Vertical Computer Systems, Inc. v. Interwoven, Inc. et al Doc. 23 Att. 3

EXHIBIT A

Dockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/2:2010cv00490/126616/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/2:2010cv00490/126616/23/3.html
http://dockets.justia.com/

US006826744B1

a2 United States Patent (10) Patent No.: US 6,826,744 Bl
McAuley @5) Date of Patent: Nov. 30, 2004
(54) SYSTEM AND METHOD FOR GENERATING 6,026,433 A * 2/2000 D’Arlach et al. 707/10
WEB SITES IN AN ARBITRARY OBJECT 6,028,998 A * 2/2000 Gloudeman et al. 717/108
FRAMEWORK 6,052,670 A * 4/2000 Johmson 705/27
6,199,082 B1 * 3/2001 Ferrel et al.o 715/522
. : 6,219,680 B1 * 4/2001 Bernardo et al. 707/501.1
(75) Inventor: = Aubrey McAuley, Austin, TX (US) 6,226,648 BL * 5/2001 Appleman et al. 707/102
(73) Assignee: Vertical Computer Systems, Inc., g’gg’ggz Bl N 6/2801 Bernardo et al. %g/ 73;
Austin, TX (US) ,253,282 B1 6/2001 /20
> 6,308,188 B1 * 10/2001 Bernardo et al. 707/501.1
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
tent i tended djusted
%ﬁ;%_lisi)éb‘;nb;ozg;sjus od under 35 Lewandowski, Framework for Component-Based Client/
’ Server Computing, Mar. 1998, ACM, pp. 3-27.*
(21) Appl. No.: 09/410,334 * cited by examiner
(22) Filed: Oct. 1, 1999 Primary Examiner—John Chavis
7 (74) Arntorney, Agent, or Firm—Brown Raysman Millstein
gg glts (g| .. G0:f;/9{3§ Felder & Stoiner LLP
(58) Field of Searchoe...... 717/108; 707/103 R; (57) ABSTRACT
715/522

A system and method for generating computer applications
(56) References Cited in an arbitrary object f'ramework. The method separates
content, form, and function of the computer application so

U.S. PATENT DOCUMENTS that each may be accessed or modified separately. The

method includes creating arbitrary objects, managing the
arbitrary objects throughout their life cycle in an object
library, and deploying the arbitrary objects in a design

5544302 A * 81996 Nguyen 345/837
5,555,365 A * 9/1996 Selby et al.coooeeenn.s 345/765

5894554 A 4/1999 Lowery et al. 707/104.1 / S
5003894 A * 571999 ReNEriS ww.ereeersereernee 707/100 framework for use in complex computer applications.
5030512 A * 7/1999 Boden et al. ..oooeeonn. T17/102

5,956,736 A * 9/1999 Hanson et al. 345/760 53 Claims, 2 Drawing Sheets

CONTENT 10

1

FUNCTIONALITY [—=¢ PRODUCT |« FORM

% N N
14 16 12

U.S. Patent Nov. 30, 2004 Sheet 1 of 2 US 6,826,744 B1

CONTENT |10

A

FIG. 1 FORM - 12
(PRIOR ART) -

y

FUNCTIONALITY |~ 4

l

PRODUCT ~_ 16

FIGC. 2 CONTENT |10

FUNCTIONALITY |—= PRODUCT | FORM
/ N N\
14 16 12
20~ GENERATE ARBITRARY GENERATE ARBITRARY | 30
OBJECTS ~0BJECTS
y 4
29 MANAGE ARBITRARY MANAGE ARBITRARY 39
™ OBJECTS IN AN OBJECTS IN AN -
0OBJECT LIBRARY 0BJECT LIBRARY
L y
DEPLOY ARBITRARY DEPLOY ARBITRARY
24 1 OBJECTS IN A OBJECTS IN A ~_34
DESIGN FRAMEWORK CONTAINER PAGE
SOFTWARE WEB SITE
APPLICATION
FIG. 4

