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ChrisA. Mack
1605 Watchhill Road, Austin, Texas 78703
Voice: 512-814-6225, email: chris@lithoguont

EDUCATION

University of Texas, Austin, TX

Doctorate in Chemical Engineering

Thesis Title: “Modeling Solvent Effects in Optidathography”

University of Maryland, College Park, MD

Master of Science in Electrical Engineering Decemi®89
Rose-Hulman Institute of Technology, Terre Haute, IN

Bachelor of Science degrees in Physics, Electrical

Engineering, Chemistry, and Chemical Engineering y 1282

EXPERIENCE

Lithoguru.com, Austin, TX

11/05 — present
[ ]

Gentleman Scientist

Pursuing intellectual interests, research, wrjtangd teaching, as reflected on the

website www.lithoguru.com.
Current major research interest: developing gmadmate analytical stochastic
model of lithography line-edge roughness.

Consulting in the fields of optics and semicondudithography, including legal
expert witness services and business consultation.

University of Texasat Austin, Austin, TX

8/91 — present
[ ]

Adjunct Faculty (part time)

Teaching graduate and undergraduate courses HEleb&ical Engineering and
Chemical Engineering departments. Graduate coimsk&le Semiconductor
Microlithography, Chemical Processes for Microelewics, and Fourier Optics.
Undergraduate courses include Electronic Circ&itdid State Electronics, and
Modern Optics. Served on the committees of nuneRIAD dissertations.
Teaching loads have varied but have averaged dodi&es per semester.

University of Notre Dame, South Bend, IN

8/06 — 12/06

Melchor Visiting Chair Professor

Teaching two graduate courses in the Electricagiitgering department:
Semiconductor Microlithography, and Data Analysid &odeling in the Real
World.

December 1998



KLA-Tencor, Austin, TX

2/00 — 11/05

Vice President of Lithography Technology

Provided strategic vision in all lithography reldfproducts for KLA-Tencor, a $2B
Fortune 500 supplier of equipment to the semicotaindustry.

Directed research efforts for four product diviiacross two continents, including
lithography simulation, optical and SEM criticah@nsion metrology, and optical
overlay metrology. Obtained funding and managseduece allocation and strategic
planning for critical long-term projects.

Provided and oversaw successful turn-around giegtéor two failing product lines.
Provided internal consulting services in lithodrapo other KLA-Tencor divisions.
Oversaw the acquisition of FINLE Technologies HyAKTencor and its transition to
a successful product division.

FINLE Technologies, Austin, TX

2/90 — 2/00

CEOQO, President and Chief Technical Officer

Founded company in 1990, pursuing it full timethg end of 1991.

Responsible for overall corporate managemenipwjstrategic planning, technical
direction, budgeting, new product development, lghdgraphy research. Grew the
company from one person and $60,000 in revenu890 1o 25 people and $2.5M in
revenue in 2000.

Developed the industry standard PROLITH Toolkitittfography simulation
software and the ProDATA suite of data analysiswsarfe.

Provided consulting services to the semiconduaothustry.

Taught numerous short courses on optical lithdgrap

SEMATECH, Austin, TX

8/90 — 12/91

Lithography Engineer

As an assignee of the department of defense toASEH, provided lithography
expertise to SEMATECH on a variety of different jeais, including modeling and
process development for deep-UV resist systemsgepses optimization of the i-line
production process, advanced development activitiphase-shifting mask
technologies, and lithographic lens design.

Taught short-term and long-term courses on litapgy to SEMATECH staff and
assignees.

National Security Agency, Fort Meade, MD

11/82 - 8/90

Senior Engineer - Lithography

As a member of the Microelectronics Research taboy (MRL), was tasked with
performing research for present and future ageeeyls in the area of
microlithography for semiconductor processing. stwirk provided a unique blend
of theoretical research (e.g., a mechanism fodeéwelopment reaction, diffraction
theory for proximity printing and aerial imaging)dexperimental work
(measurement of resist properties, model verificgti Performed numerous
practical and theoretical studies, e.qg., resistiegainiformity on wafer tracks, mask
bias effects for step-and-repeat printing, expospténization, image reversal
techniques, and focus effects for submicron lithpbly. The results of this work
have been published in numerous journals and piexerm technical conferences,
including invited papers at international confeenm Japan and Europe.



COURSESTAUGHT AT THE UNIVERSITY OF TEXASAT AUSTIN

EE 411

EE 323

EE 325

EE 338

EE 339

CHE 323

PHY 333/EE 347
SSC306

EE 383P

EE 396K/CHE 385C
CHE 395C
SSC380D

Circuit Theory (undergraduate)

Network Theory Il (undergraduate)
Electromagnetic Engineering (under graduate)
Electronic Circuits| (undergraduate)

Solid State Electronics (under graduate)

Chemical Engineering for Microelectronics (undergraduate)
M odern Optics (under graduate)

Statisticsin Market Analysis (undergraduate)
Fourier Optics (graduate)

Semiconductor Microlithography (graduate)
Chemical Processes for Microelectronics (graduate)
Statistical Methods |1 (graduate)

COURSESTAUGHT AT THE UNIVERSITY OF NOTRE DAME

EE 60598 Semiconductor Microlithography (graduate)
EE 60596 Data Analysisand Modeling in the Real World (graduate)
AWARDS

SPIE Frits Zernike Award for Microlithography, foontributions in lithography modeling and

education, 2009

SEMI Award for North America, for contributions lithography modeling and education, 2003

Best Paper Award,8th Annual BACUS Symposium on Photomask Technology and

Management, 1998.

INDUSTRIAL AND PROFESSIONAL SOCIETIES

Member of the Board of Trustees, Rose-Hulman imstiof Technology, 2008 — present

Member of the Board of Advisors to the Physics Depant, Rose-Hulman Institute of
Technology, 2000 — 2008

Member of the Board of Advisors to the ChemistrnpBement, Rose-Hulman Institute of
Technology, 2003 — 2008

Member of the Board of Advisors to the MEMS Laborgit Rose-Hulman Institute of
Technology, 2004 — 2008

Fellow of SPIE
Fellow of IEEE

Member of the Optical Society of America



Chairman of the Lithography Technical Working Grafghe Optical Society of America, 1992
—1996.

