

EXHIBIT C

GOOGLE, INC.’S PROPOSED CONSTRUCTIONS OF
DISPUTED CLAIM TERMS

N
ortheastern U

niversity et al v. G
oogle, Inc.,

D
oc. 62 A

tt. 3

D
ockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/2:2007cv00486/106532/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/2:2007cv00486/106532/62/3.html
http://dockets.justia.com/

 2

No.

Term

Claim(s)
Google, Inc.’s Proposed Construction & Evidentiary Support

1. non-relational, distributed
database system

claims 1, 8, 13 a database, stored across multiple computers on a network, wherein data objects
exist independently of their attribute values, and wherein data is not extracted
using relational algebra

Intrinsic Support:
’593 patent at Abstract; col. 1:10-37; col. 1:65-2:18; col. 2:66-3:59; col. 4:23-
7:38; col. 10:25-51; col. 11:24-44; col. 12:6-33; Fig. 1, Fig. 2, Fig. 8, and Fig.
8a.

’593 Prosecution History, June 7, 1996 Amendment at 7-14, 16-19; Dec. 11,
1996 Amendment at 8-9; May 14, 1997 Amendment at 3.

Chaturvedi et al., Scheduling the Allocation of Data Fragments in a Distributed
Database Environment: A Machine Learning Approach, IEEE TRANS ON
ENG’G MGMT., vol. 41, no. 2, 1994, pp. 194-206. (GN 524 – 537)

Houtsma et al., Parallel Hierarchical Evaluation for Transitive Closure
Queries, IEEE Apr. 1991. (GN 4932 – 4941)

U.S. Patent 4,811,199. (GN 7147 – 7162)

Extrinsic Support:
“Relational database: A database in which the data are organized and accessed
according to relations.” Dictionary of Computing. Research Triangle Park,
NC: International Business Machines Corporation, 1991, p. 475. (GN 292968)

“Relational database: A database is which data are organized into one or more
relations that may be manipulated using a relational algebra.” Christopher
Booth, ed. The New IEEE Standard Dictionary of Electrical and Electronics
Terms (5th Ed.: Inst. of Electrical & Electronics Engineers, Inc.), 1991, p. 1106.

 3

No.

Term

Claim(s)

Google, Inc.’s Proposed Construction & Evidentiary Support

(GN 300219)

“Relational database: A database is which data are organized into one or more
relations that may be manipulated using a relational algebra.” IEEE Standard
Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries
(Inst. of Electrical & Electronics Engineers, Inc.), 1991, p. 170. (GN 300234)

“Relation: (1) In a relational database, a set of entity occurrences that have the
same attributes … (3) In a relational database, a table that identifies entities and
their attributes. Synonymous with flat file ….” Dictionary of Computing.
Research Triangle Park, NC: International Business Machines Corporation,
1991, p. 475. (GN 292968)

“Relation: In a relational data model or relational database, a set of tuples, each
of which has the same attributes.” Christopher Booth, ed. The New IEEE
Standard Dictionary of Electrical and Electronics Terms (5th Ed.: Inst. of
Electrical & Electronics Engineers, Inc.), 1991, p. 1106. (GN 300219)

“Relation: In a relational data model or relational database, a set of tuples, each
of which has the same attributes.” IEEE Standard Computer Dictionary: A
Compilation of IEEE Standard Computer Glossaries (Inst. of Electrical &
Electronics Engineers, Inc.), 1991, p. 170. (GN 300234)

“Relational database management system: A database organization scheme that
treats files as tables of data in which the rows represent fixed-length records
and columns represent fields. Multiple keys can be used for retrieving the data
stored within the database. A database in which some data items in one type of
record refer to records of a different type. Relational databases give the user
the flexibility to link (join, or create a relationship between) information stored
in many disk files. It allows users to interchange and cross-reference
information between two different types of records, such as comparing the

 4

No.

Term

Claim(s)

Google, Inc.’s Proposed Construction & Evidentiary Support

information in a group of invoices to the information in an inventory. Most
people do not need relational databases. To merely keep track of a mailing list
doesn’t require a relational database, nor is such a database needed to keep a
simple inventory of something. However, those who want to print out a
mailing list of people who ordered products from their inventory will need a
relational database. Relational databases are more powerful, more complex,
more difficult to use, and more expensive than other database systems.”
Webster’s New World Dictionary of Computer Terms (4TH ed.) (Prentice Hall:
New York, NY), 1992, p. 353.

“Relational database management system (RDBMS): A database management
system based on the relational model. This claim is often made (particularly for
personal computer packages) principally on the grounds that the data is treated
as a series of two-dimensional tables, known as relations. Stricter criteria
would require also that algebraic operations, such as JOIN or PROJECT, could
be used to manipulate the data and to create new tables based on various
combinations of the original tables.” Gunton, Tony. A Dictionary of
Information Technology and Computer Science, 257, 2nd ed. Oxford, UK:
NCC Blackwell Ltd. 1993, p. 257. (GN 292982)

Kenneth Baclawski and J. Elliott Smith, A Unified Approach to High-
Performance, Vector-Based Information Retrieval, March 21, 1994. (JAR
294–313)

2. a plurality of home nodes
and a plurality of query
nodes connected by a
network

a plurality of home nodes;
and a plurality of query
nodes; said plurality of

claim 1

claims 8, 13

a plurality of home nodes and query nodes connected by a network arranged
with no central server and wherein, for any given query, any node may be
defined as a home node or a query node

Intrinsic Support:
’593 patent at Abstract; col. 1:65-2:18; col. 2:66-3:59; col. 4:8-7:38; col. 10:25-
51; col. 11:24-44; col. 12:6-33; Fig. 1, Fig. 2, Fig. 8, Fig. 8a.

