
 

 
 

EXHIBIT 
10   

Association For Molecular Pathology et al v. United States Patent and Trademark Office et al Doc. 197 Att. 11

Dockets.Justia.com

http://dockets.justia.com/docket/court-nysdce/case_no-1:2009cv04515/case_id-345544/
http://docs.justia.com/cases/federal/district-courts/new-york/nysdce/1:2009cv04515/345544/197/11.html
http://dockets.justia.com/


 

 

 

 

 

 

 

 

 

 

 

Pharmaceutical knowledge-capital accumulation and longevity 

 

Frank R. Lichtenberg 

 

Columbia University and NBER 

 

 

 

 

For presentation at the 
Conference on Research on Income and Wealth/ 

National Bureau of Economic Research conference on 
Measuring Capital in a New Economy 

Federal Reserve Board, Washington, DC, 
April 26-27, 2002 

  
Revised October 2002



 2

Pharmaceutical knowledge-capital accumulation and longevity 
 

Abstract 

 

People value leisure time as well as goods, so longevity increase is an important 
part of economic growth, broadly defined.  R&D is the principal source of economic 
growth, and the pharmaceutical industry is the most R&D-intensive sector of the 
economy.  In this paper we assess the contribution of pharmaceutical R&D to longevity 
increase (hence to economic growth), by analyzing the relationship between FDA 
approvals of new molecular entities and changes in the age distribution of deaths, using 
longitudinal disease-level data. 

We compute the stock of drugs available (i.e., previously approved by the FDA) 
to treat a given condition in a given year by combining FDA data with data from First 
DataBank’s National Drug Data File.  We use the CDC’s Compressed Mortality File to 
measure changes in the age distribution of deaths, by cause of death.   

The estimates indicate that approval of standard-review drugs—drugs whose 
therapeutic qualities the FDA considers to be similar to those of already marketed 
drugs—has no effect on longevity, but that approval of priority-review drugs—those 
considered by the FDA to offer significant improvements in the treatment, diagnosis, or 
prevention of a disease—has a significant positive impact on longevity.  Increases in the 
stock of (labeled and unlabeled) drugs to treat a condition increase the mean age at which 
people die from that condition, and reduce the probability of dying before the age of 65. 

The increase in the stock of priority-review drugs is estimated to have increased 
mean age at death by 0.39 years (4.7 months) during the period 1979-1998.  Ten percent 
of the total increase in mean age at death was due to the increase in the stock of priority-
review drugs.  The rate of return on investment in pharmaceutical R&D is 18%.   This 
rate of return reflects only the value of increased longevity among Americans; foreigners 
also benefit, and evidence suggests that there may be additional benefits of new drugs to 
Americans, including reduced hospital expenditure and reduced limitations on work and 
other activities. 
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People value leisure time as well as goods, so longevity increase is an important 

part of economic growth, broadly defined.  R&D is the principal source of economic 

growth, and the pharmaceutical industry is the most R&D-intensive sector of the 

economy.  In this paper we assess the contribution of pharmaceutical R&D to longevity 

increase (hence to economic growth), by analyzing the relationship between FDA 

approvals of new molecular entities and changes in the age distribution of deaths, using 

longitudinal disease-level data. 

Until the middle of the twentieth century, analyses of long-run macroeconomic 

performance were based on an aggregate production function of the form: 

 

Y = F(K, N)       (1) 

 

where  

 

Y = real GDP (the market value of goods and services produced) 

K = capital input 

N = labor input 

 

Capital is, of course, a produced means of production, which accumulates according to 

the perpetual inventory equation Kt+1  = (1 - δ) Kt + It, where δ is the depreciation rate and 

I denotes investment.   

 In the last 50 or 60 years, economists have recognized the inadequacies of this 

production function—its failure to account for important aspects of observed 

macroeconomic behavior—and have modified and extended it in several ways.  The most 

important modifications have been expansions of the sets of both inputs and outputs 

accounted for.   

 By the 1950s, economists realized that most of the growth in output could not be 

accounted for by growth in capital and labor.  Most output growth was due to total factor 

productivity (TFP) growth—growth in output per unit of total input—which is not 

accounted for in eq. (1).  Growth in TFP was hypothesized to be due to technological 
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progress.  The production function could easily be modified to allow for the existence of 

technological progress: 

 

Y = A F(K, N)       (2) 

 

where  

 

A = an index of the level of technology.   

Solow (1956) demonstrated that in the long run, the growth rate of per capita 

output would be equal to the rate of technological progress (the growth rate of A).  In that 

paper, Solow assumed that technological progress was exogenous: it descends upon the 

economy like “manna from heaven,” automatically and regardless of whatever else is 

going on in the economy (Jones (1998, 32-3)).  But subsequent investigators have 

hypothesized and provided evidence that productivity growth and technological progress 

is endogenous—determined by investment in research and development (R&D).  The 

dependence of technical progress on R&D is a key feature of recent theoretical 

(“endogenous growth”) models (Romer (1990)). 

 Griliches proposed the following model to incorporate endogenous (R&D-

generated) technical change into the production function: 

 

Y = F(K, N, Z)       (3) 

 

where  

 

Z = the stock of “knowledge capital” 

 

Like physical capital, knowledge capital is a produced means of production, which 

accumulates according to the perpetual inventory equation Zt+1 = (1 - δZ) Zt + RDt, where 

δZ is the knowledge-capital depreciation rate and RD denotes R&D investment. 

 There are two ways in which one can use eq. (3) to assess the contribution of 

knowledge capital to productivity growth.  One is to examine the relationship (e.g., 
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across industries) between TFP growth and the growth of Z.  The other is to examine the 

relationship between TFP growth and “R&D-intensity” (the ratio of R&D investment to 

output).1  Under certain reasonable assumptions, the R&D-intensity coefficient in the 

TFP regression is an estimate of the marginal product of knowledge capital, and of the 

rate of return to investment in R&D. 2   

Numerous empirical studies (e.g. Griliches and Lichtenberg (1984), Lichtenberg 

and Siegel (199?)) have provided strong support for the hypothesis that R&D has 

contributed significantly to growth in the market value of goods and services produced.  

But economists believe that the utility, or welfare, of individuals and nations depends not 

only on the goods and services they consume but also on the amount of (leisure) time 

they have.  Leisure time as well as goods are arguments of the utility function.  Becker 

defined an individual’s “full income” as the value of goods consumed plus the value of 

leisure time “consumed”.  Let us define  

 

Y* = G(Y, L)       (4) 

 

where 

Y* = “full income” (or utility) 

L = leisure time 

A simple linear approximation of this function is: 

 

Y* = Y + pL L 

where 

pL = the shadow price of leisure time (relative to the price of goods) 

 

Suppose, for simplicity, that pl remains constant over time.  Then 

 

∆Y* = ∆Y + pL ∆L 
                                        
1 The second approach does not require a long history of R&D investment or an estimate of the initial 
knowledge-capital stock. 
2 Since capital and labor engaged in R&D are already included in K and N—they are “double counted”—
the R&D-intensity coefficient is an estimate of the excess return to R&D—the difference between the 
return to R&D and the return on ordinary investment. 
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The change in full income is the change in GDP plus the change in the value of 

leisure time consumed.  During the last century, longevity increase has been an important 

source of increase in the average person’s leisure time over the course of the life cycle.  

Nordhaus (2002) estimated that, “to a first approximation, the economic value of 

increases in longevity over the twentieth century is about as large as the value of 

measured growth in non-health goods and services” (p. 17).3  In other words, his 

estimates imply that ∆Y ≈ pL ∆L. 

 Due to the importance of leisure time in general, and longevity in particular, to 

economic well-being, we propose replacing GDP in the production function by “full 

income”: 

 

Y* = G(Y, L) = F(K, N, Z)      (5) 

 

We hypothesize that R&D-generated increases in the stock of knowledge capital (Z) may 

have a positive impact on both components of full income: leisure time (via longevity) 

and consumption of goods and services.  According to the NSF, in 1996 16% of U.S. 

R&D was associated primarily with the life sciences; this share increased from 12% in 

1985. 

