Ganas, LLC v. Sabre Holdings Corporation et al Doc. 1 Att. 1

EXHIBIT A

Dockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/2:2010cv00320/124905/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/2:2010cv00320/124905/1/1.html
http://dockets.justia.com/

US007136913B2

a2 United States Patent

Linderman

(10) Patent No.:

45) Date of Patent:

US 7,136,913 B2
*Nov. 14,2006

(54) OBIECT ORIENTED COMMUNICATION
AMONG PLATFORM INDEPENDENT
SYSTEMS ACROSS A FIREWALL OVER THE
INTERNET USING HTTP-SOAP

(735)

Inventor: Michael Linderman, Nepean (CA)

(73)

")

Assignee: Lab 7 Networks, Inc., Ottawa (CA)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 1091 days.

This patent is subject to a terminal dis-
claimer.

@
(22)

Appl. No.: 09/900,041

Filed: Jul. 9, 2001

(65) Prior Publication Data

US 2002/0032790 Al Mar. 14, 2002

Related U.S. Application Data

(63) Continuation-in-part of application No. 09/867,469,

filed on May 31, 2001, now Pat. No. 7,007,094.

Provisional application No. 60/242,708, filed on Oct.
25, 2000, provisional application No. 60/208,045,
filed on May 31, 2000.

(60)

Int. Cl1.

GO6F 15/173 (2006.01)

GO6F 9/46 (2006.01)

US.CL ... 709/223; 719/318; 709/201;

(1)

6,219,786 B1* 4/2001 Cunningham et al. 713/152
6,333,932 B1* 12/2001 Kobayasi et al. 370/389
6,457,066 B1* 9/2002 Mein et al. 719/330
6,483,841 B1* 11/2002 Chang et al. 370/412
6,772,216 B1* 8/2004 Ankireddipally et al. ... 709/230
6,970,935 B1* 11/2005 Maes ...cocovvurerveeeneenne 709/230
2002/0010803 Al* 1/2002 Oberstein et al. 709/318
2002/0099738 Al* 7/2002 Grant 707/513
2002/0147745 Al* 10/2002 Houben et al. .. 707/513
2002/0147746 Al™* 10/2002 Lee ..cccoeveeeeeennenennnnne 707/513
2002/0149601 Al* 10/2002 Rajarajan et al. 345/619
2002/0156874 Al* 10/2002 Suorsa et al. 709/220
2002/0157023 Al* 10/2002 Callahan et al. 713/201
2002/0161826 Al* 10/2002 Arteaga et al. 709/203
2002/0178244 Al* 11/2002 Brittenham et al. 709/223
2003/0005412 Al* 12003 Eanescccccceeeeeunene 717/120
(Continued)

OTHER PUBLICATIONS

“Simple Object Access Protocol (SOAP) 1.17, May 8, 2000, Box et

al., pp. 1-35.%*

“SOAP: The Simple Object Access Protocol”, Aaron Skonnard, Jan.
2000, pp. 1-13.*

(Continued)

Primary Examiner—John Follansbee

Assistant Examiner—Haresh Patel

(74) Attorney, Agent, or Firm—Nath & Associates PLLC;
Gregory B. Kang; Stanley N. Protigal

&7

ABSTRACT

(52)

(58)

(56)

709/217
Field of Classification Search 719/330,
719/318; 709/223, 200-205, 208-253

See application file for complete search history.

References Cited

A system for communication over the internet and through
a firewall utilizing a single communications protocol. A
simple object access communications protocol (SOAP) is
utilized. This protocol is an XMIL/HTTP based protocol for
sending messages from one object to another across the
internet in a platform independent manner. This type of
protocol can be utilized to control network elements pro-

U.S. PATENT DOCUMENTS

5,544,154 A * 8/1996 Glitho 370/248
5,999,179 A * 12/1999 Kekic et al. 715/734

PRCVIDING AN APPLET
TO DRIVE AUSER
REQUEST

601 603

CREATING HTTP-SOAP
PACKET

REMOVING HTTP
PORTION TO CREATE
SOAP MESSAGE

605~
SENDING USER
REQUEST INCLUDING
SOAP MESSAGE
TORWS

SENDING SOAP
MESSAGE TO NMA

506 807

BUILDING
APPROPRIATE NODAL
MODEL IN NMA

608~

PARSING SOAP
ENCODED REQUEST IN
NEATO COMPLETE A
SINGLE NODAL
TRANSACTION

vided at various locations.

—— 600

[

SENDING SCAP
ENCODED REQUEST

FROM
NMA TO NEA

ENCODING IN NEA TO
PRODUCE SOAP
PACKET

TRANSMITTING SCAP
PACKET TO
TRANSLATOR BOX

TRANSLATING SOAP
PACKET INTO
APPROPRIATE
COMMAND

I

TRANSMITTING THE
COMMAND TO
NETWORK ELEMENT

624

| E—

30 Claims, 6 Drawing Sheets

US 7,136,913 B2

Page 2
U.S. PATENT DOCUMENTS OTHER PUBLICATIONS
2003/0036917 Al* 2/2003 Hite et al. ..o.coovvrevnerne... 705/1 Skonnard, Aaron, SOAP, The Simple Object Access Protocol, Jan.
2003/0131073 Al* 7/2003 Lucovsky etal. 709/219 2000 issue of Microsoft Internet Developer, 13 pages.
2004/0122833 Al* 6/2004 Forth et al. 707/100 “UPnP Device Architecture”, Contributing Members of the UPnP
2004/0226010 A1* 11/2004 SUOTSA werrvverrverereernees 717/174 ~ Forum, Jun. 8, 2000.
2004/0261020 Al* 12/2004 Layman et al. 715/513 * cited by examiner

