Northeastern University et al v. Google, Inc., Doc. 71 Att. 8

EXHIBITH

Dockets.Justia.com


http://dockets.justia.com/docket/court-txedce/case_no-2:2007cv00486/case_id-106532/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/2:2007cv00486/106532/71/8.html
http://dockets.justia.com/

194 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 41, NO. 2, MAY 1994

Scheduling the Allocation of Data
Fragments in a Distributed Database
Environment: A Machine Learning Approach

Alok R. Chaturvedi, Ashok K. Choubey, Member, IEEE, and Jinsheng Roan

Abstract— Different database fragmentation and allocation
strategies have been proposed to partially replicate data in
a partitioned, distributed database (DDB) environment. The
replication strategies include database snapshots, materialized
views, and quasi-copies. These strategies are ‘static’ and do not
adapt to the changes in the data usage patterns. Furthermore,
they often require expensive update synchronizations to maintain
data consistency and do not exploit the knowledge embedded
in the query history.

This paper describes a machine learning based time invariant
fragmentation method (MLTIF) that acquires knowledge about
the data usage patterns for each node. Based on this knowledge,
MLTIF designs time invariant fragments (TIF) and schedules
its allocation and selective update for a specified time period.
Simulation is used to compare the effectiveness of the MLTIF
approach with that of full replication, materialized views,
and non replication strategles. Initial results indicate that for
most normal operating conditions, the MLTIF approach can
be effective.

Index Terms— Machine learning, distributed database, time
invariant fragmentation, scheduling,

I. INTRODUCTION

N A DISTRIBUTED DATABASE SYSTEM (DDBS), ge-
Iographically dispersed databases are interconnected by a
computer network, and their administration is done by a
distributed database management system (DDBMS) in such
a way that the distribution of logical and physical components
of the databases are transparent to the user. The interest
in (DDBS) research is motivated primarily by reliability,
performance, and economic concerns. The reliability concern
pertains to making the DDBS fault-tolerant; performance
concemns include reducing query response time and increasing
throughput; and economic concemns include reducing data
communication and update synchronization costs.

To realize the above objectives, the database may be par-
titioned into a number of non-overlapping fragments and
allocated over the network. Different strategies have been
adopted to allocate data fragments in a DDBS. One data
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allocation strategy permits a single copy of the database to be
stored in the network (no replication). Here, the database or its
fragments are allocated to the nodes that minimize the overall
system communication cost, query response time, and/or other
criteria depending upon the objectives of the database designer
[6], [18].

Another strategy involves storing multiple copies of all
(complete replication) or a part (partial replication) of the
database across the network [31, {5}, [7], [10], [11], [17].
Although this reduces transmission costs and response time, it
increases data redundancy, storage costs, and update costs.
Several partial replication techniques have been proposed.
Database snapshots are the read-only replica of a selected
portion of the database [1]; materialized views are stored
copies of the result of retrieving views from the database [4];
and quasi files are the portions of database stored in the cache
memory at the user nodes [2].

Although these techniques have proven merits, they have
the following shortcomings:

1) They are ‘static’ techniques, and do not adapt to the
changes in the usage pattern in determining the content
of the data. They assume the data usage is constant,
while in reality, requirements tend to change frequently.
Morcover, these techniques do not utilize the knowledge
hidden in the query history of each node.

2) At a given time, data in a base table may be inconsistent
with that of its copies. To overcome this problem, the
above techniques require expensive update synchroniza-
tions [2], [4], [12]-[14], [20].

3) In practice, most DDBS have attributes of an entity
whose values do not change for lengthy periods of
time. For instance, a typical customer relation of a
commercial database has attributes, such as customer
number, name, address, and telephone, whose values
are relatively ‘static.’ This is an important property of
data, and is called time invariance. This property is not
exploited by any of the above methods.

The goal of this paper is to develop an adaptive method,
based on the time invariance concept, that can autonomously
detect data usage patterns from the query history of the given
database, identify time-invariant fragments and their respective
time windows, and allocate these fragments to the nodes such
that data communication and update synchronizations costs are
minimized. Re-stating the problem concisely,
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Given: (1) A non-replicated distributed database, and
(2) Query history for each node in the network
(1) Acceptable time intervals

(2) Time invariant fragments (TIF s)

(3) Schedule for TIF allocation and update.

Find:

1I. DESIGN AND ALLOCATION OF
TIME INVARIANT FRAGMENTS

A time invariant fragment (TIF) is a'partiﬁon'of a base
relation whose contents are ‘static’ during a specified time
interval. In other words, the values of each component attribute
in a TIF are constant throughout this time interval. These
attributes are called Time-Invariant Attributes (TIA’s), and
the remaining atiributes, Time-Sensitive Attributes (T SA’s). A
formal definition of TIA and TSA is given below.

Let e;; be the jth attribute in the ith tuple of a database
relation R. Then the value sets of R and its jth attribute, a;,
can be defined, in terms of e;;, as follows:

R ={ejli=12,...,mi=12,...,n},

a;j = {eili=1,2,... ,m}.

a; is a TSA for time interval T

if 3 (v(eije) # v(eije))

i€{1,2,...,m}

t,t'eT

t#£ ¢

a; is a TIA for time interval T

if V(v(e;e) = vieije))
i€{1,2,...,m
Lt eT .
t#£t

where: 'v(e‘,t) is the value of eIJ at time t,

" m is the cardinality of R, and
_ n is the degiee of R.

TIF's are constructed from the query history of the entire
system. Some quenes are periodic while others are ad hoc.
The periodic queries, typically, follow patterns; for example,
monthly sales statistics are inquired at the end of every month.
Some periodic queries tend to appeéar togcther such as the
group of queries required for the. generation of ‘a monthly
sales report by geographic area, customer type, product type,
and sales personnel. Some of these queries may access a large
amount of common data. If the iipdate of the database is not
intensive in the time interval within which data access takes
place, it could be beneficial to retrieve the common/shared
time-invariant, remote data in one attempt. '

The need to acquire knowledge about the retrieval patterns
from query history suggests the use of a machine learning
technique. One of the roles of machine leamning is to seek to
acquire knowledge from available data and use it to create new
theories about the domain in question, in an entirely automated
manner. Machine leaming techniques employ a small number
of extremely general induction strategles coupled with some
basic domain knowledge. The domain kniowledge may involve
structural descriptions, procedural explanations, or even dis-
coveries of new domain concepts. Due to the inductive nature
of reasoning involved there is always some possibility of error.
Consequently, most techniques allow for self-improvement

o1 250 AND {a2 £ 20 OR a3 £ 20)

o1 250 AND 82528 a3 % 20

al 2 50 a2£20

st 250 275 a2$20 23520

Q1: SELECT al, a3 Q2: SELECT al, a2

FROM R1 FROM R1
WHERE al> 50 WHERE al> 75
AND a2< 20 AND a3< 30 °
Fig. 1. Conceptua].aggregntion. -

through disconfirmatory feedback. Many learning strategies

-have been devised to solve problems in different domains [8].

