TimeBase Pty Ltd. v. Thomson Corporation, The et al Doc. 41 Att. 3

Exhibit 3
To Third Declaration of
Joseph N. Hosteny

Dockets.Justia.com

http://dockets.justia.com/docket/court-mndce/case_no-0:2007cv04551/case_id-94959/
http://docs.justia.com/cases/federal/district-courts/minnesota/mndce/0:2007cv04551/94959/41/3.html
http://dockets.justia.com/

H

P. "?—"7-6 \\ oyl

PDXRLZ0IZ 95, /T
10}

XP-002204886

The ELF data model and SGQL query language
for structured document databases

T. Arnold-Moore M. Fuller

B. Lowe

J. Thom R. Wilkinson

Department of Computer Science
RMIT
Melbourne
Australia

tja@citri.edu.au msf@citri.edu.au

Abstract

A data model and query language for accessing struc-
tured documents ezpressed in SGML is presented.
The ELF (ELements with Features) model uses
the SGML grammar (DTD) directly as a schema
avoiding transformations which can lose informa-
tion. The model also gives flexibilsty to the im-
plementor to retrieve whole documents and decom-
pose them, retrieve atomic elements and recombine
them, or pursue alternatives which retnieve the ele-
ments directly. The language, Structured General-
ized Query Language (SGQL), allows efficient ac-
cess to the content, structure and attridutes of doc-
uments at any level within thewr structure. This
is all achieved with a simple, largely orthogonal
functional language.

1 Introduction and motivation

Document query languages have most commonly
been developed for information retrieval systems.
In these systems, documents have been most com-
monly very small. Queries might specify that cer-
tain attributes have particular values, but have con-
centrated on matching against the content of the
document. Thus we might have the query expressed
in Common Command Language (CCL) [11]:

FIND au = Smith AND
ab = (document AND database)

Query 1

which finds records containing ‘Smith’ in the au-
thor field and both ‘document’ and ‘database’ in
the abstract field.

- Rather than exact matching, it has been found
to be more effective [27) to use a ranking formula
that measures the similarity of the query to the
document, so that the query might simply be:

[“document database” |

Query 2

2204886A__1 >

lowe@citri.edu.au jat@citri.edu.au

ross@citri. edu.au

which is then compared to the content of each doc-
ument, and the documents are then returned in
order of their similarity[20]. These methods have
proved to be very effective for the retrieval of large
collections of abstracts or short articles.

Another type of system that has achieved signif-
icant use is the hypertext system. In this case, in-
formation is typically broken into small units. This
information is explored by browsing, rather than
querying, however we may view the traversal of a
link as another kind of query. In fact some authors
have proposed that links are in fact instantiated as
queries.

A new class of document databases is emerg-
ing. These databases consist of large structured
documents. Examples include databases of gov-

_ ernment legislation, maintenance manuals for sys-

tems as complex as aircraft carriers, an encyclope-
dia, and the documentation associated with a large
software engineering project. These databases are
inadequately catered for by current database sys-
tems.

These databases will need to be searched by
attribute. This will, for example, allow a software
engineering document that is the right version to
be retrieved. The databases will need to be queried
on content. However the nature of very large doc-
uments may make a query on whole documents
inappropriate. It may be appropriate to search
for “metal fatigue” only in the sections that are
about “wings”. The databases should also allow for
partial document retrieval. The whole of a govern-
ment Act may be an inappropriate retrieval unit,
if one is searching for a definition. There may be
a number of relevant portions of a single document
that are relevant, and yet the whole document may
still be an inappropriate retrieval unit. However in
a different context, the whole document may be
exactly the right retrieval unit. Finally, we will
certainly wish to follow any hypertext links that are
provided. This may mean that appropriate table of
contents support is required also.

We thus see that a database system to support
databases of large structured documents need a
query language that allows retrieval:

e by exact matching Boolean combinations of
words and phrases;

¢ by ranking by similarity to a given text;
¢ using hypertext links;
e by attribute;

e of and by arbitrary sub-parts or whole docu-
ments.

Use of grammars to describe the structure of
documents has long been associated with databases
and many previous dealings with structured doc-
uments have constructed their own grammar (8,
24, 25). The ISO standard, Standard Generalized
Markup Language (SGML) [10], now provides a
grammar for describing document structure which
is widely used for document exchange.