U.S. Patent Nov. 14, 2006 Sheet 1 of 6 US 7,136,913 B2

10

WEB 16
BROWSER

WEB SERVER 18
| (LOCALIZED)
| CPU 1
| N
8| TCR/IP 12 14
20 i
WEB 7. SOAP 29 36
SERVER SERVER '
_______________________ FIREWALL % |

o \\5 30
26 13 S
X DATABASE
28 CPU 2

T-BOX ~_32
1} ETHERNET

NETWORK ELEMENT ~_34

FIG.1

U.S. Patent

1

Nov. 14, 2006 Sheet 2 of 6

US 7,136,913 B2

16

BROWSER <
! 1 77 WEB SERVER 18
: (LOCALIZED) _/
; CPU 1
{ N

2 | TCP/IP 12 14

20 |
WEB 3 SOAP 29 36
SERVER SERVER \
_________________ ~——_ _ _ _FREWALL %
z
. ~ <2 30
2% 7 =
» 25 DATABASE
~~.__ 28 CPUY 2
8 >~ ICP/IP
| T-BOX ~_32
9 y ETHERNET
NETWORK ELEMENT 34

FIG.2

U.S. Patent Nov. 14, 2006 Sheet 3 of 6 US 7,136,913 B2

ALARM PATH OVERVIEW

GUI 1 oUl 2
RWS
NMA 1 NMA 2
NEA 1 NEA 2
T-BOX T—BOX T-BOX T—BOX

FIG.3

U.S. Patent Nov. 14, 2006 Sheet 4 of 6 US 7,136,913 B2

ALARM OBJECT COMMUNICATION AND DISTRIBUTION

GUI 1| GUI 2

SOAPSndr SOAPSndr

{
{

RWS
SOAPRcvr SOAPRcvr
AlrmDist
! 1 !
SOAPSndr @SE SOAPSNhdr
L ‘ I
' NMA

SOAPRevr SOAPRevr

AlrmRevr

AlrmSndr
A

AlrmSndr
i

SOAPSndr SOAPSndr

SOAPRcvr AlrmRevr AlrmRevr SOAPRcvr

866
e

~ 7

CONNECTION

NEA 1|NEA 2 T

FIG.4

U.S. Patent Nov. 14, 2006

Sheet 5 of 6 US 7,136,913 B2

A
Y

DATABASE ~_42

NETWORK MANAGER h~_44

)

Y

ELEMENT MANAGER |~_46

Y

40—~ BROWSER/APPLICATION

A

Y
48 A T-BOX

i

ETHERNET
| |
NETWORK ELEMENT/

507 APPLICATION

FIG.S

U.S. Patent

Nov. 14, 2006

PROVIDING AN APPLET
TO DRIVE A USER
REQUEST

601 _/ {603~

CREATING HTTP-SOAP
PACKET

v
REMOVING HTTP

PORTION TO CREATE

Sheet 6 of 6

»— 600

SENDING SOAP
ENCODED REQUEST
FROM
NMA TO NEA

il
616 619\

SOAP MESSAGE

604 / 605 \

ENCODING IN NEA TO
PRODUCE SOAP
PACKET

SENDING USER
REQUEST INCLUDING
SOAP MESSAGE
TO RWS

TRANSMITTING SOAP
PACKET TO
TRANSLATOR BOX

Y

SENDING SOAP
MESSAGE TO NMA

021 l o2

606 — l 607 ™

TRANSLATING SOAP
PACKET INTO
APPROPRIATE
COMMAND

BUILDING
APPROPRIATE NODAL
MODEL IN NMA

:

) 608\

PARSING SOAP
ENCODED REQUEST IN
NEA TO COMPLETE A
SINGLE NODAL
TRANSACTION

TRANSMITTING THE
COMMAND TO
NETWORK ELEMENT

L

624 J

FIG. 6

US 7,136,913 B2

US 7,136,913 B2

1

OBJECT ORIENTED COMMUNICATION
AMONG PLATFORM INDEPENDENT
SYSTEMS ACROSS A FIREWALL OVER THE
INTERNET USING HTTP-SOAP

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims the benefit of U.S. provi-
sional patent application No. 60/208,045, filed on May 31,
2000, and No. 60/242,708, filed on Oct. 25, 2000, as well as
U.S. application Ser. No. 09/867,469, now U.S. Pat. No.
7,007,094, continuation in part (CIP) filed on May 31, 2001.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a software and hardware
infrastructure allowing for the management of any network
device regardless of its location utilizing only a single
communications protocol.

2. Description of the Prior Art

Although a browser can be used to directly request
images, video, sound etc. from a server, more usually, an
HTML document converts the presentation of information
served to the browser by a server. However, generally the
contents of an HTML file are static in that the browser can
only present a passive snapshot of the contents at the time
the document is served. In order to present dynamic infor-
mation, such as information generated by an application or
device or to obtain from the user data which has been
inserted into an HTML-generated form, conventional world
wide web service employ a “raw” interface such as a
common gateway interface (CGI). The HTML file provides
no mechanism for presenting dynamic information gener-
ated by an application or device, except through the CGI.