 In the next section we discuss the measurement of pharmaceutical knowledge-

capital accumulation.  In section 2 we postulate an econometric model of the effect of 

pharmaceutical knowledge-capital accumulation on the age distribution of deaths.  

Measurement of changes in the age distribution of deaths, by cause of death, is discussed 

in section 3.  Empirical results are reported in Section 4, and section 5 presents a 

summary and conclusions. 

 

1.  Measurement of pharmaceutical knowledge-capital accumulation 

 

 The basic hypothesis we wish to investigate is that pharmaceutical R&D 

investment has increased the longevity of Americans: 
                                        

3 “The Health of Nations: The Contribution of Improved Health to Living Standards,” NBER Working 
Paper No. 8818, February 2002  
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For a variety of reasons, however, we didn’t think that the best way to test this hypothesis 

is to perform an econometric analysis of the relationship between pharmaceutical R&D 

investment and longevity.  There are two other indicators of pharmaceutical R&D 

investment that are potentially more fruitful to analyze than pharmaceutical R&D 

investment itself: pharmaceutical patents, and FDA new drug approvals.  We will argue 

that pharmaceutical patents are subject to most of the same econometric limitations as 

pharmaceutical R&D investment, but that FDA new drug approval data provide an 

excellent opportunity to (indirectly) examine the R&D-longevity relationship.   

 FDA new drug approvals may be interpreted as an “intermediate good” in the 

R&D-longevity relationship 4: 

 

 

 

 

 

To explain the relationship between R&D investment and new drug approvals, and why 

the latter is a superior indicator for explaining changes in longevity, it is useful to briefly 

describe the process of drug development.   

 The FDA’s depiction of the new drug development timeline is shown in Figure 1.  

There are three main phases of drug development up until the time of new drug approval.  

The first phase is pre-clinical testing, research and development, including testing in 

animals.  According to the FDA, the average duration of this phase is 18 months.  In 

                                        
4 “FDA estimates that, on average, it takes eight-and-a-half years to study and test a new drug before the 
agency can approve it for the general public. That includes early laboratory and animal testing, as well as 
later clinical trials using human subjects. Drug companies spend $359 million, on average, to develop a 
new drug, according to a 1993 report by the Congressional Office of Technology Assessment.”  (FDA 
Center for Drug Evaluation and Research, “From Test Tube to Patient: Improving Health Through Human 
Drugs,” September 1999, p. 15.) 
 

Pharmaceutical 
R&D investment Longevity 

Pharmaceutical 
R&D investment 

FDA New Drug 
Approvals Longevity 
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order to proceed to the second stage, the drug sponsor must submit, and receive FDA 

approval of, an investigational new drug (IND) application. Upon approval of the IND, 

the sponsor may begin clinical R&D (human trials). 

 There are three phases of clinical R&D: 

 

Phase 
Number of 
Patients  Length  Purpose  

Percent of Drugs 
Successfully 
Tested 

1  20–100  Several months Mainly safety 70 percent 

2  
Up to several 
hundred 

Several months 
to 2 years 

Some short-term safety, 
but mainly 
effectiveness 33 percent 

3  

Several hundred 
to several 
thousand 1–4 years  

Safety, effectiveness, 
dosage 25–30 percent 

 

According to the FDA, the average duration of the three phases combined is 5 years.   

After completing clinical R&D, the drug sponsor can submit a New Drug 

Application (NDA) to the FDA.  For decades, the regulation and control of new drugs in 

the United States has been based on the NDA. Since 1938, every new drug has been the 

subject of an approved NDA before U.S. commercialization. The data gathered during 

the animal studies and human clinical trials of an IND become part of the NDA.  

According to the FDA, the average duration of the NDA review process is 2 years. 

The FDA says that of 100 drugs for which investigational new drug applications 

are submitted, about 70 percent will successfully complete phase 1 and go on to phase 2; 

about 33 percent of the original 100 will complete phase 2 and go to phase 3; and 25 to 

30 of the original 100 will clear phase 3 (and, on average, about 20 of the original 100 

will ultimately be approved for marketing).  This is consistent with 1990-2001 data on 

the number of commercial5 INDs received and NDAs received and approved shown in 

Figure 2.  The average annual number of NDAs approved (85) was 21% of the average 

annual number of INDS received (403). 

                                        
5 "Commercial INDs" are applications that are submitted primarily by companies whose ultimate goal is to 
obtain marketing approval for a new product. There is another class of filings broadly known as 
"noncommercial" INDs. The vast majority of INDs are, in fact, filed for noncommercial research. These 
types of INDs include "Investigator INDs," "Emergency Use INDs," and "Treatment INDs." 
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As the following table shows, there are seven different kinds of new drug 

applications: 

 

% of NDAs approved, 
1990-2001 NDA Type 

46%New formulation 
35%New molecular entity 
10%New manufacturer 
6%New combination 
2%New ester, new salt, or other noncovalent derivative 
1%New indication6 
1%Drug already marketed, but without an approved NDA 

 

New molecular entities (NMEs) account for only about a third of all new drug approvals, 

but they probably account for the vast majority of pharmaceutical R&D expenditure7, and 

they are the NDAs that are most likely to increase longevity. 8   

 DiMasi (2001) argues that mean drug development time has increased sharply 

since the 1960s (see Figure 3).  His figures indicate that, for the last 20 years, mean drug 

development time has been 14.2 years, substantially longer than the FDA’s estimate of 

8.5 years. 

 PhRMA provides statistics, based on its annual survey of pharmaceutical firms, 

on the distribution of 1999 pharmaceutical R&D expenditure by function: 

 

% of 1999 R&D 
expenditure  Function 

10.0%Synthesis and Extraction 
14.2%Biological Screening and Pharmacological Testing 
4.5%Toxicology and Safety Testing 
7.3%Pharmaceutical Dosage Formulation and Stability Testing 

29.1%Clinical Evaluation: Phases I, II, and III 
11.7%Clinical Evaluation: Phase IV 

                                        
6 Beginning in 1994, new indications were tracked as efficacy supplements, not as NDAs. 
7 Cross-sectional firm-level estimates support this hypothesis.  When we compute a (“reverse”) regression 
of a firm’s average annual R&D expenditure on its average annual number of NDA approvals, by type, the 
number of NMEs is positive and highly significant, and the number of other NDAs is not significantly 
different from zero. 
8 42% of the NMEs approved during 1990-2001 were “priority-review approvals”, i.e. considered by the 
FDA to represent “significant improvement compared to marketed products, in the treatment, diagnosis, or 
prevention of a disease”.  Only 14% of non-NME NDAs approved were priority-review approvals. 
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8.3%Process Development for Manufacturing and Quality Control 
4.1%Regulatory: IND and NDA 
1.8%Bioavailability 
9.0%Other 

These figures suggest that as much as 36% of R&D expenditure occurs during the pre-

clinical phase of drug development, which is, on average, (according to DiMasi’s 

estimates) about 8 years before NDA approval.  Another 29% of R&D expenditure 

occurs during the clinical phase, which is, on average, about 5 years before NDA 

approval.  On average, then, the lag from R&D expenditure to new drug approval appears 

to be quite long, and quite variable.   

 Long and variable lags is but one of the obstacles to a direct examination of the 

R&D-longevity relationship.  There are several others: apparently inconsistent estimates 

of pharmaceutical R&D investment, smoothness of the aggregate time-series R&D data, 

and lack of disaggregated data.  We discuss these in turn. 

 Divergent estimates.  There are two distinct surveys that provide data on the 

amount of pharmaceutical industry R&D: the National Science Foundation (NSF) Survey 

of Industrial Research and Development9, and the PhRMA Annual Survey of research-

based pharmaceutical companies.  Figure 4 shows estimates of aggregate pharmaceutical 

industry R&D from the two surveys.  Before 1990, the estimates differed by less than 

10%, but in 1996 and 1997, the estimates differed by about 30%. 

 Smoothness.  To identify the effect of pharmaceutical R&D investment on 

longevity, significant variability in R&D investment is required.  As Figure 4 suggests, 

aggregate pharmaceutical R&D investment is very closely approximated by an 

exponential trend, i.e. it exhibits very little variability. 10  This is not surprising: R&D in 

general is known to be very persistent, especially in comparison with ordinary 

investment. 

