Northeastern University et al v. Google, Inc.,
Case 2:07-cv-00486-TJW Document 1

United States Patent 9
Baclawski

Filed 11/06/2007 Page 1 of 20

0 . 0 R A0

USH05694593A
Patent Number: 5,694,593
Dec. 2, 1997

Date of Paient:

f1t]

[451

[34] DISTRIBUTED COMPUTER DATABASE
SYSTEM AND METHOD
[75] Inventor: Kenneth P Baclawski, Waitham, Mass
{731 Assignee: Northeastern University, Boston,
Mass.
{211 Appl. No: 318,252
[22] Filed: Oct. 5, 1994
(513 Imt CL® .. . s e e cosonn e GOOF 17138
[52) US.CL 385/605; 395/603; 395/602;
305/621; 355/672
58] Field of Search ..o v v e e 395600, 602,
395/603, 605, 621, 672; 364/419.19, 200
{561 References Cited
U S. PATENT DOCUMENTS
4811199 3/1989 Kuechleretal .. o 3641200
5006978 471991 Neches .. . 3647208
5265207 11/1993 Zak etal e 395200
5309359 51994 EKazetal oo . IGH41919

OTHER PUBLICATIONS

Chaturvedi, et al , “Scheduling the Allocation of Data Frag-
ments in a Distributed Database Environment: A Machine
Learning Approach™, IEFE Transactions On Engineering
Managament, vol. 41, No, 2, May 1004,

Houtsma et al., “Parallel Hierarchical Evatuation of Transi-
tive Closure Queries”, IJEEE Apr. 19591,

Baclawski, K., “High--Performance, Indexing and Retrieval
for Object-Oriented Databases”™, College of Corputer Sci-
ence, Northeastern University, Apr. 1994

Baclawski et al , “High-Performance, Distributed Informa-
tion Retrieval”, College of Computer Science, Tecnical
Report NU-LCS-%4-05, Northeastern University, Feb. 25,
1994,

Salton, G., “Automatic Text Processing: The Transforma-
tion, Analysis and Retrieval of Informatior by Computer”,
Caornell University, Chapter 10, Dec. 1988,

Salton et al . “Antomatic Structuring and Retrieval of Large
Text Files”. Communications of the ACM. vol. 37. No2
Feb. 1994,

Baclawski et al., “A distibuted #pproach to high-perfor-
mance information retricval”, Northeastern University,
Mar., 1994.

Baclawski et al ., “A unified approach to high-performance,
vector--based information retrjeval”, Northeastern Unjver-
sity. Mar 21, 1994,

Baclawski et al., “EEYNET: An architecture and protocel
for high-pefformance semantically rich information
retrieval”, Nertheastern University. Apr. 29, 1994.

Baclawski et al., “An abstract for sematically rich informa-
tion retrieval”, Northeastern University, Mar 31 1994

Baclawski et al , “KEYNET: Fast Indexing for semantically
rich information retrieval”, Northeastern University, Tech-
nical Report NU-CCS5-94-06, Dec 7, 1993,

Primary Examiner—Thomas G. Black

Assistant Examiner—Cheryl R Lewis

Attorney, Agent, or Firm—Weingarten, Schurgin, Gagnebin
& Hayes LLP

[57 ABSTRACT

A distributed computer database system including a front
end computer and a plurality of computer nodes intercon-
nected by a network into a search engine A guery from a
user is transmitted to the front end computex which forwards
the query ta one of the computer nodes, termed the home
node, of the search engine. The home node fragments the
query and hashes the fragments of query to create an jndex
by which the hashed query fragments are transmitted to one
or more nodes on the network. Each node on the network
which receives a hashed fragment uses the fragment of the
query to perform a search on its respective database The
results of the searches of the local databases are then
gathered by the hoine node.

17 Claims, 13 Drawing Sheets

R

Locd Disks
Lot Areq Network ———
Wide Area Nelwork ——-—3>

Doc. 1 Att. 1

Dockets.Justia.com

http://dockets.justia.com/docket/court-txedce/case_no-2:2007cv00486/case_id-106532/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/2:2007cv00486/106532/1/1.html
http://dockets.justia.com/

Page 2 of 20

Filed 11/06/2007

Case 2:07-cv-00486-TJW Document 1

5,694,593

Sheet 1 of 13

Dec. 2, 1997

U.S. Patent

-

}IOM|3N DAy 3pIy
YI0MJ3N D3y 0307

S¥SIQ 10207

Case 2:07-cv-00486-TJW Document 1

U.S. Patent

Dec. 2, 1997

n-
0.

(Sep) Qubry

Sheet 2 of 13

Front End

60 S

_— Y Slep 3
24 —{ Home Node | very ('ep -)

62 probe
30—

———

Node

- —

o,
.,
——

wwwwwww

~—~—probe —

——

Filed 11/06/2007

Page 3 of 20

5,694,593

[User
Acknowledgement {Step 2)
/’_\'M

62 (Step 4)

Node

~32 (Step 5)

et =

~—1

User

Basic Service

e,

(Step B)

Node

32

lobel -~ 74 (Step 8)

User

Level 2 Service

~10

Node

—-32

label —1*

User

Level J Service

<10

Case 2:07-cv-00486-TJW Document 1 Filed 11/06/2007 Page 4 of 20

U.S. Patent Dec. 2, 1997 Sheet 3 of 13 5,694,593
Receive
00 —| 9 message 7
Extroct
102 message
g
P (/—105 108 ~
If msg is enqueue
04 — inseri new cr?nieni lobel > ?r?;leri
delete conteni label > delefe
%m?essl_ :pug?;ehconieni iobel > upLzl:Lc:ri:
&y get content label Tk
N Send gel_Content_ {1 5
label msg
109 —)
Ve 504
£
//—-510
Termingle
—>1 & prinl
statistics
12
A
is msg Y insert
insert_index_ ———31 index_
~_ lerm ? _~ term
~ 182
180 Z
's msg Y Send do'se._
_ Close._indexing — > mfgsdgy;gg
? Source