With respect to obtaining data from a user for use by the
application or device, although standard HTML provides a
set of tags which implements a convenient mechanism for
serving interactive forms to the browser, complete with text
fields, check boxes and pull down menus, the CGI must be
used to process submitted forms. Form processing is impor-
tant to remote control, management, configuration, moni-
toring and diagnosing applications because forms process-
ing is a convenient way to configure an application
according to a user input utilizing the world wide web
communications model. Unfortunately, form processing
employing a CGI is extremely complex, requiring an appli-
cation designer to learn and implement an unfamiliar inter-
face. Therefore, a CGI is not a suitable interface for rapid
development and prototyping of graphical user interfaces
(GUD).

Furthermore, a developer must then master a native
application source code language (such as C and C+4+),
HTML and the CGI, in order to develop a complete appli-
cation along with its user interface. Additionally, the CGI
mechanism assumes access to the application on the cus-
tomer’s site, but not to the object. The person or process that
invokes the CGI program must have full knowledge of that
program. A firewall is not in control of the CGI. Therefore,
the use of the CGI would make it impossible to fully secure
communications between users. Finally, the CGI mechanism
works only in the client server environment communicating
to one server. This method cannot be applied to the distrib-
uted multi-process environment, if only a single communi-
cations protocol for the entire system is to be utilized.

20

25

30

35

40

45

50

55

60

65

2

Other systems could be used instead of the CGI. For
example, an object model such as Microsoft’s DCOM or the
object management groups internet inter-ORB protocol
(IIOP) or the common object request broker architecture
(CORBA) could be employed. However, these technologies
have some limitations when it comes to creating web
services. For example, DCOM and [IOP/CORBA are rich
environments, which means that implementations and appli-
cations that use them tend to be complex and symmetrical.
In other words, to build a distributed application using them,
one typically must require the same distributed object model
running at both ends of the connection. However, the
internet does not guarantee the specific kind of client or
server software which would be running at the second end
of the connection. All that is required is that the connection
understands the hypertext transfer protocol (HTTP). Addi-
tionally, it is often technically impossible to insure that all
applications would run either IIOP or DCOM.

Any server connected to the internet can potentially be
accessed by an internet user, which raises some obvious
security problems. To address these concerns, most organi-
zations insert a firewall between their publically accessible
web servers and the masses that can access the servers.
Generally, a firewall can block incoming traffic based on
various criteria and thereby increase an organization’s con-
fidence in the security of its system. While they are essential
to the secure use of the internet, firewalls make the efficient
use of distributed object protocols very challenging. Under-
standing why firewalls cause problems for distributed object
protocols requires understanding of how a firewall is able to
distinguish one protocol from another. For example, in the
TCP/IP architecture, each widely used protocol is assigned
its own port number and each request made using this
protocol carries that number. HTTP, for example, is gener-
ally assigned port 80, while, for example, the file transfer
protocol (FTP) relies on port 21. Most firewalls allow
blocking a specific protocol by rejecting all traffic sent on the
port used by that protocol. In general, firewalls are config-
ured to allow traffic on port 80. If this was not the case,
HTTP requests from browsers could not be received. How-
ever, many firewalls block most other ports. This would
result in other protocols not being received by the user’s
local server.

Unlike HTTP, FTP and other widely used protocols,
distributed object protocols do not generally have a single
well known port number assigned to them. Instead, these
protocols typically use dynamically assigned ports, with port
numbers chosen arbitrarily as needed. If no firewall inter-
venes in the communication between the client and the
server, this approach works fairly well. If a firewall is
asserted, communication stops because the firewall blocks
all traffic using this protocol since it is not configured to pass
requests on arbitrary port numbers.

One response to this challenge is to use existing internet
standards such as an HTTP and XML. More than any other
application protocol, the HTTP connects most users to one
another. Millions of web sites and browsers utilize protocol.
The problem with HTTP alone is that it is mainly a mecha-
nism for passing files from a server to a client. To create
more ambitious web servers, the HTTP must be expanded.

One manner of extending the HTTP would be to use an
object protocol such as the simple object access protocol
(SOAP) copyrighted by IBM, Lotus Development Corpo-
ration, Microsoft and User Land Software. This protocol
adds a set over the HTTP headers and rich XML payload to
enable complex application-to-application communication

US 7,136,913 B2

3

over the internet. In other words, the SOAP messaging
protocol uses HTTP to carry messages that are formatted
with XML.

SUMMARY OF THE INVENTION

The deficiencies of the prior art are addressed by the
present invention which is directed to a system utilizing an
object access protocol as the single communications proto-
col between the user, any intermediate software system, and
a network element (hardware). The invention utilizes the
same object protocol, not only as the foundation of the
internet communication, but also for the lower level inter-
object communication. The system not only serves as a
remote control for a network server across a firewall, but can
also be used to control the switches running the network
from the other side of the firewall. Because the server can
utilize the simple network management protocol (SNMP) to
configure the switches, the present invention would be able
to control a network’s back-end remotely, and will even be
capable of changing bandwidth assignments. Because of its
object access nature, the present invention is adaptable to
control any network device be it a server, a switch, or any
number of other devices such as network printers and fax
machines. A host of emerging “smart” products including
computer controlled appliances such as refrigerators and
other kitchen appliances, climate control systems and medi-
cal devices can also be controlled.

The present invention is cross platform compatible since
it is capable of running regardless of the platform because it
is built in industry and standard protocols and is therefore
not restricted to any given platform, thereby making a
completely unique product.

