
Arista Records LLC et al v. Lime Wire LLC et al Doc. 574 Att. 7

Dockets.Justia.com

http://dockets.justia.com/docket/new-york/nysdce/1:2006cv05936/288038/
http://docs.justia.com/cases/federal/district-courts/new-york/nysdce/1:2006cv05936/288038/574/7.html
http://dockets.justia.com/

DEPOSITION EXHIBIT

SlRfJt II
;; ~1'l/

BILL VISCONTI

Blindfold: A System to "See No Evil" in Content Discovery

Ryan S. Peterson Bernard Wong Emin Gun Sirer

{ryanp,bwong,egs}@cs.comell.edu

Department of Computer Science, Cornell University

United Networks, L.L.c.

Existing content aggregators provide fast and efficient
access to large volumes of shared data and serve as crit
ical centralized components of many peer-to-peer sys
tems, including content discovery for BitTorrent. These
aggregators' operators are tasked to spend significant
human resources to manually vet uploaded data to en
sure compliance with copyright laws. This task does not
scale with today's increasing demand for such services.
In this paper, we introduce Blindfold, a scheme to en
sure that the operators of content aggregators are com
pletely blind to the content that they are storing and serv
ing, thereby eliminating the possibility to censor con
tent at the servers. It works by partitioning the search
and upload operations into a series of dependent key
value operations across servers under different admin
istrative domains, with the connection between servers
obfuscated using captchas. We have implemented a pro
totype of Blindfold to show that it is a simple, feasible,
and efficient system for serving content that is opaque to
the storage servers.

1 Introduction
BitTorrent is one of the most popular peer-to-peer proto
cols, yet it still relies on centralized components. These
centralized components simplify difficult problems re
lated to trust and management, resulting in a system that
is easy to deploy and understand. Centralized compo
nents for content discovery, such as The Pirate Bay [4]
and Mininova [2], collect and provide a searchable index
of available content through a web frontend. However,
large centralized systems that rely on user contributions
face the daunting task of vetting the voluminous content,
a process that demands extensive human resources, or
risk subjecting themselves to copyright infringement lit
igation.

This paper presents Blindfold, a novel system that en
ables users to upload to and search a public key-value
storage server without revealing the true keys or values
to the server or third parties. The goal of Blindfold is
to empower key-value storage operators to be oblivious
to how their services are used, allowing them to operate
under the same model as public utility providers. Blind
fold ensures that storage operators are blind to the con
tent that they handle, keeping keys and values encrypted

and opaque to the servers.
A system that provides honest clients unrestricted ac

cess to a corpus without revealing any information about
that corpus to the storage server or attackers is infeasible.
Instead, Blindfold provides non-authenticated clients full
access to the data through explicit keyword searches; at
the same time, it obstructs the ability to efficiently enu
merate the stored content.

The key insight behind Blindfold is to partition the
search and upload operations into a series of dependent
key-value operations that are performed across multiple
storage servers under different administrative domains.
The servers are unaware of the partitioning and chain
ing of operations and of each other; a simple in-browser
client controls the high-level search and upload proto
cols and serves as a communication bridge between the
servers. Cryptographic functions hide the true content
stored on each server, and captchas obfuscate the con
nection between servers to protect the system from auto
mated; dictionary-based attacks.

Blindfold is fast and efficient, requiring only simple
and inexpensive cryptographic operations and a constant
number of server queries per search or upload operation.
It uses the standard key-value storage interface, allowing
the use of public key-value storage services and enabling
it to be immediately and widely deployable. We have
implemented a prototype of Blindfold and have found it
easy to use and unobtrusive to the user.

2 Related Work
There has been much work in private database systems
that define cryptographic protocols for searching over en
crypted data. Existing protocols fall into two main cate
gories, depending on who owns the data in question. The
larger body of work aims to encrypt a database of sensi
tive data so that an untrusted server can store the database
and perform searches from authorized queriers without
read or write access to the cleartext. Related systems pro
vide additional properties, such as protecting the search
keywords and search results from the server [9], reorder
ing the entries in the encrypted database to prevent statis
tical attacks based on data accesses [11], and designing
logarithmic-time (rather than linear-time) algorithms for
searching over encrypted data [5]. Our work also aims to

obscure content from the server, but also enables public
access to content matching keyword searches.

Another body of work examines encrypted database
systems where the server owns the data and protects
it from unauthorized queriers. The Secure Anonymous
Database Search system [8] introduces two intermediate
servers that together provide client anonymity while en
suring that all queries originate from a set of clients that
were authorized out-of-band. In contrast, Blindfold pro
vides a public keyword search interface rather than one
based on access control lists. Much of the existing work
in encrypted database protocols strives to make searches
over encrypted text more efficient. In contrast, our sys
tem stores key-value mappings, where inserted values
have associated keywords chosen by their content origi
nators, which enable constant-time searches for content.