FIG. 3

Case 2:07-cv-00486-TJW Document 1 Filed 11/06/2007 Page 5 of 20
U.S. Patent Dec. 2, 1997 Sheet 4 of 13 5,694,593
®
- (234
5 Y Enqueue
delefe_index. >———>} - >
term Cance) tosk
o 194 /—HBB
is m Y locote increment
close_modifying —>{ modificalien > losk)
? task counter
304
Y.} Search 5
index
/,_312
send gother
30 -—1 gef oid |—>| malching_term >
msg lo source
320 324
m’:g Send che.
. malching msg
ciose_p?robmg o sotrce
344 - 48
340 M2~ bc\u\ie Add weight
7 s msy y | locole obiect of malching
Qﬂihert_ mu;@—# Tgk}’ —> erilry tefgrﬂiiof
erms? . weight o
in tosk ﬂbieti
330 ~ 34—~
locate increment
‘1‘”? query
ask counter

FIG. 3a

Case 2:07-cv-00486-TJW Document 1 Filed 11/06/2007 Page 6 of 20

U.S. Patent Dec. 2, 1997 Sheet 5 of 13 5,694,593

D @
-430 434 — 436 T
is :
: . find content send level 2
T g >——{ el qery response [——>
7 Zndory storoge to client
B ~438 i‘lﬁ . 442 ~
ATl msg TN~ find content send content_
~ feich_cargieni_ -Y——a label in > label msg
fabel ? 2ndary storoge fo source
454 —.
450 N
448 - ; B COP’
locole formcion Contend
= . > 0
Tées'r‘y object enfry information
in tosk object entry

FIG. 3b

Case 2:07-cv-00486-TJW Document 1 Filed 11/06/2007 Page 7 of 20

U.S. Patent Dec. 2, 1997 Sheet 6 of 13 5,694,593
Cser! fosk >
store content 10
ldbel in .
Zndary storoge
ot |
confent lobel
B2~ _ /-!24
gel the - Send "insert index
next 17 frc:! astnt 1 ferm” messa?e to
fragmen! 9’/“ node specified
Set task..
counter 1o O
L
increment (" 40
node... Send “close.. Set node
number fo e indaxing” to mumber._ 1o 0
next duesed node @ node no. -
no kN
—-148
\-152
fo equd _ﬁﬁ
no. of nodes
¥
send confirm-
ation to client _}/53
exit 160

FIG. 4

Case 2:07-cv-00486-TJW Document 1

U.S. Patent

Dec. 2, 1997

Delete
Tn§l_<___

200

Delele content
label from
2ndary slorage

204 —— set tosk
counler fo 0
!
208 7 set node_
number lo 0

2 ‘\/\

node_no.
> no, of
nodes

Send “delete..
index_lerm"
msg fo
specified node

L

increment

node._no.

FIG. 5

Filed 11/06/2007 Page 8 of 20
Sheet 7 of 13 5,694,593
Y Wait for tosk
—3 counler = ﬂ&
no. of nodes |
.
se
M | confirmation | 2
[~ msq to client
T 222
216

Case 2:07-cv-00486-TJW Document 1 Filed 11/06/2007 Page 9 of 20

U.S. Patent Dec. 2, 1997 Sheet 8 of 13 5,694,593
Cancel Task
?el nexi 240
=3 termin |—"
index
i next 244
> D for —
index term
L 250
Delele index
term for
this 0D
send close
modifying
msg fo
sowrce
262 -~ EXIT

Case 2:07-cv-00486-TJW Document1 Filed 11/06/2007 Page 10 of 20
U.S. Patent Dec. 2, 1997 Sheet 9 of 13 5,694,593

U?dgfe

ask

600 —-J Delete content
lobel from
2ndory storage

604 — set task
counter fo 0
v
608 "™ set rode_
number to 0

612 —-_ ",
..... node_.no. f | AR ior iaSK 618
2 no. of counter = | /
nodes no. of nodes
store content
Send "delele_ | 6% belin | %0
index_ferm" 2ndory storoge
i od
Specied node frogment | 624
L confent |
increment 616 lobel

node_no. | 4}

FIG. 7

Case 2:07-cv-00486-TJW Document1 Filed 11/06/2007 Page 11 of 20

U.S. Patent Dec. 2, 1997 Sheet 10 of 13 5,694,593
B
636 — _~630
get the Send "inser! index
next o hﬁs:nl ferm’” message lo
Ir agmonl 05“ node spocilied
628 34 538
Y N Sel task_
counter fo D
|
increment (,542
rﬂur'::l}ier-!s . b kY = of | Sel node..
next c;nsz’:d 0 W number fo 0
e 548
652 Y
| zaii f::rf
ask counter
to equal __st
no. of nades
!
serd confirm—
ation to clienf _558
'['. . -—660
exil

FIG. 7a

Page 12 of 20

Filed 11/06/2007

Case 2:07-cv-00486-TJW Document 1

5,694,593

Sheet 11 of 13

Dec. 2, 1997

U.S. Patent

0
bsw pao;
jusjuoa
TVIEV IR o
vig
0%
X3
sgo |biem “ S0Q biem ” mn_"_mwuw_.‘ww.s
fsaubly oopeg | 1590 RS | | 1\l puag
¢ A% | " CRST " | Ao §
#mm\ H [H \ oL | .H \ 09¢g
[eag Alanb pbrom ig
vodn Buypuadap * sjoalqo 08
reg—" %
$3pOU JO U =
0S8 oo duerb
0} oM

\i
0L

juswbinyy jof

04

Case 2:07-cv-00486-TJW Document1 Filed 11/06/2007 Page 13 of 20

U.S. Patent Dec, 2, 1997 Sheet 12 of 13 5,694,593

? ¢ 7

k4
Increment Send Wait for
node_no. ';;:blose 400 — Eu(ﬂie Igo?iegl
robing' o be
22" P jg oblained
290 —
404 —