 Lack of disaggregated data.  In principle, variability of R&D investment could 

be increased via disaggrega tion, e.g. by class of drugs.  Unfortunately, the NSF survey 

does not provide any disaggregated pharmaceutical R&D investment data.  The PhRMA 

                                        
9 This survey is administered by the Census Bureau. 
10 The R2 of the regression of the PhRMA R&D series on an exponential trend is .9913. 
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survey does, but the drug classes are quite broad; 85% of investment during 1997-1999 

was in the largest four classes. 

Drug class 1997 1998 1999average 
Acting on the central nervous system and sense organs 29% 30% 23% 27%
Affecting neoplasms, endocrine system, and metabolic 
diseases 24% 23% 24% 23%
Acting on infective and parasitic diseases 22% 22% 14% 19%
Acting on the cardiovascular system 17% 17% 15% 16%
Acting on the respiratory system 6% 4% 4% 5%
Other human use 0% 0% 10% 3%
Biologicals 0% 3% 5% 3%
Acting on the digestive or genitourinary system 0% 0% 4% 1%
Diagnostic agents 2% 1% 0% 1%
Acting on the skin 0% 0% 1% 0%
Vitamins and nutrients 0% 0% 0% 0%
  

 Are patent data likely to be useful?  R&D and patenting are known to be 

closely related.11  Perhaps patent data could supersede most of the limitations of the R&D 

data.   

 The U.S. Patent and Trademark Office (USPTO) publishes data on the number of 

patents granted for “drug, bio-affecting and body treating compositions” (patent class 

514).  Figure 5 presents annual data on the number of “drug patents” (patents in class 

514) and total patents granted from 1980 to 2000.  Drug patents do exhibit somewhat 

more variability than R&D expenditure.12  However drug patents track total patents quite 

closely. 

 Disaggregation of drug patents by therapeutic action appears to be infeasible.  

Although certain subclasses of class 514 pertain to specific diseases (e.g. subclass 866 

refers to diabetes, and subclass 883 refers to Hodgkin’s disease13), these subclasses are 

“cross-reference art collections”, and drug patents are not systematically classified by 

disease or therapeutic action. 14 

                                        
11 See R&D, Patents, and Productivity, ed. by Zvi Griliches. 
12 The R2 of the regression of the drug patent series on an exponential trend is .8897. 
13  See http://www.uspto.gov/go/classification/uspc514/sched514.htm. 
14  The seventh (1999) edition of the International Patent Classification system appears to provide (in class 
A61P) a systematic classification of chemical compounds and medicinal preparations by therapeutic 
activity.  For example subclass 1/ 00 includes drugs for disorders of the alimentary tract or the digestive 
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 It appears that drug patents are often granted fairly early in the drug development 

cycle.  According to PhRMA, “the average period of effective patent life (when a drug 

can be marketed) for new drugs introduced in the early to mid-1990s with patent-term 

restoration has been only 11-12 years. Innovators in other industries typically receive 

upwards of 18.5 years of effective patent life.”15  This suggests that, on average, patents 

are granted at least seven years prior to the market introduction of new drugs.  Long and 

variable lags diminish the likelihood that drug patents can explain fluctuations in 

longevity. 

 Data on both pharmaceutical R&D expenditure and pharmaceutical patents are 

too aggregated, exhibit too little variability, and are subject to excessively long lags to 

serve as a basis for testing our key hypothesis.  But these limitations may be overcome by 

combining data from two different sources: First DataBank’s National Drug Data File 

(NDDF)16, and FDA data on NDA approvals17.  These data sources enable us to compute 

the stock of drugs available (i.e., previously approved by the FDA) to treat a given 

condition in a given year. 

The NDDF consists of a number of modules.  One of these is the indications 

module, “the goal of [which] is to minimize the risks associated with drug use.  The 

information in this module is intended to be used as a tool for assessing the 

appropriateness of drug therapy.”  We utilize just one part of the clinical module: the 

Drug Indications Master Table.  This table links indications (diseases) to drugs (active 

                                                                                                                     
system, and subclass 1/18 covers drugs for pancreatic disorders, e.g. pancreatic enzymes.  (See 
http://www.wipo.int/classifications/fulltext/new_ipc/index.htm.)   
15 http://www.phrma.org/publications/publications/profile01/chapter8.phtml.   
16 First DataBank, a wholly owned subsidiary of The Hearst Corporation, is a leading provider of electronic 
drug information. For more than two decades, it has delivered knowledge bases for various healthcare 
applications, including clinical decision support within the workflow. Its portfolio also includes 
comprehensive reference products; integrated content software; and specialty software for physicians and 
nutritionists. Many of these products help reduce the incidence of medication errors and adverse drug 
events, which can result in shorter hospital stays, lower medical costs, and improved patient care. The 
NDDF Plus knowledge base combines the drug information of the National Drug Data File with advanced 
clinical decision-support modules, to deliver complete descriptive, pricing and clinical information for 
every drug approved by the FDA. Their staff includes clinicians, software engineers and knowledge base 
experts. It is found in installations ranging from retail pharmacies to hospital pharmacies and laboratories; 
physician and other healthcare professional practices; as well as e-healthcare companies, managed care 
organizations and insurers. 
17 Section 505 of the Federal Food, Drug, and Cosmetic Act states that “no person shall introduce or deliver 
for introduction into interstate commerce any new drug, unless an approval of an application…is effective 
with respect to such drug.” 
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ingredients): it lists all of the drugs appropriate for treatment of each indication.  

Indications are coded using the International Classification of Diseases, Ninth Revision 

(ICD9)18, the same classification system used in the mortality data we will analyze.19   

 Sample data from the NDDF Drug Indications Master Table, for two 

indications—tuberculosis and hypercholesterolemia—are shown in Table 1.20  The table 

lists 11 drugs appropriate for the treatment of tuberculosis, and 14 drugs appropriate for 

the treatment of hypercholesterolemia.  All of the tuberculosis drugs are designated as 

“labeled”, but three of the hypercholesterolemia drugs are designated as “unlabeled”.21  

According to the American Medical Association’s Council on Scientific Affairs, 

Unlabeled uses are defined as the use of a drug product for indications or in 
patient populations, doses, or routes of administration that are not included in 
FDA-approved labeling.  The prevalence and clinical importance of prescribing 
drugs for unlabeled uses are substantial. Unlabeled indications are especially 
common in oncology, rare diseases, and pediatrics. Thus, the prescribing of drugs 
for unlabeled uses is often necessary for optimal patient care.22 

We will construct estimates of the stock of drugs available to treat specific conditions, 

both excluding and including unlabeled indications. 

 The NDDF Drug Indications Master Table lists all of the drugs appropriate for 

treating given conditions that were available in the year 1999.23  We want to determine 

the number of drugs appropriate for treating given conditions that were available in each 

of the years 1979-1998 (the years for which we have mortality data).  To determine this, 

                                        
18 The International Classification of Diseases (ICD) is designed for the classification of Morbidity and 
Mortality information for statistical purposes, and for the indexing of hospital records by disease and 
operations, for data storage and retrieval.  The International Classification of Disease is developed 
collaboratively between the World Health Organization (WHO) and 10 international centers, for purposes 
of ensuring that medical terms reported on death certificates are internationally comparable and lend 
themselves to statistical analysis. The ICD has been revised approximately every 10 years since 1900 in 
order to reflect changes in understanding of disease mechanisms and in disease terminology. 
19 Information about drugs appropriate for treatment of specific indications can be obtained on a piecemeal 
basis from http://www.medscape.com. 
20 The complete Drug Indications Master Table contains almost 7000 links between indications and drugs. 
21 About 25% of the almost 7000 entries in the Drug Indications Master Table are designated “unlabeled”. 

22 http://www.ama-assn.org/ama/pub/article/2036-2420.html.  See also Cranston JW, Williams MA, 
Nielsen NH, Bezman RJ, for the Council on Scientific Affairs. “Unlabeled indications of Food and Drug 
Administration-approved drugs,” Drug Information Journal. 1998; 32:1049-1061. 

