EXHIBIT "A"

Memorandum

WORKING DRAFT

IEEE P1363 STANDARD

STANDARD FOR RSA, DIFFIE-HELLMAN AND RELATED PUBLIC-KEY CRYPTOGRAPHY

PART 6: ELLIPTIC CURVE SYSTEMS (Draft 2)

i
i g
hi

This document is in the working document stage. It has not yet been processed through the consensus procedures of the IEEE.

Many changes which may greatly affect the contents can occur before this document becomes an IEEE Standard. The developmental committee may not be held responsible for the contents of this document as it currently exists.

Implementation or design based on this working paper is at the risk of the user. No advertisement implying compliance with this "Standard" should appear as it is erroneous and misleading to so state.

Möbius Encryption Technologies 200 Matheson Boulevard, West Mississauga, Ontario, Canada, L5R 3L7

Outline

6 Elliptic Curve Systems

C Mathematical Background 15
Th i i i \mathbb{F}_{p} Th i i i $\mathbb{F}_{2^{m}}$

 i i

 4 i i

 \(\mathbb{F}_{2^{m}}\)

 igh i i

 i \(\mathbb{F}_{2^{m}}\)

 ig i

 \(h \quad i g h\)

 h i g h

 h fi

 h Uig h i Th

 i g h O

 ig i i i

 i i \(\mathbb{F}_{p}\)...........................

 i i

 \(\mathbb{F}_{2^{m}}\)
 E Validation Suite (Test Vectors) 25
F Known State of Attacks 27
References 29

Part 6

Elliptic Curve Systems

Abstract. This standard describes a method for data encryption and for digital signatures using the elliptic curve analogue of the ElGamal public-key cryptosystem. Elliptic curve systems are public-key (asymmetric) cryptographic algorithms, typically used in conjunction with a hash algorithm to create digital signatures, and for the secure distribution of secret keys for use in symmetric cryptosystems. Elliptic curve systems may also be used to transmit confidential information.

Introduction

$\begin{array}{rl}\mathrm{i} & \mathrm{T} \\ & \mathrm{h} \mathrm{g}\end{array}$
0
i i
i

Symbols and Notation

6.1 Basic Algorithms

Thi

Th		i		g	i		i i	E	i
fi i fi	\mathbb{F}_{q}	i	fi				i i	i	
	i i		i	h)		
System Setup									
	i g fi i fi	$\mathbb{F}_{q} \mathrm{i} \quad \mathrm{h}$		i	i		$E \quad$ fi	\mathbb{F}_{q}	i
E	h Th	h	i	P i			n		
Th fi	$\mathbb{F}_{q} \quad E$	i P		n	i	h			
1	1								

Key Generation

h i h
h ig i

Encryption Process

```
    \(\left.\begin{array}{lll}\mathrm{i} & \mathrm{g} M & \mathrm{i}\end{array}\right)\)
    i h ig :
    \(\begin{array}{llllll} & \text { i } & : Q \\ \mathrm{~h} & \mathrm{~g} & M\end{array} \quad\) i fi \(\quad \begin{array}{lll}m_{1} & \left.m_{2}\right) & m_{1} \in \mathbb{F}_{q} \quad m_{2} \in \mathbb{F}_{q}\end{array}\)
4
                h i \(\left.x_{1}, y_{1}\right): k P\)
            h i \(\left.x_{2}, y_{2}\right): k Q\)
            \(\begin{array}{llllllll}\text { i } & \mathrm{h} & m_{1} & m_{2} & x_{2} & y_{2} \text { i } & \text { i }\end{array}\)
    \(\left.\mathrm{T} \quad \mathrm{i} \mathrm{h} \quad c: \quad x_{1}, y_{1}, c_{1}, c_{2}\right)\)
        fi
```


Decryption Process

```
i
            ih \(\left.\quad c \quad x_{1}, y_{1}, c_{1}, c_{2}\right) \quad\) i
    i h ig :
    h i \(\left.\left.\quad x_{2}, y_{2}\right): d x_{1}, y_{1}\right)\) ig i i \(d\)
    \(\mathrm{h} \quad \mathrm{g} \quad m_{1} \quad m_{2} \quad c_{1} \quad c_{2} \quad x_{2} \quad y_{2}\)
```