—— 2! gel next label

408 — compare label
wl"lﬁ o 1N T-T A7)
FEy £ \lubf ,

$12 ~
| compute weight
of label)
418 ;
sorl labels se;&;i &gie}:si
by weigd_ [Y, o
422
426 —1 EXIT

FIG. 8a

Case 2:07-cv-00486-TJW Document1 Filed 11/06/2007 Page 14 of 20

U.S. Patent Dec. 2, 1997 Sheet 13 of 13 5,694,593
]
ur
D
5 \\ =
2
e
—fg- =
- S
AN o
e | 1g
\ T Tsg O
\\ // 2 g .
~2 e
Nl |/ o= O
\ \i = E =
\ =T
N F
o =
<
B
[
(=]
—— on OO P W W s MY O e
S O S O 0 6 d s S <

Lh]

(spuoaas) awn| asuodsay

Case 2:07-cv-00486-TJW Document 1

Filed 11/06/2007 Page 15 of 20

5,694,593

1

DISTRIBUTED COMPUTER DATABASE
SYSTEM AND METHOD

FIHL D OF THE INVENTION

The invention relates to computer database systems and
more specifically to distributed computer database systems.

BACKGROUND OF THE INVENTION

An object database comsists of a collection of data o
information objects Each information object is identified
uniquely by an object identifier (OID) and is deseribed by a
content label. The content label is written in a formal
artificial language specified by the ontology of the database,
The ontology specifies the data types, the access points o
attributes of the data, the access or attribute values of the
data, the join conditions or linking relationships between the
data, and the grammar rules or constraints that must be
satisfied by all content labels

An ontology can also specify weight information such as
the strength of a relationship or the degres of proto-
typicality of an attribute value. Weight infarmation can also
be included in content labels to distinguish more important
parts of a content fabel from less irportant parts

Queries to extract data from the database are written in the
same formal language as the one used for conteni labels and
hence must conform to the same ontology. A fragment of a
content label or a query is a part of the content label or query
consisting of a limited number of aftributes and attribute
values joined by relationships. An index term is a fragment
of a content label while a probe is a fragment of a query.

It shoudd also be noted that the inforination object itself
need not be stored in the database system as long as pointers
to the data are available. Databases include indexes by
which the database locates stored data. Large databases
require correspondingly large indexes to maintain pointers
to the stored data. Such an index can be larger than the
database itself. Such large indexes are stored in relatively
slow secondary storage rather than faster main memory
because the main memory controlled by a single computer
processor is limited in size.

Furthermore, each index term can be used to search for
only one attribute of the data. Therefore, queries involving
several auributes of the data are restricted to using only one
index term carresponding 1o one attribute to locate the data
The remaining attributes of the dats requested by the query
are sequentially scarched for, even If other indexes are
available for the remaining attributes of the query
Additionally, a query that links or joins several atiributes is
performed using a sequential scan.

Finally, there is considerable overhead associated with
maintaining an index. This limits the number of attributes
that can be indexed. Current systems are unable to scale np
to support databases for which theze are; hundreds of data
types; thousands of attributes; thousands of join conditions;
queries that involve many data types, attributes and join
conditions simultaneously; tens of millions of information
objects; tens of millions of queries per day; rapid response-
time-fo-query requirements; and new data types, attributes
and join conditions continually being added.

The present invention avoids these Hmitations

SUMMARY OF THE INVENTION

The invention relates to 2 disteibuted computer database
systemn which includes a front end computer and a plurality
of computer nodes interconpected by & nerwork. The com-

10

15

35

30

33

65

2

bination of computer nodes interconnected by the network
operates as a search engine

A user wishing to query the database, transmits the query
to the front end computer which in turn forwards the query
to one of the computer nodes of the network. The node
receiving the query, termed the home node of the search
engine, fragments the received guery and then hashes the
fragments of the query. A portion of the hashed fragment is
used by the home node as an addressing index by which the
home node transiits the hashed guery fragment to a node on
the network.

Each node on the network which receives a hashed guery
fragment uses the fragment of the query to perform a search
o its respective database. Nodes finding data corresponding
to the query fragment teturn an ideniifier parmitting the user
to access the daia in the database Such identifiers are then
gathered by the home node.

DESCRIPTION OF THE DRAWINGS

This invention is pointed out with particularity in the
appended claims The above and fimther advantages of this
invention may be better nrnderstood by refemring to the
following description taken in conjunction with the accom-
panying drawing, in which:

FIG. 1 is a block diagram of an overview of an embodi-
ment of the distribited computer database system of the
invention;

FIG. 2is an overview of the steps used by the ernbodiment
of the distributed computer database system of claim 1 to
respond to a query;

FIGS. 3, 3a and 3 are a functional diagram of an
embodiment of a main message handling routine executed
by the nodes of the embodiment of the distributed computer
database systern showr in FIG. 1;

FIG. 4 is a functional diagram of an embediment of an
INSERT task executed on the home node of the embodiment
of the distributed computer database system shown in FIG.
1 to insert an index term into a local database on a node of
the system;

FIG. 5 is a furctional diagram of an embodiment of a
DELETE task executed on the home node of the embodi-
ment of the disiributed computer database system shown in
FIG. 1 to delete an index term;

FIG. 6 is a functional diagram of an embodiment of a
CANCEL task executed on a query node of the embodiment
of the disiributed computer database system shown in FIG.
¥ in response to a command from the home node to delete
an index term from a local database;

FIGS. 7 and 7z is a functioral diagram of an embodiment
of an UPDATE task executed on the home node of the
embodiment of the distributed compunter database system
shown in FIG. 1 to update an index term;

FIGS. 8 and 8a are a functional diagram of an embodi-
ment of a QUERY task executed on the home node of the
embodiment of the distributed computer database systemn
shown in FIG. 1 to search for a content Jabel; and

FIG 9 is a graph of the 95* percentile response time to
a query plotted against the throughput for the embodiment of
the distributed computer database system shown in FIG. 1

DETAL ED DESCRIPTION OF THE
INVENTION

Referring to FIG. 1, in broad overview. one embodiment
of a disitibuted computer database system of the invention

Case 2:07-cv-00486-TJW Document 1

Filed 11/06/2007 Page 16 of 20

5,694,593

3

includes a user compater 16 which is in communication with
a front end computer 14 through a wide area network 20 or
a local network 22, The front end computer 14, which may
also be the user computer 10, is in turn in commanication
with a search engine 16 which includes one or more com-
puter nodes 24, 26, 28, 30, 32, 50 interconnected by a local
area network 40 The individual computer nodes 24, 26, 28,
may include local disks 44, 46, 48 or may, alternatively or
additionally, obtain data from a network disk server 50.