SGML describes a tagging scheme and a meta-
grammar for describing the structure of documents.
Each document instance consists of a declaration
(which describes the character set and the avail-
able facilities), a DTD (document type definition
- the grammar which the document satisfies) and
the tagged text itself. Standard declarations and
DTD’s can avoid the need to transfer this informa-
tion unnecessarily but the power exists to describe
" unusual structures or documents.

Each structural element in the body of the text
is surrounded by a begin (<gi>) and end (</gi>)
tag where gi is any generic identifier or element
type name. Elements can be nested within each
other and the DTD allows the specification of the
content model of each element type, with quite com-
plex combinations easily expressed.

One can associate typed information with par-
ticular SGML elements by using attributes which
appear in the text within the begin tag. Because
of its wide-spread usage and expressive power, con-
siderable work has been put into translating plain
text and structured text into SGML [4, 6, 29] so
even those documents not currently in SGML can
be converted. A complete description of SGML can
be found in {7].

Given that SGML provides a way of describing
all of the meaningful fragments of a document, we
may modify and clarify the desired list of features
in order to more precisely describe the characteris-
tics of a structured document query language:

e query across different documents;
e return lists of SGML elements;

e query on content;

BNSDOCID: <XP___2204886A _|_>

o query on SGML and non-SGML attributes;
¢ query on pure structure; and

e query on a mixture of content and SGML
structure.

We pearly have what we desire. However, we
may not be able to rely on the designer of the
SGML document class to take into account all of
the attributes that may be appropriate to query.
Thus, we may have associated with each document,
or element of a document, a set of attributes that
we shall call features, to distinguish them from the
attributes defined by the grammar that describes
the SGML document class.

In this paper we discuss some representative
queries which illustrate the requirements of a query
language for handling structured documents. Af-
ter discussing related work on models for struc-
tured document database, we propose a data model
specifically designed for storing large numbers of
complex structured documents, and discuss a lan-
guage in a functional notation showing how the
representative queries can be expressed. Finally we
discuss the strengths and weaknesses of the model
and areas for further work.

2 Representative queries

In order to focus our exploration of the needs of
a structured document query language, we discuss
some representative queries which illustrate these
key requirements.

2.1 On content

The most widely used repositories of text are all
based on boolean retrieval of complete documents.
The use of the vector-space model for ranked
queries is also achieving wide acceptance [23] and
is demonstrating better retrieval performance than
the traditional boolean model [27]. Therefore both
must be supported leading to the following queries:

lFind docs about ‘keyword’ AND ‘keyword?2’. J

Query 1.1

Find docs similar to ‘keyword’ with measure
above 0.5.

Query 1.2

2.2 On content and structure

Salton’s more recent work has dealt with smaller
fragments than documents [21, 22]. His success
suggests the following queries (SGML versions of
those suggested by Salton):

ISDOCID: <XP

Find <section>’s similar to ‘keyword’. ,

[ﬁnd doc with identifier ‘92, l

Query 2.1

Find <section>’s with (<par>’s similar to
‘keyword’ with measure above 0.2).

Query 2.2

Find docs similar to ‘keyword’ with
(<section>’s similar to ‘keyword’ with measure
above 0.5).

Query 2.3

Unlike Salton’s work where the level was fixed at
database creation time, SGML’s power could be
utilized to extract elements at any arbitrary level
providing efficient indexing schemes can be devised
(12, 18, 30].

2.3 Across different documents

Ideally we wish to query across documents satis-
fying a number of DTD’s which may use differ-
ent generic identifiers to describe logically similar
units. The use of a macro facility can overcome
this [16]:

Find articles and memos with TITLE’s about
‘keyword’.

Query 3.1

where TITLE is a macro defined for each DTD
describing what element(s) should be viewed by the
user as being titles.

2.4 On attributes
Object-based query languages get much of their ex-

- pressive power from the ability to test the contents

of attributes associated with the objects. Hyper-
text links are often implemented in object systems
and SGML using attributes. SGML provides a
facility to associate attributes with elements (the
analogue of objects) within the text itself and some
facility to query on these is needed:

{ Find docs with_attribute CONF. |

Query 4.1

Find <author>’s of docs with attribute
CONF = ‘yes’.

Query 4.2

It may be necessary for the database to store
additional information which does not form part of
the text of the SGML document instance. These
might include querying on the database document
identifier:

(9

2204886A | >

Query 4.3
or querying on the document class (the DTD which
describes the content model of the element):
lFind docs satisfying the ‘memo’ DTD.]