23 Unfortunately, earlier versions of the NDDF Drug Indications Master Table are not available. 



 14

we identified, from published and unpublished FDA data, the year in which each of the 

drugs listed in the NDDF Drug Indications Master Table was first approved as a New 

Molecular Entity (NME) by the FDA.  The FDA provided us with a list of all 821 NMEs 

approved by the FDA during the period 1950-1993.  We extended this list through 1998 

using another unpublished FDA data file and data posted on the FDA website.  The FDA 

data on NME approvals are illustrated in Table 2, which shows NMEs approved in 

calendar year 2000. 

 We aggregated the data in the NDDF Drug Indications Master Table up to the 

(approximately) 2-digit ICD9 level, to be consistent with the CDC Mortality Data 

(described below).  There is considerable variation across diseases—even diseases in the 

same broad disease groups—in the extent and timing of increases in the stock of available 

drugs.  This is illustrated by Figure 6, which shows, for two conditions—diseases of the 

thyroid gland and diseases of other endocrine glands—the number of drugs available to 

treat the condition in year t, as a percent of the number of drugs available to treat the 

condition in 1979.24  Between 1979 and 1984, the number of drugs available to treat 

diseases of the thyroid gland increased 29%, while the number of drugs available to treat 

diseases of other endocrine glands increased only 13%.  However, between 1984 and 

1998, the number of drugs available to treat diseases of the thyroid gland did not increase 

at all, while the number of drugs available to treat diseases of other endocrine glands 

increased 33%.   

 The algorithm we adopted is based on the assumption that a drug linked to a 

condition in the NDDF Drug Indications Master Table became available to treat the 

condition in the year that the drug was first approved as an NME by the FDA.  We know 

that this assumption is incorrect in at least some cases, because some of a drug’s 

indications may be added years after the drug was first approved as an NME.  Table 3 

provides examples of New Indication approvals, and the predecessor NME approvals.  

Amantadine hydrochloride was initially approved as an NME in 1966, and designated as 

an antiviral/anti- influenza/systemic drug.  Seven years later, a new indication of the drug 

was approved by the FDA, and it was also classified as an anti-parkinson drug.  

                                        
24 In 1979, there were 7 drugs for treating diseases of the thyroid gland, and 38 drugs for treating diseases 
of other endocrine glands 
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Unfortunately, although we have complete data on NME approvals, data on New 

Indication approvals are incomplete.  Even if complete data on New Indication approvals 

by the FDA were available, in light of extensive unlabeled drug use, it is not clear how 

they should be used.  A drug approved as an NME might be frequently prescribed for 

many years for a condition that is “off- label”. 

When the FDA receives a New Drug Application, it assesses the drug’s 

“therapeutic potential”, and classifies it as either a “Priority Review” drug—one that 

represents a “significant improvement compared to marketed products, in the treatment, 

diagnosis, or prevention of a disease”—or a “Standard Review” drug—one that “appears 

to have therapeutic qualities similar to those of one or more already marketed drugs.”25  

Two diseases that have similar increases in the total number of NMEs approved may 

have quite different increases in the number of priority review NMEs approved.  For 

example, 16 drugs for treating syphilis were approved during 1979-1998, but only 5 

(31%) of these were priority review drugs.  The total number of drugs approved for 

treating lymph cancer was lower—14—but 10 (71%) of these drugs were priority review 

drugs.  In our empirical analysis, we will distinguish between the stock of priority review 

drugs available to treat a condition and the stock of standard review drugs available. 

 

2. Model 

 

 The basic model we will estimate is: 

 

MORTit = β  DRUG_STOCKit + αi + δt + ε it    (6) 

 

where: 

MORTit = an indicator of mortality (e.g., mean age at death) from ICD9 disease i 

(i = 00, 01, …, 99) in year t (t = 1979, 1980,…, 1998) 

DRUG_STOCKit = the stock of drugs available to treat disease i in year t 

 

                                        
25 Applications for new indications are also classified by therapeutic potential, and the therapeutic potential 
of a new indication may differ from the therapeutic potential of the NME. 
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The fixed disease effects (αi‘s) control for any determinants of mortality that vary across 

diseases but do not vary over time.  The year effects (δ t’s) control for any determinants of 

mortality that vary over time but do not vary across diseases.  If the estimate of β  is 

positive and significant, that indicates that diseases with above-average increases in the 

stock of drugs had above-average changes in the mortality indicator.   

We can allow for different effects of priority-review and standard-review drug 

approvals by estimating the more general model: 

 

MORTit = βP PRI_STOCKit + βS STD_STOCKit + αi + δt + ε it  (7) 

 

where: 

PRI_STOCKit = the stock of priority-review drugs available to treat disease i in 

year t 

STD_STOCKit = the stock of standard-review drugs available to treat disease i in 

year t 

 

We think it is worthwhile to briefly discuss how this model relates to the literature 

on endogenous technical change and on embodiment. 

Endogenous technical change model.  In Romer’s (1990) model of endogenous 

technological change, labor is used to produce either output or ideas: 

 
L = LY + LA 
 
where 
 

  L = total labor 
LY = labor used to produce output 
LA = labor used to produce ideas 

 
The production function for output is: 
 

Y = K α(A LY)1-α (0 < α < 1) 
 

where: 
 
Y = output 
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K = capital 
A = stock of ideas 

 
The production function for ideas is: 
 

∆A = A+1 - A = δ LA
λ Aφ 

 

where 0 < λ < 1  and φ may be either positive or negative. The DRUG_STOCK variable 

corresponds to Romer’s “stock of ideas” variable (A).  In the empirical analysis, we count 

only the “ideas” (new molecular entities) that have been approved by the FDA. 

While the model we will estimate is consistent with Romer’s embodied technical 

change model, there are other ways in which one might specify the drugs-mortality 

relationship.  New products and ideas do not diffuse instantaneously throughout the 

economy or health care system.  After new drugs are introduced, some people continue to 

use old drugs.  Hence measures of the vintage distribution of drugs used to treat a given 

disease in a given year might be preferable to a simple count of the number of drugs 

available to treat the disease.  In practice, however, measurement of the vintage 

distribution of drugs used by disease and year is far more difficult than measurement of 

the number of drugs available by disease and year.  Vintage data can be constructed from 

the National Ambulatory Medical Care Survey (NAMCS), a survey of physician office 

visits that collects data on patient diagnoses and drugs prescribed.  Unfortunately, prior to 

1989, it was conducted in only three years: 1980, 1981, and 1985.26  NAMCS is an 

approximately 1- in-10,000 survey of office visits, so it is subject to considerable 

sampling error.  More than one diagnosis is recorded in a significant number of visits; in 

these cases it is difficult to allocate or assign drugs to diseases.  Drug vintages are subject 

to left-censoring: the vintages of drugs that existed prior to the creation of the FDA in 

1939 can’t be determined.  Finally, interpretation of the coefficient on the number of 

drugs available is perhaps more straightforward than interpretation of the coefficient on 

the mean age of drugs used. 

Embodiment.  Implicit in this specification is the hypothesis that the technical 

progress generated by pharmaceutical R&D is embodied in new drugs.  Solow and other 

economists have recognized since the late 1950s that there are two kinds of technical 

                                        
26 It has been conducted annually since 1989. 
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progress: disembodied and embodied.  Suppose that agent i in the economy (e.g. a firm or 

government agency) engages in research and development.  If technical progress is 

disembodied, another agent (j) can benefit from agent i’s R&D whether or not he 

purchases agent i’s products. But if technical progress is embodied, agent j benefits from 

agent i’s R&D only if he purchases agent i’s products.  Solow conjectured that most 

technical progress was embodied.  In one paper (Solow (1962, p. 76)), he assumed that 

“all technological progress needs to be ‘embodied’ in newly produced capital goods 

before there can be any effect on output.” 

A number of econometric studies have investigated the hypothesis that capital 

equipment employed by U.S. manufacturing firms embodies technological change, i.e. 

that “each successive vintage of investment is more productive than the last.”  Equipment 

is expected to embody significant technical progress due to the relatively high R&D-

intensity of equipment manufacturers.  According to the National Science Foundation, 

the R&D-intensity of machinery and equipment manufacturing is about 50% higher than 

the R&D-intensity of manufacturing in general, and 78% higher than the R&D intensity 

of all industries.  