 5

No.

Term

Claim(s)

Google, Inc.’s Proposed Construction & Evidentiary Support

home nodes and said
plurality of query nodes
connected by a network

‘593 Prosecution History, April 16, 1996 Office Action at 2-3; June 7, 1996
Amendment at 13, 16; May 14, 1997 Amendment at 2-3.

Chaturvedi et al., Scheduling the Allocation of Data Fragments in a Distributed
Database Environment: A Machine Learning Approach, IEEE TRANS ON
ENG’G MGMT., vol. 41, no. 2, 1994, pp. 194-206. (GN 524 – 537)

Houtsma et al., Parallel Hierarchical Evaluation for Transitive Closure
Queries, IEEE Apr. 1991. (GN 4932 – 4941)

U.S. Patent 4,811,199. (GN 7147 – 7162)

Extrinsic Support:
Kenneth Baclawski and J. Elliott Smith, A Unified Approach to High-
Performance, Vector-Based Information Retrieval, March 21, 1994. (JAR
294–313)

3. randomly selecting claim 1 selecting by chance, independently of preceding selections, where each item in
the set has equal probability of being chosen

Intrinsic Support:
’593 patent at col. 3:17-25; col. 10:25-51; col. 11:24-44; col. 12:6-33; Fig. 1,
Fig. 2.

’593 Prosecution History, June 7, 1996 Amendment at p. 13, 16; September 11,
1996 Office Action at 2; March 13, 1997 Office Action at 2; May 14, 1997
Response to Office Action at 2.

Chaturvedi et al., Scheduling the Allocation of Data Fragments in a Distributed
Database Environment: A Machine Learning Approach, IEEE TRANS ON
ENG’G MGMT., vol. 41, no. 2, 1994, pp. 194-206. (GN 524 – 537)

 6

No.

Term

Claim(s)

Google, Inc.’s Proposed Construction & Evidentiary Support

Houtsma et al., Parallel Hierarchical Evaluation for Transitive Closure
Queries, IEEE Apr. 1991. (GN 4932 – 4941)

Extrinsic Support:
“Random: 1. occurring or done without definite aim, reason, or pattern:
random examples. 2. Statistics. of or characterizing a process of selection in
which each item of a set has an equal probability of being chosen. . . . 5. at
random, without regard to rules, schedules, etc.; haphazardly.” Random House
Webster’s College Dictionary, New York, NY: Random House Inc. 1991, p.
1116. (GN 300206)

“Random: . . . b. Statistics. Governed by or involving equal chances for each of
the actual or hypothetical members of a population; also, produced or obtained
by a random process (and therefore completely unpredictable in detail) the
movement of something in successive steps … each step being governed by
chance independently of preceding steps.” J.A. Simpson & E.S.C. Wiener, eds.
Oxford English Dictionary, 2d ed., vol. 13, 1989 (Clarendon Press: Oxford,
UK), p. 168. (GN 300405)

“Random: (3) (modeling and simulation). Pertaining to a process or variable
whose outcome or value depends on chance or on a process that simulates
chance, often with the implication that all possible outcomes or values have an
equal probability of occurrence; for example, the outcome of flipping a coin or
executing a computer-programmed random number generator.” Christopher
Booth, ed. The New IEEE Standard Dictionary of Electrical and Electronics
Terms (5th Ed.: Inst. of Electrical & Electronics Engineers, Inc.), 1991, p. 1064.
(GN 300218)

“Random: Pertaining to a process or variable whose outcome or value depends
on chance or on a process that simulates chance, often with the implication that
all possible outcomes or values have an equal probability of occurrence; for

 7

No.

Term

Claim(s)

Google, Inc.’s Proposed Construction & Evidentiary Support

example, the outcome of flipping a coin or executing a computer-programmed
random number generator.” IEEE Standard Computer Dictionary: A
Compilation of IEEE Standard Computer Glossaries (Inst. of Electrical &
Electronics Engineers, Inc.), 1991, p. 167. (GN 300233)

Kenneth Baclawski and J. Elliott Smith, A Unified Approach to High-
Performance, Vector-Based Information Retrieval, March 21, 1994. (JAR
294–313)

4. query fragment claims 1, 8, 13 a part of a query consisting of a limited number of attributes and attribute
values joined by relationships, specified in the same formal, artificial language
and ontology which describes the attribute values of objects of the database

Intrinsic Support:
’593 patent at Abstract; col. 1:10-31; col. 2:3-18; col. 3:25-4:7; col. 4:22-36;
col. 4:60-5:29; col. 10:25-51; col. 11:24-44; col. 12:6-33; Fig. 2, Fig. 8, Fig. 8a.

’593 Prosecution History, June 7, 1996 Amendment at 9-16; Dec. 11, 1996
Amendment at 8-9; May 14, 1997 Response to Office Action at 2-3.

