EXHIBIT M

IN THE UNITED STATES DISTRICT COURT
 EASTERN DISTRICT OF TEXAS
 MARSHALL DIVISION

SOFTWARE RIGHTS ARCHIVE, LLC

v.

GOOGLE INC., YAHOO! INC., IAC SEARCH
\& MEDIA, INC., AOL LLC, AND LYCOS, INC.

APPENDIX TO DEFENDANTS' P. R. 3-3 DISCLOSURE

I. INTRODUCTION

This Appendix includes Tables and disclosures to amend and supplement Defendants’ Patent Rule 3-3 Disclosures (hereinafter "Invalidity Contentions") as specifically set forth below. Except as specifically stated, nothing in this Appendix is intended to waive or otherwise limit the positions and arguments set forth in Defendants' Invalidity Contentions.

Defendants' Invalidity Contentions and this Appendix are based in whole or in part on Defendants' present understanding of the asserted claims and SRA's apparent positions as to the scope of the asserted claims as applied in its P. R. 3-1 disclosures. Accordingly, Defendants' Invalidity Contentions and this Appendix (including any attached invalidity claim charts) reflect, to the extent possible, SRA's expected alternative and potentially inconsistent positions as to claim construction and scope. In addition, SRA has yet to disclose the details of its basis for its infringement contentions and its basis for contending that the '494 and '571 patents have written description support in application U.S. Patent Application No. 08/076,658. Accordingly, Defendants reserve the right to further amend or supplement their Invalidity Contentions and this Appendix.

II. IDENTIFICATION OF PRIOR ART PURSUANT TO P. R. 3-3(A)

Pursuant to P. R. 3-3(a), and subject to Defendants' reservation of rights, Defendants identify each supplemental item of prior art that anticipates or renders obvious one or more of the asserted claims in Table App-2B below. Table App-2B further supplements Table 2.

Table App-2A: Items Used and/or Offered for Sale

Defendants identify that electronic information previously produced in this action with production numbers DEF0016248-DEF0016354 relates to system(s) and method(s) that were used and/or offered for sale before the invention of the '352 patent. Defendants will produce source code for UCINET once a suitable protective order for source code is in place. Defendants
reserve the right to supplement their contentions regarding the system(s) and method(s) disclosed in such electronic information and as identified based on further discovery.

Table App-2B: Prior Art Publications and Items Used and/or Offered for Sale

Primary Author or Publisher	Reference Title	Publication/ Use Date	Herein Referenced As
Brodda, B. \& Karlgren, H.	"Citation Index And Measures Of Association In Mechanized Document Retrieval," Kval Pm 295 (1967). Report No. 2 To The Royal Treasury. Published By Sprakforlaget Skriptor.	1967	 Kalgren 1967 (or Brodda 1967)
Schatz, B. \& Hardin, J.	"NCSA Mosaic and the World Wide Web: Global Hypermedia Protocols for the Internet," Science 265:895-901 (1994)	1994	Schatz 1994
Cleveland, D.	"An n-Dimensional Retrieval Model," J. Am. Soc. Inf. Sci., pp. 342-47 (1976)	1976	Cleveland 1976
Crouch, D. et al.	"The Use Of Cluster Hierarchies In Hypertext Information Retrieval,"	1989	Crouch 1989
Hypertext '89 Proceedings,			
SIGCHI Bulletin, pp. 225-237			
(Nov. 1989)			

Primary Author or Publisher	Reference Title	Publication/ Use Date	Herein Referenced As
Botafogo, R.	116-125 (1993)	1991	Botafogo 1991
Joachims, T et al.,	"Identifying Aggregates in Hypertext Structures"	"WebWatcher: Machine Learning and Hypertext". Proceedings of the 1995 AAAI Spring Symposium on	1995
Information Gathering from Heterogeneous, Distributed Environments	Joachims 1995		
Caplinger, M.	"Graphical Database Browsing" ACM, p. 113-121	1986	Caplinger 1986

III. INVALIDITY CONTENTIONS CONCERNING U.S. PATENT NO. 5,544,352

A. Disclosure of Invalidity Due to Anticipation Pursuant to P. R. 3-3(b) and (c)

Table 3 is supplemented by the addition of Table App-3 which includes the following patents and publications which are prior art under at least 35 U.S.C. §§ 102(a), (b), (e), and/or (g).

Table App-3: Patents and Printed Publications Anticipating the Asserted Claims of the ' 352 Patent

Exhibit A Chart	Prior Art
Ex A-58	Brodda \& Karlgren 1967
Ex A-59	Cleveland 1976
Ex A-60	Baase 1988
Ex A-61	Crouch 1989

B. Disclosure of Invalidity Due to Obviousness Pursuant to P. R. 3-3(b) and (c)

The asserted claims of the ' 352 Patent are invalid as obvious under 35 U.S.C. § 103.

1. Obviousness Combinations

Defendants withdraw the combination of references previously presented in Exhibit C-1 of their Invalidity Contentions and add Table App-5. In response to SRA's request for clarification, Table App-5 provides specific combinations of references that render obvious the asserted claims of the ' 352 Patent:

Table App-5: References Rendering Obvious Asserted Claims of the '352 Patent

Combination	Claims of the '352 Patent Rendered Obvious by the Combination
Salton (1963) Salton \& McGill (1983)	26-32, 36-40, 45
+ Gelbart (1991) or Fox (Smart 1983) + Cleveland (1976), Korfhage (1983), or Burt (1991)	26-42, 44, 45
+ Gelbart (1991) or Fox Smart (1983)	26-32, 35-40, 45
+ Brodda (1967)	26-32, 36-40, 45
+ Brodda (1967) + Cleveland (1976), Burt (1991), or Korfage (1983)	26-34, 36-42, 44, 45
+ Garfield (1979)	26-32, 36-40, 45
$\begin{aligned} & \text { Salton (1963) } \\ & \text { Salton (1971) } \end{aligned}$	26, 29-32, 36-40, 45
+ Cleveland (1976), Burt (1991), or Korfage (1983)	26, 29-33, 36-42, 44, 45
Salton (1963) Fox Thesis (1983)	26-42, 44, 45
+ Cleveland (1976), Burt (1991), or Korfage (1983)	26-42, 44, 45
$\begin{aligned} & \text { Salton (1963) } \\ & \text { Salton \& Buckley }(1990)^{1} \text { or Salton \& } \\ & \text { Buckley (1989) } \end{aligned}$	26-32, 34-40, 45
Salton (1963) Pinski (1976)	26-27, 29-32, 39, 41, 42, 44, 45
$\begin{aligned} & \text { Garner (1967) } \\ & \text { Salton \& McGill (1983) } \end{aligned}$	26-32, 36-40, 45
+ Can (1987)	26-32, 36-40, 45
+ Cleveland (1976), Burt (1991), or Korfage (1983)	26-32, 36-42, 44
$\begin{aligned} & \text { + Cleveland (1976), Burt (1991), or } \\ & \text { Korfage (1983) } \\ & \text { + Gelbart (1991) or Fox Smart (1983) } \end{aligned}$	26-42, 44, 45
Garner (1967) Thompson (1989)	26-32, 36, 37, 41, 45
Garner (1967)	26, 29-32, 41, 45

[^0]| Combination | Claims of the '352 Patent Rendered Obvious by the Combination |
| :---: | :---: |
| Frisse (1988) | |
| Salton (1971)
 Salton \& McGill (1983) | 26-32, 36-40, 45 |
| Fox Thesis (1983)
 Salton \& McGill (1983) | 26-42, 44, 45 |
| + Cleveland (1976) | 26-42, 44, 45 |
| + Gelbart (1991) or Fox Smart (1983) | 26-42, 44, 45 |
| + Cleveland (1976), Burt (1991), or Korfhage (1983) | 26-42, 44, 45 |
| + Garner (1967), Garfield 1979 | 26-42, 44, 45 |
| + Fox Smart (1983)
 + Pinski (1976)
 + Cleveland (1976), Burt (1991), or
 Korfhage (1983) | 26-42, 44, 45 |
| Fox Thesis (1983)
 Shepherd (1990) | 26-42, 44, 45 |
| Fox Thesis (1983)
 Fox Collections (1983) | 26-42, 44, 45 |
| + Gelbart (1991) or Fox Smart (1983) | 26-42, 44, 45 |
| Fox Thesis (1983)
 Fox Smart (1983) | 26-42, 44, 45 |
| + Cleveland (1976), Burt (1991), or Korfhage (1983) | 26-42, 44, 45 |
| + Garfield 1979 | 26-42, 44, 45 |
| + Can (1987) | 26-42, 44, 45 |
| + Salton (1990) | 26-42, 44, 45 |
| Fox Thesis (1983)
 Kochtanek (1982) | 26-42, 44, 45 |
| Fox Thesis (1983)
 Thompson (1989) | 26-42, 44, 45 |
| Fox Thesis (1983) Garner (1967) | 26-42, 44, 45 |
| Fox Thesis (1983)
 Burt (1991) | 26-42, 44, 45 |
| + Gelbart (1991) or Fox Smart (1983)
 + Cleveland (1976), Burt (1991), or Korfhage (1983) | 26-42, 44, 45 |
| Fox Thesis (1983) Berk (1991) | 26-42, 44, 45 |

Combination	Claims of the '352 Patent Rendered Obvious by the Combination
Fox Thesis (1983) Tapper (1982)	$26-42,44,45$
+ Cleveland (1976), Burt (1991), or Korfhage (1983)	$26-42,44,45$
Fox Thesis (1983) Fox (1985)	$26-42,44,45$
Fox Thesis (1983) Gelbart (1991)	$26-42,44,45$
Fox Thesis (1983) Cleveland (1976)	$26-42,44,45$
Fox Thesis (1983) Rose (1991)	$26-42,44,45$
Fox Thesis (1983) Korfage (1983)	$26-42,44,45$
Fox Thesis (1983) Salton \& Buckley (1990) or Salton \& Buckley (1991)	$26-42,44,45$
Fox Thesis, Garfield 1979, Pinski 1976, Conklin 1987, Berners-Lee 1989	$26-42,44,45$
Salton \& McGill (1983) Thompson (1989)	$26-32,36-40,45$
Salton \& McGill (1983) Kochtanek (1982)	$26-32,36-40,45$
Salton \& McGill (1983) Shepherd (1990)	$26-32,36-40,45$
Salton \& McGill (1983) Brodda (1967)	$26-32,36-40,45$
Gelbart (1991) or Fox Smart (1983) + Cleveland (1976), Burt (1991), or Korfage (1983)	$26-42,44,45$
Salton \& McGill (1983) Burt (1991)	$26-33,36-42,44,45$
+ Gelbart (1991) or Fox Smart (1983) + Cleveland (1976), Burt (1991), or Korfage (1983)	$26-42,44,45$
Salton \& McGill (1983) Tapper (1982)	$26-32,36-42,44,45$
+ Cleveland (1976), Burt (1991), or Korfage (1983)	Salton \& McGill (1983) Fox (1985)
Salton \& McGill (1983) Salton \& Buckley (1990) or Salton \& Buckley (1989)	$26-32,34-40,45$

Combination	Claims of the '352 Patent Rendered Obvious by the Combination
Fox Smart (1983) Salton \& McGill (1983)	$26-32,34-41,45$
Salton \& McGill (1983) Gelbart (1991)	$26-32,34-40,45$
Salton \& McGill (1983) Rose (1991)	$26-32,36-41,45$
Frisse (1988) Shepherd (1990)	$26-32$
Rose (1991)	$26-34,36-42,45$
Frisse (1998) Nielsen (1990(b))	$26-32,35-40,45$
Belew (1986) Rose (1991)	$26-34,36-39,41,42,44,45$
Kaplan 891 Patent + Lucarella 1990 + Conklin (1988)	$26-32,34,36-37,45$
 Turtle 1991	$26-32,34,36-37,45$
Rose 1989, Rose 1991, Tapper 1982, Conklin (1988)	$26-34,36-39,41,42,44,45$

In addition, each claim is obvious in view of cited references in combination with the general knowledge in the art. Additional specific combinations are described in Ex. C-2, C-3, C4, C5, and C-6 of Table 5 in the Invalidity Contentions of January 23, 2009.

With respect to the references and combinations disclosed herein, Defendants incorporate by reference Section III.B. 1 (except for Exhibit C-1) of their Invalidity Contentions of January 23, 2009. Defendants further reference the following:

Exhibit A Chart	Prior Art
Ex A-62	Can 1987
Ex A-63	Salton \& Buckley (1991)
Ex A-64	Salton \& Buckley (1990)
Ex A-65	Korfhage 1983

2. Motivation to Combine

With respect to the references and combinations disclosed herein, Defendants incorporate by reference Section III.B. 2 of their Invalidity Contentions of January 23, 2009.

IV. INVALIDITY CONTENTIONS CONCERNING U.S. PATENT NO. 5,832,494

B. Disclosure of Invalidity Due to Anticipation Pursuant to P. R. 3-3(b) and (c)

Table 6 is supplemented by the addition of Table App-6 which includes the following patents and publications are prior art under at least 35 U.S.C. §§ 102(a), (b), (e), and/or (g).

Table App-6: Patents and Printed Publications Anticipating the Asserted Claims of the '494 Patent

Exhibit App-D Chart	Prior Art
Ex D-58	Brodda \& Karlgren 1967
Ex D-59	Baase 1988
Ex D-60	Crouch 1989
Ex D-61	Botafogo 1993
Ex D-64	Botafogo 1991
Ex D-65	Joachims 1995

C. Disclosure of Invalidity Due to Obviousness Pursuant to P. R. 3-3(b) and (c)

The asserted claims of the ' 494 Patent are invalid as obvious under 35 U.S.C. § 103.

1. Obviousness Combinations

Defendants withdraw the combination of references previously presented in Exhibit F-1 of their Invalidity Contentions and add Table App-8. In response to SRA's request for clarification, Table App-8 provides specific combinations of references that render obvious the asserted claims of the '494 Patent:

Table App-8: References Rendering Obvious Asserted Claims of the '494 Patent
,494 Patent Combinations and Asserted Claims

Combination	Claims Rendered Obvious By The Combination
Nielsen (1990b) Lucarella (1990	$1-3,5,7-16,18-21,23-25,31-33$

Combination	Claims Rendered Obvious By The Combination
+ Frei \& Steiger (1992) or Salton (1988) or Croft (1993)	1-3, 5, 7-16, 18-21, 23-25, 31-33
+ Schatz (1994), Doyle US 5838906 + Berners Lee 1989, Kaplan 1995	1-3, 5, 7-16, 18-21, 23-25, 31-33
+ Guinan (1992) or Weiss (1996) or Salton (1971) or Baase (1988)	1-3, 5, 7-16, 18-21, 23-25, 31-33
+ Pitkow (1994) or Alain (1992) or Conklin (1987) or Conklin (1988) or Fox/Envision (1993)	1-3, 5, 7-16, 18-21, 23-25, 31-33
+ Kochtanek (1982) or Thompson (1989) or Guinan (1992)	1-3, 5, 7-16, 18-21, 23-25, 31-33
+ Shepherd (1990) or Salton \& McGill (1983)	$1-3,5,7-16,18-21,23-25,31-33$
$\begin{array}{\|l} \hline \text { Nielsen }(1990 b) \\ \text { Rose }(1991) \\ \hline \end{array}$	1-3, 5, 7-16, 18-21, 23-25, 31-33
+ Frei \& Steiger (1992) or Salton (1988) or Croft (1993)	$1-3,5,7-16,18-21,23-25,31-33$
+ Schatz (1994) or Doyle US 5838906, +Berners Lee 1989, Kaplan 1995	1-3, 5, 7-16, 18-21, 23-25, 31-33
+ Guinan (1992) or Weiss (1996) or Salton (1971) or Baase (1988)	1-3, 5, 7-16, 18-21, 23-25, 31-33
+ Pitkow (1994) or Alain (1992) or Conklin (1987) or Conklin (1988) or Fox/Envision (1993)	1-3, 5, 7-16, 18-21, 23-25, 31-33
+ Kochtanek (1982) or Thompson (1989) or Guinan (1992)	1-3, 5, 7-16, 18-21, 23-25, 31-33
Nielsen (1990b) Belew (1986)	1-3, 5, 7-16, 18-21, 23-25, 31-33
+ Frei \& Steiger (1992) or Salton (1988) or Croft (1993)	1-3, 5, 7-16, 18-21, 23-25, 31-33
+ Schatz (1994) or Doyle US 5838906 + Berners Lee 1989, Kaplan 1995	1-3, 5, 7-16, 18-21, 23-25, 31-33
+ Guinan (1992) or Weiss (1996) or Salton (1971) or Baase (1988)	1-3, 5, 7-16, 18-21, 23-25, 31-33
+ Pitkow (1994) or Alain (1992) or Conklin (1987) or Conklin (1988) or Fox/Envision (1993)	1-3, 5, 7-16, 18-21, 23-25, 31-33
$\begin{aligned} & \text { + Kochtanek (1982) or Thompson (1989) } \\ & \text { or Guinan (1992) } \end{aligned}$	1-3, 5, 7-16, 18-21, 23-25, 31-33
Nielsen (1990b) Brodda (1967)	1-3, 5, 7-16, 18-21, 23-25, 31-33
+ Frei \& Steiger (1992) or Salton (1988) or Croft (1993)	1-3, 5, 7-16, 18-21, 23-25, 31-33

Combination	Claims Rendered Obvious By The Combination
+ Schatz (1994) or Doyle US 5838906 + Berners Lee 1989, Kaplan 1995	1-3, 5, 7-16, 18-21, 23-25, 31-33
+ Guinan (1992) or Weiss (1996) or Salton (1971) or Baase (1988)	1-3, 5, 7-16, 18-21, 23-25, 31-33
+ Pitkow (1994) or Alain (1992) or Conklin (1987) or Conklin (1988) or Fox/Envision (1993)	1-3, 5, 7-16, 18-21, 23-25, 31-33
Rose (1991) Belew (1986)	$1-3,5,12-16,18-21,23-25,33$
+ Frei \& Steiger (1992) or Salton (1988) or Croft (1993)	$1-3,5,12-16,18-21,23-25,33$
+ Guinan (1992) or Weiss (1996) or Salton (1971) or Baase (1988)	$1-3,5,12-16,18-21,23-25,33$
+ Pitkow (1994) or Alain (1992) or Conklin (1987) or Conklin (1988) or Fox/Envision (1993)	$1-3,5,12-16,18-21,23-25,33$
+ Kochtanek (1982) or Thompson (1989) or Guinan (1992)	$1-3,5,12-16,18-21,23-25,31-33$
+ Schatz (1994) or Doyle US 5838906 + Berners Lee 1989, Kaplan 1995	1-3, 5, 7-16, 18-21, 23-25, 33
Rose (1991) Brodda (1967)	$1-3,5,12-16,18-21,23-25,33$
+ Frei \& Steiger (1992) or Salton (1988) or Croft (1993)	$1-3,5,12-16,18-21,23-25,33$
+ Guinan (1992) or Weiss (1996) or Salton (1971) or Baase (1988)	$1-3,5,12-16,18-21,23-25,33$
+ Pitkow (1994) or Alain (1992) or Schatz (1994)	$1-3,5,12-16,18-21,23-25,33$
Frisse (1988) Lucarella (1990)	$1-3,5,7-16,18-21,23-25,33$
+ Frei \& Steiger (1992) or Salton (1988) or Croft (1993)	1-3, 5, 7-16, 18-21, 23-25, 33
+ Schatz (1994) or Doyle US 5838906 + Berners Lee 1989, Kaplan 1995	1-3, 5, 7-16, 18-21, 23-25, 33
+ Guinan (1992) or Weiss (1996) or Salton (1971) or Baase (1988)	1-3, 5, 7-16, 18-21, 23-25, 33
+ Pitkow (1994) or Alain (1992) or Conklin (1987) or Conklin (1988) or Fox/Envision (1993)	1-3, 5, 7-16, 18-21, 23-25, 33
+ Kochtanek (1982) or Thompson (1989) or Guinan (1992)	1-3, 5, 7-16, 18-21, 23-25, 31-33
Frisse (1988) Rose (1991)	1-3, 5, 7-16, 18-21, 23-25, 33

Combination	Claims Rendered Obvious By The Combination
+ Frei \& Steiger (1992) or Salton (1988) or Croft (1993)	1-3, 5, 7-16, 18-21, 23-25, 33
+ Schatz (1994) or Doyle US 5838906 Berners Lee 1989, Kaplan 1995	1-3, 5, 7-16, 18-21, 23-25, 33
+ Guinan (1992) or Weiss (1996) or Salton (1971) or Baase (1988)	1-3, 5, 7-16, 18-21, 23-25, 33
+ Pitkow (1994) or Alain (1992) or Conklin (1987) or Conklin (1988) or Fox/Envision (1993)	1-3, 5, 7-16, 18-21, 23-25, 33
+ Kochtanek (1982) or Thompson (1989) or Guinan (1992)	$1-3,5,7-16,18-21,23-25,31-33$
Frisse (1988) Belew (1986)	1-3, 5, 7-16, 18-21, 23-25, 33
+ Frei \& Steiger (1992) or Salton (1988) or Croft (1993)	1-3, 5, 7-16, 18-21, 23-25, 33
+ Schatz (1994) or Doyle US 5838906 + Berners Lee 1989, Kaplan 1995	1-3, 5, 7-16, 18-21, 23-25, 33
+ Guinan (1992) or Weiss (1996) or Salton (1971) or Baase (1988)	1-3, 5, 7-16, 18-21, 23-25, 33
+ Pitkow (1994) or Alain (1992) or Conklin (1987) or Conklin (1988) or Fox/Envision (1993)	1-3, 5, 7-16, 18-21, 23-25, 33
+ Kochtanek (1982) or Thompson (1989) or Guinan (1992)	$1-3,5,7-16,18-21,23-25,31-33$
Frisse (1988) Brodda (1967)	1-3, 5, 7-16, 18-21, 23-25, 33
+ Frei \& Steiger (1992) or Salton (1988) or Croft (1993)	1-3, 5, 7-16, 18-21, 23-25, 33
+ Schatz (1994) or Doyle US 5838906 + Berners Lee 1989, Kaplan 1995	1-3, 5, 7-16, 18-21, 23-25, 33
+ Guinan (1992) or Weiss (1996) or Salton (1971) or Baase (1988)	1-3, 5, 7-16, 18-21, 23-25, 33
+ Pitkow (1994) or Alain (1992) or Conklin (1987) or Conklin (1988) or Fox/Envision (1993)	1-3, 5, 7-16, 18-21, 23-25, 33
Rose (1991) + Berners-Lee (1989)	1-3, 5, 7-16, 18-21, 23-25, 33
+ Frei \& Steiger (1992) or Salton (1988) or Croft (1993) or Croft \& Turtle (1989)	1-3, 5, 7-16, 18-21, 23-25, 33
+ Schatz (1994) or Doyle US 5838906 + Kaplan 1995	1-3, 5, 7-16, 18-21, 23-25, 33
+ Guinan (1992) or Weiss (1996) or Salton (1971) or Baase (1988)	1-3, 5, 7-16, 18-21, 23-25, 33
+ Pitkow (1994) or Alain (1992) or	1-3, 5, 7-16, 18-21, 23-25, 33

Combination	Claims Rendered Obvious By The Combination
Conklin (1987) or Conklin (1988) or Fox/Envision (1993)	
Salton \& McGill (1983) Garner (1967)	$1-3,5,7-16,18-21,23-25,31-33$
Salton \& McGill (1983) Brodda (1967)	$1-3,5,7-16,18-21,23-25,31-33$
Salton \& McGill (1983) Salton (1963)	$1-3,5,7-16,18-21,23-25,31-33$
Salton \& McGill (1983) Salton (1963) Brodda (1967)	$1-3,5,7-16,18-21,23-25,31-33$
Salton \& McGill (1983) Salton (1971)	$1-3,5,7-16,18-21,23-25,31-33$
Salton \& McGill (1983) Fox Thesis (1983)	$1-3,5,7-16,18-21,23-25,31-33$
Salton \& McGill (1983) Thompson (1989),	$1-3,5,7-16,18-21,23-25,31-33$
Salton \& McGill (1983) Pinski (1976) Garfield (1979)	$1-3,5,7-16,18-21,23-25,31-33$
Salton \& McGill (1983) Pinski (1976) Fox SMART (1983) Fox Thesis (1983)	$1-3,5,7-16,18-21,23-25,31-33$
Botafogo (1992) + Conklin (1987), Berners-Lee (1989), Kaplan (1995), Pinkerton (1994), Doyle US 5,838,906, or Mauldin US 5,748,954	$1-3,5,7-16,18-21,23-25,31-33$
+ Baase (1988), Pinski (1976)	

Combination	Claims Rendered Obvious By The Combination
+ Weiss (1996)	1-3, 5, 7-16, 18-21, 23-25, 31-33
+ Botafogo (1991)	1-3, 5, 7-16, 18-21, 23-25, 31-33
Betrabet (1993) Betrabet Thesis (1993) Berk (1991) Fox (1988) + Conklin (1987), Berners-Lee (1989), Kaplan (1995), Pinkerton (1994), Doyle US 5,838,906, or Mauldin US 5,748,954	1-3, 5, 7-16, 18-21, 23-25, 31-33
+ Chen Thesis (1992), Chen (1992)	1-3, 5, 7-16, 18-21, 23-25, 31-33
$\begin{aligned} & \text { + Botafogo (1992), Pinski (1976), } \\ & \text { Guinan (1990) } \end{aligned}$	1-3, 5, 7-16, 18-21, 23-25, 31-33
+ Botafogo (1993), Conklin (1988)	1-3, 5, 7-16, 18-21, 23-25, 31-33
+ Frei \& Steiger (1992) or Salton (1988) or Croft (1993)	1-3, 5, 7-16, 18-21, 23-25, 31-33
+ Botafogo (1992), Alain (1992)	$1-3,5,7-16,18-21,23-25,31-33$
+ Shepherd (1990), Guinan (1990)	1-3, 5, 7-16, 18-21, 23-25, 31-33
Betrabet (1993) Betrabet Thesis (1993) Berk (1991) Baase (1988) Shepherd (1990) Kommers (1990) + Conklin (1987), Berners-Lee (1989), Kaplan (1995), Pinkerton (1994), Doyle US 5,838,906, or Mauldin US 5,748,954	1-3, 5, 7-16, 18-21, 23-25, 31-33
Betrabet (1993) Betrabet Thesis (1993) Berk (1991) Burt (1991) UCINET Kommers (1990) + Conklin (1987), Berners-Lee (1989), Kaplan (1995), Pinkerton (1994), Doyle US 5,838,906, or Mauldin US 5,748,954	1-3, 5, 7-16, 18-21, 23-25, 31-33
Garfield (1979) Pinski (1976) Fox/Envision (1993) + Conklin (1987), Berners-Lee (1989), Kaplan (1995), Pinkerton (1994), Doyle US 5,838,906, or Mauldin US 5,748,954	1-3, 5, 7-16, 18-21, 23-25, 33

Combination	Claims Rendered Obvious By The Combination
\quad + Croft (1993)	$1-3,5,7-16,18-21,23-25,33$
Thompson (1989) Turtle (1991) Croft \& Turtle (1991) + Conklin (1987), Berners-Lee (1989), Kaplan (1995), Pinkerton (1994), Doyle US 5,838,906, or Mauldin US 5,748,954	$1-3,5,7-16,18-21,23-25,33$
+ Croft (1993), Croft \& Turtle (1989)	

Combination	Claims Rendered Obvious By The Combination
+ Pinkerton (1994), Doyle US 5,838,906,	
Conklin (1988), Mauldin US 5,748,954, +	
Schatz (1994)	

In addition, each claim is obvious in view of cited references in combination with the general knowledge in the art. Knowledge and use of the internet is exemplified by at least the following references: Conklin, 1987; Berners-Lee, 1989; Krol, 1994; Pinkerton, 1994; LA Times; Doyle U.S. 5,838,906, Maudlin, Mauldin US 5,748,954, Shatz 1994, and Nielson 1990b.

Additional specific combinations are described in Ex. F-2, F-3, F-4, F-5, F-6, and F-7 of Table 8 in the Invalidity Contentions of January 23, 2009.

With respect to the references and combinations disclosed herein, Defendants incorporate by reference Section IV.C. 1 (except for Exhibit F-1) of their Invalidity Contentions of January 23, 2009. Defendants further reference the following:

Ex D-62	Schatz

2. Motivation to Combine

With respect to the references and combinations disclosed herein, Defendants incorporate by reference Section IV.C. 2 of their Invalidity Contentions of January 23, 2009.-

V. INVALIDITY CONTENTIONS CONCERNING U.S. PATENT NO. 6,233,571

B. Disclosure of Invalidity Due to Anticipation Pursuant to P. R. 3-3(b) and (c)

Table 9 is supplemented by the addition of Table App-9 which includes the following patents and publications are prior art under at least 35 U.S.C. §§ 102(a), (b), (e), and/or (g).

Table App-9: Patents and Printed Publications Anticipating the Asserted Claims of the '571 Patent

Ex G-79	Botafogo 1993
Ex G-80	Crouch 1989
Ex G-82	Botafogo 1991
Ex G-83	Joachims 1995

C. Disclosure of Invalidity Due to Obviousness Pursuant to P. R. 3-3(b) and (c)

The asserted claims of the '571 Patent are invalid as obvious under 35 U.S.C. § 103.

1. Obviousness Combinations

Defendants withdraw the combination of references previously presented in Exhibit I-1 of their Invalidity Contentions and add Table App-11. In response to SRA's request for clarification, Table App-11 provides specific combinations of references that render obvious the asserted claims of the ' 571 Patent:

Table App-11 provides specific and exemplary combinations of references that render obvious the asserted claims of the' 571 Patent:

Table App-11: References Rendering Obvious Asserted Claims of the '571 Patent

Combination	Claims of the '571 Patent Rendered Obvious by the Combination
Botofago (1992)	$1,3-22$
Pitkow (1994)	
Conklin (1988)	
+ Conklin (1987), Berners-Lee (1989),	
Kaplan (1995), Pinkerton (1994), Doyle	
US 5,838,906, or Mauldin US 5,748,954	

[^1]| Combination | Claims of the '571 Patent Rendered
 Obvious by the Combination |
| :--- | :--- |
| Botofago (1992)
 Baase (1988)
 Conklin (1988)
 + Conklin (1987), Berners-Lee (1989),
 Kaplan (1995), Pinkerton (1994), Doyle
 US 5,838,906, or Mauldin US 5,748,954 | $1,3-22$ |
| Botofago (1992)
 Baase (1988)
 Burt 1991, UCINET
 + Conklin (1987), Berners-Lee (1989),
 Kaplan (1995), Pinkerton (1994), Doyle
 US 5,838,906, or Mauldin US 5,748,954 | |
| + Frei \& Steiger 1992, Frei \& Steiger | $1,3-22$ |
| + Pitkow (1994), Conklin (1988) | $1,3-22$ |
| + Pinski (1976), LA Times | $1,3-22$ |
| + Crouch (1989) | $1,3-22$ |
| + Caplinger (1986), Conklin (1988) | $1,3-22$ |
| Botofago (1993)
 Conklin (1988), Pitkow (1994), or
 Caplinger (1986)
 + Conklin (1987), Berners-Lee (1989),
 Kaplan (1995), Pinkerton (1994), Doyle
 US 5,838,906, or Mauldin US 5,748,954 | $1,3-22$ |
| + Baase (1988) | $1,3-22$ |
| + Frei \& Steiger 1992, Frei \& Steiger | $1,3-22$ |
| 1995 | |

Combination	Claims of the '571 Patent Rendered Obvious by the Combination
Rose (1991) + Conklin (1987), Berners-Lee (1989), Kaplan (1995), Pinkerton (1994), Doyle US 5,838,906, or Mauldin US 5,748,954	1, 3-22
+ Tapper (1982), LA_Times	1, 3-22
+ Belew (1986)	1, 3-22
+ Thompson (1989), Croft \& Turtle (1989)	1, 3-22
+ Caplinger (1986), Conklin (1988), Netcarta	1, 3-22
Conklin (1988) + Conklin (1987), Berners-Lee (1989), Kaplan (1995), Pinkerton (1994), Doyle US 5,838,906, or Mauldin US 5,748,954	1,3-4, 22
Envision Garfield (1979) + Conklin (1987), Berners-Lee (1989), Kaplan (1995), Pinkerton (1994), Doyle US 5,838,906, or Mauldin US 5,748,954	1,3-6, 8-16, 19-22
Envision Fox Thesis (1983) + Conklin (1987), Berners-Lee (1989), Kaplan (1995), Pinkerton (1994), Doyle US 5,838,906, or Mauldin US 5,748,954	1, 3-22
Nielsen (1990) Nielsen (1990(b)) + Conklin (1987), Berners-Lee (1989), Kaplan (1995), Pinkerton (1994), Doyle US 5,838,906, or Mauldin US 5,748,954	1, 3-22
+ McKee (1994), Pitkow (1994)	1, 3-22
+ Frisse 1998	1, 3-22
+ Frei \& Steiger 1992, Frei \& Steiger 1995	1, 3-22
+ Botafogo 1992, Conklin (1988)	1, 3-22
+ Botafogo 1993, Conklin (1988)	1, 3-22
+ NetCarta, Conklin (1988), Caplinger (1986),	1, 3-22
+ Belew 1986, Rose (1991)	1, 3-22

