IN THE UNITED STATES DISTRICT COURT FOR THE EASTERN DISTRICT OF TEXAS MARSHALL DIVISION

PERSONALIZED MEDIA	§	
COMMUNICATIONS, LLC,	§	
	§	
Plaintiff,	§	
	§	
v.	§	
	8	Civil Action No.
ZYNGA, INC.,	§	
	8	JURY DEMANDED
Defendant.	8	
	8	
	8	
	8	
	8	
	§	
	v	

EXHIBIT 1-[PART 2 OF 3]

COMPLAINT FOR PATENT INFRINGEMENT

bit of any given instance of a message with a "10" or a "00" header are described above.) In a fashion that is described more fully below, said locate-last-message-bit instructions cause said apparatus to determine whether the signal word in which said last segment information bit occurs contains one or more MOVE bits. If said signal word contains MOVE bit information, the last information bit of said signal word is the last information bit of said message. If said signal word does not contain MOVE bit information, the last information bit of said message is last information bit of the next signal word immediately following said signal word in which said last segment information bit occurs. (For reasons that relate to detecting end of file signals and are discussed more fully below, in the preferred embodiment a complete signal word of $_{15}$ padding bits is transmitted after any given instance of a signal word that contains no MOVE bit information and in which occurs the last bit of command information of the message of said instance.)

Messages that contain lowest priority segment information 20 end with end of file signals, and the header information of said messages do not cause subscriber station apparatus to execute particular preprogrammed locate-last-message-bit instructions. End of file signals define the ends of messages that contain lowest priority segment information. In the simplest preferred embodiment, such messages begin with "10" or "00" headers. The last information bit of the end of file signal immediately following any given "10" or "00" header information message is the last information bit of the message of said "10" or "00" header, and subscriber station apparatus are preprogrammed to locate said bit in a fashion that is described below.

After locating any given instance of a last information bit of a message, subscriber station apparatus are preprogrammed 35 to process automatically as header information the first information bits, following said bit, that are in number the particular number of bits in an instance of header information.

In this fashion, cadence information—header information, the length tokens of messages that contain intermediate priority segment information but no lowest priority segment information, and end of file signals—enables subscriber station apparatus to distinguish each instance of header information—and, hence, each message—in any given stream of SPAM messages.

Detecting End of File Signals

In the present invention, any microprocessor, buffer/comparator, or buffer can be adapted and preprogrammed to detect end of file signals. At any given SPAM apparatus that is 50 so adapted and preprogrammed, particular dedicated capacity exists for said detecting. Said capacity includes standard register memory or RAM capacity, well known in the art, including three particular memory locations for comparison purposes, one particular memory location to serve as a counter, 55 and three so-called "flag bit" locations to hold particular true/false information. (Hereinafter, said three particular memory locations, said one particular memory location, and said three flag bit locations are called the "EOFS Word Evaluation Location," "EOFS Standard Word Location," and 60 "EOFS Standard Length Location"; the "EOFS WORD Counter"; and the "EOFS WORD Flag," "EOFS Empty Flag," and "EOFS Complete Flag" all respectively.) All operating instructions required to control said memory or RAM capacity in detecting end of file signals are preprogrammed as 65 so-called "firmware" at said apparatus. (In this specification, said dedicated capacity is called an "EOFS valve" because, in

36

addition to detecting end of file signals, said capacity also regulates the flow of SPAM information in fashions that are described more fully below.)

At any given EOFS valve, the EOFS Word Evaluation Location and EOFS Standard Word Location are conventional dynamic memory locations each capable of holding one full signal word of binary information. The EOFS Standard Length Location and the EOFS WORD Counter are each conventional dynamic memory locations capable of holding, at a minimum, eight binary bits—that is, one byte—of information. The EOFS WORD Flag, EOFS Empty Flag, and EOFS Complete Flag are each conventional dynamic memory locations capable of holding, at a minimum, one bit of binary information.

At any given time, said valve holds particular information. At said EOFS Word Evaluation Location is one signal word of received SPAM information. At said EOFS Standard Word Location is one signal word of EOFS bits. (Hereinafter, one signal word of EOFS bits is called an "EOFS WORD.") At said EOFS Standard Length Location is information of the total number of EOFS WORDs in the particular end of file signal that applies at said time on the particular transmission received at said valve. Information of the decimal value, eleven, is at said Standard Length Location unless information of a number is placed at said Location in a fashion described below. At the EOFS WORD Counter is information of the number of EOFS WORDs that said valve has received in uninterrupted sequence. And all said Flag locations contain binary "0" or "1" information to reflect true or false conditions in relation to particular comparisons.