Query 4.4
2.5 On structure

Already we have described queries which mix struc-
ture and content. Queries which allow examination
of the structure of the document are also necessary
to take full advantage of the additional information
available in the SGML tagging:

Ii'ind docs with 8 <section>’s. J
Query 5.1

IFind siblings/children/parent of this element. j
Query 5.2

3 Related work

The need for more sophisticated database systems
for handling structured documents has been rec-
ognized by numerous researchers. A number of
data models have been put forward to solve these
problems. These issues and the related issue of
indexing schemes to support such queries are dis~
cussed in greater detail elsewhere [19] however a
brief summary is appropriate.

Rossiter and Heather [18] provided an early sur-
vey of the potential of various models to support
access to structured documents. They considered
the free-text, relational, semantic and object-based
models.

The free-text model, that used in most tradi-
tional text-retrieval systems, treats documents as
lists of words disregarding any internal structure
in the documents thus supporting only boolean and
ranked queries on the content of whole documents.

The relational model extended to support con-
tent queries can support a whole range of queries
including mixed content and structure, pure struc-
ture, and attribute queries. However representa-
tion of complex documents by mapping complex el-
ements onto tables leads to large numbers of tables
and tuples {14]. Even simple queries, particularly
queries on the content of whole documents, require
many join operations as global indexes are hard to
build [18]. These join operations can be costly to
compute, particularly in larger databases. Queries
across databases containing documents with dif-
ferent structures are not well supported by this
model as different document types require separate
tables. The semantic models discussed by Rossiter
and Heather are simply variations on the relational
model and suffer similar drawbacks.

Their preferred option was to use an object-
based model, mapping every element onto an ob-
ject in the database. This model also supports
a wide range of queries [2, 5, 14] but again, sim-
ple queries require many join operations. Each
document type requires a separate class definition
creating problems for queries involving more than
one document type.

Some approaches not considered by Rossiter and
Heather include the field model, and element-based
models. A refinement of the full-text approach is to
define fields [11] or zones [9, 14] allowing queries to
be limited to the content of specified zones. These
zones are typically defined by the database admin-
istrator when the database is constructed. SGML
can be supported by using element tags to spec-
ify the boundaries of these zones. Queries involv-
ing multiple document types can be supported by
mapping the appropriate elements in each docu-
ment type to a single field, e.g. the ‘au’ field (short
for author) might be defined to correspond to the
<author> element in a DTD for journal articles and
the <from> element in a DTD for electronic mail or
office memos. The disadvantage of this approach
is that either the fields for which query support
is provided must be decided at database creation
time, or that a field be defined for every element
in the DTD. As this model is typically supported
by constructing an index for each field, this usually
results in huge storage requirements just for the
indexes with substantial overlap in coverage of the
indexes. This model supports boolean or ranked
queries based on content for whole documents and
for parts of documents and can support the retrie-
val of whole or part documents.

Each of these models involves mapping the DTD
description of the document structure onto a
schema for the appropriate model. Such a transla-
tion process is likely to lose information, potentially
ignoring some constraints imposed by the DTD
that are unable to be represented by the model’s
schema definition mechanism. These models also
rely on retrieving minimal parts of documents and
recombining them (relational, semantic and object
models) or by retrieving whole documents and de-
composing them (full-text and field models). What
is needed is to support retrieval by element directly
using the DTD as the schema.

One example of this approach allows the defi-
nition of columns in a relational table containing
structured text [3). The structure of the text is
defined only by reference to the element name and
the DTD which defines its structure. Access is
supported by adding an EXPAND operator to SQL
which applies only to columns of structured text.
Within the scope of the EXPAND operator, three
virtual tables are defined:

TEXT_NODES (nodeid, genid, content)

BNSDOCID: <XP__2204886A__{_>

TEXT_SRUCTURE(a_nodeid, d_nodeid)
TEXT_ATTRIBUTES (nodeid, attr, value)

In the first table we find a single tuple for each
element with a unique identifier (nodeid), the type
of the node (generic identifier-genid) and the text
which makes up that node. The second table repre-
sents child-parent relationships between nodes and
the last gives access to the SGML attributes. The
writers are careful to stress that these tables are
virtual and need not be stored or indeed ever cre-
ated. If they are not actually present then the
model suggests that documents will be decomposed
at query time to extract the relevant information.
If they are present, direct support of element re-
trieval is provided but costly join operations still
need to be performed for structure queries which
rely on the TEXT._SRUCTURE table.