Combination	Claims of the '571 Patent Rendered Obvious by the Combination
+ Brodda (1967)	1, 3-22
Thompson (1989) + Conklin (1987), Berners-Lee (1989), Kaplan (1995), Pinkerton (1994), Doyle US 5,838,906, or Mauldin US 5,748,954	1, 3-22
+ Turtle (1991), Croft \& Turtle (1991), Croft \& Turtle (1989)	1, 3-22
Frisse (1988) + Conklin (1987), Berners-Lee (1989), Kaplan (1995), Pinkerton (1994), Doyle US 5,838,906, or Mauldin US 5,748,954	1, 3-22
+ Lucarella 1990	1, 3-22
+ Rose (1991)	1, 3-22
```+ Frei & Steiger 1992, Frei & Steiger 1995```	1, 3-22
+ Thompson (1989), Croft \& Turtle   (1989), Kaplan 891 Patent	1, 3-22
$\begin{aligned} & \text { + Conklin (1988), NetCarta, } \\ & \text { Caplinger (1986) } \end{aligned}$	1, 3-22
+ Frisse/Cousins, Crouch (1989)	1, 3-22
Frei \& Steiger 1992, Frei \& Steiger 1995 + Conklin (1987), Berners-Lee (1989), Kaplan (1995), Pinkerton (1994), Doyle US 5,838,906, or Mauldin US 5,748,954	1, 3-22
$\begin{aligned} & \text { + Caplinger (1986), Conklin (1988), } \\ & \text { Netcarta } \end{aligned}$	1, 3-22
Garner (1967)   Salton (1963)   Salton \& McGill (1983)   Fox/Envision (1993)   + Conklin (1987), Berners-Lee (1989),   Kaplan (1995), Pinkerton (1994), Doyle   US 5,838,906, or Mauldin US 5,748,954	1, 3-22
Shepherd (1990)   Garfield (1979)   Fox Thesis (1983)   Fox/Envision (1993)   + Conklin (1987), Berners-Lee (1989),   Kaplan (1995), Pinkerton (1994), Doyle	1, 3-22


Combination	Claims of the '571 Patent Rendered   Obvious by the Combination
US 5,838,906, or Mauldin US 5,748,954	
Kaplan 891 Patent   + Conklin (1987), Berners-Lee (1989),   Kaplan (1995), Pinkerton (1994), Doyle   US 5,838,906, or Mauldin US 5,748,954	$1,3-22$
Kaplan 891 Patent   Thompson (1989)   Turtle (1991)   Croft \& Turtle (1991)   + Conklin (1987), Berners-Lee (1989),   Kaplan (1995), Pinkerton (1994), Doyle   US 5,838,906, or Mauldin US 5,748,954	
Kochtanek (1982)   Garfield (1979)   Shepherd (1990)   + Conklin (1987), Berners-Lee (1989),   Kaplan (1995), Pinkerton (1994), Doyle   US 5,838,906, or Mauldin US 5,748,954	$1,3-22$
Kochtanek (1982)   Fox Thesis (1983)   Fox/Envision (1993)   Fox (1988)   + Conklin (1987), Berners-Lee (1989),   Kaplan (1995), Pinkerton (1994), Doyle   US 5,838,906, or Mauldin US 5,748,954	
Croft (1993)   + Conklin (1987), Berners-Lee (1989),   Kaplan (1995), Pinkerton (1994), Doyle   US 5,838,906, or Mauldin US 5,748,954	5
Turtle (1991)	$5-9,11-21$
Lucarella (1990)   + Conklin (1987), Berners-Lee (1989),   Kaplan (1995), Pinkerton (1994), Doyle   US 5,838,906, or Mauldin US 5,748,954	
Lucarella (1990)   Kaplan 891 Patent   + Conklin (1987), Berners-Lee (1989),   Kaplan (1995), Pinkerton (1994), Doyle   US 5,838,906, or Mauldin US 5,748,954	
Lucarella (1990)	$1,3-9,12-22$


Combination	Claims of the '571 Patent Rendered   Obvious by the Combination
Turtle (1991)   Croft \& Turtle (1991)   + Conklin (1987), Berners-Lee (1989),   Kaplan (1995), Pinkerton (1994), Doyle   US 5,838,906, or Mauldin US 5,748,954	
Betrabet (1993)   Betrabet Thesis (1993)   + Conklin (1987), Berners-Lee (1989),   Kaplan (1995), Pinkerton (1994), Doyle   US 5,838,906, or Mauldin US 5,748,954	
Betrabet (1993)   Betrabet Thesis (1993)   Berk (1991)   Fox (1988)   + Conklin (1987), Berners-Lee (1989),   Kaplan (1995), Pinkerton (1994), Doyle   US 5,838,906, or Mauldin US 5,748,954	$1,3-22$
Chen Thesis (1992), Chen (1992)	


Combination	Claims of the '571 Patent Rendered Obvious by the Combination
Kommers (1990)   + Conklin (1987), Berners-Lee (1989),   Kaplan (1995), Pinkerton (1994), Doyle   US 5,838,906, or Mauldin US 5,748,954	
+ Frisse 1988 or Frei \& Steiger (1992)	1, 3-22
Dunlop (1991)   + Conklin (1987), Berners-Lee (1989),   Kaplan (1995), Pinkerton (1994), Doyle   US 5,838,906, or Mauldin US 5,748,954	5-10, 12-21
Dunlop (1991)   Frei \& Steiger (1992)   Frei \& Steiger (1995)   + Conklin (1987), Berners-Lee (1989),   Kaplan (1995), Pinkerton (1994), Doyle   US 5,838,906, or Mauldin US 5,748,954	1, 3-22
+ Shepherd (1990)	1, 3-22
+ Baase (1988)	1, 3-22
Kommers (1990) ,   + Conklin (1987), Berners-Lee (1989),   Kaplan (1995), Pinkerton (1994), Doyle   US 5,838,906, or Mauldin US 5,748,954	1, 3-22
$\begin{aligned} & \text { + Burt (1991), UCINET, Botafogo } \\ & \text { (1992) } \\ & \text { Conklin (1988), Caplinger (1986), } \end{aligned}$	1, 3-22
+ Baase (1988)	1, 3-22
Croft \& Turtle (1989) + Conklin (1987), Berners-Lee (1989), Kaplan (1995), Pinkerton (1994), Doyle US 5,838,906, or Mauldin US 5,748,954	1, 3-22
Alain (1992)   + Conklin (1987), Berners-Lee (1989),   Kaplan (1995), Pinkerton (1994), Doyle   US 5,838,906, or Mauldin US 5,748,954	1, 3-22
Salton \& McGill (1983)   Salton (1971),   Salton (1988),   SMART   + Conklin (1987), Berners-Lee (1989),   Kaplan (1995), Pinkerton (1994), Doyle	1, 3-22


Combination	Claims of the '571 Patent Rendered   Obvious by the Combination
US 5,838,906, or Mauldin US 5,748,954	
Fox (1988)   Fox Thesis (1983)   Fox Collections (1983)   + Conklin (1987), Berners-Lee (1989),   Kaplan (1995), Pinkerton (1994), Doyle   US 5,838,906, or Mauldin US 5,748,954	$1,3-22$
Fox Thesis (1983)   Fox Collections (1983)   Berk (1991)   + Conklin (1987), Berners-Lee (1989),   Kaplan (1995), Pinkerton (1994), Doyle   US 5,838,906, or Mauldin US 5,748,954	
Brodda (1967)   Frisse (1988)   + Conklin (1987), Berners-Lee (1989),   Kaplan (1995), Pinkerton (1994), Doyle   US 5,838,906, or Mauldin US 5,748,954	$1,3-22$
Brodda (1967)   Belew (1986)   Rose (1991)   + Conklin (1987), Berners-Lee (1989),   Kaplan (1995), Pinkerton (1994), Doyle   US 5,838,906, or Mauldin US 5,748,954	
Brodda (1967)   Kaplan 891 Patent   + Conklin (1987), Berners-Lee (1989),   Kaplan (1995), Pinkerton (1994), Doyle   US 5,838,906, or Mauldin US 5,748,954	
Weiss (1996)   + Conklin (1987), Berners-Lee (1989),   Kaplan (1995), Pinkerton (1994), Doyle   US 5,838,906, or Mauldin US 5,748,954	$1,3-322$
+ NetCarta, Conklin (1988), Caplinger   (1986)	$1,3-22$
+ Baase (1988), Botafogo (1993)	$1,3-22$
+ Pirolli (1996)	
Salton (1963)   Pinski (1976), LATimes, Caplinger (1986),   + Conklin (1987), Berners-Lee (1989),   Kaplan (1995), Pinkerton (1994), Doyle	


Combination	Claims of the '571 Patent Rendered   Obvious by the Combination
US 5,838,906, or Mauldin US 5,748,954	
Salton \& McGill (1983)   Tapper (1982), LATimes, Caplinger   (1986)   + Conklin (1987), Berners-Lee (1989),   Kaplan (1995), Pinkerton (1994), Doyle   US 5,838,906, or Mauldin US 5,748,954	$1,3-22$
Crouch (1989)   Shepherd (1990), Caplinger (1986),   + Conklin (1987), Berners-Lee (1989),   Kaplan (1995), Pinkerton (1994), Doyle   US 5,838,906, or Mauldin US 5,748,954	$1,3-22$
+ SMART, Fox Thesis	$1,3-22$
Joachims (1995), Crouch (1989), Caplinger   (1986)   + Pinkerton (1994), Doyle US 5,838,906,   Conklin (1988), Mauldin US 5,748,954,	$1,3-22$

In addition, each claim is obvious in view of cited references in combination with the general knowledge in the art. Knowledge and use of the internet is exemplified by at least the following references: Conklin, 1987; Berners-Lee, 1989; Krol, 1994; Pinkerton, 1994; LA Times; Doyle U.S. 5,838,906, Maudlin, Mauldin US 5,748,954, Schatz 1994, and Nielson 1990b.

Additional specific combinations are described in Ex. I-2, I-3, I-4, I-5, I-6, and I-7 of Table 11 in the Invalidity Contentions of January 23, 2009.

With respect to the references and combinations disclosed herein, Defendants incorporate by reference Section V.C. 1 (except for Exhibit I-1) of their Invalidity Contentions of January 23, 2009. Defendants further reference the following:

Ex G-80	Brodda 1967
Ex G-81	Baase 1988
Ex G-84	Caplinger 1986

## 2. Motivation to Combine

With respect to the references and combinations disclosed herein, Defendants incorporate by reference Section V.C. 2 of their Invalidity Contentions of January 23, 2009.

Invalidity Claim Chart for U.S. Patent No. 5,544,352

## Based on Benny Brodda, Hans Karlgren, "Citation Index and Measures of Association in Mechanized Document Retrieval," KVAL PM 295 (1967). Report No. 2 to the Royal Treasury. Published by Sprakforlaget Skriptor. ("Brodda \& Karlgren, 1967")

Claim Text from '352 Patent	Brodda \& Karlgren, 1967
26. A non-semantical method for numerically   representing objects in a computer database and for   computerized searching of the numerically   represented objects in the database, wherein direct   and indirect relationships exist between objects in   the database, comprising:	See, e.g., Brodda \& Karlgren, 1967, at pp. 1-4, 6
[26a] marking objects in the database so that each   marked object may be individually identified by a   computerized search;	See, e.g., Brodda \& Karlgren, 1967, at p. 6
[26b] creating a first numerical representation for   each identified object in the database based upon   the object's direct relationship with other objects in   the database;	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 3, 4, 6
[26c] storing the first numerical representations for   use in computerized searching;	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 3, 4, 6
[26d] analyzing the first numerical representations   for indirect relationships existing between or among   objects in the database;	See, e.g., Brodda \& Karlgren, 1967, at pp. 3-4
[26e] generating a second numerical representation   of each object based on the analysis of the first   numerical representation;	See, e.g., Brodda \& Karlgren, 1967, at pp. 1-5, 8, 9-13, passim
[26f] storing the second numerical representation   for use in computerized searching; and	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 3-4


Claim Text from '352 Patent	
[26g] searching the objects in the database using a   computer and the stored second numerical   representations, wherein the search identifies one or   more of the objects in the database.	See, e.g., Brodda \& Karlgren, 1967, at p. 4
27. The non-semantical method of claim 26,   wherein the objects in the database include words,   and semantic indexing techniques are used in   combination with the non-semantical method, the   method further comprising the step of creating and   storing a Boolean word index for the words of the   objects in the database.	See, e.g., Brodda \& Karlgren, 1967, at p. 4 n.1
28. The non-semantical method of claim 26 wherein   the first and second numerical representations are   vectors that are arranged in first and second   matrices;	See, e.g., Brodda \& Karlgren, 1967, at pp. 9-10
[28a] the direct relationships are express references   from a one object to another object in the database;	See, e.g., Brodda \& Karlgren, 1967, at pp. 1-4, 6
[28b] the objects in the database are assigned   chronological data;	See, e.g., Brodda \& Karlgren, 1967, at p. 4
[28c] and wherein the step of searching comprises   the steps of matrix searching of the second   matrices;	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 2, 4, 5, 9-13, passim
[28d] and examining the chronological data.	See, e.g., Brodda \& Karlgren, 1967, at pp. 4, 8
29. The non-semantical method of claim 26 wherein   the step of analyzing the first numerical   representation further comprises:   examining the first numerical representation for   patterns which indicate the indirect relationships.	See, e.g., Brodda \& Karlgren, 1967, at pp. 1-4
30. The non-semantical method of claim 29, given	See, e.g., Brodda \& Karlgren, 1967, at pp. 1-4


Claim Text from '352 Patent	
that object A occurs before object B and object c   occurs before object A, and wherein the step of   creating a first numerical representation comprises   examining for the direct relationship B cites A and   wherein the step of examining for patterns further   comprises the step of examining for the following   pattern:   A cites c, and B cites c.	
31. The non-semantical method of claim 29,   wherein a, b, c, A, d, e, f, B, g, h, and i are objects   in the database and given that;	See, e.g., Brodda \& Karlgren, 1967, at pp. 1-4
a, b, and c occur before A; . .	
32. The non-semantical method of claim 26,   wherein the step of analyzing further comprises the   step of weighing, wherein some indirect   relationships are weighed more heavily than other   indirect relationships.	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 2, 4-5
33. The non-semantical method of claim 26,   wherein the step of analyzing the first numerical   representations for indirect relationships further   comprises:	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 3-4
[33a] creating an interim vector representing each   object; and wherein the step of generating a second   numerical representation uses coefficients of   similarity and further comprises:	See, e.g., Brodda \& Karlgren, 1967, at pp. 4, 9-10
[33b] calculating Euclidean distances between   interim vector representations of each object;	Disclosed either expressly or inherently in the teachings of the reference and its incorporated   disclosures taken as a whole, or in combination with the state of the art at the time of the   alleged invention.
[33c] creating proximity vectors representing the   objects using the calculated Euclidean distances;   and	


Claim Text from '352 Patent	Brodda \& Karlgren, 1967
[33d] using the proximity vectors and using   coefficients of similarity to calculate the second   numerical representations.	See, e.g., Brodda \& Karlgren, 1967, at p. 4
34. The non-semantical method of claim 26,   wherein objects in the database may be divided into   subsets and wherein the marking step includes the   step of marking subsets of objects in the database   and wherein relationships exist between or among   subsets of objects in the database.	See, e.g., Brodda \& Karlgren, 1967, at p. 6   Further, disclosed either expressly or inherently in the teachings of the reference and its   incorporated disclosures taken as a whole, or in combination with the state of the art at the   time of the alleged invention.
36. The non-semantical method of claim 26,   wherein the step of searching the objects comprises   the steps of: selecting an object; using the second   numerical representation to search for objects   similar to the selected object.	See, e.g., Brodda \& Karlgren, 1967, at p. 4
37. The non-semantical method of claim 26,   wherein the step of searching includes the step of   graphically displaying one or more of the identified   objects.	See, e.g., Brodda \& Karlgren, 1967, at pp. 4, 5
38. The non-semantical method of claim 26,   wherein the step of searching includes the step of   identifying a paradigm object.	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 2
39. The non-semantical method of claim 26,   wherein the step of searching the objects comprises   the steps of:	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 2
selecting a pool of objects;	


Claim Text from '352 Patent	
$\|$[39b] pool-importance searching to identify an   important pool of textual objects, important in   relation to the objects in the selected pool. See, e.g., Brodda \& Karlgren, 1967, at pp. 2, 4   40. The non-semantical method of claim 26, the   step of searching comprising the steps of:   identifying a paradigm pool of objects; and See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 2   [40a] searching for relationships between the   objects and the paradigm pool of objects; See, e.g., Brodda \& Karlgren, 1967, at p. 2   [40b] wherein the searched for relationship is pool   importance or pool similarity. See, e.g., Brodda \& Karlgren, 1967, at p. 2   41. A method for the non-semantical indexing of   objects stored in a computer database, the method   for use in searching the database for the objects,   comprising the steps of:   extracting, comprising the steps of: See, e.g., Brodda \& Karlgren, 1967, at pp. 1-3   [41a] labeling objects with a first numerical   representation; and See, e.g., Brodda \& Karlgren, 1967, at pp. 2, 6   [41b] generating a second numerical representation   for each object based on each object's references to   other objects; See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 3, 4, 6   [41c] patterning, comprising the step of creating a   third numerical representation for each object using   the second numerical representations, wherein the   third numerical representation for each object is   determined from an examination of the second   numerical representations for occurrences of   patterns that define indirect relations between or   among objects;    S41d] weaving, comprising the steps of: See, e.g., Brodda \& Karlgren, 1967, at p. 4	


Claim Text from '352 Patent	Brodda \& Karlgren, 1967
calculating a fourth numerical representation for   each object based on the euclidean distances   between the third numerical representations; and	Further, disclosed either expressly or inherently in the teachings of the reference and its   incorporated disclosures taken as a whole, or in combination with the state of the art at the   time of the alleged invention.
[41e] determining a fifth numerical representation   for each object by processing the fourth numerical   representations through similarity processing; and	See, e.g., Brodda \& Karlgren, 1967, at pp. 2, 4
[41f] storing the fifth numerical representations in   the computer database as the index for use in   searching for objects in the database.	See, e.g., Brodda \& Karlgren, 1967, at pp. 1-2
42. The method of claim 41 wherein the first   through fifth numerical representations are vector   representations and further comprises the step of   clustering objects having similar characteristics.	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 2, 5, 9-10
44. The method of claim 41 wherein the step of   creating the third numerical representations further   comprises the steps of:	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 2, 5
[44a] analyzing the second numerical representation   against a plurality of empirically defined patterns,   wherein certain patterns are more important than   others; and	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 4
[44b] weighing the analyzed second numerical   representations according to the importance of the   patterns.	See, e.g., Brodda \& Karlgren, 1967, at p. 4
45. A method for searching indexed objects,   wherein the index is stored, comprising the steps of:	See, e.g., Brodda \& Karlgren, 1967, at pp. 1-2, 4, 6
[45a] entering search commands;	See, e.g., Brodda \& Karlgren, 1967, at pp. 2, 4
[45b] processing the search commands with a	See, e.g., Brodda \& Karlgren, 1967, at p.2


Claim Text from '352 Patent	Brodda \& Karlgren, 1967
processor;	
[45c] retrieving the stored index using the processor;	See, e.g., Brodda \& Karlgren, 1967, at pp. 2, 4
[45d] analyzing the index to identify a pool of objects, comprising the steps of:	See, e.g., Brodda \& Karlgren, 1967, at pp. 2, 4
[45e] interpreting the processed searched commands as a selection of an object;	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 2
[45f] identifying a group of objects that have a relationship to the selected object, wherein the step of identifying comprises the steps of:	See, e.g., Brodda \& Karlgren, 1967, at pp. 2-4
[45g] identifying objects that are referred to by the selected object; and	See, e.g., Brodda \& Karlgren, 1967, at pp. 2, 3
[45h] identifying objects that refer to the selected object	See, e.g., Brodda \& Karlgren, 1967, at pp. 2, 3
[45i] quantifying the relationship of the selected object to each object in the group of objects; and	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 2, 4, 5, 8
[45j] ranking the objects in the group of objects in accordance to the quantified relationship to the selected object; and	See, e.g., Brodda \& Karlgren, 1967, at pp. 2, 4
[45k] presenting one or more objects from the group of objects in ranked order.	See, e.g., Brodda \& Karlgren, 1967, at pp. 2, 4, 6

Defendants reserve the right to revise this contention chart concerning the invalidity of the asserted claims, as appropriate, for example depending upon the Court's construction of the asserted claims, any findings as to the priority date of the asserted claims, and/or positions that Plaintiff or its expert witness(es) may take concerning claim interpretation, construction, infringement, and/or invalidity issues.

Plaintiff's Infringement Contentions are based on an apparent construction of the claim terms. Defendants disagree with these apparent constructions. Nothing stated herein shall be treated as an admission or suggestion that Defendants agree with Plaintiff regarding either the scope of any of the asserted claims or the claim constructions advanced by Plaintiff in its Infringement Contentions or anywhere else, or that any of Defendants' accused technology meets any limitations of the claims. Nothing stated herein shall be construed as an admission or a waiver of any particular construction of any claim term. Defendants also reserve all their rights to challenge any of the claim terms herein under 35 U.S.C. § 112 , including by arguing that they are indefinite, not supported by the written description and/or not enabled. Accordingly, nothing stated herein shall be construed as a waiver of any argument available under 35 U.S.C. § 112.

Invalidity Claim Chart for U.S. Patent No. 5,544,352

Based on Cleveland, Donald, "An n-Dimensional Retrieval Model," J. Am. Soc. Inf. Sci., pp. 342-47 (1976) ("Cleveland, 1976")

Claim Text from '352 Patent	Cleveland, 1976
26. A non-semantical method for numerically   representing objects in a computer database and for   computerized searching of the numerically   represented objects in the database, wherein direct   and indirect relationships exist between objects in   the database, comprising:	See, e.g., Cleveland, 1976, at passim, abstract.   This paper reports a technique which expands W. Goffman's Indirect Method search strategy   by using means other than index terms to reflect document content. The four basic measures   of document relatedness were: (1) Index terms, (2) Journals in which the documents   appeared, (3) Closeness of the authors of the documents and (4) Closeness of citations.   (Abstract).
[26a] Marking objects in the database so that each   marked object may be individually identified by a   computerized search;	See, e.g., Cleveland, 1976, at passim and p. 344, 345.
n(Ji) is the number of journals representing the journal citation profile of Ji. (p. 344)	


Claim Text from '352 Patent	Cleveland, 1976
	$\Theta(C i)$ is the number of the number of citations representing document Ci . (p. 345)
[26d] analyzing the first numerical representations for indirect relationships existing between or among objects in the database;	See, e.g., Cleveland, 1976, at p. 344-345   Thus, connected with each journal was its journal citation profile. The measure between journal Ji and journal Jj was defined to be
[26e] generating a second numerical representation of each object based on the analysis of the first numerical representation;	$Q_{i j}=\frac{n\left(J_{i} \Lambda I_{j}\right)}{n\left(J_{j}\right)},$
[26f] storing the second numerical representation for use in computerized searching; and	where $\mathrm{n}(\mathrm{Ji} \Lambda \mathrm{Jj})$ is the number of cited journals common to the profiles of journal Jj , and journal Jj and $\mathrm{n}(\mathrm{Ji})$ is the number of journals representing the journal citation profile of Jj . . . . (p. 344)   4) W-axis-The commonality of citations between the documents. It is assumed that closely related documents will have closely related citations. (p. 345)   Finally, the measure of citations was calculated as follows: $s_{i j}=\frac{\Theta\left(C_{i} \wedge C_{j}\right)}{\Theta\left(C_{i}\right)}$   Where $\Theta\left(C_{i} \Lambda C_{j}\right)$ is the number of citations common to document $C i$ and $C j$, and $\Theta(C i)$ is the number of the number of citations representing document Ci . (p. 345)   Thus, four basic distance measures were created, representing the four basic measures under consideration. Since a quasi-metric space existed, the objective now was to combine these orthogonal measures into various one, two, three and four-dimensional measures, using the Euclidean distance formula to determine the shortest chain between neighborhoods of documents in each dimension. Eleven matrices resulted. (p. 346).
[26g] searching the objects in the database using a computer and the stored second numerical	See, e.g., Cleveland, 1976, at passim, p. 345-46


Claim Text from '352 Patent	Cleveland, 1976
representations, wherein the search identifies one or	
more of the objects in the database.	$\begin{array}{l}\text { Distance Matrices } \\ \text { At this point, the four matrices showed the relatedness between each pair of documents in } \\ \text { terms of the four basic measures with values between } 0 \text { and } 1 .\end{array}$
It was now necessary to convert these matrices into distance matrices and combine them,	
using the Euclidean distance formula. If the measure value between document Xi and Xi was	
greater than some chosen threshold, then the distance between the pair was defined as being	
unit distance one. The following tactic was employed to convert each of the four basic	
matrices into distance matrices: (p. 345)	
Thus, four basic distance measures were created, representing the four basic measures under	
consideration. Since a quasi-metric space existed, the objective now was to combine these	
orthogonal measures into various one, two, three and four-dimensional measures, using the	
Euclidean distance formula to determine the shortest chain between neighborhoods of	
documents in each dimension. Eleven matrices resulted. . .	
With the "Indirect Method." the query simply serves as an entry point to the file. Once a	
relevant document is found, the remaining retrieved documents are determined by internal	
file structure, independently of the query. Relevance is not a zero or one comparison between	
the query and each document, but is based on a conditional probability of relevance between	
the documents in the file. (p. 346)	


Claim Text from '352 Patent	Cleveland, 1976
	With the "Indirect Method." the query simply serves as an entry point to the file. Once a relevant document is found, the remaining retrieved documents are determined by internal file structure, independently of the query. Relevance is not a zero or one comparison between the query and each document, but is based on a conditional probability of relevance between the documents in the file. (p. 346)
28. The non-semantical method of claim 26 wherein the first and second numerical representations are vectors that are arranged in first and second matrices;	See, e.g., Cleveland, 1976, at p. 345-46   Finally, the measure of citations was calculated as follows: $s_{i j}=\frac{\Theta\left(C_{i} \Lambda C_{j}\right)}{\Theta\left(C_{i}\right)}$   Where $\Theta\left(C_{i} \Lambda C_{j}\right)$ is the number of citations common to document $C i$ and $C j$, and $\Theta(C i)$ is the number of the number of citations representing document Ci . (p. 345)   Distance Matrices   At this point, the four matrices showed the relatedness between each pair of documents in terms of the four basic measures with values between 0 and 1 .   It was now necessary to convert these matrices into distance matrices and combine them, using the Euclidean distance formula. If the measure value between document Xi and Xi was greater than some chosen threshold, then the distance between the pair was defined as being unit distance one. The following tactic was employed to convert each of the four basic matrices into distance matrices:   (p. 345)   Thus, four basic distance measures were created, representing the four basic measures under consideration. Since a quasi-metric space existed, the objective now was to combine these orthogonal measures into various one, two, three and four-dimensional measures, using the Euclidean distance formula to determine the shortest chain between neighborhoods of documents in each dimension. Eleven matrices resulted. (p. 346)
[28a] the direct relationships are express references from a one object to another object in the database;	See, e.g., Cleveland, 1976, at passim, p. 344-45


Claim Text from '352 Patent	Cleveland, 1976
	$\begin{array}{l}\text { The second measure was based on the journals in which the documents appeared. There were } \\ 16 \text { different journals in the data set. Approximately 30,000 citations, all the citations for a } \\ \text { one year period, were examined. The result was a frequency list of citations for each of the } \\ 16 \text { journals, giving the total citations to other journals in the data set. . . (p. 344) }\end{array}$
$\Theta(C i)$ is the number of the number of citations representing document $C i$. . (p. 345)	


Claim Text from '352 Patent	Cleveland, 1976
	documents in each dimension. Eleven matrices resulted. . . . With the "Indirect Method." the query simply serves as an entry point to the file. Once a relevant document is found, the remaining retrieved documents are determined by internal file structure, independently of the query. Relevance is not a zero or one comparison between the query and each document, but is based on a conditional probability of relevance between the documents in the file. (p. 346)
[28d] and examining the chronological data.	See, e.g., Cleveland, 1976, at p. 344   Approximately 30,000 citations, all the citations for a one year period, were examined. (p. 344)
29. The non-semantical method of claim 26 wherein the step of analyzing the first numerical representation further comprises: examining the first numerical representation for patterns which indicate the indirect relationships.	See, e.g., Cleveland, 1976, at p. 344-345   4) W-axis-The commonality of citations between the documents. It is assumed that closely related documents will have closely related citations. (p. 345)   Finally, the measure of citations was calculated as follows: $s_{i j}=\frac{\Theta\left(C_{i} \Lambda C_{j}\right)}{\Theta\left(C_{i}\right)}$   Where $\Theta\left(C_{i} \Lambda C_{j}\right)$ is the number of citations common to document $C i$ and $C j$, and $\Theta(C i)$ is the number of the number of citations representing document Ci . (p. 345)
30. The non-semantical method of claim 29, given that object A occurs before object B and object c occurs before object A, and wherein the step of creating a first numerical representation comprises examining for the direct relationship B cites A and wherein the step of examining for patterns further comprises the step of examining for the following pattern:   A cites c, and B cites c.	See, e.g., Cleveland, 1976, at p. 344-345   4) W-axis-The commonality of citations between the documents. It is assumed that closely related documents will have closely related citations. (p. 345)   Finally, the measure of citations was calculated as follows: $s_{i j}=\frac{\Theta\left(C_{i} \Lambda C_{j}\right)}{\Theta\left(C_{i}\right)}$   Where $\Theta\left(C_{i} \Lambda C_{j}\right)$ is the number of citations common to document $C i$ and $C j$, and $\Theta(C i)$ is the number of the number of citations representing document Ci . (p. 345)


Claim Text from '352 Patent	Cleveland, 1976
31. The non-semantical method of claim 29, wherein a, b, c, A, d, e, f, B, g, h, and i are objects in the database and given that;   a, b, and c occur before A;   A occurs before d , e, and f, which occur before B; and   B occurs before $\mathrm{g}, \mathrm{h}$, and i ;   and wherein the step of examining for patterns further comprises the step of examining for one or more of the following patterns:   (i) g cites A , and g cites B ;   (ii) B cites f , and f cites A ;   (iii) B cites f, f cites e, and e cites A;   (iv) B cites f , f cites e, e cites d, and d cites A;   (v) $g$ cites $\mathrm{A}, \mathrm{h}$ cites $\mathrm{B}, \mathrm{g}$ cites a , and h cites a ;   (vi) i cites B, i cites f (or g ), and f (or g ) cites A;   (vii) i cites g , i cites A , and g cites B ;   (viii) i cites g (or d), i cites $\mathrm{h}, \mathrm{g}$ (or d) cites A , and h cites B;   (ix) i cites a , i cites B , and A cites a ;   (x) i cites A, i cites e, B cites e;   (xi) g cites A, g cites a, A cites $\mathrm{a}, \mathrm{h}$ cites B , and h cites a;   (xii) A cites a, B cites d, i cites a, and i cites d;   (xiii) i cites $\mathrm{B}, \mathrm{i}$ cites d , A cites a , and d cites a ;   (xiv) A cites b, B cites d (or c), and d (or c) cites b;	See, e.g., Cleveland, 1976, at p. 344-345   4) W-axis-The commonality of citations between the documents. It is assumed that closely related documents will have closely related citations. (p. 345)   Finally, the measure of citations was calculated as follows: $s_{i j}=\frac{\Theta\left(C_{i} \Lambda C_{j}\right)}{\Theta\left(C_{i}\right)}$   Where $\Theta\left(C_{i} \Lambda C_{j}\right)$ is the number of citations common to document $C i$ and $C j$, and $\Theta(C i)$ is the number of the number of citations representing document Ci . (p. 345)


Claim Text from '352 Patent	Cleveland, 1976
(xv) A cites b, B cites d, b cites a, and d cites a; (xvi) A cites a, B cites b, d (or c) cites a, and d (or c) cites b.	
32. The non-semantical method of claim 26, wherein the step of analyzing further comprises the step of weighing, wherein some indirect relationships are weighed more heavily than other indirect relationships.	See, e.g., Cleveland, 1976, at p. 345   Distance Matrices   At this point, the four matrices showed the relatedness between each pair of documents in terms of the four basic measures with values between 0 and 1 .   It was now necessary to convert these matrices into distance matrices and combine them, using the Euclidean distance formula. If the measure value between document Xi and Xi was greater than some chosen threshold, then the distance between the pair was defined as being unit distance one.   Finally, the measure of citations was calculated as follows: $s_{i j}=\frac{\Theta\left(C_{i} \Lambda C_{j}\right)}{\Theta\left(C_{i}\right)}$   Where $\Theta\left(C_{i} \Lambda C_{j}\right)$ is the number of citations common to document $C i$ and $C j$, and $\Theta(C i)$ is the number of the number of citations representing document Ci . (p. 345)
33. The non-semantical method of claim 26, wherein the step of analyzing the first numerical representations for indirect relationships further comprises:	(See claim 26 and below)
[33a] creating an interim vector representing each object; and wherein the step of generating a second numerical representation uses coefficients of similarity and further comprises:	See, e.g., Cleveland, 1976, at p. 345-46   An automatic word frequency technique was used to get the index terms measure. This technique has been used successfully in documentation studies at Case Western Reserve University for several years. Its basic form is described by Goffman (4).


Claim Text from '352 Patent	Cleveland, 1976
	The resulting lists of index terms were used to construct a matrix of relatedness between each pair of documents in the file. The numerical value was calculated as follows: $p_{i j}=\frac{m\left(X_{i} \Lambda X_{j}\right)}{m\left(X_{i}\right)}$   where $\mathrm{m}(\mathrm{Xi} \Lambda \mathrm{Xi})$ is the number of index terms common to document Xi and document Xj . $\mathrm{m}(\mathrm{Xi})$ is the total number of index terms for document Xi. (p. 344)   Finally, the measure of citations was calculated as follows: $s_{i j}=\frac{\Theta\left(C_{i} \Lambda C_{j}\right)}{\Theta\left(C_{i}\right)}$   Where $\Theta\left(C_{i} \Lambda C_{j}\right)$ is the number of citations common to document $C i$ and $C j$, and $\Theta(C i)$ is the number of citations representing document Ci . (p. 345)   Distance Matrices   At this point, the four matrices showed the relatedness between each pair of documents in terms of the four basic measures with values between 0 and 1.   It was now necessary to convert these matrices into distance matrices and combine them, using the Euclidean distance formula. If the measure value between document Xi and Xi was greater than some chosen threshold, then the distance between the pair was defined as being unit distance one. The following tactic was employed to convert each of the four basic matrices into distance matrices:   (p. 345)   Thus, four basic distance measures were created, representing the four basic measures under consideration. Since a quasi-metric space existed, the objective now was to combine these orthogonal measures into various one, two, three and four-dimensional measures, using the Euclidean distance formula to determine the shortest chain between neighborhoods of documents in each dimension. Eleven matrices resulted. (p. 346)
[33b] calculating Euclidean distances between interim vector representations of each object;	See, e.g., Cleveland, 1976, at p. 345-46


Claim Text from '352 Patent	Cleveland, 1976
	$\begin{array}{l}\text { Distance Matrices } \\ \text { At this point, the four matrices showed the relatedness between each pair of documents in } \\ \text { terms of the four basic measures with values between } 0 \text { and } 1 . \\ \text { It was now necessary to convert these matrices into distance matrices and combine them, } \\ \text { using the Euclidean distance formula. If the measure value between document Xi and Xi was } \\ \text { greater than some chosen threshold, then the distance between the pair was defined as being } \\ \text { unit distance one. The following tactic was employed to convert each of the four basic } \\ \text { matrices into distance matrices: . . p. 345) } \\ \text { Thus, four basic distance measures were created, representing the four basic measures under } \\ \text { consideration. Since a quasi-metric space existed, the objective now was to combine these } \\ \text { orthogonal measures into various one, two, three and four-dimensional measures, using the } \\ \text { Euclidean distance formula to determine the shortest chain between neighborhoods of } \\ \text { documents in each dimension. Eleven matrices resulted. (p. 346) }\end{array}$
[33c] creating proximity vectors representing the	
objects using the calculated Euclidean distances;	
and	

Distance Matrices <br>
At this point, the four matrices showed the relatedness between each pair of documents in\end{array}\right\} $$
\begin{array}{l}\text { terms of the four basic measures with values between 0 and 1. } \\
\text { It was now necessary to convert these matrices into distance matrices and combine them, } \\
\text { using the Euclidean distance formula. If the measure value between document Xi and Xi was } \\
\text { greater than some chosen threshold, then the distance between the pair was defined as being } \\
\text { unit distance one. The following tactic was employed to convert each of the four basic } \\
\text { matrices into distance matrices: } \\
\text { Step One: Arbitrary thresholds were picked for each matrix in terms of the calculated } \\
\text { numerical values. In actual practice the thresholds would depend on whether a fine or a } \\
\text { broad scope of retrieval is desired. For pur-poses of experimentation. it is only necessary that } \\
\text { the thresholds be held constant throughout the experiment. The thresholds picked were .14 } \\
\text { for the index terms. .50 for thejournals, .08fortheauthorsand.0Iforthecita-tions. Any } \\
\text { relatedness values that fell below these thres-holds were considered zero. }\end{array}
$$\right\}\)

Claim Text from '352 Patent	Cleveland, 1976
	document Xj which is above the threshold.   Step Three : For each document Xj that is a distance of one from document Xi , go along the row of Xj and assign a distance of two to each document that is above the threshold, provided it is not already of distance one from document Xi .   Step Four: Continue this procedure until all docu-ments have a distance from document Xi. Those documents with zero relatedness values are considered to be of infinite distance.   Step Five: Repeat the procedure for all i.   Step Six : Repeat the total procedure for all n basic matrices.   The results are links of documents for each $n$ basic matrix. These sequences reflect the smallest communication chain between elements, hence a quasi-distance.   (p. 345)
[33d] using the proximity vectors and using coefficients of similarity to calculate the second numerical representations.	See, e.g., Cleveland, 1976, at p. 344.   An automatic word frequency technique was used to get the index terms measure. This technique has been used successfully in documentation studies at Case Western Reserve University for several years. Its basic form is described by Goffman (4).   The resulting lists of index terms were used to construct a matrix of relatedness between each pair of documents in the file. The numerical value was calculated as follows: $p_{i j}=\frac{m\left(X_{i} \Lambda X_{j}\right)}{m\left(X_{i}\right)}$   where $\mathrm{m}(\mathrm{Xi} \Lambda \mathrm{Xi})$ is the number of index terms common to document Xi and document Xj . $\mathrm{m}(\mathrm{Xi})$ is the total number of index terms for document Xi . (p. 344)


Claim Text from '352 Patent	Cleveland, 1976		
	Thus, four basic distance measures were created, representing the four basic measures under   consideration. Since a quasi-metric space existed, the objective now was to combine these   orthogonal measures into various one, two, three and four-dimensional measures, using the   Euclidean distance formula to determine the shortest chain between neighborhoods of   documents in each dimension. Eleven matrices resulted. (p. 346)		
34. The non-semantical method of claim 26,   wherein objects in the database may be divided into   subsets and wherein the marking step includes the   step of marking subsets of objects in the database   and wherein relationships exist between or among   subsets of objects in the database.	See, e.g., Cleveland, 1976, at p. 344.   There were 16 different journals in the data set. Approximately 30,000 citations, all the   citations for a one year period, were examined. The result was a frequency list of citations   for each of the 16 journals, giving the total citations to other journals in the data set. . .   Thus, connected with each journal was its journal citation profile. (p. 344)		
35. The non-semantical method of claim 34 wherein   the objects are textual objects with paragraphs and   the subsets are the paragraphs of the textual objects,   the method further comprising the steps of:	See, e.g., Cleveland, 1976, at p. 347.   Cleveland also teaches applying the method to abstracts. ("[A]nother dimension, based on   abstracts . . might be used....") (p. 347)		
[35a] creating a subset numerical representation for			
each subset based upon the relationships between or			
among subsets;			See, e.g., Cleveland, 1976, at p. 345.
:---	:---		
4) W-axis-The commonality of citations between the documents. It is assumed that closely			
related documents will have closely related citations. (p. 345)			


Claim Text from '352 Patent	Cleveland, 1976
	Finally, the measure of citations was calculated as follows: $s_{i j}=\frac{\Theta\left(C_{i} \Lambda C_{j}\right)}{\Theta\left(C_{i}\right)}$   Where $\Theta\left(C_{i} \Lambda C_{j}\right)$ is the number of citations common to document $C i$ and $C j$, and $\Theta(C i)$ is the number of the number of citations representing document $C i$. (p. 345)
[35c] clustering the subsets into sections based upon the subset analysis; and	See, e.g., Cleveland, 1976, at p. 346.
[35d] generating a section numerical representation for each section, wherein the section numerical representations are available for searching.	Since a quasi-metric space exited, the objective now was to combine these orthogonal measures into various one, two, three and four-dimensional measures, using the Euclidean distance formula to determine the shortest chain between neighborhoods of documents in each dimension. (p. 346).
36. The non-semantical method of claim 26, wherein the step of searching the objects comprises the steps of: selecting an object; using the second numerical representation to search for objects similar to the selected object.	See, e.g., Cleveland, 1976, at passim, p. 345-46
	Distance Matrices
	At this point, the four matrices showed the relatedness between each pair of documents in terms of the four basic measures with values between 0 and 1 .
	It was now necessary to convert these matrices into distance matrices and combine them, using the Euclidean distance formula. If the measure value between document Xi and Xi was greater than some chosen threshold, then the distance between the pair was defined as being unit distance one. The following tactic was employed to convert each of the four basic matrices into distance matrices: (p. 345)
	Thus, four basic distance measures were created, representing the four basic measures under consideration. Since a quasi-metric space existed, the objective now was to combine these orthogonal measures into various one, two, three and four-dimensional measures, using the Euclidean distance formula to determine the shortest chain between neighborhoods of documents in each dimension. Eleven matrices resulted. . . . With the "Indirect Method." the query simply serves as an entry point to the file. Once a relevant document is found, the remaining retrieved documents are determined by internal file structure, independently of the query. Relevance is not a zero or one comparison between the query and each document, but


Claim Text from '352 Patent	


Claim Text from '352 Patent	Cleveland, 1976
	appeared, (3) Closeness of the authors of the documents and (4) Closeness of citations.
[41a] labeling objects with a first numerical representation; and	See, e.g., Cleveland, 1976, at passim and p. 345.   $\Theta\left(C_{i}\right)$ is the number of the number of citations representing document Ci . (p. 345)
[41b] generating a second numerical representation for each object based on each object's references to other objects;	See, e.g., Cleveland, 1976, at p. 344-45   The second measure was based on the journals in which the documents appeared. There were 16 different journals in the data set. Approximately 30,000 citations, all the citations for a one year period, were examined. The result was a frequency list of citations for each of the 16 journals, giving the total citations to other journals in the data set. . . . (p. 344)   $\Theta(C i)$ is the number of the number of citations representing document $C i$. (p. 345)
[41c] patterning, comprising the step of creating a third numerical representation for each object using the second numerical representations, wherein the third numerical representation for each object is determined from an examination of the second numerical representations for occurrences of patterns that define indirect relations between or among objects;	See, e.g., Cleveland, 1976, at p. 344-345   4) W-axis-The commonality of citations between the documents. It is assumed that closely related documents will have closely related citations. (p. 345)   Finally, the measure of citations was calculated as follows: $s_{i j}=\frac{\Theta\left(C_{i} \Lambda C_{j}\right)}{\Theta\left(C_{i}\right)}$   Where $\Theta\left(C_{i} \Lambda C_{j}\right)$ is the number of citations common to document $C i$ and $C j$, and $\Theta(C i)$ is the number of the number of citations representing document Ci. (p. 345)
[41d] weaving, comprising the steps of: calculating a fourth numerical representation for	See, e.g., Cleveland, 1976, at passim, p. 345-46 Distance Matrices


Claim Text from '352 Patent	Cleveland, 1976
each object based on the euclidean distances between the third numerical representations; and	At this point, the four matrices showed the relatedness between each pair of documents in terms of the four basic measures with values between 0 and 1 .   It was now necessary to convert these matrices into distance matrices and combine them, using the Euclidean distance formula. If the measure value between document Xi and Xi was greater than some chosen threshold, then the distance between the pair was defined as being unit distance one. The following tactic was employed to convert each of the four basic matrices into distance matrices:   (p. 345)   Thus, four basic distance measures were created, representing the four basic measures under consideration. Since a quasi-metric space existed, the objective now was to combine these orthogonal measures into various one, two, three and four-dimensional measures, using the Euclidean distance formula to determine the shortest chain between neighborhoods of documents in each dimension. Eleven matrices resulted. . . . With the "Indirect Method." the query simply serves as an entry point to the file. Once a relevant document is found, the remaining retrieved documents are determined by internal file structure, independently of the query. Relevance is not a zero or one comparison between the query and each document, but is based on a conditional probability of relevance between the documents in the file. (p. 346)
[41e] determining a fifth numerical representation for each object by processing the fourth numerical representations through similarity processing; and	See, e.g., Cleveland, 1976, at p. 345-46   Finally, the measure of citations was calculated as follows: $s_{i j}=\frac{\Theta\left(C_{i} \Lambda C_{j}\right)}{\Theta\left(C_{i}\right)}$   Where $\Theta\left(C_{i} \Lambda C_{j}\right)$ is the number of citations common to document $C i$ and $C j$, and $\Theta(C i)$ is the number of the number of citations representing document Ci . (p. 345)   Distance Matrices   At this point, the four matrices showed the relatedness between each pair of documents in terms of the four basic measures with values between 0 and 1 .   It was now necessary to convert these matrices into distance matrices and combine them, using the Euclidean distance formula. If the measure value between document Xi and Xi was greater than some chosen threshold, then the distance between the pair was defined as being


Claim Text from '352 Patent	Cleveland, 1976
	$\begin{array}{l}\text { unit distance one. The following tactic was employed to convert each of the four basic } \\ \text { matrices into distance matrices: } \\ \text { (p. 345) } \\ \text { Thus, four basic distance measures were created, representing the four basic measures under } \\ \text { consideration. Since a quasi-metric space existed, the objective now was to combine these } \\ \text { orthogonal measures into various one, two, three and four-dimensional measures, using the } \\ \text { Euclidean distance formula to determine the shortest chain between neighborhoods of } \\ \text { documents in each dimension. Eleven matrices resulted. (p. 346) }\end{array}$
[41f] storing the fifth numerical representations in	
the computer database as the index for use in	
searching for objects in the database.	

Distance Matrices <br>
At this point, the four matrices showed the relatedness between each pair of documents in <br>

terms of the four basic measures with values between 0 and 1.\end{array}\right\}\)| It was now necessary to convert these matrices into distance matrices and combine them, |
| :--- |
| using the Euclidean distance formula. If the measure value between document Xi and Xi was |
| greater than some chosen threshold, then the distance between the pair was defined as being |
| unit distance one. The following tactic was employed to convert each of the four basic |
| matrices into distance matrices: (p. 345) |
| Thus, four basic distance measures were created, representing the four basic measures under |
| consideration. Since a quasi-metric space existed, the objective now was to combine these |
| orthogonal measures into various one, two, three and four-dimensional measures, using the |
| Euclidean distance formula to determine the shortest thain between neighborhoods of |
| documents in each dimension. Eleven matrices resulted. . . |
| Therefore, a test consists of presenting queries to the system, using a particular relatedness |
| measure or a particular combination of measures and observing how close the retrieval |
| results approach the ideal. |


Claim Text from '352 Patent	Cleveland, 1976
	the query and each document, but is based on a conditional probability of relevance between the documents in the file. (p. 346)
42. The method of claim 41 wherein the first through fifth numerical representations are vector representations and further comprises the step of clustering objects having similar characteristics.	See, e.g., Cleveland, 1976, at p. 346.   Thus, four basic distance measures were created, representing the four basic measures under consideration. Since a quasi-metric space existed, the objective now was to combine these orthogonal measures into various one, two, three and four-dimensional measures, using the Euclidean distance formula to determine the shortest chain between neighborhoods of documents in each dimension. Eleven matrices resulted. (p. 346)
44. The method of claim 41 wherein the step of creating the third numerical representations further comprises the steps of:	See, e.g., Cleveland, 1976, at p. 345   Finally, the measure of citations was calculated as follows: $s_{i j}=\frac{\Theta\left(C_{i} \Lambda C_{j}\right)}{\Theta\left(C_{i}\right)}$   Where $\Theta\left(C_{i} \Lambda C_{j}\right)$ is the number of citations common to document $C i$ and $C j$, and $\Theta(C i)$ is the number of the number of citations representing document $C i$. (p. 345)
[44a] analyzing the second numerical representation against a plurality of empirically defined patterns, wherein certain patterns are more important than others; and	
[44b] weighing the analyzed second numerical representations according to the importance of the patterns.	
45. A method for searching indexed objects, wherein the index is stored, comprising the steps of:	See, e.g., Cleveland, 1976, at passim, abstract and p. 344
	The four basic measures of document relatedness were: (1) Index terms, (2) Journals in which the documents appeared, (3) Closeness of the authors of the documents and (4) Closeness of citations. (Abstract).   1) X-axis- Keyword co-occurrence between the documents in the file. This is the measure


Claim Text from '352 Patent	Cleveland, 1976
	used in the original Indirect Method experiment and is, of course, the most obvious measure. Documents with similar index terms probably have similar information content. . . The resulting lists of index terms were used to construct a matrix of relatedness between each pair of documents in the file. ... (p. 344)   An automatic term frequency technique was used to get the index terms measure. (p. 344)
[45a] entering search commands;	See, e.g., Cleveland, 1976, at p. 346   [A] test consists of presenting queries to the system. . . .   With the "Indirect Method," the query simply serves as an entry point to the file. (p. 346)
[45b] processing the search commands with a processor;	See, e.g., Cleveland, 1976, at p. 346   [A] test consists of presenting queries to the system. . . . Some form of Boolean operation is the most basic of techniques. (In the experiment reported here the index terms used to represent the "query" article made up the search vectors.) For a Boolean search a query is compared with each document in the file using any Boolean operation desired. . . .   With the "Indirect Method," the query simply serves as an entry point to the file. (p. 346)
[45c] retrieving the stored index using the processor;	See, e.g., Cleveland, 1976, at p. 344, 345-46   An automatic term frequency technique was used to get the index terms measure. (p. 344)   Finally, the measure of citations was calculated as follows: $s_{i j}=\frac{\Theta\left(C_{i} \Lambda C_{j}\right)}{\Theta\left(C_{i}\right)}$


Claim Text from '352 Patent	Cleveland, 1976
	Where $\Theta\left(C_{i} \Lambda C_{j}\right)$ is the number of citations common to document $C i$ and $C j$, and $\Theta(C i)$ is the number of the number of citations representing document Ci. (p. 345)   - Distance Matrices   At this point, the four matrices showed the relatedness between each pair of documents in terms of the four basic measures with values between 0 and 1 .   It was now necessary to convert these matrices into distance matrices and combine them, using the Euclidean distance formula. If the measure value between document Xi and Xi was greater than some chosen threshold, then the distance between the pair was defined as being unit distance one. The following tactic was employed to convert each of the four basic matrices into distance matrices:   [A] test consists of presenting queries to the system. . . Some form of Boolean operation is the most basic of techniques. (In the experiment reported here the index terms used to represent the "query" article made up the search vectors.) For a Boolean search a query is compared with each document in the file using any Boolean operation desired. . . .   With the "Indirect Method," the query simply serves as an entry point to the file. (p. 346)
[45d] Analyzing the index to identify a pool of objects, comprising the steps of:	See steps below:
[45e] interpreting the processed searched commands as a selection of an object;	See, e.g., Cleveland, 1976, at p. 346   [A] test consists of presenting queries to the system. . . .   With the "Indirect Method," the query simply serves as an entry point to the file. (p. 346)
[45f] identifying a group of objects that have a relationship to the selected object, wherein the step	



Claim Text from '352 Patent	Cleveland, 1976
	looks like this: . . Thus, four basic distance measures were created. (p. 345-46)
$\begin{array}{l}\text { [45j] ranking the objects in the group of objects in } \\ \text { accordance to the quantified relationship to the } \\ \text { selected object; and }\end{array}$	See, e.g., Cleveland, 1976, at p. 342,346
Th5k] presenting one or more objects from the	
group of objects in ranked order.	

request. The result of the search is an ordered list of those documents that satisfy the <br>
request, ranked according to their probable relevance. <br>
Therefore, a test consists of presenting queries to the system, using a particular relatedness <br>
measure or a particular combination of measures and observing how close the retrieval <br>
results approach the ideal. <br>
With the "Indirect Method." the query simply serves as an entry point to the file. Once a <br>
relevant document is found, the remaining retrieved documents are determined by internal <br>
file structure, independently of the query. Relevance is not a zero or one comparison between <br>
the query and each document, but is based on a conditional probability of relevance between <br>
the documents in the file. (p. 346)\end{array}\right]\)

Defendants reserve the right to revise this contention chart concerning the invalidity of the asserted claims, as appropriate, for example depending upon the Court's construction of the asserted claims, any findings as to the priority date of the asserted claims, and/or positions that Plaintiff or its expert witness(es) may take concerning claim interpretation, construction, infringement, and/or invalidity issues.

Plaintiff's Infringement Contentions are based on an apparent construction of the claim terms. Defendants disagree with these apparent constructions. Nothing stated herein shall be treated as an admission or suggestion that Defendants agree with Plaintiff regarding either the scope of any of the asserted claims or the claim constructions advanced by Plaintiff in its Infringement Contentions or anywhere else, or that any of Defendants' accused technology meets any limitations of the claims. Nothing stated herein shall be construed as an admission or a waiver of any particular construction of any claim term. Defendants also reserve all their rights to challenge any of the claim terms herein under 35 U.S.C. § 112 , including by arguing that they are indefinite, not supported by the written description and/or not enabled. Accordingly, nothing stated herein shall be construed as a waiver of any argument available under 35 U.S.C. § 112.

## Invalidity Claim Chart for U.S. Patent No. 5,544,352

Based on Baase, S., Computer Algorithms: Introduction to Design and Analysis, $2^{\text {nd }}$ Edition, Addison-Wesley
Publishing Co., 1988. ("Baase, 1988)

Claim Text from '352 Patent	Baase 1988
26. A non-semantical method for numerically   representing objects in a computer database and for   computerized searching of the numerically   represented objects in the database, wherein direct   and indirect relationships exist between objects in   the database, comprising:	See, e.g., Baase, 1988, p. 149-156, 160-166 and 167-72, Title (Computer Algorithms).
[26a] Marking objects in the database so that each   marked object may be individually identified by a   computerized search;	See, e.g., Baase, 1988, p. 149-156 and 167-72, Title (Computer Algorithms).
Input: G = (V, E, W), a weighted graph or digraph . . . G is represented by an adjacency list	
[26b] creating a first numerical representation for   each identified object in the database based upon the   object's direct relationship with other objects in the   database;	See, e.g., Baase, 1988, p. 162-163, 171   Input: G $=(\mathrm{V}, \mathrm{E}, \mathrm{W})$, a weighted graph or digraph . . . G is represented by an adjacency list   structure. . . (p. 171).
[26c] storing the first numerical representations for   use in computerized searching;	


Claim Text from '352 Patent	Baase 1988
[26d] analyzing the first numerical representations for indirect relationships existing between or among objects in the database;   [26e] generating a second numerical representation of each object based on the analysis of the first numerical representation;   [26f] storing the second numerical representation for use in computerized searching; and	See, e.g., Baase, 1988, at p. , 160-166, 168-172.   $d(A, B)+W(B C)=6$ $d\left(A_{,}, A\right)+W(A G)=5$ $d(A, A)+W(A F)=9$ Select $A G$ next.   (b) An invermediate step:   (c) An intermediale step. (CH was considered but not chosen to replace OH as a condidate.)   Whether or not G is a digraph, it is helpful 10 think of the tree and candidate edges as having an orientation; the tail of an edge is the vertex closer to $v$. Candidate edges go from a tree vertex to a fringe vertex. These edges will always be written to reflect this orientation; in other words, if we write $X Y$. we are assuming that $x$ is closer to $v$ than y is. We will refer tox as $\operatorname{tail}(x y)$ and y as head(xy) even if G is not a directed graph.   Given the situation in Fig. 4.18(c), the next step is to select a candidate edge and fringe vertex. We choose a candidate edge $e$ for which $d(v, \operatorname{tail}(e))+W(e)$ is minimum. This is the weight of the path obtained by adjoining $e$ to the known shortest path to tail( $e$ ).   Since the quantity $d(v$, tail $(e))+W(e)$ for a candidate edge $e$ may be used repeatedly, it can be computed once and saved. To compute it efficiently when efirst becomes a candidate, we also save $d(v, y)$ for each y in the tree. Thus we use an array dist as follows: $\operatorname{dist[y]=} \mathrm{d}(\mathrm{v}, \mathrm{y}) ; \operatorname{dist}[\mathrm{z}]=\mathrm{d}(\mathrm{v}, \mathrm{y})+$ $\mathrm{W}(\mathrm{yz})$.   After a vertex and the corresponding candidate edge are selected, the information in the data structure must be updated. In Fig. 4.18(d) the vertex $I$ and the edge $G l$ have just been selected. The candidate edge for $F$ was $A F$, but now $A F$ must be replaced by $I F$ because $I F$ yields a shorter path to $F$, We must also recompute $\operatorname{dist}[F]$. The vertex $E$, which was unseen, is now on the fringe because it is adjacent to I, now in the tree . . .   while $\mathrm{x} \neq \mathrm{w}$ and not stuck do . . . . end $\{$ while $\mathrm{x} \neq \mathrm{w}$ and not stuck $\}$ (p. 171-172)
[26g] searching the objects in the database using a	See, e.g., Baase, 1988, at p. 149, 167, 168-172.


Claim Text from '352 Patent	Baase 1988
computer and the stored second numerical representations, wherein the search identifies one or more of the objects in the database.	[W]e briefly considered the problem of finding the best route between two cities on a map of airline routes. Using as our criterion the price of the plane tickets, we observed that the best - i.e., cheapest - way to get from San Diego to Sacramento was to make one stop in Los Angeles. This is one instance, or application, of a very common problem on a weighted graph or digraph: finding a shortest path between two specified vertices. The weight, or length of a path . . . in a weighted graph . . . is . . . the sum of the weights of the edges in the path. If the path is called $P$ we denote its weight by $W(P)$. (p. 167)   $\{$ Output the path, the vertices will be listed in the reverse order, i.e. from $w$ to $v\}$   While $\mathrm{x} \neq 0$ do   Output(x); $\mathrm{x}:=\operatorname{parent}[\mathrm{x}]$   end (p. 172)
28. The non-semantical method of claim 26 wherein the first and second numerical representations are vectors that are arranged in first and second matrices; the direct relationships are express references from a one object to another object in the database; the objects in the database are assigned chronological data;and wherein the step of searching comprises the steps of matrix searching of the second matrices; and examining the chronological data.	See, e.g., Baase, 1988, p. 149-156, 162-163, and 167-72   Which route involves the least flying time? (p. 149).
29. The non-semantical method of claim 26 wherein the step of analyzing the first numerical representation further comprises: examining the first numerical representation for patterns which indicate the indirect relationships.	See, e.g., Baase, 1988, p. 160-166, 167-72
32. The non-semantical method of claim 26 , wherein the step of analyzing further comprises the step of weighing, wherein some indirect relationships are	See, e.g., Baase, 1988, p. 149-156, 160-166 and 167-72


Claim Text from '352 Patent	Baase 1988
weighed more heavily than other indirect   relationships.	

Defendants reserve the right to revise this contention chart concerning the invalidity of the asserted claims, as appropriate, for example depending upon the Court's construction of the asserted claims, any findings as to the priority date of the asserted claims, and/or positions that Plaintiff or its expert witness(es) may take concerning claim interpretation, construction, infringement, and/or invalidity issues.

Plaintiff's Infringement Contentions are based on an apparent construction of the claim terms. Defendants disagree with these apparent constructions. Nothing stated herein shall be treated as an admission or suggestion that Defendants agree with Plaintiff regarding either the scope of any of the asserted claims or the claim constructions advanced by Plaintiff in its Infringement Contentions or anywhere else, or that any of Defendants' accused technology meets any limitations of the claims. Nothing stated herein shall be construed as an admission or a waiver of any particular construction of any claim term. Defendants also reserve all their rights to challenge any of the claim terms herein under 35 U.S.C. § 112 , including by arguing that they are indefinite, not supported by the written description and/or not enabled. Accordingly, nothing stated herein shall be construed as a waiver of any argument available under 35 U.S.C. § 112.

Invalidity Claim Chart for U.S. Patent No. 5,544,352

## Based on Crouch, D., Crouch, C., Andreas, G., "The Use of cluster Hierarchies in Hypertext information Retrieval," in Hypertext '39 Proceedings, SigChi bulletin, pp. 225-237, November 1989. ("Сrouch, 1989")

Claim Text from ' 352 Patent	Crouch, 1989
26. A non-semantical method for numerically representing objects in a computer database and for computerized searching of the numerically represented objects in the database, wherein direct and indirect relationships exist between objects in the database, comprising:	See, e.g., Crouch, 1989, at pp. 226, 228, 229
[26a] marking objects in the database so that each marked object may be individually identified by a computerized search;	See, e.g., Crouch, 1989, at p. 230, Fig. 8
[26b] creating a first numerical representation for each identified object in the database based upon the object's direct relationship with other objects in the database;	See, e.g., Crouch, 1989, at pp. 228, 230
[26c] storing the first numerical representations for use in computerized searching;	See, e.g., Crouch, 1989, at pp. 228, 230
[26d] analyzing the first numerical representations for indirect relationships existing between or among objects in the database;	See, e.g., Crouch, 1989, at pp. 228-230
[26e] generating a second numerical representation of each object based on the analysis of the first numerical representation;	See, e.g., Crouch, 1989, at pp. 228-230
[26f] storing the second numerical representation for use in computerized searching; and	See, e.g., Crouch, 1989, at pp. 228-230


Claim Text from '352 Patent	
[26g] searching the objects in the database using a   computer and the stored second numerical   representations, wherein the search identifies one or   more of the objects in the database.	See, e.g., Crouch, 1989, at pp. 228, 229
27. The non-semantical method of claim 26,   wherein the objects in the database include words,   and semantic indexing techniques are used in   combination with the non-semantical method, the   method further comprising the step of creating and   storing a Boolean word index for the words of the   objects in the database.	See, e.g., Crouch, 1989, at p. 225
28. The non-semantical method of claim 26 wherein   the first and second numerical representations are   vectors that are arranged in first and second   matrices;	See, e.g., Crouch, 1989, at p. 228
[28a] the direct relationships are express references   from a one object to another object in the database;	See, e.g., Crouch, 1989, at pp. 226, 228-230
[28b] the objects in the database are assigned   chronological data;	Disclosed either expressly or inherently in the teachings of the reference and its incorporated   disclosures taken as a whole, or in combination with the state of the art at the time of the   alleged invention.


Claim Text from '352 Patent	Crouch, 1989
29. The non-semantical method of claim 26 wherein the step of analyzing the first numerical representation further comprises: examining the first numerical representation for patterns which indicate the indirect relationships.	See, e.g., Crouch, 1989, at pp. 228-230
30 . The non-semantical method of claim 29, given that object A occurs before object B and object c occurs before object A, and wherein the step of creating a first numerical representation comprises examining for the direct relationship B cites A and wherein the step of examining for patterns further comprises the step of examining for the following pattern:   A cites c, and B cites c.	See, e.g., Crouch, 1989, at pp. 228-230
31. The non-semantical method of claim 29 , wherein a, b, c, A, d, e, f, B, g, h, and i are objects in the database and given that;   $\mathrm{a}, \mathrm{b}$, and c occur before A ;   A occurs before d, e, and f, which occur before B; and   B occurs before $\mathrm{g}, \mathrm{h}$, and i ;   and wherein the step of examining for patterns further comprises the step of examining for one or more of the following patterns:   (i) g cites A , and g cites B ;   (ii) $B$ cites $f$, and $f$ cites $A$;   (iii) B cites $\mathrm{f}, \mathrm{f}$ cites e , and e cites A;   (iv) B cites $\mathrm{f}, \mathrm{f}$ cites e, e cites d , and d cites A ;   (v) g cites $\mathrm{A}, \mathrm{h}$ cites $\mathrm{B}, \mathrm{g}$ cites a , and h cites a ;   (vi) i cites B, i cites f (or g), and f (or g) cites A;	See, e.g., Crouch, 1989, at pp. 228-230


Claim Text from '352 Patent	Crouch, 1989
(vii) i cites $g$, $i$ cites $A$, and $g$ cites $B$;   (viii) i cites $g$ (or d), i cites h, $g$ (or d) cites A, and h cites B;   (ix) i cites a, i cites B, and A cites a;   (x) i cites A, i cites e, B cites e;   (xi) $g$ cites $A, g$ cites $a, A$ cites $a, h$ cites $B$, and $h$ cites a;   (xii) A cites a, B cites d, i cites a, and i cites d;   (xiii) i cites B, i cites d, A cites a, and d cites a; (xiv) A cites b, B cites d (or c), and d (or c) cites b; (xv) A cites b, B cites d, b cites a, and d cites a; (xvi) A cites a, B cites b, d (or c) cites a, and d (or c) cites b.	
32. The non-semantical method of claim 26, wherein the step of analyzing further comprises the step of weighing, wherein some indirect relationships are weighed more heavily than other indirect relationships.	See, e.g., Crouch, 1989, at pp. 228, 229
33. The non-semantical method of claim 26, wherein the step of analyzing the first numerical representations for indirect relationships further comprises:	See, e.g., Crouch, 1989, at pp. 228-230
[33a] creating an interim vector representing each object; and wherein the step of generating a second numerical representation uses coefficients of similarity and further comprises:	See, e.g., Crouch, 1989, at p. 228
[33b] calculating Euclidean distances between interim vector representations of each object;	See, e.g., Crouch, 1989, at p. 228


Claim Text from '352 Patent	Crouch, 1989
[33c] creating proximity vectors representing the objects using the calculated Euclidean distances; and	See, e.g., Crouch, 1989, at p. 228
[33d] using the proximity vectors and using coefficients of similarity to calculate the second numerical representations.	See, e.g., Crouch, 1989, at p. 228
34. The non-semantical method of claim 26, wherein objects in the database may be divided into subsets and wherein the marking step includes the step of marking subsets of objects in the database and wherein relationships exist between or among subsets of objects in the database.	See, e.g., Crouch, 1989, at p. 230, Fig. 8
35. The non-semantical method of claim 34 wherein the objects are textual objects with paragraphs and the subsets are the paragraphs of the textual objects, the method further comprising the steps of:	Disclosed either expressly or inherently in the teachings of the reference and its incorporated disclosures taken as a whole, or in combination with the state of the art at the time of the alleged invention.
[35a] creating a subset numerical representation for each subset based upon the relationships between or among subsets;	
[35b] analyzing the subset numerical representations;	
[35c] clustering the subsets into sections based upon the subset analysis; and	
[35d] generating a section numerical representation for each section, wherein the section numerical representations are available for searching.	
36. The non-semantical method of claim 26, wherein the step of searching the objects comprises the steps of: selecting an object; using the second numerical representation to search for objects	See, e.g., Crouch, 1989, at pp. 228, 229


Claim Text from '352 Patent	
similar to the selected object.    37. The non-semantical method of claim 26,   wherein the step of searching includes the step of   graphically displaying one or more of the identified   objects. See, e.g., Crouch, 1989, at pp.226, 230   38. The non-semantical method of claim 26,   wherein the step of searching includes the step of   identifying a paradigm object. See, e.g., Crouch, 1989, at p. 229   39. The non-semantical method of claim 26,   wherein the step of searching the objects comprises   the steps of:   selecting a pool of objects; See, e.g., Crouch, 1989, at p. 228   [39a] pool-similarity searching to identify a similar   pool of textual objects, similar in relation to the   objects in marked pool; and See, e.g., Crouch, 1989, at p. 228   [39b] pool-importance searching to identify an   important pool of textual objects, important in   relation to the objects in the selected pool. See, e.g., Crouch, 1989, at p. 228, 230   40. The non-semantical method of claim 26, the   step of searching comprising the steps of:   identifying a paradigm pool of objects; and See, e.g., Crouch, 1989, at p. 229   [40a] searching for relationships between the   objects and the paradigm pool of objects; See, e.g., Crouch, 1989, at p. 229   40b] wherein the searched for relationship is pool   importance or pool similarity. See, e.g., Crouch, 1989, at p. 229   41. A method for the non-semantical indexing of   objects stored in a computer database, the method   for use in searching the database for the objects, See, e.g., Crouch, 1989, at pp. 225, 226, 228, 229	


Claim Text from '352 Patent	Crouch, 1989
comprising the steps of: extracting, comprising the steps of:	
[41a] labeling objects with a first numerical representation; and	See, e.g., Crouch, 1989, at p. 230, Fig. 8
[41b] generating a second numerical representation for each object based on each object's references to other objects;	See, e.g., Crouch, 1989, at pp. 228, 230
[41c] patterning, comprising the step of creating a third numerical representation for each object using the second numerical representations, wherein the third numerical representation for each object is determined from an examination of the second numerical representations for occurrences of patterns that define indirect relations between or among objects;	See, e.g., Crouch, 1989, at pp. 228-230
[41d] weaving, comprising the steps of: calculating a fourth numerical representation for each object based on the euclidean distances between the third numerical representations; and	See, e.g., Crouch, 1989, at pp. 228, 229
[41e] determining a fifth numerical representation for each object by processing the fourth numerical representations through similarity processing; and	See, e.g., Crouch, 1989, at pp. 228, 229
[41f] storing the fifth numerical representations in the computer database as the index for use in searching for objects in the database.	See, e.g., Crouch, 1989, at p. 225
42. The method of claim 41 wherein the first through fifth numerical representations are vector	See, e.g., Crouch, 1989, at pp. 228, 229


Claim Text from '352 Patent	Crouch, 1989
representations and further comprises the step of clustering objects having similar characteristics.	
44. The method of claim 41 wherein the step of creating the third numerical representations further comprises the steps of:	See, e.g., Crouch, 1989, at pp. 228-230
[44a] analyzing the second numerical representation against a plurality of empirically defined patterns, wherein certain patterns are more important than others; and	See, e.g., Crouch, 1989, at pp. 228-230
[44b] weighing the analyzed second numerical representations according to the importance of the patterns.	See, e.g., Crouch, 1989, at p. 228
45. A method for searching indexed objects, wherein the index is stored, comprising the steps of:	See, e.g., Crouch, 1989, at p. 225
[45a] entering search commands;	See, e.g., Crouch, 1989, at p. 229, 230
[45b] processing the search commands with a processor;	See, e.g., Crouch, 1989, at p. 229, 230
[45c] retrieving the stored index using the processor;	See, e.g., Crouch, 1989, at pp. 225, 228, 229
[45d] analyzing the index to identify a pool of objects, comprising the steps of:	See, e.g., Crouch, 1989, at pp. 225, 228, 229
[45e] interpreting the processed searched commands as a selection of an object;	See, e.g., Crouch, 1989, at p. 228, 229
[45f] identifying a group of objects that have a	See, e.g., Crouch, 1989, at pp. 228, 229, 230


Claim Text from '352 Patent	
relationship to the selected object, wherein the step   of identifying comprises the steps of:	
[45g] identifying objects that are referred to by the   selected object; and	See, e.g., Crouch, 19899, at pp. 228, 230
[45h] identifying objects that refer to the selected   object	See, e.g., Crouch, 1989, at pp. 228, 230
[45i] quantifying the relationship of the selected   object to each object in the group of objects; and	See, e.g., Crouch, 1989, at p. 228-230
[45j] ranking the objects in the group of objects in   accordance to the quantified relationship to the   selected object; and	See, e.g., Crouch, 1989, at p. 228, 230
[45k] presenting one or more objects from the   group of objects in ranked order.	See, e.g., Crouch, 1989, at p. 230, 234

Defendants reserve the right to revise this contention chart concerning the invalidity of the asserted claims, as appropriate, for example depending upon the Court's construction of the asserted claims, any findings as to the priority date of the asserted claims, and/or positions that Plaintiff or its expert witness(es) may take concerning claim interpretation, construction, infringement, and/or invalidity issues.

Plaintiff's Infringement Contentions are based on an apparent construction of the claim terms. Defendants disagree with these apparent constructions. Nothing stated herein shall be treated as an admission or suggestion that Defendants agree with Plaintiff regarding either the scope of any of the asserted claims or the claim constructions advanced by Plaintiff in its Infringement Contentions or anywhere else, or that any of Defendants' accused technology meets any limitations of the claims. Nothing stated herein shall be construed as an admission or a waiver of any particular construction of any claim term. Defendants also reserve all their rights to challenge any of the claim terms herein under 35 U.S.C. § 112 , including by arguing that they are indefinite, not supported by the written description and/or not enabled. Accordingly, nothing stated herein shall be construed as a waiver of any argument available under 35 U.S.C. § 112.

## Invalidity Claim Chart for U.S. Patent No. 5,544,352

Can and Ozkarahan, "A Dynamic Cluster Maintenance System for Information Retrieval," ACM, Vol. 6, p. 123, 1987 (Can 1987)

Claim Text from '352 Patent	Can, 1987
38. The non-semantical method of claim 26, wherein the step of searching includes the step of identifying a paradigm object.	See, e.g., Can 1987 at 123, 124, 129-130
39. The non-semantical method of claim 26, wherein the step of searching the objects comprises the steps of: selecting a pool of objects;	See, e.g., Can 1987 at p. 124
[39a] pool-similarity searching to identify a similar pool of textual objects, similar in relation to the objects in marked pool; and	See, e.g., Can 1987 at p. 123, 124
[39b] pool-importance searching to identify an important pool of textual objects, important in relation to the objects in the selected pool.	See, e.g., Can 1987 at 123, 124, 129-130
40. The non-semantical method of claim 26, the step of searching comprising the steps of: identifying a paradigm pool of objects; and	See, e.g., Can 1987 at p. 124
[40a] searching for relationships between the objects and the paradigm pool of objects;	See, e.g., Can 1987 at 129, 130.
[40b] wherein the searched for relationship is pool importance or pool similarity.	See, e.g., Can 1987 at 129-130.

Defendants reserve the right to revise this contention chart concerning the invalidity of the asserted claims as appropriate, for example, depending upon the Court's construction of the asserted claims, any findings as to the priority date of the asserted claims, and/or positions that Plaintiff or its expert witness(es) may take concerning claim interpretation, construction, infringement, and/or invalidity issues.

Plaintiff's Infringement Contentions are based on an apparent construction of the claim terms. Defendants disagree with these apparent constructions. Nothing stated herein shall be treated as an admission or suggestion that Defendants agree with Plaintiff regarding either the scope of any of the asserted claims or the claim constructions advanced by Plaintiff in its Infringement Contentions or anywhere else, or that any of Defendants' accused technology meets any limitations of the claims. Nothing stated herein shall be construed as an admission or a waiver of any particular construction of any claim term. Defendants also reserve all their rights to challenge any of the claim terms herein under 35 U.S.C. § 112 , including by arguing that they are indefinite, not supported by the written description and/or not enabled. Accordingly, nothing stated herein shall be construed as a waiver of any argument available under 35 U.S.C. § 112.

Invalidity Claim Chart for U.S. Patent No. 5,544,352

## Based on Gerard Salton and Chris buckley, "Automatic Text Structuring and Retrieval Experiments in Automatic Encyclopedia Searching ("Salton \& Buckley 1991")

Claim Text from '352 Patent	SALTON \& BUCKLEY 1991
[28a] the direct relationships are express references from a one object to another object in the database;	See, e.g., Salton \& Buckley 1991 at 25 ("Three kinds of references between articles are available in the encyclopedia, consisting of 'see', 'see also', and 'qv' (quod vide) references.").
32. The non-semantical method of claim 26, wherein the step of analyzing further comprises the step of weighing, wherein some indirect relationships are weighed more heavily than other indirect relationships.	See, e.g., Salton \& Buckley 1991 at Tables 1-4 (disclosing different similarity weights for second-level searches).
[33a] creating an interim vector representing each object; and wherein the step of generating a second numerical representation uses coefficients of similarity and further comprises:	See, e.g., Salton \& Buckley 1991 at 23 ("A standard indexing system is used to assign to each text unit (that is, section, paragraph, sentence, etc.) a set of weighted terms to be used for content identification of the corresponding text fragment. These term vectors form the basis for the text comparison operations.").
34. The non-semantical method of claim 26, wherein objects in the database may be divided into subsets and wherein the marking step includes the step of marking subsets of objects in the database and wherein relationships exist between or among subsets of objects in the database.	See, e.g., Salton \& Buckley 1991 at 23 ("A standard indexing system is used to assign to each text unit (that is, section, paragraph, sentence, etc.) a set of weighted terms to be used for content identification of the corresponding text fragment. These term vectors form the basis for the text comparison operations. Similarities between particular text items (or between text items and information requests) are obtained by comparing the term vectors for pairs of text items at various levels of detail. When sufficient similarities are detected in both global as well as local contexts, the texts are assumed to be related.").
35. The non-semantical method of claim 34 wherein the objects are textual objects with paragraphs and the subsets are the paragraphs of the textual objects, the method further comprising the steps of:	See, e.g., Salton \& Buckley 1991 at 23 ("A standard indexing system is used to assign to each text unit (that is, section, paragraph, sentence, etc.) a set of weighted terms to be used for content identification of the corresponding text fragment.") (emphasis added); 24 ("Larger texts are therefore most easily processed by subdividing them into shorter units before the text comparison system is used. One possibility is to define subdocuments consisting of the various subsections of text into which these long encyclopedia articles are


Claim Text from '352 Patent	SALTON \& BUCKLEY 1991		
	subdivided. Each subdocument is then used as a separate query and the outputs obtained   with the several subdocuments are appropriately combined.").		
[35a] creating a subset numerical representation for   each subset based upon the relationships between or   among subsets;	See preamble to Claim 35, supra, see also Salton \& Buckley 1991 at 24 ("For short text   excerpts, such as text sentences, a text similarity measure that depends on the proportion of   matching items is not indicative of coincidence in text meaning... Short texts are therefore   compared using an atn term weight, equivalent to the numerator of expression (1) without   the length normalization of the denominator. The atn term weight ranges in size from 0 to   log N, and the corresponding inner product text similarity depends on the number (rather   than the proportion) of matching terms.").		
[35b] analyzing the subset numerical			
representations;	See supra at Claim 35[a].		
[35c] clustering the subsets into sections based			
upon the subset analysis; and			See, e.g., Salton \& Buckley 1991 at Table 3; 27 ("Long query articles consisting of many
:---			
text paragraphs are best broken down into more focused parts by using the individual			
paragraphs as subqueries, and combining the respective search results").			


Claim Text from '352 Patent	SALTON \& BUCKLEY 1991
[45a] entering search commands;	See, e.g., Salton \& Buckley 1991 at 24 ("An automated encyclopedia search system is implemented which uses particular encyclopedia articles as search requests, and retrieves related articles in decreasing order of presumed similarity with the request articles.").
[45b] processing the search commands with a processor;	See Chart for Claim 45[a], supra.
[45c] retrieving the stored index using the processor;	See Chart for Claim 45[a], supra.
[45d] analyzing the index to identify a pool of objects, comprising the steps of:	See, e.g., Salton \& Buckley 1991 at 25 (disclosing a pool of four documents identified by the search).
[45e] interpreting the processed searched commands as a selection of an object;	See, e.g., Salton \& Buckley 1991 at 25 ("A standard encyclopedia search for a one-paragraph query (document 114, Acacia) is illustrated . . . .").
[45f] identifying a group of objects that have a relationship to the selected object, wherein the step of identifying comprises the steps of:	See, e.g., Salton \& Buckley 1991 at 25 ("A standard encyclopedia search for a one-paragraph query (document 114, Acacia) is illustrated in Table 1. A multi-stage search strategy is used where all articles with a global query similarity exceeding 0.20 are retrieved initially.").
[45g] identifying objects that are referred to by the selected object; and	See, e.g., Salton \& Buckley 1991 at 25 ("Three kinds of references between articles are available in the encyclopedia, consisting of 'see', 'see also,' and 'qv' (quod vide) references. The reasonable assumption can be made that when one of these references is present citing article B within, or after, the text of article A, then B is relevant to query article A.").
[45i] quantifying the relationship of the selected object to each object in the group of objects; and	See, e.g., Salton \& Buckley 1991 at Table 1 (disclosing the quantum of similarity between the selected object ("Acacia") and the retrieved objects ("Mimosa" and "Indigo Plant")).
[45j] ranking the objects in the group of objects in accordance to the quantified relationship to the selected object; and	See, e.g., Salton \& Buckley 1991 at 25 ("Five items are retrieved . . . Document 23149 is retrieved at the top of the ranked list with a query similarity of 0.5058 .").


Claim Text from '352 Patent	SALTON \& BUCKLEY 1991
[45k] presenting one or more objects from the   group of objects in ranked order.	See Chart for Claim 45[k], supra.

Defendants reserve the right to revise this contention chart concerning the invalidity of the asserted claims, as appropriate, for example depending upon the Court's construction of the asserted claims, any findings as to the priority date of the asserted claims, and/or positions that Plaintiff or its expert witness(es) may take concerning claim interpretation, construction, infringement, and/or invalidity issues.

Plaintiff's Infringement Contentions are based on an apparent construction of the claim terms. Defendants disagree with these apparent constructions. Nothing stated herein shall be treated as an admission or suggestion that Defendants agree with Plaintiff regarding either the scope of any of the asserted claims or the claim constructions advanced by Plaintiff in its Infringement Contentions or anywhere else, or that any of Defendants' accused technology meets any limitations of the claims. Nothing stated herein shall be construed as an admission or a waiver of any particular construction of any claim term. Defendants also reserve all their rights to challenge any of the claim terms herein under 35 U.S.C. § 112 , including by arguing that they are indefinite, not supported by the written description and/or not enabled. Accordingly, nothing stated herein shall be construed as a waiver of any argument available under 35 U.S.C. § 112.

## Invalidity Claim Chart for U.S. Patent No. 5,544,352

Salton \& Buckley, 1990, "Approaches to Text Retrieval for Structured Documents" TR 90-1083. (Department of Computer Science, Cornell University).

Claim Text from '352 Patent	Salton, 1990
34. The non-semantical method of claim 26,   wherein objects in the database may be divided into   subsets	See, e.g., Salton, 1990, passim, e.g., p. 2-3, Fig. 2
[34a] and wherein the marking step includes the   step of marking subsets of objects in the database	See, e.g., Salton, 1990, p. 3, 5, 6, 11, Fig. 1 \& 2.
[34b] and wherein relationships exist between or   among subsets of objects in the database.	See, e.g., Salton, 1990, p. 3-4, 5-6
35. The non-semantical method of claim 34 wherein   the objects are textual objects with paragraphs and   the subsets are the paragraphs of the textual objects,   the method further comprising the steps of:	See, e.g., Salton, 1990, passim and p. 2-3.
[35a] creating a subset numerical representation for   each subset based upon the relationships between or   among subsets;	See, e.g., Salton, 1990, (p. 3-4).
[35b] analyzing the subset numerical   representations;	See, e.g., Salton, 1990, (p. 3-4).
[35c] clustering the subsets into sections based   upon the subset analysis; and	
[35d] generating a section numerical representation   for each section, wherein the section numerical   representations are available for searching.	See, e.g., Salton, 1990, (p. 3-4).
38. The non-semantical method of claim 26,   wherein the step of searching includes the step of   identifying a paradigm object.	See, e.g., Salton, 1990, (p. 5).
39. The non-semantical method of claim 26,   wherein the step of searching the objects comprises	See, e.g., Salton, 1990, (p. 4-5).


Claim Text from '352 Patent	Salton, 1990
the steps of: selecting a pool of objects;	
[39a] pool-similarity searching to identify a similar pool of textual objects, similar in relation to the objects in marked pool; and	See, e.g., Salton, 1990, (p. 4-5).
[39b] pool-importance searching to identify an important pool of textual objects, important in relation to the objects in the selected pool.	See, e.g., Salton, 1990, (p. 4-5).
40 . The non-semantical method of claim 26 , the step of searching comprising the steps of: identifying a paradigm pool of objects; and	See, e.g., Salton, 1990, (p. 4-5).
[40a] searching for relationships between the objects and the paradigm pool of objects;	See, e.g., Salton, 1990, (p. 4-5).
[40b] wherein the searched for relationship is pool importance or pool similarity.	See, e.g., Salton, 1990, (p. 4-5).
42. The method of claim 41 wherein the first through fifth numerical representations are vector representations and further comprises the step of clustering objects having similar characteristics.	See, e.g., Salton, 1990, (p. 3-4).
45. A method for searching indexed objects, wherein the index is stored, comprising the steps of:	See, e.g., Salton, 1990, passim, e.g., p. 6.
[45a] entering search commands;	See, e.g., Salton, 1990 at p. 4, 6
[45b] processing the search commands with a processor;	See, e.g., Salton, 1990 at p. 4, 6
[45c] retrieving the stored index using the processor;	
[45d] analyzing the index to identify a pool of objects, comprising the steps of:	
[45e] interpreting the processed searched commands as a selection of an object;	
[45f] identifying a group of objects that have a	See, e.g., Salton, 1990 at p. 4, 6


Claim Text from '352 Patent	Salton, 1990
relationship to the selected object, wherein the step of identifying comprises the steps of:	
[ 45 g ] identifying objects that are referred to by the selected object; and	See, e.g., Salton, 1990 at p. 4, 5, 6
[45h] identifying objects that refer to the selected object	
[45i] quantifying the relationship of the selected object to each object in the group of objects; and	
[45j] ranking the objects in the group of objects in accordance to the quantified relationship to the selected object; and	
[45k] presenting one or more objects from the group of objects in ranked order.	

Defendants reserve the right to revise this contention chart concerning the invalidity of the asserted claims as appropriate, for example, depending upon the Court's construction of the asserted claims, any findings as to the priority date of the asserted claims, and/or positions that Plaintiff or its expert witness(es) may take concerning claim interpretation, construction, infringement, and/or invalidity issues.

Plaintiff's Infringement Contentions are based on an apparent construction of the claim terms. Defendants disagree with these apparent constructions. Nothing stated herein shall be treated as an admission or suggestion that Defendants agree with Plaintiff regarding either the scope of any of the asserted claims or the claim constructions advanced by Plaintiff in its Infringement Contentions or anywhere else, or that any of Defendants' accused technology meets any limitations of the claims. Nothing stated herein shall be construed as an admission or a waiver of any particular construction of any claim term. Defendants also reserve all their rights to challenge any of the claim terms herein under 35 U.S.C. § 112 , including by arguing that they are indefinite, not supported by the written description and/or not enabled. Accordingly, nothing stated herein shall be construed as a waiver of any argument available under 35 U.S.C. § 112.

Invalidity Claim Chart for U.S. Patent No. 5,544,352

## Based on Robert Korfhage, "Query Enhancement By User Profiles ("Korfhage")

| Claim Text from '352 Patent |  |
| :--- | :--- | :--- |
| 33. The non-semantical method of claim 26, <br> wherein the step of analyzing the first numerical <br> representations for indirect relationships further <br> comprises: | See infra. |
| [33a] creating an interim vector representing each <br> object; and wherein the step of generating a second <br> numerical representation uses coefficients of <br> similarity and further comprises: | See Korfhage at 112 ("We begin with the typical conceptualization of documents and queries <br> as points in an n-dimensional document space. The classical view is that if we can suitably <br> parameterize this space, then distance or separation between two points within the space <br> correspons inversely to similarity between the documents or queries that these points <br> represent."); Figs. 1-2: |


Claim Text from '352 Patent	Korfhage
[33b] calculating Euclidean distances between interim vector representations of each object;	See Korfhage at 112 ("if we can suitably parameterize this space, then distance or separation between two points within the space corresponds inversely to similarity between the documents or queries that these points represent. While one can measure this distance in a number of ways, the normal measures seem to be either Euclidean or rectangular distances.")
[33c] creating proximity vectors representing the objects using the calculated Euclidean distances; and	See Chart for Claims [33a] and [33b], supra.
[33d] using the proximity vectors and using coefficients of similarity to calculate the second numerical representations.	See Chart for Claims [33a] and [33b], supra.
41. A method for the non-semantical indexing of objects stored in a computer database, the method for use in searching the database for the objects, comprising the steps of:   extracting, comprising the steps of:	See infra.
[41d] weaving, comprising the steps of: calculating a fourth numerical representation for each object based on the euclidean distances between the third numerical representations; and	See Korfhage at 112 ("if we can suitably parameterize this space, then distance or separation between two points within the space corresponds inversely to similarity between the documents or queries that these points represent. While one can measure this distance in a number of ways, the normal measures seem to be either Euclidean or rectangular distances. The former leads to retrieval (or at least examination) of all documents within an ndimensional spherical shell around the query (Fig. 1)"); Fig. 1:   Fig. 1


Claim Text from '352 Patent	
42. The method of claim 41 wherein the first   through fifth numerical representations are vector   representations and further comprises the step of   clustering objects having similar characteristics.	See Korfhage at 112 ("("if we can suitably parameterize this space, then distance or   separation between two points within the space corresponds inversely to similarity between   the documents or queries that these points represent. While one can measure this distance in   a number of ways, the normal measures seem to be either Euclidean or rectangular distances.   The former leads to retrieval (or at least examination) of all documents within an $n$ -   dimensional spherical shell around the query (Fig. 1)") (emphasis added); Fig. 1:

## Invalidity Claim Chart for US Patent No. 5,832,494

## Based on Benny Brodda, Hans Karlgren, "Citation Index and Measures of association in Mechanized Document Retrieval," KVal PM 295 (1967). Report No. 2 to the Royal Treasury. Published by Sprakforlaget Skriptor. ("Brodda \& Karlgren, 1967")

Claim Text from '494 Patent	Brodda \& Karlgren, 1967
1. A method of analyzing a database with indirect   relationships, using links and nodes, comprising the   steps of:	See, e.g., Brodda \& Karlgren, 1967, at pp. 1-4
[1a] selecting a node for analysis;	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 2, 4
[1b] generating candidate cluster links for the   selected node, wherein the step of generating   comprises an analysis of one or more indirect   relationships in the database;	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 2, 5
[1c] deriving actual cluster links from the candidate   cluster links;	See, e.g., Brodda \& Karlgren, 1967, at p. 5, passim, pp. 9-13.
[1d] identifying one or more nodes for display; and	See, e.g., Brodda \& Karlgren, 1967, at pp. 2, 4, 6, 10


Claim Text from '494 Patent	Brodda \& Karlgren, 1967
[2a] choosing a number as the maximum number of   link lengths that will be examined; and	Disclosed either expressly or inherently in the teachings of the reference and its incorporated   disclosures taken as a whole, or in combination with the state of the art at the time of the   alleged invention.
[2b] examining only those links which are less than   the maximum number of link lengths.	See e.g., Brodda \& Karlgren, 1967, at pp. 9-13.
3. The method of claim 1 wherein the step of   deriving actual cluster links comprises the step of:   selecting the top rated candidate cluster links,   wherein the top rated candidate cluster links are   those which are most closely linked to the node   under analysis.	See, e.g., Brodda \& Karlgren, 1967, at pp. 2, 4
5. The method of claim 1 wherein the step of   generating the candidate cluster links comprises the   step of:	See, e.g., Brodda \& Karlgren, 1967, at pp. 2, 4   eliminating candidate cluster links, wherein the   number of candidate cluster links is limited and the   closest candidate cluster links are chosen over the   remaining links.
9. The method of claim 8, wherein one or more   nodes provide links to more than one independent   application which can be executed as an extension,   the method further comprising the steps of:	Disclosed either expressly or inherently in the teachings of the reference and its incorporated   disclosures taken as a whole, or in combination with the state of the art at the time of the   alleged invention.
[9a] displaying a list of independent applications   linked to the node, wherein the step of accessing   accesses an independent application.	See, e.g., Brodda \& Karlgren, 1967, at pp. 2, 4, 6   Disclosed either expressly or inherently in the teachings of the reference and its incorporated   disclosures taken as a whole, or in combination with the state of the art at the time of the   alleged invention.


Claim Text from '494 Patent	Brodda \& Karlgren, 1967
l2. A method for determining the proximity of an   object in a stored database to another object in the   stored database using indirect relationships, links,   and a display, comprising:	See, e.g., Brodda \& Karlgren, 1967, at pp. 2-4
[12a] selecting an object to determine the proximity   of other objects to the selected object;	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 2
[12b] generating a candidate cluster link set for the   selected object, wherein the generating step   includes an analysis of one or more indirect   relationships in the database;	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 2, 5, 8
[12c] deriving an actual cluster link set for the   selected object using the generated candidate cluster   link set; and	See, e.g., Brodda \& Karlgren, 1967, at p. 5
[12d] displaying one or more of the objects in the   database, referred to in the actual cluster link set, on   a display.	See, e.g., Brodda \& Karlgren, 1967, at pp. 2, 4, 6, 10
13. The method of 12 wherein a set of direct links   exists for the database, and wherein the step of   generating a candidate cluster link set comprises:   recursively analyzing portions of the set of direct   links for indirect links.	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 2, 5, 9-13.
14. A method for representing the relationship   between nodes using stored direct links, paths, and   candidate cluster links, comprising the steps of:	See, e.g., Brodda \& Karlgren, 1967, at p. 4
[14a] initializing a set of candidate cluster links;	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 2, 5, 8
[14b] selecting the destination node of a path as the   selected node to analyze;	See, e.g., Brodda \& Karlgren, 1967, at p. 4
[14c] retrieving the set of direct links from the   selected node to any other node in the database;	See, e.g., Brodda \& Karlgren, 1967, at pp. 2, 3


Claim Text from '494 Patent	
[14d] determining the weight of the path using the	
retrieved direct links;	


Claim Text from '494 Patent	Brodda \& Karlgren, 1967
[18d] displaying one or more identified objects from the database.	See, e.g., Brodda \& Karlgren, 1967, at pp. 2, 4, 6, 10
19. The method of claim 18 wherein the step of generating a second numerical representation comprises:   selecting an object in the database for analysis;	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 2
[19a] analyzing the direct relationships expressed by the first numerical representation for indirect relationships involving the selected object; and creating a second numerical representation of the direct and indirect relationships involving the selected object.	See, e.g., Brodda \& Karlgren, 1967, at pp. 1-5, 8
20. The method of 18 wherein the step of identifying at least one object in the database comprises:   searching for objects in a database using the stored numerical representation, wherein direct and/or indirect relationships are searched.	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 2, 4, 5, 8
21. The method of claim 18 wherein the displaying step comprises:   generating a graphical display for representing an object in the database.	See, e.g., Brodda \& Karlgren, 1967, at pp. 4, 5, 6
23. A method of representing data in a computer database with relationships, comprising the steps of:	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 3
[23a] assigning nodes node identifications;	See, e.g., Brodda \& Karlgren, 1967, at p. 6
[23b] generating links, wherein each link represents a relationship between two nodes and is identified by the two nodes in which the relationship exists;	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 3


Claim Text from '494 Patent	Brodda \& Karlgren, 1967
[23c] allocating a weight to each link, wherein the weight signifies the strength of the relationship represented by the link relative to the strength of other relationships represented by other links; and	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 2, 4, 5
[23d] displaying a node identification.	See, e.g., Brodda \& Karlgren, 1967, at pp. 2, 4, 6, 10
24. The method of claim 23 , wherein the data in the database is objects, wherein the nodes represent objects and each object is assigned a node identification, and wherein the relationships that exist comprise direct relationships between objects, further comprising the step of:   searching generated links, wherein nodes are located by searching the generated links.	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 2, 5, 6, 8
33. A method of representing data in a computer database and for computerized searching of the data, wherein relationships exist in the database, comprising:	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 3
[33a] assigning links to represent relationships in the database;	See, e.g., Brodda \& Karlgren, 1967, at p. 2
[33b] generating node identifications based upon the assigned links, wherein node identifications are generated so that each link represents a relationship between two identified nodes;	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 3, 4, 6
[33c] storing the links and node identifications, wherein the links and nodes may be retrieved;	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 3, 4, 6
[33d] searching for node identifications using the stored links; and	See, e.g., Brodda \& Karlgren, 1967, at pp. 1-5, 8
[33e] displaying node identifications, wherein the displayed node identifications are located in the	See, e.g., Brodda \& Karlgren, 1967, at pp. 2, 4, 6, 10


Claim Text from '494 Patent	Brodda \& Karlgren, 1967
searching step.	

Defendants reserve the right to revise this contention chart concerning the invalidity of the asserted claims, as appropriate, for example depending upon the Court's construction of the asserted claims, any findings as to the priority date of the asserted claims, and/or positions that Plaintiff or its expert witness(es) may take concerning claim interpretation, construction, infringement, and/or invalidity issues.

Plaintiff's Infringement Contentions are based on an apparent construction of the claim terms. Defendants disagree with these apparent constructions. Nothing stated herein shall be treated as an admission or suggestion that Defendants agree with Plaintiff regarding either the scope of any of the asserted claims or the claim constructions advanced by Plaintiff in its Infringement Contentions or anywhere else, or that any of Defendants' accused technology meets any limitations of the claims. Nothing stated herein shall be construed as an admission or a waiver of any particular construction of any claim term. Defendants also reserve all their rights to challenge any of the claim terms herein under 35 U.S.C. § 112 , including by arguing that they are indefinite, not supported by the written description and/or not enabled. Accordingly, nothing stated herein shall be construed as a waiver of any argument available under 35 U.S.C. § 112.

## Invalidity Claim Chart for US Patent No. 5,832,494

# Based on Baase, S., Computer Algorithms: Introduction to Design and Analysis, $2^{\text {nd }}$ Edition, Addison-Wesley Publishing Co., 1988. ("Baase, 1988) 

Claim Text from '494 Patent	Baase, 1988
1. A method of analyzing a database with indirect relationships, using links and nodes, comprising the steps of:	See, e.g., Baase, 1988, p. 149-156, 160-166 and 167-72, Title (Computer Algorithms).   Input: $\mathrm{G}=(\mathrm{V}, \mathrm{E}, \mathrm{W})$, a weighted graph or digraph $\ldots \mathrm{G}$ is represented by an adjacency list structure. . . (p. 171).
[1a] Selecting a node for analysis;	See, e.g., Baase, 1988, at p. 149-156, 160-166 and 168-172   Djisktra's shortest path algorithm will find shortest paths from v to the other vertices in order of increasing distance from v. . . The algorithm starts at one vertex (v) and "branches out" by selecting certain edges that lead to new vertices (p. 168) $\mathrm{x}:=\mathrm{v}(\mathrm{p} .171) .$
[1b] Generating candidate cluster links for the selected node, wherein the step of generating comprises an analysis of one or more indirect relationships in the database;	See, e.g., Baase, 1988, at p. 160-167, 168-172, 175-76, 184-91, 193-97.
[1c] Deriving actual cluster links from the candidate cluster links;	Whether or not G is a digraph, it is helpful 10 think of the tree and candidate edges as having an orientation; the tail of an edge is the vertex closer to $v$. Candidate edges go from a tree vertex to a fringe vertex. These edges will always be written to reflect this orientation; in other words, if we write $X Y$. we are assuming that $x$ is closer to $v$ than y is. We will refer tox as tail $(x y)$ and y as head( $x y$ ) even


Claim Text from '494 Patent	Baase, 1988
	if G is not a directed graph.   Given the situation in Fig. 4.18(c), the next step is to select a candidate edge and fringe vertex. We choose a candidate edge $e$ for which $d(v, \operatorname{tail}(e))+W(e)$ is minimum. This is the weight of the path obtained by adjoining $e$ to the known shortest path to tail(e).   Since the quantity $d(v$, tail $(e))+W(e)$ for a candidate edge $e$ may be used repeatedly, it can be computed once and saved. To compute it efficiently when efirst becomes a candidate, we also save $d(v, y)$ for each y in the tree. Thus we use an array dist as follows: $\operatorname{dist}[\mathrm{y}]=\mathrm{d}(\mathrm{v}, \mathrm{y}) ; \operatorname{dist}[\mathrm{z}]=\mathrm{d}(\mathrm{v}, \mathrm{y})+$ $\mathrm{W}(\mathrm{yz})$.   After a vertex and the corresponding candidate edge are selected, the information in the data structure must be updated. In Fig. 4.18(d) the vertex $I$ and the edge $G l$ have just been selected. The candidate edge for $F$ was $A F$, but now $A F$ must be replaced by $I F$ because $I F$ yields a shorter path to $F$, We must also recompute   $\operatorname{dist}[F]$. The vertex $E$, which was unseen, is now on the fringe because it is adjacent to I, now in the tree. . .   while $\mathrm{x} \neq \mathrm{w}$ and not stuck do . . . end $\{$ while $\mathrm{x} \neq \mathrm{w}$ and not stuck $\}$ (p. 171-172)
[1d] identifying one or more nodes for display; and	See, e.g., Baase, 1988, at p. 149, 166, 167, 168-172.   [W]e briefly considered the problem of finding the best route between two cities on a map of airline routes. Using as our criterion the price of the plane tickets, we observed that the best - i.e., cheapest - way to get from San Diego to Sacramento was to make one stop in Los Angeles. This is one instance, or application, of a very common problem on a weighted graph or digraph: finding a shortest path between two specified vertices. The weight, or length of a path . . . in a weighted graph . . . is . . . the sum of the weights of the edges in the path. If the path is called P we denote its weight by $\mathrm{W}(\mathrm{P})$. (p. 167)   \{Output the path, the vertices will be listed in the reverse order, i.e. from w to v \}   While $\mathrm{x} \neq 0$ do   Output(x);   $\mathrm{x}:=\operatorname{parent}[\mathrm{x}]$   end (p. 172)



Claim Text from '494 Patent	Baase, 1988
generating the candidate cluster links comprises the step of:   eliminating candidate cluster links, wherein the number of candidate cluster links is limited and the closest candidate cluster links are chosen over the remaining links.	If status[y] = fringe and dist[x] + ptr!. weight $<\operatorname{dist}[y]$ then $\{$ Replace $y$ 's candidate edge by $\mathrm{xy}\}$ parent[y]:=x; dist[y]:= dist[x] + ptr!.eight; end   Traverse the fringe list to find a vertex with minimum dist; $\mathrm{x}:=\text { this vertex }$   remove x from the fringe list $\operatorname{status}[\mathrm{x}]:=\text { intree }(\mathrm{p} .172)$
12. A method for determining the proximity of an object in a stored database to another object in the stored database using indirect relationships, links, and a display, comprising:	See p. , 160-166, 167-72, Title (Computer Algorithms).   Input: $G=(V, E, W)$, a weighted graph or digraph $\ldots G$ is represented by an adjacency list structure. . . . (p. 171).
[12a] Selecting an object to determine the proximity of other objects to the selected object;	See, e.g., Baase, 1988, at p. 160, 164-167, 168-172, 184-91, 193-97.   Djisktra's shortest path algorithm will find shortest paths from v to the other vertices in order of increasing distance from v. . . The algorithm starts at one vertex (v) and "branches out" by selecting certain edges that lead to new vertices (p. 168) $\mathrm{x}:=\mathrm{v}(\mathrm{p} .171) .$
[12b] generating a candidate cluster link set for the selected object, wherein the generating step includes an analysis of one or more indirect relationships in the database;	See, e.g., Baase, 1988, at p. 160-167, 168-172, 184-91, 193-97.
[12c] Deriving an actual cluster link set for the selected object using the generated candidate cluster link set; and	$d(A, B)+W(B C)=6$   $d(A, A)+W(A G)=5$   $d(A, A)+W(A F)=9$ Select $A G$   Select $A G$ next.   (b) An invermediate step:   $d(A, C)+W(C D)=8$   $d(A, A)+W(A F)=9$   $d(A . G)+W(G H)=10$ $d(A, G)+W(G)$ select aI nex.   (c) An intermediate step. (CH was considered but nor chosen to replace $O H$ as a candidate.)


Claim Text from '494 Patent	Baase, 1988
	Whether or not G is a digraph, it is helpful 10 think of the tree and candidate edges as having an orientation; the tail of an edge is the vertex closer to $v$. Candidate edges go from a tree vertex to a fringe vertex. These edges will always be written to reflect this orientation; in other words, if we write $X Y$. we are assuming that $x$ is closer to $v$ than y is. We will refer tox as tail(xy) and y as head( $x y$ ) even if G is not a directed graph.   Given the situation in Fig. 4.18(c), the next step is to select a candidate edge and fringe vertex. We choose a candidate edge $e$ for which $d(v, \operatorname{tail}(e))+W(e)$ is minimum. This is the weight of the path obtained by adjoining $e$ to the known shortest path to tail(e).   Since the quantity $d(v$, tail $(e))+W(e)$ for a candidate edge $e$ may be used repeatedly, it can be computed once and saved. To compute it efficiently when efirst becomes a candidate, we also save $d(v, y)$ for each y in the tree. Thus we use an array dist as follows: $\operatorname{dist}[\mathrm{y}]=\mathrm{d}(\mathrm{v}, \mathrm{y}) ; \operatorname{dist}[\mathrm{z}]=\mathrm{d}(\mathrm{v}, \mathrm{y})+$ $\mathrm{W}(\mathrm{yz})$.   After a vertex and the corresponding candidate edge are selected, the information in the data structure must be updated. In Fig. 4.18(d) the vertex I and the edge $G l$ have just been selected. The candidate edge for $F$ was $A F$, but now $A F$ must be replaced by $I F$ because $I F$ yields a shorter path to $F$, We must also recompute   $\operatorname{dist}[F]$. The vertex $E$, which was unseen, is now on the fringe because it is adjacent to I , now in the tree...   while $\mathrm{x} \neq \mathrm{w}$ and not stuck do . . . end $\{$ while $\mathrm{x} \neq \mathrm{w}$ and not stuck \} (p. 171-172)
[12d] Displaying one or more of the objects in the database, referred to in the actual cluster link set, on a display.	See, e.g., Baase, 1988, at p. 149, 166, 168-172, 184-91, 193-97including e.g.   \{Output the path, the vertices will be listed in the reverse order, i.e. from w to v\}   While $\mathrm{x} \neq 0$ do   Output(x);   $\mathrm{x}:=\operatorname{parent}[\mathrm{x}]$   end (p. 172)
13. The method of 12 wherein a set of direct links exists for the database, and wherein the step of generating a candidate cluster link set comprises: recursively analyzing portions of the set of direct	See, e.g., Baase, 1988, at p. 160-167, 168-172, 184-91, 193-97.   Whether or not G is a digraph, it is helpful 10 think of the tree and candidate edges as having an orientation; the tail of an edge is the vertex closer to $v$. Candidate edges go from a tree vertex to a


Claim Text from '494 Patent	Baase, 1988
links for indirect links.	fringe vertex. These edges will always be written to reflect this orientation; in other words, if we write $X Y$. we are assuming that $x$ is closer to $v$ than y is. We will refer tox as tail(xy) and y as head(xy) even if G is not a directed graph.   Given the situation in Fig. 4.18(c), the next step is to select a candidate edge and fringe vertex. We choose a candidate edge $e$ for which $d(v, \operatorname{tail}(e))+W(e)$ is minimum. This is the weight of the path obtained by adjoining $e$ to the known shortest path to tail(e).   Since the quantity $d(v$, tail $(e))+W(e)$ for a candidate edge $e$ may be used repeatedly, it can be computed once and saved. To compute it efficiently when efirst becomes a candidate, we also save $d(v, y)$ for each y in the tree. Thus we use an array dist as follows: $\operatorname{dist}[\mathrm{y}]=\mathrm{d}(\mathrm{v}, \mathrm{y}) ; \operatorname{dist}[\mathrm{z}]=\mathrm{d}(\mathrm{v}, \mathrm{y})+$ $\mathrm{W}(\mathrm{yz})$.   After a vertex and the corresponding candidate edge are selected, the information in the data structure must be updated. In Fig. 4.18(d) the vertex $I$ and the edge $G l$ have just been selected. The candidate edge for $F$ was $A F$, but now $A F$ must be replaced by $I F$ because $I F$ yields a shorter path to $F$, We must also recompute $\operatorname{dist}[F]$. The vertex $E$, which was unseen, is now on the fringe because it is adjacent to I, now in the tree...   while $\mathrm{x} \neq \mathrm{w}$ and not stuck do . . . end $\{$ while $\mathrm{x} \neq \mathrm{w}$ and not stuck $\}$ (p. 171-172)
14. A method for representing the relationship between nodes using stored direct links, paths, and candidate cluster links, comprising the steps of:	See below:
[14a] initializing a set of candidate cluster links;	See, e.g., Baase, 1988, at p. 160-167, 168-172, 184-91, 193-97.   $d(A, C)+w(C D)=8$ $d(A, A)$   $d(A, A)+W(A F)=9$ $d(A, G)+W(G D)=7$   $d(A, G)+W(G H)=10$   Select if next.


Claim Text from '494 Patent	Baase, 1988
	Whether or not G is a digraph, it is helpful 10 think of the tree and candidate edges as having an orientation; the tail of an edge is the vertex closer to $v$. Candidate edges go from a tree vertex to a fringe vertex. These edges will always be written to reflect this orientation; in other words, if we write $X Y$. we are assuming that $x$ is closer to $v$ than y is. We will refer tox as $\operatorname{tail}(x y)$ and y as head(xy) even if G is not a directed graph.   Given the situation in Fig. 4.18(c), the next step is to select a candidate edge and fringe vertex. We choose a candidate edge $e$ for which $d(v, \operatorname{tail}(e))+W(e)$ is minimum. This is the weight of the path obtained by adjoining $e$ to the known shortest path to tail(e).   Since the quantity $d(v$, tail $(e))+W(e)$ for a candidate edge $e$ may be used repeatedly, it can be computed once and saved. To compute it efficiently when efirst becomes a candidate, we also save $d(v, y)$ for each y in the tree. Thus we use an array $\operatorname{dist}$ as follows: $\operatorname{dist}[\mathrm{y}]=\mathrm{d}(\mathrm{v}, \mathrm{y}) ; \operatorname{dist}[\mathrm{z}]=\mathrm{d}(\mathrm{v}, \mathrm{y})+$ W(yz).   After a vertex and the corresponding candidate edge are selected, the information in the data structure must be updated. In Fig. 4.18(d) the vertex $I$ and the edge $G l$ have just been selected. The candidate edge for $F$ was $A F$, but now $A F$ must be replaced by $I F$ because $I F$ yields a shorter path to $F$, We must also recomputed dist $[F]$. The vertex $E$, which was unseen, is now on the fringe because it is adjacent to I , now in the tree . . .   while $\mathrm{x} \neq \mathrm{w}$ and not stuck do . . . end $\{\mathrm{x} \neq \mathrm{w}$ and not stuck $\}$ (p. 171-172)
[14b] Selecting the destination node of a path as the	See, e.g., Baase, 1988, at p. 160-161, 164-167, 168-172, 189-190, 196-197.
	  $d(A, i)+w(A)=?$ $d(A)+w(o n)=?$   $\alpha(A, G)+W(G A)=10$   Select Gil nest.   (c) An intermediale step. (CH was considered but not chosen to replace OH as a candidate.)   Whether or not G is a digraph, it is helpful 10 think of the tree and candidate edges as having an orientation; the tail of an edge is the vertex closer to $v$. Candidate edges go from a tree vertex to a fringe vertex. These edges will always be written to reflect this orientation; in other words, if we write


Claim Text from '494 Patent	Baase, 1988
	$X Y$. we are assuming that $x$ is closer to $v$ than y is. We will refer tox as tail(xy) and y as head(xy) even if G is not a directed graph.   Given the situation in Fig. 4.18(c), the next step is to select a candidate edge and fringe vertex. We choose a candidate edge $e$ for which $d(v$, tail $(e))+W(e)$ is minimum. This is the weight of the path obtained by adjoining $e$ to the known shortest path to tail(e).   Since the quantity $d(v$, tail $(e))+W(e)$ for a candidate edge $e$ may be used repeatedly, it can be computed once and saved. To compute it efficiently when efirst becomes a candidate, we also save $d(v, y)$ for each y in the tree. Thus we use an array dist as follows: $\operatorname{dist}[\mathrm{y}]=\mathrm{d}(\mathrm{v}, \mathrm{y}) ; \operatorname{dist}[\mathrm{z}]=\mathrm{d}(\mathrm{v}, \mathrm{y})+$ $\mathrm{W}(\mathrm{yz})$.   After a vertex and the corresponding candidate edge are selected, the information in the data structure must be updated. In Fig. 4.18(d) the vertex $I$ and the edge $G l$ have just been selected. The candidate edge for $F$ was $A F$, but now $A F$ must be replaced by $I F$ because $I F$ yields a shorter path to $F$, We must also recompute   $\operatorname{dist}[F]$. The vertex $E$, which was unseen, is now on the fringe because it is adjacent to I , now in the tree...   Traverse the fringe list to find a vertex with minimum dist;   $\mathrm{x}:=$ this vertex   remove $x$ from the fringe list   status[x] := intree (p. 172)
[14c] retrieving the set of direct links from the selected node to any other node in the database;	See supra, including (p. 160-167, 168-172): $\begin{aligned} & \{\text { Traverse the adjacency list for } \mathrm{x} .\} \\ & \text { ptr: }=\text { adjacencyList[x]; } \\ & \text { while } \operatorname{ptr} \neq \text { nil do } \ldots \text { end }\{\text { while } \mathrm{ptr} \neq \text { nil }\} ; \ldots \text {. } \\ & \text { end }\{\mathrm{x} \neq \mathrm{w} \text { and not } \text { stuck }\} \text { (p. 171-172) } \end{aligned}$
[14d] Determining the weight of the path using the retrieved direct links;	See supra, including (p. 160-167, 168-172):


Claim Text from '494 Patent	Baase, 1988
	while $\operatorname{ptr} \neq$ nil do $\ldots$. end $\{$ while $\operatorname{ptr} \neq$ nil $\} ; \ldots$   If status[y] = fringe and dist[x] + ptr!..weight < dist[y] then $\{$ Replace y 's candidate edge by xy.\} ...   If status $[y]=$ unseen then $\ldots$. dist[y] := dist[x] + ptr!..weight $\ldots$ end $\{$ while $\operatorname{ptr} \neq$ nil $\}$
[14e] repeating steps b through d for each path; and	See supra, including (p. 160-167, 168-172):   while $\mathrm{x} \neq \mathrm{w}$ and not stuck do . . . .   while $\operatorname{ptr} \neq$ nil do ...   If status[y] = fringe and dist[x] + ptr!..weight < dist[y] then $\{$ Replace y 's candidate edge by xy.\} ...   If status $[y]=$ unseen then $\ldots$ dist[y] := dist[x] + ptr!..weight $\ldots$   end $\{$ while $\operatorname{ptr} \neq$ nil $\}$   end $\{x \neq \mathrm{w}$ and not stuck $\} ; \ldots$ (p. 171-172)
[14f] Storing the determined weights as candidate cluster links.	```See supra, including (p. 160-167, 168-172): while ptr = nil do ... If status[y] = fringe and dist[x] + ptr!.weight < dist[y] then {Replace y's candidate edge by xy.} Parent[y]:= x; dist[y]:= dist[x] + ptr!weight; end; . . If status[y] = unseen then . . . Parent[y]:= x; dist[y]:= dist[x] + ptr!.weight . ... end {while ptr }\not=\mathrm{ nil}```


| Claim Text from '494 Patent |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 15. The method of claim 14 further comprising the |  |
| step of deriving the actual cluster links wherein the |  |
| actual cluster links are a subset of the candidate |  |
| cluster links. |  |


Claim Text from '494 Patent	Baase, 1988
	status[x] := intree (p. 172)
16. The method of claim 15 wherein the step of deriving comprises the step of choosing the top rated candidate cluster links.	See, e.g., Baase, 1988, at p. 160-167, 168-172.   Whether or not G is a digraph, it is helpful 10 think of the tree and candidate edges as having an orientation; the tail of an edge is the vertex closer to $v$. Candidate edges go from a tree vertex to a fringe vertex. These edges will always be written to reflect this orientation; in other words, if we write $X Y$. we are assuming that $x$ is closer to $v$ than y is. We will refer tox as $\operatorname{tail}(x y)$ and y as head( $x y$ ) even if G is not a directed graph.   Given the situation in Fig. 4.18(c), the next step is to select a candidate edge and fringe vertex. We choose a candidate edge $e$ for which $d(v, \operatorname{tail}(e))+W(e)$ is minimum. This is the weight of the path obtained by adjoining $e$ to the known shortest path to tail( $e$ ).   Since the quantity $d(v$, tail $(e))+W(e)$ for a candidate edge $e$ may be used repeatedly, it can be computed once and saved. To compute it efficiently when efirst becomes a candidate, we also save $d(v, y)$ for each y in the tree. Thus we use an array $\operatorname{dist}$ as follows: $\operatorname{dist}[\mathrm{y}]=\mathrm{d}(\mathrm{v}, \mathrm{y}) ; \operatorname{dist}[\mathrm{z}]=\mathrm{d}(\mathrm{v}, \mathrm{y})+$ $\mathrm{W}(\mathrm{yz})$.   After a vertex and the corresponding candidate edge are selected, the information in the data structure must be updated. In Fig. 4.18(d) the vertex $I$ and the edge $G l$ have just been selected. The candidate edge for $F$ was $A F$, but now $A F$ must be replaced by $I F$ because $I F$ yields a shorter path to $F$, We must also recomputed $\operatorname{dist}[F]$. The vertex $E$, which was unseen, is now on the fringe because it is adjacent to I , now in the tree . . .   Traverse the fringe list to find a vertex with minimum dist; $\mathrm{x}:=\text { this vertex }$   remove x from the fringe list   status $[\mathrm{x}]:=$ intree (p. 172)
18. A method of analyzing a database having objects and a first numerical representation of direct relationships in the database, comprising the steps of:	See p. 149-156, 160-167, 167-72, Title (Computer Algorithms).   Input: $\mathrm{G}=(\mathrm{V}, \mathrm{E}, \mathrm{W})$, a weighted graph or digraph $\ldots \mathrm{G}$ is represented by an adjacency list


| Claim Text from '494 Patent |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| structure. . . . (p. 171). |  |
| [18a] generating a second numerical representation |  |
| using the first numerical representation, wherein the |  |
| second numerical representation accounts for |  |
| indirect relationships in the database; |  |


Claim Text from '494 Patent	Baase, 1988
	```xy.} Parent[y] := x; dist[y]:= dist[x] + ptr!weight; end; If status[y] = unseen then . . . Parent[y] := x; dist[y]:= dist[x] + ptr!.weight . ... end {while ptr = nil}```
[18c] identifying at least one object in the database, wherein the stored numerical representation is used to identify objects; and	See, e.g., Baase, 1988, at p. 160-167, 168-172, including: (b) An intermediate step: (c) An intermediale step. (CH was considered but not chosen to replace GH as a candidate.) while $\operatorname{ptr} \neq$ nil do . . . If status[y] = fringe and dist[x] + ptr!. weight $<\operatorname{dist[y]~then~\{ Replace~} y$'s candidate edge by xy.\} Parent[y]:=x; $\operatorname{dist}[\mathrm{y}]:=\operatorname{dist}[\mathrm{x}]+\mathrm{ptr}$!weight; end; . . If status[y] = unseen then . . . Parent[y] := x; $\operatorname{dist}[\mathrm{y}]:=\operatorname{dist}[\mathrm{x}]+\mathrm{ptr}$!.weight

