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W.MUL.MAT.C.F.16.B Wide multiply matrix complex floating-point half big-
endian

W.MUL.MAT.C.F.16.L Wide multiply matrix complex floating-point half little-
endian

W.MUL.MAT.C.F.32.B Wide multiply matrix complex floating-point single big-
endian

W.MUL.MAT.C.F.32.L Wide multiply matrix complex floating-point single little-
endian

W.MUL.MAT.C.F.64.B Wide multiply matrix complex floating-point double big-
endian

W.MUL.MAT.C.F.64.L Wide multiply matrix complex floating-point double little-
endian

W.MUL.MAT.F.16.B Wide multiply matrix floating-point half big-endian
W.MUL.MAT.F.16.L Wide multiply matrix floating-point halflittle-endian
W.MUL.MAT.F.32.B Wide multiply matrix floating-point single big-endian
W.MUL.MAT.F.32.L Wide multiply matrix floating-point single little-endian
W.MUL.MAT.F.64.B Wide multiply matrix floating-point double big-endian
W.MUL.MAT.F.64.L Wide multiply matrix floating-point double little-endian

FIG.I03A
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rd=mopsizeorder(rC,rb)

31 24;;;.;;23~_--.;1;.;;.8,.;;1..;..7 __--.;;;.;12;;.,.1...;;1 ..;.6 5 43 0
I W.MINOR.order rd I rc I rb ~r---op----I

8 6 6 624
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defmul(size,v,i,wj) as
mul ~ fmul(F(size,vsize-l+i..i),F(size,wsize-l+j ..j»)

enddef

def MemoryFloatingPointMultiply(major,op,gsize,rd,rc,rb)
c ~ RegRead(rc, 64)
b ~ RegRead(rb, 128)
19size~ log(gsize)
switch op of

W.MUL.MAT.F.16, W.MUL.MAT.F.32, W.MUL.MAT.F.64:
ifClgsize-4..0 ;¢: 0 then

raise AccessDisallowedByVirtualAddress
endif
if c3 ..lgsize-3 ;¢: 0 then

wsize ~ (c and (O-c» II 04

t ~ c and (c-l)
else

wsize ~ 128
t~c

endif
lwsize ~ log(wsize)
iftlwsize+6-lgsize.. lwsize-3 ;¢: 0 then

msize ~ (t and (O-t» II 04

VirtAddr~ t and (t-l)
else

msize~ 128*wsize/gsize
VirtAddr~ t

endif
vsize ~ msize*gsize/wsize

W.MUL.MAT.C.F.16, W.MUL.MAT.C.F.32, W.MUL.MAT.C.F.64:
if Clgsize-4..0 ;¢: 0 then

raise AccessDisallowedByVirtualAddress
endif

if C3 ..lgsize-3 ;¢: 0 then

wsize~ (c and (O-c» 1104

t ~ c and (c-l)
else

wsize ~ 128
t~c

FIG.103C
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endif
lwsize +- log(wsize)

iftlwsize+5-lgsize..lwsize-3 -::t:. 0 then

msize +- (t and (O-t)) II 04

VirtAddr +- t and (t-l)
else

msize +- 64*wsize/gsize
VirtAddr +- t

endif
vsize +- 2*msize*gsize/wsize

endcase
case major of

M.MINOR.B:
order +- B

M.MINOR.L:
order +- L

endcase
m +- LoadMemory(c,VirtAddr,msize,order)
for i +- 0 to wsize-gsize by gsize

q[O].t +- NULL
for j +- 0 to vsize-gsize by gsize

case op of
W.MUL.MAT.F.16, W.MUL.MAT.F.32, W.MUL.MAT.F.64:

q[j+gsize] +- fadd(q[j], mul(gsize,m,i+wsize*j 8..lgsize,b,j»
W.MUL.MAT.C.F.16, W.MUL.MAT.C.F.32, M.MUL.MAT.C.F.64:

if(~i) &j & gsize = 0 then
k +- i-(j&gsize)+wsize*j8..lgsize+1

q[j+gsize] +- fadd(qfj], mul(gsize,m,k,bj»
else

k +- i+gsize+wsize*j8 .. lgsize+1

q[j+gsize] +- fsub(q[j], mul(gsize,m,k,bj»
endif

endcase
endfor
agsize-1+i..i +- q[vsize]

endfor

a127..wsize +- 0
RegWrite(rd, 128, a)

enddef

FIG. 103C continued
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Exceptions

Floating-point arithmetic
Access disallowed by virtual address
Access disallowed by tag
Access disallowed by global TB
Access disallowed by local TB
Access detail required by tag
Access detail required by local TB
Access detail required by global TB
Local TB miss
Global TB miss

FIG. I03C continued
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W.MUL.MAT.G.B
W.MUL.MAT.G.L

matrix Galois bi -endian
matrix Galois little-endian

FIG.I04A
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W.MUL.MAT.G.order ra=rc,rd,rb

ra=mgmorder(rc,rd,rb)

31 242;.:3~_---:1~8.,;..17.:...- __;;;.;;12;.,.;1..;;.1 6.;.,;-5 0
W.MULG.order I rd I rc I rb I ra I

8 6 6 6 6

FIG.I04B
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def C~ PolyMultiply(size,a,b) as
p[O] ~ 02*size

for k ~ 0 to size-I
p[k+l] ~ p[k] /\ ak? (osize-k II b II Ok) : 02*size

endfor
C~ p[size]

enddef

def C~ PolyResidue(size,a,b) as
p[O] ~ a
for k~ size-I to 0 by-I

p[k+l] ~ p[k] /\ P[O]size+k? (osize-k 111 1 II b II Ok) : 02*size

endfor
c ~ p[size]size-l..O

enddef

def WideMultiplyGalois(op,rd,rc,rb,ra)
d ~ RegRead(rd, 128)
C~ RegRead(rc, 64)
b ~ RegRead(rb, 128)
gsize ~ 8
19size~ log(gsize)
if Clgsize-4..0 '* 0 then

raise AccessDisallowedByVirtualAddress
endif

if c3 ..lgsize-3 *0 then

wsize ~ (c and (O-c» II 04

t~ c and (c-l)
else

wsize ~ 128
t~c

endif
lwsize~ log(wsize)

if tlwsize+6-lgsize..lwsize-3 *0 then

msize ~ (t and (O-t» II 04

VirtAddr~ t and (t-l)
else

msize~ 128*wsize/gsize
VirtAddr~ t

FIG.104C
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endif
case op of

W.MUL.MAT.G.B:
order +- B

W.MUL.MAT.G.L:
order +- L

endcase
m +- LoadMemory(c,VirtAddr,msize,order)
for i +- 0 to wsize-gsize by gsize

q[O] +- 02*gsize

for j +- 0 to vsize-gsize by gsize
k +- i+wsize*jg..Igsize

qU+gsize] +- qO] A PolyMultiply(gsize,mk+gsize-l ..k,dj+gsize-l ..j)
endfor
agsize-l +i..i +- PolyResidue(gsize,q[vsize],bgsize-I ..O)

endfor

a127..wsize +- 0
RegWrite(ra, 128, a)

enddef
Exceptions

Access disallowed by virtual address
Access disallowed by tag
Access disallowed by global TB
Access disallowed by local TB
Access detail required by tag
Access detail required by local TB
Access detail required by global TB
Local TB miss
Global TB miss

FIG. 104C continued
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W.SWITCH.B
W.SWITCH.L

Wide switch big-endian
Wide switch Iittle-endian

FIG.I05A
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Format

op ra=rc,rd,rb

ra=op(rc,rd,rb)

31 24 23 18 17 12 11 6 5 0

I op I rd I rc I rb I ra I
8 6 6 6 6

FIG.105B
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def WideSwitch(op,rd,rc,rb,ra)
d~ RegRead(rd, 128)
c ~ RegRead(rc, 64)
b ~ RegRead(rb, 128)
if c1..0 '" 0 then

raise AccessDisallowedByVirtualAddress
elseif c6..0 ¢ 0 then

VirtAddr~ c and (c-1)

w~ wsize~ (c and (O-c» II 01

else
VirtAddr~ c

.w~wsize~ 128
endif
msize~ 8*wsize
lwsize ~ log(wsize)
case op of

W.SWITCH.B:
order~ B

W.SWITCH.L:
order~L

endcase
m ~ LoadMemory(c,VirtAddr,msize,order)
db~d II b
for i~ 0 to 127

j ~ 0 II ilwsize-1..0
k ~ m7*w+jllm6*w+jllmS*w+jllm4*w+jllm3*w+jllm2*w+jllmw+jllmj

}~ i7..lwsize Iljlwsize-1..0
ai ~ db}

endfor
RegWrite(ra, 128, a)

enddef

FIG. lOSC
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Exceptions

Access disallowed by virtual address
Access disallowed by tag
Access disallowed by global TB
Access disallowed by local TB
Access detail required by tag
Access detail required by local TB
Access detail required by global TB
Local TB miss
Global TB miss

FIG. 105C continued
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W.TRANSLATE.8.B Wide translate bytes big-endian
W.TRANSLATE.16.B Wide translate doublets big-endian
W.TRANSLATE.32.B Wide translate quadlets big-endian
W.TRANSLATE.64.B Wide translate octlets big-endian
W.TRANSLATE.8.L Wide translate bytes little-endian
W.TRANSLATE.16.L Wide translate doublets little-endian
W.TRANSLATE.32.L Wide translate quadlets Iittle-endian
W.TRANSLATE.64.L Wide translate octlets little-endian

FIG.I06A
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W.TRANSLATE.size.order rd=rc,rb

rd=wtranslatesizeorder(rC,rb)

31 2423 1817 1211 65 4 3 0
1~"'w"".T""'RAN~sL"'A"""TE""'.o-rd"'er-""I--rd---rI--r-c--I~--r-b--l~r--o=---I

8 6 6 6 2 4

FIG.I06B
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def WideTranslate(op,gsize,rd,rc,rb)
e +- RegRead(fe, 64)
b +- RegRead(rb, 128)
19size +- log(gsize)
if Clgsize-4..0 '# 0 then

raise AccessDisallowedByVirtualAddress
endif
if c4..lgsize-3 '# 0 then

wsize ~ (e and (O-c» II 03

t ~ c and (c-l)
else

wsize ~ 128
t~c

endif
lwsize +-log(wsize)
iftlwsize+4..lwsize-2 '# 0 then

msize +- (t and (O-t» II 04

VirtAddr~ t and (t-l)
else

msize ~ 256*wsize
VirtAddr ~ t

endif
case op of

W.TRANSLATE.B:
order~B

W.TRANSLATE.L:
order~ L

endcase
m ~ LoadMemory(c,VirtAddr,msize,order)
vsize ~ msize/wsize
lvsize ~ log(vsize)
for i .(- 0 to 128-gsize by gsize

j ~ «order=B)lvsizeY(blvsize_1 +i..i»*wsize+ilwsize-I ..O

agsize-l +i..i ~ mj+gsize-1..j
endfor
RegWrite(rd, 128, a)

enddef

FIG.I06C
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Exceptions

Access disallowed by virtual address
Access disallowed by tag
Access disallowed by global TB
Access disallowed by local TB
Access detail required by tag
Access detail required by local TB
Access detail required by global TB
Local TB miss
Global TB miss
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METHOD AND SOFTWARE FOR GROUP
FLOATING-POINT ARITHMETIC

OPERATIONS

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica­
tion Ser. No. 10/436,340, filed May 13, 2003 now U.S. Pat.
No. 7,516,308, which is a continuation of U.S. patent appli­
cation Ser. No. 09/534,745, filed Mar. 24, 2000, now U.S. Pat.
No. 6,643,765, which is a continuation of U.S. patent appli­
cation Ser. No. 09/382,402, filedAug. 24, 1999, now U.S. Pat.
No. 6,295,599, and which is a continuation-in-part of U.S.
patent application Ser. No. 09/169,963, filed Oct. 13, 1998,
now U.S. Pat. No. 6,006,318, which is a continuation ofU.S.
patent application Ser. No. 08/754,827, filed Nov. 22, 1996,
now U.S. Pat. No. 5,822,603, which is a division of U.S.
patent application Ser. No. 08/516,036, filed Aug. 16, 1995,
now U.S. Pat. No. 5,742,840.

This application is a continuation of U.S . patent applica­
tionSer. No. 11/511,466, filedAug. 29, 2006 now abandoned,
which is a continuation of U.S. patent application Ser. No.
10/646,787, filed Aug. 25, 2003, now U.S. Pat. No. 7,216,
217, which is a continuation of U.S. patent application Ser.
No. 09/922,319, filed Aug. 2, 2001 now U.S. Pat. No. 6,725,
356, which is a continuation of U.S. patent application Ser.
No. 09/382,402, filedAug. 24, 1999,nowU.S. Pat. No. 6,295,
599, which claims the benefit ofpriority to Provisional Appli­
cation No. 60/097,635 filed Aug. 24, 1998, and is a continu­
ation-in-part of U.S . patent application Ser. No. 09/169,963,
filed Oct. 13, 1998, now U.S. Pat. No. 6,006,318, which is a
continuation of U.S. patent application Ser. No. 08/754,827,
filed Nov. 22, 1996 now U.S. Pat. No. 5,822,603, which is a
divisional of U.S. patent application Ser. No. 08/516,036,
filed Aug. 16, 1995 now U.S. Pat. No. 5,742,840.

The contents of all the U.S. patent applications and provi­
sional applications listed above are hereby incorporated by
reference including their appendices in their entirety.

FIELD OF THE INVENTION

The present invention relates to general purpose processor
architectures, and particularly relates to general purpose pro­
cessor architectures capable of executing group operations.

BACKGROUND OF THE INVENTION

The performance level of a processor, and particularly a
general purpose processor, can be estimated from the mul­
tiple ofa plurality of interdependent factors: clock rate, gates
per clock, number of operands, operand and data path width,
and operand and data path partitioning. Clock rate is largely
influenced by the choice ofcircuit and logic technology, but is
also influenced by the number of gates per clock. Gates per
clock is how many gates in a pipeline may change state in a
single clock cycle. This can be reduced by inserting latches
into the data path: when the number ofgates between latches
is reduced, a higher clock is possible. However, the additional
latches produce a longer pipeline length, and thus come at a
cost ofincreased instruction latency. The number ofoperands
is straightforward; for example, by adding with carry-save
techniques, three values may be added together with little
more delay than is required for adding two values. Operand
and data path width defines how much data can be processed
at once; wider data paths can perform more complex func­
tions, but generally this comes at a higher implementation

2
cost. Operand and data path partitioning refers to the efficient
use ofthe data path as width is increased, with the objective of
maintaining substantially peak usage.

SUMMARY OF THE INVENTION

Embodiments of the invention pertain to systems and
methods for enhancing the utilization of a general purpose
processor by adding classes of instructions. These classes of

10 instructions use the contents of general purpose registers as
data path sources, partition the operands into symbols of a
specified size, perform operations in parallel, catenate the
results and place the catenated results into a general-purpose
register. Some embodiments of the invention relate to a gen-

15 eral purpose microprocessor which has been optimized for
processing and transmitting media data streams through sig­
nificant parallelism.

Some embodiments ofthe present invention provide a sys­
tem and method for improving the performance of general

20 purpose processors by including the capability to execute
group operations involving multiple floating-point operands.
In one embodiment, a programmable media processor com­
prises a virtual memory addressing unit, a data path, a register
file comprising a plurality of registers coupled to the data

25 path, and an execution unit coupled to the data path capable of
executing group-floating point operations in which multiple
floating-point operations stored in partitioned fields ofone or
more of the plurality of registers are operated on to produce
catenated results. The group floating-point operations may

30 involve operating on at least two ofthe multiple floating-point
operands in parallel. The catenated results may be returned to
a register, and general purpose registers may used as operand
and result registers for the floating-point operations. In some
embodiments the execution unit may also be capable of per-

35 forming group floating-point operations on floating-point
data of more than one precision. In some embodiments the
group floating-point operations may include group add,
group subtract, group compare, group multiply and group
divide arithmetic operations that operate on catenated float-

40 ing-point data. In some embodiments, the group floating­
point operations may include group multiply-add, group
scale-add, and group set operations that operate on catenated
floating-point data.

45 In one embodiment, the execution unit is also capable of
executing group integer instructions involving multiple inte­
ger operands stored in partitioned fields of registers. The
group integer operations may involve operating on at least
two of the multiple integer operands in parallel. The group

50 integer operations may include group add, group subtract,
group compare, and group multiply arithmetic operations that
operate on catenated integer data.

In one embodiment, the execution unit is capable of per­
forming group data handling operations, including operations

55 that copy, operations that shift, operations that rearrange and
operations that resize catenated integer data stored in a reg­
ister and return catenated results. The execution unit may also
be configurable to perform group data handling operations on
integer data having a symbol width of 8 bits, group data

60 handling operations on integer data having a symbol width of
16 bits, and group data handling operations on integer data
having a symbol width of 32 bits. In one embodiment, the
operations are controlled by values in a register operand. In
one embodiment, the operations are controlled by values in

65 the instruction.
In one embodiment, the multi-precision execution unit is

capable of executing a Galois field instruction operation.
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In one embodiment, the multi-precision execution unit is
configurable to execute a plurality of instruction streams in
parallel from a plurality of threads, and the programmable
media processor further comprises a register file associated
with each thread executing in parallel on the multi-precision
execution unit to support processing of the plurality of
threads. In some embodiments, the multi-precision execution
unit executes instructions from the plurality of instruction
streams in a round-robin manner. In some embodiments, the
processor ensures only one thread from the plurality of 10

threads can handle an exception at any given time.

Some embodiments ofthe present invention provide a mul­
tiplier array that is fully used for high precision arithmetic, but
is only partly used for other, lower precision operations. This
can be accomplished by extracting the high-order portion of 15

the multiplier product or sum of products, adjusted by a
dynamic shift amount from a general register or an adjust­
ment specified as part of the instruction, and rounded by a
control value from a register or instruction portion. The
rounding may be any of several types, including round-to- 20

nearest/even; toward zero, floor, or ceiling. Overflows are
typically handled by limiting the result to the largest and
smallest values that can be accurately represented in the out­
put result.

25
When an extract is controlled by a register, the size of the

result can be specified, allowing rounding and limiting to a
smaller number ofbits than can fit in the result. This permits
the result to be scaled for use in subsequent operations with­
out concern ofoverflow or rounding. As a result, performance 30

is enhanced. In those instances where the extract is controlled
by a register, a single register value defines the size of the
operands, the shift amount and size of the result, and the
rounding control. By placing such control information in a
single register, the size of the instruction is reduced over the 35

number of bits that such an instruction would otherwise
require, again improving performance and enhancing proces­
sor flexibility. Exemplary instructions are Ensemble Con­
volve Extract, Ensemble Multiply Extract, Ensemble Multi­
ply Add Extract, and Ensemble Scale Add Extract. With 40

particular regard to the Ensemble Scale Add Extract Instruc­
tion, the extract control information is combined in a register
with two values used as scalar multipliers to the contents of
two vector multiplicands. This combination reduces the num­
ber ofregisters otherwise required, thus reducing the number
of bits required for the instruction. 45

In one embodiment, the processor performs load and store
instructions operable to move values between registers and
memory. In one embodiment, the processor performs both
instructions that verify aligument of memory operands and 50

instructions that permit memory operands to be unaligned. In
one embodiment, the processor performs store multiplex
instructions operable to move to memory a portion of data
contents controlled by a corresponding mask contents. In one
embodiment, this masked storage operation is performed by 55

indivisibly reading-modifying-writing a memory operand.

In one embodiment, all processor, memory and interface
resources are directly accessible to high-level language pro­
grams. In one embodiment, assembler codes and high-level
language formats are specified to access enhanced instruc- 60

tions. In one embodiment interface and system state is
memory mapped, so that it can be manipulated by compiled
code. In one embodiment, software libraries provide other
operations required by the ANSI/IEEE floating-point stan­
dard. In one embodiment, software conventions are employed 65

at software module boundaries, in order to permit the combi­
nation of separately compiled code and to provide standard

4
interfaces between application, library and system software.
In one embodiment, instruction scheduling is performed by a
compiler.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a system level diagram showing the functional
blocks of a system according to the present invention.

FIG. 2 is a matrix representation ofa wide matrix multiply
in accordance with one embodiment ofthe present invention.

FIG. 3 is a further representation ofa wide matrix multiple
in accordance with one embodiment ofthe present invention.

FIG. 4 is a system level diagram showing the functional
blocks of a system incorporating a combined Simultaneous
Multi Threading and Decoupled Access from Execution pro­
cessor in accordance with one embodiment of the present
invention.

FIG. 5 illustrates a wide operand in accordance with one
embodiment of the present invention.

FIG. 6 illustrates an approach to specifier decoding in
accordance with one embodiment of the present invention.

FIG. 7 illustrates in operational block form a Wide Func­
tion Unit in accordance with one embodiment of the present
invention.

FIG. 8 illustrates in flow diagram form the Wide Micro-
cache control function.

FIG. 9 illustrates Wide Microcache data structures.
FIGS. 10 and 11 illustrate a Wide Microcache control.
FIG. 12 is a timing diagram of a decoupled pipeline struc-

ture in accordance with one embodiment ofthe present inven­
tion.

FIG. 13 further illustrates the pipeline organization ofFIG.
12.

FIG. 14 is a diagram illustrating the basic organization of
the memory management system according to the present
embodiment of the invention.

FIG. 15 illustrates the physical address ofan LTB entry for
thread th, entry en, byte b.

FIG. 16 illustrates a definition for AccessPhysicalLTB.
FIG. 17 illustrates how various 16-bit values are packed

together into a 64-bit LTB entry.
FIG. 18 illustrates global access as fields of a control reg­

ister.
FIG. 19 shows how a single-set LTB context may be further

simplified by reserving the implementation of the 1m and la
registers.

FIG. 20 shows the partitioning of the virtual address space
if the largest possible space is reserved for an address space
identifier.

FIG. 21 shows how the LTB protect field controls the
minimum privilege level required for each memory action of
read (r), write (w), execute (x), and gateway (g), as well as
memory and cache attributes of write allocate (wa), detail
access (da), strong ordering (so), cache disable (cd), and write
through (wt).

FIG. 22 illustrates a definition for LocalTranslation.
FIG. 23 shows how the low-order GT bits ofthe th value are

ignored, reflecting that 2GT threads share a single GTB.
FIG. 24 illustrates a definition for AccessPhysicalGTB.
FIG. 25 illustrates the format of a GTB entry.
FIG. 26 illustrates a definition for GlobalAddressTransla­

tion.
FIG. 27 illustrates a definition for GTBUpdateWrite.
FIG. 28 shows how the low-order GT bits ofthe th value are

ignored, reflecting that 2GT threads share single GTB regis­
ters.
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FIGS. 44A-44D illustrate Crossbar Extract instructions in
accordance with an exemplary embodiment of the present
invention.

FIGS. 44E-44K illustrate Ensemble Extract instructions in
accordance with an exemplary embodiment of the present
invention.

FIGS. 45A-45F illustrate Deposit and Withdraw instruc­
tions in accordance with an exemplary embodiment of the
present invention.

FIGS. 45G-45J illustrate Deposit Merge instructions in
accordance with an exemplary embodiment of the present
invention.

FIGS. 46A-46E illustrate Shuffle instructions in accor­
dance with an exemplary embodiment of the present inven­
tion.

FIGS. 47A-47C illustrate Swizzle instructions in accor­
dance with an exemplary embodiment of the present inven­
tion.

FIGS. 47D-47E illustrate Select instructions in accordance
with an exemplary embodiment of the present invention.

FIG. 48 is a pin summary describing the functions ofvari­
ous pins in accordance with the one embodiment of the
present invention.

FIGS. 49A-49G present electrical specifications describ­
ing AC and DC parameters in accordance with one embodi­
ment of the present invention.

FIGS. 50A-50C illustrate Load instructions in accordance
with an exemplary embodiment of the present invention.

FIGS. 51A-51C illustrate Load Immediate instructions in
accordance with an exemplary embodiment of the present
invention.

FIGS. 52A-52C illustrate Store and Store Multiplex
instructions in accordance with an exemplary embodiment of
the present invention.

FIGS. 53A-53C illustrate Store Immediate and Store Mul­
tiplex Immediate instructions in accordance with an exem­
plary embodiment of the present invention.

FIGS. 54A-54E illustrate Data-Handling Operations in
accordance with an exemplary embodiment of the present
invention.

FIG. 54F illustrates Procedure Calling Conventions in
accordance with an exemplary embodiment of the present
invention.

FIG. 54G illustrates alignment within the dp region in
accordance with an exemplary embodiment of the present
invention.

FIG. 54H illustrates gateway with pointers to code and data
spaces in accordance with an exemplary embodiment of the
present invention.

FIGS. 55-56 illustrate an expected rate at which memory
requests are serviced in accordance with an exemplary
embodiment of the present invention.

FIG. 57 is a pinout diagram in accordance with an exem­
plary embodiment of the present invention.

FIGS. 58A-58C illustrate Always Reserved instructions in
accordance with an exemplary embodiment of the present
invention.

FIGS. 59A-59C illustrate Address instructions in accor­
60 dance with an exemplary embodiment of the present inven­

tion.
FIGS. 60A-60C illustrateAddress Compare instructions in

accordance with an exemplary embodiment of the present
invention.

FIGS. 61A-61C illustrate Address Copy Immediate
instructions in accordance with an exemplary embodiment of
the present invention.

FIG. 29 illustrates the registers GTBLast, GTBFirst, and
GTBBump.

FIG. 30 illustrates a definition for AccessPhysicalGT­
BRegisters.

FIGS. 31A-31C illustrate Group Boolean instructions in
accordance with an exemplary embodiment of the present
invention.

FIGS. 31D-31E illustrate Group Multiplex instructions in
accordance with an exemplary embodiment of the present
invention.

FIGS. 32A-32C illustrate Group Add instructions in accor­
dance with an exemplary embodiment of the present inven­
tion.

FIGS. 33A-33C illustrate Group Subtract and Group Set
instructions in accordance with an exemplary embodiment of 15

the present invention.
FIGS. 34A-34C illustrate Ensemble Divide and Ensemble

Multiply instructions in accordance with an exemplary
embodiment of the present invention.

FIGS. 35A-35C illustrate Group Compare instructions in 20

accordance with an exemplary embodiment of the present
invention.

FIGS. 36A-36C illustrate Ensemble Unary instructions in
accordance with an exemplary embodiment of the present
invention. 25

FIG. 37 illustrates exemplary functions that are defined for
use within the detailed instruction definitions in other sec­
tions.

FIGS. 38A-38C illustrate Ensemble Floating-Point Add,
Ensemble Floating-Point Divide, and Ensemble Floating- 30

Point Multiply instructions in accordance with an exemplary
embodiment of the present invention.

FIGS. 38D-38F illustrate Ensemble Floating-Point Multi­
ply Add instructions in accordance with an exemplary 35

embodiment of the present invention.
FIGS. 38G-38I illustrate Ensemble Floating-Point Scale

Add instructions in accordance with an exemplary embodi­
ment of the present invention.

FIGS. 39A-39C illustrate Ensemble Floating-Point Sub- 40

tract instructions in accordance with an exemplary embodi­
ment of the present invention.

FIGS. 39D-39G illustrate Group Set Floating-point
instructions in accordance with an exemplary embodiment of
the present invention.

FIGS. 40A-40C illustrate Group Compare Floating-point
instructions in accordance with an exemplary embodiment of
the present invention.

FIGS. 41A-41C illustrate Ensemble Unary Floating-point
instructions in accordance with an exemplary embodiment of 50

the present invention.
FIGS. 42A-42D illustrate Ensemble Multiply Galois Field

instructions in accordance with an exemplary embodiment of
the present invention.

FIGS. 43A-43D illustrate Compress, Expand, Rotate, and 55

Shift instructions in accordance with an exemplary embodi­
ment of the present invention.

FIGS. 43E-43G illustrate Shift Merge instructions in
accordance with an exemplary embodiment of the present
invention.

FIGS. 43H-43J illustrate Compress Immediate, Expand
Immediate, Rotate Immediate, and Shift Immediate instruc­
tions in accordance with an exemplary embodiment of the
present invention.

FIGS. 43K-43M illustrate Shift Merge Immediate instruc- 65

tions in accordance with an exemplary embodiment of the
present invention.
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Immediate
exemplary

FIGS. 84A-84C illustrate Store Immediate Inplace instruc­
tions in accordance with an exemplary embodiment of the
present invention.

FIGS. 8SA-8SC illustrate Store Inplace instructions in
accordance with an exemplary embodiment of the present
invention.

FIGS. 86A-86C illustrate Group Add Halve instructions in
accordance with an exemplary embodiment of the present
invention.

FIGS. 87A-87C illustrate Group Copy Immediate instruc­
tions in accordance with an exemplary embodiment of the
present invention.

FIGS. 88A-88C illustrate Group Immediate instructions in
accordance with an exemplary embodiment of the present

15 invention.
FIGS. 89A-89C illustrate Group Immediate Reversed

instructions in accordance with an exemplary embodiment of
the present invention.

FIGS. 90A-90C illustrate Group Inplace instructions in
20 accordance with an exemplary embodiment of the present

invention.
FIGS. 9lA-9lC illustrate Group Shift Left Immediate

instructions in accordance with an exemplary embodiment of
the present invention.

FIGS. 92A-92C illustrate Group Shift Left
Subtract instructions in accordance with an
embodiment of the present invention.

FIGS. 93A-93C illustrate Group Subtract Halve instruc­
tions in accordance with an exemplary embodiment of the

30 present invention.
FIGS. 94A-94C illustrate Ensemble instructions in accor­

dance with an exemplary embodiment of the present inven­
tion.

FIGS. 9SA-9SE illustrate Ensemble Convolve Extract
35

Immediate instructions in accordance with an exemplary
embodiment of the present invention.

FIGS. 96A-96E illustrate Ensemble Convolve Floating­
Point instructions in accordance with an exemplary embodi­

40 ment of the present invention.
FIGS. 97A-97G illustrate Ensemble Extract Immediate

instructions in accordance with an exemplary embodiment of
the present invention.

FIGS. 98A-98G illustrate Ensemble Extract Immediate
45 Inplace instructions in accordance with an exemplary

embodiment of the present invention.
FIGS. 99A-99C illustrate Ensemble Inplace instructions in

accordance with an exemplary embodiment of the present
invention.

FIGS. 1OOA-l OOE illustrate Wide Multiply Matrix instruc­
tions in accordance with an exemplary embodiment of the
present invention.

FIGS.lOlA-lOlE illustrate Wide Multiply Matrix Extract
instructions in accordance with an exemplary embodiment of

55 the present invention.
FIGS.102A-102E illustrate Wide Multiply Matrix Extract

Immediate instructions in accordance with an exemplary
embodiment of the present invention.

FIGS. l03A-103E illustrate Wide Multiply Matrix Float­
60 ing-Point Immediate instructions in accordance with an

exemplary embodiment of the present invention.
FIGS. l04A-104D illustrate Wide Multiply Matrix Galois

Immediate instructions in accordance with an exemplary
embodiment of the present invention.

FIGS. lOSA-lOSC illustrate Wide Switch Immediate
instructions in accordance with an exemplary embodiment of
the present invention.

FIGS. 62A-62C illustrate Address Immediate instructions
in accordance with an exemplary embodiment of the present
invention.

FIGS. 63A-63C illustrate Address Immediate Reversed
instructions in accordance with an exemplary embodiment of
the present invention.

FIGS. 64A-64C illustrateAddress Reversed instructions in
accordance with an exemplary embodiment of the present
invention.

FIGS. 6SA-6SC illustrate Address Shift Left Immediate 10

Add instructions in accordance with an exemplary embodi­
ment of the present invention.

FIGS. 66A-66C illustrate Address Shift Left Immediate
Subtract instructions in accordance with an exemplary
embodiment of the present invention.

FIGS. 67A-67C illustrate Address Shift Left Immediate
instructions in accordance with an exemplary embodiment of
the present invention.

FIGS. 68A-68C illustrate Address Ternary instructions in
accordance with an exemplary embodiment of the present
invention.

FIGS. 69A-69C illustrate Branch instructions in accor­
dance with an exemplary embodiment of the present inven­
tion.

FIGS. 70A-70C illustrate Branch Back instructions in 25

accordance with an exemplary embodiment of the present
invention.

FIGS. 71A-71C illustrate Branch Barrier instructions in
accordance with an exemplary embodiment of the present
invention.

FIGS. 72A-72C illustrate Branch Conditional instructions
in accordance with an exemplary embodiment of the present
invention.

FIGS. 73A-73C illustrate Branch Conditional Floating­
Point instructions in accordance with an exemplary embodi­
ment of the present invention.