In one embodiment each computer node 24, 26, 28, 30, 32
is a Sparcstation 10/30 with 32 MBytes of random access
memory (RAM). The computer nodss are interconnected by
a twisted pair network having a maximuimn data transfer rate
of 100 Mbits/sec. In an alternative embodiment, all the
computer rodes 24, 26, 28, 30, 32 are associated with loeal
disks.

Considering the processing of a query first, and refewing
also to FIG. 2, in one embodiment when a user fransimits
(Step) a query €6 from the user computer 19. the front end
computer 14 receives the query 6% and imediately issues
an acknowledgement (Step 2) The front end computer 14
then transmits (Step 3) the query 69 to cne of the computer
nodes 24, which is then defined as the home node 24 of the
search engine 16 for that query §0.

The home node 24 divides the query 60 into 2 number of
(possibly overlapping) fragments or probes 62 which it then
hashes using a predefined hashing function. Data in the
system was previously stored locally on the various nodes
using this hashing function to generate an index to the data
in the local database. Thus, the use of the same hashing
function to generate an index for data storage and to generate
a hashed probe for dats guery assumes that 1) data is
distributed uniformly over the nodes of the search engine
during the storing of data and 2) the probes are scattered
uniformly over the nodes during the processing of a query

In one embodiment, the hash value resnlting from the use
of the hashing function has z first portion which serves to
identify the node to which the data is to be sent to be stored
of to which query frapment is to be sent as a probe and a
second portion which is the local index by which the data is
stared at that node. In one embodiment, the hashing function
reduces a query fragment to a 37 bit value, in which the first
5 bits designate the node to which the data or query is sent
and the low order 32 bits which provides the index into the
local hash table of the node’s database. Thus, in temms of &
query, the hashed query fragments are distributed (Step 4) as
probes 62 to certain computer nodes 26, 28, 30, 32, of the
search engine 16, as determined by the first portion of the
hash value.

At a first or basic service level, computer nodes 30, 32
whose probes 62 match the index terms or labels by which
the data was initially stored on that nede respond to the
guery 60 by wansmitting (Step 5) the object identifiers
{OIDs) 70 matching the index terms of the requested infor-
mation to the home node 24. Thus, all matches between the
hashed probes and the local hash table of index terms are
returned or gathered to the home node which initially hashed
the query.

Since the use of 2 hashing function results in non-relevant
material also being accessed, the relevance of each object
retursed in the search must be determined. This determina-
tion of relevance is made by the home node 24 by comparing
the degree of similarity between the query 60 and the
information or object label 74 reumed. In one embodiment
the measure of similarity between the query 60 and the
chiect fahel 74 ic a cosine measure and s given by the

15

30

35

45

50

55

65

4

expression COS (v,w), where the vector v denotes the query
60 and the vector w denotes the content label 74. In one
embodiment the N objects with the highest similatity are
returned. Tn another embodiment all objects labels 74 which
generate cosine values greater than a predetermined value
are considered sufficiently similar to the query 60 to be
returned to the user 19 as relevant inforrnation

Once the similarity is determined, the home node 24
orders the OIDs according to their degree of similarity and
then returns a list 72 of the most relevant OIDs 76 directly
to the user computer 1¢ or any other computer specified
(Step 6), by way of a wide area network 20 or local area
network 20 without the intervention of the front end com-
puter 14

Alternatively, for higher levels of service (level 2 and
level 3), the home node 24 passes the most relevant OIDs 70
back to the computer nodes 28, 32 (Step 7) which hold the
information or content labels 74 identified by the OIDs 70.
These computer nodes 28, 32 then pass the requested
information of content labels 74 directly to the user 10 (Step
8).

In more detail, the highest priority task being executed on
all the nodes of the search engine 16 is the message handling
task shown in FIGS. 3, 3g and 3b Each node waits to receive
a massage (100) which may be exchanged between the front
end node 14 and the home nods 24; the home node 24 and
the query nodes 26, 28, 30, 32; the home node 24 and the
client 18; and the query nodes 26, 28, 30, 32, and the client
10, The message includes a TYPE field which identifies the
type of message that is being sent, the source and destination
addresses of the nodes, the data to be acted upon and weight
information Upon reception of a message the receiving
node determines what type of message has been received by
first extracting the message TYPE from the message packet
(102).

If the message type received is a PROCESS—
PROTOCOL message (104), the message has been sent by
the front end node in response to a command from the user
16 and received by a node which is now designated the home
node 24. The PROCESS—FROTOCOL message thercfore
contains & command from the user 10 which is transmitted
to the home node 24 by the front end node 14. In one
embodiment there are five valid commands (1086):
INSERT—NEW —CONTENI—LABEL, DELETE—
CONTENT—LABEL, UPDATE—CONTENT—LABEL,
QUERY and GET—CONTENT—{ ABEL. The home node
24 enqueves (108) an INSERT—TASK, a DELETE—
TASK, an UPDATE—TASK or a QUERY—TASK,
respectively, in response to the command INSERT-—
NEW—CONTENT-—--LABEL, DEI ETE—CONTENT—
LABFL, UPDATE—CONTENT—LABEL, or QUERY
contained in the message packet. Omce the tasks are
enquened, they are exccuted as they reach the head of the
quene.

