
EXHIBIT “A” 

Certicom Corporation et al v. Sony Corporation et al Doc. 52 Att. 1

Dockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/2:2007cv00216/103383/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/2:2007cv00216/103383/52/1.html
http://dockets.justia.com/


Memorandum

To� P���� working group
From� Alfred Menezes
Subject� IEEE P����� Part �� Elliptic Curve Systems
Date� October ��� ���	


Enclosed is a copy of IEEE P����� Part �� October ��� ���	� for your review


I reveived comments from Roger Schla�y and Burt Kaliski
 The following is a list of major
changes made to the August ��� ���	 draft


�
 Extended the glossary


�
 The signature scheme with appendix was modi
ed


�
 A signature scheme with message recovery was added


	
 Added the section on key lengths


�
 Extended the section of key generation considerations


�
 Added a brief introduction to normal bases


�
 Added a subsection on selecting appropriate curves


�
 Added a subsection on computing the order of a point


�
 Added a list of references


The following items will be addressed in future drafts of this standard


�
 Complete a detailed described of the ECSSA and ECSSM signature schemes


�
 Use ASN
� to describe the key syntax


�
 Specify a hash function for use with the ECSSA signature scheme


I would very much appreciate any editorial suggestions or technical comments
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this document becomes an IEEE Standard� The developmental com�
mittee may not be held responsible for the contents of this document
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Part �

Elliptic Curve Systems

Abstract� This standard describes a method for data encryption and for digital signatures
using the elliptic curve analogue of the ElGamal public�key cryptosystem� Elliptic curve
systems are public�key �asymmetric� cryptographic algorithms� typically used in conjunction
with a hash algorithm to create digital signatures� and for the secure distribution of secret
keys for use in symmetric cryptosystems� Elliptic curve systems may also be used to transmit
con	dential information�

Introduction

The algebraic system de
ned on the points of an elliptic curve provides an alternate means to
implement the ElGamal and ElGamal�like public key encryption and signature protocols

These protocols are typically described in the literature in the algebraic system Zp� the
integers modulo p� where p is a prime
 For example� the NIST DSS is an ElGamal�like
signature scheme de
ned overZp
 Precisely the same protocol for signing could be de
ned
over the points on an elliptic curve


Elliptic curve systems as applied to ElGamal protocols were 
rst proposed in ����
independently by Neil Koblitz from the University of Washington� and Victor Miller� who
was then at IBM� Yorktown Heights
 Elliptic curves as algebraic�geometric entities have
been studied extensively for the past ��� years� and from these studies has emerged a rich
and deep theory
 The security of the cryptosystems using elliptic curves hinges on the
intractability of the discrete logarithm problem in the algebraic system
 It appears to be
much more di�cult to compute logarithms in an elliptic curve system than to compute
logarithms inZp
 Over the past nine years this problem has received considerable attention
from leading mathematicians around the world
 No substantial improvements in the ability
to 
nd logarithms in an elliptic curve system have been found


Implementations of elliptic curve cryptosystems o�er substantial improvements over
existing public key systems including much higher speed� lower power consumption and
a smaller key size relative to cryptographic strength
 The shorter key size has unique
advantages for signing short messages such as those used in electronic funds transfers�
cellular and broadcast systems


Elliptic curves systems have been implemented by various groups around the world
including Siemens �Germany�� Matsushita �Japan�� Thompson �France� and M�obius En�



� Elliptic Curve Systems

cryption Technologies �Canada�
 An ISO�IEC SC�� standard for elliptic curve systems is
currently being drafted


Symbols and Notation

dxe The smallest integer � x
 For example� d�e � � and d���e � �


bxc The largest integer � x
 For example� b�c � � and b���c � �


binary string A binary string is a sequence of ��s and ��s
 The leftmost bit is the most
signi	cant bit of the string
 The rightmost bit is the least signi	cant bit of
the string


X � Y Bitwise exclusive or of two binary strings X and Y 


octet An octet is a binary string of length �
 An octet is represented by a hex�
adecimal string of length �
 The 
rst hexadecimal digit represents the four
most signi
cant bits of the octet
 The second hexadecimal digit represents
the four least signi
cant bits of the octet
 For example� �d represents the
binary string ��������


octet string An octet string is a sequence of octets


X kY Concatenation of two strings X and Y 
 X and Y are either both binary
strings� or both octet strings


kXk Length in octets of the octet string X 


PS Padding string


log� x The logarithmic function to the base �


a mod n The unique remainder r� � � r � n� �� when integer a is divided by n
 For
example� �� mod � � �


Zp or Fp The integers modulo p� where p is a prime number


F�m The 
nite 
eld containing �m elements


Fq The 
nite 
eld containing q elements
 For this standard� q will either be a
prime number �p� or a power of � ��m�


t A 
eld element of Fq will be represented as a binary string of length
t � dlog� qe
 In particular� if q � �m� then a 
eld element in F�m can
be represented as a binary string of length t � m


E An elliptic curve E is speci
ed by � parameters a and b� which are elements
of a 
eld Fq
 The elliptic curve is said to be de	ned over Fq� and Fq is
sometimes called the underlying 	eld

If q is a prime �so the 
eld is Fp�� then the equation de
ning the curve is of
the form y� � x� � ax� b� where 	a� � ��b� �� �

If q is a power of � �so the 
eld is F�m�� then the equation de
ning the curve
is of the form y� � xy � x� � ax� � b� where b �� �


O A special point on an elliptic curve� called the point at in	nity
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P P is a point �xP � yP � on an elliptic curve de
ned over a 
eld Fq� where xP
and yP are elements of Fq
 The values x � xP and y � yP must satisfy the
equation de
ning E
 xP is called the x�coordinate of P and yP is called the
y�coordinate of P 

There is an addition rule which allows the addition of two elliptic curve
points P� and P� to produce a third elliptic curve point P�

If k is a positive integer� then kP denotes the point obtained by adding
together k copies of the point P 
fyP Let P be a point �xP � yP � on an elliptic curve E de
ned over a 
eld Fq

If q is a prime� then fyP is equal to the least signi
cant bit of yP 

If q is a power of �� then fyP is � if xP � �
 If xP �� �� then fyP is equal to
the least signi
cant bit of the 
eld element yP � xP��


�E�Fq� If E is de
ned over Fq� then �E�Fq� denotes the number of points on the
curve
 �E�Fq� is called the order of E


supersingular An elliptic curve de
ned over Fp is supersingular if �E�Fp� � p� �

An elliptic curve de
ned over F�m is supersingular if �E�F�m� is odd


non�supersingular If the curve is not supersingular� it is called non�supersingular


n� h The order of the point P is n� this is the smallest positive integer such that
nP � O
 The integers in the range ��� n � �� are represented by binary
strings of length h � dlog� ne


ECES Elliptic Curve Encryption Scheme


ECSSA Elliptic Curve Signature Scheme with Appendix


ECSSM Elliptic Curve Signature Scheme with Message Recovery


ECSS This refers to either ECSSA or ECSSM


SHA The Secure Hash Algorithm
 When a message of length less than ��� bits
is input� the SHA produces a ����bit representation of the message called
the message digest or hash value
 Any change of the message will� with very
high probability� result in a di�erent message digest


ISO International Organization for Standardization


IEC International Electrotechnical Commission


ANSI American National Standards Institute


ASN
� Abstract Syntax Notation One
 A notation for describing abstract types and
values� that is described in standard ISO�IEC ���	


BER Basic Encoding Rules
 A set of rules for representing or encoding the values
of each ASN
� type as a string of octets
 There is usually more than one
way to encode a given value using BER encoding rules
 BER is de
ned in
standard ISO�IEC ����


DER Distinguished Encoding Rules
 A subset of BER� which gives a unique way
to represent any ASN
� value as an octet string
 DER is de
ned in standard
ISO�IEC ����


��� Basic Algorithms

This section gives a high�level overview of the elliptic curve encryption scheme �ECES� and
two elliptic curve signature schemes �ECSSA and ECSSM�
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The cryptosystems are described using an arbitrary elliptic curve E over an arbitrary

nite 
eld Fq
 Complete details and re
nements are provided in Sections �
���
�


����� Elliptic Curve Encryption Scheme �ECES�

System Setup

An underlying 
nite 
eld Fq is chosen
 An elliptic curve E de
ned over Fq� and a point P
on E are chosen
 The order of the point P is denoted by n

The 
eld Fq� curve E� point P � and order n� comprise the system parameters� and are public
information


Key Generation

Each entity shall perform the following operations


�
 Select a random integer d in the range ��� n� ��


�
 Compute the point Q �� dP 


�
 The entity�s public key consists of the point Q


	
 The entity�s private key is the integer d


Encryption Process

�Entity B sends a message M to entity A�

Entity B performs the following steps�

�
 Look up A�s public key� Q


�
 Represent the message M as a pair of 
eld elements �m�� m��� m� � Fq� m� � Fq

�
 Select a random integer k in the range ��� n� ��


	
 Compute the point �x�� y�� �� kP 


�
 Compute the point �x�� y�� �� kQ


�
 Combine the 
eld elements m�� m�� x� and y� in a predetermined manner to obtain
two 
eld elements c� and c�


�
 Transmit the data c �� �x�� y�� c�� c�� to A


Decryption Process

�Entity A decrypts ciphertext c � �x�� y�� c�� c�� received from B�

Entity A performs the following steps�

�
 Compute the point �x�� y�� �� d�x�� y��� using its private key d


�
 Recover the message m� and m� from c�� c�� x� and y�
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Notes

�a� A technique for representing a message M as a pair of 
eld elements is speci
ed in
Section �
�


�b� A simple technique for combining m�� m�� x� and y� to obtain c� and c� is speci
ed
in Section �
�


�c� An option available is that all entities use the same underlying 
eld Fq� but each
entity selects its own elliptic curve E and point P 
 In this case a description of E and
the point P must be included as part of the public key� and hence the public key is
longer


�d� An elliptic curve point P can be speci
ed by its x�coordinate and the bit fyP 
 The
full y�coordinate can then be recovered from this information
 Representing a point
in this way reduces the length of the public key
 For more details of this technique�
see Section C
�


����� Elliptic Curve Signature Schemes �ECSSA and ECSSM�

Two signature schemes are described in this standard


The 
rst scheme ECSSA is used in text hashing mode� and is an example of a signa�
ture scheme with appendix
 In this scheme the message is hashed to a message digest of

xed length� and then this digest is signed
 Veri
cation of the signature requires both the
signature and the original message


