Northeastern University et al v. Google, Inc., Doc. 78 Att. 8

EXHIBIT H

Dockets.Justia.com

http://dockets.justia.com/docket/court-txedce/case_no-2:2007cv00486/case_id-106532/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/2:2007cv00486/106532/78/8.html
http://dockets.justia.com/

FNGINFERING 2
— EDITION
EDWIN D.REILLY, JR. %%

VAN NOSTRAND REINHOLD COMPANY

NEW YORK - GCINCINNATI™*TORONTO LONDON MELBOURNE

Copyright © 1983 by Van Nostrand Reinhold Company Inc.

Library of Congress Catalog Card Number; 82-2700
ISBN: 0-442-24496-7

All rights reserved. Certain portions of this work copyright © 1976 by

Van Nostrand Reinhold Company Inc. under the title Encyclopedia of Computer Science.
No part of this work covered by the copyright hereon may

be reproduced or used in any form or by any means—agraphic, electronic, or

mechanical, including photocopying, recording, taping, or information storage

and retrieval systems—without permission of the publisher

Manufactured in the United States of America

Published by Van Nostrand Reinhold Company Inc.
135 West 50th Street
New York, New York 10020

(.ﬂll \ —_ i
Van Nostrand Reinhold Company Limited [>< = i, 1D
Molly Millars Lane

Wokingham, Berkshire RG11 2PY, England

Van Nostrand Reinhold
480 Latrobe Street - ,-/w Gt
Melboumne, Victoria 3000, Australia 1 1

Macmillan of Canada

Division of Gage Publishing Limited
164 Commander Boulevard
Agincourt, Ontario M1S 3C7, Canada

151413121110987654

Library of Congress Cataloging in Publication Data
Main entry under title

Encyclopedia of computer science and engineering.

Includes index.) BARK{R j.'"«‘"lalrgppgm ”BMR"

I. Computers—Dictionaries. 2. Electronic data
processing—Dictionaries. 3. Information science—
Dictionaries. I. Ralston, Anthony. II. Reilly, Edwin D.
QAT76.15.E48 1982 001.6403°21 82-2700 3
ISBN 0-442-24496-7 AACR2 M.LT. LIBRARIES g

JUN 1 4 1984
RECEIVED

S 3

iw

In addition to refining the basic functions of gath-
ering data, current development in hardware monitors
shows a trend toward using microprocessors for process-
ing dafa during collection and for allowing the host com-
puter and the monitor to alter each other’s measurement
functions during operation. From the user’s viewpoint,
the principal differences between hardware and software
monitors are:

1. Software monitors can provide more information
on cause and effect by relating measured data to the pro-
gram steps being executed; however, care must be exer-
cised to avoid disruption of time relationships caused by
the addition of the measurement programs.

2. Hardware monitors only measure electrical events
at predetermined physical points; hence, it is more diffi-
cult to relate measurements to program activity. How-
ever, with reasonable care, data may be gathered without
interfering with the system being measured.

REFERENCES

1978. Ferrari, D. Computer Systems Performance Evaluation.
Englewood Cliffs, NJ: Prentice-Hall, pp. 32-40.

1979, Borovits, 1. and Neumann, S. Computer Systems Perfor-
mance Evaluation. Lexington, MA: Lexington Books, D. i
Heath and Co., pp. 39-56.

1981. Plattner, B. and Nievergelt, J. “Monitoring Program Ex-
ecution: A Survey.” IEEE Computer 14, No. 11 (Novem-
ber).

J. D. Noe

HASHING

For articles on related subjects see SORTING; and
TaBLE LOOKUP.

Hashing (or hash coding) is a word coined by com-
puter programmers to describe a general class of opera-
tions done to transform one or more fields (usually a key)
into a different (usually more compact) arrangement.
Probably, ‘“*hashing” was first coined because it seemed
that “hash” was being made out of integral pieces of
data. The rationale for hashing is developed more fully in
the article on table lookup, dealing with key transforma-
tion. The justification for hashing derives from being able
to convert naturally occurring, diverse, ill-structured,
scattered key fields into compact, easily manipulated
fields—usually some numeric, computer-oriented field
such as a word or double word, or a computer memory
address to facilitate subsequent references. The transfor-
mation from the natural field to the hash address is only
a one-way process, however; the natural field cannot be

HASHING 681

decoded or reconstructed from the hash. Also, the hashed
field may not represent only one unique natural field;
many natural fields could hash into the same value.

For example, suppose there is a table of automobile
part numbers that are ten numeric characters in length,
but there may be no more than 10,000 unique part num-
bers. In order to contain every possible number, the table
would have to allow 10 billion (10'") positions to handle
only 10* possible keys. A scheme can be contrived to
transform the original ten-digit key to an integer that will
represent the position of that part in a much more com-
pact table.

One simple scheme for hashing is the division-re-
mainder method: Choose 2 number close to the number
of table positions needed. Use that number as a divisor to
extract a quotient and a remainder from the dividend
(which is the original key). The remainder so obtained is
the transformed key. Using 10,000 as the divisor, the
transformed key becomes the original key modulo 10;-
000. Some examples follow.