Claim Text from '494 Patent	Baase, 1988
	end $\{$ while $\operatorname{ptr} \neq$ nil $\}$
[18d] displaying one or more identified objects from the database.	See, e.g., Baase, 1988, at p. 149-156, 167, and 168-172, including: \{Output the path, the vertices will be listed in the reverse order, i.e. from w to v \} While $\mathrm{x} \neq 0$ do Output(x); $\mathrm{x}:=\operatorname{parent}[\mathrm{x}]$ end (p. 172)
19. The method of claim 18 wherein the step of generating a second numerical representation comprises: selecting an object in the database for analysis;	See, e.g., Baase, 1988, at p. 160-161, 168-172, including: Djisktra's shortest path algorithm will find shortest paths from v to the other vertices in order of increasing distance from v. . . The algorithm starts at one vertex (v) and "branches out" by selecting certain edges that lead to new vertices (p. 168) $\mathrm{x}:=\mathrm{v} \text { (p. 171). }$
[19a] analyzing the direct relationships expressed by the first numerical representation for indirect relationships involving the selected object; and creating a second numerical representation of the direct and indirect relationships involving the selected object.	See, e.g., Baase, 1988, at p. 160-167, 168-172, including: ```If status[y] = fringe and dist[x] + ptr!.weight < dist[y] then {Replace y's candidate edge by xy.} Parent[y] := x; dist[y] := dist[x] + ptr!weight; end; .. If status[y] = unseen then . . . Parent[y] := x; dist[y] := dist[x] + ptr!.weight end {while ptr = nil}```

