguuaucag	aaauccgggu	840
uugggggcuc	cgguauucca	uaugacaaac	uaucuugagc	aaccagucag	uaaugauuuc	900
agcaacugca	ugguggcuuu	gggggagcuc	aaguucgcag	cccucuguca	cagggaagau	960
ucuaucacaa	uucccuauca	gggaucaggg	aaagguguca	gcuuccagcu	ugucaagcua	1020
ggugucugga	aauccccaac	cgacaugcaa	uccugggucc	cccuaucaac	ggaugaucca	1080
gugauagaca	ggcuuuaccu	cucaucucac	agaggcguua	ucgcugacaa	ucaagcaaaa	1140
ugggcugucc	cgacaacacg	gacagaugac	aaguugcgaa	uggagacaug	cuuccagcag	1200
gcguguaagg	guaaaaucca	agcacuuugc	gagaaucccg	aguggacacc	auugaaggau	1260
aacaggauuc	cuucauacgg	ggucuugucu	guugaucuga	gucugacagu	ugagcuuaaa	1320
aucaaaauug	uuucaggauu	cgggccauug	aucacacacg	guucagggau	ggaccuauac	1380
aaauccaacc	acaacaauau	guauuggcug	acuaucccgc	caaugaagaa	ccuggccuua	1440
gguguaauca	acacauugga	guggauaccg	agauucaagg	uuagucccaa	ccucuucacu	1500
guuccaauua	aggaagcagg	cgaggacugc	caugccccaa	cauaccuacc	ugcggaggug	1560
gauggugaug	ucaaacucag	uuccaaucug	gugauucuac	cuggucaaga	ucuccaauau	1620
guucuggcaa	ccuacgauac	uuccagaguu	gaacaugcug	uaguuuauua	cguuuacagc	1680
ccaagccgcu	cauuuucuua	cuuuuauccu	uuuagguugc	cuguaagggg	gguccccauu	1740
gaauuacaag	uggaaugcuu	cacaugggac	caaaaacucu	ggugccguca	cuucugugug	1800
cuugcggacu	cagaaucugg	uggacauauc	acucacucug	ggaugguggg	caugggaguc	1860
agcugcacag	ccacucggga	agauggaacc	agccgcagau	agugauaaua	ggcuggagcc	1920
ucgguggcca	agcuucuugc	cccuugggcc	uccccccagc	cccuccuccc	cuuccugcac	1980
ccguaccccc	guggucuuug	aauaaagucu	gagugggcgg	caaaaaaaaa	aaaaaaaaa	2040
aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	2100
aaaaaaaaa	aaaaaaaaa	aucuag				2126
<220> FEAT	TH: 1729 : RNA NISM: Artif:	_		eotide		
<400> SEQUI	ENCE: 81					
ucaagcuuuu	ggacccucgu	acagaagcua	auacgacuca	cuauagggaa	auaagagaga	60
aaagaagagu	aagaagaaau	auaagagcca	ccauggcaca	agucauuaau	acaaacagcc	120
ugucgcuguu	gacccagaau	aaccugaaca	aaucccaguc	cgcacugggc	acugcuaucg	180
agcguuuguc	uuccggucug	cguaucaaca	gcgcgaaaga	cgaugcggca	ggacaggcga	240
uugcuaaccg	uuuuaccgcg	aacaucaaag	gucugacuca	ggcuucccgu	aacgcuaacg	300
acgguaucuc	cauugcgcag	accacugaag	gcgcgcugaa	cgaaaucaac	aacaaccugc	360
agcgugugcg	ugaacuggcg	guucagucug	cgaaugguac	uaacucccag	ucugaccucg	420
acuccaucca	ggcugaaauc	acccagcgcc	ugaacgaaau	cgaccgugua	uccggccaga	480
cucaguucaa	cggcgugaaa	guccuggcgc	aggacaacac	ccugaccauc	cagguuggug	540

ccaacgacgg ugaaacuauc gauauugauu uaaaagaaau cagcucuaaa acacugggac

-continued

-continued	
uugauaagcu uaauguccaa gaugccuaca ccccgaaaga aacugcugua accguugaua	660
aaacuaccua uaaaaauggu acagauccua uuacagccca gagcaauacu gauauccaaa	720
cugcaauugg cgguggugca acggggguua cuggggcuga uaucaaauuu aaagaugguc	780
aauacuauuu agauguuaaa ggcggugcuu cugcuggugu uuauaaagcc acuuaugaug	840
aaacuacaaa gaaaguuaau auugauacga cugauaaaac uccguuggca acugcggaag	900
cuacagcuau ucggggaacg gccacuauaa cccacaacca aauugcugaa guaacaaaag	960
aggguguuga uacgaccaca guugcggcuc aacuugcugc agcagggguu acuggcgccg	1020
auaaggacaa uacuagccuu guaaaacuau cguuugagga uaaaaacggu aagguuauug	1080
augguggcua ugcagugaaa augggcgacg auuucuaugc cgcuacauau gaugagaaaa	1140
caggugcaau uacugcuaaa accacuacuu auacagaugg uacuggcguu gcucaaacug	1200
gagcugugaa auuugguggc gcaaauggua aaucugaagu uguuacugcu accgauggua	1260
agacuuacuu agcaagcgac cuugacaaac auaacuucag aacaggcggu gagcuuaaag	1320
agguuaauac agauaagacu gaaaacccac ugcagaaaau ugaugcugcc uuggcacagg	1380
uugauacacu ucguucugac cugggugcgg uucagaaccg uuucaacucc gcuaucacca	1440
accugggcaa uaccguaaau aaccugucuu cugcccguag ccguaucgaa gauuccgacu	1500
acgcaaccga agucuccaac augucucgcg cgcagauucu gcagcaggcc gguaccuccg	1560
uucuggcgca ggcgaaccag guuccgcaaa acguccucuc uuuacugcgu ugauaauagg	1620
cuggagecue gguggecaug cuucuugeee cuugggecue eececageee cuccueeecu	1680
uccugcacce guaccecegu ggucuuugaa uaaagucuga gugggegge	1729
<210> SEQ ID NO 82 <211> LENGTH: 1518 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<211> LENGTH: 1518 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE:	
<211> LENGTH: 1518 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	60
<211> LENGTH: 1518 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 82	60 120
<211> LENGTH: 1518 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 82 auggcacaag ucauuaauac aaacagccug ucgcuguuga cccagaauaa ccugaacaaa	
<pre><211> LENGTH: 1518 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 82 auggcacaag ucauuaauac aaacagccug ucgcuguuga cccagaauaa ccugaacaaa ucccaguccg cacugggcac ugcuaucgag cguuugucuu ccggucugcg uaucaacagc</pre>	120
<pre><211> LENGTH: 1518 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 82 auggcacaag ucauuaauac aaacagccug ucgcuguuga cccagaauaa ccugaacaaa ucccaguccg cacugggcac ugcuaucgag cguuugucuu ccggucugcg uaucaacagc gcgaaagacg augcggcagg acaggcgauu gcuaaccguu uuaccgcgaa caucaaaggu</pre>	120 180
<pre><211> LENGTH: 1518 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 82 auggcacaag ucauuaauac aaacagccug ucgcuguuga cccagaauaa ccugaacaaa ucccaguccg cacugggcac ugcuaucgag cguuugucuu ccggucugcg uaucaacagc gcgaaagacg augcggcagg acaggcgauu gcuaaccguu uuaccgcgaa caucaaaggu cugacucagg cuucccguaa cgcuaacgac gguaucucca uugcgcagac cacugaaggc</pre>	120 180 240
<pre><211> LENGTH: 1518 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 82 auggcacaag ucauuaauac aaacagccug ucgcuguuga cccagaauaa ccugaacaaa ucccaguccg cacugggcac ugcuaucgag cguuugucuu ccggucugcg uaucaacagc gcgaaagacg augcggcagg acaggcgauu gcuaaccguu uuaccgcgaa caucaaaggu cugacucagg cuucccguaa cgcuaacgac gguaucucca uugcgcagac cacugaaggc gcgcugaacg aaaucaacaa caaccugcag cgugugcgug aacuggcggu ucagucugcg</pre>	120 180 240 300
<pre><211> LENGTH: 1518 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 82 auggcacaag ucauuaauac aaacagccug ucgcuguuga cccagaauaa ccugaacaaa ucccaguccg cacugggcac ugcuaucgag cguuugucuu ccggucugcg uaucaacagc gcgaaagacg augcggcagg acaggcgauu gcuaaccguu uuaccgcgaa caucaaaggu cugacucagg cuucccguaa cgcuaacgac gguaucucca uugcgcagac cacugaaggc gcgcugaacg aaaucaacaa caaccugcag cgugugcgug aacuggcggu ucagucugcg aaugguacua acucccaguc ugaccucgac uccauccagg cugaaaucac ccagcgccug aaugguacua acucccaguc ugaccucgac uccauccagg cugaaaucac ccagcgccug</pre>	120 180 240 300 360
<pre><211> LENGTH: 1518 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 82 auggcacaag ucauuaauac aaacagccug ucgcuguuga cccagaauaa ccugaacaaa ucccaguccg cacugggcac ugcuaucgag cguuugucuu ccggucugcg uaucaacagc gcgaaaagacg augcggcagg acaggcgauu gcuaaccguu uuaccgcgaa caucaaaggu cugacucagg cuucccguaa cgcuaacgac gguaucucca uugcgcagac cacugaaggc gcgcugaacg aaaucaacaa caaccugcag cgugugcgug aacuggcggu ucagucugcg aaugguacua acucccaguc ugaccucgac uccauccagg cugaaaucac ccagcgccug aacgaaaucg accguguauc cggccagacu caguucaacg gcgugaaagu ccuggcgcag</pre>	120 180 240 300 360 420
<pre><211> LENGTH: 1518 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 82 auggcacaag ucauuaauac aaacagccug ucgcuguuga cccagaauaa ccugaacaaa ucccaguccg cacugggcac ugcuaucgag cguuugucuu ccggucugcg uaucaacagc gcgaaagacg augcggcagg acaggcgauu gcuaaccguu uuaccgcgaa caucaaaggu cugacucagg cuucccguaa cgcuaacgac gguaucucca uugcgcagac cacugaaggc gcgcugaacg aaaucaacaa caaccugcag cgugugcgug aacuggcggu ucagucugcg aaugguacua acucccaguc ugaccucgac uccauccagg cugaaaucac ccagcgccug aacgaaaucg accguguauc cggccagacu caguucaacg gcgugaaagu ccuggcgcag gacaacaccc ugaccaucca gguuggugcc aacgacggug aaacuaucga uauugauuua</pre>	120 180 240 300 360 420
<pre><211> LENGTH: 1518 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 82 auggcacaag ucauuaauac aaacagccug ucgcuguuga cccagaauaa ccugaacaaa ucccaguccg cacugggcac ugcuaucgag cguuugucuu ccggucugcg uaucaacagc gcgaaagacg augcggcagg acaggcgauu gcuaaccguu uuaccgcgaa caucaaaggu cugacucagg cuucccguaa cgcuaacgac gguaucucca uugcgcagac cacugaaggc gcgcugaacg aaaucaacaa caaccugcag cgugugcgug aacuggcggu ucagucugcg aaugguacua acucccaguc ugaccucgac uccauccagg cugaaaucac ccagcgccug aacgaaaucg accguguauc cggccagacu caguucaacg gcgugaaagu ccuggcgcag gacaacaccc ugaccaucca gguuggugcc aacgacggug aaacuaucga uauugauuua aaagaaauca gcucuaaaac acugggacuu gauaagcuua auguccaaga ugccuacacc</pre>	120 180 240 300 360 420 480
<pre><211> LENGTH: 1518 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 82 auggcacaag ucauuaauac aaacagccug ucgcuguuga cccagaauaa ccugaacaaa ucccaguccg cacugggcac ugcuaucgag cguuugucuu ccggucugcg uaucaacagc gcgaaagacg augcggcagg acaggcgauu gcuaaccguu uuaccgcgaa caucaaaggu cugacucagg cuucccguaa cgcuaacgac gguaucucca uugcgcagac cacugaaggc gcgcugaacg aaaucaacaa caaccugcag cgugugcgug aacuggcggu ucagucugcg aaugguacua acucccaguc ugaccucgac uccauccagg cugaaaucac ccagcgccug aacgaaaucg accguguauc cggccagacu caguucaacg gcgugaaagu ccuggcgcag gacaacaccc ugaccaucca gguuggugcc aacgacggug aaacuaucga uauugauuua aaagaaauca gcucuaaaac acugggacuu gauaagcuua auguccaaga ugccuacacc ccgaaagaaa cugcuguaac cguugauaaa acuaccuaua aaaaugguac agauccuauu</pre>	120 180 240 300 360 420 480 540 600
<pre><211> LENGTH: 1518 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 82 auggcacaag ucauuaauac aaacagccug ucgcuguuga cccagaauaa ccugaacaaa ucccaguccg cacugggcac ugcuaucgag cguuugucuu ccggucugcg uaucaacagc gcgaaagacg augcggcagg acaggcgauu gcuaaccguu uuaccgcgaa caucaaaggu cugacucagg cuucccguaa cgcuaacgac gguaucucca uugcgcagac cacugaaggc gcgcugaacg aaaucaacaa caaccugcag cgugugcgug aacuggcggu ucagucugcg aaugguacua acucccaguc ugaccucgac uccauccagg cugaaaucac ccagcgccug aacgaaaucg accguguauc cggccagacu caguucaacg gcgugaaagu ccuggcgcag gacaacaccc ugaccaucca gguuggugcc aacgacggug aaacuaucga uauugauuua aaagaaauca gcucuaaaac acugggacuu gauaagcuua auguccaaga ugccuacacc ccgaaagaaa cugcuguaac cguugauaaa acuaccuaua aaaaugguac agauccuauu acagcccaga gcaauacuga uauccaaacu gcaauuggcg guggugcaac ggggguuacu</pre>	120 180 240 300 360 420 480 540 600 660
<pre><211> LENGTH: 1518 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 82 auggcacaag ucauuaauac aaacagccug ucgcuguuga cccagaauaa ccugaacaaa ucccaguccg cacugggcac ugcuaucgag cguuugucuu ccggucugcg uaucaacagc gcgaaaagacg augcggcagg acaggcgauu gcuaaccguu uuaccgcgaa caucaaaaggu cugacucagg cuucccguaa cgcuaacgac gguaucucca uugcgcagac cacugaaggc gcgcugaacg aaaucaacaa caaccugcag cgugugcgug aacuggcggu ucagucugcg aaugguacua acucccaguc ugaccucgac uccauccagg cugaaaucac ccagcgccug aacgaaaucg accguguauc cggccagacu caguucaacg gcgugaaagu ccuggcgcag gacaacaccc ugaccaucca gguuggugca aacgacggug aaacuaucga uauugauuua aaagaaauca gcucuaaaac acugggacuu gauaagcuua auguccaaga ugccuacacc ccgaaagaaa cugcuguaac cguugauaaa acuaccuaua aaaaugguac agauccuauu acagcccaga gcaauacuga uauccaaacu gcaauuggcg guggugcaac ggggguuacu ggggcugaua ucaaauuuaa agauggucaa uacuauuuag auguuaaagg cggugcuucu</pre>	120 180 240 300 360 420 480 540 600 660 720
<pre><211> LENGTH: 1518 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 82 auggcacaag ucauuaauac aaacagccug ucgcuguuga cccagaauaa ccugaacaaa ucccaguccg cacugggcac ugcuaucgag cguuugucuu ccggucugcg uaucaacagc gcgaaagacg augcggcagg acaggcgauu gcuaaccguu uuaccgcgaa caucaaaggu cugacucagg cuucccguaa cgcuaacgac gguaucucca uugcgcagac cacugaaggc gcgcugaacg aaaucaacaa caaccugcag cgugugcgug aacuggcggu ucagucugcg aaugguacua acucccaguc ugaccucgac uccauccagg cugaaaucac ccagcgccug aacgaaaucg accguguauc cggccagacu caguucaacg gcgugaaagu ccuggcgcag gacaacaccc ugaccaucca gguuggugcc aacgacggug aaacuaucga uauugauuua aaagaaauca gcucuaaaac acugggacuu gauaagcuua auguccaaga ugccuacacc ccgaaagaaa cugcuguaac cguugauaaa acuaccuaua aaaaugguac agauccuauu acagcccaga gcaauacuga uauccaaacu gcaauuggcg guggugcaac ggggguuacu ggggcugaua ucaaauuuaa agauggucaa uacuauuuag auguuaaagg cggugcuucu gcugguguuu auaaagccac uuaugaugaa acuacaaaga aaguuaauau ugauacgacu</pre>	120 180 240 300 360 420 480 540 600 660 720

cuugcugcag cagggguuac uggcgccgau aaggacaaua cuagccuugu aaaacuaucg

uuugaggaua	aaaacgguaa	gguuauugau	gguggcuaug	cagugaaaau	gggcgacgau	1020
uucuaugccg	cuacauauga	ugagaaaaca	ggugcaauua	cugcuaaaac	cacuacuuau	1080
acagauggua	cuggcguugc	ucaaacugga	gcugugaaau	uugguggcgc	aaaugguaaa	1140
ucugaaguug	uuacugcuac	cgaugguaag	acuuacuuag	caagcgaccu	ugacaaacau	1200
aacuucagaa	caggcgguga	gcuuaaagag	guuaauacag	auaagacuga	aaacccacug	1260
cagaaaauug	augcugccuu	ggcacagguu	gauacacuuc	guucugaccu	gggugcgguu	1320
cagaaccguu	ucaacuccgc	uaucaccaac	cugggcaaua	ccguaaauaa	ccugucuucu	1380
gcccguagcc	guaucgaaga	uuccgacuac	gcaaccgaag	ucuccaacau	gucucgcgcg	1440
cagauucugc	agcaggccgg	uaccuccguu	cuggcgcagg	cgaaccaggu	uccgcaaaac	1500
guccucucuu	uacugcgu					1518
<220> FEAT	TH: 1790 : RNA NISM: Artif: URE: R INFORMATIO	_	nce ic Polynucle	eotide		
ggggaaauaa	gagagaaaag	aagaguaaga	agaaauauaa	gagccaccau	ggcacaaguc	60
auuaauacaa	acagccuguc	gcuguugacc	cagaauaacc	ugaacaaauc	ccaguccgca	120
cugggcacug	cuaucgagcg	uuugucuucc	ggucugcgua	ucaacagcgc	gaaagacgau	180
geggeaggae	aggcgauugc	uaaccguuuu	accgcgaaca	ucaaaggucu	gacucaggcu	240
ucccguaacg	cuaacgacgg	uaucuccauu	gcgcagacca	cugaaggcgc	gcugaacgaa	300
aucaacaaca	accugcagcg	ugugcgugaa	cuggcgguuc	agucugcgaa	ugguacuaac	360
ucccagucug	accucgacuc	cauccaggcu	gaaaucaccc	agcgccugaa	cgaaaucgac	420
cguguauccg	gccagacuca	guucaacggc	gugaaagucc	uggcgcagga	caacacccug	480
accauccagg	uuggugccaa	cgacggugaa	acuaucgaua	uugauuuaaa	agaaaucagc	540
ucuaaaacac	ugggacuuga	uaagcuuaau	guccaagaug	ccuacacccc	gaaagaaacu	600
gcuguaaccg	uugauaaaac	uaccuauaaa	aaugguacag	auccuauuac	agcccagagc	660
aauacugaua	uccaaacugc	aauuggcggu	ggugcaacgg	ggguuacugg	ggcugauauc	720
aaauuuaaag	auggucaaua	cuauuuagau	guuaaaggcg	gugcuucugc	ugguguuuau	780
aaagccacuu	augaugaaac	uacaaagaaa	guuaauauug	auacgacuga	uaaaacuccg	840
uuggcaacug	cggaagcuac	agcuauucgg	ggaacggcca	cuauaaccca	caaccaaauu	900
gcugaaguaa	caaaagaggg	uguugauacg	accacaguug	cggcucaacu	ugcugcagca	960
gggguuacug	gcgccgauaa	ggacaauacu	agccuuguaa	aacuaucguu	ugaggauaaa	1020
aacgguaagg	uuauugaugg	uggcuaugca	gugaaaaugg	gcgacgauuu	cuaugccgcu	1080
acauaugaug	agaaaacagg	ugcaauuacu	gcuaaaacca	cuacuuauac	agaugguacu	1140
ggcguugcuc	aaacuggagc	ugugaaauuu	gguggcgcaa	augguaaauc	ugaaguuguu	1200
acugcuaccg	augguaagac	uuacuuagca	agegaeeuug	acaaacauaa	cuucagaaca	1260
ggcggugagc	uuaaagaggu	uaauacagau	aagacugaaa	acccacugca	gaaaauugau	1320
gcugccuugg	cacagguuga	uacacuucgu	ucugaccugg	gugcgguuca	gaaccguuuc	1380

aacuccgcua ucaccaaccu gggcaauacc guaaauaacc ugucuucugc ccguagccgu 1440

```
aucgaagauu ccgacuacgc aaccgaaguc uccaacaugu cucgcgcgca gauucugcag
caggeeggua ecuceguucu ggegeaggeg aaccagguuc egeaaaacgu ecucucuuua
                                                               1560
cugeguugau aauaggeugg ageeueggug geeaugeuue uugeeeeuug ggeeueeeee
cagececuee ucceeuuceu geaceeguae ecceguggue uuugaauaaa gueugagugg
1790
<210> SEQ ID NO 84
<211> LENGTH: 13
<212> TYPE: PRT
<213 > ORGANISM: Salmonella typhimurium
<400> SEQUENCE: 84
Leu Gln Arg Val Arg Glu Leu Ala Val Gln Ser Ala Asn
<210> SEQ ID NO 85
<211> LENGTH: 539
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Polypeptide
<400> SEOUENCE: 85
Met Ser Trp Lys Val Val Ile Ile Phe Ser Leu Leu Ile Thr Pro Gln
                                10
His Gly Leu Lys Glu Ser Tyr Leu Glu Glu Ser Cys Ser Thr Ile Thr
Glu Gly Tyr Leu Ser Val Leu Arg Thr Gly Trp Tyr Thr Asn Val Phe
                         40
Thr Leu Glu Val Gly Asp Val Glu Asn Leu Thr Cys Ser Asp Gly Pro
Ser Leu Ile Lys Thr Glu Leu Asp Leu Thr Lys Ser Ala Leu Arg Glu
Leu Lys Thr Val Ser Ala Asp Gln Leu Ala Arg Glu Glu Gln Ile Glu
Asn Pro Gly Ser Gly Ser Phe Val Leu Gly Ala Ile Ala Leu Gly Val
                   105
Ala Ala Ala Ala Val Thr Ala Gly Val Ala Ile Cys Lys Thr Ile
Arg Leu Glu Ser Glu Val Thr Ala Ile Asn Asn Ala Leu Lys Lys Thr
Asn Glu Ala Val Ser Thr Leu Gly Asn Gly Val Arg Val Leu Ala Phe
Ala Val Arg Glu Leu Lys Asp Phe Val Ser Lys Asn Leu Thr Arg Ala
Leu Asn Lys Asn Lys Cys Asp Ile Asp Asp Leu Lys Met Ala Val Ser
                             185
Phe Ser Gln Phe Asn Arg Arg Phe Leu Asn Val Val Arg Gln Phe Ser
                         200
Asp Asn Ala Gly Ile Thr Pro Ala Ile Ser Leu Asp Leu Met Thr Asp
Ala Glu Leu Ala Arg Ala Val Pro Asn Met Pro Thr Ser Ala Gly Gln
Ile Lys Leu Met Leu Glu Asn Arg Ala Met Val Arg Arg Lys Gly Phe
```

				245					250					255	
Gly	Ile	Leu	Cys 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Cys	Trp	Ile 285	Val	Lys	Ala
Ala	Pro 290	Ser	CÀa	Ser	Glu	Lys 295	Lys	Gly	Asn	Tyr	Ala 300	CAa	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	CÀa	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	ГÀа	Asp 325	CÀa	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Lys	Glu	350 250	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Cys	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Cys
Tyr 385	Lys	Gly	Val	Ser	390 CAa	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
ГÀа	Gln	Leu	Asn	Lys 405	Gly	CAa	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	ГÀа	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	ГÀа	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile	Lys 450	Phe	Pro	Glu	Asp	Gln 455	Phe	Asn	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Asn	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu	Ser	Ser	Ala	Glu 485	Lys	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu	Ile	Ala	Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile	Ile	Lys 515	Lys	Thr	rys	Lys	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser
Gly	Val 530	Thr	Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					
<213 <213 <223	0 > SI 1 > LI 2 > TY 3 > OI 0 > FI 3 > O	ENGTI (PE : RGAN) EATUI	H: 53 PRT ISM: RE:	39 Art:			-		oly <u>r</u>	pept:	ide				
< 400	D> SI	EQUEI	ICE :	86											
Met 1	Ser	Trp	Lys	Val 5	Val	Ile	Ile	Phe	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln
His	Gly	Leu	Lys 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	Cys	Ser	Thr	Ile	Thr
Glu	Gly	Tyr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr	Leu 50	Glu	Val	Gly	Asp	Val 55	Glu	Asn	Leu	Thr	Cys	Ser	Asp	Gly	Pro
Ser	Leu	Ile	ГЛа	Thr	Glu	Leu	Asp	Leu	Thr	rys	Ser	Ala	Leu	Arg	Glu

-continued	ŀ
------------	---

_															
65					70					75					80
Leu	Lys	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Gly	Ser 100	Gly	Ser	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val
Ala	Ala	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Val	Ala	Ile	Сув 125	Lys	Thr	Ile
Arg	Leu 130	Glu	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	Lys	Lys	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	ràa	Asp	Phe	Val	Ser 170	Lys	Asn	Leu	Thr	Arg 175	Ala
Ile	Asn	Lys	Asn 180	ГЛа	CÀa	Asp	Ile	Asp 185	Asp	Leu	Lys	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly	Ile	Leu	Cys 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Сув	Trp	Ile 285	Val	Lys	Ala
Ala	Pro 290	Ser	CÀa	Ser	Glu	Lys 295	Lys	Gly	Asn	Tyr	Ala 300	СЛа	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	Càa	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	Lys	Asp 325	CÀa	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	335 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Lys	Glu	350 Cys	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Сув	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Cys
Tyr 385	Lys	Gly	Val	Ser	390 CAa	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
Lys	Gln	Leu	Asn	Lys 405	Gly	CÀa	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	Lys	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	ГЛа	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile	Lys 450	Phe	Pro	Glu	His	Gln 455	Trp	His	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Asn	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu	Ser	Ser	Ala	Glu 485	Lys	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile

-continued

Leu Ile Ala Val Leu Gly Ser Ser Met Ile Leu Val Ser Ile Phe Ile 505 Ile Ile Lys Lys Thr Lys Lys Pro Thr Gly Ala Pro Pro Glu Leu Ser 520 Gly Val Thr Asn Asn Gly Phe Ile Pro His Asn <210> SEQ ID NO 87 <211> LENGTH: 539 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide <400> SEQUENCE: 87 Met Ser Trp Lys Val Val Ile Ile Phe Ser Leu Leu Ile Thr Pro Gln His Gly Leu Lys Glu Ser Tyr Leu Glu Glu Ser Cys Ser Thr Ile Thr Glu Gly Tyr Leu Ser Val Leu Arg Thr Gly Trp Tyr Thr Asn Val Phe Thr Leu Glu Val Gly Asp Val Glu Asn Leu Thr Cys Ser Asp Gly Pro Ser Leu Ile Lys Thr Glu Leu Asp Leu Leu Lys Ser Ala Leu Arg Glu Leu Lys Thr Val Ser Ala Asp Gln Leu Ala Arg Glu Glu Gln Ile Glu Asn Pro Gly Ser Gly Ser Phe Val Leu Gly Ala Ile Ala Leu Gly Val 105 Ala Ala Ala Ala Val Thr Ala Gly Val Ala Ile Ala Lys Thr Ile 120 Arg Leu Glu Ser Glu Val Thr Ala Ile Asn Asn Ala Leu Lys Lys Thr Asn Glu Ala Val Ser Thr Leu Gly Asn Gly Val Arg Val Leu Ala Thr 155 Ala Val Arg Glu Leu Lys Asp Phe Val Ser Lys Asn Leu Thr Arg Ala Ile Asn Lys Asn Lys Cys Asp Ile Pro Asp Leu Lys Met Ala Val Ser Phe Ser Gln Phe Asn Arg Arg Phe Leu Asn Val Val Arg Gln Phe Ser Asp Asn Ala Gly Ile Thr Pro Ala Ile Ser Leu Asp Leu Met Thr Asp Ala Glu Leu Ala Arg Ala Val Pro Asn Met Pro Thr Ser Ala Gly Gln Ile Lys Leu Met Leu Glu Asn Arg Ala Met Val Arg Arg Lys Gly Phe Gly Ile Leu Ile Gly Val Tyr Gly Ser Ser Val Ile Tyr Met Val Gln 265 Leu Pro Ile Phe Gly Val Ile Asp Thr Pro Cys Trp Ile Val Lys Ala Ala Pro Ser Cys Ser Glu Lys Lys Gly Asn Tyr Ala Cys Leu Leu Arg 295 300 Glu Asp Gln Gly Trp Tyr Cys Gln Asn Ala Gly Ser Thr Val Tyr Tyr 310 315

-continued

Pro Asn Glu Lys Asp Cys Glu Thr Arg Gly Asp His Val Phe Cys Asp Thr Ala Ala Gly Ile Asn Val Ala Glu Gln Ser Lys Glu Cys Asn Ile Asn Ile Ser Thr Thr Asn Tyr Pro Cys Lys Val Ser Thr Gly Arg His Pro Ile Ser Met Val Ala Leu Ser Pro Leu Gly Ala Leu Val Ala Cys Tyr Lys Gly Val Ser Cys Ser Ile Gly Ser Asn Arg Val Gly Ile Ile Lys Gln Leu Asn Lys Gly Cys Ser Tyr Ile Thr Asn Gln Asp Ala Asp Thr Val Thr Ile Asp Asn Thr Val Tyr Gln Leu Ser Lys Val Glu Gly Glu Gln His Val Ile Lys Gly Arg Pro Val Ser Ser Ser Phe Asp Pro 440 Ile Lys Phe Pro Glu Asp Gln Phe Gln Val Ala Leu Asp Gln Val Phe 455 Glu Asn Ile Glu Asn Ser Gln Ala Leu Val Asp Gln Ser Asn Arg Ile Leu Ser Ser Ala Glu Lys Gly Asn Thr Gly Phe Ile Ile Val Ile Ile 490 Leu Ile Ala Val Leu Gly Ser Ser Met Ile Leu Val Ser Ile Phe Ile 505 Ile Ile Lys Lys Thr Lys Lys Pro Thr Gly Ala Pro Pro Glu Leu Ser 520 Gly Val Thr Asn Asn Gly Phe Ile Pro His Asn 530 <210> SEQ ID NO 88 <211> LENGTH: 539 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide <400> SEQUENCE: 88 Met Ser Trp Lys Val Val Ile Ile Phe Ser Leu Leu Ile Thr Pro Gln His Gly Leu Lys Glu Ser Tyr Leu Glu Glu Ser Cys Ser Thr Ile Thr Glu Gly Tyr Leu Ser Val Leu Arg Thr Gly Trp Tyr Thr Asn Val Phe Thr Leu Glu Val Gly Asp Val Glu Asn Leu Thr Cys Ser Asp Gly Pro Ser Leu Ile Lys Thr Glu Leu Asp Leu Leu Lys Ser Ala Leu Arg Glu Leu Lys Thr Val Ser Ala Asp Gln Leu Ala Arg Glu Glu Gln Ile Glu Asn Pro Gly Ser Gly Ser Phe Val Leu Gly Ala Ile Ala Leu Gly Val Ala Ala Ala Ala Val Thr Ala Gly Val Ala Ile Ala Lys Thr Ile 120 125 Arg Leu Glu Ser Glu Val Thr Ala Ile Asn Asn Ala Leu Lys Lys Thr 135

Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
	Val	Arg	Glu	Leu 165	Lys	Asp	Phe	Val	Ser 170		Asn	Leu	Thr	Arg 175	
Ile	Asn	Lys	Asn 180	Lys	Cys	Asp	Ile	Pro 185	Asp	Leu	Гуз	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Cys	Trp	Ile 285	Val	Lys	Ala
Ala	Pro 290	Ser	Cys	Ser	Glu	Lув 295	Lys	Gly	Asn	Tyr	Ala 300	Cys	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	CÀa	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	ГÀа	Asp 325	CAa	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	335 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	ГÀз	Glu	Сув 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	СЛа	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Cys
Tyr 385	Lys	Gly	Val	Ser	390	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
Lys	Gln	Leu	Asn	Lys 405	Gly	CÀa	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	Lys	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	ГÀа	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile	Lys 450	Phe	Pro	Glu	Asn	Gln 455	Phe	Gln	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Asn	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu	Ser	Ser	Ala	Glu 485	ГÀа	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu	Ile	Ala	Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile	Ile	Lys 515	Lys	Thr	ГÀа	ГЛа	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser
Gly	Val 530	Thr	Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					