The present invention will consist of a client and a number
of servers. The client end would include a web browser
interface enabling the utilization of HTTP compatibility
with the SOAP which is designed specifically enable the
transmission of XML payloads with special HTTP headers.

Every server of the present invention will run a parser
filtering out the XML messages and sill translate these
messages into necessary commands to be executed behind
the firewall. The XML vocabulary will be translated into the
necessary SNMP commands to be issued to the switches
behind the firewall. The present invention will be scalable,
thereby allowing for the addition of management capabili-
ties by the integration of additional command protocols for
communicating with other devices. The present invention
will initially control devices that use the SNMP or Com-
mand Line Interface (CLI) protocol and can be scaled to add
support for future protocols and devices as these become
industry standards.

The architecture of the present invention allows a user to
wrap existing or new communications equipment in a
SOAP/XML wrapper, which would then allow for internet
readiness or manageability via the internet anywhere in the
world. The software wrapper is the computer program that
understands object access protocol, i.e. contains a Protocol
Virtual Machine (PVM), and runs on a single board com-
puter, or on the hardware of the network element. A T-Box
has a direct (not via the Internet) connection to the controlled
network elements. The T-Box can communicate to the
network elements via the Simple Network Management
Protocol (SNMP) or Comment Line Interface (CLS) Addi-
tionally, a network management system would be utilized
with the SOAP/XML protocol as the foundation for inter-
object communication.

10

20

25

30

40

45

50

55

60

4

The SOAP protocol extends the XML into the remote
procedure call (RPC) paradigm in a standardized manner.
The present invention extends the simple RPC paradigm to
a more complex useful transaction-based approach whereby
a “call” by user could be chained through a series of servers
each providing a telecommunications management network
(TMN) hierarchy management level over the internet. This
web chaining of the SOAP requests is a unique enhance-
ment.

The SOAP infrastructure is important to the technology of
the present invention. Available SOAP parsers had to be
broken up and modified into client and server side parsing
engines. Along with the new parsers, the purposes of asyn-
chronous identifications, a connection pooling mechanism
was developed upon which the SOAP messages rode. The
utilization of this system would allow network elements to
be remotely controlled beyond a firewall.

Other and further advantages, objects and features of the
invention will become apparent to those skilled in the art
from a reading of the following detailed description of a
preferred embodiment of the invention when taken in light
of the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram showing the hardware of the
present invention as well as an upward ordered message
flow;

FIG. 2 is a block diagram of the present invention as well
as showing a downward ordered message flow;

FIG. 3 is a diagram showing an alarm path flow;

FIG. 4 is a diagram showing alarm object communication
and distribution;

FIG. 5 is a diagram showing an alternate embodiment of
the present invention; and

FIG. 6 is a flow diagram showing the operation of the
present invention.

DETAILED DESCRIPTION OF THE PRESENT
INVENTION

The system design 10 of the present invention is shown in
FIGS. 1 and 2. As shown therein, separate CPUs 12 and 14
would include portions of the system hardware of the
present invention. Note that the application can have as
many CPUs as servers. We have shown two CPUs only for
clarity reasons. The CPU 12 would include a web browser
16 associated with a GUI which is an applet loaded by the
web browser from the localized web server 20. This would
prompt the user for data to perform a particular command.
Once the required data is entered, the command is encoded
into an HTTP-SOAP message. Although the drawings illus-
trate the utilization of two CPUs, the present invention can
employ as many CPUs as there are servers. The use of only
two CPUs in the present invention was for clarity purposes
only.

In this invention, the implementation of the SOAP mes-
sage is similar to SNMP format. It recognizes the Managed
Information Base (MIB) tree as the representation of hard-
ware component structure. The difference is that in existing
implementations of SNMP messages are usually numeric.
For example,

>Name-of-SNMP-program 10.3 set 23.21 11.11.2.12 2

The legend is: Name-of-SNMP-program node_address com-
mand (get/set) class.item object_id value.

US 7,136,913 B2

5

Since SOAP is an XML based textual protocol, instead of
numerals, it contains meaningful strings representing class,
item, and object id in the component hierarchy. Within the
SOAP envelope, the SNMP-like set of commands can be
expanded if required.

Additionally, unlike most SNMP implementations, the
present invention always guarantees the delivery of the
message, referred to as “nailing connections”. The receiving
server in our system always notifies the sender.

The second CPU 14 would include a web server (Apache)
which is the entry point of the network management system
of'the present invention. The web server 20 would determine
if the message is a SOAP message. If this is the case, it
would strip off the HTTP header and forward the remaining
SOAP/XML message to the SOAP server 22. This server is
a servant container which, upon receiving a SOAP message,
a determination would be made to which server the message
is destined. In this instance, the message will always be
routed from or to a read/write server (RWS) 24. Upon
receipt of the message from the SOAP server 22, the RWS
24 will store the data in a generic model in a relational
database 30 in an object to relational table mapping. The
RWS 24 will then forward or receive the message from a
network management agent (NMA) 26.

The NMA 26 will then determine the course of action
required for the particular type of request or command and
build the appropriate model for it using G.855, G.85X
recommendations as its basis. The NMA 26 will then
forward commands to or receive comments from various
network element agents (NEA) 28. Although a single NEA
28 is shown in FIGS. 1 and 2, it is noted that a number of
NEAs can be employed. The NEA 28, upon receiving a
nodal command from the NMA 26 will the build a M.3100
management model to support the nodal action. The NEA 28
will then forward a smaller command to a translation device
(T-box) 32 for processing or translation. The T-box 32 then
translates the SOAP command into the native language of
the intended device such as network element 34, or SNMP.