Conference ChaiMicrolithographic Techniquesin IC Fabrication, SPIE Conference, 1997 and
2000, Singapore

Conference Chait,ithography for Semiconductor Manufacturing, SPIE Conference, 1999 and
2001, Edinburgh, Scotland

Conference Chaiidvanced Microlithography Technology, SPIE Conference, 2007, Beijing,
China

Plenary SpeakefPIE 2003 Symposium on Microlithography.
Member of the Board of Advisors &miconductor International magazine, 1993 — 2004

Associate EditorJournal of Micralithography, Microfabrication, and Microsystems (JM3), 2002
— present

Member of the Board of Advisors idicrolithography World magazine, 2003 — 2008
Contributing Columnist foMicrolithography World magazine, 1993 — 2008

OTHER PROFESSIONAL EXPERIENCE

Expert witness consulting in the field of lithoghgpand semiconductor design and
manufacturing

PUBLICATIONS

Books

Chris A. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication,
John Wiley & Sons (in press, to be published November, 2007)

Chris A. Mack, Field Guide to Optical Lithography, SPIE Field Guide Series Vol. FG06,
(Bellingham, WA: 2006). Also available in Japanese.

C. A. Mack, Inside PROLITH: A Comprehensive Guide to Optical Lithography Simulation,
FINLE Technologies (Austin, TX: 1997). — Out of Print.

Book Chapters

C.A. Mack, “Microlithography”, Chapter 9, Semiconductor Manufacturing Handbook, Hwaiyu
Geng, Ed., McGraw Hill (New York: 2005).

Contributed “Microlithography” entry for the McGraw Hill Encyclopedia of Science &
Technology, 9th Edition (2005).

Contributed lithography terms for: Comprehensive Dictionary of Electrical Engineering, Phillip
A. Laplante, Ed., (CRC Press and IEEE Press, 1999).




C.A. Mack, “Optical Lithography Modeling,” Chapter 2, Microlithography Science and
Technology, J. R. Sheats and B. W. Smith, editors, Marcel Dekker (New York: 1998) pp. 109-
170.

C.A. Mack and A. R. Neureuther, “Optical Lithography Modeling,” Chapter 7, Handbook of
Microlithography, Micromachining, and Microfabrication, Volume 1: Microlithography, P. Rai-
Choudhury, editor, SPIE Press (Bellingham, WA: 1997) pp. 597-680.

R. Hershel and C. A. Mack, “Lumped Parameter Model for Optical Lithography,” Chapter 2,
Lithography for VLSI, VLSI Electronics - Microstructure Science Volume 16, R. K. Watts and N.
G. Einspruch, eds., Academic Press (New York:1987) pp. 19-55.

Conference Chair/Proceedings Editor

Quantum Optics, Optical Data Storage, and Advanced Microlithography, Proceedings of SPIE
Volume 6827 (2007)

Editors: Guangcan Guo; Songhao Liu; Guofan Jin; Kees A. Schouhamer Immink; Keiji Shono;
Chris A. Mack; Jinfeng Kang; Jun-en Yao

Lithography for Semiconductor Manufacturing Il, Proceedings of SPIE Volume 4404 (2001)
Editors: Chris A. Mack; Tom Stevenson

Microlithographic Technigues in Integrated Circuit Fabrication I, Proceedings of SPIE Volume
4226 (2000)
Editors: Chris A. Mack; XiaoCong Yuan

Lithography for Semiconductor Manufacturing, Proceedings of SPIE Volume 3741 (1999)
Editors: Chris A. Mack; Tom Stevenson

Microlithographic Technigues in IC Fabrication, Proceedings of SPIE Volume 3183 (1997)
Editors: Soon Fatt Yoon; Raymond Yu; Chris A. Mack

Patents

U.S. Patent 5,363,171, Photolithography exposure tool and method for in situ photoresist
measurements and exposure control, November 8, 1994

U.S. Patent 6,968,253, Computer-implemented method and carrier medium configured to
generate a set of process parameters for a lithography process, November 22, 2005

U.S. Patent 7,075,639, Method and Mark for Metrology of Phase Errors on Phase Shift Masks,
July 11, 2006

U.S. Patent 7,142,941, Computer-implemented Method and Carrier Medium Configures to
Generate a Set of Process Parameters and/or a List of Potential Causes of Deviations for a
Lithography Process, November 28, 2006.

U.S. Patent 7,297,453, Systems and Methods for Mitigating Variances on a Patterned Wafer
Using a Prediction Model, November 20, 2007.



U.S. Patent 7,300,725, Method for Determining and Correcting Reticle Variations, November
27, 2007.

U.S. Patent 7,300,729, Method for Monitoring a Reticle, November 27, 2007.

U.S. Patent 7,303,842, Systems and Methods for Modifying a Reticle’s Optical Properties,
December 4, 2007.

U.S. Patent 7,352,453, Method for Process Optimization and Control by Comparison Between 2
or More Measured Scatterometry Signals, April 1, 2008.

U.S. Patent 7,368,208, Measuring Phase Errors on Phase Shift Masks, May 6, 2008.

U.S. Patent 7,382,447, Method for Determining Lithographic Focus and Exposure, June 3,
2008.

U.S. Patent 7,528,953, Target Acquisition and Overlay Metrology Based on Two Diffracted
Orders Imaging, May 5, 2009.

U.S. Patent 7,566,517, Feature Printability Optimization by Optical Tool, July 28, 2009.
U.S. Patent 7,804,998, Overlay Metrology and Control Method, September 28, 2010.

Refereed Papers

1. C. A Mack, “Analytical Expression for the Standing Wave Intensity in Photoresist”,
Applied Optics, Vol. 25, No. 12 (15 June 1986) pp. 1958-1961.

2. C. A Mack, “Development of Positive Photoresists,” Journal of the Electrochemical
Society, Vol. 134, No. 1 (Jan. 1987) pp. 148-152.

3. C. A Mack, “Contrast Enhancement Techniques for Submicron Optical Lithography,”
Journal of Vacuum Science & Technology, Vol. A5, No. 4 (Jul./Aug. 1987) pp. 1428-1431.

4. C. A. Mack, “Dispelling the Myths about Dyed Photoresist,” Solid State Technology, Vol.
31, No. 1 (Jan. 1988) pp. 125-130.

5. C. A Mack, “Absorption and Exposure in Positive Photoresist,” Applied Optics, Vol. 27,
No. 23 (1 Dec. 1988) pp. 4913-4919.

6. C. A Mack and P. M. Kaufman, “Mask Bias in Submicron Optical Lithography,” Journal of
Vacuum Science & Technology, Vol. B6, No. 6 (Nov./Dec. 1988) pp. 2213-2220.

7. C. A Mack, “Understanding Focus Effects in Submicron Optical Lithography”, Optical
Engineering, Vol. 27, No. 12 (1 Dec 1988) pp. 1093-1100.

8. C. A Mack, “Lithographic Optimization Using Photoresist Contrast,” Microelectronics
Manufacturing Technology, Vol. 14, No. 1 (Jan. 1991) pp. 36-42.