Claim Text from '494 Patent	Baase, 1988
20. The method of 18 wherein the step of identifying at least one object in the database comprises: searching for objects in a database using the stored numerical representation, wherein direct and/or indirect relationships are searched.	See, e.g., Baase, 1988, at p. 149-156, 160-167, and 168-172. [W]e briefly considered the problem of finding the best route between two cities on a map of airline routes. Using as our criterion the price of the plane tickets, we observed that the best - i.e., cheapest - way to get from San Diego to Sacramento was to make one stop in Los Angeles. This is one instance, or application, of a very common problem on a weighted graph or digraph: finding a shortest path between two specified vertices. The weight, or length of a path . . . in a weighted graph . . . is . . . the sum of the weights of the edges in the path. If the path is called P we denote its weight by $\mathrm{W}(\mathrm{P})$. (p. 167)
21. The method of claim 18 wherein the displaying step comprises: generating a graphical display for representing an object in the database.	See, e.g., Baase, 1988, at p. 149-156, 160-161, 169 $(a, C)+w(o)=?$ $A(A, G)+W(G H)=10$ Select $G I$ nest. Seleat al next. (c) An intermediate step. (CH was considerted but not chosen to replace GH as a candidace.)
23. A method of representing data in a computer database with relationships, comprising the steps of:	See, e.g., Baase, 1988, at p. 160-167, 168-172. [W]e briefly considered the problem of finding the best route between two cities on a map of airline routes. Using as our criterion the price of the plane tickets, we observed that the best - i.e., cheapest - way to get from San Diego to Sacramento was to make one stop in Los Angeles. This is one instance, or application, of a very common problem on a weighted graph or digraph: finding a shortest path between two specified vertices. The weight, or length of a path . . . in a weighted graph . . . is . . . the sum of the weights of the edges in the path. If the path is called P we denote its weight by $\mathrm{W}(\mathrm{P})$. (p. 167) Input: $\mathrm{G}=(\mathrm{V}, \mathrm{E}, \mathrm{W})$, a weighted graph or digraph $\ldots \mathrm{G}$ is represented by an adjacency list structure. . . (p. 171).
[23a] assigning nodes node identifications;	
[23b] generating links, wherein each link represents a relationship between two nodes and is identified by the two nodes in which the relationship exists;	
[23c] allocating a weight to each link, wherein the weight signifies the strength of the relationship represented by the link relative to the strength of other relationships represented by other links; and	

Invalidity Claim Chart for US Patent No. 5,832,494

Based on Crouch, D., Crouch, C., Andreas, G., 'The Use of Cluster Hierarchies in Hypertext information Retrieval,' in Hypertext '89 Procedings, SIGCHI Bulletin, pp. 225-237, November 1989. ("Crouch, 1989")

Claim Text from '494 Patent	
$\begin{array}{l}\text { 1. A method of analyzing a database with indirect } \\ \text { relationships, using links and nodes, comprising the } \\ \text { steps of: }\end{array}$	$\begin{array}{l}\text { See, e.g., Crouch, 1989, at pp. 226, 228, } 229 \\ \text { In hypertext information retrieval, each node is generally assumed to be a single document. }\end{array}$
	$\begin{array}{l}\text { Links exist which connect each document to other documents having keywords in common } \\ \text { with it; the semantics of the links between nodes are keywords (document index terms) or } \\ \text { some descriptive information representing the connected documents. In this paper we } \\ \text { introduce an hierarchical structure which provides additional semantic information within } \\ \text { and between nodes. This structure seems particularly well suited to the user’s exploration of a } \\ \text { document collection in a visual context. The user may browse among the data items by } \\ \text { analyzing a graphical display of the structure itself as well as the semantic links between } \\ \text { nodes. (Crouch, 1989, p. 226) } \\ \text { The process is repeated until either all the similarities between the query and the non- } \\ \text { document children of some node are less than that between the query and the node itself, or } \\ \text { all the children of that node are document nodes. The documents comprising the cluster } \\ \text { represented by that node are returned. The search may be braadened by considering more } \\ \text { than one path at each level. The broadest search considers all paths and abandons them as } \\ \text { they fail certain criteria. (Crouch, 1989, p. 228) }\end{array}$
A bottom-up search may also be performed on such a tree. The cluster at the lowest level of	
the tree whose centroid is most similar to the query is chosen as the node at which the search	
will start. The search continues up the tree until the similarity between the query and the	
parent of the current node is smaller than the similarity between the query and the current	
node. The documents contained in the cluster corresponding to the current node are returned.	
The bottom-up searches are often more effective due to the uncertainty involved at high	
kevels of the hierarchy, [Crof80]	
Cluster hierarchies have been used effectively in automatic searches. Such hierarchies are	
also useful in performing searches based on browsing operations. These types of operations,	
we believe, can produce significant improvement in retrieval performance. Automatic	

Claim Text from '494 Patent	Crouch, 1989
	$\begin{array}{l}\text { cluster searches are highly structured; the next link in the search path is determined solely on } \\ \text { the basis of the similarity between the query vector and the vector representation of the node } \\ \text { being evaluated. By displaying suitable portions of the hierarchy during the course of the } \\ \text { search operations and letting the user choose appropriate search paths at each point, the } \\ \text { output obtained should be superior to that obtained by automatic cluster searching. (Crouch, } \\ \text { 1989, p. 229) }\end{array}$
selecting a node for analysis;	See, e.g., Crouch, 1989, at p. 228
The child most similar to the query is selected, and the similarity between the query and each	
of the non-document children of that node is calculated. The process is repeated until either	
all the similarities between the query and the non-document children of some node are less	
than that between the query and the node itself, or all the children of that node are document	
nodes. (Crouch, 1989, p. 228)	

generating candidate cluster links for the selected

node, wherein the step of generating comprises an

analysis of one or more indirect relationships in the

database;\end{array} \quad $$
\begin{array}{l}\text { Clustered Document Environments } \\
\text { A principal advantage of the vector space model for use n hypertext information retrieval is } \\
\text { that algorithms exist for structuring a document collection in such a manner that similar } \\
\text { documents are grouped together. A cluster hierarchy is represented by a tree structure in } \\
\text { which terminal nodes correspond to single documents and interior nodes to groups of } \\
\text { documents. In a hypertext system based on a clustered environment, the user can readily } \\
\text { focus his/her search on those groups (clusters) that are likely to contain documents which are } \\
\text { highly similar to the query. Additionally, the cluster hierarchy is beneficial as a browsing } \\
\text { tool in that it makes it possible easily to locate neighboring items with related subject } \\
\text { descriptions. (Crouch, 1989, p. 228) } \\
\text { Fig. 1 contains an example of a hierarchy for the single link agglomerative clustering } \\
\text { method. In the single link method the similarity between two clusters is the maximum of the } \\
\text { similarities between all pairs of documents such that one document of the pair is in one } \\
\text { cluster and the other document is in the other cluster. It may be noted that in the hierarchy } \\
\text { documents may appear at any level and that clusters overlap only in the sense that smaller } \\
\text { clusters are nested within larger clusters. (Crouch, 1989, p. 228) } \\
\text { To retrieve documents automatically in a clustered environment, comparisons are generally }\end{array}
$$\right.\right\}\)

Claim Text from '494 Patent	Crouch, 1989
	the basis of the similarity between the query vector and the vector representation of the node being evaluated. By displaying suitable portions of the hierarchy during the course of the search operations and letting the user choose appropriate search paths at each point, the output obtained should be superior to that obtained by automatic cluster searching. (Crouch, 1989, p. 229)
deriving actual cluster links from the candidate cluster links;	See above
identifying one or more nodes for display; and	See, e.g., Crouch, 1989, at p. 234 In general, a tree representation of a clustered collection is too large to be displayed in its entirely. Therefore, a user is presented with two views of the cluster tree simultaneously: a local view containing the subtree within which the user is currently browsing (see Fig. 4) and a global view, a more comprehensive view of the tree containing a significantly larger number of nodes than the local view (see Fig. 5). A user-directed traversal among the nodes is simultaneously reflected in both displays. The global view permits the user to observe where the search is being conducted in relation to the entire tree while the local view provides the user with more detailed information about a specific subtree. (Crouch, 1989, p. 230) Figure 8 (Crouch, 1989, p. 234)
displaying the identity of one or more nodes using the actual cluster links.	See, e.g., Crouch, 1989, at p. 234 In general, a tree representation of a clustered collection is too large to be displayed in its entirely. Therefore, a user is presented with two views of the cluster tree simultaneously: a

Claim Text from '494 Patent	Crouch, 1989		
	local view containing the subtree within which the user is currently browsing (see Fig. 4) and a global view, a more comprehensive view of the tree containing a significantly larger number of nodes than the local view (see Fig. 5). A user-directed traversal among the nodes is simultaneously reflected in both displays. The global view permits the user to observe where the search is being conducted in relation to the entire tree while the local view provides the user with more detailed information about a specific subtree. (Crouch, 1989, p. 230)		
Figure 8	(Crouch, 1989, p. 234)		
2. The method of claim 1 wherein each link is given			
a length, the step of generating the candidate cluster			
links comprises the steps of:			See, e.g., Crouch, 1989, at pp. 228, 229
:---			
Clustered Document Environments			

Claim Text from '494 Patent	Crouch, 1989
	clusters are nested within larger clusters. (Crouch, 1989, p. 228)
	To retrieve documents automatically in a clustered environment, comparisons are generally made between the query vector and document vectors using one of the standard measures of similarity. A cluster search simplifies the search process by limiting the search to subsets of documents. For example, with an agglomeratively clustered tree such as that shown in Fig. 1, a straightforward, narrow, depth-first search starts at the top of the tree and calculates the similarity between the query and each of its children. The child most similar to the query is selected, and the similarity between the query and each of the non-document children of that node is calculated. The process is repeated until either all the similarities between the query and the non-document children of some node are less than that between the query and the node itself, or all the children of that node are document nodes. The documents comprising the cluster represented by that node are returned. The search may be broadened by considering more than one path at each level. The broadest search considers all paths and abandons them as they fail certain criteria. (Crouch, 1989, p. 228) Each cluster in Fig. 1 is labelled with the level of association between the items under it. The clustering level determines the association strength of the corresponding items. Thus the similarity between items B, C andD in Fig. 4 is 0.9 . On the other hand, the similarity between item A and the cluster containing items B, C and D is only 0.7 . The level of association is a useful link semantic in a hypertext system. (Crouch, 1989, p. 228) Figure 1 (Crouch, 1989, p 229) A bottom-up search may also be performed on such a tree. The cluster at the lowest level of the tree whose centroid is most similar to the query is chosen as the node at which the search will start. The search continues up he tree until the similarity between the query and the parent of the current node is smaller than the similarity between the query and the current node. The documents contained in the cluster corresponding to the current node are returned. The bottom-up searches are often more effective due to the uncertainty involved at high kevels of the hierarchy, [Crof80] Cluster hierarchies have been used effectively to automatic searches. Such hierarchies are

Claim Text from '494 Patent	Crouch, 1989
	$\begin{array}{l}\text { also useful in performing searches based on browsing operations. These types of operations, } \\ \text { we believe, can produce significant improvement in retrieval performance. Automatic } \\ \text { cluster searches are highly structured; the next link in the search path is determined solely on } \\ \text { the basis of the similarity between the query vector and the vector representation of the node } \\ \text { being evaluated. By displaying suitable portions of the hierarchy during the course of the } \\ \text { search operations and letting the user choose appropriate search paths at each point, the } \\ \text { output obtained should be superior to that obtained by automatic cluster searching. (Crouch, } \\ \text { 1989, p. 229) }\end{array}$
$\begin{array}{l}\text { choosing a number as the maximum number of link } \\ \text { lengths that will be examined; and }\end{array}$	$\begin{array}{l}\text { See above and further, disclosed either expressly or inherently in the teachings of the } \\ \text { reference and its incorporated disclosures taken as a whole, or in combination with the state } \\ \text { of the art at the time of the alleged invention, as evidenced by substantial other references } \\ \text { identified in Defendants'P. R. 3-3 statement and accompanying charts. Rather than repeat } \\ \text { those disclosures here, they are incorporated by reference into this chart. }\end{array}$
$\begin{array}{l}\text { examining only those links which are less than the } \\ \text { maximum number of link lengths. }\end{array}$	$\begin{array}{l}\text { See above. } \\ \text { 3. The method of claim 1 wherein the step of } \\ \text { deriving actual cluster links comprises the step of: } \\ \text { selecting the top rated candidate cluster links, } \\ \text { wherein the top rated candidate cluster links are } \\ \text { those which are most closely linked to the node } \\ \text { under analysis. }\end{array}$
$\begin{array}{l}\text { See, e.g., Crouch, 1989, at pp. 228, 229, 230 } \\ \text { Clustered Document Environments }\end{array}$	
$\begin{array}{l}\text { A principal advantage of the vector space model for use n hypertext information retrieval is } \\ \text { that algorithms exist for structuring a document collection in such a manner that similar } \\ \text { documents are grouped together. A cluster hierarchy is represented by a tree structure in } \\ \text { which terminal nodes correspond to single documents and interior nodes to groups of } \\ \text { documents. In a hypertext system based on a clustered environment, the user can readily } \\ \text { focus his/her search on those groups (clusters) that are likely to contain documents which are } \\ \text { highly similar to the query. Additionally, the cluster hierarchy is beneficial as a browsing } \\ \text { tool in that it makes it possible easily to locate neighboring items with related subject } \\ \text { descriptions. (Crouch, 1989, p. 228) }\end{array}$	
Fig. 1 contains an example of a hierarchy for the single link agglomerative clustering	
method. In the single link method the similarity between two clusters is the maximum of the	