The second scheme ECSSM is a signature scheme with message recovery
 In this scheme
the message is signed directly� and then the original message can be reconstructed from the
signature itself
 To guard against forgeries it is important that the message include some
pre�speci
ed redundancy
 The advantages of a signature scheme with message recovery is
that it permits applications without a hash function� and furthermore results in smaller
bandwidth for signatures of small messages


System Setup

This is the same as in Section �
�
�


Key Generation

This is the same as in Section �
�
�


Signature Generation for ECSSA

�Entity A signs a message M for entity B�

A performs the following steps�

�
 Represent the message M as a binary string
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�
 Use a hash algorithm to compute the hash value m �� H�M�


�
 Select a random integer k in the range ��� n� ��


	
 Compute the point �x�� y�� �� kP 


�
 Compute r �� x� mod n


�
 Use the private key d to compute s �� k���m� rd� mod n


�
 Compute s�� mod n


�
 A sends to B the message M and the signature �r� s���


Signature Veri�cation for ECSSA

�Entity B veri
es A�s signature �r� s��� for a message M 
�

B performs the following steps�

�
 Look up A�s public key Q


�
 Compute the hash value m �� H�M�


�
 Compute u �� s��m mod n and v �� s��r mod n


	
 Compute the point �x�� y�� �� uP � vQ


�
 Compute r� �� x� mod n


�
 Accepts A�s signature for message M if and only if r � r�


Signature Generation for ECSSM

�Entity A signs a message M for entity B�

A performs the following steps�

�
 Represent the message M as a pair of 
eld elements m� and m�� which include some
pre�speci
ed redundancy


�
 Select a random integer k in the range ��� n� ��


�
 Compute the point �x�� y�� �� kP 


	
 Compute the 
eld elements r� �� m�x� and r� �� m�y�


�
 Use the private key d to compute s �� k � d�r� � r�� mod n


�
 A sends to B the signature �r�� r�� s�


Signature Veri�cation for ECSSM

�Entity B recovers the message and veri
es A�s signature from �r�� r�� s�
�

B performs the following steps�

�
 Look up A�s public key Q


�
 Compute the point �x�� y�� �� sP � �r� � r��Q


�
 Compute m�

� �� r�x
��
� and m�

� �� r�y
��
� and

	
 Accept the signature for the message �m�

�� m
�

�� if and only if �m�

�� m
�

�� contains the
pre�speci
ed redundancy
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Notes

�a� A good example of a redundancy generating function is in ISO�IEC ����


��� Services Provided

The cryptographic algorithms described in this standard can be used to provide the following
services


	 Privacy �secrecy�

	 Entity authentication

	 Information authentication

	 Digital signatures �non�repudiation�

	 Authenticated key exchange

��� Encryption

This section describes the ECES encryption process


The encryption process consists of four steps� encryption�block formatting� elliptic curve
computations� message inclusion� and point�to�octet�string conversion


The input to the encryption process is�

	 An octet string M � the message
 The length of the message M shall not be more that
�l� � octets� l is the length of the 
eld size �q� in octets� that is�

l �

�
t

�

�
� where t � dlog� qe�

	 Two 
eld elements a and b which describe the elliptic curve equation
 A 
eld element
is represented by a binary string of length t


	 A 
eld element xP and the bit fyP � which together describe the point P � �xP � yP � of
order n


	 A 
eld element xQ and the bit fyQ� which together describe the public�key point
Q � �xQ� yQ�


The output from the encryption process shall be an octet string EM of length �l � ��
the encrypted message


��	�� Encryption
block formatting

�
 Pad the message M on the left with a padding string PS of �l � � � kMk octets�
followed by the �� octet� to form the octet string M ��

M � � PS k �� kM�
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The octets of the padding string PS should be pseudorandomly generated and non�
zero


�
 The string consisting of the 
rst l�� octets ofM � is called M� and the string consisting
of the last l� � octets of M is called M��

M� � left half of M �

M� � right half of M �


Notes

�a� Since t is recommended to be at least ���� the value of l is at least ��� and so the
length of the message M can always be up to �� octets


�b� Since the padding string PS contains no �� octets� and the padding string is separated
from the messageM by a �� octet� the encryption block can be parsed unambiguously


�c� The standard may be extended to handle messages of length greater than �l�� octets


��	�� Elliptic curve computations

�
 Select a random integer k in the range ��� n� ��


�
 Recover the y�coordinate yP of the point P from xP and the bit fyP 

�
 Compute the elliptic curve point �x�� y�� �� kP � where P is the point �xP � yP �


	
 Recover the y�coordinate yQ of the point Q from xQ and the bit fyQ

�
 Compute the elliptic curve point �x�� y�� �� kQ� where Q is the point �xQ� yQ�


Notes

�a� For reasons of e�ciency� the integer k may be chosen by setting j randomly chosen
positions of its binary representation to �� and the remaining positions to �
 For
security� the value of j should be at least ��


��	�	 Message inclusion

�
 ConvertM� to a binary string� and then append a zero binary string of length ���l�t
to the left of this binary string to form a 
eld element m�


�
 ConvertM� to a binary string� and then append a zero binary string of length ���l�t

to the left of this binary string to form a 
eld element m�


�
 Form the 
eld element x� by setting to � the 
rst � � �l � t most signi
cant bits of
x�


	
 Form the 
eld element y� by setting to � the 
rst �� �l� t most signi
cant bits of y�


�
 Form the 
eld element x� by concatenating the d t
�
e most signi
cant bits of x� followed

by the b t
�
c least signi
cant bits of y�


�
 Form the 
eld element y� by concatenating the d t
�
e most signi
cant bits of y� followed

by the b t
�
c least signi
cant bits of x�


�
 Compute z� �� m�� y� and then perform a 
eld multiplication to obtain c� �� x� � z�

�
 Compute z� �� m��x� and then perform a 
eld multiplication to obtain c� �� y� � z�




��� Decryption ��

Notes

�a� The value of �� �l� t is either �� �� �� 	� �� �� �� or �


�b� The most signi
cant bit of the 
eld elements m�� m�� x� and y� is �
 The reason for
doing this is to ensure� in the case where q is equal to a prime p� that the integers
represented by x�� y�� z� and z� are less than the modulus p


�c� The reason for combining the 
eld elementsm��m�� x� and y� in the manner speci
ed�
is to ensure that an eavesdropper who knows c�� c� and also half the message� say
m�� cannot recover the second half of the message m�� nor can he substitute m� by
another message m�

� of his choice


��	�� Point
to
octet
string conversion

�
 Append a zero binary string of length �l � t to the left of the 
eld element x�� and
convert the resulting �l�bit binary string to an octet string X� of length l


�
 Compute the bit fy�
 Assign the single octet Y� the value �� if fy� is �� or the value ��
if fy� is �


�
 Append a zero binary string of length �l � t to the left of the 
eld element c�� and
convert the resulting �l�bit binary string to an octet string C� of length l


	
 Append a zero binary string of length �l � t to the left of the 
eld element c�� and
convert the resulting �l�bit binary string to an octet string C� of length l


�
 Finally� obtain the ciphertext EM by concatenating the four octet strings X�� Y�� C�

and C��

EM � X� k Y� kC� kC��

EM is �l� � octets in length


��� Decryption

This section describes the ECES decryption process


The decryption process consists of four steps� octet�string�to�point conversion� elliptic
curve computations� message extraction� and encryption�block parsing


The input to the decryption process is�

	 An octet string EM of length �l� �� the encrypted message


	 Two 
eld elements a and b which describe the elliptic curve equation


	 An integer d� the private key


The output from the encryption process shall be an octet string M of length at most
�l� �� the plaintext message




�� Elliptic Curve Systems

����� Octet
string
to
point conversion

�
 Parse the encrypted message EM to obtain octet strings X�� Y�� C� and C�� of length
l� �� l and l� respectively�

EM � X� kY� kC� kC��

�
 Convert X� to a binary string� and then discard the �l � t most signi
cant bits to
obtain a 
eld element x�


�
 Set the bit fy� to be � if the octet Y� is ��� or � if the octet Y� is ��


	
 Convert C� to a binary string� and then discard the �l � t most signi
cant bits to
obtain a 
eld element c�


�
 Convert C� to a binary string� and then discard the �l � t most signi
cant bits to
obtain a 
eld element c�


����� Elliptic curve computations

�
 Use x� and fy� to obtain the elliptic curve point �x�� y��


�
 Compute the elliptic curve point �x�� y�� �� d�x�� y��


����	 Message extraction

�
 Form the 
eld element x� by setting to � the 
rst � � �l � t most signi
cant bits of
x�


�
 Form the 
eld element y� by setting to � the 
rst �� �l� t most signi
cant bits of y�


�
 Form the 
eld element x� by concatenating the d t
�
e most signi
cant bits of x� followed

by the b t
�
c least signi
cant bits of y�


	
 Form the 
eld element y� by concatenating the d t
�
e most signi
cant bits of y� followed

by the b t
�
c least signi
cant bits of x�


�
 Compute z� �� c� � x��� and then m� �� z� � y�


�
 Compute z� �� c� � y��� and then m� �� z� � x�


�
 Discard the � � �l � t most signi
cant bits of m�� and convert the resulting binary
string to an octet string M� of length l � �


�
 Discard the � � �l � t most signi
cant bits of m�� and convert the resulting binary
string to an octet string M� of length l � �


����� Encryption
block parsing

�
 Concatenate M� and M� to obtain an octet string M ��

M � � M� kM��

�
 Parse M � to obtain the message M �

M � � PS k �� kM�



��� Signature ��

��� Signature

����� ECSSA

����� ECSSM

��� Signature Veri�cation

����� ECSSA

����� ECSSM

��	 Key Length Considerations

The security of the elliptic curve schemes described in this standard hinges on the apparent
di�culty of the discrete logarithm problem in elliptic curves
 To avoid the best known
attacks on the discrete logarithm problem� �see Appendix F� the underlying 
eld Fq� the
curve E� and the point P should be selected so that the order n of P is divisible by a prime
number r which is at least ���� �and hence� q should also be at least �����


One simple way to ensure that this condition is met is to select a curve whose order is
prime


��
 Key Generation Considerations

This section describes ECES and ECSS key generation


��
�� System Setup

The system parameters� namely the 
eld Fq� the 
eld elements a and b� the point P � and
the order n� are selected by the system administrator
 The system parameters are public
information


�
 An underlying 
nite 
eld Fq is chosen
 The 
eld is either Fp �so q � p� an odd
prime� or F�m �so q � �m�
 Field elements are represented by binary strings of length
t � dlog� qe


