EXHIBIT M

http://dockets.justia.com/docket/texas/txedce/2:2007cv00279/104068/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/2:2007cv00279/104068/82/17.html
http://dockets.justia.com/

az United States Patent

Jenevein

B 00 0 0 OO
US006173291B1

US 6,173,291 Bl
Jan. 9, 2001

(10) Patent No.:
t45) Date of Patent:

(54) METHOD AND APPARATUS FOR
RECOVERING DATA FROM DAMAGED OR
CORRUPTED FILE STORAGE MEDIA

(75) Inventor: Roy M. Jenevein, Austin, TX (US)

(73) Assignee: PowerQuest Corporatien, Orem, UT
(US)

(*)} Notice: Under 35 U.S.C. 154(b), the term of this

patent shall be extended for 0 days.

(21) Appl. No.: 08/939,085

(22) Filed: Sep. 26, 1997

(51) It CL7 cnnsrscnsrcnimnsrens s sssresensen GO6F 17/30
(G JL 1P o I — T07/200; 7077/202; 707/205;
707,206
(58) Field of Searchniisienns 707/200, 206,
707/202, 205

(56) References Cited

U.S. PATENT DOCUMENTS

4,941,059 TI990 Gramt ...ouereerimvvsresssrsasmmsenssss 360/72.1
5,083,264 171992 Platteter et al. 395/182.03
5,276,860 * 1/1994 Fortier et al woniiscsmrininnns 395/575
5,321,824 * 6/1994 Burke et al. e 711220
5,421,006 5/1995 Jablon et al. 395/183.12
5,432,928 * 7/1995 Sherman ...oeeronrssmnon 707/3
5,469,573 11/1995 McGill, I et al. . 395/712
5,473,753 * 12/1995 Wells et al. e 395/218
5,493,649 211996 Slivka et al. 395/185.01
5,535,381 711996 KOPPLET oot sssscssnanes 395/872
5,555,405 * 9/1996 Griesmer el al. . 707205
5,561,786 * 10/1996 MOTSE ..vvvrvriniesireeniniessrscininns T11/170
5,594,863 1/1997 Stiles womrrersees . 395/182.13
5,603,020 2/1997 Hashimoto et al. v 7OT200
5,623,651 4/1997 Jernigan, IV ... wees 7077206
5,761,404 * 6/1998 Murakami et al 305/182.13

5,832,526 * 11/1998 ScHUYIE eeercsvcnrereormmsssonis 7674205
OTHER PUBLICATIONS

Mendelson, Edward, PC Tools Deluxe 5.5 (Software
Review), PC Magazine, Mar. 27, 1990, p. 112.

Garofolo, Denise A., “Take Charge!: A Diverse Package of
Ultiltities”, Information Today, Jul—Aug. 1990, p. 13.

Morgenstern, Steve, “Make Your Computer Faster, Safer,
Easier to Run (Using Disk Utility Software)”, Home Office
Computing, Sep., 1991, p. 46.

Ayer, Rick, “What’s the Price of a Free Lunch?”, PC
Magazine, Sep. 14, 1993, p. 108.

Shatz—Akin, Jim, “The Big Squeeze (Scftware Review)”,
MacUser, Jan., 1994, p. 129.

“PC Crasch? Call Rescue 91117, Newsbytes News Network,
Apr. 21, 1997, page N/A.

* cited by examiner

Primary Examiner—Paul R. Lintz
Assistant Examiner—Jean Bolte Fleurantin
(74) Antorney, Agent, or Firm—Marc A. Hubbard

67N ABSTRACT

An automated method and apparatus for identifying and
copying lost files from a mass data storage device of a
compulter when file systerm information (as opposed to the
actual data files) stored on the mass data storage device has
been corrupted or destroyed. The mass data storage device
is scanned on a sector-by-sector basis in order to attempt Lo
identify sectors containing file system data structures and
fite attributes. Identification is made using data signature
and/or pattern matching filters. The location of, and any
valid information found in, such sectors is used then to
derive information useful in locating files to be copied to
another storage device. For example, in a FAT, NTES or
other cluster-oriented file system, if information on the
number of sectors per cluster (SPB) is not available from a
baot directory, it and a cluster base (the starting sector of
cluster 0) are calculated using the physical location of the
beginning sectors of the directories or folders, When a
starting cluster is known from a directory entry, but not
additional file allocation information, a cluster chain may be
reconstructed utilizing one or more of several disclosed
methods.

50 Claims, 10 Drawing Sheets

U.S. Patent Jan. 9, 2001 Sheet 1 of 10 US 6,173,291 B1

17
CPU —y Il — Keyboard o e
14——\ f-—18 ‘ - 16
Main Memo e k=3 Disk Drive Floppy Disk
(RAM) Y Controller Drive
32 — f—zz [——20
BIOS . | DiskDrive Hard Disk
(ROM) Y Controller Drive
FZS f—26
30—
Graphics Monitor
M Adapter

Fig.1

U.S. Patent Jan. 9, 2001 Sheet 2 of 10 US 6,173,291 B1

J’ Directories and Files :l-\ J' Directories and Files :l:
44b-J [44b- L
40b-| Root Direclory 40b~} Root Direclory
(no longer in fixed loc)
46b-_{
FAT2 46b~
i FAT2
Partition 2 ~Partition 2
46b-_} FAT1 46b—] EATH
36b~.1 Boot Sector 38b-_k-
(not used) Bmt(:mi‘ ii:)ctors
34b~ B, Parition Seator 34b~1 Ext. Pariition Sector
o o
) 3
iR . . " L iR . . . :E
4da-T Directories and Files ada-TJ Directories and Files
0~ Root Dvedoy L el
46a~]
FAT2 H 46a-1 EAT2
46a-~] FAT1 artion 1 >Partition 1
46a~1 FAT1
Secto
i 38a~1 Boot 2 Sectors
44b~.| (not used)

38a~1 Boot 1 Sectors
{not used)

34a—~] Partition Sector (MBR})

34a~{ Ppariiion Sector

Fig.2b

Fig.2a

U.S. Patent Jan. 9, 2001 Sheet 3 of 10 US 6,173,291 B1
J.\
56b-T Directories and Files =
54b~] NTFS Metadata Files
52b~1 MFT Copy (Partia) | S-Partiion 2
- {volume)}
50b-.1 MasterFile Table
(MFT}
36b~ Boot Sector
58 ~1 Ext. Partition Sector | |
56a =~fi Directories and Files =
54a—] NTFS Metadata Files
52a~1 MFT Copy (Partial) | \-parition 1
] (volume}
50a~1 Master File Table
(MFT}
36a-] Boot Sector
34a-1 Partition Sector)
. Read Sectors Where Root
Fi g3 Directory is Expected |——92
‘ 94
Does
Data Pattern YES
MatchThat of a Root
Directory
?
Read Next NO
1001 “sector 98
Does 96
Data Pattern
Match;’hat of a Sub-
irecto!
9 v Store Lopation of
VES Root Directory

Fig.5

1

U.S. Patent

Jan. 9, 2001 Sheet 4 of 10 US 6,173,291 B1
i
[Get Next Sector |74
(Stat)
76
60 Test‘ Disk pls YES
itio
™ Controllers ta g en
St%r% Locationf
and Content o 78
f;% 80 : Partition -
Contollers S
Pass? It a File Aitri-
bute?
YES
YES
64 -
™ TestDisks |) chor " Ffile
ttribute Inform- 82
66 ‘ atonand [~
NO Location
84
YES End
68—_] User Selects of Device
Source Drive
Y
70 User Selects Analyze [nform-
™ Destination Drive atior!:zand Con-
v (strltéct ;3_}_rectoryd
Folder) Tree an
ﬁ:ﬁgif;’:?jﬁfg Group Extra Files| _g¢
in“Lost-and-
72~ Boot Sector Found”
Information if oun
Present, and)
Store Display Directory
Information Tree and Receive
User Selection of |88
[Files for Recovery
)
Recover Files by
Copying Selected
Files to Destina- |—90
tion Drive
:u
End

U.S. Patent Jan. 9, 2001

Sheet 5 of 10

Sector
?