4 Data model

We propose an alternative data model for struc-
tured text which relies solely on the DTD to pro-
vide a schema for the data and supports element
access directly without join operations.

In order to construct a conceptual model of the
database system we consider the database to be a
list of ELF’s (ELements with Features) where an
ELF is:

¢ a complete SGML element — primitive content
tokens (#PCDATA, CDATA and RCDATA)
are considered to be elements for this purpose;

¢ a list of features associated with that element
(we avoid using the term ‘attribute’ to prevent
confusion with SGML attributes).

We consider every element in every document to be
in this list although it may be necessary to provide
the database administrator with a mechanism for
specifying a granularity beyond which we do not
represent sub-elements. In general, the result of a
query will be a list containing a subset of the ELF’s
in the database. While we allow some queries to
return a numeric result or a boolean value for use
in other queries, orthogonality is maintained since
all queries can be used as sub-queries. The element
features required include:

EID (an absolute element identifier). When ver-
sioning hypertext, links can either be static or
dynamic {15]. In order to support static links
to elements we require an absolute identifier
for each ELF. The EID is also useful for sup-
porting dynamic inclusion of sub-elements {13].
The EID should be allocated by the DBMS
and should be unique for each element even
though the element may occur in more than
one version tree and once allocated should not
change.

o>
<

DID (a document identifier). Every version of an
SGML document in the database should also
have a unique, absolute identifier which is as-
signed by the DBMS. For elements which are
SGML documents, EID = DID. Where ele-
ments may appear in more than one document,
a list of DID’s will be required.

DTD (the DTD which that document satisfies).
Every document from which an element comes
will satisfy a DTD and this information should
not be stored more than once in a particular
database. Instead of storing the DTD with
each occurrence of a document of that type,
maintain an identifier (or simply a pointer) to
the relevant DTD. This information will be
needed at the application level for browsers
and editors to access.

OS (an associated output specification e.g. a FOSI
(28] or style file {31]).

SIM (a similarity measure) In order to support
ranked queries, we need some way of asso-
ciating a similarity measure with each ELF
in the list being ranked. A separate feature
satisfies this requirement. For queries that
are not ranked, this value can be set to some
default (0 or 1 or negative) to demonstrate its
invalidity.

LOC (the location of that element within the doc-
ument). Some method of identifying where
the element is located within a particular doc-
ument is needed. Alternatives include those
provided in HyQ (12, 17} and the REL indexing
scheme [1]. If an element may appear in more
than one document, a list of LOC’s will be
required corresponding to the list of DID’s.

Generally functions operate on lists of elements
as a list i3 the simplest structure which will return
a possibly ranked ordered collection of documents.
We choose elements as our base rather than whole
documents as an SGML document is always an
element, and using elements adds generality to the
query without undue additional complexity allow-
ing arbitrary node sizes instead of the traditional
fixed node size.

In order to avoid the ad hoc creation of DTD’s
at query time for exporting or displaying partial
sub-trees, only complete elements can be exported.
Their structure is defined already by the DTD for
the document to which they belong. Mixed con-
tent models can be dealt with by assuming that
the primitive data tokens can themselves be ele-
ments [7). A table of contents for a given document
will constitute a partial sub-tree if treated as a
single structure. However each of the entries in the
table of contents will be a valid element (or list of

~
\.

NSDOCID: <XP___2204886A__| >

elements) in an existing DTD. Since an ordered list
is returned, when a table of contents is requested
for a particular document, the database can simply
return a list containing all the elements correspond-
ing to each entry in the table in the order that
they appear in the document. The DID feature
can be used to produce tables for more than one
document.

Each element within a document will have many
of these features in common with other elements in
the same document. The physical model to support
the interface provided by this logical model should
reflect this commonality to prevent unnecessary du-
plication.

5 The SGQL Language

We describe a new functional query language,
SGQL (Structured Generalized Query Language)
over this data model by describing the data types
and a set of functions on particular data types.
Figure 1 shows the valid types for arguments and
return values, Figure 2 shows the functions which
return lists of ELF’s and Figure 3 shows other
functions in SGQL. We demonstrate the utility of
SGQL by expressing the representative
queries from Section 2 in SGQL.