Chaturvedi et al., Scheduling the Allocation of Data Fragments in a Distributed
Database Environment: A Machine Learning Approach, IEEE TRANS ON
ENG’G MGMT., vol. 41, no. 2, 1994, pp. 194-206. (GN 524 – 537)

Houtsma et al., Parallel Hierarchical Evaluation for Transitive Closure
Queries, IEEE Apr. 1991. (GN 4932 – 4941)

U.S. Patent 4,811,199. (GN 7147 – 7162)

Extrinsic Support:
“The ’593 query fragments are defined at ’593 column 1, lines 27-31, and
consist of a part of the query with a limited number of attribute values joined by

 8

No.

Term

Claim(s)

Google, Inc.’s Proposed Construction & Evidentiary Support

relationships.” U.S. Patent No. 6,505,191 Prosecution History, July 3, 2002
Response to office action at 5. (GN 299941 – 300172)

Kenneth Baclawski and J. Elliott Smith, A Unified Approach to High-
Performance, Vector-Based Information Retrieval, March 21, 1994. (JAR
294–313)

Kenneth Baclawski and J. Elliott Smith, KEYNET: Fast Indexing for
Semantically Rich Information Retrieval, December 7, 1993 (JAR 828–845)

“Prototype Specifications . . . The hash algorithm is taken from Knuth, volume
3, section 6.4.” (JAR 219469)

5. hashing / hashes claims 1, 8, 13 performing a mathematical function on a key value to generate the address of
the location of data associated with the key value

Intrinsic Support:
’593 patent at Abstract; col. 1:33-62; col. 2:3-12; col. 3:25-4:7; col. 4:60-5:29;
col. 6:39-7:38; col. 8:61-9:2; col. 10:25-51; col. 11:24-44; col. 12:6-33; Fig. 8,
Fig. 8a.

’593 Prosecution History, June 7, 1996 Amendment at 12, 14-16; May 14, 1997
Amendment at 3-4.

Chaturvedi et al., Scheduling the Allocation of Data Fragments in a Distributed
Database Environment: A Machine Learning Approach, IEEE TRANS ON
ENG’G MGMT., vol. 41, no. 2, 1994, pp. 194-206. (GN 524 – 537)

Houtsma et al., Parallel Hierarchical Evaluation for Transitive Closure
Queries, IEEE Apr. 1991. (GN 4932 – 4941)

U.S. Patent 4,811,199. (GN 7147 – 7162)

 9

No.

Term

Claim(s)

Google, Inc.’s Proposed Construction & Evidentiary Support

Extrinsic Support:
“hashing: (1) a key-to-address transformation in which the keys determine the
location of the data. (2) The process of applying a formula to a record key to
yield a number that represents a disk address.” Webster’s New World
Dictionary of Computer Terms (4TH ed.) (Prentice Hall: New York, NY), 1992,
p. 187. (GN 300244)

“hashing: A technique for arranging a set of items, in which a hash function is
applied to the key of each item to determine its hash value. The hash value
identifies each item’s primary position in a hash table, and if this position is
already occupied, the item is inserted wither in an overflow table or in another
available positioning the table.” Christopher Booth, ed. The New IEEE
Standard Dictionary of Electrical and Electronics Terms (5th Ed.: Inst. of
Electrical & Electronics Engineers, Inc.), 1991, p. 586. (GN 300215)

“hashing: A technique for arranging a set of items, in which a hash function is
applied to the key of each item to determine its hash value. The hash value
identifies each item’s primary position in a hash table, and if this position is
already occupied, the item is inserted wither in an overflow table or in another
available positioning the table.” IEEE Standard Computer Dictionary: A
Compilation of IEEE Standard Computer Glossaries (Inst. of Electrical &
Electronics Engineers, Inc.), 1991, p. 99. (GN 300228)

“hashing algorithm: An algorithm used to derive an address within a specified
range from a key value. A hashing algorithm is used with a random file to
determine the address of the block in which a given record should be stored.”
Gunton, Tony, A Dictionary of Information Technology and Computer Science
(2nd ed.) (Oxford, UK: NCC Blackwell Ltd.), 1993, p. 136. (GN 292980)

“Section 6.3 treats digital searching, and Section 6.4 discusses an important

 10

No.

Term

Claim(s)

Google, Inc.’s Proposed Construction & Evidentiary Support

class of methods called hashing techniques, based on arithmetic transformations
of the actual keys.” Donald Knuth, The Art of Computer Programming,
Volume 3, Sorting and Searching, Addison-Wesley, 1973, p. 390.

“6.4: Hashing. So far we have considered search methods based on comparing
the given argument K to the keys in the table, or using its digits to govern a
branching process. A third possibility is to avoid all this rummaging around by
doing some arithmetical calculation on K, computing a function f(K) which is
the location of K and the associated data on the table. . . . These considerations
lead to a popular class of search methods commonly known as hashing or
scatter storage techniques. The verb “to hash” means to chop something up or
to make a mess out of it; the idea in hashing is to chop off some aspects of the
key and to use this partial information as the basis for searching. We compute a
hash function h(K) and use this value as the address where the search begins.”
Donald Knuth, The Art of Computer Programming, Volume 3, Sorting and
Searching, Addison-Wesley, 1973, p. 506-07.

“Prototype Specifications . . . The hash algorithm is taken from Knuth, volume
3, section 6.4.” (JAR 219469)

“hash: An associative access technique that maps the key via a hash function
uniformly among a partitioned set of hash buckets. A key search consists of
hashing the key to a bucket address and then examining the small hash bucket
for records with the desired key.” Jim Gray, Andreas Reuter, Transaction
Processing: Concepts and Techniques, Morgan Kaufman, 1993, p. 120; see
also generally pp. 831-851.