Notes

Thi i h i

Key Generation
Thi i h i

Signature Generation for ECSSA

$$
\begin{array}{llllll}
\text { i } & & \text { g } M & \text { ig } & & \\
& & \text { h } & \text { ig } & : & \\
& h & \text { g } M & \text { i } & \text { ig }
\end{array}
$$

$$
\begin{aligned}
& \mathrm{U} \quad \mathrm{~h} \quad \mathrm{~h} \quad \mathrm{~g} \text { i h } \quad \mathrm{h} h \mathrm{~h} \quad m: H M) \\
& 4
\end{aligned}
$$

Signature Verification for ECSSA

```
i ifi , ig \(\quad r, s^{-1}\)
                                    g \(M\) )
4
```

```
\[
\begin{aligned}
& \text { ifi } \left.\quad \text { ig } \quad r, s^{-1}\right) \quad \text { g } M \text { ) } \\
& \text { h ig : } \\
& \text {, i } Q \\
& \mathrm{~h} \mathrm{~h} \mathrm{~h} \quad m: \quad H M) \\
& u: s^{-1} m \quad n \quad v: s^{-1} r \quad n \\
& \left.\mathrm{~h} \quad \mathrm{i} \quad x_{2}, y_{2}\right): \quad u P \quad v Q \\
& r^{\prime}: x_{2} \quad n \\
& \text {, ig } \quad \mathrm{g} M \mathrm{i} \text { i } r r^{\prime}
\end{aligned}
\]
```


Signature Generation for ECSSM

```
i \(\quad\) ig
        \(\mathrm{g} M \quad \mathrm{i} \quad)\)
            h ig :
            h g i fi \(M \quad m_{1} \quad m_{2} \quad\) hi h i
            ifi
```



```
4
U h
                                \(r_{1}: m_{1} x_{1} \quad r_{2}: \quad m_{2} y_{1}\)
            h fi \(\quad r_{1}: m_{1} x_{1} \quad r_{2}: m_{2} y_{1}\)
            -
                                \(\left.s: k-d r_{1} \quad r_{2}\right) \quad n\)
                        \(h \quad\) ig \(\left.\quad r_{1}, r_{2}, s\right)\)
```

Signature Verification for ECSSM
i

$$
\begin{aligned}
& \text { h g ifi } \quad \text { ig } \\
& \left.r_{1}, r_{2}, s\right) \text {) } \\
& \text { h ig : } \\
& \text {, i } \quad Q \\
& \text { h i } \left.\left.\quad x_{2}, y_{2}\right): s P \quad r_{1} \quad r_{2}\right) Q \\
& m_{1}^{\prime}: r_{1} x_{2}^{-1} \quad m_{2}^{\prime}: \quad r_{2} y_{2}^{-1} \\
& \left.\left.4 \quad \mathrm{~h} \text { ig } \mathrm{h} \quad \mathrm{~g} \quad m_{1}^{\prime}, m_{2}^{\prime}\right) \mathrm{i} \quad \text { i } m_{1}^{\prime}, m_{2}^{\prime}\right) \quad \text { i } \quad \mathrm{h} \\
& \text { ifi }
\end{aligned}
$$

Notes
) g
g \quad i g i i i $\quad 0$

6.2 Services Provided

Th
g hi g ih i i hi
i h ig
i

- i)
- i h i i
- i h i i
- Digi ig i i)
- $\quad \mathrm{h}$ i $\quad \mathrm{h}$ g

6.3 Encryption

Thi i i h i

- \quad igMh g Th gh h g M h h $l-\quad ; l \mathrm{i} \quad \mathrm{h} \quad \mathrm{gh} \quad \mathrm{h}$ fi iz $q) \mathrm{i} \quad$ h i

$$
l \quad\lceil\stackrel{t}{-}\rceil, \quad \mathrm{h} \quad t \quad\left\lceil\quad \mathrm{~g}_{2} q\right\rceil
$$

$$
\mathrm{i} \quad \text { i g }
$$

h $\quad \mathrm{g} M \mathrm{~h}$ i

$$
\begin{array}{llll}
\text { i h } & \text { ig ig ig } & l-\quad-\|M\| \\
\text { h } & \text { i g } M^{\prime}: \\
M^{\prime} & \| & \| M .
\end{array}
$$