Claim Text from '494 Patent	Crouch, 1989
	similarities between all pairs of documents such that one document of the pair is in one cluster and the other document is in the other cluster. It may be noted that in the hierarchy documents may appear at any level and that clusters overlap only in the sense that smaller clusters are nested within larger clusters. (Crouch, 1989, p. 228)
	To retrieve documents automatically in a clustered environment, comparisons are generally made between the query vector and document vectors using one of the standard measures of similarity. A cluster search simplifies the search process by limiting the search to subsets of documents. For example, with an agglomeratively clustered tree such as that shown in Fig. 1, a straightforward, narrow, depth-first search starts at the top of the tree and calculates the similarity between the query and each of its children. The child most similar to the query is selected, and the similarity between the query and each of the non-document children of that node is calculated. The process is repeated until either all the similarities between the query and the non-document children of some node are less than that between the query and the node itself, or all the children of that node are document nodes. The documents comprising the cluster represented by that node are returned. The search may be broadened by considering more than one path at each level. The broadest search considers all paths and abandons them as they fail certain criteria. (Crouch, 1989, p. 228)
	Each cluster in Fig. 1 is labelled with the level of association between the items under it. The clustering level determines the association strength of the corresponding items. Thus the similarity between items B, C andD in Fig. 4 is 0.9 . On the other hand, the similarity between item A and the cluster containing items B, C and Dis only 0.7 . The level of association is a useful link semantic in a hypertext system. (Crouch, 1989, p. 228)
	1 (Crouch, 1989, p 229)
	A bottom-up search may also be performed on such a tree. The cluster at the lowest level of the tree whose centroid is most similar to the query is chosen as the node at which the search will start. The search continues up he tree until the similarity between the query and the parent of the current node is smaller than the similarity between the query and the current node. The documents contained in the cluster corresponding to the current node are returned. The bottom-up searches are often more effective due to the uncertainty involved at high

Claim Text from ' 494 Patent	Crouch, 1989
	kevels of the hierarchy, [Crof80] Cluster hierarchies have been used effectively to automatic searches. Such hierarchies are also useful in performing searches based on browsing operations. These types of operations, we believe, can produce significant improvement in retrieval performance. Automatic cluster searches are highly structured; the next link in the search path is determined solely on the basis of the similarity between the query vector and the vector representation of the node being evaluated. By displaying suitable portions of the hierarchy during the course of the search operations and letting the user choose appropriate search paths at each point, the output obtained should be superior to that obtained by automatic cluster searching. (Crouch, 1989, p. 229) Lists the value of the correlation measure of the query vector with either the centroid vector or the document vector associated with each node in the subtree. During the search process the user may change the correlation measure being calculated by means of the Correlation Measure pop-up menu. At present, the system provides a choice of several measures including vector product, inner product, Tanimoto, cosine and overlap. (Crouch, 1989, p. 230) Lists the value of the correlation measure of the query vector with either the centroid vector or the document vector associated with each node in the subtree. During the search process the user may change the correlation measure being calculated by means of the Correlation Measure pop-up menu. At present, the system provides a choice of several measures including vector product, inner product, Tanimoto, cosine and overlap. - Provides a listing of the concepts contained within the query vector (see also Fig. 6). This information is also displayed in the query window; however, in the tree display, the concepts in the query are displayed in ascending order of document frequency. The user may alter the query by adding or deleting concepts from the query vector during the search process without returning to the query window ... Lists document identifiers represented by the leaf nodes of the tree. (Crouch, 1989, p. 230)
5. The method of claim 1 wherein the step of generating the candidate cluster links comprises the step of:	See, e.g., Crouch, 1989, at pp. 228, 229

Claim Text from '494 Patent	Crouch, 1989
eliminating candidate cluster links, wherein the number of candidate cluster links is limited and the closest candidate cluster links are chosen over the remaining links.	Clustered Document Environments A principal advantage of the vector space model for use n hypertext information retrieval is that algorithms exist for structuring a document collection in such a manner that similar documents are grouped together. A cluster hierarchy is represented by a tree structure in which terminal nodes correspond to single documents and interior nodes to groups of documents. In a hypertext system based on a clustered environment, the user can readily focus his/her search on those groups (clusters) that are likely to contain documents which are highly similar to the query. Additionally, the cluster hierarchy is beneficial as a browsing tool in that it makes it possible easily to locate neighboring items with related subject descriptions. (Crouch, 1989, p. 228) Fig. 1 contains an example of a hierarchy for the single link agglomerative clustering method. In the single link method the similarity between two clusters is the maximum of the similarities between all pairs of documents such that one document of the pair is in one cluster and the other document is in the other cluster. It may be noted that in the hierarchy documents may appear at any level and that clusters overlap only in the sense that smaller clusters are nested within larger clusters. (Crouch, 1989, p. 228) To retrieve documents automatically in a clustered environment, comparisons are generally made between the query vector and document vectors using one of the standard measures of similarity. A cluster search simplifies the search process by limiting the search to subsets of documents. For example, with an agglomeratively clustered tree such as that shown in Fig. 1, a straightforward, narrow, depth-first search starts at the top of the tree and calculates the similarity between the query and each of its children. The child most similar to the query is selected, and the similarity between the query and each of the non-document children of that node is calculated. The process is repeated until either all the similarities between the query and the non-document children of some node are less than that between the query and the node itself, or all the children of that node are document nodes. The documents comprising the cluster represented by that node are returned. The search may be broadened by considering more than one path at each level. The broadest search considers all paths and abandons them as they fail certain criteria. (Crouch, 1989, p. 228) Each cluster in Fig. 1 is labelled with the level of association between the items under it. The clustering level determines the association strength of the corresponding items. Thus the similarity between items B, C andD in Fig. 4 is 0.9 . On the other hand, the similarity between item A and the cluster containing items B, C and D is only 0.7 . The level of

Claim Text from '494 Patent	Crouch, 1989
	association is a useful link semantic in a hypertext system. (Crouch, 1989, p. 228) A bottom-up search may also be performed on such a tree. The cluster at the lowest level of the tree whose centroid is most similar to the query is chosen as the node at which the search will start. The search continues up he tree until the similarity between the query and the parent of the current node is smaller than the similarity between the query and the current node. The documents contained in the cluster corresponding to the current node are returned. The bottom-up searches are often more effective due to the uncertainty involved at high kevels of the hierarchy, [Crof80]
Cluster hierarchies have been used effectively to automatic searches. Such hierarchies are also useful in performing searches based on browsing operations. These types of operations, we believe, can produce significant improvement in retrieval performance. Automatic cluster searches are highly structured; the next link in the search path is determined solely on the basis of the similarity between the query vector and the vector representation of the node being evaluated. By displaying suitable portions of the hierarchy during the course of the search operations and letting the user choose appropriate search paths at each point, the output obtained should be superior to that obtained by automatic cluster searching. (Crouch, 1989, p. 229) Lists the value of the correlation measure of the query vector with either the centroid vector or the document vector associated with each node in the subtree. During the search process the user may change the correlation measure being calculated by means of the Correlation Measure pop-up menu. At present, the system provides a choice of several measures including vector product, inner product, Tanimoto, cosine and overlap. - Provides a listing of the concepts contained within the query vector (see also Fig. 6). This information is also displayed in the query window; however, in the tree display, the concepts in the query are displayed in ascending order of document frequency. The user may alter the query by adding or deleting concepts from the query vector during the search process without returning to the query window ...	

Claim Text from '494 Patent	Crouch, 1989
	Lists document identifiers represented by the leaf nodes of the tree. (Crouch, 1989, p. 230)
7. The method of claim 1 , wherein one or more nodes provide external connections to objects external to the database, the method further comprising the steps of:	Disclosed either expressly or inherently in the teachings of the reference and its incorporated disclosures taken as a whole, or in combination with the state of the art at the time of the alleged invention, as evidenced by substantial other references identified in Defendants'P. R 3-3 statement and accompanying charts. Rather than repeat those disclosures here, they are incorporated by reference into this chart.
activating the desired node; and	
accessing the external object linked to the node.	
8. The method of claim 7, wherein the external object is an independent application which can be executed in background, the method further comprising the step of:	Disclosed either expressly or inherently in the teachings of the reference and its incorporated disclosures taken as a whole, or in combination with the state of the art at the time of the alleged invention, as evidenced by substantial other references identified in Defendants'P. R. 3-3 statement and accompanying charts. Rather than repeat those disclosures here, they are incorporated by reference into this chart.
executing the independent application.	
9. The method of claim 8 , wherein one or more nodes provide links to more than one independent application which can be executed as an extension, the method further comprising the steps of:	Disclosed either expressly or inherently in the teachings of the reference and its incorporated disclosures taken as a whole, or in combination with the state of the art at the time of the alleged invention, as evidenced by substantial other references identified in Defendants' P. R. 3-3 statement and accompanying charts. Rather than repeat those disclosures here, they are incorporated by reference into this chart.
displaying a list of independent applications linked to the node, wherein the step of accessing accesses an independent application.	See, e.g., Crouch, 1989, at p. 230
	Provides a listing of the concepts contained within the query vector (see also Fig. 6). This information is also displayed in the query window; however, in the tree display, the concepts in the query are displayed in ascending order of document frequency. The user may alter the query by adding or deleting concepts from the query vector during the search process without returning to the query window. - Uses different iconic representations to distinguish relevant documents from the other

Claim Text from '494 Patent	Crouch, 1989
	documents in the tree. A list of the documents which the user has chosen as relevant to the query is maintained in the display. The user may freely insert document identifiers into and delete items from this list. The icons of the documents in this list are then highlighted in the tree representation. - Lists document identifiers represented by the leaf nodes of the tree. (Crouch, 1989, p. 230)
10. The method of claim 8 , wherein the connection provides the independent application access to the information stored within the database.	Disclosed either expressly or inherently in the teachings of the reference and its incorporated disclosures taken as a whole, or in combination with the state of the art at the time of the alleged invention, as evidenced by substantial other references identified in Defendants' P. R. 3-3 statement and accompanying charts. Rather than repeat those disclosures here, they are incorporated by reference into this chart.
11. The method of claim 7 , wherein the external connection is to another computer, wherein information is located that can be accessed, the step of accessing further comprising the step of:	Disclosed either expressly or inherently in the teachings of the reference and its incorporated disclosures taken as a whole, or in combination with the state of the art at the time of the alleged invention, as evidenced by substantial other references identified in Defendants' P. R. 3-3 statement and accompanying charts. Rather than repeat those disclosures here, they are
accessing the information located within the computer.	incorporated by reference into this chart.
12. A method for determining the proximity of an object in a stored database to another object in the stored database using indirect relationships, links, and a display, comprising:	See, e.g., Crouch, 1989, at pp. 228, 229 Clustered Document Environments A principal advantage of the vector space model for use n hypertext information retrieval is that algorithms exist for structuring a document collection in such a manner that similar documents are grouped together. A cluster hierarchy is represented by a tree structure in which terminal nodes correspond to single documents and interior nodes to groups of documents. In a hypertext system based on a clustered environment, the user can readily focus his/her search on those groups (clusters) that are likely to contain documents which are highly similar to the query. Additionally, the cluster hierarchy is beneficial as a browsing tool in that it makes it possible easily to locate neighboring items with related subject

Claim Text from '494 Patent	Crouch, 1989
	descriptions. (Crouch, 1989, p. 228)
	Fig. 1 contains an example of a hierarchy for the single link agglomerative clustering method. In the single link method the similarity between two clusters is the maximum of the similarities between all pairs of documents such that one document of the pair is in one cluster and the other document is in the other cluster. It may be noted that in the hierarchy documents may appear at any level and that clusters overlap only in the sense that smaller clusters are nested within larger clusters. (Crouch, 1989, p. 228)
	To retrieve documents automatically in a clustered environment, comparisons are generally made between the query vector and document vectors using one of the standard measures of similarity. A cluster search simplifies the search process by limiting the search to subsets of documents. For example, with an agglomeratively clustered tree such as that shown in Fig. 1, a straightforward, narrow, depth-first search starts at the top of the tree and calculates the similarity between the query and each of its children. The child most similar to the query is selected, and the similarity between the query and each of the non-document children of that node is calculated. The process is repeated until either all the similarities between the query and the non-document children of some node are less than that between the query and the node itself, or all the children of that node are document nodes. The documents comprising the cluster represented by that node are returned. The search may be broadened by considering more than one path at each level. The broadest search considers all paths and abandons them as they fail certain criteria. (Crouch, 1989, p. 228)
	Each cluster in Fig. 1 is labelled with the level of association between the items under it. The clustering level determines the association strength of the corresponding items. Thus the similarity between items B, C andD in Fig. 4 is 0.9 . On the other hand, the similarity between item A and the cluster containing items B, C and D is only 0.7 . The level of association is a useful link semantic in a hypertext system. (Crouch, 1989, p. 228)
	Figure 1 (Crouch, 1989, p 229)
	A bottom-up search may also be performed on such a tree. The cluster at the lowest level of the tree whose centroid is most similar to the query is chosen as the node at which the search

Claim Text from '494 Patent	Crouch, 1989
	will start. The search continues up he tree until the similarity between the query and the parent of the current node is smaller than the similarity between the query and the current node. The documents contained in the cluster corresponding to the current node are returned. The bottom-up searches are often more effective due to the uncertainty involved at high kevels of the hierarchy, [Crof80] Cluster hierarchies have been used effectively to automatic searches. Such hierarchies are also useful in performing searches based on browsing operations. These types of operations, we believe, can produce significant improvement in retrieval performance. Automatic cluster searches are highly structured; the next link in the search path is determined solely on the basis of the similarity between the query vector and the vector representation of the node being evaluated. By displaying suitable portions of the hierarchy during the course of the search operations and letting the user choose appropriate search paths at each point, the output obtained should be superior to that obtained by automatic cluster searching. (Crouch, 1989, p. 229) Lists the value of the correlation measure of the query vector with either the centroid vector or the document vector associated with each node in the subtree. During the search process the user may change the correlation measure being calculated by means of the Correlation Measure pop-up menu. At present, the system provides a choice of several measures including vector product, inner product, Tanimoto, cosine and overlap. (Crouch, 1989, p. 230)
selecting an object to determine the proximity of other objects to the selected object;	See, e.g., Crouch, 1989, at p. 228 The child most similar to the query is selected, and the similarity between the query and each of the non-document children of that node is calculated. The process is repeated until either all the similarities between the query and the non-document children of some node are less than that between the query and the node itself, or all the children of that node are document nodes. (Crouch, 1989, p. 228)
generating a candidate cluster link set for the selected object, wherein the generating step includes an analysis of one or more indirect	See, e.g., Crouch, 1989, at pp. 228, 229

| Claim Text from '494 Patent | Crouch, 1989 |
| :--- | :--- | :--- | :--- |
| relationships in the database; | $\begin{array}{l}\text { Clustered Document Environments } \\ \text { A principal advantage of the vector space model for use n hypertext information retrieval is } \\ \text { that algorithms exist for structuring a document collection in such a manner that similar } \\ \text { documents are grouped together. A cluster hierarchy is represented by a tree structure in } \\ \text { which terminal nodes correspond to single documents and interior nodes to groups of } \\ \text { documents. In a hypertext system based on a clustered environment, the user can readily } \\ \text { focus hisher search on those groups (clusters) that are likely to contain documents which are } \\ \text { highly similar to the query. Additionally, the cluster hierarchy is beneficial as a browsing } \\ \text { tool in that it makes it possible easily to locate neighboring items with related subject } \\ \text { descriptions. (Crouch, 1989, p. 228) }\end{array}$ |
| Fig. 1 contains an example of a hierarchy for the single link agglomerative clustering | |
| method. In the single link method the similarity between two clusters is the maximum of the | |
| similarities between all pairs of documents such that one document of the pair is in one | |
| cluster and the other document is in the other cluster. It may be noted that in the hierarchy | |
| documents may appear at any level and that clusters overlap only in the sense that smaller | |
| clusters are nested within larger clusters. (Crouch, 1989, p. 228) | |
| To retrieve documents automatically in a clustered environment, comparisons are generally | |
| made between the query vector and document vectors using one of the standard measures of | |
| similarity. A cluster search simplifies the search process by limiting the search to subsets of | |
| documents. For example, with an agglomeratively clustered tree such as that shown in Fig. | |
| 1, a straightforward, narrow, depth-first search starts at the top of the tree and calculates the | |
| similarity between the query and each of its children. The child most similar to the query is | |
| selected, and the similarity between the query and each of the non-document children of that | |
| node is calculated. The process is repeated until either all the similarities between the query | |
| and the non-document children of some node are less than that between the query and the | |
| node itself, or all the children of that node are document nodes. The documents comprising | |
| the cluster represented by that node are returned. The search may be broadened by | |
| considering more than one path at each level. The broadest search considers all paths and | |
| abandons them as they fail certain criteria. (Crouch, 1989, p. 228) | |$\}$

Claim Text from '494 Patent	Crouch, 1989
	association is a useful link semantic in a hypertext system. (Crouch, 1989, p. 228) Figure 1 (Crouch, 1989, p 229) A bottom-up search may also be performed on such a tree. The cluster at the lowest level of the tree whose centroid is most similar to the query is chosen as the node at which the search will start. The search continues up he tree until the similarity between the query and the parent of the current node is smaller than the similarity between the query and the current node. The documents contained in the cluster corresponding to the current node are returned. The bottom-up searches are often more effective due to the uncertainty involved at high kevels of the hierarchy, [Crof80] Cluster hierarchies have been used effectively to automatic searches. Such hierarchies are also useful in performing searches based on browsing operations. These types of operations, we believe, can produce significant improvement in retrieval performance. Automatic cluster searches are highly structured; the next link in the search path is determined solely on the basis of the similarity between the query vector and the vector representation of the node being evaluated. By displaying suitable portions of the hierarchy during the course of the search operations and letting the user choose appropriate search paths at each point, the output obtained should be superior to that obtained by automatic cluster searching. (Crouch, 1989, p. 229)
deriving an actual cluster link set for the selected object using the generated candidate cluster link set; and	See above.
displaying one or more of the objects in the database, referred to in the actual cluster link set, on a display.	See, e.g., Crouch, 1989, at p. 234

Claim Text from ' 494 Patent	Crouch, 1989
	Figure 8 (Crouch, 1989, p. 234) Clicking on a terminal node (a document icon) results in the display of additional information associated with the document. (Crouch, 1989, p. 233)
13. The method of 12 wherein a set of direct links exists for the database, and wherein the step of generating a candidate cluster link set comprises: recursively analyzing portions of the set of direct links for indirect links.	See, e.g., Crouch, 1989, at pp. 228-230 Clustered Document Environments A principal advantage of the vector space model for use n hypertext information retrieval is that algorithms exist for structuring a document collection in such a manner that similar documents are grouped together. A cluster hierarchy is represented by a tree structure in which terminal nodes correspond to single documents and interior nodes to groups of documents. In a hypertext system based on a clustered environment, the user can readily focus his/her search on those groups (clusters) that are likely to contain documents which are highly similar to the query. Additionally, the cluster hierarchy is beneficial as a browsing tool in that it makes it possible easily to locate neighboring items with related subject descriptions. (Crouch, 1989, p. 228) Fig. 1 contains an example of a hierarchy for the single link agglomerative clustering method. In the single link method the similarity between two clusters is the maximum of the similarities between all pairs of documents such that one document of the pair is in one cluster and the other document is in the other cluster. It may be noted that in the hierarchy documents may appear at any level and that clusters overlap only in the sense that smaller clusters are nested within larger clusters. (Crouch, 1989, p. 228) To retrieve documents automatically in a clustered environment, comparisons are generally made between the query vector and document vectors using one of the standard measures of similarity. A cluster search simplifies the search process by limiting the search to subsets of documents. For example, with an agglomeratively clustered tree such as that shown in Fig. 1, a straightforward, narrow, depth-first search starts at the top of the tree and calculates the

\left.	Claim Text from '494 Patent	Crouch, 1989
similarity between the query and each of its children. The child most similar to the query is		
selected, and the similarity between the query and each of the non-document children of that		
node is calculated. The process is repeated until either all the similarities between the query		
and the non-document children of some node are less than that between the query and the		
node itself, or all the children of that node are document nodes. The documents comprising		
the cluster represented by that node are returned. The search may be broadened by		
considering more than one path at each level. The broadest search considers all paths and		
abandons them as they fail certain criteria. (Crouch, 1989, p. 228)		
Each cluster in Fig. . is labelled with the level of association between the items under it.		
The clustering level determines the association strength of the corresponding items. Thus the		
similarity between items B, C andD in Fig. 4 is 0.9. On the other hand, the similarity		
between item A and the cluster containing items B, C and D is only 0.7. The level of		
association is a useful link semantic in a hypertext system. (Crouch, 1989, p. 228)		$\right\}$

Claim Text from '494 Patent	Crouch, 1989
	$\begin{array}{l}\text { 1989, p. 229) } \\ \text { Lists the number of documents contained within the subtree defined by eac hnode as well as } \\ \text { the number of children of that node.... Lists document identifiers represented by the leaf } \\ \text { nodes of the tree. (Crouch, 1989, p. 230) }\end{array}$
$\begin{array}{l}\text { 14. A method for representing the relationship } \\ \text { between nodes using stored direct links, paths, and } \\ \text { candidate cluster links, comprising the steps of: }\end{array}$	See, e.g., Crouch, 1989, at pp. 228, 229
Clustered Document Environments	
A principal advantage of the vector space model for use n hypertext information retrieval is	
that algorithms exist for structuring a document collection in such a manner that similar	
documents are grouped together. A cluster hierarchy is represented by a tree structure in	
which terminal nodes correspond to single documents and interior nodes to groups of	
documents. In a hypertext system based on a clustered environment, the user can readily	
focus his/her search on those groups (clusters) that are likely to contain documents which are	
highly similar to the query. Additionally, the cluster hierarchy is beneficial as a browsing	
tool in that it makes it possible easily to locate neighboring items with related subject	
descriptions. (Crouch, 1989, p. 228)	
Fig. 1 contains an example of a hierarchy for the single link agglomerative clustering	
method. In the single link method the similarity between two clusters is the maximum of the	
similarities between all pairs of documents such that one document of the pair is in one	
cluster and the other document is in the other cluster. It may be noted that in the hierarchy	
documents may appear at any level and that clusters overlap only in the sense that smaller	
clusters are nested within larger clusters. (Crouch, 1989, p. 228)	

| Claim Text from '494 Patent | Crouch, 1989 |
| :--- | :--- | :--- | :--- |
| | node itself, or all the children of that node are document nodes. The documents comprising
 the cluster represented by that node are returned. The search may be broadened by
 considering more than one path at each level. The broadest search considers all paths and
 abandons them as they fail certain criteria. (Crouch, 1989, p. 228)
 Each cluster in Fig. 1 is labelled with the level of association between the items under it.
 The clustering level determines the association strength of the corresponding items. Thus the
 similarity between items B, C andD in Fig. 4 is 0.9. On the other hand, the similarity
 between item A and the cluster containing items B, C and D is only 0.7. The level of
 association is a useful link semantic in a hypertext system. (Crouch, 1989, p. 228) |
| (Crouch, 1989, p 229) | |

Claim Text from '494 Patent	Crouch, 1989
initializing a set of candidate cluster links;	$\begin{array}{l}\text { See, e.g., Crouch, 1989, at pp. 228, } 229 \\ \text { Clustered Document Environments } \\ \text { A principal advantage of the vector space model for use n hypertext information retrieval is } \\ \text { that algorithms exist for structuring a document collection in such a manner that similar } \\ \text { documents are grouped together. A cluster hierarchy is represented by a tree structure in } \\ \text { which terminal nodes correspond to single documents and interior nodes to groups of } \\ \text { documents. In a hypertext system based on a clustered environment, the user can readily } \\ \text { focus his/her search on those groups (clusters) that are likely to contain documents which are } \\ \text { highly similar to the query. Additionally, the cluster hierarchy is beneficial as a browsing } \\ \text { tool in that it makes it possible easily to locate neighboring items with related subject } \\ \text { descriptions. (Crouch, 1989, p. 228) }\end{array}$
$\begin{array}{l}\text { Fig. 1 contains an example of a hierarchy for the single link agglomerative clustering } \\ \text { method. In the single link method the similarity between two clusters is the maximum of the } \\ \text { similarities between all pairs of documents such that one document of the pair is in one } \\ \text { cluster and the other document is in the other cluster. It may be noted that in the hierarchy } \\ \text { documents may appear at any level and that clusters overlap only in the sense that smaller } \\ \text { clusters are nested within larger clusters. (Crouch, 1989, p. 228) }\end{array}$	
To retrieve documents automatically in a clustered environment, comparisons are generally	
made between the query vector and document vectors using one of the standard measures of	
similarity. A cluster search simplifies the search process by limiting the search to subsets of	
documents. For example, with an agglomeratively clustered tree such as that shown in Fig.	
1, a straightforward, narrow, depth-first search starts at the top of the tree and calculates the	
similarity between the query and each of its children. The child most similar to the query is	
selected, and the similarity between the query and each of the non-document children of that	
node is calculated. The process is repeated until either all the similarities between the query	
and the non-document children of some node are less than that between the query and the	
node itself, or all the children of that node are document nodes. The documents comprising	
the cluster represented by that node are returned. The search may be broadened by	
considering more than one path at each level. The broadest search considers all paths and	
abandons them as they fail certain criteria. (Crouch, 1989, p. 228)	

The clustering level determines the association strength of the corresponding items. Thus the\end{array}\right\}\)

Claim Text from '494 Patent	Crouch, 1989
	similarity between items B, C andD in Fig. 4 is 0.9 . On the other hand, the similarity between item A and the cluster containing items B, C and D is only 0.7. The level of association is a useful link semantic in a hypertext system. (Crouch, 1989, p. 228)

| Claim Text from '494 Patent | Crouch, 1989 |
| :--- | :--- | :--- | :--- |
| | $\begin{array}{l}\text { documents are grouped together. A cluster hierarchy is represented by a tree structure in } \\ \text { which terminal nodes correspond to single documents and interior nodes to groups of } \\ \text { documents. In a hypertext system based on a clustered environment, the user can readily } \\ \text { focus his/her search on those groups (clusters) that are likely to contain documents which are } \\ \text { highly similar to the query. Additionally, the cluster hierarchy is beneficial as a browsing } \\ \text { tool in that it makes it possible easily to locate neighboring items with related subject } \\ \text { descriptions. (Crouch, 1989, p. 228) }\end{array}$ |
| Fig. 1 contains an example of a hierarchy for the single link agglomerative clustering | |
| method. In the single link method the similarity between two clusters is the maximum of the | |
| similarities between all pairs of documents such that one document of the pair is in one | |
| cluster and the other document is in the other cluster. It may be noted that in the hierarchy | |
| documents may appear at any level and that clusters overlap only in the sense that smaller | |
| clusters are nested within larger clusters. (Crouch, 1989, p. 228) | |\(\left.\} \begin{array}{l}To retrieve documents automatically in a clustered environment, comparisons are generally

made between the query vector and document vectors using one of the standard measures of

similarity. A cluster search simplifies the search process by limiting the search to subsests of

documents. For example, with an agglomeratively clustered tree such as that shown in Fig.

1, a straightforward, narrow, depth-first search starts at the top of the tree and calculates the

similarity between the query and each of its children. The child most similar to the query is

selected, and the similarity between the query and each of the non-document children of that

node is calculated. The process is repeated until either all the similarities between the query

and the non-document children of some node are less than that between the query and the

node itself, or all the children of that node are document nodes. The documents comprising

the cluster represented by that node are returned. The search may be broadened by

considering more than one path at each level. The broadest search considers all paths and

abandons them as they fail certain criteria. (Crouch, 1989, p. 228)\end{array}\right\}\)

Claim Text from '494 Patent	Crouch, 1989
	Figure 1 A bottom-up search may also be performed on such a tree. The cluster at the lowest level of the tree whose centroid is most similar to the query is chosen as the node at which the search will start. The search continues up he tree until the similarity between the query and the parent of the current node is smaller than the similarity between the query and the current node. The documents contained in the cluster corresponding to the current node are returned. The bottom-up searches are often more effective due to the uncertainty involved at high kevels of the hierarchy, [Crof80] Cluster hierarchies have been used effectively to automatic searches. Such hierarchies are also useful in performing searches based on browsing operations. These types of operations, we believe, can produce significant improvement in retrieval performance. Automatic cluster searches are highly structured; the next link in the search path is determined solely on the basis of the similarity between the query vector and the vector representation of the node being evaluated. By displaying suitable portions of the hierarchy during the course of the search operations and letting the user choose appropriate search paths at each point, the output obtained should be superior to that obtained by automatic cluster searching. (Crouch, 1989, p. 229)
retrieving the set of direct links from the selected	
node to any other node in the database;	See, e.g., Crouch, 1989, at pp. 228, 230
The process is repeated until either all the similarities between the query and the non-	
document children of some node are less than that between the query and the node itself, or	
all the children of that node are document nodes. The documents comprising the cluster	
represented by that node are returned. The search may be broadened by considering more	
than one path at each level. The broadest search considers all paths and abandons them as	
they fail certain criteria. (Crouch, 1989, p. 228)	
For example, with an agglomeratively clustered tree such as that shown in Fig. 1, a a	

Claim Text from '494 Patent	Crouch, 1989
	straightforward, narrow, depth-first search starts at the top of the tree and calculates the similarity between the query and each of its children. (Crouch, 1989, p. 228) Lists the number of documents contained within the subtree defined by eac hnode as well as the number of children of that node. ... Lists document identifiers represented by the leaf nodes of the tree. (Crouch, 1989, p. 230)
determining the weight of the path using the retrieved direct links;	See, e.g., Crouch, 1989, at Figure 1 (Crouch, 1989, p. 228) Each cluster in Fig. 1 is labelled with the level of association between the items under it. The clustering level determines the association strength of the corresponding items. Thus the similarity between items B, C and D in Fig. 4 is 0.9 . On the other hand, the similarity between item A and the cluster containing items B, C and D is only 0.7 . The level of association is a useful link semantic in a hypertext system. (Crouch, 1989, p. 228)
repeating steps b through d for each path; and	See, e.g., Crouch, 1989, at pp. 228, 229
storing the determined weights as candidate cluster links.	See, e.g., Crouch, 1989, at 228. Figure 1 (Crouch, 1989, p. 228) Each cluster in Fig. 1 is labelled with the level of association between the items under it.

Claim Text from '494 Patent	Crouch, 1989
	The clustering level determines the association strength of the corresponding items. Thus the similarity between items B, C and D in Fig. 4 is 0.9 . On the other hand, the similarity between item A and the cluster containing items B, C and D is only 0.7 . The level of association is a useful link semantic in a hypertext system. (Crouch, 1989, p. 228)
15. The method of claim 14 further comprising the step of deriving the actual cluster links wherein the actual cluster links are a subset of the candidate cluster links.	See, e.g., Crouch, 1989, at 228-230
16. The method of claim 15 wherein the step of deriving comprises the step of choosing the top rated candidate cluster links.	See, e.g., Crouch, 1989, at p. 230 Lists the value of the correlation measure of the query vector with either the centroid vector or the document vector associated with each node in the subtree. During the search process the user may change the correlation measure being calculated by means of the Correlation Measure pop-up menu. At present, the system provides a choice of several measures including vector product, inner product, Tanimoto, cosine and overlap. - Provides a listing of the concepts contained within the query vector (see also Fig. 6). This information is also displayed in the query window; however, in the tree display, the concepts in the query are displayed in ascending order of document frequency. The user may alter the query by adding or deleting concepts from the query vector during the search process without returning to the query window ... Lists document identifiers represented by the leaf nodes of the tree. (Crouch, 1989, p. 230)
18. A method of analyzing a database having objects and a first numerical representation of direct relationships in the database, comprising the steps of:	See, e.g., Crouch, 1989, at pp. 226, 228-230 In hypertext information retrieval, each node is generally assumed to be a single document. Links exist which connect each document to other documents having keywords in common with it; the semantics of the links between nodes are keywords (document index terms) or some descriptive information representing the connected documents. In this paper we introduce an hierarchical structure which provides additional semantic information within and between nodes. This structure seems particularly well suited to the user's exploration of a document collection in a visual context. The user may browse among the data items by analyzing a graphical display of the structure itself as well as the semantic links between nodes. (Crouch, 1989, p. 226)

Claim Text from '494 Patent	Crouch, 1989
	$\begin{array}{l}\text { The process is repeated until either all the similarities between the query and the non- } \\ \text { document children of some node are less than that between the query and the node itself, or } \\ \text { all the children of that node are document nodes. The documents comprising the cluster } \\ \text { represented by that node are returned. The search may be broadened by considering more } \\ \text { than one path at each level. The broadest search considers all paths and abandons them as } \\ \text { they fail certain criteria. (Crouch, 1989, p. 228) }\end{array}$
A bottom-up search may also be performed on such a tree. The cluster at the lowest level of	
the tree whose centroid is most similar to the query is chosen as the node at which the search	
will start. The search continues up the tree until the similarity between the query and the	
parent of the current node is smaller than the similarity between the query and the current	
node. The documents contained in the cluster corresponding to the current node are returned.	
The bottom-up searches are often more effective due to the uncertainty involved at high	
kevels of the hierarchy, [Crof80]	
Cluster hierarchies have been used effectively in automatic searches. Such hierarchies are	
also useful in performing searches based on browsing operations. These types of operations,	
we believe, can produce significant improvement in retrieval performance. Automatic	
cluster searches are highly structured, the next link in the search path is determined solely on	
the basis of the similarity between the query vector and the vector representation of the node	
being evaluated. By displaying suitable portions of the hierarchy during the course of the	

Claim Text from '494 Patent	Crouch, 1989
	highly similar to the query. Additionally, the cluster hierarchy is beneficial as a browsing tool in that it makes it possible easily to locate neighboring items with related subject descriptions. (Crouch, 1989, p. 228)
	Fig. 1 contains an example of a hierarchy for the single link agglomerative clustering method. In the single link method the similarity between two clusters is the maximum of the similarities between all pairs of documents such that one document of the pair is in one cluster and the other document is in the other cluster. It may be noted that in the hierarchy documents may appear at any level and that clusters overlap only in the sense that smaller clusters are nested within larger clusters. (Crouch, 1989, p. 228)
	To retrieve documents automatically in a clustered environment, comparisons are generally made between the query vector and document vectors using one of the standard measures of similarity. A cluster search simplifies the search process by limiting the search to subsets of documents. For example, with an agglomeratively clustered tree such as that shown in Fig. 1, a straightforward, narrow, depth-first search starts at the top of the tree and calculates the similarity between the query and each of its children. The child most similar to the query is selected, and the similarity between the query and each of the non-document children of that node is calculated. The process is repeated until either all the similarities between the query and the non-document children of some node are less than that between the query and the node itself, or all the children of that node are document nodes. The documents comprising the cluster represented by that node are returned. The search may be broadened by considering more than one path at each level. The broadest search considers all paths and abandons them as they fail certain criteria. (Crouch, 1989, p. 228)
	Each cluster in Fig. 1 is labelled with the level of association between the items under it. The clustering level determines the association strength of the corresponding items. Thus the similarity between items B, C andD in Fig. 4 is 0.9 . On the other hand, the similarity between item A and the cluster containing items B, C and D is only 0.7 . The level of association is a useful link semantic in a hypertext system. (Crouch, 1989, p. 228)
	Figure 1 (Crouch, 1989, p 229)

Claim Text from '494 Patent	Crouch, 1989
	$\begin{array}{l}\text { A bottom-up search may also be performed on such a tree. The cluster at the lowest level of } \\ \text { the tree whose centroid is most similar to the query is chosen as the node at which the search } \\ \text { will start. The search continues up he tree until the similarity between the query and the } \\ \text { parent of the current node is smaller than the similarity between the query and the current } \\ \text { node. The documents contained in the cluster corresponding to the current node are returned. } \\ \text { The bottom-up searches are often more effective due to the uncertainty involved at high } \\ \text { kevels of the hierarchy, [Crof80] } \\ \text { Cluster hierarchies have been used effectively to automatic searches. Such hierarchies are } \\ \text { also useful in performing searches based on browsing operations. These types of operations, } \\ \text { we believe, can produce significant improvement in retrieval performance. Automatic } \\ \text { cluster searches are highly structured; the next link in the search path is determined solely on } \\ \text { the basis of the similarity between the query vector and the vector representation of the node } \\ \text { being evaluated. By displaying suitable portions of the hierarchy during the course of the } \\ \text { search operations and letting the user choose appropriate search paths at each point, the } \\ \text { output obtained should be superior to that obtained by automatic cluster searching. (Crouch, } \\ \text { 1989, p. 229) }\end{array}$
$\begin{array}{l}\text { Lists the number of documents contained within the subtree defined by eac hnode as well as } \\ \text { the number of children of that node. ... Lists document identifiers represented by the leaf } \\ \text { nodes of the tree. (Crouch, 1989, p. 230) }\end{array}$	
storing the second numerical representation;	$\begin{array}{l}\text { See, e.g., Crouch, 1989, at pp. 228- 230 }\end{array}$
The process is repeated until either all the similarities between the query and the non-	
document children of some node are less than that between the query and the node itself, or	
all the children of that node are document nodes. The documents comprising the cluster	
represented by that node are returned. The search may be broadened by considering more	
than one path at each level. The broadest search considers all paths and abandons them as	
they fail certain criteria. (Crouch, 1989, p. 228)	
For example, with an agglomeratively clustered tree such as that shown in Fig. 1, a	
straightforward, narrow, depth-first search starts the the of the tree and calculates the	
similarity between the query and each of its children. (Crouch, 1989, p. 228)	
Cluster hierarchies have been used effectively in automatic searches. Such hierarchies are	

Claim Text from '494 Patent	Crouch, 1989
	$\begin{array}{l}\text { also useful in performing searches based on browsing operations. These types of operations, } \\ \text { we believe, can produce significant improvement in retrieval performance. Automatic } \\ \text { cluster searches are highly structured; the next link in the search path is determined solely on } \\ \text { the basis of the similarity between the query vector and the vector representation of the node } \\ \text { being evaluated. By displaying suitable portions of the hierarchy during the course of the } \\ \text { search operations and letting the user choose appropriate search paths at each point, the } \\ \text { output obtained should be superior to that obtained by automatic cluster searching. (Crouch, } \\ \text { 1989, p. 229) } \\ \text { Lists the number of documents contained within the subtree defined by eac hnode as well as } \\ \text { the number of children of that node. ... Lists document identifiers represented by the leaf } \\ \text { nodes of the tree. (Crouch, 1989, p. 230) }\end{array}$
identifying at least one object in the database,	
wherein the stored numerical representation is used	
to identify objects; and	See, e.g., Crouch, 1989, at pp. 228, 229
Clustered Document Environments	

that algorithms exist for structuring a document collection in such a manner that similar

documents are grouped together. A cluster hierarchy is represented by a tree structure in

which terminal nodes correspond to single documents and interior nodes to groups of

documents. In a hypertext system based on a clustered environment, the user can readily

focus his/her search on those groups (clusters) that are likely to contain documents which are

highly similar to the query. Additionally, the cluster hierarchy is beneficial as a browsing

tool in that it makes it possible easily to locate neighboring items with related subject

descriptions. (Crouch, 1989, p. 228)

Fig. 1 contains an example of a hierarchy for the single link agglomerative clustering

method. In the single link method the similarity between two clusters is the maximum of the

similarities between all pairs of documents such that one document of the pair is in one

cluster and the other document is in the other cluster. It may be noted that in the hierarchy

documents may appear at any level and that clusters overlap only in the sense that smaller

clusters are nested within larger clusters. (Crouch, 1989, p. 228)

To retrieve documents automatically in a clustered environment, comparisons are generally

made between the query vector and document vectors using one of the standard measures of\end{array}\right.\right\}\)

Claim Text from '494 Patent	Crouch, 1989
	similarity. A cluster search simplifies the search process by limiting the search to subsets of documents. For example, with an agglomeratively clustered tree such as that shown in Fig. 1, a straightforward, narrow, depth-first search starts at the top of the tree and calculates the similarity between the query and each of its children. The child most similar to the query is selected, and the similarity between the query and each of the non-document children of that node is calculated. The process is repeated until either all the similarities between the query and the non-document children of some node are less than that between the query and the node itself, or all the children of that node are document nodes. The documents comprising the cluster represented by that node are returned. The search may be broadened by considering more than one path at each level. The broadest search considers all paths and abandons them as they fail certain criteria. (Crouch, 1989, p. 228) Each cluster in Fig. 1 is labelled with the level of association between the items under it. The clustering level determines the association strength of the corresponding items. Thus the similarity between items B, C andD in Fig. 4 is 0.9 . On the other hand, the similarity between item A and the cluster containing items B, C and D is only 0.7 . The level of association is a useful link semantic in a hypertext system. (Crouch, 1989, p. 228) Figure 1 (Crouch, 1989, p 229) A bottom-up search may also be performed on such a tree. The cluster at the lowest level of the tree whose centroid is most similar to the query is chosen as the node at which the search will start. The search continues up he tree until the similarity between the query and the parent of the current node is smaller than the similarity between the query and the current node. The documents contained in the cluster corresponding to the current node are returned. The bottom-up searches are often more effective due to the uncertainty involved at high kevels of the hierarchy, [Crof80] Cluster hierarchies have been used effectively to automatic searches. Such hierarchies are also useful in performing searches based on browsing operations. These types of operations, we believe, can produce significant improvement in retrieval performance. Automatic cluster searches are highly structured; the next link in the search path is determined solely on the basis of the similarity between the query vector and the vector representation of the node

Claim Text from '494 Patent	Crouch, 1989
	being evaluated. By displaying suitable portions of the hierarchy during the course of the search operations and letting the user choose appropriate search paths at each point, the output obtained should be superior to that obtained by automatic cluster searching. (Crouch, 1989, p. 229
displaying one or more identified objects from the	
database.	See, e.g., Crouch, 1989, at p. 233, 234 Clicking on a terminal node (a document icon) results in the display of additional information associated with the document. (Crouch, 1989, p. 233)
19. The method of claim 18 wherein the step of generating a second numerical representation comprises: selecting an object in the database for analysis;	See, e.g., Crouch, 1989, at p. 228 The child most similar to the query is selected, and the similarity between the query and each of the non-document children of that node is calculated. The process is repeated until either all the similarities between the query and the non-document children of some node are less than that between the query and the node itself, or all the children of that node are document nodes. (Crouch, 1989, p. 228)