“Associative access on a single relation can be supported by two types of
access paths that use fundamentally different approaches to solving the problem
of translating attribute values into tuple addresses. These approaches, which
yield fundamentally different functionality, are generally referred to as hashing

 11

No.

Term

Claim(s)

Google, Inc.’s Proposed Construction & Evidentiary Support

(key transformation) and key comparison.” Jim Gray, Andreas Reuter,
Transaction Processing: Concepts and Techniques, Morgan Kaufman, 1993, p.
833.

“Hashing is based on the idea of using the primary key value as a parameter to
a function which returns the storage location of the tuple as a result. This is the
very principle of hashing, and it has a number of interesting properties. If the
transformation function can be kept simple—that is, if it does not need large
data structures with search paths and routing data—then the access cost to
retrieve a tuple via its key is minimal: take the key value, do some arithmetic,
and find the tuple at the address delivered by the function. Ideal hash
algorithms allow for one-access retrieval, which is to say that only the page
holding the tuple needs to be read when accessing via the primary key. The
functional principle of simple hashing is to relate to key value of a tuple and the
page number in which it is stored, through a predefined function; because of
this, simple hashing is not just an access method, but also a file organization
technique. (This was explained in Chapter 14.) As such, it needs page address
spaces with special properties, as with become obvious during the detailed
description. Hash-based access paths support only queries of the type (key-
attribute = const). They do not efficiently support range predicates such as key-
attribute between A and B. The attribute used for hashing typically is a primary
key of the relation, but can also be used for nonunique attributes.” Jim Gray,
Andreas Reuter, Transaction Processing: Concepts and Techniques, Morgan
Kaufman, 1993, p. 833.

“Key comparison comprises all methods for maintaining a dynamic search
structure on the set of values in the key attribute. These values (or compressed
versions of them) can be organized into tables, lists, trees, and so on, depending
on the amount of data, the type of search operations to be supported, and the
storage size that is available for maintaining the search structure. If such a
technique is used for a primary access path, the entire tuple can be stored in

 12

No.

Term

Claim(s)

Google, Inc.’s Proposed Construction & Evidentiary Support

search structure (see Section 14.4.5, on key-sequenced files, in Chapter 14);
otherwise, it will contain pointers to the tuples (e.g., TIDs). Sorting a file along
some attribute and keeping it sorted under updates is a very simple example of
a search structure based on key comparison—in this case, it is a sequential
sorted list of tuples. If records are clustered within blocks according to the key
attribute values, searching and scanning in sorted order can be performed
efficiently.” Jim Gray, Andreas Reuter, Transaction Processing: Concepts and
Techniques, Morgan Kaufman, 1993, p. 833.

“Algorithms to implement associative access come in two flavors. The first
one, hashing, supports access based on value equality only; it uses a
transformation function that turns the attribute value into a page address where
the tuple can be found.” Jim Gray, Andreas Reuter, Transaction Processing:
Concepts and Techniques, Morgan Kaufman, 1993, p. 835.

 “As in hash-based memory organizations, there has to be a function to
transform the attribute value into a file address, where the tuple will (most
likely) be found.” Jim Gray, Andreas Reuter, Transaction Processing:
Concepts and Techniques, Morgan Kaufman, 1993, p. 835.

“[A] good hash function H has to map primary key values, which are very
unevenly distributed over a large value range, into a tuple address space that is
much smaller (proportional to the number of existing tuples), such that the
resulting addresses are evenly distributed over the address range.” Jim Gray,
Andreas Reuter, Transaction Processing: Concepts and Techniques, Morgan
Kaufman, 1993, p. 839.

“[i]f the hash function h(p) is properly chosen, then the hash values will be
approximately uniformly distributed over their range.” (JAR 108483)

Kenneth Baclawski and J. Elliott Smith, A Unified Approach to High-

 13

No.

Term

Claim(s)

Google, Inc.’s Proposed Construction & Evidentiary Support

Performance, Vector-Based Information Retrieval, March 21, 1994 (JAR 294–
313)

Kenneth Baclawski and J. Elliott Smith, KEYNET: Fast Indexing for
Semantically Rich Information Retrieval, December 7, 1993 (JAR 828–845)

JAR0146229-146266

“The examination node 102 then encodes each feature fragment of the object by
using a predefined hashing function. Data in the system was previously stored
locally on the various index nodes using this hashing function to generate an
index to the data in the local database. Thus, the use of the same hashing
function to generate an index for data storage and to generate hashed feature
fragments for an information object assures that (1) data is distributed
uniformly over the index nodes of the routing search engine during the storing
of data and (2) the feature fragments are scattered uniformly over the index
nodes during the processing of an object.” U.S. Patent No. 6,192,364, col.
6:46-58. (GN 299812 – 831)

“The home node 107 then encodes each feature of the query by using a
predefined hashing function. Data in the system was previously stored locally
on the various query nodes 109 using this hashing function to generate an index
to the data in the local database. Thus, the use of the same hashing function to
generate an index for data storage and to generate hashed probes for a data
query assures that (1) data is distributed uniformly over the query nodes 109 of
the search engine during the storing of data and (2) the probes are scattered
uniformly over the query nodes 109 during the processing of a query.” U.S.
Patent No. 6,424,973, col. 7:58-8:2. (GN299832 – 854)

“The home node encodes each fragment of the query by using a predefined
hashing function. The same hashing function preferably is also used in

 14

No.