FIGS. 74A-74C illustrate Branch Conditional Visibility
Floating-Point instructions in accordance with an exemplary
embodiment of the present invention.

FIGS. 7SA-7SC illustrate Branch Down instructions in
accordance with an exemplary embodiment of the present
invention.

FIGS. 76A-76C illustrate Branch Gateway instructions in
accordance with an exemplary embodiment of the present
invention.

FIGS. 77A-77C illustrate Branch Halt instructions in
accordance with an exemplary embodiment of the present
invention.

FIGS. 78A-78C illustrate Branch Hint instructions in 50

accordance with an exemplary embodiment of the present
invention.

FIGS. 79A-79C illustrate Branch Hint Immediate instruc­
tions in accordance with an exemplary embodiment of the
present invention.

FIGS. 80A-80C illustrate Branch Immediate instructions
in accordance with an exemplary embodiment of the present
invention.

FIGS. 8lA-8lC illustrate Branch Immediate Link instruc­
tions in accordance with an exemplary embodiment of the
present invention.

FIGS. 82A-82C illustrate Branch Link instructions in
accordance with an exemplary embodiment of the present
invention.

FIGS. 83A-83C illustrate Store Double Compare Swap 65

instructions in accordance with an exemplary embodiment of
the present invention.
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FIGS. 106A-106C illustrate Wide Translate instructions in
accordance with an exemplary embodiment of the present
invention.

DETAILED DESCRIPTION OF THE INVENTION

10
Conformance

To ensure that Zeus systems may freely interchange data,
user-level programs, system-level programs and interface
devices, the Zeus system architecture reaches above the pro­
cessor level architecture.

35 Common Elements

Notation
The descriptive notation used in this document is summa­

rized in the table below:

Unrestricted Physical Implementation

Nothing in this specification should be construed to limit
the implementation choices ofthe conforming system beyond
the specific requirements stated herein. In particular, a com­
puter system may conform to the Zeus System Architecture
while employing any number of components, dissipate any
amount of heat, require any special environmental facilities,
or be of any physical size.

Optional Areas
Optional areas include:
Number of processor threads
Size of first-level cache memories
Existence of a second-level cache

Size of second-level cache memory

Size of system-level memory

Existence of certain optional interface device interfaces

descriptive notation

two's complement addition ofx and y. Result is the same size as
the operands, and operands must be of equal size.
two's complement subtraction ofy from x. Result is the same
size as the operands, and operands must be of equal size.
two's complement multiplication ofx and y. Result is the same
size as the operands, and operands must be of equal size.
two's complement division ofx by y. Result is the same size as
the operands, and operands must be of equal size.
bitwise and ofx and y. Result is same size as the operands, and
operands must be of equal size.
bitwise or ofx and y. Result is same size as the operands, and
operands must be of equal size.
bitwise exclusive-OR ofx and y. Result is same size as the
operands, and operands must be of equal size.
bitwise inversion ofx. Result is same size as the operand.
two's complement equality comparison between x and y. Result
is a single bit, and operands must be of equal size.
two's complement inequality comparison between x and y.
Result is a single bit, and operands must be of equal size.
two's complement less than comparison between x and y.
Result is a single bit, and operands must be of equal size.
two's complement greater than or equal comparison between x
and y. Result is a single bit, and operands must be of equal size.
floating-point square root ofx
concatenation of bit field x to left of bit field y
binary digit x repeated, concatenated y times. Size of result is y.
extraction of bit y (using little-endian bit numbering) from
value x. Result is a single bit.

Upward-Compatible Modifications
Additional devices and interfaces, not covered by this stan­

dard may be added in specified regions of the physical
memory space, provided that system reset places these
devices and interfaces in an inactive state that does not inter­
fere with the operation of software that runs in any conform­
ant system. The software interface requirements of any such
additional devices and interfaces must be made as widely
available as this architecture specification.

x+y
45

x-y

x*y

x/y
50

x&y

xly

x y

55
-x
x~y

x'"'y

60
x<y

x~y

-Ix
x II y
xl'

65 x"

Introduction

In various embodiments of the invention, a computer pro­
cessor architecture, referred to here as MicroUnity's Zeus 10

Architecture is presented. MicroUnity's Zeus Architecture
describes general-purpose processor, memory, and interface
subsystems, organized to operate at the enormously high
bandwidth rates required for broadband applications.

15
The Zeus processor performs integer, floating point, signal

processing and non-linear operations such as Galois field,
table lookup and bit switching on data sizes from I bit to 128
bits. Group or SIMD (single instruction multiple data) opera­
tions sustain external operand bandwidth rates up to 512 bits 20

(i.e., up to four 128-bit operand groups) per instruction even
on data items ofsmall size. The processor performs ensemble
operations such as convolution that maintain full intermediate
precision with aggregate internal operand bandwidth rates up
to 20,000 bits per instruction. The processor performs wide 25

operations such as crossbar switch, matrix multiply and table
lookup that use caches embedded in the execution units them­
selves to extend operands to as much as 32768 bits. All
instructions produce at most a single 128-bit register result,
source at most three 128-bit registers and are free of side 30

effects such as the setting of condition codes and flags. The
instruction set design carries the concept of streamlining
beyond Reduced Instruction Set Computer (RISC) architec­
tures, to simplifY implementations that issue several instruc­
tions per machine cycle.

The Zeus memory subsystem provides 64-bit virtual and
physical addressing for UNIX, Mach, and other advanced OS
environments. Separate address instructions enable the divi­
sion of the processor into decoupled access and execution
units, to reduce the effective latency of memory to the pipe- 40

line. The Zeus cache supplies the high data and instruction
issue rates of the processor, and supports coherency primi­
tives for scaleable multiprocessors. The memory subsystem
includes mechanisms for sustaining high data rates not only
in block transfer modes, but also in non-unit stride and scat­
tered access patterns.

The Zeus interface subsystem is designed to match indus­
try-standard "Socket 7" protocols and pin-outs. In this way,
Zeus can make use ofthe immense infrastructure ofthe PC for
building low-cost systems. The interface subsystem is modu­
lar, and can be replaced with appropriate protocols and pin­
outs for lower-cost and higher-performance systems.

The goal of the Zeus architecture is to integrate these
processor, memory, and interface capabilities with optimal
simplicity and generality. From the software perspective, the
entire machine state consists of a program counter, a single
bank of 64 general-purpose 128-bit registers, and a linear
byte-addressed shared memory space with mapped interface
registers. All interrupts and exceptions are precise, and occur
with low overhead.

Examples discussed herein are for Zeus software and hard­
ware developers alike, and defines the interface at which their
designs must meet. Zeus pursues the most efficient tradeoffs
between hardware and software complexity by making all
processor, memory, and interface resources directly acces­
sible to high-level language programs.
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With big-endian byte ordering, the bytes are arranged as:
-continued

descriptive notation s*8-1 s*8-8 s*8-9 s*8-16 7 a
xy extraction of bit field formed from bits y through z of value x.

Size ofresult is y - z + 1; if z > Y, result is an empty string,
x?y:z value afy, if x is true, otherwise value ofz. Value ofx is a

single bit.
x ~y bitwise assignment ofx to value ofy

Sn signed, two's complement, binary data format ofn bytes
Un unsigned binary data format ofn bytes
Fn floating-point data format ofn bytes

Bit Ordering
The ordering of bits in this document is always little­

endian, regardless of the ordering ofbytes within larger data
structures. Thus, the least-significant bit of a data structure is
always labeled 0 (zero), and the most-significant bit is labeled
as the data structure size (in bits) minus one.

Memory
Zeus memory is an array of 264 bytes, without a specified

byte ordering, which is physically distributed among various
components.

Memory Read/Load Semantics
20

Zeus memory, including memory-mapped registers, must
conform to the following requirements regarding side-effects
of read or load operations:

A memory read must have no side-effects on the contents
25 of the addressed memory nor on the contents of any other

memory.

Zeus memory is byte-addressed, using either little-endian
10 or big-endian byte ordering. For consistency with the bit

ordering, and for compatibility with x86 processors, Zeus
uses little-endian byte ordering when an ordering must be
selected. Zeus load and store instructions are available for
both little-endian and big-endian byte ordering. The selection

15 of byte ordering is dynamic, so that little-endian and big­
endian processes, and even data structures within a process,
can be intermixed on the processor.

byte i+s-l

8 8

byte i byte i+1

a7

byte a
byte 1

byte 2

byte 264_1

Byte

A byte is a single element of the memory array, consisting
of8 bits:

7

byte

a

Memory Write/Store Semantics

Zeus memory, including memory-mapped registers, must
30 conform to the following requirements regarding side-effects

of read or load operations:

A memory write must affect the contents of the addressed
memory so that a memory read of the addressed memory

35 returns the value written, and so that a memory read of a
portion ofthe addressed memory returns the appropriate por­
tion of the value written.

A memory write may affect or cause side-effects on the
contents of memory not addressed by the write operation,

40 however, a second memory write of the same value to the
same address must have no side-effects on any memory;
memory write operations must be idempotent.

Zeus store instructions that are weakly ordered may have
45 side-effects on the contents of memory not addressed by the

store itself; subsequent load instructions which are also
weakly ordered mayor may not return values which reflect
the side-effects.

50Byte Ordering
Larger data structures are constructed from the concatena­

tion of bytes in either little-endian or big-endian byte order­
ing. A memory access of a data structure of size s at address
i is formed from memory bytes at addresses i through i+s-I.
Unless otherwise specified, there is no specific requirement of 55

aligmnent: it is not generally required that i be a multiple ofs.
Aligned accesses are preferred whenever possible, however,
as they will often require one fewer processor or memory
clock cycle than unaligned accesses.

With little-endian byte ordering, the bytes are arranged as: 60

Data

Zeus provides eight-byte (64-bit) virtual and physical
address sizes, and eight-byte (64-bit) and sixteen-byte (128­
bit) data path sizes, and uses fixed-length four-byte (32-bit)
instructions. Arithmetic is performed on two's-complement
or unsigned binary and ANSI/IEEE standard 754-1985 con­
forming binary floating-point number representations.

Fixed-Point Data

Bit

A bit is a primitive data element:

s*8-1 s*8-8

byte i+s-l

15 8 7

byte i+l

a
byte i

8 65

a
IMI

1
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Peck

A peck is the catenation of two bits:

US 7,730,287 B2
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Hexlet
A hexlet is the catenation of 128 bits, and is the catenation

of sixteen bytes:

1 a
I peck I

2

Nibble

A nibble is the catenation of four bits:

3 a
I nibble I

4

10

15

127 96

I hexlet127..96 I
32

95 64

I hexlet95 .. 64 I
32

63 32

I hexlet63 ..32 I
32

31 a

I hexlet31..0 I
32

Byte

A byte is the catenation ofeight bits, and is a single element
of the memory array:

20

Triclet
A triclet is the catenation of 256 bits, and is the catenation

25 of thirty-two bytes:

7 a 255 224

I byte I I triclet255 ..224 I
8 32

30 223 192

I triclet223 .. 192 I
Doublet 32

A doublet is the catenation of 16 bits, and is the catenation
191 160

I triclet191 .. 160 Iof two bytes: 35 32

159 128

I triclet159 .. 128 I
15 a 32

I doublet I 127 96
16 40 I tricletl27 ..96 I

32

95 64

Quadlet I triclet95 ..64 I
A quadlet is the catenation of 32 bits, and is the catenation

32
45 63 32

of four bytes:
I triclet63 ..32 I

32

31 a 31 a

I quadlet I I triclet31...0 I
32

50 32

Address
Zeus addresses, both virtual addresses and physical

55 addresses, are octlet quantities.Octlet

An octlet is the catenation of 64 bits, and is the catenation
of eight bytes:

63 32 60

I octlet63 .. 32 I
32

31 a
I octlet31...0 I

32 65

Floating-Point Data
Zeus's floating-point formats are designed to satisfy ANSI!

IEEE standard 754-1985: Binary Floating-point Arithmetic.
Standard 754 leaves certain aspects to the discretion ofimple­
menters: additional precision formats, encoding of quiet and
signaling NaN values, details of production and propagation
of quiet NaN values. These aspects are detailed below.

Zeus adds additional half-precision and quad-precision
formats to standard 754's single-precision and double-preci­
sion formats. Zeus's double-precision satisfies standard
754's precision requirements for a single-extended format,
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127 126 112 111 96

~ I f ll 1..96 I
1 15 16

95 64

I f95 ..64 I
32

63 32

I f63 ..32 I
32

31 a

I f31..0

32

Zeus Processor
MicroUnity's Zeus processor provides the general-pur­

pose, high-bandwidth computation capability of the Zeus
system. Zeus includes high-bandwidth data paths, register
files, and a memory hierarchy. Zeus's memory hierarchy
includes on-chip instruction and data memories, instruction
and data caches, a virtual memory facility, and interfaces to
external devices. Zeus's interfaces in the initial implementa­
tion are solely the "Super Socket 7" bus, but other implemen­
tations may have different or additional interfaces.

Quad-Precision Floating-Point
Zeus quad precision satisfies standard 754's requirements

for "double extended," but has additional fraction precision to
use 128 bits.

Architectural Framework
The Zeus architecture defines a compatible framework for

a family of implementations with a range ofcapabilities. The
following implementation-defined parameters are used in the
rest of the document in boldface. The value indicated is for

40 MicroUnity's first Zeus implementation.1514 109 a
~--f-I

1 5 10

and Zeus's quad-precision satisfies standard 754's precision
requirements for a double-extended format.

Each precision format employs fields labeled s (sign), e
(exponent), and f(fraction) to encode values that are (1) NaN:
quiet and signaling, (2) infinities: (_I)'soo, (3) normalized
numbers: (-1 )'s2'e-bias(1.f), (4) denonnalized numbers:
(_I)'s2'1-bias(0.f), and (5) zero: (_I)'sO.

Quiet NaN values are denoted by any sign bit value, an
exponent field ofall one bits, and a non-zero fraction with the
most significant bit set. Quiet NaN values generated by 10

default exception handling ofstandard operations have a zero
sign bit, an exponent field ofall one bits, a fraction field with
the most significant bit set, and all other bits cleared.

Signaling NaN values are denoted by any sign bit value, an
exponent field ofall one bits, and a non-zero fraction with the 15

most significant bit cleared.
Infinite values are denoted by any sign bit value, an expo­

nent field of all one bits, and a zero fraction field.
Normalized number values are denoted by any sign bit

value, an exponent field that is not all one bits or all zero bits, 20

and any fraction field value. The numeric value encoded is
(-1 )'s2'e-bias(1.f). The bias is equal the value resulting from
setting all but the most significant bit of the exponent field,
half: 15, single: 127, double: 1023, and quad: 16383.

Denonnalized number values are denoted by any sign bit 25

value, an exponent field that is all zero bits, and a non-zero
fraction field value. The numeric value encoded is
(-1 )'s2'1-biaS(0.f).

Zero values are denoted by any sign bit value, and exponent
field that is all zero bits, and a fraction field that is all zero bits. 30

The numeric value encoded is (-1 )'sO. The distinction
between +0 and -0 is significant in some operations.

Half-Precision Floating-Point
Zeus halfprecision uses a format similar to standard 754's

requirements, reduced to a 16-bit overall format. The fonnat 35

contains sufficient precision and exponent range to hold a
12-bit signed integer.

Parameter Interpretation Value Range oflegal values

Interfaces and Block Diagram

The first implementation ofZeus uses "socket 7" protocols
60 and pinouts.

Instruction

Assembler Syntax

Instructions are specified to Zeus assemblers and other
65 code tools (assemblers) in the syntax of an instruction nme­

monic (operation code), then optionally white space (blanks
or tabs) followed by a list of operands.

CT

3130 2322 a 50

~ I I
LE

f LB
1 23

GE
GT

Single-precision Floating-Point
Zeus single precision satisfies standard 754' s requirements

for "single."

Double-Precision Floating-Point
Zeus double precision satisfies standard 754's require­

ments for "double."

6362 5251 32

~ I f51..32 I
1 11 20

31 a

I f31..0

32

45 T
CE

CS

55

number of execution threads
log2 cache blocks in first-level
cache
log2 cache blocks in first-level
cache set
existence of dedicated tags in
first-level cache
log2 entries in local TB
Local TB based on base
register
log2 entries in global TB
log2 threads which share a
global TB

4
9

2

a
1

7
1

1:'" T:'" 31
0:'" CE:'" 31

0:'" CS:"'4

a :"'CT:'" 1

0:'" LE:'" 3
a :"'LB:'" 1

a :"'GE:'" 15
a :"'GT:"'3
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The instruction mnemonics listed in this specification are

in upper case (capital) letters, assemblers accept either upper
case or lowercase letters in the instruction mnemonics. In this
specification, instruction mnemonics contain periods (" .") to
separate elements to make them easier to understand; assem­
blers ignore periods within instruction mnemonics. The
instruction mnemonics are designed to be parsed uniquely
without the separating periods.

If the instruction produces a register result, this operand is 10

listed first. Following this operand, if there are one or more
source operands, is a separator which may be a comma (","),
equal ("="), or at-sign ("@"). The equal separates the result
operand from the source operands, and may optionally be
expressed as a comma in assembler code. The at-sign indi- 15

cates that the result operand is also a source operand, and may
optionally be expressed as a comma in assembler code. If the
instruction specification has an equal-sign, an at-sign in
assembler code indicates that the result operand should be
repeated as the first source operand (for example, "A.ADD.I 20

r4@5" is equivalent to "A.ADD.I r4=r4,5"). Commas always
separate the remaining source operands.

The result and source operands are case-sensitive; upper
case and lower case letters are distinct. Register operands are 25

specified by the names rO (or rOO) through r63 (a lower case
"r" immediately followed by a one or two digit number from
oto 63), or by the special designations of "Ip" for "rO," "dp"
for "rl," "fp" for "r62," and "sp" for "r63." Integer-valued
operands are specified by an optional sign (-) or (+) followed 30

by a number, and assemblers generally accept a variety of
integer-valued expressions.

The gateway contains two data items within its structure, a
code address and a new privilege level:

63 21 0

1 c_o_d_e-::ad::-d_re_s_s 0
~ 2

The virtual memory system can be used to designate a
region ofmemory as containing gateways. Other data may be
placed within the gateway region, provided that if an attempt
is made to use additional data as a gateway, that security
carmot be violated. For example, 64-data or stack pointers
which are aligned to at least 4 bytes and are in little-endian
byte order have pl=O that the privilege level carmot be raised
by attempting to use the additional data as a gateway.

User State

The user state consists ofhardware data structures that are
accessible to all conventional compiled code. The Zeus user
state is designed to be as regular as possible, and consists of
the general registers, the program counter, and virtual
memory. There are no specialized registers for condition
codes, operating modes, rounding modes, integer multiply/
divide, or floating-point values.

General Registers

Zeus user state includes 64 general registers. All are iden­
tical; there is no dedicated zero-valued register, and there are
no dedicated floating-point registers.

Instruction Structure

A Zeus instruction is specifically defined as a four-byte 35

structure with the little-endian ordering shown below. It is
different from the quadlet defined above because the place­
ment of instructions into memory must be independent ofthe
byte ordering used for data structures. Instructions must be
aligned on four-byte boundaries; in the diagram below, i must 40

be a multiple of 4.

31 24 23 16 15 8 7 0

127

REG[O]
REG[I]
REG[2]

REG[62]
REG[63]

128

o

I__b_yt_e::-i_+_3_....I_b_y_te-::i_+_2_...JI,--_b_yt_e::-i_+_l_.J.I__by-::t_e_i__I 45
8 8

Gateway
A Zeus gateway is specifically defined as an 8-byte struc- 50

ture with the little-endian ordering shown below. A gateway
contains a code address used to securely invoke a system call
or procedure at a higher privilege level. Gateways are marked
by protection information specified in the TB. Gateways must
be aligned on 8-byte boundaries; in the diagram below, i must 55

be a multiple of8.

63 56 55 4847 40 39 32

1
byte i + 7

1
bytei+6

1
byte i + 5

1
byte i + 4

1
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31 24 23 16 15 8 7 0

1
byte i + 3

1
bytei+2

1
byte i + 1

1
byte i

1
65

Some Zeus instructions have 64-bit register operands.
These operands are sign-extended to 128 bits when written to
the register file, and the low-order 64 bits are chosen when
read from the register file.

Definition

defval +--- RegRead(m, size)
case size of

64:

val +--- REG[m]63 ..0
128:

val +---REG[m]
endcase

enddef
defRegWrite(m, size, val)

case size of
64:

REG[m] +---vaI6364II Val63 ..0
128:

REG[m] +---vaI127..0
endcase

enddef
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Program Counter and Privilege Level
The program counter and privilege level may be packed

into a single octlet. This combined data structure is saved by
the Branch Gateway instruction and restored by the Branch
Down instruction.

Program Counter
The program counter contains the address of the currently

executing instruction. This register is implicitly manipulated
by branch instructions, and read by branch instructions that
save a return address in a general register.

Branch
The fixed-point compare-and-branch instructions provide

all arithmetic tests for equality and inequality of signed and
unsigned fixed-point values. Tests are perfonned either
between two operands contained in general registers, or on
the bitwise and of two operands. Depending on the result of

25 the compare, either a branch is taken, or not taken. A taken
branch causes an immediate transfer of the program counter
to the target of the branch, specified by a 12-bit signed offset
from the location of the branch instruction. A non-taken
branch causes no transfer; execution continues with the fol-

30 lowing instruction.
Other branch instructions provide for unconditional trans­

fer ofcontrol to addresses too distant to be reached by a 12-bit
offset, and to transfer to a target while placing the location
following the branch into a register. The branch through gate-

35 way instruction provides a secure means to access code at a
higher privilege level, in a fonn similar to a normal procedure
call.

of the memory region and either an immediate value or
another general register. Scaling maximizes the memory
space which can be reached by immediate offsets from a
single base general register, and assists in generating memory
addresses within iterative loops. Alignment ofthe address can
be reduced to checking the alignment of the first general
register.

The load and store instructions are used for fixed-point data
as well as floating-point and digital signal processing data;

10 Zeus has a single bank of registers for all data types.
Swap instructions provide multithread and multiprocessor

synchronization, using indivisible operations: add-swap,
compare-swap, multiplex-swap, and double-compare-swap.
A store-multiplex operation provides the ability to indivisibly

15 write to a portion of an octlet. These instructions always
operate on aligned octlet data, using either little-endian or
big-endian byte ordering.

20

2

2 10

62

PrograrnCounter

63

Privilege Level
The privilege level register contains the privilege level of

the currently executing instruction. This register is implicitly
manipulated by branch gateway and branch down instruc­
tions, and read by branch gateway instructions that save a
return address in a general register.

Branch Conditionally
The floating-point compare-and-branch instructions pro­

vide all the comparison types required and suggested by the
IEEE floating-point standard. These floating-point compari-

Floating-Point Zeus provides all the facilities mandated and
recommended by ANSI/IEEE standard 754-1985: Binary
Floating-point Arithmetic, with the use of supporting soft­
ware.

65

Execution Operations
Many of the operations used for Digital Signal Processing

50 (DSP), which are described in greater detail below, are also
used for performing simple scalar operations. These opera­
tions perfonn arithmetic operations on values of8-, 16-,32-,
64-, or 128-bit sizes, which are right-aligned in registers.
These execution operations include the add, subtract, boolean

55 and simple shift operations which are also available as
addressing operations, but further extend the available set to
include three-operand add/subtract, three-operand boolean,
dynamic shifts, and bit-field operations.

Addressing Operations
A subset of general fixed-point arithmetic operations is

available as addressing operations. These include add, sub­
tract, Boolean, and simple shift operations. These addressing
operations may be performed at a point in the Zeus processor
pipeline so that they may be completed prior to or in conjunc­
tion with the execution of load and store operations in a

45 "superspring" pipeline in which other arithmetic operations
are deferred until the completion ofload and store operations.

Load and Store
The load and store instructions move data between

memory and the registers. When loading data from memory
into a register, values are zero-extended or sign-extended to
fill the register. When storing data from a register into
memory, values are truncated on the left to fit the specified
memory region.

Load and store instructions that specify a memory region of
more than one byte may use either little-endian or big-endian 60

byte ordering: the size and ordering are explicitly specified in
the instruction. Regions larger than one byte may be either
aligned to addresses that are an even multiple ofthe size ofthe
region or of unspecified alignment: alignment checking is
also explicitly specified in the instruction.

Load and store instructions specifY memory addresses as
the sum of a base general register and the product of the size

System State
The system state consists ofthe facilities not nonnally used

by conventional compiled code. These facilities provide 40

mechanisms to execute such code in a fully virtual environ­
ment. All system state is memory mapped, so that it can be
manipulated by compiled code.

Fixed-Point
Zeus provides load and store instructions to move data

between memory and the registers, branch instructions to
compare the contents ofregisters and to transfer control from
one code address to another, and arithmetic operations to
perform computation on the contents of registers, returning
the result to registers.
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code C-like Unordered Greater Less Equal unordered invalid

E F F F T no no
LG <> F T T F no no
L < F F T F no no 40
GE >~ F T F T no no

Arithmetic Operations
The basic operations supported in hardware are floating­

point add, subtract, multiply, divide, square root and conver­
sions among floating-point fonnats and between floating­
point and binary integer formats.

Software libraries provide other operations required by the
ANSI/IEEE floating-point standard.

The operations explicitly specify the precision of the
operation, and round the result (or check that the result is
exact) to the specified precision at the conclusion of each
operation. Each of the basic operations splits operand regis­
ters into symbols of the specified precision and performs the
same operation on corresponding symbols.

In addition to the basic operations, Zeus perfonns a variety
of operations in which one or more products are summed to
each other and/or to an additional operand. The instructions
include a fused multiply-add (E.MUL.ADD.F), convolve
(E.CON.F), matrix multiply (E.MUL.MAT.F), and scale-add
(E.SCAL.ADD.F).

The results of these operations are computed as if the
multiplies are perfonned to infinite precision, added as if in
infinite precision, then rounded only once. Consequently,
these operations perfonn these operations with no rounding
of intermediate results that would have limited the accuracy
of the result.

60

Exception if

NaN Handling
ANSI/IEEE standard 754-1985 specifies that operations

30 involving a signaling NaN or invalid operation shall, ifno trap
occurs and if a floating-point result is to be delivered, deliver
a quiet NaN as its result. However, it fails to specifY what
quiet NaN value to deliver.

Zeus operations that produce a floating-point result and do
35 not trap on invalid operations propagate signaling NaN values_ _ -",E",x",ce,",p",ti",on,,-,lcc'f__

from operands to results, changing the signaling NaN values
to quiet NaN values by setting the most significant fraction bit
and leaving the remaining bits unchanged. Other causes of
invalid operations produce the default quiet NaN value,
where the sign bit is zero, the exponent field is all one bits, the
most significant fraction bit is set and the remaining fraction
bits are zero bits. For Zeus operations that produce multiple
results catenated together, signaling NaN propagation or
quiet NaN production is handled separately and indepen­

45 dently for each result symbol.
ANSI/IEEE standard 754-1985 specifies that quiet NaN

values should be propagated from operand to result by the
basic operations. However, it fails to specify which of several
quiet NaN values to propagate when more than one operand is

50 a quiet NaN. In addition, the standard does not clearly specifY
how quiet NaN should be propagated for the multiple-opera­
tion instructions provided in Zeus. The standard does not
specifY the quiet NaN produced as a result of an operand
being a signaling NaN when invalid operation exceptions are

55 handled by default. The standard leaves unspecified how
quiet and signaling NaN values are propagated though fonnat
conversions and the absolute-value, negate and copy opera­
tions. This section specifies these aspects left unspecified by
the standard.

First of all, for Zeus operations that produce multiple
results catenated together, quiet and signaling NaN propaga­
tion is handled separately and independently for each result
symbol. A quiet or signaling NaN value in a single symbol of
an operand causes only those result symbols that are depen-

65 dent on that operand symbol's value to be propagated as that
quiet NaN. Multiple quiet or signaling NaN values in symbols
ofan operand which influence separate symbols of the result

compare-set relations

compare-branch relations

Branch
taken if values compare as:

Result if values compare as:Mnemonic

Mnemonic

code C-like Unordered Greater Less Equal unordered invalid

E F F F T no no
LG <> F T T F no no
L < F F T F no no
GE >~ F T F T no no
E.X F F F T no yes
LG.X <> F T T F no yes
L.X < F F T F yes yes
GE.X <~ F T F T yes yes

sons augment the usual types of numeric value comparisons
with special handling for NaN (not-a-number) values. A NaN
value compares as "unordered" with respect to any other
value, even that of an identical NaN value.

Zeus floating-point compare-branch instructions do not
generate an exception on comparisons involving quiet or
signaling NaN values. Ifsuch exceptions are desired, they can
be obtained by combining the use of a floating-point com­
pare-set instruction, with either a floating-point compare­
branch instruction on the floating-point operands or a fixed- 10

point compare-branch on the set result.
Because the less and greater relations are anti-commuta­

tive, one ofeach relation that differs from another only by the
replacement of an L with a G in the code can be removed by 15

reversing the order of the operands and using the other code.
Thus, an L relation can be used in place of a G relation by
swapping the operands to the compare-branch or compare-set
instruction.

No instructions are provided that branch when the values 20

are unordered. To accomplish such an operation, use the
reverse condition to branch over an immediately following
unconditional branch, or in the case ofan if-then-else clause,
reverse the clauses and use the reverse condition.

The E relation can be used to detennine the unordered 25

condition ofa single operand by comparing the operand with
itself.

The following floating-point compare-branch relations are
provided as instructions:

Compare-Set

The compare-set floating-point instructions provide all the
comparison types supported as branch instructions. Zeus
compare-set floating-point instructions may optionally gen­
erate an exception on comparisons involving quiet or signal­
ingNaNs.

The following floating-point compare-set relations are pro­
vided as instructions:
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Vectorizable Operations
The operations perfonned on these sequentially ordered

items are identical and independent. Conditional operations
are either rewritten to use Boolean variables or masking, or
the compiler is pennitted to convert the code into such a form.

Digital Signal Processing
The Zeus processor provides a set ofoperations that main­

tain the fullest possible use of 12S-bit data paths when oper­
ating on lower-precision fixed-point or floating-point vector
values. These operations are useful for several application
areas, including digital signal processing, image processing
and synthetic graphics. The basic goal ofthese operations is to
accelerate the perfonnance of algorithms that exhibit the
following characteristics:

Data-Handling Operations
The characteristics of these algorithms include sequential

access to data, which permit the use of the normal load and
store operations to reference the data. Octlet and hexlet loads
and stores reference several sequential items of data, the
number depending on the operand precision.

The discussion of these operations is independent of byte
ordering, though the ordering of bit fields within octlets and
hexlets must be consistent with the ordering used for bytes.
Specifically, ifbig-endian byte ordering is used for the loads
and stores, the figures below should assume that index values

60 increase from left to right, and for little-endian byte ordering,
the index values increase from right to left. For this reason, the
figures indicate different index values with different shades,
rather than numbering.

When an index ofthe nx+k fonn is used in array operands,
65 where n is a power of 2, data memory sequentially loaded

contains elements useful for separate operands. The "shuffle"
instruction divides a triclet of data up into two hexlets, with

Sequential Access to Data
The algorithms are or can be expressed as operations on

sequentially ordered items in memory. Scatter-gather
memory access or sparse-matrix techniques are not required.

Where an index variable is used with a multiplier, such
multipliers must be powers of two. When the index is of the
form: nx+k, the value of n must be a power of two, and the

40 values referenced should have k include the majority of val­
ues in the range 0 ... n-l. A negative multiplier may also be
used.

Low-Precision Arithmetic
The operands and intermediate results are fixed-point val­

ues represented in no greater than 64 bit precision. For float­
ing-point arithmetic, operands and intennediate results are of
16, 32, or 64 bit precision.

The fixed-point arithmetic operations include add, sub­
tract, multiply, divide, shifts, and set on compare.

The use of fixed-point arithmetic pennits various fonns of
operation reordering that are not pennitted in floating-point
arithmetic. Specifically, commutativity and associativity, and
distribution identities can be used to reorder operations. Com­
pilers can evaluate operations to detennine what intermediate
precision is required to get the specified arithmetic result.

Zeus supports several levels of precision, as well as opera­
tions to convert between these different levels. These preci­
sion levels are always powers oftwo, and are explicitly speci­
fied in the operation code.

When specified, add, subtract, and shift operations may
cause a fixed-point arithmetic exception to occur on resulting

30 conditions such as signed or unsigned overflow. The fixed­
point arithmetic exception may also be invoked upon a signed
or unsigned comparison.

are propagated independently of each other. Any signaling
NaN that is propagated has the high-order fraction bit set to
convert it to a quiet NaN.