<213 <220)> FI	RGANI EATUF	ISM: RE:				Seque								
	3 > 01 0 > SI				rion	: Syı	nthet	ic I	Polyg	pept:	ide				
					Val	Ile	Ile	Phe	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln
His	Gly	Leu	Lys 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	СЛа	Ser	Thr	Ile	Thr
Glu	Gly	Tyr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr	Leu 50	Glu	Val	Gly	Asp	Val 55	Glu	Asn	Leu	Thr	60 CÀa	Ser	Asp	Gly	Pro
Ser 65	Leu	Ile	Lys	Thr	Glu 70	Leu	Asp	Leu	Leu	Lys 75	Ser	Ala	Leu	Arg	Glu 80
Leu	Lys	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Gly	Ser 100	Gly	Ser	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val
Ala	Ala	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Val	Ala	Ile	Ala 125	ГÀа	Thr	Ile
Arg	Leu 130	Glu	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	ГÀа	Lys	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	Lys	Asp	Phe	Val	Leu 170	Lys	Asn	Leu	Thr	Arg 175	Ala
Ile	Asn	Lys	Asn 180	ГÀв	СЛа	Asp	Ile	Pro 185	Asp	Leu	Lys	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Сув	Trp	Ile 285	Val	Lys	Ala
Ala	Pro 290	Ser	Cys	Ser	Glu	Lys 295	Lys	Gly	Asn	Tyr	Ala 300	Сув	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	CAa	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	ГЛа	Asp 325	CAa	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	335 Cya	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Lys	Glu	Сув 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	СЛа	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Сув

Tyr 385	Lys	Gly	Val	Ser	390 Cys	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
Lys	Gln	Leu	Asn	Lys 405	Gly	Cys	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	Lys	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile	Lys 450	Phe	Pro	Glu	Asp	Gln 455	Phe	Gln	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Asn	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu	Ser	Ser	Ala	Glu 485	Lys	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu	Ile	Ala	Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile	Ile	Lys 515	Lys	Thr	Lys	Lys	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser
Gly	Val 530	Thr	Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					
<211 <212 <213 <220	L> LE 2> TY 3> OF 0> FE	EATUI	H: 53 PRT ISM: RE:	39 Art:			Seque nthet		oly <u>r</u>	p e pt:	ide				
< 400)> SI	EQUEI	ICE :	90											
Met 1	Ser	Trp	Lys	Val 5	Val	Ile	Ile	Phe	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln
His	Gly	Leu	Lys 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	Càa	Ser	Thr 30	Ile	Thr
Glu	Gly	Tyr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr	Leu 50	Glu	Val	Gly	Asp	Val 55	Glu	Asn	Leu	Thr	60 Cys	Ser	Asp	Gly	Pro
Ser 65	Leu	Ile	Lys	Thr	Glu 70	Leu	Asp	Leu	Leu	Lys 75	Ser	Ala	Leu	Arg	Glu 80
Leu	Lys	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Gly	Ser 100	Gly	Ser	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val
Ala	Ala	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Val	Ala	Ile	Ala 125	Lys	Thr	Ile
Arg	Leu 130	Glu	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	ГÀв	ГÀв	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	Lys	Asp	Phe	Val	Leu 170	Lys	Asn	Leu	Thr	Arg 175	Ala
Ile			_			7	Tle	Dro	7 an	T.011	Lve	Met	Δla	77-7	Car
	Asn	Lys	Asn 180	Lys	Cys	Asp	110	185	Asp	пец	БуБ		190	vai	Del

-continued

Asp Asn Ala Gly Ile Thr Pro Ala Ile Ser Leu Asp Leu Met Thr Asp 215 Ala Glu Leu Ala Arg Ala Val Pro Asn Met Pro Thr Ser Ala Gly Gln Ile Lys Leu Met Leu Glu Asn Arg Ala Met Val Arg Arg Lys Gly Phe 250 Gly Ile Leu Ile Gly Val Tyr Gly Ser Ser Val Ile Tyr Met Val Gln Leu Pro Ile Phe Gly Val Ile Asp Thr Pro Cys Trp Ile Val Lys Ala Ala Pro Ser Cys Ser Glu Lys Lys Gly Asn Tyr Ala Cys Leu Leu Arg Glu Asp Gln Gly Trp Tyr Cys Gln Asn Ala Gly Ser Thr Val Tyr Tyr Pro Asn Glu Lys Asp Cys Glu Thr Arg Gly Asp His Val Phe Cys Asp 325 330 335 Thr Ala Ala Gly Ile Asn Val Ala Glu Gln Ser Lys Glu Cys Asn Ile Asn Ile Ser Thr Thr Asn Tyr Pro Cys Lys Val Ser Thr Gly Arg His Pro Ile Ser Met Val Ala Leu Ser Pro Leu Gly Ala Leu Val Ala Cys 375 Tyr Lys Gly Val Ser Cys Ser Ile Gly Ser Asn Arg Val Gly Ile Ile 390 395 Lys Gln Leu Asn Lys Gly Cys Ser Tyr Ile Thr Asn Gln Asp Ala Asp Thr Val Thr Ile Asp Asn Thr Val Tyr Gln Leu Ser Lys Val Glu Gly 425 Glu Gln His Val Ile Lys Gly Arg Pro Val Ser Ser Ser Phe Asp Pro 440 Ile Lys Phe Pro Glu Asn Gln Phe Gln Val Ala Leu Asp Gln Val Phe 455 Glu Asn Ile Glu Asn Ser Gln Ala Leu Val Asp Gln Ser Asn Arg Ile Leu Ser Ser Ala Glu Lys Gly Asn Thr Gly Phe Ile Ile Val Ile Ile 490 Leu Ile Ala Val Leu Gly Ser Ser Met Ile Leu Val Ser Ile Phe Ile Ile Ile Lys Lys Thr Lys Lys Pro Thr Gly Ala Pro Pro Glu Leu Ser Gly Val Thr Asn Asn Gly Phe Ile Pro His Asn <210> SEQ ID NO 91 <211> LENGTH: 539 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide <400> SEQUENCE: 91 Met Ser Trp Lys Val Val Ile Ile Phe Ser Leu Leu Ile Thr Pro Gln 10 His Gly Leu Lys Glu Ser Tyr Leu Glu Glu Ser Cys Ser Thr Ile Thr 25

Glu	Gly	Tyr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr	Leu 50	Pro	Val	Gly	Asp	Val 55	Glu	Asn	Leu	Thr	Cys	Ser	Asp	Gly	Pro
Ser 65	Leu	Ile	Lys	Thr	Glu 70	Leu	Asp	Leu	Leu	Lys 75	Ser	Ala	Leu	Arg	Glu 80
Leu	Lys	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Gly	Ser 100	Gly	Ser	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val
Ala	Ala	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Val	Ala	Ile	Ala 125	Lys	Thr	Ile
Arg	Leu 130	Glu	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	Lys	ГЛа	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	ГÀа	Asp	Phe	Val	Ser 170	Lys	Asn	Leu	Thr	Arg 175	Ala
Ile	Asn	Lys	Asn 180	ГÀа	CAa	Asp	Ile	Asp 185	Asp	Leu	Lys	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	ГÀв	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Сув	Trp	Ile 285	Val	ГÀа	Ala
Ala	Pro 290	Ser	Càa	Ser	Glu	Lys 295	Lys	Gly	Asn	Tyr	Ala 300	СЛа	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	СЛа	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu		Asp 325	CAa	Glu	Thr		Gly 330		His	Val	Phe	Сув 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	ГÀЗ	Glu	Сув 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Cys	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Cys
Tyr 385	Lys	Gly	Val	Ser	Cys 390	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
Lys	Gln	Leu	Asn	Lys 405	Gly	Сув	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	ГЛа	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	ГÀа	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile	Lys	Phe	Pro	Glu	Asp	Gln	Phe	Gln	Val	Ala	Leu	Asp	Gln	Val	Phe

	450					455					460				
Glu 465	Asn	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu	Ser	Ser	Ala	Glu 485	Lys	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu	Ile	Ala	Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile	Ile	Lys 515	Lys	Thr	Lys	Lys	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser
Gly	Val 530	Thr	Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					
<211 <212)> SE L> LE L> TY	ENGTH PE:	1: 53 PRT	39			7								
<220)> FE	EATUR	RE:		ific:		_								
					rion:	: Syr	itnet	ic E	ютАІ	pept:	Lae				
)> SE				Val	T10	T1.0	Dho	Cor	T 011	Lou	T10	The	Dro	Cl n
1				5					10					15	
			20		Ser			25			_		30		
Glu	Gly	Tyr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr	Leu 50	Pro	Val	Gly	Asp	Val 55	Glu	Asn	Leu	Thr	60 Gåa	Ser	Asp	Gly	Pro
Ser 65	Leu	Ile	Lys	Thr	Glu 70	Leu	Asp	Leu	Leu	Lys 75	Ser	Ala	Leu	Arg	Glu 80
Leu	Lys	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Gly	Ser 100	Gly	Ser	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val
Ala	Ala	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Val	Ala	Ile	Ala 125	Lys	Thr	Ile
Arg	Leu 130	Glu	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	Lys	Lys	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	Lys	Asp	Phe	Val	Ser 170	Lys	Asn	Leu	Thr	Arg 175	Ala
Ile	Asn	Lys	Asn 180	Lys	CAa	Asp	Ile	Asp 185	Asp	Leu	Lys	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile	Phe	Gly	Val	Ile	Asp	Thr	Pro	Cys	Trp	Ile	Val	Lys	Ala

285

-continued

280

		2/5					280					285			
Ala	Pro 290	Ser	Cys	Ser	Glu	Lys 295	Lys	Gly	Asn	Tyr	Ala 300	Cys	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	Cas	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	Lys	Asp 325	Сув	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Сув 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	ГЛа	Glu	Сув 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Cys	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Cys
Tyr 385	Lys	Gly	Val	Ser	390	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
ГÀа	Gln	Leu	Asn	Lys 405	Gly	CÀa	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	Lys	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	ГÀа	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile	Lys 450	Phe	Pro	Glu	Asn	Gln 455	Phe	Gln	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Asn	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu	Ser	Ser	Ala	Glu 485	ГÀа	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu	Ile	Ala	Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile	Ile	Lys 515	Lys	Thr	Lys	Lys	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser
Gly	Val 530	Thr	Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					
<213 <213 <213 <220)> FI	ENGTI YPE : RGAN EATUI	H: 53 PRT ISM: RE:	39 Art:			Seque nthet		?olyţ	pept:	ide				
< 400)> SI	EQUEI	ICE :	93											
Met 1	Ser	Trp	Lys	Val 5	Val	Ile	Ile	Phe	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln
His	Gly	Leu	Lys 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	Cys	Ser	Thr 30	Ile	Thr
Glu	Gly	Tyr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr	Leu 50	Glu	Val	Gly	Asp	Val 55	Glu	Asn	Leu	Thr	60 Cys	Ser	Asp	Gly	Pro
Ser 65	Leu	Ile	Lys	Thr	Glu 70	Leu	Asp	Leu	Leu	Lys 75	Ser	Ala	Leu	Arg	Glu 80
Leu	Lys	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Gly	Ser	Gly	Ser	Phe	Val	Leu	Gly	Ala	Ile	Ala	Leu	Gly	Val

			100					105					110		
			100					103					110		
Ala	Ala	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Val	Ala	Ile	Ala 125	ГÀа	Thr	Ile
Arg	Leu 130	Glu	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	Lys	Lys	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	ràs	Asp	Phe	Val	Ser 170	ГÀз	Asn	Leu	Thr	Arg 175	Ala
Ile	Asn	rys	Asn 180	ГÀа	CAa	Asp	Ile	Asp 185	Asp	Leu	ГÀа	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Сув	Trp	Ile 285	Val	Lys	Ala
Ala	Pro 290	Ser	CÀa	Ser	Glu	Lys 295	Lys	Gly	Asn	Tyr	Ala 300	CÀa	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	CAa	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	Lys	Asp 325	CAa	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Сув 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Lys	Glu	Сув 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Сув	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Сув
Tyr 385	Lys	Gly	Val	Ser	390 CAa	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
Lys	Gln	Leu	Asn	Lys 405	Gly	CÀa	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	ГÀа	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	ГÀа	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile	Lys 450	Phe	Pro	Glu	Asp	Gln 455	Phe	Gln	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Asn	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu	Ser	Ser	Ala	Glu 485	Lys	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu	Ile	Ala	Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile	Ile	Lys 515	Lys	Thr	Lys	Lys	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser

Gly	Val 530	Thr	Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					
<211 <212 <213 <220	L> LE 2> TY 3> OF 0> FE	EATUF	H: 53 PRT [SM: RE:	39 Art:	Lfici TION:		_		Polyp	pepti	_de				
< 400)> SE	EQUEN	ICE :	94											
Met 1	Ser	Trp	Lys	Val 5	Val	Ile	Ile	Phe	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln
His	Gly	Leu	Lys 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	CAa	Ser	Thr 30	Ile	Thr
Glu	Gly	Tyr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr	Leu 50	Glu	Val	Gly	Asp	Leu 55	Glu	Asn	Leu	Thr	Cys	Ser	Asp	Gly	Pro
Ser 65	Leu	Ile	Lys	Thr	Glu 70	Leu	Asp	Leu	Thr	Lys 75	Ser	Ala	Leu	Arg	Glu 80
Leu	Lys	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Gly	Ser 100	Gly	Ser	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val
Ala	Ala	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Val	Ala	Ile	Ala 125	Lys	Thr	Ile
Arg	Leu 130	Glu	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	Lys	Lys	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	Lys	Asp	Phe	Val	Ser 170	Lys	Asn	Leu	Thr	Arg 175	Ala
Ile	Asn	Lys	Asn 180	Lys	Cys	Asp	Ile	Asp 185	Asp	Leu	Lys	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Cys	Trp	Ile 285	Val	Lys	Ala
Ala	Pro 290	Ser	Cys	Ser	Glu	Lys 295	Lys	Gly	Asn	Tyr	Ala 300	Cys	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	Cys	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	Lys	Asp 325	Cys	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Cys 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Lys	Glu	Сув 350	Asn	Ile

-continued

Asn Ile Ser Thr Thr Asn Tyr Pro Cys Lys Val Ser Thr Gly Arg His 360 Pro Ile Ser Met Val Ala Leu Ser Pro Leu Gly Ala Leu Val Ala Cys 375 Tyr Lys Gly Val Ser Cys Ser Ile Gly Ser Asn Arg Val Gly Ile Ile Lys Gln Leu Asn Lys Gly Cys Ser Tyr Ile Thr Asn Gln Asp Ala Asp Thr Val Thr Ile Asp Asn Thr Val Tyr Gln Leu Ser Lys Val Glu Gly Glu Gln His Val Ile Lys Gly Arg Pro Val Ser Ser Ser Phe Asp Pro Ile Lys Phe Pro Glu Asp Gln Phe Gln Val Ala Leu Asp Gln Val Phe Glu Asn Ile Glu Asn Ser Gln Ala Leu Val Asp Gln Ser Asn Arg Ile Leu Ser Ser Ala Glu Lys Gly Asn Thr Gly Phe Ile Ile Val Ile Ile 485 490 Leu Ile Ala Val Leu Gly Ser Ser Met Ile Leu Val Ser Ile Phe Ile 505 Ile Ile Lys Lys Thr Lys Lys Pro Thr Gly Ala Pro Pro Glu Leu Ser 520 Gly Val Thr Asn Asn Gly Phe Ile Pro His Asn <210> SEQ ID NO 95 <211> LENGTH: 539 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide <400> SEQUENCE: 95 Met Ser Trp Lys Val Val Ile Ile Phe Ser Leu Leu Ile Thr Pro Gln 10 His Gly Leu Lys Glu Ser Tyr Leu Glu Glu Ser Cys Ser Thr Ile Thr Glu Gly Tyr Leu Ser Val Leu Arg Thr Gly Trp Tyr Thr Asn Val Phe Thr Leu Glu Val Gly Asp Val Glu Asn Leu Thr Cys Ser Asp Gly Pro Ser Leu Ile Lys Thr Glu Leu Asp Leu Thr Lys Ser Ala Leu Arg Glu Leu Lys Thr Val Ser Ala Asp Gln Leu Ala Arg Glu Glu Gln Ile Glu Asn Pro Gly Ser Gly Ser Phe Val Leu Gly Ala Ile Ala Leu Gly Val Ala Ala Ala Ala Val Thr Ala Gly Val Ala Ile Ala Lys Thr Ile 120 Arg Leu Glu Ser Glu Val Thr Ala Ile Asn Asn Ala Leu Lys Lys Thr 135 Asn Glu Ala Val Ser Thr Leu Gly Asn Gly Val Arg Val Leu Ala Thr 150 155 Ala Val Arg Glu Leu Lys Asp Phe Val Leu Lys Asn Leu Thr Arg Ala 170

Ile Asn Lys Asn Lys Cys Asp Ile Asp Asp Leu Lys Met Ala Val Ser Phe Ser Gln Phe Asn Arg Arg Phe Leu Asn Val Val Arg Gln Phe Ser 200 Asp Asn Ala Gly Ile Thr Pro Ala Ile Ser Leu Asp Leu Met Thr Asp Ala Glu Leu Ala Arg Ala Val Pro Asn Met Pro Thr Ser Ala Gly Gln Ile Lys Leu Met Leu Glu Asn Arg Ala Met Val Arg Arg Lys Gly Phe Gly Ile Leu Ile Gly Val Tyr Gly Ser Ser Val Ile Tyr Met Val Gln Leu Pro Ile Phe Gly Val Ile Asp Thr Pro Cys Trp Ile Val Lys Ala Ala Pro Ser Cys Ser Glu Lys Lys Gly Asn Tyr Ala Cys Leu Leu Arg 295 Glu Asp Gln Gly Trp Tyr Cys Gln Asn Ala Gly Ser Thr Val Tyr Tyr 310 315 Pro Asn Glu Lys Asp Cys Glu Thr Arg Gly Asp His Val Phe Cys Asp Thr Ala Ala Gly Ile Asn Val Ala Glu Gln Ser Lys Glu Cys Asn Ile 345 Asn Ile Ser Thr Thr Asn Tyr Pro Cys Lys Val Ser Thr Gly Arg His 360 Pro Ile Ser Met Val Ala Leu Ser Pro Leu Gly Ala Leu Val Ala Cys 375 Tyr Lys Gly Val Ser Cys Ser Ile Gly Ser Asn Arg Val Gly Ile Ile Lys Gln Leu Asn Lys Gly Cys Ser Tyr Ile Thr Asn Gln Asp Ala Asp 410 Thr Val Thr Ile Asp Asn Thr Val Tyr Gln Leu Ser Lys Val Glu Gly 425 Glu Gln His Val Ile Lys Gly Arg Pro Val Ser Ser Ser Phe Asp Pro Ile Lys Phe Pro Glu Asp Gln Phe Gln Val Ala Leu Asp Gln Val Phe Glu Asn Ile Glu Asn Ser Gln Ala Leu Val Asp Gln Ser Asn Arg Ile Leu Ser Ser Ala Glu Lys Gly Asn Thr Gly Phe Ile Ile Val Ile Ile Leu Ile Ala Val Leu Gly Ser Ser Met Ile Leu Val Ser Ile Phe Ile Ile Ile Lys Lys Thr Lys Lys Pro Thr Gly Ala Pro Pro Glu Leu Ser 520 Gly Val Thr Asn Asn Gly Phe Ile Pro His Asn <210> SEQ ID NO 96

<211> LENGTH: 539

<212> TYPE: PRT

<213 > ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Polypeptide

Met 1	Ser	Trp	Lys	Val 5	Val	Ile	Ile	Phe	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln
His	Gly	Leu	Lys 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	CÀa	Ser	Thr 30	Ile	Thr
Glu	Gly	Tyr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr	Leu 50	Glu	Val	Gly	Asp	Val 55	Glu	Asn	Leu	Thr	60 CAa	Ser	Asp	Gly	Pro
Ser 65	Leu	Ile	Lys	Thr	Glu 70	Leu	Asp	Leu	Thr	Lys 75	Ser	Ala	Leu	Arg	Glu 80
Leu	Lys	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Gly	Ser 100	Gly	Ser	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val
Ala	Ala	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Val	Ala	Ile	Ala 125	Lys	Thr	Ile
Arg	Leu 130	Glu	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	ГЛа	Lys	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	Lys	Asp	Phe	Val	Ser 170	Lys	Asn	Leu	Trp	Arg 175	Ala
Ile	Asn	Lys	Asn 180	Lys	CAa	Aap	Ile	Asp 185	Asp	Leu	Lys	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Cys	Trp	Ile 285	Val	Lys	Ala
Ala	Pro 290	Ser	Cys	Ser	Glu	Lys 295	Lys	Gly	Asn	Tyr	Ala 300	CAa	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	Cys	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	Lys	Asp 325	Сув	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Сув 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	ГÀа	Glu	Сув 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Cys	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Cys
Tyr 385	Lys	Gly	Val	Ser	Cys	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
Lys	Gln	Leu	Asn	Lys 405	Gly	Cys	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp

-continued

Thr Val Thr Ile Asp Asn Thr Val Tyr Gln Leu Ser Lys Val Glu Gly Glu Gln His Val Ile Lys Gly Arg Pro Val Ser Ser Ser Phe Asp Pro Ile Lys Phe Pro Glu Asp Gln Phe Gln Val Ala Leu Asp Gln Val Phe Glu Asn Ile Glu Asn Ser Gln Ala Leu Val Asp Gln Ser Asn Arg Ile Leu Ser Ser Ala Glu Lys Gly Asn Thr Gly Phe Ile Ile Val Ile Ile Leu Ile Ala Val Leu Gly Ser Ser Met Ile Leu Val Ser Ile Phe Ile Ile Ile Lys Lys Thr Lys Lys Pro Thr Gly Ala Pro Pro Glu Leu Ser Gly Val Thr Asn Asn Gly Phe Ile Pro His Asn <210> SEQ ID NO 97 <211> LENGTH: 539 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide <400> SEQUENCE: 97 Met Ser Trp Lys Val Val Ile Ile Phe Ser Leu Leu Ile Thr Pro Gln His Gly Leu Lys Glu Ser Tyr Leu Glu Glu Ser Cys Ser Thr Ile Thr Glu Gly Tyr Leu Ser Val Leu Arg Thr Gly Trp Tyr Thr Asn Val Phe Thr Leu Glu Val Gly Asp Leu Glu Asn Leu Thr Cys Ser Asp Gly Pro Ser Leu Ile Lys Thr Glu Leu Asp Leu Leu Lys Ser Ala Leu Arg Glu Leu Lys Thr Val Ser Ala Asp Gln Leu Ala Arg Glu Glu Gln Ile Glu Asn Pro Gly Ser Gly Ser Phe Val Leu Gly Ala Ile Ala Leu Gly Val Ala Ala Ala Ala Val Thr Ala Gly Val Ala Ile Ala Lys Thr Ile Arg Leu Glu Ser Glu Val Thr Ala Ile Asn Asn Ala Leu Lys Lys Thr Asn Glu Ala Val Ser Thr Leu Gly Asn Gly Val Arg Val Leu Ala Thr Ala Val Arg Glu Leu Lys Asp Phe Val Leu Lys Asn Leu Trp Arg Ala 170 Ile Asn Lys Asn Lys Cys Asp Ile Asp Asp Leu Lys Met Ala Val Ser Phe Ser Gln Phe Asn Arg Arg Phe Leu Asn Val Val Arg Gln Phe Ser 200 Asp Asn Ala Gly Ile Thr Pro Ala Ile Ser Leu Asp Leu Met Thr Asp 215 Ala Glu Leu Ala Arg Ala Val Pro Asn Met Pro Thr Ser Ala Gly Gln

```
Ile Lys Leu Met Leu Glu Asn Arg Ala Met Val Arg Arg Lys Gly Phe
                                   250
Gly Ile Leu Ile Gly Val Tyr Gly Ser Ser Val Ile Tyr Met Val Gln
Leu Pro Ile Phe Gly Val Ile Asp Thr Pro Cys Trp Ile Val Lys Ala
Ala Pro Ser Cys Ser Glu Lys Lys Gly Asn Tyr Ala Cys Leu Leu Arg
Glu Asp Gln Gly Trp Tyr Cys Gln Asn Ala Gly Ser Thr Val Tyr Tyr
Pro Asn Glu Lys Asp Cys Glu Thr Arg Gly Asp His Val Phe Cys Asp
Thr Ala Ala Gly Ile Asn Val Ala Glu Gln Ser Lys Glu Cys Asn Ile
Asn Ile Ser Thr Thr Asn Tyr Pro Cys Lys Val Ser Thr Gly Arg His
Pro Ile Ser Met Val Ala Leu Ser Pro Leu Gly Ala Leu Val Ala Cys
Tyr Lys Gly Val Ser Cys Ser Ile Gly Ser Asn Arg Val Gly Ile Ile
Lys Gln Leu Asn Lys Gly Cys Ser Tyr Ile Thr Asn Gln Asp Ala Asp
                                410
Thr Val Thr Ile Asp Asn Thr Val Tyr Gln Leu Ser Lys Val Glu Gly
          420
                             425
Glu Gln His Val Ile Lys Gly Arg Pro Val Ser Ser Ser Phe Asp Pro
                          440
Ile Lys Phe Pro Glu Asp Gln Phe Gln Val Ala Leu Asp Gln Val Phe
                       455
Glu Asn Ile Glu Asn Ser Gln Ala Leu Val Asp Gln Ser Asn Arg Ile
           470
Leu Ser Ser Ala Glu Lys Gly Asn Thr Gly Phe Ile Ile Val Ile Ile
                                   490
Leu Ile Ala Val Leu Gly Ser Ser Met Ile Leu Val Ser Ile Phe Ile
Ile Ile Lys Lys Thr Lys Lys Pro Thr Gly Ala Pro Pro Glu Leu Ser
                520
Gly Val Thr Asn Asn Gly Phe Ile Pro His Asn
<210> SEQ ID NO 98
<211> LENGTH: 539
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Polypeptide
<400> SEQUENCE: 98
Met Ser Trp Lys Val Val Ile Ile Phe Ser Leu Leu Ile Thr Pro Gln
His Gly Leu Lys Glu Ser Tyr Leu Glu Glu Ser Cys Ser Thr Ile Thr
Glu Gly Tyr Leu Ser Val Leu Arg Thr Gly Trp Tyr Thr Asn Val Phe
                40
Thr Leu Pro Val Gly Asp Val Glu Asn Leu Thr Cys Ser Asp Gly Pro
```

Ser 65	Leu	Ile	Lys	Thr	Glu 70	Leu	Asp	Leu	Thr	Lys 75	Ser	Ala	Leu	Arg	Glu 80
Leu	Lys	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Gly	Ser 100	Gly	Ser	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val
Ala	Ala	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Val	Ala	Ile	Ala 125	Lys	Thr	Ile
Arg	Leu 130	Glu	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	Lys	Lys	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	ГЛа	Asp	Phe	Val	Ser 170	Lys	Asn	Leu	Thr	Arg 175	Ala
Ile	Asn	Lys	Asn 180	Lys	CAa	Asp	Ile	Asp 185	Asp	Leu	Lys	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Cys	Trp	Ile 285	Val	Lys	Ala
Ala	Pro 290	Ser	Cys	Ser	Glu	Lys 295	Lys	Gly	Asn	Tyr	Ala 300	CAa	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	CAa	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	Lys	Asp 325	CAa	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Сув 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Lys	Glu	Сув 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Сув	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Cys
Tyr 385	Lys	Gly	Val	Ser	390 GAa	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
ГÀа	Gln	Leu	Asn	Lys 405	Gly	CÀa	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	Lys	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile	Lys 450	Phe	Pro	Glu	Asp	Gln 455	Phe	Gln	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Asn	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu	Ser	Ser	Ala	Glu	Lys	Gly	Asn	Thr	Gly	Phe	Ile	Ile	Val	Ile	Ile

_				485					490					495	
_						_	_			_					
Leu	Ile	Ala	Val 500	Leu	GIY	Ser	Ser	Met 505	Ile	Leu	Val	Ser	11e 510	Phe	Ile
Ile	Ile	Lys 515	Lys	Thr	Lys	Lys	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser
Gly	Val 530	Thr	Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					
<213 <213 <213 <220	0 > SI 1 > LI 2 > TY 3 > OF 0 > FI 3 > OT	ENGTI (PE : RGAN: EATUI	H: 50 PRT ISM: RE:	39 Art:			-		Polyj	pept:	ide				
< 40	0> SI	EQUEI	NCE:	99											
Met 1	Ser	Trp	ГЛа	Val 5	Val	Ile	Ile	Phe	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln
His	Gly	Leu	Lys 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	Cha	Ser	Thr 30	Ile	Thr
Glu	Gly	Tyr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr	Leu 50	Glu	Val	Gly	Asp	Val 55	Glu	Asn	Leu	Thr	60 CÀa	Ser	Asp	Gly	Pro
Ser 65	Leu	Ile	Lys	Thr	Glu 70	Leu	Asp	Leu	Thr	Lys 75	Ser	Ala	Leu	Arg	Glu 80
Leu	ГÀа	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Gly	Ser 100	Gly	Ser	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val
Ala	Ala	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Val	Ala	Ile	Ala 125	ГЛа	Thr	Ile
Arg	Leu 130	Glu	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	Lys	Lys	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	rys	Asp	Phe	Val	Ser 170	Lys	Asn	Leu	Thr	Arg 175	Ala
Ile	Asn	Lys	Asn 180	Lys	CAa	Asp	Ile	Pro 185	Asp	Leu	ГÀа	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Сув	Trp	Ile 285	Val	Lys	Ala
Ala	Pro 290	Ser	CÀa	Ser	Glu	Lys 295	Lys	Gly	Asn	Tyr	Ala 300	CÀa	Leu	Leu	Arg
Glu	Asp	Gln	Gly	Trp	Tyr		Gln	Asn	Ala	Gly		Thr	Val	Tyr	Tyr

305					310					315					320
Pro	Asn	Glu	Lys	Asp 325	CAa	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Сув 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Lys	Glu	Сув 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Сув	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Сув
Tyr 385	ГЛа	Gly	Val	Ser	390 CAa	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
Lys	Gln	Leu	Asn	Lys 405	Gly	CÀa	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	ГÀа	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile	Lys 450	Phe	Pro	Glu	Asp	Gln 455	Phe	Gln	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Asn	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu	Ser	Ser	Ala	Glu 485	Lys	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu	Ile	Ala	Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile	Ile	Lys 515	Lys	Thr	ГÀа	ГÀа	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser
Gly	Val 530	Thr	Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					
<210> SEQ ID NO 100 <211> LENGTH: 539 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE:															
				ORMA'	TION	: Syı	nthet	ic E	olyr	ept:	ide				
< 400)> SI	EQUEI	NCE :	100											
Met 1	Ser	Trp	Lys	Val 5	Val	Ile	Ile	Phe	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln
His	Gly	Leu	Lys 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	СЛа	Ser	Thr 30	Ile	Thr
Glu	Gly	Tyr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr	Leu 50	Glu	Val	Gly	Asp	Val 55	Glu	Asn	Leu	Thr	Cys 60	Ser	Asp	Gly	Pro
Ser 65	Leu	Ile	Lys	Thr	Glu 70	Leu	Asp	Leu	Thr	Lys 75	Ser	Ala	Leu	Arg	Glu 80
Leu	Lys	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Gly	Ser 100	Gly	Ser	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val
Ala	Ala	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Val	Ala	Ile	Ala 125	Lys	Thr	Ile
Ara	Leu	Glu	Ser	Glu	Val	Thr	Ala	Ile	Asn	Asn	Ala	Leu	ГХа	Lys	Thr

	130					135					140				
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	Lys	Asp	Phe	Val	Ser 170	Lys	Asn	Leu	Thr	Arg 175	Ala
Ile	Asn	Lys	Asn 180	Lys	CAa	Pro	Ile	Asp 185	Asp	Leu	ГÀз	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
		275			Val		280					285			
	290		-		Glu	295	-	_			300				
305	_		-	_	Tyr 310					315				-	320
			-	325	CAa				330					335	
			340		Asn			345					350		
		355			Asn	-	360	-	-			365	-	_	
	370				Ala	375					380				
385	-	-			390 Gly			_		395	_		-		400
_				405	Asn	-		-	410				_	415	_
			420	_	Lys			425				-	430		_
		435			Asp		440					445			
	450				Ser	455					460	_			
465					470 Lys					475					480
				485	Gly	-			490					495	
			500					505					510		
		515			Lys		520				PTO	Pro 525	GIU	ьец	ser
Gly	Val 530	Thr	Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					