Original Key

(Part Number) Transformed Key
00 0000 1000 1000

00 0001 0000 0

00 0001 0001 1

00 0001 0099 99

10 0001 0099 99

22 3333 4444 4444

90 0020 0110 110

99 0020 0112 112

The examples in this table were constructed to illustrate
the occurrence of duplicate transformed keys. In such
schemes, prime divisors are normally used in practice.

Ideally, the hashing scheme would convert the orig-
inal keys to transformed keys with no duplicates. While
schemes can be constructed to minimize collisions (hash
clash) their possibility cannot be eliminated completely
and, because of this, the original key must be stored in
the table. Further, some scheme must be used to handle
duplicate transformed keys.

The examples and discussion in the article on table
lookup will further describe methodology and rationale
for hashing. Some other techniques in addition to divi-
sion-remainder are: (1) folding, (2) radix transformation,
and (3) digit rearrangement.

Folding consists of splitting the original key into two
or more parts, then adding the parts together (or, some-
times, using the exclusive or operator). This sum, or
some part of it, is then used as the transformed key. For
example:

682 HEURISTICS

Original key = 20 2152 9396

Splitting and adding: 20 4+ 2152 + 9396 = 11568

Discard high-order digit to obtain four-digit
transformed key of 1568,

Radix transformation involves changing the radix or
base of the original key and either discarding excess high-
order digits (i.e., digits in excess of the number desired in
the key) or extracting some part of the transformed num-
ber. For example, an original key of 12345 (base 10)
could be considered a base-16 number, and would be
transformed as follows:

(1 X16% + (2 X 16) + (3 X 16%)
+ (4 X 16") + (5 X 16°) = 74565.

The four-digit key would be 4565 by discarding the high-
order excess digit(s).

Digit rearrangement consists simply of selecting and
shifting digits of the original key. For example, an origi-
nal key of 1234567 could be transformed to a four-digit
key of 6543 by selecting digit positions 3 through 6 and
reversing their order.

No one technique is necessarily superior to another
in general; however, for specific applications, some may
work better than others. The selection of a technique
should involve consideration of which technique results in
fewest duplicate hash keys.

Hash totals are sometimes used for purposes of
checking or verification; in this context, hashing has a dif-
ferent purpose than key transformation, inasmuch as the
totals may not necessarily be hashed or scrambled. The
use of hash totals is for a purpose much like the use of
parity bits or self-checking codes for representing char-
acters in digital form on media such as magnetic tapes or
punched paper tapes. When such data is written (or re-
corded), hash totals are generated and written along with
(usually after) the data. Then, when the data is read, the
hash totals are recomputed, using the same algorithm,
and checked against the ones recorded. If they agree, one
can be more certain that the recorded data read is iden-
tical to that written and that no bits have been lost or
misread.

For example, if a hash total is taken after every five
numbers, that hash total could be recorded (written)
after the five numbers, thus:

12345
Five 37654
data 89701
numbers 00378
42270
Total 182348
Discard 82348
excess to
obtain *“hash”
total

Now, upon reading this data and its hash total dur-
ing some subsequent process, one could recompute the
hash total in the same way and thus verify that it
matched the one originally recorded.

C. E. Price

HEURISTICS

For articles on related subjects see ALGORITHM: AR-
TIFICIAL INTELLIGENCE.

The ancient Greek word heuriskein means “to find
out, to discover.” The English adjective “heuristic” and
the more recently coined noun “heuristics™ came into
being via the Latin adjective heuristicus. According to
the Random House Dictionary:

heuristic adj. 1. serving to indicate or point out,
stimulating interest as a means of furthering in-
vestigation. 2. (of a teaching method) encour-
aging the student to discover for himself.—n. 3.
a heuristic method or argument.

In the general sense, we talk of the “heuristic power”
of a technique, the “heuristics in somebody’s reasoning,”
and so on. Polya (1954) has written several most enter-
taining books that do not teach, but do make one realize
how to approach problems in mathematics and geometry
via heuristic ideas. Also, Hadamard’s essay (The Psy-
chology of Invention in the Mathematical Field, Dover,
1974) on discovery in mathematics yields an interesting
insight—a much too rare phenomenon—into how one
of the great mathematicians of all time tackles prob-
lems.

How does all this concern us in computing? The rea-
son is simple but its application leads to an area that is
completely open-ended. Let us consider, for example, a

.standard task in programming. We wish to find the roots

of a higher-order algebraic equation. There are several
methods of approximation that yield the solution with es-
timatable error bounds. We have the formulas to follow,
step by step, and eventually we obtain the results. This is
the algorithmic approach.

Let us now consider a so-called ill-defined problem,
and we have many of them in everyday life. For example,
say we want to balance our household budget by follow-
ing a program. Although our basic needs are reasonably
well known (food, shelter, clothing, medical items, trans-
portation, entertainment, etc.), neither the relative
weight of the components nor their unit prices are deter-
minable completely. Also, our needs, desires, and tastes