For Zeus operations in which multiple symbols among
operands upon which a result symbol is dependent are quiet or
signaling NaNs, a priority Rule will detennine which NaN is
propagated. Priority shall be given to the operand that is
specified by a register definition at a lower-numbered (little­
endian) bit position within the instruction (rb has priority over 10

rc, which has priority over rd). In the case of operands which
are catenated from two registers, priority shall be assigned
based on the register which has highest priority (lower-num­
bered bit position within the instruction). In the case oftie (as
when the E.SCAL.ADD scaling operand has two correspond- 15

ing NaN values, or when a E.MUL.CF operand has NaN
values for both real and imaginary components of a value),
the value which is located at a lower-numbered (little-endian)
bit position within the operand is to receive priority. The
identification of a NaN as quiet or signaling shall not confer 20

any priority for selection---only the operand position, though
a signaling NaN will cause an invalid operand exception.

The sign bit of NaN values propagated shall be comple­
mented if the instruction subtracts or negates the correspond- 25

ing operand or (but not and) multiplies it by or divides it by or
divides it into an operand which has the sign bit set, even if
that operand is another NaN. Ifa NaN is both subtracted and
multiplied by a negative value, the sign bit shall be propagated
unchanged.

For Zeus operations that convert between two floating­
point fonnats (INFLATE and DEFLATE), NaN values are
propagated by preserving the sign and the most-significant
fraction bits, except that the most-significant bit of a signal­
ling NaN is set and (for DEFLATE) the least-significant frac- 35

tion bit preserved is combined, via a logical- or ofall fraction
bits not preserved. All additional fraction bits (for INFLATE)
are set to zero.

Floating-Point Functions

Referring to FIG. 37, the following functions are defined 55

for use within the detailed instruction definitions in the fol­
lowing section. In these functions an internal fonnat repre­
sents infinite-precision floating-point values as a four-ele­
ment structure consisting of (I) s (sign bit): 0 for positive, 1
for negative, (2) t (type): NORM, ZERO, SNAN, QNAN,
INFINITY, (3) e (exponent), and (4) f: (fraction). The math­
ematical interpretation of a normal value places the binary
point at the units of the fraction, adjusted by the exponent:
(-1 ),5* (2'e) *f. The function F converts a packed IEEE float­
ing-point value into internal fonnat. The function PackF con­
verts an internal format back into IEEE floating-point format,
with rounding and exception control.

For Zeus operations that convert from a floating-point for­
mat to a fixed-point fonnat (SINK), NaN values produce zero
values (maximum-likelihood estimate). Infinity values pro­
duce the largest representable positive or negative fixed-point
value that fits in the destination field. When exception traps
are enabled, NaN or Infinity values produce a floating-point
exception. Underflows do not occur in the SINK operation, 45

they produce -1, 0 or +1, depending on rounding controls.
For absolute-value, negate, or copy operations, NaN values

are propagated with the sign bit cleared, complemented, or
copied, respectively. Signalling NaN values cause the Invalid
operation exception, propagating a quieted NaN in corre- 50

sponding symbol locations (default) or an exception, as speci­
fied by the instruction.
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Galois Field Operations

Zeus provides a general software solution to the most com­
mon operations required for Galois Field arithmetic. The
instructions provided include a polynomial multiply, with the
polynomial specified as one register operand. This instruction
can be used to perform CRC generation and checking, Reed­
Solomon code generation and checking, and spread-spectrum
encoding and decoding.

Arithmetic Operations
The characteristics of the algorithms that affect the arith­

metic operations most directly are low-precision arithmetic,
and vectorizable operations. The fixed-point arithmetic
operations provided are most ofthe functions provided in the
standard integer unit, except for those that check conditions.
These functions include add, subtract, bitwise Boolean opera­
tions, shift, set on condition, and multiply, in forms that take
packed sets of bit fields of a specified size as operands. The
floating-point arithmetic operations provided are as complete
as the scalar floating-point arithmetic set. The result is gen­
erally a packed set of bit fields of the same size as the oper­
ands, except that the fixed-point multiply function intrinsi­
cally doubles the precision of the bit field.

Conditional operations are provided only in the sense that
the set on condition operations can be used to construct bit
masks that can select between alternate vector expressions,
using the bitwise Boolean operations. All instructions operate
over the entire octlet or hexlet operands, and produce a hexlet
result. The sizes ofthe bit fields supported are always powers
of two.

Register Usage

All Zeus registers are identical and general-purpose; there
is no dedicated zero-valued register, and no dedicated float­
ing-point registers. However, some procedure-call-oriented
instructions imply usage ofregisters zero (0) and one (1) in a

Software Conventions

The following section describes software conventions that
50 are to be employed at software module boundaries, in order to

permit the combination of separately compiled code and to
provide standard interfaces between application, library and
system software. Register usage and procedure call conven-
tions may be modified, simplified or optimized when a single
compilation encloses procedures within a compilation unit so
that the procedures have no external interfaces. For example,
internal procedures may permit a greater number of register­
passed parameters, or have registers allocated to avoid the
need to save registers at procedure boundaries, or may use a

60 single stack or data pointer allocation to suffice for more than
one level ofprocedure call.

by a constant vector will simultaneously double the precision
of the operand and multiply by a constant that can be repre­
sented in m bits.

An operand can be doubled in precision and shifted left
with the "expand" operation, which is essentially the reverse
of the "compress" operation. For example the X.EXPAND
rd=rc,16,4 expands from 16 bits to 32, and shifts 4 bits left as
shown in FIG. 54E.

The "shuffle" operation can double the precision of an
10 operandandmultiplyitby I (unsigned only), 2m or2m +l, by

specifYing the sources of the shuffle operation to be a zeroed
register and the source operand, the source operand and zero,
or both to be the source operand. When multiplying by 2 m, a
constant can be freely added to the source operand by speci-

15 fYing the constant as the right operand to the shuffle.

alternate bit fields of the source triclet grouped together into
the two results. An immediate field, h, in the instruction
specifies which of the two regrouped hexlets to select for the
result. For example, two X.SHUFFLE.256 rd=rc,rb,32,128,h
operations rearrange the source triclet (c,b) into two hexlets
as in FIG. 54A.

In the shuffle operation, two hexlet registers specify the
source triclet, and one ofthe two result hexlets are specified as
hexlet register.

The example above directly applies to the case where n is 2.
When n is larger, shuffle operations can be used to further
subdivide the sequential stream. For example, whennis 4, we
need to deal out 4 sets of doublet operands, as shown in FIG.
54B (An example of the use of a four-way deal is a digital
signal processing application such as conversion of color to
monochrome).

When an array result of computation is accessed with an
index of the form nx+k, for n a power of2, the reverse of the
"deal" operation needs to be performed on vectors of results
to interleave them for storage in sequential order. The 20

"shuffle" operation interleaves the bit fields of two octlets of
results into a single hexlet. For example a X.SHUFFLE.16
operation combines two octlets ofdoublet fields into a hexlet
as shown in FIG. 54C.

For larger values ofn, a series of shuffle operations can be 25

used to combine additional sets of fields, similarly to the
mechanism used for the deal operations. For example, when
n is 4, we need to shuffle up 4 sets of doublet operands, as
shown in FIG. 54D (An example of the use of a four-way
shuffle is a digital signal processing application such as con- 30

version of monochrome to color).
When the index of a source array operand or a destination

array result is negated, or in other words, if of the form nx+k
where n is negative, the elements of the array must be
arranged in reverse order. The "swizzle" operation can 35

reverse the order of the bit fields in a hexlet. For example, a
X.SWIZZLE rd=rc,127,1l2 operation reverses the doublets
within a hexlet as shown in FIG. 47C.

In some cases, it is desirable to use a group instruction in
which one or more operands is a single value, not an array. 40

The "swizzle" operation can also copy operands to multiple
locations within a hexlet. For example, a X.SWIZZLE 15,0
operation copies the low-order 16 bits to each double within
a hexlet.

Variations ofthe deal and shuffle operations are also useful 45

for converting from one precision to another. This may be
required ifone operand is represented in a different precision
than another operand or the result, or if computation must be
performed with intermediate precision greater than that ofthe
operands, such as when using an integer multiply.

When converting from a higher precision to a lower preci­
sion' specifically when halving the precision ofa hexlet ofbit
fields, half of the data must be discarded, and the bit fields
packed together. The "compress" operation is a variant ofthe
"deal" operation, in which the operand is a hexlet, and the 55

result is an octlet. An arbitrary half-sized sub-field ofeach bit
field can be selected to appear in the result. For example, a
selection of bits 19 . . . 4 of each quadlet in a hexlet is
performed by the X.COMPRESS rd=rc,16,4 operation as
shown in FIG. 43D.

When converting from lower-precision to higher-preci­
sion, specifically when doubling the precision of an octlet of
bit fields, one of several techniques can be used, either mul­
tiply, expand, or shuffle. Each has certain useful properties. In
the discussion below, m is the precision ofthe source operand. 65

The multiply operation, described in detail below, auto­
matically doubles the precision ofthe result, so multiplication
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II return

II restore originallp register
II deallocate caller stack frame
II return

lp

lp~sp,off

sp@size
lp

Typical static-linked, intra-module calling sequence:

... (callee using same dp as caller)
B.LINK.I callee

caller (non-leaf):
A.ADDI sp@-size II allocate caller stack frame
S.I.64.A lp,sp,off II save originallp register
... (callee using same dp as caller)
B.LINK.I callee

callee (leaf):
... (code using dp)
B

L.I.64.A
A.ADDI
B

calLee:

able), eliminating the need to save, modify and restore the dp
register for calls between procedures which share the same dp
register value.

Load- and store-immediate-aligned instructions, specifY­
ing the dp register as the base register, are generally used to
obtain values from the dp region. These instructions shift the
immediate value by the logarithm of the size of the operand,
so loads and stores oflarge operands may reach farther from
the dp register than of small operands. Referring to FIG. 54F,

10 the size of the addressable region is maximized if the ele­
ments to be placed in the dp region are sorted according to
size, with the smallest elements placed closest to the dp base.
At points where the size changes, appropriate padding is
added to keep elements aligned to memory boundaries

15 matching the size of the elements. Using this technique, the
maximum size of the dp region is always at least 4096 items,
and may be larger when the dp area is composed ofa mixture
of data sizes.

The dp register mechanism also permits code to be shared,
20 with each static instance ofthe dp region assigned to a differ­

ent address in memory. In conjunction with position-indepen­
dent or pc-relative branches, this allows library code to be
dynamically relocated and shared between processes.

25 To implement an inter-module (separately compiled) pro-
cedure call, the lp register is loaded with the entry point ofthe
procedure, and the dp register is loaded with the value of the
dp register required for the procedure. These two values are
located adjacent to each other as a pair of octlet quantities in

30 the dp region for the calling procedure. For a statically-linked
inter-module procedure call, the linker fills in the values at
link time. However, this mechanism also provides for
dynamic linking, by initially filling in the lp and dp fields in
the data structure to invoke the dynamic linker. The dynamic

35 linker can use the contents of the lp and/or dp registers to
determine the identity of the caller and callee, to find the
location to fill in the pointers and resume execution. Specifi­
cally, the lp value is initially set to point to an entry point in the
dynamic linker, and the dp value is set to point to itself: the

40 location ofthe lp and dp values in the dp region ofthe calling
procedure. The identity of the procedure can be discovered
from a string following the dp pointer, or a separate table,
indexed by the dp pointer.

The fp register is used to address the stack frame when the
45 stack size varies during execution of a procedure, such as

when using the GNU C alloca function. When the stack size
can be determined at compile time, the sp register is used to
address the stack frame and the fp register may be used for any
other general purpose as a callee-saved register.

55 caller:

register usage

register assembler
nwnber names usage how saved

a lp, rO link pointer caller
1 dp, rl data pointer caller

2-9 r2-r9 parameters caller
10-31 rIO-r31 temporary caller
32-61 r32-r61 saved callee

62 fp, r62 frame pointer callee
63 sp, r63 stack pointer callee

Procedure Calling Conventions
Procedure parameters are normally allocated in registers,

starting from register 2 up to register 9. These registers hold
up to 8 parameters, which may each be of any size from one
byte to sixteen bytes (hexlet), including floating-point and
small structure parameters. Additional parameters are passed
in memory, allocated on the stack. For C procedures which
use varargs.h or stdarg.h and pass parameters to further pro­
cedures, the compilers must leave room in the stack memory
allocation to save registers 2 through 9 into memory contigu­
ously with the additional stack memory parameters, so that
procedures such as_doprnt can refer to the parameters as an
array.

Procedure return values are also allocated in registers,
starting from register 2 up to register 9. Larger values are
passed in memory, allocated on the stack.

There are several pointers maintained in registers for the
procedure calling conventions: lp, sp, dp, fp.

The lp register contains the address to which the callee
should return to at the conclusion of the procedure. If the
procedure is also a caller, the lp register will need to be saved
on the stack, once, before any procedure call, and restored,
once, after all procedure calls. The procedure returns with a
branch instruction, specifYing the lp register.

The sp register is used to form addresses to save parameter
and other registers, maintain local variables, i.e., data that is
allocated as a LIFO stack. For procedures that require a stack, 50

normally a single allocation is performed, which allocates
space for input parameters, local variables, saved registers,
and output parameters all at once. The sp register is always
hexlet aligned.

The dp register is used to address pointers, literals and
static variables for the procedure. The dp register points to a
small (approximately 4096-entry) array of pointers, literals,
and statically-allocated variables, which is used locally to the
procedure. The uses ofthe dp register are similar to the use of
the gp register on a Mips R-series processor, except that each 60

procedure may have a different value, which expands the
space addressable by small offsets from this pointer. This is an
important distinction, as the offset field ofZeus load and store
instructions are only 12 bits. The compiler may use additional
registers and/or indirect pointers to address larger regions for
a single procedure. The compiler may also share a single dp 65

register value between procedures which are compiled as a
single unit (including procedures which are externally call-

manner consistent with the conventions described below. By
software convention, the non-specific general registers are
used in more specific ways.

At a procedure call boundary, registers are saved either by
the caller or callee procedure, which provides a mechanism
for leaf procedures to avoid needing to save registers. Com­
pilers may choose to allocate variables into caller or callee
saved registers depending on how their lifetimes overlap with
procedure calls.
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Minimum static-linked, intra-module calling sequence:

... (cal lee using same dp as caller)
B.LINK.I callee

caller (non-leaf):
caller: ACOPY r31~lp II save originallp register

... (cal lee using same dp as caller)
B.LINK.I callee

B r31 II return
callee (leaf):

callee: ... (code using dp, r31 unused)
B lp II return

Typical dynamic-linked, inter-gateway calling sequence:

facilitate generating these addresses, the branch-gateway
instruction allows the privileged code procedure to rely the
fact that a single register has been verified to contain a pointer
to a valid memory region.

The branch-gateway instruction ensures both that the pro­
cedure is invoked at a proper entry point, and that other
registers such as the data pointer and stack pointer can be
properly set. To ensure this, the branch-gateway instruction
retrieves a "gateway" directly from the protected virtual
memory space. The gateway contains the virtual address of

10 the entry point ofthe procedure and the target privilege level.
A gateway can only exist in regions of the virtual address
space designated to contain them, and can only be used to
access privilege levels at or below the privilege level at which
the memory region can be written to ensure that a gateway

15 cannot be forged.
The branch-gateway instruction ensures that register 1 (dp)

contains a valid pointer to the gateway for this target code
address by comparing the contents of register 0 (lp) against
the gateway retrieved from memory and causing an exception

20 trap if they do not match. By ensuring that register 1 points to
the gateway, auxiliary infonnation, such as the data pointer
and stack pointer can be set by loading values located by the
contents of register 1. For example, the eight bytes following
the gateway may be used as a pointer to a data region for the

25 procedure.
Referring to FIG. 54G, before executing the branch-gate­

way instruction, register 1 must be set to point at the gateway,
and register 0 must be set to the address of the target code
address plus the desired privilege level. A "L.I.64.L.A rO=r1,

30 0" instruction is one way to set register 0, if register 1 has
already been set, but any means of getting the correct value
into register 0 is permissible.

Similarly, a return from a system or privileged routine
involves a reduction of privilege. This need not be carefully

35 controlled by architectural facilities, so a procedure may
freely branch to a less-privileged code address. Nonnally,
such a procedure restores the stack frame, then uses the
branch-down instruction to return.

40

l/load lp
l/load dp
II invoke callee procedure
II restore dp register from stack

II allocate caller stack frame
II save originallp register
II save original dp register

II restore originallp register
II deallocate caller stack frame
II return

lp~dp.off

dp~dp,off

lp~lp

dp~sp,off

lp~sp,off

sp=size
lp

Typical dynamic-linked, inter-module calling sequence:

caller (non-leaf):
AADDI sp@-size
S.I.64.A lp,sp,off
S.I.64.A dp,sp,off
... (code using dp)
L.I.64.A
L.I.64.A
B.LINK
L.I.64.A
... (code using dp)
L.I.64.A
AADDI
B

caller:

Procedures that are compiled together may share a com­
mon data region, in which case there is no need to save, load,
and restore the dp region in the callee, assuming that the callee
does not modifY the dp register. The pc-relative addressing of
the B.LINK.! instruction pennits the code region to be posi­
tion-independent.

When all the callee procedures are intra-module, the stack
frame may also be eliminated from the caller procedure by
using "temporary" caller save registers not utilized by the
callee leaf procedures. In addition to the lp value indicated
above, this usage may include other values and variables that
live in the caller procedure across callee procedure calls.

callee (leaf):
callee: ... (code using dp)
B lp II return

caller:
caller: AADDI

45 S.I.64.A
S.I.64.A

sp@-size II allocate caller stack frame
lp,sp,off
dp,sp,off

lp~dp.off II load lp
dp~dp,off l/load dp

II restore originallp register
// restore original sp register

II new stack pointer

II restore originallp register
II deallocate caller stack frame
II return

II load dp with data pointer

dp,sp,off

lp

dp,sp,off

lp~sp,off

sp=size
lp

callee (non-leaf):
L.I.64.A dp~dp,off

S.I.64.A sp,dp,off
L.I.64.A sp~dp,off

S.I.64.A lp,sp,off
S.I.64.A dp,sp,off
... (using dp)
L.I.64.A
... (code using dp)
L.I.64.A lp~sp,off

L.I.64.A sp~sp,off

B.DOWN lp
callee (leaf, no stack):

... (using dp)
B.DOWN

L.I.64.A
L.I.64.A
B.GATE
L.I.64.A
... (code using dp)
L.I.64.A
AADDI
B

The load instruction is required in the caller following the
procedure call to restore the dp register. A second load
instruction also restores the lp register, which may be located
at any point between the last procedure call and the branch 50

instruction which returns from the procedure.

System and Privileged Library Calls
It is an objective to make calls to system facilities and

privileged libraries as similar as possible to nonnal procedure 55 calee:

calls as described above. Rather than invoke system calls as
an exception, which involves significant latency and compli-
cation, we prefer to use a modified procedure call in which the
process privilege level is quietly raised to the required level.
To provide this mechanism safely, interaction with the virtual
memory system is required. 60

Such a procedure must not be entered from anywhere other
than its legitimate entry point, to prohibit entering a proce­
dure after the point at which security checks are performed or
with invalid register contents, otherwise the access to a higher callee:
privilege level can lead to a security violation. In addition, the 65

procedure generally must have access to memory data, for
which addresses must be produced by the privileged code. To
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the machine state includes a linear byte-addressed shared
memory space. For wide instructions, memory contents
fetched from memory system 117-120 are also provided to
wide operand microcaches 132-136 by bus 137. Instructions
and memory data from E-queue 121-124 are presented to
execution register files 125-128, which fetch execution reg­
ister file source operands. The instructions are coupled to the
execution unit arbitration unit Arbitration 131, that selects
which instructions from the four threads are to be routed to the

10 available execution functional units E 141 and 149, X 142 and
148, G 143-144 and 146-147, and T 145. The execution
functional units E 141 and 149, the execution functional units
X 142 and 148, and the execution functional unit T 145 each
contain a wide operand microcache 132-136, which are each

15 coupled to the memory system 117 by bus 137.
The execution functional units G 143-144 and 146-147 are

group arithmetic and logical units that perfonn simple arith­
metic and logical instructions, including group operations
wherein the source and result operands represent a group of

20 values of a specified symbol size, which are partitioned and
operated on separately, with results catenated together. In a
presently preferred embodiment the data path is 128 bits
wide, although the present invention is not intended to be
limited to any specific size of data path.

The execution functional units X 142 and 148 are crossbar
switch units that perfonn crossbar switch instructions. The
crossbar switch units 142 and 148 perfonn data handling
operations on the data stream provided over the data path
source operand buses 151-158, including deal, shuffles,

30 shifts, expands, compresses, swizzles, pennutes and reverses,
plus the wide operations discussed hereinafter. In a key ele­
ment of a first aspect of the invention, at least one such
operation will be expanded to a width greater than the general
register and data path width. Examples ofthe data manipula-

35 tion operations are described in another section.
The execution functional units E 141 and 149 are ensemble

units that perfonn ensemble instructions using a large array
multiplier, including group or vector multiply and matrix
multiply of operands partitioned from data path source oper-

40 and buses 151-158 and treated as integer, floating-point, poly­
nomial or Galois field values. According to the present
embodiment of the invention, a general software solution is
provided to the most common operations required for Galois
Field arithmetic. The instructions provided include a polyno-

45 mial multiply, with the polynomial specified as one register
operand. This instruction can be used to perfonn CRC gen­
eration and checking, Reed-Solomon code generation and
checking, and spread-spectrum encoding and decoding. Also,
matrix multiply instructions and other operations described in

50 another section utilize a wide operand loaded into the wide
operand microcache 132 and 136.

The execution functional unit T 145 is a translate unit that
perfonns table-look-up operations on a group of operands
partitioned from a register operand, and catenates the result.

55 The Wide Translate instruction included in another section
utilizes a wide operand loaded into the wide operand micro­
cache 134.

The execution functional units E 141, 149, execution func­
tional units X-142, 148, and execution functional unit Teach

60 contain dedicated storage to permit storage of source oper­
ands including wide operands as discussed hereinafter. The
dedicated storage 132-136, which may be thought of as a
wide microcache, typically has a width which is a multiple of
the width of the data path operands related to the data path

65 source operand buses 151-158. Thus, if the width of the data
path 151-158 is 128 bits, the dedicated storage 132-136 may
have a width of256, 512, 1024 or 2048 bits. Operands which

It can be observed that the calling sequence is identical to
that of the inter-module calling sequence shown above,
except for the use of the B.GATE instruction instead of a
B.LINK instruction. Indeed, if a B.GATE instruction is used
when the privilege level in the Ip register is not higher than the
current privilege level, the B.GATE instruction performs an
identical function to a B.LINK.

The callee, if it uses a stack for local variable allocation,
cannot necessarily trust the value of the sp passed to it, as it
can be forged. Similarly, any pointers which the callee pro­
vides should not be used directly unless it they are verified to
point to regions which the callee should be permitted to
address. This can be avoided by defining application pro­
gramming interfaces (APIs) in which all values are passed
and returned in registers, or by using a trusted, intermediate
privilege wrapper routine to pass and return parameters. The
method described below can also be used.

It can be useful to have highly privileged code call less­
privileged routines. For example, a user may request that
errors in a privileged routine be reported by invoking a user­
supplied error-logging routine. To invoke the procedure, the
privilege can be reduced via the branch-down instruction. The
return from the procedure actually requires an increase in
privilege, which must be carefully controlled. This is dealt
with by placing the procedure call within a lower-privilege 25

procedure wrapper, which uses the branch-gateway instruc­
tion to return to the higher privilege region after the call
through a secure re-entry point. Special care must be taken to
ensure that the less-privileged routine is not pennitted to gain
unauthorized access by corruption of the stack or saved reg­
isters, such as by saving all registers and setting up a new
stack frame (or restoring the original lower-privilege stack)
that may be manipulated by the less-privileged routine.
Finally, such a technique is vulnerable to an unprivileged
routine attempting to use the re-entry point directly, so it may
be appropriate to keep a privileged state variable which con­
trols permission to enter at the re-entry point.

Referring first to FIG. 1, a general purpose processor is
illustrated therein in block diagram fonn. In FIG. 1, four
copies of an access unit are shown, each with an access
instruction fetch queue A-Queue 101-104. Each access
instruction fetch queue A-Queue 101104 is coupled to an
access register file AR 105-108, which are each coupled to
two access functional units A 109-116. In a typical embodi­
ment, each thread of the processor may have on the order of
sixty-four general purpose registers (e.g., the AR's 105-108
and ER's 125-128). The access units function independently
for four simultaneous threads ofexecution, and each compute
program control flow by performing arithmetic and branch
instructions and access memory by performing load and store
instructions. These access units also provide wide operand
specifiers for wide operand instructions. These eight access
functional units Al09-116 produce results for access register
filesAR 105-108 and memory addresses to a shared memory
system 117-120.

In one embodiment, the memory hierarchy includes on­
chip instruction and data memories, instruction and data
caches, a virtual memory facility, and interfaces to external
devices. In FIG. 1, the memory system is comprised of a
combined cache and niche memory 117, an external bus
interface 118, and, externally to the device, a secondary cache
119 and main memory system with I/O devices 120. The
memory contents fetched from memory system 117-120 are
combined with execute instructions not perfonned by the
access unit, and entered into the four execute instruction
queues E-Queue 121-124. In accordance with one embodi­
ment ofthe present invention, from the software perspective,
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memory 715 having a defined memory width. The memory
address includes a plurality of register operands 720A-n,
which are accumulated in a dedicated storage portion 714 of
a data functional unit 725. In the exemplary embodiment
shown in FIG. 7, the dedicated storage 714 can be seen to have
a width equal to eight data path widths, such that eight wide
operand portions 730A-H are sequentially loaded into the
dedicated storage to fonn the wide operand. Although eight
portions are shown in FIG. 7, the present invention is not

10 limited to eight or any other specific multiple of data path
widths. Once the wide operand portions 730A-H are sequen­
tially loaded, they may be used as a single wide operand 735
by the functional element 740, which may be any element(s)
from FIG. 1 counected thereto. The result ofthe wide operand

15 is then provided to a result register 745, which in a presently
preferred embodiment is of the same width as the memory
width.

Once the wide operand is successfully loaded into the
dedicated storage 714, a second aspect of the present inven-

20 tion may be appreciated. Further execution ofthis instruction
or other similar instructions that specify the same memory
address can read the dedicated storage to obtain the operand
value under specific conditions that detennine whether the
memory operand has been altered by intervening instructions.

25 Assuming that these conditions are met, the memory operand
fetch from the dedicated storage is combined with one or
more register operands in the functional unit, producing a
result. In some embodiments, the size of the result is limited
to that of a general register, so that no similar dedicated

30 storage is required for the result. However, in some different
embodiments, the result may be a wide operand, to further
enhance perfonnance.

To permit the wide operand value to be addressed by sub­
sequent instructions specifYing the same memory address,

35 various conditions must be checked and confirmed:
Those conditions include:
1. Each memory store instruction checks the memory

address against the memory addresses recorded for the
dedicated storage. Any match causes the storage to be
marked invalid, since a memory store instruction
directed to any of the memory addresses stored in dedi-
cated storage 714 means that data has been overwritten.

2. The register number used to address the storage is
recorded. Ifno intervening instructions have written to
the register, and the same register is used on the subse­
quent instruction, the storage is valid (unless marked
invalid by rule #1).

3. If the register has been modified or a different register
number is used, the value of the register is read and
compared against the address recorded for the dedicated
storage. This uses more resources than #1 because ofthe
need to fetch the register contents and because the width
of the register is greater than that of the register number
itself. If the address matches, the storage is valid. The
new register number is recorded for the dedicated stor­
age.

Ifconditions #2 or #3 are not met, the register contents are
used to address the general-purpose processor's memory and
load the dedicated storage. If dedicated storage is already

60 fully loaded, a portion of the dedicated storage must be dis­
carded (victimized) to make room for the new value. The
instruction is then performed using the newly updated dedi­
cated storage. The address and register number is recorded for
the dedicated storage.

By checking the above conditions, the need for saving and
restoring the dedicated storage is eliminated. In addition, if
the context of the processor is changed and the new context

utilize the full width of the dedicated storage are referred to
herein as wide operands, although it is not necessary in all
instances that a wide operand use the entirety ofthe width of
the dedicated storage; it is sufficient that the wide operand use
a portion greater than the width ofthe memory data path ofthe
output ofthe memory system 117-120 and the functional unit
data path of the input of the execution functional units 141­
149, though not necessarily greater than the width of the two
combined. Because the width of the dedicated storage 132­
136 is greater than the width ofthe memory operand bus 137,
portions of wide operands are loaded sequentially into the
dedicated storage 132-136. However, once loaded, the wide
operands may then be used at substantially the same time. It
can be seen that functional units 141-149 and associated
execution registers 125-128 fonn a data functional unit, the
exact elements of which may vary with implementation.

The execution register file ER 125-128 source operands are
coupled to the execution units 141-145 using source operand
buses 151-154 and to the execution units 145-149 using
source operand buses 155-158. The function unit result oper­
ands from execution units 141145 are coupled to the execu­
tion register file ER 125-128 using result bus 161 and the
function units result operands from execution units 145-149
are coupled to the execution register file using result bus 162.

The wide operands used in some embodiments of the
present invention provide the ability to execute complex
instructions such as the wide multiply matrix instruction
shown in FIG. 2, which can be appreciated in an alternative
form, as well, from FIG. 3.As can be appreciated from FIGS.
2 and 3, a wide operand permits, for example, the matrix
multiplication of various sizes and shapes which exceed the
data path width. The example of FIG. 2 involves a matrix
specified by register rc having a l28*64/size multiplied by a
vector contained in register rb having a 128 size, to yield a
result, placed in register rd, of 128 bits.

The operands that are substantially larger than the data path
width of the processor are provided by using a general-pur­
pose register to specify a memory specifier from which more
than one but in some embodiments several data path widths of
data can be read into the dedicated storage. The memory 40

specifier typically includes the memory address together with
the size and shape ofthe matrix ofdata being operated on. The
memory specifier or wide operand specifier can be better
appreciated from FIG. 5, in which a specifier 500 is seen to be
an address, plus a field representative of the size/2 and a 45

further field representative ofwidth/2, where size is the prod­
uct of the depth and width ofthe data. The address is aligned
to a specified size, for example sixty-four bytes, so that a
plurality oflow order bits (for example, six bits) are zero. The
specifier 500 can thus be seen to comprise a first field 505 for 50

the address, plus two field indicia 510 within the low order six
bits to indicate size and width.

The decoding of the specifier 500 may be further appreci­
ated from FIG. 6 where, for a given specifier 600 made up of
an address field 605 together with a field 610 comprising 55

plurality oflow order bits. By a series ofarithmetic operations
shown at steps 615 and 620, the portion of the field 610
representative of width/2 is developed. In a similar series of
steps shown at 625 and 630, the value oft is decoded, which
can then be used to decode both size and address. The portion
ofthe field 610 representative ofsize/2 is decoded as shown at
steps 635 and 640, while the address is decoded in a similar
way at steps 645 and 650.

The wide function unit may be better appreciated from
FIG. 7, in which a register number 700 is provided to an 65

operand checker 705. Wide operand, specifier 710 commu­
nicates with the operand checker 705 and also addresses



35
US 7,730,287 B2

36
does not employ Wide instructions that reference the same
dedicated storage, when the original context is restored, the
contents of the dedicated storage are allowed to be used
without refreshing the value from memory, using checking
rule #3. Because the values in the dedicated storage are read
from memory and not modified directly by perfonning wide
operations, the values can be discarded at any time without
saving the results into general memory. This property simpli­
fies the implementation of rule #4 above.

An alternate embodiment of the present invention can
replace rule #1 above with the following rule:

lao Each memory store instruction checks the memory
address against the memory addresses recorded for the
dedicated storage. Any match causes the dedicated stor­
age to be updated, as well as the general memory.

By use ofthe above rule l.a, memory store instructions can
modifY the dedicated storage, updating just the piece of the
dedicated storage that has been changed, leaving the remain­
der intact. By continuing to update the general memory, it is
still true that the contents of the dedicated memory can be
discarded at any time without saving the results into general
memory. Thus rule #4 is not made more complicated by this
choice. The advantage ofthis alternate embodiment is that the
dedicated storage need not be discarded (invalidated) by
memory store operations.

Referring next to FIG. 9, an exemplary arrangement of the
data structures of the wide microcache or dedicated storage
114 may be better appreciated. The wide microcache con­
tents, wmc.c, can be seen to fonn a plurality of data path
widths 900A-n, although in the example shown the number is
eight. The physical address, wmc.pa, is shown as 64 bits in the
example shown, although the invention is not limited to a
specific width. The size of the contents, wmc.size, is also
provided in a field which is shown as 10 bits in an exemplary
embodiment. A "contents valid" flag, wmc.ev, of one bit is
also included in the data structure, together with a two bit field
for thread last used, or wmc.th. In addition, a six bit field for
register last used, wmc.reg, is provided in an exemplary
embodiment. Further, a one bit flag for register and thread
valid, or wmc.rtv, may be provided.