One method that has been used to test the equipment-embodied technical change 

hypothesis is to estimate manufacturing production functions, including (mean) vintage 

of equipment as well as quantities of capital and labor.  Bahk and Gort (1993) argued that 

“we can take due account of the effect of vintage by measuring the average vintage of the 

stock”  (p. 565).  Similarly, Sakellaris and Wilson (2000) stated that “a standard 

production function estimation (in logs) provides an estimate of embodied technical 

change by dividing the coefficient on average age [of equipment] by the coefficient on 

capital stock” (capital’s share in total cost).   

These studies have concluded that technical progress embodied in equipment is a 

major source of manufacturing productivity growth.  Hulten (1992) found that as much as 

20 percent (and perhaps more) of the BLS total- factor-productivity change (in 

manufacturing) can be directly associated with embodiment—the higher productivity of 

new capital than old capital.  For equipment used in U.S. manufacturing, best-practice 

technology may be as much as 23 percent above the average level of technical efficiency.   
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Bahk and Gort (1993) concluded that “Industrywide learning appears to be uniquely 

related to embodied technical change of physical capital.  Once due account is taken of 

the latter variable, residual industrywide learning [disembodied technical change] 

disappears as a significant explanatory variable” (p. 579).  And Sakellaris and Wilson 

(2000) estimate that “each vintage is about 12 percent more productive than the previous 

year’s vintage (in the preferred specification)”, and that equipment-embodied technical 

change accounted for about two thirds of U.S. manufacturing productivity growth 

between 1972 and 1996.   

Estimation of eqs. (6) and (7) enables us to test the pharmaceutical-embodied 

technical progress hypothesis—the hypothesis that newer drugs increase longevity—and 

to estimate the contribution of new drugs to longevity increase. 

One might be concerned that estimation of these equations could result in 

overestimation of the average longevity impact of pharmaceutical innovation.  Suppose 

that the expected effect of a new drug on mean age at death is higher for some diseases 

than for others: instead of a single β  in eq. (6), there is a distribution of β i’s.  One might 

hypothesize that pharmaceutical companies would devote most of their research budgets 

to diseases where the expected effect of a new drug on mean age at death is highest, and 

therefore that most new drugs would be developed for such diseases.  However a more 

rational investment strategy would be to invest heavily in diseases where the total (as 

opposed to average) expected increase in life-years is greatest.  Suppose that the expected 

effect of a new drug on mean age at death from disease A is 6 months, and that the 

expected effect of a new drug on mean age at death from disease B is 1 month.  If 10 

times as many people suffer from disease B as from disease A, then the social (and 

presumably private) benefits to investment in disease B is higher, even though the benefit 

per patient is lower.  Since firms will not necessarily invest more in diseases with high 

benefits per patient27, it is not obvious that the estimate of β  will be an overestimate of 

the (weighted) mean of the β i’s (weighted by number of new drugs).   

                                        
27 In 1983, Congress passed the Orphan Drug Act, in an attempt to encourage firms to develop drugs for the 
treatment of rare diseases (diseases borne by fewer than 200 thousand Americans).  See Lichtenberg, 
Frank, and Joel Waldfogel, “Does Misery Love Company? Evidence from Pharmaceutical Markets Before 
and After the Orphan Drug Act,” working paper, 2002. 
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Other medical innovations.  In 1995, pharmaceutical R&D accounted for more 

than half, and perhaps as much as two thirds, of industry funding for health R&D. 28  New 

drugs are not the only type of medical innovation that might be hypothesized to 

contribute to longevity increase.  Another important kind of innovation, and one that is 

also regulated by the FDA, is medical devices.  If a company seeks to market a medical 

device, FDA approval of a Premarket Approval Application (PMA) is required.  

Premarket approval by the FDA is the required process of scientific review to ensure the 

safety and effectiveness of all devices classified as Class III devices.  The FDA maintains 

a PMA database (http://www.fda.gov/cdrh/pmapage.html).  From this database, one can 

construct estimates of the number of PMA approvals, by various characteristics.  Figure 7 

shows the number of original PMAs reviewed by the FDA during the period 1981-2001.  

One characteristic is the identity of the Advisory Committee that has jurisdiction over the 

device.  As Table 4 indicates, there are nineteen Advisory Committees, but two 

committees account for more than half of all original PMAs.29  Moreover, it would be 

difficult to construct a “mapping” from PMAs classified by Advisory Committee to 

mortality data classified by ICD9 code.  PMAs are also classified by “Product Code”, but 

the number of distinct Product Codes is extremely large (almost as large as the number of 

PMAs--over 5000), they do not appear to be hierarchically organized, and it would be 

difficult to construct a “mapping” from Product Codes to ICD9 codes.  (Unfortunately, 

neither First DataBank nor anyone else produces a Device Indications Master Table.)30 

                                        
28 According to data compiled by the National Institutes of Health, in 1995, industry funding for health 
R&D was equal to $18,645 million.  
(http://www.cdc.gov/nchs/products/pubs/pubd/hus/tables/2001/01hus126.pdf)  The National Science 
Foundation reports that company-funded R&D in drugs and medicines in that year was $10,202 million, 
and PhRMA reports that domestic U.S. R&D by pharmaceutical firms was $11,874 million. 
29 Over 90% of PMAs are “supplemental” PMAs: applications to modify the design, manufacturing, or 
other aspects of original PMAs. 
30 The PMA database includes “device description / indications” information, but disease coding of this 
information would be challenging and costly.  Here is sample information about PMA Number P010054, 
Approval for the Elecsys Anti-HBs Immunoassay and Elecsys PreciControl Anti-HBs:  “The Elecsys Anti-
HBs Immunoassay is indicated for: The qualitative determination of total antibodies to the hepatitis B 
surface antigen (HBsAg) in human serum and plasma (EDTA). The electrochemilumin-escence 
immunoassay "ECLIA" is intended for use on the Roche Elecsys 2010 immunoassay analyzer. Assay 
results may be used as an aid in the determination of susceptibility to hepatitis B virus (HBV) infection for 
individuals prior to or following HBV vaccination, or where vaccination status is unknown. Assay results 
may be used with other HBV serological markers for the laboratory diagnosis of HBV disease associated 
with HBV infection. A reactive assay result will allow a differential diagnosis in individuals displaying 
signs and symptoms of hepatitis in whom etiology is unknown. The detection of anti-HBs is indicative of 
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 Suppose that mortality from disease i in year t depends on the stocks of both 

drugs and devices approved to treat that disease.  We can measure the stock of drugs, but 

due to the data limitations just described, we cannot measure the stock of devices.  If 

changes in the stock of devices are uncorrelated across diseases with changes in the stock 

of drugs, the drug-stock coefficient is unbiased.  If changes in the stocks of devices and 

drugs are correlated, the drug-stock coefficient is biased.  The direction of bias depends 

on the sign of the correlation.  If the change in the stock of devices is negatively 

correlated across diseases with the change in the stock of drugs, the drug-stock 

coefficient is downward biased.  Some evidence suggests that this correlation may indeed 

be negative.  Lichtenberg (1996, 2001) presented evidence that use of newer drugs is 

associated with lower utilization of hospital care.  Since use of some medical devices, 

such as stents and artificial hearts, requires hospitalization, drugs and devices may be 

substitutes rather than complements. 

 

3.  Measurement of changes in the age distribution of deaths, by cause of death 

 

We used the Compressed Mortality File (CMF) to measure changes in the age 

distribution of deaths, by cause of death.  The CMF is a county-level national mortality 

and population data base spanning the years 1968-1999, produced by the Office of 

Analysis and Epidemiology, National Center for Health Statistics, Centers for Disease 

Control and Prevention.  The mortality database of the CMF is derived from the U.S. 

records of deaths that occurred in 1979-1999.   