In response to the GET—CONIENT-—LABEL
command, the home node 24 does not enqueue a task, but
simply sends a RETRIEVE-—CONTENT—LABEL mes-
sage (109) to a query node, as is described in detail below.

Referring also to FIG. 4. if the command is an INSERT—
NEW-—CONTENT—-LABEL, the home pode 24 executes
an INSERT-—TASK . The INSERT—TASK stores the new
content label in secondary sterage (110) and then fragments
the content label (114). The fragments of the content label
are then hashed (120} into a hash value having a node
nambes portion and a hash index value. The home node 24
then seads an INSERT—INDEX—TERM message contain-

Case 2:07-cv-00486-TJW Document 1

Filed 11/06/2007 Page 17 of 20

5,694,593

5

ing the hash index value to the query node 26 specified by
the node number portion of the hashed fragment (124). The
home Bode 24 then determines if there is another fragment
(128) and if so, retrieves (132) and hashes the next fragment
(120). Once all the hashed fragments have been sent to the
query nodes 26, 28 the home node 24 sets a TASK—
COUNTER variable (138) and NODE—NUMBER variable
to zero (140). The NODE—NWUMBER variable is compared
to the number of nodes in the network {144) and if the
variable is less than the number of nodes on the network, the
home node 24 sends a CLOSE—INDEXING message to the
node 26 designated by the NODE—NUMBER. variable
{148) and increments the NODE—NUMBER variable to the
next query node 28 in a list of nodes on the network (152)

In arother embodiment the home node 24 only inarements
the NODE—NUMBER variable to the next query node 28
to which at least one INSERT—INDEX—TERM message
was sent. The CLOSE—INDEXING message instructs the
query nodes 26, 28 that all the hashed index terms have been
distributed. If the NODE—NUMBER variable is greater
than or equal to the number of nodes in the petwork, the
home node 24 waits for TASK—COUNTER (whose func-
tion is described below) to equal the npumber of nodes in the
network (156), and once this occurs, sends a confirmation to
the user 10 (158) of the completion of the index insertion
task and then exits (160). In another embodiment the home
node 24 only waits for the TASK—COUNTER to equal the
namber of nodes to which at least one INSERT—INDEX—
TERM message was sent.

When a query pode 26, 28 receives an INSERI-—
INDEX—TERM message (176) FIG 3, the query node 26,
28 inserts the hashed index term into its local index table
{172) using any of the algorithms known to those skilled in
the art and Ioops to receive the next message (108). When
the query node 26, 28 receives a CLOSE—INDEXING
message, indicating that all the new index terms have been
distributed, the query node 26, 28 replies with 3 CLOSE—
MODIFYING message to the source or home node 24 (182)
and again loops for the next message (100).

When the souree or home node 24 receives a CLOSE—
MODIFYING message (190), the home node 24 locates the
task which was enquened and geperated the CLOSE—
DNDEXING message to which the query node is responding
(194) and incremsats the TASK—COUNTER associated
with that task (198). As shown in FIG. 4, it is vpon the
incrementing of the TASK—COUNTER that the INSERT—
TASK is waiting (156). Once the TASK-—COUNTER is
incremented (198) the home node 24 loops to receive
another message (100).

Referring again to FIG. 3, if the command is a
DELETE—CONTENT—LABEL, the home node 24
enqueues and executes a DELETE TASK. The DELETE—
TASK (FIG. 5) first deletes the content label from secondary
starage (200). The variables TASK—COUNTER (204) and
NODE—NUMBER (208) are then set to zero. The home
node 24 then determines if the variable NODE—NUMBER
is Iess than the munber of nodes on the netwoark (212) and
if so, sends a DELETE—INDEX-—TERM message to the
node designated by the current NODE—NUMBER (214)
The home node 24 then increments the variable NODE—
NUMBER (216) and loops. Jf the variable NODE—
NUMBER is greatex than or equal to the number of nodes on
the network, the home pode 24 waits for the vamiable
TASK—COUNTER to equal the oumber of nodes (218) and
then sends 2 confirmation message to the client 10 that the
DELETE—TASK has completed (220) pdeor to exiting
(222).

5

35

45

55

60

65

6

Referring to FIG. 3a, when the query node 26, 28 receives
the DEIL ETE—INDEX—TERM, it enqueues a CANCEL—
TASK to remove all the entries in the local database come-
sponding to the index term to be deleted (234) and loops to
receive apother message (168). Referring to FIG. 6, the
CANCEL—TASK begins by reading ap index term in the
local index (240) and finding the OID which corresponds to
that term (244). The query node 26,28 perforins a sequential
search of all OIDs im the hash table. Sequentiat scanning of
the hash table is vsed because, in this embodiment, the
original content label being delete is not known, so it cannot
be fragmented and hashed as it is for the INSERT task in
other embodiments, it is possible to use the original content
Iabel and is desirable to do soif content labels are frequently
updated . A determination is then made as to whether the OID
is equal to the OID being deleted (248) If the OID is to be
canceiled, the index term for this OID is deleted (258). A
determination is then made as to whether there is amother
OID equal to the OID being deleted (252). If there is another
OID equal to the OID being deleted, the index term for this
OID is cancelled (250). If there is not another OID come-
sponding to the OI) being deleted, a determination is made
as to whether there is another index term (254) and if so, the
pext term in the index is read {240). ¥ there are no mose
terms in the local hash table, the query node 26, 28 sends a
CLOSE—MODIFYING message (260) to the source of the
commmand or the home node 24 and exits (262).

As described with respect to the INSERT—INDEX—
TERM command, {FIG. 33) when the source or home node
24 receives a CLOSE—MODIFYING message (199), the
home node 24 locates the task which was enqueued and
which generated the DEL ETE—INDEX—TERM message
to which the query node 26, 28 is responding (194) and
increments the TASK—COUNTER associated with that
task (198). It is upon this incrementing that the DELETE—
TASK is waiting (218) FIG. 5. Once the TASK—
COUNTER is incremented (198) the home node 24 loops to
receive another message (104).