<pre><211> LENGTH: 539 <212> TYPE: PRT</pre>															
<213> ORGANISM: Artificial Sequence															
<220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide															
<400> SEQUENCE: 101															
Met 1	Ser	Trp	Lys	Val 5	Val	Ile	Ile	Phe	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln
His	Gly	Leu	Lys 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	Сув	Ser	Thr 30	Ile	Thr
Glu	Gly	Tyr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr	Leu 50	Glu	Val	Gly	Asp	Val 55	Glu	Asn	Leu	Thr	60 CÀa	Ser	Asp	Gly	Pro
Ser 65	Leu	Ile	Lys	Thr	Glu 70	Leu	Asp	Leu	Thr	Lys 75	Ser	Ala	Leu	Arg	Glu 80
Leu	Lys	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Gly	Ser 100	Gly	Ser	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val
Ala	Ala	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Val	Ala	Ile	Ala 125	ГЛа	Thr	Ile
Arg	Leu 130	Pro	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	ГЛа	Lys	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	Lys	Aap	Phe	Val	Ser 170	Lys	Asn	Leu	Thr	Arg 175	Ala
Ile	Asn	Lys	Asn 180	Lys	Сув	Asp	Ile	Asp 185	Asp	Leu	ГÀа	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Cys	Trp	Ile 285	Val	Lys	Ala
Ala	Pro 290	Ser	Cys	Ser	Glu	Lys 295	Lys	Gly	Asn	Tyr	Ala 300	Cys	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	CAa	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	Lys	Asp 325	Cys	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Сув 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	ГÀа	Glu	350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Сув	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Сув

Tyr Lys Gly Val Ser Cys Ser Ile Gly Ser Asn Arg Val Gly Ile Ile 395 Lys Gln Leu Asn Lys Gly Cys Ser Tyr Ile Thr Asn Gln Asp Ala Asp Thr Val Thr Ile Asp Asn Thr Val Tyr Gln Leu Ser Lys Val Glu Gly Glu Gln His Val Ile Lys Gly Arg Pro Val Ser Ser Ser Phe Asp Pro Ile Lys Phe Pro Glu Asp Gln Phe Gln Val Ala Leu Asp Gln Val Phe Glu Asn Ile Glu Asn Ser Gln Ala Leu Val Asp Gln Ser Asn Arg Ile Leu Ser Ser Ala Glu Lys Gly Asn Thr Gly Phe Ile Ile Val Ile Ile Leu Ile Ala Val Leu Gly Ser Ser Met Ile Leu Val Ser Ile Phe Ile 505 Ile Ile Lys Lys Thr Lys Lys Pro Thr Gly Ala Pro Pro Glu Leu Ser 520 Gly Val Thr Asn Asn Gly Phe Ile Pro His Asn 530 <210> SEQ ID NO 102 <211> LENGTH: 539 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide <400> SEQUENCE: 102 Met Ser Trp Lys Val Val Ile Ile Phe Ser Leu Leu Ile Thr Pro Gln His Gly Leu Lys Glu Ser Tyr Leu Glu Glu Ser Cys Ser Thr Ile Thr Glu Gly Tyr Leu Ser Val Leu Arg Thr Gly Trp Tyr Thr Asn Val Phe Thr Leu Glu Val Gly Asp Val Glu Asn Leu Thr Cys Ser Asp Gly Pro Ser Leu Ile Lys Thr Glu Leu Asp Leu Thr Lys Ser Ala Leu Arg Glu Leu Lys Thr Val Ser Ala Asp Gln Leu Ala Arg Glu Glu Gln Ile Glu Asn Pro Gly Ser Gly Ser Phe Val Leu Gly Ala Ile Ala Leu Gly Val Ala Ala Ala Ala Val Thr Ala Gly Val Ala Ile Ala Lys Thr Ile Arg Leu Glu Ser Glu Val Thr Ala Ile Asn Asn Ala Leu Lys Lys Thr 135 Asn Glu Ala Val Ser Thr Leu Gly Asn Gly Val Arg Val Leu Ala Thr 150 Ala Val Arg Glu Leu Lys Asp Phe Val Ser Lys Asn Leu Thr Arg Ala Ile Asn Lys Asn Lys Cys Asp Ile Asp Asp Leu Lys Met Ala Val Ser 185 Phe Ser Gln Phe Asn Arg Arg Phe Leu Asn Val Val Arg Gln Phe Ser 200

Asp Asn Ala Gly Ile Thr Pro Ala Ile Ser Leu Asp Leu Met Thr Asp 215 Ala Glu Leu Ala Arg Ala Val Pro Asn Met Pro Thr Ser Ala Gly Gln 230 Ile Lys Leu Met Leu Glu Asn Arg Ala Met Val Arg Arg Lys Gly Phe Gly Ile Leu Ile Gly Val Tyr Gly Ser Ser Val Ile Tyr Met Val Gln Leu Pro Ile Phe Gly Val Ile Asp Thr Pro Cys Trp Ile Val Lys Ala Ala Pro Ser Cys Ser Glu Lys Lys Gly Asn Tyr Ala Cys Leu Leu Arg Glu Asp Gln Gly Trp Tyr Cys Gln Asn Ala Gly Ser Thr Val Tyr Tyr Pro Asn Glu Lys Asp Cys Glu Thr Arg Gly Asp His Val Phe Cys Asp 330 Thr Ala Ala Gly Ile Asn Val Ala Glu Gln Ser Lys Glu Cys Asn Ile 345 Asn Ile Ser Thr Thr Asn Tyr Pro Cys Lys Val Ser Thr Gly Arg His 360 Pro Ile Ser Met Val Ala Leu Ser Pro Leu Gly Ala Leu Val Ala Cys Tyr Lys Gly Val Ser Cys Ser Ile Gly Ser Asn Arg Val Gly Ile Ile 390 395 Lys Gln Leu Asn Lys Gly Cys Ser Tyr Ile Thr Asn Gln Asp Ala Asp 405 410 Thr Val Thr Ile Asp Asn Thr Val Tyr Gln Leu Ser Lys Val Glu Gly Glu Gln His Val Ile Lys Gly Arg Pro Val Ser Ser Ser Phe Pro Pro 440 Ile Lys Phe Pro Glu Asp Gln Phe Gln Val Ala Leu Asp Gln Val Phe 455 Glu Asn Ile Glu Asn Ser Gln Ala Leu Val Asp Gln Ser Asn Arg Ile Leu Ser Ser Ala Glu Lys Gly Asn Thr Gly Phe Ile Ile Val Ile Ile Leu Ile Ala Val Leu Gly Ser Ser Met Ile Leu Val Ser Ile Phe Ile 505 Ile Ile Lys Lys Thr Lys Lys Pro Thr Gly Ala Pro Pro Glu Leu Ser Gly Val Thr Asn Asn Gly Phe Ile Pro His Asn <210> SEQ ID NO 103 <211> LENGTH: 539 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide <400> SEQUENCE: 103 Met Ser Trp Lys Val Val Ile Ile Phe Ser Leu Leu Ile Thr Pro Gln 10

His Gly Leu Lys Glu Ser Tyr Leu Glu Glu Ser Cys Ser Thr Ile Thr 20 25 30

Glu	Gly	Tyr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr	Leu 50	Glu	Val	Gly	Asp	Val 55	Glu	Asn	Leu	Thr	Cys	Ser	Asp	Gly	Pro
Ser 65	Leu	Ile	Lys	Thr	Glu 70	Leu	Asp	Leu	Thr	Lys 75	Ser	Ala	Leu	Arg	Glu 80
Leu	Lys	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Gly	Ser 100	Gly	Ser	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val
Ala	Ala	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Val	Ala	Ile	Ala 125	ГÀа	Thr	Ile
Arg	Leu 130	Glu	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	ГÀа	ГÀа	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	Lys	Asp	Phe	Val	Ser 170	Lys	Asn	Leu	Thr	Arg 175	Ala
Ile	Asn	Lys	Asn 180	Lys	CÀa	Asp	Ile	Asp 185	Asp	Leu	Lys	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	ГÀЗ	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	CAa	Trp	Ile 285	Val	ГÀз	Ala
Ala	Pro 290	Ser	Сув	Ser	Glu	Lys 295	Lys	Gly	Asn	Tyr	Ala 300	Cys	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	CAa	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	Lys	Asp 325	CAa	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Сув 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Lys	Glu	Сув 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Сув	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	CÀa
Tyr 385	ГÀа	Gly	Val	Ser	390 CAa	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
Lys	Gln	Leu	Asn	Lys 405	Gly	CÀa	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	Lys	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro

-continued

Ile Lys Phe Pro Glu Asn Gln Phe Gln Val Ala Leu Asp Gln Val Phe 455 Glu Asn Ile Glu Asn Ser Gln Ala Leu Val Asp Gln Ser Asn Arg Ile Leu Ser Ser Ala Glu Lys Gly Asn Thr Gly Phe Ile Ile Val Ile Ile Leu Ile Ala Val Leu Gly Ser Ser Met Ile Leu Val Ser Ile Phe Ile 505 Ile Ile Lys Lys Thr Lys Lys Pro Thr Gly Ala Pro Pro Glu Leu Ser Gly Val Thr Asn Asn Gly Phe Ile Pro His Asn <210> SEQ ID NO 104 <211> LENGTH: 539 <212> TYPE: PRT <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide <400> SEOUENCE: 104 Met Ser Trp Lys Val Val Ile Ile Phe Ser Leu Leu Ile Thr Pro Gln His Gly Leu Lys Glu Ser Tyr Leu Glu Glu Ser Cys Ser Thr Ile Thr 25 Glu Gly Tyr Leu Ser Val Leu Arg Thr Gly Trp Tyr Thr Asn Val Phe Thr Leu Glu Val Gly Asp Val Glu Asn Leu Thr Cys Ser Asp Gly Pro Ser Leu Ile Lys Thr Glu Leu Asp Leu Thr Lys Ser Ala Leu Arg Glu Leu Lys Thr Val Ser Ala Asp Gln Leu Ala Arg Glu Glu Gln Ile Glu Asn Pro Gly Ser Gly Ser Phe Val Leu Gly Ala Ile Ala Leu Gly Val 105 Ala Ala Ala Ala Val Thr Ala Gly Val Ala Ile Ala Lys Thr Ile Arg Leu Glu Ser Glu Val Thr Ala Ile Asn Asn Ala Leu Lys Lys Thr Asn Glu Ala Val Ser Thr Leu Gly Asn Gly Val Arg Val Leu Ala Thr Ala Val Arg Glu Leu Lys Asp Phe Val Ser Lys Asn Leu Thr Arg Ala Ile Asn Lys Asn Lys Cys Asp Ile Asp Asp Leu Lys Met Ala Val Ser Phe Ser Gln Phe Asn Arg Arg Phe Leu Asn Val Val Arg Gln Phe Ser 200 Asp Asn Ala Gly Ile Thr Pro Ala Ile Ser Leu Asp Leu Met Thr Asp Ala Glu Leu Ala Arg Ala Val Pro Asn Met Pro Thr Ser Ala Gly Gln 230 Ile Lys Leu Met Leu Glu Asn Arg Ala Met Val Arg Arg Lys Gly Phe 250 Gly Ile Leu Ile Gly Val Tyr Gly Ser Ser Val Ile Tyr Met Val Gln 265

												COII	CIII	aca	
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Cys	Trp	Ile 285	Val	Lys	Ala
Ala	Pro 290	Ser	CAa	Ser	Glu	Lys 295	Lys	Gly	Asn	Tyr	Ala 300	CAa	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	CAa	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	Lys	Asp 325	CÀa	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Cys	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	ГÀа	Glu	Сув 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Cys	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Cys
Tyr 385	Lys	Gly	Val	Ser	Cys	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
Lys	Gln	Leu	Asn	Lys 405	Gly	CAa	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	Lys	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile	Lys 450	Phe	Pro	Gln	Asp	Gln 455	Phe	Gln	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Asn	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu	Ser	Ser	Ala	Glu 485	Lys	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu	Ile	Ala	Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile	Ile	Lys 515	Lys	Thr	Lys	Lys	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser
Gly	Val 530	Thr	Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					
<211 <212 <213 <220	L> LE 2> TY 3> OF 0> FE	ENGTI (PE : RGAN) EATUI	ISM: RE:	39 Art:			Seque nthet		?oly _l	pept:	ide				
		~	NCE:		Val	Tle	Ile	Phe	Ser	Len	Len	Tle	Thr	Pro	Gln
1				5					10					15	
His	Gly	Leu	Lув 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	Cys	Ser	Thr 30	Ile	Thr
Glu	Gly	Tyr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr	Leu 50	Glu	Val	Gly	Asp	Val 55	Glu	Asn	Leu	Thr	60 Cys	Ser	Asp	Gly	Pro
Ser 65	Leu	Ile	Lys	Thr	Glu 70	Leu	Asp	Leu	Thr	Lуs 75	Ser	Ala	Leu	Arg	Glu 80
Leu	Lys	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu

85 90 95

_															
Asn	Pro	Gly	Ser 100	Gly	Ser	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val
Ala	Ala	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Val	Ala	Ile	Ala 125	ГÀа	Thr	Ile
Arg	Leu 130	Glu	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	Lys	Lys	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	Lys	Asp	Phe	Val	Ser 170	Lys	Asn	Leu	Thr	Arg 175	Ala
Ile	Asn	Lys	Asn 180	Lys	СЛа	Asp	Ile	Asp 185	Asp	Leu	Lys	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Trp	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Càa	Trp	Ile 285	Val	ГÀЗ	Ala
Ala	Pro 290	Ser	Сув	Ser	Glu	Lys 295	Lys	Gly	Asn	Tyr	Ala 300	Cys	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	Cys	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	Lys	Asp 325	CAa	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Сув 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Lys	Glu	Сув 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Cys	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	CAa
Tyr 385	Lys	Gly	Val	Ser	Сув 390		Ile	Gly		Asn 395		Val	Gly	Ile	Ile 400
Lys	Gln	Leu	Asn	Lys 405	Gly	Cys	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	Lys	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile	Lys 450	Phe	Pro	Glu	Asp	Gln 455	Phe	Gln	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Asn	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu	Ser	Ser	Ala	Glu 485	Lys	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu	Ile	Ala	Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile	Ile	ГЛа	Lys	Thr	ГЛа	Lys	Pro	Thr	Gly	Ala	Pro	Pro	Glu	Leu	Ser

```
515
                            520
                                                525
Gly Val Thr Asn Asn Gly Phe Ile Pro His Asn
    530
                        535
<210> SEQ ID NO 106
<211> LENGTH: 1617
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Polynucleotide
<400> SEQUENCE: 106
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa
                                                                      60
gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga
accggctggt acaccaacgt gttcacactg gaagtgggcg acgtcgagaa tctgacatgc
                                                                     180
tctgatggcc ctagcctgat caagaccgag ctggatctga ccaagagcgc cctgagagaa
                                                                     240
ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcagc
                                                                     300
ggcagctttg tgctgggagc cattgctctt ggagtggctg ctgctgcagc tgttacagca
                                                                     360
qqcqtqqcca tctqcaaqac catcaqactq qaaaqcqaaq tqaccqccat caacaacqcc
                                                                     420
ctqaaqaaqa caaacqaqqc cqtcaqcaca ctcqqcaatq qcqttaqaqt qctqqccttt
                                                                     480
gccgtgcgcg agctgaagga cttcgtgtcc aagaacctga cacgggccct gaacaagaac
                                                                     540
                                                                     600
aaqtqcqaca tcqacqacct qaaqatqqcc qtqtccttta qccaqttcaa ccqqcqqttt
ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac
                                                                     660
ctgatgacag atgctgaget ggetagagec gtgcctaaca tgcctacate tgccggccag
                                                                     720
atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgtgt
                                                                     780
ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac
                                                                     840
acaccctgct ggattgtgaa ggccgctcct agctgtagcg agaagaaggg caattacgcc
                                                                     900
tgcctgctga gagaggacca aggctggtat tgtcagaacg ccggcagcac cgtgtactac
                                                                     960
cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga
                                                                    1020
atcaatgtgg ccgagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc
                                                                    1080
tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc
                                                                    1140
ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc
                                                                    1200
aagcagetga acaagggetg cagetacate accaaccagg acgccgatac cgtgaccate
gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga
                                                                    1320
cctgtgtcca gcagcttcga ccctatcaag ttccctgagg atcagttcaa cgtggccctg
                                                                    1380
gaccaggtgt tcgagaacat cgagaattcc caggctctgg tggaccagtc caacagaatc
                                                                    1440
ctgtctagcg ccgagaaggg aaacaccggc ttcatcatcg tgatcatcct gatcgccgtg
                                                                    1500
ctgggcagct ccatgatcct ggtgtccatc ttcatcatta tcaagaagac caagaagcc
                                                                    1560
accggcgctc ctccagaact gagcggagtg accaacaatg gcttcatccc tcacaac
                                                                    1617
<210> SEO TD NO 107
<211> LENGTH: 1617
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
```

<223> OTHER INFORMATION: Synthetic Polynucleotide

-continued

-continued	
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa	60
gagagetace tggaagagte etgeageace ateaeagagg getacetgte tgtgetgaga	120
accggctggt acaccaacgt gttcacactg gaagtgggcg acgtcgagaa tctgacatgc	180
tetgatggee etageetgat caagacegag etggatetga ecaagagege eetgagagaa	240
ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcagc	300
ggcagctttg tgctgggagc cattgctctt ggagtggctg ctgctgcagc tgttacagca	360
ggcgtggcca tctgcaagac catcagactg gaaagcgaag tgaccgccat caacaacgcc	420
ctgaagaaga caaacgaggc cgtcagcaca ctcggcaatg gcgttagagt gctggccaca	480
gccgtgcgcg agctgaagga cttcgtgtcc aagaacctga cacgggccat taacaagaac	540
aagtgcgaca tcgacgacct gaagatggcc gtgtccttta gccagttcaa ccggcggttt	600
ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac	660
ctgatgacag atgctgagct ggctagagcc gtgcctaaca tgcctacatc tgccggccag	720
atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgtgt	780
ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac	840
acaccctgct ggattgtgaa ggccgctcct agctgtagcg agaagaaggg caattacgcc	900
tgcctgctga gagaggacca aggctggtat tgtcagaacg ccggcagcac cgtgtactac	960
cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga	1020
atcaatgtgg ccgagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc	1080
tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc	1140
ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc	1200
aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc	1260
gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga	1320
cctgtgtcca gcagcttcga ccctatcaag ttccctgagc accagtggca tgtggccctg	1380
gaccaggtgt tcgagaacat cgagaattcc caggctctgg tggaccagtc caacagaatc	1440
ctgtctagcg ccgagaaggg aaacaccggc ttcatcatcg tgatcatcct gatcgccgtg	1500
ctgggcagct ccatgatect ggtgtecate tteateatta teaagaagae caagaagee	1560
accggcgctc ctccagaact gagcggagtg accaacaatg gcttcatccc tcacaac	1617
<210> SEQ ID NO 108 <211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 108	
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa	60
gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga	120
accggctggt acaccaacgt gttcacactg gaagtgggcg acgtcgagaa tctgacatgc	180
tetgatggce ctageetgat caagacegag etggatetge teaagagege eetgagagaa	240
ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcagc	300
ggcagctttg tgctgggagc cattgctctt ggagtggctg ctgctgcagc tgttacagca	360
ggcgtggcca tcgctaagac catcagactg gaaagcgaag tgaccgccat caacaacgcc	420

480

ctgaagaaga caaacgaggc cgtcagcaca ctcggcaatg gcgttagagt gctggccaca

-continued

gccgtgcgcg	agctgaagga	cttcgtgtcc	aagaacctga	cacgggccat	taacaagaac	540
aagtgcgaca	tecetgacet	gaagatggcc	gtgtccttta	gccagttcaa	ccggcggttt	600
ctgaacgtcg	tgcggcagtt	tagcgacaac	gccggaatca	caccagccat	cagcctggac	660
ctgatgacag	atgctgagct	ggctagagcc	gtgcctaaca	tgcctacatc	tgccggccag	720
atcaagctga	tgctcgagaa	tagagccatg	gtccgacgga	aaggcttcgg	cattctgatt	780
ggcgtgtacg	gcagcagcgt	gatctatatg	gtgcagctgc	ctatcttcgg	cgtgatcgac	840
acaccctgct	ggattgtgaa	ggeegeteet	agctgtagcg	agaagaaggg	caattacgcc	900
tgcctgctga	gagaggacca	aggctggtat	tgtcagaacg	ccggcagcac	cgtgtactac	960
cctaacgaga	aggactgcga	gacaagaggc	gaccacgtgt	tctgtgatac	cgccgctgga	1020
atcaatgtgg	ccgagcagag	caaagagtgc	aacatcaaca	tcagcaccac	caactateee	1080
tgcaaggtgt	ccaccggcag	gcaccctatt	tctatggtgg	ctctgtctcc	tctgggagcc	1140
ctggtggctt	gttataaggg	cgtgtcctgt	agcatcggca	gcaacagagt	gggcatcatc	1200
aagcagctga	acaagggctg	cagctacatc	accaaccagg	acgccgatac	cgtgaccatc	1260
gacaacaccg	tgtatcagct	gagcaaggtg	gaaggcgaac	agcacgtgat	caagggcaga	1320
cctgtgtcca	gcagcttcga	ccctatcaag	ttccctgagg	atcagttcca	ggtggccctg	1380
gaccaggtgt	tcgagaacat	cgagaattcc	caggctctgg	tggaccagtc	caacagaatc	1440
ctgtctagcg	ccgagaaggg	aaacaccggc	ttcatcatcg	tgatcatcct	gatcgccgtg	1500
ctgggcagct	ccatgatcct	ggtgtccatc	ttcatcatta	tcaagaagac	caagaagccc	1560
accggcgctc	ctccagaact	gagcggagtg	accaacaatg	gcttcatccc	tcacaac	1617
<220> FEATU <223> OTHER	TH: 1617 : DNA NISM: Artif: URE: R INFORMATIO	_		eotide		
<400> SEQUI						
atgagctgga						
	aggtggtcat			cacctcagca		60
	aggtggtcat tggaagagtc	ctgcagcacc	atcacagagg	cacctcagca gctacctgtc	tgtgctgaga	120
accggctggt	aggtggtcat tggaagagtc acaccaacgt	ctgcagcacc	atcacagagg gaagtgggcg	cacctcagca gctacctgtc acgtcgagaa	tgtgctgaga tctgacatgc	120 180
accggctggt tctgatggcc	aggtggtcat tggaagagtc acaccaacgt ctagcctgat	ctgcagcacc gttcacactg caagaccgag	atcacagagg gaagtgggcg ctggatctgc	caceteagea getacetgte aegtegagaa teaagagege	tgtgctgaga tctgacatgc cctgagagaa	120 180 240
accggctggt tctgatggcc ctcaagaccg	aggtggtcat tggaagagtc acaccaacgt ctagcctgat tgtctgccga	ctgcagcacc gttcacactg caagaccgag tcagctggcc	atcacagagg gaagtgggcg ctggatctgc agagaggaac	caceteagea getacetgte aegtegagaa teaagagege agategagaa	tgtgctgaga tctgacatgc cctgagagaa tcctggcagc	120 180 240 300
accggctggt tctgatggcc ctcaagaccg ggcagctttg	aggtggtcat tggaagagtc acaccaacgt ctagcctgat tgtctgccga tgctgggagc	ctgcagcacc gttcacactg caagaccgag tcagctggcc cattgctctt	atcacagagg gaagtgggcg ctggatctgc agagaggaac ggagtggctg	cacctcagca gctacctgtc acgtcgagaa tcaagagcgc agatcgagaa ctgctgcagc	tgtgctgaga tctgacatgc cctgagagaga tcctggcagc tgttacagca	120 180 240 300 360
accggctggt tctgatggcc ctcaagaccg ggcagctttg ggcgtggcca	aggtggtcat tggaagagtc acaccaacgt ctagcctgat tgtctgccga tgctgggagc tcgctaagac	ctgcagcacc gttcacactg caagaccgag tcagctggcc cattgctctt catcagactg	atcacagagg gaagtgggcg ctggatctgc agagaggaac ggagtggctg gaaagcgaag	caceteagea getacetgte aegtegagaa teaagagege agategagaa etgetgeage tgacegeeat	tgtgctgaga tctgacatgc cctgagagaa tcctggcagc tgttacagca caacaacgcc	120 180 240 300 360 420
accggctggt tctgatggcc ctcaagaccg ggcagctttg ggcgtggcca ctgaagaaga	aggtggtcat tggaagagtc acaccaacgt ctagcctgat tgtctgccga tgctgggagc tcgctaagac caaacgaggc	ctgcagcacc gttcacactg caagaccgag tcagctggcc cattgctctt catcagactg	atcacagagg gaagtgggcg ctggatctgc agagaggaac ggagtggctg gaaagcgaag ctcggcaatg	cacctcagca gctacctgtc acgtcgagaa tcaagagcgc agatcgagaa ctgctgcagc tgaccgccat	tgtgctgaga tctgacatgc cctgagagaaa tcctggcagc tgttacagca caacaacgcc gctggccaca	120 180 240 300 360 420 480
accggctggt tetgatggcc ctcaagaccg ggcagctttg ggcgtggcca ctgaagaaga gccgtgcgcg	aggtggtcat tggaagagtc acaccaacgt ctagcctgat tgctgccga tgctgggagc tcgctaagac caaacgaggc	ctgcagcacc gttcacactg caagaccgag tcagctggcc cattgctctt catcagactg cgtcagcaca cttcgtgtcc	atcacagagg gaagtgggcg ctggatctgc agagaggaac ggagtggctg gaaagcgaag ctcggcaatg aagaacctga	caceteagea getacetgte aegtegagaa teaagagege agategagaa etgetgeage tgacegeeat gegttagagt	tgtgctgaga tctgacatgc cctgagagaaa tcctggcagc tgttacagca caacaacgcc gctggccaca taacaagaac	120 180 240 300 360 420 480
accggctggt tctgatggcc ctcaagaccg ggcagctttg ggcgtggcca ctgaagaaga gccgtgcgcg aagtgcgaca	aggtggtcat tggaagagtc acaccaacgt ctagcctgat tgtctgccga tgctgggagc tcgctaagac caaacgaggc agctgaagga	ctgcagcacc gttcacactg caagaccgag tcagctggcc cattgctctt catcagactg cgtcagcaca cttcgtgtcc gaagatggcc	atcacagagg gaagtgggcg ctggatctgc agagaggaac ggagtggctg gaaagcgaag ctcggcaatg aagaacctga	cacctcagca gctacctgtc acgtcgagaa tcaagagcgc agatcgagaa ctgctgcagc tgaccgccat gcgttagagt cacgggccat gcacgtcaa	tgtgctgaga tctgacatgc cctgagagaaa tcctggcagc tgttacagca caacaacgcc gctggccaca taacaagaac ccggcggttt	120 180 240 300 360 420 480
accggctggt tctgatggcc ctcaagaccg ggcagctttg ggcgtggcca ctgaagaaga gccgtgcgcg aagtgcgaca	aggtggtcat tggaagagtc acaccaacgt ctagcctgat tgctgccga tgctgggagc tcgctaagac caaacgaggc	ctgcagcacc gttcacactg caagaccgag tcagctggcc cattgctctt catcagactg cgtcagcaca cttcgtgtcc gaagatggcc	atcacagagg gaagtgggcg ctggatctgc agagaggaac ggagtggctg gaaagcgaag ctcggcaatg aagaacctga	cacctcagca gctacctgtc acgtcgagaa tcaagagcgc agatcgagaa ctgctgcagc tgaccgccat gcgttagagt cacgggccat gcacgtcaa	tgtgctgaga tctgacatgc cctgagagaaa tcctggcagc tgttacagca caacaacgcc gctggccaca taacaagaac ccggcggttt	120 180 240 300 360 420 480
accggctggt tctgatggcc ctcaagaccg ggcagctttg ggcgtggcca ctgaagaaga gccgtgcgcg aagtgcgaca ctgaacgtcg	aggtggtcat tggaagagtc acaccaacgt ctagcctgat tgtctgccga tgctgggagc tcgctaagac caaacgaggc agctgaagga	ctgcagcacc gttcacactg caagaccgag tcagctggcc cattgctctt catcagactg cgtcagcaca cttcgtgtcc gaagatggcc tagcgacaac	atcacagagg gaagtgggcg ctggatctgc agagaggaac ggagtggctg gaaagcgaag ctcggcaatg aagaacctga gtgtccttta gccggaatca	cacctcagca gctacctgtc acgtcgagaa tcaagagcgc agatcgagaa ctgctgcagc tgaccgccat gcgttagagt cacgggccat gccagttcaa caccagccat	tgtgctgaga tctgacatgc cctgagagaaa tcctggcagc tgttacagca caacaacgcc gctggccaca taacaagaac ccggcggttt cagcctggac	120 180 240 300 360 420 480 540
accggctggt tetgatggcc ctcaagaccg ggcagctttg ggcgtggcca ctgaagaaga gccgtgcgcg aagtgcgaca ctgaacgtcg ctgatgacag	aggtggtcat tggaagagtc acaccaacgt ctagcctgat tgtctgccga tgctgggagc tcgctaagac caaacgaggc agctgaagga tccctgacct	ctgcagcacc gttcacactg caagaccgag tcagctggcc cattgctctt catcagactg cgtcagcaca cttcgtgtcc gaagatggcc tagcgacaac	atcacagagg gaagtgggcg ctggatctgc agagagggaac ggagtggctg gaaagcgaag ctcggcaatg aagaacctga gtgtccttta gccggaatca gtgcctaaca	cacctcagca gctacctgtc acgtcgagaa tcaagagegc agatcgagaa ctgctgcagc tgaccgccat gcgttagagt cacgggccat gccagttcaa caccagccat	tgtgctgaga tctgacatgc cctgagagaaa tcctggcagc tgttacagca caacaacgcc gctggccaca taacaagaac ccggcggttt cagcctggac tgccggcag	120 180 240 300 360 420 480 540 600
accggctggt tctgatggcc ctcaagaccg ggcagctttg ggcgtggcca ctgaagaaga gccgtgcgcg aagtgcgaca ctgaacgtcg ctgatgacag ctgatgacag	aggtggtcat tggaagagtc acaccaacgt ctagcctgat tgctgccga tgctgggagc tcgctaagac caaacgaggc agctgaagga tccctgacct tgcggcagtt	ctgcagcacc gttcacactg caagaccgag tcagctggcc cattgctctt catcagactg cgtcagcaca cttcgtgtcc gaagatggcc tagcgacaac ggctagagcc tagagccatg	atcacagagg gaagtgggcg ctggatctgc agagaggaac ggagtggctg gaaagcgaag ctcggcaatg aagaacctga gtgtccttta gccggaatca gtgcctaaca gtccgacgga	cacctcagca gctacctgtc acgtcgagaa tcaagagcgc agatcgagaa ctgctgcagc tgaccgccat gcgttagagt cacgggccat gccagttcaa caccagccat tgcctacatc	tgtgctgaga tctgacatgc cctgagagaaa tcctggcagc tgttacagca caacaacgcc gctggccaca taacaagaac ccggcggttt cagcctggac tgccggccag cattctgatt	120 180 240 300 360 420 480 540 600 660