FIG. 3

US 6,826,744 B1

Sheet 2 of 2

Nov. 30, 2004

U.S. Patent

89~

ISvaviva
NOLIYWHOINI SOB3M

S 914
SILVIIN3L BIM
0100101101 101 . S314
99~{] WIH JINVNAQ 011100110001050 | | 00 Sk NI 4 304 INIRNJ0Q
<> :
—
z9~J s3I0 | g9~ swwooud SIS |-gg SO0 |-g¢
IVAVIVa 199 TI3HS ININND0Q

o~

AN

12
)

S~ N\

\ \Eém: 193r80 SOEIM
Z =

0L

3SvavIv0 QYOMSSYd
0NV 311304d ¥3Sn

™-0f

ow“_ S318YIMVA Tv801D _ /r T
g/ —| STIEVINA O3NI330-¥3S0 | SININNO0Q 834 |7 smun
9L~ s318viuvA Q3N1430-39vd | <> e
| P~ s3taviavA 311404d-435N _
HIOVNVW 10360 SOB3M
i
g
SINIANI00 B3 T LINVIINI 30 4ISH0US
I DIIVIS LING3INI CH]
9 |
<lwiy> 3\% 1A Wod'x MM/ /:d)y

US 6,826,744 B1

1
SYSTEM AND METHOD FOR GENERATING
WEB SITES IN AN ARBITRARY OBJECT
FRAMEWORK

TECHNICAL FIELD OF THE INVENTION

This invention relates generally to systems and methods
for generating software applications in an arbitrary object
framework, and more specifically to systems and methods
for generating web sites in an arbitrary object framework.

BACKGROUND OF THE INVENTION

Three processes used to create complex software appli-
cations such as web sites are form, function, and content.
Form includes graphic designs, user interfaces, and graphi-
cal representations created by a designer or a group of
designers. Function includes logical functionality, which can
be software code created by a programmer or group of
programmers. Form includes informative content. Informa-
tive content can include written, recorded, or illustrated
documentation, such as photographs, illustrations, product
marketing material, and news articles. Content can be cre-
ated by writers, photographers, artists, reporters, or editors.

Currently, typical workflows dictate a serial approach to
integrating the form, function, and content to create complex
software applications such as a web site. The serial approach
is illustrated in FIG. 1. In FIG. 1, content 10 for a complex
software application can be chosen or created. Form 12 for
the presentation of content 10 can then be created. Func-
tionality 14 can then be generated using code to create the
complex software application (product 16) with the desired
information (content 10) and style (form 12). Using the
method illustrated in FIG. 1, every final component of the
complex software application must be manipulated by a
programmer before it is ready to be used. The exact work-
flow may vary from industry to industry or business to
business, but the basic restrictions are generally the same.

A traditional approach such as that illustrated in FIG. 1,
may create unwanted bottlenecks in the production process.
Each upstream revision, such as a change of content 10 or
design 12, forces a repetition of the entire process. As an
example, consider a web site for a large newspaper. The web
site may have a function that can include a file into the web
site. The marketing department may decide to change the
appearance of the header on the web site depending on the
browser of a user. In this case, a programmer may need to
invoke an external script or embed some specific logic
within the web site. Unfortunately, if there is a large web site
with thousands of pages of information stored on a server,
the programmer may have to change every ome of the
thousands of pages. Therefore, a small change by the mar-
keting department can cause a large burden on the program-
ming department.

Prior art solutions have succeeded in partially separating
some of these functions. Notably, content management
databases and digital repositories provide a means of sepa-
rating content from form and function. Likewise, sophisti-
cated software development teams frequently employ inter-
nal code structuring techniques that can help to minimize
dependencies between interface designs and the functions
they access. However, content management tools typically
fail to address form/function issues. Therefore, there can still
be production slow-downs due to changes in form that
require a subsequent change in functionality.