The most similar work to Blindfold is Peekaboo [12],
a key-value store that splits keys and values across mul
tiple servers to preserve the privacy of clients. Unlike
Blindfold, Peekaboo assumes that servers do not col
lude. Moreover, Peekaboo relies on a distributed pro
tocol among servers rather than operating across servers
under different administrative domains that can be un
aware of each other's existence. Much of Peekaboo' s im
plementation is centered around enforcing access control
on content without breaking its privacy properties.

Decentralized storage systems allow searches over
data that is potentially spread across many machines.
Freenet [7] implements a peer-to-peer approach to data
storage where users add named files that can be retrieved
by other users. Freenet's main goal is to prevent censor
ship by anonymizing queries with sequences of pseudo
random hops from query originators to content location,
and to prevent tampering through signatures. These goals
are orthogonal to our own, and one could implement
Blindfold on top of Freenet to achieve the properties of
both systems.

3 Approach
The Blindfold architecture comprises three components:
two or more servers, jointly called the aggregator, which
store mappings from search keywords to content; a stan
dalone service, which generates image captchas [10] that
require human interaction to solve; and clients, which
orchestrate uploading new content and searching for ex
isting content. Each content object (e.g., a BitTorrent
file in the case of an aggregator) has an associated set of
search keywords chosen by the content's originator. A
search query, consisting of one or more keywords, yields
all content objects that are associated with all the key
words. For simplicity, we assume that the aggregator is
made up of two logically centralized servers, providing a
service analogous to that of existing BitTorrent aggrega
tors.

2

3.1 The Blindfold Protocol

. The basic Blindfold protocol splits search keywords and
content objects across two servers that operate under dif
ferent administrative domains. The two servers are the
index server S [, which stores mappings from keywords
to captcha images, and the content server Se, which
stores mappings from captcha solutions to content ob
jects. Clients are users in the system that issue search
queries for content and upload new content. Lastly,
Blindfold relies on a captcha generator G, a standalone
service that issues signed captcha images. Blindfold
handles uploading content and processing search queries
without requiring Sf, Se, or G to communicate with
each other; in fact, the three servers can be oblivious of
each other's existence.

Blindfold requires clients to perform explicit search
queries to reveal content at the aggregator. The aggrega
tor stores only hashes of search keywords and stores all
content encrypted with keys known only to its origina
tors. These encryption keys are generated from the con
tent's associated keywords. The intuition behind Blind
fold is that search keywords are necessary and sufficient
for generating both the hashed keywords stored on the
aggregator as well as keys that decrypt the content stored
under those keywords, obviating the need for trusted
third parties.

We begin by specifying our notation. Let h be a
well known one-way hash function. Exponentiating h
indicates repeated composition: h3 (x) = h(h(h(x))).
{X} K denotes the encryption of X under key K, and
K~ub and K~ri denote agent A's public and private keys
of an asymmetric key pair, respectively. All keys are
symmetric unless designated public or private. We use
(x, y) to denote the concatenation of x and y and x EB y
to denote the bitwise exclusive OR of x and y. We use
hmack(m) to denote the HMAC of message m under
symmetric key k [6]. Lastly, captcha(p) represents the
solution to captcha p, where captcha is a one-way func
tion that can be computed easily with human interaction,
but is difficult to compute automatically.

To upload new content to the aggregator, a client
chooses search keywords to associate with the new con
tent and requests a new captcha for each keyword from
the captcha generator. It sends the unsolved image
captchas and hashed keywords to the index server and
sends solved captchas and encrypted content to the con
tent server. To prevent the index server from tamper
ing with captchas and their mappings from keywords,
the client binds keywords to captchas using HMACS with
keywords as the secret keys, which it also sends to the
index server. The client encrypts a separate copy of the
content for each of its keywords. The encryption key for
each copy is deterministically computed from a keyword

Client A uploads content C with keywords WI , ..• , Wm:

1. G -> A: (gi, {h(gi)}Kp,;) fori = 1 .. m, where each gi
G

is a new captcha image.

2. A -> 81 :
(h"(Wi), gi, {h(gi)} KP';, h"(hmacWi (gi))) for i =

G
l..m for large, globally known integer o.