Look For All Sub-directories on Diskon | 302 116
a Sector-by-Sector Basis Assuming \
Minimum Number of Sectors/Cluster Foad Next
104 Sector
Does
Data Patlem YES
108 Matchhat of Sub-] —112
\ "e:?t oy Store Sector Address
Read Next NO of Sub-directory
Sector
) Does 106 ! 114
Data Pattem ave
(N0 MatchThat of Partition 2 Sub-directories NO

Been Found Within Same,

Partition
YES ?
Store Address of 110 YES —118
and Information in Calculate Sectors per Cluster
Partition Sector Based on Found Sub-diractories

Sectors per
Cluster Valid
?

a

Fig.6

Look For All Sub-directories on Disk on

Sector-by-Sector Basis Assuming
Calculated Value for Seciors per
Cluster by Data Pattern Match

NC

1

Does 124

Data Pattem

Does
Data Pattern
MatchThat of Partition
Segtor

MatchThat of Sub-
diregtory
{VEs —134

Store Address of and In-
formation in Sub-directory

130

Read Next
Seclor
)

YES

Store Partition
Information and
Address

_—128

f

132
EnKNO

of Disk?

US 6,173,291 B1

U.S. Patent Jan. 9, 2001 Sheet 6 of 10 US 6,173,291 B1

,(Statt)

/-136

For Each Directory Found, Starting with the
First Directory, Compute Sectors per
144 Cluster (SPC) and Cluster Base (CB) Through
i Comparison to Other of the Found Directories

Next "-:
Directory / 138
] Are
YES «SPC and CB
Valid?
/-148
146 Choose Next
Available of
Directory Available the Other
> for Computation Directories for
) ? Comparison
140—~_] Store and Recompute
Result

142

Last
Directory?

/'-150
Build Directory and FileTables By
Matching Entries in Directories with
Same SPC and CB and Store in

. Working Memory
152 Build Partition Record and Store in
™~ Working Memory

Y

154 For Each Directory and Each File in a Directory and File Table
™ Check Chain in Fat Table Starting with the First Directory

160 Indicate Directory
YES Is or File Not Likely }_—158
6 Fat Entry 164 1o beRecovered
162~ | Valid? s T
indicate Directory Indicate Directory
or File Likely or File May be 166
Recoverable Recovered £nd
{ 1 of Directory

Table?

U.S. Patent Jan. 9, 2001 Sheet 7 of 10 US 6,173,291 B1

(Stat)

_ 14
Receive Manual
Selection of Files [~—168

From Displayed List

Begin with First
Selected File 172

Next File
1
Copy to Destination Calculate Number of
Drive Sectors in File Clusters for Length {184
According to Fat Table of File
EntriesKand Caslc%ated 1
wn SP
Rl Copy Calculated Number
of Consecutive Clusters [~_1gg
from File’s Starting
Cluster Address

Fig.8

U.S. Patent Jan. 9, 2001 Sheet 8 of 10 US 6,173,291 Bl

(Stat)

¥
Determine Which
Clusters Have Not | ™—188
Been Accounted For

Begin With Smallest File [~—190

e

1

CCiaIculateNumbeJ ?f
usters Required for

File and get Next Un- | — 192
accounted for Cluster

196

194

Base Cluster
& File of the Same TypE\YES
as Unaccounted

198 Record

Location

Get Next Unaccounted
for Cluster
'y

200

Last
Cluster for
File?

YES —204

Write Fite Clusters to
Destination Drive
|

208

206

Get the Next Biggest] no
Filewith Missing
Cluster Information

YES

U.S. Patent Jan. 9, 2001

Sheet 9 of 10

\

Begin with First
Selected File

L J

Place Number of Be-
ginning Cluster in First
Window and Display
End of First Clusler of
Selected File in
Second Window

L
Update and Display in
Fourth Window List of
Clusters by Type
for Comparison

US 6,173,291 Bl

| _—214

k J

Display End of Matched
Cluster in Second Window
3

21—

Receive User's Selection
of Comparison Cluster
and Display Beginning

of Cluster in Third
Window Adjacent
to Second Window

/——222
Record Location of
Maiched Cluster and

Display in First Window

Receive User's
Selectionof Next File
for Manual Chaining

Cluster Availa_bie

for Compari-

U.S. Patent Jan. 9, 2001 Sheet 10 of 10 US 6,173,291 B1

US 6,173,291 B1

1

METHOD AND APPARATUS FOR
RECOYERING DATA FROM DAMAGED OR
CORRUPTED FILE STORAGE MEDIA

TECHNICAL FIELD OF INVENTION

The invention pertains generally to methods and appara-
tus for recovering data files from mass data storage devices
when file system information is corrupted or missing.

BACKGROUND OF THE INVENTION

The main components of a general purpose,
programmable, digital computer, as illustrated by a repre-
sentative computer 10 shown of FIG. 1, are a central
processing unit (CPU) or processor 12 for manipulating data
according to a program of instructions, and a main or
working memory 14 for temporarily storing data, including
program instructions., (The term “data” will be used
generically, unless the context otherwise indicates, to mean
any information in digital form stored by a compuier,
including, withoul limitation, program instruciions, text,
business data and commands.}

Most computers also include one or more mass or high
capacity data storage devices for long term storage of data
in the form of files. There are many types of mass data
storage devices available, including, for example, magnetic
and optical tape, magnetic, magneto-optical and optical
disks, and solid state (e.g. flash memory). Most, but not all,
of these devices and media are non-volatile; i.¢. they do not
require power to maintain long-term memory. Many can be
written to one or more times. In addition to the basic,
physical properties of their respective storage media, they
differ in manner (sequential versus random) of access, speed
of access, cost per unit of data storage and storage capacity,
among other characteristics. The type of device selected
often depends on the requirements for the particular com-
puter, Unlike the main memory, which stores data in directly
accessible small units, i.e. bytes, mass data storage devices
are set up to receive and make data available to the CPU in
comparatively large blocks. Mass data storage devices are
treated as peripheral input/output (I/0) devices, meaning
that they and/or their controllers are set up (in hardware,
software or both) transfer data in relatively large (e.g. 512
byte) blocks.

Most modern computers utilize at least one or more
magnetic disk media for high-capacity storage, as such
media currently offers a good combination of speed of
access, capacity and cost. [n the representative computer of
FIG. 1 the mass data storage devices are a floppy disk drive
16 and its controller 18, and hard disk drive 20 and its
controller 22. Conventionally, the floppy disk drive reccives
" a removable flexible, magnelic disk 17, The hard disk drive
includes a stack of spatially-separated, stiff, magnetic
platters, which are usually fixed, but may also be made
removable. The controllers for the respective disk drives
translate basic commands received from the CPU into the
appropriate actions for that particular disk drive, and control
the flow of data to and from the disk drives. Computers will
often include other types of mass data storage devices, such
as CD-ROM drives and tape drives.

In addition to mass data storage devices, the computer 10
also includes various other peripheral components or 1/O
devices with which the CPU communicates, including, for
example, a keyboard 24, a video monitor 26 and ils graphics
adapter 28. In the simplest form of the computer 19, the
CPU, main memory, the mass data storage devices and the
}/0 devices communicate over a single system bus, which is

10

15

20

25

30

35

40

45

55

60

65

2

designated 30 in the figure. However, most computers use
more complex types of bus arrangements for enabling
communication between the CPU, the main memory, and the
various 1/O devices,

There is also a separate, non-volatile, solid state read-only
memory 32 for storing what is referred to as the “BIOS” or
“Basic Input/Qutpul System,” which is permanently resident
software, separale from an operating system. The BIOS
software routines, when exccuted by the CPU, translate
certain “calls” from an executing program wanting to access
an I/Q device, whether it be an operating system or an
application program, into a sequence of commands that are
provided, or stored in registers of, a particular I/Q device or
its controller for execution by the controller. By segregating
hardware-dependent I/O device access routines from other
programs ruaning on the computer, hipher level programs,
such as operating systems and applications programs, need
not be written for specific computer hardware, allowing at
Ieast some level of compatibility among different hardware
systems. The BIOS also includes software for handling
certain types of errors which occur with the [/O devices, as
well as instructions for testing various components of the
computer when it is powered up and loading an operating
system from a disk drive.