The web browser 16 will generally be a third party
provided browser. Most personal computers come with a
preinstalled browser or can easily be downloaded. Both
Netscape and Internet Explorer will be supported as both are
Java enabled. However, it is also possible to use either front
end applications written in any other computer language, as
long as they are talk SOAP/XML. The web browser 16 will
upload applets from the web server 18 for procedural
contacts and communicate the network data transactions
back to the web server 20 to be forwarded to the RWS 24.
When a user is selecting a network element or set of network
elements to perform an action, a network element record
must already have been installed into the database 30 for that
network element. The user will only be allowed to select
from the list of network elements currently being managed.
The web browser will also receive asynchronous events
from the web server and display them.

The RWS 24 will receive or send user requests and store
them in the database 30 as they are received. After a
successful storage, a SOAP envelope will be sent to the
NMA 26 to begin execution of the user request. The RWS 24
will also forward alarms to the web server 20 for display
when it receives them from lower layer processors such as
an NEA 28.

The NMA 26, when triggered by the RWS 24 will initiate
processing of the user request. The NMA 26 will read and
parse the SOAP request and then build a model required to
satisfy that request. The NMA 26 will send a series of SOAP
encoded singular node access requests to the NEA each with

—

0

—

5

20

25

30

40

45

55

6

the data sufficient to satisfy the secondary request. Thus, a
typical NMA network request is broken down into a set of
simpler nodal requests. The NMA will implement a standard
space model in order to satisfy the network management
layer requirement. The NMA will process the request to
either a successful or error termination condition. The NMA
will log the cumulative status of the user request and also
send a response SOAP packet back to the RWS 24 to be
forwarded to the user. The NMA 26 will store the data
required for each nodal requested to the database 30. Each
NMA request and secondary NEA request all will have
unique transaction Ids and database tables.

A Network Element Discovery server (NED) 25 can be
provided between the NMA 26, the RWS 24 and the NEA 28
included in FIGS. 1 and 2. The NED will discover and store
in the database 30 each network element’s configuration.
The configuration data may contain port, card, slot and shelf
information. It may also discover the current set of provi-
sional connections and their states.

The NED 25 will use the NEA 28 for access to the
network elements in order to perform its discovery task. The
NED will be used to populate the database tables initially. It
will also perform an Audit/L.earn function.

It is noted that a firewall 36 separates the web browser 16,
the web server 20 and the SOAP server 22 from the
remaining elements of the system.

The NEA 28 will be triggered from a SOAP envelope
received from the NMA 26. The NEA will parse the XML
document which encompasses the data necessary to com-
plete a single nodal transaction. An M.3100 derivative
model will be used to satisfy the elemental management
layer requirement. The NEA 28 will proceed to encode the
appropriate SOAP packets to be delivered to one or more of
the T-boxes 32 which are managing the network elements to
where the request is destined. Although FIGS. 1 and 2 show
the T-box 32 connected to a single network element 34, it
can be appreciated that a single T-box can manage several
network elements. To explain, one T-box can manage several
network elements. When a success or failure message is
received, the status is then stored in the database for logging
purposes and then the status is sent back to the NMA 26.

The purpose of the database 30 is of course to store
information. Once a user hits the appropriate button on the
browser 16, an NMA request will be received by the RWS
24 and immediately stored in the database. Additionally,
each NEA request is stored in the database before being
processed by the NEA 28. Furthermore, the configuration of
each network element is also stored in the database 30.

The T-box 32 contains embedded software. The T-box
will be able to receive “M-GET”, “M-SET” and “M-AC-
TION” requests via the SOAP interface, as well as command
line interfaces (CLI). The T-box will translate the SOAP
command into the appropriate native console command
(MML), (CLI) or SNMP, and send it via an ethernet interface
to the actual network element in order to satisfy the given
NEA request.

The HTTP-SOAP protocol provides the present invention
a method of information exchange between functional com-
ponents. Similar to any messaging protocol, it provides for
data encapsulation with messages. The HTTP-SOAP proto-
col includes an envelope defining a framework for describ-
ing what is in a message and how to process it. It also
includes a set of encoding rules for expressing instances of
application defined data types as well as a convention for
representing remote procedure calls and responses.

It is important to note that the T-box can control the
network element from the applet directly to the T-box

US 7,136,913 B2

7

without control from additional servers. The applet is a
JAVA program that runs within the web browser. However,
any application written in any language can talk to the
network element through the T-box using SOAP as one
protocol.

An upward flow of data from a network element 34 to the
web browser 16 in the first CPU 12 will now be described.
The network element 34 sends a message to the T-box 32
over, perhaps, the ethernet as shown by Step 1. The T-box 32
includes a parser therein and utilizes the parser to translate
the response received from the network element 34 into a
SOAP response and sends this response to the NEA 28 at
Step 2. It is noted that a plurality of NEAs would be utilized
and the message relayed from the T-box 32 would be sent to
the NEA 28 which is managing that particular network
element. At Step 3, the NEA 28 forwards the nodal response
created therein to the NMA 26. The NMA then forwards the
entire transaction response to the RWS 24 at Step 4. The
RWS 24 will then forward this response to the SOAP server
22 at Step 6, as well as to the database 30 at Step 5. The
SOAP server 22 would then forward the response to the web
server 20 which in turn would send the response back to the
web browser 16 in the first CPU 12.