Claim Text from '494 Patent	Crouch, 1989
	highly similar to the query. Additionally, the cluster hierarchy is beneficial as a browsing tool in that it makes it possible easily to locate neighboring items with related subject descriptions. (Crouch, 1989, p. 228)
	Fig. 1 contains an example of a hierarchy for the single link agglomerative clustering method. In the single link method the similarity between two clusters is the maximum of the similarities between all pairs of documents such that one document of the pair is in one cluster and the other document is in the other cluster. It may be noted that in the hierarchy documents may appear at any level and that clusters overlap only in the sense that smaller clusters are nested within larger clusters. (Crouch, 1989, p. 228)
	To retrieve documents automatically in a clustered environment, comparisons are generally made between the query vector and document vectors using one of the standard measures of similarity. A cluster search simplifies the search process by limiting the search to subsets of documents. For example, with an agglomeratively clustered tree such as that shown in Fig. 1, a straightforward, narrow, depth-first search starts at the top of the tree and calculates the similarity between the query and each of its children. The child most similar to the query is selected, and the similarity between the query and each of the non-document children of that node is calculated. The process is repeated until either all the similarities between the query and the non-document children of some node are less than that between the query and the node itself, or all the children of that node are document nodes. The documents comprising the cluster represented by that node are returned. The search may be broadened by considering more than one path at each level. The broadest search considers all paths and abandons them as they fail certain criteria. (Crouch, 1989, p. 228)
	Each cluster in Fig. 1 is labelled with the level of association between the items under it. The clustering level determines the association strength of the corresponding items. Thus the similarity between items B, C andD in Fig. 4 is 0.9 . On the other hand, the similarity between item A and the cluster containing items B, C and D is only 0.7 . The level of association is a useful link semantic in a hypertext system. (Crouch, 1989, p. 228)
	Figure 1 (Crouch, 1989, p 229)

Claim Text from '494 Patent	Crouch, 1989
	A bottom-up search may also be performed on such a tree. The cluster at the lowest level of the tree whose centroid is most similar to the query is chosen as the node at which the search will start. The search continues up he tree until the similarity between the query and the parent of the current node is smaller than the similarity between the query and the current node. The documents contained in the cluster corresponding to the current node are returned. The bottom-up searches are often more effective due to the uncertainty involved at high kevels of the hierarchy, [Crof80] Cluster hierarchies have been used effectively to automatic searches. Such hierarchies are also useful in performing searches based on browsing operations. These types of operations, we believe, can produce significant improvement in retrieval performance. Automatic cluster searches are highly structured; the next link in the search path is determined solely on the basis of the similarity between the query vector and the vector representation of the node being evaluated. By displaying suitable portions of the hierarchy during the course of the search operations and letting the user choose appropriate search paths at each point, the output obtained should be superior to that obtained by automatic cluster searching. (Crouch, 1989, p. 229)

Claim Text from '494 Patent	Crouch, 1989
	descriptions. (Crouch, 1989, p. 228)
	Fig. 1 contains an example of a hierarchy for the single link agglomerative clustering method. In the single link method the similarity between two clusters is the maximum of the similarities between all pairs of documents such that one document of the pair is in one cluster and the other document is in the other cluster. It may be noted that in the hierarchy documents may appear at any level and that clusters overlap only in the sense that smaller clusters are nested within larger clusters. (Crouch, 1989, p. 228)
	To retrieve documents automatically in a clustered environment, comparisons are generally made between the query vector and document vectors using one of the standard measures of similarity. A cluster search simplifies the search process by limiting the search to subsets of documents. For example, with an agglomeratively clustered tree such as that shown in Fig. 1, a straightforward, narrow, depth-first search starts at the top of the tree and calculates the similarity between the query and each of its children. The child most similar to the query is selected, and the similarity between the query and each of the non-document children of that node is calculated. The process is repeated until either all the similarities between the query and the non-document children of some node are less than that between the query and the node itself, or all the children of that node are document nodes. The documents comprising the cluster represented by that node are returned. The search may be broadened by considering more than one path at each level. The broadest search considers all paths and abandons them as they fail certain criteria. (Crouch, 1989, p. 228)
	Each cluster in Fig. 1 is labelled with the level of association between the items under it. The clustering level determines the association strength of the corresponding items. Thus the similarity between items B, C andD in Fig. 4 is 0.9 . On the other hand, the similarity between item A and the cluster containing items B, C and D is only 0.7 . The level of association is a useful link semantic in a hypertext system. (Crouch, 1989, p. 228)
	Figure 1 (Crouch, 1989, p 229)
	A bottom-up search may also be performed on such a tree. The cluster at the lowest level of the tree whose centroid is most similar to the query is chosen as the node at which the search

Claim Text from '494 Patent	Crouch, 1989
	$\begin{array}{l}\text { will start. The search continues up he tree until the similarity between the query and the } \\ \text { parent of the current node is smaller than the similarity between the query and the current } \\ \text { node. The documents contained in the cluster corresponding to the current node are returned. } \\ \text { The bottom-up searches are often more effective due to the uncertainty involved at high } \\ \text { kevels of the hierarchy, [Crof80] } \\ \text { Cluster hierarchies have been used effectively to automatic searches. Such hierarchies are } \\ \text { also useful in performing searches based on browsing operations. These types of operations, } \\ \text { we believe, can produce significant improvement in retrieval performance. Automatic } \\ \text { cluster searches are highly structured; the next link in the search path is determined solely on } \\ \text { the basis of the similarity between the query vector and the vector representation of the node } \\ \text { being evaluated. By displaying suitable portions of the hierarchy during the course of the } \\ \text { search operations and letting the user choose appropriate search paths at each point, the } \\ \text { output obtained should be superior to that obtained by automatic cluster searching. (Crouch, } \\ \text { 1989, p. 229) }\end{array}$
$\begin{array}{l}\text { 21. The method of claim 18 wherein the displaying } \\ \text { step comprises: } \\ \text { generating a graphical display for representing an } \\ \text { object in the database. }\end{array}$	$\begin{array}{l}\text { See, e.g., Crouch, 1989, at pp.226, 230 }\end{array}$
$\begin{array}{l}\text { The user may browse among the data items by analyzing a graphical display of the structure } \\ \text { itself as well as the semantic links between nodes. (Crouch, 1989, p. 226) }\end{array}$	
In general, a tree representation of a clustered collection is too large to be displayed in its	
entirely. Therefore, a user is presented with two views of the cluster tree simultaneously: a	
local view containing the subtree within which the user is currently browsing (see Fig. 4) and	
a global view, a more comprehensive view of the tree containing a significantly larger	
number of nodes than the local view (see Fig. 5). A user-directed traversal among the nodes	
is simultaneously reflected in both displays. The global view permits the user to observe	
where the search is being conducted in relation to the entire tree while the local view	
provides the user with more detailed information about a specific subtree. (Crouch, 1989, p.	
$230)$	
Provides a listing of the concepts contained within the query vector (see also Fig. 6). This	
information is also displayed in the query window; however, in the tree display, the concepts	

Claim Text from '494 Patent	Crouch, 1989
23. A method of representing data in a computer	
database with relationships, comprising the steps of:	in the query are displayed in ascending order of document frequency. The user may alter the query by adding or deleting concepts from the query vector during the search process without returning to the query window. (Crouch, 1989, p. 230)
In hypertext information retrieval, each node is generally assumed to be a single document.	
Links exist which connect each document to other documents having keywords in common	
with it; the semantics of the links between nodes are keywords (document index terms) or	
some descriptive information representing the connected documents. In this paper we	
introduce an hierarchical structure which provides additional semantic information within	
and between nodes. This structure seems particularly well suited to the user's exploration of a	
document collection in a visual context. The user may browse among the data items by	
analyzing a graphical display of the structure itself as well as the semantic links between	
nodes. (Crouch, 1989, p. 226)	

Claim Text from '494 Patent	Crouch, 1989
	$\begin{array}{l}\text { the basis of the similarity between the query vector and the vector representation of the node } \\ \text { being evaluated. By displaying suitable portions of the hierarchy during the course of the } \\ \text { search operations and letting the user choose appropriate search paths at each point, the } \\ \text { output obtained should be superior to that obtained by automatic cluster searching. (Crouch, } \\ \text { 1989, p. 229) }\end{array}$
assigning nodes node identifications;	See, e.g., Crouch, 1989, at p. 230, Fig. 8
Lists document identifiers represented by the leaf nodes of the tree. (Crouch, 1989, p. 230)	

relationship between two nodes and is identified by

the two nodes in which the relationship exists;\end{array} $$
\begin{array}{l}\text { See, e.g., Crouch, 1989, at pp. 226, 228, 229 } \\
\text { In hypertext information retrieval, each node is generally assumed to be a single document. } \\
\text { Links exist which connect each document to other documents having keywords in common } \\
\text { with it; the semantics of the links between nodes are keywords (document index terms) or } \\
\text { some descriptive information representing the connected documents. In this paper we } \\
\text { introduce an hierarchical structure which provides additional semantic information within } \\
\text { and between nodes. This structure seems particularly well suited to the user's exploration of a } \\
\text { document collection in a visual context. The user may browse among the data items by } \\
\text { analyzing a graphical display of the structure itself as well as the semantic links between } \\
\text { nodes. (Crouch, 1989, p. 226) } \\
\text { The process is repeated until either all the similarities between the query and the non- } \\
\text { document children of some node are less than that between the query and the node itself, or } \\
\text { all the children of that node are document nodes. The documents comprising the cluster } \\
\text { represented by that node are returned. The search may be broadened by considering more } \\
\text { than one path at each level. The broadest search considers all paths and abandons them as } \\
\text { they fail certain criteria. (Crouch, 1989, p. 228) } \\
\text { A bottom-up search may also be performed on such a tree. The cluster at the lowest level of } \\
\text { the tree whose centroid is most similar to the query is chosen as the node at which the search } \\
\text { will start. The search continues up the tree until the similarity between the query and the }\end{array}
$$\right.\right\}\)

$\left.$| Claim Text from '494 Patent | Crouch, 1989 |
| :--- | :--- |
| | $\begin{array}{l}\text { parent of the current node is smaller than the similarity between the query and the current } \\ \text { node. The documents contained in the cluster corresponding to the current node are returned. } \\ \text { The bottom-up searches are often more effective due to the uncertainty involved at high } \\ \text { kevels of the hierarchy, [Crof80] } \\ \text { Cluster hierarchies have been used effectively in automatic searches. Such hierarchies are } \\ \text { also useful in performing searches based on browsing operations. These types of operations, } \\ \text { we believe, can produce significant improvement in retrieval performance. Automatic } \\ \text { cluster searches are highly structured; the next link in the search path is determined solely on } \\ \text { the basis of the similarity between the query vector and the vector representation of the node } \\ \text { being evaluated. By displaying suitable portions of the hierarchy during the course of the } \\ \text { search operations and letting the user choose appropriate search paths at each point, the } \\ \text { output obtained should be superior to that obtained by automatic cluster searching. (Crouch, } \\ \text { 1989, p. 229) }\end{array}$ |
| allocating a weight to each link, wherein the weight | |
| signifies the strength of the relationship represented | |
| by the link relative to the strength of other | |
| relationships represented by other links; and | |\(\left.\quad \begin{array}{l}See, e.g., Crouch, 1989, at pp. 228, 229

Clustered Document Environments\end{array} \right\rvert\, $$
\begin{array}{l}\text { A principal advantage of the vector space model for use n hypertext information retrieval is } \\
\text { that algorithms exist for structuring a document collection in such a manner that similar } \\
\text { documents are grouped together. A cluster hierarchy is represented by a tree structure in } \\
\text { which terminal nodes correspond to single documents and interior nodes to groups of } \\
\text { documents. In a hypertext system based on a clustered environment, the user can readily } \\
\text { focus his/her search on those groups (clusters) that are likely to contain documents which are } \\
\text { highly similar to the query. Additionally, the cluster hierarchy is beneficial as a browsing } \\
\text { tool in that it makes it possible easily to locate neighboring items with related subject } \\
\text { descriptions. (Crouch, 1989, p. 228) } \\
\text { Fig. 1 contains an example of a hierarchy for the single link agglomerative clustering } \\
\text { method. In the single link method the similarity between two clusters is the maximum of the } \\
\text { similarities between all pairs of documents such that one document of the pair is in one } \\
\text { cluster and the other document is in the other cluster. It may be noted that in the hierarchy } \\
\text { documents may appear at any level and that clusters overlap only in the sense that smaller } \\
\text { clusters are nested within larger clusters. (Crouch, 1989, p. 228) }\end{array}
$$\right\}\)

Claim Text from '494 Patent	Crouch, 1989
	To retrieve documents automatically in a clustered environment, comparisons are generally made between the query vector and document vectors using one of the standard measures of similarity. A cluster search simplifies the search process by limiting the search to subsets of documents. For example, with an agglomeratively clustered tree such as that shown in Fig. 1, a straightforward, narrow, depth-first search starts at the top of the tree and calculates the similarity between the query and each of its children. The child most similar to the query is selected, and the similarity between the query and each of the non-document children of that node is calculated. The process is repeated until either all the similarities between the query and the non-document children of some node are less than that between the query and the node itself, or all the children of that node are document nodes. The documents comprising the cluster represented by that node are returned. The search may be broadened by considering more than one path at each level. The broadest search considers all paths and abandons them as they fail certain criteria. (Crouch, 1989, p. 228) Each cluster in Fig. 1 is labelled with the level of association between the items under it. The clustering level determines the association strength of the corresponding items. Thus the similarity between items B, C andD in Fig. 4 is 0.9 . On the other hand, the similarity between item A and the cluster containing items B, C and D is only 0.7 . The level of association is a useful link semantic in a hypertext system. (Crouch, 1989, p. 228) Figure 1 (Crouch, 1989, p 229) A bottom-up search may also be performed on such a tree. The cluster at the lowest level of the tree whose centroid is most similar to the query is chosen as the node at which the search will start. The search continues up he tree until the similarity between the query and the parent of the current node is smaller than the similarity between the query and the current node. The documents contained in the cluster corresponding to the current node are returned. The bottom-up searches are often more effective due to the uncertainty involved at high kevels of the hierarchy, [Crof80] Cluster hierarchies have been used effectively to automatic searches. Such hierarchies are also useful in performing searches based on browsing operations. These types of operations,

Claim Text from '494 Patent	Crouch, 1989
	we believe, can produce significant improvement in retrieval performance. Automatic cluster searches are highly structured; the next link in the search path is determined solely on the basis of the similarity between the query vector and the vector representation of the node being evaluated. By displaying suitable portions of the hierarchy during the course of the search operations and letting the user choose appropriate search paths at each point, the output obtained should be superior to that obtained by automatic cluster searching. (Crouch, $1989, ~ p . ~ 229) ~$
displaying a node identification.	See, e.g., Crouch, 1989, at p. 234 In general, a tree representation of a clustered collection is too large to be displayed in its entirely. Therefore, a user is presented with two views of the cluster tree simultaneously: a local view containing the subtree within which the user is currently browsing (see Fig. 4) and a global view, a more comprehensive view of the tree containing a significantly larger number of nodes than the local view (see Fig. 5). A user-directed traversal among the nodes is simultaneously reflected in both displays. The global view permits the user to observe where the search is being conducted in relation to the entire tree while the local view provides the user with more detailed information about a specific subtree. (Crouch, 1989, p. 230)

| Claim Text from '494 Patent | Crouch, 1989 |
| :--- | :--- | :--- | :--- |
| searching generated links, wherein nodes are | |
| located by searching the generated links. | $\begin{array}{l}\text { which terminal nodes correspond to single documents and interior nodes to groups of } \\ \text { documents. In a hypertext system based on a clustered environment, the user can readily } \\ \text { focus his/her search on those groups (clusters) that are likely to contain documents which are } \\ \text { highly similar to the query. Additionally, the cluster hierarchy is beneficial as a browsing } \\ \text { tool in that it makes it possible easily to locate neighboring items with related subject } \\ \text { descriptions. (Crouch, 1989, p. 228) } \\ \text { Fig. 1 contains an example of a hierarchy for the single link agglomerative clustering } \\ \text { method. In the single link method the similarity between two clusters is the maximum of the } \\ \text { similarities between all pairs of documents such that one document of the pair is in one } \\ \text { cluster and the other document is in the other cluster. It may be noted that in the hierarchy } \\ \text { documents may appear at any level and that clusters overlap only in the sense that smaller } \\ \text { clusters are nested within larger clusters. (Crouch, 1989, p. 228) }\end{array}$ |
| To retrieve documents automatically in a clustered environment, comparisons are generally | |
| made between the query vector and document vectors using one of the standard measures of | |
| similarity. A cluster search simplifies the search process by limiting the search to subses of | |
| documents. For example, with an agglomeratively clustered tree such as that shown in Fig. | |
| 1, a straightforward, narrow, depth-first search starts at the top of the tree and calculates the | |
| similarity between the query and each of its children. The child most similar to the query is | |$\}$

Claim Text from '494 Patent	Crouch, 1989
	$\begin{array}{l}\text { Figure 1 } \\ \text { A bottom-up search may also be performed on such a tree. The cluster at the lowest level of } \\ \text { the tree whose centroid is most similar to the query is chosen as the node at which the search } \\ \text { will start. The search continues up he tree until the similarity between the query and the } \\ \text { parent of the current node is smaller than the similarity between the query and the current } \\ \text { node. The documents contained in the cluster corresponding to the current node are returned. } \\ \text { The bottom-up searches are often more effective due to the uncertainty involved at high } \\ \text { kevels of the hierarchy, [Crof80] } \\ \text { Cluster hierarchies have been used effectively to automatic searches. Such hierarchies are } \\ \text { also useful in performing searches based on browsing operations. These types of operations, } \\ \text { we believe, can produce significant improvement in retrieval performance. Automatic } \\ \text { cluster searches are highly structured; the next link in the search path is determined solely on } \\ \text { the basis of the similarity between the query vector and the vector representation of the node } \\ \text { being evaluated. By displaying suitable portions of the hierarchy during the course of the } \\ \text { search operations and letting the user choose appropriate search paths at each point, the } \\ \text { output obtained should be superior to that obtained by automatic cluster searching. (Crouch, } \\ \text { 1989, p. 229) }\end{array}$
Lists document identifiers represented by the leaf nodes of the tree. (Crouch, 1989, p. 230)	

Claim Text from '494 Patent	Crouch, 1989
assigned to nodes.	alleged invention, as evidenced by substantial other references identified in Defendants' P. R. 3-3 statement and accompanying charts. Rather than repeat those disclosures here, they are incorporated by reference into this chart.
32. The method of claim 31 further comprising the step of: generating node sub-types wherein the node sub-types are assigned information.	Disclosed either expressly or inherently in the teachings of the reference and its incorporated disclosures taken as a whole, or in combination with the state of the art at the time of the alleged invention, as evidenced by substantial other references identified in Defendants' P. R. 3-3 statement and accompanying charts. Rather than repeat those disclosures here, they are incorporated by reference into this chart.
33. A method of representing data in a computer database and for computerized searching of the data, wherein relationships exist in the database, comprising:	See, e.g., Crouch, 1989, at pp. 226, 228, 229 In hypertext information retrieval, each node is generally assumed to be a single document. Links exist which connect each document to other documents having keywords in common with it; the semantics of the links between nodes are keywords (document index terms) or some descriptive information representing the connected documents. In this paper we introduce an hierarchical structure which provides additional semantic information within and between nodes. This structure seems particularly well suited to the user's exploration of a document collection in a visual context. The user may browse among the data items by analyzing a graphical display of the structure itself as well as the semantic links between nodes. (Crouch, 1989, p. 226) The process is repeated until either all the similarities between the query and the nondocument children of some node are less than that between the query and the node itself, or all the children of that node are document nodes. The documents comprising the cluster represented by that node are returned. The search may be broadened by considering more than one path at each level. The broadest search considers all paths and abandons them as they fail certain criteria. (Crouch, 1989, p. 228) A bottom-up search may also be performed on such a tree. The cluster at the lowest level of the tree whose centroid is most similar to the query is chosen as the node at which the search will start. The search continues up the tree until the similarity between the query and the parent of the current node is smaller than the similarity between the query and the current node. The documents contained in the cluster corresponding to the current node are returned. The bottom-up searches are often more effective due to the uncertainty involved at high

Claim Text from '494 Patent	Crouch, 1989
	kevels of the hierarchy, [Crof80] Cluster hierarchies have been used effectively in automatic searches. Such hierarchies are also useful in performing searches based on browsing operations. These types of operations, we believe, can produce significant improvement in retrieval performance. Automatic cluster searches are highly structured; the next link in the search path is determined solely on the basis of the similarity between the query vector and the vector representation of the node being evaluated. By displaying suitable portions of the hierarchy during the course of the search operations and letting the user choose appropriate search paths at each point, the output obtained should be superior to that obtained by automatic cluster searching. (Crouch, 1989, p. 229)
assigning links to represent relationships in the database;	See, e.g., Crouch, 1989, at p. 226 In hypertext information retrieval, each node is generally assumed to be a single document. Links exist which connect each document to other documents having keywords in common with it; the semantics of the links between nodes are keywords (document index terms) or some descriptive information representing the connected documents. In this paper we introduce an hierarchical structure which provides additional semantic information within and between nodes. This structure seems particularly well suited to the user's exploration of a document collection in a visual context. The user may browse among the data items by analyzing a graphical display of the structure itself as well as the semantic links between nodes. (Crouch, 1989, p. 226)
generating node identifications based upon the assigned links, wherein node identifications are generated so that each link represents a relationship between two identified nodes;	See, e.g., Crouch, 1989, at pp. 228, 230 The process is repeated until either all the similarities between the query and the nondocument children of some node are less than that between the query and the node itself, or all the children of that node are document nodes. The documents comprising the cluster represented by that node are returned. The search may be broadened by considering more than one path at each level. The broadest search considers all paths and abandons them as

Claim Text from '494 Patent	Crouch, 1989
	they fail certain criteria. (Crouch, 1989, p. 228) For example, with an agglomeratively clustered tree such as that shown in Fig. 1, a straightforward, narrow, depth-first search starts at the top of the tree and calculates the similarity between the query and each of its children. (Crouch, 1989, p. 228) Lists the number of documents contained within the subtree defined by eac hnode as well as the number of children of that node. ... Lists document identifiers represented by the leaf nodes of the tree. (Crouch, 1989, p. 230)
storing the links and node identifications, wherein	
the links and nodes may be retrieved;	See, e.g., Crouch, 1989, at pp. 228, 230
	The process is repeated until either all the similarities between the query and the non- document children of some node are less than that between the query and the node itself, or all the children of that node are document nodes. The documents comprising the cluster represented by that node are returned. The search may be broadened by considering more than one path at each level. The broadest search considers all paths and abandons them as they fail certain criteria. (Crouch, 1989, p. 228)
For example, with an agglomeratively clustered tree such as that shown in Fig. 1, a straightforward, narrow, depth-first search starts at the top of the tree and calculates the similarity between the query and each of its children. (Crouch, 1989, p. 228)	
Lists the number of documents contained within the subtree defined by eac hnode as well as the number of children of that node. ... Lists document identifiers represented by the leaf nodes of the tree. (Crouch, 1989, p. 230)	
searching for node identifications using the stored	See, e.g., Crouch, 1989, at pp. 228- 230
links; and	

| Claim Text from '494 Patent | Crouch, 1989 |
| :--- | :--- | :--- | :--- |
| | $\begin{array}{l}\text { documents. In a hypertext system based on a clustered environment, the user can readily } \\ \text { focus his/her search on those groups (clusters) that are likely to contain documents which are } \\ \text { highly similar to the query. Additionally, the cluster hierarchy is beneficial as a browsing } \\ \text { tool in that it makes it possible easily to locate neighboring items with related subject } \\ \text { descriptions. (Crouch, 1989, p. 228) }\end{array}$ |
| Fig. 1 contains an example of a hierarchy for the single link agglomerative clustering | |
| method. In the single link method the similarity between two clusters is the maximum of the | |
| similarities between all pairs of documents such that one document of the pain is in one | |
| cluster and the other document is in the other cluster. It may be noted that in the hierarchy | |
| documents may appear at any level and that clusters overlap only in the sense that smaller | |
| clusters are nested within larger clusters. (Crouch, 1989, p. 228) | |
| To retrieve documents automatically in a clustered environment, comparisons are generally | |
| made between the query vector and document vectors using one of the standard measures of | |
| similarity. A cluster search simplifies the search process by limiting the search to subsets of | |
| documents. For example, with an agglomeratively clustered tree such as that shown in Fig. | |
| 1, a straightforward, narrow, depth-first search starts at the top of the tree and calculates the | |
| similarity between the query and each of its children. The child most similar to the query is | |
| selected, and the similarity between the query and each of the non-document children of that | |
| node is calculated. The process is repeated until either all the similarities between the query | |
| and the non-document children of some node are less than that between the query and the | |
| node itself, or all the children of that node are document nodes. The documents comprising | |
| the cluster represented by that node are returned. The search may be broadened by | |
| considering more than one path at each level. The broadest search considers all paths and | |
| abandons them as they fail certain criteria. (Crouch, 1989, p. 228) | |$\}$

Claim Text from '494 Patent	Crouch, 1989
	(Crouch, 1989, p 229) A bottom-up search may also be performed on such a tree. The cluster at the lowest level of the tree whose centroid is most similar to the query is chosen as the node at which the search will start. The search continues up he tree until the similarity between the query and the parent of the current node is smaller than the similarity between the query and the current node. The documents contained in the cluster corresponding to the current node are returned. The bottom-up searches are often more effective due to the uncertainty involved at high kevels of the hierarchy, [Crof80] Cluster hierarchies have been used effectively to automatic searches. Such hierarchies are also useful in performing searches based on browsing operations. These types of operations, we believe, can produce significant improvement in retrieval performance. Automatic cluster searches are highly structured; the next link in the search path is determined solely on the basis of the similarity between the query vector and the vector representation of the node being evaluated. By displaying suitable portions of the hierarchy during the course of the search operations and letting the user choose appropriate search paths at each point, the output obtained should be superior to that obtained by automatic cluster searching. (Crouch, 1989, p. 229)
displaying node identifications, wherein the displayed node identifications are located in the searching step.	See, e.g., Crouch, 1989, at p. 234 In general, a tree representation of a clustered collection is too large to be displayed in its entirely. Therefore, a user is presented with two views of the cluster tree simultaneously: a local view containing the subtree within which the user is currently browsing (see Fig. 4) and a global view, a more comprehensive view of the tree containing a significantly larger number of nodes than the local view (see Fig. 5). A user-directed traversal among the nodes is simultaneously reflected in both displays. The global view permits the user to observe

| Claim Text from '494 Patent | Crouch, 1989 |
| :--- | :--- | :--- |
| | where the search is being conducted in relation to the entire tree while the loca1 view
 provides the user with more detailed information about a specific subtree. (Crouch, 1989, p.
 $230)$ |
| | (Crouch, 1989, p. 234) |

Defendants reserve the right to revise this contention chart concerning the invalidity of the asserted claims, as appropriate, for example depending upon the Court's construction of the asserted claims, any findings as to the priority date of the asserted claims, and/or positions that Plaintiff or its expert witness(es) may take concerning claim interpretation, construction, infringement, and/or invalidity issues.

Plaintiff's Infringement Contentions are based on an apparent construction of the claim terms. Defendants disagree with these apparent constructions. Nothing stated herein shall be treated as an admission or suggestion that Defendants agree with Plaintiff regarding either the scope of any of the asserted claims or the claim constructions advanced by Plaintiff in its Infringement Contentions or anywhere else, or that any of Defendants' accused technology meets any limitations of the claims. Nothing stated herein shall be construed as an admission or a waiver of any particular construction of any claim term. Defendants also reserve all their rights to challenge any of the claim terms herein under 35 U.S.C. § 112 , including by arguing that they are indefinite, not supported by the written description and/or not enabled. Accordingly, nothing stated herein shall be construed as a waiver of any argument available under 35 U.S.C. § 112.

Invalidity Claim Chart for US Patent No. 5,832,494

Based on Botafogo, R.A. "Cluster Anlaysis for Hypertext Systems" ACM SIGIR 93, Vol. 6, 116-125 (1993). ("Botafogo, 1993")

Claim Text from '494 Patent	Botafogo, 1993
1. A method of analyzing a database with indirect relationships, using links and nodes, comprising the steps of:	See, e.g., Botafogo, 1993, at p. 117-118, 121-122
[1a] selecting a node for analysis;	See, e.g., Botafogo, 1993, at p. 117-118, 121-122
[1b] generating candidate cluster links for the selected node, wherein the step of generating comprises an analysis of one or more indirect relationships in the database;	See, e.g., Botafogo, 1993, at p. 117-118, 121-122
[1c] deriving actual cluster links from the candidate cluster links;	See, e.g., Botafogo, 1993, at p. 117-118, 121-122
[1d jidentifying one or more nodes for display; and	See, e.g., Botafogo, 1993, at p. 117, 121-122
[1e] displaying the identity of one or more nodes using the actual cluster links.	See, e.g., Botafogo, 1993, at p. 121-122
2. The method of claim 1 wherein each link is given a length, the step of generating the candidate cluster links comprises the steps of:	See, e.g., Botafogo, 1993, at p. 117-118, 121-122
[2a] choosing a number as the maximum number of link lengths that will be examined; and	See, e.g., Botafogo, 1993, at p. 117-118, 121-122
[2b] examining only those links which are less than the maximum number of link lengths.	See, e.g., Botafogo, 1993, at p. 117-118, 121-122
3. The method of claim 1 wherein the step of deriving actual cluster links comprises the step of: selecting the top rated candidate cluster links, wherein the top rated candidate cluster links are those which are most closely linked to the node under analysis.	See, e.g., Botafogo, 1993, at p. 117-118, 121-122

Claim Text from '494 Patent	Botafogo, 1993
5. The method of claim 1 wherein the step of generating the candidate cluster links comprises the step of: eliminating candidate cluster links, wherein the number of candidate cluster links is limited and the closest candidate cluster links are chosen over the remaining links.	See, e.g., Botafogo, 1993, at p. 117-118, 121-122
12. A method for determining the proximity of an object in a stored database to another object in the stored database using indirect relationships, links, and a display, comprising:	See, e.g., Botafogo, 1993, at p. 117-118, 121-122
[12a] selecting an object to determine the proximity of other objects to the selected object;	See, e.g., Botafogo, 1993, at p. 117-118, 121-122
[12b] generating a candidate cluster link set for the selected object, wherein the generating step includes an analysis of one or more indirect relationships in the database;	See, e.g., Botafogo, 1993, at p. 117-118, 121-122
[12c] deriving an actual cluster link set for the selected object using the generated candidate cluster link set; and	See, e.g., Botafogo, 1993, at p. 117-118, 121-122
[12d] displaying one or more of the objects in the database, referred to in the actual cluster link set, on a display.	See, e.g., Botafogo, 1993, at p. 117, 121-122
13. The method of 12 wherein a set of direct links exists for the database, and wherein the step of generating a candidate cluster link set comprises: recursively analyzing portions of the set of direct links for indirect links.	See, e.g., Botafogo, 1993, at p. 117-118, 121-122

Claim Text from '494 Patent	Botafogo, 1993
14. A method for representing the relationship between nodes using stored direct links, paths, and candidate cluster links, comprising the steps of:	See, e.g., Botafogo, 1993, at p. 117-118, 121-122
[14a] initializing a set of candidate cluster links;	See, e.g., Botafogo, 1993, at p. 117-118, 121-122
[14b] selecting the destination node of a path as the selected node to analyze;	See, e.g., Botafogo, 1993, at p. 117-118, 121-122
[14c] retrieving the set of direct links from the selected node to any other node in the database;	See, e.g., Botafogo, 1993, at p. 118-119, 121-122
[14d] determining the weight of the path using the retrieved direct links;	See, e.g., Botafogo, 1993, at p. 117-118
[14e] repeating steps b through d for each path; and	See, e.g., Botafogo, 1993, at p. 117-118, 121-122
[14f] storing the determined weights as candidate cluster links.	See, e.g., Botafogo, 1993, at p. 117-118
15. The method of claim 14 further comprising the step of deriving the actual cluster links wherein the actual cluster links are a subset of the candidate cluster links.	See, e.g., Botafogo, 1993, at p. 117-118, 121-122
16. The method of claim 15 wherein the step of deriving comprises the step of choosing the top rated candidate cluster links.	See, e.g., Botafogo, 1993, at p. 118-119, 121-122
18. A method of analyzing a database having objects and a first numerical representation of direct relationships in the database, comprising the steps	See, e.g., Botafogo, 1993, at p. 118-119, 121-122

Claim Text from '494 Patent	Botafogo, 1993
of:	
[18a] generating a second numerical representation using the first numerical representation, wherein the second numerical representation accounts for indirect relationships in the database;	See, e.g., Botafogo, 1993, at p. 117-118, 121-122
[18b] storing the second numerical representation;	See, e.g., Botafogo, 1993, at 118-119
[18c] identifying at least one object in the database, wherein the stored numerical representation is used to identify objects; and	See, e.g., Botafogo, 1993, at 118-119, 121-122
[18d] displaying one or more identified objects from the database.	See, e.g., Botafogo, 1993, at p. 117, 121-122
19. The method of claim 18 wherein the step of generating a second numerical representation comprises: selecting an object in the database for analysis;	See, e.g., Botafogo, 1993, at p. 117-118, 121-122
[19a] analyzing the direct relationships expressed by the first numerical representation for indirect relationships involving the selected object; and creating a second numerical representation of the direct and indirect relationships involving the selected object.	See, e.g., Botafogo, 1993, at p. 117-118, 121-122
20. The method of 18 wherein the step of identifying at least one object in the database comprises: searching for objects in a database using the stored numerical representation, wherein direct and/or	See, e.g., Botafogo, 1993, at p. 117-118, 121-122

Claim Text from '494 Patent	Botafogo, 1993
indirect relationships are searched.	
21. The method of claim 18 wherein the displaying step comprises: generating a graphical display for representing an object in the database.	See, e.g., Botafogo, 1993, at p. 117, 121-122
23. A method of representing data in a computer database with relationships, comprising the steps of:	See below:
[23a] assigning nodes node identifications;	See, e.g., Botafogo, 1993, at p. 116, 117, 119-21
[23b] generating links, wherein each link represents a relationship between two nodes and is identified by the two nodes in which the relationship exists;	See, e.g., Botafogo, 1993, at p. 117-118, 121-122
[23c] allocating a weight to each link, wherein the weight signifies the strength of the relationship represented by the link relative to the strength of other relationships represented by other links; and	See, e.g., Botafogo, 1993, at p. 117-118, 121-122
[23d] displaying a node identification.	See, e.g., Botafogo, 1993, at p. 121-122
24. The method of claim 23 , wherein the data in the database is objects, wherein the nodes represent objects and each object is assigned a node identification, and wherein the relationships that exist comprise direct relationships between objects, further comprising the step of: searching generated links, wherein nodes are located by searching the generated links.	See, e.g., Botafogo, 1993, at p. 116, 117-118, 119-22
25. The method of claim 23 further comprising the	See below:

Claim Text from '494 Patent	
step of: generating link sub-types, comprising the steps of:	
[25a] identifying each link sub-type with a name; and	See, e.g., Botafogo, 1993, at p. 117
[25b] providing a comment to one or more link subtypes.	See, e.g., Botafogo, 1993, at p. 117
31. The method of claim 23 wherein attributes are assigned to nodes.	See, e.g., Botafogo, 1993, at p. 119
32. The method of claim 31 further comprising the step of: generating node sub-types wherein the node sub-types are assigned information.	See, e.g., Botafogo, 1993, at p. 119
33. A method of representing data in a computer database and for computerized searching of the data, wherein relationships exist in the database, comprising:	See below:
[33a] assigning links to represent relationships in the database;	See, e.g., Botafogo, 1993, at p. 117-118, 121-122
[33b] generating node identifications based upon the assigned links, wherein node identifications are generated so that each link represents a relationship between two identified nodes;	See, e.g., Botafogo, 1993, at
[33c] storing the links and node identifications, wherein the links and nodes may be retrieved;	See, e.g., Botafogo, 1993, at
 [33d] searching for node identifications using the stored links; and	See, e.g., Botafogo, 1993, at p. 117-118, 121-122
[33e] displaying node identifications, wherein the	See, e.g., Botafogo, 1993, at p. 121-122

Claim Text from '494 Patent	Botafogo, 1993
displayed node identifications are located in the searching step.	

Defendants reserve the right to revise this contention chart concerning the invalidity of the asserted claims, as appropriate, for example depending upon the Court's construction of the asserted claims, any findings as to the priority date of the asserted claims, and/or positions that Plaintiff or its expert witness(es) may take concerning claim interpretation, construction, infringement, and/or invalidity issues.

Plaintiff's Infringement Contentions are based on an apparent construction of the claim terms. Defendants disagree with these apparent constructions. Nothing stated herein shall be treated as an admission or suggestion that Defendants agree with Plaintiff regarding either the scope of any of the asserted claims or the claim constructions advanced by Plaintiff in its Infringement Contentions or anywhere else, or that any of Defendants' accused technology meets any limitations of the claims. Nothing stated herein shall be construed as an admission or a waiver of any particular construction of any claim term. Defendants also reserve all their rights to challenge any of the claim terms herein under 35 U.S.C. § 112 , including by arguing that they are indefinite, not supported by the written description and/or not enabled. Accordingly, nothing stated herein shall be construed as a waiver of any argument available under 35 U.S.C. § 112.

Invalidity Claim Chart for U.S. Patent No. 5,832,494 Based on "NCSA Mosaic and the World Wide Web: Global Hypermedia Protocols for the Internet," Bruce Schatz \& Joseph Hardin (1994) ("Schatz, 1994")

Claim Text from '494 Patent	Shatz, 1974
7. The method of claim 1 , wherein one or more nodes provide external connections to objects external to the database, the method further comprising the steps of:	See Schatz, e.g., at p. 895, 896
Activating the desired node; and	See Schatz, e.g., at p. 895, 896, and 897
Accessing the external object linked to the node.	See Schatz, e.g., at 895, 896
8. The method of claim 7, wherein the external object is an independent application which can be executed in background, the method further comprising the step of:	See Schatz, e.g., at p. 895, 896, and 898
executing the independent application.	See Schatz, e.g., at p. 896, 897, and 898
9. The method of claim 8 , wherein one or more nodes provide links to more than one independent application which can be executed as an extension, the method further comprising the steps of:	See Schatz, e.g., at p. 896
displaying a list of independent applications linked to the node, wherein the step of accessing accesses an independent application.	See Schatz, e.g., at p. 896
10. The method of claim 8 , wherein the connection provides the independent application access to the information stored within the database.	See Schatz, e.g., at p. 896, 897
11. The method of claim 7, wherein the external connection is to another computer, wherein	See Schatz, e.g., at p. 895, 896

Claim Text from '494 Patent	Shatz, 1974
information is located that can be accessed, the step of accessing further comprising the step of:	
accessing the information located within the computer.	See Schatz, e.g., at p. 895, 896

Defendants reserve the right to revise this contention chart concerning the invalidity of the asserted claims as appropriate, for example, depending upon the Court's construction of the asserted claims, any findings as to the priority date of the asserted claims, and/or positions that Plaintiff or its expert witness(es) may take concerning claim interpretation, construction, infringement, and/or invalidity issues.

Plaintiff's Infringement Contentions are based on an apparent construction of the claim terms. Defendants disagree with these apparent constructions. Nothing stated herein shall be treated as an admission or suggestion that Defendants agree with Plaintiff regarding either the scope of any of the asserted claims or the claim constructions advanced by Plaintiff in its Infringement Contentions or anywhere else, or that any of Defendants' accused technology meets any limitations of the claims. Nothing stated herein shall be construed as an admission or a waiver of any particular construction of any claim term. Defendants also reserve all their rights to challenge any of the claim terms herein under 35 U.S.C. § 112 , including by arguing that they are indefinite, not supported by the written description and/or not enabled. Accordingly, nothing stated herein shall be construed as a waiver of any argument available under 35 U.S.C. § 112.

Invalidity Claim Chart for US Patent No. 5,832,494

Based on Gerard Salton and Chris buckley, "Automatic Text Structuring and Retrieval - Experiments in Automatic Encyclopedia Searching ("Salton \& Buckley 1991")

Claim Text from '494 Patent	SALTON \& BUCKLEY 1991
1. A method of analyzing a database with indirect relationships, using links and nodes, comprising the steps of:	See, e.g., Salton \& Buckley 1991 at 22 ("An identification of semantically homogenous text excerpts leads to the generation of text links between related text portions. Such links transform linear texts into structured text representations that provide selective text reading and traversal paths by following the available content links."); id. ("Network structures are often used, in which case the concepts of interest in a subject area are represented by network nodes, and the main relationships between concepts by network branches").
[1a] selecting a node for analysis;	See, e.g., Salton \& Buckley 1991 at 23 ("Each available text (including query as well as document texts) is broken down into individual text units . . . A standard indexing system is used to assign to each text unit (that is, section, paragraph, sentence, etc.) a set of weighted terms to be used for content identification of the corresponding text fragment. These term vectors form the basis for the text comparison operations"); 25 ("A standard encyclopedia search for a one-paragraph query (document 114, Acacia) is illustrated in Table 1.").
[1b] generating candidate cluster links for the selected node, wherein the step of generating comprises an analysis of one or more indirect relationships in the database;	See, e.g., Salton \& Buckley 1991 at 23 ("Similarities between particular text items (or between text items and information requests) are obtained by comparing the term vectors for pairs of text items at various levels of detail. When sufficient similarities are detected in both global as well as local contexts, the texts are assumed to be related.").
[1c] deriving actual cluster links from the candidate cluster links;	See, e.g., Salton \& Buckley 1991 at 23 ("In practice, two text sections might then be related when the similarity between the vectors describing the text sections exceeds a stated threshold, and in addition the sections also contain at least one paragraph pair with a

Claim Text from '494 Patent	SALTON \& BuCKLEY 1991
	sufficiently large paragraph similarity.").
[1d] identifying one or more nodes for display; and	See Chart for Claim 1[e], infra.
[1e] displaying the identity of one or more nodes using the actual cluster links.	See, e.g., Salton \& Buckley 1991 at Tables 1-5.
3. The method of claim 1 wherein the step of deriving actual cluster links comprises the step of: selecting the top rated candidate cluster links, wherein the top rated candidate cluster links are those which are most closely linked to the node under analysis.	See Chart for Claim 1[c], supra.
5. The method of claim 1 wherein the step of generating the candidate cluster links comprises the step of:	Inherently disclosed by Chart for Claim 1[c], supra.
eliminating candidate cluster links, wherein the number of candidate cluster links is limited and the llosest candidate cluster links are chosen over the remaining links.	
12. A method for determining the proximity of an object in a stored database to another object in the stored database using indirect relationships, links, and a display, comprising:	See, e.g., Salton \& Buckley 1991 at 24 (disclosing a stored database of 24,900 objects); Chart for Claim 1, supra (disclosing links between said objects); Tables 1-5 (disclosing the display of said objects).
l12a] selecting an object to determine the proximity of other objects to the selected object;	See, e.g., Salton \& Buckley 1991 at 25 ("A standard encyclopedia search for a one-paragraph query (document 114, Acacia) is illustrated in Table 1.").