Disk drives are physically addressed by the BIOS using a
cylinder, bead and sector number. A typical hard disk
includes multiple platters rotating on a common axis. On
each side of each platter are arranged concentric tracks.
Tracks having the same diameter or radius lie within a
“cylinder.” Each side of each platter is read and wrilten to by
a separate a read/write head which moves across the tracks.
The head and cylinder numbers uniquely identily a track,
and the sector number uniquely identifies one of the sectors
within a tract, The cylinder, head and sector (*C,H,S")
address 0,0,1 is always occupied by a partition sector. Hard
disks for may be used by a computer fo store more than one
operating system, which means that more than one type of
file system may be used to store files on a hard disk. A hard
disk is therefore partitionable imto multiple “drives” or
“yolumes.” The partition sector stores a table specifying the
start and end of each partition, or a tink {0 the next partition,
as well as some other basic information about the disk. Most
operating systems address sectors using a logical block
address rather than the C, H, S address. A logical block
address (LBA) is a sequential numbering of the sectors
within a partition or drive, It is one of the BIOS’ functions
to translate between the LBA and a physical C,H,S address.

As previously mentioned, data is organized for storage
into files. Depending on the size of the file and the size of
the sectors in the storage device in which it is stored, files
may be stored over one or more sectors of the storage device,
It is the job of an operating system, particularly its file
syslem, keep track of what files are stored, and where they
are stored, in the storage device. Generally, this file infor-
mation is also stored in the same device as the files. Some
of the information is typically stored in designated sectors or
areas set aside for that purpose.

Each operating system has a different file system. The File
Allocation Table (FAT) file system is the native file system
for IBM-standard personal computers running the
MS-DOS®, Windows™ 3.x and Windows™ 95 operating
systems of Microsoft Corporation, and it is supported by
Microsoft Corporation’s Windows-NT. The FAT file system
was originally developed for small capacity, floppy disks,
but has been extended to be used for today’s very large
capacity disk drives. The FAT file system has several ver-
sions. The ones used by earlier versions of the MS-DOS and

US 6,173,291 B1

3
Windows 3.% operating systems are generally referred to as
the FAT-12 and FAT-16 Ale systems. Microsoft WINDOWS
05 supporis FAT-12, FAT-16 and a 32 bil version called
FAT-32. Microsoft Corporation’s Windows NT™ operaling
system utilizes a native file system known NTFS, or New
Technology File System, and also supports the HPFS file
system developed by IBM for the 0S/2® operaling system.
These systems share, to varying degree, a similar approach
o managing files on the disks.

FIGS. 24 and 2b illustrate, respectively, examples of how
the FAT-16 and FAT-32 file systems organize data on a hard
disk or other mass data storage device. Each has a partition
sector 34 starting at C,H,5=0,0,1. (A floppy disk is gener-
ally not partitionable, and therefore has no partition sector.)
Following each partition sector, there is a bootstrap sector,
which starts at a fixed location (C,H,5=0,1,1) so that the
BIOS always knows where to find it. In the FAT-16 system,
there is a single boot sector 36. In the FAT-32 system, there
are two, identical boot records, each labeled 384, for reduxn-
dancy. The boot records store basic information about the
disk needed by the file system, as well as a program for
loading the operating system from the disk.

The FAT file systems, like the file systems used by many
operaling systems, allocate clusters of sectors, rather than
individual sectors, for file storage. The number of sectors per
cluster within a partition is fixed during formatting of the
storage device and stored in the boot record. The files are
grouped into directories. The directors are organized hier-
archically starting with a root directory 40z, The root
directory in the FAT-16 system is in a fixed location in the
storage device so that il can be found, However, the FAT-32
file system necd not store the root directory at a fixed
location. The remaining directories, which are set up by a
user, are sub-directors of the root directory, can be located
anywhere within the data area 44a, along with the files.

Each user direciory includes an entry pointing fo itself,
identified by a “.” and listing its starting cluster; an eniry for
its parent directory, if 2ny, identified by a “..”” and listing its
parent’s starting cluster; an entry for each first-order sub-
directory, which includes its name and starting cluster cre-
ation date/time (and a provision for long time names in
Windows 95); and an entry for each file stored in that
directory, which includes its name, length and starting
cluster, Each directory is allocated at least ane cluster for
storing this information. Basically, each entry in a directory
acts as a pointer to the starting cluster of a file, sub-directory
or parent directory. If a file is allocated more than one
cluster, the additional clusters must be chained together by
the operating system by looking up a pointer to the next
cluster in file aflocation table (FAT) 464 for the partition.

The FAT 46a is slored between the boot records and the
root directory. Because of its importance, there are two
copies stored. It has one entry for each cluster in a partition.
The entry will indicate that the cluster is available, being
used or is bad. If it is one of the clusters in a chain of clusters
making up a file, it will include the cluster number for the
next in the chain or a special, predefined character or value
for indicating that it is the last cluster in the chain. The FAT
for the FAT-32 file system also stores the starting cluster for
the root directory. In the FAT-16 table each entry is a 16 bit
cluster address and in FAT-32 each entry is a 32 bit cluster
address.

The storage devices illustrated by FIGS. 2« and 2b bave
been partitioned by second partition sectors 34b. The second
partitions also include boot records, 36b and 38,
respectively, root directories 40b, data arcas 44b and FAT
tables 46b.

10

20

30

35

45

55

60

65

4

Referring now to FIG. 3, in the New Technology File
System (“NTES"), a storage device or disk formatted for the
NTFS includes a master partition sector 34 and a boot
sector 364 at fixed, predetermined addresses. However,
following the boot sector, there is allocated space for, in
order, a master file table (MFT) 504, a partial copy 52a of
the MFT, and other NTFS metadata files $4a, The remaining
unallocated area of sectors 564, up to the extended partition
sector 58, is used for storing user files and index buffers,
which can be thought of as a form of a directory. Following
the extended partition sector is another volume, or partition,
with it own boot sector 365, MFT 505, pariial MFT copy 52b
and NFTS metadata files 545 for that volume, and an area of
user files and directorics 56b. The storage device may have,
if desired, additional extended partitions, defining additional
volumes. NTFS can be considered an extension of 0§/2°s
HPFS and includes file security features.

All data stored on an NTFS volume is stored in a file,
including the NTSF data structures used fo locate and
retricve files, the bootstrap data file (which is stored in the
predefined boot sector) and a bitmap file which records the
allocation state of each cluster on the velume. NTES data
structures are referred to as metadata files, and also include
a log file, volume file, attribute definition table, root direc-
tory and bad cluster file, among others.

Like the FAT file systems, space in the volume is allocated
in clusters of sectors. The number of sectors in each cluster
is fixed within a volume. The clusters are numbered sequen-
tially from the beginning to the end of the volume. These
numbers are called logical cluster numbers (LCN).

Each file, including the MFT, boot file and other metadata
files, has an entry in the MFT. Each is treated as a “file,” as
are the user directories and files. Each “file” in the MFT is
defined by a row of atiributes. These attributes include
things like the names of the file (more than one is possible),
time stamps for creation and modification dates, iis
MS-DOS attributes and security descriptors. There is a
“data” attribute for user files, which may be used to store
actual file data for small user files. A file may have additional
“named attributes.” For a directory, the data area is used to
store attributes for a soried index pointing to the files that are
grouped in the directory. The index for a file includes the
files name and reference mumber, which is a pointer to the
file's entry in the MFT.

The MFT is a fixed size. In the event a file attribute cannot
fit within the entry area allocated to the file, the attribute is
stored outside the MFT, in which case it is called a non-
resident attribute. For a user file (as opposed to a directory),
a group of consecutive clusters where a nonresident atiribute
is stored is called a data run. If an attribute’s value is
non-resident, its header, which always remaios resident,
indicates that is non-resident, and it is followed by a pointer
to the L.CNs of the cluslers where the attribute is actually
stored. This is accomplished by recording the starting virtual
cluster number (which is a sequential oumbering of clusters
within the file) for each run, with the LCN where the run
begins, as well as the number of clusters in the run. In
essence, data runs are the same as the files in the FAT file
systems, and the VCN to LCN mapping is similar to the
starting cluster information for the file in the directory of 2
file system. However, unlike the FAT system, the number of
clusters or length in a run is available in NTFS in the same
entry as the starting cluster number, as is also the slarting
clusters and length of other runs storing the file. Thus, in
NTFS, there is no need for a separate FAT to store cluster
allocation information. A separate bitmap file, which is one
of the NTFS metadata files, indicates whether a cluster is
available for allocation or is already allocated within the
cluster.