Term

Claim(s)

Google, Inc.’s Proposed Construction & Evidentiary Support

generating indexes to storage locations for storing data locally in local
databases on the various query nodes. The use of the same hashing function to
generate an index for data storage and to generate hashed probes for a query
assures that data is distributed uniformly over the query nodes of the search
engine during the storing of data, and that the probes are scattered uniformly
over the query nodes during the processing of a query.” U.S. Patent No.
6,463,433, col. 11:18-29. (GN 299855 – 877)

“Thus, the use of the same hashing function to generate an index for data
storage and to generate hashed probes for an object assures that data is
distributed uniformly over the index nodes 106 of the data warehouse during
the storing of data.” U.S. Patent No. 6,470,333 Col. 7:36-41.

“The home node 105 encodes each fragment of the query by using a predefined
hashing function. Data in the distributed computer database system was
previously stored locally on the various index nodes 112 using this hashing
function to generate an index to the data in the local database. In particular, if a
fragment includes a link then it is hashed and stored as a link fragment, while if
a fragment does not include a link then it is hashed and stored as an index
fragment. Thus, the use of the same hashing function to generate an index for
data storage and to generate hashed probes for a query assures that 1. data is
distributed uniformly over the index nodes of the search engine during the
storing of data and 2. the probes are scattered uniformly over the index nodes
during the processing of a query.” U.S. Patent No. 6,505,191, col. 8:61-9:8.
(GN 299917 – 940)

“The examination node 102 then encodes each feature fragment of the object by
using a predefined hashing function. Data in the system was previously stored
locally on the various index nodes using this hashing function to generate an
index to the data in the local database. Thus, the use of the same hashing
function to generate an index for data storage and to generate hashed feature

 15

No.

Term

Claim(s)

Google, Inc.’s Proposed Construction & Evidentiary Support

fragments for an information object assures that (1) data is distributed
uniformly over the index nodes of the routing search engine during the storing
of data and (2) the feature fragments are scattered uniformly over the index
nodes during the processing of an object.” U.S. Patent No. 6,535,881, col.
6:59-7:3. (GN 299898 – 916)

U.S. Patent No. 6,505,191 Prosecution History, July 3, 2002 Response to
Office Action at 5. (GN 299941 – 300172)

See generally Gerald Salton, Automatic Text Processing: The Transformation,
Analysis, and Retrieval of Information by Computer, Addison-Wesley, pp. 159-
226 (1989). (GN 005396 – 5463)

See generally Gerald Salton, Michael McGill, Introduction to Modern
Information Retrieval, McGraw-Hill, 1983, pp. 329-48.

See generally William B. Frakes, Ricardo Baeza-Yates, ed., Information
Retrieval / Data Structures & Algorithms, Prentice Hall (1992) (GN 4430 – 60)

6. a first portion and a second
portion

claims 1, 8, 13 a first part separate and distinct from a second part

Intrinsic Support:
’593 patent at col. 2:3-2:12; col. 3:37-50; col. 4:60-5:29; col. 6:39-7:55; col.
10:25-51; col. 10:63-64; col. 11:24-44; col. 11:52-54, col. 12:6-33.

Extrinsic Support:
“portion: a part of a whole, either separated from or integrated with it;
segment.” Random House Webster’s College Dictionary, Random House, New
York, 1991, p. 1052. (GN 300204)

“The logical, plain meaning of 'first and second part' is that the item described
must have two components: a first and a second. . . . The figure drawings . . .

 16

No.

Term

Claim(s)

Google, Inc.’s Proposed Construction & Evidentiary Support

affirm this common sense and undisputed interpretation.” Anchor Wall
Systems, Inc. v. Concrete Products of New London, Inc., 2003 WL 1589532 at
*3, No. Civ. 01-465 ADM/AJB (D. Minnesota, March 26, 2003). (GN 299783
– 789)

 “Menu options from a region are placed into specific location in another
region. . . . There is no clearer way to interpret ‘a first region’ and ‘a second
region’ than the language of the claim itself. The clear and unambiguous
meaning is they are two different regions. No further construction is
necessary.” Merit Indust. v. JVL Corp., 2007 WL 2463377 at *6-8, Civ. No.
03-1618 (E.D.Pa. Aug. 27, 2007). (GN 299790 – 811)

Kenneth Baclawski and J. Elliott Smith, A Unified Approach to High-
Performance, Vector-Based Information Retrieval, March 21, 1994 (JAR 294 –
313)

7. transmitting, by said
selected home node, each
said hashed query fragment
of said plurality of query
fragments to a respective
one of said plurality of
query nodes indicated by
said first portion of each
said hashed query fragment

transmits each said hashed
query fragment to a
respective one of said
plurality of query nodes
indicated by said first
potion of said hashed query

claim 1

claim 8

the selected home node sends each hashed query fragment to exactly one node
on the network, that node being identified by said first portion of the hashed
query fragment

Intrinsic Support:
’593 patent at Abstract; col. 2:3-2:12; col. 2:66-3:56; col. 4:22-36; col. 4:56-
5:29; col. 7:24-65; col. 10:25-51; col. 11:24-44; col. 12:6-33; Fig. 1, Fig. 2, Fig.
8, Fig. 8a.

’593 Prosecution History, June 7, 1996 Amendment at 12; March 13, 1997
Office Action at 2; May 14, 1997 Amendment at 2-3.