FIG. 2 illustrates a downward message flow from the CPU
12 ultimately to a network element 34. Initially, the web
browser 16 will connect to the web server 20 at Step 2. In
this case, the web server will automatically upload the applet
that will prompt the user for a command and a set of
attributes used to control the network element 34. If autho-
rized by the user, the web browser 16 would then be
connected to the web server 20 in the second CPU 14 as
shown by Step 2. At this point, the web browser will then
build and send an HTTP-SOAP envelope to the web server
20. Upon receipt of the SOAP envelope, the web server 20
will immediately route it to the SOAP server 22 as shown by
Step 3. Once the SOAP server 22 determines that a proper
request has been made, it will be forwarded across the
firewall 36 to the RWS server 24 as shown by Step 4. At Step
5, the RWS 24 will modify the request if required and then
store it in the database 30. The RWS server will also forward
the request to the NMA 26 as shown by Step 6. The NMA
26 will process this message and forward the necessary
subcomponents to the proper NEA 28 for nodal processing.
Step 8 indicates that the NEA 28 will forward the appropri-
ate single-space command to the T-box 32. The T-box 32
will formulate and send the proper translation for the com-
mand to the network element 34 across the ethernet as
shown by Step 9.

FIGS. 3 and 4 illustrate the alarm path network of the
system of the present invention also indicating that the
architecture is very scalable and allows for several NMAs as
well as several NEAs and one or more GUIs and T-boxes. As
alarms are received by the NEAs, they are immediately
forwarded to the NMA for further processing and forward-
ing. Alarms can be received by the NEA at any time and are
discriminated via the header field. Thus an in-progress
provision cannot get confused with alarms being interpreted
as responses. The directions of the alarm message will be
from the Network Element to the T-Box and then to the
NEA. The alarm will then proceed to the NMA, the RWS
and the GUI (web browser). The alarms, by nature, go from
the hardware equipment to the web browser.

A user that connects to the RWS from a GUI will register
with the alarm distributor class for alarms. As alarms are
received by the NEA, they are immediately forwarded to the
NMAss for further processing and forwarding. Alarms can be
received by the NEA at any time and are discriminated via

20

25

30

35

40

45

50

55

60

65

8

the header field. The header attribute “alarm” indicates to the
SOAP senders that this is an alarm data object. The body
attributes contained in the rest of the alarm information.
These attributes are such as NE name and message text.

The present invention employs a TCP/IP network with a
connection to the internet. The network has a firewall
between itself and the internet. It is possible for a network
administrator to access and configure all equipment on the
network through the use of telnet, SNMP, and other network
management tools. These tools can only be used from
behind the firewall. The firewall will, however, prevent these
connections from being made from behind the firewall. With
the present invention, it is now possible to HITP connec-
tions which are still left open by the firewall to send in
SNMP commands to the equipment beyond the firewall.
This would allow the present invention to control the
bandwidth being assigned to any part of network. This
would also enable ISPs and other providers of bandwidth to
sell bandwidth in a more dynamic manner because the
bandwidth could be adjusted to meet demands more quickly
and easily than currently possible.

The present invention also has the ability to allow a single
network administrator to administer networks in different
geographic locations. For example, if a service provider is
located in Canada, network elements can be connected to a
T-box in Canada utilizing a serial cable, an ethernet cable to
a hub. The provider would then send email to a customer
located, for example, in the United Kingdom confirming this
connection. The customer would then email to an engineer-
ing technical support team located, for example, in China so
that it can assign the correct IP addresses to the switches
through a web interface. After these addresses are quickly
assigned, the switches are registered for technical support if
debugging will be required. The debugging of the switch can
be done in various locations through the web interface. Once
the registration is completed, the user will start provisioning
of the network element using the web interface. Using one
or more of the screens of the GUI, the provider in Canada
will make selections relating to various equipment that must
be connected. When the T-box in Canada receives a generic
command, it will make a decision to translate this to CLI or
SNMP for the network element. Most of the debugging
commands usually include CLI access.

In a second scenario, several computers and peripheral
devices are connected to one switch. It is noted that this
switch can be used to enable or disable different ports that
are used to connect the different devices together via the
switch. Furthermore, the speed of the data that travels
through these ports can also be altered.

In this manner, traffic can be regulated through the sys-
tem. Alternatively, different virtual local area networks can
be created and connected to that one switch. This is done for
the purposes of isolating data that users can share on the
computers or to isolate peripheral devices.

The present invention can be utilized to control “smart”
devices such as computerized appliances and the like. In a
home computerized environment, equipment can help the
homeowner with climate control. The present invention can
interface with electrical, wired or wireless devices or equip-
ment. In such a scenario, the present invention can be used
to program these devices and help in the automation process.
The present invention is also capable of interfacing with
wireless data systems and devices as well as interfacing with
medical devices, distant learning equipment and various
other telecommunications equipment.

The present invention offers a highly distributed network
management application by using an XML based commu-

US 7,136,913 B2

9

nication protocol. The translator for the XML based protocol
to SNMP or TL1 can be embedded in a small hardware
device serving as a web server controlling a number of
network elements.

FIG. 5 illustrates an alternate embodiment of the present
invention in which a user request is transmitted directly from
a browser/application 40 to the T-box 48 and then to the
network element or application 50 instead of proceeding
directly through a database 42, network manager 44 and
element manager 46 as illustrated in FIGS. 1 and 2. A
graphical user interface (GUI) is used to control the com-
munications between the browser/application 40 and the
network element/application 50 directly through the T-box
48 or indirectly through the network manager 44 and ele-
ment manager 46. As shown by the double headed arrows,
communication is provided either upwardly or downwardly
directly through the T-box 48 or indirectly through the T-box
and database 42, network manager 44 and element manager
46.