US 6,173,291 B1

5

For a directory, a group of clusters storing non-resident
file index information is called an index buffer. The index
attribute in a directory’s entry in the MFT includes an index
root segment, an index allocation segment and a VON
allocation bitmap. The root index contains the next higher
order file number for each index buffer. For example, if files
1, 2 and 3 are stored in a cluster run constituting a first index
buffer for a directory, file 4 {or the next highest ordered file
number in the directory) is stored as the root. For each root,
there is a VCN-LCN mapping in the index allocation
segment, which includes the starting VCN and LCN of the
index buffer and the number of clusters in the buffer. The
bitmap segment tracks which of the VCN’s in the allocated
cluster runs are free for storing additional indexes within the
direciory entry. The index buffers are thus, in many respects
like a directory stored in the data uwser area in the FAT
systems.

Because data for the file system for a particular storage
device is stored on the device itself, a computer crash,
hardware malfunction or programming glitch can destroy
critical data necessary for retrieving files. Magnetic disk
drves, in particular, are susceptible to data corruplion,
thongh it can happen to any media to which data is written,
or on which it is stored. For example, file system information
can be corrupted by damage to the disk media caused by
physical shock or, in conventional hard disk drives, a crash
of a read/write head should the disks suddenly stop rotating.
A hardware malfunction in the device’s controller, a bad
memory chip or poorly written software can also corrupt file
system data. A power outage can strike before caching
software has written all of its cached data to a file on the
device. Improper powering-down of a computer can leave
critical file system information stored in memory, before it
is written to the device.

The FAT file system is particularly at risk. Most file
system corruption occurs near the beginning of a disk
partition, where the most critical FAT file system informa-
tion resides. There are computer viruses that specifically
target a FAT partition table or boot record, which can wipe
out critical information necessary to retrieve files. There is
a “wrapped around” effect which may cause data in the FAT
file system to be overwritten when a large capacity disk is
replaced in an older computer that docs not have an EIDE
disk controller, and the LBA mode disk access or the large
capacity disk software driver is improperly instalied.

Furthermore, if information on the numbers of sectors per
cluster (SPC) is losi, any file system information storing
location of files and directors using clusters becomes use-
less. If information on where extend partitions exist is lost,
all file system information for an entire partition is effec-
tively lost.

Prior art utility programs for recovering files stored in
FAT file systems, such as Norton Utilities, usually try to
*fix" corrupted file system information by writing new file
sysiem data to the disk so that the operating system can then
access the files from the device. However, these fixes are
often ineffective, and may cause valuable data fo be over-
wrilten in the process.

SUMMARY OF THE INVENTION

The invention pertains generally to automaled methods
and apparatus for identifying and copying lost files from a
mass daia storage device of a computer when file system
information (as opposed to the actual data files) stored on the
mass data storage device has been corrupled or destroyed,
without writing or altempting to repair file system informa-

20

25

35

50

55

60

65

6

tion on the mass data storage device. As embodied in a
method and apparatus for recovering files from a damaged
or cormupted mass data sforage device, there are several
inventive aspects, a few of which, and their advantages, are
summarized below.

According to one aspect, a compuler reads a mass data
siorage device on a sector-by-sector basis in order to atiempt
to identify, and thus locate, through the use of data signature
and/or pattern matching “fillers,” sectors containing file
system data structures and file attributes, whether or not the
information in such sectors is valid. These seclors may
include, for example, partitions, which logically divide the
storage device into separate file spaces or volumes and file
system data structures (for example, the FAT tables, MFTs or
similar cluster allocation data structures). They also may
include file attributes, including, for example, directories or
folders in the FAT and MAC OS file systems, non-resident
file attributes such as index buffers in NTFS, or other
hierarchical file organization data structures (which are
sometimes generically referred to herein as directories),
which may be stored in user data areas.

In accordance with another aspect, the location of, and
any valid information found in, the sectors, is used to derive
information useful in locating files to be copied to another
storage device. For example, in a FAT, NTFS or other
cluster-oriented file system, if information on the number of
scctors per cluster (SPB) is not available from a boot
directory, it and a cluster base (the starting sector of cluster
0) are calculated using the physical location of the beginning
sectors of the directories or folders.

According 1o a further aspect, in the event sector or cluster
allocation information is missing for a known file or direc-
tory for example, when the starting cluster is known from a
directory entry, but not additional file allocation
information—a cluster chain may be reconstructed utilizing
one or more of several methods. The methods include
recovering clusters in sequence from the starting cluster
which is large enough 1o hold the file, assuming recent disk
defragmentation; automatic grouping of lost clusters by data
type, determined through analysis of the file data, starting
with the smallest files, and assuming sequential cluster
allocation; or matching by a user through use of a visual
interface displaying in close, spatial proximity the end of a
last known cluster in file fo an available cluster.

These and other aspects and advantages will be apparent
from the following detailed description of a preferred
embodiment, read in conjunction with the appended draw-

ings.
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic diagram of a representative com-
puter.

FIG. 24 is an schematic representation of the use of
sectors in a mass daia storage device storing files using the
FAT-16 file system.

FIG. 2b is a schematic representation of the use of sectors
in a mass data storage device storing files using the FAT-32
file system.

FIG. 3 is a schematic representation of the sectors of the
use of sectors in & mass data storage device storing files
using the NTES file system.

FIG. 4 is a flowchart {llustrating steps of a computer
process for recovering lost files from a mass data storage
device of a computer.

FIG. 5 is a flowchart of a computer process for locating
a root directory—as part of the process of FIG. 4.

US 6,173,291 Bl

7

FIG. 6 is a flow chart of a computer process for identi-
fying partitions, directories or other file attributes in 2 FAT
system on as part of the process of FIG. 4.

FIG. 7 is a flow chart of a process for calculating the
number sectors per cluster and cluster base for each
directory, and building tables of directories and files for
selection for recovery.

FIG. 8 is a flow chart of a computer process for recovering
files having valid cluster chain information, particularly a
valid FAT table, or when the dala storage device is recently
defragmented.

FIG. 9 is a flow chart of an automated computer process
for recovering files with missing or invalid cluster chain
information, particularly, missing or invalid FAT table
entries, in fragmented data storage device.

FIG. 10 is a flow chart of a user-controllable computer
process for recovering files with missing cluster chain
information.

FIG. 11 is a diagram of a uvser screen interface for use in
the process of FIG. 10.

DETAILED DESCRIPTION

In a preferred embodiment, the invention takes the form
of a program of instructions stored in memory of computer,
which are being executed by the CPU of a computer, such
as CPU 12 of the computer 10 in FIG. 1. The program is
loaded into the computer from a floppy disk (such as foppy
disk 17 in FIG. 1) or other removable storage medis inserted
into a bootable storage device. The operating system is not
loaded. To access or communicate with the disk drives and
other 1/O devices, the program relies on the computer’s
BIOS or other permanently-resident, hardware specific, 1/O
device access routines. In the following description, like
numbers refer to like parts.

Referring to FIG. 4, a computer under the control of the
program starts by testing each controller for each disk drive
(or other mass daia storage device used for storing files) in
the computer at step 60 lo determine whether they are
functioning properly. At decision step 62, if nome of the
controllers pass, the process ends. Otherwise, the devices
with working controllers are tested at step 64. The drive
must function electronically to recover data. H none pass at
decision step 66, the process ends. Otherwise, the user is
prompted at step 68 to select one of the working storage
devices as a source, and to select at step 70 another of the
working storage devices as a destination. The source storage
device contains the files to be recovered, and the destinaticn
storage device is the storage device to which recovered files
will be copied.