5.1 On content

Boolean queries are supported by the contains
function whereas ranking queries are supported by
the functions — rank (rank all elements), rank_t
(rank only those elements above a threshold simi-
larity) and rank_f (rank only the N most similar
documents). The following is an example of a bool-
ean query:

[Find docs about ‘keyword’” AND ‘keyword?2’. J

Query 1.1

In SGQL this query would be expressed as follows:
contains(has_gi(*, DOC),
"keywordl" & "keyword2")

where has_gi (*, DOC) is the list of all documents,
that is elements which have the generic identifier
specified by the macro DOC (DOC behaves like a list
of <gi>’s and is defined for each DTD describing
what element should be viewed by the user as being
a whole document).

Ranking queries are handled in a similar way:

Find docs similar to ‘keyword’ with measure
above 0.5.

Query 1.2

This query uses rank_t with the additional argu-
ment specifying the threshold of 0.5.

l rank_t(has_gi(*, DOC), "keyword", 0.5) _]

BNSDOCID: <XP___2204886A _|_>

E3

ELF

[ELF]

<gi>

(<gi>]
feature name

attribute name

F

A
PEXPR
BOOL

string
N
R

All elements present in the database.

An SGML Element with attached Features.

A (possibly empty) list of ELF.

An SGML Generic Identifier.

An (possibly empty) list of <gi> (comma separated).
The name of a Feature of an ELF.

The name of an Attribute of an ELF.

The value of a Feature of an ELF.

The value of a Attribute of an ELF.

A phrase expression.!

A Boolean combination of true, false, and Boolean functions
(see below).

0 or more ascii characters, delimited by .

An Integer or Real.

A relationship specifier.

Figure 1: Data types in SGQL.

contains [ELF] x PEXPR— [ELF]
rank [ELF] x PEXPR-+ [ELF]
rank f [ELF] x PEXPRx N — [ELF]
rank_t [ELF] x PEXPRx N — [ELF]
test [ELF] x BOOL— [ELF]
has_gi [ELF] x [<gi>] — [ELF]
intersect [ELF] x [ELF] — [ELF)

union [ELF] x [ELF] — [ELF]
subtract {ELF] x [ELF] — [ELF]
unique [ELF] - [ELF]

top (ELF] x N — [ELF]
maximalelt [ELF] — [ELF]

relation [ELF] x [ELF] x R — [{ELF]

Figure 2: SGQL functions returning ELF’s.

count [ELF] - N
get_attribute ELF X attributename — A
get_feature ELF x featurename — F

equals expression X expression - BOOL
greater expression x expression - BOOL
lesser expression X expression - BOOL
and BOOLx BOOL— BOOL

or BOOLx BOOL— BOOL

not BOOL- BOOL

Figure 3: Other SGQL functions.

11

5.2 On content and structure

Queries can also be made on elements other than
whole documents:
lFind < section>’s similar to ‘keyword’. I

Query 2.1

In SGQL we can specify that we want to query
section elements rather than whole documents by
specifying those elements whose generic identifier
is <section>, that is has_gi(*, [<section>]).
[rank(has_gi(*, [<section>]), "keyword") |
The use of the rank function means all sections
will be returned ranked on their similarity to the
phrase "keyword".

The relation function allows queries at differ-
ent levels within a document, as in the following
example: :
Find <sections>’s with (<par>’s similar to
‘keyword’ with measure above 0.2).

Query 2.2

In SGQL the sub-query:
rhas_gi(* , [<section>])
returns all sections, and the sub-query:

rank_t (has_gi(*, [<par>l),

"keyword", 0.2)

returns all paragraphs with a similarity to ‘key-
word’ above 0.2. These results can be be combined
by using the relation function to return only those
sections that contain a paragraph similar to ‘key-
word’ — that is in the parse tree of the document
the sections must be an ancestor of a matching
paragraph.

relation(has_gi(*, [<section>]),

rank_t(has_gi(*, [<par>]),
"keyword", 0.2),
ancestor)

Other relationships in the parse tree can also be
tested, including parent, child, descendent, and
sibling. The following query is another example
of the use of the function relation:

—

Find docs similar to ‘keyword’ with
(< section>’s similar to ‘keyword’ with measure
above 0.5).