Notes

) Th
h g
ghg h l-
i i i

$$
\begin{array}{cccccccccccc}
& \mathrm{i} & \mathrm{~g} & k \mathrm{i} & \mathrm{~h} & \mathrm{~g} & , n- & & & & \\
\mathrm{h} & & \mathrm{i} & y_{P} & \mathrm{~h} & \mathrm{i} & P & x_{P} & \mathrm{~h} & \mathrm{i} \widetilde{y_{P}} & \\
\mathrm{~h} & \mathrm{i} & \mathrm{i} & & \mathrm{i} & \left.x_{1}, y_{1}\right): & k P & \mathrm{~h} & P \mathrm{i} & \mathrm{~h} & \mathrm{i} & \left.x_{P}, y_{P}\right) \\
\mathrm{h} y & & \mathrm{i} & y_{Q} & \mathrm{~h} & \mathrm{i} & Q & x_{Q} & \mathrm{~h} & \mathrm{i} & \widetilde{y_{Q}} & \\
\mathrm{~h} & \mathrm{i} & \mathrm{i} & & \mathrm{i} & \left.x_{2}, y_{2}\right): & k Q & \mathrm{~h} & Q \mathrm{i} & \mathrm{~h} & \mathrm{i} & \left.x_{Q}, y_{Q}\right)
\end{array}
$$

Notes

Notes
) $\mathrm{Th} \quad-l t \mathrm{i}$ i h 4

$4 \quad$ i \quad i g i

i $\widetilde{y_{1}} \mathrm{i}$


```
    4
```


6.4 Decryption

Th i h i

$l-\quad$ Th \quad i
h \quad i
h
i g M
gh

$$
\begin{aligned}
& 44 \quad \text { i } \quad \text { i g } \\
& \begin{array}{lll}
M_{1} & M_{2} & \text { i } \quad \text { i } g M^{\prime}:
\end{array} \\
& M^{\prime} \quad M_{1} \| M_{2} . \\
& M^{\prime} \quad \text { i } \quad \mathrm{h} \quad \mathrm{~g} M: \\
& M^{\prime} \quad\|\quad\| M .
\end{aligned}
$$

6.5 Signature

6.6 Signature Verification

6.7 Key Length Considerations

6.8 Key Generation Considerations

Thi i i g i

Notes
) i^{i}
i
) i
i i
h
i
) i
h
i g h
i
) $\mathrm{i} \quad \mathrm{h}$
$\begin{array}{lllll}\mathrm{i} & \mathrm{i} & \mathrm{h} & x & \text { i }\end{array}$
i
h i h ig i
$\begin{array}{lcccccc} & \begin{array}{c}\mathrm{i} \\ \mathrm{h}\end{array} \quad \mathrm{g} & d \mathrm{i} & \mathrm{h} & \mathrm{g} & , n- \\ \mathrm{i} & Q: & d P & & \end{array}$
$\left.Q \quad x_{Q}, y_{Q}\right) \quad \widetilde{y_{Q}}$ Th i \quad i \quad i \quad h in $\quad Q$
4 Th i , i i h i g d

> 6.9 Key Syntax
> Th i i h
> i
> i i i ig
> i $\quad: \quad x_{Q} \| \widetilde{y_{Q}}$

$$
\begin{aligned}
& h \quad \text { i i i g ght } \\
& \text { i } \\
& \text { i } \quad \text { i } \quad \mathrm{i} \quad \mathrm{~g} \quad d \mathrm{i} \quad \mathrm{~h} \quad \mathrm{~g} \quad, n-
\end{aligned}
$$

6.10 Applications (not part of standard)

Appendix C

Mathematical Background

C. 1 The Finite Field \mathbb{F}_{p}

- Addition: $a, b \in \mathbb{F}_{p} \mathrm{~h} \quad a \quad b \quad r \quad \mathrm{~h} \quad r \mathrm{i} h \mathrm{~h} \quad \mathrm{i} \quad \mathrm{h} \quad a \quad b \mathrm{i} \quad \mathrm{i} \mathrm{i}$ $p \quad \leq r \leq p-$
- Multiplication: $a, b \in \mathbb{F}_{p} \mathrm{~h} a b s \mathrm{~h} s \mathrm{i} h \quad \mathrm{i} \quad \mathrm{h} a b \mathrm{i} \mathrm{i} \mathrm{i}$ $p \quad \leq s \leq p-$

i generator primitive element) \mathbb{F}_{p} Th i

$$
\mathbb{F}_{p}{ }^{*} \quad\left\{g^{i}: \leq i \leq p-\right\} .
$$

Example The finite field \mathbb{F}_{2})
$\mathbb{F}_{2}\{ \}$ Th i i \quad i i i \mathbb{F}_{2}