�
 If q � p� then two elements a� b � Fp are selected so that 	a� � ��b� �� � in Fp
 The
elements a and b de
ne an elliptic curve E � y� � x� � ax� b

If q � �m� then two elements a� b � F�m are selected so that b �� �
 The elements a
and b de
ne an elliptic curve E � y� � xy � x� � ax� � b

In either case� �E�Fq� should be divisible by a large prime number
 Preferably�
�E�Fq� should be a prime itself


�
 A point P � �xP � yP � on the elliptic curve E is selected so that the order of P � denoted
n� is a prime number
 The bit fyP is computed
 The point P is represented by xP andfyP 




�� Elliptic Curve Systems

Notes

�a� See Section �
� for a discussion of conditions imposed on the sizes of q and n due to
security constraints


�b� See Section C
� for a discussion on how to select a curve of appropriate order


�c� See Section C
� for a method of computing the order of a point


�d� See Section C
� for a method of representing a point by the x�coordinate and only
one bit of the y�coordinate


��
�� Key Generation

After system setup� each entity performs the following operations


�
 Select a random integer d in the range ��� n� ��


�
 Compute the point Q �� dP 


�
 Let Q � �xQ� yQ�� and compute fyQ
 The entity�s public key consists of the point Q�
which is represented by xQ and fyQ


	
 The entity�s private key is the integer d


��� Key Syntax

The section describes the syntax for ECES and ECSS public and private keys


����� Public
Key Syntax

An ECES or ECSS public key is a binary string

ECPublicKey �� xQ k fyQ
where xQ is the x�coordinate of the public�key point Q� and fyQ is the bit which can be used
to recover the y�coordinate yQ of Q


Note that ECPublicKey is a binary string of length t � �


����� Private
Key Syntax

An ECES or ECSS private key is an integer d in the range ��� n� ��


���� Applications 
not part of standard�



Appendix C

Mathematical Background

C�� The Finite Field Fp

Let p be a prime number
 The 	nite 	eld Fp is comprised of the set of integers f�� �� �� � � � � p�
�g with the following arithmetic operations�

	 Addition� If a� b � Fp� then a� b � r where r is the remainder when a� b is divided
by p� � � r � p� �


	 Multiplication� If a� b � Fp� then ab � s where s is the remainder when ab is divided
by p� � � s � p� �


Let Fp
� denote all the non�zero elements in Fp
 In Fp� there exists at least one element g

such that any non�zero element of Fp can be expressed as a power of g
 Such an element g
is called a generator �or primitive element� of Fp
 That is

Fp
� � fgi � � � i � p� �g�

Example �The 	nite 	eld F��
F��f���g
 The addition and multiplication tables for F� are

� � � � � �
� � � � � �
� � � � � �

Example �The 	nite 	eld F���
F�� � f�� �� �� � � � � ��g
 Examples of the arithmetic operations in F�� are �� � �� � �� � ��
� � � � �� � �
 The element � is a generator of F���
 The powers of � are�

�� � � �� � � �� � � �� � �� �� � 	 �� � ��
�� � � �� � �� �	 � �� �
 � �� ��� � � ��� � ��
��� � �� ��� � �� ��� � �� ��� � �� ��� � � ��� � ��
��	 � � ��
 � � ��� � �� ��� � �	 ��� � �




�� Mathematical Background

C�� The Finite Field F�m

Let f�x� � xm� fm��x
m��� � � �� f�x

�� f�x� f�� fi � F�� be an irreducible polynomial of
degree m over F�� i
e
� f�x� cannot be factored into two polynomials over F� each of degree
less than m
 The 	nite 	eld F�m is comprised of all polynomials over F� of degree less than
m�

F�m � fam��x
m�� � am��x

m�� � � � �� a�x� a� � ai � f�� �gg�
The 
eld element �am��x

m�� � � � � � a�x � a�� is usually denoted by the binary string
�am�� � � �a�a�� of length m� so that

F�m � f�am�� � � �a�a�� � ai � f�� �gg�
Thus the elements of F�m can be represented by the set of all binary strings of length m


Field elements are added and multiplied as follows�

	 Field addition� �am�� � � �a�a�� � �bm�� � � �b�b�� � �cm�� � � �c�c��� where ci � ai � bi
in the 
eld F�
 That is� 
eld addition is performed componentwise


	 Field multiplication� �am�� � � �a�a�� ��bm�� � � �b�b�� � �rm�� � � �r�r��� where the poly�
nomial �rm��x

m���� � ��r�x�r�� is the remainder when the polynomial �am��x
m���

� � �� a�x� a�� � �bm��x
m�� � � � �� b�x� b�� is divided by f�x� over F�


Note that F�m contains exactly �m elements
 Let F��m denote the set of all non�zero
elements in F�m 
 There exists at least one element g in F�m such that any non�zero element
of F�m can be expressed as a power of g
 Such an element g is called a generator �or
primitive element� of F�m 
 That is

F
�

�m � fgi � � � i � �m � �g

Example �The 	nite 	eld F���
Take f�x� � x� � x � � over F�� it can be veri
ed that f�x� is irreducible over F�
 Then
the elements of F�� are�

������ ������ ������ ������ ������ ������ ������ ������
������ ������ ������ ������ ������ ������ ������ ������


As examples of 
eld arithmetic� we have ������� ������ � ������� and

������ � ������ � �x� � x� � ���x�� �� � x� � x� � x� � �

� �x� � x� ���x� � x� � �x� � x� � x� ��

� x� � x� � x� � mod f�x�

� �������

i
e
� the remainder when �x� � x� � ���x� � �� is divided by f�x� is x� � x� � x� �


F
�

�� can be generated by one element � � x
 The powers of � are�

�� � ������ �� � ������ �� � ������ �� � ������
�� � ������ �� � ������ �� � ������ �� � ������
�	 � ������ �
 � ������ ��� � ������ ��� � ������
��� � ������ ��� � ������ ��� � ������ ��� � �� � ������




C�� Elliptic Curves over Fp �	

C�� Elliptic Curves over Fp

Let p � � be a prime number
 Let a� b � Fp be such that 	a� � ��b� �� � in Fp
 An elliptic
curve E�Fp� over Fp de
ned by the parameters a and b is the set of solutions �x� y� in
Fp 
 Fp to the equation

y� � x� � ax� b�

together with an extra point O� the point at in	nity
 The number of points in E�Fp� is
denoted by �E�Fp�
 The Hasse Theorem tells us that

p� �� �
p
p � �E�Fp� � p� �� �

p
p�

The set of points E�Fp� form a group with respect to the following addition rules�

�i� O � O � O


�ii� �x� y� � O � �x� y� for all �x� y� � E�Fp�


�iii� �x� y� � �x��y� � O for all �x� y� � E�Fp� �i
e
� the inverse of the point �x� y� is the
point �x��y��


�iv� �Rule for adding two distinct points that are not inverses of each other�
Let �x�� y�� � E�Fp� and �x�� y�� � E�Fp� be two points
 If x� �� x�� then �x�� y�� �
�x�� y�� � �x�� y��� where

x� � �� � x� � x�� y� � ��x� � x��� y�� and � �
y� � y�
x� � x�

�

�v� �Rule for doubling a point�
Let �x�� y�� � E�Fp� be a point with y� �� �
 Then ��x�� y�� � �x�� y��� where

x� � �� � �x�� y� � ��x� � x��� y�� and � �
�x�� � a

�y�
�

The group E�Fp� is abelian� which means that P � Q � Q � P for all points P and
Q in E�Fp�
 The curve is said to be supersingular if E�Fp� � p � �� otherwise it is non�
supersingular


Example �An elliptic curve over F���
Let y� � x��x�� be an equation over F�� �i
e
� a � � and b � ��
 Then the solutions over
F�� to the equation of the elliptic curve are�

��� �� ������ ����� ��� ��� ��� ��� ������ �	� �� ��� 	� ������
��� 	� ������ ������ ������ ��� �� ������ ������ ������� ����	�
������� ������ ������� ������ ������� ������ ������� ������ �������


The group E�F��� has �� points �including the point at in
nity O�
 The following are
examples of the group operation




�
 Mathematical Background

�
 Let P� � ��� ���� P� � ��� ��� P� � P� � �x�� y��� Compute

� �
�� ��

�� �
�
��
�

�
��
�

� �� � F���

x� � ��� � �� � � �� �� � � �� � ���

y� � ����� ���� �� � ������ �� � �� � ���

Therefore P� � P� � ���� ����

�
 Let P� � ��� ���� �P� � �x�� y��� Compute

� �
����� � �

��
�

�

��
�

�

	
� ��

x� � �� � � � �� � ��

y� � ���� ��� �� � ��	� �� � ��� � ���

Therefore �P� � ��� ����

C�� Elliptic Curves over F�m

A non�supersingular elliptic curve E�F�m� over F�m de
ned by the parameters a� b � F�m �
b �� �� is the set of solutions �x� y� in F�m 
 F�m to the equation

y� � xy � x� � ax� � b

together with an extra point O� the point at in	nity
 The number of points in E�F�m� is
denoted by �E�F�m�
 The Hasse Theorem tells us that

q � �� �
p
q � �E�F�m� � q � � � �

p
q�

where q � �m
 Furthermore� �E�F�m� is even


The set of points E�F�m� is a group with respect to the following addition rules�

�i� O � O � O


�ii� �x� y� � O � �x� y� for all �x� y� � E�F�m�


�iii� �x� y� � �x� x� y� � O for all �x� y� � E�F�m� �i
e
� the inverse of the point �x� y� is
the point �x� x� y��


�iv� �Rule for adding two distinct points that are not inverses of each other�
Let �x�� y�� � E�F�m� and �x�� y�� � E�F�m� be two points
 If x� �� x�� then �x�� y���
�x�� y�� � �x�� y��� where

x� � �� � �� x� � x� � a� y� � ��x� � x�� � x� � y�� and � �
y� � y�
x� � x�

�



C�� Computing the Multiple of a Point �


�v� �Rule for doubling a point�
Let �x�� y�� � E�F�m� be a point with x� �� �
 Then ��x�� y�� � �x�� y��� where

x� � x�� �
b

x��
� and y� � x�� �

�
x� �

y�
x�

�
x� � x��

The group E�F�m� is abelian� which means that P �Q � Q� P for all points P and Q

in E�F�m�


Example �An elliptic curve over F����
Consider the 
eld F�� generated by the root � � x of the irreducible polynomial f�x� �
x� � x� �� Consider the non�supersingular elliptic curve over F�� with de
ning equation

y� � xy � x� � ��x� � �

�so a � ��� b � ��
 Then the solutions over F�� to the equation of the elliptic curve are�

����� ��� ��� ��� ���� ���� �	� ���� ���� ���� ��� ���� ����
���� �	� ���� ���� ��
� ���� ��
� ���� ����� ��� ����� �	� ����� �� ����� �����

The group E�F��� has �� points �including the point at in
nity O�
 The following are
examples of the group operation


�
 Let P� � ���� �	�� P� � ���� ����� and let P� � P� � �x�� y��
 Then

x� �

�
�	 � ���

�� � ��

��
�
�	 � ���

�� � ��
� �� � �� � �� �

�
��

��

��
�

��

��
� �� � �� � ��

y� �

�
�	 � ���

�� � ��

�
��� � �� � � � �	 �

�
��

��

�
��� � �� � ����

�
 If �P� � �x�� y��� then

x� � ����� �
�

�����
� ��� � �� � ����

y� � ����� �

�
�� �

�	

��

�
��� � ��� � �� � ��� � ������ � �	�

C�� Computing the Multiple of a Point

If k is a positive integer and P is an elliptic curve point� then kP is the point obtained
by adding together k copies of P 
 This computation can be performed e�ciently by the
 repeated double�and�add! method outlined below


Input� A positive integer k� and an elliptic curve point P 

Output� The elliptic curve point kP 




�� Mathematical Background

�
 Let k � krkr�� � � � k�k� be the binary representation of k� where the most signi
cant
bit kr of k is �


�
 Set Q�� P 


�
 For i from r � � downto � do

�
� Set Q�� Q� Q

�
� If ki � � then set Q�� Q� P 


	
 Output Q


There are several variations of this method which can be used to speed up the compu�
tations
 One such method which requires some precomputations is described in ���


C�� Normal Bases in F�m

Arithmetic in the 
nite 
eld F�m can be performed e�ciently both in hardware and in
software when the 
eld elements are represented with respect to a normal basis


The 
eld F�m can be viewed as a vector space of dimension m over F�
 That is� there
exists a set of m elements ��� ��� � � � � �m�� in F�m such that each � � F�m can be written
uniquely in the form

� �
m��X
i��

ai�i� where ai � f�� �g�

We can then represent � as the ��� vector �a�� a�� � � � � am���
 Addition of 
eld elements is
performed by bitwise XOR�ing the vector representations


In general� there are many di�erent bases of F�m over F�
 A normal basis of F�m over
F� is a basis of the form

f�� ��� ��� � � � � � ��m��g�
where � � F�m � it is a well�known fact that such a basis always exists
 Given any element
� � F�m � we can write � �

Pm��
i�� ai�

�i � where ai � f�� �g
 Since squaring is a linear
operator in F�m � we have

�� �
m��X
i��

ai�
�i�� �

m��X
i��

ai���
�i � �am��� a�� � � � � am����

with indices reduced modulom
 Hence a normal basis representation of F�m is advantageous
because squaring a 
eld element can then be accomplished by a simple rotation of the vector
representation� an operation that is easily implemented in hardware


Another important property of normal bases to note is that the multiplicative identity
element is represented by the all�ones vector of length m


Multiplying 
eld elements and computing inverses can be done e�ciently but is more
complicated to describe
 For some pointers to the literature� consult the references on
page ��




C�	 Selecting an Appropriate Curve ��

C�	 Selecting an Appropriate Curve

There are three approaches to selecting an elliptic curve over Fq suitable for cryptographic
purposes


C���� Method � � Selecting the curve at random

�
 Randomly select parameters a� b � Fq to de
ne the elliptic curve equation

In the case that q is a prime� verify that 	a� � ��b� �� �
 The curve equation is
E � y� � x� � ax� b

In the case that q � �m� verify that b �� �
 The curve equation is E � y� � xy �
x� � ax� � b


�
 Compute u � �E�Fq�
 �See notes below
�

�
 Factor u� if this order is not divisible by a large prime number r� then go to step �


	
 Verify that the large prime divisor r of u does not divide qv� �� for v � �� �� �� � � � � ��

If this test fails� then go to step �


�
 Output the curve selected


Notes

The order �E�Fq� can be computed by using Schoof�s algorithm ����
 Although the basic
algorithm is quite ine�cient� several dramatic improvements and extensions of this method
have been discovered during the last three years
 Currently it is feasible to compute �E�Fp�
where p is as large as ����� ����
 Also� it is possible to compute �E�F�m� where m is as big
as ��� in a few hours on a workstation ����


C���� Method � � Selecting the order of the curve �rst

�
 Select an order u such that

�a� q � �� �
p
q � u � q � �� �

p
q


�b� u is divisible by a large prime r

�c� r does not divide qv � � for v � �� �� �� � � � � ��


If q � �m then u should also be even


�
 Use the algorithm described in ���� to 
nd parameters a� b � Fq such that the elliptic
curve E de
ned by them has order �E�Fq� � u


�
 Output the curve E


Notes

The algorithm of ���� requires some precomputations for each particular 
eld Fq
 Once this
is done� then the algorithm takes a few minutes on a workstation� even when q is as large
as ����
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C���	 Method 	 � Using the Weil Theorem