Referring again to FIG. 3, if the command is a
UPDATE—CONTENT—LABEL (106), the home node 24
enquenes and executes an UPDATE—TASK (108). The
UPDATE--TASK (FIGS. 7 and 74) is a combination of an
DELETE—TASK followed by an INSERT—TASK, with-
out a confirmation being sent at the end of the DPELETE~—
TASK. The UPDATE—TASK first deletes the content Iabel
from secondary storage (600) and then sets the variables
TASK—COQUNTER (604) and NODE—NUMBER (648) to
zero. The home node 24 determines if the variable NODE—
NUMBER is less than the numnber of nodes on the neiwork
(612) and if so, sends a DELETE—INDEX~-TERM mies-
sage to the node designated by the cument NODE—
NUMBER (614), increments the variable NODE—
NUMBER (616) and loops. If the variable NODE—
NUMBER is greater than or equal to the nurmber of nodes on
the network, the home node 24 waits for the variable
TASK—COUNTER to equal the number of nodes (618).
When TASK—COUNTER is equal to the number of nodes,
the task stores the new coatent label in secondary starage
(620) and then fragments the content label (624). As
described previously, the fragments of the content label are
then hashed (628) into a hash value having a ncde number
portion and a hash index value. The home npode 24 then
sends an INSERT—INDEX—TERM message containing
the hash index value to the query node 26 specified by the
node number portion of the hashed fragmest (630). The
home node 24 then determines if there is another fragment
{834y and i so, retrieves {638} apd hashes the next fragment

Case 2:07-cv-00486-TJW Document 1

Filed 11/06/2007 Page 18 of 20

5,694,593

7

(628). Once all the hashed fragments have been sent to the
guery nodes 26, the home node 24 sets a TASK—
COUNTER variable (638) and NODE—NUMBER variable
t0 zero (642). The NODE—NUMBER variable is compared
to the number of nodes in the network (644) and if the
variable is less than the number of nodes on the network, the
home node 24 sends a CLOSE—INDEXING message to the
node 26 desigpated by the NODE—NUMBER variable
{648) and increments the NODE—NUMBER. variable to the
next query node 28 in a list of nodes on the network (652).
As discussed with respect to the INSERT—TASK, in
another embodiment the kome node 24 only increments the
NODE—NUMEER variable to the next query node 28 to
which the INSERT—INDEX—TERM message was sent, If
the NODE--NUMBER variable is greater than or equal to
the number of nodes in the network, the home node 24 waits
for TASK—COUNTER to equal the number of nodes in the
network (656), and opee this occurs, sends a confirmation 1o
the user 10 (658) of the completion of the UPDATE—TASK
and then exits (660). The response by the guery node to the
messages sent by the UPDATE—TASK have been described
above with respect to the INSERT—TASK and the
DELETE—TASK.

Referring to FIG. 3, if the command is a QUERY (106),
the home node 24 enqueues and executes a QUERY—-TASK
(108} as described above. Referring also to FIGS. 8 and 84,
the home node 24 fragments the query 60 (270) and hashes
the fragment (272) using the same hashing function that was
used by the INSERT-—TASK as disclosed above. The home
node 24 then sends a PROBE message {276) to the node 26
whose address is indicated by the first portion of the hashed
fragment. The PROBE message to the query node 26
includes the second portion of the hashed query fragment.
The home node 24 then determines whether there is another
fragment of the query to process (280) If the is another
fragment, that fragmeat is obtained (270), hashed (272) and
transmitted to the node indicated by the first portion of the
hashed fragment (276).

Tf there are no further fragments to process, the home
node 24 sets the TASK—COUNTER variable (284) and the
NODE—NUMBER varizble (286) to zero, and a determi-
nation is made whether the NODE—NUMBER is less than
the number of nodes in the network (288). ¥ NODE—
NUMBER is less than the number of nodes, a CLOSE—
PROBING message is sent (290) to the query node indicated
by the NODE—NUMBER vriable (to inform the guery
node that ail the query fragments have been sent to the query
nodes) and the NODE—NUMBER variable is incremented
(292).

Referring again to FIG. 34, when a query node 26 receives
a PROBE message, the query node 26 searches its local
index far a match fo the second portion of the hashed
fragment contained in the FROBE message (304). If no
matching index term exists (308), the query node 26 simply
awaits the next message (1049). If a maich exists, the OID
having the hash value is accessed (310} and the guery node
26 sends a GATHER--MATCHING--TERMS message
back to the home nods 24 (312). The query node 26 then
determines if thexe is another entry in the index matching the
hash valoe in the PROBE message (314). If another entry in
the database is matched by the index term. the query node
26 again gets the OID (310) and sends a GATHER—
MATCHING—TERMS message back to the home node
(310), If no entries are matched by the index term, the query
node 26 loops 1o receive the next message (100).

Similarly, when a query node 26 receives 2 CLOSE—
PROBRIG message from the home node 24 (320), the query

1o

2%

3s

45

50

55

0

8

node 26 sends a CLOSE—MATCHING message to the
source or home node 24 (324). When the home node 24
receives a CLOSE—MATCHING message from the goery
node 26 (328), it locates the QUERY task (330) to which the
query node 26 is responding and incremests the varisble
QUERY—COUNTER (33d) and loops to receive another
message (190).

When the home node 24 receives a GATHER—
MATCHING—TERMS message from the query nede 26
(340), the home node 24 locates (342) the QUERY task
which generated the probe 62 which caused the GATHER—
MATCHING—TERMS message to be sent and locates the
object entry in the task (344) The home node 24 then adds
the weight of the matching term to the total weight of the
object (348) and returns to await another message (100).

In one embodiment, the weight of the matching torm is
computed using a COS function. The query and the index
term are treated as vectors with the weight of the matching
term determined by the COS function COS(v,w), where v is
the query vector and w is the index term vectar.

Similarly, the total weight of the object is determined
from the COS function according to the following formula:

Z vow;

COS(v,w) ='§Iﬁﬁl:7ﬂ—"

The sum is over all terms (i e. both index and query terms)
and the product v,w, is non-zexo only if the term occurs both
in the query and in the content label. The length of the
vectors v and w are compnted by the farmulae:

ol =] Z (?

