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Fourier theory is pretty complicated mathematically. But there are some beautifully simple
holistic concepts behind Fourier theory which are relatively easy to explain intuitively.
There are other sites on the web that can give you the mathematical formulation of the
Fourier transform. 1 will present only the basic intuitive insights here, as applied to spatial
imagery.

Basic Principles: How space is represented by frequency

Higher Harmonics: "Ringing” effects

An Analog Analogy: The Optical Fourier Transform

Fourier Filtering: Image Processing using Fourier Transforms

Basic Principles

Fourier theory states that any signal, in our case visual images, can be expressed as a sum of
a series of sinusoids. In the case of imagery, these are sinusoidal variations in brightness
across the image. For example the sinusoidal pattern shown below can be captured in a
single Fouier term that encodes 1: the spatial frequency, 2: the magnitude (positive or
negative), and 3: the phase.

These three values capture all of the information in the sinusoidal image. The spatial
frequency is the frequency across space (the x-axis in this case) with which the brightness
modulates. For example the image below shows another sinusoid with a higher spatial
frequency.
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The magnitude of the sinusoid corresponds to its contrast, or the difference between the
darkest and brightest peaks of the image. A negative magnitude represents a contrast-
reversal, i.e. the brights become dark, and vice-versa. The phase represents how the wave is
shifted relative to the origin, in this case it represents how much the sinusoid is shifted left .
or right.

A Fourier transform encodes not just a single sinusoid, but a whole series of sinusoids
through a range of spatial frequencies from zero (i.e. no modulation, i.e. the average
brightness of the whole image) all the way up to the "nyquist frequency", i.e. the highest
spatial frequency that can be encoded in the digital image, which is related to the
resolution, or size of the pixels. The Fourier transform encodes all of the spatial frequencies
present in an image simultaneously as follows. A signal containing only a single spatial
frequency of frequency f is plotted as a single peak at point f along the spatial frequency
axis, the height of that peak corresponding to the amplitude, or contrast of that sinusoidal
signal.
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There is also a "DC term" corresponding to zero frequency, that represents the average
brightness across the whole image. A zero DC term would mean an image with average
brightness of zero, which would mean the sinusoid alternated between positive and negative
values in the brightness image. But since there is no such thing as a negative brightness, all
real images have a positive DC term, as shown here too.

Actually, for mathematical reasons beyond the scope of this tutorial, the Fourier transform
also plots a mirror-image of the spatial frequency plot reflected across the origin, with
spatial frequency increasing in both directions from the origin. For mathematical reasons
beyond the scope of this explanation, these two plots are always mirror-image reflections of
each other, with identical peaks at f and -f as shown below.
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What | have shown is actually the Fourier transform of a single scan line of the sinusoidal
image, which is a one-dimensional signal. A full two-dimensional Fourier transform performs
a 1-D transform on every scan-line or row of the image, and another 1-D transform on every
column of the image, producing a 2-D Fourier transform of the same size as the original
image.

The image below shows a sinusoidal brightness image, and its two-dimensional Fourier
transform, presented here also as a brightness image. Every pixel of the Fourier image is a
spatial frequency value, the magnitude of that value is encoded by the brightness of the
pixel. In this case there is a bright pixel at the very center - this is the DC term, flanked by
two bright pixels either side of the center, that encode the sinusoidal pattern. The brighter
the peaks in the Fourier-image, the higher the contrast in the brightness image. Since there
is only one Fourier component in this simple image, all other values in the Fourier image are
zero, depicted as black.

Brightness Image Fourier transform

Here is another sinusoidal brightness image, this time with a lower spatial frequency,
together with it's two-dimensional Fourier transform showing three peaks as before, except
this time the peaks representing the sinusoid are closer to the central DC term, indicating a
lower spatial frequency.

Brightness Image Fourier transform
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The significant point is that the Fourier image encodes exactly the same information as the
brightness image, except expressed in terms of amplitude as a function of spatial frequency,
rather than brightness as a function of spatial displacement. An inverse Fourier transform of
the Fourier image produces an exact pixel-for-pixel replica of the original brightness image.

The orientation of the sinusoid correlates with the orientation of the peaks in the Fourier
image relative to the central DC point. In this case a tilted sinusoidal pattern creates a tilted
pair of peaks in the Fourier image.

Brightness Image Fourier transform

Different Fourier coefficients combine additively to produce combination patterns. For
example the sinusoidal image shown below is computed as the sum of the tilted sinusoid
shown above, and the vertical sinusoid of lower spatial frequency shown above that.

Brightness Image Fourier transform
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The brightness and the Fourier images are completely interchangable, because they contain
exactly the same information. The combined brightness image shown above could have been
produced by a pixel-for-pixel adding of the two brightness images, or by a pixel-for-pixel
addition of the corresponding Fourier transforms, followed by an inverse transform to go
back to the brightness domain. Either way the result would be exactly identical.

Back to to
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Higher Harmonics and "Ringing" effects

The basis set for the Fourier transform is the smooth sinusoidal function, which is optimized
for expressing smooth rounded shapes. But the Fourier transform can actually represent any
shape, even harsh rectilinear shapes with sharp boundaries, which are the most difficult to
express in the Fourier code, because they need so many higher order terms, or higher
harmonics. How these "square wave" functions are expressed as smooth sinusoids will be
demonstrated by example.

The figure below shows four sinusoidal brightness images of spatial frequency 1, 3, 5, and 7.
The first one, of frequency 1, is the fundamental, and the others are higher harmonics on
that fundamental, because they are integer multiples of the fundamental frequency. These
are in fact the "odd harmonics” on the fundamental, and each one exhibits a bright vertical
band through the center of the image. The Fourier transform for each of these patterns is
shown below.