This technique can be used for picking curves over F�m � where m is divisible by a small
number� say l


�
 Select a random curve E � y� � xy � x� � ax� � b� b �� �� where a� b � F�l 
 Note that
since F�l is contained in F�m � it is also true that a� b � F�m � and so E is also a curve
over F�m 


�
 Compute w � �E�F�l�
 This can be done exhaustively since l is small


�
 Let t � ql � �� w� and let c � m�l
 Then

u � �E�F�m� � �m � �� �c � �c�

where � and � are complex numbers determined from the factorization of

�� tz � qlz� � ��� �z���� �z��

	
 Factor u� if this order is not divisible by a large prime number r� then go to step �


�
 Verify that the large prime divisor r of u does not divide qv� �� for v � �� �� �� � � � � ��

If this test fails� then go to step �


�
 Output the curve selected


C�
 Computing the Order of a Point

The following algorithm is an e�cient method for computing the order of an elliptic curve
point� given the prime factorization of the elliptic curve order


Input� An elliptic curve E de
ned over Fq � where the prime factorization of �E�Fq� is

�E�Fq� � pe�� p
e�
� � � �pekk � ei � ��

A point P on E

Output� The order n of P 


�
 Set n�� �E�Fq�


�
 For i from � to k do

�
� Set n�� n�peii 

�
� Compute P� �� nP 

�
� While P� �� O� compute P� �� piP� and set n�� npi


�
 Output n


C�� Representing an Elliptic Curve Point

An elliptic curve point P �which is not the point at in
nity O� is represented by two 
eld
elements� the x�coordinate of P and the y�coordinate of P � P � �xP � yP �
 The point can
be represented more compactly by storing only the x�coordinate xP and a certain bit fyP 

The next two subsections show how the full y�coordinate yP can be recovered from xP andfyP 
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C���� Elliptic curves over Fp

We impose the condition that p � � �mod 	�� that is p � 	u� � for some positive integer
u
 �The case where p � � �mod 	� is more complicated� and is not discussed here
�

Let P � �xP � yP � be a point on the elliptic curve E � y� � x� � ax � b de
ned over a
prime 
eld Fp
 Recall that fyP is equal to the least signi
cant bit of yP 


Suppose that we are given the x�coordinate xP of P and the bit fyP 
 Then yP can be
recovered as follows


�
 Compute the 
eld element � � xP
� � axP � b mod p


�
 Compute the 
eld element � � �u�� mod p


�
 If the least signi
cant bit of � is equal to fyP then set yP �� �
 Otherwise� set
yP �� p� �


C���� Elliptic curves over F�m

The technique described in this subsection works only if the elements of the 
eld F�m are
represented with respect to a normal basis representation �see Section C
��


Let P � �xP � yP � be a point on the elliptic curve E � y� � xy � x� � ax� � b de
ned
over a 
eld F�m 
 Recall that fyP is equal to � if xP � �� if xP �� � then fyP is equal to the
least signi
cant bit of the 
eld element yP � xP��


Suppose that we are given the x�coordinate xP of P and the bit fyP 
 Then yP can be
recovered as follows


�
 If xP � � then yP is obtained by cyclically shifting the binary representation of
the 
eld element b one position to the left
 That is� if b � bm��bm�� � � � b�b�� then
yP �� bm�� � � � b�b�bm��


�
 If xP �� � then do the following�

�
� Compute the 
eld element � � xP � a� bxP
�� in F�m 


�
� Let the binary representation of � be � � �m���m�� � � �����


�
� Construct a 
eld element z � zm��zm�� � � �z�z� by setting

z� � fyP �
z� � �� � z��

z� � �� � z��





zm�� � �m�� � zm���

zm�� � �m�� � zm���

�
	 Finally� compute yP �� xP � z
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�� Validation Suite �Test Vectors�



Appendix F

Known State of Attacks

The security of the elliptic curve systems described in this standard hinges on the apparent
di�culty of the discrete logarithm problem in the elliptic curve
 Namely� given an elliptic
curve E de
ned over a 
nite 
eld Fq� and given points P and Q�� kP �� 
nd the integer k


Unlikely the case of the discrete logarithm problem in 
nite 
elds� there is no subexpo�
nential time algorithm known for the elliptic curve discrete logarithm problem �in the case
that the curve is non�singular�
 The best algorithm known to date is the Pollard�� method
���� which takes about

p
	r�� steps� where r is largest prime divisor of the order n of P 


Recently� van Oorschot and Wiener ���� discovered a technique for parallelizing the
Pollard�� method so that if m processors are used� then the expected number of steps by
each processor before a discrete logarithm is obtained is

p
	r���m
 Hence� to avoid this

attack� it is necessary to select a curve and a point P of order divisible by a prime r so thatp
	r���m is su�ciently large


As a concrete example� van Oorschot and Wiener estimated that if r is about ����� then
a machine with ������� processors can be built for about "�� million which would compute
logarithms in about �� days


If r is chosen to be at least ����� then the discrete logarithm problem would be well out
of reach of the van Oorschot and Wiener attack


The special classes of supersingular curves have been avoided in this standard since
there is a method for reducing the discrete logarithm problem in these curves to the discrete
logarithm problem in a 
nite 
eld
 However� it should be pointed out that there are some
particular supersingular curves whose use may have some advantages over non�supersingular
curves
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