Deaths are classified by underlying cause.  The person completing the death 

certificate is instructed to report, according to his or her best medical opinion, “the cha in 

of events leading directly to death, proceeding from the immediate cause of death (the 

final disease, injury, or complication directly causing death) to the underlying cause of 

death (the disease or injury that initiated the chain of morbid events which led directly to 

                                                                                                                     
laboratory diagnosis of seroconversion from hepatitis B virus (HBV) infection. The Elecsys PreciControl 
Anti-HBs is indicated for: The preciControl Anti-HBs is used for quality control of the Elecsys Anti-HBs 
immunoassay on the Elecsys 2010 immunoassay analyzer. The performance of the PreciControl Anti-HBs 
has not been established with any other Anti-HBs assay.” 
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death).”31  For example, Part I of the cause-of-death section of the certificate might be 

completed in the following way: 

 
  Approximate 

interval between 
onset and death 

 Rupture of myocardium (immediate cause) minutes 
Due to (or as a 
consequence of): 

Acute myocardial infarction 6 days 

Due to (or as a 
consequence of): 

Chronic ischemic heart disease (underlying cause) 5 years 

 
The system used to classify deaths changed in 1979 and again in 1999.  The three 

classification schemes are different enough so as to make direct comparisons of cause of 

death difficult, so our analysis is confined to the period 1979-1998.32 

Counts and rates of death can be obtained by place of residence (U.S., state, and 

county), age, race (white, black, and other), gender, year, and underlying cause-of-death 

(4-digit ICD code or group of codes).  There are 17 age groups: under 1 day, 1 - 6 days, 7 

- 27 days, 28 - 364 days, 1 - 4 years, 5 - 9 years, 10 - 14 years, 15 - 19 years, 20 - 24 

years, 25 - 34 years, 35 - 44 years, 45 - 54 years, 55 - 64 years, 65 - 74 years, 75 - 84 

years, over 85 years, and unknown.  We excluded infant deaths (age less than 1 year) and 

deaths at unknown ages.  For each approximately 2-digit ICD9 code and year, we 

calculated two statistics: mean age at death33, and the fraction of deaths that occurred 

before age 65.   

 Data on the number of deaths, population, and the crude death rate, by age group 

for 1979 and 1998 are presented in Table 5.  The crude death rate declined in every age 

group except the highest (over 85 years).  Despite this, the crude death rate for the entire 

population increased, due to aging of the population.  The fraction of deaths occurring 

before age 65 decreased from 32% in 1979 to 24% in 1998. 

                                        
31 CDC, “Instructions for completing the cause-of-death section of the death certificate,” 
http://www.cdc.gov/nchs/data/dvs/cod.pdf 
32 Data for 1979-1999 are available at the website http://wonder.cdc.gov/mortsql.shtml . 
33 We assumed that deaths in a given age interval occurred at the mean of the lower and upper ages of the 
interval, e.g. deaths at ages 1-4 occurred at age 2.5.  We assumed that deaths at ages greater than 85 
occurred at age 89.5. 
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 Figure 8 shows a comparison of mean age at death (from all causes) to life 

expectancy at birth over the period 1979-1997.34  Life expectancy at birth is higher than 

mean age at death.  For example, in 1997 life expectancy at birth was 76.5 years, and 

mean age at death was 71.9 years.  However the 1979-1997 increase in mean age at death 

(4.0 years) was greater than the increase in life expectancy at birth (2.6 years). 

 

4. Empirical Results 

 

 Estimates of equations (6) and (7) are presented in Table 6.  All equations are 

estimated via weighted least squares, where the weight is equal to the number of deaths.  

In the first column, the dependent variable is mean age at death, drugs not labeled for a 

given indication are excluded, and we do not distinguish between priority-review and 

standard-review drugs.  The coefficient on the total stock of drugs is positive but only 

marginally significant (p-value=.11).  The second column is the same, except that 

unlabeled drugs listed in the NDDF Drug Indications Master Table are included.  This 

has a modest positive effect on the point estimate of β , but reduces its standard error, so 

that the estimate is now highly significant (p-value=.02).  This is consistent with the 

AMA Council on Scientific Affairs’ observation that “the prevalence and clinical 

importance of prescribing drugs for unlabeled uses are substantial,” and with the 

hypothesis that increases in the stock of (labeled and unlabeled) drugs to treat a condition 

increase the mean age at which people die from that condition. 

                                        
34 Source: Anderson, Robert (1999). United States life tables, 1997. National vital statistics reports; vol 47 
no. 28. Hyattsville, Maryland: National Center for Health Statistics.  Life expectancy (ex )--the average 
number of years of life remaining for persons who have attained a given age (x)--is the most frequently 
used life table statistic.  Calculation of the complete life table is derived from the probability of death (qx ), 
which depends on the number of deaths (Dx ) and the midyear population (Px ) for each single year of age 
(x) observed during the calendar year of interest.  There are two types of life tables—the generation or 
cohort life table and the current life table.  The current life table (upon which these life expectancy figures 
are based) does not represent the mortality experience of an actual cohort.  Rather, the current life table 
considers a hypothetical cohort and assumes that it is subject to the age-specific death rates observed for an 
actual population during a particular period. Thus, for example, a current life table for 1997 assumes a 
hypothetical cohort subject throughout its lifetime to the age-specific death rates prevailing for the actual 
population in 1997. The current life table may thus be characterized as rendering a ‘‘snapshot’’ of current 
mortality experience, and shows the long-range implications of a set of age-specific death rates that 
prevailed in a given year.   
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 In the equations reported in columns 3 and 4, the dependent variable is an 

alternative statistic of the age distribution of deaths: the fraction of deaths that occur 

before the age of 65.  These estimates seem to confirm the estimates in the first two 

columns: when unlabeled indications are excluded, β  is insignificantly different from 

zero, but when they are included, β  is negative and highly significant, indicating that 

increases in the stock of drugs reduce the probability of dying before the age of 65.   

 In columns 5 and 6, the dependent variable is again mean age at death, but the 

stock of drugs is classified by therapeutic potential, i.e. disaggregated into priority-review 

and standard-review drugs.  Whether or not unlabeled indications are included, βP (the 

coefficient on the stock of priority-review drugs) is positive and highly significant, and βS 

(the coefficient on the stock of standard-review drugs) is insignificantly different from 

zero.  This is not surprising, since, as discussed earlier, priority-review drugs are those 

that represent a “significant improvement compared to marketed products, in the 

treatment, diagnosis, or prevention of a disease,” while standard-review drugs are those 

that “appear to have therapeutic qualities similar to those of one or more already 

marketed drugs.”  Once again, the estimate of βP is larger and more significant when 

unlabeled indications are included than it is when they are excluded. 

 Columns 7 and 8 report analogous regressions, in which the dependent variable is 

the fraction of deaths that occur before the age of 65.  Once again, we cannot reject the 

null hypothesis that the stock of standard-review drugs has no effect on mortality, but the 

hypothesis that the stock of priority-review drugs has no effect on mortality can be 

rejected, especially when unlabeled indications are included. 

 Since βS is not significant in any equation in columns 5-8, in columns 9-12 we 

estimate models that include only the stock of priority-review drugs.  The estimates of βP 

in columns 9-12 are fairly similar to their counterparts in columns 5-8.  We will use the 

estimate of βP in column 10 to evaluate the contribution of pharmaceutical knowledge-

capital accumulation to the increase in the mean age at death during the period 1979-

1998.   
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 Sample mean35 values of the dependent and independent variable in 1979 and 

1998 are as follows: 

year AGE_DEATH PRI_STOCK 
1979 69.6 4.6 
1998 73.4 10.6 
change 3.8 6.0 
 

Mean age at death increased by 3.8 years from 1979 to 1998: ∆AGE_DEATH = 3.8 

years.  The mean stock of priority-review drugs increased by 6.0 drugs: ∆PRI_STOCK = 

6.0 drugs.  The estimated contribution of the increase in the stock of priority-review 

drugs to the increase in mean age at death is βP * ∆PRI_STOCK = .065 * 6.0 = 0.39 

years.  The increase in the stock of priority-review drugs is estimated to have increased 

mean age at death by 0.39 years (4.7 months) during this period.  Hence, about 10 percent 

of the total increase in mean age at death is due to the increase in the stock of priority-

review drugs.36   

 Now we will attempt to compare the value of the longevity benefit of 

pharmaceutical knowledge-capital accumulation to its cost.  During the period 1979-