Claim Text from '494 Patent	SALTON \& BUCKLEY 1991
[12b] generating a candidate cluster link set for the selected object, wherein the generating step includes an analysis of one or more indirect relationships in the database;	See, e.g., Salton \& Buckley 1991 at 25 (disclosing first- and second-level searches starting from the initial "Acacia" object); Chart for Claim 1, supra (disclosing a link network between objects).
[12c] deriving an actual cluster link set for the selected object using the generated candidate cluster link set; and	See Chart for Claim 1[c], supra.
[12d] displaying one or more of the objects in the database, referred to in the actual cluster link set, on a display.	See, Salton \& Buckley 1991 at Tables 1-5.
13. The method of 12 wherein a set of direct links exists for the database, and wherein the step of generating a candidate cluster link set comprises: recursively analyzing portions of the set of direct links for indirect links.	See, e.g., Salton \& Buckley 1991 at 25 ("A multi-stage search strategy is used where all articles with a global query similarity exceeding 0.20 are retrieved initially. The retrieved items (documents 15552, Mimosa and 11949, Indigo Plant) are then separately used as queries for second-stage searches with an increased retrieval threshold of 0.25.").
14. A method for representing the relationship between nodes using stored direct links, paths, and candidate cluster links, comprising the steps of:	See, Chart for Claim 1, supra.
15. The method of claim 14 further comprising the step of deriving the actual cluster links wherein the actual cluster links are a subset of the candidate cluster links.	Inherently disclosed by Chart for Claim 1, supra.
16. The method of claim 15 wherein the step of deriving comprises the step of choosing the top rated candidate cluster links.	Inherently disclosed by Chart for Claim 1, supra.
[18d] displaying one or more identified objects from the database.	See, e.g., Salton \& Buckley 1991 at Tables 1-5.

Claim Text from '494 Patent	SALTON \& BUCKLEY 1991
19. The method of claim 18 wherein the step of generating a second numerical representation comprises: selecting an object in the database for analysis;	See, e.g., Salton \& Buckley 1991 at 23 ("Each available text (including query as well as document texts) is broken down into individual text units . . . A standard indexing system is used to assign to each text unit (that is, section, paragraph, sentence, etc.) a set of weighted terms to be used for content identification of the corresponding text fragment. These term vectors form the basis for the text comparison operations"); 25 ("A standard encyclopedia search for a one-paragraph query (document 114, Acacia) is illustrated in Table 1.").
[19a] analyzing the direct relationships expressed by the first numerical representation for indirect relationships involving the selected object; and creating a second numerical representation of the direct and indirect relationships involving the selected object.	See, e.g., Salton \& Buckley at 25 (disclosing first- and second-level searches from an initial selected object).
20. The method of 18 wherein the step of identifying at least one object in the database comprises: searching for objects in a database using the stored numerical representation, wherein direct and/or indirect relationships are searched.	See Chart for Claim 19[a], supra.
21. The method of claim 18 wherein the displaying step comprises: generating a graphical display for representing an object in the database.	See Salton \& Buckley 1991 at Table 1-5.
23. A method of representing data in a computer database with relationships, comprising the steps of	See Salton \& Buckley 1991 at 24 ("This database consists of about 24,900 articles of text . . .[a]n automated encyclopedia search system is implemented which uses particular encyclopedia articles as search requests, and retrieves related articles in decreasing order of presumed similarity with the request articles.").
[23a] assigning nodes node identifications;	See, e.g., Salton \& Buckley 1991 at 23 ("A standard indexing system is used to assign to each text unit (that is, section, paragraph, sentence, etc.) a set of weighted terms to be used for content identification of the corresponding text fragment.").

Claim Text from '494 Patent	SALTON \& BUCKLEY 1991
[23b] generating links, wherein each link represents a relationship between two nodes and is identified by the two nodes in which the relationship exists;	See, e.g., Salton \& Buckley 1991 at 22 ("An identification of semantically homogenous text excerpts leads to the generation of text links between related text portions. Such links transform linear texts into structured text representations that provide selective text reading and traversal paths by following the available content links.").
[23d] displaying a node identification.	See, e.g., Salton \& Buckley 1991 at Tables 1-5.
24. The method of claim 23, wherein the data in the database is objects, wherein the nodes represent objects and each object is assigned a node identification, and wherein the relationships that exist comprise direct relationships between objects, further comprising the step of: searching generated links, wherein nodes are located by searching the generated links.	See, e.g., Salton \& Buckley 1991 at 22 ("links transform linear texts into structured text representations that provide selective text reading and traversal paths by following the available content links. In addition, a recognition of semantically related text portions also leads to the retrieval of relevant texts in answer to available search requests, because close similarities between document and query texts may be indicative of a relevance relationship between them.").
31. The method of claim 23 wherein attributes are assigned to nodes.	See, e.g., Salton \& Buckley 1991 at 23 ("A standard indexing system is used to assign to each text unit (that is, section, paragraph, sentence etc.) a set of weighted terms to be used for content identification of the corresponding text fragment.").
32. The method of claim 31 further comprising the step of: generating node sub-types wherein the node sub-types are assigned information.	See, e.g., Salton \& Buckley 1991 at 23 ("Each available text . . . is broken down into individual text units - for example, text sections, text paragraphs, and individual sentences. A standard indexing system is used to assign to each text unit (that is, section, paragraph, sentence etc.) a set of weighted terms to be used for content identification of the corresponding text fragment.").
33. A method of representing data in a computer database and for computerized searching of the data, wherein relationships exist in the database,	See, e.g., Salton \& Buckley 1991 at 24 ("An automated encyclopedia search system is implemented which uses particular encyclopedia articles as search requests, and retrieves related articles in decreasing order of presumed similarity with the request articles.").

Claim Text from '494 Patent	SALTON \& BUCKLEY 1991		
comprising:			
[33a] assigning links to represent relationships in			
the database;	See Chart for Claim 1, supra.		
[33b] generating node identifications based upon			
the assigned links, wherein node identifications are			
generated so that each link represents a relationship			
between two identified nodes;			See, e.g., Salton \& Buckley 1991 at 22 ("Such links transform linear texts into structured text
:---			
representations").			

Invalidity Claim Chart for US Patent No. 5,832,494

Based on Botafogo, R.A. et al. 'Identifying Aggregates in Hypertext Structures' Hypertext '91 Proceedings, 63-74 (1991). ("Botafogo, 1991")

Claim Text from '494 Patent	Botafogo, 1991
1. A method of analyzing a database with indirect relationships, using links and nodes, comprising the steps of:	See, e.g., Botafogo, 1991, at p. 64-66
[1a] selecting a node for analysis;	See, e.g., Botafogo, 1991, at p. 64-66
[1b] generating candidate cluster links for the selected node, wherein the step of generating comprises an analysis of one or more indirect relationships in the database;	See, e.g., Botafogo, 1991, at p. 65-66, 68, 70, 72
[1c] deriving actual cluster links from the candidate cluster links;	See, e.g., Botafogo, 1991, at p. 65-66, 68, 70, 72
[1d] identifying one or more nodes for display; and	See, e.g., Botafogo, 1991, at p. 71-72
[1e] displaying the identity of one or more nodes using the actual cluster links.	See, e.g., Botafogo, 1991, at p. 71-72
2. The method of claim 1 wherein each link is given a length, the step of generating the candidate cluster links comprises the steps of:	See, e.g., Botafogo, 1991, at p. 64-66
[2a] choosing a number as the maximum number of link lengths that will be examined; and	See, e.g., Botafogo, 1991, at p. 64-66
[2b] examining only those links which are less than the maximum number of link lengths.	See, e.g., Botafogo, 1991, at p. 64-66
3. The method of claim 1 wherein the step of deriving actual cluster links comprises the step of: selecting the top rated candidate cluster links, wherein the top rated candidate cluster links are those which are most closely linked to the node under analysis.	See, e.g., Botafogo, 1991, at p. 66, 68, 70

Claim Text from '494 Patent	Botafogo, 1991
5. The method of claim 1 wherein the step of generating the candidate cluster links comprises the step of: eliminating candidate cluster links, wherein the number of candidate cluster links is limited and the closest candidate cluster links are chosen over the remaining links.	See, e.g., Botafogo, 1991, at p. 66, 68, 70, 72
12. A method for determining the proximity of an object in a stored database to another object in the stored database using indirect relationships, links, and a display, comprising:	See, e.g., Botafogo, 1991, at p. 64-66
[12a] selecting an object to determine the proximity of other objects to the selected object;	See, e.g., Botafogo, 1991, at p. 64-66
[12b] generating a candidate cluster link set for the selected object, wherein the generating step includes an analysis of one or more indirect relationships in the database;	See, e.g., Botafogo, 1991, at p. 65-66, 68, 70, 72
[12c] deriving an actual cluster link set for the selected object using the generated candidate cluster link set; and	See, e.g., Botafogo, 1991, at p. 65-66, 68, 70, 72
[12d] displaying one or more of the objects in the database, referred to in the actual cluster link set, on a display.	See, e.g., Botafogo, 1991, at p. 71-72
13. The method of 12 wherein a set of direct links exists for the database, and wherein the step of generating a candidate cluster link set comprises: recursively analyzing portions of the set of direct links for indirect links.	See, e.g., Botafogo, 1991, at p. 65-66, 68, 70, 72

Claim Text from '494 Patent	Botafogo, 1991
14. A method for representing the relationship between nodes using stored direct links, paths, and candidate cluster links, comprising the steps of:	See, e.g., Botafogo, 1991, at p. 64-66
[14a] initializing a set of candidate cluster links;	See, e.g., Botafogo, 1991, at p. 66, 68, 70
[14b] selecting the destination node of a path as the selected node to analyze;	See, e.g., Botafogo, 1991, at p. 64-66, 68, 70
[14c] retrieving the set of direct links from the selected node to any other node in the database;	See, e.g., Botafogo, 1991, at p. 64-66, 68, 70
[14d] determining the weight of the path using the retrieved direct links;	See, e.g., Botafogo, 1991, at p. 64-66, 68, 70
[14e] repeating steps b through d for each path; and	See, e.g., Botafogo, 1991, at p. 64-66, 68, 70
[14f] storing the determined weights as candidate cluster links.	See, e.g., Botafogo, 1991, at p. 64-66, 68, 70
15. The method of claim 14 further comprising the step of deriving the actual cluster links wherein the actual cluster links are a subset of the candidate cluster links.	See, e.g., Botafogo, 1991, at p. 64-66, 68, 70
16. The method of claim 15 wherein the step of deriving comprises the step of choosing the top rated candidate cluster links.	See, e.g., Botafogo, 1991, at p. 64-66, 68, 70
18. A method of analyzing a database having objects and a first numerical representation of direct relationships in the database, comprising the steps	See, e.g., Botafogo, 1991, at p. 64-66

Claim Text from '494 Patent	Botafogo, 1991
of:	
[18a] generating a second numerical representation using the first numerical representation, wherein the second numerical representation accounts for indirect relationships in the database;	See, e.g., Botafogo, 1991, at p. 64-66
[18b] storing the second numerical representation;	See, e.g., Botafogo, 1991, at p. 64-66
[18c] identifying at least one object in the database, wherein the stored numerical representation is used to identify objects; and	See, e.g., Botafogo, 1991, at p. 64-66, 68, 70
[18d] displaying one or more identified objects from the database.	See, e.g., Botafogo, 1991, at p. 71-72
19. The method of claim 18 wherein the step of generating a second numerical representation comprises: selecting an object in the database for analysis;	See, e.g., Botafogo, 1991, at p. 64-66
[19a] analyzing the direct relationships expressed by the first numerical representation for indirect relationships involving the selected object; and creating a second numerical representation of the direct and indirect relationships involving the selected object.	See, e.g., Botafogo, 1991, at p. 64-66
20. The method of 18 wherein the step of identifying at least one object in the database comprises: searching for objects in a database using the stored numerical representation, wherein direct and/or	See, e.g., Botafogo, 1991, at p. 64-66, 68, 70

Claim Text from '494 Patent	Botafogo, 1991
indirect relationships are searched.	
21. The method of claim 18 wherein the displaying step comprises: generating a graphical display for representing an object in the database.	See, e.g., Botafogo, 1991, at p. 70-72
23. A method of representing data in a computer database with relationships, comprising the steps of:	See below:
[23a] assigning nodes node identifications;	See, e.g., Botafogo, 1991, at p. 64-66
[23b] generating links, wherein each link represents a relationship between two nodes and is identified by the two nodes in which the relationship exists;	See, e.g., Botafogo, 1991, at p. 64-66
[23c] allocating a weight to each link, wherein the weight signifies the strength of the relationship represented by the link relative to the strength of other relationships represented by other links; and	See, e.g., Botafogo, 1991, at p. 64-66, 68, 70
[23d] displaying a node identification.	See, e.g., Botafogo, 1991, at p. 70-72
24. The method of claim 23 , wherein the data in the database is objects, wherein the nodes represent objects and each object is assigned a node identification, and wherein the relationships that exist comprise direct relationships between objects, further comprising the step of: searching generated links, wherein nodes are located by searching the generated links.	See, e.g., Botafogo, 1991, at p. 66, 68, 70, 72
25. The method of claim 23 further comprising the	See below:

Claim Text from '494 Patent	
step of: generating link sub-types, comprising the steps of:	
[25a] identifying each link sub-type with a name; and	See, e.g., Botafogo, 1991, at p. 67, 71
[25b] providing a comment to one or more link subtypes.	See, e.g., Botafogo, 1991, at p. 67, 71
31. The method of claim 23 wherein attributes are assigned to nodes.	See, e.g., Botafogo, 1991, at p. 67, 71
32. The method of claim 31 further comprising the step of: generating node sub-types wherein the node sub-types are assigned information.	See, e.g., Botafogo, 1991, at p. 67, 71
33. A method of representing data in a computer database and for computerized searching of the data, wherein relationships exist in the database, comprising:	See below:
[33a] assigning links to represent relationships in the database;	See, e.g., Botafogo, 1991, at p. 64-66
[33b] generating node identifications based upon the assigned links, wherein node identifications are generated so that each link represents a relationship between two identified nodes;	See, e.g., Botafogo, 1991, at 64-66
[33c] storing the links and node identifications, wherein the links and nodes may be retrieved;	See, e.g., Botafogo, 1991, at 64-66
 [33d] searching for node identifications using the stored links; and	See, e.g., Botafogo, 1991, at p. 64-66, 68, 70
[33e] displaying node identifications, wherein the	See, e.g., Botafogo, 1991, at p. 70-72

Claim Text from '494 Patent	Botafogo, 1991
lisplayed node identifications are located in the searching step.	

Defendants reserve the right to revise this contention chart concerning the invalidity of the asserted claims, as appropriate, for example depending upon the Court's construction of the asserted claims, any findings as to the priority date of the asserted claims, and/or positions that Plaintiff or its expert witness(es) may take concerning claim interpretation, construction, infringement, and/or invalidity issues.

Plaintiff's Infringement Contentions are based on an apparent construction of the claim terms. Defendants disagree with these apparent constructions. Nothing stated herein shall be treated as an admission or suggestion that Defendants agree with Plaintiff regarding either the scope of any of the asserted claims or the claim constructions advanced by Plaintiff in its Infringement Contentions or anywhere else, or that any of Defendants' accused technology meets any limitations of the claims. Nothing stated herein shall be construed as an admission or a waiver of any particular construction of any claim term. Defendants also reserve all their rights to challenge any of the claim terms herein under 35 U.S.C. § 112 , including by arguing that they are indefinite, not supported by the written description and/or not enabled. Accordingly, nothing stated herein shall be construed as a waiver of any argument available under 35 U.S.C. § 112.

Invalidity Claim Chart for U.S. Patent No. 5,832,494

Based on Joachims, T et al., "WebWatcher: Machine Learning and Hypertext" Proceedings of the 1995 AAAI Spring Symposium on Information Gathering from Heterogeneous, Distributed Environments, 1995 ('JJoachims 1995")

Claim Text from '494 Patent	Joachims 1995
1. A method of analyzing a database with indirect relationships, using links and nodes, comprising the steps of:	See, e.g., p. 1, 3-5
[1a] Selecting a node for analysis;	See, e.g., p. 1 (e.g. "The target function we want to learn is a mapping from an arbitrary web page to a set of related pages.").
[1b] Generating candidate cluster links for the selected node, wherein the step of generating comprises an analysis of one or more indirect relationships in the database;	See, e.g., p. 4-5 (e.g., "3.3 Algorithm")
[1c] Deriving actual cluster links from the candidate cluster links;	
[1d] identifying one or more nodes for display; and	See, e.g., p. 4 (e.g., "The pages associated with the n most similar columns are returned by Related.").
[1e] displaying the identity of one or more nodes using the actual cluster links.	See, e.g., p. 4
2. The method of claim 1 wherein each link is given a length, the step of generating the candidate cluster links comprises the steps of:	See, e.g., p. 4
[2a] Choosing a number as the maximum number of link lengths that will be examined; and	See, e.g., p. 4
[2b] examining only those links which are less than the maximum number of link lengths.	
3. The method of claim 1 wherein the step of deriving actual cluster links comprises the step of:	See, e.g., p. 4 (e.g., "The pages associated with the n most similar columns are returned by Related.").

Claim Text from '494 Patent	Joachims 1995
selecting the top rated candidate cluster links, wherein the top rated candidate cluster links are those which are most closely linked to the node under analysis.	
5. The method of claim 1 wherein the step of generating the candidate cluster links comprises the step of: eliminating candidate cluster links, wherein the number of candidate cluster links is limited and the closest candidate cluster links are chosen over the remaining links.	See, e.g., p. 4-5 (e.g., "The pages associated with the n most similar columns are returned by Related.").
7. The method of claim 1 , wherein one or more nodes provide external connections to objects external to the database, the method further comprising the steps of:	See, e.g., p. 1-3
[7a] Activating the desired node; and	
[7b] Accessing the external object linked to the node.	
11. The method of claim 7, wherein the external connection is to another computer, wherein information is located that can be accessed, the step of accessing further comprising the step of:	See, e.g., p. 1-3
[11a] accessing the information located within the computer.	
12. A method for determining the proximity of an object in a stored database to another object in the stored database using indirect relationships, links, and a display, comprising:	See, e.g., p. 1-4
[12a] Selecting an object to determine the proximity of other objects to the selected object;	See, e.g., p. 4 (e.g. "The target function we want to learn is a mapping from an arbitrary web page to a set of related pages.").

Claim Text from '494 Patent	
[12b] generating a candidate cluster link set for the selected object, wherein the generating step includes an analysis of one or more indirect relationships in the database;	See, e.g., p. 4-5 (e.g., "3.3 Algorithm")
[12c] Deriving an actual cluster link set for the selected object using the generated candidate cluster link set; and	
[12d] Displaying one or more of the objects in the database, referred to in the actual cluster link set, on a display.	See, e.g., p. 4 (e.g., "The pages associated with the n most similar columns are returned by Related.").
23. A method of representing data in a computer database with relationships, comprising the steps of:	See, e.g., p. 1-3
[23a] assigning nodes node identifications;	See, e.g., p. 4-5 (e.g., "3.3 Algorithm")
[23b] generating links, wherein each link represents a relationship between two nodes and is identified by the two nodes in which the relationship exists;	See, e.g., p. 4-5 (e.g., "3.3 Algorithm")
[23c] allocating a weight to each link, wherein the weight signifies the strength of the relationship represented by the link relative to the strength of other relationships represented by other links; and	See, e.g., p. 4-5 (e.g., "3.3 Algorithm")
[23d] displaying a node identification.	See, e.g., p. 4 (e.g., "The pages associated with the n most similar columns are returned by Related.").
24. The method of claim 23, wherein the data in the database is objects, wherein the nodes represent objects and each object is assigned a node identification, and wherein the relationships that exist comprise direct relationships between objects, further comprising the step of:	See, e.g., p. 4-5 (e.g., "3.3 Algorithm") searching generated links, wherein nodes are located by searching the generated links. 25. The method of claim 23 further comprising the
See, e.g., p. 3	

Claim Text from '494 Patent	Joachims 1995
step of: generating link sub-types, comprising the steps of:	
[25a] identifying each link sub-type with a name; and	See, e.g., p. 3
[25b] Providing a comment to one or more link subtypes.	See, e.g., p. 3
31. The method of claim 23 wherein attributes are assigned to nodes.	See, e.g., p. 3
32. The method of claim 31 further comprising the step of: generating node sub-types wherein the node sub-types are assigned information.	See, e.g., p. 3
33. A method of representing data in a computer database and for computerized searching of the data, wherein relationships exist in the database, comprising:	See, e.g., p. 1-3
[33a] assigning links to represent relationships in the database;	See, e.g., p. 3
[33b] generating node identifications based upon the assigned links, wherein node identifications are generated so that each link represents a relationship between two identified nodes;	See, e.g., p. 4-5 (e.g., "3.3 Algorithm")
[33c] storing the links and node identifications, wherein the links and nodes may be retrieved;	See, e.g., p. 4-5 (e.g., "3.3 Algorithm")
[33d] searching for node identifications using the stored links; and	See, e.g., p. 4-5 (e.g., "3.3 Algorithm")
[33e] displaying node identifications, wherein the displayed node identifications are located in the searching step.	See, e.g., p. 2-3

Defendants reserve the right to revise this contention chart concerning the invalidity of the asserted claims, as appropriate, for example depending upon the Court's construction of the asserted claims, any findings as to the priority date of the asserted claims, and/or positions that Plaintiff or its expert witness(es) may take concerning claim interpretation, construction, infringement, and/or invalidity issues.

Plaintiff's Infringement Contentions are based on an apparent construction of the claim terms. Defendants disagree with these apparent constructions. Nothing stated herein shall be treated as an admission or suggestion that Defendants agree with Plaintiff regarding either the scope of any of the asserted claims or the claim constructions advanced by Plaintiff in its Infringement Contentions or anywhere else, or that any of Defendants' accused technology meets any limitations of the claims. Nothing stated herein shall be construed as an admission or a waiver of any particular construction of any claim term. Defendants also reserve all their rights to challenge any of the claim terms herein under 35 U.S.C. § 112 , including by arguing that they are indefinite, not supported by the written description and/or not enabled. Accordingly, nothing stated herein shall be construed as a waiver of any argument available under 35 U.S.C. § 112.

Invalidity Claim Chart for U.S. Patent No. 6,233,571

Based on Benny Brodda, Hans Karlgren, "Citation Index and Measures of Association in Mechanized document Retrieval," KVAL PM 295 (1967). Report No. 2 to the Royal Treasury. Published by Sprakforlaget Skriptor. ("Brodda \& Karlgren, 1967")

Claim Text from '571 Patent	Brodda \& Karlgren, 1967
1. A method for using active links within the data of an object stored in a database of a computer so that a user may jump from viewing the data of the object in the database to a position outside the object in the database and outside the computer, comprising:	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 3
[1a] storing one or more links within data of the object in the database to positions outside of the computer, wherein the stored links are active links;	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 3, 4, 6
[1b] displaying the data of the object within the database, wherein one or more active links are displayed with the data from the object in the database, wherein positions are nodes in a network that may be accessed, the active links including hyperjump links between nodes in the network and the objects, and the step of displaying comprises:	See, e.g., Brodda \& Karlgren, 1967, at pp. 2, 4, 6
[1c] generating a source map, wherein the source map represents hyperjump links that identify a chosen node as a destination of a link, and	See, e.g., Brodda \& Karlgren, 1967, at pp. 4, 5
[1d] wherein the method further comprises activating a link represented on the source map, wherein a user may hyperjump to a node represented as a node of the link;	Disclosed either expressly or inherently in the teachings of the reference and its incorporated disclosures taken as a whole, or in combination with the state of the art at the time of the alleged invention.
[1e] selecting one of the displayed active links from those displayed with the displayed data; and	
[1f] jumping to the position outside the object in the	

Claim Text from '571 Patent	Brodda \& Karlgren, 1967
database.	
5. A method for displaying information about a network that has hyperjump data, comprising:	See, e.g., Brodda \& Karlgren, 1967, at pp. 2, 4, 6
[5a] choosing a node	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 2
[5b] accessing the hyperjump data; I Identifying hyperjump data from within the accessed hyperjump data that has a direct reference to the chosen node;	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 3, 4, 6
[5c] determining hyperjump data from within the accessed hyperjump data that has an indirect reference to the chosen node using the identified hyperjump data, wherein the step of determining comprises proximity analyzing the identified hyperjump data; and	See, e.g., Brodda \& Karlgren, 1967, at pp. 1-4, 5, 8
[5d] displaying one or more determined hyperjump data.	See, e.g., Brodda \& Karlgren, 1967, at pp. 2, 4, 6, 10
6. The method of claim 5 , wherein the hyperjump data includes pointers and wherein the direct reference is a pointer pointing to the chosen node or from the chosen node, and the step of determining comprises analyzing the pointers.	See, e.g., Brodda \& Karlgren, 1967, at pp. 2-4, 6
7. The method of claim 5 , wherein the node represents a topic, the determined hyperjump data has a relationship to the topic, and the step of displaying displays determined hyperjump data that has a relationship to the topic.	Disclosed either expressly or inherently in the teachings of the reference and its incorporated disclosures taken as a whole, or in combination with the state of the art at the time of the alleged invention.
8. The method of claim 5 , wherein the node is a web page in the network, the accessed hyperjump data are Universal Resource Locators of linked pages, and the step of determining hyperjump data	See, e.g., Brodda \& Karlgren, 1967, at pp. 3-4

Claim Text from '571 Patent	Brodda \& Karlgren, 1967
comprises analyzing the identified hyperjump data.	
9. The method of claim 5 , wherein the node is a document in the network and the determined hyperjump data has a relationship to the document, the step of displaying comprising the step of listing the hyperjump data that has a relationship to the document.	See, e.g., Brodda \& Karlgren, 1967, at pp. 2, 4, 6
11. The method of claim 5 , wherein the nodes are nodes in the network that may be accessed, the hyperjump data includes hyperjump links between nodes in the network, and the step of displaying comprises:	Disclosed either expressly or inherently in the teachings of the reference and its incorporated disclosures taken as a whole, or in combination with the state of the art at the time of the alleged invention.
[11a] generating a source map using one or more of the determined hyperjump data, wherein the source map represents hyperjump links that identify the chosen node as a destination of a link; and	See, e.g., Brodda \& Karlgren, 1967, at pp. 4, 5
[11b] wherein the method further comprises activating a link represented on the source map, wherein a user may hyperjump to a node represented as a node of the link.	Disclosed either expressly or inherently in the teachings of the reference and its incorporated disclosures taken as a whole, or in combination with the state of the art at the time of the alleged invention.
12. A method for visually displaying data related to a web having identifiable web pages and Universal Resource Locators with pointers, comprising:	See, e.g., Brodda \& Karlgren, 1967, at pp. 3-4, 6
[12a] choosing an identifiable web page;	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 2
[12b] identifying Universal Resource Locators for the web pages, wherein the identified Universal Resource Locators either point to or point away from the chosen web page;	See, e.g., Brodda \& Karlgren, 1967, at pp. 2, 3
[12c] analyzing Universal Resource Locators,	See, e.g., Brodda \& Karlgren, 1967, at pp. 1-5, 8

Claim Text from '571 Patent	Brodda \& Karlgren, 1967
including the identified Universal Resource Locators, wherein Universal Resource Locators which have an indirect relationship to the chosen web page are located, wherein the step of analyzing further comprises cluster analyzing the Universal Resource Locators for indirect relationships; and	
[12d] displaying identities of web pages, wherein the located Universal Resource Locators are used to identify web pages.	See, e.g., Brodda \& Karlgren, 1967, at pp. 2-4, 6, 10
15. The method of claim 12 , wherein the step of displaying the identities of web pages comprises generating a graphical user display wherein information within the Universal Resource Locators is parsed and used to generate the graphical user display.	See, e.g., Brodda \& Karlgren, 1967, at pp. 4, 6
16. A method for navigating documents on the World Wide Web, comprising: I choosing a document;	See, e.g., Brodda \& Karlgren, 1967, at pp. 1-4
[16a] identifying documents that have a direct relationship to the chosen document;	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 3, 4, 6
[16b] locating documents that have an indirect relationship to the chosen document identifying Universal Resource Locators for the documents, wherein the identified Universal Resource Locators either point to or point away from the chosen document; analyzing Universal Resource Locators, including the identified Universal Resource Locators, wherein Universal Resource Locators which have an indirect relationship to the chosen document are located, wherein the step of analyzing further comprises cluster analyzing the Universal Resource Locators for indirect relationships; and	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 2, 5, 8

Claim Text from '571 Patent	Brodda \& Karlgren, 1967
[16c] displaying a located document.	See, e.g., Brodda \& Karlgren, 1967, at pp. 2, 4, 6, 10
17. The method of claim 16 , wherein pages and their respective Universal Resource Locators are used and the step of locating documents comprises analyzing the pages and their respective Universal Resource Locators.	See, e.g., Brodda \& Karlgren, 1967, at pp. 1-5, 8
18. The method of claim 17, wherein the step of analyzing pages comprises cluster analyzing the pages.	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 2, 5, 8
19. The method of claim 16 , wherein the step of displaying a located document comprises:	See, e.g., Brodda \& Karlgren, 1967, at pp. 2, 4, 6, 10
[19a] generating a screen display of identities of one or more located documents; and	See, e.g., Brodda \& Karlgren, 1967, at pp. 2, 4, 6
[19b] selecting one or more of the located documents.	Disclosed either expressly or inherently in the teachings of the reference and its incorporated disclosures taken as a whole, or in combination with the state of the art at the time of the alleged invention.
20. The method of claim 19 , wherein the step of generating a screen display comprises generating a graphical display.	See, e.g., Brodda \& Karlgren, 1967, at pp. 4, 6, 10
21. A method for displaying information about a network that has hyperjump data, comprising:	See, e.g., Brodda \& Karlgren, 1967, at pp. 2, 4, 6, 10
[21a] choosing a node;	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 2
[21b] accessing the hyperjump data; I identifying hyperjump data from within the accessed	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 3, 4, 6

Claim Text from '571 Patent	
hyperjump data that has a direct reference to the chosen node;	
[21c] determining hyperjump data from within the accessed hyperjump data that has an indirect reference to the chosen node using the identified hyperjump data, wherein the step of determining comprises cluster analyzing the hyperjump data; and	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 2, 5, 8
[21d] displaying one or more determined hyperjump data.	See, e.g., Brodda \& Karlgren, 1967, at pp. 2, 4, 6, 10
22. A method for displaying information about a network that has hyperjump data, comprising:	See, e.g., Brodda \& Karlgren, 1967, at pp. 2, 4, 6, 10
[22a] choosing a node;	See, e.g., Brodda \& Karlgren, 1967, at pp. 1, 2
[22b] accessing the hyperjump data; I identifying hyperjump data from within the accessed hyperjump data that has a direct reference to the chosen node;	See, e.g., Brodda \& Karlgren, 1967, at pp. 2, 3
[22c] determining hyperjump data from within the accessed hyperjump data that has an indirect reference to the chosen node using the identified hyperjump data; and	See, e.g., Brodda \& Karlgren, 1967, at pp. 1-5, 8
[22d] displaying one or more determined hyperjump data, wherein the nodes are nodes in the network that may be accessed, the hypejump data includes hyperjump links between nodes in the network, and the step of displaying comprises:	See, e.g., Brodda \& Karlgren, 1967, at pp. 2, 4, 6, 10
[22e] generating a source map using one or more of the determined hyperjump data, wherein the source map represents hyperjump links that identify the chosen node as a destination of a link, and wherein	See, e.g., Brodda \& Karlgren, 1967, at pp. 2-4, 6 Further, disclosed either expressly or inherently in the teachings of the reference and its incorporated disclosures taken as a whole, or in combination with the state of the art at the

| Claim Text from '571 Patent | Brodda \& Karlgren, 1967 |
| :--- | :--- | :--- |
| the method further comprises activating a link
 represented on the source map, wherein a user may
 hyperjump to a node represented as a node of the
 link. | time of the alleged invention. |

Defendants reserve the right to revise this contention chart concerning the invalidity of the asserted claims, as appropriate, for example depending upon the Court's construction of the asserted claims, any findings as to the priority date of the asserted claims, and/or positions that Plaintiff or its expert witness(es) may take concerning claim interpretation, construction, infringement, and/or invalidity issues.

Plaintiff's Infringement Contentions are based on an apparent construction of the claim terms. Defendants disagree with these apparent constructions. Nothing stated herein shall be treated as an admission or suggestion that Defendants agree with Plaintiff regarding either the scope of any of the asserted claims or the claim constructions advanced by Plaintiff in its Infringement Contentions or anywhere else, or that any of Defendants' accused technology meets any limitations of the claims. Nothing stated herein shall be construed as an admission or a waiver of any particular construction of any claim term. Defendants also reserve all their rights to challenge any of the claim terms herein under 35 U.S.C. § 112 , including by arguing that they are indefinite, not supported by the written description and/or not enabled. Accordingly, nothing stated herein shall be construed as a waiver of any argument available under 35 U.S.C. § 112.

Invalidity Claim Chart for U.S. Patent No. 6,233,571
based on Botafogo, R.A. "Cluster anlaysis for Hypertext Systems" ACM Sigir '93, Vol. 6, 116-125 (1993). ("Botafogo, 1993")

Claim Text from '571 Patent	Botafogo, 1993
1. A method for using active links within the data of an object stored in a database of a computer so that a user may jump from viewing the data of the object in the database to a position outside the object in the database and outside the computer, comprising:	See.g., Botafogo, 1993, at p. 117-119, 121-122
[1a] storing one or more links within data of the object in the database to positions outside of the computer, wherein the stored links are active links;	See, e.g., Botafogo, 1993, at 119-121
[1b] displaying the data of the object within the database, wherein one or more active links are displayed with the data from the object in the database, wherein positions are nodes in a network that may be accessed, the active links including hyperjump links between nodes in the network and the objects, and the step of displaying comprises:	See, e.g., Botafogo, 1993, at p.117, 121-122
[1c] generating a source map, wherein the source map represents hyperjump links that identify a chosen node as a destination of a link, and	See, e.g., Botafogo, 1993, at p. 117, 121-122
[1d] wherein the method further comprises activating a link represented on the source map, wherein a user may hyperjump to a node represented as a node of the link;	See, e.g., Botafogo, 1993, at p. 117-119, 121-122
[1e] selecting one of the displayed active links from those displayed with the displayed data; and	See, e.g., Botafogo, 1993, at p. 117-119, 121-122

Claim Text from '571 Patent	Botafogo, 1993
[1f] jumping to the position outside the object in the database.	See, e.g., Botafogo, 1993, at p. 117-119, 121-122
3. The method of claim 1 , wherein the active links are embedded text and wherein the step of selecting comprises activating the embedded text.	See, e.g., Botafogo, 1993, at 119-120
4. The method of claim 1 , wherein computer software is used, further comprising: I generating an active link, wherein the active link can be used to jump from a location in the database to another database.	See, e.g., Botafogo, 1993, at 119-120
5. A method for displaying information about a network that has hyperjump data, comprising:	See, e.g., Botafogo, 1993, at p. 121-122
[5a] choosing a node	See, e.g., Botafogo, 1993, at p. 117-118, 121-122
[5b] accessing the hyperjump data; I Identifying hyperjump data from within the accessed hyperjump data that has a direct reference to the chosen node;	See, e.g., Botafogo, 1993, at 117-119
[5c] determining hyperjump data from within the accessed hyperjump data that has an indirect reference to the chosen node using the identified hyperjump data, wherein the step of determining comprises proximity analyzing the identified hyperjump data; and	See, e.g., Botafogo, 1993, at p. 117-118, 121-122
[5d] displaying one or more determined hyperjump data.	See, e.g., Botafogo, 1993, at p. 117, 121-122

Claim Text from '571 Patent	
6. The method of claim 5, wherein the hyperjump data includes pointers and wherein the direct reference is a pointer pointing to the chosen node or from the chosen node, and the step of determining comprises analyzing the pointers.	See, e.g., Botafogo, 1993, at p. 117, 121-122
7. The method of claim 5, wherein the node represents a topic, the determined hyperjump data has a relationship to the topic, and the step of displaying displays determined hyperjump data that has a relationship to the topic.	See, e.g., Botafogo, 1993, at p. 119
8. The method of claim 5, wherein the node is a web page in the network, the accessed hyperjump data are Universal Resource Locators of linked pages, and the step of determining hyperjump data comprises analyzing the identified hyperjump data.	See, e.g., Botafogo, 1993, at p. 117-119, 121-122
9. The method of claim 5, wherein the node is a document in the network and the determined hyperjump data has a relationship to the document, the step of displaying comprising the step of listing the hyperjump data that has a relationship to the document.	See, e.g., Botafogo, 1993, at p. 117, 121-122
10. The method of claim 5, wherein the step of displaying comprises generating a graphical user display, and wherein information is displayed on a graphical display visually representing more than one coordinate plane.	See, e.g., Botafogo, 1993, at p. 117, 121-122
11. The method of claim 5, wherein the nodes are nodes in the network that may be accessed, the hyperjump data includes hyperjump links between nodes in the network, and the step of displaying lomprises:	See below

Claim Text from '571 Patent	Botafogo, 1993
[11a] generating a source map using one or more of the determined hyperjump data, wherein the source map represents hyperjump links that identify the chosen node as a destination of a link; and	See, e.g., Botafogo, 1993, at p. 117, 121-122
[11b] wherein the method further comprises activating a link represented on the source map, wherein a user may hyperjump to a node represented as a node of the link.	See, e.g., Botafogo, 1993, at p. 117-119, 121-122
12. A method for visually displaying data related to a web having identifiable web pages and Universal Resource Locators with pointers, comprising:	See, e.g., Botafogo, 1993, at p. 117-119, 121-122
[12a] choosing an identifiable web page;	See, e.g., Botafogo, 1993, at p. 117-118, 121-122
[12b] identifying Universal Resource Locators for the web pages, wherein the identified Universal Resource Locators either point to or point away from the chosen web page;	See, e.g., Botafogo, 1993, at 117-119
[12c] analyzing Universal Resource Locators, including the identified Universal Resource Locators, wherein Universal Resource Locators which have an indirect relationship to the chosen web page are located, wherein the step of analyzing further comprises cluster analyzing the Universal Resource Locators for indirect relationships; and	See, e.g., Botafogo, 1993, at p. 117-118, 121-122
[12d] displaying identities of web pages, wherein the located Universal Resource Locators are used to identify web pages.	See, e.g., Botafogo, 1993, at p. 117-119, 121-122
13. The method of claim 12 , further comprising selecting a web page using the displayed identities	See, e.g., Botafogo, 1993, at p. 117-119, 121-122

Claim Text from '571 Patent	
of web pages. 14. The method of claim 12, further comprising hyperjumping to the selected web page.	See, e.g., Botafogo, 1993, at p. 117-119, 121-122
15. The method of claim 12, wherein the step of displaying the identities of web pages comprises generating a graphical user display wherein information within the Universal Resource Locators is parsed and used to generate the graphical user display.	See, e.g., Botafogo, 1993, at p. 117, 121-122
16. A method for navigating documents on the World Wide Web, comprising: I choosing a document;	See, e.g., Botafogo, 1993, at p. 117-118, 121-122
[16a] identifying documents that have a direct relationship to the chosen document;	See, e.g., Botafogo, 1993, at 117-119
[16b] locating documents that have an indirect relationship to the chosen document identifying Universal Resource Locators for the documents, wherein the identified Universal Resource Locators either point to or point away from the chosen document; analyzing Universal Resource Locators, including the identified Universal Resource Locators, wherein Universal Resource Locators which have an indirect relationship to the chosen document are located, wherein the step of analyzing further comprises cluster analyzing the Universal Resource Locators for indirect relationships; and	See, e.g., Botafogo, 1993, at p. 117-118, 121-122

Claim Text from '571 Patent	
17. The method of claim 16, wherein pages and their respective Universal Resource Locators are used and the step of locating documents comprises analyzing the pages and their respective Universal Resource Locators.	See, e.g., Botafogo, 1993, at p. 117-119, 121-122
18. The method of claim 17, wherein the step of analyzing pages comprises cluster analyzing the pages.	See, e.g., Botafogo, 1993, at p. 117-118, 121-122
19. The method of claim 16, wherein the step of displaying a located document comprises:	See, e.g., Botafogo, 1993, at p. 117, 121-122
[19a] generating a screen display of identities of one or more located documents; and	See, e.g., Botafogo, 1993, at p. 121-122
[19b] selecting one or more of the located documents.	See, e.g., Botafogo, 1993, at p. 117-119, 121-122
20. The method of claim 19, wherein the step of generating a screen display comprises generating a graphical display.	See, e.g., Botafogo, 1993, at p. 117, 121-122
21. A method for displaying information about a network that has hyperjump data, comprising:	See, e.g., Botafogo, 1993, at p. 117, 121-122
[21a] choosing a node;	See, e.g., Botafogo, 1993, at p. 117-118, 121-122

Claim Text from '571 Patent	
chosen node;	
[21c] determining hyperjump data from within the accessed hyperjump data that has an indirect reference to the chosen node using the identified hyperjump data, wherein the step of determining comprises cluster analyzing the hyperjump data; and	See, e.g., Botafogo, 1993, at p. 117-118, 121-122
[21d] displaying one or more determined hyperjump data.	See, e.g., Botafogo, 1993, at p. 117, 121-122
22. A method for displaying information about a network that has hyperjump data, comprising:	See, e.g., Botafogo, 1993, at p. 117, 121-122
[22a] choosing a node;	See, e.g., Botafogo, 1993, at p. 117-118, 121-122
[22b] accessing the hyperjump data; I identifying hyperjump data from within the accessed hyperjump data that has a direct reference to the chosen node;	See, e.g., Botafogo, 1993, at 117-119
[22c] determining hyperjump data from within the accessed hyperjump data that has an indirect reference to the chosen node using the identified hyperjump data; and	See, e.g., Botafogo, 1993, at p. 117-118, 121-122
[22d] displaying one or more determined hyperjump data, wherein the nodes are nodes in the network that may be accessed, the hypejump data includes hyperjump links between nodes in the network, and the step of displaying comprises:	See, e.g., Botafogo, 1993, at p. 117, 121-122

Claim Text from '571 Patent	
[22e] generating a source map using one or more of	See, e.g., Botafogo, 1993, at p. 117-119, 121-122
the determined hyperjump data, wherein the source	
map represents hyperiump links that identify the	
chosen node as a destination of a link, and wherein	
the method further comprises activating a link	
represented on the source map, wherein a user may	
hyperjump to a node represented as a node of the	
link.	