The process by which the microcache is initially written
with a wide operand, and thereafter verified as valid for fast
subsequent operations, may be better appreciated from FIG.
8. The process begins at 800, and progresses to step 805 where
a check of the register contents is made against the stored
valuewmc.rc. Iftrue, a check is made at step 810 to verifY the
thread. Iftrue, the process then advances to step 815 to verify
whether the register and thread are valid. Ifstep 815 reports as
true, a check is made at step 820 to verifY whether the contents
are valid. If all of steps 805 through 820 return as true, the
subsequent instruction is able to utilize the existing wide
operand as shown at step 825, after which the process ends.
However, if any of steps 805 'through 820 return as false, the
process branches to step 830, where content, physical address
and size are set. Because steps 805 through 820 all lead to
either step 825 or 830, steps 805 through 820 may be per­
formed in any order or simultaneously without altering the
process. The process then advances to step 835 where size is
checked. This check basically ensures that the size of the
translation unit is greater than or equal to the size ofthe wide
operand, so that a physical address can directly replace the
use ofa virtual address. The concern is that, in some embodi­
ments, the wide operands may be larger than the minimum
region that the virtual memory system is capable ofmapping.
As a result, it would be possible for a single contiguous virtual
address range to be mapped into multiple, disjoint physical
address ranges, complicating the task of comparing physical

addresses. By determining the size of the wide operand and
comparing that size against the size of the virtual address
mapping region which is referenced, the instruction is aborted
with an exception trap if the wide operand is larger than the
mapping region. This ensures secure operation ofthe proces­
sor. Software can then re-map the region using a larger size
map to continue execution ifdesired. Thus, if size is reported
as unacceptable at step 835, an exception is generated at step
840. If size is acceptable, the process advances to step 845

10 where physical address is checked. If the check reports as
met, the process advances to step 850, where a check of the
contents valid flag is made. If either check at step 845 or 850
reports as false, the process branches and new content is
written into the dedicated storage 114, with the fields thereof

15 being set accordingly. Whether the check at step 850 reported
true, or whether new content was written at step 855, the
process advances to step 860 where appropriate fields are set
to indicate the validity of the data, after which the requested
function can be perfonned at step 825. The process then ends.

20
Referring next to FIGS. 10 and 11, which together show the

operation of the microcache controller from a hardware
standpoint, the operation ofthe microcache controller may be
better understood. In the hardware implementation, it is clear

25 that conditions which are indicated as sequential steps in
FIGS. 8 and 9 above can be perfonned in parallel, reducing
the delay for such wide operand checking. Further, a copy of
the indicated hardware may be included for each wide micro­
cache, and thereby all such microcaches as may be alterna-

30 tively referenced by an instruction can be tested in parallel. It
is believed that no further discussion of FIGS. 10 and 11 is
required in view ofthe extensive discussion ofFIGS. 8 and 9,
above.

Various alternatives to the foregoing approach do exist for
35 the use of wide operands, including an implementation in

which a single instruction can accept two wide operands,
partition the operands into symbols, multiply corresponding
symbols together, and add the products to produce a single
scalar value or a vector of partitioned values of width of the

40 register file, possibly after extraction ofa portion ofthe sums.
Such an instruction can be valuable for detection ofmotion or
estimation of motion in video compression. A further
enhancement ofsuch an instruction can incrementally update
the dedicated storage if the address of one wide operand is

45 within the range of previously specified wide operands in the
dedicated storage, by loading only the portion not already
within the range and shifting the in-range portion as required.
Such an enhancement allows the operation to be performed
over a "sliding window" of possible values. In such an

50 instruction, one wide operand is aligned and supplies the size
and shape infonnation, while the second wide operand,
updated incrementally, is not aligned.

Another alternative embodiment of the present invention
can define additional instructions where the result operand is

55 a wide operand. Such an enhancement removes the limit that
a result can be no larger than the size of a general register,
further enhancing performance. These wide results can be
cached locally to the functional unit that created them, but
must be copied to the general memory system before the

60 storage can be reused and before the virtual memory system
alters the mapping of the address of the wide result. Data
paths must be added so that load operations and other wide
operations can read these wide results-forwarding ofa wide
result from the output of a functional unit back to its input is

65 relatively easy, but additional data paths may have to be
introduced ifit is desired to forward wide results back to other
functional units as wide operands.



US 7,730,287 B2
37 38

tents of a general register specified by the instruction. The
general register also specifies the format of the operands:
signed, mixed-signed, unsigned, and complex as well as the
size ofthe operands, byte (8 bit), doublet (16 bit), quadlet (32
bit), or hexlet (64 bit).

The Wide Multiply Matrix Extract Immediate instructions
perform the same function as above, except that the extrac­
tion, operand format and size is controlled by fields in the
instruction. This form encodes common forms of the above

10 instruction without the need to initialize a register with the
required control information. Controls within the instruction
allow specification of signed, mixed-signed, unsigned, and
complex operands.

The Wide Multiply Matrix Floating-point instructions per-
15 form a matrix multiply in the same form as above, except that

the multiplies and additions are performed in floating-point
arithmetic. Sizes ofhalf (16-bit), single (32-bit), double (64­
bit), and complex sizes of half, single and double can be
specified within the instruction.

Wide Multiply Matrix Galois instructions perform a matrix
multiply in the same form as above, except that the multiples
and additions are performed in Galois field arithmetic. A size
of8 bits can be specified within the instruction. The contents
of a general register specifY the polynomial with which to

25 perform the Galois field remainder operation. The nature of
the matrix multiplication is novel and described in detail
below.

In another aspect of the invention, memory operands of
30 either little-endian or big-endian conventional byte ordering

are facilitated. Consequently, all Wide operand instructions
are specified in two forms, one for little-endian byte ordering
and one for big-endian byte ordering, as specified by a portion
of the instruction. The byte order specifies to the memory

35 system the order in which to deliver the bytes within units of
the data path width (128 bits), as well as the order to place
multiple memory words (128 bits) within a larger Wide oper­
and. Each of these instructions is described in greater detail.

Some embodiments of the present invention address
40 extraction of a high order portion of a multiplier product or

sum of products, as a way of efficiently utilizing a large
multiplier array. Parent U.S. Pat. Nos. 5,742,840 and 5,953,
241 describe a system and method for enhancing the utiliza­
tion ofa multiplier array by adding specific classes ofinstruc-

45 tions to a general-purpose processor. This addresses the
problem of making the most use of a large multiplier array
that is fully used for high-precision arithmetic-for example
a 64.times.64 bit multiplier is fully used by a 64-bit by 64-bit
multiply, but only one quarter used for a 32-bit by 32-bit

50 multiply) for (relative to the multiplier data width and regis­
ters) low-precision arithmetic operations. In particular,
operations that perform a great many low-precision multi­
plies which are combined (added) together in various ways
are specified. One of the overriding considerations in select-

55 ing the set ofoperations is a limitation on the size ofthe result
operand. In an exemplary embodiment, for example, this size
might be limited to on the order of 128 bits, or a single
register, although no specific size limitation need exist.

The size ofa multiply result, a product, is generally the sum
60 of the sizes of the operands, multiplicands and multiplier.

Consequently, multiply instructions specifY operations in
which the size of the result is twice the size of identically­
sized input operands. For our prior art design, for example, a
multiply instruction accepted two 64-bit register sources and

65 produces a single 128-bit register-pair result, using an entire
64.times.64 multiplier array for 64-bit symbols, or half the
multiplier array for pairs of32-bit symbols, or one-quarter the

As previously discussed, a specification of the size and
shape ofthe memory operand is included in the low-order bits
ofthe address. In a presently preferred implementation, such
memory operands are typically a power of two in size and
aligned to that size. Generally, one-half the total size is added
(or inclusively or'ed, or exclusively or'ed) to the memory
address, and one halfofthe data width is added (or inclusively
or' ed, or exclusively or' ed) to the memory address. These bits
can be decoded and stripped from the memory address, so that
the controller is made to step through all the required
addresses. This decreases the number of distinct operands
required for these instructions, as the size, shape and address
of the memory operand are combined into a single register
operand value.

Particular examples of wide operations which are defined
by the present invention include the Wide Switch instruction
that performs bit-level switching; the Wide Translate instruc­
tion which performs byte (or larger) table-lookup; Wide Mul­
tiply Matrix, Wide Multiply Matrix Extract and Wide Multi­
ply Matrix Extract Immediate (discussed below), Wide 20

Multiply Matrix Floating-point, and Wide Multiply Matrix
Galois (also discussed below). While the discussion below
focuses on particular sizes for the exemplary instructions, it
will be appreciated that the invention is not limited to a
particular width.

The Wide Switch instruction rearranges the contents ofup
to two registers (256 bits) at the bit level, producing a full­
width (128 bits) register result. To control the rearrangement,
a wide operand specified by a single register, consisting of
eight bits per bit position is used. For each result bit position,
eight wide operand bits for each bit position select which of
the 256 possible source register bits to place in the result.
When a wide operand size smaller than 128 bytes, the high
order bits of the memory operand are replaced with values
corresponding to the result bit position, so that the memory
operand specifies a bit selection within symbols of the oper­
and size, performing the same operation on each symbol.

The Wide Translate instructions use a wide operand to
specifY a table of depth up to 256 entries and width of up to
128 bits. The contents ofa register is partitioned into operands
ofone, two, four, or eight bytes, and the partitions are used to
select values from the table in parallel. The depth and width of
the table can be selected by specifYing the size and shape of
the wide operand as described above.

The Wide Multiply Matrix instructions use a wide operand
to specifY a matrix ofvalues ofwidth up to 64 bits (one halfof
register file and data path width) and depth of up to 128
bits/symbol size. The contents ofa general register (128 bits)
is used as a source operand, partitioned into a vector of
symbols, and multiplied with the matrix, producing a vector
of width up to 128 bits of symbols of twice the size of the
source operand symbols. The width and depth of the matrix
can be selected by specifying the size and shape of the wide
operand as described above. Controls within the instruction
allow specification of signed, mixed-signed, unsigned, com­
plex, or polynomial operands.

The Wide Multiply Matrix Extract instructions use a wide
operand to specifY a matrix of value of width up to 128 bits
(full width ofregister file and data path) and depth ofup to 128
bits/symbol size. The contents ofa general register (128 bits)
is used as a source operand, partitioned into a vector of
symbols, and multiplied with the matrix, producing a vector
of width up to 256 bits of symbols of twice the size of the
source operand symbols plus additional bits to represent the
sums of products without overflow. The results are then
extracted in a manner described below (Enhanced Multiply
Bandwidth by Result Extraction), as controlled by the con-
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Another alternative embodiment can reduce the number of
register read ports required for implementation of instruc­
tions in which the size, shift and rounding of operands is
controlled by a register. The value of the extract control reg­
ister can be fetched using an additional cycle on an initial
execution and retained within or near the functional unit for
subsequent executions, thus reducing the amount ofhardware
required for implementation with a small additional perfor­
mance penalty. The value retained would be marked invalid,

10 causing are-fetch of the extract control register, by instruc­
tions that modify the register, or alternatively, the retained
value can be updated by such an operation. Are-fetch of the
extract control register would also be required if a different
register number were specified on a subsequent execution. It

15 should be clear that the properties ofthe above two alternative
embodiments can be combined.

Another embodiment ofthe invention includes Galois field
arithmetic, where multiplies are perfonned by an initial
binary polynomial multiplication (unsigned binary multipli-

20
cation with carries suppressed), followed by a polynomial
modulo/remainder operation (unsigned binary division with
carries suppressed). The remainder operation is relatively
expensive in area and delay. In Galois field arithmetic, addi­
tions are perfonned by binary addition with carries sup-

25
pressed, or equivalently, a bitwise exclusive-or operation. In
this aspect ofthe present invention, a matrix multiplication is
perfonned using Galois field arithmetic, where the multiplies
and additions are Galois field multiples and additions.

Using prior art methods, a 16 byte vector multiplied by a
16.times. 16 byte matrix can be perfonned as 256 8-bit Galois
field multiplies and 16*15=240 8-bit Galois field additions.
Included in the 256 Galois field multiplies are 256 polyno­
mial multiplies and 256 polynomial remainder operations.

35 But by use ofthe present invention, the total computation can
be reduced significantly by performing 256 polynomial mul­
tiplies, 240 16-bit polynomial additions, and 16 polynomial
remainder operations. Note that the cost of the polynomial
additions has been doubled, as these are now 16-bit opera-

40 tions, but the cost of the polynomial remainder functions has
been reduced by a factor of 16. Overall, this is a favorable
tradeoff, as the cost ofaddition is much lower than the cost of
remainder.

In a still further aspect ofthe present invention, a technique
45 is provided for incorporating floating point infonnation into

processor instructions. In U.S. Pat. No. 5,812,439, a system
and method are described for incorporating control ofround­
ing and exceptions for floating-point instructions into the
instruction itself. The present invention extends this invention

50 to include separate instructions in which rounding is speci­
fied, but default handling ofexceptions is also specified, for a
particular class offloating-point instructions. Specifically, the
SINK instruction (which converts floating-point values to
integral values) is available with control in the instruction that

55 include all previously specified combinations (default-near
rounding and default exceptions, Z-round-toward-zero and
trap on exceptions, N-round to nearest and trap on excep­
tions, F-floor rounding (toward minus infinity) and trap on
exceptions, C---ceiling rounding (toward plus infinity) and

60 trap on exceptions, and X-trap on inexact and other excep­
tions), as well as three new combinations (ZoO-round
toward zero and default exception handling, F.D-floor
rounding and default exception handling, and C.D---ceiling
rounding and default exception handling). (The other combi-

65 nations: N.D is equivalent to the default, and XoO-trap on
inexact but default handling for other exceptions is possible
but not particularly valuable).

multiplier array for quads of 16-bit symbols. For all of these
cases, note that two register sources of 64 bits are combined,
yielding a 128-bit result.

In several of the operations, including complex multiplies,
convolve, and matrix multiplication, low-precision multiplier
products are added together. The additions further increase
the required precision. The sum oftwo products requires one
additional bit ofprecision; adding four products requires two,
adding eight products requires three, adding sixteen products
requires four. In some prior designs, some ofthis precision is
lost, requiring scaling of the multiplier operands to avoid
overflow, further reducing accuracy of the result.

The use ofregister pairs creates an undesirable complexity,
in that both the register pair and individual register values
must be bypassed to subsequent instructions. As a result, with
prior art techniques only half of the source operand 128-bit
register values could be employed toward producing a single­
register 128-bit result.

In some embodiments of the present invention, a high­
order portion of the multiplier product or sum of products is
extracted, adjusted by a dynamic shift amount from a general
register or an adjustment specified as part of the instruction,
and, rounded by a control value from a register or instruction
portion as round-to-nearest/even, toward zero, floor, or ceil­
ing. Overflows are handled by limiting the result to the largest
and smallest values that can be accurately represented in the
output result.

In the present invention, when the extract is controlled by a
register, the size of the result can be specified, allowing

30rounding and limiting to a smaller number of bits than can fit
in the result. This pennits the result to be scaled to be used in
subsequent operations without concern ofoverflow or round­
ing, enhancing perfonnance.

Also in the present invention, when the extract is controlled
by a register, a single register value defines the size of the
operands, the shift amount and size of the result, and the
rounding control. By placing all this control infonnation in a
single register, the size of the instruction is reduced over the
number of bits that such a instruction would otherwise
require, improving perfonnance and enhancing flexibility of
the processor.

The particular instructions included in this aspect of the
present invention are Ensemble Convolve Extract, Ensemble
Multiply Extract, Ensemble Multiply Add Extract and
Ensemble Scale Add Extract, each of which is more thor­
oughly treated in another section.

An aspect of the present invention defines the Ensemble
Scale Add Extract instruction, that combines the extract con­
trol information in a register along with two values that are
used as scalar multipliers to the contents of two vector mul­
tiplicands. This combination reduces the number of registers
that would otherwise be required, or the number of bits that
the instruction would otherwise require, improving perfor­
mance.

Several ofthese instructions (Ensemble Convolve Extract,
Ensemble Multiply Add Extract) are typically available only
in fonns where the extract is specified as part of the instruc­
tion. An alternative embodiment can incorporate forms ofthe
operations in which the size of the operand, the shift amount
and the rounding can be controlled by the contents of a gen­
eral register (as they are in the Ensemble Multiply Extract
instruction). The definition of this kind of instruction for
Ensemble Convolve Extract, and Ensemble Multiply Add
Extract would require four source registers, which increases
complexity by requiring additional general-register read
ports.
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Instruction Scheduling
The next section describes detailed pipeline organization

for Zeus, which has a significant influence on instruction
scheduling. Here we will elaborate some general rules for
effective scheduling by a compiler. Specific information on
numbers of functional units, functional unit parallelism and
latency is quite implementation-dependent, values indicated
here are valid for Zeus's first implementation.

address to which the data is to be stored in the addressing unit,
but the data will not be irrevocably stored until the data is
available and it is valid to retire the store instruction. How­
ever, under certain conditions, data may be forwarded from a
store instruction to subsequent load instructions, once the
data is available.

The latency of each of these units, for the initial Zeus
implementation is indicated below:

Latency rules

1 cycle
Address operands must be ready to issue,
4 cycles to A unit, 0 to G, X, E, T lUlits
Address operands must be ready to issue,
Store occurs when data is ready and instruction
may be retired.
Conditional branch operands may be provided
from theA unit (64-bit values), or the G unit
(l28-bit values). 4 cycles for mispredicted
branch
Address operand must be ready to issue,
1 cycle
1 cycle for data operands, 2 cycles for shift
amount or control operand
4 cycles
1 cycles

instruction

S
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X, WSWITCH
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E,WMULMAT
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Pipelining and Multithreading
As shown in FIG. 4, some embodiments of the present

30 invention employ both decoupled access from execution
pipelines and simultaneous multithreading in a unique way.
Simultaneous Multithreaded pipelines have been employed
in prior art to enhance the utilization of data path units by
allowing instructions to be issued from one of several execu-

35 tion threads to each functional unit (e.g., Susan Eggers, Uni­
versity of Wash, papers on Simultaneous Multithreading).

Decoupled access from execution pipelines have been
employed in prior art to enhance the utilization of execution

40 data path units by buffering results from an access unit, which
computes addresses to a memory unit that in turn fetches the
requested items from memory, and then presenting them to an
execution unit (e.g., James E. Smith, paper on Decoupled
Access from Execution).

Compared to conventional pipelines, Eggers prior art used
an additional pipeline cycle before instructions could be
issued to functional units, the additional cycle needed to
determine which threads should be permitted to issue instruc­
tions. Consequently, relative to conventional pipelines, the
prior art design had additional delay, including dependent
branch delay.

The embodiment shown in FIG. 4 contains individual
access data path units, with associated register files, for each
execution thread. These access units produce addresses,
which are aggregated together to a common memory unit,
which fetches all the addresses and places the memory con­
tents in one or more buffers. Instructions for execution units,
which are shared to varying degrees among the threads are
also buffered for later execution. The execution units then

60 perform operations from all active threads using functional
data path units that are shared.

For instructions performed by the execution units, the extra
cycle required for prior art simultaneous multithreading
designs is overlapped with the memory data access time from

65 prior art decoupled access from execution cycles, so that no
additional delay is incurred by the execution functional units
for scheduling resources. For instructions performed by the

45

Instruction A G X E T

A. x
B x
L x 50

S x
G x
X x
E x x
WTRANSLATE x x
WMULMAT x x x 55
WSWITCH x x

Software Pipeline
Instructions should generally be scheduled so that previous 20

operations can be completed at the time of issue. When this is
not possible, the processor inserts sufficient empty cycles to
perform the instructions precisely---explicit no-operation
instructions are not required.

Multiple Issue
Zeus can issue up to two addressing operations and up to

two execution operations per cycle per thread. Considering
functional unit parallelism, described below, as many of four
instruction issues per cycle are possible per thread.

Functional Unit parallelism
Zeus has separate function units for several classes of

execution operations. AnA unit performs scalar add, subtract,
boolean, and shift-add operations for addressing and branch
calculations. The remaining functional units are execution
resources, which perform operations subsequent to memory
loads and which operate on values in a parallel, partitioned
form. A G unit performs add, subtract, boolean, and shift-add
operations. An X unit performs general shift operations. An E
unit performs multiply and floating-point operations. A T unit
performs table-look-up operations.

Each instruction uses one or more ofthese units, according
to the table below.

Separate Addressing from Execution
Zeus has separate function units to perform addressing

operations (A, L, S, B instructions) from execution operations
(G, X, E, W instructions). When possible, Zeus will execute
all the addressing operations of an instruction stream, defer­
ring execution of the execution operations until dependent 15

load instructions are completed. Thus, the latency of the
memory system is hidden, so long as addressing operations
themselves do not need to wait for memory.

Latency
The latency ofeach functional unit depends on what opera­

tion is performed in the unit, and where the result is used. The
aggressive nature of the pipeline makes it difficult to charac­
terize the latency of each operation with a single number.
Because the addressing unit is decoupled from the execution
unit, the latency ofload operations is generally hidden, unless
the result ofa load instruction must be returned to the address­
ing unit. Store instructions must be able to compute the
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relatively high. Consequently, the design employs four such
units, where each unit can be shared between two threads. The
X unit, which performs a broad class ofdata switching func­
tions is more expensive and less used, so two units are pro­
vided that are each shared among two threads. The T unit,
which performs the Wide Translate instruction, is expensive
and utilization is low, so the single unit is shared among all
four threads. The E unit, which performs the class of
Ensemble instructions, is very expensive in area and power

10 compared to the other functional units, but utilization is rela­
tively high, so we provide two such units, each unit shared by
two threads.

In FIG. 4, four copies of an access unit are shown, each
with an access instruction fetch queue A-Queue 401-404,

15 coupled to an access register fileAR 405-408, each ofwhich
is, in tum, coupled to two access functional units A 409-416.
The access units function independently for four simulta­
neous threads of execution. These eight access functional
units A 409-416 produce results for access register files AR

20 405-408 and addresses to a shared memory system 417. The
memory contents fetched from memory system 417 are com­
bined with execute instructions not performed by the access
unit and entered into the four execute instruction queues
E-Queue 421-424. Instructions and memory data from

25 E-queue 421-424 are presented to execution register files
425-428, which fetches execution register file source oper­
ands. The instructions are coupled to the execution unit arbi­
tration unit Arbitration 431, that selects which instructions
from the four threads are to be routed to the available execu-

30 tion units E 441 and 449, X 442 and 448, G 443-444 and
446-447, and T 445. The execution register file source oper­
ands ER 425-428 are coupled to the execution units 441-445
using source operand buses 451-454 and to the execution
units 445-449 using source operand buses 455-458. The func-

35 tion unit result operands from execution units 441-445 are
coupled to the execution register file using result bus 461 and
the function units result operands from execution units 445­
449 are coupled to the execution register file using result bus
462.

In a still further aspect of the present invention, an
improved interprivilege gateway is described which involves
increased parallelism and leads to enhanced performance. In
U.S. application Ser. No. 08/541,416, now U.S. Pat. No.
6,101 ,590, a system and method is described for implement-

45 ing an instruction that, in a controlled fashion, allows the
transfer of control (branch) from a lower-privilege level to a
higher-privilege level. Embodiment of the present invention
provides an improved system and method for a modified
instruction that accomplishes the same purpose but with spe-

50 cific advantages.
Many processor resources, such as control of the virtual

memory system itself, input and output operations, and sys­
tem control functions are protected from accidental or mali­
cious misuse by enclosing them in a protective, privileged

55 region. Entry to this region must be established only though
particular entry points, called gateways, to maintain the integ­
rity of these protected regions.

Prior art versions of this operation generally load an
address from a region of memory using a protected virtual

60 memory attribute that is only set for data regions that contain
valid gateway entry points, then perform a branch to an
address contained in the contents ofmemory. Basically, three
steps were involved: load, branch, then check. Compared to
other instructions, such as register-to-register computation

65 instructions and memory loads and stores, and register-based
branches, this is a substantially longer operation, which intro­
duces delays and complexity to a pipelined implementation.

access units, by employing individual access units for each
thread the additional cycle for scheduling shared resources is
also eliminated.

This is a favorable tradeoff because, while threads do not
share the access functional units, these units are relatively
small compared to the execution functional units, which are
shared by threads.

FIG. 12 is a timing diagram of a decoupled pipeline struc­
ture in accordance with one embodiment ofthe present inven­
tion. As illustrated in FIG. 12, the time permitted by a pipeline
to service load operations may be flexibly extended. Here,
various types ofinstructions are abbreviated as A, L, B, E, and
S, representing a register-to-register address calculation, a
memory load, a branch, a register-to-register data calculation,
and a memory store, respectively. According to the present
embodiment, the front of the pipeline, in which A, Land B
type instructions are handled, is decoupled from the back of
the pipeline, in which E, and S type instructions are handled.
This decoupling occurs at the point at which the data cache
and its backing memory is referenced; similarly, a FIFO that
is filled by the instruction fetch unit decouples instruction
cache references from the front of the pipeline shown above.
The depth of the FIFO structures is implementation-depen­
dent, i.e. not fixed by the architecture. FIG. 13 further illus­
trates this pipeline organization. Accordingly, the latency of
load instructions can be hidden, as execute instructions are
deferred until the results of the load are available. Neverthe­
less, the execution unit still processes instructions in normal
order, and provides precise exceptions. More details relating
to this pipeline structure is explained in the "Superspring
Pipeline" section.

A difficulty in particular pipeline structures is that depen­
dent operations must be separated by the latency of the pipe­
line, and for highly pipelined machines, the latency ofsimple
operations can be quite significant. According to one embodi­
ment of the present invention, very highly pipelined imple­
mentations are provided by alternating execution of two or
more independent threads. In an embodiment, a thread is the
state required to maintain an independent execution; the
architectural state required is that ofthe register file contents, 40

program counter, privilege level, local TB, and when
required, exception status. In an embodiment, ensuring that
only one thread may handle an exception at one time may
minimize the latter state, exception status. In order to ensure
that all threads make reasonable forward progress, several of
the machine resources must be scheduled fairly.

An example of a resource that is critical that it be fairly
shared is the data memory/cache subsystem. In one embodi­
ment, the processor may be able to perform a load operation
only on every second cycle, and a store operation only on
every fourth cycle. The processor schedules these fixed tim­
ing resources fairly by using a round-robin schedule for a
number of threads that is relatively prime to the resource
reuse rates. In one embodiment, five simultaneous threads of
execution ensure that resources which may be used every two
or four cycles are fairly shared by allowing the instructions
which use those resources to be issued only on every second
or fourth issue slot for that thread. More details relating to this
pipeline structure are explained in the "Superthread Pipeline"
section.

Referring back to FIG. 4, with regard to the sharing of
execution units, one embodiment of the present invention
employs several different classics of functional units for the
execution unit, with varying cost, utilization, and perfor­
mance. In particular, the G units, which perform simple addi­
tion and bitwise operations is relatively inexpensive (in area
and power) compared to the other units, and its utilization is
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In the diagrams below, we simplifY the diagrams somewhat
by eliminating the pipe stages for instruction fetch, and reg­
ister file write, which can be understood to precede and follow
the pipelines diagrammed. The diagram above is shown again
in this new format, showing that the canonical pipeline has
very little overlap of the actual execution of instructions.

quently, code that ignores the subsequent discussion of Zeus
pipeline implementations will still perform correctly. How­
ever, the highest performance of the Zeus processor is
achieved only by matching the ordering of instructions to the
characteristics ofthe pipeline. In the following discussion, the
general characteristics of all Zeus implementations precede
discussion of specific choices for specific implementations.

A superscalar pipeline is one capable of simultaneously
issuing two or more instructions which are independent, in
that they can be executed in either order and separately, pro­
ducing the same result as if they were executed serially. The
diagram below shows a two-way superscalar processor,
where one instruction may be a register-to-register operation

65 (using stage E) and the other may be a register operation
(using stage A) or a memory load or store (using states A and
M).

Classical Pipeline Structures

Pipelining in general refers to hardware structures that
overlap various stages of execution of a series of instructions
so that the time required to perform the series of instructions
is less than the sum of the times required to perform each of
the instructions separately. Additionally, pipelines carry to

15 connotation ofa collection ofhardware structures which have
a simple ordering and where each structure performs a spe­
cialized function.

The diagram below shows the timing of what has become
a canonical pipeline structure for a simple RISC processor,
with time on the horizontal axis increasing to the right, and
successive instructions on the vertical axis going downward.
The stages I, R, E, M, and W refer to units which perform
instruction fetch, register file fetch, execution, data memory
fetch, and register file write. The stages are aligned so that the

25 result of the execution of an instruction may be used as the
source ofthe execution of an immediately following instruc­
tion, as seen by the fact that the end ofan E stage (bold in line
1) lines up with the beginning of the E stage (bold in line 2)
immediately below. Also, it can be seen that the result of a
load operation executing in stages E and M (bold in line 3) is
not available in the immediately following instruction (line
4), but may be used two cycles later (line 5); this is the cause
of the load delay slot seen on some RISC processors.

In the present invention, the branch-gateway instruction
performs two operations in parallel: 1) a branch is performed
to the contents of register °and 2) a load is performed using
the contents of register 1, using a specified byte order (little­
endian) and a specified size (64 bits). Ifthe value loaded from
memory does not equal the contents ofregister 0, the instruc­
tion is aborted due to an exception. In addition, 3) a return
address (the next sequential instruction address following the
branch-gateway instruction) is written into register 0, pro­
vided the instruction is not aborted. This approach essentially 10

uses a first instruction to establish the requisite permission to
allow user code to access privileged code, and then a second
instruction is permitted to branch directly to the privileged
code because of the permissions issued for the first instruc­
tion.

In the present invention, the new privilege level is also
contained in register 0, and the second parallel operation does
not need to be performed if the new privilege level is not
greater than the old privilege level. When this second opera­
tion is suppressed, the remainder of the instruction performs 20

an identical function to a branch-link instruction, which is
used for invoking procedures that do not require an increase in
privilege. The advantage that this feature brings is that the
branch-gateway instruction can be used to call a procedure
that mayor may not require an increase in privilege.

The memory load operation verifies with the virtual
memory system that the region that is loaded has been tagged
as containing valid gateway data. A further advantage of the
present invention is that the called procedure may rely on the
fact that register 1 contains the address that the gateway data 30

was loaded from, and can use the contents of register 1 to
locate additional data or addresses that the procedure may
require. Prior art versions of this instruction required that an
additional address be loaded from the gateway region of
memory in order to initialize that address in a protected man- 35

ner-the present invention allows the address itself to be
loaded with a "normal" load operation that does not require
special protection.

The present invention allows a "normal" load operation to
also load the contents ofregister°prior to issuing the branch- 40

gateway instruction. The value may be loaded from the same
memory address that is loaded by the branch-gateway instruc­
tion, because the present invention contains a virtual memory
system in which the region may be enabled for normal load
operations as well as the special "gateway" load operation 45

performed by the branch-gateway instruction.
In a further aspect of the present invention, a system and

method is provided for performing a three-input bitwise
Boolean operation in a single instruction. A novel method
described in detail in another section is used to encode the 50

eight possible output states of such an operation into only
seven bits, and decoding these seven bits back into the eight
states.

In yet a further aspect to the present invention, a system and
method is described for improving the branch prediction of 55

simple repetitive loops ofcode. The method includes provid­
ing a count field for indicating how many times a branch is
likely to be taken before it is not taken, which enhances the
ability to properly predict both the initial and final branches of
simple loops when a compiler can determine the number of 60

iterations that the loop will be performed. This improves
performance by avoiding misprediction of the branch at the
end of a loop.

Pipeline Organization
Zeus performs all instructions as if executed one-by-one,

in-order, with precise exceptions always available. Conse-
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1 E
2 A M
3 E
4 A M
5 E
6 A M

superscalar pipeline

10

A superpipelined pipeline is one capable is issuing simple
instructions frequently enough that the result of a simple
instruction must be independent of the immediately follow­
ing one or more instructions. The diagram below shows a 15

two-cycle superpipelined implementation:

1 A
2 L L
3 E E E
4 S S S S
5 B
6 A
7 L L
8 E E E
9 S S S S

10 B
11 A
12 L L
13 E E E
14 S S S S
15 B

Superstring pipeline

S
B

E

A
L

S
B

E

A
L

1 A
2 L
3 E
4 S
5 B
6
7
8
9

10
11
12
13
14
15

Superspring Pipeline
20 Zeus architecture provides an additional refinement to the

organization defined above, in which the time permitted by
the pipeline to service load operations may be flexibly
extended. Thus, the front ofthe pipeline, in which A, L and B
type instructions are handled, is decoupled from the back of

25 the pipeline, in which E, and S type instructions are handled.
This decoupling occurs at the point at which the data cache
and its backing memory is referenced; similarly, a FIFO that
is filled by the instruction fetch unit decouples instruction
cache references from the front of the pipeline shown above.