Chaturvedi et al., Scheduling the Allocation of Data Fragments in a Distributed
Database Environment: A Machine Learning Approach, IEEE TRANS ON
ENG’G MGMT., vol. 41, no. 2, 1994, pp. 194-206. (GN 524 – 537)

 17

No.

Term

Claim(s)

Google, Inc.’s Proposed Construction & Evidentiary Support

fragment

transmitting a query
message containing every
said hashed query fragment
to a respective one of said
plurality of query nodes
indicated by said first
portion of said hashed
query fragment

claim 13

U.S. Patent 4,811,199. (GN 7147 – 7162)

Extrinsic Support:

Kenneth Baclawski and J. Elliott Smith, A Unified Approach to High-
Performance, Vector-Based Information Retrieval, March 21, 1994. (JAR 294
–313)

8. using, by said query node,
said second portion of said
respective hashed query
fragment to access data
according to a local hash
table located on said query
node

each said query node uses
said second portion of said
hashed query fragment to
access data according to a
local hash table located on
said query node

said query node, upon
receipt of said query
message, using said second
portion of said hashed
query fragment to access
data according to a local

claim 1

claim 8

claim 13

each query node receiving a hashed query fragment uses the second portion of
the hashed query fragment as a key value to identify the address of data
according to a local hash table stored on that query node

Intrinsic Support:
’593 patent at Abstract; col. 2:13-18; col. 2:66-3:16; col. 3:17-4:7; col. 4:23-
8:7; col. 8:45-9:60; col. 10:25-51; col. 11:24-44; col. 12:6-33; Fig. 1, Fig. 2.
Figs. 3, 3a, 3b, 4, 5, 6, 7, 7a, 8, and 8a.

’593 Prosecution History, May 14, 1997 Amendment at 2-3.

U.S. Patent 4,811,199. (GN 7147 – 7162)

Extrinsic Support:
Kenneth Baclawski and J. Elliott Smith, A Unified Approach to High-
Performance, Vector-Based Information Retrieval, March 21, 1994. (JAR 294
–313)

 18

No.

Term

Claim(s)

Google, Inc.’s Proposed Construction & Evidentiary Support

hash table located on said
query node

9. local hash table claims 1, 8, 13 a table resident on and unique to a particular query node in which the unique
location of the information in the table is determined by hashing a key value

Intrinsic Support:
’593 patent at col. 1:33-62; col. 3:26-4:7; col. 5:30-39; col. 6:1-27; col. 7:50-
65; col. 10:25-51; col. 11:24-44; col. 12:6-33.

’593 Prosecution History, May 14, 1997 Amendment at 5.

Chaturvedi et al., Scheduling the Allocation of Data Fragments in a Distributed
Database Environment: A Machine Learning Approach, IEEE TRANS ON
ENG’G MGMT., vol. 41, no. 2, 1994, pp. 194-206. (GN 524 – 537)

Houtsma et al., Parallel Hierarchical Evaluation for Transitive Closure
Queries, IEEE Apr. 1991. (GN 4932 – 4941)

U.S. Patent No. 4,811,199 (GN 7147 – 7162)

Extrinsic Support:
“hashing: 1) a key-to-address transformation in which the keys determine the
location of the data. (2) The process of applying a formula to a record key to
yield a number that represents a disk address.” Webster’s New World
Dictionary of Computer Terms, 4th ed., Prentice Hall, 1992, p. 187. (GN
300244)

“hashing: A technique for arranging a set of items, in which a hash function is
applied to the key of each item to determine its hash value. The hash value
identifies each item’s primary position in a hash table, and if this position is
already occupied, the item is inserted wither in an overflow table or in another

 19

No.

Term

Claim(s)

Google, Inc.’s Proposed Construction & Evidentiary Support

available positioning the table.” Christopher Booth, ed. The New IEEE
Standard Dictionary of Electrical and Electronics Terms (5th Ed.: Inst. of
Electrical & Electronics Engineers, Inc.), 1991, p. 586. (GN 300215)

“hashing: A technique for arranging a set of items, in which a hash function is
applied to the key of each item to determine its hash value. The hash value
identifies each item’s primary position in a hash table, and if this position is
already occupied, the item is inserted wither in an overflow table or in another
available positioning the table.” IEEE Standard Computer Dictionary: A
Compilation of IEEE Standard Computer Glossaries (Inst. of Electrical &
Electronics Engineers, Inc.), 1991, p. 99. (GN 300228)

“hashing algorithm: An algorithm used to derive an address within a specified
range from a key value. A hashing algorithm is used with a random file to
determine the address of the block in which a given record should be stored.”
Gunton, Tony, A Dictionary of Information Technology and Computer Science
(2nd ed.) (Oxford, UK: NCC Blackwell Ltd.), 1993, p. 136. (GN 292980)

“Section 6.3 treats digital searching, and Section 6.4 discusses an important
class of methods called hashing techniques, based on arithmetic transformations
of the actual keys.” Donald Knuth, The Art of Computer Programming,
Volume 3, Sorting and Searching, Addison-Wesley, 1973, p. 390.

“6.4: Hashing. So far we have considered search methods based on comparing
the given argument K to the keys in the table, or using its digits to govern a
branching process. A third possibility is to avoid all this rummaging around by
doing some arithmetical calculation on K, computing a function f(K) which is
the location of K and the associated data on the table. . . . These considerations
lead to a popular class of search methods commonly known as hashing or
scatter storage techniques. The verb “to hash” means to chop something up or
to make a mess out of it; the idea in hashing is to chop off some aspects of the

 20

No.