Defendants reserve the right to revise this contention chart concerning the invalidity of the asserted claims, as appropriate, for example depending upon the Court's construction of the asserted claims, any findings as to the priority date of the asserted claims, and/or positions that Plaintiff or its expert witness(es) may take concerning claim interpretation, construction, infringement, and/or invalidity issues.

Plaintiff's Infringement Contentions are based on an apparent construction of the claim terms. Defendants disagree with these apparent constructions. Nothing stated herein shall be treated as an admission or suggestion that Defendants agree with Plaintiff regarding either the scope of any of the asserted claims or the claim constructions advanced by Plaintiff in its Infringement Contentions or anywhere else, or that any of Defendants' accused technology meets any limitations of the claims. Nothing stated herein shall be construed as an admission or a waiver of any particular construction of any claim term. Defendants also reserve all their rights to challenge any of the claim terms herein under 35 U.S.C. § 112 , including by arguing that they are indefinite, not supported by the written description and/or not enabled. Accordingly, nothing stated herein shall be construed as a waiver of any argument available under 35 U.S.C. § 112.

Invalidity Claim Chart for U.S. Patent No. 6,233,571

Based on Crouch, D., Crouch, C., Andreas, G., "The Use of cluster Hierarchies in Hypertext information Retrieval," in Hypertext '89 Proceedings, SIGCHI Bulletin, pp. 225-237, November 1989. ("Crouch, 1989")

Claim Text from '571 Patent	
1. A method for using active links within the data of an object stored in a database of a computer so that a user may jump from viewing the data of the object in the database to a position outside the object in the database and outside the computer, comprising:	
[1a] storing one or more links within data of the object in the database to positions outside of the 1989, at pp. 226, 233 computer, wherein the stored links are active links;	See, e.g., Crouch, 1989, at pp. 228, 230
[1b] displaying the data of the object within the database, wherein one or more active links are displayed with the data from the object in the database, wherein positions are nodes in a network that may be accessed, the active links including hyperjump links between nodes in the network and the objects, and the step of displaying comprises:	See, e.g., Crouch, 1989, at pp. 226, 233, 234
[1c] generating a source map, wherein the source map represents hyperjump links that identify a chosen node as a destination of a link, and	See, e.g., Crouch, 1989, at pp.226, 230
[1d] wherein the method further comprises activating a link represented on the source map, wherein a user may hyperjump to a node represented as a node of the link;	See, e.g., Crouch, 1989, at pp. 226, 233
[1e] selecting one of the displayed active links from those displayed with the displayed data; and	See, e.g., Crouch, 1989, at pp. 226, 233
[1f] jumping to the position outside the object in the	See, e.g., Crouch, 1989, at pp. 226, 233

Claim Text from '571 Patent	Crouch, 1989
database.	
3. The method of claim 1 , wherein the active links are embedded text and wherein the step of selecting comprises activating the embedded text.	See, e.g., Crouch, 1989, at pp. 226, 233
4. The method of claim 1 , wherein computer software is used, further comprising: I generating an active link, wherein the active link can be used to jump from a location in the database to another database.	See, e.g., Crouch, 1989, at pp. 226, 233
5. A method for displaying information about a network that has hyperjump data, comprising:	See, e.g., Crouch, 1989, at p. 234
[5a] choosing a node	See, e.g., Crouch, 1989, at p. 228
[5b] accessing the hyperjump data; \| Identifying hyperjump data from within the accessed hyperjump data that has a direct reference to the chosen node;	See, e.g., Crouch, 1989, at pp. 228, 230
[5c] determining hyperjump data from within the accessed hyperjump data that has an indirect reference to the chosen node using the identified hyperjump data, wherein the step of determining comprises proximity analyzing the identified hyperjump data; and	See, e.g., Crouch, 1989, at pp. 228-230
[5d] displaying one or more determined hyperjump data.	See, e.g., Crouch, 1989, at p. 234
6. The method of claim 5 , wherein the hyperjump data includes pointers and wherein the direct	See, e.g., Crouch, 1989, at pp. 228, 230, 234

Claim Text from '571 Patent	
reference is a pointer pointing to the chosen node or from the chosen node, and the step of determining comprises analyzing the pointers.	
7. The method of claim 5, wherein the node represents a topic, the determined hyperjump data has a relationship to the topic, and the step of displaying displays determined hyperjump data that has a relationship to the topic.	See, above and further disclosed either expressly or inherently in the teachings of the reference and its incorporated disclosures taken as a whole, or in combination with the state of the art at the time of the alleged invention.
8. The method of claim 5, wherein the node is a web page in the network, the accessed hyperjump data are Universal Resource Locators of linked pages, and the step of determining hyperjump data comprises analyzing the identified hyperjump data.	See, e.g., Crouch, 1989, at p. 226
9. The method of claim 5, wherein the node is a document in the network and the determined hyperjump data has a relationship to the document, the step of displaying comprising the step of listing the hyperjump data that has a relationship to the document.	See, e.g., Crouch, 1989, at p. 230
10. The method of claim 5, wherein the step of displaying comprises generating a graphical user display, and wherein information is displayed on a graphical display visually representing more than one coordinate plane.	Disclosed either expressly or inherently in the teachings of the reference and its incorporated disclosures taken as a whole, or in combination with the state of the art at the time of the alleged invention.
11. The method of claim 5, wherein the nodes are nodes in the network that may be accessed, the hyperjump data includes hyperjump links between nodes in the network, and the step of displaying comprises:	See, e.g., Crouch, 1989, at pp. 226, 233
111a] generating a source map using one or more of	

Claim Text from '571 Patent	
the determined hyperjump data, wherein the source map represents hyperjump links that identify the chosen node as a destination of a link; and	
$[11 \mathrm{~b}]$ wherein the method further comprises activating a link represented on the source map, wherein a user may hyperjump to a node represented as a node of the link.	See, e.g., Crouch, 1989, at pp. 226, 233
12. A method for visually displaying data related to a web having identifiable web pages and Universal Resource Locators with pointers, comprising:	See, e.g., Crouch, 1989, at pp.226, 230
[12a] choosing an identifiable web page;	See, e.g., Crouch, 1989, at p. 228
[12b] identifying Universal Resource Locators for the web pages, wherein the identified Universal	See, e.g., Crouch, 1989, at pp. 228, 230
Resource Locators either point to or point away from the chosen web page;	
[12c] analyzing Universal Resource Locators, including the identified Universal Resource Locators, wherein Universal Resource Locators which have an indirect relationship to the chosen web page are located, wherein the step of analyzing further comprises cluster analyzing the Universal Resource Locators for indirect relationships; and	See, e.g., Crouch, 1989, at pp. 228-230
[12d] displaying identities of web pages, wherein the located Universal Resource Locators are used to identify web pages.	See, e.g., Crouch, 1989, at p. 234
13. The method of claim 12, further comprising selecting a web page using the displayed identities of web pages.	See, e.g., Crouch, 1989, at pp. 226, 233

Claim Text from '571 Patent	
14. The method of claim 12, further comprising hyperjumping to the selected web page.	See, e.g., Crouch, 1989, at pp. 226, 233
15. The method of claim 12, wherein the step of displaying the identities of web pages comprises generating a graphical user display wherein information within the Universal Resource Locators is parsed and used to generate the graphical user display.	See, e.g., Crouch, 1989, at pp.226, 230
16. A method for navigating documents on the World Wide Web, comprising: I choosing a document;	See, e.g., Crouch, 1989, at p. 228
[16a] identifying documents that have a direct relationship to the chosen document;	See, e.g., Crouch, 1989, at pp. 228, 230
[16b] locating documents that have an indirect relationship to the chosen document identifying	See, e.g., Crouch, 1989, at pp. 228, 229
Universal Resource Locators for the documents, wherein the identified Universal Resource Locators either point to or point away from the chosen document; analyzing Universal Resource Locators, including the identified Universal Resource Locators, wherein Universal Resource Locators which have an indirect relationship to the chosen document are located, wherein the step of analyzing further comprises cluster analyzing the Universal Resource Locators for indirect relationships; and	
[16c] displaying a located document.	See, e.g., Crouch, 1989, at p. 234, 228, 229

Claim Text from '571 Patent	
17. The method of claim 16, wherein pages and their respective Universal Resource Locators are used and the step of locating documents comprises analyzing the pages and their respective Universal Resource Locators.	See, e.g., Crouch, 1989, at p. 226
18. The method of claim 17, wherein the step of analyzing pages comprises cluster analyzing the pages.	See, e.g., Crouch, 1989, at pp. 228, 229
19. The method of claim 16, wherein the step of displaying a located document comprises:	See, e.g., Crouch, 1989, at p. 233, 234
[19a] generating a screen display of identities of one or more located documents; and	See, e.g., Crouch, 1989, at p. 234
[19b] selecting one or more of the located documents.	See, e.g., Crouch, 1989, at pp. 226, 233
20. The method of claim 19, wherein the step of generating a screen display comprises generating a graphical display.	See, e.g., Crouch, 1989, at pp.226, 230
21. A method for displaying information about a network that has hyperjump data, comprising:	See, e.g., Crouch, 1989, at pp.233, 234
[21a] choosing a node; [21b] accessing the hyperjump data; I identifying hyperjump data from within the accessed hyperjump data that has a direct reference to the chosen node;	See, e.g., Crouch, 1989, at pp. 228, 230
[21c] determining hyperjump data from within the	See, e.g., Crouch, 1989, at pp. 228, 229

Claim Text from '571 Patent	
accessed hyperjump data that has an indirect reference to the chosen node using the identified hyperjump data, wherein the step of determining comprises cluster analyzing the hyperjump data; and	
[21d] displaying one or more determined hyperjump data.	See, e.g., Crouch, 1989, at p. 233, 234
22. A method for displaying information about a network that has hyperjump data, comprising:	See, e.g., Crouch, 1989, at p. 234
[22a] choosing a node; [22b] accessing the hyperjump data; I identifying hyperjump data from within the accessed hyperjump data that has a direct reference to the chosen node;	See, e.g., Crouch, 1989, at pp. 228, 230
[22c] determining hyperjump data from within the accessed hyperjump data that has an indirect reference to the chosen node using the identified hyperjump data; and	See, e.g., Crouch, 1989, at pp. 228-230
[22d] displaying one or more determined hyperjump data, wherein the nodes are nodes in the network that may be accessed, the hypejump data includes hyperjump links between nodes in the network, and the step of displaying comprises:	See, e.g., Crouch, 1989, at pp. 233, 234
[22e] generating a source map using one or more of the determined hyperjump data, wherein the source map represents hyperjump links that identify the chosen node as a destination of a link, and wherein the method further comprises activating a link represented on the source map, wherein a user may	See, e.g., Crouch, 1989, at pp. 228, 230, 233

Claim Text from '571 Patent	Crouch, 1989
hyperjump to a node represented as a node of the link.	

Defendants reserve the right to revise this contention chart concerning the invalidity of the asserted claims, as appropriate, for example depending upon the Court's construction of the asserted claims, any findings as to the priority date of the asserted claims, and/or positions that Plaintiff or its expert witness(es) may take concerning claim interpretation, construction, infringement, and/or invalidity issues.

Plaintiff's Infringement Contentions are based on an apparent construction of the claim terms. Defendants disagree with these apparent constructions. Nothing stated herein shall be treated as an admission or suggestion that Defendants agree with Plaintiff regarding either the scope of any of the asserted claims or the claim constructions advanced by Plaintiff in its Infringement Contentions or anywhere else, or that any of Defendants' accused technology meets any limitations of the claims. Nothing stated herein shall be construed as an admission or a waiver of any particular construction of any claim term. Defendants also reserve all their rights to challenge any of the claim terms herein under 35 U.S.C. § 112 , including by arguing that they are indefinite, not supported by the written description and/or not enabled. Accordingly, nothing stated herein shall be construed as a waiver of any argument available under 35 U.S.C. § 112.

Invalidity Claim Chart for U.S. Patent No. 6,233,571

Based on Baase, S., Computer Algorithms: Introduction to Design and Analysis, $2^{\text {nd }}$ Edition, Addison-Wesley Publishing Co., 1988. ("Baase, 1988)

Claim Text from '571 Patent	Baase, 1988
5. A method for displaying information about a network that has hyperjump data, comprising:	See p. 149-156 and 167-72, Title (Computer Algorithms).
[5a] Choosing a node	See, e.g., Baase, 1988, at p. 149-156, 160-67 and 168-172, Djisktra's shortest path algorithm will find shortest paths from v to the other vertices in order of increasing distance from v. . . . The algorithm starts at one vertex (v) and "branches out" by selecting certain edges that lead to new vertices ($p .168$) $\mathrm{x}:=\mathrm{v}(\mathrm{p} .171)$
[5b] accessing the hyperjump data; I Identifying hyperjump data from within the accessed hyperjump data that has a direct reference to the chosen node;	See, e.g., Baase, 1988, at p. 160-67, 168-172, 184-91, 193-97.
[5c] determining hyperjump data from within the accessed hyperjump data that has an indirect reference to the chosen node using the identified hyperjump data, wherein the step of determining comprises proximity analyzing the identified hyperjump data; and	$d(A, B)+W(B C)=6$ $d(A, A)+W(A G)=5$ $d(A, A)+W(A E)=9$ Select $A G$ next. (b) An incermediate step: (c) An intermediale step. (CH was considered but nor chosen to replace GH as a candidate.) Whether or not G is a digraph, it is helpful 10 think of the tree and candidate edges as having an orientation; the tail of an edge is the vertex closer to v. Candidate edges go from a tree vertex to a fringe vertex. These edges will always be written to reflect this orientation; in other words, if we write $X Y$. we are assuming that x is closer to v than y is. We will refer tox as $\operatorname{tail}(x y)$ and y as head($x y$) even if G is not a directed graph.

Claim Text from '571 Patent	Baase, 1988
	Given the situation in Fig. 4.18(c), the next step is to select a candidate edge and fringe vertex. We choose a candidate edge e for which $d(v$, tail $(e))+W(e)$ is minimum. This is the weight of the path obtained by adjoining e to the known shortest path to tail(e). Since the quantity $d(v$, tail($e))+W(e)$ for a candidate edge e may be used repeatedly, it can be computed once and saved. To compute it efficiently when efirst becomes a candidate, we also save $d(v, y)$ for each y in the tree. Thus we use an array dist as follows: $\operatorname{dist}[\mathrm{y}]=\mathrm{d}(\mathrm{v}, \mathrm{y}) ; \operatorname{dist}[\mathrm{z}]=\mathrm{d}(\mathrm{v}, \mathrm{y})+$ W(yz). After a vertex and the corresponding candidate edge are selected, the information in the data structure must be updated. In Fig. 4.18(d) the vertex I and the edge $G l$ have just been selected. The candidate edge for F was $A F$, but now $A F$ must be replaced by $I F$ because $I F$ yields a shorter path to F, We must also recompute $\operatorname{dist}[F]$. The vertex E, which was unseen, is now on the fringe because it is adjacent to I , now in the tree ... while $\mathrm{x} \neq \mathrm{w}$ and not stuck do . . . end $\{$ while $\mathrm{x} \neq \mathrm{w}$ and not stuck $\}$ (p. 171-172)
[5d] displaying one or more determined hyperjump data.	See, e.g., Baase, 1988, at p. 167, 168-172, including e.g. \{Output the path, the vertices will be listed in the reverse order, i.e. from w to v \} While $\mathrm{x} \neq 0$ do Output(x); $\mathrm{x}:=\operatorname{parent}[\mathrm{x}]$ end (p. 172)
6. The method of claim 5 , wherein the hyperjump data includes pointers and wherein the direct reference is a pointer pointing to the chosen node or from the chosen node, and the step of determining comprises analyzing the pointers.	See, e.g., Baase, 1988, at p. 149, 167, 168-172.
7. The method of claim 5 , wherein the node represents a topic, the determined hyperjump data has a relationship to the topic, and the step of displaying displays determined hyperjump data that	See, e.g., Baase, 1988, at p. 149, 167, 168-172, 175-76.

Claim Text from '571 Patent	Baase, 1988
has a relationship to the topic.	
12. A method for visually displaying data related to a web having identifiable web pages and Universal Resource Locators with pointers, comprising:	See p. 149-156 and 167-72,
[12a] choosing an identifiable web page;	See, e.g., Baase, 1988, at p. 149-156, 160-161 and 168-172, Djisktra's shortest path algorithm will find shortest paths from v to the other vertices in order of increasing distance from v. . . . The algorithm starts at one vertex (v) and "branches out" by selecting certain edges that lead to new vertices (p. 168) $\mathrm{x}:=\mathrm{v}(\mathrm{p} .171)$
[12b] identifying Universal Resource Locators for the web pages, wherein the identified Universal Resource Locators either point to or point away from the chosen web page;	See, e.g., Baase, 1988, at p. 160-167, 168-172, 175-76, 184-91, 193-97.
[12c] analyzing Universal Resource Locators, including the identified Universal Resource Locators, wherein Universal Resource Locators which have an indirect relationship to the chosen web page are located, wherein the step of analyzing further comprises cluster analyzing the Universal Resource Locators for indirect relationships; and	See, e.g., Baase, 1988, at p. 160-167, 168-172, 175-76, 184-91, 193-97.
[12d] displaying identities of web pages, wherein the located Universal Resource Locators are used to identify web pages.	See, e.g., Baase, 1988, at p. 167, 168-172, including e.g. \{Output the path, the vertices will be listed in the reverse order, i.e. from w to v \} While $\mathrm{x} \neq 0$ do Output(x); $\begin{aligned} & \mathrm{x}:=\text { parent }[\mathrm{x}] \\ & \text { end (p. 172)b } \end{aligned}$

Claim Text from '571 Patent	Baase, 1988
16. A method for navigating documents on the World Wide Web, comprising: I choosing a document;	
[16a] Identifying documents that have a direct relationship to the chosen document;	See, e.g., Baase, 1988, at p. 160-167, 168-172, 175-76, 184-91, 193-97.
[16b] locating documents that have an indirect relationship to the chosen document identifying Universal Resource Locators for the documents, wherein the identified Universal Resource Locators either point to or point away from the chosen document; analyzing Universal Resource Locators, including the identified Universal Resource Locators, wherein Universal Resource Locators which have an indirect relationship to the chosen document are located, wherein the step of analyzing further comprises cluster analyzing the Universal Resource Locators for indirect relationships; and	See, e.g., Baase, 1988, at p. 160-167, 168-172, 175-76, 184-91, 193-97.
[16c] displaying a located document.	See, e.g., Baase, 1988, at p. 167, 168-172, including e.g. \{Output the path, the vertices will be listed in the reverse order, i.e. from w to v \} While $\mathrm{x} \neq 0$ do Output(x); $\mathrm{x}:=\operatorname{parent}[\mathrm{x}]$ end (p. 172)
18. The method of claim 17, wherein the step of analyzing pages comprises cluster analyzing the pages.	See, e.g., Baase, 1988, at p. 160-167, 168-172, 175-76, 184-91, 193-97
21. A method for displaying information about a network that has hyperjump data, comprising:	See, e.g., Baase, 1988, p. 149-156 and 167-72, Title

Claim Text from '571 Patent	
[21a] choosing a node;	See, e.g., Baase, 1988, at p. 149-156 and 168-172
[21b] accessing the hyperjump data; I identifying hyperjump data from within the accessed hyperjump data that has a direct reference to the chosen node;	See, e.g., Baase, 1988, at p. 160-167, 168-172, 175-76, 184-91, 193-97.
[21c] determining hyperjump data from within the accessed hyperjump data that has an indirect reference to the chosen node using the identified hyperjump data, wherein the step of determining comprises cluster analyzing the hyperjump data; and	See, e.g., Baase, 1988, at p. 160-167, 168-172, 175-76, 184-91, 193-97.
[21d] displaying one or more determined hyperjump data.	See, e.g., Baase, 1988, at p. 168-172. \{Output the path, the vertices will be listed in the reverse order, i.e. from w to v $\}$ While x $\neq 0$ do
Output(x); $\mathrm{x}:=$ parent[x] end (p. 172)	

Defendants reserve the right to revise this contention chart concerning the invalidity of the asserted claims, as appropriate, for example depending upon the Court's construction of the asserted claims, any findings as to the priority date of the asserted claims, and/or positions that Plaintiff or its expert witness(es) may take concerning claim interpretation, construction, infringement, and/or invalidity issues.

Plaintiff's Infringement Contentions are based on an apparent construction of the claim terms. Defendants disagree with these apparent constructions. Nothing stated herein shall be treated as an admission or suggestion that Defendants agree with Plaintiff regarding either the scope of any of the asserted claims or the claim constructions advanced by Plaintiff in its Infringement Contentions or anywhere else, or that any of Defendants' accused technology meets any limitations of the claims. Nothing stated herein shall be construed as an admission or a waiver of any particular construction of any claim term. Defendants also reserve all their rights to challenge any of the claim terms herein under 35 U.S.C. § 112 , including by arguing that they are indefinite, not supported by the written description and/or not enabled. Accordingly, nothing stated herein shall be construed as a waiver of any argument available under 35 U.S.C. § 112.

Invalidity Claim Chart for U.S. Patent No. 6,233,571

Based on Botafogo, R.A. et al. "Identifying AgGregates in Hypertext Structures" Hypertext '91 Proceedings, 63-74 (1991). ("Botafogo, 1991")

Claim Text from '571 Patent	
1. A method for using active links within the data of an object stored in a database of a computer so that a user may jump from viewing the data of the object in the database to a position outside the object in the database and outside the computer, comprising:	See.g., Botafogo, 1991, at p. 63-66, 70-72
[1a] storing one or more links within data of the object in the database to positions outside of the computer, wherein the stored links are active links;	See, e.g., Botafogo, 1991, at p. 63, 71-72
[1b] displaying the data of the object within the database, wherein one or more active links are displayed with the data from the object in the database, wherein positions are nodes in a network that may be accessed, the active links including hyperjump links between nodes in the network and the objects, and the step of displaying comprises:	See, e.g., Botafogo, 1991, at p. 71-72
[1c] generating a source map, wherein the source map represents hyperjump links that identify a chosen node as a destination of a link, and	See, e.g., Botafogo, 1991, at p. 71-72, Fig. 4,5.
[1d] wherein the method further comprises activating a link represented on the source map, wherein a user may hyperjump to a node represented as a node of the link;	See, e.g., Botafogo, 1991, at p. 63, 71-72
[1e] selecting one of the displayed active links from those displayed with the displayed data; and	See, e.g., Botafogo, 1991, at p. 63, 71-72

Claim Text from '571 Patent	
[1f] jumping to the position outside the object in the database.	See, e.g., Botafogo, 1991, at p. 63, 71-72
3. The method of claim 1, wherein the active links are embedded text and wherein the step of selecting comprises activating the embedded text.	See, e.g., Botafogo, 1991, at 63-64
4. The method of claim 1, wherein computer software is used, further comprising: I generating an active link, wheren the active link can be used to jump from a location in the database to another database.	See, e.g., Botafogo, 1991, at 63-64
5. A method for displaying information about a network that has hyperjump data, comprising:	See, e.g., Botafogo, 1991, at p. 63-64, 71-72
[5a] choosing a node	See, e.g., Botafogo, 1991, at p. 64-65
[5b] accessing the hyperjump data; ; Identifying hyperjump data from within the accessed hyperjump data that has a direct reference to the chosen node;	See, e.g., Botafogo, 1991, at 64-65, 66, 68, 70
[5c] determining hyperjump data from within the accessed hyperjump data that has an indirect reference to the chosen node using the identified hyperjump data, wherein the step of determining comprises proximity analyzing the identified hyperjump data; and	See, e.g., Botafogo, 1991, at p. 64-65, 66, 68, 70
[5d] displaying one or more determined hyperjump data.	See, e.g., Botafogo, 1991, at p. 71-72

Claim Text from '571 Patent	
6. The method of claim 5, wherein the hyperjump data includes pointers and wherein the direct reference is a pointer pointing to the chosen node or from the chosen node, and the step of determining comprises analyzing the pointers.	See, e.g., Botafogo, 1991, at p. 64-65, 66, 68, 70
7. The method of claim 5, wherein the node represents a topic, the determined hyperjump data has a relationship to the topic, and the step of displaying displays determined hyperjump data that has a relationship to the topic.	See, e.g., Botafogo, 1991, at p. 66-67, 71-72
8. The method of claim 5, wherein the node is a web page in the network, the accessed hyperjump data are Universal Resource Locators of linked pages, and the step of determining hyperjump data comprises analyzing the identified hyperjump data.	See, e.g., Botafogo, 1991, at p. 66-67, 71-72
9. The method of claim 5, wherein the node is a document in the network and the determined hyperjump data has a relationship to the document, the step of displaying comprising the step of listing the hyperjump data that has a relationship to the document.	See, e.g., Botafogo, 1991, at p. 71-72
lo. The method of claim 5, wherein the step of displaying comprises generating a graphical user display, and wherein information is displayed on a graphical display visually representing more than one coordinate plane.	See, e.g., Botafogo, 1991, at p. 71-72
$11 . ~ T h e ~ m e t h o d ~ o f ~ c l a i m ~ 5, ~ w h e r e i n ~ t h e ~ n o d e s ~ a r e ~$ nodes in the network that may be accessed, the hyperjump data includes hyperjump links between nodes in the network, and the step of displaying comprises:	See below

Claim Text from '571 Patent	Botafogo, 1991
[11a] generating a source map using one or more of the determined hyperjump data, wherein the source map represents hyperjump links that identify the chosen node as a destination of a link; and	See, e.g., Botafogo, 1991, at p. 71-72
[11b] wherein the method further comprises activating a link represented on the source map, wherein a user may hyperjump to a node represented as a node of the link.	See, e.g., Botafogo, 1991, at p. 71-72
12. A method for visually displaying data related to a web having identifiable web pages and Universal Resource Locators with pointers, comprising:	See, e.g., Botafogo, 1991, at p. 63, 71-72
[12a] choosing an identifiable web page;	See, e.g., Botafogo, 1991, at p. 64-65
[12b] identifying Universal Resource Locators for the web pages, wherein the identified Universal Resource Locators either point to or point away from the chosen web page;	See, e.g., Botafogo, 1991, at 64-65, 66, 68, 70
[12c] analyzing Universal Resource Locators, including the identified Universal Resource Locators, wherein Universal Resource Locators which have an indirect relationship to the chosen web page are located, wherein the step of analyzing further comprises cluster analyzing the Universal Resource Locators for indirect relationships; and	See, e.g., Botafogo, 1991, at p. 64-65, 66, 68, 70
[12d] displaying identities of web pages, wherein the located Universal Resource Locators are used to identify web pages.	See, e.g., Botafogo, 1991, at p. 71-72
13. The method of claim 12, further comprising selecting a web page using the displayed identities	See, e.g., Botafogo, 1991, at p. 71-72

Claim Text from '571 Patent	
of web pages.	
14. The method of claim 12, further comprising hyperjumping to the selected web page.	See, e.g., Botafogo, 1991, at p. 63-64, 71-72
15. The method of claim 12, wherein the step of displaying the identities of web pages comprises generating a graphical user display wherein information within the Universal Resource Locators is parsed and used to generate the graphical user display.	See, e.g., Botafogo, 1991, at p. 71-72
16. A method for navigating documents on the World Wide Web, comprising: I choosing a document;	See, e.g., Botafogo, 1991, at p. 63-64, 71-72
[16a] identifying documents that have a direct relationship to the chosen document;	See, e.g., Botafogo, 1991, at 64-65, 66, 68, 70
16b] locating documents that have an indirect relationship to the chosen document identifying	See, e.g., Botafogo, 1991, at p. 64-65, 66, 68, 70
Universal Resource Locators for the documents, wherein the identified Universal Resource Locators either point to or point away from the chosen document; analyzing Universal Resource Locators, including the identified Universal Resource	
Locators, wherein Universal Resource Locators which have an indirect relationship to the chosen document are located, wherein the step of analyzing further comprises cluster analyzing the Universal Resource Locators for indirect relationships; and	
16c] displaying a located document.	See, e.g., Botafogo, 1991, at p. 71-72

Claim Text from '571 Patent	
17. The method of claim 16, wherein pages and their respective Universal Resource Locators are used and the step of locating documents comprises analyzing the pages and their respective Universal Resource Locators.	See, e.g., Botafogo, 1991, at p. 64-65, 66, 68, 70
18. The method of claim 17, wherein the step of analyzing pages comprises cluster analyzing the pages.	See, e.g., Botafogo, 1991, at p. 64-65, 66, 68, 70
19. The method of claim 16, wherein the step of displaying a located document comprises:	See, e.g., Botafogo, 1991, at p. 71-72
[19a] generating a screen display of identities of one or more located documents; and	See, e.g., Botafogo, 1991, at p. 71-72
[19b] selecting one or more of the located documents.	See, e.g., Botafogo, 1991, at p. 71-72
20. The method of claim 19, wherein the step of generating a screen display comprises generating a graphical display.	See, e.g., Botafogo, 1991, at p. 71-72
21. A method for displaying information about a network that has hyperjump data, comprising:	See, e.g., Botafogo, 1991, at p. 63, 71-72
[21a] choosing a node;	See, e.g., Botafogo, 1991, at p. 64-65

Claim Text from '571 Patent	Botafogo, 1991
chosen node;	
[21c] determining hyperjump data from within the accessed hyperjump data that has an indirect reference to the chosen node using the identified hyperjump data, wherein the step of determining comprises cluster analyzing the hyperjump data; and	See, e.g., Botafogo, 1991, at p. 64-65, 66, 68, 70
[21d] displaying one or more determined hyperjump data.	See, e.g., Botafogo, 1991, at p. 71-72
22. A method for displaying information about a network that has hyperjump data, comprising:	See, e.g., Botafogo, 1991, at p. 63, 71-72
[22a] choosing a node;	See, e.g., Botafogo, 1991, at p. 64-65
[22b] accessing the hyperjump data; I identifying hyperjump data from within the accessed hyperjump data that has a direct reference to the chosen node;	See, e.g., Botafogo, 1991, at 64-65, 66, 68, 70
[22c] determining hyperjump data from within the accessed hyperjump data that has an indirect reference to the chosen node using the identified hyperjump data; and	See, e.g., Botafogo, 1991, at p. 64-65, 66, 68, 70
[22d] displaying one or more determined hyperjump data, wherein the nodes are nodes in the network that may be accessed, the hypejump data includes hyperjump links between nodes in the network, and the step of displaying comprises:	See, e.g., Botafogo, 1991, at p. 71-72

Claim Text from '571 Patent	Botafogo, 1991
[22e] generating a source map using one or more of	See, e.g., Botafogo, 1991, at p. 71-72
the determined hyperjump data, wherein the source	
map represents hyperjump links that identify the	
chosen node as a destination of a link, and wherein	
the method further comprises activating a link	
represented on the source map, wherein a user may	
hyperjump to a node represented as a node of the	
link.	

Defendants reserve the right to revise this contention chart concerning the invalidity of the asserted claims, as appropriate, for example depending upon the Court's construction of the asserted claims, any findings as to the priority date of the asserted claims, and/or positions that Plaintiff or its expert witness(es) may take concerning claim interpretation, construction, infringement, and/or invalidity issues.

Plaintiff's Infringement Contentions are based on an apparent construction of the claim terms. Defendants disagree with these apparent constructions. Nothing stated herein shall be treated as an admission or suggestion that Defendants agree with Plaintiff regarding either the scope of any of the asserted claims or the claim constructions advanced by Plaintiff in its Infringement Contentions or anywhere else, or that any of Defendants' accused technology meets any limitations of the claims. Nothing stated herein shall be construed as an admission or a waiver of any particular construction of any claim term. Defendants also reserve all their rights to challenge any of the claim terms herein under 35 U.S.C. § 112 , including by arguing that they are indefinite, not supported by the written description and/or not enabled. Accordingly, nothing stated herein shall be construed as a waiver of any argument available under 35 U.S.C. § 112.

Invalidity Claim Chart for U.S. Patent No. 6,233,571

- Based on Joachims, T et al., "WebWatcher: Machine Learning and Hypertext" Proceedings of the 1995 AAAI Spring Symposium on Information Gathering from Heterogeneous, Distributed Environments, 1995 ("Joachims 1995 1995")

Claim Text from '571 Patent	Joachims 1995
5. A method for displaying information about a network that has hyperjump data, comprising:	See, e.g., p. 1-4.
[5a] Choosing a node	See, e.g., p.2, 4 (e.g. "The target function we want to learn is a mapping from an arbitrary web page to a set of related pages.").
[5b] accessing the hyperjump data; I Identifying hyperjump data from within the accessed hyperjump data that has a direct reference to the chosen node;	See, e.g., p. 3-4 (e.g., "3.3 Algorithm")
[5c] determining hyperjump data from within the accessed hyperjump data that has an indirect reference to the chosen node using the identified hyperjump data, wherein the step of determining comprises proximity analyzing the identified hyperjump data; and	See, e.g., p. 4-5 (e.g., "3.3 Algorithm")
[5d] displaying one or more determined hyperjump data.	See, e.g., p. 2, 4 (e.g., "The pages associated with the n most similar columns are returned by Related.").
6. The method of claim 5, wherein the hyperjump data includes pointers and wherein the direct reference is a pointer pointing to the chosen node or from the chosen node, and the step of determining comprises analyzing the pointers.	See, e.g., p. 4 (e.g.,"3.3 Algorithm")
7. The method of claim 5, wherein the node represents a topic, the determined hyperjump data has a relationship to the topic, and the step of displaying displays determined hyperjump data that has a relationship to the topic.	See, e.g., p. 4 (e.g., "3.3 Algorithm")
8. The method of claim 5, wherein the node is a web	See e.g., p. 1-3.

Claim Text from '571 Patent	Joachims 1995
page in the network, the accessed hyperjump data are Universal Resource Locators of linked pages, and the step of determining hyperjump data comprises analyzing the identified hyperjump data.	
9. The method of claim 5 , wherein the node is a document in the network and the determined hyperjump data has a relationship to the document, the step of displaying comprising the step of listing the hyperjump data that has a relationship to the document.	See, e.g., p. 4
12. A method for visually displaying data related to a web having identifiable web pages and Universal Resource Locators with pointers, comprising:	See, e.g., p. 1, 3-5
[12a] choosing an identifiable web page;	See, e.g., p.2, 4 (e.g. "The target function we want to learn is a mapping from an arbitrary web page to a set of related pages.").
[12b] identifying Universal Resource Locators for the web pages, wherein the identified Universal Resource Locators either point to or point away from the chosen web page;	See, e.g., p. 3-4 (e.g., "3.3 Algorithm")
[12c] analyzing Universal Resource Locators, including the identified Universal Resource Locators, wherein Universal Resource Locators which have an indirect relationship to the chosen web page are located, wherein the step of analyzing further comprises cluster analyzing the Universal Resource Locators for indirect relationships; and	See, e.g., p. 4-5 (e.g., "3.3 Algorithm")
[12d] displaying identities of web pages, wherein the located Universal Resource Locators are used to identify web pages.	See, e.g., p. 2, 4 (e.g., "The pages associated with the n most similar columns are returned by Related.").
13. The method of claim 12 , further comprising selecting a web page using the displayed identities of web pages.	See, e.g., p. 2, 4 (e.g., "The pages associated with the n most similar columns are returned by Related.").
14. The method of claim 12, further comprising	See, e.g., p. 1-3

Claim Text from '571 Patent	Joachims 1995
hyperjumping to the selected web page.	
15. The method of claim 12 , wherein the step of displaying the identities of web pages comprises generating a graphical user display wherein information within the Universal Resource Locators is parsed and used to generate the graphical user display.	See, e.g., p. 4
16. A method for navigating documents on the World Wide Web, comprising: I choosing a document;	See, e.g., p. 1, 3-5
[16a] Identifying documents that have a direct relationship to the chosen document;	See, e.g., p. 4
[16b] locating documents that have an indirect relationship to the chosen document identifying Universal Resource Locators for the documents, wherein the identified Universal Resource Locators either point to or point away from the chosen document; analyzing Universal Resource Locators, including the identified Universal Resource Locators, wherein Universal Resource Locators which have an indirect relationship to the chosen document are located, wherein the step of analyzing further comprises cluster analyzing the Universal Resource Locators for indirect relationships; and	See, e.g., p. 4
[16c] displaying a located document.	See, e.g., p. 4 (e.g., "The pages associated with the n most similar columns are returned by Related.").
17. The method of claim 16 , wherein pages and their respective Universal Resource Locators are used and the step of locating documents comprises analyzing the pages and their respective Universal Resource Locators.	See, e.g., p. 1, 4-5
18. The method of claim 17 , wherein the step of analyzing pages comprises cluster analyzing the pages.	See, e.g., p. 1-4.
19. The method of claim 16, wherein the step of	

Claim Text from '571 Patent	Joachims 1995
displaying a located document comprises:	
[19a] generating a screen display of identities of one or more located documents; and	See, e.g., p. 2-3
[19b] Selecting one or more of the located documents.	See, e.g., p. 2-3
20. The method of claim 19, wherein the step of generating a screen display comprises generating a graphical display.	See, e.g., p. 1-4.
21. A method for displaying information about a network that has hyperjump data, comprising:	See, e.g., p. 1-4.
[21a] choosing a node;	See, e.g., p. 2, 4 (e.g. "The target function we want to learn is a mapping from an arbitrary web page to a set of related pages.").
[21b] accessing the hyperjump data; I identifying hyperjump data from within the accessed hyperjump data that has a direct reference to the chosen node;	See, e.g., p. 3-4 (e.g., "3.3 Algorithm")
[21c] determining hyperjump data from within the accessed hyperjump data that has an indirect reference to the chosen node using the identified hyperjump data, wherein the step of determining comprises cluster analyzing the hyperjump data; and	See, e.g., p. 4-5 (e.g., "3.3 Algorithm")
[21d] displaying one or more determined hyperjump data.	See, e.g., p. 2, 4 (e.g., "The pages associated with the n most similar columns are returned by Related.").

Defendants reserve the right to revise this contention chart concerning the invalidity of the asserted claims, as appropriate, for example depending upon the Court's construction of the asserted claims, any findings as to the priority date of the asserted claims, and/or positions that Plaintiff or its expert witness(es) may take concerning claim interpretation, construction, infringement, and/or invalidity issues.

Plaintiff's Infringement Contentions are based on an apparent construction of the claim terms. Defendants disagree with these apparent constructions. Nothing stated herein shall be treated as an admission or suggestion that Defendants agree with Plaintiff regarding either the scope of any of the asserted claims or the claim constructions advanced by Plaintiff in its Infringement Contentions or anywhere else, or that any of Defendants' accused technology meets any limitations of the claims. Nothing stated herein shall be construed as an admission or a waiver of any particular construction of any claim term. Defendants also reserve all their rights to challenge any of the claim terms herein under 35 U.S.C. § 112, including by arguing that they are indefinite, not supported by the written description and/or not enabled. Accordingly, nothing stated herein shall be construed as a waiver of any argument available under 35 U.S.C. § 112 .

Invalidity Claim Chart for U.S. Patent No. 6,233,571

Based on Caplinger, M., "Graphical Database Browsing," ACM p. 113-121 (1986)

Claim Text from '571 Patent	Calpinger 1986
10. The method of claim 5, wherein the step of displaying comprises generating a graphical user display, and wherein information is displayed on a graphical display visually representing more than one coordinate plane.	

Defendants reserve the right to revise this contention chart concerning the invalidity of the asserted claims, as appropriate, for example depending upon the Court's construction of the asserted claims, any findings as to the priority date of the asserted claims, and/or positions that Plaintiff or its expert witness(es) may take concerning claim interpretation, construction, infringement, and/or invalidity issues.

Plaintiff's Infringement Contentions are based on an apparent construction of the claim terms. Defendants disagree with these apparent constructions. Nothing stated herein shall be treated as an admission or suggestion that Defendants agree with Plaintiff regarding either the scope of any of the asserted claims or the claim constructions advanced by Plaintiff in its Infringement Contentions or anywhere else, or that any of Defendants' accused technology meets any limitations of the claims. Nothing stated herein shall be construed as an admission or a waiver of any particular construction of any claim term. Defendants also reserve all their rights to challenge any of the claim terms herein under 35 U.S.C. § 112, including by arguing that they are indefinite, not supported by the written description and/or not enabled. Accordingly, nothing stated herein shall be construed as a waiver of any argument available under 35 U.S.C. § 112.

[^0]: ${ }^{1}$ Salton \& Buckley (1990) discloses at least the limitations of claims 34, 35 (see passim, including p. 2-4, Fig. 2), 38 (p. 5), 39 (p. 4-5), and 42 (p. 3-4). These disclosures are applicable to all combinations that include Salton \& Buckley (1990) listed in Table App-5.

[^1]: ${ }^{2}$ With respect to claims $1,3,4$, and 11, Pitkow 1994 discloses a source map as previously shown for claim 22 in Ex. G-79.