3. 81 -> A: Bi = (g:,h"(hmacWi(g:m fori = l..m,
where

B _ { (gi, h"(hmacWi (gi)))
, - Ml(h"(Wi))

if Ml(h"(Wi)) = 0
otherwise

81 also verifies the captchas' signatures and ensures that
each h(gi) ~ HI. It then updates Ml with mapping
h"(w;) (gi, h" (hmaCwi (gi))) for i = l..m if no
mapping exists for that key and adds each h(gi) to HI.

4. A -> 8e : ({ C} K" h(captcha(gD)) for i = l..m after
solving the captchas, where each encryption key
Ki = h,,-I(hmaCwi(gD).

5. 8e updates Me with mapping h(captcha(gD)
Me(h(captcha(g:m U {{C}Ki } fori = Lm.

Figure 1: The protocol for uploading new content to the
aggregator.

and its corresponding captcha. This enables queriers
searching for those keywords to generate the decryption
keys, provided that they obtain the captchas from the in
dex server. The client hashes values a times for storage
on S I and encrypts content with keys computed from the
a-I hash for storage on Se. This ensures that the en
cryption keys cannot be computed from the values stored
onSI.

The servers that comprise the aggregator, SI and Se,
are independent key-value stores with key-value map
pings MI and Me, respectively. At a high level, MI
is a mapping from hashed keywords to unique captchas,
and Me is a one-to-many mapping from hashed captcha
solutions to encrypted content. Initially, MI and Me
map all values to the empty set. When the index server
S I receives a content upload request, it verifies that the
captcha image is signed by the captcha generator. S I
maintains a set HI of the hashes of all captchas stored
in MI, which it uses to reject duplicate captchas. If the
captcha is unique and its signature is valid, S I adds to
M I the mapping from hashed keyword to captcha image
for each keyword that is not yet mapped. It returns to the
client each keyword's captcha after updating M I , which
the client solves to compute the new content's keys on the
content server. The content server updates Me by adding
the new content to the sets mapped from the captchas'
solutions. The index server never replaces existing key
value mappings, so the captchas' solutions always refer
to the same keys on the content server. This ensures that
searches for a keyword result in all content that has been

3

Client A queries the aggregator for keywords WI , .•• , Wm:

1. A -> 81: h"(Wi) fori = l..m and large, globally
known integer o.

2. 81 -> A: Ml(h"(Wi)) =
(gi,h"(hmacWi(gi))) fori = Lm.

3. A -> 8e : h(captcha(gi)) for i = Lm, after verifying
the keyword-captcha HMACS and solving the captchas.

4. 8e -> A : U::I Me(h(captcha(gi))) =
{Cj} K j for j = Ln, where n is the number of search
results.

5. A computes K j = h"-I(hmacw(g)) for j = Ln,
where W is the keyword that 8e mapped to search result
j and 9 is its corresponding captcha, and uses them to
decrypt each Cj •

Figure 2: The protocol for issuing a search query to the
aggregator and decrypting the results.

inserted under that keyword.
Figure 1 lists the full protocol for uploading new con

tent. The protocol prevents malicious users from cor
rupting the aggregator when uploading new content: the
index server's mapping is write-once per key, and extra
mappings on either server are of no consequence. The
protocol as described in this section assumes that the ag
gregator servers provide basic key-value storage primi
tives, enabling Blindfold to operate on existing key-value
store services. Section 4 describes how using a special
ized many-to-many key-value store on the content server
enables it to store only one copy of each encrypted con
tent object instead of a copy per associated keyword.

To search for content, a client hashes each keyword in
a query string and sends them to the index server. The
index server responds with one captcha per search key
word, each with the HMAC that binds it to its search key
word. The client verifies the HMACs to ensure that the in
dex server did not tamper with its mappings, then solves
the captchas and sends their hashed solutions to the con
tent server. The content server responds with a set of en
crypted search results. The client computes the content's
decryption keys from the HMAC of any keyword from the
original query and the keyword's corresponding captcha
from the index server. Lastly, the client prunes duplicate
search results after decrypting them. Figure 2 lists the
full search protocol.

The only link between the two aggregator servers is
the captchas, which remain unsolved on the index server,
with their hashed solutions indexing the mapping on the
content server. Solving captchas efficiently requires hu
man interaction, obscuring the links between related en
tries on the two servers except when a client searches
for those keywords. The result is that keywords, whose
hashed values are stored on the index server, are difficult
to link to content objects on the content server, which

are encrypted using their associated keywords. Even if
a link between entries on the servers were known, the
hashed keywords on the index server are insufficient to
decrypt the content on the content server.