At step 72, the computer begins a process of a seclor-by-
sector scan of the source storage device to identify, and thus
locate the physical address of, sectors containing file system
information. In particular, at step 72, the computer reads the
master partition sector and boot sectors, which are at pre-
determined sector addresses, The data in each sector is
checked to determine whether it matches the signatures and
data paiterns necessary for valid sectors using data “filters.”
If, the information appears valid, it is stored in a data
structure set wp in the working memory (such as main
memory 14 in FIG. 1) of the CPU, in which information
collected by the scan will be stored for subsequent analysis.
A “filter” is a predefined signature and/or data pattern,
against which data in the sector is compared. Briefly, sig-
pature matching involves looking for predefined byte values
in certain offsets or locations (¢ither absolute or relative to
other byte values) within a sector, or within a cluster of

15

20

30

35

40

50

55

60

8

sectors. For example, in the FAT file systems, the last two
bytes in the partition sector and the beot must have the
wvalues aa55h. Pattern matching involves looking at patterns
in the placement and value of the bytes in the sector, or
groups of sectors, that tend to uniquely identify that par-
ticular type of file atiribute. A data patiern match may
inchude checking to see if the byte values in certain locations
within the sector or cluster assume one of certain permitted
values, or are within a range of permitted values. In NTFS,
for example, the “magic number” “FILE” can be searched
for in order to identify the MFT and the magic mumber
“INDX” can be searched for in order to identify index
buffers.

Next, the process begins a sector-by-sector read, compar-
ing the contents of each sector to a series of data filters to
look for other partitions and file attributes (for example,
other root directories and directories, including folders in the
FAT-32 and MAC OS file systems, and, in NTFS, index
buffers, certain NTFS metadata and/or other non-resident
file attributes.) The address and information contained in
found file attribute sectors are stored in the data structure set
up in the working memory of the compuler.

Al siep 74 the computer gets the next sector. If, as
indicated by decision step 76, the sector is identified,
through signature matching, to be an extended partition, its
contents and physical address (logical block address or
cylinder, head, sector address) are stored, at step 78, in the
data structures set up in the working memory. If the sector
is net a partition sector, its contents are malched to data
filters to determine if it is a file attribute.

As indicated by decision step 80, if the sector is part of a
file attribute, the address and content of the file attribute are
stored in the data structure in the working memory of the
computer at step 82. It should be noted that, since most
current operating systems allocate space in a storage device
in a cluster of sectors, the filiering or analysis of a sector may
also involving analyzing the contents of other read seclors in
conjunction therewith, assuming a minimum cluster size,
confirm that the seclor is part of a cluster that contains a file
atiribute or partition. As indicated by decision step 84, the
process of repeats by getting the next sector, until the
physical end of the storage device is reached.

By the forgoing process, partitions, directories and frag-
mented directories, and other file attributes can be located,
even when the masier partition sector is corrupted, the root
directory is missing, FAT tables or MFTs are corrupled, or
SPC information is missing from the boot sector.

Onee the scanning and filtering process is complele, the
process moves {o step 86, wherein the information collected
during the scan is used to reconstruct directory trees of files
for display to the user. Briefly, this may include determining
the number of sectors per cluster (SPC) and the cluster base
(CB), for each partition or volume, if such information is not
available fron: the boot sectors, and partition sectors or other
file system data structures. Furthermore, the directories are
checked to determine whether they are part of the current
directory or folder structure (i.e. that they are not deleted or
left from prior device formats). The chances of recovering
each file is assessed based on whether cluster allocation
information is available and appears valid. All files and
directories which can’t be placed in the directory tree are
listed separately in a “lost and found.”

At step 88, the directory tree and “lost and found” are
displayed to the user in order to receive a user’s selection of
the files to be recovered. At step 98, the files are recovered
by identifying and copying the clusters in which the file is

US 6,173,291 B1

9

stored to the destination drive in a manner which preserves
the directory hicrarchy, or as a compressed or uncompressed
flat files. To the extent cluster allocation information is not
available to chain clusters of the selected files together, the
process can assume that the clusters in each file are sequen-
tial if the disk has been recently defrapmented, or, if the disk
is fragmented, avtomatically group remaining clusters,
which have not been associated with a file, directory, file
system data stoucture or other file attribute, by data type
commencing with the smallest files and assuming a sequen-
tial allocation of clusters. Alternately, or in addition therete,
the computer process can allow user intervention by visually
comparing in adjacent windows on a display the contenis of
an end of the last known cluster in a file to the contents at
the beginning of one of the remaining unassociated clusters,
been picked by a user from a listing of available clusters in
another window arranged by location and cluster type.

Once all files are copiced, the process ends, However, the
scanning, analysis and file recovery steps can, if desired, be
repeated, or the entire process restarted.

The following description of certain details of the forgo-
ing process and apparatus is made in reference FAT file
systems substantially as used by the DOS, WINDOWS 3 .x
and WINDOWS 95 operating systems, on a disk drive.

Referring o FIG. 5, the portion of the scanning process
following reading of the master partition sector and boot
sector of a storage device, which portion is generally iden-
tified by steps 74 1o 82 of FIG. 4, starts by looking, as
indicated by step 92, for the root dircctory of the first
partition or volume on the storage device based on when it
should be located. Furthermore, each slot or entry in the root
directory is matched against a data pattern filter, which looks
for permitted byte values in certain, predefined positions or
fields within the entry. For example, the root directory will
have in the name field of one of its entrics a volume label.
Furthermore, the process checks each entry for permitted
byte values in the file name and file extension fields, as well
as in date and time stamp fields for creation and last
modification. If the root directory is found, as indicated by
decision step 94, its address and contents are stored in
working memory at step 96. However, if the data in the
sectors do not match that expected for a oot directory, it is
matched against filters for user directories, which are also
referred to herein as sub-directories, at decision step 98.
These filters are similar to the ones used for the oot
directory. However, in the FAT file system, the signature
bytes of “.” and “..” are checked for in the names fields of
the first two entries. If the sector is not parl of a sub-
directory, the next sector is fetched or read, and the process
repeats looking for the root directory. If a sub-directory is
found, however, it is assumed that the root directory is
corrupted or missing, as sectors in the “data area” or user
area are being read. The process then proceeds to FIG. 6.

Referring to FIG. 6, as indicated by decision block 102,
a process of looking for additional sub-directories on the
storage device is performed on scctor-by-sector basis. The
search assumes that the number of sectors per cluster are the
minimum allowed by the file system. As by decision siep
104 the processed reads the data patern and compares it
against a data pattern expected for a directory in a manner
such as that discussed in connection with FIG, 4. If the data
pattern does ot maich that of a direclory process, it is
checked against that of a partition sector at step 104. If the
data pattern is not a match for that of the partition sector,
then the process reads the next sector 108, However, if, at
decision step 106, the data pattern matches that of the
partition sector, the address of the sector is stored in the data

20

25

30

40

45

50

60

65

10

structure kept in working memory at step 110. The process
then returns to the steps of FIG. 5.

However, if asked step 104 the data pattern matches that
of a set directory the address of the said directory is stored.
If, at decision to step 114, two sub-directories have not been
found within the same partition, and other words, this is the
first sub-directory found within the partition, the process
loops back o step 104 while it reads the next sector at step
yon 116, However, if two sub-directories have been found
within the same partition at decision step up 114, the number
of sectors per cluster is calculated at step 118 based on the
starting sectors of the two sub directorics. Having this
information better enables, and speeds up, recognition of
directories.

The following formulas may be used to calculale the
sectors per cluster (SPC) and the cluster base (CB):

a
@&

For formula (1), the “LBA” refers to the logical block
address of the beginning sector of the particular directory
noted in subscript, and C is the starting cluster address found
in the *." entry in the directory noted in the subscript. If the
direciories are adjaceni to one anolher and small, then the
LBA of each directory could be simply subtracted to find the
SPC, sinee directorics are allocated at best one cluster in the
FAT file system. In formula (2), Sectors, . is the number of
sectors in the root directory, and LBA,,,,, the logical block
address of the first sector in the root directory. If the root
directory is not found, then CB can be calculated using the
following formula:

SPC~{LBA;,2-LBA 1 ¥(Coirz—Ciira)

CB=(LBA,,,,+Sectors,,,)-(2xSPC)

CB~{Cuirs*LBA 5,2~ CopiroX LB A 4)/ Cotir~Caien} &)

At decision step 120, the process determines whether the
calculated SPC is valid. In order for the SPC to be valid, the
pumber resulting from the calculation musl be a power of 2.
If the calculated SPC is not valid at step 120, the process of
loops back to step 116, where the next sector is read and the
process is repeated for that sector beginning with step 104.