acaccctgct ggattgtgaa ggccgctcct agctgtagcg agaagaaggg caattacgcc

-continued

tgoctgctga gagagasca agoctggtat tgtcagaac coggcagac cgtgtattac 940 cctaacgaga agactagag gacaagagg caccacgtgt tcqtgtgatac gagagtgga 1000 atcaatgtgg cogagcagag caaagagtg aacacacacacacacacacacacacacacacacacaca	-continued	
atcastgrag cogacagag caaagagtag acaacaca toagacaca caactatood 1080 tgcaaggtgt ceacoggcag gcacctatt totatggtgg totototete totgggagec 1140 ctogtggctt gttataaggg gcgtcoctgt agactoggca gcaacagagt gggcaccate 1260 aagcagtga acaagggtg cagctcacaca accaacagg acgcgatac ogtgaccate 1260 gacacacag tgtatcaggt gagcacagtg gagcaggtg gaaggcgaa agacagtgat caagggcaga 1320 cetgtgtcca gcagcttcga cectatcaag ttecetgaga accagttcca ggtggccctg 1380 gaccaggtgt togagaacat cagagaatgc gagcacagtg togagcagtc caacagaact 1440 ctgtotagog cogagaaggg aaacaccagg ttoatcatcg tgatcatccd gatcgcogtg 1500 ctgggcagct cottcagaact gagcaggggt accaacaa gagcagtac caacagaac 1440 ctgtotagog cogagaaggg aaacaccagg ttoatcatcg tgatcatccd gatcgcogtg 1500 ctgggcagct cotcagaact gagcggagtg accaacaatg gcttatcac toacaac 1617	tgcctgctga gagaggacca aggctggtat tgtcagaacg ccggcagcac cgtgtactac	960
tgcanagts; concegging gracectatt tetatigstag cittistetee tetaggagee 1140 ctggrigett strataagge optstoctst ageatoegga gracecate 1200 aageagetga acaagggetg cagetacate aceaaccagg acescogtate optstacete 1200 gacaacacg tstateaget gageaagsta gaaggegaa accasteat cageagstaga 1320 cetsgricea genagitega cectateaag teecetgag tegeacagte canacagaate 1440 ctgctetagog cogagaacga cagaattee caggetetg tgcaccagte canacagaate 1440 ctgctetagog cogagaagga aacaccagg teecateate genacacte 1200 aceggeget cetegateet ggtgeeate teetatata teaaggaage caagaagee 1560 aceggegete cetegateet ggtgeeate teetateatta teaaggaage caagaagee 1660 aceggegete cetegateet ggtgeeate teetateatta teaaggaage caagaagee 1670 ctgggeaget cetegateet ggtgeeate teetateatta teaaggaage caagaagee 1670 aceggeggete cetegateet gageggagt aceaacaatg getteateee teaacacc 1617 <pre> <pre> <pre> <pre></pre></pre></pre></pre>	cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga	1020
ctegstagett gitataaagg ogistecigt agoacogaca goacoagast gegoacoate 1200 aagoagotga acaagggetg oggotacato acoaacoagg acgocgatac ogigacoate 1260 gacaacoacog igitateaget gagoaaggig gaaggggaa agoacogatac ogigacoate 1200 cetspicea goageteoga coctateaag iteocotagaa acoagteoga gagococga 1320 cetspicea goageteoga coctateaag iteocotagaa acoagteoga gatogacogat 1400 gaccaggigt tegagaacat ogagaatteo caggeteogg iggoacoagte caacagaaco 1400 cigitageaget coatgateot ggigecate tetateateat caagaagac caagaagocc 1500 cetspicago cogagaaggg aacaacogge tetatecateat caagaagac caagaagocc 1500 cetspicagoc ectoagaact gagogaggig acoaacaaag getteateoc teacoaca 1617 <pre> <pre> <210</pre></pre>	atcaatgtgg ccgagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc	1080
asgocagotta acasagacta caquacate accasecaga acquegatae egiqaccate gacaacaccag tytatcagot gaquasgig gaaggogaac agcacqigat caagggcaga 1320 cotgigicaca gaagottega coctatoaag ticootgaga accagitica ggiggocotg gaccaacaccag tytatcagot gagaastica caggactigg gagacgogat caacaggaat cotgotagog cogagaaggg acaacacggg ticatcatag tygaccate tracacaga 1440 ctgotagog cogagaaggg acaacacggg ticatcatag tygaccate tracacaga 1500 ctgggcagot coatgatect ggigtocate troatcata toaagaagac caagaagac caagaagac ctgggcagot coatgatect ggigtocate troatcata toaagaagac caagaagac caagaagac caggacgote otccagaact gagoggagtg accaacaatg gotteatcoc toacaac ctgggcagot coatgatect ggigtocate troatcata toaagaagac caagaagac cataacaaca coggocote otccagaact gagoggagtg accaacaatg gotteatcoc toacaac ctgggcagot coatgatect gagoggagga accaacaatg gotteatcoc toacaac ctggcaga aggigtotat taitical Sequence ctgotagaagato tratificial Sequence ctgotagaga aggigtotat catottcago ctgotgatac cacctcagca cggcotgaaa ctgagotgga aggigtotat ctgcagcacc atcacagaag gotacctgc tygigotgaa totgatgga aggigtotat ctgcagcacc atcacagaag gotacctgc tygigotgaga totgatggc ctagacgaga tracacatg gaagtggga acgtcagaaa totgacaaca totgaagaaga gagacgaag cattgatgca gaagaagaa gaacgaaga tygitacacaacagac totgaagaaga catagaagaag cattgatgaga gaacgaaga tygitaagag tygitacaacaacagac ggoggggcaa togctagaagac cattgatgatg gaagaagaag gaacgcagaa tacaacaacaga ggogggcaa togctagaagaa catcagacag gaaagaagaag gaacgccat taacaacagaa 400 gcoggacgaa gagaagaagaagaagaagaagaagaagaagaagaag	tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc	1140
gacacacacog tgtatcagot gagacaaggt gaaggegaac ageacgtgat caagggcaga 1320 cctgtgtoca geagettega cectatcaag tteectgaga accagtteca ggtggecetg 1380 gaccaggtgt togagaacat ogagaattec caggatetga gagacagte caacagaate 1440 ctgtctagog eegagaaggg aaacacegge tteatcateg tgateatect gategeetgg 1500 ctgggcaget categatect ggtgtccate tteatcatat toaagaagac caagaagec 1560 accggcoget etccagaact gageggagg accacaaatg getteatece teacaac 1617 <pre> <210</pre>	ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc	1200
cetgtgteca geagettega cectateaag ttecetgaga accagtteca ggtggecetg gaccaggtgt tegagaacat egagaattee caggatetgt ggaccagte caacagaate 1440 etgtetageg cegagaaggg aaacacegge tteateateg tgateateet gategeegtg 1500 etgggcaget ecatgateet ggtgtecate tteateatta teaagaagac caagaagece 1560 accgggegte etceagaact gageggagtg accaccagt getteateee teacaac 1517 **210-SEO ID NO 110 **2115-ISMNTH: 1617 **212-TFFE: DNA **213-ORGAINSH: Artificial Sequence **223-OFBATURE: **223-OF	aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc	1260
gaccaggtgt tegagagact cgagaattee caggetetgg tggaccage caacagaate 1440 ctgtctageg cegagaaggg aacacegge ttoatcateg tgateateet gategeegg 1500 ctgggcaget ceatgateet gggtgecate tteatcatta teaagaagae caagaagee 1560 aceggegete etceagaact gageggatg aceaacaatg getteateee teacaac 1617 <pre><110</pre>	gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga	1320
ctgtctagec ccaagaagg aaacaccgg ttcatcatcg tgatcatcct gatcgccgtg tegggcagct ccatgatcct gggtgtcatc ttcatcatca tcaagaaga caagaagcc tegggcagct ctccagaact gagcggagtg accaacaag gcttcatcc tcacaac 1617 <pre> <210. SEO ID NO 110 <211. LENCTH. 1617 <pre> <1213. ORGANISM: Artificial Sequence <220. FEATURE: <pre> <2213. ORGANISM: Artificial Sequence <220. FEATURE: <pre> <pre> <2213. ORGANISM: Artificial Sequence <220. FEATURE: </pre> <pre> <2213. OTHER INFORMATION: Synthetic Polynucleotide </pre> <pre> <400. SEQUENCE: 110 </pre> <pre> atgagctggat acaccaacgt gttcacactg gagtggggg ggtacctgtc tggctggaga tcggaagtgg caccaagtggtc ctgcaacactg gagtggggg acgtcggaga tctggctggaga tcggaagtgc ctagctggat caagccggg ctggatcgc tcaagaaggg cctggagaag 240 </pre> <pre> ctcaagaccg tgtctgccga tcagctggac agagaggagc agagaggagac cagtcgagaa tctggacaga ggcggggcac tcgctaagac catcagactg gaagaggagac agatcgaga tgtacagaca ggcggtggca tcgctaagac catcagactg gaagaggag tgacgcaat caccaacagcc 420 </pre> ctgaagaaga caaacgagga cttcgtgctt ggagaggaga</pre></pre></pre></pre></pre></pre></pre>	cctgtgtcca gcagcttcga ccctatcaag ttccctgaga accagttcca ggtggccctg	1380
ctgggcagct ceatgatect ggtgtccate tteateatat teaagaagae caagaagece 1560 accggcgtct ctccagaact gagcggagtg accaacaatg gcttcatcce teacaac 1617	gaccaggtgt tcgagaacat cgagaattcc caggctctgg tggaccagtc caacagaatc	1440
aceggegete etceagaact gageggagtg aceaacaatg getteatece teacaac 1617	ctgtctagcg ccgagaaggg aaacaccggc ttcatcatcg tgatcatcct gatcgccgtg	1500
<pre>210. SEQ ID NO 110</pre>	ctgggcagct ccatgatcct ggtgtccatc ttcatcatta tcaagaagac caagaagcc	1560
c2112 TYPE: DNA c2113 ORGANISM: Artificial Sequence c220> PENTURE: c223> OTHER INFORMATION: Synthetic Polynucleotide c400> SEQUENCE: 110 atgagctgga aggtggtcat catcttcage etgetgatca cacctcagea eggectgaaa 60 gagagctace tggaagagt etgecageace atcacagag getacetget tgtgetgaga 120 accegetggt acaccaacgt gttcacactg gaagtgggeg acqtcgagaa tetgacatge 180 tctgatggcc ctagcctgat caagaccgag etggatctge tcaagagege cetgagagaa 240 ctcaagaccg tgtctgccga tcagctggcc agagaggagaa agatcgagaa tectggagag 300 ggcagctttg tgetgggag cattgctgt ggaagtggtg etggtgagaa tectggagag 360 ggcgtggcca tcgctaagac cattgctctt ggagtggtg etggtgagac tgttacagea 360 ggcgtggcca tcgctaagac cattcagactg gaaagsggag tggaceget tgttacagea 360 ggcgtggcca tcgctaagac cattcagactg gaaagsggat tggcgccat caacaacgec 420 ctgaagaaga caacagagge cgtcageaca ctcggcaatg gcgttaaggt gctggccaca 480 gccgtgcgcg agctgaagag cttcgtgcta agaacctga cacaggccat taacaagacc 540 aagtgcgaca tccctgacct gaagatgggc gtgtctta gcaggtcaa acggeggttt 600 ctgaacgtg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac 660 ctgaacgtag tgcggcagat tagcgacag gtgccacaa tgcctacaac tgcctgacac 1720 atcaagtg tgctgagaa tagagccatg gtcctacaac tgcctacact tgccggccag 720 atcaagtga tgctgagaa tagagccatg gtccaacatg gcgaagaga cattcttagg cgtgatcgac 840 acaccctgct ggattgtgaa ggccgctcct agctgtagag agagagagg cattcttag 290 ggcgtgtga gagagagcg gaccacatg gtcaagagc gagagaga cagtgagac 290 gccgtgctg gagagagacca aggctggtat tgtcagaacc cggcagaca cgtgtactac 990 gcctgctgctg gagagagaca aggctggtat tgtcagaaca ccggcagaac cgtgtactac 990 cctaacagga aggactgcga gacaagagg gaccactgt tctgtgatac cgccgctgga 1100 atcaatgtg ccgagagag caaagagg gaccactgt tctgtgatac cgccgctgga 1100 atcaatgtg ccgagagag caaagagg gaccactat tctatggtgg ctctgtcc tctgggagcc 1140 ctggtggctt gttataagg cgtgtcatat acacaacaa caacaacac caacataccc 1200 aacaagagtg acaagaggct gaccactat tctatggtgg ctcgtcctc tctggagacc 1200 aacaagagtga acaagaggtg acacactat acacaacagg acgcagatac cgtgaacaca 1200 aacaagagtga acaagaggtg acacactat acacaacagg acgcagatac cgtgaacact	accggcgctc ctccagaact gagcggagtg accaacaatg gcttcatccc tcacaac	1617
atgagetgga aggtggteat eatetteage etgetgatea caceteagea eggeetgaaa 60 gagagetace tggaagage etgeageace ateacagagg getacetgte tgtgetgaga 120 accggetggt acacecaacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge 180 tetgatggee etagetgat caagacega etggatetge teagagagege eetgagagaa 240 eteaagaceg tgtetgeega teagetggee agagaggaac agategagaa teetggeage 300 ggeagetttg tgetgeega eategetett ggagtggetg etgetgeage tgttacagea 360 ggegtggeea tegetaagac cateagactg gaaagegaag tgacegeeat eaacaacgee 420 etgaagaaga caaacgagge egteageac eteggeaatg gegttagagt getggeeaca 480 geegtgegeg agetgaagga ettegtgett aagaacetga eaegggeeat taacaagaac 540 aagtgegaca teeetgacet gaagatggee gtgeettta geeagteaa eegegggttt 600 etgaacgteg tgeggeagtt tagegacaac geeggaatea eaecageeat eageetggae 660 etgatgacag atgetgagat ggetagagee gtgeetaaca tgeetacate tgeeggeeag 720 ateaagetga tgetegagaa tagageeag gtgeegagaa aaggettegg eattetgatt 780 ggegtgtaeg geageagetg gatetatatg gtgeagetge etatetegg egtgategae 840 acacectget ggattgtgaa ggeegeteet agetgageg agaagaagg eatteetgat 780 ggegtgtaeg gaagagage gacetatatg gtgeagetge etatetegg egtgategae 900 tgeetgetga gagagagea aggeegteet agetgagae eeggeagea egtgtaetae 960 eetaacgaga aggaetgega gacaagagge gacacgtgt tetgtgatae egegetgga 1020 ateaatgtgg eegageagg caaagagge aacateaaca teageacaa eacatatece 1080 tgeaaggtgt eeaceggeag gacacetatt tetatggtgg etetgteet etetggagaee 1140 etggtggett gttataagg egtgteetgt ageateegga geaacagagt gggeateate 1200 aagaagetga acaagaggt gageteetgt ageateegga geaacagagt gggeateate 1200 aagaagetga acaagggetg eageteetgt ageateegga geaacagagt gggeateate 1200 aagaagetga acaagggetg eageteetgt ageateegga geaacagagt gggeateate 1200	<211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:	
gagagetace tggaagagte etgeagcace ateacagagg getacetgte tgtgetgaga 120 accggetggt acaccaacgt gttcacactg gaagtgggeg acgtegagaa tctgacatge 180 tetgatggee etagectgat caagacgag etggatetge teaagaggaa tetgagagaa 240 etcaagaceg tgtetgcega teagetggee agagaggaa agategagaa teetggeage 300 ggeagetttg tgetgggage cattgetett ggagtggetg etgetgaaga teetggeage 360 ggegtggeea tegetaagaa cateagactg gaaagegaag tgacegeeat eaacaacgee 420 etgaagaaga caaacgagge egteagcaca eteggeaatg gegttagagt getggecaca 480 geegtggega agetgaagga ettegtget aagaacetga eaegggeeat taacaagaac 540 aagtgegaca teeetgacet gaagatggee gtgetettta geeagtgaa eeggeggttt 600 etgaacgteg tgeggeagtt tagegacaac geeggaatea eaecaggeeat eagetggee 660 etgaatgaca teeetgacet gaagatggee gtgetettta geeagteaa eeggeggttt 720 ateaagetga tgetegagaa tagageeatg gteegtaaca tgeetacate tgeeggeeag 720 ateaagetga tgetegagaa tagageeatg gteegaaga aaggettegg eattetgatt 780 ggegtgtacg geagcagetg gatetatatg gteegacgga agaagaagg eattetgatt 780 ggegtgtaeg ggaagaggee gatetatatg gteegacgee etatettegg egtgategac 840 acaccetget ggattgtgaa ggeegeteet agetgtagee gagaagaagg eaattaegee 900 tgeetgetga gaagagaca aggetggtat tgteagaacg eeggeagaa egtgtactae 960 eetaacgaga aggaetgega gacaagagge gaccaegtgt tetgtgatae egeegetgga 1020 ateaatgtgg eegageagag eaaagagge aacateaaca teageaceae eaactateee 1080 tgeaaggtgt eeaecggeag geaecetatt tetatggtgg etetgteee tetgggagee 1140 etggtaggett gttataaggg egtgeetgt ageateggea geaacaagag gggeateate 1200 aagagagtga acaagggetg eageteetgt ageateggea geaacaagag gggeateate 1200 aagaggtga acaagggetg eageteetgt ageateggea geaacaagag gggeateate 1200 aagagagtga acaagggetg eageteetgt ageateggea geaacaagag gggeateate 1200	<400> SEQUENCE: 110	
accggctggt acaccaacgt gttcacactg gaagtgggeg acgtcgagaa tctgacatgc 180 tctgatggec ctagcctgat caagaccgag ctggatctgc tcaagagcgc cctgagagaa 240 ctcaagaccg tgtctgccga tcagctggce agagaggaac agatcgagaa tcctggcagc 300 ggcagctttg tgctgggagc cattgctctt ggagtggctg ctgctgcagc tgttacagca 360 ggcgtgggcca tcgctaagac catcagactg gaaagcgaag tgaccgccat caacaacgcc 420 ctgaagaaga caaacgaggc cgtcagcac ctcggcaatg gcgttagagt gctggccaca 480 gccgtgcgcg agctgaagga cttcgtgctt aagaacctga cacgggccat taacaagaac 540 aagtgcgaca tccctgacct gaagatggce gtgtccttta gccagtcaa ccgggggttt 600 ctgaacgtcg tgcggcagt tagcgacaac gccggaatca caccagccat cagcctggac 660 ctgaacgtcg tgcggcagt tagcgacaac gccggaatca caccagccat cagcctggac 660 ctgatgacag atgctgagct ggctagagce gtgcctaaca tgcctacatc tgccggccag 720 atcaagctga tgctcgagaa tagagccatg gtccgacaga aaggcttcgg cattctgatt 780 ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac 840 acaccctgct ggattgtgaa ggccgctcct agctgtagcg agaagaagagg caattacgcc 900 tgcctgctga gagaggacca aggctggtat tgtcagacag ccggcagac cgtgtactac 960 cctaacgaga aggactgcag gaccaagagg gaccacgtgt tctgtgatac cgccgctgga 1020 atcaatgtgg ccgagcagag caaagaggc aacacaaca tcagcaccac caactatccc 1080 tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc 1140 ctggtaggctt gttataaggg cgtgtcctgt agcatcaga acaccagag gggcatcatc 1200 aagcagctga acaagggctg cagctacta accaaccag acgcgatac cgtgaccatc 1200 aagcagctga acaagggctg cagctacta accaaccag acgcgatac cgtgaccatc 1200 aagcagctga acaagggctg cagctactat accaaccag acgcgatac cgtgaccatc 1200	atgagetgga aggtggteat catetteage etgetgatea eaceteagea eggeetgaaa	60
tetgatggee etagectgat caagacegag etggatetge teaagagege eetggagaaa 240 cteaagaceg tgtetgeega teagetggee agaagagaac agategagaa teetggeage 300 ggeagetttg tgetgggage cattgetett ggagtggetg etgetgeage tgttacagea 360 ggegtgggeea tegetaagae cateagaceg gaaagegaag tgacegeeat caacaacgee 420 ctgaagaaga caaacgagge egteageaca eteggeaatg gegttagget getggeeaca 480 geegtggegg agetgaagga ettegtgett aagaacetga eacgggeeat taacaagaac 540 aagteggaca teeetgacet gaagatggee gtgteettta geeagtteaa eeggeggttt 600 ctgaaggteg tgeggeagtt tagegacaac geeggaatea caceageeat eageetggac 660 ctgatgacag atgetgaget ggetagagee gtgeetaaca tgeetacate tgeeggeeag 720 ateaagetga tgetegagaa tagageeag gteegacaga aaggettegg eattetgatt 780 ggeggtgtaeg geageaget gatetatatg gtgeagetge etatettegg egtgategac 840 acaceetget ggattgtgaa ggeegeteet agetgtage gagaagaagg eaattacgee 900 tgeetgetga gagaggacea aggetggtat tgteagaacg eeggeageac egtgtactac 960 cetaacgaga aggaetgega gacaagagge gacacagtg tetgtgatac egegetgga 1020 ateaatgtgg eegageagg eaacagagg aacacegtg tetgtgatac egegetggae 1140 ctggaggett gttataaggg egtgteetgt ageateega geaacagagt gggeateate 1200 aageagetga acaagggetg eagetacta accaacaga acgeegatac egtgacate 1200 aageagetga acaagggetg eagetacate accaacaga acgeegatac egtgacate 1200 aageagetga acaagggetg eagetacate accaacaga acgeegatac egtgacate 1200 aageagetga acaagggetg eagetacate accaacaga acgeegatac egtgacate 1200	gagagetace tggaagagte etgeageace ateaeagagg getacetgte tgtgetgaga	120
ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcagc 300 ggcagctttg tgctgggagc cattgctett ggagtggctg ctgctgcagc tgttacagca 360 ggcgtggcca tcgctaagac catcagactg gaaagcgaag tgaccgccat caacaacgcc 420 ctgaagaaga caaacgaggc cgtcagcaca ctcggcaatg gcgttagagt gctggccaca 480 gccgtgcgcg agctgaagga cttcgtgctt aagaacctga cacgggccat taacaagaac 540 aagtgcgaca tccctgacct gaagatggcc gtgtccttta gccagttcaa ccggcggttt 600 ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac 660 ctgatgacag atgctgagct ggctagagcc gtgcctaaca tgcctacatc tgccggccag 720 atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgat 780 ggcgtgtacg gcagcagcgt gatctatatg gtgcagctga ctatcttcgg cgtgatcgac 840 acaccctgct ggattgtgaa ggccgctcct agctgtagcg agaagaaggg caattacgcc 900 tgcctgctga gaaggacca aggctggtat tgtcagaacg ccggcagcac cgtgtactac 960 cctaacgaga aggactgcga gacaagaggc gaccacgtt tctgtgatac cgccgctgga 1020 atcaatgtgg ccgagcagg caaagaggc aacaccagt tctgtgtatc cgccgctgga 1020 atcaatgtgg ccgagcagg gacacctatt tctatggtgg ctctgtctc tctgggagcc 1140 ctggtggctt gttataagg cgtgtcctgt agcatcgga gcaacaagag ggcaacaag gggcatcatc 1200 aagcagctga acaagggctg cagctacatc accaaccag acggcagtac cgtgaccatc 1200 aagcagctga acaagggctg cagctacatc accaaccag acgcggatac cgtgaccatc 1200	accggctggt acaccaacgt gttcacactg gaagtgggcg acgtcgagaa tctgacatgc	180
ggcagctttg tgctgggagc cattgctctt ggagtggctg ctgctgcagc tgttacagca 360 ggcgtggcca tcgctaagac catcagactg gaaagcgaag tgaccgccat caacaacgcc 420 ctgaaagaaga caaacgaggc cgtcagcaca ctcggcaatg gcgttagagt gctggccaca 480 gccgtgcgcg agctgaagga cttcgtgctt aagaacctga cacgggccat taacaagaac 540 aaagtgcgaca tccctgacct gaagatggcc gtgtccttta gccagttcaa ccggcggttt 600 ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac 660 ctgatgacag atgctgaagg ggctagagcc gtgcctaaca tgcctaacat tgcctacatc tgccggcagg 720 atcaagctga tgctcgagaa tagagccatg gtccgacga aaggcttcgg cattctgatt 780 ggcgtgtacg gcagcaggt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac 840 acaccctgct ggattggaa ggccgctcct agctgtagcg agaagaaggg caattacgcc 900 tgcctgctga gagaggacca aggctggtat tgtcagaacg ccggcagcac cgtgtactac 960 cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgtatac cgccgctgga 1020 atcaatgtgg ccgagcagag caaagaggc aacatcaaca tcagcaccac caactatccc 1080 tgcaaggtgt ccaccoggcag gcaccctatt tctatgtgg ctctgtctc tctgggagcc 1140 ctggtggctt gttataagg cgtgtcctt agcaccacg gcaacagagt gggcatcatc 1200 aagcagctga acaagggctg cagctacatc accaaccagg acgcgatac cgtgaccatc 1200 aagcagctga acaagggctg cagctacatc accaaccagg acgcgatac cgtgaccatc 1200	tetgatggce etageetgat caagacegag etggatetge teaagagege eetgagagaa	240
ggogtggcca tcgctaagac catcagactg gaaagcgaag tgaccgcat caacaacgcc 420 ctgaagaaga caaacgaggc cgtcagcaca ctcggcaatg gcgttagagt gctggccaca 480 gccgtgcgga agctgaagga cttcgtgctt aagaacctga cacgggccat taacaagaac 540 aagtgggaca tccctgacct gaagatggcc gtgtccttta gccagttcaa ccggcggttt 600 ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac 660 ctgatgacag atgctgagct ggctagagcc gtgcctaaca tgcctacatc tgccggccag 720 atcaagctga tgctcgagat tagagccatg gtccgacgga aaggcttcgg cattctgatt 780 ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac 840 acaccctgct ggattgtgaa ggccgctcct agctgtagcg agaagaaggg caattacgcc 900 tgcctgctga gagaggacca aggctggtat tgtcagacag ccggcagcac cgtgtactac 960 cctaacgaga aggactgcga gacaagagg gaccacgtgt tctgtgatac cgccgctgga 1020 atcaatgtgg ccgagcagg caaagagtgc aacatcaaca tcagcaccac caactatccc 1080 tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctc tctgggagcc 1140 ctggtggctt gttataagg cgtgcctgt agcatcaga gcaacaagagt gggcatcatc 1200 aagcagctga acaagggctg cagctacatc accaaccagg acgcggatac cgtgaccatc 1200 aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc 1200	ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcagc	300
ctgaagaaga caaacgagge cgtcagcaca ctcggcaatg gcgttagagt gctggccaca 480 gccgtgcgge agctgaagga cttcgtgctt aagaacctga cacgggccat taacaagaacc 540 aagtgcgaca tccctgacct gaagatggcc gtgtccttta gccagttcaa ccggcggttt 600 ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac 660 ctgatgacag atgctgagct ggctagagcc gtgcctaaca tgcctacatc tgccggcagg 720 atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgatt 780 ggcgtgtaceg gcagcagcgt gatctatatg gtgcagctge ctatcttcgg cgtgatcgac 840 acaccctgct ggattgtgaa ggccgctcct agctgtagcg agaagaaggg caattacgcc 900 tgcctgctga gagaggacca aggctggtat tgtcagaacg ccggcagcac cgtgtactac 960 cctaacgaga aggactgcga gaccaagggc gaccacgtgt tctgtgatac cgccgctgga 1020 atcaatgtgg ccgagcagag caaagaggc aacaccaaca tcagcaccac caactatccc 1080 tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc 1140 ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacaaggt gggcatcatc 1200 aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc 1260	ggcagctttg tgctgggagc cattgctctt ggagtggctg ctgctgcagc tgttacagca	360
gccgtgcgcg agctgaagga cttcgtgctt aagaacctga cacgggccat taacaagaac 540 aagtgcgaca tccctgacct gaagatggcc gtgtccttta gccagttcaa ccggcggttt 600 ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac 660 ctgatgacag atgctgagct ggctagagcc gtgcctaaca tgcctacatc tgccggccag 720 atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgatt 780 ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac 840 acaccctgct ggattgtgaa ggccgctcct agctgtagcg agaagaaggg caattacgcc 900 ttgcctgctga gagaggacca aggctggtat tgtcagaacg ccggcagcac cgtgtactac 960 cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga 1020 atcaatgtgg ccgagcagag caaagaggc aacaccaca tcagcaccac caactatccc 1080 tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc 1140 ctggtggctt gttataaggg cgtgtcctgt agcatcaca accaacaagg gggcatcatc 1200 aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc 1260	ggcgtggcca tcgctaagac catcagactg gaaagcgaag tgaccgccat caacaacgcc	420
aagtgegaca teeetgacet gaagatggee gtgteettta geeagtteaa eeggeggttt 600 etgaacgteg tgeggeagtt tagegacaac geeggaatea eaceagecat eageetggac 660 etgatgacag atgetgaget ggetagagee gtgeetaaca tgeetacate tgeeggeeag 720 ateaagetga tgetegagaa tagageeatg gteegacgga aaggettegg eattetgatt 780 ggegtgtacg geageagegt gatetatatg gtgeagetge etatettegg egtgategae 840 acaceetget ggattgtgaa ggeegeteet agetgtageg agaagaaggg eaattaegee 900 tgeetgetga gagaggacea aggetggtat tgteagaaeg eeggeageae egtgtaetae 960 eetaacgaga aggaetgega gacaagagge gaceaegtgt tetgtgatae egeeggtga 1020 ateaatgtgg eegageagag eaaagagtge aacateaaea teageaceae eaaetateee 1080 tgeaaggtgt eeaeeggeag geaeeetatt tetatggtgg etetgtetee tetgggagee 1140 etggtggett gttataaggg egtgteetgt ageateggea geaacagagt gggeateate 1200 aageagetga acaagggetg eagetacate aceaaceagg aegeegatae egtgaceate 1260	ctgaagaaga caaacgaggc cgtcagcaca ctcggcaatg gcgttagagt gctggccaca	480
ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac 660 ctgatgacag atgctgagct ggctagagcc gtgcctaaca tgcctacatc tgccggccag 720 atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgatt 780 ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac 840 acaccctgct ggattgtgaa ggccgctcct agctgtagcg agaagaaggg caattacgcc 900 tgcctgctga gagaggacca aggctggtat tgtcagaacg ccggcagcac cgtgtactac 960 cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga 1020 atcaatgtgg ccgagcagg caaagagtgc aacatcaaca tcagcaccac caactatccc 1080 tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc 1140 ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc 1200 aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc 1260	gccgtgcgcg agctgaagga cttcgtgctt aagaacctga cacgggccat taacaagaac	540
ctgatgacag atgctgagct ggctagagcc gtgcctaaca tgcctacatc tgccggccag 720 atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgatt 780 ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac 840 acaccctgct ggattgtgaa ggccgctcct agctgtagcg agaagaaggg caattacgcc 900 tgcctgctga gagaggacca aggctggtat tgtcagaacg ccggcagcac cgtgtactac 960 cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga 1020 atcaatgtgg ccgagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc 1080 tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc 1140 ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc 1200 aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc 1260	aagtgegaca teeetgaeet gaagatggee gtgteettta geeagtteaa eeggeggttt	600
atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgatt 780 ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac 840 acaccctgct ggattgtgaa ggccgctcct agctgtagcg agaagaaggg caattacgcc 900 tgcctgctga gagaggacca aggctggtat tgtcagaacg ccggcagcac cgtgtactac 960 cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga 1020 atcaatgtgg ccgagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc 1080 tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc 1140 ctggtggctt gttataaggg cgtgtcctgt agcatcgga gcaacaggg gggcatcatc 1200 aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc 1260	ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac	660
ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac 840 acaccctgct ggattgtgaa ggccgctcct agctgtagcg agaagaaggg caattacgcc 900 tgcctgctga gagaggacca aggctggtat tgtcagaacg ccggcagcac cgtgtactac 960 cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga 1020 atcaatgtgg ccgagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc 1080 tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc 1140 ctggtggctt gttataaggg cgtgtcctgt agcatcgca gcaacagagt gggcatcatc 1200 aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc 1260	ctgatgacag atgctgagct ggctagagcc gtgcctaaca tgcctacatc tgccggccag	720
acaccetget ggattgtgaa ggeegeteet agetgtageg agaagaaggg caattaegee 900 tgeetgetga gagaggacea aggetggtat tgteagaaeg eeggeageae egtgtaetae 960 eetaaegaga aggaetgega gacaagagge gaceaegtgt tetgtgatae egeegetgga 1020 ateaatgtgg eegageagag caaagagtge aacateaaea teageaceae eaactateee 1080 tgeaaggtgt eeaeeggeag geaeeetatt tetatggtgg etetgtetee tetgggagee 1140 etggtggett gttataaggg egtgteetgt ageateggea geaaeagagt gggeateate 1200 aageagetga acaagggetg eagetaeate aceaaeeagg aegeegatae egtgaceate 1260	atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgatt	780
tgcctgctga gagaggacca aggctggtat tgtcagaacg ccggcagcac cgtgtactac 960 cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga 1020 atcaatgtgg ccgagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc 1080 tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc 1140 ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc 1200 aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc 1260	ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac	840
cctaacgaga aggactgcga gacaagaggc gaccacgtgt tetgtgatac egecgetgga 1020 atcaatgtgg ccgagcagag caaagagtgc aacatcaaca teagcaccac caactatece 1080 tgcaaggtgt ccaceggcag gcaccetatt tetatggtgg etetgtetee tetgggagec 1140 ctggtggett gttataaggg egtgteetgt agcateggca gcaacagagt gggcateate 1200 aagcagetga acaagggetg cagetacate accaaccagg aegecgatac egtgaccate 1260	acaccetget ggattgtgaa ggeegeteet agetgtageg agaagaaggg caattaegee	900
atcaatgtgg ccgagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc 1080 tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc 1140 ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc 1200 aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc 1260	tgcctgctga gagaggacca aggctggtat tgtcagaacg ccggcagcac cgtgtactac	960
tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc 1140 ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc 1200 aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc 1260	cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga	1020
ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc 1200 aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc 1260	atcaatgtgg ccgagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc	1080
aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc 1260	tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc	1140
	ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc	1200
gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga 1320	aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc	1260
	gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga	1320

cctgtgtcca gcagcttcga ccctatcaag ttccctgagg atcagttcca ggtggccctg 1380

gaccaggtgt tcgagaacat	cgagaattcc	caggetetgg	tggaccagtc	caacagaatc	1440
ctgtctagcg ccgagaaggg					1500
ctgggcaget ccatgatect					1560
accggcgctc ctccagaact					1617
33 3	3 3 33 3 3	3	3		
<pre><210> SEQ ID NO 111 <211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artif <220> FEATURE: <223> OTHER INFORMATION</pre>			eotide		
<400> SEQUENCE: 111					
atgagctgga aggtggtcat	catcttcagc	ctgctgatca	cacctcagca	cggcctgaaa	60
gagagctacc tggaagagtc	ctgcagcacc	atcacagagg	gctacctgtc	tgtgctgaga	120
accggctggt acaccaacgt	gttcacactg	gaagtgggcg	acgtcgagaa	tctgacatgc	180
totgatggcc ctagcotgat	caagaccgag	ctggatctgc	tcaagagcgc	cctgagagaa	240
ctcaagaccg tgtctgccga	tcagctggcc	agagaggaac	agatcgagaa	tectggcage	300
ggcagctttg tgctgggagc	cattgctctt	ggagtggctg	ctgctgcagc	tgttacagca	360
ggcgtggcca tcgctaagac	catcagactg	gaaagcgaag	tgaccgccat	caacaacgcc	420
ctgaagaaga caaacgaggc	cgtcagcaca	ctcggcaatg	gcgttagagt	gctggccaca	480
gccgtgcgcg agctgaagga	cttcgtgctt	aagaacctga	cacgggccat	taacaagaac	540
aagtgcgaca tccctgacct	gaagatggcc	gtgtccttta	gccagttcaa	ccggcggttt	600
ctgaacgtcg tgcggcagtt	tagcgacaac	gccggaatca	caccagccat	cagcctggac	660
ctgatgacag atgctgagct	ggctagagcc	gtgcctaaca	tgcctacatc	tgccggccag	720
atcaagctga tgctcgagaa	tagagccatg	gtccgacgga	aaggcttcgg	cattctgatt	780
ggcgtgtacg gcagcagcgt	gatctatatg	gtgcagctgc	ctatcttcgg	cgtgatcgac	840
acaccctgct ggattgtgaa	ggccgctcct	agctgtagcg	agaagaaggg	caattacgcc	900
tgcctgctga gagaggacca	aggctggtat	tgtcagaacg	ccggcagcac	cgtgtactac	960
cctaacgaga aggactgcga	gacaagaggc	gaccacgtgt	tctgtgatac	cgccgctgga	1020
atcaatgtgg ccgagcagag	caaagagtgc	aacatcaaca	tcagcaccac	caactatccc	1080
tgcaaggtgt ccaccggcag	gcaccctatt	tctatggtgg	ctctgtctcc	tetgggagee	1140
ctggtggctt gttataaggg	cgtgtcctgt	agcatcggca	gcaacagagt	gggcatcatc	1200
aagcagctga acaagggctg	cagctacatc	accaaccagg	acgccgatac	cgtgaccatc	1260
gacaacaccg tgtatcagct	gagcaaggtg	gaaggcgaac	agcacgtgat	caagggcaga	1320
cctgtgtcca gcagcttcga	ccctatcaag	ttccctgaga	accagttcca	ggtggccctg	1380
gaccaggtgt tcgagaacat	cgagaattcc	caggetetgg	tggaccagtc	caacagaatc	1440
ctgtctagcg ccgagaaggg	aaacaccggc	ttcatcatcg	tgatcatcct	gatcgccgtg	1500
ctgggcagct ccatgatcct	ggtgtccatc	ttcatcatta	tcaagaagac	caagaagccc	1560
accggcgctc ctccagaact	gagcggagtg	accaacaatg	gcttcatccc	tcacaac	1617