1998, 508 NMEs (about 25/year) were approved by the FDA.  The Office of Technology 

Assessment estimated that the average cost of an NME approval is $359 million, so the 

total cost of pharmaceutical knowledge-capital accumulation during the period was 508 

NMES * $359 million/NME = $182 billion. 37 

 The increase in the stock of priority-review drugs is estimated to have increased 

mean age at death by 0.39 years during this period.  There are about 2 million deaths per 

year, so the total number of life-years gained per year is 0.39 * 2 million = 800,000 life-

years/year.  A number of authors have estimated that the value of a life-year is in the 

neighborhood of $150,000.  Hence the value of the annual gain in life-years is 800,000 * 

$150,000 = $120 billion.  Presumably, knowledge capital does not depreciate (although it 

                                        
35 These are weighted means, weighted by the number of deaths. 
36 This estimate may be conservative, because it includes only the within-disease increase in mean age at 
death.  We estimate that about 19% of the overall increase in mean age at death was due to a shift in the 
distribution of fatal diseases.  Approval of new drugs may have contributed to this shift as well as to the 
within -disease increase in mean age at death.   
37 This is the cost of all NMEs approved—both priority-review and standard-review.  About 40% of NMEs 
are priority-review NMEs. 
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can be rendered obsolete by future knowledge capital accumulation), so even if no new 

drugs were approved after 1998, people would continue to experience the 0.39-year 

higher life expectancy in all future years.  In other words, the $120 billion may be viewed 

as an annuity.   

As noted earlier (Figure 3), DiMasi estimates that, in the last two decades, drug 

development has taken about 14 years.  Suppose that the $182 billion in R&D 

expenditure is evenly distributed over an initial 14-year period, i.e. $13 billion/year in 

years 1-14.  In year 15 and all future years, the population experiences a gain in life-years 

whose annual value is $120 billion.  The internal rate of return to this series of cash flows 

is 18%.   

 

5.  Summary and Conclusions  

 

People value leisure time as well as goods, so longevity increase is an important 

part of economic growth, broadly defined.  R&D is the principal source of economic 

growth, and the pharmaceutical industry is the most R&D-intensive sector of the 

economy.  In this paper we have assessed the contribution of pharmaceutical R&D to 

longevity increase (hence to economic growth), by analyzing the relationship between 

FDA approvals of new molecular entities and changes in the age distribution of deaths, 

using longitudinal disease- level data. 

We computed the stock of drugs available (i.e., previously approved by the FDA) 

to treat a given condition in a given year by combining FDA data with data from First 

DataBank’s National Drug Data File.  We used the CDC’s Compressed Mortality File to 

measure changes in the age distribution of deaths, by cause of death.   

The estimates indicated that approval of standard-review drugs—drugs whose 

therapeutic qualities the FDA considers to be similar to those of already marketed 

drugs—has no effect on longevity, but that approval of priority-review drugs—those 

considered by the FDA to offer significant improvements in the treatment, diagnosis, or 

prevention of a disease—has a significant positive impact on longevity.  Increases in the 

stock of (labeled and unlabeled) drugs to treat a condition increase the mean age at which 

people die from that condition, and reduce the probability of dying before the age of 65. 
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The increase in the stock of priority-review drugs is estimated to have increased 

mean age at death by 0.39 years (4.7 months) during the period 1979-1998.  Ten percent 

of the total increase in mean age at death was due to the increase in the stock of priority-

review drugs.  The rate of return on investment in pharmaceutical R&D is 18%.   This 

rate of return reflects only the value of increased longevity among Americans; foreigners 

also benefit, and evidence38 suggests that there may be additional benefits of new drugs 

to Americans, including reduced hospital expenditure and reduced limitations on work 

and other activities.  

                                        
38 Lichtenberg, Frank, “Are the Benefits of Newer Drugs Worth Their Cost? Evidence from the 1996 
MEPS,” Health Affairs 20(5), September/October 2001, 241-51, and Lichtenberg, Frank, and Suchin 
Virabhak, “Pharmaceutical-embodied technical progress, longevity, and quality of life: drugs as ‘equipment 
for your health,’” working paper, Columbia University, Dec. 2001. 
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Figure 2
Commercial INDs received and NDAs received and approved, 1990-2001
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Figure 3
Average number of years for drug development, 1960s to 1990s
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Figure 4
Estimates of aggregate pharmaceutical industry R&D from NSF and PhRMA surveys
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Figure 5
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Figure 5
U.S. drug patents granted and total patents granted, 1980 to 2000
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ICD9 code Indication Drug Labeled or unlabeled

0119 TUBERCULOSIS                                CAPREOMYCIN L
0119 TUBERCULOSIS                                  ISONIAZID L
0119 TUBERCULOSIS                                CYCLOSERINE L
0119 TUBERCULOSIS                                 ETHAMBUTAL L
0119 TUBERCULOSIS                                ETHIONAMIDE L
0119 TUBERCULOSIS                      AMINOSALICYATE SODIUM L
0119 TUBERCULOSIS                        ACETYLCYSTEINE(INH) L
0119 TUBERCULOSIS                               PYRAZINAMIDE L
0119 TUBERCULOSIS                                   RIFAMPIN L
0119 TUBERCULOSIS                     RIFAMPIN AND ISONIAZID L
0119 TUBERCULOSIS, PULMONARY                     RIFAPENTINE L

272 HYPERCHOLESTEROLEMIA                         LOVASTATIN L
272 HYPERCHOLESTEROLEMIA                        PRAVASTATIN L
272 HYPERCHOLESTEROLEMIA                        SIMVASTATIN L
272 HYPERCHOLESTEROLEMIA                     CHOLESTYRAMINE L
272 HYPERCHOLESTEROLEMIA                         COLESTIPOL L
272 HYPERCHOLESTEROLEMIA                           PROBUCOL L
272 HYPERCHOLESTEROLEMIA                        FLUVASTATIN L
272 HYPERCHOLESTEROLEMIA                       ATORVASTATIN L
272 HYPERCHOLESTEROLEMIA              NIACIN(SA-LIPOTROPIC) L
272 HYPERCHOLESTEROLEMIA                       CERIVASTATIN L
272 HYPERCHOLESTEROLEMIA                             GARLIC L
272 HYPERCHOLESTEROLEMIA                      PSYLLIUM,BRAN U
272 HYPERCHOLESTEROLEMIA                           NEOMYCIN U
272 HYPERCHOLESTEROLEMIA      CONJ. ESTROGEN,M-PROGESTERONE U

Table 1
Sample data for two indications from NDDF Drug Indications Master Table



NDA 
Number Generic Name  Trade Name Dosage Form Applicant       

Classific
ation  Approval Date

20-989 Cevimeline HCl Evoxac Capsule Snowbrand 1S 1/11/00
21-014 Oxcarbazepine Trileptal Tablet Novartis Pharms 1S 1/14/00
20-987 Pantoprazole Sodium Protonix Tablet Wyeth Ayerst 1S 2/2/00
21-107 Alosetron HC1 Lotronex Tablet Glaxo Wellcome 1P 2/9/00

Perfluoroalkylpolyether; (PFPE)
Polytetrafluoroethylene (PTFE) 