Al step 122, the process continues, if the calculated SPC
is valid, to search, sector by sector, for other sub-directories
and partitions, using the calculated value for the SPC for
data pattern matching, in a manner similar to that of steps
106 and 108. At step 124, if the data pattern does not match
that of a directory, il is compared to the data pattern filter for
a partition at step 126. If a partition is found, then it is stored
at step 128 stored in the process returns to that of FIG. 5. If
the sector does not have a data pattern matching that of a
partition sector, the processes reads the next sector at step
130, provided that the end of the disk has not been reached,
as indicated by decision step 132. However, if the data
pattern matches that of a directory at step 124, the address
and to information in the directory is stored in the data
structure of the working memory. If the sector is not the last
on the disk, as indicated by decision step 132, the next sector
is a read at step 136, and the process loops back to decision
step 124, As indicated by decision step 132, if the end of the
desk has been reached, the process ends.

Referring now 1o FIG. 7, as indicated by block 136, a
value for the number of sectors per cluster (SPC) and the
cluster base (CB) are calculated, using the formula (1) and
either formula (2) or (3), set forth above, with the LBA of
each directory found in the scan as LBA,;,. The process
begins with the first directory, as indicated in step 136. The

US 6,173,291 Bl

1n

LBA of the next directory is used in an initial calculation of
SPC and CB. At decision step 138, if the SPC and CB
resulting from the calculation are valid as LBA,,.
numbers—ihe SPC must be a power of 2, for example, and
the LBA of the cluster base must be located somewhere
between the end of boot director and the end of the root
directory—the result is stored at step 140 and, as indicated
by decision step 142, the process loops back o get the next
directory at step 144 for comparison at step 136 so long as
there are other directories for which calculations are lo be
made. However, if the SPC and CB are not valid, the process
checks to see if there is another directory available for
comparison at step 146. [f one is not available, the invalid
result is stored at step 140, If there is one available, it is
selected at step 148 and SPC and CB recomputed. The
process then loops back to step 138, for validation.

Once an SPC and CB is calculated for each directory, the
process builds directory and file tables at step 150 and
partition sectors at step 152, both of which are stored in the
working memory of the computer. To rebuild the hierarchi-
cal directory structure, the directories are threaded together
using the entries in the directory. Each of the directories in
the structure must have the same SPC and CB. However, old
direclories left after a reformatting may have different SPC
and CB values. These SPC and CB values are used to
calculate the LBAs of the clusters making up each of the
files in the directories. Directories which do not fit into the
structure are placed in a lost and found category. These are
placed in a “lost and found” list. Beginning at step 154, a
Ioop is performed for each found direclory, and each file
listed in each found directory. This loop checks to determine
whether the cluster chain of the directory or file in the FAT
is valid, assuming that the FAT or its copy is found.

The FAT can be located using signature and data paitern
matching. The beginning of each FAT always has the unique
signature bytes of FFF8, if it is for a hard drive, or FFQ, if
it is for a floppy. Furthermore, the FAT always begins at a
specific physical address, depending on whether it is a
FAT-16 (C,H,5=0,1,2) or FAT-32 (C,I1,8-0,2,1). It’s size,
however, is noi konown, becavse it depends in part on the
number of clusters on the disk. However, the root directory,
if its location is known, defines the upper boundary of the
copy of the FAT. The FAT will also have numerous
sequences of successive numbers, since most files are stored
in sequences of clusters. Data pattern matching techniques
can be used to assign a figure of merit to what is believed 1o
be the FAT in order to judge whether it is valid or corrupt.

As indicated by decision step 156, if a valid SPC and CB
are not calculated for a file’s directory, it is indicated to the
user, as step 158, as oot likely to be recoverable. If, the
directory has valid SPC and CB values, then the FAT is
checked at decision step 160 to see if the file’s cluster chain
or “entry” is complete. This chain is stored in the data
structure setup in the working memory. If it is complete, the
file is indicated at step 162 to likely be recoverable. If it is
not, the file is indicated at step 164 as possibly being
recoverable. As indicated by decision step 166, the process
loops back to step 154 until all of the files have been
categorized.

FIGS. 8, 9 and 10 illustrate different techniques for
recovering files. Recovering a file requires the knowledge of
its starting cluster, which can be found from directory eniry
for the file, the chain of the clusters making up the file, and
the SPC and CB to calculate the LBA of each cluster.
Referring to FIG. 8, an automatic file recovery process is
illustrated. Files for recovery arc selected by a user, at step
168, from list of files displayed on the computer’s monitor.

25

30

45

65

12

If the FAT is valid, as indicated by decision step 170, the
process begins with the first selected file, as indicated by
step 172. If the selected file’s cluster chain in the FAT table
is valid, as indicated by decision step 174, the selected file
is copied to a preselected destination drive at step 174, The
process then returms to decision step 174 and repeats with the
next selected file, as indicated by step 178, until the last
selected file is copied, as indicated by decision step 180.

If the FAT table is invalid, as indicated by decision step
170, or if the selected file’s cluster chain is invalid, as
indicated by decision step 174, then the process proceeds
decision step 182, If the disk has been recently
delragmented, such that it is safe to assume that all of the
selected file’s clusters are sequentially allocated, then the
process, at decision step 184, calculates the pumber of
chains required, based on the size of the file found in the
directory entry for the file. Using the starting cluster number
from the directory entry, the calculated number of clusters
are then copied to the preselected destination drive at step
186. After copying, the process gets the next file at step 178
if more files remain, and loops back o decision step 174.
Otherwise, the process ends.

If the disk has not been recently defragmented, and the
FAT table cannot be used to chain {ogether the clusters of a
file, another automated process illusirated in FIG. 9 may be
used. Referring now to FIG. 9, illustrated is an automated
process for grouping clusters based, in parl, on the type of
data stored in the clusters and an assumption that the clusters
in the smallest files will be sequential, even in relatively
fragmented drives. The process classifies the data in each of
the clusters in one of a predefined number of classes, for
example: PC text, Unix text, non text, or C/C++ source code,
and compressed data. These classifications can be made
based on the distribution of symbols within the cluster, and
then comparing the distributions to figures of merit. At step
188, the process compiles a list of clusters which have not
been accounted for as, for example, through a valid FAT
table entry or part of a directory. The smallest of the user’s
selected files is chosen initially, at step 190, and the number
of clusters required 1o hold the file, based on ils size as
recorded in its directory entry, is calculated. Its starting or
base cluster data type is compared sequentially with each of
the available clusters, starting with the next higher one to the
file’s starting cluster. If, at step 194, there is a data type
match, the address of the cluster is recorded at step 196. The
process then gets the next unaccounted for cluster at step 198
and loops back to step 194, until the last available cluster
with the correct data type is found, as indicated by decision
step 200, or until the end of the partition is reached, as
indicated by step 202.

Once the last cluster of file is matched, the file is copied
at step 204 to the preselected destination drive. Once the file
is either copied or the end of the partition is reached without
finding enough clusters to make up the fils, the process loops
back to step 192, provided there are additional, user-selected
files, as indicated by decision step 206. In the loop, the next
biggest file with missing cluster information is selected at
step 208 for matching. This process repeats, each time
getting the next bigger user-selected file, uatil afl have gone
through the recovery process.

The processes described in FIGS. 5-9 are described in
specific reference to the FAT file systerns. However, these
processes, or their techniques or methods, can be applied to
NTES and other flle systers, the primary differences involv-
ing the signature and data pattern filters that are applied
during scanning of the storage device. For example, during
scanning of a storage device storing NTFS files, the MFT

US 6,173,291 Bl

13

can be found by looking for the number corresponding to the
word “FILE”, which is always found in the MFT. Index
buffers are located by looking for the word “INDX”. By
using LCN and actual LBA, SPC and CB can be determined
using two index buffers in the same way as the sectors per
cluster is determined using directories or folders in the FAT
file systems. A corrupted or missing MFT and partial MFT
is similar to having a missing root directory in the FAT file
systems. Directories can be threaded, to the extent possible,
using the contents of the index buffers, and the threaded
directory structures put into the “lost and found” category.
Names of the user files are part of the indexes in the index
buffers.