Learning strategies include learning by being told, learning
from example, learning from observations, case-based learn-
ing, analogical learning, and cxplanatxon—bascd learning,.

One of the induction based strategies, learning from obser-
vation, is adopted for the design of time invariant data frag-
ments in a distéibuted database environment. The technique,
called machine learning based time invariant fragmentation
(MLTIF), has its roots in goal directed conceptual aggregation
(GDCA), developed by Chaturvedi et al [8]. The creation of

a TIF is a problem solving exercise for MLTIF. From the
tlmestamps on the queries an initial time slice is determined.
Each query in the history is then decomposed into sub-
expressions. Next, patterns of data retrieval and modification
is generated from- the sub-expressions. Similar patterns are
aggregated to form the most general concepts. An example
to demonstrate this process is given below.

Example 1: Here we show how MLTIF creates aggregate
concepts from queries. Suppose there are two queries, @1 and
Q2 in the query history. These queries are first decomposed
into sub-expressions ‘such as al > 50,a2 < 20. Using
aggregation operators (AND, OR, etc.,), these expressions are
converted into higher level concepts till a single concept covers
all data requirements for a relatlon (Fig. 1). Finally, the highest
level concept is used to create a query to thc base table for
creating the fragment.

The concepts, generated by MLTIF are evaluated using a
cost-based evaluation function. These steps are repeated till the
least cost time slice and most general concepts are determined.
Fmal]y, TIF’s for the time slice, and for éach node, will be
created from the base tables using the most general concepts.
The contents of TIF's are illustrated in Fig. 2.

The creation of proprietary TIF's for each node in the
network ‘could lead to the sub-optimality and computational
mtractablhty problems When a number of nodes have high
degrees of commonality between their respective TIF's, the
likelihood of a large amount of common data being transmitted
to individual nodes increases, as do the update synchronization
costs. In addition, as the size of the network increases, the TIF
approach may become computationally intractable. In order to
reduce the costs and computational complexity, network nodes
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Table R(A,B,C,D)

T!mi Sensidve Atrributes

Time Invarisnt Attributes

Time Invariant Attributes are replicated onall
servers.

Time Sensitive Attributes only on the central
server.

Fig. 2. The contents of TIF's.
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cluster z
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node p node q e

cluster x
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nodes nodeb nodec noded cvavesran

Fig. 3.  TIF hierarchy.

are clustered according to the closeness of their locations and
to the similarity in their query patterns (Fig. 3). Nodes with
similar query patterns in a geographic area are assigned to
the same cluster. For each cluster, one of the nodes may be
selected or a new data server node may be created to store
the common TIF. The common TIF may be retrieved by the
member riodes in the cluster and may be refreshed when update
synchronizations take place. Multiple levels of node clustering
may be required. In such an event, two or more clusters may be
combined into a larger cluster, and the TIF’s are created for the
member clusters in the same fashion as that for the nodes. The
TIF hierarchy grows as long as it is computationally necessary.
The increases in data retrieval costs and response times are
offset by the decreases in TIF creation costs, data storage costs,
and update synchronization costs.

III. ALGORITHM FOR CREATION AND ALLOCATION OF TIF’s

The premise of the MLTIF approach is its capability of
detecting the patterns that are likely to vary over time. As
discussed above, a static methodology does not work in the

Server 1

ever-changing environment. A new approach that allows dy-
namic, continiious, and automatic detection of query patterns
of a user node is required to provide the benefits discussed
previously. Conceptual aggregation allows the computer pro-
gram to aggregate observations (query statements) and provide
meaningful explanation of aggregate concepts (query patterns)
formed. Situations that aré not currently handled are:

a) Queries With Statistical Operations. Attributes with sta-
tistical function such as SUM, MAX, and MIN, etc.,
are excluded from query statements. These operations
usually involve simple values to be sent over from
the remote base tables as a result of such functions.
Our approach creates TIF's that contain fragments of

remote base tables which would unnecessarily retrieve
‘raw data’ and increase communication cost. Therefore
it would be more appropriate to set aside attributes with
these statistical functions in the creation of TIF’s.

b) Updates With Insertion and Deletion. Deletion and in-
sertiori of tuples are usually done periodically in batch
mode. These update queries are excluded from this
research without loss of generality.

¢) Data Movement. Update with modification that causes
data to move from one base table to another that is stored
at different site. This is usually found in the change
in the value of an attribute whose values are the basis
of a horizontal partitioning of the database table. When
the new value exceeds the value range of a base table,
the entire tuple has to be removed from this table and
added to an appropriate one. This type of update is an
equivalence of an deletlon followed immediately by an
insertion.

The following algorithm is used by MLTIF to determine the

TIF’s for each sntc based on the query histories of the entire
system.
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Step 1. Classify the queries of each site into retrieval and
update queries. Further classify the update queries into
insertion, deletion, and modification.

Step 2. Classify the retrieval queries of each site into local-
access and remote-access based on the location of data these
queries address. Classify modification queries in a similar
fashion. . :

Step 3. Transmit all the remote-access modification queries
for each base table to their respective sites. For each base
table, use these remote-access modification queries and
the local-access modification queries to determine the time
sensitive and invariant attributes. '

Step 4. Remove time sensitive attributes from each remote-
access retrieval query if these attributes are time sensitive
in their remote base tables. All remaining attributes in this
remote-access retrieval query are time invariant.