SUMMARY OF THE INVENTION

Therefore a need exists for a method of generating
complex software applications that reduces or eliminates

10

20

25

30

35

40

45

50

55

60

65

2

production delays and the workload for programmers due to
changes in content and/or form. This method should separate
form, content and function so that each area can be inde-
pendently changed.

The present invention provides a system and method for
generating software applications that substantially elimi-
nates or reduces disadvantages and problems associated with
previously developed systems and methods used for gen-
eration of software applications. More specifically, the
present invention provides a method for generating software
applications in an arbitrary object framework. The method
of the present invention separates content, form, and func-
tion of the computer application so that each may be
accessed or modified independently. The method of this
invention includes creating arbitrary objects, managing the
arbitrary objects throughout their life cycle, and deploying
the arbitrary objects in a design framework for use in
complex computer applications.

The present invention provides an important technical
advantage in that content, form, and function are separated
from each other in the generation of the software applica-
tion. Therefore, changes in design or content do not require
the intervention of a programmer. This advantage decreases
the time needed to change various aspects of the software
application. Consequently, cost is reduced and versatility is
increased.

The present invention provides another technical advan-
tage in that users are not required to use a proprietary
language to encode. These arbitrary objects may include
encapsulated legacy data, legacy systems and custom pro-
gramming logic from essentially any source in which they
may reside. Any language supported by the host system, or
any language that can be interfaced to by the host system,
can be used to generate an object within the application.

The present invention provides yet another technical
advantage in that it can provide a single point of adminis-
trative authority that can reduce security risks. For instance,
a large team of programmers can work on developing a large
group of arbitrary objects within the object library. If one
object has a security hole, an administrator can enter the
object library and disable that arbitrary object.

Still another technical advantage of the present invention
is that it enables syndication of the software application. As
noted above, functionality is separate from form and con-
tent. Consequently, a user can easily introduce a new look
for the application or syndicate the content and functionality
of the application to another group without having to recode
all of the objects needed to access content.

Another technical advantage of the present invention is
that it allows for personalization and profiling. With
personalization, the web presentation is tailored to the
specific needs of the web user based on the user’s past
history. Profiling also enables tailoring a web site or pre-
sentation. Profiling is dependent on environmental variables
such as browser type or IP address.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present invention
and the advantages thereof may be acquired by referring to
the following description, taken in conjunction with the
accompanying drawings in which like reference numbers
indicate like features and wherein:

FIG. 1 illustrates a prior art workflow diagram for gen-
erating a software product;

FIG. 2 is a hierarchical workflow diagram for one
embodiment of the present invention;

US 6,826,744 B1

3

FIG. 3 is a flow diagram for one embodiment of the
present invention;

FIG. 4 is a flow diagram for the embodiment illustrated in
FIG. 4.

FIG. 5 is a diagram illustrating the components of one
embodiment of the present invention used to generate web
sites; and

DETAILED DESCRIPTION OF THE
INVENTION

Preferred embodiments of the present invention are illus-
trated in the FIGURES, like numerals being used to refer to
like and corresponding parts of various drawings.

The present invention provides a system and method for
using a hierarchical, arbitrary object framework for gener-
ating software applications. The method separates content,
form, and function of the software application so that each
can be accessed or modified independently. The method of
this invention includes creating arbitrary objects, managing
the arbitrary objects in an object library, and deploying the
arbitrary objects in a design framework for use in computer
applications.

FIG. 2 is a hierarchical workflow diagram for the present
invention. Product 6 includes three contributing groups:
content 10, form 12, and functionality 14. Content 10 can
include written, recorded, or illustrated collateral such as
documentation, photographic illustrations, product market-
ing material, and articles. Form 12 can include graphic
designs such as user interfaces and graphical presentations.
Function 14 can include the logical functionality of software
code and scripts. The hierarchical framework separates
content 10, form 12, and functionality 14 to generate product
16. Product 16 may be a computer software application such
as a web site. Since content 10, design 12, and functionality
14 are separate entities independent of each other, modifi-
cation in one group does not require corresponding modi-
fications in another group. Each group can contribute to
product 16 directly.