9. D. H. Ziger and C. A. Mack, “Generalized Approach toward Modeling Resist
Performance,” AICHE Journal, Vol. 37, No. 12 (Dec 1991) pp. 1863-1874.

10. C. A. Mack, E. Capsuto, S. Sethi, and J. Witowski, “Modeling and Characterization of a
0.5um Deep Ultraviolet Process,” Journal of Vacuum Science & Technology, Vol. B 9, No.
6 (Nov / Dec 1991) pp. 3143-3149.



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

D. Ziger, C. A. Mack, and R. Distasio, “Generalized Characteristic Model for Lithography:
Application to Negative Chemically Amplified Resists,” Optical Engineering, Vol. 31, No. 1
(1 Jan 1992) pp.98-104.

C. A. Mack and J. E. Connors, “Fundamental Differences Between Positive and Negative
Tone Imaging,” Microlithography World, Vol. 1, No. 3 (Jul/Aug 1992) pp. 17-22.

D. W. Johnson and C. A. Mack, Modeling the Continuing Realm of Optical Lithography”
Semiconductor International, Vol. 15, No. 6 (June 1992) pp. 134-139.

C. A. Mack, “New Kinetic Model for Resist Dissolution,” Journal of the Electrochemical
Society, Vol. 139, No. 4 (Apr. 1992) pp. L35-L37.

C. A. Mack, “Understanding Focus Effects in Submicrometer Optical Lithography: a
Review,” Optical Engineering, Vol. 32, No. 10 (Oct. 1993) pp. 2350-2362.

E. W. Charrier, C. J. Progler and C. A. Mack, “Comparison of Simulated and Experimental
CD-Limited Yield for a Submicron I-Line Process,” Solid State Technology, Vol. 38, No. 11
(Nov. 1995) pp. 105-112.

C. A. Mack, “Lithographic Effects of Acid Diffusion in Chemically Amplified Resists,”
Microelectronics Technology: Polymers for Advanced Imaging and Packaging, ACS
Symposium Series 614, E. Reichmanis, C. Ober, S. MacDonald, T. Iwayanagi, and T.
Nishikubo, eds., ACS Press (Washington: 1995) pp. 56-68.

C. A. Mack, “Evaluating Proximity Effects Using 3-D Optical Lithography Simulation,”
Semiconductor International (July, 1996) pp. 237-242.

C. A. Mack, “Trends in Optical Lithography,” Optics and Photonics News (April, 1996) pp.
29-33.

C. A. Mack, G. E. Flores, W. W. Flack, and E. Tai, “Lithographic Modeling Speeds Thin-
Film-Head Development,” Data Storage (May/June, 1996) pp. 55-58.

C. A. Mack, “Reducing Proximity Effects in Optical Lithography,” Japanese Journal of
Applied Physics, Vol. 35 (1996) pp. 6379-6385.

C. A. Mack and G. Arthur, “Notch Model for Photoresist Dissolution,” Electrochemical and
Solid State Letters, Vol. 1, No. 2, (August, 1998) pp. 86-87.

C. A. Mack, K. E. Mueller, A. B. Gardiner, J. P. Sagan, R. R. Dammel, and C. G. Willson
“Modeling Solvent Diffusion in Photoresist,” Journal of Vacuum Science & Technology,
Vol. B16, No. 6, (Nov., 1998) pp. 3779-3783.

C. A. Mack, D. A. Legband, S. Jug, “Data Analysis for Photolithography” MicroElectronic
Engineering, Vol. 46, Issues 1-4 (May 1999) pp. 65-68.

C. A. Mack, “Electron Beam Lithography Simulation for Mask Making” MicroElectronic
Engineering, Vol. 46, Issues 1-4 (May 1999) pp. 283-286.

Sergey Babin, Igor Yu. Kuzmin and Chris A. Mack, “ Comprehensive Simulation of
Electron-beam Lithography Processes Using PROLITH 3/D and TEMPTATION Software
Tools,” MicroElectronic Engineering, Volumes 57-58 (September 2001) pp. 343-348.

J. Byers, C. Mack, R. Huang, S. Jug, “Automatic Calibration of Lithography Simulation
Parameters Using Multiple Data Sets,” MicroElectronic Engineering, Volumes 61-62 (July
2002) pp. 89-95.



28.

29.

30.

31.
32.
33.

34.

35.

36.

37.

Chris A. Mack, “Charting the Future (and Remembering the Past) of Optical Lithography
Simulation,” Journal of Vacuum Science & Technology, Vol. B 23, No. 6 (Nov / Dec 2005)
pp. 2601-2606.

C. A. Mack, "Accuracy, speed, new physical phenomena: The future of litho simulation,"
Solid State Technology, February, 2006.

C. A. Mack, “The Future of Semiconductor Lithography: After Optical, What Next?”,
Future Fab International, Vol. 23 (7/9/2007).

Chris A. Mack, “Fab Future”, SPIE Professional (Oct. 2008) pp. 10-11.
Chris A. Mack, “Seeing Double”, IEEE Spectrum (Nov. 2008) pp. 46-51.

C. Mack, “Stochastic approach to modeling photoresist development”, Journal of Vacuum
Science & Technology, Vol. B27, No. 3 (May/Jun. 2009) pp. 1122-1128.

C. A. Mack, “Stochastic Modeling in Lithography: Autocorrelation Behavior of Catalytic
Reaction-Diffusion Systems,” Journal of Micro/Nanolithography, MEMS, and MOEMS,
Vol. 8, No. 2 (Apr/May/Jun 2009) p. 029701.

C. A. Mack, “Stochastic Modeling in Lithography: The Use of Dynamical Scaling in
Photoresist Development,” Journal of Micro/Nanolithography, MEMS, and MOEMS, Vol.
8, No. 3 (Jul/Aug/Sep 2009) p. 033001.

Chris Mack, “A Simple Model of Line-Edge Roughness”, Future Fab International, Vol. 34
(July 14, 2010).

C. A. Mack, “Stochastic modeling of photoresist development in two and three
dimensions”, Journal of Micro/Nanolithography, MEMS, and MOEMS , Vol. 9, No. 4 (Oct-
Dec, 2010) p. 041202.

Invited Papers

1.

C. A. Mack, “Lithographic Simulation: A Review,” Lithographic and Micromachining
Techniques for Optical Component Fabrication, Proc., SPIE Vol. 4440 (2001) pp. 59-72.

Chris A. Mack, “The End of the Semiconductor Industry as We Know It,” Optical
Microlithography XVI, Plenary Address, SPIE Vol. 5040 (2003) pp. XXi-XXxi.