Term

Claim(s)

Google, Inc.’s Proposed Construction & Evidentiary Support

key and to use this partial information as the basis for searching. We compute a
hash function h(K) and use this value as the address where the search begins.”
Donald Knuth, The Art of Computer Programming, Volume 3, Sorting and
Searching, Addison-Wesley, 1973, p. 506-07.

“Prototype Specifications . . . The hash algorithm is taken from Knuth, volume
3, section 6.4.” (JAR 219469)

“hash: An associative access technique that maps the key via a hash function
uniformly among a partitioned set of hash buckets. A key search consists of
hashing the key to a bucket address and then examining the small hash bucket
for records with the desired key.” Jim Gray, Andreas Reuter, Transaction
Processing: Concepts and Techniques, Morgan Kaufman, 1993, p. 120; see
also generally pp. 831-851.

“Associative access on a single relation can be supported by two types of
access paths that use fundamentally different approaches to solving the problem
of translating attribute values into tuple addresses. These approaches, which
yield fundamentally different functionality, are generally referred to as hashing
(key transformation) and key comparison.” Jim Gray, Andreas Reuter,
Transaction Processing: Concepts and Techniques, Morgan Kaufman, 1993, p.
833.

“Hashing is based on the idea of using the primary key value as a parameter to
a function which returns the storage location of the tuple as a result. This is the
very principle of hashing, and it has a number of interesting properties. If the
transformation function can be kept simple—that is, if it does not need large
data structures with search paths and routing data—then the access cost to
retrieve a tuple via its key is minimal: take the key value, do some arithmetic,
and find the tuple at the address delivered by the function. Ideal hash
algorithms allow for one-access retrieval, which is to say that only the page

 21

No.

Term

Claim(s)

Google, Inc.’s Proposed Construction & Evidentiary Support

holding the tuple needs to be read when accessing via the primary key. The
functional principle of simple hashing is to relate to key value of a tuple and the
page number in which it is stored, through a predefined function; because of
this, simple hashing is not just an access method, but also a file organization
technique. (This was explained in Chapter 14.) As such, it needs page address
spaces with special properties, as with become obvious during the detailed
description. Hash-based access paths support only queries of the type (key-
attribute = const). They do not efficiently support range predicates such as key-
attribute between A and B. The attribute used for hashing typically is a primary
key of the relation, but can also be used for nonunique attributes.” Jim Gray,
Andreas Reuter, Transaction Processing: Concepts and Techniques, Morgan
Kaufman, 1993, p. 833.

“Key comparison comprises all methods for maintaining a dynamic search
structure on the set of values in the key attribute. These values (or compressed
versions of them) can be organized into tables, lists, trees, and so on, depending
on the amount of data, the type of search operations to be supported, and the
storage size that is available for maintaining the search structure. If such a
technique is used for a primary access path, the entire tuple can be stored in
search structure (see Section 14.4.5, on key-sequenced files, in Chapter 14);
otherwise, it will contain pointers to the tuples (e.g., TIDs). Sorting a file along
some attribute and keeping it sorted under updates is a very simple example of
a search structure based on key comparison—in this case, it is a sequential
sorted list of tuples. If records are clustered within blocks according to the key
attribute values, searching and scanning in sorted order can be performed
efficiently.” Jim Gray, Andreas Reuter, Transaction Processing: Concepts and
Techniques, Morgan Kaufman, 1993, p. 833.

“Algorithms to implement associative access come in two flavors. The first
one, hashing, supports access based on value equality only; it uses a
transformation function that turns the attribute value into a page address where

 22

No.

Term

Claim(s)

Google, Inc.’s Proposed Construction & Evidentiary Support

the tuple can be found.” Jim Gray, Andreas Reuter, Transaction Processing:
Concepts and Techniques, Morgan Kaufman, 1993, p. 835.

 “As in hash-based memory organizations, there has to be a function to
transform the attribute value into a file address, where the tuple will (most
likely) be found.” Jim Gray, Andreas Reuter, Transaction Processing:
Concepts and Techniques, Morgan Kaufman, 1993, p. 835.

“[A] good hash function H has to map primary key values, which are very
unevenly distributed over a large value range, into a tuple address space that is
much smaller (proportional to the number of existing tuples), such that the
resulting addresses are evenly distributed over the address range.” Jim Gray,
Andreas Reuter, Transaction Processing: Concepts and Techniques, Morgan
Kaufman, 1993, p. 839.

“[i]f the hash function h(p) is properly chosen, then the hash values will be
approximately uniformly distributed over their range.” (JAR 108483)

Kenneth Baclawski and J. Elliott Smith, A Unified Approach to High-
Performance, Vector-Based Information Retrieval, March 21, 1994 (JAR 294–
313)

Kenneth Baclawski and J. Elliott Smith, KEYNET: Fast Indexing for
Semantically Rich Information Retrieval, December 7, 1993 (JAR 828–845)

JAR0146229-146266

“The examination node 102 then encodes each feature fragment of the object by
using a predefined hashing function. Data in the system was previously stored
locally on the various index nodes using this hashing function to generate an
index to the data in the local database. Thus, the use of the same hashing

 23

No.