Query 2.3

In SGQL the query is similar to the previous one

except that this time it is embedded in an outer

rank function.

rank (relation(has_gi(*, DOC),
rank_t (has_gi(*,

[<section>])
"keyword",
0.5),
ancestor),

"keyword")

™
(N

NSDOCID: <XP___2204886A_|_>

5.3 Across different documents

The macro facility can also be used to query across
databases containing many different types of doc-
ument:

Find articles and memos with TITLE’s about
‘keyword’.

Query 3.1

where TITLE is a macro defined for each DTD
describing what element(s) should be viewed by the
user as being titles; it behaves like a list of <gi>’s.
This query also demonstrates that the relation
function can also be used with boolean sub-queries.
If we assume the database contains only articles
and memos, in SGQL the query is as follows.
relation(has_gi(*, DOC),
contains(has_gi(*, TITLE),
"keyword"),
ancestor)

5.4 On attributes

Queries can be made on both the SGML attributes
associated with elements (using the function —
get_attribute) and on the additional SGQL fea-
tures that are also associated with elements (us-
ing get_feature). The following is an example of
query on an SGML attribute:

[Find docs with attribute CONF.]
Query 4.1
test (has_gi(*, DOC),
not (get_attribute(test_elf, "CONF")
= NULL))

In SGQL the function test returns a (possibly
empty) list of elements for which the specified is
true. The variable test_elf represents the current
element to be tested and is available within the
second argument of test.

While the above query tested for the existence
of an attribute, the following query tests the value
of an attribute:

Find <author>’s of docs with attribute CONF =

3 >

yes’.

Query 4.2

In SGQL we need to use the relation function to
find the authors within the matching documents.
relation(has_gi(*, [<author>]),
test(has_gi(*, DOC),
get_attribute(test_elf,
"CONF")

- nYesn) ,
child)

Queries on features are implemented in a sim-
ilar way. For example the following query on the
database document identifier (DID):

IFind doc with identifier ‘92’. J union(
relation(x,
Query 4.8 test(*,
get_feature(test_elf, DID)
In SGQL this can either be expressed as = "92" and
t_feature(test_elf, LOC
test (has_gi(* , DOC), Eeuz_s-zgsféu; €)
= ngon 3
get_feature(test_elf, DID) 92") sibling),
relation(x*,
or alternatively as test (*,
| maximal_elt(get_feature(*, DID) = "92%)] get_feature(test_elf, DID)
= "92" and
get_feature(test_elf, LOC)
The function maximal_elt only returns those ele- = "1-3-2-5-2"),
ments which are not sub-elements of other elements child))

in the list.

Another feature of documents and elements is
the document class (that is the DTD which de-
scribes the content model of the element) suggest-
ing the following query:

@nd docs satisfying the ‘memo’ DTD.]
Query 4.4

test(has_gi(*, DOC),
get_feature(test_elf, DTD)
= "memo")

5.5 On structure

We have already introduced the relation function
which enables complex queries to be expressed on
the structure of documents. For example, the fol-
lowing query needs to count the number of elements
of a particular type in a document:

| Find docs with 8 <section>’s. |

Query 5.1

In SGQL this would be expressed as follows.

test (has_gi(*, DOC),
count (relation(has_gi(x,
[<section>]),
test_elf,
descendant))

= 8)

The following is a more complex example:

rFind siblings and children of this element.]

Query 5.2

where this element is specified by DID ‘92’ and
LOC ‘1-3-2-5-2’. The union function allows two
answer lists to be combined in a similar way to the
relational union operator.

BNSDOCID: <XP___2204886A__|_>

6 Conclusions

We have presented a data model for structured
documents which does not require any additional
schema to be defined other than the DTD which
must already be defined for any SGML document.
The model does not limit an implementor to either
decomposing whole documents, or reconstructing
larger portions of text from atomic elements at
query time. By treating the database simply as
a list of elements (with associated features) the
implementor can use either of these approaches.
The inclusion of the location feature also allows
the implementor the freedom to explore alternative
approaches to retrieval of elements.

We have demonstrated that a wide variety of in-
teresting queries can be easily expressed in SGQL.
This arises from the deliberate effort to describe a
model specifically for structured documents. Be-
cause of the inherent orthogonality of the language
and strict limits on the return types of functions,
SGQL can be used to provide a large number of
facilities with a small number of functions.