3.2 Security

Blindfold's primary goal is to protect the aggregator's
operators from discovering the content that they are serv
ing. Blindfold achieves this without relying on out
of-band authenticators, allowing any client to perform
searches. It is impossible for a public search inter
face to differentiate between honest clients and malicious
clients. Blindfold's security goals, then, are to prevent
the aggregator's data from being quickly and systemati
cally discovered while remaining unobtrusive to honest
users as they issue targeted searches for content.

The primary defense against attackers is the separa
tion of hashed keywords from the encrypted content.
Section 3.1 discussed the motivations for splitting the
data across two administrative domains. An attacker that
compromises only the index server gleans very little in
formation about the content. The index server does not
store any content, limiting the attacker to mounting a
dictionary attack to discover the keywords in the sys
tem. The index server's mapping can be pre-loaded with
captchas whose solutions do not appear on the content
server. Pre-loading such a mapping for every English
word would effectively hide the real keywords, reducing
the viability of this attack. Because each hashed keyword
maps to a unique captcha, a snapshot of the server con
tains no information about the popularities of keywords.
A statistical analysis of requests over time or an exam
ination of server request logs would reveal popularities
of entries on the servers, but would not reveal the actual
keywords or content stored on the aggregator.

An attacker that compromises only the content server
would have access to the content objects, each encrypted
with one or more keywords and their corresponding
captchas on the index server. Without access to the
captchas themselves, an attacker cannot decrypt the con
tent. Unfettered access to either server alone leaks no
information of the content stored on the aggregator.

Compromising both aggregator servers does not help
automated attackers unravel the mapping from keywords
to content, as each mapping is protected with a captcha.
If the index server is pre-loaded with mappings, as de
scribed above, an attacker would have to solve poten
tially many captchas before discovering a link between
an index server mapping and a content server mapping.
Even after discovering a link, the keyword hashed on the
index server does not reveal the plain-text keyword re
quired to decrypt the corresponding content on the con
tent server. An attack on Blindfold would require sig-

4

nificant resources, both computational and human, to de
crypt each content object.

4 Implementation
We have implemented a full prototype of Blindfold in
three parts. The first is a key-value store service that im
plements get and put operations. The index and content
servers are both instances of this generic key-value store,
with parameters that specify how they handle key colli
sions on insertion. The index server implements a write
once mapping, where it discards a put request if a map
ping from the key already exists. The content server's
one-to-many mapping stores all values inserted under
each key by mapping keys to expandable sets of values.
Second, we implemented a captcha generator that returns
randomly generated captchas and signs each captcha im
age with its private key. Alternatively, Blindfold can use
existing services that generate captchas, which are plen
tiful [1,3]. Lastly, we implemented the client, which sup
ports upload and search operations, each of which causes
the client to interact with the other components. The
Blindfold prototype is open source and publicly available
at http://www.cs.comell.eduJ~ryanp/blindfoldi.

The Blindfold prototype is surprisingly easy to use.
Our experience is that solving one captcha per search
keyword is unintrusive and requires little effort. Setting
global parameter 0: to 105 provides a reasonable trade
off between search latency and the cost of mounting a
dictionary attack to derive content decryption keys; on
a modest desktop machine, a search requires approxi
mately two seconds of CPU time per keyword plus the
time required to solve the captchas. The delay is neg
ligible to honest clients because clients compute con
tent decryption keys at the same time the user is solving
captchas.

The semantics of the index server's write-once and
content server's one-to-many stores are typical of key
value stores. However, if the more sophisticated seman
tics of a one-to-many store are unavailable, a write-once
store can be used to implement a one-to-many store with
only modifications to the client. If a client attempting
to insert mapping k 1-+ V finds that mapping k 1-+ v'
already exists, it inserts mapping h(k) 1-+ V instead.
To perform a lookup for key k, a client issues requests
for k, h(k), h2 (k), ... until it receives the empty set as a
value, signaling to the client that it has reached the end
of the chain. The union of all returned values is equiva
lent to the intended one-to-many mapping k 1-+ {v, v'}.
The write-once semantics of the under! ying store prevent
malicious clients from modifying an existing chain.

Our implementation of Blindfold uses two optional
mechanisms that prevent clients from hijacking key
words without increasing the number of captchas that
queriers must solve. First, it uses a trusted captcha gen-

erator that signs captchas coupled with a modified index
server that verifies signatures to ensure that all captchas
are solvable and require human interaction. Second, the
index server rejects duplicate captchas to prevent multi
ple keywords from mapping to the same captcha, which
would reduce the effort required to enumerate content.
Lacking a trusted captcha generator or a modified in
dex server, the correctness of the protocol remains in
tact if the index server stores a separate captcha for each
content object under the same keyword. This requires
queriers to solve a captcha for each search result, but the
user could stop at any time to view a partial list of results.