30 The depth of the FIFO structures is implementation-depen­
dent, i.e. not fixed by the architecture.

FIG. 13 indicates why we call this pipeline organization
feature "superspring," an extension of our superstring orga­
nization.

With the super-spring organization, the latency of load
instructions can be hidden, as execute instructions are
deferred until the results of the load are available. Neverthe­
less, the execution unit still processes instructions in normal
order, and provides precise exceptions.

superpipelined pipeline

1
2 '---r""*"r-:';,.,

3
4
5
6

Superstring Pipeline

Zeus architecture provides for implementations designed
to fetch and execute several instructions in each clock cycle. 35

For a particular ordering of instruction types, one instruction
of each type may be issued in a single clock cycle. The
ordering required is A, L, E, S, B; in other words, a register­
to-register address calculation, a memory load, a register-to- 40

register data calculation, a memory store, and a branch.
Because of the organization of the pipeline, each of these
instructions may be serially dependent. Instructions oftype E
include the fixed-point execute-phase instructions as well as
floating-point and digital signal processing instructions. We 45

call this form ofpipeline organization "superstring," (readers
with a background in theoretical physics may have seen this
term in an other, unrelated, context) because of the ability to
issue a string ofdependent instructions in a single clock cycle, 50

as distinguished from superscalar or superpipelined organi­
zations, which can only issue sets of independent instruc­
tions.

In the diagrams below, pipeline stages are labelled with the
type of instruction that may be performed by that stage. The
position of the stage further identifies the function of that
stage, as for example a load operation may require several L
stages to complete the instruction.

These instructions take from one to four cycles of latency
to execute, and a branch predictionmechanism is used to keep 55

the pipeline filled. The diagram below shows a box for the
interval between issue ofeach instruction and the completion.
Bold letters mark the critical latency paths ofthe instructions,
that is, the periods between the required availability of the 60

source registers and the earliest availability of the result reg­
isters. TheA-L critical latency path is a special case, in which
the result ofthe A instruction may be used as the base register
of the L instruction without penalty. E instructions may
require additional cycles of latency for certain operations, 65

such as fixed-point multiply and divide, floating-point and
digital signal processing operations.

Superspring pipeline

Superthread Pipeline
This technique is not employed in the initial Zeus imple­

mentation, though it was present in an earlier prototype
implementation.

A difficulty ofsuperpipelining is that dependent operations
must be separated by the latency of the pipeline, and for
highly pipelined machines, the latency of simple operations
can be quite significant. The Zeus "superthread" pipeline
provides for very highly pipelined implementations by alter­
nating execution of two or more independent threads. In this
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a common memory system, a common T unit. Pairs ofthreads
share two G units, one X unit, and one E unit. Each thread
individually has two A units. A fair allocation scheme bal­
ances access to the shared resources by the four threads.

Branch/Fetch Prediction
Zeus does not have delayed branch instructions, and so

relies upon branch or fetch prediction to keep the pipeline full
around unconditional and conditional branch instructions. In
the simplest form of branch prediction, as in Zeus's first
implementation, a taken conditional backward (toward a
lower address) branch predicts that a future execution of the
same branch will be taken. More elaborate prediction may
cache the source and target addresses of multiple branches,
both conditional and unconditional, and both forward and
reverse.

The hardware prediction mechanism is tuned for optimiz­
ing conditional branches that close loops or express frequent
alternatives, and will generally require substantially more

20 cycles when executing conditional branches whose outcome
is not predominately taken or not-taken. For such cases of
unpredictable conditional results, the use of code that avoids
conditional branches in favor of the use of compare-set and
multiplex instructions may result in greater performance.

Under some conditions, the above technique may not be
applicable, for example if the conditional branch "guards"
code which cannot be performed when the branch is taken.
This may occur, for example, when a conditional branch tests
for a valid (non-zero) pointer and the conditional code per­
forms a load or store using the pointer. In these cases, the

context, a thread is the state required to maintain an indepen­
dent execution; the architectural state required is that of the
register file contents, program counter, privilege level, local
TB, and when required, exception status. Ensuring that only
one thread may handle an exception at one time may mini­
mize the latter state, exception status. In order to ensure that
all threads make reasonable forward progress, several of the
machine resources must be scheduled fairly.

An example of a resource that is critical that it be fairly
shared is the data memory/cache subsystem. In a prototype 10

implementation, Zeus is able to perform a load operation only
on every second cycle, and a store operation only on every
fourth cycle. Zeus schedules these fixed timing resources
fairly by using a round-robin schedule for a number ofthreads
that is relatively prime to the resource reuse rates. For this 15

implementation, five simultaneous threads of execution
ensure that resources which may be used every two or four
cycles are fairly shared by allowing the instructions which use
those resources to be issued only on every second or fourth
issue slot for that thread.

In the diagram below, the thread number which issues an
instruction is indicated on each clock cycle, and below it, a list
ofwhich functional units may be used by that instruction. The
diagram repeats every 20 cycles, so cycle 20 is similar to cycle
0, cycle 21 is similar to cycle I, etc. This schedule ensures that 25

no resource conflict occur between threads for these
resources. Thread °may issue an E, L, SorB on cycle 0, but
on its next opportunity, cycle 5, may only issue E or B, and on
cycle 10 may issue E, Lor B, and on cycle 15, may issue E or
B.

Superthread pipeline

cycle a 2 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19
thread a 2 4 a 2 3 4 a 1 2 3 4 a 1 2 3 4

E E E E E E E E E E E E E E E E E E E E
L L L L L L L L L L
S S S S S
B B B B B B B B B B B B B B B B B B B B

When seen from the perspective ofan individual thread, the
resource use diagram looks similar to that of the collection.
Thus an individual thread may use the load unit every two
instructions, and the store unit every four instructions.

conditional branch has a small positive offset, but is unpre­
45 dictable. A Zeus pipeline may handle this case as ifthe branch

is always predicted to be not taken, with the recovery of a
misprediction causing cancellation of the instructions which

Superthread pipeline

cycle a 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
thread a a a a a a a a a a a a a a a a a a a a

E E E E E E E E E E E E E E E E E E E E
L L L L L L L L L L
S S S S S
B B B B B B B B B B B B B B B B B B B B

A Zeus Superthread pipeline, with 5 simultaneous threads
of execution, permits simple operations, such as register-to­
register add (G.ADD), to take 5 cycles to complete, allowing
for an extremely deeply pipelined implementation.

Simultaneous Multithreading
The initial Zeus implementation performs simultaneous

multithreading among 4 threads. Each of the 4 threads share

60
have already been issued but not completed which would be
skipped over by the taken conditional branch. This "condi­
tional-skip" optimization is performed by the initial Zeus
implementation and requires no specific architectural feature

65 to access or implement.
A Zeus pipeline may also perform "branch-return" optimi­

zation' in which a branch-link instruction saves a branch
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Local Translation Buffer

The 64-bit global virtual address space is global among all
55 tasks. In a multitask environment, requirements for a task­

local address space arise from operations such as the UNIX
"fork" function, in which a task is duplicated into parent and
child tasks, each now having a unique virtual address space.
In addition, when switching tasks, access to one task's

60 address space must be disabled and another task's access
enabled.

Zeus provides for portions ofthe address space to be made
local to individual tasks, with a translation to the global vir­
tual space specified by four l6-bit registers for each local

65 virtual space. The registers specifY a mask selecting which of
the high-order 16 address bits are checked to match a particu­
lar value, and if they match, a value with which to modifY the

control of access to the virtual address space, with the assis­
tance of fast exception handlers. Privilege levels provide for
the secure transition between insecure user code and secure
system facilities. Instructions execute at a privilege, specified
by a two-bit field in the access information. Zero is the least­
privileged level, and three is the most-privileged level.

In general terms, the memory management starts from a
local virtual address. The local virtual address is translated to
a global virtual address by anLTB (Local Translation Buffer).

10 In tum, the global virtual address is translated to a physical
address by a GTB (Global Translation Buffer). One of the
addresses, a local virtual address, a global virtual address, or
a physical address, is used to index the cache data and cache
tag arrays, and one ofthe addresses is used to check the cache

15 tag array for cache presence. Protection information is
assembled from the LTB, GTB, and optionally the cache tag,
to determine if the access is legal.

This form varies somewhat, depending on implementation
choices made. Because the LTB leaves the lower 48 bits ofthe

20 address alone, indexing of the cache arrays with the local
virtual address is usually identical to cache arrays indexed by
the global virtual address. However, indexing cache arrays by
the global virtual address rather than the physical address
produces a coherence issue ifthe mapping from global virtual

25 address to physical is many-to-one.
Starting from a local virtual address, the memory manage­

ment system performs three actions in parallel: the low-order
bits of the virtual address are used to directly access the data
in the cache, a low-order bit field is used to access the cache

30 tag, and the high-order bits of the virtual address are trans­
lated from a local address space to a global virtual address
space.

Following these three actions, operations vary depending
35 upon the cache implementation. The cache tag may contain

either a physical address and access control information (a
physically-tagged cache), or may contain a global virtual
address and global protection information (a virtually-tagged
cache).

For a physically-tagged cache, the global virtual address is
translated to a physical address by the GTB, which generates
global protection information. The cache tag is checked
against the physical address, to determine a cache hit. In
parallel, the local and global protection information is

45 checked.
For a virtually-tagged cache, the cache tag is checked

against the global virtual address, to determine a cache hit,
and the local and global protection information is checked. If
the cache misses, the global virtual address is translated to a

50 physical address by the GTB, which also generates the global
protection information.

Memory Management
This section discusses the caches, the translation mecha­

nisms, the memory interfaces, and how the multiprocessor
interface is used to maintain cache coherence.

Overview
FIG. 14 is a diagram illustrating the basic organization of

the memory management system according to one embodi­
ment of the invention. In accordance with this embodiment,
the Zeus processor provides for both local and global virtual
addressing, arbitrary page sizes, and coherent-cache multi­
processing. The memory management system is designed to
provide the requirements for implementation of virtual
machines as well as virtual memory. All facilities of the
memory management system are themselves memory
mapped, in order to provide for the manipulation of these
facilities by high-level language, compiled code. The trans­
lation mechanism is designed to allow full byte-at-a-time

Result Forwarding
When temporally adjacent instructions are executed by

separate resources, the results of the first instruction must
generally be forwarded directly to the resource used to 40

execute the second instruction, where the result replaces a
value which may have been fetched from a register file. Such
forwarding paths use significant resources. A Zeus imple­
mentation must generally provide forwarding resources so
that dependencies from earlier instructions within a string are
immediately forwarded to later instructions, except between a
first and second execution instruction as described above. In
addition, when forwarding results from the execution units
back to the data fetch unit, additional delay may be incurred.

51
target address that is used to predict the target of the next
returning branch instruction. This optimization may be
implemented with a depth of one (only one retum address
kept), or as a stack of finite depth, where a branch and link
pushes onto the stack, and a branch-register pops from the
stack. This optimization can eliminate the misprediction cost
of simple procedure calls, as the calling branch is susceptible
to hardware prediction, and the returning branch is predict­
able by the branch-return optimization. Like the conditional­
skip optimization described above, this feature is performed
by the initial Zeus implementation and requires no specific
architectural feature to access or implement.

Zeus implements two related instructions that can elimi­
nate or reduce branch delays for conditional loops, condi­
tional branches, and computed branches. The "branch-hint"
instruction has no effect on architectural state, but informs the
instruction fetch unit ofa potential future branch instruction,
giving the addresses ofboth the branch instruction and of the
branch target. The two forms of the instruction specify the
branch instruction address relative to the current address as an
immediate field, and one form (branch-hint-immediate)
specifies the branch target address relative to the current
address as an immediate field, and the other (branch-hint)
specifies the branch target address from a general register.
The branch-hint-immediate instruction is generally used to
give advance notice to the instruction fetch unit of a branch­
conditional instruction, so that instructions at the target ofthe
branch can be fetched in advance of the branch-conditional
instruction reaching the execution pipeline. Placing the
branch hint as early as possible, and at a point where the extra
instruction will not reduce the execution rate optimizes per­
formance. In other words, an optimizing compiler should
insert the branch-hint instruction as early as possible in the
basic block where the parcel will contain at most one other
"front-end" instruction.
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To improve perfonnance, an implementation may perfonn
the LTB translation on the value of the base register (rc) or
unincremented program counter, provided that a check is
perfonned which prohibits changing the unmasked upper 16
bits by the add or increment. If this optimization is provided
and the check fails, an AccessDisallowedByVirtualAddress
should be signaled. Ifthis optimization is provided, the archi­
tecture description parameter LB=1. Otherwise LTB transla­
tion is perfonned on the local address, la, no checking is
required, and LB=O.

As shown in FIG. 21, the LTB protect field controls the
minimum privilege level required for each memory action of
read (r), write (w), execute (x), and gateway (g), as well as
memory and cache attributes of write allocate (wa), detail
access (da), strong ordering (so), cache disable (cd), and write
through (wt). These fields are combined with corresponding
bits in the GTB protect field to control these attributes for the
mapped memory region.

LTB entry matches. This mechanism permits privileged code
to make judicious use of local virtual address ranges, which
simplifies the manner in which privileged code may manipu­
late the contents of a local virtual address range on behalf of
a less-privileged client. Note, however, that under this model,
an LTB miss does not cause an exception directly, so the use
ofmore local virtual address ranges than LTB entries requires
more care: the local virtual address ranges should be selected

10 so as not to overlap with the global virtual address ranges, and
GTB misses to LVA regions must be detected and cause the
handler to load an LTB entry.

Each thread has an independent LTB, so that threads may
independently define local translation. The size ofthe LTB for

15
each thread is implementation dependent and defined as the
LE parameter in the architecture description register. LE is
the log ofthe number ofentries in the local TB per thread; an
implementation may define LE to be a minimum of0, mean-

20 ing one LTB entry per thread, or a maximum of 3, meaning
eight LTB entries per thread. For the initial Zeus implemen­
tation, each thread has two entries and LE=1.

A minimum implementation ofa LTB context is a single set
25 of Im/la/lx/lp registers per thread. However, the need for the

LTB to translate both code addresses and data addresses
imposes some limits on the use of the LTB in such systems.
We need to be able to guarantee forward progress. With a
single LTB set per thread, either the code or the data must use

30 global addresses, or both must use the same local address
range, as must the LTB and GTB exception handler. To avoid
this restriction, the implementation must be raised to two sets
per thread, at least one for code and one for data, to guarantee
forward progress for arbitrary use of local addresses in the

35
user code (but still be limited to using global addresses for
exception handlers).

As shown in FIG. 19, a single-set LTB context may be
further simplified by reserving the implementation of the 1m

40 and la registers, setting them to a read-only zero value: Note
that in such a configuration, only a single LA region can be
implemented.

Ifthe largest possible space is reserved for an address space
45 identifier, the virtual address is partitioned as shown in FIG.

20. Any of the bits marked as "local" below may be used as
"offset" as desired.

Local virtual address space specifiers

16 mask to select fields oflocal virtual address to perform
match over

16 value to perform match with masked local virtual address
16 value to xor with local virtual address if matched
16 local protection field (detailed later)

size description

la
Ix
Ip

virtual address. Zeus avoids setting a fixed page size or local
address size; these can be set by software conventions.

A local virtual address space is specified by the following:

Entry Fonnat
FIG. 17 illustrates how various 16-bit values are packed

together into a 64-bit LTB entry. The LTB contains a separate
context of register sets for each thread, indicated by the th
index above. A context consists of one or more sets of Im/la/
Ix/lp registers, one set for each simultaneously accessible
local virtual address range, indicated by the en index above.
This set of registers is called the "Local TB context," or LTB
(Local Translation Buffer) context. The effect of this mecha­
nism is to provide the facilities nonnally attributed to seg­
mentation. However, in this system there is no extension of
the address range, instead, segments are local nicknames for
portions of the global virtual address space.

A failure to match a LTB entry results either in an exception
or an access to the global virtual address space, depending on
privilege level. A single bit, selected by the privilege level
active for the access from a four bit control register field,
global access, ga detennines the result. If gapL is zero (0), the
failure causes an exception, if it is one (1), the failure causes
the address to be directly used as a global virtual address
without modification.

FIG. 18 illustrates global access as fields of a control reg­
ister. Usually, global access is a right conferred to highly
privilege levels, so a typical system may be configured with
gaO and gal clear (0), but ga2 and ga3 set (1). A single
low-privilege (0) task can be safely pennitted to have global 50

access, as accesses are further limited by the rwxg privilege
fields. A concrete example ofthis is an emulation task, which
may use global addresses to simulate segmentation, such as
an x86 emulation. The emulation task then runs as privilege 0,
with gaO set, while most user tasks run as privilege 1, with gal 55

clear. Operating system tasks then use privilege 2 and 3 to
communicate with and control the user tasks, with ga2 and
ga3 set.

For tasks that have global access disabled at their current
privilege level, failure to match a LTB entry causes an excep- 60

tion. The exception handler may load a LTB entry and con­
tinue execution, thus providing access to an arbitrary number
oflocal virtual address ranges.

When failure to match a LTB entry does not cause an
exception, instructions may access any region in the local 65

virtual address space, when a LTB entry matches, and may
access regions in the global virtual address space when no

Physical Address
There are as many LTB as threads, and up to 23 (8) entries

per LTB. Each entry is 128 bits, with the high order 64 bits
reserved. FIG. 15 illustrates the physical address of a LTB
entry for thread th, entry en, byte b.

Definition
FIG. 16 illustrates a definition for AccessPhysicalLTB.

name
field

1m
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Field Description

The meaning ofthe fields are given by the following table:

56
The meaning ofthe fields are given by the following table:

name size meaning

g 2 minimum privilege required for gateway access
x 2 minimum privilege required for execute access
w 2 minimum privilege required for write access

2 minimum privilege required for read access 10
0 1 reserved
da 1 detail access
so 1 strong ordering
cc 3 cache control

15

name size meaning

gs 57 global address with size
px 56 physical xor
g 2 minimum privilege required for gateway access
x 2 minimum privilege required for execute access
w 2 minimum privilege required for write access

2 minimum privilege required for read access
0 1 reserved
da 1 detail access
so 1 strong ordering
cc 3 cache control

40 GTB Registers
Because the processor contains multiple threads of execu­

tion, even when taking virtual memory exceptions, it is pos­
sible for two threads to nearly simultaneously invoke soft­
ware GTB miss exception handlers for the same memory

45 region. In order to avoid producing improper GTB state in
such cases, the GTB includes access facilities for indivisibly
checking and then updating the contents of the GTB as a
result of a memory write to specific addresses.

A 128-bit write to the address GTBUpdateFill (fill=I), as a
50 side effect, causes first a check ofthe global address specified

in the data against the GTB. Ifthe global address checkresults
in a match, the data is directed to write on the matching entry.
Ifthere is no match, the address specified by GTBLast is used,
and GTBLast is incremented. If incrementing GTBLast

55 results in a zero value, GTBLast is reset to GTBFirst, and
GTBBump is set. Note that if the size of the updated value is
not equal to the size ofthe matching entry, the global address
check may not adequately ensure that no other entries also
cover the address range ofthe updated value. The operation is

60 unpredictable if multiple entries match the global address.
The GTBUpdateFill register is a 128-bit memory-mapped

location, to which a write operation performs the operation
defined above. A read operation returns a zero value. The
format of the GTBUpdateFill register is identical to that of a
GTB entry.

An alternative write address, GTBUpdate, (fill=O) updates
a matching entry, but makes no change to the GTB ifno entry

Ifthe entire contents ofthe GTB entry is zero (0), the entry
will not match any global address at all. If a zero value is
written, a zero value is read for the GTB entry. Software must
not write a zero value for the gs field unless the entire entry is

20 a zero value.
It is an error to write GTB entries that multiply match any

global address; all GTB entries must have unique, non-over­
lapping coverage of the global address space. Hardware may
produce a machine check if such overlapping coverage is

25 detected, or may produce any physical address and protection
information and continue execution.

Limiting the GTB entry size to 128 bits allows up to replace
entries atomically (with a single store operation), which is
less complex than the previous design, in which the mask

30 portion was first reduced, then other entries changed, then the
mask is expanded. However, it is limiting the amount of
attribute information or physical address range we can
specifY. Consequently, we are encoding the size as a single
additional bit to the global address in order to allow for

35 attribute information.

Definition
FIG. 26 illustrates a definition for GlobalAddressTransla­

tion.

Entry Format

As shown, each GTB entry is 128 bits.

Definition

FIG. 22 illustrates a definition for LocalTranslation.

Definition

FIG. 24 illustrates a definition for AccessPhysicalGTB.
FIG. 25 illustrates the format of a GTB entry.

Global Translation Buffer

Global virtual addresses which fail to be accessed in either
the LZC, the MTB, the BTB, or PTB are translated to physical
references in a table, here named the "Global Translation
Buffer," (GTB).

Each processor may have one or more GTB's, with each
GTB shared by one or more threads. The parameter GT, the
base-two log of the number of threads which share a GTB,
and the parameter T, the number of threads, allow computa­
tion of the number of GTBs (T/2GT

), and the number of
threads which share each GTB (2GT

).

If there are two GTBs and four threads (GT=I, T=4), GTB
o services references from threads 0 and 1, and GTB 1 ser­
vices references from threads 2 and 3. In the first implemen­
tation, there is one GTB, shared by all four threads. (GT=2,
T=4). The GTB has 128 entries (G=7).

Per clock cycle, each GTB can translate one global virtual
address to a physical address, yielding protection information
as a side effect.

A GTB miss causes a software trap. This trap is designed to
permit a fast handler for GlobalTBMiss to be written in soft­
ware, by permitting a second GTB miss to occur as an excep­
tion, rather than a machine check.

Field Description

gs=ga+size/2: 256~size~264, ga, global address, is 65

aligned (a multiple of) size.

px=paA gao pa, ga, and px are all aligned (a multiple of) size.

Physical Address

There may be as many GTB as threads, and up to 215 entries
per GTB. FIG. 23 illustrates the physical address of a GTB
entry for thread th, entry en, byte b. Note that in FIG. 23, the
low-order GT bits of the th value are ignored, reflecting that
2GT threads share a single GTB. A single GTB shared
between threads appears multiple times in the address space.
Referring to FIG. 24, GTB entries are packed together so that
entries in a GTB are consecutive.
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matches. This operation can be used to indivisibly update a
GTB entry as to protection or physical address infonnation.

Definition
FIG. 27 illustrates a definition for GTBUpdateWrite.

Physical Address
There may be as many GTB as threads, and up to 211

registers per GTB (5 registers are implemented). FIG. 28
illustrates the physical address of a GTB control register for
thread th, register rn, byte b. Note that in FIG. 28, the low­
order GT bits of the th value are ignored, reflecting that 2GT

threads share single GTB registers. A single set of GTB
registers shared between threads appears multiple times in the
address space, and manipulates the GTB of the threads with
which the registers are associated.

The GTBUpdate register is a 128-bit memory-mapped
location, to which a write operation performs the operation
defined above. A read operation returns a zero value. The
format of the GTBUpdateFill register is identical to that of a
GTB entry. FIG. 29 illustrates the registers GTBLast, GTB­
First, and GTBBump. The registers GTBLast, GTBFirst, and
GTBBump are memory mapped. As shown in FIG. 29, the
GTBLast and GTBFirst registers are G bits wide, and the
GTBBump register is one bit.

Definition
FIG. 30 illustrates a definition for AccessPhysicalGT­

BRegisters.

Address Generation
The address units of each of the four threads provide up to

two global virtual addresses ofload, store, or memory instruc­
tions, for a total ofeight addresses. LTB units associated with
each thread translate the local addresses into global
addresses. The LZC operates on global addresses. MTB,
BTB, and PTB units associated with each thread translate the
global addresses into physical addresses and cache addresses.
(A PTB unit associated with each thread produces physical
addresses and cache addresses for program counter refer­
ences. -this is optional, as by limiting address generation to
two per thread, the MTB can be used for program references.)
Cache addresses are presented to the Lac as required, and
physical addresses are checked against cache tags as required.

Memory Banks
The LZC has two banks, each servicing up to four requests.

The Lac has eight banks, each servicing at most one request.
Assuming random request addresses, FIG. 55 shows the

expected rate at which requests are serviced by multi-bank!
multi-port memories that have 8 total ports and divided into 1,
2,4, or 8 interleaved banks. The LZC is 2 banks, each with 4
ports, and the Lac is 8 banks, each 1 port.

Note a small difference between applying 12 references
versus 8 references for the Lac (6.5 vs 5.2), and for the LZC
(7.8 vs. 6.9). This suggests that simplifYing the system to
produce two address per thread (program+load/store or two
load/store) will not overly hurt perfonnance. A closer simu­
lation, taking into account the sequential nature of the pro­
gram and load/store traffic may well yield better numbers, as
threads will tend to line up in non-interfering patterns, and
program microcaching reduces program fetching.

FIG. 56 shows the rates for both 8 total ports and 16 total
ports.

Note significant differences between 8-port systems and
l6-port systems, even when used with a maximum of 8
applied references. In particular, a l6-bank I-port system is
better than a 4-bank 2-port system with more than 6 applied
references. Current layout estimates would require about a

14% area increase (assuming no savings from smaller/sim­
pler sense amps) to switch to a l6-port LaC, with a 22%
increase in 8-reference throughput.

Program Microcache
A program microcache (PMC) which holds only program

code for each thread may optionally exist, and does exist for
the initial implementation. The program microcache is
flushed by reset, or by executing a B.BARRIER instruction.

10 The program microcache is always clean, and is not snooped
by writes or otherwise kept coherent, except by flushing as
indicated above. The microcache is not altered by writing to
the LTB or GTB, and software must execute a B.BARRIER
instruction before expecting the new contents of the LTB or
GTB to affect detennination of PMC hit or miss status on

15
program fetches.

In the initial implementation, the program microcache
holds simple loop code. The microcache holds two separately
addressed cache lines. Branches or execution beyond this

20 region cause the microcache to be flushed and refilled at the
new address, provided that the addresses are executable by
the current thread. The program microcache uses the B.HINT
and B.HINT.I to accelerate fetching of program code when
possible. The program microcache generally functions as a

25 prefetch buffer, except that short forward or backward
branches within the region covered maintain the contents of
the microcache.

Program fetches into the microcache are requested on any
cycle in which less than two load/store addresses are gener-

30 ated by the address unit, unless the microcache is already full.
System arbitration logic should give program fetches lower
priority than load/store references when first presented, then
equal priority if the fetch fails arbitration a certain number of
times. The delay until program fetches have equal priority

35 should be based on the expected time the program fetch data
will be executed; it may be as small as a single cycle, or
greater for fetches which are far ahead ofthe execution point.

Wide Microcache
A wide microcache (WMC) which holds only data fetched

40 for wide (W) instructions may optionally exist, and does exist
for the initial implementation, for each unit which imple­
ments one or more wide (W) instructions.

The wide (W) instructions each operate on a block of data
fetched from memory and the contents of one or more regis-

45 ters, producing a result in a register. Generally, the amount of
data in the block exceeds the maximum amount of data that
the memory system can supply in a single cycle, so caching
the memory data is ofparticular importance. All the wide (W)
instructions require that the memory data be located at an

50 aligned address, an address that is a multiple ofthe size ofthe
memory data, which is always a power of two.

The wide (W) instructions are performed by functional
units which nonnally perform execute or "back-end" instruc­
tions, though the loading of the memory data requires use of

55 the access or "front-end" functional units. To minimize the
use ofthe "front-end" functional units, special rules are used
to maintain the coherence of a wide microcache (WMC).

Execution ofa wide (W) instruction has a residual effect of
loading the specified memory data into a wide microcache

60 (WMC). Under certain conditions, a future wide (W) instruc­
tion may be able to reuse the WMC contents.

First of all, any store or cache coherency action on the
physical addresses referenced by the WMC will invalidate the
contents. The minimum translation unit ofthe virtual memory

65 system, 256 bytes, defines the number of physical address
blocks which must be checked by any store. A WMC for the
W.TABLE instruction may be as large as 4096 bytes, and so
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else

data +--- LevelZeroData[eo] [match] 127..0

valid +--- LevelZeroData[eo] [match] 143 .. 128

dirty +--- LevelZeroData[eo][match] 159.. 144

protect +--- LevelZeroData[eo][match] 167.. 160
endif

enddef

8 bitrwxg
16 bit valid
16 bit dirty
4 bit LO$ address
16 bit protection

def data,protect,valid,dirty,match +--- LevelZeroCacheRead(ga) as

eo ~ga4
match +---NONE

for i +--- 0 to LevelZeroCacheEntries/2-1
if(ga63..5 ~ LevelZeroTag[eo][i] then

match +--- i
endif

endfor
ifmatch ~ NONE then

raise LevelZeroCacheMiss

Level One Cache
The next cache level, here named the "Level One Cache,"

(LOC) is four-set-associative and indexed by the physical
address. The eight memory addresses are partitioned into up
to eight addresses for each of eight independent memory
banks. The LOC has a cache block size of 256 bytes, with
triclet (32-byte) sub-blocks.

The LOC may be partitioned into two sections, one part
used as a cache, and the remainder used as "niche memory."
Niche memory is at least as fast as cache memory, but unlike

Structure
The eight memory addresses are partitioned into up to four

odd addresses, and four even addresses.
The LZC contains 16 fully associative entries that may

each contain a single hexlet of data at even hexlet addresses
(LZCE), and another 16 entries for odd hexlet addresses
(LZCO). The maximum capacity of the LZC is 16*32=512
bytes.

The tags for these entries are indexed by global virtual
30 address (63 ... 5), and contain access control information,

detailed below.
The address of entries accessed associatively is also

encoded into binary and provided as output from the tags for
use in updating the LZC, through its write ports.

be returned by the LZC to satisfY the load or program fetch. If
the post-store data is not present, the load or program fetch
must stall until the data is available.

With an LZC miss, a victim entry is selected, and if dirty,
the victim entry is written to the LOC. The LOC cache is
accessed, and a valid LZC entry is constructed from data from
the LOC and tags from the LOC protection information.

All stores are checked against the LZC for conflicts, and
further cause a new entry in the LZC, or "take over" a previ­

10 ously clean LZC entry for this purpose. Unaligned stores may
require two entries in the LZC. At time of allocation, the
address is filled in.

Two operations then occur in parallel-I) for write-back
cached references, the remaining bytes of the hexlet are

15 loaded from the LOC (or LZC), and 2) the addressed bytes are
filled in with data from data path. If an exception causes the
store to be purged before retirement, the LZC entry is marked
invalid, and not written back. When the store is retired, the
LZC entry can be written back to LOC or external interface.

Level Zero Cache
The innermost cache level, here named the "Level Zero

Cache," (LZC) is fully associative and indexed by global 50

address. Entries in the LZC contain global addresses and
previously fetched data from the memory system. The LZC is
an implementation feature, not visible to the Zeus architec­
ture.

Entries in the LZC are also used to hold the global 55

addresses of store instructions that have been issued, but not
yet completed in the memory system. The LZC entry may
also contain the data associated with the global address, as
maintained either before or after updating with the store data.
When it contains the post-store data, results of stores may be 60

forwarded directly to the requested reference.
With an LZC hit, data is returned from the LZC data, and

protection from the LZC tag. No LOC access is required to
complete the reference.

All loads and program fetches are checked against the LZC 65

for conflicts with entries being used as store buffer. On a LZC
hit on such entries, if the post-store data is present, data may

requires as many as 16 such physical address blocks to be
checked for each WMC entry. A WMC for the W.SWITCH or
W.MUL. *instructions need check only one address block for
each WMC entry, as the maximum size is 128 bytes.

By making these checks on the physical addresses, we do
not need to be concerned about changes to the virtual memory
mapping from virtual to physical addresses, and the virtual
memory state can be freely changed without invalidating any
WMC.

Absent any ofthe above changes, the WMC is only valid if
it contains the contents relevant to the current wide (W)
instruction. To check this with minimal use of the front-end
units, each WMC entry contains a first tag with the thread and
address register for which it was last used. If the current wide
(W) instruction uses the same thread and address register, it
may proceed safely. Any intervening writes to that address
register by that thread invalidates the WMC thread and
address register tag.

If the above test fails, the front-end is used to fetch the
address register and check its contents against a second WMC 20

tag, with the physical addresses for which it was last used. If
the tag matches, it may proceed safely. As detailed above, any
intervening stores or cache coherency action by any thread to
the physical addresses invalidates the WMC entry.