Example The finite field \mathbb{F}_{23})

C. 2 The Finite Field $\mathbb{F} m$

m :

$$
\mathbb{F}_{2^{m}} \quad\left\{a_{m-1} x^{m-1} \quad a_{m-2} x^{m-2} \quad \cdots \quad a_{1} x \quad a_{0}: a_{i} \in\{,\}\right\} .
$$

Th fi $\left.\quad a_{m-1} x^{m-1} \quad \cdots \quad a_{1} x \quad a_{0}\right)$ i \quad h i \quad i g $\left.a_{m-1} \cdots a_{1} a_{0}\right) \quad$ gh $m \quad h$

$$
\left.\mathbb{F}_{2^{m}} \quad\left\{a_{m-1} \cdots a_{1} a_{0}\right): a_{i} \in\{,\}\right\} .
$$

Th h
$\mathbb{F}_{2^{m}}$
h i
i g $\quad \mathrm{gh} m$
i
i i :

- Field addition: $\left.\left.\left.a_{m-1} \cdots a_{1} a_{0}\right) \quad b_{m-1} \cdots b_{1} b_{0}\right) \quad c_{m-1} \cdots c_{1} c_{0}\right) \quad h \quad c_{i} \quad a_{i} \quad b_{i}$
i h fi \mathbb{F}_{2} Th i fi ii i i
- Field multiplication: $\left.\left.\left.a_{m-1} \cdots a_{1} a_{0}\right) \cdot b_{m-1} \cdots b_{1} b_{0}\right) \quad r_{m-1} \cdots r_{1} r_{0}\right) \quad h \quad h$

$$
\mathrm{i} \mathbb{F}_{2^{m}} \mathrm{Th} \quad \mathrm{i}
$$

$\mathbb{F}_{2^{m}}$

$$
\begin{array}{ccccc}
& g \mathrm{i} \mathbb{F}_{2^{m}} & \mathrm{~h} & \mathrm{~h} & \mathrm{Z} \\
g & \mathrm{~h}
\end{array}
$$

$\mathbb{F}_{2^{m}}$ Th i

$$
\mathbb{F}_{2^{m}}^{*} \quad\left\{g^{i}: \leq i \leq{ }^{m}-\right\}
$$

Example The finite field $\mathbb{F}_{2^{4}}$)

i h i h $\quad x^{3} x^{2}$) x^{3}) i i i $\left.\quad f x\right)$ i $x^{3} x^{2} x^{2}$ $\begin{array}{lllll}\mathbb{F}_{2^{4}}^{*} & \mathrm{~g} & \alpha & x & \text { Th }\end{array}$

α^{0})	α^{1})	α^{2})	α^{3})
α^{4})	α^{5})	α^{6})	α^{7})
α^{8})	α^{9})	α^{10})	α^{11})
α^{12})	α^{13})	α^{14})	α^{15}	α^{0}	

C. 3 Elliptic Curves over \mathbb{F}_{p}

$$
\left.p \quad-\sqrt{p} \leq E \mathbb{F}_{p}\right) \leq p \quad \sqrt{p} .
$$

Th i $E \mathbb{F}_{p}$ g oh hog i it:
i) $\mathcal{O} \quad \mathcal{O} \quad \mathcal{O}$
ii) $\left.x, y) \quad \mathcal{O} \quad x, y) \quad x, y) \in E \mathbb{F}_{p}\right)$
iii) $\left.\left.\left.\begin{array}{c}x, y) \\ \text { i } \\ x,-y)\end{array}\right) \mathcal{O} \quad x, y\right) \in E \mathbb{F}_{p}\right)$ i hi \quad h i $\left.x, y\right) \mathrm{i}$ h
 $\left.\left.x_{2}, y_{2}\right) \quad x_{3}, y_{3}\right) \quad h$

$$
\left.x_{3} \quad \lambda^{2}-x_{1}-x_{2}, \quad y_{3} \quad \lambda x_{1}-x_{3}\right)-y_{1}, \quad \lambda \quad \frac{y_{2}-y_{1}}{x_{2}-x_{1}} .
$$