C. A. Mack, “The New, New Limits of Optical Lithography,” Emerging Lithographic
Technologies VIII, Proc., SPIE Vol. 5374 (2004) pp. 1-8.

Chris A. Mack, “Thirty Years of Lithography Simulation,” Optical Microlithography XVIII,
Proc., SPIE Vol. 5754-1 (2005), pp. 1-12.

C. A. Mack, “What's So Hard About Lithography?,” presented at the ICMTS (March, 2006),
available at http://www.lithoguru.com/scientist/papers_recent.html.

Contributed Papers

1.

C. A. Mack, “PROLITH: A Comprehensive Optical Lithography Model,” Optical
Microlithography IV, Proc., SPIE Vol. 538 (1985) pp. 207-220.

C. A. Mack and R. T. Carback, “Modeling the Effects of Prebake on Positive Resist
Processing,” Kodak Microelectronics Seminar, Interface '85, Proc., (1985) pp. 155-158.

C. A. Mack, “Advanced Topics in Lithography Modeling,” Advances in Resist Technology
and Processing Ill, Proc., SPIE Vol. 631 (1986) pp. 276-285.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

C. A. Mack, A. Stephanakis, R. Hershel, “Lumped Parameter Model of the
Photolithographic Process,” Kodak Microelectronics Seminar, Interface '86, Proc., (1986)
pp. 228-238.

C. A. Mack, “Photoresist Process Optimization,” KTl Microelectronics Seminar, Interface
‘87, Proc., (1987) pp. 153-167.

T. Brown and C. A. Mack, “Comparison of Modeling and Experimental Results in Contrast
Enhancement Lithography,” Advances in Resist Technology and Processing V, Proc., SPIE
Vol. 920 (1988) pp. 390-403.

C. A. Mack, “Understanding Focus Effects in Submicron Optical Lithography,”
Optical/Laser Microlithography, Proc., SPIE Vol. 922 (1988) pp. 135-148.

D. H. Ziger and C. A. Mack, “Lithographic Characterization of a Rapid Ammonia Catalyzed
Image Reversal Process,” KTI Microelectronics Seminar, Interface '88, Proc., (1988) pp.
165-175.

C. A. Mack and P. M. Kaufman, “Understanding Focus Effects in Submicron Optical
Lithography, part 2: Photoresist effects,” Optical/Laser Microlithography I, Proc., SPIE Vol.
1088 (1989) pp. 304-323.

C. A. Mack and P. M. Kaufman, “Focus Effects in Submicron Optical Lithography, Optical
and Photoresist Effects,” The International Congress on Optical Science & Engineering,
Proc., Paris, France, SPIE Vol. 1138 (1989) pp. 88-105.

C. A. Mack, “Optimum Stepper Performance Through Image Manipulation,” KTl
Microelectronics Seminar, Interface '89, Proc., (1989) pp. 209-215.

C. A. Mack, “Algorithm for Optimizing Stepper Performance Through Image Manipulation,”
Optical/Laser Microlithography 11, Proc., SPIE Vol. 1264 (1990) pp. 71-82.

C. A. Mack, “Lithographic Optimization Using Photoresist Contrast,” KTI Microlithography
Seminar, Interface '90, Proc., (1990) pp. 1-12.

P. Trefonas and C. A. Mack, “Exposure Dose Optimization for a Positive Resist Containing
Poly-functional Photoactive Compound,” Advances in Resist Technology and Processing
VIII, Proc., SPIE Vol. 1466 (1991) pp. 117-131.

D. Ziger, C. A. Mack, and R. Distasio, “The Generalized Characteristic Model for
Lithography: Application to Negative Chemically Amplified Resists,” Advances in Resist
Technology and Processing VIII, Proc., SPIE Vol. 1466 (1991) pp. 270-282.

C. A. Mack, “Fundamental Issues in Phase-Shifting Mask Technology,” KTI
Microlithography Seminar, Interface '91, Proc., (1991) pp. 23-35.

M. A. Toukhy, S. G. Hansen, R. J. Hurditch, and C. A. Mack, “Experimental Investigation of
a Novel Dissolution Model,” Advances in Resist Technology and Processing IX, Proc.,
SPIE Vol. 1672 (1992) pp. 286-296.

C. A. Mack, “Understanding Focus Effects in Submicron Optical Lithography, part 3:
Methods for Depth-of-Focus Improvement,” Optical/Laser Microlithography V, Proc., SPIE
Vol. 1674 (1992) pp. 272-284.

C. A. Mack and J. E. Connors, “Fundamental Differences Between Positive and Negative
Tone Imaging,” Optical/Laser Microlithography V, Proc., SPIE Vol. 1674 (1992) pp. 328-
338.



20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

D. W. Johnson and C. A. Mack, “I-line, DUV, VUV, or X-Ray?" Optical/Laser
Microlithography V, Proc., SPIE Vol. 1674 (1992) pp. 486-498.

C. A. Mack, “Simple Method for Rim Shifter Design: The Biased Self-Aligned Rim Shifter,”
12th Annual BACUS Symposium, Proc., SPIE Vol. 1809 (1992) pp. 229-236.

N. Thane, C. A. Mack, and S. Sethi, “Lithographic Effects of Metal Reflectivity Variations,”
Integrated Circuit Metrology, Inspection, and Process Control VII, Proc., SPIE Vol. 1926
(1993) pp. 483-494.

C. A. Mack, “Phase Contrast Lithography,” Optical/Laser Microlithography VI, Proc., SPIE
Vol. 1927 (1993) pp. 512-520.

C. A. Mack, “Optimization of the Spatial Properties of lllumination,” Optical/Laser
Microlithography VI, Proc., SPIE Vol. 1927 (1993) pp. 125-136.

P. M. Mahoney and C. A. Mack, “Cost Analysis of Lithographic Characterization: An
Overview,” Optical/Laser Microlithography VI, Proc., SPIE Vol.1927 (1993) pp. 827-832.

C. A. Mack, “Designing the Ultimate Photoresist,” OCG Microlithography Seminar,
Interface '93, Proc., (1993) pp. 175-191.

G. E. Flores, W. W. Flack, E. Tai, and C. A. Mack, “Lithographic Performance in Thick
Photoresist Applications,” OCG Microlithography Seminar, Interface '93, Proc., (1993) pp.
41-60.

C. A. Mack, D. P. DeWitt, B. K. Tsai, and G. Yetter, “Modeling of Solvent Evaporation
Effects for Hot Plate Baking of Photoresist,” Advances in Resist Technology and
Processing Xl, Proc., SPIE Vol. 2195 (1994) pp. 584-595.