FIG. 3 is a flow diagram of one embodiment of the present
invention. At step 20, arbitrary objects can be generated.
Arbitrary objects may include any combination of applica-
tion logic and data desired by a developer. Arbitrary objects
can include text file pointers, binary file pointers, compiled
executables, scripts, data base queries, shell commands,
remote procedure calls, global variables, and local variables.
The arbitrary object framework allows arbitrary objects to
be referenced in a consistent manner regardless of the type.
Also, the arbitrary object framework allows local arbitrary
objects to either override global parent arbitrary objects or
inherit capabilities and data from the global parent, regard-
less of the type of the local arbitrary object.

At step 22, these arbitrary objects can be managed in an
object library. The life cycle of these objects may be
managed in a consistent manner using revision tracking, roll
back, and sign off. At step 24, objects can be deployed from
the object library into a design framework to create the
software application. Because the object pointers are not tied
in any way to the functionality of the object, an object of one
type can be easily replaced with another object of another
type. This eliminates a common problem in content man-
agement systems of the inability to preview content within
its appropriate location on the site or within the system.
Normally, a special system made for the purpose of pre-
viewing a piece of content would have to be hard-coded to
view the current approved live content for all other pieces
except the piece in question. This multiplies the design

10

4

problem, because changes in the design in the main site
change all previous templates. In the method of the present
invention, since all that exists within the framework is an
arbitrary object, the arbitrary object can be swapped for
another object that pulls the current piece content in ques-
tion.

Using one embodiment of this invention, for example, the
Features or Editorials page of a newspaper can be dynami-
cally replaced. The present invention can execute all the
normal objects that can be placed on the page to show the
content as it would appear, and then take the one piece in
question and replace it with a second object to be examined.
Objects may be deployed globally across an entire system or
locally within a specific area or sub-areas of a system.

FIG. 4 represents a flow diagram of another embodiment
of the present invention. At step 30, arbitrary objects can be

* generated. At step 32, the arbitrary objects can be managed

20

25

30

35

40

45

50

55

60

65

in an object library. Arbitrary objects can be deployed in a
container page at step 34 to generate a web site.

Arbitrary objects may include any combination of appli-
cation logic and data desired by a developer. Arbitrary
objects can include text file pointers, binary file pointers,
compiled executable scripts, database queries, shell
commands, remote call procedures, global variables and
local variables. Arbitrary objects may also include cached
data queries and executables. The arbitrary object frame-
work allows arbitrary objects to be referenced in a consistent
manner regardless of the type of object. Also, the arbitrary
object framework allows local arbitrary objects to either
override global parent arbitrary objects or inherit capabilities
and data from the global parent arbitrary object.

Arbitrary objects can execute any function that can be run
or understood by the host computer system so that any
underlying functionality of the operating system used by the
host system can be defined as an object within the arbitrary
framework. Legacy data, document objects, CPI programs,
and database queries can all be encapsulated as objects
within the arbitrary framework. The arbitrary object can be
accessed by an arbitrary object name. Arbitrary objects are
not tied to their functionality. One arbitrary object can be
easily replaced with another arbitrary object of another type.

Arbitrary objects can be managed in an object library. The
life cycle of the arbitrary objects may be managed in a
consistent manner using revision tracking, roll-back, and
sign-off. The object library can include separate specialized
object libraries that can be administered separately by dif-
ferent developers in each area. For instance, for a web site
used to generate a newspaper, there may be an advertising
object library that is physically distinguished from other
object libraries, such as an object library for sports or an
object library for news. Therefore, queries for advertising
can be created without impacting any other area of the web
site.