) $\left.x_{1}, y_{1}\right) \in E \underset{\mathbb{F}_{p}}{\mathrm{~g}}$ i \quad i in $y_{1} /$ Th $\left.\left.x_{1}, y_{1}\right) \quad x_{3}, y_{3}\right) \quad$ h

$$
\left.x_{3} \quad \lambda^{2}-x_{1}, \quad y_{3} \quad \lambda x_{1}-x_{3}\right)-y_{1}, \quad \lambda \quad \frac{x_{1}^{2} a}{y_{1}} .
$$

$\begin{array}{lllllllllll}\text { Th g } & \left.E \mathbb{F}_{p}\right) \mathrm{i} & \mathrm{i} & \text { hi h } & \quad \text { i } & P & Q & Q & P & \end{array}$ Q i $E \mathbb{F}_{p}$) Th i i supersingular $\left.\mathrm{i} E \mathbb{F}_{p}\right) \quad p \quad ; \quad$ hi i i nonsupersingular

Example An elliptic curve over \mathbb{F}_{23})

$$
\left.\left.\left.P_{1} \quad, \quad\right) P_{2} \quad, \quad\right), P_{1} \quad P_{2} \quad x_{3}, y_{3}\right) .
$$

$$
\lambda \quad-\quad-\quad-\quad \in \mathbb{F}_{23},
$$

Th

$$
\left.\lambda \quad{ }^{2}\right) \quad-\overline{4},
$$

$$
\begin{gathered}
x_{3}{ }^{2}- \\
\left.y_{3}-\right)_{-}-4-
\end{gathered}
$$

Th $\quad P_{1}, \quad$).

C. 4 Elliptic Curves over \mathbb{F}_{m}

$$
\left.q \quad-\sqrt{q} \leq E \mathbb{F}_{2^{m}}\right) \leq q \quad \sqrt{q},
$$

i) $\mathcal{O} \quad \mathcal{O} \quad \mathcal{O}$
ii) $\left.x, y) \mathcal{O} \quad x, y) \quad x, y) \in E \mathbb{F}_{2^{m}}\right)$

$$
\begin{array}{lllllllllllllll}
x_{3} & \lambda^{2} & \lambda & x_{1} & x_{2} & a, & y_{3} & \lambda x_{1} & \left.x_{3}\right) & x_{3} & y_{1}, & & \lambda & \frac{y_{1}}{x_{1}} y_{2} \\
x_{1} & x_{2}
\end{array} .
$$

$$
\begin{aligned}
& b / \text { i h i } x, y) \mathrm{i} \quad \mathbb{F}_{2^{m}} \times \mathbb{F}_{2^{m}} \quad \text { h } \quad \text { i } \\
& y^{2} \quad x y \quad x^{3} \quad a x^{2} \quad b \\
& \left.\mathrm{~g} \text { h ih i } \mathcal{O} \text { h point at infinity } \mathrm{Th} \text { i i } E \mathbb{F}_{2^{m}}\right) \mathrm{i} \\
& \left.E \mathbb{F}_{2^{m}}\right) \text { Th Th h }
\end{aligned}
$$

$$
\begin{aligned}
& x_{3}{ }^{2}-\quad-\quad-\quad-\quad-\quad \text {, } \\
& \left.\begin{array}{lll}
y_{3} & -
\end{array}\right)- \\
& \left.\left.P_{1} \quad, \quad\right) \quad P_{1} \quad x_{3}, y_{3}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \text {) } \left.\left.\left.x_{1}, y_{1}\right) \in E\left(\underset{\left.\mathbb{F}_{2^{m}}\right)}{\mathrm{g}} \text { i }\right) \text { i } \mathrm{i} \mathrm{~h} x_{1} / \mathrm{Th} \quad x_{1}, y_{1}\right) \quad x_{3}, y_{3}\right) \quad \mathrm{h} \\
& x_{3} \quad x_{1}^{2} \quad \frac{b}{x_{1}^{2}}, \quad y_{3} \quad x_{1}^{2} \quad\left(x_{1} \quad \frac{y_{1}}{x_{1}}\right) x_{3} \quad x_{3} .
\end{aligned}
$$

$\begin{array}{lllllllllllll}\text { Th g } & \left.E \mathbb{F}_{2^{m}}\right) \mathrm{i} & \mathrm{i} & \text { hi h } & \text { h } & P & Q & Q & P & \text { i } & P & Q\end{array}$ i $E \mathbb{F}_{2^{m}}$)