Referring now to FIG. 16, as an alternate to using auto-
matic methods of chaining together clusters when cluster
allocation information is missing from the FAT, the illus-
trated process of FIG. 10 aids the user in “manually”
chaining together clusters. Beginning with the first user-
selected file, as indicated by step 210, the number of the
starting cluster is displayed in a first window on the screen
of a monitor or other user interface of the compuier, and the
end of its contents is displayed in a second window of the
user interface. This step is indicated by block 212. At step
214, there is displayed in a fourth window a list of available
clusters. In the third window, as indicated by step 216, there
is displayed the beginning of an available cluster selected by
the user for visual comparison. The second and third win-
dows are in close, spatial proximity to facilitate comparison.
If the user decides at decision step 218 that the two cluster’s
“match”, that is belong together, the user so indicates and the
computer records the address of the matched cluster and
displays it in the first window, as indicated by step 222, At
step 224, the computer then displays the end of the just-
matched cluster in the second window. If user does not think
that there is a visual maich, the user may select another of
the available clusters for comparison at decision step 220. If
there are no more clusters available for comparison, the user
can either go back to review the files (which step is not
indicated on the drawings), or the user may proceed at step
226 to wrile the clusters which have been malched to a
preselected destination drive. If there are more selected files
at step 228, the computer receives the user’s next selection
at stop 230 and loops back to step 212 to repeat the process.

Referring now FIG. 11, a layout of a screen inlerface for
the process of FIG. 10 is illustrated. A first window 232
displays the cluster number of recently selected clusters in 2
second window 234, The second window displays the con-
tents of the end of a last cluster that has been grouped as part
of a file preselected by a user. A fourth window 238 displays
a map of available clusters by data type for selection by the
user. The third window 236 displays the beginning of the
contents an available cluster chosen by the user for com-
parison. The second and third windows display both the
values stored in the file on ooe side, and the symbols or
characters encoded by those values based on the data type.

The invention has been described in reference to one or
more exemplary embodiments. Modifications, substitutions
and rearrangements of these embodiments can be made
without departing from the scope of the invention set forth
in the appended claims. The foregeing detailed description
is pot intended to limit the scope of the invention to the
particular embodiments set forth therein,

What is claimed is:

1. A method for recovering files, wherein the files are
organized in a hierarchical directory structure of an operat-
ing system’s file system, from a first storage device of a
computer when critical file system information is not

10

1

wny

20

25

35

40

45

5

wh

60

65

14

available, the first file storage device being divided in a
plurality of individually addressable sectors storing blacks
of data, the method comprising the steps of:

reading the first file storage device on a sector-by-seclor

basis;
identifying sectors confaining file attribute information
stored by the file system in data structures by compar-
ing data therein to predetermined data patterns;

reconstructing the directory structure, at least in part, from
the identified file attribute information; and

copying a file in the reconstructed directory structure to a

second file storage device.

2. A method for recovering files that are stored on a mass
data storage device of a computing system and that are
organized into a hierarchical file storage system used by an
operating system, the mass data storage device being
divided into a plurality of individually addressable blocks,
called herein seciors, for storing blocks of data, each sector
having an address, the method comprising:

reading from the mass data storage device on a sector-

by-sector basis;

identifying sectors containing file system data structures

by comparing data therein to predetermined data pat-
terns and/or signatures found in data structures of the
file system;

reading the information from the identified secters; and

reconstructing at least part of the hierarchical file storage

system based on information read from the identified
sectors.

3. The method of claim 2 further comprising copying a file
Hsted within the at least partly reconstructed hierarchical file
structure to a second mass data storage device.

4. The method of claim 2 wherein storage on the mass
data storage device is allocated for storing files on a clusier-
by-cluster basis, a cluster being comprised of one or a
plurality of sectors.

5. The method of claim 4 further comprising determining
a number of sectors per cluster and a base cluster address
when this information is not available by reading the file
system data structures.

6. The method of claim 5 wherein determining the number
of sectors per cluster includes:

identifying by an address for a first scctor of each of the

two file system data structures, each of the file system
data structures including information for determining
its starting cluster oumber;
reading the information for determining the slarting clus-
ter mamber for each of the direciaries; and

comparing the starting cluster numbers and the address of
the first sectors of the file system data structures to
determine the seclors per clusier.

7. The method of claim 5 wherein determining the number
of sectors per cluster is calculated for each directory located
in file system, and reconstructing the hierarchical file storage
system includes determining a hicrarchical file structure
using file atiribute information from those file system data
structures having the same sectors per cluster and address
for the first sector of the base cluster.

8. The method of claim 5, wherein determining the
number of seclors per cluster includes:

identifying an address for a first seclor storing a first

directory and an address for second sector storing a
second directory;

reading from the first directory an a starting cluster

number for the first directory and from the second

US 6,173,291 Bl

15

directory a starting chuster number for the second
directory; and

calculating the sectors per cluster by dividing the differ-
ence of the addresses of the first and second directories
by the difference of the starting cluster numbers of the
first and second directory.

9, The method of claim § wherein determining the cluster

base address is calculated using the following formula,

CB=(LBA, ,+ 505018 ., - (2xSPC)

wherein CB is the cluster base address, LBA, _, is an
address of the first sector of the ool directory, Sec-
tors,, s & number of sectors in the root directory, and
SPC is the seciors per cluster.

10. The method of claim 5 wherein determining the

cluster base address includes:

identifying a first and a second directory;

determining a starting cluster number for the first and the
second directory; and

calculating the address of the base cluster with the fol-
lowing formula,

CB={C 5 XLBA 13- Ciro* LBA 1, N Cotivs~ Catien)

wherein CB is the cluster base address, C;,y is a cluster
number of the first directory, C,4,,, is the cluster number
of the second directory, LBA;,, is an address of the
first sector of the first dircctory and LBA,,, is an
address for the first secior of the second directory.

11. The method of claim 4 further comprising:

receiving a selection of a file to be recovered from the at

least partially reconstructed hierarchical file structure;
displaying in a first window on a user interface to the
computing system an ead portion of data from a last
cluster storing data of the selected file; and
displaying in a second window on the user interface to the
computing system a beginning portion from a next
available cluster not yet associated with a file.

12. The method of claim 11 further comprising displaying
in a third window a list of clusters which have not been
associated with a file and displaying in a fourih window a list
of clusters which have been associated with the selected file.

13. The method of ¢laim 4 further comprising:

receiving a plurality of selections for files to be recovered

from the at least partially reconstructed hierarchical file
structure; and

for each file, starting with the smallest file and continuing

in order to the largest file, sequentially stringing
together clusters storing content of the same type as
that stored in a known starting cluster until the
sequence of clusters store an amount of data equal fo
the known size of the file.

14. The method of claim 2 wherein the file system data
structures include at least one sub-directory, the sub-
directory having a first entry having an eniry storing a first
predetermined data pattern and a starting cluster number for
the sub-directory, and a second entry slorng a second
predetermined data pattern and a starting cluster number for
a parent directory to which the sub-directory belongs.

15. The method of claim 2 wherein the file system data
structures include index buffers for an MFT.

16. The method of claim 2 wherein the file system data
structures include file folders.

17. The method of claim 2 wherein the file system data
structures include a cluster allocation table.

190

15

20

25

30

35

45

50

55

60

65

16

18. The method of claim 2 wherein the file system data
structures include a boot record.

19, The method of claim 2 wherein,

the file system data structures inchide a partition sector;

the method includes identifying each partition sector; and

reconstructing the hierarchical file storage system
includes reconstructing a hierarchical file structure for
each partition identified by a partition sector.

20. The method of claim 2 wherein identifying sectors
containing file system data structures includes identifying a
file system data structure containing cluster allocation infor-
mation for files, and wherein the method further includes
selecting a file to be recovered from the at least partially
reconstructed hierarchical file structure, determining from
the cluster allocation information what clusters contain data
for the selected file, and copying the selected file.