<210> SEQ ID NO 112 <211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:

-continued

<223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 112	
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa	60
gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga	120
accggctggt acaccaacgt gttcacactg cctgtgggcg acgtcgagaa tctgacatgc	180
tctgatggcc ctagcctgat caagaccgag ctggatctgc tcaagagcgc cctgagagaa	240
ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcagc	300
ggcagctttg tgctgggagc cattgctctt ggagtggctg ctgctgcagc tgttacagca	360
ggcgtggcca tcgctaagac catcagactg gaaagcgaag tgaccgccat caacaacgcc	420
ctgaagaaga caaacgaggc cgtcagcaca ctcggcaatg gcgttagagt gctggccaca	480
gccgtgcgcg agctgaagga cttcgtgtcc aagaacctga cacgggccat taacaagaac	540
aagtgcgaca tcgacgacct gaagatggcc gtgtccttta gccagttcaa ccggcggttt	600
ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac	660
ctgatgacag atgctgagct ggctagagcc gtgcctaaca tgcctacatc tgccggccag	720
atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgatt	780
ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac	840
acaccctgct ggattgtgaa ggccgctcct agctgtagcg agaagaaggg caattacgcc	900
tgcctgctga gagaggacca aggctggtat tgtcagaacg ccggcagcac cgtgtactac	960
cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga	1020
atcaatgtgg ccgagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc	1080
tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc	1140
ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc	1200
aagcagetga acaagggetg cagetacate accaaccagg acgeegatae egtgaccate	1260
gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga	1320
cctgtgtcca gcagcttcga ccctatcaag ttccctgagg atcagttcca ggtggccctg	1380
gaccaggtgt tcgagaacat cgagaattcc caggctctgg tggaccagtc caacagaatc	1440
ctgtctagcg ccgagaaggg aaacaccggc ttcatcatcg tgatcatcct gatcgccgtg	1500
ctgggcagct ccatgatcct ggtgtccatc ttcatcatta tcaagaagac caagaagccc	1560
accggcgctc ctccagaact gagcggagtg accaacaatg gcttcatccc tcacaac	1617
<210> SEQ ID NO 113 <211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 113	
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa	60
gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga	120
accggctggt acaccaacgt gttcacactg cctgtgggcg acgtcgagaa tctgacatgc	180
tetgatggce etageetgat caagacegag etggatetge teaagagege eetgagagaa	240
ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcagc	300
	2.60

ggcagctttg tgctgggagc cattgctctt ggagtggctg ctgctgcagc tgttacagca

ggcgtggcca tcgctaagac catcagactg gaaagcgaag tgaccgccat caacaacgcc	420
ctgaagaaga caaacgaggc cgtcagcaca ctcggcaatg gcgttagagt gctggccaca	480
geegtgegeg agetgaagga ettegtgtee aagaacetga caegggeeat taacaagaac	540
aagtgcgaca tegaegaeet gaagatggee gtgteettta geeagtteaa eeggeggttt	600
ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac	660
ctgatgacag atgctgagct ggctagagcc gtgcctaaca tgcctacatc tgccggccag	720
atcaagetga tgetegagaa tagageeatg gteegaegga aaggettegg eattetgatt	780
ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac	840
acaccetget ggattgtgaa ggeegeteet agetgtageg agaagaaggg caattaegee	900
tgcctgctga gagaggacca aggctggtat tgtcagaacg ccggcagcac cgtgtactac	960
cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga	1020
atcaatgtgg ccgagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc	1080
tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc	1140
ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc	1200
aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc	1260
gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga	1320
cctgtgtcca gcagcttcga ccctatcaag ttccctgaga accagttcca ggtggccctg	1380
gaccaggtgt tcgagaacat cgagaattcc caggctctgg tggaccagtc caacagaatc	1440
ctgtctagcg ccgagaaggg aaacaccggc ttcatcatcg tgatcatcct gatcgccgtg	1500
ctgggcagct ccatgatcct ggtgtccatc ttcatcatta tcaagaagac caagaagccc	1560
accggcgctc ctccagaact gagcggagtg accaacaatg gcttcatccc tcacaac	1617
<210> SEQ ID NO 114 <211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 114	
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa	60
gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga	120
accggctggt acaccaacgt gttcacactg gaagtgggcg acgtcgagaa tctgacatgc	180
tetgatggce etageetgat caagacegag etggatetge teaagagege eetgagagaa	240
ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcagc	300
ggcagctttg tgctgggagc cattgctctt ggagtggctg ctgctgcagc tgttacagca	360
ggcgtggcca tcgctaagac catcagactg gaaagcgaag tgaccgccat caacaacgcc	420
ctgaagaaga caaacgaggc cgtcagcaca ctcggcaatg gcgttagagt gctggccaca	480
gccgtgcgcg agctgaagga cttcgtgtcc aagaacctga cacgggccat taacaagaac	540
aagtgegaca tegaegaeet gaagatggee gtgteettta gecagtteaa eeggeggttt	600
ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac	660
ctgatgacag atgctgaget ggctagagec gtgcctaaca tgcctacate tgccggccag	720
atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgatt	
	780

-continued

-continued	
ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac	840
acaccetget ggattgtgaa ggeegeteet agetgtageg agaagaaggg caattaegee	900
tgcctgctga gagaggacca aggctggtat tgtcagaacg ccggcagcac cgtgtactac	960
cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga	1020
atcaatgtgg ccgagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc	1080
tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc	1140
ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc	1200
aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc	1260
gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga	1320
cctgtgtcca gcagcttcga ccctatcaag ttccctgagg atcagttcca ggtggccctg	1380
gaccaggtgt tegagaacat egagaattee eaggetetgg tggaccagte eaacagaate	1440
ctgtctagcg ccgagaaggg aaacaccggc ttcatcatcg tgatcatcct gatcgccgtg	1500
ctgggcagct ccatgatcct ggtgtccatc ttcatcatta tcaagaagac caagaagcc	1560
accggcgctc ctccagaact gagcggagtg accaacaatg gcttcatccc tcacaac	1617
<210> SEQ ID NO 115 <211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 115	
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa	60
gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga	120
accggctggt acaccaacgt gttcacactg gaagtgggcg acctcgagaa tctgacatgc	180
tctgatggcc ctagcctgat caagaccgag ctggatctga ccaagagcgc cctgagagaa	240
ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcagc	300
ggcagctttg tgctgggagc cattgctctt ggagtggctg ctgctgcagc tgttacagca	360
ggcgtggcca tcgctaagac catcagactg gaaagcgaag tgaccgccat caacaacgcc	420
ctgaagaaga caaacgaggc cgtcagcaca ctcggcaatg gcgttagagt gctggccaca	480
gccgtgcgcg agctgaagga cttcgtgtcc aagaacctga cacgggccat taacaagaac	540
aagtgcgaca tcgacgacct gaagatggcc gtgtccttta gccagttcaa ccggcggttt	600
ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac	660
ctgatgacag atgctgagct ggctagagcc gtgcctaaca tgcctacatc tgccggccag	720
atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgatt	780
ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac	840
acaccetget ggattgtgaa ggeegeteet agetgtageg agaagaaggg caattaegee	900
tacctactas dagaagacca agactaatet tatcegeeca agagegeec agtatectes	
tgcctgctga gagaggacca aggctggtat tgtcagaacg ccggcagcac cgtgtactac	960
cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga	960 1020
cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga	1020
cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga atcaatgtgg ccgagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc	1020 1080

aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc 1260

-continued

gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga 1320 cctgtgtcca gcagcttcga ccctatcaag ttccctgagg atcagttcca ggtggccctg 1380 gaccaggtgt tcgagaacat cgagaattcc caggctctgg tggaccagtc caacagaatc 1440 ctgtctagcg ccgagaaggg aaacaccggc ttcatcatcg tgatcatcct gatcgccgtg 1500 ctgggcagct ccatgatcct ggtgtccatc ttcatcatta tcaagaagac caagaagccc 1560 accggcgctc ctccagaact gagcggagtg accaacaatg gcttcatccc tcacaac 1617 <210> SEQ ID NO 116 <211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 116 60 atqaqctqqa aqqtqqtcat catcttcaqc ctqctqatca cacctcaqca cqqcctqaaa 120 qaqaqctacc tqqaaqaqtc ctqcaqcacc atcacaqaqq qctacctqtc tqtqctqaqa accqqctqqt acaccaacqt qttcacactq qaaqtqqqcq acqtcqaqaa tctqacatqc 180 totgatggcc ctagcotgat caagacogag ctggatctga ccaagagcgc cotgagagaa 240 ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcagc 300 ggcagctttg tgctgggagc cattgctctt ggagtggctg ctgctgcagc tgttacagca 360 ggegtggeea tegetaagae cateagaetg gaaagegaag tgacegeeat caacaaegee 420 ctgaagaaga caaacgaggc cgtcagcaca ctcggcaatg gcgttagagt gctggccaca 480 gccgtgcgcg agctgaagga cttcgtgctt aagaacctga cacgggccat taacaagaac 540 aagtgcgaca tcgacgacct gaagatggcc gtgtccttta gccagttcaa ccggcggttt 600 ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac 660 ctgatgacag atgctgagct ggctagagcc gtgcctaaca tgcctacatc tgccggccag 720 atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgatt 780 ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac 840 acaccctgct ggattgtgaa ggccgctcct agctgtagcg agaagaaggg caattacgcc 900 tgcctgctga gagaggacca aggctggtat tgtcagaacg ccggcagcac cgtgtactac 960 cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga 1020 atcaatgtgg ccgagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc 1080 tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc 1140 1200 ctqqtqqctt qttataaqqq cqtqtcctqt aqcatcqqca qcaacaqaqt qqqcatcatc aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc 1260 1320 gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga cctgtgtcca gcagcttcga ccctatcaag ttccctgagg atcagttcca ggtggccctg 1380 gaccaggtgt tcgagaacat cgagaattcc caggctctgg tggaccagtc caacagaatc 1440 ctgtctagcg ccgagaaggg aaacaccggc ttcatcatcg tgatcatcct gatcgccgtg 1500 ctgggcagct ccatgatcct ggtgtccatc ttcatcatta tcaagaagac caagaagccc 1560

accggcgctc ctccagaact gagcggagtg accaacaatg gcttcatccc tcacaac

1617

-continued

<211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Ar

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Polynucleotide

<400> SEQUENCE: 117

atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa 60 gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga 120 accggctggt acaccaacgt gttcacactg gaagtgggcg acgtcgagaa tctgacatgc 180 tetgatggee etageetgat caagacegag etggatetga ecaagagege eetgagagaa 240 ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcagc ggcagctttg tgctgggagc cattgctctt ggagtggctg ctgctgcagc tgttacagca ggcgtggcca tcgctaaqac catcagactg gaaagcgaag tgaccgccat caacaacgcc 420 ctqaaqaaqa caaacqaqqc cqtcaqcaca ctcqqcaatq qcqttaqaqt qctqqccaca 480 geogtgegeg agetgaagga ettegtgtee aagaacetgt ggegggeeat taacaagaac 540 aagtgcgaca tcgacgacct gaagatggcc gtgtccttta gccagttcaa ccggcggttt 600 660 ctgaacqtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac ctgatgacag atgctgagct ggctagagcc gtgcctaaca tgcctacatc tgccggccag 720 atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgatt 780 ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac 840 900 acaccetget ggattgtgaa ggeegeteet agetgtageg agaagaaggg caattaegee tgcctgctga gagaggacca aggctggtat tgtcagaacg ccggcagcac cgtgtactac 960 cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga 1020 atcaatgtgg cegageagag caaagagtge aacatcaaca teageaceae caactateee 1080 tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc 1140 ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc 1200 aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc 1260 gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga 1320 cctgtgtcca gcagcttcga ccctatcaag ttccctgagg atcagttcca ggtggccctg 1380 gaccaggtgt tcgagaacat cgagaattcc caggctctgg tggaccagtc caacagaatc 1440 ctgtctagcg ccgagaaggg aaacaccggc ttcatcatcg tgatcatcct gatcgccgtg 1500 ctgggcagct ccatgatcct ggtgtccatc ttcatcatta tcaagaagac caagaagcc 1560 accggcgctc ctccagaact gagcggagtg accaacaatg gcttcatccc tcacaac 1617

<210> SEQ ID NO 118

<211> LENGTH: 1617

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Polynucleotide

<400> SEQUENCE: 118

atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa 60 gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga 120 aceggetggt acaceaacgt gtteacactg gaagtgggeg acetegagaa tetgacatge 180 tetgatggee etageetgat caagaeegag etggatetge teaagagege eetgagagaa 240

-continued

ctcaagaccg	tgtctgccga	tcagctggcc	agagaggaac	agatcgagaa	tcctggcagc	300
ggcagctttg	tgctgggagc	cattgctctt	ggagtggctg	ctgctgcagc	tgttacagca	360
ggcgtggcca	tcgctaagac	catcagactg	gaaagcgaag	tgaccgccat	caacaacgcc	420
ctgaagaaga	caaacgaggc	cgtcagcaca	ctcggcaatg	gcgttagagt	gctggccaca	480
geegtgegeg	agctgaagga	cttcgtgctt	aagaacctgt	ggcgggccat	taacaagaac	540
aagtgcgaca	tcgacgacct	gaagatggcc	gtgtccttta	gccagttcaa	ccggcggttt	600
ctgaacgtcg	tgcggcagtt	tagcgacaac	gccggaatca	caccagccat	cagcctggac	660
ctgatgacag	atgctgagct	ggctagagcc	gtgcctaaca	tgcctacatc	tgccggccag	720
atcaagctga	tgctcgagaa	tagagccatg	gtccgacgga	aaggettegg	cattctgatt	780
ggcgtgtacg	gcagcagcgt	gatctatatg	gtgcagctgc	ctatcttcgg	cgtgatcgac	840
acaccctgct	ggattgtgaa	ggeegeteet	agctgtagcg	agaagaaggg	caattacgcc	900
tgcctgctga	gagaggacca	aggctggtat	tgtcagaacg	ccggcagcac	cgtgtactac	960
cctaacgaga	aggactgcga	gacaagaggc	gaccacgtgt	tctgtgatac	cgccgctgga	1020
atcaatgtgg	ccgagcagag	caaagagtgc	aacatcaaca	tcagcaccac	caactatccc	1080
tgcaaggtgt	ccaccggcag	gcaccctatt	tctatggtgg	ctctgtctcc	tctgggagcc	1140
ctggtggctt	gttataaggg	cgtgtcctgt	agcatcggca	gcaacagagt	gggcatcatc	1200
aagcagctga	acaagggctg	cagctacatc	accaaccagg	acgccgatac	cgtgaccatc	1260
gacaacaccg	tgtatcagct	gagcaaggtg	gaaggcgaac	agcacgtgat	caagggcaga	1320
cctgtgtcca	gcagcttcga	ccctatcaag	ttccctgagg	atcagttcca	ggtggccctg	1380
gaccaggtgt	tcgagaacat	cgagaattcc	caggetetgg	tggaccagtc	caacagaatc	1440
ctgtctagcg	ccgagaaggg	aaacaccggc	ttcatcatcg	tgatcatcct	gatcgccgtg	1500
ctgggcagct	ccatgatcct	ggtgtccatc	ttcatcatta	tcaagaagac	caagaagccc	1560
accggcgctc	ctccagaact	gagcggagtg	accaacaatg	gcttcatccc	tcacaac	1617
<220> FEAT	TH: 1617 : DNA NISM: Artif: JRE:		nce ic Polynucle	eotide		
<400> SEQUI	ENCE: 119					
atgagctgga	aggtggtcat	catcttcagc	ctgctgatca	cacctcagca	cggcctgaaa	60
gagagctacc	tggaagagtc	ctgcagcacc	atcacagagg	gctacctgtc	tgtgctgaga	120
accggctggt	acaccaacgt	gttcacactg	cctgtgggcg	acgtcgagaa	tctgacatgc	180
tctgatggcc	ctagcctgat	caagaccgag	ctggatctga	ccaagagcgc	cctgagagaa	240
ctcaagaccg	tgtctgccga	tcagctggcc	agagaggaac	agatcgagaa	tcctggcagc	300
ggcagctttg	tgctgggagc	cattgctctt	ggagtggctg	ctgctgcagc	tgttacagca	360
ggcgtggcca	tcgctaagac	catcagactg	gaaagcgaag	tgaccgccat	caacaacgcc	420
ctgaagaaga	caaacgaggc	cgtcagcaca	ctcggcaatg	gcgttagagt	gctggccaca	480
gccgtgcgcg	agctgaagga	cttcgtgtcc	aagaacctga	cacgggccat	taacaagaac	540
aagtgcgaca	tcgacgacct	gaagatggcc	gtgtccttta	gccagttcaa	ccggcggttt	600
-					•	

ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac

-continued

-continued	
ctgatgacag atgctgagct ggctagagcc gtgcctaaca tgcctacatc tgccggccag	720
atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgatt	780
ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac	840
acaccetget ggattgtgaa ggeegeteet agetgtageg agaagaaggg caattaegee	900
tgcctgctga gagaggacca aggctggtat tgtcagaacg ccggcagcac cgtgtactac	960
cetaacgaga aggaetgega gaeaagagge gaeeaegtgt tetgtgatae egeegetgga	1020
atcaatgtgg ccgagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc	1080
tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc	1140
ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc	1200
aagcagetga acaagggetg cagetacate accaaccagg acgeegatac egtgaccate	1260
gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga	1320
octgtgtoca gcagottoga occtatoaag ttooctgagg atcagttoca ggtggcoctg	1380
gaccaggtgt tegagaacat egagaattee caggetetgg tggaccagte caacagaate	1440
ctgtctagcg ccgagaaggg aaacaccggc ttcatcatcg tgatcatcct gatcgccgtg	1500
ctgggcagct ccatgatect ggtgtccate tteateatta teaagaagae caagaageee	1560
accggcgctc ctccagaact gagcggagtg accaacaatg gcttcatccc tcacaac	1617
<210> SEQ ID NO 120 <211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 120	
Cloop Blgomed. 120	
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa	60
	60 120
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa	
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga	120
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaceaacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge	120 180
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaceaacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etageetgat caagacegag etggatetga ceaagagege eetgagagaa	120 180 240
atgagetgga aggtggteat catetteage etgetgatea eaceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaceaacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etageetgat caagacegag etggatetga ecaagagege eetgagagaa etcaagageg tgtetgeega teagetggee agagaggaac agategagaa teetggeage	120 180 240 300
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaceaacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etageetgat caagacegag etggatetga ecaagagege eetgagagaa etcaagaceg tgtetgeega teagetggee agagaggaac agategagaa teetggeage ggeagetttg tgetgggage eattgetett ggagtggetg etgetgeage tgttacagea	120 180 240 300 360
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaceaacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etageetgat caagacegag etggatetga ecaagagege eetgagagaa etcaagageg tgtetgeega teagetggee aggaggaac agategagaa teetggeage ggeagetttg tgetgggage eattgetett ggagtggetg etgetgeage tgttacagea ggegtggeea tegetaagae cateagaetg gaaagegaag tgacegeeat caacaaegee	120 180 240 300 360 420
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaceaacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etageetgat caagacegag etggatetga ecaagagege eetgagagaa etcaagaceg tgtetgeega teagetggee agagaggaac agategagaa teetggeage ggeagetttg tgetgggage eattgetett ggagtggetg etgetgeage tgttacagea ggegtggeca tegetaagac cateagactg gaaagegaag tgacegecat caacaacgee etgaagaaga caaacgagge egteageaca eteggeaatg gegttagagt getggecaca	120 180 240 300 360 420
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaceaacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etageetgat caagacegag etggatetga ecaagagege eetgaagaa etceaagaceg tgtetgeega teagetggee agagaggaac agategagaa teetggeage ggeagetttg tgetgggage cattgetett ggagtggetg etgetgeage tgttacagea ggegtggeea tegetaagae eateagaceg gaaagegaag tgacegeeat eaacaacgee etgaagaaga caaacgage egteageaca eteggeaatg gegttagagt getggeeaca geegtgeege agetgaagga ettegtgtee aagaacetga eaceggeeat taacaagaac geegtgeege agetgaagga ettegtgtee aagaacetga eaceggeeat taacaagaac	120 180 240 300 360 420 480
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaceaacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etagaetgat caagaeegag etggatetga ecaagagege eetgagagaa etcaagaeeg ggeagetttg tgetgeega teagetggee agagaggaae agategagaa teetggeage ggeagetttg tgetggage eattgetett ggagtggetg etgetgeage tgttacagea ggegtggeea tegetaagae eateagaetg gaaagegaag tgacegeeat eaacaaegee etgaagaaga eaaaegagge egteageaca eteggeaatg gegttagagt getggeeaca geegtgeege agetgaagga ettegtgtee aagaaeetga eaegggeeat taacaagaac aagtgegaca teeetgacet gaagatggee gtgteettta geeagtteaa eeggeggttt	120 180 240 300 360 420 480 540
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaceaacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etagategge etggatetga ecaagagege eetgagagaa eteagagagaa eteagagagaa eteagagagaa eteagagagaa eteagagagaa eteagagagaa eteagagagaa eteagagagaa eteagagaga etggatetga eagageggegggegggeggttt tgetgggage eattgetett ggagtggetg etgetgeage tgttacagea ggegtggeea tegetaagae eatcagaetg gaaagegaag tgacegeeat eaacaacgee etgaagaagaa eaaacgagge egteageaca eteggeaatg gegttagagt getggeeaca geegtgegge agetgaagga ettegtgtee aagaacetga eacgggeeat taacaagaacaagtgegaaca teeetgacet gaagatggee gtgteettta geeagtteaa eeggeggttt etgaacgteg tgeggeagtt tagegacaac geeggaatea eaccageeat eageetggae	120 180 240 300 360 420 480 540 600
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaceaacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etageetgat caagacegag etggatetga ecaagagege eetgagagaa eteegagagaa eteegagagaa eteegagagaa eteegagagaa eteegagagaa eteegagagaa eteegagagaa eteegagagaa etageegageeg	120 180 240 300 360 420 480 540 600 660
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaceaacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etageetgat caagacegag etggatetga ecaagagege eetgagagaa etceaagaceg tgtetgeega teagetggee aggagggaac agategagaa teetggeage ggeagetttg tgetgggage cattgetett ggagtggetg etgetgeage tgttacagea ggegtggeea tegetaagae eateagaceg gaaagegaag tgacegeeat caacaacegee etgaagaaa eaaacgagge egteageaca eteggeaatg gegttagagt getggeeaca etgaagaaga etteetggeage etgaagaaga geegtgeege agetgaagga etteetgtee aagaacetga eaceggeeat taacaagaac aagtgegaca teeetgacet gaagatggee gtgteettta geeagtteaa eeggeggttt etgaacgteg tgeggeagtt tagegacaac geeggaatea eaceageeat eageetggac etgatgacag tgeetgagee tagegacaga etgatgaee gtgeetaaca tgeetacate tgeeggeeag ateaagetga tgetegagaa tagageeag gtgeetaaca aaggettegg eattetgatt	120 180 240 300 360 420 480 540 600 660 720
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaceaacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etagaegg etggatetga ecaagagege eetgagagaa eteegagagaa eteegagagagagegagegegegegegegegegegegege	120 180 240 300 360 420 480 540 600 660 720 780
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaceaacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etageetgat caagacegag etggatetga ecaagagege eetgagagaa etcegagagaa etggagegegggegggegggegggegggggggggg	120 180 240 300 360 420 480 540 600 660 720 780 840
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa gagaagetace tggaaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaceaacgg gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etagetgat caagacegag etggatetga ecaagagege ectgagagaa etctgagagaa etcaagaceg tgtetgeega teagetggee aggagggaac agategagaa teetggeage ggeagetttg tgetgggage cattgetett ggagtggetg etgetgage tgttacagea ggegtggeea tegetaagae eateagactg gaaagegaag tgacegeeat eaacaacgee etgaagaaa etcetggagae etgaagaag etgaaggaag tgacegeeat eaacaacgee etgaagaaga etgetgagea etgetaagae ettegtgee aagaacetga gegttagagt getggeeaca geegtgegeg agetgaagga ettegtgtee aagaacetga eacgggeeat taacaagaac aagtgegaca teeetgacet gaagatggee gtgteettta geeagtteaa eeggeggttt etgaacgteg tgeggeagtt tageggacaac geeggaatea eacacageeat eageetggae etgatgacag atgetgaget ggetagagee gtgeetaaca tgeetacate tgeeggeeag ateaagetga tgetegagaa tagageeatg gteegaacga aaggettegg eattetgatt ggegtgtaceg geageagetg gatetatatg gtgeagetge etatettegg egtgategae acaceetget ggattgtaa ggeegeteet agetgagee etatettegg egtgategae acaceetget ggattgtgaa ggeegeteet agetgageg agaagaaggg caattaegee tgeetgeetga gagaggacea aggeetget tgeetgetga egtgategae egtgategae egtgetgetge gagaggagae egtgategae acaceetget ggattgtgaa ggeegeteet agetgageg agaagaaggg caattaegee tgeetgetga gagaggacea aggeetgeteet agetgagea egtgeageae egtgatetae	120 180 240 300 360 420 480 540 600 660 720 780 840 900

tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc 1140

-continued

ctggtggctt	gttataaggg	cgtgtcctgt	agcatcggca	gcaacagagt	gggcatcatc	1200
aagcagctga	acaagggctg	cagctacatc	accaaccagg	acgccgatac	cgtgaccatc	1260
gacaacaccg	tgtatcagct	gagcaaggtg	gaaggcgaac	agcacgtgat	caagggcaga	1320
cctgtgtcca	gcagcttcga	ccctatcaag	ttccctgagg	atcagttcca	ggtggccctg	1380
gaccaggtgt	tcgagaacat	cgagaattcc	caggetetgg	tggaccagtc	caacagaatc	1440
ctgtctagcg	ccgagaaggg	aaacaccggc	ttcatcatcg	tgatcatcct	gatcgccgtg	1500
ctgggcagct	ccatgatcct	ggtgtccatc	ttcatcatta	tcaagaagac	caagaagccc	1560
accggcgctc	ctccagaact	gagcggagtg	accaacaatg	gcttcatccc	tcacaac	1617
<220> FEAT	TH: 1617 : DNA NISM: Artif: JRE:	_	nce ic Polynucle	eotide		
<400> SEQUI	ENCE: 121					
atgagctgga	aggtggtcat	catcttcagc	ctgctgatca	cacctcagca	cggcctgaaa	60
gagagctacc	tggaagagtc	ctgcagcacc	atcacagagg	gctacctgtc	tgtgctgaga	120
accggctggt	acaccaacgt	gttcacactg	gaagtgggcg	acgtcgagaa	tctgacatgc	180
tctgatggcc	ctagcctgat	caagaccgag	ctggatctga	ccaagagcgc	cctgagagaa	240
ctcaagaccg	tgtctgccga	tcagctggcc	agagaggaac	agatcgagaa	tcctggcagc	300
ggcagctttg	tgctgggagc	cattgctctt	ggagtggctg	ctgctgcagc	tgttacagca	360
ggcgtggcca	tcgctaagac	catcagactg	gaaagcgaag	tgaccgccat	caacaacgcc	420
ctgaagaaga	caaacgaggc	cgtcagcaca	ctcggcaatg	gcgttagagt	gctggccaca	480
gccgtgcgcg	agctgaagga	cttcgtgtcc	aagaacctga	cacgggccat	taacaagaac	540
aagtgcccta	tcgacgacct	gaagatggcc	gtgtccttta	gccagttcaa	ccggcggttt	600
ctgaacgtcg	tgcggcagtt	tagcgacaac	gccggaatca	caccagccat	cagcctggac	660
ctgatgacag	atgctgagct	ggctagagcc	gtgcctaaca	tgcctacatc	tgccggccag	720
atcaagctga	tgctcgagaa	tagagccatg	gtccgacgga	aaggcttcgg	cattctgatt	780
ggcgtgtacg	gcagcagcgt	gatctatatg	gtgcagctgc	ctatcttcgg	cgtgatcgac	840
acaccctgct	ggattgtgaa	ggccgctcct	agctgtagcg	agaagaaggg	caattacgcc	900
tgcctgctga	gagaggacca	aggctggtat	tgtcagaacg	ccggcagcac	cgtgtactac	960
cctaacgaga	aggactgcga	gacaagaggc	gaccacgtgt	tctgtgatac	cgccgctgga	1020
atcaatgtgg	ccgagcagag	caaagagtgc	aacatcaaca	tcagcaccac	caactatccc	1080
tgcaaggtgt	ccaccggcag	gcaccctatt	tctatggtgg	ctctgtctcc	tctgggagcc	1140
ctggtggctt	gttataaggg	cgtgtcctgt	agcatcggca	gcaacagagt	gggcatcatc	1200
aagcagctga	acaagggctg	cagctacatc	accaaccagg	acgccgatac	cgtgaccatc	1260
gacaacaccg	tgtatcagct	gagcaaggtg	gaaggcgaac	agcacgtgat	caagggcaga	1320
cctgtgtcca	gcagcttcga	ccctatcaag	ttccctgagg	atcagttcca	ggtggccctg	1380
gaccaggtgt	tcgagaacat	cgagaattcc	caggctctgg	tggaccagtc	caacagaatc	1440
ctgtctagcg	ccgagaaggg	aaacaccggc	ttcatcatcg	tgatcatcct	gatcgccgtg	1500