The T-box 48 is provided with both a SOAP server as well
as the PVM. The GUI is provided with two input devices on
the screen. These input devices would indicate whether the
user request is to proceed directly to the T-box 48 or via the
network management system shown in FIGS. 1 and 2. As
illustrated in FIG. 5, this network management system
would include the database 42, the network manager 44 as
well as the element manager 46. This is important since if
the network management system is not operating, commu-
nication can still be provided from the browser application
40 directly to the T-box 48 and then to the network element/
application 50. It is important to note that this communica-
tion can also proceed from the network application 50 to the
T-box 48 and then directly to the browser/application 40.
This is true since the T-box 48 can transfer a user request
from a native language into SOAP as well as translate the
SOAP packet into the native language.

The user can also specify whether a native command or
generic command would be utilized. Generally, the user
would not concern themselves with the command names that
were given to a particular vendor. In this case, the user
would utilize the generic command set. The GUI would
include NE NAME as a pop down field automatically
populated with the names of the network elements. For
example, these names might correspond to LAB 7 Router,
1548M Cisco switch and UofORouter corresponding to the
Cisco 7000 router.

The present invention utilizes the following commands:
Connect, disconnect, setVlan, showVlan, setPortUp as well
as setPortDown.

The input data includes parameters that the user can set.
For example, in the case of the Virtual Lan (setVlan), the
user can specify which port is connected to which Vlan.
After making a selection, the user can submit the request. An
applet will create the SOAP message and send it through the
selected path. Request and reply log area will display the
appropriate logs and the user interpretation view will display
logs and alarms coming from the equipment.

It is noted that FIGS. 1 and 2 show the use of the present
invention sending user requests from a browser/application
to a network/application through at least one firewall. FIG.
5 indicates that the present application would also operate in
a situation in which no firewalls are present. However, it is
noted that all of the embodiments can operate with or
without firewalls.

FIG. 6 is a flow diagram showing the operation a method
600 for communicating between an application source
located on a first side of a firewall and a network element

20

25

30

35

40

45

50

55

60

65

10

located on a second side of the firewall, according to the
present invention. An applet to drive a user request is
provided (Step 601). The applet is provided to the applica-
tion source by a web server included on a first side of a
firewall and sent to a read/write server provided on a second
side of the firewall. A hypertext transfer protocol-simple
object access protocol (HTTP-SOAP) packet of said user
request is created (Step 603). The HTTP portion of the
HTTP-SOAP packet is removed (Step 604) in order to create
a SOAP message. A user request including the SOAP
message is sent to the RWS (Step 605). The SOAP message
is then sent to the NMA (Step 606). An appropriate model
is built in the NMA (Step 607) and the SOAP encoded
request is parsed in the NEA (Step 608) to complete a single
nodal transaction. A SOAP encoded request is then sent from
the NMA to the NEA (Step 616) and the data is encoded in
the NEA to produce the SOAP packet (Step 619). The SOAP
packet is transmitted to the translator box (Step 621) and the
SOAP packet is translated into an appropriate command
(Step 622). The command is transmitted to the network
element (Step 624).

Whereas the preferred form of the present invention has
been shown and described herein, it should be realized that
there can be many modifications, substitutions and alter-
ations thereto.

What is claimed is:

1. A method for communicating between an application
source located on a first side of a firewall and a network
element located on a second side of the firewall, comprising
the steps of:

providing the application source with an applet to drive a

user request, said applet provided by a web server
includes on the first side of the firewall;

creating a hypertext transfer protocol-simple object

access protocol (HTTP-SOAP) packet of said user
request

removing the HTTP portion of said HTTP-SOAP packet

to produce a SOAP message;

sending said user request including said SOAP message to

a read/write server provided on the second side of the
firewall,

transmitting said SOAP message to a network manage-

ment agent (NMA) server provided on the second side
of the firewall;

building an appropriate nodal model of said user request,

including said SOAP message, in said NMA server
provided on the second side of the firewall;

sending SOAP encoded requests from said NMA server

provided on the second side of the firewall to a network
element agent (NEA) provided on the second side of
the firewall;

parsing said SOAP encoded requests received by said

NMA server provided on the second side of the firewall
in said NEA which encompasses data needed to com-
plete a single nodal transaction;
encoding in said NEA, said SOAP message to produce
SOAP packets;

transmitting said SOAP packets to a translator box asso-
ciated with the network element, said translator box
located on the second side of the firewall;

translating said SOAP packets into an appropriate com-

mand for the network element; and

transmitting said command to the network element

located on the second side of the firewall.

2. The method in accordance with claim 1, further includ-
ing the step of providing said web server at a localized
location with respect to the application source.

US 7,136,913 B2

11

3. The method in accordance with claim 1 further includ-
ing the step of transmitting in a simple object access protocol
encoded request a network element configuration data from
said NMA server provided on the second side of the firewall
to a network element discovery network server (NED).

4. The method in accordance with claim 3, wherein said
network configuration data comprises port, card, slot and
shelf information.

5. The method in accordance with claim 1, further includ-
ing the step of modifying said user request prior to sending
said request to said NMA server provided on the second side
of the firewall.

6. The method in accordance with claim 1, further includ-
ing the step of transmitting said user request to a database for
storage.