D. P. DeWitt, T. C. Niemoeller, C. A. Mack, and G. Yetter, “Thermal Design Methodology
of Hot and Chill Plates for Photolithography,” Integrated Circuit Metrology, Inspection, and
Process Control VIII, Proc., SPIE Vol. 2196 (1994) pp. 432-448.

C. A. Mack, “Enhanced Lumped Parameter Model for Photolithography,” Optical/Laser
Microlithography VII, Proc., SPIE Vol. 2197 (1994) pp. 501-510.

C. A. Mack and E. W. Charrier, “Yield Modeling for Photolithography,” OCG
Microlithography Seminar, Interface '94, Proc., (1994) pp. 171-182.

J. S. Petersen, C. A. Mack, J. W. Thackeray, R. Sinta, T. H. Fedynyshyn, J. M. Mori, J. D.
Myers and D. A. Miller, “Characterization and Modeling of a Positive Acting Chemically
Amplified Resist,” Advances in Resist Technology and Processing XllI, Proc., SPIE Vol.
2438 (1995) pp. 153-166.

J. S. Petersen, C. A. Mack, J. Sturtevant, J. D. Byers and D. A. Miller, “Non-constant
Diffusion Coefficients: Short Description of Modeling and Comparison to Experimental
Results,” Advances in Resist Technology and Processing Xll, Proc., SPIE Vol. 2438 (1995)
pp. 167-180.

E. W. Charrier and C. A. Mack, “Yield Modeling and Enhancement for Optical Lithography,”
Optical/Laser Microlithography VIII, Proc., SPIE Vol. 2440 (1995) pp. 435-447.

C. A. Mack, “Focus Effects in Submicron Optical Lithography, Part 4: Metrics for Depth of
Focus,” Optical/Laser Microlithography VIII, Proc., SPIE Vol. 2440 (1995) pp. 458-471.

C. A. Mack and C-B. Juang, “Comparison of Scalar and Vector Modeling of Image
Formation in Photoresist,” Optical/Laser Microlithography VIII, Proc., SPIE Vol. 2440
(1995) pp. 381-394.



37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

E. W. Charrier, C. J. Progler and C. A. Mack, “Comparison of Simulated and Experimental
CD-Limited Yield for a Submicron I-Line Process,” Microelectronic Manufacturing Yield,
Reliability, and Failure Analysis, Proc., SPIE Vol. 2635 (1995) pp. 84-94.

C. A. Mack, “Lithographic Effects of Acid Diffusion in Chemically Amplified Resists,” OCG
Microlithography Seminar Interface ‘95, Proc., (1995) pp. 217-228.

C. A. Mack, T. Matsuzawa, A. Sekiguchi, Y. Minami, “Resist Metrology for Lithography
Simulation, Part 1: Exposure Parameter Measurements,” Metrology, Inspection, and
Process Control for Microlithography X, Proc., SPIE Vol. 2725 (1996) pp. 34-48.

A. Sekiguchi, C. A. Mack, Y. Minami, T. Matsuzawa, “Resist Metrology for Lithography
Simulation, Part 2: Development Parameter Measurements,” Metrology, Inspection, and
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Functions and Models

The fundamental objects that we deal with in calculus are functions. This chapter
prepares the way for calculus by discussing the basic ideas concerning functions,
their graphs, and ways of transforming and combining them. We stress that a
function can be represented in different ways: by an equation, in a table, by a
graph, or in words. We look at the main types of functions that occur in calculus
and describe the process of using these functions as mathematical models of
real-world phenomena. We also discuss the use of graphing calculators and
graphing software for computers and see that parametric equations provide the
best method for graphing certain types of curves.

1"
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12 CHAPTER 1 FUNCTIONS AND MODELS

m Four Ways to Represent a Function

Functions arise whenever one quantity depends on another. Consider the following four
situations.

A. The area A of a circle depends on the radius r of the circle. The rule that connects r
and A is given by the equation A = 7rr?. With each positive number  there is associ-
ated one value of A, and we say that A is a function of r.

Population B. The human population of the world P depends on the time #. The table gives estimates
Year (millions) of the world population P(z) at time #, for certain years. For instance,
1900 1650 P(1950) = 2,560,000,000
1910 1750
1920 1860 But for each value of the time ¢ there is a corresponding value of P, and we say that P
1930 2070 is a function of 1.
1940 2300 C. The cost C of mailing a large envelope depends on the weight w of the envelope.
1950 2560 Although there is no simple formula that connects w and C, the post office has a rule
13'6/8 gg‘l"g for determining C when w is known.
1980 4450 D. The vertical acceleration a of the ground as measured by a seismograph during an
1990 5280 earthquake is a function of the elapsed time 7. Figure 1 shows a graph generated by
2000 6080 seismic activity during the Northridge earthquake that shook Los Angeles in 1994.
For a given value of ¢, the graph provides a corresponding value of a.
a
{cm/s?)
100 +
50+
— e 1§ AN
M itk | i . gt 30 ! (seconds)
FIGURE 1t -501
Vertical ground acceleration during
the Northridge earthquake Calif. Dept. of Mines and Geology

Each of these examples describes a rule whereby, given a number (r, ¢, w, or #), another
number (A, P, C, or a) is assigned. In each case we say that the second number is a func-
tion of the first number.

A function f is a rule that assigns to each element x in a set D exactly one ele-
ment, called f(x), in a set E.

We usually consider functions for which the sets D and E are sets of real numbers. The
set D is called the domain of the function. The number f(x) is the value of f at x and is
read “f of x.” The range of f is the set of all possible values of f(x) as x varies through-
out the domain. A symbol that represents an arbitrary number in the domain of a function
f is called an independent variable. A symbol that represents a number in the range of f
is called a dependent variable. In Example A, for instance, r is the independent variable
and A is the dependent variable.
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B
(input) = (output)

~ FIGURE 2
Machine diagram for a function f

D

. E

FIGURE 3
Arrow diagram for f

FIGURE 6

The notation for intervals is given in
Appendix A.

SECTION 1.1 FOUR WAVS TO REPRESENT A FUNCTION 13
It’s helpful to think of a function as a machine (see Figure 2). If x is in the domain of
the function f, then when x enters the machine, it’s accepted as an input and the machine
produces an output f(x) according to the rule of the function. Thus we can think of the
domain as the set of all possible inputs and the range as the set of all possible outputs.

The preprogrammed functions in a calculator are good examples of a function as a
machine. For example, the square root key on your calculator computes such a function.
You press the key labeled / (or +/x ) and enter the input x. If x < 0, then x is not in the
domain of this function; that is, x is not an acceptable input, and the calculator will indi-
cate an error. If x = 0, then an approximation to /x will appear in the display. Thus the
\/; key on your calculator is not quite the same as the exact mathematical function f
defined by f(x) = /x.