21. The method of claim 20 wherein the cluster allocation
information is stored in a File Allocation Table.,

22. The method of claim 20 wherein the cluster allocation
information is stored in a Master File Table.

23. A computer readable medium storing instructions for
causing a computer to perform a process, when those
instructions are read by the computer, for recovering files
that are stored on a mass dala storage device of the
computer, wherein the files are organized into a hierarchical
file storage system used by an operating system and the mass
data storage device is divided into a plurality of individually
addressable blocks, called herein sectors, for storing blocks
of data, each sector baving an address; the process cormpris-
ing:

reading from the mass dala storage device on a seclor-

by-sectar basis;

identifying seclors containing file system data structures

by comparing data therein to predetermined data pat-
terns and/or signatures found in data structures of the
file system;

reading the information from the identifted sectors; and

reconstructing at least part of the hierarchical file storage
system based on information read from the identified
sectors.

24. The computer readable medium of claim 23, wherein
the process further comprises copying a file listed within the
at least partly reconstructed hicrarchical file structure to a
second mass data storage device.

25, The computer readable medium of claim 23, wherein
storage on the mass data storage device is allocated for
storing files on a cluster-by-cluster basis, a cluster being
comprised of a plurality of sectors.

26, The computer readable medium of claim 25, wherein
the process further comprises determining a mumber of
sectors per cluster and a cluster base address.

27. The computer readable medium of claim 26, wherein
determining the number of sectors per cluster includes:

identifying by an address for a first sector of each of the
two file system data structures, each of the file system
data structures including information for determining
its starting cluster number;
reading the information for determining the starting clus-
ter oumber for cach of the directories; and
comparing the starting cluster numbers and the address of
the first sectors of the file system data structures to
determine the sectors per cluster.
28. The computer readable medium of claim 26, wherein
determining the number of seciors per cluster is caleulated
for each directory located in file system, and reconstructing

US 6,173,291 Bl

17

the hierarchical file storage system includes determining a
hierarchical file structure using file aftribute information
from those file system data structures having the same
sectors per cluster and address for the first sector of the base
cluster.

29, The compuler readable medium of claim 26, wherein
determining the number of sectors per cluster includes:

identifying an address for a first seclor storing a first
directory and an address for second sector storing a
second directory;

reading from the first directory an a starting cluster

number for the first directory and from the second
directory a starting cluster number for the second
directory; and

calculating the sectors per cluster by dividing the differ-

ence of the addresses of the first and second directories
by the difference of the starting cluster numbers of the
first and second directory.

30, The computer readable medium of claim 26, wherein
determining the cluster base address includes reading from
a root directory an address for a first seclor of a root
directory, determining a number of sectors in the root
direciory, and subtracting the product of the number of
sectors per cluster and two.

31. The computer readable medium of claim 26, wherein
determining the cluster base address includes:

identifying a first and a second direciory;

determining a starting cluster number for the first and the
second directory; and

calculating the address of the base cluster with the fol-
lowing formula,

CB=(C i1 XLBA e 2~ Ctra* LBA 1 W(Cotips—Cotre)

wherein CB is the cluster base address, Cg;,y is a cluster
number of the first directory, C,» is a cluster number
of the second directory, LBA,,;; is an address of the
first sector of the first directory and LBA,,, is an
address for the first sector of the second directory.

32. The computer readable medium of claim 25, wherein

the process further comprises:

receiving a selection of a file to be recovered from the at

leas! partially reconstructed hierarchical file structure;

displaying in a first window on a user interface lo the
computing system an end portion of data from a last
cluster storing data of the sclected file; and

displaying in a second window on the user interface to the
computing system a beginning portion from a next
available cluster not yet associated with 2 file.

33, The computer readable medium of claim 32, wherein
the process further comprises displaying in a third window
a list of clusters which have not been associated with a file.

34. The computer readable medium of claim 33, wherein
the process further comprises displaying, for each cluster
that has not been associated file, a predetermined classifi-
cation for the type of a data the clusler contains.

35, The computer readable medivm of ¢laim 25, wherein
the process further comprises:

receiving a plurality of selections for files to be recovered

from the at least partially reconstructed hierarchical file
structure; and

for each file, starting with the smallest file and continuing

in order to the largest file, sequentially stringing
together clusters storing data of the same data type as
that stored in a known starting cluster until the

10

13

25

30

35

40

50

60

65

18
sequence of clusters store an amount of data equal 1o
the known size of the file.

36. The computer readable medium of claim 23 wherein
the file system data structures include at least one sub-
directory, the sub-directory having a first entry having an
entry storing a first predetermined data pattern and a starting
cluster number for the sub-directory, and a second enfry
storing a second predetermined data pattern and a starling
chuster number for a parent directory to which the sub-
directory belongs.

37. The computer readable medium of claim 23 wherein
the file system data structuzes include index buflers for an
MFT.

38. The method of claim 23 wherein the file system data
structures include file folders.

39, The method of claim 23 wherein the file system data
structures include a cluster allocation table.

40. The method of claim 23 wherein the file system data
structures include a boot record.

41. The method of claim 23 wherein,

the file system data structures include a partition sector;

the method includes identifying cach partition sector; and

reconstructing the hierarchical file storage system
includes reconstructing a hierarchical file structure for
each partition identified by a partition sector.

42, The method of claim 23 wherein identifying sectors
containing file system data structures includes identifying a
file system data structure containing cluster allocation infor-
mation for files, and wherein the process further includes
selecting a file to be recovered from the at least partially
reconstructed hierarchical file siructure, determining from
the cluster allocation information what clusters contain data
for the selected file, and copying the selected file.

43, The method of claim 42 wherein the cluster allocation
information is stored in a File Allocation Table.

44, The methed of claim 42 wherein the cluster allocation
information is stored in a Master File Table.

45. A method for recovering a file that has been stored in
a hierarchical file system on a mass storage device coupled
with a computing system when cluster allocation informa-
tion for the file is missing or corrupted, the file system
allocating storage on a cluster by cluster basis, each cluster
having a predetermined number of one or more individually
addressable sectors; the method comprising:

determining a starting cluster and size for the file from the

file system;

classifying the content of the starting cluster based on the

type of data it contains;
assembling, in order, the starting cluster and each cluster
following the starting cluster that has content of the
same class as the starting cluster until the number the
size of the data stored by the copied clusters equals that
of the files.
46. A method for recovering a file that has been stored in
a hierarchical file system on a mass storage device coupled
with a computing system when cluster atlocation informa-
tion for the file is missing or corrupted, wherein the file
system allocates storage on a cluster by cluster basis, cach
cluster has a predetermined number of one or more indi-
vidually addressable sectors, and the file’s a starting cluster
and size are known; the method comprising:
displaying in a first window on a user interface to the
computing system an end portion of data from a last
cluster determined to be storing part of the file;

displaying in a second window on the user interface io the
computing system a beginning portion from a second
cluster subsequent 1o the first cluster; and

US 6,173,291 Bl

19

receiving an indication of whether the data of the second
cluster displayed in the second window belongs with
the data of the last cluster.
47. The method of claim 46 further comprising:
classifying the content of the starting cluster based on the
type of data it contains; and
displaying a list with a classification of the data contained
in a plurality of clusters subscquent to the starting
cluster.
48. The method of claim 46 further comprising:
displaying in the first window an end portion of the
second cluster if the indication is that the second cluster
belongs to the first cluster; and
displaying in the second window a beginning portion
from a third cluster subsequent to the second clusier.
49. A method for determining partitioning of mass data
storage device when information about the location of the
partitions is missing or corrupted, the mass data storage
device being divided into a plurality of individually addres-
sable blocks, called herein sectors, for storing blocks of data,
cach sector having an address, the method comprising:

20

reading from the mass daia storage device on a sector-
by-sector basis;

identifying sectors containing partitions by comparing
data therein to predetermined data patierns and/or sig-
natures found in partitions; and

reading the information from the identified partition sec-
tors.

50. Amethod for finding boot records of mass data storage

device when information about location of the boot records

40 is missing or corrupted, the mass data storage device being

15

20

divided into a plurality of individually addressable blacks,
called herein sectors, for storing blocks of data, each sector
having an address, the method comprising:

reading from the mass data storage device on a sector-
by-sector basis;

identifying sectors containing partitions by comparing
data therein to predetermined data patterns and/or sig-
natures found in partitioss; and

reading the information from the identified partition sec-
tors.