7. The method in accordance with claim 5, further includ-
ing the step of transmitting said user request to a database for
storage.

8. The method in accordance with claim 1, the application
source for communicating with a plurality of network ele-
ments located on the second side of the firewall, further
including the steps of:

including a plurality of NEAs, each of said NEAs con-

trolling at least one of the network elements; and
transmitting said SOAP encoded requests to a proper
NEA.

9. The method in accordance with claim 8, further includ-
ing the steps of:

including a plurality of translator boxes, each of said

translator boxes controlling at least one of the network
elements; and

transmitting said SOAP packets to a proper network

element.

10. The method in accordance with claim 1, further
including the step of translating said SOAP packets into an
appropriate command in said translator box understood by
the network element.

11. A method for communicating between an application
source located on a first side of a firewall and an application
located on a second side of the firewall, comprising the steps
of:

providing the application source with an applet to drive a

user request, said applet provided by a web server
included on the first side of the firewall;

creating a hypertext transfer protocol-simple object

access protocol HTTP-SOAP packets of said user
request;

removing the HTTP portion of said HTTP-SOAP packet

to produce a SOAP message;

sending said user request to a read/write server provided

on the second side of the firewall;

transmitting said SOAP message to a network manage-

ment agent (NMA) server provided on the second side
of the firewall;

building an appropriate nodal model of said user request,

including said SOAP message in said NMA server
provided on the second side of the firewall;

sending SOAP encoded requests from said NMA server

provided on the second side of the firewall to a network
element agent (NEA) provided on the second side of
the firewall;

parsing said SOAP encoded requests received by said

NMA server provided on the second side of the firewall
in said NEA which encompasses data needed to com-
plete a single nodal transaction;

encoding in said NEA, SOAP message to produce SOAP

packets;

5

20

25

30

35

40

45

50

55

60

65

12

transmitting said SOAP packets to a translator box asso-
ciated with the application, said translator box located
on the second side of the firewall;

translating said SOAP packets into an appropriate com-

mand for the application; and

transmitting said command to the application located on

the second side of the firewall.

12. The method in accordance with claim 11, further
including the step of providing said web server at a localized
location with respect to the application source.

13. The method in accordance with claim 11, further
including the step of modifying said user request prior to
sending said request to said NMA server provided on the
second side of the firewall.

14. The method in accordance with claim 11, further
including the step of transmitting said user request to a
database for storage.

15. The method in accordance with claim 13, further
including the step of transmitting said user request to a
database for storage.

16. The method in accordance with claim 11, for com-
municating with a plurality of applications, further including
the steps of:

including a plurality of NEAs, each of said NEAs con-

trolling at least one of the applications; and
transmitting said SOAP encoded requests to the proper
NEA.

17. The method in accordance with claim 16, further
including the steps of:

including a plurality of translator boxes, each of said

translator boxes controlling at least one of the applica-
tions; and

transmitting said SOAP packets to the proper applica-

tions.

18. The method in accordance with claim 11, further
including the step of translating said SOAP packets into the
appropriate command in said translation box understood by
the application.

19. A method for communicating between an application
source and an application, comprising the steps of:

providing the application source with an applet to drive a

user request; creating a hypertext transfer protocol-
simple obiect access protocol (HT'TP-SOAP) packet of
said user request;

removing the HTTP portion of said HTTP-SOAP packet

to produce SOAP message;

sending said user request to a read/write server;

transmitting said SOAP message to a network manage-

ment application (NMA) server;

building an appropriate nodal model of said user request,

including said SOAP message in said NMA server;
sending SOAP encoded requests from said NMA server to
a network element agent (NEA);
parsing said SOAP encoded requests received by said
NMA server in said NEA which encompasses data
needed to complete a single nodal transaction;
encoding in said NEA, said SOAP message to produce
SOAP packets;

transmitting said SOAP packets to a translator box asso-

ciated with the application;

translating said SOAP packets into an appropriate com-

mand for the application; and

transmitting said command to the application.

20. The method in accordance with claim 19, further
including the step of providing said web server at a localized
location with respect to said web browser.

US 7,136,913 B2

13

21. The method in accordance with claim 19, further
including the step of modifying said user request prior to
sending said request to said NMA server.

22. The method in accordance with claim 19, further
including the step of transmitting said user request to a
database for storage.

23. The method in accordance with claim 21, further
including the step of transmitting said user request to a
database for storage.

24. The method in accordance with claim 19, for com-
municating with a plurality of applications, further including
the steps of:

including a plurality of NEAs, each of said NEAs con-

trolling at least one of the applications; and
transmitting said SOAP encoded requests to a proper
NEA.

25. The method in accordance with claim 24, further
including the steps of:

including a plurality of translator boxes, each of said

translator boxes controlling at least one of the applica-
tions; and

transmitting said SOAP packets to a proper application.

15

20

14

26. The method in accordance with claim 19, further
including the step of translating said SOAP packets into an
appropriate command in said translator box understood by
the application.

27. The method in accordance with claim 11, further
including the step of translating in said translator box an
appropriate command from the application into SOAP
nomenclature.

28. The method in accordance with claim 19, further
including the step of translating in said translator box an
appropriate command from the application into a SOAP
nomenclature.

29. The method in accordance with claim 1, further
including the step of transmitting said command from said
translator box to said network element over the world wide
web.

30. The method in accordance with claim 11, further
including the step of transmitting said command from said
translator box to said network element over the world wide
web.