20-789 Zonisamide Zonegran Capsule Elan Pharms 1S 3/27/00
20-971 Articaine HCl 4%; Epinephrine Septocaine Injectable Deproco 1,4S 4/3/00
21-119 Verteporfin Visudyne Injectable QLT PhotoTherapeutics 1P 4/12/00
20-938 Meloxicam Mobic Tablet Boehringer Pharms 1S 4/13/00
21-130 Linezolid Zyvox Tablet Pharmacia and Upjohn 1P 4/18/00
21-081 Insulin Glargine Lantus Injectable Aventis Pharms 1S 4/20/00
20-823 Rivastigmine Tartrate Exelon Capsule Novartis Pharms 1S 4/21/00
21-174 Gemtuzumab Ozogamicin Mylotarg Injectable Wyeth Ayerst 1PV 5/17/00
21-176 Colesevelam HCl Welchol Tablet GelTex 1S 5/26/00
20-986 Insulin Aspart Recombinant NovoLog Injectable Novo Nordisk 1S 6/7/00
20-715 Triptorelin Pamoate Trelstar Depot Injectable Debio Recherche 1S 6/15/00
20-883 Argatroban Acova Injectable Texas Biotech 1S 6/30/00
20-484 Tinzaparin Sodium Innohep Injectable Dupont Pharms 1S 7/14/00
20-610 Balsalazide Disodium` Colazal Capsule Salix Pharms 1S 7/18/00
20-941 Docosanol Abreva Cream Avanir Pharm 1S 7/25/00
21-214 Unoprostone Isopropyl Rescula Solution Ciba Vision 1P 8/3/00
21-197 Cetrorelix Acetate Cetrotide Injectable Asta Medica 1S 8/11/00
21-226 Lopinavir;Ritonavir Kaletra Capsule Abbott Labs 1,4P 9/15/00
21-248 Arsenic Trioxide Trisenox Injectable Cell Therapeutics 1PV 9/25/00
20-687 Mifepristone Mifeprex Tablet Population Council 1P 9/28/00
20-873 Bivalirudin Angiomax Injectable The Medicines Co 1S 12/15/00
21-204 Nateglinide Starlix Tablet Novartis 1S 12/22/00

Table 2

US Army Med Res and 
Material Command

NMEs Approved in Calendar Year 2000

1,4P 2/17/0021-084
Skin Exposure 
Reduction Paste Paste



Figure 6
Number of drugs available to treat condition in year t, 

as % of number of drugs available to treat condition in 1979
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Disorders of thyroid gland
Disorders of other endocrine glands



INGREDIENT NAME CHEMICAL TYPE APPROVED DATE THERAPEUTIC CLASS
AMANTADINE HYDROCHLORIDE NEW MOLECULAR ENTITY 18-Oct-66 ANTIVIRAL - ANTI-INFLUENZA - SYSTEMIC
AMANTADINE HYDROCHLORIDE NEW INDICATION 18-Apr-73 ANTI-PARKINSON DRUGS

CLOTRIMAZOLE NEW MOLECULAR ENTITY 3-Feb-75 FUNGICIDES (TOPICAL)
CLOTRIMAZOLE NEW INDICATION 29-Jul-96 ANTIFUNGAL (CANDIDIASIS)

CROMOLYN SODIUM NEW MOLECULAR ENTITY 20-Jun-73 BRONCHODILATOR
CROMOLYN SODIUM NEW INDICATION 3-Jan-97 RESPIRATORY

CYCLOSPORINE NEW MOLECULAR ENTITY 14-Nov-83 IMMUNOMODULATORS
CYCLOSPORINE NEW INDICATION 22-May-97 NSAID

CYPROHEPTADINE HYDROCHLORIDE NEW MOLECULAR ENTITY 17-Oct-61 ANTIHISTAMINE/ORAL
CYPROHEPTADINE HYDROCHLORIDE NEW INDICATION 18-Sep-69 APPETITE STIMULATION

FLUOXETINE HYDROCHLORIDE NEW MOLECULAR ENTITY 29-Dec-87 ANTIDEPRESSANTS
FLUOXETINE HYDROCHLORIDE NEW INDICATION 28-Feb-94 OBSESSIVE COMPULSIVE DISORDER

FLUTICASONE PROPIONATE NEW MOLECULAR ENTITY 14-Dec-90 STEROIDS
FLUTICASONE PROPIONATE NEW INDICATION 7-Nov-97 RESPIRATORY

GLYCOPYRROLATE NEW MOLECULAR ENTITY 11-Aug-61 MISCELLANEOUS UPPER GI DRUGS
GLYCOPYRROLATE NEW INDICATION 6-Feb-75 ANTICHOLINERGIC AGENT

GOSERELIN ACETATE NEW MOLECULAR ENTITY 29-Dec-89 GNRH AGONISTS
GOSERELIN ACETATE NEW INDICATION 18-Dec-95 ANTINEOPLASTIC HORMONES

LANSOPRAZOLE NEW MOLECULAR ENTITY 10-May-95 PROTON PUMP INHIBITORS
LANSOPRAZOLE NEW INDICATION 17-Jun-97 SYSTEMIC ANTIBIOTICS--H.PYLORI INDICATION

MEBUTAMATE NEW MOLECULAR ENTITY 11-Jul-61 ANTI-HYPERTENSIVE AGENTS
MEBUTAMATE NEW INDICATION 31-Jan-75 SEDATIVES AND HYPNOTICS

Table 3
Examples of NDA Approvals of New Indications for Existing Drugs



Figure 7
Number of Original Medical Device PMAs Reviewed by the FDA, 1981-2001
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Table 4

Number 
of 
original 
PMAs

Cumulative 
percent of all 
original PMAs Advisory committee

338 38% Ophthalmic
168 57% Cardiovascular
74 65% Microbiology
56 71% General & Plastic Surgery
45 76% Immunology
32 80% Gastroenterology & Urology
28 83% Orthopedic
23 86% Radiology
22 88% Obstetrics/Gynecology
18 90% General Hospital
17 92% Clinical Chemistry
15 94% Anesthesiology
12 95% Ear, Nose, & Throat
12 97% Dental
10 98% Physical Medicine
8 99% Neurology
6 99% Hematology
6 100% Clinical Toxicology
1 100% Pathology

Distribution of medical device PMAs reviewed by the 
FDA, 1981-2001, by Advisory Committee

Table 4

Page 1



Year

Age group
Death 
Count Population

Number of 
deaths per 
100,000 
population

Death 
Count Population

Number of 
deaths per 
100,000 
population

1- 4 years 8,108 12,637,000 64 5,251 15,189,749 35
5- 9 years 5,278 16,947,000 31 3,530 19,920,862 18
10-14 years 5,868 18,445,000 32 4,261 19,241,808 22
15-19 years 21,085 21,348,000 99 13,788 19,539,327 71
20-24 years 27,634 21,096,000 131 16,839 17,674,134 95
25-34 years 47,941 36,038,000 133 42,516 38,774,410 110
35-44 years 57,723 25,114,000 230 88,866 44,519,859 200
45-54 years 135,265 22,935,000 590 146,479 34,584,884 424
55-64 years 286,966 21,448,000 1338 233,724 22,675,970 1031
65-74 years 449,255 15,338,000 2929 458,982 18,395,293 2495
75-84 years 493,676 7,598,000 6497 681,663 11,952,189 5703
Over 85 yrs 328,725 2,197,000 14962 612,575 4,053,650 15112
Total 1,867,524 221,141,000 844 2,308,474 266,522,135 866

Source: CDC Compressed Mortality File

1979 1998

Table 5
Number of deaths, population, and crude death rate, by age group, 1979 and 1998 



Figure 8
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Figure 8
Mean age at death vs. life expectancy at birth, 1979-1997
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Column 1 2 3 4 5 6 7 8 9 10 11 12

Dependent 
Variable: 

Mean age 
at death

Mean age 
at death

Fraction 
dying 
before 
age 65

Fraction 
dying 
before 
age 65

Mean age 
at death

Mean age 
at death

Fraction 
dying 
before 
age 65

Fraction 
dying 
before 
age 65

Mean age 
at death

Mean age 
at death

Fraction 
dying 
before 
age 65

Fraction 
dying 
before 
age 65

Unlabeled 
indications excluded included excluded included excluded included excluded included excluded included excluded included

DRUG_STOCK 0.01022 0.01268 -0.0001 -0.00029
1.58 2.27 0.81 2.66

0.1147 0.0232 0.417 0.0079

PRI_STOCK 0.05324 0.07485 -0.00084 -0.00161 0.04501 0.06493 -0.0006 -0.00142
2.43 4.01 1.98 4.47 2.51 4.03 1.76 4.56

0.0152  <.0001 0.0484    <.0001 0.0122    <.0001 0.0794    <.0001

STD_STOCK -0.00691 -0.00868 0.00019 0.00017
0.65 1.05 0.94 1.05

0.5129 0.2946 0.349 0.2923

All equations are estimated via weighted least squares, where the weight is equal to the number of deaths.
All equations include disease and year fixed effects.

Table 6
Estimates of equations (6) and (7)