Arbitrary objects can be deployed from the object library
into a container page to generate the web site. The container
page is a truly dynamic page. Unlike prior art methods,
where a static copy of information is often pushed over a
firewall to a live web site, the present invention incorporates
object caching. An arbitrary object can be cached, rather
than caching an entire page. When the arbitrary object is
cached, certain elements of the arbitrary object can be
specified as dynamic elements while others can be specified
as static elements. Therefore, a web site can contain multiple
dynamic web pages wherein objects used to construct the
form, function, and content of the web page can contain
dynamic elements and static elements. This provides flex-

US 6,826,744 B1

5

ibility for what needs to be computed or processed at the
time that someone, such as a web user, accesses the web
page.

FIG. 5§ shows the components of one embodiment of the
present invention used to generate web sites. A user with
web browser 40 can connect to web server 44 through
internet or intranet 42. Web server 44 can access static
HTML web documents 46 as well as dynamic HTML
documents 52. Dynamic HTML web documents 52 can be
created using Web OS Object Manager 50. Dynamic HTML
Web document 52 can include document objects 56, shell
scripts 58, CGI programs 60, and database queries 62.
Document objects 56, shell scripts 58, CGI programs 60, and
database queries 62 can be stored in WebOS object library
54. Database queries 62 can result from extracting informa-
tion from WebOS Information Database 68 and inputting the
information into Dynamic HTML Web Template 66.

User Profile and Password Database 70 can provide web
sites or systems with a means to take advantage of customer
profiles to look at customer preferences or history, and
dynamically replace a website object with another object
that contains content information matching the user profile
or preferences. Thus, the web site or system can dynamically
allocate the correct content for a customer. This is important
in commerce applications. A customer’s buying history can
be examined for trend items and the customer presented
products that match his or her profile. Present personaliza-
tion systems are written purely in custom code and require
an inordinately large amount of time to construct the custom
applications necessary to interpret the preferences of an
individual user.

The method of present invention can perform object
caching. This means that an object can be cached instead of
caching an entire page. Object caching permits specifying
elements of an object to be dynamic and elements of the
object to be static. A system user can thus have the flexibility
of specifying what needs to be computed or processed at the
time a user accesses the system versus trying to anticipate
and calculate in advance and cache and post the object over
to a server.

Many functions are stored within an object library on an
arbitrary object framework such that those functions can be
accessed by name arbitrarily. This is in contrast to a tradi-
tional model where the function must be explicitly invoked
with all its parameters included. Objects may execute any
function that can be run or understood by the host computer
system so that any underlying functionality of the host’s
operating system can be defined as an object within the
framework of the method of the present invention. The
object library can contain legacy data, document objects,
CTI programs, and/or database queries, that can all be
encapsulated as objects within a framework and accessed
from within a design. All that is needed is the name of the
function in order to access the function.

Objects can be controlled to perform functions based on
a profile of an individual and environmental variables, such
as the type of browser, the country of the individual or the
individual’s IP address. A specific competitor may be
blocked from seeing certain objects on a web page created
using the method of the present invention.

A critical distinction between the present invention and
previous object oriented development systems is the need to
know how a function can be called and what to expect it to
return, rather than just knowing the function’s name. This
means that typically the system administrator calls the name
of an object and passes parameters to the object. Any and all

10

15

30

40

45

50

55

60

65

6

variable information or environmental information can be
available to every object. The environment space can be
available to all objects executed and an object can arbitrarily
take advantage of any of the environmental information,
depending on the design of the object.

Different areas of a web site can be administered sepa-
rately by different developers in each of these areas. An
advertising object library can be physically distinguished
from other object libraries, such as those for sports and
news. An advertising programmer can create new queries for
the advertising section of a site without having to worry
about affecting other areas of the site.

The present invention allows different object types to be
interchangeable. The object name is essentially just another
variable in the environment. Also different variables can also
be interchangeable. The object framework can be designed
such that objects and variables can be kept in the same name
space, every object can have access to all the environmental
settings, and every object pointer can potentially be another
name in the name space.