Example An elliptic curve over $\mathbb{F}_{2^{4}}$.)

$$
y^{2} \quad x y \quad x^{3} \quad \alpha^{4} x^{2}
$$

$$
\begin{array}{cccccccccl}
a & \alpha^{4} b & \text { i Th } & \text { h } & \mathbb{F}_{2^{4}} & \text { h } & \text { i } & \text { h i } & \text { : } \\
& \text {) } & \left., \alpha^{6}\right) & \left., \alpha^{13}\right) & \left.\alpha^{3}, \alpha^{8}\right) & \left.\alpha^{3}, \alpha^{13}\right) & \left.\alpha^{5}, \alpha^{3}\right) & \left.\alpha^{5}, \alpha^{11}\right) \\
\left.\alpha^{6}, \alpha^{8}\right) & \left.\alpha^{6}, \alpha^{14}\right) & \left.\alpha^{9}, \alpha^{10}\right) & \left.\alpha^{9}, \alpha^{13}\right) & \left.\alpha^{10}, \alpha^{1}\right) & \left.\alpha^{10}, \alpha^{8}\right) & \left.\alpha^{12},\right) & \left.\alpha^{12}, \alpha^{12}\right) .
\end{array}
$$

Th g

$$
\begin{aligned}
& \left.\left.E \mathbb{F}_{23}\right) \mathrm{~h} \quad \mathrm{i} \quad \mathrm{i} \quad \mathrm{ig} h \quad \mathrm{i} \quad \text { ifi i } \mathcal{O}\right) \text { Th ig } \\
& h \mathrm{~g} \text { i } \\
& \left.\left.\left.P_{1} \quad \alpha^{6}, \alpha^{8}\right), P_{2} \quad \alpha^{3}, \alpha^{13}\right) \quad P_{1} \quad P_{2} \quad x_{3}, y_{3}\right) \text { Th } \\
& x_{3} \quad\left(\frac{\alpha^{8}}{\alpha^{6}} \alpha^{13} \alpha^{3}\right)^{2} \quad \frac{\alpha^{8}}{\alpha^{6}} \alpha^{13} \alpha^{3} \quad \alpha^{6} \quad \alpha^{3} \quad \alpha^{4} \quad\left(\frac{\alpha^{3}}{\alpha^{2}}\right)^{2} \quad \frac{\alpha^{3}}{\alpha^{2}} \quad \alpha^{2} \quad \alpha^{4} \\
& \left.y_{3}\left(\frac{\alpha^{8}}{\alpha^{6}} \alpha^{13} \alpha^{3}\right) \alpha^{6} \quad\right) \quad \alpha^{8}\left(\frac{\alpha^{3}}{\alpha^{2}}\right) \alpha^{13} \quad \alpha^{2} \quad \alpha^{13} . \\
& \left.P_{1} \quad x_{3}, y_{3}\right) \quad h \\
& \left.x_{3} \quad \alpha^{6}\right)^{2} \quad \overline{\left.\alpha^{6}\right)^{2}} \quad \alpha^{12} \quad \alpha^{3} \quad \alpha^{10}, \\
& \left.\left.y_{3} \quad \alpha^{6}\right)^{2} \quad\left(\begin{array}{ll}
\alpha^{6} & \frac{\alpha^{8}}{\alpha^{6}}
\end{array}\right) \alpha^{10} \quad \alpha^{10} \quad \alpha^{3} \quad \alpha^{6} \quad \alpha^{2}\right) \alpha^{10} \quad \alpha^{8} .
\end{aligned}
$$

C. 5 Computing the Multiple of a Point

Input: i i i g $k \quad$ i i \quad i P Output: Th i i i $k P$

$$
\begin{aligned}
& \begin{array}{llllllll}
k & k_{r} k_{r-1} \ldots k_{1} k_{0} & h & \text { i } & k & h & h & \text { ig ifi }
\end{array} \\
& \text { i } k_{r} \quad k \text { i } \\
& \begin{array}{ll}
Q-P \\
i & r-
\end{array} \\
& k_{i}^{Q} \quad{ }_{\mathrm{h}}^{Q} \quad Q \quad Q \quad Q \quad P
\end{aligned}
$$

$40 \quad Q$

C. 6 Normal Bases in \mathbb{F}_{m}

$$
\alpha \quad \sum_{i=0}^{m-1} a_{i} \alpha_{i}, \quad h \quad a_{i} \in\{,\} .
$$