If v represents the guery, then Jvl] is never actually
computed since weights are only considered relative to one
another for the same query. The value of |} is precomput-
ered and what is actually stored are the normalized content
label vectors w/fwi,

Referring again to FIG. 8, when the QUERY—
COUNTER is equal to the number of nodes (350) all the
requested data has been received and the object labels are
sorted by weight to determine the closeness of the matching
of the query 60 and the content labels 74 retrieved (354). The
remaining instmactions executed by the QUERY task, depend
upon the query level. If the query level is one, only the OIDs
with the highest weights are returned to the client 10 (368)
and the QUERY task exits {362).

If the query level is two, the OIDs with the highest
weights are selected and a determination is made as to which
objects comespond to those highest weight OIDs (370). The
highest weight content labels are selected (372) and the list
of highest weight content labels 72 are sent by way of a
RETRIEVE—CONTENT—LABEL message to the query
node 26 (374) having a node nummber equal to the informa-
tion object identifier modulo the number of nodes. That is,
the OID modulo the number of nodes can be regarded as
snother hash function that maps the OID to the node
containing the. content label. The set of nodes that store
content labels in sccondary storage need not be the same set
as the one that stores the hash table in main memory. The
hash function for fragments maps a fragment to the set of

Case 2:07-cv-00486-TJW Document 1

Filed 11/06/2007 Page 19 of 20

5,694,593

9

matching OIDs, The hash function for OIDs maps an OID to
the node containing the corresponding content label. The
content label contains information on how to acguire the
information objects themselves. If no further objects exist,
the QUERY task exits (384)

Referring also to FIG. 35, when a query node 26 receives
a RETRIEVE—CONTENT—IL ABEL, (430}, it locates the
conient Iabel in secondary storage (434) and sends the level
2 query response to the client 16 (436). The query node 26
then loops for another message (100).

Referring again to FIG. 8o, as with level two, if the query
level is three, the highest weight OIDs are selected, a
determipation is made as to which objects carrespond to
those highest weight OlDs (384) and those objects are
selected (388). A FETCH—CONTENT —LABEL message
is sent to the query node 26 (390) again corresponding to the
information object identifier modulo the number of nodes.

Referring again to FIG. 3b, when the query node 26,
receives a FETCH-—CONTENT--LABEL message 438,
the query node 26 finds the content label in secondary
stornge 440 and sends a CONTENT-—-LABEL message to
the source of the FETCH—CONTENT—LABEL (442).
When the home node 24, receives the CONTENT—LAREI.
message (440), it locates the QUERY task which generated
the FETCH—CONTENT —LABEL message (448}, finds
the information object entry withip the QUERY task (450)
and copies the content label to the information object entry
{454). The home node 24 then loops to receive another
message (100)

Referring again to FIG. 84, if no further objects exist in
the list, the QUERY task waits for all the content labels to
be obtained (404). Once all have been obtained, the QUERY
task obtains a content label (404) and compares the content
label with the query 69 (408). The QUERY task then
computes the weight of the izbel (412). Unlike the weight
computed in level I and 2 processing, which use fragments
of a limited size, the weight computed in level 3 processing
considers fragmenis of any size. In addition, the fragments
of the content label that match frapments of the query are
marked in the content label. Therefare, if the content label
is shown to the user who requested the query, the marked
fragments can be distinguished, for example by highlighting,
to show the user the reason why the content label was chosen
in response to the user’s guery. Highlighting also serves to
focus the user’s attention on those portions of the content
labe] that are most likely to berelevant and aid in helping the
user formulate subsequent queries. A determination is then
made as to whether there are more content labels to process
{416) and if so, the next content label is fetched (404). I
there are no further content labels, the labels are sorted by
weight (418) and the content labels with the highest weights
are sent to the clieat 10 (422). The QUERY task then exiis
(426).

Refering to FIG. 3, the command DONE is issued to
terminate petwork activity, for example, to permit the soft-
ware or ontology to be modified. If the message received
from the front end pode 14 is DONE 508, the activity on the
network is terminated and is accompanied by the gathering
and printing of activity statistics by the home nodc 24 (510).
When the statistics are printed, the task exits (504).

A graph showing the 95" percentile response time versus
throughput {number of queries processed per second) for a
four node 550 and an eight node 552 embodiment of system
of FIG. 1 is shown in FIG. 9. In this example the database
censists of 80,000 infarmation objects indexed by four
nodes and 160.000 nformation objects indexed by eight
nodes The content labels have. on average, 200 index terms,

10

30

35

45

30

33

19
and the queries have, on average, 10 fragments. Each probe
produces, on average, four GATHER—MATCHING—
TERMS messages at the query node.

It should be noted that tests on a 1G-node system have
resulted in the same response fime graph as that for an
8-node system, Carefil monitoring of the system has shown
that statistical fluctuations dissipate quickly and the system
is very stable as long as the bandwidth of the network is not
approached too closely. The network vendor, for the network
used in the embodiment disclosed, recommends that the
network not be used for transmitting more than 40% of the
rated maximum bandwidth. Thus for the embodirnent
disclosed, this limit is about 500 Kbytes/sec (4 Mbits/
second). It should be noted, the aciual response time for any
system is very sensitive 1o the properties of the database and
the distribution of queries. Thas, the throughput achieved by
any given system may vary.

Having shown the preferred embodiment, those skilled in
the art will realize many variations are possible which will
still be within the scope and spirit of the claimed invention.
Therefore,

it is the intention no limit the inventior only as indicated
by the scope of the claims.