‘While the functional notation may not be as in-
tuitive to the casual user as something like SQL, it
is anticipated that SGQL will be primarily used as
an API to text and graphical user interfaces rather
than used directly by the user. It is presumed that
these interfaces will have access to the appropriate
DTD’s and output specifications so that users will
be able to avoid knowing the exact generic identi-
fiers required for every query. The functional no-
tation also has an additional advantage over more
declarative languages in that implementation issues
are rather more immediate.

SGQL provides querying capabilities on the con-
tent of documents, or the atiributes of documents,
or on the structure of documents, or on any combi-
nation of these. The use of SGML as the underlying
grammar gives the user access to the underlying
structure without sacrificing authors’ flexibility to
create new document types with relative ease. It
also has the advantage of access to a large body of

~
-~

existing text in SGML and sophisticated tools for
the conversion to and from other formats.

The functions described in this paper are purely
for retrieval purposes. Further work needs to be
done on SGQL to describe appropriate data ma-
nipulation functions.

Additional improvements, principally in the ab-
breviation of some queries {(and more efficient im-
plementation without optimization) could be
achieved by providing a variable facility to avoid
duplication within queries. In particular query 5.5
could be substantially improved.

The problem of combining similarity measures
has received little attention. Query 5.2 uses the
similarity of <section>’s as a filter of documents
but the ranking of the documents is done by the
similarity measure of the whole document. The
ability to express queries such as:

Rank (docs similar to ‘keyword’ with (<par>s
similar to ‘keyword2’)).

Query 3

is not yet provided. Whether the user or even the
database administrator should have the power to
control how this is done is a question which requires
considerable investigation.

This query language focuses on the needs of
structured text documents without significant con-
sideration of multimedia issues of inclusion of sound
and pictures (be they still or moving). There is no
reason to limit SGML to handling just text (as Hy-
Time illustrates [17]) however SGML provides the
facility to refer to external objects which are non-
SGML. These could be included in the database
by wrapping them in a database-defined markup
80 that they satisfy the requirements of an ELF.

References

[1] Timothy Arnold-Moore and Ron Sacks-Davis.
The Relative Element Locator scheme for
indexing SGML documents. Technical Report
CITRI TR/94-3, Collaborative Information
Technology Research Institute, 1994.

[2] E. Bertino, F. Rabatti and S. Gibbs. Query
processing in a multimedia document system.
ACM Transactions on Office Information Sys-
tems, Volume 6, page 1, 1988.

(3] G.E. Blake, M. P. Consens, P. Kilpeldinen,
P.A. Larson, T. Snider and F.W. Tompa.
Text/relational database management sys-
tems: Harmonising SQL and SGML. In Proc.
Int. Conf. on Applications of Databases, page
267, Vadstena, Sweden, June 1994.

Mark H. Chignell, Bernd Nordhausen, J. Felix

(4
Valdez and John A. Waterworth. The HEFTI

—

™~

NSDOCID: <XP___2204886A__|_>

model of text to hypertext conversion. Hyper-
media, Volume 3, page 187, 1991.

[5] V. Christophides, S. Abiteboul, S. Cluet and
M. Scholl. From structured documents to
novel query facilities. In Proceedings of the
ACM SIGMOD International Conference on
the Management of Data, page 313, Min-
neapolis, MN, 1994.

[6] Exoterica Corporation. XGML Omnimark
Version 2.2, 1993. Solaris 2 or MS-DOS.

(7] Charles F. Goldfarb. The SGML Handbook.
Clarendon Press, Oxford, 1990.

(8] G. Gonnet and F. Tompa. Mind your gram-
mar: a new approach to modelling text. In
Proceedings of the Very Large Data Bases
Conference, page 339, Brighton, 1987.

[9] G. H. Gonnet et al. Lexicological indices for
text: inverted files vs. PAT trees. Technical
Report OED-91-01, University of Waterloo,
Ontario, Canada, 1991.

[10] International Organization for Standardiza-
tion. Information processing - text and office
systems — standard generalised markup lan-
guage (SGML), 1986. ISO/IEC 8879:1986.

{11] International Organization for Standardiza-
tion. Information and documentation ~ Com-
mands for interactive text searching (CCL),
1993. ISO/IEC DIS 8777:1993.

(12] W. Elliot Kimber. HyTime and SGML: un-
derstanding the HyTime HyQ query language.
Technical Report E14/B500, IBM Corpora-
tion, 1993.