An optimization on the content server enables each
encrypted content object to be stored only once in
stead of once per associated keyword. This requires
Se to expose multiput, which maps multiple keys to
a single instance of the value, making Me a many-to
many mapping. The Blindfold protocol changes accord
ingly: when a client adds content C under keywords
WI, ... ,Wm with corresponding captchas gl, ... , gm ac
cording to S I, it generates just one random encryption
key K and constructs vectors p = h(gl)"'" h(gm);
if = h(captcha(gl))"" ,h(captcha(gm)); and b =
bI, ... , bm , where bi = K E9 ha:-l(hmacw; (gi)). The
purpose of bi is to enable a querier for keyword Wi to
compute the key K and decrypt C. The client sends to
Se the value ({ (C, if) } K, b, if>. When Se receives the
upload request, it adds to Me a reference to the value
({ (C, if) } K, b) under each hashed captcha solution in if.
When Se processes search queries, it returns the inter
section of the requested sets because values for the same
content are identical, reducing bandwidth at the server.

When a querier receives a search result, it generates m
potential decryption keys Ki = bi E9 ha:-l(hmacw (g))
using an arbitrary keyword W from its query and w's cor
responding captcha g, and attempts to decrypt { (C, if) } K

with each key Ki until it succeeds. The client treats pas
a checksum, recognizing a successful decryption when
h(g) matches some element of p. Because each content
object will only have a few possible decryption keys, one
computed from each element of b, the additional time re
quired to perform a search is imperceptible to the querier.
The key-value store in the Blindfold prototype supports
the multi put operation and implements this optimization.

A pragmatic issue in running key-value stores is re
moving old content to reclaim space. This is particularly
important in Blindfold because the security of captchas
decays over time as automated attacks become more so
phisticated. Removing key-value entries in Blindfold
poses a challenge because each entry in the index server
is used to service queries for mUltiple content objects.
Blindfold can be extended to use a versioning scheme un
der which each keyword on the index server maps to two
captchas at anyone time: an active captcha, under which

5

newly uploaded content is placed, and a legacy captcha,
which expires when its last content object expires. Ac
tive captchas replace expired legacy captchas, and a new
active captcha takes its place on the next content upload
for that keyword. This scheme places an upper bound on
the age of captchas at the cost of requiring queriers to
solve up to twice as many captchas to perform searches.

5 Conclusions
In this paper, we described Blindfold, a system that en
ables users to upload to and search a public key-value
store without revealing the true keys or values to the store
or third parties. The system works by partitioning and
chaining upload and search operations into a series of
key-value operations across servers in different admin
istrative domains. The connection between the servers
is obscured and protected by captchas. We showed that
the system is simple and feasible with a prototype imple
mentation, and we have found from experience with the
system that it is surprisingly unintrusive to the user and
easy to use.

References
[1] Captchas.Net. http://captchas.net.
[2] Mininova. http://www.mininova.org.
[3] Recaptcha: Stop Spam, Read Books. http://recaptcha.net.
[4] The Pirate Bay. http://piratebay.org.
[5] A. Boldyareva, M. Bellare, and A. O'Neill. Deterministic

And Efficiently Searchable Encryption. CRYPTO, Santa
Barbara, CA, Aug. 2007.

[6] M. Bellare, R. Canetti, and H. Krawczyk. Keying Hash
Functions For Message Authentication. CRYPTO, Santa
Barbara, CA, June 1996.

[7] I. Clarke, S. G. Miller, T. W. Hong, O. Sandberg, and B.
Wiley. Protecting Free Expression Online With Freenet.
IEEE Internet Computing, Jan. 2002.

[S] M. Raykova, B. Vo, S. M. Bellovin, and T. Malkin. Secure
Anonymous Database Search. Cloud Computing Security
Workshop, Chicago, IL, Nov. 2009.

[9] D. X. Song, D. Wagner, and A. Perrigo Practical Tech
niques For Searches On Encrypted Data. IEEE Sympo
sium on Security and Privacy, Washington, DC, 2000.

[10] L. von Ahn, M. Blum, N. Hopper, and J. Langford.
Captcha: Using Hard Ai Problems For Security. Euro
crypt, Warsaw, Poland, May 2003.

[11] P. Williams, R. Sion, and B. Carbunar. Building Castles
Out Of Mud: Practical Access Pattern Privacy And Cor
rectness On Untrusted Storage. CCS, Alexandria, VA,
Oct. 200S.

[12] Y. Xie, D. O'Hallaron, and M. K. Reiter. Protecting Pri
vacy In Key-value Search Systems. CSAC, Miami Beach,
FL, Dec. 2006.