‘What is claimed is:

1. A method for information retrieval using fuzzy queries
in a non-relational, distributed database system having a
plurality of home nodes and a plurality of gquery nodes
connected by a network, said method comprising the steps
oft

1andomly selecting a first one of said plarality of home

nodes;

fragmenting, by said gelected home node, a query from a

user into a plurality of query fragments;

hashing, by said selected home node, each said gquery

fragment of sald plurality of query fragments, said
hashed query fragment having a first portion and a
secord portion;

fransmitting, by said selected home node, each said

hashed query fragment of said plurality of query frag-
ments o a respective one of said plurality of query
nodes indicated by said first portion of each said kashed
query fragment;

using, by said query node, said second portion of said

respective hashed query fragment to access data
according fo a local hash table located on said guery
node; and

returning, by each said query node accessing data accord-

ing to said respective hashed query fragment, an object
identifier carresponding to said accessed data to said
selected home node.

2. The method of claim 1 further comprising the step of
receiving, at said home node, said query from said user, prior
to the step of fragmenting said query

3. The method of claim 1 further corprising the steps of:

determining, by said home node, a measure of relevance

between said accessed data and said query; and
returning, to said user, by said home node, accessed data

having a predetermined degree of relevance,
subsequent to the step of returning said object identifier.

4. The method of claim 3 wherein said measure of
relevance is determined by a cosine measuare.

5. The method of claim 1 wherein said first portion of said
hashed query fragment comprises S5 bits and said second
portion comprises 32 bits.

6. A method of storing objects in a manner which is
condecive to informetion retrieval using fuzry gueries in a2

Case 2:07-cv-00486-TJW Document 1

Filed 11/06/2007 Page 20 of 20

5,694,593

1
non-relational, distributed database system having a plural-
ity of home nodes and a plurality of query nodes connected
by a network, said method comprising the steps of:
randomly selecting a first one of said plurality of home
nodes;
fragmenting, by said selected home node, objects from a
user into a plurality of ebject fragmenis;
hashing, by said selected home node, each said object

5

fragment of said phmality of object fragments, said 10

hashed object fragment having a first portion and a
second partion;

transmitting, by said selected home node, each said

hashed object fragment of saftd plurality of data frag-
ments to a respective one of said plaratity of query
nodes indicated by said first portion of each said hashed
object fragment; and

using, by said guery node, said second portion of said

respective hashed object fragment to store data accord-
ing to a local hash table located on said query node.

7. The method of claim & ferther comprising the step of
receiving, at said home node, said objects from said user,
prior to the step of fragmenting said object.

8 A nop-relational, distributed database system having an
information retrieval tool for handling queries from a user,
comprising:

a plurality of home nodes; and

2 plurality of query nodes;

said plurality of home nodes and said plurality of query

nodes conpected by a network,

wherein each said home node, upon recciving a query

from a user fragments said query into a plurality of
query fragments, hashes each sald query fragment of
said plurality of query fragments into a hashed query
fragment having a first portion and a second postion,
and transmits each said hashed query fragment to a
respective one of said phirality of query nodes indi-
cated by said first portion of said hashed query
fragment, and

further wherein each said query node uses said second

portion of said hashed query fragment to access data
according to a local hash table located on said query
node and retans an object identifier coresponding to
said accessed data to said home node.

9. The distributed database system of claim 8 wherein said
home node determines a measure of relevance between said
accessed data and said query and returns to said user
accessed data having a predetermined degree of relevance.

10, The method of claim 9 wherein said horne node
measures relevance using a cosine measure

11. The method of claim 8 wherein said first portion of
said hashed query fragment comprises 5 bits and said second
portion comprises 32 bits.

12. A pon-relational, distributed database system for stor-
age and rerrieval of information objects, comprising:

a plurality of home nodes; and

a plurality of query nodes;

said plurality of home nodes and said plurality of query

nodes connected by a network,

wherein each said bome node, upon receiving an object

from a user, fragmenis said object into a plurality of
object fragments, hashes each said object fragment of
said plurality of object fragments into a hashed object
fragment having a first portion and a second portion,
and transmits each said hashed object fragment to a
respective ope of said pluradity of query nodes indi-

25

35

55

12
cated by said first portion of said hashed object
fragment, and

wherein each said query node uses said second portion of
said hashed object fragment to store objects according
to a local hash table located on said query node

13. A non-relational, distributed database system having
an information retrieval tool for handling queries from a
HSer, Comprising:

a plurality of home nodes; and

a plirality of guery nodes, said plurality of home nodes
and said plurality of query nodes connected by a
network,

each said home node, upon receiving a command from a
user, enqueueing a predetermined task in response to
said command,

a query task enqueued being resultant in, in response to a
query command from said user, fragmenting a query
contained in said query comrand into a plurality of
query fragments, hashing each said query fragment of
said pluratity of query fragments into a hashed query
fragment having a first portion and a second portion,
and transmitting a query message containing each said
hashed query fragment to 2 respective onme of said
plurality of quety ncdes indicated by said first portion
of said hashed query fragment,

said query node, upon receipt of said query message,
using said second portion of said hashed query frag-
ment to access data according to a local hash table
located on said query node and transinitting a message
returning an object identifier corresponding to said
accessed data to said home node.

14. The method of claim 13 wherein said query message
requests predetermined data from said query node in
response to & query level contained in said query command
from said user.

15. The method of claim 14 wherein there are three query
levels.

16. The method of claim 14 wherein said query node
returns a content label in response to a predetermined gaery
Ievel.

17. A non-relational, distributed database system for stor-
age and retrieval of information, comprising:

a plurality of home node nodes; and

a plirality of query nodes, said plurality of home nodes
and said plorality of query nodes compected by a
network,

each said home node, upon recedving a command from a
user, enqueueing a predetermined task in response to
said command,

an insert task enqueved, in response to an insert command
from said user, fragmenting data contained in said
insert command into a plurality of data fragments,
hashing each said data Fragment of said plurality of data
fragruents into a hashed data fragment having a first
portion and a second portion, and transmitting an insert
message containing each said hashed data fragment to
a respective one of said plurality of query modes
indicated by said first portion of said hashed data
fragment

said query node, wpon receipt of said insert message,
using said second portion of said hashed data fragment
to store data according to & local hash table located on
said query node.

w® x ok X Xx