Object caching, rather than page caching can be imple-
mented with the present invention. These objects can be
stored in an object library. An object in the object library can
be a file, a global variable, an executable script, a database
query, a cached executable or a cached database query. This
means that the results of a query can be stored in a static file
using the object name as long as the static file has not
expired. This is important if thc query is a lengthy query.

A technical advantage of the present invention is that it
allows for syndication. Syndication enables the content and
function of a particular web site to be syndicated to another
web site or web presentation. For instance, if a company
would like to roll out a new look or syndicate its content and
functionality to another business, this can be easily accom-
plished using the present invention. Since there is no appli-
cation code resident in a web page itself, the same data can
be repackaged in a number of different ways across multiple
sites. There is no need to recode the design elements or
design pages on the web site or recode any functions that are
needed to access the content of the website. The present
invention enables electronic store fronts to sell from a single
source with a unique interface design. Also, newspaper
chains can distribute international and national content from
a single source and add local content themselves.

Another technical advantage of the present invention is
that it allows for a single point of control when developing
a web site. Therefore, if a large team of developers are
working on a site, and multiple persons are contributing
arbitrary objects to the overall arbitrary framework, then if
one of the arbitrary objects has a security hole in it, the
arbitrary object can be easily accessed in the object library
and disabled. This security feature can immediately shut
down that function across the entire web site and patch the
security hole.

The present invention provides still another technical
advantage in that it allows for personalization. Personaliza-
tion enables companies that want to take advantage of a
customer profile to look at the customer’s preferences or
histories and deploy information to the web site specific to
the customer.

Another technical advantage of the present invention
allows for profiling. Profiling enables control over the arbi-
trary objects presented in a web site based on a profile of the
individual accessing the web site. Profiling entails determin-
ing different environmental variables such as the type of
browser hitting the site, the country of the individual access-

US 6,826,744 B1

7

ing the site, and/or the individual’s IP address. This can
enable a company to present specific information to the
individual based on the individual’s environmental vari-
ables.

Although the present invention has been described in
detail herein with reference to the illustrative embodiments,
it should be understood that the description is by way of
example only and is not to be construed in a limiting sense.
It is to be further understood, therefore, that numerous
changes in the details of the embodiments of this invention
and additional embodiments of this invention will be appar-
ent to, and may be made by, persons of ordinary skill in the
art having reference to this description. It is contemplated
that all such changes and additional embodiments are within
the spirit and true scope of this invention as claimed below.

‘What is claimed is:

1. A method for generating a computer application on a
host system in an arbitrary object framework that separates
a content of said computer application, a form of said
computer application and a functionality of said computer
application, said method comprising:

creating arbitrary objects with corresponding arbitrary

names of various object types for generating said
content of said computer application, said form of said
computer application, and said functionality of said
computer application;

managing said arbitrary objects in an object library; and

deploying said arbitrary objects from said object library

into a design framework to create said computer appli-
cation.

2. The method of claim 1, wherein said computer appli-
cation is a web site.

3. The method of claim 1, wherein said various object
types comprise text file pointers.

4. The method of claim 1, wherein said various object
types comprise binary file pointers.

5. The method of claim 1, wherein said various object
types comprise compiled executables.

6. The method of claim 1, wherein said various object
types comprise shell commands.

7. The method of claim 1, wherein said various object
types comprise remote procedure calls.

8. The method of claim 1, wherein said various object
types comprise global variables.

9. The method of claim 1, wherein said various object
types comprise cached executables.

10. The method of claim 1, wherein said various object
types comprise cached database queries.

11. The method of claim 1, wherein said various object
types comprise local variables.

12. The method of claim 1, wherein said various object
types comprise local objects and global parent objects.

13. The method of claim 12, wherein said local objects
can override said global parent objects.

14, The method of claim 12, wherein said local objects
inherit data from said global parent objects.