Step 5. Apply aggregation technique to construct the query
for the creation of a TIF from a remote base table for
each site. This is based on the entire remote-access retrieval
queries for the base table at this site.

We now explain each step in detail.

Step 1. The type of database access of each query is
identified. In SQL query language, a query start with a
‘SELECT’ is a retrieval, an ‘UPDATE’ a modification, an
‘INSERT’ an insertion, or a ‘DELETE’ a deletion query. Only
retrieval and modification queries are used in the following
steps for the determination of TIF's. Insertion and deletion
queries are discarded.

Step 2. A retrieval or modification query in a partitioned,
non-replicated database environment may refer to a data
attribute of one of the following three types:

A. The attribute and all the data values are locally stored

in a base table.

B. The attribute is not stored in any local base table.

C. The attribute is stored in a local base table but the
referred data values are not stored or partially stored
in this table. The data values that are not locally stored
may spread over more than one remote base tables.

A type A attribute is either an attribute that is included in

a vertically partitioned local base table or one that is used
as the only attribute for horizontal partitioiting of the original
non-partitioned table and the values of this attribute in the
local base table:are the super-set of the required values of
this attribiite in the query statement. A type B attribute is an
attribute that is not stored in the local base table which is a
fragment of a vertically partitioned table. A type C attribute
is an attribute whose values in the local base table are not the
super-set of the required values in the query statement. This
can be a result of a horizontal or a mixed partitioning of the
original table. .

All attributes in the SELECT part (selecting attributes) of a
retrieval query or in the SET part (modifying attributes) of a
modification query, or in WHERE part (restricting attributes)
of both types of queries will be assigned one of these three
types accordingly.A query is ‘local-access’ if all its attributes
are of type A, is ‘remote-access’ if all its attributes are of type
B, and otherwise is ‘mixed-access’. Dealing with a mixed-

access query is not as straightforward, as it is successively
decomposed into multiple sub-queries till each subquery can
be classified as a local-access or a remote-access query.

All attributes of a mixed-access query are first assigned into
one of the two groups: group A in which all attributes are of
type Aand group B in which all attributes are of type B. An
attribute of type C is assigned to both groups if the location of
the base table containing its value cannot be identified from
the database fragmentation conditions. An attribute that is not
used to horizontally partition a database is usually of this type
unless other restricting atiributes in the same query statement
can be used to assist the identification of the data source
locations. We will exclude the selecting or modifying attributes
with no restricting attribute stored in the same group. For a
vertically partitioned database table, this situation implies that
join operations are required for this query. For a horizontally
partitioned database table, this means that there is not data to
be accessed from this group of attributes. The union of all the
local attributes in group A is still local and a query statement
can be constructed to retrieve these data values from the local
base table. This query is ‘local-access’. A ‘remote-access’
query statement can be constructed from attributes in group
B in the same fashion for the remote data of mixed-access
query attributes.

Step 3. Remote-access modification queries are transmitted
to the sites of the base tables they modify. The union of
modifying attributes of both remote-and local-access queries
for each base table will include some values that would vary in
this time slice. These attributes are therefore ‘time sensitive’.
The supplement set of the attributes of this base table is ‘time
invariant’. The information of time sensitive attributes of a
base table is sent back to all the sites with queries that modify
this base table.

Step 4. Since a time sensitive restricting attribute will cause
invalid selection of data fragment, this attribute should be
eliminated from the remote-access retrieval queries. All time
‘sensitive selecting attributes are dropped from these query
statements. A remote access retrieval queries becomes invalid
if there is no restricting or selecting attributes left in the query
after the removal of time-sensitive attributes. Therefore, all the
attributes in the queries are time-invariant, and will be used
as the basis for constructing query statements for the creation
of TIF’s. The reason we did not further consider insertion and
deletion queries after Step 1 is now clear. These two types of
queries always change the content of base tables.

Step 5. At each site, all queries now consist of time-invariant
attributes only. The remote access retrieval queries are grouped
by base tables and for each base table all the queries are
decomposed into sub-expressions. MLTIF takes all the sub-
expressions corresponding to all the restricting attributes of the
queries for a base table and aggregate them to form a higher
level concept of the restricting attributes iteratively until no
further aggregation is required. This final highest concept is
used to construct the query to create a TIF of that remote base
table. The restricting attributes that are not part of selecting
attributes are added into the selecting attribute list because the
restricting condition of a restricting attribute is an aggregation
of the individual conditions. TIF’s of the same domain and

'
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structure are integrated into a single TIF. All the TIF’s for a
site can be constructed in this manner. An example 1llustratmg
MLTIF was presented in Section I

A. Nlustrative Examples

We now illustrate this procedure by two examples. The
first example shows the creation of a TIF in a horizontally
partitioned database environment and the second example
shows the creation of a TIF in a vertically partitioned database
environment.

Example 2: Suppose two sites in a network each stores a
horizontally partitioned database table as follows:
CUST(CNUM, CNAME, CITY, CYTD_ORDER,

CREDIT.LINE, CREDIT_USED)

Site A: stores the fragment with CITY =

Site B: stores the fragment with CITY =

The query histories are as follows

Site A;

1. SELECT CNUM, CNAME, CYTD.ORDER

" FROM CUST

. WHERE CYTD_ORDER > 1000000

AND CITY = ‘A’

2. SELECT CNUM, CNAME, CYTD_ORDER
FROM CUST '
WHERE CYTD_ORDER > 1500000
AND CREDIT_LINE < 100000

3. SELECT CNUM, CNAME, CREDIT LINE,
CREDIT_USED FROM CUST ’
WHERE CREDIT_LINE > 150000

4. UPDATE CUST .

SET CYTD.ORDER = CYTD_ORDER 200

‘A, and
‘Bv .

WHERE CNAME = ‘JBM’
AND CITY = ‘A’

SiteB: '

5. SELECT CNUM, CNAME, CREDIT_LINE
FROM CUST

WHERE CREDIT_LINE > 200000

6. UPDATE CUST
SET CREDIT_USED = CREDIT_USED-200 WHERE
CNUM = ‘N321" '

7. INSERT

INTO CUST (CNUM, CNAME, CITY, CYTD_ORDER,

CREDIT_LINE, CREDIT_USED) .
VALUES (N938, ‘ABC INC.’, “B’, 10000, 1000000 0)
The creation procedure of the TIF s of CUST relation for
both sites is as follows:
Step 1: '
Classify query type.
insert queries: 7
delete queries: none
modification queries: 4, 6
retrieval queries: 1, 2, 3, 5
query 7 will be discarded since it is an INSERT query.
Step 2: Classify local-/remote-access queries.
Retrieval gueries:.
Site A:
Local-access: 1, 2, 3 /* because it is transparent

Reproduced with permission of copyright owner. Further reproduction prohibited.

whether

CYTD_.ORDER > 1500000
and

CREDIT_LINE < 100000 in
query 2 are local or remote

Remote-access: 2, 3

Site B: .
Local-access: 5
Remote-access: 5
Modification queries:
Site A:
Local-access: 4
Remote-access: none /* because CITY = ‘A’ cannot
be divided into two fragments */
Site B:
Local-access: 6
Remote-access: 6
Step 3: 1dentify time sensitivity.
Site A: Time-sensitive: CYTD.ORDER, CREDIT_USED
Time-invariant: all other attributes
Site B: Time-sensitive: CREDIT_USED
Time-invariant: all other attributes
Step 4: Remove time-sensitive attributes from remote-access
retrieval queries.

Site A: . remote-access query

Query 2: SELECT CNUM, CNAME, CYTD_ORDER
FROM CUST ‘
WHERE CYTD_ORDER > 1500000
AND CREDIT_LINE < 100000

Query 3: SELECT CNUM, CNAME, CREDIT LINE
FROM CUST
WHERE CREDIT_LINE > 150000

Site B:  Remote-access retrieval query

Query 5: SELECT CNUM, CNAME, CREDIT_LINE

FROM CUST
WHERE CREDIT_LINE > 200000
Step 5: Construct the queries to create TIF’s
MLTIF generates the following remote queries to
create TIF’s for both sites.
SELECT CNUM CNAME, CREDIT LINE
FROM CUST
WHERE CYTD ORDER > 1500000
AND (CREDITLINE < 100000 OR
_ CREDIT_LINE > 150000)
There is only one remote-access query. MLTIF will
not generate a new query. _
Example 3: Suppose two sites in a network each stores a
vertically partitioned database table as follows:
CUST(CNUM, CNAME, CITY, CYTD_ORDER,
CREDIT _LINE, CREDIT_USED)
Site A: stores the fragment CUST(CNUM, CNAME,
CYTD_ORDER) ' :
Site B: stores the. ftagment CUST(CNUM, CITY,
CREDIT_LINE, CREDIT_USED)

Site A:

Site B:

The queryv histories are as follows

Site A:

1. SELECT CNUM, CNAME CYTD.ORDER
FROM CUST . .
'WHERE CYTD_ORDER > 1000000

o
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2. SELECT CNUM, CYTD.ORDER, CREDIT.LINE
FROM CUST _
WHERE CYTD_ORDER > 1000000
AND CREDIT_LINE < 100000
AND CITY = ‘A’
3. SELECT CNUM, CNAME, CYTD.ORDER,
CREDIT_LINE
FROM CUST
WHERE CYTD_ORDER > 10000000
AND CREDIT.LINE < 500000
AND CITY = ‘B’
Site B:
4. SELECT CNUM, CNAME, CREDIT _LINE,
. CREDIT_USED, (CREDIT_USED / CREDIT_LINE)
FROM CUST
WHERE CREDIT_USED > CREDIT_LINE * 0.9
S. UPDATE CUST
SET CREDIT.USED = CREDIT LINE - 2000
WHERE CNUM = 10555
6. SELECT CNUM, CNAME, CYTD_ORDER,
CREDIT_LINE, CREDIT_USED
FROM CUST
WHERE CNUM = 10555
7. INSERT
INTO CUST(CNUM, CNAME, CITY,
CREDIT_LINE, CREDIT_USED, CREDIT_ORDER)
VALUE (10056, ‘ABC INC.’, ‘NEW YORK’, 10000, 0, 0)
.Step 1: Classify query type.
insert queries: 7
delete queries: none
modification queries: 6
retrieval queries: 1, 2, 3, 4, 5
query 7 will be discarded since it is an INSERT
query.
Step 2: Classify local-/remote-access queries.
Retrieval queries:
Site A: Local-access: 1,2, 3
Remote-access: 2, 3
Site B: Local-access: 6
Remote-access: 6
(Note: Query 4 is discarded because the remote set contains
no restricting attribute.)
Modification queries:
Site A: None.
Site B: Local-access: 5
Remote-access: none
- Step 3: Identify time sensitivity.
Site A: Time-sensitive: none
Time-invariant: all attributes
Site B: Time-sensitive: CREDIT_USED
Time-invariant: all other attributes
Step 4: Remove time-sensitive attributes from remote-
access retrieval queries.

Site A: remote-access queries
Query 2: SELECT CNUM, CREDIT_LINE
FROM CUST

WHERE CREDIT_LINE < 100000 /*because
CYTD.ORDER >="
AND CITY = ‘A’ 1000000 is not in
remote set¥/
Query 3: SELECT CNUM, CREDIT_LINE
FROM CUST
WHERE CREDIT_LINE < 500000
AND CITY = ‘B’
Site B: remote-access query

Query 6: SELECT CNUM, CNAME, CYTD_ORDER

FROM CUST
WHERE CNUM = 10555
Step 5: Construct the queries to create TIF's.
MLTIF generates the following remote queries to create TIF's
for both sites.
Site A: SELECT CNUM, CREDIT_LINE, CITY
FROM CUST
WHERE CREDIT.LINE < 500000
AND (CITY = ‘A’ OR CITY = ‘B’)
(Note: CITY is added into the selecting attribute list.)
Site B: There is only one remote-access query. MLTIF
will not generate a new query.

B. TIF’s for Retrieval Queries With Two-way Join

MLTIF processes two-way join queries in the fallowing
manner (all the other steps remain the same):

A. Determine TIF content by evaluating two-way join retrieval
queries one be one.

Step A.1 Split the two-way join query into two single-table
sub-queries (by dropping the join condition clause
and splitting the selecting attributes) for the tables
involved. Send each sub-query, along with the join
condition clause to the nodes containing a copy of
the base table involved. Some nodes might receive
both sub-queries.

Evaluate sub-queries. Determine from the local
base table the join attribute values. Put these val-
ues in a set, called unique join-value set. Transmit
the set to the nodes receiving the other sub-query.
Every node receiving a sub-query should have
remote join values for the other sub-query.

Take the union of the remote unique join-value
sets and the local unique join-value set, if any, at
each node, Determine the data items satisfying the
original two-way join query from the resultant set
and the local base table.

Example 4: Suppose the two nodes in a network store data
as follows:

Step A.2

Step A.3

T1(a,b,c,d, €, f) where a is a primary key,

T2(f,g,h) where f is a primary key, '

Node A: stores the following base table fragment of T'1
with e =‘A°,

a b ¢ d e f
tuple 1 C001 Acme 1000 200 A SO1
tple 2 C003 Erso 500 100 A S0l
tple 3 C004 Giant 100 100 A S02
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and base table T2:

£ g b
tuple 1 S01 Cocki F
tuple 2 S02 Sam M
tuple 3 S03 George M
tuple 4 S04  Diane F

Node B: stores the following base table fragment of T'1
with e =*B’.

a b c d e f
tuple 1 C002 Dons 2000 800 B S03
tuple 2 CO05 Gray 800 600 B 504

The query history at each node is as follows:
Node A:
1. SELECT a,b,c
FROM T1
WHERE ¢ > 1000

2. SELECT a,b,c,d,e
FROM T1
WHERE b = ‘Gray’

3. SELECT a,b,c
FROM T1
WHERE e =‘A’

4. UPDATE T1
SET c = ¢ — 100
WHERE a = ‘001’
Node B:
1. SELECT a,b,c,d
FROM T1
WHERE ¢ <= 500

2. SELECT T1.a,T1b,Tl.c,T2.f, T2.9,T2.h
FROM T1,T2
WHERE T1.c >= 1000
AND T1.f = T2.f
AND T2.h = 'F

3. UPDAIE T1
SET d = 500
WHERE d < 500
MLTIF determines time-invariant fragments in the following
manner:

There are no two-way join queries at node A while query
2 of node B is a two-way join retrieval query. The query is
first decomposed into two single-table queries for base tables
T1 and T2 as follows:

Sub-query B.2.1: SELECT a,b, ¢, f
FROM T'1
WHERE T1.c >= 1000
and
Sub-query B.2.2: SELECT f,g,h
FROM T2
WHERE T2.h = ‘F'
The join condition is T'1.f = T2.f.

Note that the join attribute f is included in the selecting
attribute list of both Sub-queries so that the original query can
be recreated.

Since both nodes have a fragment of base table T'1, Sub-
query B.2.1 and the join condition are submitted to node A.
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Sub-query B.2.2 will also be submitted to node A with the
join condition because base table T2 is stored only at node A.

At Node A: ‘The only condition clause in Sub-query B.2.1
contains a TSA, thus the condition is dropped. As no restricting
condition remains in the sub-query, all the three tuples of
join attribute, f, for T'1 will be selected. The unique join-
value set of attribute f is {$01, 502}, and it is transmitted to
the relevant nodes participating in the join operation. In this
example, the set is not sent to node B because no T2 data is
stored at node B.

The condition clause of Sub-query B.2.2 received from node
B does not contain a TSA and the evaluation of the query
shows that tuples 1 and 4 of base table T2 at node A satisfy
the query. Thus, the unique join-value set of attribute, f, of
T2 becomes {SO1, SO4}. It is transmitted to node B where 2
fragment of base table T'1 is stored.

Note that there is actually no need to send any unique join-
value set to query node because no data will be replicated
from itself.

At Node B: Similarly, sub-query B.2.1 is evaluated and a
unique join-value set, {S03}, is generated and transmitted to
A. Note that the restricting attribute, ¢, is a TIA at node B
and would not be dropped from the sub-query as the case at
node A.

At each node, the unique join-value sets are combined, join
operation is evaluated, and the retrieval matrices are marked
for the data to be replicated.

Thus the TIF created at node A for the base table T'1 at
node B is as follows:

a b c d e
wple 1 002 Dons 2000 filler filler
mple 2 005 Gray 800 600 B

Note that attributes d and e of tuple 1 are occupied by
‘fillers’ because the values of these two data items are not
replicated in the local TIF. A filler is a predefined value for
non-replicated cells in the TIF's.

Node B: A TIF created at node B for the base table T'1 at
node A is as follows:

a b c d e f
tuple | 001  Acme filler filler filler 501
tuple2 003 Erso filler filler filler S01
tuple 3 004  Giant filler filler filler filler

TIF created at node B for the base table T2 at node A is
as follows:

! g h

wplel 551 Cocd F

C. Query Processing in TIF Environment

Query processing with TIF’s is different from that in a
non-replicated environment. Local base tables and TIF’s may
contain some of but not all of the data needed to answer a
query. To satisfy the query request, it is important to accurately
determine the portion of data that satisfies the query but resides
at a remote node. Hence, each query is processed at the
relevant base table nodes to determine the data items (not
available in local base table or in TIF) to be transmitted to the
query node. Processing of medification and retrieval queries
is presented below.
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Fig. 4. Scheduling the allocation of TIF's.

Modification Queries: A modification query in a TIF envi-
ronment is processed in the following manner:

Step 1. Consult data directory to determine the nodes where
the relevant base tables are stored. Submit the query to those
nodes.

Step 2. Update the relevant base tables. Examine TSA and
Retrieval matrices for the base tables to explore whether
the updated data items have been replicated at other nodes.
Propagate the update to those TIF’s that contain a copy of
the updated data items.

Step 3. Replace the old TIF data items at the destination
nodes.

Retrieval Queries: Single-table retrieval queries and two-
way join retrieval queries require different treatments. .

Single-Table Retrievals: The processing of a retrieval query
is illustrated below:

Step 1. Consult data directory to determine the nodes where

the relevant base tables are stored. Submit the retrieval query

to those nodes.

Step 2. Process the query at the destination nodes. Examine

the Retrieval matrices to determine if the data items exist

in the TIF’s at the query node. Transmit those data items

have not been replicated to the query node.

Step 3. Merge data retrieved from local base table, local

TIF, and remote base tables.

Two-Way Join Retrievals: Tne processing of a two-way re-
triaval query is illustrated below:

Step 1. Split the two-way join query into two single-table
sub-queries. Consult data directory to determine the location
of the relevant base tables. Send sub-queries to those nodes.
Step 2. Evaluate queries at destination nodes for the join
attribute and transmit the unique join-value set to the nodes
which receive the other sub-query.

Step 3. Process the sub-queries and check the respective
Retrieval matrix (or matrices, if the node contains both base

tables to be joined) as each node where the join values are
available. Determine whether the data items that satisfy the
join query have been replicated in the query node TIF's.
Transmit the data items to the query node if they have not
been replicated.

Step 4. Merge the data retreived from local base table, local
TIF, and remote base tables.

D. Scheduling the Allocation and Update of TIF's

Allocation of TIF's to the user nodes may require intense
data communication. Therefore, by sending TIF's selectively
and/or during the non-peak hours can substantially reduce the
communication costs. In situations where the update of critical
data items is intense, the tolerance to the delay in update can
be very low and cost of inaccuracy of information can be high.
By contrast, in time-irrelevant applications where changes in
data values are not critical to decision making, the-tolerance
to non-current data can be high, and the cost of inaccuracy of
data can be low. The MLTIF algorithm is based on the trade-
off between the opportunity cost due to inaccurate data and
cost of maintaining the accuracy.

The opportunity cost of inaccurate data can be expected to
increase over time as shown by the curve C1 in Fig. 4. The
slope of the curve increases as time increases. Applications
having low tolerance to non-current data will experience a cost
curve similar to C2, where the slope of the curve increases
very fast. In an extreme case, where the currency of data is
extremely critical, the slope of the cost curve will be infinite
as shown by the curve, C3. The applications that can tolerate
non-current data will have their cost curves similar to C4,
where the slope of the curve has a long flat lead time before
deviating from the time axis. Therefore, for a given level of
opportunity cost, OC1, MLTIF will schedule the creation and
allocation of TIF's every T'1, T2, T3, and T4 time periods
for the above-mentioned classes of applications. In addition,
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Fig. 5. Scheduling selective updates of TIF's.

MLTIF continuously monitors and adjusts these time periods
to reflect the most current usage pattern.

For scheduling selective updates, it is important for MLTIF
to know the age of TIF’s. The age of a TIF is determined by
the elapsed time between the creation of the TIF and the first
update of any of its data item in the source base. table. As
shown in Fig. 5, to keep the cost of non-current data under
a specified level, IC1, the age of a TIF data item has to be
maintained within 7'1 units of time. The corresponding cost
of currency maintenance is MC1. The currency maintenance
cost of time invariant fragments climbs as the age limitations
are stricter to reduce the cost of inaccuracy of the information.
Therefore, a trade-off between the currency of data and the cost
of maintaining it has to be made by MLTIF in the selection of
the data items to be stored in the Jocal TIF's.

MLTIF determines the most appropriate schedule for update
of TIF's, also by aquiring knowledge from the query history. In
making its update decision, MLTIF considers three important
issues—‘when’ to update, ‘where’ the update source is, and
‘how’ the update should be done. Refreshing of TIF’s can
proceed immediately after the update of the base relation or be
deferred until a query is made to the TIF. The deferred strategy
may include periodic update, update on-demand regardless of
queries, random, or a combination of the above methods [4].
The source (s) of the data to be used in the refresh of a TIF
may be from its base relation or other view (s) recently created
from this base relation.

E. Benefits of the TIF Approach

a) Reducing database restructuring costs User's require-
ments, needs, and the use of data is not constant in
the current volatile business environment. A change in
the data usage pattern may result in restructuring of a
distributed database at a significant cost. The proposed
strategy helps reduce the restructuring cost, because TIF

Time

is created from query patterns and automatically adjusts
to changes in the environment.

b) Reducing transmission costs Overall transmission costs
for query processing is reduced by storing TIF’s locally.
Also, the creation of TIF's is based upon query patterns
and the corresponding data can be transmitted to its
respective sites during economy or non-peak hours.

¢) Reducing update costs Multiple copies of TIF do not
create the problem of update synchronization because, by
definition, TIF’s do not change for a given time interval.

d) Improving response time Unlike other replication tech-
niques, since TIF’s do not change for a given time
interval, a complete replication of TIF’s is possible
to provide more local data, and without unnecessarily
creating update problems.

e) Continuously improving performance Since TIF is tied to
the query history, as the size of query history increases,
TIF tends towards optimality. ‘

IV. EVALUATION OF THE MLTIF APPROACH

To demonstrate the usefulness of the MLTIF approach and
the conditions under which it may work best, we compare
its performance with that of non-replication, full-replication,
and materialized view approaches using simulation. The com-
parison is based on a given query history for a given time
interval. Assuming data storage cost being negligible and unit
data transmission costs between any two nodes being equal, the
costs for creation of replicas, data retrievals, and modification
for each approach are formulated. Detailed assumptions and
the values assigned to the parameters can be found in the
Appendix. The costs are averaged for 50 simulation runs for
each setting involving different percentages of modification
queries, sizes of network, and number of queries. Detailed
findings are presented below.
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Fig. 7. Costs of the four strategies.(200 base queries, 10 nodes).

A, The Effect of Percentage of Modification Queries

Intuitively, the full-replication approach (FR) should per-
form best for low modification rates, and the non-replication
approach (NR) for high modification rates. Between these two
extremes, a partial data replication approach should be more
desirable as long as the decrease in data retrieval costs offset
the increase in the update synchronization costs. To evaluate
TIF’s performance relative to the other strategies, we simulate
different scenarios varying modification query percentages
from 0 to 100 at 5% level. Results of the simulation is
summarized in Fig. 6. It is clear that FR has the lowest cost
when modification queries in the network is below 25%. As the
percentage of modification queries incréases, FR becomes less
attractive than the two partial data replication approaches as
the benefit of full data locality is offset by the high update
propagation costs. The materialized view approach: (MV)
becomes the most attractive alternative when the modification
queries varies between 25% and 60%. TIF becomes the
dominant approach when modification queries exceeds 60%.
The benefit of TIF is that it excludes the time sensitive data
from replication and, in the best case, as assumed in this anal-
ysis, there is no update propagation. However, TIF requires
data transmission to answer queries accessing remote time
sensitive data. MV, on the other hand, does not require any

data transmission because it materializes these data into local
replicas. As such, MV benefits from lower update propagation
costs at low modification query percentages. As modification
queries increase, MV is overwhelmed with materialized view
updates and is surpassed by TIF. Note that when all the queries
in the network are modification queries, the costs for NR, MV,
and TIF are the same because there is no data replication for
MV and TIF. Thus, the three cost lines in Fig. 6 merge when
the percentage of modification queries is 100%.

B. The Effect of Nefwork Size

When the size of the network increases, TIF becomes
even more attractive, Fig. 7 shows the cost lines of the four
strategies when the number of nodes is increased from 5 to
10 with everything else being the same. Here, MV dominates
FR at 5% as against 25% modification queries in five-node
network. This is because there are more nodes (nine rather than
four) requiring the propagation. Since update propagation is
more expensive than data retrievals, the benefit of data locality
of FR is offset more quickly in a larger network. TIF becomes
the preferred strategy at 30% modification queries as against
60% in the five-node network. As more materialized views
may be required in a larger network and, consequently, higher
cost is incurred in maintaining data currency. NR becomes the
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Fig. 8. Costs of the four strategies (2000 base queries, 10 nodes).

most effective strategy when more than 95% are modification
queries. Saving in the retrievals of remote time invariant data
does not offset the cost of TIF creation as it does in a smaller
network.

C. The Effect of Number of Queries

In the above analysis the number of base queries in the
network is set to 200. This parameter represents the total
number of unique queries in the network. For a 10-node
nietwork with 2000 base queries the costs of the four strategies
are plotted in Fig. 8. We observe that TIF would not become
the preferred strategy until modification queries reaches 60%,
which is higher than that in the 200 base queries network
(30%). The increase in the number of retrieval queries requires
higher retrieval costs of time sensitive data, and, consequently,
delays the low cost lead of TIF. NR is never attractive unless
all the queries are modification queries. The increases in
relative magnitude of both retrieval and modification costs to
TIF creation cost makes NR more difficult to surpass TIF.
The above reasoning shows that:

1) FR is still the best strategy for small and/or non-

modification-query networks,

2) MV has a larger dominance area,

3) TIF also has a larger dominance area and a flatter

dominance line, and

4) NR has a much flatter dominance line and does not

become attractive until at very high modification per-
centages and the network size exceeding 100 nodes.

V. CONCLUSION

This paper pre_schts a learning based approach to the creation
and allocation of time invariant fragments. For an application
session, first, the time-invariant fragments at a node are defined
through concepfual aggregation of expressions in the query
history. Next, a set of queries to retricve remote data for the
creation of time invariant fragments are generated. Finally,
these remote data retrieval queries are executed to build time
invariant fragments and transmitted to the destination node.

To demonstrate the usefulness of the TIF approach and
the conditions under which it may work best, we compare

its performance with that of non-replication, full-replication,
and materialized view approaches using simulation. The initial
results are promising. It shows that TIF approach can be
effective under the following conditions:

1) The percentage of TSA’s is low, i.e., most of the data
is time invariant;

2) The percentage of modification queries is high, and

3) The size of the network is large.

The current research can be extended in the following

directions:

1) Improving the precision of time-sensitivity definition. The
definition of time-sensitivity is done to attribute level. A
more precise definition such as at the value range level
could provide more data to time invariant fragments and
improve the percentage of local processing.

2) Refreshing TIF’s. TIF's are created independently for
each application session. Time invariant fragments
across sessions may overlap, i.e. part of data in the time
invariant fragments created in one session is still valid
and can be used in another session (s). The detection
of these common time-invariant data will reduce data
transmission cost.

APPENDIX

Notation, Formulation, and Values of Parameters for the

Costs of the Four Data Allocation/Rejlication Approaches

Notation. The following notations are used in formulating
the costs of the four approaches:

N Number of nodes in the network.

Q, Total number of base queries in the network. These
are unique queries inquii'ed in the network. Additional
retrieval queries dre added when the network expands
and the volume for each node is calculated through a
distribution factor, as will be explained later.

Ppnq Percentage of modification queries in the network.

Qmi Number of modification queries at node .

Y 1 Qmi = Qi Pmg.
Qi Number of retrieval queries at node 1.
Q: Number of queries at node i. Q; = Qi + Qmi.
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R, Replication factor of network retrieval gueties per addi-
tional node. When a node is broken into multiple nodes
(e.g., West Coast is broken into Washington, Oregon,
Northern California, and Southern California), a query
in the original topology can be requested by one or more
nodes in the new network because the nodes sharing
the query result in the old network can now inquife
themselves. The number of such additional quenes is
R, percent of thé network base retrieval queries for
each additional riode. Hence, the number of retrieval
queries = Q3 (1 — Png) x[1 + (N — 1)*R,[,N > 1.
Since the number of retrieval queries increases as the
network expands, the number of quenes m the network
also increases.’

Dy "Distribution factor of network modlﬁcanon queries
to node 4. That is, Qm, = Qn * qu/N Dni. Thus,
Zs:lle = 2.—1Qﬂ‘ mq/N Dml = Qn mq
because the number of modification queries in the
network is assumed to be a constant Therefore,
iy Dmi = N.

D,; Distribution factor of network retrieval queries to node
iie, Q= QN.(]- qu) [1+(N 1)‘Rr]/N' Dy,
where N > 1, E.—1 = N.

P, Percentage of modlﬁcanon quenes at node i. Py; =
le/ Ql

Apri Average percentage of retrieval query data is remote
for node $i$ queries.

Ao Average percentage of modification query data is
remote for node ¢ gueries.

T, Threshold network size for retrievdl queries. When the
network is small, it is easier to achieve high data
locality through database partition. As the network
size increases, the maintenance of high data locality
becomes more difficult. When the expansion of the
network exceeds a threshold size, the locality of data
is sharply reduced to a very low level because the size
of the unpartitioned base table is fixed and too much
partitioning will result in meaningless fragments. The
larger T, is the larger the network can expand without
a sharp reduce of data locality. To capture this nature
of data locality, we propose that

Ami =1)[(N = 1)/N]"LIV-T)2 i N < T,
2)[(N - 1)/N)*[1 - T=-NY/2), if N > 3T,.
When N =1, Ayrp = 0.

T.. Threshold network size for modification queries. It is
similaf to T;. except it is for modification queries. Thus,

Armi =1)[(N = 1)/NP1LAF-Tm/2 3§ N < T
2)[(N - 1)/N]*[1 — eT™"M/2)if N > Ty,

When N =1, Ars = 0.
Prisai Percentage of node i retrieval queties retrieve TSA's.
Arisa; Average coverage of remote TSA's by the retrieval
queries of node .
M,, Cost multiplier for modification queries. It is more
costly to modify a data item than to retrieve it because
of additional operations and data transmissions. This
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overhead includes verification of the appropriateness
of the modification, transmission of modified data
‘back to the remote nodes from modification originat-
ing niode, locking of the multiple-copies if necessary,
verification message of the modification from remote
nodes, etc., are required for modification queries.

‘ Thus, M,, > 1.
Ryv Efficacy factor of a materialized view refresh method
such as differential files, etc. It represents the ratio
of entire-view-refresh cost incurred when a refresh

miethod is applied. The lower the value, the more

cast effective the refresh method is.

Rrr Efficacy factor of a full-replication update propaga-
tion method. The lower the value, the more cost
effective the propagation method is.

E,; Expansion factor from average data retrieved per query

to overall coverage of data reirieved by queries of node
i. A small value of E,; indicates that the retrieval
queries at node i access large amount of common
remote data.

Emi Expansnon factor from remote modification data to
overall modified data, both local and remote, by
queries of node i. A small value of E; indicates
that a large portion of data miodified by the queries at
node i are stored at local base tables.

Povm Percentage of network modification queries modify

data materialized in the views in the network.

P.vmi Perceritage of network modification queries modify

data materialized in the view at node i. The number
of modification queries is Qn* Prmq* Prvmi.

M; Percentage of Pypym allocated to node ¢ Thus,
Povmi = anvn'i‘Mi-

Cnr Total costs of non-replication strategy.

Crpr Total costs of full-replication strategy.

Cwmv Total costs of materialized view strategy.

Crir Total costs of TIF strategy.

Major assumptions To simplify the complexity of the prob-
lem, we assume the following:

1) Data storage/maintenance cost is negligible.

2) Unit data transmission costs between any two nodes are
equal.

3) Database directory is replicated at all the nodes, i.c., the
possible lgcation of data can be identified locally. "

4) Messages for requesting remote data in retrieval queries
are included in the cost of the transmissions of the
requested data. The messages for modifying remote data
are also included in the remote modification cost. Typical
messages include requesting for locks at remote nodes,
granting locks from remote nodes, and requesting for
releasing locks at remote nodes. To capture the relative
higher cost of modification to retrieval queries for the
same data, we include a cost multiplier for modification
queries. Its values are assumed to be 1.5 in this analysis.
The value means a modification query is 50% more
costly than a retrieval query to access-the same amount
of remote data. The effect of the communication cost of
these messages in the design of distributed systems has
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been studied.?’

5) Additional costs for unsuccessful retrieval and modifi-
cation queries are assumed to be zero. )

6) The amount of data transmitted in refreshing a mate
rialized view is lower than that of creating the entire
view. Whenever a discrepancy between the data in the
view and that in the base table occurs (because of
a modification query), only a portion of the view is
refreshed. Various materialized view refresh techniques
have been proposed and the effectiveness of these tech-
niques depends upon environments under which they
are utilized. To capture the performance of different
materialized view refresh techniques, we include an
efficacy factor in our model. In the current analysis, we
assume a value of 10%, which indicates that on average
only 10% of the view is refreshed to maintain the desired
level of currency of data, although this may depend upon
the refresh strategy selected.

7) The amount of data transmission in maintaining database
currency for full-replication strategy is not proportional
to the number of nodes. As for materialized views,
more effective update propagation techniques could be
utilized to reduce currency maintenance cost. To capture
this phenomenon, we include an efficacy factor in our
model similar to that for materidlized views. We assume
a 10% value for the factor in the current analysis. The
value indicates that on average only 10% of the modified
data are transmitted to other nodes to maintain database
currency, although this may vary from system to system.

8) The value of a parameter is the same for all the nodes.
Heterogeneous network nodes are expected in practice.
But to keep the analysis from being too complicated,
we assume the same value for a parameter across the
network.

Cost formulation. The costs of the four strategies are

formulated as follows:
Non-Replication

N
Onr =Y [Arri® Qi (1 — Pui)]

=1

(Retrieval Cost)

N
+ Mm L4 E[Amri e Qi e mi]

=1

(Modification Cost)

Full-Replication

N
Crr =My ®(N—1)8 Rrp® ) _[Emi ® Amsi @ Qi @ P
i=1
(Modification Cost)
Materialized Views

N
Omv = Z[Eri L4 Arri]

i=1

(Creation Cost)
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N
+M,e Z[A““‘ ¢ Q; ¢ Poi] (Modification Cost)
i=1
+ Rmv @ My, [Eri oA ioCQne qu L4 vami]
(Refresh Cost)

Time-Invariant Fragmentation

N
Crip = Y [Exi ® Ari @ (1 = Autani)]  (Creation Cost)

=1

N
+ Z[Arti L Ar\tsai L Qi L4 (1 - Pmi) L Prtni]
i=1

(TSA’s Retrieval Cost)

N
+M,e E[Amﬁ o Q; ¢ Py;[Modification Cost)

i=1

Parameter Values. The parameter values used in the current
study are based on realistic business scenarios. They are as
follows:

Artssi random number between 0% and 100%, with 80%
probability of being below 20%, 15% probability of
being between 20% and 50%, and 5% probability of
being above 50%

Dpi 1

Dy 1

E; 25

E, 3

M; 10%

M,, 1.5%

P, nmvm 10%

random number between 0% and 100%, with 80%

probability of being below 20%, 15% probability of

being between 20% and 50% and 5%$ probability
of being above 50% ' ‘

R, 1%

Rmv 10%

Rpg 10%

T, 50

T 50

P, rtsai
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