If both the above tests fail for all relevant WMC entries, 25

there is no alternative but to load the data from the virtual
memory system into the WMC. The front-end units are
responsible for generating the necessary addresses to the
virtual memory system to fetch the entire data block into a
WMC.

For the first implementation, it is anticipated that there be
eight WMC entries for each of the two X units (for
W.SWITCH instructions), eight WMC entries for each ofthe
two E units (for W.MUL instructions), and four WMC entries
for the single T unit. The total number ofWMC address tags 35

requires is 8*2*1+8*2*1+4*1 *16=96 entries.
The number of WMC address tags can be substantially

reduced to 32+4=36 entries by making an implementation
restriction requiring that a single translation block be used to
translate the data address ofW.TABLE instructions. With this 40

restriction, each W.TABLE WMC entry uses a contiguous
and aligned physical data memory block, for which a single
address tag can contain the relevant information. The size of
such a block is a maximum of4096 bytes. The restriction can
be checked by examining the size field ofthe referenced GTB 45

entry.
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32 10 2 0

I si I v I bame rl----.b-n---'1
2 17

ci

109

address: I 0 I
1

To select the cache line, a 7-bit niche limit register
nl is compared against the value ofpa14 ... 8from the GTB. If
pa14 ... 8<nl, a 7-bit address modifier register am is inclusive­
or'ed against pa14 ... 8' producing a cache index, ci. Other­
wise, pa14 ... 8 is used as ci. Cache lines 0 ... nl-I, and cache
tags 0 nl-I, are available for use as niche memory. Cache
lines nl 127 and cache tags nl ... 127 are used as LOC.

With an MTB miss, the GTB (described below) is refer­
enced to obtain a physical address and protection informa­

20 tion.

derived from physical address bits 14 ... 8, ci, (7 bits) and set
identifier, si, (2 bits) required to access the LOC data. Each
MTB table entry also contains the protection information of
the LOC tag.

With an MTB hit, protection information is supplied from
the MTB. The MTB supplies the resulting cache index (ci,
from the MTB), set identifier, si, (2 bits) and virtual address
(bit 7, v, from the LA), which are applied to the LOC data

10 bank selected from bits 6 ... 4 ofthe LA. The diagram below
shows the address presented to LOC data bank bn.

cache, never misses to main memory. Niche memory may be
placed at any virtual address, and has physical addresses fixed
in the memory map. The nl field in the control register con­
figures the partitioning ofLOC into cache memory and niche
memory.

The LOC data memory is (256+8)x4x(128+2) bits, depth
to hold 256 entries in each offour sets, each entry consisting
ofone hexlet ofdata (128 bits), one bit ofparity, and one spare
bit. The additional 8 entries in each of four sets hold the LOC
tags, with 128 bits per entry for lf8 ofthe total cache, using 512
bytes per data memory and 4 K bytes total.

There are 128 cache blocks per set, or 512 cache blocks
total. The maximum capacity ofthe LOC is 128 k bytes. Used
as a cache, the LOC is partitioned into 4 sets, each 32 k bytes.
Physically, the LOC is partitioned into 8 interleaved physical 15

blocks, each holding 16k bytes.
The physical address pa63 ... 0 is partitioned as below into

a 52 to 54 bit tag (three to five bits are duplicated from the
following field to accommodate use ofportion ofthe cache as
niche), 8-bit address to the memory bank (7 bits are physical
address (pa), I bit is virtual address (v)), 3 bit memory bank
select (bn), and 4-bit byte address (bt). All access to the LOC
are in units ofl28 bits (hexlets), so the 4-bit byte address (bt)
does not apply here. The shaded field (pa,v) is translated via
nl to a cache identifier (ci) and set identifier (si) and presented 25

to the LOC as the LOC address to LOC bank bn.

The LOC tag consists of 64 bits of information, including
a 52 to 54-bit tag and other cache state information. Only one 35

MTB entry at a time may contain a LOC tag.
With 256 byte cache lines, there are 512 cache blocks. At

64 bits per tag, the cache tags require 4 k bytes ofstorage. This
storage is adjacent to the LOC data memory itself, using
physical addresses=1024 ... 1055. Alternatively (see detailed 40

description below), physical addresses=O ... 31 may be used.
The format of a LOC tag entry is shown below.

63

tag
49

15 14 8 7 6 4 3 0

.;PM.I bn I bt I 30

7 1 3 4 The address modifier am is (17-1og (128-nl) II olog(128-nl)).

The bt field specifies the least-significant bit used for tag, and
is (nl<112) ? 12:8+log(128-nl):

nl am bt

0 0 12
1 ... 64 64 12

65 ... 96 96 12
97 ... 112 112 12

113 ... 120 120 11
121 ... 124 124 10
125 ... 126 126 9

127 127 8
63 12 11 0 45

I tag I Is I
52 12

11 10 9 8 7 0

Idalvslmesil tv I
1 1 2 50

The meaning ofthe fields are given by the following table:

To access the LOC, a global address is supplied to the
Micro-Tag Buffer (MTB), which associatively looks up the
global address into a table holding a subset of the LOC tags.
In particular, each MTB table entry contains the cache index

Values for nl in the range 113 ... 127 require more than 52
physical address tag bits in the LOC tag and a requisite
reduction in LOC features. Note that the presence of bits
14 ... 10 of the physical address in the LOC tag is a result of
the possibility that, with am=64 ... 127, the cache index value
ci cannot be relied upon to supply bit 14 ... 8. Bits 9 ... 8 can
be safely inferred from the cache index value ci, so long as nl
is in the range 0 ... 124. When nl is in the range 113 ... 127,
the da bit is used for bit 11 of the physical address, so the Tag
detail access bit is suppressed. When nl is in the range
121 ... 127, the vs bit is used for bit!0 ofthe physical address,
so victim selection is performed without state bits in the LOC
tag. When nl is in the range 125 ... 127, the set associativity
is decreased, so that si l is used for bit 9 ofthe physical address
and whennl is 127, sio is used for bit 8 ofthe physical address.

Four tags are fetched from the LOC tags and compared
against the PA to determine which ofthe four sets contain the
data. The four tags are contained in two consecutive banks;

65 they may be simultaneously or independently fetched. The
diagram below shows the address presented to LOC data bank
(ci l ... ollsi l )·
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64
The Lac address (cillsi) uniquely identifies the cache loca­

tion, and this Lac address is associatively checked against all
MTB entries on changes to the Lac tags, such as by cache
block replacement, bus snooping, or software modification.
Any matching MTB entries are flushed, even if the MTB
entry specifies a different global address-this permits
address aliasing (the use ofa physical address with more than
one global address.

With an Lac miss, a victim set is selected (LaC victim
10 selection is described below), whose contents, if any sub­

block is modified, is written to the external memory. A new
LaC entry is constructed with address and protection infor­
mation from the GTB, and data fetched from external
memory.

The table below shows the contents of Lac data memory
banks 0 ... 7 for addresses 0 ... 2047:

10 9 5 4 a 2 1 a
address: '"'IC"'T"Ir----;o;-----rI--c.,.i6-..-.2---,1 bank: IciLa 1sid

1 5 2 1

Note that the CT architecture description variable is
present in the above address. CT describes whether dedicated
locations exist in the Lac for tags at the next power-of-two
boundary above the Lac data. The niche-mapping mecha­
nism can provide the storage for the Lac tags, so the exist­
ence ofthese dedicated tags is optional: IfCT=O, addresses at
the beginning of the Lac (0 ... 31 for this implementation)
are used for Lac tags, and the nl value should be adjusted 15

accordingly by software.

address bank 7 bank 1 bank a

a line 0, hex!et 7, set a line 0, hex!et 1, set a line 0, hex!et 0, set a
1 line 0, hex!et 15, set a line 0, hex!et 9, set a line 0, hex!et 8, set a
2 line 0, hex!et 7, set 1 line 0, hex!et 1, set 1 line 0, hex!et 0, set 1
3 line 0, hex!et 15, set 1 line 0, hex!et 9, set 1 line 0, hex!et 8, set 1
4 line 0, hex!et 7, set 2 line 0, hex!et 1, set 2 line 0, hex!et 0, set 2
5 line 0, hex!et 15, set 2 line 0, hex!et 9, set 2 line 0, hex!et 8, set 2
6 line 0, hex!et 7, set 3 line 0, hex!et 1, set 3 line 0, hex!et 0, set 3
7 line 0, hex!et 15, set 3 line 0, hex!et 9, set 3 line 0, hex!et 8, set 3
8 line 1, hex!et 7, set a line 1, hex!et 1, set a line 1, hex!et 0, set a
9 line 1, hex!et 15, set a line 1, hex!et 9, set a line 1, hex!et 8, set a

10 line 1, hex!et 7, set 1 line 1, hex!et 1, set 1 line 1, hex!et 0, set 1
11 line 1, hex!et 15, set 1 line 1, hex!et 9, set 1 line 1, hex!et 8, set 1
12 line 1, hex!et 7, set 2 line 1, hex!et 1, set 2 line 1, hex!et 0, set 2
13 line 1, hex!et 15, set 2 line 1, hex!et 9, set 2 line 1, hex!et 8, set 2
14 line 1, hex!et 7, set 3 line 1, hex!et 1, set 3 line 1, hex!et 0, set 3
15 line 1, hex!et 15, set 3 line 1, hex!et 9, set 3 line 1, hex!et 8, set 3

1016 line 127, hex!et 7, set a line 127, hex!et 1, set a line 127, hex!et 0, set a
1017 line 127, hex!et 15, set a line 127, hex!et 9, set a line 127, hex!et 8, set a
1018 line 127, hex!et 7, set 1 line 127, hex!et 1, set 1 line 127, hex!et 0, set 1
1019 line 127, hex!et 15, set 1 line 127, hex!et 9, set 1 line 127, hex!et 8, set 1
1020 line 127, hex!et 7, set 2 line 127, hex!et 1, set 2 line 127, hex!et 0, set 2
1021 line 127, hex!et 15, set 2 line 127, hex!et 9, set 2 line 127, hex!et 8, set 2
1022 line 127, hex!et 7, set 3 line 127, hex!et 1, set 3 line 127, hex!et 0, set 3
1023 line 127, hex!et 15, set 3 line 127, hex!et 9, set 3 line 127, hex!et 8, set 3
1024 tag line 3, sets 3 and 2 tag line 0, sets 3 and 2 tag line 0, sets 1 and a
1025 tag line 7, sets 3 and 2 tag line 4, sets 3 and 2 tag line 4, sets 1 and a

1055 tag line 127, sets 3 and 2 tag line 124, sets 3 and 2 tag line 124, sets 1 and a
1056 reserved reserved reserved

2047 reserved reserved reserved

The following table summarizes the state transitions
required by the Lac cache:

cc op mesi v bus op x mesi v w ill notes

NC R x x lUlcached read
NC W x x lUlcached write
CD R x lUlcached read
CD R x a lUlcached read
CD R MES 1 (hit)
CD W I x lUlcached write
CD W x a lUlcached write
CD W MES 1 lUlcached write
WT/WA R I x trielet read a x
WT/WA R I x trielet read 1 a S
WT/WA R I x trielet read 1 1 E
WT/WA R MES a trielet read a x inconsistent KEN#
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-continued

WT/WA R S 0 trielet read 0
WT/WA R S 0 trielet read 1 E->S: extra sharing
WT/WA R E 0 trielet read 0
WT/WA R E 0 trielet read 1 S shared block
WT/WA R M 0 trielet read 0 S other subblocks M->I
WT/WA R M 0 trielet read 1 E->M: extra dirty
WT/WA R MES 1 (hit)
WT W I x uncached write
WT W x 0 uncached write
WT W MES 1 uncached write
WA W I x trielet read 0 x throwaway read
WA W I x trielet read 1 0 S
WA W I x trielet read 1 1 M
WA W MES 0 trielet read 0 x inconsistent KEN#
WA W S 0 trielet read 1 0 S
WA W S 0 trielet read 1 1 M
WA W S 1 write 0 S
WA W S 1 write 1 S E->S: extra sharing
WA W E 0 trielet read 0 S
WA W E 0 trielet read 1 E
WA W E 1 (hit) x M E->M: extra dirty
WA W M 0 trielet read 0 M
WA W M 0 trielet read 1 M
WA W M 1 (hit) x M

cc cache control
op operation: R = read, W = write
mesi current mesi state
v current tv state
bus op bus operation
c cachable (trielet) result
x exclusive result
mesi new mesi state
v new tv state
w cacheable write after read
m merge store data with cache line data
notes other notes on transition

35
Definition

def data,tda.;-LevelOneCacheAccess (pa,size,lda,gda,cc,op,
wd) as

clef data,tda f- LevelOneCacheAccess(pa,size,lda,gda,cc,op,wd) as
// cache index
am f- (1 7 - log(128-nl) II olog(128-nl)

ci ~ (pa14..8<nl) ? (pa14..81Iam) : pa14..8
bt~ (nl:"'112) ? 12 : 8+log(128-nl)
// fetch tags for all four sets

tagIO ~ ReadPhysical(OxFFFFFFFF0000000063l91ICTII051IciII011104,128)

Tag[O] ~tagI063 ..o

Tag[l] ~ tagIO 127..64

tag32 +--uReadPhysical(OxFFFFFFFF0000000063l91ICTII051IciIII11104,128)

Tag[2] ~ tag3263..0
Tag[3] ~ tag32 127..64

vsc ~(Tag[3]10 II Tag[2]10) - (Tag[l]l0 II Tag[O]lO)
// look for matching tag

si ~MISS

fori ~Oto 3
if (Tag[i]63 .. l0 II iLo II 07)63..b,~pa63 ..b,then

si f-i
endif

endfor
// detail access checking on MIS S
if (si ~ MISS) and (Ida" gda) then

ifgda then
PerformAccessDetail(AccessDetaiIRequiredByGlobalTB)

else
PerformAccessDetail(AccessDetaiIRequiredByLocalTB)

endif
endif
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-continued

II ifno matching tag or invalid MESI or no sub-block, perform cacheable read/write

bd +--- (si ~ MISS) or (Tag[si]gs ~ I) or ((op~W) and (Tag[si]gs ~ S» or -Tag[si]pa7 5
ifbd then ..

if(op~W) and (cc "': WA) and ((si ~ MISS) or-Tag[si]pa 75 or (Tag(si)gs" S» then

data,cen,xen 'f- AccessPhysical(pa,size,cc,R,O)
l/if cache disabled or shared, do a write through
if~cen or ~xen then

data,cen,xen~ AccessPhysical(pa,size,cc,W,wd)
endif

else

data,cen,xen f- AccessPhysical(pa,size,cc,op,wd)
endif

al +--- cen
else

al +--- a
endif
II find victim set and eject from cache
if al and (si ~ MISS or Tag[si]g ..s ~ I) then

case bt of
12.. 11:

si f- vsc
10..8:

gvsc +--- gvsc + 1

si +--- (bt:"'9) : pag : gvscl-pall II (bt:"'8) : pas: gvsco-palO
endcase
ifTag[si]g ..s ~ M then

for i +--- a to 7
ifTag[si], then

vca +--- OxFFFFFFFF0000000063 .lgII01Icillsilli2..oI104

vdata +--- ReadPhysical(vca, 256)

vpa +---(Tag[si]63 .. l0 II SiLO II 07)63..b,llpab'_Lslli2..oI101104
WritePhysical(vpa, 256, vdata)

endif
endfor

endif
ifTag[vsc+l]g ..s ~ I then

nvsc f- vsc + 1
elseifTag[vsc+2]g ..s ~ I then

nvsc f- vsc + 2
elseifTag[vsc+3]g ..s ~ I then

nvsc f- vsc + 3
else

case cc of
NC, CD, WT, WA, PF:

nvsc f- vsc + 1
LS, SS:

nvsc f- vsc Iino change
endif

endcase
endif

tda +--- a
sm +---07-pa7·.5111 l ll (JPaD

else

nvsc f- vsc

tda +--- (bt>11) ? Tag[si]ll : a
if al then

sm +--- Tag[sih.l+p a7 5 II 11 II Tag[si]pa7 5-1..0
endif .. ..

endif
II write new data into cache and update victim selection and other tag fields
if al then

ifop~R then

mesi f- xen ? E: S
else

mesi +---xen? M: I TODO
endif
case bt of

12:

Tag[si] +---pa63..b, II tda II Tag[s(2]10 - nvsc'io II mesi II sm

Tag[s(l]10 +---Tag[s(3]10 - nvscl-'iO
11:

Tag[si] +---pa63..b, II Tag[s(2]10 - nvsc'io II mesi II sm
- +--- - - -

Tag[si 1]10 Tag[si 3]10 nvscl'io

68
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-continued

10:

Tag[si] f-pa63 .. b' II mesi II sm
endcase
dt f- 1

nca f- OxFFFFFFFF0000000063 .. l91101Icillsillpa7..sII04
WritePhysical(nca, 256, data)

endif
// retrieve data from cache
if -bd then

nca f- OxFFFFFFFF0000000063 .. l91101Icillsillpa7..sII04
data f- ReadPhysical(nca, 128)

endif
II write data into cache
if (op~W) and bd and al then

nca f- OxFFFFFFFF0000000063 .. l91101Icillsillpa7..sII04
data f- ReadPhysical(nca, 128)

mdata +--- datal27 ..8*(~ize+pa3 ..0) II WdS *(size+pa3 ..0)-l..S*pa3 ..0 II dataS*pa3..0 ..0
WritePhysical(nca, 128, mdata)

endif
II prefetch into cache
if al~bd and (cc~PF or cc~LS) then

af f- a II abort fetch if afbecomes 1
fori f-O to 7

if-Tag[si], and -afthen

data,cen,xen f- AccessPhysical(pa63 ..slli2..oI10 1104,256,cc,R,0)
if cen then

nca f-OxFFFFFFFFOOOOOOOO63..l91101Icillsilli2 ..oI104
WritePhysical(nca, 256, data)

Tag[si], f-l
dt f- 1

else

aff-l
endif

endif
endfor

endif
II cache tag writeback if dirty
ifdtthen

nt f-Tag[si l lll l ) II Tag[silIIO l)
WritePhysical(OxFFFFFFFF0000000063 .. l91ICTIIOSllcillsi11104, 128, nt)

endif
enddef

40

bank 0, address a
bank 1, address a
bank 2, address a
bank 3, address a
bank 4, address a
bank 5, address a
bank 6, address a
bank 7, address a
bank 0, address 1
bank 1, address 1
bank 2, address 1
bank 3, address 1
bank 4, address 1
bank 5, address 1
bank 6, address 1
bank 7, address 1

a
16
32
48
64
80
96

112
128
144
160
176
192
208
224
240

Byte offset

60

The table below shows the Lac data memory bank and
address referenced by byte address offsets in the explicit Lac
data range. Note that this mapping includes the addresses use

45 for Lac tags.

55
3 4

7 6 430

ba

11

18 17

46

FFFF FFFF 0000 0000 63 .. 18

63

Physical Address
The Lac data memory banks are accessed implicitly by

cached memory accesses to any physical memory location as
shown above. The Lac data memory banks are also accessed
explicitly by uncached memory accesses to particular physi­
cal address ranges. The address mapping of these ranges is
designed to facilitate use of a contiguous portion ofthe Lac
cache as niche memory.

The physical address ofa Lac hexlet for Lac address ba, 50

bank bn, byte b is:

Within the explicit Lac data range, starting from a physi­
cal address pal7 . . 0' the diagram below shows the Lac
address (pa17 ... 7) presented to Lac data bank (pa6 ... 4)'

10 a 2 a
address: "'1---""'p""'a,.-I7-.-..7------,1 bank: ...1-"'pa""6,.-..""'.4-'1

11 3 65

262016
262032
262048
262064

bank 0, address 2047
bank 1, address 2047
bank 2, address 2047
bank 3, address 2047
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Each row of a LOC bank contains 131 bits: 128 bits of
memory data, one bit for parity, and two spare bits:

130 129 128 127

Byte offset

262080
262096
262112
262128

bank 4, address 2047
bank 5, address 2047
bank 6, address 2047
bank 7, address 2047

2 1
data

128

o

Definition
10

LOC redundancy control has 129 bits:

128 127

control

o

128

The LOC redundancy control register has 129 bits, but is
written with a 128-bit value. To set the pc bit in the LOC
redundancy control, a value is written to the control with
either bit 124 set (I) or bit 126 set (I). To set bit 124 of the

25 LOC redundancy control, a value is written to the control with
both bit 124 set (I) and 126 set (I). When the LOC redun­
dancy control register is read, the process is reversed by
selecting the pc bit instead of control bit 124 for the value of
bit 124 if control bit 126 is zero (0).

30 This system can remove one defective colunm at an even
bit position and one defective colunm at an odd bit position
within each LOC block. For each defective colunm location,
x, LOC control bit must be set at bits x, x+2, x+4, x+6, ... If
the defective colunm is in the parity location (bit 128), then

35 set bit 124 only. The following table defines the control bits
for parity, bit 126 and bit 124: (other control bits are same as
values written)

def data f- AeeessPhysiealLOCCpa,op,wd) as
bank f- pa6..4

addr f- pal7.. 7

case op of
R:

rd f- LOCArray[bank][addr]
ere f- LOCRedundaney[bank]

data f- (ere and rd l30 ..2) or (-ere and rd l28.. 0)

prO] f- o
for i f- oto 128 by 1

p[l+l] f-p[i] , data,
endfor
if ControlRegister6l and (p[129] " 1) then

raise CacheError
endif

w:
prO] f- o
for 1f- oto 127 by 1

p[l+l] f-p[i] , wd,
endfor

wd128 f- -p[128]
ere f- LOCRedundaney[bank]

rdata f- (ere126..0 and Wd 126.. 0) or (-ere126.. 0 and Wd128 ..2)
LOCArray[bank][addr] f-Wdl28 .. l27II rdata II wdl..O

endcase
enddef

15

20

Each bit set in the control word causes the corresponding
data bit to be selected from a bit address increased by two:

output~(data and-eontrol)or((spareollplldata127 .. 2)
and eontrol)parity ~(p and-pe)or(sparel and pc)

40
value126 value 124 pc control 126 control 124

0 0 0 0 0
0 1 1 0 0
1 0 1 1 0
1 1 1 1 1

Physical Address
The LOC redundancy controls are accessed explicitly by

uncached memory accesses to particular physical address
ranges.

The physical address of a LOC redundancy control for
LOC bank bn, byte b is:

60

Level One Cache Stress Control

LOC cells may be fabricated with marginal parameters, for
which changes in clock timing or power supply voltage may
cause these LOC cells to fail or pass. When testing the LOC
while the part is in a normal circuit environment, rather than
a special test environment with changeable power supply 45

levels, cells with marginal parameters may not reliably fail
testing.

To combat this problem, two bits of the control register,
LOC stress, may be set to stress the circuit environment while 50

testing. Under normal operation, these bits are cleared (00),
while during stress testing, one or more of these bits are set
(01, 10, II). Self-testing should be performed in each of the
environment settings, and the detected failures combined
together to produce a reliable test for cells with marginal 55

parameters.

Level One Cache Redundancy

The LOC contains facilities that can be used to avoid minor
defects in the LOC data array.

Each LOC bank has three additional bits ofdata storage for
each 128 bits ofmemory data (for a total ofl31 bits). One of
these bits is used to retain odd parity over the 128 bits of
memory data, and the other two bits are spare, which can be 65

pressed into service by setting a non-zero value in the LOC
redundancy control register for that bank.

63

FFFF FFFF 0900 0000 637

57

Definition

def data f- AeeessPhysiealLOCRedundaney(pa,op,wd) as

bank f- pa6..4

case op of
R:

rd f-LOCRedundaney[bank]

7 6 430

3 4
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on the first such access to a memory region if caching is
enabled, as the cache may satisfY subsequent references with­
out a bus transaction.

55

Write Through
Write Through (WT) is an attribute that can be set on a LTB

or GTB translation region to indicate that the writes to the
cache must also immediately update backing memory. Reads
to addressed memory that is not present in the cache cause
cache lines or sub-blocks to be allocated. Writes to addressed

10 memory that is not present in the cache does not modifY cache
state.

The "Socket 7" bus also provides a mechanism for sup­
porting chip sets to decide on each access whether data is to be
written through, using the PWT and WB/WT# signals. Using

15 these signals, external hardware may cause a region selected
as WA or PF to be treated as WT. This mechanism is only
active on the first write to each region of memory; as on
subsequent references, if the cache line is in the Exclusive or
Modified state and writeback caching is enabled on the first

20 reference, no subsequent bus operation occurs, at least until
the cache line is flushed.

Write Allocate
Write allocate (WA) is an attribute that can be set of a LTB

or GTB translation region to indicate that the processor is to
25 allocate a memory block to the cache when the data is not

previously present in the cache and the operation to be per­
formed is a store. Reads to addressed memory that is not
present in the cache cause cache lines or sub-blocks to be
allocated. For cacheable data, write allocate is generally the
preferred policy, as allocating the data to the cache reduces
further bus traffic for subsequent references (loads or stores)
or the data. Write allocate never occurs for data which is not
cached. A write allocate brings in the data immediately into
the Modified state.

Other "socket 7" processors have the ability to inhibit write
allocate to cached locations under certain conditions, related
by the address range. K6, for example, can inhibit write
allocate in the range of 15-16 Mbyte, or for all addresses
above a configurable limit with 4 Mbyte granularity. Pentium
has the ability to label address ranges over which write allo­
cate can be inhibited.

PreFetch
Prefetch (PF) is an attribute that can be set on a LTB or GTB

translation region to indicate that increased prefetching is
appropriate for references in this region. Each program fetch,
load or store to a cache line that or does not already contain all
the sub-blocks causes a prefetch allocation of the remaining
sub-blocks. Cache misses cause allocation of the requested
sub-block and prefetch allocation of the remaining sub­
blocks. Prefetching does not necessarily fill in the entire
cache line, as prefetch memory references are performed at a
lower priority to other cache and memory reference traffic. A
limited number of prefetches (as low as one in the initial
implementation) can be queued; the older prefetch requests
are terminated as new ones are created.

In other respects, the PF attribute is handled in the mauner
of the WA attribute. Prefetching is considered an implemen­
tation-dependent feature, and an implementation may choose
to implement region with the PF attribute exactly as with the
WA attribute.

Implementations may perform even more aggressive
prefetching in future versions. Data may be prefetched into
the cache in regions that are cacheable, as a result ofprogram
fetches, loads or stores to nearby addresses. Prefetches may
extend beyond the cache line associated with the nearby

65 address. Prefetches shall not occur beyond the reach of the
GTB entry associated with the nearby address. Prefetching is
terminated if an attempted cache fill results in a bus response

read/writewrite

-continued

read

con-

data ~rdl27.. I2511(rdI26? rd124 : rdl28)llrdl23 ..0
W:

rd~ (Wd126 or Wd 124) IIwdl27.. I251 I(Wd 126 and WdI24)llwdl23..0
LOCRedundancy[bank] ~ rd

endcase
enddef

Cache Disable

Cache Disable (CD) is an attribute that can be set on a LTB
or GTB translation region to indicate that the cache is to be
consulted and updated for cache lines which are already
present, but no new cache lines or sub-blocks are to be allo- 60

cated when the cache does not already contain the addressed
memory contents.

The "Socket 7" bus also provides a mechanism for sup­
porting chip sets to decide on each access whether data is to be
cached, using the CACHE# and KEN# signals. Using these
signals, external hardware may cause a region selected as WT,
WA or PF to be treated as CD. This mechanism is only active

Cache Control

The cache may be used in one of five ways, depending on
a three-bit cache control field (cc) in the LTB and GTB. The
cache control field may be set to one ofseven states: NC, CD,
WT, WA, PF, SS, and LS:

State suIt allocate update allocate victim prefetch

No Cache 0 No No No No No No
30

Cache 1 Yes No Yes No No No
Disable
Write 2 Yes Yes Yes No No No
Through
reserved 3
Write 4 Yes Yes Yes Yes No No 35

Allocate
PreFetch 5 Yes Yes Yes Yes No Yes
SubStream 6 Yes Yes Yes Yes Yes No
LineStream 7 Yes Yes Yes Yes Yes Yes

40

The Zeus processor controls cc as an attribute in the LTB
and GTB, thus software may set this attribute for certain
address ranges and clear it for others. A three-bit field indi-
cates the choice ofcaching, according to the table above. The
maximum of the three-bit cache control field (cc) values of 45

the LTB and GTB indicates the choice of caching, according
to the table above.

No Cache

No Cache (NC) is an attribute that can be set on a LTB or 50
GTB translation region to indicate that the cache is to be not
to be consulted. No changes to the cache state result from
reads or writes with this attribute set, (except for accesses that
directly address the cache via memory-mapped region).

Memory Attributes
Fields in the LTB, GTB and cache tag control various

attributes of the memory access in the specified region of
memory. These include the control of cache consultation,
updating, allocation, prefetching, coherence, ordering, victim
selection, detail access, and cache prefetching.
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Strong Ordering
Strong ordering (so) is an attribute which pennits certain

memory regions to be operated with strong ordering, in which
all memory operations are performed exactly in the order

60 specified by the program and others to be operated with weak
ordering, in which some memory operations may be per­
formed out of program order.

The Zeus processor controls strong ordering as an attribute
in the LTB and GTB, thus software may set this attribute for

65 certain address ranges and clear it for others. A one bit field
indicates the choice ofaccess ordering. A one (I) bit indicates
strong ordering, while a zero (0) bit indicates weak ordering.

55

45

blocks, each cache line also maintains 8 bits of triclet valid
(tv) state. Each bit of tv corresponds to a triclet sub-block of
the cache line; bit 0 for bytes 0 ... 31, bit lfor bytes 32 ... 63,
bit 2 for bytes 64 ... 95, etc. If the tv bit is zero (0), the
coherence state for that triclet is I, no matter what the value of
the mesi field. If the tv bit is one (I), the coherence state is
defined by the mesi field. If all the tv bits are cleared (0), the
mesi field must also be cleared, indicating an invalid cache
line.

Cache coherency activity generally follows the protocols
defined by the "Socket 7" bus, as defined by Pentium and
K6-2 documentation. However, because the coherence state
of a cache line is represented in only 10 bits per 256 bytes
(1.25 bits per triclet), a few state transitions are defined dif-

15 ferently. The differences are a direct result of attempts to set
triclets within a cache line to different MES states that cannot
be represented. The data structure allows any triclet to be
changed to the I state, so state transitions in this direction
match the Pentium processor exactly.

On the Pentium processor, for a cache line in the M state, an
external bus Inquiry cycle that does not require invalidation
(INV=O) places the cache line in the S state. On the Zeus
processor, ifno other triclet in the cache line is valid, the mesi
field is changed to S. Ifother triclets in the cache line are valid,

25 the mesi field is left unchanged, and the tv bit for this triclet is
turned off, effectively changing it to the I state.

On the Pentium processor, for a cache line in the E state, an
external bus Inquiry cycle that does not require invalidation
(INV=O) places the cache line in the S state. On the Zeus

30 processor, the mesi field is changed to S. Ifother triclets in the
cache line are valid, the MESI state is effectively changed to
the S state for these other triclets.

On the Pentium processor, for a cache line in the S state, an
internal store operation causes a write-through cycle and a

35 transition to the E state. On the Zeus processor, the mesi field
is changed to E. Other triclets in the cache line are invalidated
by clearing the tv bits; the MESI state is effectively changed
to the I state for these other triclets.

When allocating data into the cache due to a store opera-
40 tion, data is brought immediately into the Modified state,

settingthemesi field to M. Ifthe previous mesi field is S, other
triclets which are valid are invalidated by clearing the tv bits.
If the previous mesi field is E, other triclets are kept valid and
therefore changed to the M state.

When allocating data into the cache due to a load operation,
data is brought into the Shared state, if another processor
reports that the data is present in its cache or the mesi field is
already set to S, the Exclusive state, if no processor reports
that the data is present in its cache and the mesi field is

50 currently E or I, or the Modified state if the mesi field is
already set to M. The detennination is perfonned by driving
PWT low and checking whether WB/WT# is sampled high; if
so the line is brought into the Exclusive state. (See page 202
(184) of the K6-2 documentation).

State this Cache data other Cache data Memory data

Modified Data is held No data is present The contents of
exclusively in this in other caches. main memory are
cache. now invalid.

Exclusive 2 Data is held No data is present Data is the same
exclusively in this in other caches. as the contents of
cache. main memory

Shared Data is held in Data is possibly Data is the same
this cache, and in other caches. as the contents of
possibly others. main memory.

Invalid 0 No data for this Data is possibly Data is possibly
location is present in other caches. present in main
in the cache. memory.