ctgggcagct ccatgatect ggtgtecate tteateatta teaagaagae caagaagee 1560

-continued

```
accggcgctc ctccagaact gagcggagtg accaacaatg gcttcatccc tcacaac
                                                                    1617
<210> SEO ID NO 122
<211> LENGTH: 1617
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Polynucleotide
<400> SEQUENCE: 122
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa
                                                                      60
gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga
                                                                     120
accggctggt acaccaacgt gttcacactg gaagtgggcg acgtcgagaa tctgacatgc
tetgatggee etageetgat caagacegag etggatetga ecaagagege eetgagagaa
ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcagc
                                                                     300
qqcaqctttq tqctqqqaqc cattqctctt qqaqtqqctq ctqctqcaqc tqttacaqca
                                                                     360
qqcqtqqcca tcqctaaqac catcaqactq cctaqcqaaq tqaccqccat caacaacqcc
                                                                     420
                                                                     480
ctgaagaaga caaacgaggc cgtcagcaca ctcggcaatg gcgttagagt gctggccaca
gccgtgcgcg agctgaagga cttcgtgtcc aagaacctga cacgggccat taacaagaac
                                                                     540
aagtgcgaca tcgacgacct gaagatggcc gtgtccttta gccagttcaa ccggcggttt
                                                                     600
ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac
                                                                     660
                                                                     720
ctgatgacag atgctgagct ggctagagcc gtgcctaaca tgcctacatc tgccgqccag
                                                                     780
atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgatt
ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac
                                                                     840
acaccetget ggattgtgaa ggeegeteet agetgtageg agaagaaggg caattaegee
                                                                     900
tgcctgctga gagaggacca aggctggtat tgtcagaacg ccggcagcac cgtgtactac
                                                                     960
cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga
                                                                    1020
atcaatgtgg ccgagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc
                                                                    1080
tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc
                                                                    1140
ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc
                                                                    1200
aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc
                                                                    1260
gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga
                                                                    1320
cctgtgtcca gcagcttcga ccctatcaag ttccctgagg atcagttcca ggtggccctg
                                                                    1380
gaccaggtgt tcgagaacat cgagaattcc caggctctgg tggaccagtc caacagaatc
                                                                    1440
ctgtctagcg ccgagaaggg aaacaccggc ttcatcatcg tgatcatcct gatcgccgtg
                                                                    1500
ctgggcagct ccatgatcct ggtgtccatc ttcatcatta tcaagaagac caagaagcc
                                                                    1560
accggcgctc ctccagaact gagcggagtg accaacaatg gcttcatccc tcacaac
                                                                    1617
<210> SEQ ID NO 123
<211> LENGTH: 1617
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Polynucleotide
<400> SEQUENCE: 123
atgagctgga aggtggtcat catcttcagc ctgctgatca cacctcagca cggcctgaaa
                                                                      60
                                                                     120
```

qaqaqctacc tqqaaqaqtc ctqcaqcacc atcacaqaqq qctacctqtc tqtqctqaqa

-continued

accggctggt	acaccaacgt	gttcacactg	gaagtgggcg	acgtcgagaa	tetgacatge	180
tctgatggcc	ctagcctgat	caagaccgag	ctggatctga	ccaagagcgc	cctgagagaa	240
ctcaagaccg	tgtctgccga	tcagctggcc	agagaggaac	agatcgagaa	tcctggcagc	300
ggcagctttg	tgctgggagc	cattgctctt	ggagtggctg	ctgctgcagc	tgttacagca	360
ggcgtggcca	tegetaagae	catcagactg	gaaagcgaag	tgaccgccat	caacaacgcc	420
ctgaagaaga	caaacgaggc	cgtcagcaca	ctcggcaatg	gcgttagagt	gctggccaca	480
gccgtgcgcg	agctgaagga	cttcgtgtcc	aagaacctga	cacgggccat	taacaagaac	540
aagtgcgaca	tegaegaeet	gaagatggcc	gtgtccttta	gccagttcaa	ccggcggttt	600
ctgaacgtcg	tgcggcagtt	tagcgacaac	gccggaatca	caccagccat	cagcctggac	660
ctgatgacag	atgctgagct	ggctagagcc	gtgcctaaca	tgcctacatc	tgccggccag	720
atcaagctga	tgctcgagaa	tagagccatg	gtccgacgga	aaggettegg	cattctgatt	780
ggcgtgtacg	gcagcagcgt	gatctatatg	gtgcagctgc	ctatcttcgg	cgtgatcgac	840
acaccctgct	ggattgtgaa	ggccgctcct	agctgtagcg	agaagaaggg	caattacgcc	900
tgcctgctga	gagaggacca	aggctggtat	tgtcagaacg	ccggcagcac	cgtgtactac	960
cctaacgaga	aggactgcga	gacaagaggc	gaccacgtgt	tctgtgatac	cgccgctgga	1020
atcaatgtgg	ccgagcagag	caaagagtgc	aacatcaaca	tcagcaccac	caactatccc	1080
tgcaaggtgt	ccaccggcag	gcaccctatt	tctatggtgg	ctctgtctcc	tctgggagcc	1140
ctggtggctt	gttataaggg	cgtgtcctgt	agcatcggca	gcaacagagt	gggcatcatc	1200
aagcagctga	acaagggctg	cagctacatc	accaaccagg	acgccgatac	cgtgaccatc	1260
gacaacaccg	tgtatcagct	gagcaaggtg	gaaggcgaac	agcacgtgat	caagggcaga	1320
cctgtgtcca	gcagcttccc	acctatcaag	ttccctgagg	atcagttcca	ggtggccctg	1380
gaccaggtgt	tcgagaacat	cgagaattcc	caggetetgg	tggaccagtc	caacagaatc	1440
ctgtctagcg	ccgagaaggg	aaacaccggc	ttcatcatcg	tgatcatcct	gatcgccgtg	1500
ctgggcagct	ccatgatcct	ggtgtccatc	ttcatcatta	tcaagaagac	caagaagccc	1560
accggcgctc	ctccagaact	gagcggagtg	accaacaatg	gcttcatccc	tcacaac	1617
<220> FEAT	TH: 1617 : DNA NISM: Artif: URE: R INFORMATIO	icial Sequer ON: Synthet:		eotide		
atgagctgga	aggtggtcat	catcttcagc	ctgctgatca	cacctcagca	cggcctgaaa	60
gagagetace	tggaagagtc	ctgcagcacc	atcacagagg	gctacctgtc	tgtgctgaga	120
accggctggt	acaccaacgt	gttcacactg	gaagtgggcg	acgtcgagaa	tctgacatgc	180
tctgatggcc	ctagcctgat	caagaccgag	ctggatctga	ccaagagcgc	cctgagagaa	240
ctcaagaccg	tgtctgccga	tcagctggcc	agagaggaac	agatcgagaa	tcctggcagc	300
ggcagctttg	tgctgggagc	cattgctctt	ggagtggctg	ctgctgcagc	tgttacagca	360
ggcgtggcca	tcgctaagac	catcagactg	gaaagcgaag	tgaccgccat	caacaacgcc	420
ctgaagaaga	caaacgaggc	cgtcagcaca	ctcggcaatg	gcgttagagt	gctggccaca	480

gccgtgcgcg agctgaagga cttcgtgtcc aagaacctga cacgggccat taacaagaac

-continued

aagtgegaca tegaegacet gaagatggee gtgteettta geeagtteaa eeggeggttt	600
ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac	660
ctgatgacag atgctgagct ggctagagcc gtgcctaaca tgcctacatc tgccggccag	720
atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgatt	780
ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac	840
acaccetget ggattgtgaa ggeegeteet agetgtageg agaagaaggg caattaegee	900
tgcctgctga gagaggacca aggctggtat tgtcagaacg ccggcagcac cgtgtactac	960
cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga	1020
atcaatgtgg ccgagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc	1080
tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc	1140
ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc	1200
aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc	1260
gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga	1320
cctgtgtcca gcagcttcga ccctatcaag ttccctgaga accagttcca ggtggccctg	1380
gaccaggtgt tcgagaacat cgagaattcc caggctctgg tggaccagtc caacagaatc	1440
ctgtctagcg ccgagaaggg aaacaccggc ttcatcatcg tgatcatcct gatcgccgtg	1500
ctgggcagct ccatgatcct ggtgtccatc ttcatcatta tcaagaagac caagaagcc	1560
accggcgctc ctccagaact gagcggagtg accaacaatg gcttcatccc tcacaac	1617
<210> SEQ ID NO 125 <211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 125	
atgagetgga aggtggteat catetteage etgetgatea eaceteagea eggeetgaaa	60
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga	60 120
gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga	120
gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaccaacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge	120 180
gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaccaacgt gttcacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etageetgat caagacegag etggatetga ecaagagege eetgagagaa	120 180 240
gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaceaacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etageetgat caagacegag etggatetga ecaagagege eetgagagaa etcaagaceg tgtetgeega teagetggee agagaggaac agategagaa teetggeage	120 180 240 300
gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaceaacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etageetgat caagacegag etggatetga ecaagagege eetgagagaa etcaagaceg tgtetgeega teagetggee agagaggaac agategagaa teetggeage ggeagetttg tgetgggage eattgetett ggagtggetg etgetgeage tgttacagea	120 180 240 300 360
gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaccaacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etageetgat caagacegag etggatetga ecaagagege eetgagagaa eteaagaceg tgtetgeega teagetggee agagaggaac agategagaa teetggeage ggeagetttg tgetgggage eattgetett ggagtggetg etgetgeage tgttacagea ggegtggeea tegetaagae eateagactg gaaagegaag tgacegeeat eaacaacgee	120 180 240 300 360 420
gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaceaacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etageetgat caagacegag etggatetga ecaagagege eetgagagaa etcaagaceg tgtetgeega teagetggee agagaggaac agategagaa teetggeage ggeagetttg tgetgggage eattgetett ggagtggetg etgetgeage tgttacagea ggegtggeea tegetaagac eateagactg gaaagegaag tgacegeeat eaacaacgee etgaagaaga eaaacgagge egteageaca eteggeaatg gegttagagt getggeeaca	120 180 240 300 360 420
gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaccaacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etageetgat caagacegag etggatetga ecaagagege eetgagagaa etcaagagege ggeagetttg tgetgeega teagetggee agagaggaac agategagaa teetggeage ggeagetttg tgetgggage eattgetett ggagtggetg etgetgeage tgttacagea ggegtggeea tegetaagac eateagactg gaaagegaag tgacegeeat eaacaacgee etgaagaag eaaacgagge egteageaca eteggeaatg gegttagagt getggeeaca geegtgeege agetgaagga ettegtgtee aagaacetga eacgggeeat taacaagaac	120 180 240 300 360 420 480
gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaceaacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etageetgat caagacegag etggatetga ecaagagege eetgagagaa eteeagagaga eteagagaga agategagaa teetggeage ggeagetttg tgetggegag eattgetett ggagtggetg etgetgeage tgttacagea ggegtggeea tegetaagae eateagaetg gaaagegaag tgacegeeat eaacaaegee etgaagaaga eaaacgagge egteageaca eteggeaatg gegttagagt getggeeaca geegtgegeg agetgaagga ettegtgtee aagaacetga eacgggeeat taacaagaac aagtgegaca tegacgacet gaagatggee gtgteettta geeagtteaa eeggeggttt	120 180 240 300 360 420 480 540 600
gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaceaacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etageetgat caagacegag etggatetga ecaagagege eetgagagaa eteeagagaga eteeagagaga etgagagaa teetgagagaa eteeagagaga etgageetggeggeggeggetggeeggeggeggeggeggeggeg	120 180 240 300 360 420 480 540 600 660
gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaceaacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etageetgat caagacegag etggatetga ecaagagege eetgagagaa eteeagagaga eteeagagae etgagetgge etgetgagaa teetggeage ggeagetttg tgetgggage eattgetett ggagtggetg etgetgaga tgttacagea ggeggtggeca tegetaagae eateagaetg gaaagegaag tgacegeat eaacaaegee etgaagaaga eaaacgagge egteageaca eteggeaatg gegttagagt getggeeaca geegtgegeg agetgaagga ettegtgtee aagaacetga eacgggeeat taacaagaac aagtgegaca tegacgacet gaagatggee gtgteettta geeagteaa eeggeggttt etgaacgteg tgeggeagtt tagegacaac geeggaatea eaceageeat eageetggae etgatgacaga atgetgaget ggetagagee gtgeetaaca tegeetagae etgatgaea etgatgaea ggetgaagee gtgeetaaca tgeetacate tgeeggeeage etgatgaeag atgetgaget ggetagagee gtgeetaaca tgeetacate tgeeggeeag	120 180 240 300 360 420 480 540 600 660
gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaccaacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etageetgat caagacegag etggatetga ecaagagege eetgagagaa eteeagagege ggeagetttg tgetggegag teagetggee agagaggaac agategagaa teetggeage ggeagetttg tgetgggage eattgetett ggagtggetg etgetgeage tgttacagea ggegtggeea tegetaagae eateagaetg gaaagegaag tgacegeeat eaacaacgee etgaagagaa eaaacgagge egteageaca eteggeaatg gegttagagt getggeeaca geegtgegeg agetgaagga ettegtgee aagaacetga eacegggeeat taacaagaac aagtgegaca tegacgaect gaagatggee gtgteettta geeagtteaa eeggeggttt etgaacgteg tgeeggaate tageagaece etgaagaega tegacegeat eageetggae etgaacgteg tgeeggaate tageagaece gtgteettta geeagtteaa eeggeggttt etgaacgteg tgeeggaatt tagegacaac geeggaatea eaceageeat eageetggae etgatgaeagae etgatgaeaga tegetgagae tegetgagae etgaagaea tegaegaea tageetgagae etgaagaea tagageeaga atgeetagaea tagageeaga atgeetgagaa tagageeaga gteegaegga aaggettegg eattetgatt	120 180 240 300 360 420 480 540 600 660 720
gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga aceggetggt acaceaacgt gtteacactg gaagtgggeg acgtegagaa tetgacatge tetgatggee etageetgat caagacegag etggatetga ecaagagege eetgagagaa eteeagagaga eteeagagagagegeggeggeggeggeggeggeggegggggg	120 180 240 300 360 420 480 540 600 660 720 780

cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga 1020

atcaatgtgg ccgagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc	1080
tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc	1140
ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc	1200
aagcagetga acaagggetg cagetacate accaaccagg acgeegatac egtgaccate	1260
gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga	1320
cetgtgteca geagettega ceetateaag tteeeteagg ateagtteca ggtggeeetg	1380
gaccaggtgt togagaacat ogagaattoo caggototgg tggaccagto caacagaato	1440
ctgtctagcg ccgagaaggg aaacaccggc ttcatcatcg tgatcatcct gatcgccgtg	1500
ctgggcagct ccatgatect ggtgtccate ttcateatta tcaagaagae caagaageee	1560
accggcgctc ctccagaact gagcggagtg accaacaatg gcttcatccc tcacaac	1617
<210> SEQ ID NO 126 <211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 126	
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa	60
gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga	120
accggctggt acaccaacgt gttcacactg gaagtgggcg acgtcgagaa tctgacatgc	180
tetgatggcc etageetgat caagacegag etggatetga eeaagagege eetgagagaa	240
ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcagc	300
ggcagetttg tgetgggage eattgetett ggagtggetg etgetgeage tgttacagea	360
ggcgtggcca tcgctaagac catcagactg gaaagcgaag tgaccgccat caacaacgcc	420
ctgaagaaga caaacgaggc cgtcagcaca ctcggcaatg gcgttagagt gctggccaca	480
geogtgegeg agetgaagga ettegtgtee aagaaeetga eaegggeeat taacaagaae	540
aagtgegaca tegaegaeet gaagatggee gtgteettta geeagtggaa eeggeggttt	600
ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac	660
ctgatgacag atgctgagct ggctagagcc gtgcctaaca tgcctacatc tgccggccag	720
atcaagctga tgctcgagaa tagagccatg gtccgacgga aaggcttcgg cattctgatt	780
ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac	840
acaccctgct ggattgtgaa ggccgctcct agctgtagcg agaagaaggg caattacgcc	900
tgcctgctga gagaggacca aggctggtat tgtcagaacg ccggcagcac cgtgtactac	960
cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga	1020
atcaatgtgg ccgagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc	1080
tgcaaggtgt ccaceggcag gcacectatt tetatggtgg etetgtetee tetgggagee	1140
ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc	1200
aagcagetga acaagggetg cagetacate accaaccagg acgeegatac egtgaccate	1260
gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga	1320
cctgtgtcca gcagcttcga ccctatcaag ttccctgagg atcagttcca ggtggccctg	1380
gaccaggtgt togagaacat ogagaattoo caggototgg tggaccagto caacagaato	1440

				-0011011			
ctgtctagcg	ccgagaaggg	aaacaccggc	ttcatcatcg	tgatcatcct	gatcgccgtg	1500	
ctgggcagct	ccatgatcct	ggtgtccatc	ttcatcatta	tcaagaagac	caagaagccc	1560	
accggcgctc	ctccagaact	gagcggagtg	accaacaatg	gcttcatccc	tcacaac	1617	
<220> FEATU	ΓΗ: 1617 : RNA NISM: Artif: JRE:	icial Sequer DN: Syntheti		eotide			
<400> SEQUE	ENCE: 127						
augagcugga	agguggucau	caucuucagc	cugcugauca	caccucagca	cggccugaaa	60	
gagagcuacc	uggaagaguc	cugcagcacc	aucacagagg	gcuaccuguc	ugugcugaga	120	
accggcuggu	acaccaacgu	guucacacug	gaagugggcg	acgucgagaa	ucugacaugc	180	
ucugauggcc	cuagecugau	caagaccgag	cuggaucuga	ccaagagcgc	ccugagagaa	240	
cucaagaccg	ugucugccga	ucagcuggcc	agagaggaac	agaucgagaa	uccuggcagc	300	
ggcagcuuug	ugcugggagc	cauugcucuu	ggaguggcug	cugcugcagc	uguuacagca	360	
ggcguggcca	ucugcaagac	caucagacug	gaaagcgaag	ugaccgccau	caacaacgcc	420	
cugaagaaga	caaacgaggc	cgucagcaca	cucggcaaug	gcguuagagu	gcuggccuuu	480	
gccgugcgcg	agcugaagga	cuucgugucc	aagaaccuga	cacgggcccu	gaacaagaac	540	
aagugcgaca	ucgacgaccu	gaagauggcc	guguccuuua	gccaguucaa	ccggcgguuu	600	
cugaacgucg	ugcggcaguu	uagcgacaac	gccggaauca	caccagccau	cagccuggac	660	
cugaugacag	augcugagcu	ggcuagagcc	gugccuaaca	ugccuacauc	ugccggccag	720	
aucaagcuga	ugcucgagaa	uagagccaug	guccgacgga	aaggcuucgg	cauucugugu	780	
ggcguguacg	gcagcagcgu	gaucuauaug	gugcagcugc	cuaucuucgg	cgugaucgac	840	
acacccugcu	ggauugugaa	ggccgcuccu	agcuguagcg	agaagaaggg	caauuacgcc	900	
ugccugcuga	gagaggacca	aggcugguau	ugucagaacg	ccggcagcac	cguguacuac	960	
ccuaacgaga	aggacugcga	gacaagaggc	gaccacgugu	ucugugauac	cgccgcugga	1020	
aucaaugugg	ccgagcagag	caaagagugc	aacaucaaca	ucagcaccac	caacuauccc	1080	
ugcaaggugu	ccaccggcag	gcacccuauu	ucuauggugg	cucugucucc	ucugggagcc	1140	
cugguggcuu	guuauaaggg	cguguccugu	agcaucggca	gcaacagagu	gggcaucauc	1200	
aagcagcuga	acaagggcug	cagcuacauc	accaaccagg	acgccgauac	cgugaccauc	1260	
gacaacaccg	uguaucagcu	gagcaaggug	gaaggcgaac	agcacgugau	caagggcaga	1320	
ccugugucca	gcagcuucga	cccuaucaag	uucccugagg	aucaguucaa	cguggcccug	1380	
gaccaggugu	ucgagaacau	cgagaauucc	caggcucugg	uggaccaguc	caacagaauc	1440	
cugucuagcg	ccgagaaggg	aaacaccggc	uucaucaucg	ugaucauccu	gaucgccgug	1500	
cugggcagcu	ccaugauccu	gguguccauc	uucaucauua	ucaagaagac	caagaagccc	1560	
accggcgcuc	cuccagaacu	gagcggagug	accaacaaug	gcuucauccc	ucacaac	1617	
<210> SEQ 1							

<211> LENGTH: 1617 <212> TYPE: RNA

<213> ORGANISM: Artificial Sequence <220> FEATURE:

<223> OTHER INFORMATION: Synthetic Polynucleotide

augagcugga	agguggucau	caucuucage	cugcugauca	caccucagca	cggccugaaa	60
gagagcuacc	uggaagaguc	cugcagcacc	aucacagagg	gcuaccuguc	ugugcugaga	120
accggcuggu	acaccaacgu	guucacacug	gaagugggcg	acgucgagaa	ucugacaugc	180
ucugauggcc	cuagccugau	caagaccgag	cuggaucuga	ccaagagcgc	ccugagagaa	240
cucaagaccg	ugucugccga	ucagcuggcc	agagaggaac	agaucgagaa	uccuggcagc	300
ggcagcuuug	ugcugggagc	cauugcucuu	ggaguggcug	cugcugcagc	uguuacagca	360
ggcguggcca	ucugcaagac	caucagacug	gaaagcgaag	ugaccgccau	caacaacgcc	420
cugaagaaga	caaacgaggc	cgucagcaca	cucggcaaug	gcguuagagu	gcuggccaca	480
geegugegeg	agcugaagga	cuucgugucc	aagaaccuga	cacgggccau	uaacaagaac	540
aagugcgaca	ucgacgaccu	gaagauggcc	guguccuuua	gccaguucaa	ccggcgguuu	600
cugaacgucg	ugcggcaguu	uagcgacaac	gccggaauca	caccagccau	cagccuggac	660
cugaugacag	augcugagcu	ggcuagagcc	gugccuaaca	ugccuacauc	ugccggccag	720
aucaagcuga	ugcucgagaa	uagagccaug	guccgacgga	aaggcuucgg	cauucugugu	780
ggcguguacg	gcagcagcgu	gaucuauaug	gugcagcugc	cuaucuucgg	cgugaucgac	840
acacccugcu	ggauugugaa	ggeegeueeu	agcuguagcg	agaagaaggg	caauuacgcc	900
ugccugcuga	gagaggacca	aggcugguau	ugucagaacg	ccggcagcac	cguguacuac	960
ccuaacgaga	aggacugcga	gacaagaggc	gaccacgugu	ucugugauac	cgccgcugga	1020
aucaaugugg	ccgagcagag	caaagagugc	aacaucaaca	ucagcaccac	caacuauccc	1080
ugcaaggugu	ccaccggcag	gcacccuauu	ucuauggugg	cucugucucc	ucugggagcc	1140
cugguggcuu	guuauaaggg	cguguccugu	agcaucggca	gcaacagagu	gggcaucauc	1200
aagcagcuga	acaagggcug	cagcuacauc	accaaccagg	acgccgauac	cgugaccauc	1260
gacaacaccg	uguaucagcu	gagcaaggug	gaaggcgaac	agcacgugau	caagggcaga	1320
ccugugucca	gcagcuucga	cccuaucaag	uucccugagc	accaguggca	uguggcccug	1380
gaccaggugu	ucgagaacau	cgagaauucc	caggcucugg	uggaccaguc	caacagaauc	1440
cugucuagcg	ccgagaaggg	aaacaccggc	uucaucaucg	ugaucauccu	gaucgccgug	1500
cugggcagcu	ccaugauccu	gguguccauc	uucaucauua	ucaagaagac	caagaagccc	1560
accggcgcuc	cuccagaacu	gagcggagug	accaacaaug	gcuucauccc	ucacaac	1617
<220> FEATU	ΓΗ: 1617 : RNA NISM: Artif: JRE:	icial Sequer DN: Synthet:		eotide		
<400> SEQUE	ENCE: 129					
augagcugga	agguggucau	caucuucagc	cugcugauca	caccucagca	cggccugaaa	60
gagagcuacc	uggaagaguc	cugcagcacc	aucacagagg	gcuaccuguc	ugugcugaga	120
accggcuggu	acaccaacgu	guucacacug	gaagugggcg	acgucgagaa	ucugacaugc	180
ucugauggcc	cuagccugau	caagaccgag	cuggaucugc	ucaagagcgc	ccugagagaa	240
cucaagaccg	ugucugccga	ucagcuggcc	agagaggaac	agaucgagaa	uccuggcagc	300
ggcagcuuug	ugcugggagc	cauugcucuu	ggaguggcug	cugcugcagc	uguuacagca	360

ggcguggcca ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc

-continued

			-contir	nued		
cugaagaaga caaac	Jaggc cgucagcaca	cucggcaaug	gcguuagagu	gcuggccaca	480	
gccgugcgcg agcuga	aagga cuucgugucc	aagaaccuga	cacgggccau	uaacaagaac	540	
aagugegaea ueeeuq	gaccu gaagauggcc	guguccuuua	gccaguucaa	ccggcgguuu	600	
cugaacgucg ugcgg	aguu uagcgacaac	gccggaauca	caccagccau	cagccuggac	660	
cugaugacag augcu	gagcu ggcuagagcc	gugccuaaca	ugccuacauc	ugccggccag	720	
aucaagcuga ugcuc	gagaa uagagccaug	guccgacgga	aaggcuucgg	cauucugauu	780	
ggcguguacg gcagca	agcgu gaucuauaug	gugcagcugc	cuaucuucgg	cgugaucgac	840	
acacccugcu ggauu	jugaa ggccgcuccu	agcuguagcg	agaagaaggg	caauuacgcc	900	
ugccugcuga gagag	jacca aggcugguau	ugucagaacg	ccggcagcac	cguguacuac	960	
ccuaacgaga aggacı	ıgcga gacaagaggc	gaccacgugu	ucugugauac	cgccgcugga	1020	
aucaaugugg ccgago	agag caaagagugc	aacaucaaca	ucagcaccac	caacuauccc	1080	
ugcaaggugu ccacc	ggcag gcacccuauu	ucuauggugg	cucugucucc	ucugggagcc	1140	
cugguggcuu guuau	aaggg cguguccugu	agcaucggca	gcaacagagu	gggcaucauc	1200	
aagcagcuga acaag	ggcug cagcuacauc	accaaccagg	acgccgauac	cgugaccauc	1260	
gacaacaccg uguau	agcu gagcaaggug	gaaggcgaac	agcacgugau	caagggcaga	1320	
ccugugucca gcagc	ucga cccuaucaag	uucccugagg	aucaguucca	gguggcccug	1380	
gaccaggugu ucgaga	aacau cgagaauucc	caggcucugg	uggaccaguc	caacagaauc	1440	
cugucuageg eegaga	aaggg aaacaccggc	uucaucaucg	ugaucauccu	gaucgccgug	1500	
cugggcagcu ccauga	auccu gguguccauc	uucaucauua	ucaagaagac	caagaagccc	1560	
accggcgcuc cuccaç	gaacu gagcggagug	accaacaaug	gcuucauccc	ucacaac	1617	
<220> FEATURE:			eotide			
<400> SEQUENCE:	L30					
augagcugga aggugg	gucau caucuucagc	cugcugauca	caccucagca	cggccugaaa	60	
gagagcuacc uggaag	gaguc cugcagcacc	aucacagagg	gcuaccuguc	ugugcugaga	120	
accggcuggu acacca	acgu guucacacug	gaagugggcg	acgucgagaa	ucugacaugc	180	
ucugauggcc cuagco	ugau caagaccgag	cuggaucugc	ucaagagcgc	ccugagagaa	240	
cucaagaccg ugucu	geega ueageuggee	agagaggaac	agaucgagaa	uccuggcagc	300	
ggcagcuuug ugcug	ggagc cauugcucuu	ggaguggcug	cugcugcagc	uguuacagca	360	
ggcguggcca ucgcua	agac caucagacug	gaaagcgaag	ugaccgccau	caacaacgcc	420	
cugaagaaga caaac	gagge egueageaea	cucggcaaug	gcguuagagu	gcuggccaca	480	
gccgugcgcg agcuga	agga cuucgugucc	aagaaccuga	cacgggccau	uaacaagaac	540	
aagugegaea ueeeug	gaccu gaagauggcc	guguccuuua	gccaguucaa	ccggcgguuu	600	
cugaacgucg ugcgg	caguu uagcgacaac	gccggaauca	caccagccau	cagccuggac	660	
cugaugacag augcu	gagcu ggcuagagcc	gugccuaaca	ugccuacauc	ugccggccag	720	
aucaagcuga ugcuc	gagaa uagagccaug	guccgacgga	aaggcuucgg	cauucugauu	780	
- ·				-		

840

900

ggcguguacg gcagcagcgu gaucuauaug gugcagcugc cuaucuucgg cgugaucgac

acacccugcu ggauugugaa ggccgcuccu agcuguagcg agaagaaggg caauuacgcc

ugccugcuga gagaggacca aggcugguau ugucagaacg ccggcagcac cguguacuac	960
ccuaacgaga aggacugcga gacaagaggc gaccacgugu ucugugauac cgccgcugga	1020
aucaaugugg ccgagcagag caaagagugc aacaucaaca ucagcaccac caacuauccc	1080
ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagcc	1140
cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc	1200
aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc	1260
gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga	1320
ccugugucca gcagcuucga cccuaucaag uucccugaga accaguucca gguggcccug	1380
gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc	1440
cugucuageg cegagaaggg aaacaeegge uucaucaueg ugaucauecu gauegeegug	1500
cugggcagcu ccaugauccu gguguccauc uucaucauua ucaagaagac caagaagccc	1560
accggcgcuc cuccagaacu gagcggagug accaacaaug gcuucauccc ucacaac	1617
<210> SEQ ID NO 131 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 131	
augagcugga agguggucau caucuucagc cugcugauca caccucagca cggccugaaa	60
gagagcuacc uggaagaguc cugcagcacc aucacagagg gcuaccuguc ugugcugaga	120
accggcuggu acaccaacgu guucacacug gaagugggcg acgucgagaa ucugacaugc	180
ucugauggcc cuagccugau caagaccgag cuggaucugc ucaagagcgc ccugagagaa	240
cucaagaccg ugucugccga ucagcuggcc agagaggaac agaucgagaa uccuggcagc	300
ggcagcuuug ugcugggagc cauugcucuu ggaguggcug cugcugcagc uguuacagca	360
ggcguggcca ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc	420
cugaagaaga caaacgaggc cgucagcaca cucggcaaug gcguuagagu gcuggccaca	480
gccgugcgcg agcugaagga cuucgugcuu aagaaccuga cacgggccau uaacaagaac	540
aagugcgaca ucccugaccu gaagauggcc guguccuuua gccaguucaa ccggcgguuu	600
cugaacgucg ugcggcaguu uagcgacaac gccggaauca caccagccau cagccuggac	660
cugaugacag augcugagcu ggcuagagcc gugccuaaca ugccuacauc ugccggccag	720
aucaagcuga ugcucgagaa uagagccaug guccgacgga aaggcuucgg cauucugauu	780
ggcguguacg gcagcagcgu gaucuauaug gugcagcugc cuaucuucgg cgugaucgac	840
acacccugcu ggauugugaa ggccgcuccu agcuguagcg agaagaaggg caauuacgcc	900
ugccugcuga gagaggacca aggcugguau ugucagaacg ccggcagcac cguguacuac	960
ccuaacgaga aggacugcga gacaagaggc gaccacgugu ucugugauac cgccgcugga	1020
aucaaugugg ccgagcagag caaagagugc aacaucaaca ucagcaccac caacuauccc	1080
ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagcc	1140
cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc	1200
aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc	1260
gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga	1320

ccugugucca gcagcuucga cccuaucaag uucccugagg aucaguucca gguggcccug	1380
gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc	1440
cugucuageg cegagaaggg aaacacegge uucaucaueg ugaucauecu gaucgeegug	1500
cugggcageu ccaugauceu gguguccauc uucaucauua ucaagaagac caagaagece	1560
accggcgcuc cuccagaacu gagcggagug accaacaaug gcuucauccc ucacaac	1617
<210> SEQ ID NO 132 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 132	
augagcugga agguggucau caucuucagc cugcugauca caccucagca cggccugaaa	60
gagagcuacc uggaagaguc cugcagcacc aucacagagg gcuaccuguc ugugcugaga	120
accggcuggu acaccaacgu guucacacug gaagugggcg acgucgagaa ucugacaugc	180
ucugauggcc cuagccugau caagaccgag cuggaucugc ucaagagcgc ccugagagaa	240
cucaagaccg ugucugccga ucagcuggcc agagaggaac agaucgagaa uccuggcagc	300
ggcagcuuug ugcugggagc cauugcucuu ggaguggcug cugcugcagc uguuacagca	360
ggcguggcca ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc	420
cugaagaaga caaacgaggc cgucagcaca cucggcaaug gcguuagagu gcuggccaca	480
gccgugcgcg agcugaagga cuucgugcuu aagaaccuga cacgggccau uaacaagaac	540
aagugegaca ueeeugaeeu gaagauggee gugueeuuua geeaguucaa eeggegguuu	600
cugaacgucg ugcggcaguu uagcgacaac gccggaauca caccagccau cagccuggac	660
cugaugacag augcugagcu ggcuagagcc gugccuaaca ugccuacauc ugccggccag	720
aucaagcuga ugcucgagaa uagagccaug guccgacgga aaggcuucgg cauucugauu	780
ggcguguacg gcagcagcgu gaucuauaug gugcagcugc cuaucuucgg cgugaucgac	840
acacccugcu ggauugugaa ggccgcuccu agcuguagcg agaagaaggg caauuacgcc	900
ugccugcuga gagaggacca aggcugguau ugucagaacg ccggcagcac cguguacuac	960
ccuaacgaga aggacugcga gacaagaggc gaccacgugu ucugugauac cgccgcugga	1020
aucaaugugg ccgagcagag caaagagugc aacaucaaca ucagcaccac caacuauccc	1080
ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagcc	1140
cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc	1200
aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc	1260
gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga	1320
ccugugucca gcagcuucga cccuaucaag uucccugaga accaguucca gguggcccug	1380
gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc	1440
cugucuageg cegagaaggg aaacacegge uucaucaueg ugaucauecu gaucgeegug	1500
cugggcagcu ccaugauccu gguguccauc uucaucauua ucaagaagac caagaagcc	1560
accggcgcuc cuccagaacu gagcggagug accaacaaug gcuucauccc ucacaac	1617