Term

Claim(s)

Google, Inc.’s Proposed Construction & Evidentiary Support

function to generate an index for data storage and to generate hashed feature
fragments for an information object assures that (1) data is distributed
uniformly over the index nodes of the routing search engine during the storing
of data and (2) the feature fragments are scattered uniformly over the index
nodes during the processing of an object.” U.S. Patent No. 6,192,364, col.
6:46-58. (GN 299812 – 831)

“The home node 107 then encodes each feature of the query by using a
predefined hashing function. Data in the system was previously stored locally
on the various query nodes 109 using this hashing function to generate an index
to the data in the local database. Thus, the use of the same hashing function to
generate an index for data storage and to generate hashed probes for a data
query assures that (1) data is distributed uniformly over the query nodes 109 of
the search engine during the storing of data and (2) the probes are scattered
uniformly over the query nodes 109 during the processing of a query.” U.S.
Patent No. 6,424,973, col. 7:58-8:2. (GN299832 – 854)

“The home node encodes each fragment of the query by using a predefined
hashing function. The same hashing function preferably is also used in
generating indexes to storage locations for storing data locally in local
databases on the various query nodes. The use of the same hashing function to
generate an index for data storage and to generate hashed probes for a query
assures that data is distributed uniformly over the query nodes of the search
engine during the storing of data, and that the probes are scattered uniformly
over the query nodes during the processing of a query.” U.S. Patent No.
6,463,433, col. 11:18-29. (GN 299855 – 877)

“Thus, the use of the same hashing function to generate an index for data
storage and to generate hashed probes for an object assures that data is
distributed uniformly over the index nodes 106 of the data warehouse during
the storing of data.” U.S. Patent No. 6,470,333 Col. 7:36-41.

 24

No.

Term

Claim(s)

Google, Inc.’s Proposed Construction & Evidentiary Support

“The home node 105 encodes each fragment of the query by using a predefined
hashing function. Data in the distributed computer database system was
previously stored locally on the various index nodes 112 using this hashing
function to generate an index to the data in the local database. In particular, if a
fragment includes a link then it is hashed and stored as a link fragment, while if
a fragment does not include a link then it is hashed and stored as an index
fragment. Thus, the use of the same hashing function to generate an index for
data storage and to generate hashed probes for a query assures that 1. data is
distributed uniformly over the index nodes of the search engine during the
storing of data and 2. the probes are scattered uniformly over the index nodes
during the processing of a query.” U.S. Patent No. 6,505,191, col. 8:61-9:8.
(GN 299917 – 940)

“The examination node 102 then encodes each feature fragment of the object by
using a predefined hashing function. Data in the system was previously stored
locally on the various index nodes using this hashing function to generate an
index to the data in the local database. Thus, the use of the same hashing
function to generate an index for data storage and to generate hashed feature
fragments for an information object assures that (1) data is distributed
uniformly over the index nodes of the routing search engine during the storing
of data and (2) the feature fragments are scattered uniformly over the index
nodes during the processing of an object.” U.S. Patent No. 6,535,881, col.
6:59-7:3. (GN 299898 – 916)

U.S. Patent No. 6,505,191 Prosecution History, July 3, 2002 Response to
Office Action at 5. (GN 299941 – 300172)

See generally Gerald Salton, Automatic Text Processing: The Transformation,
Analysis, and Retrieval of Information by Computer, Addison-Wesley, pp. 159-
226 (1989). (GN 005396 – 5463)

 25

No.

Term

Claim(s)

Google, Inc.’s Proposed Construction & Evidentiary Support

See generally Gerald Salton, Michael McGill, Introduction to Modern
Information Retrieval, McGraw-Hill, 1983, pp. 329-48.

See generally William B. Frakes, Ricardo Baeza-Yates, ed., Information
Retrieval / Data Structures & Algorithms, Prentice Hall (1992). (GN 4430 –
60)

10. returning, by each said
query node

each said query node …
returns

said query node …
returning

claim 1

claim 8

claim 13

each query node that accesses data returns an object identifier to the home node

Intrinsic Support:
’593 patent at Abstract; col. 1:11-13; col. 3:51-4:7; col. 4:22-36; col. 7:50-65;
col. 10:25-51; col. 11:24-44; col. 12:6-33; Fig. 1, Fig. 2.

’593 Prosecution History, Dec. 11, 1996 Amendment at p. 8-9; April 16, 1996
Office Action at 3; June 7 1996 Response to Office Action at 11, 14.

Extrinsic Support:
Kenneth Baclawski and J. Elliott Smith, A Unified Approach to High-
Performance, Vector-Based Information Retrieval, March 21, 1994 (JAR 294–
313)

11. predetermined degree of
relevance

claims 3, 9 a predefined degree of similarity; only results meeting or exceeding a
predetermined level are returned to the user after the object identifier has been
returned

Intrinsic Support:
’593 patent at col. 2:13-2:18; col. 3:51-4:21; col. 8:16-20; col. 8:45-53; col.
10:55-60; col. 11:45-48; Fig. 2, Fig. 8, Fig. 8a.

’593 Prosecution History, June 7, 1996 Amendment at p. 16-17.

Chaturvedi et al., Scheduling the Allocation of Data Fragments in a Distributed

 26

No.

Term

Claim(s)

Google, Inc.’s Proposed Construction & Evidentiary Support

Database Environment: A Machine Learning Approach, IEEE TRANS ON
ENG’G MGMT., vol. 41, no. 2, 1994, pp. 194-206. (GN 524 – 537)

Extrinsic Support:

