Northeastern University et al v. Google, Inc., Doc. 78 Att. 14

EXHIBIT N

Dockets.Justia.com

http://dockets.justia.com/docket/court-txedce/case_no-2:2007cv00486/case_id-106532/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/2:2007cv00486/106532/78/14.html
http://dockets.justia.com/

United States Patent 9
Kuechler et al.

4,811,199
Mar. 7, 1989

(111 Patent Number:
1451 Date of Patent:

[54] SYSTEM FOR STORING AND
MANIPULATING INFORMATION IN AN
INFORMATION BASE

[76] Inventors: William L. Kuechler, No. 3 Rum
Row, Hilton Head, S.C. 29928; David
W. Kuechler, 1618 Beacon Ridge
Rd., No. 605, Charlotte, N.C. 28210

[21] Appl No.: 47,703
[22] Filed: May 8, 1987
CEVID 7T o L GOGF 1/00

[52] US.CL ... 364/200; 364/300
[58] Field of Searchccccoeuuee. 364,200, 300, 900

[56] References Cited
U.S. PATENT DOCUMENTS

4,012,720 3/1977 Calletal.cercenceans 364/200
4,267,568 5/1981 Dechant et al. .. 3647200
4,270,182 5/1981 Asijacieuunee . 364/900
4,587,670 5/1986 Levinson et al.evvennnenee 381/43

OTHER PUBLICATIONS

“A Bit-Mapped Classifier”, pp. 161-172, Byte, by Frey
(Nov. 1986).

“Finding Rules in Data”, pp. 149-158, Byte, by Thomp-
son and Thompson (Nov. 1986).

10~}

“Predicting International Events”, pp. 177-190, Byte,
by Schrodt (Nov. 1986).

“Retrieval on Secondary Keys”, pp. 551-567, The Art of
Computer Programming, vol. 3, Sorting and Searching,
by Knuth (1973).

Primary Examiner—Raulfe B. Zache
Attorney, Agent, or Firm—Bell, Seltzer, Park & Gibson

[57] ABSTRACT

The present invention provides a system for the input,
retrieval, manipulation and analysis of stored informa-
tion in an information base. The system comprises an
input device, a storage device, and an output device
each capable of handling information elements. Each of
the attributes of the information elements is processed
to produce a compact symbol or code corresponding to
predefined ranges of values of an attribute. These codes
are then stored in correspondence with the information
elements which gave rise to them. The result of this
processing is a topological map of the attributes of the
information elements. These topological maps may be
retrieved and later processed to efficiently retrieve
stored information elements, given any general unpre-
programmed query as input to the system. These topo-
logical maps may also be utilized in a process to deter-
mine correlations among the various attributes of the
information elements.

28 Claims, 1 Drawing Sheet

14’7
— — STORAGE DEVICE — ameenen
INPUT INPUT OUTPUT OUTPUT
DEVICE SUBSYSTEM INFORMATION TOPOLOGICAL SUBSYSTEM DEVICE
BASE MAPS
3) e [e
22 20 MAPS 34
QUERY
12 -J 18 -) J
32

GN 007147

4,811,199

Mar. 7, 1989

U.S. Patent

¢ J4n914

auoq-)oed YIOMIBN

ELY LY 1LY oLy
Iasn
T 3AN9IA
[4%
ﬁ\ ﬂlwﬁ AINH
A3and
Ve SAVH 0¢ (44
ﬁ m ot WHNL INdLNo A\ A
SAVH asvd
J01A3A HILSASENS IVOIH0TO4dOL NOILVWYOJANI HWALSASLNS J0IA3d
4NdLno LNdIN0 INANI LNANT
HOIAdG JOVHOLS

Lt

AOH

GN 007148

4,811,199

1

SYSTEM FOR STORING AND MANIPULATING
INFORMATION IN AN INFORMATION BASE

MICROFICHE APPENDIX

A microfiche appendix consisting of one fiche of 67
frames is included as part of this specification. This
appendix contains a source code listing of a computer
program which implements a working embodiment of
the invention disclosed herein.

FIELD OF THE INVENTION

This invention relates to the efficient retrieval, ma-
nipulation, and analysis of stored information in an in-
formation base.

BACKGROUND OF THE INVENTION

It is frequently desirable to retrieve information ele-
ments stored in an information base on the basis of
queries—for example a search for all information ele-
ments in the information base that have certain values of
certain fields or attributes. Data processing systems
typically require the query specification to employ
exact values in order to retrieve the desired information
from the information base. Thus, mathematically exact
values of particular attributes (fields) are input, which
are then compared with corresponding attribute (field)
values of the information elements in the information
base to select those elements with exactly equivalent
values. This is also true of data manipulations, such as
sorting, where it is desired to output information ele-
ments based on an ordering rule of one or more attri-
butes (first, the record with the highest attribute value,
then the next highest and so on). Such selective access
permits the system to abstract the information base and
deal only with the elements which are pertinent to the
specifications of the query.

Methods currently used to handle such selective
query specifications fall into two broad classes. The first
is an exhaustive iterative examination of each of the
elements of the information base to find those meeting
the specifications of the query. The second is to store,
for all elements, duplicate values of selected attributes
(associated with a corresponding element address) in a
specialized data structure (index) designed for rapid
access to values and corresponding information ele-
ments meeting the specification. Examples of such spe-
cialized data structures include ordered lists, trees,
hashed indexes and a number of other variations, of
which, only a few are commercially viable. ’

Where applicable, such data structures or indexes
provide much faster access than iterative search meth-
ods but are subject to the following limitations:

(1) The index files needed for reference to the attri-
bute or attributes of the information base may be of
substantial size, especially when the information ele-
ment contains a large number of attributes which are
indexed for subsequent retrieval. In some instances the
storage requirements for the index files may equal or
exceed the storage requirements for the information
base itself.

(2) Indexes provide efficient access only for the spe-
cific attribute or combination of attribiites for which the
index is designed. They are inefficient or inapplicable
for the flexible inquiries encountered in commercial
practice which include a broad range of logical rela-
tions between varied combinations of numerous attri-

10

20

50

55

60

2
butes, often on the basis of partial or inexact specifica-
tions.

Thus, while these methods satisfy the minimal re-
quirements of data processing systems, they are far from
adequate for the increasingly critical need for a general
approach to efficient processing of complex multi-
attribute specifications.

It should be noted that there are specialized examples
of current methods which superficially deal with inex-
act specifications, such as partial key access, occasional
use of explicit ranges and some recent systems which
purport to permit the use of “plain english” specifica-
tions. However, such systems are still dependent on the
ability of the logic of the system to translate or cross-
relate such input to an exact key structure. Thus, partial
keys will locate a record in a tree index (after operator
inspection of a number of incorrect records) only if the
initial characters of the partial input exactly match the
initial characters of the complete key. Equivalent limi-
tations apply to all other such methods and perfor-
mance becomes less efficient and more inaccurate as the
specifications become less precise. This is also true of
recent developments in “artificial intelligence” systems,
which employ very complex (and thus computationally
bound) analytical logic, rule logic, classifier logic and so
on to translate incomplete and imprecise input into the
most specific and highest probability output possible,
generally incorporating prompts for additional input to
clarify ambiguities. Conversely, there is no general
approach in the prior art which purposefully utilizes
less precise representations of data to enhance the effi-
ciency and validity of manipulating exact data values. It
is an object of this invention to provide such general-
ized systems.

SUMMARY OF THE INVENTION

The present invention provides methods and means
for manipulating information in a stored information
base predicated on the unique compactness and ease of
processing of coded maps of the attributes of an infor-
mation base, referred to herein as topological maps.
Each map comprises compact symbols corresponding
to predefined ranges of values of an attribute. A symbol
for the range encompassing the value of that attribute
for each information element is stored in said map in
correspondence to each element. The information ele-
ments, as well as the topological maps, are stored in an
information storage device.

A query is processed by accessing the pertinent topo-
logical map or maps based upon the specifications of the
query, and identifying from the map or maps, the infor-
mation elements in the information base which meet the
specifications of the query. Simple queries concerning a
single attribute are resolved by accessing the pertinent
topological map for that attribute, while more complex
queries involving multiple attributes are resolved by
combining the topological maps for the attributes in-
volved in the query in accordance with the logical
operators of the query.

The attribute value or range of values in the specifica-
tions of the query is compared to the predefined ranges
represented by the symbols in the topological map for
that attribute. Then, by referring solely to the map, it is
possible to quickly eliminate from consideration those
information elements of the information base which, as
shown by their range symbols in the topological map,
could not possibly meet the specifications of the query
since the mapped range for that attribute value is clearly

GN 007149

4,811,199

3

outside the value or range of values in the specification.
In a like manner, it is possible to quickly identify infor-
mation elements in the information base which are
known with certainty to meet the specifications of the
query because the mapped range for that attribute value
is wholly within the range specified in the query. Be-
cause the symbols used in the map represent ranges of
values rather than exact values, the resolution of the
query may find some information elements which
“may” meet the specifications of the query but which
cannot be determined with certainty solely by reference
to the map. Only those information elements which
“may” meet the specifications of the query need be
inspected to determine whether they meet the specifica-
tions of the query.

In addition to efficient manipulation of exact values,
this approach can concurrently manipulate and corre-
late approximate or qualitative values with equal effec-
tiveness and efficiency. Thus, an attribute correspond-
ing to colors of clothing might have ranges defined as
yellows, greens, blues, browns, reds, etc. Any variations
in colors or terminology derived from one of these basic
colors would be coded as belonging to that color range
(tan to brown, rose to red and so on). Typical records in
a clothing store data base would contain the garment
type, color, style, brand and so on in addition to quanti-
tative data such as cost, price, number on hand, sales,
etc. The present invention will coherently manipulate
both types of data, accurately answering queries such as
“what are the relative sales of tall and short sizes of
women’s dresses in red and black colors for the fall and
summer seasons of the past three years”.

Such extensive specifications can be processed by
general purpose computers with complete accuracy and
specificity at rates which are orders of magnitude faster
than prior art because the compactness of such coded
topological maps permits a large number of attributes to
be mapped with less storage than is required for prior
art key structures with only one or two keys. Thus, all
maps pertinent to an inquiry can be rapidly loaded into
high speed semiconductor memory simultaneously and
the processor not only has much less key data to evalu-
ate, but can compare the compact codes with simple,
high speed logic and can access this key data at semi-
conductor speeds, which are orders of magnitude faster
than disk input-output transfer rates. These increases in
rate of processing are compounding rather than addi-
tive and the net improvement is thus much greater than
the sum of these effects.

The use of value ranges to characterize elements of
the information base may, at a glance, appear to signifi-
cantly reduce the specificity and thus the efficiency of
the system. However, for inquiries relating to two or
more ranges and attributes, which includes the vast
majority of inquiries, the number of uncertain elements
is insignificant. Such uncertainty as may be introduced
by this approach is readily eliminated by directly check-
ing uncertain records, which are identified in the nor-
mal course of processing the maps. Thus, any reduction
in efficiency which may be introduced by such check-
ing is minor or insignificant relative to the enormous
improvement in the speed of isolating the records ini-
tially.

For direct access to specific records via primary keys,
the present invention offers no significant improvement
in speed relative to the prior art, since speed of current
techniques is already at the limits of human perception.
However, this invention still offers major improve-

15

20

25

30

45

50

55

65

4
ments in terms of reduced storage space for direct key
files, and can offer major improvements in speed where
direct access by a variety of secondary keys is required.
This again relates to the feasibility of storing the com-
plete compact code maps in high speed memory.

A few prior art techniques have been disclosed which
have a superficial resemblance to elements of this inven-
tion. These are exemplified by the section entitled “Re-
trieval on Secondary Keys” in Volume 3/Sorting and
Searching/The Art of Computer Programming by
Donald E. Knuth, who is widely recognized as one of
the leading authorities in this field. Both the preamble
and summary of this section point out the difficulty and
major limitations of the current art in coping with com-
plex, multi-attribute queries and define the examples
included as highly specialized techniques of narrow
utility.

Knuth provides an example on page 554 of an “or-
thogonal range query” (two perpendicular dimensions).
He proposes partitioning the two dimensions into
ranges, but only for the limited purpose of defining a
combined class which is equivalent to the product of the
two dimensions (i.e. area or domain). He then proposes
forming an inverted list of record numbers correspond-
ing to these product classes, each corresponding list
including any records whose dimensions would be en-
compassed by the product class. Knuth finally proposes
processing this list for all product classes which may
encompass any set of values of both dimensions which
are included in a specification defining upper and lower
limits for each dimension (i.e. areas within the domain).
This isolates all records which fail within the specified
ranges, but also includes many records which satisfy
one of the two range specifications but not both. Be-
cause the ranges of Knuth’s method depend on two
attributes, the lack of specificity for each range/product
class is compounded. For example, if the values satisfy-
ing a query were included in a set of elements falling
between the midpoints of two adjacent ranges for each
of the two dimensions, both Knuth’s proposal and the
present invention would be 25 percent efficient (i.e., 1
value out of 4 selected would actually meet the specifi-
cation). However, if the number of ranges were doubled
for both methods, every selection by the present inven-
tion would meet the specification (i.e., 100 percent effi-
ciency), while Knuth’s proposal would still produce 1
invalid record for each correct one (i.e.,, 50 percent
efficiency). Hence, additional complex processing is
necessary to discard these irrelevant records.

Although this approach emulates a few of the func-
tions of the present invention for limited and specialized
information retrieval requirements, the structure pro-
posed by Knuth is inherently multidimensional; queries
referencing only one of the attributes described by this
multidimensional structure radically reduce the effi-
ciency of utilizing this structure to find records satisfy-
ing the query. Thus, a dominant distinction is that
Knuth’s proposal (as he points out) cannot be straight-
forwardly extended to efficient interaction with other
such lists to satisfy the general case of queries where the
combinations of attributes referenced in the query are
determined dynamically and not known a priori. Con-
versely, the ability to define correspondences in the
form of “topological maps” which may be rapidly
searched and which are compatible with the concurrent
processing of any number of dimensions or types of
information is an important feature of this invention. A
considerable number of additional distinctions will be

GN 007150

4,811,199

5
apparent from the detailed specifications, but the above
is clearly sufficient to distinguish this invention from the
prior art.

It will be evident to those skilled in the art that the
scope of this invention encompasses numerous varia-
tions and that references to specific preferred embodi-
ments are illustrative and not limiting. Thus, means
incorporating parallel processors, dedicated logic pro-
cessors, optical devices and so on and methods utilizing
inverted maps, dual cross-coded maps and so on, sepa-
rately or in combinations will be seen as synergistic
embodiments which are clearly within the spirit of this
invention.

DESCRIPTION OF THE DRAWINGS

Further features and aspects of the invention will
become apparent from the detailed description and
illustrative example which follow, and from the accom-
panying drawings, in which:

FIG. 1is a block schematic representation illustrating
the primary elements of the system of the present inven-
tion; and

FIG. 2 is a block schematic representation illustrating
an arrangement of microcomputers suitable for imple-
mentation of the present invention in a parallel process-
ing environment.

DESCRIPTION OF ILLUSTRATIVE
EMBODIMENT

The present invention is essentially a contextual refer-
ence information retrieval system. Given any reference
to information by content of the information, this sys-
tem efficiently retrieves information matching the spec-
ification.

As illustrated schematically in FIG. 1, the system,
generally indicated by the reference character 10, is
used to access and manipulate an information base 12
which is stored in a storage device 14. The information
base 12 is comprised of one or more information ele-
ments. Each information element is comprised of one or
more attributes (or fields), one or more of these attri-
butes having an orderable value. By “orderable value”
is meant that the attribute of the element has a value
capable of being evaluated and being placed in some
order in relation to the value of that attribute for other
elements in the information base. This may include
numbers, characters of the alphabet, symbols, codes,
etc. The system 10 consists of two subsystems: an input
subsystem 20, and an output subsystem 30.

The input subsystem accepts input from an input
device 22. The input device 22 is capable of receiving
information base elements where an information base
element is comprised of one or more attributes and the
corresponding values for these attributes. The input
subsystem 10 is used to process the individual informa-
tion elements as they are input to the information base,
or as changes or deletions are made and to produce
processed representations or “topological maps” 16 of
the attributes of the information base elements. The
topological maps 16 are stored in the storage device 14
for subsequent use by the output subsystem 30.

The output subsystem 30 is given a query 32 as input,
i.e., a reference to the information on the basis of a
specification of the values of one or more attributes.
The query 32 may be entered into the output subsystem
30 by any suitable input device, and may for example,
utilize the same input device 22 as is employed by the
input subsystem 20. The output subsystem 30 then uti-

15

20

35

40

45

50

55

60

65

6
lizes the storage device 14 to retrieve the topological
maps 16 of the attributes referenced by the specifica-
tion. These topological maps are then manipulated in
accord with the query, the end result being one or more
output maps 18 indicating information elements which
either:
(1) Do meet the specification, or
(2) May meet the specification, or
(3) Do not meet the specification.

The output map thus defines a “superset” of the infor-
mation elements in the information base which meet the
specification of the query. It is a superset because some
of the elements “may” satisfy the query.

The output map which is generated indicates which
of the elements in the superset do meet the specification
of the query and which of those elements may meet the
specification. Those elements which the map indicates
do meet the specification are known with certainty
without ever having accessed or inspected the stored
information elements themselves. Now, only those ele-
ments which the output map indicates may meet the
specification are accessed and inspected to determine
which ones do meet the specification. The results of the
query are communicated to the user by an output device
34. As will become apparent from the illustrative exam-
ple which follows, the output subsystem is capable of
rapidly resolving various kinds of queries, including
queries as to exact values of certain attributes, range
queries, and complex queries about multiple attributes
using Boolean logic.

The specific configuration of the storage device 14 is
not critical, and may take various forms depending on
how the present invention is implemented. In a mi-
crocomputer implementation, for example, it is desir-
able that at least a portion of the data storage device
comprise high speed random access memory, such as
semiconductor memory for example. The topological
maps would be loaded into the high speed random ac-
cess memory during resolution of a query to facilitate
manipulation and processing of the maps. Additional
data storage —e.g. for permanent storage of the infor-
mation elements of the information base and topological
maps—can be handled by other suitable data storage
means such as magnetic media, bubble memory devices,
optical (laser) memory devices, etc.

For illustrative purposes, we will consider an exam-
ple of applying this technique to an information base
composed of elements represented by fixed length
ASCII records. Each element in the information base is
comprised of attributes; each attribute type can be ei-
ther “Alpha”, meaning that it can store characters or
digits, or “Integer™ meaning that it can store an integer
value (represented as an ASCII string of digits). The
attribute list for the elements of this information base is
shown below:

Attribute Name | Type [|Length!
NAME Alpha 10
SALARY Integer 4
JOB-ID Integer 4
The contents of this sample information base are:
Record

Nuxlnbem

v

GN 007151

4,811,199

7
-continued
NAME | SALARY [JOB-ID
0 | Bob 7500 5371
1 |Joe 6150 3475
2 | Jim 1900 7249
3 | Bill 4300 1537
4 | Ridge 6300 6492
s | Jeff 8900 894
100 | Kim 2400 1564
101 | Beverly 3700 2198
102 | Jane 5350 3642

103

Thus, the information base contains 103 records
(since we started numbering with 0), and slot 103 is
currently the End of File for this information base.

Using the above as the information base, a description
of the process is given below.

Input Subsystem

(a) Range Definition

Before the topological maps may be created, a range
definition must be created for each attribute. The range
definition comprises one or more unique ranges of val-
ues for the attribute, i.e.,, a lower bound and upper
bound for this attribute. Collectively all the ranges
which make up the range definition for the attribute
must include all possible values of this attribute for all
elements in the information base, i.e., for every possible
attribute value there must be at least one range which
includes that value. One way to determine such a range
definition is to arbitrarily define these ranges. An exam-
ple of a “range definition” is:

Range Number > <=
0 — o 300
1 300 700
2 4000 7372
3 5700 9300
4 700 4000
5 7372 + @

An information element is said “to map” to a particu-
lar range of an attribute if the value of the attribute for
that information element is included in said range. The
attribute value is also said to map to that range.

Some examples of values and the range(s) to which
they map for this definition are:

Value Range Number(s)
4563 2
5900 23
12 0
479 1

Although the ranges may be constructed to overlap,
as shown above, advantageously, these ranges are con-
structed to be mutually exclusive so that any given
value of an attribute maps to exactly one range in the
range definition. Additionally, it is in general advanta-
geous to have approximately equal number of informa-
tion elements map to each range of an attribute. This
can be done by taking a sample of the information ele-
ments in the information base and selecting a range
definition such that an equal number of the information
elements in the sample map to each range, i.e., the range
definition “equi-partitions” the sample. Assuming the

10

—

5

20

25

35

45

50

55

65

8

size of the sample was large enough to be statistically
significant, this range definition will also serve to ap-
proximately equi-partition the information base as a
whole.

Additionally, a unique code/representation is associ-
ated with each of the ranges for an attribute. Thus, if a
range definition with 250 ranges were created, the
range including the lowest attribute values would be
assigned a 0, the next lowest range a 1, and so on up to
249 for the highest range.

This advantageous range definition for an attribute
can be effected by this method:

(a) Determine the number of ranges to be in the range
definition, NUM-RANGES. (A typical value of NUM-
RANGES is 250.)

(b) Take (NUM-RANGES * SAMPLES-PER-
RANGE) samples from the information base, and array,
the SAMPLE-ARRAY. (A typical value of SAM-
PLES-PER-RANGE is 30.)

(c) Sort the entries in SAMPLE-ARRAY into as-
cending order (based on the ordering rule appropriate
for this type of attribute).

(d) Then every SAMPLES-PER-RANGE’th entry
is selected from SAMPLE-ARRAY to serve as the
upper-bound for a range (the lower bound being defined
by the previous upper bound). This result is stored in
RANGE-DEF-ARRAY. Finally, the last value stored
in RANGE-DEF-ARRAY is the highest value possible
for this attribute.

To take a specific example, consider the case of our
information base described above. Assume that we wish
to create a range definition for SALARY, NUM-RAN-
GES=38, and SAMPLES-PER-RANGE=>5. Thus, we
must take (NUM-RANGES * SAMPLES-PER-RAN-
GE)=(8 * 5)=40 samples from the information base
transferring the value of SALARY from the informa-
tion base element selected to an entry in the SAMPLE-
ARRAY. Graphically, the sampling operation can be
seen as:

SAMPLE-ARRAY
NAME | SALARY [JOBID

0 | Bob 7500 5371 0 3475

1| Joe 610 | 3475 1 o492

2 | Jim 1900 | 7269 :

3 |Bin 4300 1537 :

4 | Rigge 6300 o2 | ¥

s | Jefr 8900 894

100 | Kim 2400 1564

101 | Beverly | 3700 | 2198

102 | Jane 5350 | 3642

103

Now that we have SAMPLE-ARRAY filled with
sample values, the array is sorted in ascending order.
Once it is sorted, every SAMPLE-PER-RANGE’th
value of the sorted SAMPLE-ARRAY is used as the
upper bound for a range. Graphically, this process can
be seen as:

GN 007152

4,811,199

SAMPLE-ARRAY RANGE-DEF-ARRAY

19

21
n
23
b1
5
26
27
28
29

The end result of this process is that RANGE-DEF-
ARRAY looks like this:

0 VD LN O

Input Operation

The input procedure comprises the following pro-
cessing steps:

(A) Inputting one or more information elements each of
which has one or more attributes, each attribute hav-
ing a value.

(B) For each attribute element
(1) For each information element

(a) Determine the range to which the attribute
maps using the range definition defined for this
attribute.

(b) Store the code representing the range to which
this attribute value mapped in a location in this
attribute’s topological map which corresponds
to this information element’s record number.

To determine the range to which a value VALUE
maps, the following algorithm is applied:

(a) FOR i :=0 TO NUM-RANGES
(1) IF RANGE-DEF-ARRAY[i]>=VALUE

GOTO EXIT

(b) EXIT: RETURN());

So, i is incremented until we find a boundary value
which is greater than or equal to the value. At this
point, the index into the RANGE-DEF-ARRAY is the
range number for this value of this attribute.

Graphically, this process can be seen as:

10

15

20

25

30

35

40

45

55

65

10
Record
Numbers
ALARY
Maps to 'opological
SALARY Ma;
] 7500 [=——=> 0 |6
1 6150 |[—> 1 |5
2 1900 |=——=> 2 [1
3 430 |—> 3 |2
4 6300 |—=> 4 |5
5 8900 |——>> 5 |7
100 2400 | == 100 |1
101 3700 | —>101 |2
102 5350 | ——> 102 |4
103 103

The information base has been stripped in the above
illustration to show just the SALARY attribute, as this
is the attribute which we are concerned with inputting.
The method described above is used for each value to
determine the range to which it maps. The correspond-
ing range number for the range to which the value maps
is then stored in the SALARY topological map in cor-
respondence with the record which gave rise to it. In
this case, the correspondence is kept by using the record
number for each information base element as the offset
into the topological map in which to store the range
number for the information element.

For further illustration, consider a new element to be

added to the information base:

NAME SALARY JOB-ID

Jo Jo 2200 8391

This record is stored at the end of file (EOF):

[NAME | SALARY [JOB-ID

100 |kim [2400 1564

101 | Beverly | 3700 2198
102 { Jane 5350 3642
103 {Jo Jo 2200 8391
104

A new topological map entry is made as follows:

GN 007153

4,811,199

11
Record
Numbers
Maps To |SALARY
‘Topological
SALARY M"L_____
100 | 2400 —>100 |1
101 | 3700 —>101 |2
102 | 5350 —>102 |4
103 | 2200 ——>103 |1
104 104

One optimization which can be important to the
method functioning efficiently is the concept of a “‘cor-
rection map”. If the above method is literally applied to
an information base, then each time a new information
base element is added or an attribute of an existing infor-
mation element is changed, an update is required for
each attribute’s topological map. In the case of our
example information base there are three attributes.
Therefore, each record being added will require three
accesses to update the topological maps. In the case of
an information base wherein each element is described
with 12 attributes (not uncommon), this would require
12 accesses being made per clement added. For our
example information base, if 100 elements were added
to the information base, then (100 * 3)=300 accesses
would be required.

However, we can define a correction map, where this
“correction map”’ can store the range number for every
attribute of an information element. Thus, when a new
record is added, only one update need be made instead
of three; this one update will be made to the correction
map. The correction map entry will have the record
number of the added information element along with
the range number for each attribute. When the map for
an attribute is retrieved, the correction map is also
loaded, and each entry in the correction map is pro-
cessed to update the memory image of the attribute map
to get a 100% up-to-date map.

Later, all of the entries in the correction map may be
processed together to update the topological map for
each attribute. In the case of our example, since 100
elements have been added, and since they were all
added at EOF, the elements of the topological map to
be updated will all be located in the same physical
block. Thus, we only require 1 access for each attribute,
in which all 100 entries may be added to the topological
map. The total number of accesses required for the
“raw” application of the method was (100 * 3)=300
accesses. With this improvement, however, only (100 *
1)+(3 * 1)=103 accesses were required. We have thus
reduced the storage device 1/0 requirements by about
3:1.

Output Subsystem Operation

One general form of query is called a Boolean query.
It is defined to be one or more range queries joined by
AND, OR, or NOT. A range query is query in the form:

(< value> Sattribute name > Svalue>)

10

15

20

25

30

35

45

50

35

65

12
In the case of our example information base, a range
query might be:

(3000=SALARY =4500)

This query means that we would like to retrieve all
information base elements which have a value of the
attribute SALARY which is between 3000 and 4500.

The output procedure consists of receiving a query as
input, and then producing a superset of those records
which meet the query specification. This production of
a superset given a query is termed ‘‘resolving” the
query.

The result describes for each information element in
the information base one of three states of the element
with respect to the query:

(a) NO.

This element does not meet the specification.
(b) YES.

This element does meet the specification.

(c) MAYBE.

This element may meet the specification. Due to

quantization error with the ranges, we are not certain

whether or not this information element meets the
specification.

The method for resolving a range query utilizing the
topological maps created by the input process will be
shown first. Next, the resolution of a query which in-
volves Boolean combination of range queries will be
shown.

Range Query Resolution
Consider a query of the form:

(<low-value > = <attribute > = <high-value>)
An example of this query is:

(4500=SALARY =6350)

For the following discussion, ACCEPTABLE is an
array of integers which has one entry per range of the
attribute. Each element in this array may have one of
three values:

(a) NO_VALUE:

Indicates the elements having this range number

would definitely not meet the range specification.

(b) YES_VALUE:

Indicates the elements having this range number

would definitely meet the range specification.

(c) MAYBE _VALUE:

Indicates the elements having this range number may

or may not meet the range specification.
The method for resolving this range query is:
(NOTE: map(value) returns the range number of this
value for an attribute).
(a) Generate ACCEPTABLE array. This allows the
range query to be resolved for an information ele-
ment by a straight look up in the ACCEPTABLE
array given that element’s range number.
(1) Set low-range =map(low-value).
(2) Set high-range =map(high-value).
(3) FOR i :=0 TO (low-range —1)
(a) ACCEPTABLE][i]:=NO_VALUE.

4 ACCEPTABLE[low-range]:=MAYBE_.
VALUE.

(5) FOR i :=(low-range+1) TO (high-range —1)
(a) ACCEPTABLE[i]:=YES_VALUE.

(6) ACCEPTABLE[HIGH-RANGE]:=MAYBE_..
VALUE.

GN 007154

4,811,199

13

() FOR i :=(high-range+1) TO MAX_ RAN-

GE_NO
(a) ACCEPTABLE[i]:=NO _VALUE.

(b) Retrieve the topological map for this attribute, and
store in TOPOLOGICAL-MAP. TOPOLOGICAL-
MAP is an array of integers.

(c) Create a map, OUTPUT-MAP, which has one entry
per entry in TOPOLOGICAL-MAP. OUTPUT-
MAP is an array of integers.

(d) FOR i :=0 TO (NUM-ENTRIES-IN-MAP-—-1)
(1) OUTPUT-MAP[i]:=
Every entry in OUTPUT-MAP now contains either

NO_VALUE, or YES_VALUE, or MAYBE

—VALUE, indicating whether or not the correspond-

ing information base element does not meet the specifi-

cation, does meet the specification, or may meet the
specification, respectively.

Graphically, the creation of the ACCEPTABLE
array for a query (such as 3300=SALARY =7300) can

be seen as:
ATTRIBUTE
Range Numbers———=>>
0 1
| | |
I '~ | N
low-value

NOTE:
o X and +'s in between X's represent values of interest
o N: No.
Y: Yes
M:Maybe.

Thus, values mapping to range O or | are clearly not
within the specification. Values mapping to Range 2
may be in the specification, as some values mapping to
this range are within the range specification, and some
values mapping to this range are outside of the range
specification. Values mapping to ranges 3, 4, or 5 are
within the specification. Values mapping to range 6 may
or may or may not be in the range specification for the
same reason given for range 2. Finally, values mapping
to range 7 or 8, are not within the specification.

The creation of the OUTPUT-MAP can be seen as:

Attribute
Topological
Ma;

Output
Map

100
101
102

103
104

—>100
—>101
—>102
—>103

104

I—&p-‘-
|Z-<Zz.

Boolean Query Resolution

In general, the range queries described above can be
joined together with AND, OR, and NOT to create a
more complex query. Examples are:
((3500=SALARY =5000) AND (2130=JOB-CODE

=2240))

5

20

14
((7200=SALARY =7900) OR

CODE = 5000))
((7200=SALARY =7900) AND (NOT (4160=JOB-

CODE =5000)))

The Range Query Resolution described above allows
us to resolve the individual range queries, but the
method for handling Boolean combinations of logic has
not been disclosed. The Boolean combinations of range
queries are handled by the following general method:

(a) Resolve each of the range queries in the Boolean
query, placing the result in a different map (intermedi-
ate output map) for each range query.

(b) Logically combine the results (intermediate out-
put maps) for the range queries according to the Bool-
ean query.

The truth tables for each of the Boolean operators are
given below:

(4160=JOB-

AND

2 3 4 5 6 7 8
1 xxxxx+xx+xxx+xx+xxx—+——}———“+
/]\M Y Y Y M/F NI N

high-value

40

45
A |B |AANDB
N |N N
N M N

50 N|Y N
M|N N
M| M M
MY M
Y N N
Y M M

35 v |y Y

65

This truth table should be fairly evident simply on
common-sense application of the meanings of these
terms in real life. E.g, N AND Y=N. If something
should be both (2) and (b) and if it is (b) but is not (a),
then (a) and (b) is not true. Another example: Y AND
M=M. If something should be (a) and (b), and we know
it is (a) and it may be (b) then it may satisfy (a) and (b).

GN 007155

4,811,199

15

-continued
A|B |AORB
N |N N
N M M
NJY Y
M|N M
MM M
M|Y Y
Y |N Y
Y IM Y
Y|Y Y

Again, this is fairly evident from common-sense ap-
plication of the meanings of the terms.

NOT

NOT A

<~ ZZ »
Z X

Consider the example of (2000=SALARY =5250).
Then, the values of interest would be:

LI

2970 5100 6940 9280
(Range Definition Values)

Then clearly, 0is N, 1is M, 2-3is Y, 4 is M, and 5-8
is N. If we consider (NOT (2000=SALARY =5250)),
then the values of interest are:

0 1 234 5 6

7 8
|XXXX IXXI } XXIXXIXXXXXIXXP(XX"'"I

T

2970 S100 6940 9280
(Range Definition Values)

In this example, clearly range 0is Y, 1 is M, 2-3is N,
4 is M, and 5-8 is Y. Thus, the Y ranges turned to N
ranges, the N ranges turned to Y ranges, and the M
ranges stayed M.

Discussion and Examples

Thus, if we had a query of the form:

(RANGE-QUERY-1 AND RANGE-QUERY-2)

RANGE-QUERY-1 would be resolved, and the result
placed in OUTPUT-MAP-1. RANGE-QUERY-2
would be resolved and placed in OUTPUT-MAP-2.

10

20

[
wn

40

45

50

55

65

16

Then, OUTPUT-MAP-1 would be AND’ed with
OUTPUT-MAP-2 according to the truth table given
above for AND to give an output map RESULT. RE-
SULT indicates those information elements which do
meet the specification, those which do not meet the
specification, and those which may meet the specifica-
tion.

Now, to consider a specific example, let’s say we had
a query:

((3500=SALARY =5500) OR
(1300=JOB-ID =2300))

The range definition for SALARY given above and
the acceptable array for this query looks like;

SALARY SALARY
Range Acceptable

Definition
1380
2970
4450
5100
6130

8570
9280

ZZZZZTRZTZZ
| 5

RN NS W —O

AN E LN -D

The range definition for JOB-ID (which was not
specified previously in this example) looks like:

JOB-ID JOB-ID
Range Acceptable
Definition Array

0] 300 0N

1] 735 1|N

2] 1750 2| M

312128 3lY

4 | 2700 4 1M

5| 3400 5|IN

6| 4300 6| N

71| 4750 7IN

8 ® 8| N

Considering the first portion of the information base,
we have:

NAME | SALARY | JOB-ID
0| Bob 7500 5371
1| Joe 6150 3475
2| Jim 1900 7249
3| Bill 4300 1537
4| Ridge 6300 6492
5| Jeff 8900 894

The topological maps and output maps for the SAL-
ARY and JOB-ID terms are:

GN 007156

4,811,199

17 18
(2) Corresponds to the code % 8 (% means modulus
division).
Thus, if we have a record which has an attribute value
,SrAL‘i“RY (S)*:L“‘RY corresponding to code 28, we set two bits in the bit-
M‘:‘:’ ogical Ma':“‘ 5 maps corresponding to this record. We set the bit corre-
sponding to (28 / 8)= =3 in map 1. We set the bit corre-

6

Wb W~ O
NN e e
(7Y QRSN

c ZZZXZ2Z22Z

JOB-ID

Topological
Map

JOB-ID
Output

AR WN =D
- 22222722 5
-]

(7 QRN
[N

Thus, combined (OR’ed together), we have:

SALARY JOB-ID Query

Output Output Output

Map Maj Maj
0N o N0 [N
1[N 1 |N 1]|N
2N 2N 2N
3IM IM 3| M
4 IN 4N 4 |N
SIN S| M S| M

S —— ——]

Thus, records 0, 1, 2, and 4 have been eliminated from
consideration, and records 3 and 5 may or may not
satisfy the query.

VARIATIONS AND OTHER APPLICATIONS
Representation of maps

The topological maps used in accordance with the
invention may be represented in various manners. The
standard representation is usually thought of as an array
of codes, each code corresponding to an information
element or record of the information base. Another
possible representation is to have one bit-map per re-
cord, each bit corresponding to a given code. Another
possibility is to have one bit-map per set of records,
setting the bit corresponding to each code to which the
attribute values in the set map. Still another possibility is
to have a multi-level bit-map.

For example, with 64 codes, ordinarily, we would
think that it is necessary to have a bit-map with 64 posi-
tions on it. However we can reduce this storage require-
ment to only 16 bits.

Construct two sets of bit-maps:

(1) Corresponds to the code / 8 (/ means integer divi-
sion).

25

30

35

43

50

55

60

65

sponding to (28 % 8)==4 in map 2.

To get the bit-map corresponding to any code, e.g.,
code 35, we fetch the bit-map corresponding to (35 /
8)==4 in map 1, and the bit-map corresponding to (35
% 8)==3 in map 2. By ANDing these two maps to-
gether, we have a map indicating exactly those records
which have an attribute which maps to code 35.

The same can be done for multiple records per bit,
only in that case some uncertainty is present when re-
generating the maps, i.e., the map recreated for code 35
would not necessarily contain only records which have
an attribute which map to code 35. However, this error
is statistically controllable.

These bit-maps are most advantageously stored bit-
wise, i.e., the bit 0’s of all the maps would be stored
together, then all of the bit 1’s, then all of the bit 2’s, etc.
Thus, when presented with a range query, simply re-
trieve all the maps corresponding to the desired range(s)
and OR these together to form a map indicating all
subsets of records which do not contain a record in the
specified range(s).

Derived attributes

Not only is it possible to create and store maps for
attributes which are stored directly in the information
element, but it is also possible to store maps for attri-
butes which are calculated from the fields in the infor-
mation base. For example, if we have a database having
personnel records containing both the individual’s gross
income and tax rate, then we may get any number of
queries referring to net income, i.e., (gross income * tax
rate). We can store in correspondence with the data-
base, a map of net income, where each time the record
is stored, the net income is calculated and then a map
entry stored as with any attribute. Then, when a query
is received referencing net income, this map may be
used to isolate the records, without ever having to cal-
culate any values.

The full scope of the term “derived” can be extended
a little by the following example. If instead of having
the tax rate stored directly in the record, let’s say we
store gross income and deductions. Based on gross in-
come and deductions, a look-up in another database
may be performed which results in determining the tax
rate. We can store the net income map as described
above, if when each record is stored, we look up the tax
rate given the information in the record, and calculate
net income and store a map entry. The point here is that
“derived” does not necessarily mean straightforward
computations. They can be values looked up in a data-
base, or derived from an expert system for that matter.

Multiple records per representation

It is possible to extend the concept of the subset of
records to encompass having more than one record as
long as the logic utilized to manipulate the maps is con-
sistent.

To consider an example, let’s say we have a database
containing multiple personnel records. We can choose
to represent the range(s) to which a subset of records
maps by a bit-map, this bit-map containing one bit for
each range. Then, given a subset of records, we deter-

GN 007157

4,811,199

19
mine the ranges to which the values of the attribute of
the individual records map. Then, we set the bits corre-
sponding to these ranges.

When given a range query on this attribute, we can
set up a bit-map containing a 1 in all bits which corre-
spond to ranges that fall within or overlap with the
query range. Then, each entry in the map is AND’ed
with this mask, and if any non-zero bits are found in the
result, then this subset may contain one or more records
which meet the specification, otherwise, we have elimi-
nated this subset with certainty. Graphically:

0O 10 20 30 4 50 60 70 80

Thus, bit 0 will have a 1 in it if a record in the subset
has a record with (0= Age < 10), bit 1 will have a 1 in it
if a record in the subset has a record with (10=A-
ge <20), etc. For example, say we have two personnel
records per subset, and a subset contains these two
records.

Name: Bill
Age: 25
Salary: 35000

Name: Jim
Age: 32
Salary: 42000

Then, the attribute map representation for Age for
this subset would be calculated as:

0—0—1—1—0—0—0-—0
The calculation is:
Bit 0o 1 2 3 4 S5 6 7

l[oJoltfifoloftoe]ol]

Age
0O 10 20 30 40 S0 60 70 80

Since Bill has (Age==25), (20=Age<30), which
means set bit 2. Jim has (Age==32), (30=Age<40),
which means set bit 3.

Please note that the number of records per subset for
two maps could be different, and the maps may still be
used together.

Data Analysis

The principles of the present invention can be readily
applied to detect correlations in data among two or
more variables. Given two or more variables, and maps
for these variables, it is very straightforward to deter-
mine if there may be correlations among these variables.
For example, let’s say that we have two variables which
apply to all records in a database, Age and Salary, and
assume that Age and Salary are each partitioned into 50
ranges.

If we wish to determine if there is a correlation be-
tween Age and Salary, this can be done by creating a
(50 50) array of integers. Initially, we set each position
to 0. Then, we fetch the maps corresponding to Age and
Salary. The codes for Age and Salary for each record
together make up an ordered pair which can be used a
reference to a specific element in the (50X 50) array.

—_

0

20

25

30

35

45

50

60

20
For each record, using the code for Age and the code
for Salary, we create such an ordered pair, and then
increment the corresponding array element by 1. This
process is repeated for each record in the database.

At the end of this process, we have an array of
counts. Statistically, since we know the number of re-
cords in each range for both Age and Salary (we can
just count them to determine this), we can estimate the
expected number of records in each *“grid-point” (i.e.,
intersection of an Age range and Salary range) if the
two variables are independent of one another. By com-
paring this number with the actual number of records
counted, it may be determined if a statistically signifi-
cant difference between the number of records expected
to be observed and actually observed is present; this, of
course, serves as the basis for stating that there is a
correlation (or not) between these two variables.

There are two extensions to this process:

(1) Extend it to n variables from 2. Le., we can have
three variables if we set up a 3-d matrix.

(2) Examine only a subset of the total information
base. E.g., we may never see a correlation in the above
(between Age and Salary) until we limit the records for
consideration to be from a single profession. Then, the
correlation seen would be quite profound.

Thus, using our standard query techniques, we can
narrow the sample down to a relevant subset of the
records in the entire information base.

Implementation on a Microcomputer

From the foregoing illustrative example, and the
description of the process and algorithm given therein,
persons skilled in programming of digital computers
will readily appreciate that the system and process of
the present invention is capable of being implemented
and utilized with computers of various types architec-
tures and sizes, including microcomputers and main-
frames, and using various programming languages and
techniques. For example, a database storage and re-
trieval system utilizing the procedures described in the
foregoing illustrative example has been implemented for
the IBM-AT computer. In tests utilizing such a system
for retrieving data records from a test file of approxi-
mately 15,000 records, 1.3 megabytes in size, this system
demonstrated an ability to access and retrieve records at
least 80 times faster than the most popular commercially
available database system.

A microfiche appendix of the program listing of this
computer program is included with this application in
accordance with 37 CFR Section 1.96(b). It is to be
understood that this listing is not intended as limiting,
but rather is provided for purposes of further illustrat-
ing the broad applicability of the present invention and
how the principles and methods of this invention, which
are fully disclosed elsewhere in this application, may be
implemented in a microcomputer environment.

Parallel Processing Techniques

All of the methods disclosed herein are easily done in
parallel. This is due to the fact that this entire system is
based on maps, which are fundamentally arrays of
codes. The arrays are easily partitionable into mutually
exclusive, independent segments, which may then be
operated on in parallel.

For example, let’s assume we want to make an AT-
based system which runs 4 times as fast as a standard
AT system. Connect 4 independent systems so that they

GN 007158

4,811,199

21

may communicate over some network connection, as
illustrated in FIG. 2. When a record is added, ATO
determines which record number should be used for
this newly added record, rec-num. Now, take (rec-num
MOD 4), which results in a number between 0. .. 3.
Now, let AT# take custody of this record, where
#==(rec-num MOD 4). Thus, we in effect evenly
distribute the records among the 4 ATs. Now, let’s
assume that we receive a query. ATO can transmit the
query to the other AT’s on the network. Each AT will
begin processing the query on its one-fourth of the
information base, this processing going on in PARAL-
LEL. Then, each AT can transmit its results (e.g., an
array of matching record numbers) back to ATO, so the
user sees an effective query processing time of one-
fourth.

To take another example, consider the above Data
Analysis example where we are trying to determine a
correlation between Age and Salary. Given that we
have distributed the maps as described above, this distri-
bution analysis can be conducted in parallel on each of
the four machines. The result of this analysis is a
(50X 50) array of integers. After each machine has fin-
ished computing the array for its section of the data-
base, these arrays can be transmitted to AT0. ATO can
then add the (50X 50) arrays resulting in one (50X 50)
array fully describing the distribution for the entire
database. Thus, although the work per node is not quite
divided by 4, for a large number of records it very
nearly is.

Dedicated Architectures

A primary advantageous application of the present
invention is to simplify data relational operations into
straightforward manipulations which can easily be han-
dled by a digital computer. However, further optimiza-
tion can be obtained by designing specialized hardware
to do these simple functions.

Often when processing a query, an array of integers,
each integer corresponding to a range (an “acceptabil-
ity table™), is used. For example, an array entry will be
3 if the corresponding range meets the query specifica-
tion, 1 if the corresponding range may meet the query
specification, and 0 if the corresponding range does not
meet the query specification. The map for the attribute
is then retrieved, and each entry in the map is processed
in turn, causing a look-up into the array of integers, and
if the entry in the array of integers is 0, then this record
is eliminated from consideration, by writing a 0 in the
position in the “acceptability map” corresponding to
this record. It is straightforward to build a specialized
chip which performs only this specific action. The “ac-
ceptability table” could be loaded directly on the chip at
the start of the operation, a count of number of entries
in the map to process as well as two vectors: one to the
map for the attribute, the other to the *“acceptability
map”. Then, the chip could begin processing, the pro-
cessing rate greatly improved because:

(1) No bus bandwidth would be utilized with instruction
fetches. Hand in hand with this is the fact that no
execution time is spent decoding instructions. The
logic is hard-coded in the operation of the chip.

(2) No bus bandwidth is utilized to *“acceptability table”
look-up, since this table is loaded directly on the chip.

In effect, the chip can be processing one record per two

bus cycles.

To extend this a bit further, the dividing line between
software and hardware is very arbitrary. In general due

10

20

25

30

35

40

45

50

55

60

65

22
to cost considerations, only very general pieces of logic
are implemented in hardware and then levels of soft-
ware are used to build functionality using that hardware
base. In the case of the present invention, this hardware
synthesis can be expected to be particularly advanta-
geous, as the basic operations are straightforward and
are generally applicable to all applications of the pres-
ent invention.
That which we claim is:
1. A system for storing and manipulating information
in an information base, said system comprising
(a) an information storage device;
(b) a plurality of information elements stored in said
storage device, each information element having at
least one attribute with an orderable value, and
(c) a topological map stored in said storage device for
each said attribute, said map comprising
(1) means for representing a predetermined number
of ranges of attribute values, which ranges col-
lectively include the attribute values for all infor-
mation elements in the information base; and

(2) means defining a correspondence between each
of said information elements and the ranges to
which they map.

2. A system as defined in claim 1 additionally includ-
ing

(d) an input device cooperating with said information
storage device for receiving a query having specifi-
cations based upon specified parameters related to
an attribute of the stored information elements; and

(e) means responsive to receipt of a query for access-
ing said topological map based upon said query and
for identifying from said map, without inspection
of the information elements, information elements
in the information base which are known to meet
the specifications of the query.

3. A system as defined in claim 2 wherein said means
(e) also includes means for identifying from said map,
without inspection of the information elements, infor-
mation elements in the information base which are
known not to meet the specifications of the query.

4. A system as defined in claim 2 wherein said means
(e) also includes means for identifying from said map,
without inspection of the information elements, infor-
mation elements in the information base which may
meet the specifications of the query.

S. A system as defined in claim 4 including means for
inspecting only those elements of the information base
which may meet the specifications of the query and for
identifying which of those elements do meet the specifi-
cations of the query, whereby all of the information
elements of the information base which meet the specifi-
cations of the query are identified.

6. A system as defined in claim 1 additionally includ-
ing

(d) an input device cooperating with said information
storage device for receiving a query having specifi-
cations based upon specified parameters related to
an attribute of the stored information elements; and

(e) means responsive to receipt of a query for access-
ing said topological map based upon said query and
for generating therefrom an output map having
elements which correspond to each of the informa-
tion elements in the information base and which
indicate whether each respective information ele-
ment does, does not or may meet the specifications
of the query.

7. A system defined in claim 6 additionally including

GN 007159

4,811,199

23

(f) means for inspecting only those information ele-
ments of the information base which were indi-
cated in said output map that they may meet the
specifications of the query and for identifying
which of those elements do meet the specifications
of the query, whereby all of the information ele-
ments of the information base which meet the spec-
ifications of the query are identified.

8. A system as defined in claim 1 wherein the infor-
mation elements stored in said storage device each have
a plurality of different attributes, and wherein said sys-
tem additionally includes

(d) an input device cooperating with said information
storage device for receiving a query having specifi-
cations based upon Boolean logic related to a plu-
rality of the attributes of the stored information
elements and to specified parameters related to the
attributes;

{(e) means responsive to receipt of a query for access-
ing the topological maps for each attribute speci-
fied by said query and for generating therefrom, for
each specified attribute, an intermediate output

map having elements which correspond to each of

the information elements in the information base
and which indicate whether each respective infor-
mation element does, does not or may meet the
specifications of the attribute specified in the query;
and

(f) means for combining the respective intermediate

output maps in accordance with the Boolean logic
of the query to produce an output map having
elements which correspond to each of the informa-
tion elements in the information base and which
indicate whether each respective information ele-
ment does, does not or may meet the specifications
of the query.

9. A system defined in claim 8 additionally including

(8) means for inspecting only those information ele-

ments of the information base which were indi-
cated in said output map that they may meet the
specifications of the query and for identifying
which of those elements do meet the specifications
of the query, whereby all of the information ele-
ments of the information base which meet the spec-
ifications of the query are identified.

10. A system as defined in claim 1 wherein said means
for representing a predetermined number of ranges
comprises a plurality of codes having distinct and
unique values, and wherein said means defining a corre-
spondence between each of said elements and the
ranges to which they map comprises a series of said
codes, equal in number to the number of information
elements in the information base, with each code in the
series corresponding to a respective one of said informa-
tion elements, and with the values of the respective
codes of said series defining a correspondence between
the respective information element and the range to
which the attribute value of that element maps.

11. A system as defined in claim 10 wherein each said
topological map is represented by an array of said
codes.

12. A system as defined in claim 10 wherein each said
topological map is represented by a bit-map, each bit-
map corresponding to a given code.

13. A system as defined in claim 12 wherein the bit-
map comprises a multi-level bit-map.

14. A system for storing and manipulating data re-
cords in a computer data base, said system comprising

S

10

15

25

30

35

40

45

50

55

60

65

24
(a) a data storage device;
(b) a plurality of data records stored in said storage
device, each data record consisting of multiple
fields of data, with each field having an orderable
value;
(c) a topological map for each of said fields, each said
topological map being stored in said storage device
and including
(1) a plurality of range codes having distinct and
unique values representing a predetermined
number of ranges of values for said field, with
the ranges collectively including the field values
for all of the records in the data base; and

(2) an array of elements, equal in number to the
number of data records in the data base, with
each element in the array corresponding to a
respective one of said records in the data base,
and with each element possessing a range code
to define a correspondence between each record
and the field value to which the range code
maps.

15. A system as defined in claim 14 including

(d) an input device cooperating with said data storage
device for receiving a query having specifications
based upon specified parameters and logic related
to one or more fields of the stored data records;

(e) means responsive to receipt of a query for select-
ing the stored topological maps for the field or
fields specified in the query and for selecting rela-
tional operations corresponding to the logic speci-
fied in the query; and

(f) means for performing the selected relational oper-
ations employing the selected topological maps to
identify a superset of data records in the data base
in which is included all records of the data base
which meet the specifications of the query.

16. A system as defined in claim 15 wherein said data

storage device includes high speed random access mem-
ory into which said topological maps are loaded when
performing the selected relational operations to identify
said superset of data records.

17. A system as defined in claim 15 wherein said data

storage device comprises a plurality of computer sys-
tems interconnected to communicate with one another,
the information elements of the information base being
distributed among said computer systems and said sys-
tems operating in parallel to identify said superset of
records.

18. A system as defined in claim 14 including means

defining a correction map for storing the range codes
for every attribute for information elements added to
the information base after creation of said topological
map.

19. A method for generalized topological mapping of

an information base composed of a plurality of ele-
ments, each element having at least one relatable attri-
bute with an orderable value, comprising

(a) selecting an attribute of the elements;

(b) for the selected attribute, defining a predeter-
mined number of ranges of attribute values, which
ranges collectively include the selected attribute
values for all elements in the information base; and

(c) for the selected attribute, storing in a information
storage device a topological map defining a corre-
spondence between said elements and the ranges to
which they map.

20. A method according to claim 19 wherein each

element of the information base comprises a plurality of

GN 007160

4,811,199

25

relatable attributes, each with an orderable value, and
said method includes repeating steps (a), (b) and (c) to
produce stored topological maps for each of said plural-
ity of relatable attributes.

21. A method according to claim 19 or 20 wherein the 5
respective elements of the information base comprise

records.

22. A method according to claim 19 or 20 wherein the
respective elements of the information base comprise
groups of records. 10
23. A method for controlled topological manipulation
of an information base composed of a plurality of ele-
ments, each element having at least one relatable attri-

bute with an orderable value, in response to a query

having specifications based upon specified parameters 15
and logic related to at least one attribute of the ele-
ments, said method comprising

(a) selecting an attribute of the elements;

(b) for the selected attribute, defining a predeter-
mined number of ranges of attribute values, which 20
ranges collectively include the selected attribute
values for all elements in the information base;

(c) for the selected attribute, storing a topological
map defining a correspondence between said ele-
ments and the ranges to which they map; 25

(d) selecting the appropriate topological maps pro-
duced in accordance with step (c) for the attribute
or attributes specified in the query,

(e) selecting relational operations corresponding to
the logic specified in the query, and 30

(f) performing the selected relational operations em-
ploying the selected topological maps to define a
superset of elements in the information base in
which is included all elements of the information
base meeting the specifications of the query. 35

24. A method according to claim 23 wherein the

query is based upon specified parameters and logic

related to a plurality of attributes of the elements, and a

plurality of topological maps related to such attributes

are selected in step (d), and wherein said step (f) com- 40

prises combining the plurality of selected topological

maps in accordance with the selected relational opera-
tions to produce said superset.

25. A method for storing and manipulating informa-

tion in an information base comprising 45

(a) storing in an information storage device a plurality
of information elements, each element having a
plurality of attributes with an orderable value,

(b) for each said attribute of the elements,

(1) defining a predetermined number of ranges of 50
attribute values, which ranges collectively in-
clude the attribute values for all elements in the
information base, and

(2) storing in the information storage device a topo-
logical map defining a correspondence between 55
said elements and the ranges to which they map,
whereby a stored topological map is produced
for each of said plurality of attributes;

(c) receiving a query having specifications based
upon specified parameters and logic related to one 60
or more attributes of the stored elements;

(d) selecting the stored topological maps for the attri-
bute or attributes specified in the query;

65

26

{e) selecting relational operations corresponding to
the logic specified in the query;

(f) performing the selected relational operations em-
ploying the selected topological maps to define a
superset of elements in the information base in
which is included all elements of the information
base meeting the specifications of the query; and

(g) utilizing said superset to selectively access the
stored elements of the information base.

26. A method for storing and manipulating informa-

tion in an information base comprising

(a) storing in an information storage device a plurality
of information elements, each element having a
plurality of attributes with an orderable value,

(b) also storing in the information storage device, for
each said attribute of the elements, a topological
map which includes a plurality of range codes
representing a predetermined number of ranges of
attribute value, which ranges collectively include
the attribute values for all information elements in
the information base, and an array of said range
codes which defines a correspondence between
each of said information elements and the ranges to
which they map;

(c) receiving a query having specifications upon spec-
ified parameters and logic related to one or more
attributes of the stored information elements;

(d) accessing the topological maps for each attribute
specified in the query and generating therefrom an
output map having elements which correspond to
each of the information elements in the information
base and which indicate whether each respective
information element does, does not, or may meet
the specifications of the query.

27. A method as defined in claim 26 including the

steps of
adding additional information elements to the infor-
mation base,
creating a correction map containing, for each such
added elements, the range codes for every attribute
of the added information element, and
each time a topological map is accessed in accor-
dance with step (d), processing the correction map
to update the topological map.
28. A method as defined in claim 26 wherein the
query is based upon Boolean logic related to a plurality
of the attributes of the stored information element and
to specified parameters related to the attributes, and
wherein said step of accessing the topological maps
and generating an output map comprises
(1) accessing the topological map for each attribute
specified in said query and generating therefrom,
for each specified attribute, an intermediate out-
put map having elements which correspond to
each of the information elements in the informa-
tion base and which indicate whether each re-
spective information element does, does not, or
may meet the specifications of the respective
attributes specified in the query;

(2) combining the intermediate output maps in
accordance with the Boolean logic of the query

to produce said output map.
* L] * * .

GN 007161

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 4,811,199
DATED ‘ March 7, 1989
INVENTOR(S) : william L. Kuechler, et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

Column 13, line 11, insert -- ACCEPTABLE[TOPOLOGICAL-MAP(i]]. --
after ”(1) OUTPUT-MAP[i]:=~.

Column 25, line 49, delete ”said”.

Signed and Sealed this

Seventeenth Day of October, 1989

Artest:
DONALD 1. QUIGG

Attesting Qfﬁ('c‘l' Commissioner of Patents und Trademarks

GN 007162