Another way to picture a function is by an arrow diagram as in Figure 3. Each arrow
connects an element of D to an element of E. The arrow indicates that f(x) is associated
with x, f(a) is associated with @, and so on.

The most common method for visualizing a function is its graph. If f is a function with
domain D, then its graph is the set of ordered pairs

{(x,f(»)|x € D}

(Notice that these are input-output pairs.) In other words, the graph of f consists of all
points (x, y) in the coordinate plane such that y = f(x) and x is in the domain of f.

The graph of a function f gives us a useful picture of the behavior or “life history” of
a function. Since the y-coordinate of any point (x, y) on the graph is y = f(x), we can read
the value of f(x) from the graph as being the height of the graph above the point x (see
Figure 4). The graph of f also allows us to picture the domain of f on the x-axis and its
range on the y-axis as in Figure 5.

Y (x fx) _— 7
ya fix) e 4 :fm
@ - |
) ! !
0 1 2 x x 0 ‘—"d—*f—_—’—’ x
omain
FIGURE 4 FIGURE 5

EXAMPLEY Reading information from a graph The graph of a function f is shown in
Figure 6.

(a) Find the values of f(1) and f(5).

(b) What are the domain and range of f?

SOLUTION
(a) We see from Figure 6 that the point (1, 3) lies on the graph of £, so the value of f
at 1is f(1) = 3. (In other words, the point on the graph that lies above x = 1 is 3 units
above the x-axis.)

When x = 5, the graph lies about 0.7 unit below the x-axis, so we estimate that
f(5) = -0.7.
(b) We see that f(x) is defined when 0 < x < 7, so the domain of f is the closed inter-
val [0, 7]. Notice that f takes on all values from —2 to 4, so the range of f is

{y|-2=sy=s4}=[-24] o
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14 CHAPTER1 FUNCTIONS AND MODELS

y

JEXAMPLEZ Sketch the graph and find the domain and range of each function.
(@ flx) =2x—1 (b) g(x) = x*

SOLUTION

(a) The equation of the graph is y = 2x — 1, and we recognize this as being the equa-
> tion of a line with slope 2 and y-intercept —1. (Recall the slope-intercept form of the
equation of a line: y = mx + b. See Appendix B.) This enables us to sketch a portion of
the graph of f in Figure 7. The expression 2x — 1 is defined for all real numbers, so the
domain of f is the set of all real numbers, which we denote by R. The graph shows that
the range is also R.

(b) Since g(2) = 22 =4 and g(—1) = (—1)*> = 1, we could plot the points (2, 4) and
(—1, 1), together with a few other points on the graph, and join them to produce the
graph (Figure 8). The equation of the graph is y = x2, which represents a parabola (see
Appendix B). The domain of g is R. The range of g consists of all values of g(x), that is,
y=x2 all numbers of the form x2. But x? = 0 for all numbers x and any positive number y is a

square. So the range of g is {y | y = 0} = [0, ). This can also be seen from Figure 8.
S

FIGURE 7

2.4

EXAMPLE Evaluating a difference quotient

+ h) —
If f(x) = 2x* — 5x + 1 and h # 0, evaluate f_‘(f____)_l.@
FIGURE 8 P

SOLUTION We first evaluate f(a + h) by replacing x by a + & in the expression for f(x):

fla+h) =2a+h?—5a+h+1
=2a*+2ah+h) —5@+h)+1
=24 + 4ah + 2h* — 5a — 5h + 1

Then we substitute into the given expression and simplify:

The expression fla+h) = fla) (2a° + 4ah + 21> — 5a — 5h + 1) — (24’ — Sa + 1)
fla+h) - f(a) h B h
h
in Example 3 is called a difference quotient _ 2a* + 4ah + 2h* — 5a — 5h+ 1 — 24’ + 5a — 1
and occurs frequently in calculus. As we will o h
see in Chapter 2, it represents the average rate
of change of f(x) between x = a and 4ah + 2h* — 5h
SETLS L o

Representations of Functions
There are four possible ways to represent a function:

u verbally (by a description in words)
= numerically (by a table of values)
= visually (by a graph)

algebraically (by an explicit formula)

If a single function can be represented in all four ways, it’s often useful to go from one
representation to another to gain additional insight into the function. (In Example 2, for
instance, we started with algebraic formulas and then obtained the graphs.) But certain
functions are described more naturally by one method than by another. With this in mind,
let’s reexamine the four situations that we considered at the beginning of this section.
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SECTION 1.5 FOUR WAYS TO REPRESENT A FUNCTION 15

A. The most useful representation of the area of a circle as a function of its radius is

probably the algebraic formula A(r) = #r’, though it is possible to compile a table of
values or to sketch a graph (half a parabola). Because a circle has to have a positive
radius, the domain is {r | r > 0} = (0, ), and the range is also (0, »).

Population B. We are given a description of the function in words: P(¢) is the h}lman population of
Year (millions) the world at time ¢. The table of values of world population provides a convenient
representation of this function. If we plot these values, we get the graph (called a
1900 1650 scatter plot) in Figure 9. It too is a useful representation; the graph allows us to
1910 1750 absorb all the data at once. What about a formula? Of course, it’s impossible to devise
1920 1860 an explicit formula that gives the exact human population P(t) at any time ¢ But it is
1930 2070 possible to find an expression for a function that approximates P(t). In fact, using
1940 2300 methods explained in Section 1.5, we obtain the approximation
1950 2560
1960 3040 P(f) ~ f() = (0.008079266) - (1.013731)’
1970 3710
1980 4450 and Figure 10 shows that it is a reasonably good “fit.” The function f is called a
1990 5280 mathematical model for population growth. In other words, it is a function with an
2000 6080 explicit formula that approximates the behavior of our given function. We will see,
however, that the ideas of calculus can be applied to a table of values; an explicit
formula is not necessary.
P P
6X10° 1 . 6X10°T y
. 1 /
r g
» 4
. e
. T
. . . . 4 L /'-
1900 1920 1940 1960 1980 2000 ° 1900 1920 1940 1960 1980 2000 !
FIGURE 9 FIGURE 10
The function P is typical of the functions that arise whenever we attempt to apply
calculus to the real world. We start with a verbal description of a function. Then we
A function defined by a table of values is called @ may be able to construct a table of values of the function, perhaps from instrument
tabular function. readings in a scientific experiment. Even though we don’t have complete knowledge
of the values of the function, we will see throughout the book that it is still possible to
w (ounces) | C(w) (dollars) perform the operations of calculus on such a function.
O<wsl 0.83 C. Again the function is described in words: C(w) is the cost of mailing a large envelope
I<ws2 1.00 with weight w. The rule that the US Postal Service used as of 2008 is as follows: The
2<ws=3 1.17 cost is 83 cents for up to 1 oz, plus 17 cents for each additional ounce (or less) up to
3<ws=4 1.34 13 oz. The table of values shown in the margin is the most convenient representation
4<ws35 1.51 for this function, though it is possible to sketch a graph (see Example 10).
D. The graph shown in Figure 1 is the most natural representation of the vertical acceler-
ation function a(f). It’s true that a table of values could be compiled, and it is even
2<w=<13 2.87 possible to devise an approximate formula. But everything a geologist needs to

know—amplitudes and patterns—can be seen easily from the graph. (The same is
true for the patterns seen in electrocardiograms of heart patients and polygraphs for
lie-detection.)
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16 CHAPTER 1 FUNCTIONS AND MODELS