Cache Coherence
Cache coherency is maintained by using MESI protocols,

for which each cache line (256 bytes) the cache data is kept in
one of four states: M, E, S, I:

The state is contained in the mesi field of the cache tag.
In addition, because the "Socket 7" bus performs block

transfers and cache coherency actions on triclet (32 byte)

LineStream
LineStream (LS) is an attribute that can be set on a LTB or

GTB translation region to indicate that references in this
region are to be selected as the next victim on a cache miss,
and to enable prefetching. In particular, cache misses, which
nonnally place the cache line in the last-to-be-victim state,
instead place the cache line in the first-to-be-victim state,
except relative to cache lines in the I state.

In other respects, the LS attribute is handled in the manner
of the PF attribute. LineStream is considered an implemen­
tation-dependent feature, and an implementation may choose
to implement region with the SS attribute exactly as with the
PF or WA attributes.

Like the SubStream attribute, the LineStream attribute is
particularly appropriate for regions for which large data struc­
tures are used in sequential fashion. By prefetching the entire
cache line, memory traffic is performed as large sequential
bursts of at least 256 bytes, maximizing the available bus
utilization.

SubStream
SubStream (SS) is an attribute that can be set on a LTB or

GTB translation region to indicate that references in this
region are to be selected as the next victim on a cache miss. In
particular, cache misses, which nonnally place the cache line
in the last-to-be-victim state, instead place the cache line in 10

the first -to-be-victim state, except relative to cache lines in the
I state.

In other respects, the SS attribute is handled in the manner
of the WA attribute. SubStream is considered an implemen­
tation-dependent feature, and an implementation may choose
to implement region with the SS attribute exactly as with the
WA attribute.

The SubStream attribute is appropriate for regions which
are large data structures in which the processor is likely to
reference the memory data just once or a small number of 20

times, but for which the cache permits the data to be fetched
using burst transfers. By making it a priority for victimiza­
tion, these references are less likely to interfere with caching
of data for which the cache performs a longer-term storage
function.

that is not cacheable. Prefetches are implementation-depen­
dent behavior, and such behavior may vary as a result ofother
memory references or other bus activity.
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vsc«:-mesi[vscs . 4 "VSC3 . 2 "VSCI ol=I)?
vSCs .4 "VSC3 2 "VSCI ollvscs .2:

(mesi[vscs .. ,J~I)?VSCj ollvscs .2:(mesi
[VSC3 .2l~I)?vscs 411vscj ollvsC3 .2:VSC

vs[3]~vs[lrvscs

vs[I]~vs[3rvscs

VSC-<-((fS=VSCl ... 0 orft=vsc3 2)?VSCS .4:

VSC3 .2JII(fS~vSCj O?VSC3 2:VSC j oJ11tS

When updating the hexlet containing vs[l] and vs[O], the
new values ofvs[l] and vs[O] are:

Cache flushing and invalidations can cause cache lines to
be cleared out of sequential order. Flushing or invalidating a
cache line moves that set to highest priority. If that set is
already highest priority, the vsc is unchanged. If the set was
second or third highest or lowest priority, the vsc is changed
to move that set to highest priority, moving the others down.

Software must initialize the vs bits to a legal, consistent
state. For example, to set the priority (highest to lowest) to (0,
1,2,3), vsc must be set to ObIOOlOO. There are many legal
solutions that yield this vsc value, such as vs[3]~0, vs[2]~0,
vs[I]~4,vs[0]~4.

Simplified Victim Selection Ordering for Four Sets
However, the orderings are simplified in the first Zeus

implementation, to reduce the number ofvs bits to one per set,
keeping a two bit vsc state value:

vsc~(vs[3Jllvsf2]nvs[1Jllvs[O])

The highest priority for replacement is set vsc, second
highest priority is set vsc+ I, third highest priority is set vsc+2,
and lowest priority is vsc+3. When the highest priority set is
replaced, it becomes the new lowest priority and the others are
moved up. Priority is given to sets with invalid MESI state,
computing a new vsc by:

When replacing set vsc for a LineStream or SubStream
replacement, the priority for replacement is unchanged,
unless another set contains the invalid MESI state, computing
anew vsc by:

When updating the hexlet containing vs[3] and vs[2], the
25 new values ofvs[3] and vs[2] are:

15

With weak ordering, the memory system may retain store
operations in a store buffer indefinitely for later storage into
the memory system, or until a synchronization operation to
any address performed by the thread that issued the store
operation forces the store to occur. Load operations may be
performed in any order, subject to requirements that they be
performed logically subsequent to prior store operations to
the same address, and subsequent to prior synchronization
operations to any address. Under weak ordering it is permit­
ted to forward results from a retained store operation to a 10

future load operation to the same address. Operations are
considered to be to the same address when any bytes of the
operation are in common. Weak ordering is usually appropri-
ate for conventional memory regions, which are side-effect
free.

With strong ordering, the memory system must perform
load and store operations in the order specified. In particular,
strong-ordered load operations are performed in the order
specified, and all load operations (whether weak or strong)
must be delayed until all previous strong-ordered store opera- 20

tions have been performed, which can have a significant per­
formance impact. Strong ordering is often required for
memory-mapped I/O regions, where store operations may
have a side-effect on the value returned by loads to other
addresses. Note that Zeus has memory-mapped I/O, such as
the TB, for which the use of strong ordering is essential to
proper operation of the virtual memory system.

The EWBE# signal in "Socket 7" is ofimportance in main­
taining strong ordering. When a write is performed with the
signal inactive, no further writes to E or M state lines may 30

occur until the signal becomes active. Further details are
given in Pentium documentation (K6-2 documentation may
not apply to this signal.)

Victim Selection
35

One bit ofthe cache tag, the vs bit, controls the selection of
which set of the four sets at a cache address should next be
chosen as a victim for cache line replacement. Victim selec­
tion (vs) is an attribute associated with LOC cache blocks. No
vs bits are present in the LTB or GTB. 40

There are two hexlets of tag information for a cache line,
and replacement of a set requires writing only one hexlet. To
update priority information for victim selection by writing
only one hexlet, information in each hexlet is combined by an
exclusive-or. It is the nature of the exclusive- or function that

45
altering either of the two hexlets can change the priority
information.

vsc~(mesi[vscJ~I)?vsc:ft

vsc~mesi[vsc+IJ ~I)?vsc+1: (mesi [vsc+2J~I)?vsc+2:
(mesi[vsc+3J~I)?vsc+3:vsc

vsc~mesi[vsc+IJ ~I)?vsc+1: (mesi [vsc+2J~I)?vsc+2:
(mesi[vsc+3J~I)?vsc+3:vsc+1

When replacing set vsc for a LineStream or SubStream
replacement, the priority for replacement is unchanged,
unless another set contains the invalid MESI state, computing
anew vsc by:

When updating the hexlet containing vs[l] and vs[O], the
new values ofvs[l] and vs[O] are:

Cache flushing and invalidations can cause cache sets to be
cleared out of sequential order. If the current highest priority
for replacement is a valid set, the flushed or invalidated set is

60 made highest priority for replacement.
vsc~(vs[3Jllvsf2]J'(vs[IJllvs[O]J

Full Victim Selection Ordering for Four Sets
There are 4*3*2*1 =24 possible orderings of the four sets,

which can be completely encoded in as few as 5 bits: 2 bits to 50

indicate highest priority, 2 bits for second-highest priority, I
bit for third-highest priority, and 0 bits for lowest priority.
Dividing this up per set and duplicating per hexlet with the
exclusive- or scheme above requires three bits per set, which
suggests simply keeping track of the three-highest priority 55

sets with 2 bits each, using 6 bits total and three bits per set.
Specifically, vs bits from the four sets are combined to

produce a 6-bit value:

The highest priority for replacement is set vsc 1 ... 0' second
highest priority is set vsc3 ... 2' third highest priority is set
vscs ... 4' and lowest priority is vSCs ... 4'VSC3 ... 2 'vsc 1 ... 0'

When the highest priority set is replaced, it becomes the new
lowest priority and the others are moved up, computing a new 65

vsc by:

VSCOO<-VSCs 4 "VSC3 2 "VSCI ollvscs .2 vs[0]~vs[2rvsco
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LTB GTB Tag status

a a a OK-normal
a a 1 AccessDetailRequiredByTag
a 1 a AccessDetailRequiredByGTB
a 1 1 OK - GTB inhibited by Tag
1 a a AccessDetailRequiredByLTB
1 a 1 OK - LTB inhibited by Tag
1 1 a OK - LTB inhibited by GTB
1 1 1 AccessDetailRequiredByTag
a Miss GTBMiss
1 Miss AccessDetailRequiredByLTB
a a Miss Cache Miss
a 1 Miss AccessDetailRequiredByGTB
1 a Miss AccessDetailRequiredByLTB
1 1 Miss Cache Miss

25

35

exceptions can recur on a subsequent execution of the same
instruction. Alternatively, if the access is not to proceed,
execution has been trapped to software at this point, which
can abort the thread or take other correction action.

The detail access attribute permits specification of access
parameters over memory region on arbitrary byte boundaries.
This is important for emulators, which must prevent store
access to code which has been translated, and for simulating
machines which have byte granularity on segment bound-

10 aries. The detail access attribute can also be applied to debug­
gers, which have the need to set breakpoints on byte-level
data, or which may use the feature to set code breakpoints on
instruction boundaries without altering the program code,
enabling breakpoints on code contained in ROM.

A one bit field indicates the choice of detail access. A one
(1) bit indicates detail access, while a zero (0) bit indicates no
detail access. Detail access is an attribute that can be set by the
LTB, the GTB, or a cache tag.

The table below indicates the proper status for all potential
20 values of the detail access bits in the LTB, GTB, and Tag:

vs[2]~vs[Orvsco

79
When updating the hexlet containing vs[3] and vs[2], the

new values ofvs[3] and vs[2] are:

Software must initialize the vs bits, but any state is legal.
For example, to set the priority (highest to lowest) to (0, 1,2,
3), vsc must be set to ObOO. There are many legal solutions
that yield this vsc value, such as vs[3]~0, vs[2]~0,

vs[I]~O,vs[O]~O.

gvsc-<-gvsc+1

Full Victim Selection Ordering for Additional Sets
To extend the full-victim-ordering scheme to eight sets,

3*7=21 bits are needed, which divided among two tags is II
bits per tag. This is somewhat generous, as the minimum 15

required is 8*7*6*5*4*3*2*1 =40320 orderings, which can
be represented in as few as 16 bits. Extending the full-victim­
ordering four-set scheme above to represent the first 4 priori­
ties in binary, but to use 2 bits for each of the next 3 priorities
requires 3+3+3+3+2+2+2=18 bits. Representing fewer dis­
tinct orderings can further reduce the number ofbits used. As
an extreme example, using the simplified scheme above with
eight sets requires only 3 bits, which divided among two tags
is 2 bits per tag.

Victim Selection Without LaC Tag Bits
At extreme values ofthe niche limit register (nl in the range

121 ... 124), the bit normally used to hold thevs bit is usurped
for use as a physical address bit. Under these conditions, no
vsc value is maintained per cache line, instead a single, global 30

vsc value is used to select victims for cache replacement. In
this case, the cache consists of four lines, each with four sets.
On each replacement a new si valus is computed from:

The algorithm above is designed to utilize all four sets on
sequential access to memory.

Victim Selection Encoding LaC Tag Bits
At even more extreme values ofthe niche limit register (nl

in the range 125 ... 127), not only is the bit normally used to
hold the vs bit is usurped for use as a physical address bit, but
there is a deficit of one or two physical address bits. In this
case, the number of sets can be reduced to encode physical
address bits into the victim selection, allowing the choice of
set to indicate physical address bits 9 or bits 9 ... 8. On each
replacement a new vsc valus is computed from:

gvsc-<-gvsc+1

The algorithm above is designed to utilize all four sets on
sequential access to memory.

Detail Access
Detail access is an attribute which can be set on a cache

block or translation region to indicate that software needs to
be consulted on each potential access, to determine whether
the access should proceed or not. Setting this attribute causes
an exception trap to occur, by which software can examine the
virtual address, by for example, locating data in a table, and if
indicated, causes the processor to continue execution. In con­
tinuing' ephemeral state is set upon returning to the re re­
execution of the instruction that prevents the exception trap
from recurring on this particular re-execution only. The
ephemeral state is cleared as soon as the instruction is either
completed or subject to another exception, so DetailAccess

The first eight rows show appropriate activities when all
three bits are available. The detail access attributes for the

40 LTB, GTB, and cache tag work together to define whether and
which kind of detail access exception trap occurs. Generally,
setting a single attribute bit causes an exception, while setting
two bits inhibits such exceptions. In this way, a detail access
exception can be narrowed down to cause an exception over a

45 specified region of memory: Software generally will set the
cache tag detail access bit only for regions in which the LTB
or GTB also has a detail access bit set. Because cache activity
may flush and refill cache lines implicity, it is not generally
useful to set the cache tag detail access bit alone, but if this

50 occurs, the AccessDetailRequiredByTag exception catches
such an attempt.

The next two rows show appropriate activities on a GTB
miss. On a GTB miss, the detail access bit in the GTB is not
present. If the LTB indicates detail access and the GTB

55 misses, the AccessDetailRequiredByLTB exception should
be indicated. If software continues from the AccessDetailRe­
quiredByLTB exception and has not filled in the GTB, the
GTBMiss exception happens next. Since the GTBMiss exec­
tion is not a continuation exception, a re-execution after the

60 GTBMiss exception can cause a reoccurrence of the Access­
DetailRequiredByLTB exception. Alternatively, if software
continues from the AccessDetailRequiredByLTB exception
and has filled in the GTB, the AccessDetailRequiredByLTB
exception is inhibited for that reference, no matter what the

65 status of the GTB and Tag detail bits, but the re-executed
instruction is still subject to the AccessDetailRequired­
ByGTB and AccessDetailRequiredByTag exceptions.
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56 4847 39 38 27 26 16 15 8 7 a
I gi I xi I vs I ct I gpl I gpO I

20 9 9 12 11 8 8
6 5 4 3 2

gpO: 1010Idaisoi

1 1 1 1

name size meaning

ga 56 global address
45 gi 9 GTB index

ci 7 cache index
si 2 set index
vs 12 victim select
da 1 detail access (from cache line)
mesi 2 coherency: modified (3), exclusive (2), shared (1), invalid

50 (0)
tv 8 triclet valid (1) or invalid (0)
g 2 minimwn privilege required for gateway access
x 2 minimwn privilege required for execute access
w 2 minimwn privilege required for write access

2 minimwn privilege required for read access

55 a 1 reserved
da 1 detail access (from GTB)
so 1 strong ordering
cc 3 cache control

The meaning ofthe fields are given by the following table:

Output
The output of the MTB combines physical address and

protection information from the GTB and the referenced
cache line.

4 4
I I I

87 43 a
ga

56

63

With an MTB hit, the resulting cache index (14 ... 8 from
the MTB, bit 7 from the LA) and set identifier (2 bits from the
MTB) are applied to the LOC data bank selected from bits
6 ... 4 ofthe GVA. The access protection information (pr and
rwxg) is supplied from the MTB.

With an MTB (and BTB) miss, a victim entry is selected for
replacement. The MTB and BTB are always clean, so the
victim entry is discarded without a writeback. The GTB (de-

privilege level required for read, write, execute, and gateway
access, a detail bit, and 10 bits of cache state indicating for
each triclet (32 bytes) sub-block, the MESI state.

Match

60

15 14 13 12 11 10 9

25 gpl: g w I
2 2

26 25 24 23 16

ct: I da I mesi tv

1 2 8

38 36 35 33 32 30 29 27
30

vs3 vs2 vsl vsO

3 3

47 41 40 39

xi: ci si

2

35 56 48

gi: I gi I

65

Micro Translation Buffer
The Micro Translation Buffer (MTB) is an implementa­

tion-dependent structure which reduces the access traffic to
the GTB and the LOC tags. The MTB contains and caches
information read from the GTB and LOC tags, and is con­
sulted on each access to the LOC.

To access the LOC, a global address is supplied to the
Micro-Translation Buffer (MTB), which associatively looks
up the global address into a table holding a subset ofthe LOC
tags. In addition, each table entry contains the physical
address bits 14 . .. 8 (7 bits) and set identifier (2 bits) required
to access the LOC data.

In the first Zeus implementation, there are two MTB
blocks-MTB 0 is used for threads 0 and I, and MTB I is
used for threads 2 and 3. Per clock cycle, each MTB block can
check for 4 simultaneous references to the LOC. Each MTB
block has 16 entries.

Each MTB entry consists of a bit less than 128 bits of
information, including a 56-bit global address tag, 8 bits of

The last four rows show appropriate activities for a cache
miss. On a cache miss, the detail access bit in the tag is not
present. If the LTB or GTB indicates detail access and the
cache misses, the AccessDetailRequiredByLTB or Access­
DetailRequiredByGTB exception should be indicated. If
software continues from these exceptions and has not filled in
the cache, a cache miss happens next. If software continues
from the AccessDetailRequiredByLTB or AccessDetailRe­
quiredByGTB exception and has filled in the cache, the pre­
vious exception is inhibited for that reference, no matter what 10

the status of the Tag detail bit, but is still subject to the
AccessDetailRequiredByTag exception. When the detail bit
must be created from a cache miss, the initial value filled in is
zero. Software may set the bit, thus turning offAccessDetail­
Required exceptions per cache line. Ifthe cache line is flushed 15

and refilled, the detail access bit in the cache tag is again reset
to zero, and another AccessDetailRequired exception occurs.

Settings of the niche limit parameter to values that require
use of the da bit in the LOC tag for retaining the physical
address usurp the capability to set the Tag detail access bit.
Under such conditions, the Tag detail access bit is effectively
always zero (0), so it cannot inhibit AccessDetailRequired­
ByLTB, inhibit AccessDetailRequiredByGTB, or cause
AccessDetailRequiredByTag.

The execution of a Zeus instruction has a reference to one
quadlet of instruction, which may be subject to the DetailAc­
cess exceptions, and a reference to data, which may be
unaligned or wide. These unaligned or wide references may
cross GTB or cache boundaries, and thus involve multiple
separate reference that are combined together, each ofwhich
may be subject to the DetailAccess exception. There is suffi­
cient information in the DetailAccess exception handler to
process unaligned or wide references.

The implementation is free to indicate DetailAccess excep­
tions for unaligned and wide data references either in com­
bined form, or with each sub-reference separated. For
example, in an unaligned reference that crosses a GTB or
cache boundary, a DetailAccess exception may be indicated
for a portion of the reference. The exception may report the
virtual address and size of the complete reference, and upon 40

continuing, may inhibit reoccurrence of the DetailAccess
exception for any portion of the reference. Alternatively, it
may report the virtual address and size of only a reference
portion and inhibit reoccurrence of the DetailAccess excep­
tion for only that portion of the reference, subject to another
DetailAccess exception occurring for the remaining portion
of the reference.
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Program Translation Buffer
Later implementations of Zeus may optionally have a per

thread "Program Translation Buffer" (PTB). The PTB retains
GTB and LOC cache tag information. The PTB enables gen­
eration ofLOC instruction fetching in parallel with load/store
fetching. The PTB is updated when instruction fetching
crosses a cache line boundary (each 64 instructions in
straight-line code). The PTB functions similarly to a one­
entry MTB, but can use the sequential nature ofprogram code
fetching to avoid checking the 56-bit match. The PTB is
flushed at the same time as the MTB.

The initial implementation ofZeus has no PTB-the MTB
suffices for this function.

Global Virtual Cache
The initial implementation ofZeus contains cache which is

15 both indexed and tagged by a physical address. Other proto­
type implementations have used a global virtual address to
index and/or tag an internal cache. This section will define the
required characteristics of a global virtually-indexed cache.
TODO

MTBfillLOCtagMTB miss GTB cam
MTBvictim

LOCmiss

scribed below) is referenced to obtain a physical address and
protection infonnation. Depending on the access infonnation
in the GTB, either the MTB or BTB is filled.

Note that the processing of the physical address pa14 ... 8

against the niche limit nl can be performed on the physical 5

address from the GTB, producing the LOC address, ci. The
LOC address, after processing against the nl is placed into the
MTB directly, reducing the latency of an MTB hit.

Four tags are fetched from the LOC tags and compared
against the PA to detennine which ofthe four sets contain the 10

data. If one of the four sets contains the correct physical
address, a victim MTB entry is selected for replacement, the
MTB is filled and the LOC access proceeds. If none of the
four sets is a hit, an LOC miss occurs.

20 Memory Interface
Dedicated hardware mechanisms are provided to fetch data

blocks in the levels zero and one caches, provided that a
matching entry can be found in the MTB or GTB (or if the
MMU is disabled). Dedicated hardware mechanisms are pro-

25 vided to store back data blocks in the level zero and one
caches, regardless ofthe state ofthe MTB andGTB. When no
entry is to be found in the GTB, an exception handler is
invoked either to generate the required infonnation from the
virtual address, or to place an entry in the GTB to provide for
automatic handling ofthis and other similarly addressed data

30 blocks.
The initial implementation ofZeus accesses the remainder

of the memory system through the "Socket 7" interface. Via
this interface, Zeus accesses a secondary cache, DRAM
memory, external ROM memory, and an I/O system The size

35 and presence ofthe secondary cache and the DRAM memory
array, and the contents of the external ROM memory and the
I/O system are variables in the processor environment.

Microarchitecture
Each thread has two address generation units, capable of

40 producing two aligned, or one unaligned load or store opera­
tion per cycle. Alternatively, these units may produce a single
load or store address and a branch target address.

Each thread has a LTB, which translates the two addresses
into global virtual addresses.

45 Each pair of threads has a MTB, which looks up the four
references into the LOC. The PTB provides for additional
references that are program code fetches.

In parallel with the MTB, these four references are com­
bined with the four references from the other thread pair and
partitioned into even and odd hexlet references. Up to four

50 references are selected for each of the even and odd portions
of the LZC. One reference for each of the eight banks of the
LOC (four are even hexlets; four are odd hexlets) are selected
from the eight load/store/branch references and the PTB ref­
erences.

55 Some references may be directed to both the LZC and
LOC, in which case the LZC hit causes the LOC data to be
ignored. An LZC miss which hits in the MTB is filled from the
LOC to the LZC. An LZC miss which misses in the MTB
causes a GTB access and LOC tag access, then an MTB fill
and LOC access, then an LZC fill.

Priority ofaccess: (highest/lowest) cache dump, cache fill,
load, program, store.

Snoop
The "Socket 7" bus requires certain bus accesses to be

checked against on-chip caches. On a bus read, the address is
65 checked against the on-chip caches, with accesses aborted

when requested data is in an internal cache in the M state, and
the E state, the internal cache is changed to the S state. On a

The operation of the MTB is largely not visible to soft­
ware-hardware mechanisms are responsible for automati­
cally initializing, filling and flushing the MTB. Activity that
modifies the GTB or LOC tag state may require that one or
more MTB entries are flushed.

A write to the GTBUpdate register that updates a matching
entry, a write to the GTBUpdateFill register, or a direct write
to the GTB all flush relevant entries from the MTB. MTB
flushing is accomplished by searching MTB entries for values
that match on the gi field with the GTB entry that has been
modified. Each such matching MTB entry is flushed.

The MTB is kept synchronous with the LOC tags, particu­
larly with respect to MESI state. On an LOC miss or LOC
snoop, any changes in MESI state update (or flush) MTB
entries which physically match the address. If the MTB may
contain less than the full physical address: it is sufficient to
retain the LOC physical address (cillvllsi).

Block Translation Buffer
Zeus has a per thread "Block Translation Buffer" (BTB).

The BTB retains GTB infonnation for uncached address
blocks. The BTB is used in parallel with the MTB-exactly
one of the BTB or MTB may translate a particular reference.
When both the BTB and MTB miss, the GTB is consulted,
and depending on the result, the block is filled into either the
MTB or BTB as appropriate. In the first Zeus implementa­
tion, the BTB has 2 entries for each thread.

BTB entries cover any power-of-two granularity, as they
retain the size infonnation from the GTB. BTB entries con­
tain no MESI state, as they only contain uncached blocks.

Each BTB entry consists of 128 bits of infonnation, con­
taining the same information in the same fonnat as a GTB
entry.

Niche blocks are indicated by GTB information, and cor­
respond to blocks of data that are retained in the LOC and
never miss. A special physical address range indicates niche
blocks. For this address range, the BTB enables use of the
LOC as a niche memory, generating the "set select" address
bits from low-order address bits. There is no checking of the
LOC tags for consistent use of the LOC as a niche-the nl
field must be preset by software so that LOC cache replace­
ment never claims the LOC niche space, and only BTB miss 60

and protection bits prevent software from using the cache
portion of the LOC as niche.

Other address ranges include other on-chip resources, such
as bus interface registers, the control register and status reg­
ister, as well as off-chip memory, accessed through the bus
interface. Each of these regions are accessible as uncached
memory.
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25

15

bus write, data written must update data in on-chip caches. To
meet these requirements, physical bus addresses must be
checked against the Lac tags.

The S7 bus requires that responses to inquire cycles occur
with fixed timing. At least with certain combinations of bus
and processor clock rate, inquire cycles will require top pri­
ority to meet the inquire response timing requirement.

Synchronization operations must take into account bus
activity-generally a synchronization operation can only
proceed on cached data which is in Exclusive or Modified-if 10

cached data in Shared state, ownership must be obtained.
Data that is not cached must be accessed using locked bus
cycles.

Load
Load operations require partitioning into reads that do not

cross a hexlet (128 bit) boundary, checking for store conflicts,
checking the LZC, checking the LaC, and reading from
memory. Execute and Gateway accesses are always aligned
and since they are smaller than a hexlet, do not cross a hexlet
boundary. 20

Note: S7 processors perfonn unaligned operations LSB
first, MSB last, up to 64 bits at a time. Unaligned 128 bit loads
need 3 64-bit operations, LSB, octlet, MSB. Transfers which
are smaller than a hexlet but larger than an octlet are further
divided in the S7 bus unit.

Definition

Store
Store operations requires partitioning into stores less than

128 bits that do not cross hexlet boundaries, checking for
store conflicts, checking the LZC, checking the LaC, and
storing into memory.

Definition

def StoreMemory(ba,la,size,order,data)

bs ~8*la4..o
be ~bs + size
ifbe> 128 then

case order of
L:

dataO f- datal27_bs..O
datal f- datasize_l .. 128_bs

B:

dataO f- datasize_l..be_128

datal f- databe_129 .. 0

endcase
StoreMemory(ba, la, 128 - bs, order, dataO)
StoreMemory(ba, (lan.5 + 1) 1104, be - 128, order, datal)

else

for i~ ato size-8 by 8

j ~ bs + ((order~L) ? i : size-8-i)

hdataj + 7.) f- datai + 7 ..i

endfor

xdata~ TranslateAndCacheAccess(ba, la, size, W, hdata)
endif

enddef

30
Memory

Memory operations require first translating via the LTB
and GTB, checking for access exceptions, then accessing the
cache.

35 Definition

def data~ LoadMemoryX(ba,la,size,order)
assert (order ~ L) and ((la and (size/8-l» ~ 0) and (size ~ 32)

hdata~ TranslateAndCacheAccess(ba,la,size,X,O)

data f-- hdata31+8*(la and lS)..8*(la and 15)
enddef

def data~ LoadMemoryG(ba,la,size,order)
assert (order ~ L) and ((la and (size/8-l» ~ 0) and (size ~ 64)

hdata~ TranslateAndCacheAccess(ba,la,size,G,O)

data f-- hdata63+8*(la and lS)..8*(la and 15)
enddef

def data~ LoadMemory(ba,la,size,order)
if (size> 128) then

dataO ~ LoadMemory(ba, la,size/2, order)

datal ~ LoadMemory(ba, la+(size/2), size/2, order)
case order of

L:

data~ datal II dataO
B:

data~ dataO II datal
endcase

else

bs~ 8*la4..o
be ~bs + size
ifbe > 128 then

dataO ~ LoadMemory(ba, la, 128 - bs, order)

datal ~ LoadMemory(ba, (la63 ..5 + 1) 1104,
be - 128, order)
case order of

L:

data ~(datal II dataO)
B:

data ~(dataO II datal)
endcase

else

hdata~ TranslateAndCacheAccess(ba,la,size,R,O)
for i~ a to size-8 by 8

j ~bs + ((orde~L)? i: size-8-i)

datai +7. .i f-hdataj +7.j

endfor
endif

endif
enddef

40

45

50

55

60

65

def hdata~ TranslateAndCacheAccess(ba,la,size,rwxg,hwdata)
if ControlRegister62 then

case rwxg of
R:

at~O
W:

at~l
X:

at~2
G:

at~3
endcase

rw~ (rwxg~W) ? W : R
ga,LocalProtect~ LocalTranslation(th,ba,la,pl)
if LocalProtect9+2 *at..8+2*at < pI then

raise AccessDisallowedByLTB
endif

Ida~ LocalProtect4
pa,GlobalProtect~ GlobalTranslation(th,ga,pl,lda)
if GlobalProtect9+2 *at..8+2*at < pI then

raise AccessDisallowedByGTB
endif

cc~ (LocaIProtect2..o > GlobaIProtect2..o) ?
LocaIProtect2..o : GlobaIProtect2..o
so~ LocalProtect3 or GlobalProtect3
gda~ GlobalProtect4
hdata,TagProtect f- LevelOneCacheAccess(pa,size,
lda,gda,cc,rw,hwdata)
if (lda ' gda ' TagProtect) ~ 1 then

ifTagProtect then
PerformAccessDetail(AccessDetaiIRequiredByTag)

elseif gda then
PerformAccessDetail(AccessDetaiIRequiredByGlobalTB)
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other
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major

31

The Format section lists (1) the assembler format, (2) the C
intrinsics format, (3) the bit-level instruction format, and (4)
a definition ofbit-level instruction format fields that are not a
one-for-one match with named fields in the assembler format.

The Definition section gives a precise definition of each
basic instruction.

The Exceptions section lists exceptions that may be caused
by the execution of the instructions in this category.

Major Operation Codes
All instructions are 32 bits in size, and use the high order 8

bits to specifY a major operation code.

The major field is filled with a value specified by the
following table (Blank table entries cause the Reserved
Instruction exception to occur.):

rounding. Most compound operations not specified by the
standard are not available with rounding and exception con­
trols.

15

50

Instruction Set
This section describes the instruction set in complete archi­

tectura� detail. Operation codes are numerically defined by
their position in the following operation code tables, and are
referred to symbolically in the detailed instruction defini-

10 tions. Entries that span more than one location in the table
define the operation code identifier as the smallest value ofall
the locations spanned. The value of the symbol can be calcu­
lated from the sum of the legend values to the left and above
the identifier.

Instructions that have great similarity and identical formats
are grouped together. Starting on a new page, each category of
instructions is named and introduced.

The Operation codes section lists each instruction by nme­
monic that is defined on that page. A textual interpretation of

20 each instruction is shown beside each nmemonic.
The Equivalences section lists additional instructions

known to assemblers that are equivalent or special cases of
base instructions, again with a textual interpretation of each
instruction beside each nmemonic. Below the list, each

25 equivalent instruction is defined, either in terms of a base
instruction or another equivalent instruction. The symbol
between the instruction and the definition has a particular
meaning. If it is an arrow (<;- or ---;», it connects two math­
ematically equivalent operations, and the arrow direction

30 indicates which form is preferred and produced in a reverse
assembly. If the symbol is a (<=), the form on the left is
assembled into the form on the right solely for encoding
purposes, and the form on the right is otherwise illegal in the
assembler. The parameters in these definitions are formal; the

35 names are solely for pattern-matching purposes, even though
they may be suggestive of a particular meaning.

The Redundancies section lists instructions and operand
values that may also be performed by other instructions in the
instruction set. The symbol connecting the two forms is a (¢»,

40 which indicates that the two forms are mathematically
equivalent, both are legal, but the assembler does not trans­
form one into the other.

The Selection section lists instructions and equivalences
together in a tabular form that highlights the structure of the

45 instruction nmemonics.

-continued

else
PerforrnAccessDetail(AccessDetailRequiredByLocalTB)

endif
endif

else
case rwxg of

R,X,G:

hdata f- ReadPhysical(la,size)
W:

WritePhysical(la,size,hwdata)
endcase

endif
enddef

Rounding and Exceptions
In accordance with one embodiment of the invention,

rounding is specified within the instructions explicitly, to
avoid explicit state registers for a rounding mode. Similarly,
the instructions explicitly specifY how standard exceptions
(invalid operation, division by zero, overflow, underflow and
inexact) are to be handled (U.S. Pat. No. 5,812,439 describes
this "Technique of incorporating floating point information
into processor instructions.").