C. 7 Selecting an Appropriate Curve

Th

> .
h
h
i g
i i
$\mathbb{F}_{q} \quad \mathrm{i}$
g hi

Notes

Notes

h

$$
\mathrm{U} \text { i g h } \quad \mathrm{i} \text { Th }
$$

Thi
h i \quad i i g $\mathbb{F}_{2^{m}} \quad h \quad m$ i i i l
$E: y^{2} \quad x y \quad x^{3} \quad a x^{2} \quad b \quad b / \quad$ h $\quad a, b \in \mathbb{F}_{2^{l}} \quad$ h $\mathrm{i} \quad \mathbb{F}_{2^{l}} \mathrm{i} \quad \mathrm{i} \quad \mathrm{i} \mathbb{F}_{2^{m}}$ i i \quad h $a, b \in \mathbb{F}_{2^{m}} \quad E$ i $\mathbb{F}_{2^{m}}$
$\begin{array}{cccccc} & { }^{w} & \left.E \mathbb{F}_{2^{l}}\right) & \text { Thi } \\ t & q^{l} & -w & c & m / l & \mathrm{Th}\end{array}$
$\left.u \quad E \mathbb{F}_{2^{m}}\right) \quad m \quad-\alpha^{c}-\beta^{c}$,
$\begin{array}{llllll}h & \alpha & \beta & \text { i } & \text { h } & \text { iz i }\end{array}$
$\left.\left.-t z \quad q^{l} z^{2} \quad-\alpha z\right) \quad-\beta z\right)$.

C. 8 Computing the Order of a Point

i $P \quad E$
Output: Th $n \quad P$

$$
\begin{array}{cc}
n \longleftarrow & \left.E \mathbb{F}_{q}\right) \\
i & k \\
& n \longleftarrow n / p_{i}^{e_{i}} \\
& P_{1} \longleftarrow n P
\end{array}
$$

$$
\text { hi } P_{1} / \mathcal{O} \quad P_{1} \longleftarrow p_{i} P_{1} \quad n \longleftarrow n p_{i}
$$

O n

C. 9 Representing an Elliptic Curve Point

$$
\begin{aligned}
& \text { i i } \quad \mathbb{F}_{p}
\end{aligned}
$$

$$
\begin{aligned}
& \text { h fi } \quad \alpha \quad x_{P}{ }^{3} \quad a x_{P} \quad b \quad p \\
& \text { h fi } \\
& \beta \quad \alpha^{u+1} \quad p \\
& \text { h ig ifi i } \quad \beta \mathrm{i} \quad \widehat{y_{P}} \mathrm{~h} \quad y_{P}-\beta \quad 0 \mathrm{~h} \quad \mathrm{i} \\
& y_{P} \longleftarrow p-\beta \\
& \text { i i } \quad \mathbb{F}_{2^{m}}
\end{aligned}
$$

$$
\begin{aligned}
& 4 \text { i } \\
& y_{P} \longleftarrow x_{P} \cdot z
\end{aligned}
$$

Appendix E

Validation Suite (Test Vectors)

Appendix F

Known State of Attacks

References

G. Agnew, T. Beth, R. Mullin and S. Vanstone i h i i i GF ${ }^{m}$) $\left.\begin{array}{llllll}J \text { ur } & r & t & g & 6\end{array}\right)$
G. Agnew, R. Mullin and S. Vanstone i i i i

$$
\left.\begin{array}{ccccccccl}
F_{2155} & J \text { ur } & t & r & i & u & \text { i } & \text { ti } & \mathbf{1 1}
\end{array}\right)
$$

G. Agnew, R. Mullin, I. Onyszchuk and S. Vanstone i i

```
            i Jur Jur rerll
```

4 American National Standards Institute $\quad \mathrm{i} \quad \mathrm{g} \quad \mathrm{h} \quad \mathrm{i} \mathrm{g} \mathrm{i}$ i

National Institute of Standards and Technology
$i \quad \mathrm{i}$

National Institute of Standards and Technology Digi ig i i
P. van Oorschot and M. Wiener i i $\quad \mathrm{h}$ i h i i h h
i
\quad i \quad g i h i \quad i gi i

J. Pollard
h i
t ti 32) 4
 $\left.\begin{array}{llll}M t h & t i & \text { ut } t i & 44\end{array}\right) 444$