—

FIGURE 11

=

2w
FIGURE 12

$8 In setting up applied functions as in
Example 5, it may be usefut to review the
principles of problem solving as discussed on
page 83, particularly Step 1. Understand the
Problem.

Domain Convention

If a function is given by a formuta and the
domain is not stated explicitly, the convention is
that the domain is the set of all numbers for
which the formula makes sense and defines a
real number.

EXAMPLEG Drawing a graph from a verbal description When you turn on a hot-water
faucet, the temperature T of the water depends on how long the water has been running.
Draw a rough graph of T as a function of the time ¢ that has elapsed since the faucet was
turned on.

SOLUTION The initial temperature of the running water is close to room temperature
because the water has been sitting in the pipes. When the water from the hot-water tank
starts flowing from the faucet, T increases quickly. In the next phase, T is constant at

the temperature of the heated water in the tank. When the tank is drained, T’ decreases

to the temperature of the water supply. This enables us to make the rough sketch of T as
a function of ¢ in Figure 11. B

In the following example we start with a verbal description of a function in a physical
situation and obtain an explicit algebraic formula. The ability to do this is a useful skill in
solving calculus problems that ask for the maximum or minimum values of quantities.
EXAMPLES Expressing a cost as a function A rectangular storage container with an
open top has a volume of 10 m®. The length of its base is twice its width. Material for
the base costs $10 per square meter; material for the sides costs $6 per square meter.
Express the cost of materials as a function of the width of the base.

SOLUTION We draw a diagram as in Figure 12 and introduce notation by letting w and 2w
be the width and length of the base, respectively, and & be the height.

The area of the base is (2w)w = 2w?, so the cost, in dollars, of the material for the
base is 10(2w?). Two of the sides have area wh and the other two have area 2wh, so the
cost of the material for the sides is 6[2(wh) + 2(2wh)]. The total cost is therefore

C = 10Q2w?) + 6[2(wh) + 2(2wh)] = 20w* + 36wh

To express C as a function of w alone, we need to eliminate » and we do so by using the
fact that the volume is 10 m®. Thus

w(w)h = 10
ich po10 5
which gives W

Substituting this into the expression for C, we have

180
C=20w"+ 36w<i.,) = 20w + —
w? w

Therefore the equation

180
C(w)=20w2+—w— w>0

expresses C as a function of w. B
EXAMPLEG Find the domain of each function.

@ flx) =+vx+2 (b) g(x) =

SOLUTION

(a) Because the square root of a negative number is not defined (as a real number),
the domain of f consists of all values of x such that x + 2 = 0. This is equivalent to
x = —2, so the domain is the interval [—2, ©).

x*—x
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SECTION 1.1 FOUR WAYS TO REPRESENT A FUNCTION 17

(b) Since
1 1

g(x)=x2—x=x(x—1)

and division by 0 is not allowed, we see that g(x) is not defined when x = Qor x = 1.
Thus the domain of g is

{x]x#0,x+# 1}
which could also be written in interval notation as
(—,0) U (0,1) U (1, ) i

The graph of a function is a curve in the xy-plane. But the question arises: Which curves
in the xy-plane are graphs of functions? This is answered by the following test.

The Vertical Line Test A curve in the xy-plane is the graph of a function of x if and
only if no vertical line intersects the curve more than once.

The reason for the truth of the Vertical Line Test can be seen in Figure 13. If each ver-
tical line x = a intersects a curve only once, at (a, b), then exactly one functional value
is defined by f(a) = b. But if a line x = a intersects the curve twice, at (a, b) and (a, o),
then the curve can’t represent a function because a function can’t assign two different val-

ues to a.
Y x=a Y x=a
- t@ Cl.m-\
< \ /(/ y A |
- (a,b)
N
0 a X 0 a x
FIGURE 13
For example, the parabola x = y?> — 2 shown in Figure 14(a) is not the graph of a func-
tion of x because, as you can see, there are vertical lines that intersect the parabola twice.
The parabola, however, does contain the graphs of two functions of x. Notice that the equa-
tion x = y? — 2 implies y> = x + 2,50y = *+/x + 2. Thus the upper and lower halves
of the parabola are the graphs of the functions f(x) = /x + 2 [from Example 6(a)] and
g(x) = —\/x + 2. [See Figures 14(b) and (c).] We observe that if we reverse the roles of
x and y, then the equation x = hA(y) = y*> — 2 does define x as a function of y (with y as
the independent variable and x as the dependent variable) and the parabola now appears as
the graph of the function #.
y y ¥4
o T
-2
-2,0n) x —2 0 x N0 x
\\‘\"‘\ ““““““““““““““““““““““
FIGURE 14 (@yx=y*-2 (b) y=+x+2 ©@y=—Jx+2
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18 CHAPTER 1 FUNCTIONS AND MODELS

Piecewise Defined Functions

The functions in the following four examples are defined by different formulas in differ-
ent parts of their domains.

. Graphing a piecewise defined function A function f is defined by
1—-x ifx=sl
f = {xz if x>1
Evaluate £(0), £(1), and f(2) and sketch the graph.

SOLUTION Remember that a function is a rule. For this particular function the rule is the
following: First look at the value of the input x. If it happens that x < 1, then the value
of f(x) is 1 — x. On the other hand, if x > 1, then the value of f(x) is x2

Since 0 < 1, wehave f(0) =1 —-0=1.
Since 1 < 1,wehave f(1)=1—-1=0.

y
Since 2 > 1, we have f(2) = 2> = 4.
How do we draw the graph of f? We observe that if x < 1, then f(x) = 1 — x, so
the part of the graph of f that lies to the left of the vertical line x = 1 must coincide
! \ with the line y = 1 — x, which has slope —1 and y-intercept 1. If x > 1, then f (x) = x%
so the part of the graph of f that lies to the right of the line x = 1 must coincide with the
1 x graph of y = x?, which is a parabola. This enables us to sketch the graph in Figure 15.
The solid dot indicates that the point (1, 0) is included on the graph; the open dot indi-
FIGURE 15 cates that the point (1, 1) is excluded from the graph. o
The next example of a piecewise defined function is the absolute value function. Recall
that the absolute value of a number a, denoted by | a|, is the distance from a to 0 on the
real number line. Distances are always positive or 0, so we have
For a more extensive review of absolute values, la]=0  for every number a
see Appendix A.
For example,
13]=3 [-3]=3 |0]=0 |V2-1|=v2-1 |[3-m|=7-3
In general, we have
lal=a ifa=0
la|=—-a ifa<O
(Remember that if a is negative, then —a is positive.)
) B8 Sketch the graph of the absolute value function f(x) = |x|.
y=|x| SOLUTION From the preceding discussion we know that
x| = x ifx=0
o -x ifx<0
0 x Using the same method as in Example 7, we see that the graph of f coincides with the
line y = x to the right of the y-axis and coincides with the line y = —x to the left of the
FIGURE 16 y-axis (see Figure 16). =
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FIGURE 17

Point-siope form of the equation of a line:
y—y=mlx —x)

See Appendix B.

C
1.50 T

Ol

] Apmmnmensinly
1.00 + O
0.50

of 1 2 3 a4 5 w»

FIGURE 18

SECTION 1.1 FOUR WAYS TO REPRESENT A FUNCTION 19

Find a formula for the function f graphed in Figure 17.

SOLUTION The line through (0, 0) and (1, 1) has slope m = 1 and y-intercept b = 0, so
its equation is y = x. Thus, for the part of the graph of f that joins (0,0) to (1, 1), we
have
fx)=x fosx<1
The line through (1, 1) and (2, 0) has slope m = —1, so its point-slope form is
y—0=(-Dx-2) or y=2-x

So we have fx)=2—x ifl<xs?2

We also see that the graph of f coincides with the x-axis for x > 2. Putting this informa-
tion together, we have the following three-piece formula for f:

x fosx=l1
f)=42-x fl<x=<2
0 ifx>2 b

0. Graph of a postage function In Example C at the beginning of this section
we cons1dered the cost C(w) of mailing a large envelope with weight w. In effect, this is
a piecewise defined function because, from the table of values, we have

083 fOo<w=1
100 if l<w=2
w<4

134 if3<

The graph is shown in Figure 18. You can see why functions similar to this one are
called step functions—they jump from one value to the next. Such functions will be
studied in Chapter 2. L

Symmetry

If a function f satisfies f(—x) = f(x) for every number x in its domain, then f is called an
even function. For instance, the function f(x) = x? is even because

f(=x) = (=x =x*=f(x)

The geometric significance of an even function is that its graph is symmetric with respect
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20 CHAPTER 1 FUNCTIONS AND MODELS

to the y-axis (see Figure 19). This means that if we have plotted the graph of f for x = 0,
we obtain the entire graph simply by reflecting this portion about the y-axis.

¥4 y
i i /"m‘
f=x) % 1 f(x) —x 0 | fin)
X 0 X X t x X
FIGURE 19 An even function FIGURE 20 An odd function
If f satisfies f(—x) = —f(x) for every number x in its domain, then f is called an odd

function. For example, the function f(x) = x* is odd because
fx) = (0= —x* = =f(x)

The graph of an odd function is symmetric about the origin (see Figure 20). If we already
have the graph of f for x = 0, we can obtain the entire graph by rotating this portion
through 180° about the origin.

JEXAMPLE 11 Determine whether each of the following functions is even, odd, or
neither even nor odd.

(@ flx)=x>+x ®) glx)=1—x* () h(x) =2x — x*

SOLUTION

(2) f=0) = (=2 + (=0 = (1% + (=)
=-—x'—x=—(x"+1x)
= —f(x)

Therefore f is an odd function.

(® gl-x) =1-(—0*=1—x*=g(x)

So g is even.

©) h(=x) = 2(=x) — (—x)* = —2x — x*

Since h(—x) # h(x) and h(—x) # —h(x), we conclude that A is neither even nor odd.
s

The graphs of the functions in Example 11 are shown in Figure 21. Notice that the
graph of / is symmetric neither about the y-axis nor about the origin.

y y ¥
1+ f ,—1«—% g 1+ h
CIN . N
-1 T * X 1 8
_l +
FIGURE 21 (a) (b) ©
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SECTION 1.1 FOUR WAYS TQ REPRESENT A FUNCTION 21

y B Increasing and Decreasing Functions

The graph shown in Figure 22 rises from A to B, falls from B to C, and rises again from C
to D. The function f is said to be increasing on the interval [a, b}, decreasing on [b, c], and
increasing again on [c, d]. Notice that if x; and x, are any two numbers between a and b

» C with x; < x5, then f(x,) < f(x2). We use this as the defining property of an increasing
fie) function.
!
(e 5. b ¢ d A function f is called increasing on an interval I if
FIGURE 22 flxy) < flx2) whenever x; < xzin/
y It is called decreasing on [ if
y=x’
Flxa) > flx) whenever x; < x;in/
In the definition of an increasing function it is important to realize that the inequality
0 x f(x1) < f(x2) must be satisfied for every pair of numbers x; and x; in I with x; < x,.
You can see from Figure 23 that the function f(x) = x* is decreasing on the interval
FIGURE 23 (—cc, 0] and increasing on the interval [0, «).
m Exercises
1. The graph of a function f is given. (e) State the domain and range of f.
(a) State the value of f(1). (f) State the domain and range of g.
(b) Estimate the value of f(—1). ¥
(c) For what values of x is f(x) = 1?
(d) Estimate the value of x such that f(x) = 0. 7 g
(e) State the domain and range of f. 2
(f) On what interval is f increasing? -
. 0 2 X
y /|
1 3. Figure 1 was recorded by an instrument operated by the Cali-

fornia Department of Mines and Geology at the University

o u Hospital of the University of Southern California in Los Ange-
les. Use it to estimate the range of the vertical ground accelera-
tion function at USC during the Northridge earthquake.

4, In this section we discussed examples of ordinary, everyday
2. The graphs of f and g are given. functions: Population is a function of time, postage cost is a
(a) State the values of f(—4) and g(3). function of weight, water temperature is a function of time.

. Give three other examples of functions from everyday life that
= ?

® For. what values ofx is f() g({c)' are described verbally, What can you say about the domain and
(c) Estimate the solution of the equation f(x) = —1. range of each of your functions? If possible, sketch a rough

(d) On what interval is f decreasing? graph of each function.

1. Homework Hints available in TEC
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