The next table shows the result of progressively adding higher harmonics to the
fundamental. Note how the central vertical band gets sharper and stronger with each
additional higher harmonic, while the background drops down towards a uniform dark field.
Note also how the higher harmonics produce peaks in the Fourier images that spread ’
outward from the fundamental, defining a periodic pattern in frequency space.

1 1+3 1+3+5 1+3+5+7
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The images below show what would happen if this process were continued all the way out to
the Nyquist frequency - it would produce a thin vertical stripe in the brightness image, with
sharp boundaries, i.e. a "square wave" in brightness along the x dimension. The Fourier
transform of this image exhibits an "infinite" series of harmonics or higher order terms,
although these do not actually go out to infinity due to the finite resolution of the original
image. This is how the Fourier transform encodes sharp square-wave type features as the
sum of a series of smooth sinusoids.

Brightness Image Fourier transform

Back to top

The Optical Fourier Transform

A great intuitive advance can be made in understanding the principles of the Fourier
transform once you learn that a simple lens can perform a Fourier transform in real-time as
follows. Place an image, for example a slide transparency, at the focal length of the lens,
and illuminate that slide with coherent light, like a colimated laser beam. At the other focus
of the lens place a frosted glass screen. Thats it! The lens will automatically perform a
Fourier transform on the input image, and project it onto the frosted glass screen. For
example if the input image is a sinusoidal grating, as shown below, the resultant Fourier
image will have a bright spot at the center, the DC term, with two flanking peaks on either
side, whose distance from the center will vary with the spatial frequency of the sinusoid.

http://sharp.bu.edu/~slehar/fourier/fourier. html 4/13/2011
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input image lens

We can now see the holistic principle behind the Fourier transform. Every point on the input
image radiates an expanding cone of rays towards the lens, but since the image is at the
focus of the lens, those rays will be refracted into a parallel beam that illuminates the
entire image at the ground-glass screen. In other words, every point of the input image is
spread uniformly over the Fourier image, where constructive and destructive interference
will automatically produce the proper Fourier representation.

frosted glass screen
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Conversely, parallel rays from the entire input image are focused onto the single central

point of the Fourier image, where it defines the central DC term by the average brightness
of the input image.

http://sharp.bu.edu/~slehar/fourier/fourier.html 4/13/2011
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input Fourier
image image

Note that the optical Fourier transformer automatically operates in the reverse direction
also, where it performs an inverse Fourier transform, converting the Fourier representation
back into a spatial brightness image. Mathematically the forward and inverse transforms are
identical except for a minus sign that reverses the direction of the computation.

Back to top

Fourier Filtering

I will now show how the Fourier transform can be used to perform filtering operations to
adjust the spatial frequency content of an image. We begin with an input image shown
below, and perform a Fourier transform on it, then we do an inverse transform to
reconstruct the original image. This reconstructed image is identical, pixel-for-pixel, with
the original brightness image.

Brightness Image Fourier Transform Inverse Transformed

I will now demonstrate how we can manipulate the transformed image to adjust its spatial
frequency content, and then perform an inverse transform to produce the Fourier filtered
image. We begin with a low-pass filter, i.e. a filter that allows the low spatial-frequency
components to pass through, but cuts off the high spatial frequencies. Since the low
frequency components are found near the central DC point, all we have to do is define a
radius around the DC point, and zero-out every point in the Fourier image that is beyond
that radius. In other words the low-pass filtered transform is identical to the central portion
of the Fourier transform, with the rest of the Fourier image set to zero. An inverse Fourier
transform applied to this low-pass filtered image produces the inverse transformed image
shown below.

http://sharp.bu.edu/-slehar/fourier/fourier.html | 4/13/2011
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Low-Pass Filtered Inverse Transformed

We see that the low-pass filtered image is blurred, preserving the low frequency broad
smooth regions of dark and bright, but losing the sharp contours and crisp edges.
Mathematically, low-pass filtering is equivalent to an optical blurring function.

Next we try the converse, high-pass filtering, where we use the same spatial frequency
threshold to define a radius in the Fourier image. All spatial frequency components that fall
within that radius are eliminated, preserving only the higher spatial frequency components.
After performing the inverse transform on this image we see the effect of high-pass filtering,
which is to preserve all of the sharp crisp edges from the original, but it loses the larger
regions of dark and bright.

High-Pass Filtered Inverse Transformed

If the low-pass filtered inverse-transformed image is added pixel-for-pixel to the high-pass
inverse-transformed image, this would exactly restore the original unfiltered image. These
images are complementary therefore, each one encodes the information which is missing

from the other.

Next we will demonstrate a band-pass filtering that preserves only those spatial frequencies
that fall within a band, greater than a low cut-off, but less than a higher cut-off.

Band-Pass Filtered Inverse Transformed

http:/ /sharp.bu.edu/~slehar/fourier/fourier.html 4/13/2011
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The next simulation is the same as above, except with a narrower band of spatial
frequencies.

Band-Pass Filtered Inverse Transformed

The next simulation shows band-pass filtering about a higher spatial-frequency band,

Band-Pass Filtered Inverse Transformed

and finally the same as above except again using a narrower spatial-frequency band.

Band-Pass Filtered Inverse Transformed

These computer simulations demonstrate that the Fourier representation encodes image
information in a holistic distributed manner that allows manipulation of the global
information content of the image by spatial manipulations of the transformed image.

Back to top
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