In this embodiment, when no rounding is explicitly named
by the instruction (default), round to nearest rounding is per­
formed, and all floating-point exception signals cause the
standard-specified default result, rather than a trap. When
rounding is explicitly named by the instruction (N: nearest, Z:
zero, F: floor, C: ceiling), the specified rounding is performed,
and floating-point exception signals other than inexact cause
a floating-point exception trap. When X (exact, or exception)
is specified, all floating-point exception signals cause a float­
ing-point exception trap, including inexact. More details
regarding rounding and exceptions are described in the
"Rounding and Exceptions" section.

This technique assists the Zeus processor in executing
floating-point operations with greater parallelism. When
default rounding and exception handling control is specified
in floating-point instructions, Zeus may safely retire instruc­
tions following them, as they are guaranteed not to cause
data-dependent exceptions. Similarly, floating-point instruc­
tions with N, Z, F, or C control can be guaranteed not to cause
data-dependent exceptions once the operands have been
examined to rule out invalid operations, division by zero,
overflow or underflow exceptions. Only floating-point
instructions with X control, or when exceptions cannot be
ruled out with N, Z, F, or C control need to avoid retiring
following instructions until the final result is generated.

ANSI/IEEE standard 754-1985 specifies information to be
given to trap handlers for the five floating-point exceptions.
The Zeus architecture produces a precise exception, (The
program counter points to the instruction that caused the
exception and all register state is present) from which all the 55

required information can be produced in software, as all
source operand values and the specified operation are avail­
able.

ANSI/IEEE standard 754-1985 specifies a set of five
"sticky-exception" bits, for recording the occurrence of 60

exceptions that are handled by default. The Zeus architecture
produces a precise exception for instructions with N, Z, F, or
C control for invalid operation, division by zero, overflow or
underflow exceptions and with X control for all floating-point
exceptions, from which corresponding sticky-exception bits 65

can be set. Execution of the same instruction with default
control will compute the default result with round-to-nearest
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major operation code field values

MAJOR 0 32 64 96 128 160 192 224

0 ARES BEF16 1.1161. SI16I. XDEPOSIT EMUI.XI WMUI.MATXII.
1 AADDI BEF32 I.I16B SI16B GADDI EMUI.XIU WMUI.MATXIB
2 AADDLO BEF64 I.I16AI. SI16AI. GADDLO EMUI.XIM WMUI.MATXIUI.
3 AADDIU.O BEF128 I.I16AB SI16AB GADDIU.O EMUI.XIC WMUI.MATXIUB
4 BI.GF16 1.1321. SI32I. XDEPOSITU EMUI.ADDXI WMUI.MATXIMI.
5 ASUEI BI.GF32 I.I32B SI32B GSUBI EMUI.ADDXIU WMUI.MATXIMB
6 ASUBLO BI.GF64 I.I32AI. SI32AI. GSUBLO EMUI.ADDXIM WMUI.MATXICI.
7 ASUBIU.O BI.GF128 I.I32AB SI32AB GSUBIU.O EMUI.ADDXIC WMUI.MATXICB
8 ASETEI BI.F16 LI64I. SI64I. GSETEI XWITHDRAW ECONXII.
9 ASETNEI BI.F32 LI64B SI64B GSETNEI ECONXIB

10 ASETANDEI BI.F64 LI64AI. SI64AI. GSETANDEI ECONXIUI.
11 ASETANDNEI BI.F128 LI64AB SI64AB GSETANDNEI ECONXIUB
12 ASETLI BGEF16 1.11281. SI128I. GSETLI XWITHDRAWU ECONXIMI.
13 ASETGEI BGEF32 I.I128B SI128B GSETGEI ECONXIMB
14 ASETLIU BGEF64 I.I128AI. SI128AI. GSETI.IU ECONXICI.
15 ASETGEIU BGEF128 LII28AB SI128AB GSETGEIU ECONXICB
16 AANDI BE I.IU16I. SASI64AI. GANDI XDEPOSITM ESCAI.ADDF16 WMUI.MATXI.
17 ANANDI BNE I.IU16B SASI64AB GNANDI ESCAI.ADDF32 WMUI.MATXB
18 AORI BANDE I.IU16AI. SCSI64AI. GORI ESCAI.ADDF64 WMUI.MATGI.
19 ANORI BANDNE I.IU16AB SCSI64AB GNORI ESCAI.ADDX WMUI.MATGB
20 AXORI BI. I.IU32I. SMSI64AI. GXORI XSWIZZI.E EMUI.G8
21 AMUX BGE I.IU32B SMSI64AB GMUX EMUI.G64
22 BI.U I.IU32AI. SMUXl64AI. GBOOI.EAN EMUI.X
23 BGEU I.IU32AB SMUXl64AB EEXTRACT
24 ACOPYI BVF32 I.IU64I. GCOPYI XEXTRACT EEXTRACTI
25 BNVF32 I.IU64B XSEI.ECT8 EEXTRACTIU
26 BIF32 I.IU64AI. WTABI.EI.
27 BNIF32 I.IU64AB G8 E.8 WTABI.EB
28 BI LI8 SI8 G16 XSHUFFI.E E.16 WSWITCHI.
29 BLINKI I.IU8 G32 XSHIFTI E.32 WSWITCHB
30 BHINTI G64 XSHIFT E.64 WMINORL
31 AMINOR BMINOR I.MINOR SMINOR G128 E.128 WMINORB

Minor Operation Codes 35

For the major operation field values A.MINOR, B.MI-
NOR, L.MINOR, S.MINOR, G.8, G.16, G.32, G.64, G.128,
XSHIFTI, XSHIFT, E.8, E.16, E.32, E.64, E.128, W.MI-
NOR.L and W.MINORR.B, the lowest-order six bits in the
instruction specify a minor operation code: 40

31 2423 6 5 0

I major I other I minor I
18 45

The minor field is filled with a value from one of the
following tables:

minor operation code field values for A.MINOR

A.MINOR 0 16 24 32 40 48 56

0 AAND ASETE ASETEF ASHLI ASHI.IADD

1 AADD AXOR ASETNE ASETI.GF

2 AADDO AOR ASETANDE ASETI.F ASHLIO

3 AADDUO AANDN ASETANDNE ASETGEF ASHLIUO

4 AORN ASETLlI.Z ASETEF.X ASHLISUB

ASUB AXNOR ASETGE/GEZ ASETI.GF.X

6 ASUBO ANOR ASETI.U/GZ ASETI.F.X ASHRI

7 ASUBUO ANAND ASETGEU/I.EZ ASETGEF.X ASHRIU ACOM
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minor operation code field values for B.MINOR

B.MINOR a

a B
1 BLINK
2 BHINT
3 BDOWN
4 BGATE
5 BBACK
6 BHALT

7 BBARRIER

16 24 32 40 48 56

minor operation code field values for L.MINOR

L.-
MINORa 16 24 32 40 48 56

a L16L L64L LU16L LU64L
1 L16B L64B LU16B LU64B
2 L16AL L64AL LU16AL LU64AL

10 3 L16AB L64AB LU16AB LU64AB
4 L32L L128L LU32L L8
5 L32B L128B LU32B LU8
6 L32AL L128AL LU32AL
7 L32AB L128AB LU32AB

minor operation code field values for S.MINOR

S.MINOR a 16 24 32 40 48 56

a S16L S64L SAS64AL
1 S16B S64B SAS64AB
2 S16AL S64AL SCS64AL SDCS64AL
3 S16AB S64AB SCS64AB SDCS64AB
4 S32L S128L SMS64AL S8
5 S32B S128B SMS64AB
6 S32AL SI28AL SMUX64AL
7 S32AB S128AB SMUX64AB

minor operation code field values for G.size

G.size a 16 24 32 40 48 56

a GSETE GSETEF GADDHN GSUBHN GSHLIADD GADDL
1 GADD GSETNE GSETLGF GADDHZ GSUBHZ GADDLU
2 GADDO GSETANDE GSETLF GADDHF GSUBHF GAAA
3 GADDUO GSETANDNE GSETGEF GADDHC GSUBHC
4 GSETLlLZ GSETEF.X GADDHUN GSUBHUN GSHLISUB GSUBL
5 GSUB GSETGE/GEZ GSETLGF.X GADDHUZ GSUBHUZ GSUBLU
6 GSUBO GSETLU/GZ GSETLF.X GADDHUF GSUBHUF GASA
7 GSUBUO GSETGEU/LEZ GSETGEF.X GADDHUC GSUBHUC GCOM

minor operation code field values for XSHIFTI

XSHIFTI a 16 24 32 40 48 56

XSHLMI XSHLIOU XSHRMI XSHRIU

a
1
2
3
4
5
6
7

XSHLI XSHLIO XSHRI

XROTLI

XEXPANDI

XEXPANDIU XROTRI

XCOMPRESSI

XCOMPRESSIU

minor operation code field values for XSHIFT

XSHIFT a 16 24 32 40 48 56

a
1
2
3

XSHL XSHLO XSHR XEXPAND XCOMPRESS
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minor operation code field values for XSHIFT

94

XSHIFT 0 16 24 32 40 48 56

4 XSHLM XSHLOU XSHRM XSHRU XROTL XEXPANDU XROTR XCOMPRESSU
5
6
7

minor operation code field values for E.size

E.size 0 16 24 32 40 48 56

0 EMULFN EMULADDFN EADDFN ESUBFN EMUL EMULADD EDIVFN ECON
1 EMULFZ EMULADDFZ EADDFZ ESUBFZ EMULU EMULADDU EDIVFZ ECONU
2 EMULFF EMULADDFF EADDFF ESUBFF EMULM EMULADDM EDIVFF ECONM
3 EMULFC EMULADDFC EADDFC ESUBFC EMULC EMULADDC EDIVFC ECONC
4 EMULFX EMULADDFX EADDFX ESUBFX EMULSUM EMULSUB EDIVFX EDIV
5 EMULF EMULADDF EADDF ESUBF EMULSUMU EMULSUBU EDIVF EDIVU
6 EMULCF EMULADDCF ECONFL ECONCFL EMULSUMM EMULSUBM EMULSUMF EMULP
7 EMULSUMCF EMULSUBCF ECONFB ECONCFB EMULSUMC EMULSUBC EMULSUBF EUNARY

minor operation code field values for W.MINOR.L or W.MINOR.B

W.MINOR.order 0 16 24 32 40 48 56

0 WMULMAT8 WMULMATM8
1 WMULMAT16 WMULMATM16 WMULMATF16
2 WMULMAT32 WMULMATM32 WMULMATF32
3 WMULMAT64 WMULMATM64 WMULMATF64
4 WMULMATU8 WMULMATC8 WMULMATP8
5 WMULMATU16 WMULMATC16 WMULMATCF16 WMULMATP16
6 WMULMATU32 WMULMATC32 WMULMATCF32 WMULMATP32
7 WMULMATU64 WMULMATC64 WMULMATCF64 WMULMATP64

The minor field is filled with a value from the following
table: Note that the shift amount field value shown below is
the "sh" value, which is encoded in an instruction-dependent
mauner from the immediate field in the assembler format.

For the major operation field values E.MUL.X.I, 40

E.MUL.X.I.U, E.MUL.X.I.M, E.MUL.X.I.C, E.MUL.AD­
DX.I, E.MUL.ADDXI.U, E.MUL.ADDXI.M, E.MU-
L.ADD.X.I.C, E.CONXI.L, E.CON.X.I.B,
E.CON.X.I.U.L, E.CONXI.U.B, E.CONXI.M.L,
E.CON.X.I.M.B, E.CON.X.I.C.L, E.CONXI.C.B, E.EX- 45

TRACT.I, E.EXTRACT.I.U, WMUL.MATXI.U.L,
WMUL.MATX.I.U.B, WMUL.MATX.I.M.L,
WMUL.MATXI.M.B, WMUL.MATXI.C.L, and
W.MUL.MATX.I.C.B, another six bits in the instruction
specifY aminor operation code, which indicates operand size, 50

rounding, and shift amount:

31

I major

2423

other

18

6 5 o
minor I

XI 0 16 24 32 40 48 56

0 8.F,0 8.N,0 16.F,0 16.N,0 32.F,0 32.N,0 64.F,0 64.N,0

1 8.F,1 8.N,1 16.F,1 16.N,1 32.F,1 32.N,1 64.F,1 64.N,1

2 8.F,2 8.N,2 16.F,2 16.N,2 32.F,2 32.N,2 64.F,2 64.N,2

3 8.F,3 8.N,3 16.F,3 16.N,3 32.F,3 32.N,3 64.F,3 64.N,3

4 8.Z,0 8.C,0 16.Z,0 16.C,0 32.Z,0 32.C,0 64.Z,0 64.C,0

5 8.Z,1 8.C,1 16.Z,1 16.C,1 32.Z,1 32.C,1 64.Z,1 64.C,1

6 8.Z,2 8.C,2 16.Z,2 16.C,2 32.Z,2 32.C,2 64.Z,2 64.C,2

7 8.Z,3 8.C,3 16.Z,3 16.C,3 32.Z,3 32.C,3 64.Z,3 64.C,3
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For the major operation field values GCOPYI, two bits in
the instruction specify an operand size:

96
The sz field is filled with a value from the following table:

31 2423 18 1716 15 sz size

I op I rd I sz I irnrn a 16
8 2 16 1 32

2 64
3 128

For the major operation field values E.8, E.16, E.32, E.64,
E.128, with minor operation field value E.UNARY, another
six bits in the instruction specify a unary operation code:

10
For the major operation field values G.AND.I, G.NAND.I,

G.NOR.I, G.OR.I, GXOR.I, G.ADD.I, G.ADD.I.O, G.AD­
D.I.UO, G.SET.AND.E.I, G.SET.AND.NE.I, G.SET.E.I,
G.SET.GE.I, G.SET.L.I, G.SET.NE.I, G.SET.GE.I.U,
G.SET.L.I.U, G.SUB.I, G.SUB.I.O, G.SUB.I.UO, two bits in 15

the instruction specify an operand size:
31 2423

I major I
18 17

rd I rc

12 11

I unary

6 5 a
I minor I

31

op

2423

I rd

18 17

I rc

1211 10 9

I sz I
2

irnrn

10 20
The unary field is filled with a value from the following

table:

unary operation code field values for E.UNARYsize

E.UNARY a 16 24 32 40 48 56

a ESQRFN ESUMFN ESINKFN EFLOATFN EDEFLATEFN ESUM
1 ESQRFZ ESUMFZ ESINKFZ EFLOATFZ EDEFLATEFZ ESUMU ESINKFZD
2 ESQRFF ESUMFF ESINKFF EFLOATFF EDEFLATEFF ELOGMOST ESINKFFD
3 ESQRFC ESUMFC ESINKFC EFLOATFC EDEFLATEFC ELOGMOSTU ESINKFCD
4 ESQRFX ESUMFX ESINKFX EFLOATFX EDEFLATEFX
5 ESQRF ESUMF ESINKF EFLOATF EDEFLATEF
6 ERSQRESTFX ERECESTFX EABSFX ENEGFX EINFLATEFX ECOPYFX
7 ERSQRESTF ERECESTF EABSF ENEGF EINFLATEF ECOPYF

For the major operation field values A.MINOR and G.MI­
NOR, with minor operation fieldvaluesA.COM andG.COM,

40 another six bits in the instruction specifY a comparison opera­
tion code:

45 31 2423

I major I
18 17

rd I rc

12 11 6 5

I compare I
a

minor I

50

55

The compare field is filled with a value from the following
table:

compare operation code field values for A.COM.op and
G.COM.op.size

x.COM a 16 24 32 40 48 56

60

65

a
1
2
3
4
5
6
7

xCOME
xCOMNE
xCOMANDE
xCOMANDNE
xCOML
xCOMGE
xCOMLU
xCOMGEU

xCOMEF
xCOMLGF
xCOMLF
xCOMGEF
xCOMEF.X
xCOMLGF.X
xCOMLF.X
xCOMGEF.X
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General Fonns
The general forms of the instructions coded by a major

operation code are one of the following:

31 2423 0

I major I offset! I
8 24

31 2423 18 17 0

I major I rd I offset! I
18

31 2423 18 17 12 11 0

I major I rd I re I offset! I
12

31 2423 18 17 1211 65 0

I major I rd I re I rb I ra I
8

98

20
The general fonns of the instructions coded by major and

minor operation codes are one of the following:
The general form of the instructions coded by major,

minor, and unary operation codes is the following:

31 2423 18 17 12 11 6 5 0

I major I rd I re I unary I minor I
31 2423 18 17 12 11 6 5 0 25 8 6
I major I rd I re I rb I minor I

Register rd is either a source register or destination register,
31 2423 18 17 12 11 6 5 0 or both. Registers rc and rb are always source registers. Reg-
I major I rd I re I simrn I minor I ister ra is always a destination register.

30 Instruction Fetch

Definition

defThread(th) as
forever do

catch exception
if (EventRegister & EventMask[th]) " 0 then

if ExeeptionState~Othen
raise Eventlnterrupt

endif
endif

inst f- LoadMemoryX(ProgramCounter,ProgramCounter,32,L)
Instruetion(inst)

endeateh
case exception of

EventlntelTUpt,
ReservedInstruction,
AeeessDisallowedByVirtualAddress,
AeeessDisallowedByTag,
AeeessDisallowedByGlobalTB,
AeeessDisallowedByLocalTB,
AeeessDetailRequiredByTag,
AeeessDetailRequiredByGlobalTB,
AeeessDetailRequiredByLocalTB,
MisslnGlobalTB,
MisslnLoealTB,
FixedPointArithmetic,
FloatingPointArithmetic,
GatewayDisallowed:

case ExceptionState of
0:

PerformExeeption(exeeption)
1:

PerformExeeption(SeeondExeeption)
2:

PerformMaehineCheek(ThirdExeeption)
endcase

TakenBraneh:

ContinuationState f- (ExeeptionState~O)? 0 : ContinuationState
TakenBranehContinue:

/* nothing */
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-continued

none, others:

PrograrnCounter~ PrograrnCounter + 4
ContinuationState~ (ExceptionState~O)? 0 : ContinuationState

endcase
endforever

enddef

10

Perform Exception

Definition

defPerforrnException(exception) as

v~ (exception> 7) ? 7 : exception

t~ LoadMemory(ExceptionBase,ExceptionBase+Thread*128+64+8*v,64,L)
if ExceptionState ~ 0 then

u~ RegRead(3,128) II RegRead(2,128) II RegRead(I,128) II RegRead(0,128)
StoreMemory(ExceptionBase,ExceptionBase+Thread*128,512,L,u)
RegWrite(0,64,ProgramCounter63..2 II PrivilegeLevel
RegWrite(1 ,64,ExceptionBase+Thread* 128)
RegWrite(2,64,exception)
RegWrite(3,64,FailingAddress)

endif

PrivilegeLevel ~tl..O

ProgramCounter~ t63 ..2 II 02

case exception of
AccessDetailRequiredByTag,
AccessDetailRequiredByGlobalTB,
AccessDetailRequiredByLocalTB:

ContinuationState~ ContinuationState + 1
others:
/* nothing */

endcase

ExceptionState~ ExceptionState + 1
enddef

Instruction Decode

definstruction(inst) as

major~ inst3 1..24

rd f- inst23 .. 18

rc +--- inst17.. 12

simm +--- rb f- inst11..6

minor f- ra f- insts ..o
case major of

ARES:
AlwaysReserved

AMINOR:

minor f- insts ..o
case minor of

AADD, AADD.O, AADD.OU, AAND, AANDN, ANAND, ANOR,
AOR, AORN, AXNOR, AXOR:

Address(minor,rd,rc,rb)
ACOM:

compare f- inst11..6
case compare of

ACOM.E, ACOM.NE, ACOM.AND.E, ACOM.AND.NE,
ACOM.L, ACOM.GE, ACOM.L.U, ACOM.GE.U:

AddressCompare(compare,rd,rc)
others:

raise ReservedInstruction
endcase

ASUB, ASUB.O, ASUB.D.O,
ASET.AND.E, ASET.AND.NE, ASET.E, ASET.NE,
ASET.L, ASET.GE, ASET.L.U, ASET.GE.U,

AddressReversed(minor,rd,rc,rb)

100
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ASHL.I.ADD..A.SHL.I.ADD+3:
AddressShiftLeftIrnmediateAdd(inst1.. 0 ,rd,rc,rb)

ASHL.I.SUB..A.SHL.I.SUB+3:
AddressShiftLeftIrnmediateSubtract(inst1.. 0 ,rd,rc,rb)

ASHL.I, ASHL.I.O, ASHL.I.U.O, ASHR.I, ASHR.I.U, A ROTR.I:
AddressShiftImmediate(minor,rd,rc,simm)

others:
raise Reservedlnstruction

endcase
ACOPYI

AddressCopyImmediate(maj or,rd,inst17..0)

AADD.I, AADD.I.O, AADD.I.U.O, AAND.I, AOR.I, ANAND.I, ANOR.I, AXOR.I:
Addresslmmediate(maj or,rd,rc,inst11 .. 0)

ASET.AND.E.I, ASET.AND.NE.I, ASET.E.I, ASET.NE.I,
ASET.L.I, E.SET.GE.I, ASET.LU.I, ASET.GE.U.I,
ASUB.I, ASUB.I.O, ASUB.I.U.O:

AddresslmmediateReversed(maj or,rd,rc,inst11 .. 0)

AMUX:
AddressTemary(major,rd,rc,rb,ra)

B.MINOR:
case minor of

B:
Branch(rd,rc,rb)

B.BACK:
BranchBack(rd,rc,rb)

B.BARRIER:
BranchBarrier(rd,rc,rb)

B.DOWN:
BranchDown(rd,rc,rb)

B.GATE:
BranchGateway(rd,rc,rb)

B.HALT:
BranchHalt(rd,rc,rb)

B.HINT:
BranchHint(rd,inst17.. 12,simm)

B.LINK:
BranchLink(rd,rc,rb)

others:
raise Reservedlnstruction

endcase
BE, BNE, BL, BGE, BLU, BGE.U, BAND.E, BAND.NE:

BranchConditional(maj or,rd,rc,inst11 .. 0)

BRINTI:
BranchHintImmediate(instn .. 18 ,inst17.. 12,inst11 .. 0)

BI:
BranchIrnmediate(instn ..o)

BLINKI:
BranchIrnmediateLink(instn ..o)

BEFI6, BLGFI6, BLFI6, BGEFI6,
BEF32, BLGF32, BLF32, BGEF32,
BEF64, BLGF64, BLF64, BGEF64,
BEFI28, BLGFI28, BLFI28, BGEFI28:

BranchConditionalFloatingPoint(major,rd,rc,inst11 .. O)

BIF32, BNIF32, BNVF32, BVF32:
BranchConditionalVisibilityFloatingPoint(major,rd,rc,inst1 1..0)

L.MINOR
case minor of

1.161., LU16L, 1.321., LU32L, 1.641., LU64L, 1.1281., 1.8, LU8,
L16AL, LU16AL, L32AL, LU32AL, L64AL, LU64AL, L128AL,
L16B, LU16B, L32B, LU32B, L64B, LU64B, L128B,
L16AB, LU16AB, L32AB, LU32AB, L64AB, LU64AB, L128AB:

Load(minor,rd,rc,rb)
others:

raise Reservedlnstruction
endcase

1.1161. LIU16L, LI32L, LIU32L, LI64L, LIU64L, 1.11281., LI8, LIU8,
LI16AL, LIU16AL, LI32AL, LIU32AL, LI64AL, LIU64AL, LI128AL,
LI16B, LIU16B, LI32B, LIU32B, LI64B, LIU64B, L1128B,
LI16AB, LIU16AB, LI32AB, LIU32AB, LI64AB, LIU64AB, LII28AB:

LoadImmediate(major,rd,rc,inst11 ..O)

S.MINOR
case minor of

SI6L, S32L, S64L, S128L, S8,
SI6AL, S32AL, S64AL, SI28AL,
SAS64AL, SCS64AL, SMS64AL, SM64AL,
SI6B,S32B,S64B,SI28B,
SI6AB, S32AB, S64AB, SI28AB,
SAS64AB, SCS64AB, SMS64AB, SM64AB:

Store(minor,rd,rc,rb)

102
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SDCS64AB, SDCS64AL:
StoreDoubleCompareSwap(minor,rd,rc,rb)

others:
raise Reservedlnstruction

endcase
SIl6I., SI32I., SI64I., SIl28I., SI8,
SIl6AI., SI32AI., SI64AI., SIl28AI.,
SASI64AI., SCSI64AI., SMSI64AI., SMUXI64AI.,
SIl6B, SI32B, SI64B, SIl28B,
SIl6AB, SI32AB, SI64AB, SIl28AB
SASI64AB, SCSI64AB, SMSI64AB, SMUXI64AB:

Storelmmediate(major,rd,rc,inst11 .. O)

G.8, G.16, G.32, G.64, G.128:

minor~ insts ..o
size~ 0 II 1 II 03+major-G.8

case minor of
G.ADD, G.ADD.I., G.ADD.I.U, G.ADD.O, G.ADD.OU:

Group(minor,size,rd,rc,rb)
G.ADDHC, G.ADDHF, G.ADDHN, G.ADDHZ,
G.ADDHUC, G.ADDHUF, G.ADDHUN, G.ADDHUZ:

GroupAddHalve(minor,inst1 ..O,size,rd,rc,rb)
G.AAA, G.ASA:

Grouplnplace(minor,size,rd,rc,rb)
G.SET.AND.E, G.SET.AND.NE, G.SET.E, G.SET.NE,
G.SET.I., G.SET.GE, G.SET.L.U, G.SET.GE.U:
G.SUB, G.SUB.I., G.SUB.I.U, G.SUB.O, G.SUB.U.O:

GroupReversed(minor,size,ra,rb ,ye)
G.SET.E.F, G.SET.I.G.F, G.SET.GE.F, G.SET.L.F,
G.SET.E.F.X, G.SET.I.G.F.X, G.SET.GE.F.X, G.SET.L.F.X:

GroupReversedFloatingPoint(minor.op,.size,
minor.rOlUld, rd, Te, rb)

G.SHL.I.ADD..G.SHL.I.ADD+3,
GroupShiftI.eftImmediateAdd(inst1 ..O,size,rd,rc,rb)

G.SHL.I.SUB..G.SHL.I.SUB+3,
GroupShiftI.eftImmediateSubtract(inst1 ..O,size,rd,rc,rb)

G.SUBHC, G.SUBHF, G.SUBHN, G.SUBHZ,
G.SUBHUC, G.SUBHUF, G.SUBHUN, G.SUBHUZ:

GroupSubtractHalve(minor,inst1 ..O,size,rd,rc,rb)
G.COM,

compare ~ inst11..6
case compare of

G.COM.E, G.COM.NE, G.COM.AND.E, G.COM.AND.NE,
G.COM.I., G.COM.GE, G.COM.L.U, G.COM.GE.U:

GroupCompare(compare,size,ra,rb)
others:

raise ReservedInstruction
endcase

others:
raise Reservedlnstruction

endcase
G.BOOI.EAN..G.BOOI.EAN+1:

GroupBoolean(major,rd,rc,rb,minor)
G.COPY.I...G.COPY.I+1:

size +--- 0 II 1 II 04+inst17 .. 16

GroupCopylmmediate(major,size,rd,inst1S ..0 )

G.AND.I, G.NAND.I, G.NOR.I, G.OR.I, G.XOR.I,
G.ADD.I, G.ADD.I.O, G.ADD.I.U.O:

size +--- 0 II 1 II 04+instI 1..10

Grouplmmediate(major,size,rd,rc,instg ..o)
G.SET.AND.E.I, G.SET.AND.NE.I, G.SET.E.I, G.SET.GE.I, G.SET.L.I,
G.SET.NE.I, G.SET.GE.I.U, G.SET.L.I.U, G.SUB.I, G.SUB.I.O, G.SUB.I.U.O:

size +--- 0 II 1 II 04+instI 1..10

GrouplmmediateReversed(major,size,rd,rc,instg ..o)
G.MUX:

GroupTe11lary(major,rd,rc,rb,ra)
X.SHIFT:

minor +--- instS..2 II 02

size +--- 0 II 1 II 0(inst24 II inst1..0)

case minor of

X.EXPAND, X.UEXPAND, X.SHI., X.SHL.O, X.SHL.U.O,
X.ROTR, X.SHR, X.SHR.U,

Crossbar(minor,size,rd,rc,rb)

X.SHL.M, X.SHR.M:
CrossbarInplace(minor,size,rd,rc,rb)

others:

raise Reservedlnstruction
endcase
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X.EXTRACT:

CrossbarExtract(maj or,rd,rc,rb ,ra)

X.DEPOSIT, X.DEPOSIT.U XWITHDRAW XWITHDRAW.U

CrossbarField(major,rd,rc,instll ..6,insts .. o)

X.DEPOSIT.M:

CrossbarFieldlnplace(maj or,rd,rc,inst11 ..6,insts..0)

X.SHIFT.!:

minor~ insts ..o
case minors ..2 II 02 of

X.COMPRESS.!, X.EXPAND.!, X.ROTR.!, X.SHL.I, X.SHL.LO, X.SHL.LU.O,

X.SHR.!, X.COMPRESS.LU, X.EXPAND.LU, X.SHR.UI:

CrossbarShortImmediate(minor,rd,rc,simm)

X.SHL.M.!, X.SHR.M.!:

CrossbarShortImmediatelnplace(minor,rd,rc,simm)

others:

raise Reservedlnstruction

endcase

X.SHUFFLE..X. SHUFFLE+1:

CrossbarShuffle(major,rd,rc,rb,simm)

X.SWIZZLE..X.SWIZZLE+3:

CrossbarSwizzle(major,rd,rc, instll ..6,insts ..o)

X.SELECT.8:

CrossbarTernary(maj or,rd,rc,rb ,ra)

E.8, E.16, E.32, E.64, E.128:

minor~ insts ..o
size~ 0 II 1 II 03+major-E.8

case minor of

E.CON., E.CON.U, E.CON.M, E.CON.C,

E.MUL., E.MUL.U, E.MUL.M, E.MUL.C,

E.MUL.SUM, E.MUL.SUM.U, E.MUL.SUM.M, E.MUL.SUM.C,

E.DIV, E.DN.U, E.MUL.P:

Ensemble(minor,size,ra,rb,rc)

E.CON.F.L, E.CON.F.B, E.CON.C.F.L, E.CON.C.F.B:

EnsembleConvolveFloatingPoint(minor.size,rd,rc,rb)

E.ADD.F.N, E.MUL.C.F.N, E.MUL.F.N, E.DIVF.N,

E.ADD.F.Z, E.MUL.C.F.Z, E.MUL.F.Z, E.DIVF.Z,

E.ADD.F.F, E.MUL.C.F.F, E.MUL.F.F, E.DN.F.F,

E.ADD.F.C, E.MUL.C.F.C, E.MUL.F.C, E.DIVF.C,

E.ADD.F, E.MUL.C.F, E.MUL.F, E.DIVF,

E.ADD.F.X, E.MUL.C.F.X, E.MUL.F.X, E.DIVF.X,

EnsembleFloatingPoint(minor.op, major. size, minor.rOlUld, rd, re, rb)

E.MUL.ADD, E.MUL.ADD.U, E.MUL.ADD.M, E.MUL.ADD.C:

Ensemblelnplaee(minor,size,rd,re,rb)

E.MUL.SUB, E.MUL.SUB.U, E.MUL.SUB.M, E.MUL.SUB.C:

EnsemblelnplaeeReversed(minor,size,rd,re,rb)

E.MUL.SUB.F, E.MUL.SUB.C.F:

EnsemblelnplaeeReversedFloatingPoint(minor,size,rd,re,rb)

E.SUB.F.N, E.SUB.F.Z, E.SUB.F.F, E.SUB.F.C, E.SUB.F, E.SUB.F.X:

EnsembleReversedFloatingPoint(minor.op, major. size,

minor.rOlUld, rd, re, rb)

E.UNARY:

case unary 0 f

E.SUM, E.SUMU, E.LOG.MOST, E. LOG.MOST.U:

EnsembleUnary(unary,rd,rc)

E.ABS.F, E.ABS.F.X, E.COPYF, E.COPYF.X,

E.DEFLATE.F, E.DEFLATE.F.N, E.DEFLATE.F.Z,

E.DEFLATE.F.F, E.DEFLATE.F.C, E.DEFLATE.F.X:

E.FLOAT.F, E.FLOAT.F.N, E.FLOAT.F.Z,

E.FLOAT.F.F, E.FLOAT.F.C, E.FLOAT.F.X:

E.!NFLATE.F, E.!NFLATE.F.X, E.NEG.F, E.NEG.F.X,

E.RECEST.F, E.RECEST.F.X, E.RSQREST.F, E.RSQREST.F.X,

E.SQR.F, E.SQR.F.N, E.SQR.F.Z, E.SQR.F.F, E.SQR.F.C, E.SQR.F.X:

E.SUM.F, E.SUM.F.N, E.SUM.F.Z,
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