[13] Sauro Lamberti, Cesare Maioli and Fabio
Vitali. Some modifications to the Dexter
model for the formal description of hypertexts.
Technical Report UBLCS-93-5, Laboratory
of Computer Science, University of Bologna,
Laboratory of Computer Science, University of
Bologna, Piazza di Porta S. Donato, 5 40127
Bologna Italy, April 1993.

(14] 1. A. Macleod. Storage and retrieval of struc-
tured documents. Information Processing and
Manegement, Volume 26, Number 2, page 197,
1990.

Cesare Maioli, Stefano Sola and Fabio Vitali.
Versioning issues in a collaborative distributed
hypertext system. Technical Report UBLCS-
93-6, Laboratory of Computer Science, Uni-
versity of Bologna, Laboratory of Computer
Science, University of Bologna, Piazza di
Porta S. Donato, 5 40127 Bologna Italy, April
1993. Available by ftp from ftp.cs.unibo.it
in pub/TR/UBLCS.

(15]

(16] Multimedia Database Systems Group. SIM
Date Definition Language and Database Ad-
ministrators Guide. Melbourne, 1994.

{17] S. R. Newcomb, N. A. Kipp and V. T. New-
comb. ‘HyTime’ the hypermedia/time-based
document structuring language. Communicg-
tions of the ACM, Volume 34, page 67, 1991.

{18] B. N. Rossiter and M. A. Heather. Strengths
and weaknesses of database models for textual
documents. In Proceedings of Electronic Pub-
lishing 90, page 125, Gaithersburg, MD, 1990.
Cambridge Uni Press.

[19] Ron Sacks-Davis, Timothy Arnold-Moore and
Justin Zobel. Database systems for structured
documents. In Proceedings of the International
Symposium on Advanced Database Technolo-
gies and Their Integration (ADTI), page 272,
Nara, Japan, October 1994.

[20] Gerard Salton. Automatic Text Processing:
The Transformation, Analysis, and Retrieval
of Information by Computer. Addison-Wesley,
Reading, MA, 1989.

{21} Gerard Salton, James Allan and Chris Buck-
ley. Approaches to passage retrieval in full
text information systems. In Proceedings of
the ACM/SIGIR International Conference on
Research and Development in Information Re-
trieval, page 49, Pittsburgh, PA, 1993.

|22] Gerard Salton, James Allan and Chris Buck-
ley. Automatic structuring and retrieval of
large text files. Commaunications of the ACM,
Volume 37, Number 2, page 97, 1994.

[23] Gerard Salton and M. J. McGill. Introduction
to Modern Information Retrieval. McGraw-
Hill, Tokyo, 1983.

BNSDOCID: <XP__2204886A _| >

[24] F. Sarre and U. Giinzter. Automatic transfor-
mation of linear text into hypertext. In Inter-
national Symposium on Database Systems for
Advanced Applications, page 498, Tokyo, 1991.

[25] Jean Tague, Ari Salminen and Charles Mc-
Cleltan. Complete formal model for infor-
mation retrieval systems. In Proceedings of
the ACM/SIGIR International Conference on
Research and Development in Information Re-
trieval, 1991.

[26] James A. Thom, Alan J. Kent and Ron Sacks-
Davis. TQL: Tutorial and user manual. Tech-
nical Report 92-19, Collaborative Information
Technology Research Institute, 1992,

[27] Howard Turtle. Natural language vs. Bool-
ean query evaluation: A comparison of re-
treival performance. In Proceedings of the
ACM/SIGIR International Conference on Re-
search and Development in Information Re-
trieval, page 212, Dublin, 1994.

[28] US Department of Defense. Military Specifica-
tion. Markup Requirements and Generic Style
Specification for Electronic Printed Output
and Exchange of Text (SGML), 26 June 1993.
MIL-M-28001B.

[29] E. Wilson. Electronic books: the automatic
production of hypertext documents from ex-
isting printed sources. In Fourth Annual
‘Conference of the UW Centre for the New
Ozford English Dictionary: Information in
Text, page 29, Ontario, Canada, October 1988.

[30] Eve Wilson. Converting an SGML text to
hypertext. Technical Report TEI TR3 W86,
University of Kent at Canterbury, 1991.

[31] Yaron Wolfsthal. Style control in the Quill
document editing system. Software ~ Practice
and Ezperience, Volume 21, page 625, 1991.

o~
’\')\')

	Exhibit 3 Cover .pdf
	D2 arnoldmoore