<210> SEQ ID NO 133 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence

-continued

<220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEOUENCE: 133 augagcugga agguggucau caucuucagc cugcugauca caccucagca cggccugaaa 60 gagagcuacc uggaagaguc cugcagcacc aucacagagg gcuaccuguc ugugcugaga 120 accggcuggu acaccaacgu guucacacug ccugugggcg acgucgagaa ucugacaugc 180 ucugauggee cuagecugau caagacegag cuggaucuge ucaagagege ceugagagaa 240 cucaagaccg ugucugccga ucagcuggcc agagaggaac agaucgagaa uccuggcagc 300 ggcagcuuug ugcugggagc cauugcucuu ggaguggcug cugcugcagc uguuacagca ggcguggcca ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc 420 480 cuqaaqaaqa caaacqaqqc cqucaqcaca cucqqcaauq qcquuaqaqu qcuqqccaca gccgugcgcg agcugaagga cuucgugucc aagaaccuga cacgggccau uaacaagaac 540 aagugcgaca ucgacgaccu gaagauggcc guguccuuua gccaguucaa ccggcgguuu 600 cugaacgucg ugcggcaguu uagcgacaac gccggaauca caccagccau cagccuggac 660 cuqauqacaq auqcuqaqcu qqcuaqaqcc quqccuaaca uqccuacauc uqccqqccaq 720 aucaaqcuqa uqcucqaqaa uaqaqccauq quccqacqqa aaqqcuucqq cauucuqauu 780 ggcguguacg gcagcagcgu gaucuauaug gugcagcugc cuaucuucgg cgugaucgac 840 900 acacccuqcu qqauuquqaa qqccqcuccu aqcuquaqcq aqaaqaaqqq caauuacqcc ugccugcuga gagaggacca aggcugguau ugucagaacg ccggcagcac cguguacuac 960 1020 ccuaacgaga aggacugcga gacaagaggc gaccacgugu ucugugauac cgccgcugga aucaaugugg ccgagcagag caaagagugc aacaucaaca ucagcaccac caacuauccc 1080 ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagcc 1140 cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc 1200 aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc 1260 gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga 1320 ccugugueca gcagcuucga cccuaucaag uucccugagg aucaguucca gguggeecug 1380 gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc 1440 cugucuageg cegagaaggg aaacacegge uucaucaueg ugaucauecu gauegeegug 1500 cugggcagcu ccaugauccu gguguccauc uucaucauua ucaagaagac caagaagcc 1560 accggcgcuc cuccagaacu gagcggagug accaacaaug gcuucauccc ucacaac 1617 <210> SEQ ID NO 134 <211> LENGTH: 1617 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 134 augagcugga agguggucau caucuucagc cugcugauca caccucagca cggccugaaa 60 gagagcuacc uggaagaguc cugcagcacc aucacagagg gcuaccuguc ugugcugaga 120 accggcuggu acaccaacgu guucacacug ccugugggcg acgucgagaa ucugacaugc 180 ucugauggec cuagecugau caagacegag cuggaucuge ucaagagege ceugagagaa 240

cucaagaceg ugucugeega ucageuggee agagaggaae agauegagaa uccuggeage

300

-continued

ggcagcuuug	ugcugggagc	cauugcucuu	ggaguggcug	cugcugcagc	uguuacagca	360	
ggcguggcca	ucgcuaagac	caucagacug	gaaagcgaag	ugaccgccau	caacaacgcc	420	
cugaagaaga	caaacgaggc	cgucagcaca	cucggcaaug	gcguuagagu	gcuggccaca	480	
gccgugcgcg	agcugaagga	cuucgugucc	aagaaccuga	cacgggccau	uaacaagaac	540	
aagugcgaca	ucgacgaccu	gaagauggcc	guguccuuua	gccaguucaa	ccggcgguuu	600	
cugaacgucg	ugeggeaguu	uagcgacaac	gccggaauca	caccagccau	cagccuggac	660	
cugaugacag	augcugagcu	ggcuagagcc	gugccuaaca	ugccuacauc	ugccggccag	720	
aucaagcuga	ugcucgagaa	uagagccaug	guccgacgga	aaggcuucgg	cauucugauu	780	
ggcguguacg	gcagcagcgu	gaucuauaug	gugcagcugc	cuaucuucgg	cgugaucgac	840	
acacccugcu	ggauugugaa	ggeegeueeu	agcuguagcg	agaagaaggg	caauuacgcc	900	
ugccugcuga	gagaggacca	aggcugguau	ugucagaacg	ccggcagcac	cguguacuac	960	
ccuaacgaga	aggacugcga	gacaagaggc	gaccacgugu	ucugugauac	cgccgcugga	1020	
aucaaugugg	ccgagcagag	caaagagugc	aacaucaaca	ucagcaccac	caacuauccc	1080	
ugcaaggugu	ccaccggcag	gcacccuauu	ucuauggugg	cucugucucc	ucugggagcc	1140	
cugguggcuu	guuauaaggg	cguguccugu	agcaucggca	gcaacagagu	gggcaucauc	1200	
aagcagcuga	acaagggcug	cagcuacauc	accaaccagg	acgccgauac	cgugaccauc	1260	
gacaacaccg	uguaucagcu	gagcaaggug	gaaggcgaac	agcacgugau	caagggcaga	1320	
ccugugucca	gcagcuucga	cccuaucaag	uucccugaga	accaguucca	gguggcccug	1380	
gaccaggugu	ucgagaacau	cgagaauucc	caggcucugg	uggaccaguc	caacagaauc	1440	
cugucuagcg	ccgagaaggg	aaacaccggc	uucaucaucg	ugaucauccu	gaucgccgug	1500	
cugggcagcu	ccaugauccu	gguguccauc	uucaucauua	ucaagaagac	caagaagccc	1560	
accggcgcuc	cuccagaacu	gagcggagug	accaacaaug	gcuucauccc	ucacaac	1617	
<220> FEATU <223> OTHER	TH: 1617 : RNA NISM: Artif: URE: R INFORMATIO			eotide			
<400> SEQUE							
	agguggucau	_		_		60	
	uggaagaguc					120	
	acaccaacgu					180	
ucugauggcc	cuagccugau	caagaccgag	cuggaucugc	ucaagagcgc	ccugagagaa	240	
	ugucugccga					300	
ggcagcuuug	ugcugggagc	cauugcucuu	ggaguggcug	cugcugcagc	uguuacagca	360	
ggcguggcca	ucgcuaagac	caucagacug	gaaagcgaag	ugaccgccau	caacaacgcc	420	
cugaagaaga	caaacgaggc	cgucagcaca	cucggcaaug	gcguuagagu	gcuggccaca	480	
geegugegeg	agcugaagga	cuucgugucc	aagaaccuga	cacgggccau	uaacaagaac	540	
aagugcgaca	ucgacgaccu	gaagauggcc	guguccuuua	gccaguucaa	ccggcgguuu	600	
cugaacgucg	ugcggcaguu	uagcgacaac	gccggaauca	caccagccau	cagccuggac	660	
cugaugacag	augcugagcu	ggcuagagcc	gugccuaaca	ugccuacauc	ugccggccag	720	

780

aucaagcuga ugcucgagaa uagagccaug guccgacgga aaggcuucgg cauucugauu

-continued

ggcguguacg	gcagcagcgu	gaucuauaug	gugcagcugc	cuaucuucgg	cgugaucgac	840
acacccugcu	ggauugugaa	ggeegeueeu	agcuguagcg	agaagaaggg	caauuacgcc	900
ugccugcuga	gagaggacca	aggcugguau	ugucagaacg	ccggcagcac	cguguacuac	960
ccuaacgaga	aggacugcga	gacaagaggc	gaccacgugu	ucugugauac	cgccgcugga	1020
aucaaugugg	ccgagcagag	caaagagugc	aacaucaaca	ucagcaccac	caacuauccc	1080
ugcaaggugu	ccaccggcag	gcacccuauu	ucuauggugg	cucugucucc	ucugggagcc	1140
cugguggcuu	guuauaaggg	cguguccugu	agcaucggca	gcaacagagu	gggcaucauc	1200
aagcagcuga	acaagggcug	cagcuacauc	accaaccagg	acgccgauac	cgugaccauc	1260
gacaacaccg	uguaucagcu	gagcaaggug	gaaggcgaac	agcacgugau	caagggcaga	1320
ccugugucca	gcagcuucga	cccuaucaag	uucccugagg	aucaguucca	gguggcccug	1380
gaccaggugu	ucgagaacau	cgagaauucc	caggcucugg	uggaccaguc	caacagaauc	1440
cugucuagcg	ccgagaaggg	aaacaccggc	uucaucaucg	ugaucauccu	gaucgccgug	1500
cugggcagcu	ccaugauccu	gguguccauc	uucaucauua	ucaagaagac	caagaagccc	1560
accggcgcuc	cuccagaacu	gagcggagug	accaacaaug	gcuucauccc	ucacaac	1617
<220> FEAT	TH: 1617 : RNA NISM: Artif: URE: R INFORMATIO	icial Sequer DN: Synthet:		c otide		
augagcugga	agguggucau	caucuucagc	cugcugauca	caccucagca	cggccugaaa	60
gagagcuacc	uggaagaguc	cugcagcacc	aucacagagg	gcuaccuguc	ugugcugaga	120
accggcuggu	acaccaacgu	guucacacug	gaagugggcg	accucgagaa	ucugacaugc	180
ucugauggcc	cuagccugau	caagaccgag	cuggaucuga	ccaagagcgc	ccugagagaa	240
cucaagaccg	ugucugccga	ucagcuggcc	agagaggaac	agaucgagaa	uccuggcagc	300
ggcagcuuug	ugcugggagc	cauugcucuu	ggaguggcug	cugcugcagc	uguuacagca	360
ggcguggcca	ucgcuaagac	caucagacug	gaaagcgaag	ugaccgccau	caacaacgcc	420
cugaagaaga	caaacgaggc	cgucagcaca	cucggcaaug	gcguuagagu	gcuggccaca	480
geegugegeg	agcugaagga	cuucgugucc	aagaaccuga	cacgggccau	uaacaagaac	540
aagugcgaca	ucgacgaccu	gaagauggcc	guguccuuua	gccaguucaa	ccggcgguuu	600
cugaacgucg	ugcggcaguu	uagcgacaac	gccggaauca	caccagccau	cagccuggac	660
cugaugacag	augcugagcu	ggcuagagcc	gugccuaaca	ugccuacauc	ugccggccag	720
aucaagcuga	ugcucgagaa	uagagccaug	guccgacgga	aaggcuucgg	cauucugauu	780
ggcguguacg						840
	gcagcagcgu	gaucuauaug	gugcagcugc	cuaucuucgg	cgugaucgac	010
acacccugcu		gaucuauaug ggccgcuccu				900
	ggauugugaa		agcuguagcg	agaagaaggg	caauuacgcc	
ugccugcuga	ggauugugaa gagaggacca	ggccgcuccu	agcuguagcg ugucagaacg	agaagaaggg	caauuacgcc	900
ugccugcuga ccuaacgaga	ggauugugaa gagaggacca aggacugcga	ggccgcuccu	agcuguagcg ugucagaacg gaccacgugu	agaagaaggg ccggcagcac ucugugauac	caauuacgcc cguguacuac cgccgcugga	900 960
ugccugcuga ccuaacgaga aucaaugugg	ggauugugaa gagaggacca aggacugcga ccgagcagag	ggccgcuccu aggcugguau gacaagaggc	agcuguagcg ugucagaacg gaccacgugu aacaucaaca	agaagaaggg ccggcagcac ucugugauac ucagcaccac	caauuacgcc cguguacuac cgccgcugga caacuauccc	900 960 1020

cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc 1200

			COILCIIIC	200		
aagcagcuga acaagg	gcug cagcuacaud	accaaccagg	acgccgauac c	gugaccauc	1260	
gacaacaccg uguauc	agcu gagcaaggug	gaaggcgaac	agcacgugau c	aagggcaga	1320	
ccugugucca gcagcu	ucga cccuaucaaç	uucccugagg	aucaguucca g	guggcccug	1380	
gaccaggugu ucgaga	acau cgagaauuco	caggcucugg	uggaccaguc c	caacagaauc	1440	
cugucuageg cegaga	aggg aaacaccggo	uucaucaucg	ugaucauccu g	gaucgccgug	1500	
cugggcagcu ccauga	uccu gguguccaud	uucaucauua	ucaagaagac c	caagaagccc	1560	
accggcgcuc cuccag	aacu gagcggagug	g accaacaaug	gcuucauccc u	ıcacaac	1617	
<210> SEQ ID NO 1 <211> LENGTH: 161 <212> TYPE: RNA <213> ORGANISM: A <220> FEATURE: <223> OTHER INFOR	7 .rtificial Seque		eotide			
<400> SEQUENCE: 1	.37					
augagcugga aggugg	ucau caucuucago	cugcugauca	caccucagca c	ggccugaaa	60	
gagagcuacc uggaag	aguc cugcagcaco	aucacagagg	gcuaccuguc u	ıgugcugaga	120	
accggcuggu acacca	acgu guucacacuo	gaagugggcg	acgucgagaa u	ıcugacaugc	180	
ucugauggcc cuagco	ugau caagaccgag	g cuggaucuga	ccaagagcgc c	cugagagaa	240	
cucaagaccg ugucug	ccga ucagcuggco	agagaggaac	agaucgagaa u	ıccuggcagc	300	
ggcagcuuug ugcugg	gage cauugeueui	ı ggaguggcug	cugcugcage u	ıguuacagca	360	
ggcguggcca ucgcua	agac caucagacuo	gaaagcgaag	ugaccgccau c	caacaacgcc	420	
cugaagaaga caaacg	agge egueageaca	cucggcaaug	gcguuagagu g	gcuggccaca	480	
gccgugcgcg agcuga	agga cuucgugcui	ı aagaaccuga	cacgggccau u	ıaacaagaac	540	
aagugcgaca ucgacg	accu gaagauggco	guguccuuua	gccaguucaa c	cggcgguuu	600	
cugaacgucg ugcggo	aguu uagcgacaac	geeggaauea	caccagccau c	agccuggac	660	
cugaugacag augcug	agcu ggcuagagco	gugccuaaca	ugccuacauc u	ıgccggccag	720	
aucaagcuga ugcucg	agaa uagagccaug	guccgacgga	aaggcuucgg c	auucugauu	780	
ggcguguacg gcagca	gcgu gaucuauaug	gugcagcugc	cuaucuucgg c	gugaucgac	840	
acacccugcu ggauug	ugaa ggccgcucci	ı agcuguagcg	agaagaaggg c	caauuacgcc	900	
ugccugcuga gagagg	acca aggcugguau	ı ugucagaacg	ccggcagcac c	guguacuac	960	
ccuaacgaga aggacu	.gcga gacaagaggo	gaccacgugu	ucugugauac c	gccgcugga	1020	
aucaaugugg ccgago	agag caaagagugo	aacaucaaca	ucagcaccac c	caacuauccc	1080	
ugcaaggugu ccaccg	gcag gcacccuaui	ı ucuauggugg	cucugucucc u	ıcugggagcc	1140	
cugguggcuu guuaua	aggg cguguccugu	ı agcaucggca	gcaacagagu g	ggcaucauc	1200	
aagcagcuga acaagg	gcug cagcuacaud	accaaccagg	acgccgauac c	gugaccauc	1260	
gacaacaccg uguauc	agcu gagcaaggug	gaaggegaae	agcacgugau c	aagggcaga	1320	
ccugugucca gcagcu					1380	
gaccaggugu ucgaga					1440	
					1500	
cugucuageg cegaga						
cugggcagcu ccauga					1560	
accggcgcuc cuccag	aacu gagcggagug	g accaacaaug	gcuucauccc u	ıcacaac	1617	

725 726

<210> SEQ ID NO 138

<211> LENGTH: 1617

<212> TYPE: RNA

<213 > ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Polynucleotide

<400> SEQUENCE: 138

augageugga agguggueau caucuucage eugeugauca caccucagea eggeeugaaa 60 gagageuaee uggaagague eugeageaee aucaeagagg geuaeeugue ugugeugaga 120 accggcuggu acaccaacgu guucacacug gaagugggcg acgucgagaa ucugacaugc 180 ucugauggee cuagecugau caagacegag cuggaucuga ceaagagege ceugagagaa cucaagaccg ugucugccga ucagcuggcc agagaggaac agaucgagaa uccuggcagc 300 360 qqcaqcuuuq uqcuqqqaqc cauuqcucuu qqaquqqcuq cuqcuqcaqc uquuacaqca ggcguggcca ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc 420 cugaagaaga caaacgaggc cgucagcaca cucggcaaug gcguuagagu gcuggccaca 480 540 gccgugcgcg agcugaagga cuucgugucc aagaaccugu ggcgggccau uaacaagaac aaquqcqaca ucqacqaccu qaaqauqqcc ququccuuua qccaquucaa ccqqcqquuu 600 cuqaacqucq uqcqqcaquu uaqcqacaac qccqqaauca caccaqccau caqccuqqac 660 cugaugacag augcugagcu ggcuagagcc gugccuaaca ugccuacauc ugccggccag 720 780 aucaaqcuqa uqcucqaqaa uaqaqccauq quccqacqqa aaqqcuucqq cauucuqauu ggcguguacg gcagcagcgu gaucuauaug gugcagcugc cuaucuucgg cgugaucgac 840 acacccugcu ggauugugaa ggccgcuccu agcuguagcg agaagaaggg caauuacgcc 900 ugccugcuga gagaggacca aggcugguau ugucagaacg ccggcagcac cguguacuac 960 ccuaacgaga aggacugcga gacaagaggc gaccacgugu ucugugauac cgccgcugga 1020 aucaaugugg ccgagcagag caaagagugc aacaucaaca ucagcaccac caacuauccc 1080 ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagcc 1140 cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc 1200 aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc 1260 gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga 1320 ccugugucca gcagcuucga cccuaucaag uucccugagg aucaguucca gguggcccug 1380 gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc 1440 cugucuageg cegagaaggg aaacacegge uucaucaueg ugaucauecu gauegeegug 1500 cugggcagcu ccaugauccu gguguccauc uucaucauua ucaagaagac caagaagcc 1560 accggcgcuc cuccagaacu gagcggagug accaacaaug gcuucauccc ucacaac 1617

<210> SEQ ID NO 139

<400> SEQUENCE: 139

augagcugga agguggucau caucuucage cugcugauca caccucagca cggccugaaa 60
gagagcuacc uggaagaguc cugcagcacc aucacagagg gcuaccuguc ugugcugaga 120
accggcuggu acaccaacgu guucacacug gaagugggg accucgagaa ucugacaugc 180

<211> LENGTH: 1617

<212> TYPE: RNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Polynucleotide

-continued

-continued					
ucugauggcc cuagccugau caagaccgag cuggaucugc ucaagagcgc ccugagagaa	240				
cucaagaceg ugucugeega ucageuggee agagaggaac agauegagaa uccuggeage	300				
ggcagcuuug ugcugggagc cauugcucuu ggaguggcug cugcugcagc uguuacagca	360				
ggcguggcca ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc	420				
cugaagaaga caaacgaggc cgucagcaca cucggcaaug gcguuagagu gcuggccaca	480				
gccgugcgcg agcugaagga cuucgugcuu aagaaccugu ggcgggccau uaacaagaac	540				
aagugcgaca ucgacgaccu gaagauggcc guguccuuua gccaguucaa ccggcgguuu	600				
cugaacgucg ugcggcaguu uagcgacaac gccggaauca caccagccau cagccuggac	660				
cugaugacag augcugagcu ggcuagagcc gugccuaaca ugccuacauc ugccggccag	720				
aucaagcuga ugcucgagaa uagagccaug guccgacgga aaggcuucgg cauucugauu	780				
ggcguguacg gcagcagcgu gaucuauaug gugcagcugc cuaucuucgg cgugaucgac	840				
acacccugcu ggauugugaa ggccgcuccu agcuguagcg agaagaaggg caauuacgcc	900				
ugccugcuga gagaggacca aggcugguau ugucagaacg ccggcagcac cguguacuac	960				
ccuaacgaga aggacugcga gacaagaggc gaccacgugu ucugugauac cgccgcugga	1020				
aucaaugugg ccgagcagag caaagagugc aacaucaaca ucagcaccac caacuauccc	1080				
ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagcc	1140				
cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc	1200				
aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc	1260				
gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga	1320				
ccugugucca gcagcuucga cccuaucaag uucccugagg aucaguucca gguggcccug	1380				
gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc	1440				
cugucuageg eegagaaggg aaacaeegge uucaucaueg ugaucaueeu gauegeegug	1500				
cugggcagcu ccaugauccu gguguccauc uucaucauua ucaagaagac caagaagccc	1560				
accggcgcuc cuccagaacu gagcggagug accaacaaug gcuucauccc ucacaac	1617				
<210> SEQ ID NO 140 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide					
<400> SEQUENCE: 140					
augageugga agguggueau caucuucage cugeugauca caccucagea eggeeugaaa	60				
gagagcuacc uggaagaguc cugcagcacc aucacagagg gcuaccuguc ugugcugaga	120				
accggcuggu acaccaacgu guucacacug ccugugggcg acgucgagaa ucugacaugc	180				
ucugauggcc cuagccugau caagaccgag cuggaucuga ccaagagcgc ccugagagaa	240				
cucaagaceg ugucugeega ucageuggee agagaggaac agauegagaa uccuggeage	300				
ggcagcuuug ugcugggagc cauugcucuu ggaguggcug cugcugcagc uguuacagca	360				
ggcguggcca ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc	420				
cugaagaaga caaacgagge egucagcaca cueggcaaug geguuagagu geuggceaca	480				
gccgugcgcg agcugaagga cuucgugucc aagaaccuga cacgggccau uaacaagaac	540				
	500				

600

660

aagugcgaca ucgacgaccu gaagauggcc guguccuuua gccaguucaa ccggcgguuu

cugaacgucg ugcggcaguu uagcgacaac gccggaauca caccagccau cagccuggac

-continued

cugaugacag	augcugagcu	ggcuagagcc	gugccuaaca	ugccuacauc	ugccggccag	720
aucaagcuga	ugcucgagaa	uagagccaug	guccgacgga	aaggcuucgg	cauucugauu	780
ggcguguacg	gcagcagcgu	gaucuauaug	gugcagcugc	cuaucuucgg	cgugaucgac	840
acacccugcu	ggauugugaa	ggccgcuccu	agcuguagcg	agaagaaggg	caauuacgcc	900
ugccugcuga	gagaggacca	aggcugguau	ugucagaacg	ccggcagcac	cguguacuac	960
ccuaacgaga	aggacugcga	gacaagaggc	gaccacgugu	ucugugauac	cgccgcugga	1020
aucaaugugg	ccgagcagag	caaagagugc	aacaucaaca	ucagcaccac	caacuauccc	1080
ugcaaggugu	ccaccggcag	gcacccuauu	ucuauggugg	cucugucucc	ucugggagcc	1140
cugguggcuu	guuauaaggg	cguguccugu	agcaucggca	gcaacagagu	gggcaucauc	1200
aagcagcuga	acaagggcug	cagcuacauc	accaaccagg	acgccgauac	cgugaccauc	1260
gacaacaccg	uguaucagcu	gagcaaggug	gaaggcgaac	agcacgugau	caagggcaga	1320
ccugugucca	gcagcuucga	cccuaucaag	uucccugagg	aucaguucca	gguggcccug	1380
gaccaggugu	ucgagaacau	cgagaauucc	caggcucugg	uggaccaguc	caacagaauc	1440
cugucuageg	ccgagaaggg	aaacaccggc	uucaucaucg	ugaucauccu	gaucgccgug	1500
cugggcagcu	ccaugauccu	gguguccauc	uucaucauua	ucaagaagac	caagaagccc	1560
accggcgcuc	cuccagaacu	gagcggagug	accaacaaug	gcuucauccc	ucacaac	1617
	NISM: Artifi	icial Sequer	nce			
<220> FEATU <223> OTHER <400> SEQUI	R INFORMATIO	ON: Syntheti	ic Polynucle	eotide		
<223> OTHER	R INFORMATIO				cggccugaaa	60
<223> OTHER <400> SEQUI augagcugga	R INFORMATIO	caucuucagc	cugcugauca	caccucagca		60 120
<223> OTHEI <400> SEQUI augagcugga gagagcuacc	R INFORMATIO	caucuucagc cugcagcacc	cugcugauca aucacagagg	caccucagca gcuaccuguc	ugugcugaga	
<223> OTHER <400> SEQUI augagcugga gagagcuacc accggcuggu	R INFORMATIO ENCE: 141 agguggucau uggaagaguc	caucuucagc cugcagcacc guucacacug	cugcugauca aucacagagg gaagugggcg	caccucagca gcuaccuguc acgucgagaa	ugugcugaga ucugacaugc	120
<223> OTHEI <400> SEQUI augagcugga gagagcuacc accggcuggu ucugauggcc	R INFORMATIO ENCE: 141 agguggucau uggaagaguc acaccaacgu	caucuucagc cugcagcacc guucacacug caagaccgag	cugcugauca aucacagagg gaagugggcg cuggaucuga	caccucagca gcuaccuguc acgucgagaa ccaagagcgc	ugugcugaga ucugacaugc ccugagagaa	120 180
<223> OTHER <400> SEQUI augagcugga gagagcuacc accggcuggu ucugauggcc cucaagaccg	R INFORMATION SINCE: 141 agguggucau uggaagaguc acaccaacgu cuagccugau	caucuucage cugcageace guucacacug caagacegag ucageuggee	cugcugauca aucacagagg gaagugggcg cuggaucuga agagaggaac	caccucagca gcuaccuguc acgucgagaa ccaagagcgc agaucgagaa	ugugcugaga ucugacaugc ccugagagaa uccuggcagc	120 180 240
<223> OTHEI <400> SEQUI augagcugga gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcagcuuug	R INFORMATION SINCE: 141 agguggucau uggaagaguc acaccaacgu cuagccugau ugucugccga	caucuucagc cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu	cugcugauca aucacagagg gaagugggcg cuggaucuga agagaggaac ggaguggcug	caccucagca gcuaccuguc acgucgagaa ccaagagcgc agaucgagaa cugcugcagc	ugugcugaga ucugacaugc ccugagagaaa uccuggcagc uguuacagca	120 180 240 300
<223> OTHEI <400> SEQUI augagcugga gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcagcuuug	R INFORMATION Agguggucau uggaagaguc acaccaacgu cuagccugau ugucugccga ugcugggagc	caucuucage cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu caucagacug	cugcugauca aucacagagg gaagugggcg cuggaucuga agagaggaac ggaguggcug	caccucagca gcuaccuguc acgucgagaa ccaagagcgc agaucgagaa cugcugcagc ugaccgccau	ugugcugaga ucugacaugc ccugagagaa uccuggcagc uguuacagca caacaacgcc	120 180 240 300 360
<223> OTHEI <400> SEQUI augagcugga gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcagcuuug ggcguggcca cugaagaaga	R INFORMATION AND STATE OF THE	caucuucagc cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu caucagacug cgucagcaca	cugcugauca aucacagagg gaaguggcg cuggaucuga agagaggaac ggaguggcug gaaagcgaag cucggcaaug	caccucagca gcuaccuguc acgucgagaa ccaagagcgc agaucgagaa cugcugcagc ugaccgccau gcguuagagu	ugugcugaga ucugacaugc ccugagagaaa uccuggcagc uguuacagca caacaacgcc gcuggccaca	120 180 240 300 360 420
<223> OTHEI <400> SEQUI augagcugga gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcagcuuug ggcguggcca cugaagaaga gccgugcgcg	R INFORMATION Agguega uggaagaguc acaccaacgu cuagccugau ugucugccga ugcugggagc ucgcuaagac caaacgaggc	caucuucagc cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu caucagacug cgucagcaca cuucgugucc	cugcugauca aucacagagg gaagugggcg cuggaucuga agagaggaac ggaauggcug gaaagcgaag cucggcaaug aagaaccuga	caccucagca gcuaccuguc acgucgagaa ccaagagcgc agaucgagaa cugcugcagc ugaccgccau gcguuagagu cacgggccau	ugugcugaga ucugacaugc ccugagagaaa uccuggcagc uguuacagca caacaacgcc gcuggccaca uaacaagaac	120 180 240 300 360 420
<223> OTHEI <400> SEQUI augagcugga gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcagcuuug ggcguggcca cugaagaaga gccgugcgcg aagugcgaca	R INFORMATION AND THE STATE OF	caucuucagc cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu caucagacug cgucagcaca cuucgugucc gaagauggcc	cugcugauca aucacagagg gaagugggcg cuggaucuga agagaggaac ggaguggcug gaaagcgaag cucggcaaug aagaaccuga	caccucagca gcuaccuguc acgucgagaa ccaagagcgc agaucgagaa cugcugcagc ugaccgccau gcguuagagu cacgggccau	ugugcugaga ucugacaugc ccugagagaaa uccuggcagc uguuacagca caacaacgcc gcuggccaca uaacaagaac ccggcgguuu	120 180 240 300 360 420 480
<223> OTHEI <400> SEQUI augagcugga gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcagcuuug ggcguggcca cugaagaaga gccgugcgcg aagugcgaca cugaacgugcgcc	R INFORMATION ASSESSED INFORMA	caucuucage cugcagcace guucacacug caagacegag ucagcuggee cauugcucuu caucagacug egucagcaca cuucguguee gaagauggee uagegacaac	cugcugauca aucacagagg gaagugggcg cuggaucuga agagaggaac ggaguggcug gaaagcgaag cucggcaaug aagaaccuga guguccuuua gccggaauca	caccucagca gcuaccuguc acgucgagaa ccaagagegc agaucgagaa cugcugcagc ugaccgccau gcguuagagu cacgggccau gccaguucaa caccagccau	ugugcugaga ucugacaugc ccugagagaaa uccuggcagc uguuacagca caacaacgcc gcuggccaca uaacaagaac ccggcgguuu cagccuggac	120 180 240 300 360 420 480 540
<223> OTHEI <400> SEQUI augagcugga gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcagcuuug ggcguggcca cugaagaaga gccgugcgcg aagugcgaca cugaacgucg cugaacgucg	R INFORMATION AND THE STATE OF	caucuucage cugeageace guucacacug caagacegag ucageuggee cauugeucuu caucagacug egucageaca cuucguguee gaagauggee uagegacaac	cugcugauca aucacagagg gaagugggcg cuggaucuga agagaggaac ggaguggcug gaaagcgaag cucggcaaug aagaaccuga guguccuuua gccggaauca gugccuaaca	caccucagca gcuaccuguc acgucgagaa ccaagagcgc agaucgagaa cugcugcagc ugaccgccau gcguuagagu cacgggccau gccaguucaa caccagccau ugccuacauc	ugugcugaga ucugacaugc ccugagagaaa uccuggcagc uguuacagca caacaacgcc gcuggccaca uaacaagaac ccggcgguuu cagccuggac ugccggccag	120 180 240 300 360 420 480 540 600
<223> OTHEI <400> SEQUI augagcugga gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcagcuuug ggcguggcca cugaagaaga gccgugcgcg aagugcgaca cugaacgucg cugaacgucg	R INFORMATION AND STATE OF THE PROPERTY OF THE	caucuucagc cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu caucagacug cgucagcaca cuucgugucc gaagauggcc uagcgacaac	cugcugauca aucacagagg gaagugggcg cuggaucuga agagaggaac ggaguggcug gaaagcgaag cucggcaaug auguccuuua gccggaauca gugccuaaca	caccucagca gcuaccuguc acgucgagaa ccaagagcgc agaucgagaa cugcugcagc ugaccgccau gcguuagagu cacgggccau gccaguucaa caccagccau ugccuacauc	ugugcugaga ucugacaugc ccugagagaaa uccuggcagc uguuacagca caacaacgcc gcuggccaca uaacaagaac ccggcgguuu cagccuggac ugccggccag cauucugauu	120 180 240 300 360 420 480 540 660 720
<223> OTHEI <400> SEQUI augagcugga gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcagcuuug ggcguggcca cugaagaaga gccgugcgcg aagugcgaca cugaacgucg cugaugacag aucaagcuga ggcguguacag	R INFORMATION ASSESSED INFORMA	caucuucagc cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu caucagacug cgucagcaca cuucgugucc gaagauggcc uagcgacaac ggcuagagcc uagagccaug	cugcugauca aucacagagg gaagugggcg cuggaucuga agagagggaac ggaguggcug gaaagcgaaug aagaaccuga guguccuuua gccggaauca gugccuaaca guccgacgga gugcagcugc	caccucagca gcuaccuguc acgucgagaa ccaagagcgc agaucgagaa cugcugcagc ugaccgccau gcguuagagu cacgggccau gccaguucaa caccagccau ugccuacauc aaggcuucgg	ugugcugaga ucugacaugc ccugagagaaa uccuggcagc uguuacagca caacaacgcc gcuggccaca uaacaagaac ccggcgguuu cagccuggac ugccggccag cauucugauu cgugaucgac	120 180 240 300 360 420 480 540 600 660 720
<223> OTHEI <400> SEQUI augagcugga gagagcuacc accggcuggu ucugauggcc cucaagaccg ggcagcuuug ggcguggcca cugaagaaga gccgugcgcg aagugcgaca cugaacgucg cugaugacag uugaugacag aucaagcuga ggcguguacg acacccugcu	R INFORMATION AND THE STATE OF	caucuucagc cugcagcacc guucacacug caagaccgag ucagcuggcc cauugcucuu caucagacug cgucagcaca cuucgugucc gaagauggcc uagcgacaac ggcuagagcc uagagccaug gaucuauaug	cugcugauca aucacagagg gaagugggcg cuggaucuga agagaggaac ggaguggcug gaaagcgaag cucggcaaug aagaaccuga guguccuuua gccggaauca gugccuaaca guccgacgga gugcagcugc	caccucagca gcuaccuguc acgucgagaa ccaagagcgc agaucgagaa cugcugcagc ugaccgccau gcguuagagu cacgggccau gccaguucaa caccagccau ugccuacauc aaggcuucgg cuaucuucgg	ugugcugaga ucugacaugc ccugagagaaa uccuggcagc uguuacagca caacaacgcc gcuggccaca uaacaagaac ccggcgguuu cagccuggac ugccggccag cauucugauu cgugaucgac caauuacgcc	120 180 240 300 360 420 480 540 600 720 780