15. The method of claim 12, wherein said local objects
inherit capabilities from said global parent objects.

16. The method of claim 1, further comprising deploying
arbitrary objects globally.

17. The method of claim 1, further comprising deploying
arbitrary objects locally.

18. The method of claim 1, wherein the step of managing
said arbitrary objects further comprises using revision track-
ing.

19. The method of claim 1, wherein the step of managing
said arbitrary objects further comprises using rollback.

10

15

20

25

30

35

40

45

50

55

60

65

8

20. The method of claim 1, wherein the step managing
further comprises using signoff. .

21. The method of claim 1, wherein said arbitrary objects
can be accessed and deployed into said design framework
using said corresponding arbitrary names.

22. The method of claim 1, further comprising swapping
an arbitrary object of one type with an arbitrary object of
another type.

23. The method of claim 1, further comprising caching
objects.

24. The method of claim 23, wherein the step of caching
objects further comprises specifying some clements of an
arbitrary object to be dynamic elements and specifying some
elements of said arbitrary object to be static elements.

25. The method of claim 1, further comprising generating
arbitrary objects in a programming language that is com-
patible or supported by said host system.

26. A method for generating a web site on a host system
in an arbitrary object framework that separates a content of
said web site, a form of said web site, and a functionality of
said web site, said method comprising:

creating arbitrary objects with corresponding arbitrary

names of various object types for gencrating said
content of said web site, said form of said web site, and
said functionality of said web site; managing said
arbitrary objects in an object library; and

deploying said arbitrary objects from said object library to

a container page to create said web site.

27. The method of claim 26, wherein said various object
types comprise text file pointers.

28. The method of claim 26, wherein said various object
types comprise binary file pointers.

29. The method of claim 26, wherein said various object
types comprise compiled executables.

30. The method of claim 26, wherein said various object
types comprise shell commands.

31. The method of claim 26, wherein said various object
types comprise remote procedure calls.

32. The method of claim 26, wherein said various object
types comprise global variables.

33. The method of claim 26, wherein said various object
types comprise local variables.

34. The method of claim 26, wherein said various object
types comprise local objects and global parent objects.

35. The method of claim 34, wherein said local objects
can override said global parent objects.

36. The method of claim 34, wherein said local objects
inherit data from said global parent objects.

37. The method of claim 34, wherein said local objects
inherit capabilities from said global parent objects.

38. The method of claim 26, further comprising deploying
arbitrary objects globally.

39. The method of claim 26, further comprising deploying
arbitrary objects locally.

40. The method of claim 26, wherein the step of managing
said arbitrary objects further comprises using revision track-
ing.

41. The method of claim 26, wherein the step of managing
said arbitrary objects further comprises using rollback.

42, The method of claim 26, wherein the step managing
said arbitrary objects further comprises using signoff,.

43. The method of claim 26, wherein said arbitrary objects
can be accessed and deployed into said container page using
said corresponding arbitrary names.

44. The method of claim 26, further comprising swapping
an arbitrary object of one type with an arbitrary object of
another type.

US 6,826,744 B1

9

45. The method of claim 26, further comprising caching
objects.

46. The method of claim 45, wherein the step of caching
objects further comprises specifying some elements of an
arbitrary object to be dynamic elements and specifying some
clements of said arbitrary object to be static elements.

47. The method of claim 26, further comprising generat-
ing arbitrary objects in a programming language that is
compatible or supported by said host system.

48. The method of claim 26, wherein said various object
types comprise cached executable.

49. The method of claim 25, wherein said various object
types comprise cached database queries.

5

1

10

50. The method of claim 26, further comprising profiling
of a user accessing said web site.

51. The method of claim 26, further comprising person-
alization of said web site for a user accessing said web site.

52. The method of claim 26, wherein said container page
comprises arbitrary objects with both dynamic and static
elements.

53. The method of claim 26, wherein said content of said
0 web site and said function of said web site can be syndicated.

* & ® ¥ #