aucaaugugg ccgagcagag caaagagugc aacaucaaca ucagcaccac caacuauccc 1080

-continued

-continued	
ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagcc	1140
cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc	1200
aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc	1260
gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga	1320
ccugugucca gcagcuucga cccuaucaag uucccugagg aucaguucca gguggcccug	1380
gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc	1440
cugucuageg cegagaaggg aaacaeegge uucaucaueg ugaucauecu gauegeegug	1500
cugggcagcu ccaugauccu gguguccauc uucaucauua ucaagaagac caagaagcc	1560
accggcgcuc cuccagaacu gagcggagug accaacaaug gcuucauccc ucacaac	1617
<210> SEQ ID NO 142 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 142	50
augagcugga agguggucau caucuucagc cugcugauca caccucagca cggccugaaa	60
gagageuace uggaagague eugeageace aucacagagg geuaceugue ugugeugaga	120
accggcuggu acaccaacgu guucacacug gaaguggggg acgucgagaa ucugacaugc	240
ucugauggcc cuagccugau caagaccgag cuggaucuga ccaagagcgc ccugagagaa cucaagaccg ugucugccga ucagcuggcc agagaggaac agaucgagaa uccuggcagc	300
ggcagcuuug ugcugggagc cauugcucuu ggaguggcug cugcugcagc uguuacagca	360
ggcguggcca ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc	420
cugaagaaga caaacgaggc cgucagcaca cucggcaaug gcguuagagu gcuggccaca	480
gccgugcgcg agcugaagga cuucgugucc aagaaccuga cacgggccau uaacaagaac	540
aagugcccua ucgacgaccu gaagauggcc guguccuuua gccaguucaa ccggcgguuu	600
cugaacgucg ugcggcaguu uagcgacaac gccggaauca caccagccau cagccuggac	660
cugaugacag augeugageu ggeuagagee gugeeuaaca ugeeuacaue ugeeggeeag	720
aucaagcuga ugcucgagaa uagagccaug guccgacgga aaggcuucgg cauucugauu	780
ggcguguacg gcagcagcgu gaucuauaug gugcagcugc cuaucuucgg cgugaucgac	840
acacccugcu ggauugugaa ggccgcuccu agcuguagcg agaagaaggg caauuacgcc	900
ugccugcuga gagaggacca aggcugguau ugucagaacg ccggcagcac cguguacuac	960
ccuaacgaga aggacugcga gacaagaggc gaccacgugu ucugugauac cgccgcugga	1020
aucaaugugg ccgagcagag caaagagugc aacaucaaca ucagcaccac caacuauccc	1080
ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagcc	1140
cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc	1200
aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc	1260
gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga	1320
ccugugucca gcagcuucga cccuaucaag uucccugagg aucaguucca gguggcccug	1380
gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc	1440
cugucuageg cegagaaggg aaacacegge uucaucaucg ugaucauccu gaucgeegug	1500

cugggcagcu ccaugauccu gguguccauc uucaucauua ucaagaagac caagaagccc 1560

-continued

```
accggcgcuc cuccagaacu gagcggagug accaacaaug gcuucauccc ucacaac
                                                                     1617
<210> SEQ ID NO 143
<211> LENGTH: 1617
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Polynucleotide
<400> SEQUENCE: 143
augageugga agguggueau caucuucage eugeugauca caccucagea eggeeugaaa
                                                                       60
gagageuace uggaagague eugeageace aucacagagg geuaceugue ugugeugaga
accggcuggu acaccaacgu guucacacug gaagugggcg acgucgagaa ucugacaugc
                                                                     180
                                                                     240
ucuqauqqcc cuaqccuqau caaqaccqaq cuqqaucuqa ccaaqaqcqc ccuqaqaqaa
cucaagaccg ugucugccga ucagcuggcc agagaggaac agaucgagaa uccuggcagc
                                                                     300
ggcagcuuug ugcugggagc cauugcucuu ggaguggcug cugcugcagc uguuacagca
                                                                     360
                                                                     420
ggcguggcca ucgcuaagac caucagacug ccuagcgaag ugaccgccau caacaacgcc
cuqaaqaaqa caaacqaqqc cqucaqcaca cucqqcaauq qcquuaqaqu qcuqqccaca
                                                                     480
qccquqcqcq aqcuqaaqqa cuucququcc aaqaaccuqa cacqqqccau uaacaaqaac
                                                                     540
aagugcgaca ucgacgaccu gaagauggcc guguccuuua gccaguucaa ccggcgguuu
                                                                     600
                                                                     660
cuqaacqueq uqeqqeaquu uaqeqacaac qeeqqaauca caccaqeeau caqeeuqqae
cugaugacag augcugagcu ggcuagagcc gugccuaaca ugccuacauc ugccggccag
                                                                     720
                                                                     780
aucaagcuga ugcucgagaa uagagccaug guccgacgga aaggcuucgg cauucugauu
ggcguguacg gcagcagcgu gaucuauaug gugcagcugc cuaucuucgg cgugaucgac
                                                                     840
acacccugcu ggauugugaa ggccgcuccu agcuguagcg agaagaaggg caauuacgcc
                                                                     900
ugccugcuga gagaggacca aggcugguau ugucagaacg ccggcagcac cguguacuac
                                                                     960
ccuaacgaga aggacugcga gacaagaggc gaccacgugu ucugugauac cgccgcugga
                                                                    1020
aucaaugugg ccgagcagag caaagagugc aacaucaaca ucagcaccac caacuauccc
                                                                    1080
ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagcc
                                                                    1140
cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc
                                                                    1200
aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc
                                                                    1260
gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga
                                                                    1320
ccugugucca gcagcuucga cccuaucaag uucccugagg aucaguucca gguggcccug
                                                                    1380
gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc
                                                                    1440
                                                                    1500
cuqucuaqeq ceqaqaaqqq aaacaceqqe uucaucaucq uqaucauccu qaucqeequq
cugggcagcu ccaugauccu gguguccauc uucaucauua ucaagaagac caagaagcc
                                                                    1560
accggcgcuc cuccagaacu gagcggagug accaacaaug gcuucauccc ucacaac
                                                                     1617
<210> SEQ ID NO 144
<211> LENGTH: 1617
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Polynucleotide
<400> SEQUENCE: 144
```

augageugga agguggucau caucuucage eugeugauca caceucagea eggeeugaaa

60

-continued

				-contir	nued	
gagagcuacc	uggaagaguc	cugcagcacc	aucacagagg	gcuaccuguc	ugugcugaga	120
accggcuggu	acaccaacgu	guucacacug	gaagugggcg	acgucgagaa	ucugacaugc	180
ucugauggcc	cuagccugau	caagaccgag	cuggaucuga	ccaagagcgc	ccugagagaa	240
cucaagaccg	ugucugccga	ucagcuggcc	agagaggaac	agaucgagaa	uccuggcagc	300
ggcagcuuug	ugcugggagc	cauugcucuu	ggaguggcug	cugcugcagc	uguuacagca	360
ggcguggcca	ucgcuaagac	caucagacug	gaaagcgaag	ugaccgccau	caacaacgcc	420
cugaagaaga	caaacgaggc	cgucagcaca	cucggcaaug	gcguuagagu	gcuggccaca	480
geegugegeg	agcugaagga	cuucgugucc	aagaaccuga	cacgggccau	uaacaagaac	540
aagugcgaca	ucgacgaccu	gaagauggcc	guguccuuua	gccaguucaa	ccggcgguuu	600
cugaacgucg	ugcggcaguu	uagcgacaac	gccggaauca	caccagccau	cagccuggac	660
cugaugacag	augcugagcu	ggcuagagcc	gugccuaaca	ugccuacauc	ugccggccag	720
aucaagcuga	ugcucgagaa	uagagccaug	guccgacgga	aaggcuucgg	cauucugauu	780
ggcguguacg	gcagcagcgu	gaucuauaug	gugcagcugc	cuaucuucgg	cgugaucgac	840
acacccugcu	ggauugugaa	ggccgcuccu	agcuguagcg	agaagaaggg	caauuacgcc	900
ugccugcuga	gagaggacca	aggcugguau	ugucagaacg	ccggcagcac	cguguacuac	960
ccuaacgaga	aggacugcga	gacaagaggc	gaccacgugu	ucugugauac	cgccgcugga	1020
aucaaugugg	ccgagcagag	caaagagugc	aacaucaaca	ucagcaccac	caacuauccc	1080
ugcaaggugu	ccaccggcag	gcacccuauu	ucuauggugg	cucugucucc	ucugggagcc	1140
cugguggcuu	guuauaaggg	cguguccugu	agcaucggca	gcaacagagu	gggcaucauc	1200
aagcagcuga	acaagggcug	cagcuacauc	accaaccagg	acgccgauac	cgugaccauc	1260
gacaacaccg	uguaucagcu	gagcaaggug	gaaggcgaac	agcacgugau	caagggcaga	1320
ccugugucca	gcagcuuccc	accuaucaag	uucccugagg	aucaguucca	gguggcccug	1380
gaccaggugu	ucgagaacau	cgagaauucc	caggcucugg	uggaccaguc	caacagaauc	1440
cugucuageg	ccgagaaggg	aaacaccggc	uucaucaucg	ugaucauccu	gaucgccgug	1500
cugggcagcu	ccaugauccu	gguguccauc	uucaucauua	ucaagaagac	caagaagccc	1560
accggcgcuc	cuccagaacu	gagcggagug	accaacaaug	gcuucauccc	ucacaac	1617
<220> FEATU	TH: 1617 : RNA NISM: Artifi	_		eotide		
<400> SEQUI	ENCE: 145					
augagcugga	agguggucau	caucuucagc	cugcugauca	caccucagca	cggccugaaa	60
gagagcuacc	uggaagaguc	cugcagcacc	aucacagagg	gcuaccuguc	ugugcugaga	120
accggcuggu	acaccaacgu	guucacacug	gaagugggcg	acgucgagaa	ucugacaugc	180
ucugauggcc	cuagecugau	caagaccgag	cuggaucuga	ccaagagcgc	ccugagagaa	240
cucaagaccg	ugucugccga	ucagcuggcc	agagaggaac	agaucgagaa	uccuggcagc	300
ggcagcuuug	ugcugggagc	cauugcucuu	ggaguggcug	cugcugcagc	uguuacagca	360
ggcguggcca	ucgcuaagac	caucagacug	gaaagcgaag	ugaccgccau	caacaacgcc	420

480

540

cugaagaaga caaacgaggc cgucagcaca cucggcaaug gcguuagagu gcuggccaca

gccgugcgcg agcugaagga cuucgugucc aagaaccuga cacgggccau uaacaagaac

-continued

aagugegaca uegaegaeeu gaagauggee gugueeuuua geeaguucaa eeggegguuu	600
cugaacgucg ugcggcaguu uagcgacaac gccggaauca caccagccau cagccuggac	660
cugaugacag augcugagcu ggcuagagce gugccuaaca ugccuacauc ugccggccag	720
aucaagcuga ugcucgagaa uagagccaug guccgacgga aaggcuucgg cauucugauu	780
ggcguguacg gcagcagcgu gaucuauaug gugcagcugc cuaucuucgg cgugaucgac	840
acacccugcu ggauugugaa ggccgcuccu agcuguagcg agaagaaggg caauuacgcc	900
ugccugcuga gagaggacca aggcugguau ugucagaacg ccggcagcac cguguacuac	960
ccuaacgaga aggacugcga gacaagaggc gaccacgugu ucugugauac cgccgcugga	1020
aucaaugugg ccgagcagag caaagagugc aacaucaaca ucagcaccac caacuauccc	1080
ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagcc	1140
cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc	1200
aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc	1260
gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga	1320
ccugugucca gcagcuucga cccuaucaag uucccugaga accaguucca gguggcccug	1380
gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc	1440
cugucuageg cegagaaggg aaacacegge uucaucaueg ugaucauecu gauegeegug	1500
cugggcagcu ccaugauccu gguguccauc uucaucauua ucaagaagac caagaagccc	1560
accggcgcuc cuccagaacu gagcggagug accaacaaug gcuucauccc ucacaac	1617
-210 CEO ID NO 146	
<pre><210> SEQ ID NO 146 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 146</pre>	
<211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 146	60
<211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 146 augagcugga agguggucau caucuucagc cugcugauca caccucagca cggccugaaa	60 120
<pre><211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 146 augageugga agguggucau caucuucage cugcugauca caccucagea eggecugaaa gagageuace uggaagague cugcageace aucacagag geuaceugue ugugeugaga</pre>	120
<pre><211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 146 augagcugga agguggucau caucuucagc cugcugauca caccucagca cggccugaaa gagagcuacc uggaagaguc cugcagcacc aucacagag gcuaccuguc ugugcugaga accggcuggu acaccaacgu guucacacug gaagugggcg acgucgagaa ucugacaugc</pre>	120 180
<pre><211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 146 augagcugga agguggucau caucuucage cugcugauca caccucagea cggccugaaa gagagcuace uggaagaguc cugcagcace aucacagagg gcuaccuguc ugugcugaga accggcuggu acaccaacgu guucacacug gaagugggcg acgucgagaa ucugacaugc ucugauggcc cuagccugau caagaccgag cuggaucuga ccaagagcgc ccugagagaa</pre>	120
<pre><211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 146 augageugga agguggucau caucuucage cugcugauca caccucagea eggecugaaa gagageuace uggaagaguc eugeageace aucacagag geuaceugue ugugeugaga aceggeuggu acaccaacgu guucacacug gaagugggeg acguegagaa ucugacauge ucugauggee cuagecugau caagacegag euggaucuga ecaagagege ecugagagaa cucaagaceg ugucugeega ucageuggee agagaggaac agauegagaa uccuggeage</pre>	120 180 240 300
<pre><211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 146 augageugga agguggucau caucuucage cugcugauca caccucagea eggeeugaaa gagageuace uggaagague cugcageace aucacagagg geuaccugue ugugeugaga aceggeuggu acaccaacgu guucacacug gaagugggeg acguegagaa ucugacauge ucugauggee cuageeugau caagacegag euggaucuga ecaagagege ceugagagaa cucaagaceg ugucugeega ucageuggee agagaggaac agauegagaa uccuggeage ggeageuuug ugeugggage eauugeucuu ggaguggeug eugeugeage uguuacagea</pre>	120 180 240
<pre><211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 146 augageugga agguggucau caucuucage cugcugauca caccucagea eggeeugaaa gagageuace uggaagague eugeageace aucacagagg geuaceugue ugugeugaga aceggeuggu acaccaacgu guucacacug gaagugggeg acguegagaa ucugacauge ucugauggee cuageeugau caagacegag euggaucuga ecaagagege ecugagagaa cucaagaceg ugueugeega ucageuggee agagaggaac agauegagaa uceuggeage ggeageuuug ugeugggage eauugeucuu ggaguggeug eugeugeage uguuacagea ggeguggeea ucgeuaagac eaucagacug gaaagegaag ugacegeeau caacaacgee ggeguggeea ucgeuaagac eaucagacug gaaagegaag ugacegeeau caacaacgee</pre>	120 180 240 300 360
<pre><211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 146 augagcugga agguggucau caucuucagc cugcugauca caccucagca cggccugaaa gagagcuacc uggaagaguc cugcagcacc aucacagagg gcuaccuguc ugugcugaga accggcuggu acaccaacgu guucacacug gaagugggcg acgucgagaa ucugacaugc ucugauggcc cuagccugau caagaccgag cuggaucuga ccaagagcgc ccugagagaa cucaagaccg ugucugccga ucagcuggcc agagaggaac agaucgagaa uccuggcagc ggcagcuuug ugcugggagc cauugcucuu ggaguggcug cugcugcagc uguuacagca ggcguggcca ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc cugaagaaga caaacgaggc cgucagcaca cucggcaaug gcguuagagu gcuggccaca</pre>	120 180 240 300 360 420
<pre><211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 146 augagcugga agguggucau caucuucage cugcugauca caccucagea cggccugaaa gagagcuace uggaagaguc cugcagcace aucacagagg gcuaccuguc ugugcugaga accggcuggu acaccaacgu guucacacug gaagugggcg acgucgagaa ucugacaugc ucugauggcc cuagccugau caagaccgag cuggaucuga ccaagagcgc ccugagagaa cucaagaccg ugucugccga ucagcuggcc agagaggaac agaucgagaa uccuggcagc ggcagcuuug ugcugggagc cauugcucuu ggaguggcug cugcugcagc uguuacagca ggcguggcca ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc cugaagaaga caaacgaggc cgucagcaca cucggcaaug gcguuagagu gcuggccaca gccgugcgcg agcugaagga cuucgugucc aagaaccuga cacgggccau uaacaagaac gccgugcgcg agcugaagga cuucgugucc aagaaccuga cacgggccau uaacaagaac gccgugcgcg agcugaagga cuucgugucc aagaaccuga cacgggccau uaacaagaac</pre>	120 180 240 300 360 420
<pre><211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 146 augagcugga agguggucau caucuucage cugcugauca caccucagea cggccugaaa gagagcuacc uggaagaguc cugcagcacc aucacagagg gcuaccuguc ugugcugaga accggcuggu acaccaacgu guucacacug gaagugggg acgucgagaa ucugacaugc ucugauggcc cuagccugau caagaccgag cuggaucuga ccaagagcgc ccugagagaa cucaagaccg ugucugccga ucagcuggce agagaggaac agaucgagaa uccuggcagc ggcagcuuug ugcugggagc cauugcucuu ggaguggcug cugcugcagc uguuacagca ggcguggcca ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc cugaagaaga caaacgaggc cgucagcaca cucggcaaug gcguuagagu gcuggccaca gccgugcgcg agcugaagga cuucgugucc aagaaccuga cacgggccau uaacaagaac aagugcgaca ucgacgaccu gaagauggcc guguccuuua gccaguucaa ccggcgguuu</pre>	120 180 240 300 360 420 480
<pre><211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 146 augagcugga agguggucau caucuucage cugcugauca caccucagea cggccugaaa gagagcuacc uggaagaguc cugcagcacc aucacagagg gcuaccuguc ugugcugaga accggcuggu acaccaacgu guucacacug gaagugggg acgucgagaa ucugacaugc ucugauggcc cuagccugau caagaccgag cuggaucuga ccaagagcgc ccugagagaa cucaagaccg ugucugccga ucagcuggcc agagaggaac agaucgagaa uccuggcagc ggcagcuuug ugcugggagc cauugcucuu ggaguggcug cugcugcagc uguuacagca ggcguggcca ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc cugaagaaga caaacgaggc cgucagcaca cucggcaaug gcguuagagu gcuggccaca gccgugcgcg agcugaagga cuucgugucc aagaaccuga cacggccau uaacaagacc gccgugcgcg agcugaagga cuucgugucc aagaaccuga cacggccau uaacaagaac aagugcgaca ucgacgaccu gaagauggcc guguccuuua gccaguucaa ccggcgguuu cugaacgucg ugcggcaguu uagcgacaac gccggaauca caccagccau cagccuggac</pre>	120 180 240 300 360 420 480 540 600
<pre><211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 146 augagcugga agguggucau caucuucagc cugcugauca caccucagca cggccugaaa gagagcuacc uggaagaguc cugcagcacc aucacagagg gcuaccuguc ugugcugaga accggcuggu acaccaacgu guucacacug gaagugggcg acgucgagaa ucugacaugc ucugauggcc cuagccugau caagaccgag cuggaucuga ccaagagcgc ccugagagaa cucaagaccg ugucugccga ucagcuggce agagaggaac agaucgagaa uccuggcagc ggcagcuuug ugcugggagc cauugcucuu ggaguggcug cugcugcagc uguuacagca ggcguggcca ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc cugaagaaga caaacgaggc cgucagcaca cucggcaaug gcguuagagu gcuggccaca gccgugcgcg agcugaagga cuucgugucc aagaaccuga cacgggccau uaacaagacc aagugcgaca ucgacgaccu gaagauggcc guguccuuua gccaguucaa ccggcgguuu cugaacgucg ugcggcaguu uagcgacaac gccggaauca caccagccau cagccuggac cugaugacag augcugagcu ggcuagagcc gugccuaaca ugccuacauc ugccggcaac cugaugacag augcugagcu ggcuagagcc gugccuaaca ugccuacauc ugccggccag cugaugacag augcugagcu ggcuagagcc gugccuaaca ugccuacauc ugccggccag cugaugacag augcugagcu ggcuagagcc gugccuaaca ugccuacauc ugccggccag</pre>	120 180 240 300 360 420 480 540 600 660
<pre><211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 146 augagcugga agguggucau caucuucage cugcugauca caccucagea cggccugaaa gagagcuacc uggaagaguc cugcagcacc aucacagagg gcuaccuguc ugugcugaga accggcuggu acaccaacgu guucacacug gaagugggg acgucgagaa ucugacaugc ucugauggcc cuagccugau caagaccgag cuggaucuga ccaagagcgc ccugagagaa cucaagaccg ugucugccga ucagcuggcc agagaggaac agaucgagaa uccuggcagc ggcagcuuug ugcugggagc cauugcucuu ggaguggcug cugcugcagc uguuacagca ggcguggcca ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc cugaagaaga caaacgaggc cgucagcaca cucggcaaug gcguuagagu gcuggccaca gccgugcgcg agcugaagga cuucgugucc aagaaccuga cacggccau uaacaagacc gccgugcgcg agcugaagga cuucgugucc aagaaccuga cacggccau uaacaagaac aagugcgaca ucgacgaccu gaagauggcc guguccuuua gccaguucaa ccggcgguuu cugaacgucg ugcggcaguu uagcgacaac gccggaauca caccagccau cagccuggac</pre>	120 180 240 300 360 420 480 540 600

acacccugcu ggauugugaa ggccgcuccu agcuguagcg agaagaaggg caauuacgcc

ugccugcuga gagaggacca aggcugguau ugucagaacg ccggcagcac cguguacuac

900

-continued

-continued				
ccuaacgaga aggacugcga gacaagaggc gaccacgugu ucugugauac cgccgcugga	1020			
aucaaugugg ccgagcagag caaagagugc aacaucaaca ucagcaccac caacuauccc	1080			
ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagcc	1140			
cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc	1200			
aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc	1260			
gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga	1320			
ccugugucca gcagcuucga cccuaucaag uucccucagg aucaguucca gguggcccug	1380			
gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc	1440			
cugucuageg cegagaaggg aaacacegge uucaucaueg ugaucauecu gauegeegug	1500			
cugggcagcu ccaugauccu gguguccauc uucaucauua ucaagaagac caagaagccc	1560			
accggcgcuc cuccagaacu gagcggagug accaacaaug gcuucauccc ucacaac	1617			
<210> SEQ ID NO 147 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide				
<400> SEQUENCE: 147				
augagcugga agguggucau caucuucagc cugcugauca caccucagca cggccugaaa	60			
gagagcuacc uggaagaguc cugcagcacc aucacagagg gcuaccuguc ugugcugaga	120			
accggcuggu acaccaacgu guucacacug gaagugggcg acgucgagaa ucugacaugc	180			
ucugauggcc cuagccugau caagaccgag cuggaucuga ccaagagcgc ccugagagaa	240			
cucaagaccg ugucugccga ucagcuggcc agagaggaac agaucgagaa uccuggcagc	300			
ggcagcuuug ugcugggagc cauugcucuu ggaguggcug cugcugcagc uguuacagca	360			
ggcguggcca ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc	420			
cugaagaaga caaacgaggc cgucagcaca cucggcaaug gcguuagagu gcuggccaca	480			
gccgugcgcg agcugaagga cuucgugucc aagaaccuga cacgggccau uaacaagaac	540			
aagugegaca uegaegaecu gaagauggee gugueeuuua geeaguggaa eeggegguuu	660			
cugaacgucg ugcggcaguu uagcgacaac gccggaauca caccagccau cagccuggac	720			
aucaagcuga ugcucgagaa uagagccaug guccgacgga aaggcuucgg cauucugauu	780			
ggcququacq qcaqcaqcqu gaucuauauq quqcaqcuqc cuaucuucqq cquqaucqac	840			
acaccugcu ggauugugaa ggccgcuccu agcuguagcg agaagaaggg caauuacgcc	900			
uqccuqcuqa qaqaqqacca aqqcuqquau uqucaqaacq ccqqcaqcac cququacuac	960			
ccuaacgaga aggacugcga gacaagaggc gaccacgugu ucugugauac cgccgcugga	1020			
aucaaugugg ccgagcagag caaagagugc aacaucaaca ucagcaccac caacuauccc	1080			
ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagcc	1140			
cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc	1200			
	1260			
aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc	1320			
gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga				
ccugugucca gcagcuucga cccuaucaag uucccugagg aucaguucca gguggcccug	1380			

gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc 1440

cugucuageg cegagaaggg aaacacegge uucaucaueg ugaucauecu gauegeegug 1500

accggcgcuc cuccagaacu gagcggagug accaacaaug gcuucauccc ucacaac 1617

What is claimed is:

- 1. A method comprising administering to a subject a messenger ribonucleic acid (mRNA) comprising an open reading frame encoding a betacoronavirus (BetaCoV) S protein or S protein subunit formulated in a lipid nanoparticle in an effective amount to induce in the subject an 15 immune response to the BetaCoV S protein or S protein subunit, wherein the lipid nanoparticle comprises 20-60 mol % ionizable cationic lipid, 5-25 mol % neutral lipid, 25-55 mol % cholesterol, and 0.5-15 mol % PEG-modified lipid.
- 2. The method of claim 1, wherein the open reading frame $_{20}$ encodes a BetaCoV S protein.
- 3. The method of claim 2, wherein the immune response is a neutralizing antibody response specific to the BetaCoV S protein.
- **4.** The method of claim **1**, wherein the open reading frame encodes a BetaCoV S protein subunit selected from an S1 subunit and an S2 subunit.
- **5**. The method of claim **4**, wherein the immune response is a neutralizing antibody response specific to the BetaCoV S protein subunit.
- **6**. The method of claim **1**, wherein the mRNA formulated in a lipid nanoparticle is administered intramuscularly.
- 7. The method of claim 1, wherein the mRNA further comprises a 5' untranslated region and a 3' untranslated region.
- 8. The method of claim 1, wherein the mRNA further comprises a poly(A) tail.

 15 frame encodes a BetaCoV S protein.

 19. The method of claim 18, wherein the mRNA further comprises a poly(A) tail.
- 9. The method of claim 1, wherein the mRNA further comprises a 5' cap analog.
- 10. The method of claim 9, wherein the 5' cap analog is 7mG(5')ppp(5')NlmpNp.
- 11. The method of claim 1, wherein the mRNA comprises a chemical modification.
- 12. The method of claim 11, wherein the chemical modification is a 1-methylpseudouridine modification or a 1-ethylpseudouridine modification.

- 13. The method of claim 11, wherein at least 80% of the uracil in the open reading frame of the mRNA has a chemical modification.
- 14. The method of claim 1, wherein the lipid nanoparticle comprises 50 mol % ionizable cationic lipid, 10 mol % neutral lipid, 38.5 mol % cholesterol, and 1.5 mol % PEG-modified lipid.
- **15**. The method of claim 1, wherein the ionizable cationic lipid is Compound 25.
- **16**. The method of claim **1**, wherein the neutral lipid is 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), and the PEG-modified lipid is 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000 (PEG-DMG).
- 17. A method comprising administering to a subject an mRNA comprising a 5' cap analog, a 5' untranslated region, an open reading frame encoding a BetaCoV S protein or S protein subunit, a 3' untranslated region, and a poly(A) tail formulated in a lipid nanoparticle in an effective amount to induce in the subject an immune response to the BetaCoV S protein or S protein subunit, wherein the lipid nanoparticle comprises 20-60 mol % ionizable cationic lipid, 5-25 mol % neutral lipid, 25-55 mol % cholesterol, and 0.5-15 mol % PEG-modified lipid.
- **18**. The method of claim **17**, wherein the open reading frame encodes a BetaCoV S protein.
- **19**. The method of claim **18**, wherein the ionizable cationic lipid is Compound 25, the neutral lipid is DSPC, and the PEG-modified lipid is PEG-DMG.
- **20**. The method of claim **18**, wherein at least 80% of the uracil in the open reading frame of the mRNA has a 1-methylpseudouridine modification.
 - **21**. The method of claim **20**, wherein the ionizable cationic lipid is Compound **25**, the neutral lipid is DSPC, and the PEG-modified lipid is PEG-DMG.

* * * * *