At any given time, any given EOFS valve receives inputted binary information of one selected SPAM transmission from one particular external transferring apparatus that is external to said valve. Said information consists of a series of discrete signal words. And said valve outputs information to one particular external receiving apparatus.

Receiving any given signal word of said transmission, causes said EOFS valve to commence, in respect to said given signal word, a particular word evaluation sequence that is fully automatic. Automatically said valve places information of said word at said EOFS Word Evaluation Location and compares the information at said Location to the EOFS WORD information at said EOFS Standard Word Location. Whenever said comparison is made, resulting in a match 45 causes said valve automatically to set the information of said EOFS WORD Flag to "0". (Resulting in a match means that said given signal word is an EOFS WORD and may be a part of an end of file signal.) Not resulting in a match causes said valve automatically to set the information of said EOFS WORD Flag to "1". Then automatically said valve determines the value of said information at said EOFS WORD Flag, in a fashion well known in the art, and executes one of two sets of word evaluation sequence instructions on the basis of the outcome of said determining.

One set, the process-EOFS-WORD instructions, is executed whenever the information at said EOFS WORD Flag indicates that said given signal word is an EOFS WORD. Determining a value of "0" at said EOFS WORD Flag causes said valve to execute said set. Automatically the instructions of said set cause said valve to retain count information of said given signal word by increasing the value of the information at said EOFS WORD Counter by an increment of one. (Incrementing said Counter by one documents the fact that, in receiving said given signal word, said valve has received, in uninterrupted sequence, one signal word that may be part of an end of file signal more than it had received before it received said given signal word.) Then automatically said

valve compares the information at said EOFS WORD Counter to the information at said EOFS Standard Length Location. Resulting in a match causes said valve automatically to set the information of said EOFS Complete Flag to "0". (A match of the information at said Counter with the 5 information at said Location means that said given signal word is the last EOFS WORD in an uninterrupted sequence of EOFS WORDS that equals in length the length of an end of file signal; in other words, said match means that an end of file signal has been detected.) Not resulting in a match causes said 10 valve automatically to set the information of said EOFS Complete Flag to "1". (Not resulting in a match means said EOFS WORD is not the last EOFS WORD of an end of file signal and that insufficient information has been received to determine whether or not said given signal word is part of an end of 15 file signal.) Then automatically said valve determines the value of said information at said EOFS Complete Flag. Determining a value of "0" at said Flag, which means that an end of file signal has been detected, causes said valve to operate in a fashion described more fully below. Determining a value of 20 "1" at said Flag causes said valve, in a fashion described more fully below, to complete said word evaluation sequence, in respect to said given signal word, without transferring any information of said given signal word to said external receiving apparatus.

The other set, the transfer-all-word-information instructions, is executed whenever the information at said EOFS WORD Flag indicates that said given signal word is not an EOFS WORD. Whenever said valve detects a signal word that is not an EOFS WORD, detecting said word means not only 30 that said word is not part of an end of file signal but also that any EOFS WORDs retained in an uninterrupted sequence immediately prior to said word are also not part of an end of file signal. Determining a value of "1" at said EOFS WORD Flag causes said valve to execute said other set. Automatically 35 the instructions of said other set cause said valve to compare the information at said EOFS WORD Counter to particular zero information that is among the preprogrammed information of said valve. (Not having been incremented by one under control of said process-EOFS-WORD instructions, said 40 Counter contains information of the number of EOFS WORDs received in an uninterrupted sequence and retained at said valve at the time when said given signal word is received.) Resulting in a match causes said valve automatically to set the information of said EOFS Empty Flag to "0". 45 (Resulting in a match means that said valve is empty of retained EOFS WORD information.) Not resulting in a match causes said valve automatically to set the information of said EOFS Empty Flag to "1". (Not resulting in a match means that said valve contains information of EOFS WORDs that 50 have not been transferred to said external receiving apparatus.) Then automatically said valve determines the value of said information at said EOFS Empty Flag. A determining of "1" causes said valve to execute particular transfer-countedinformation instructions that are not executed if the informa- 55 tion at said Flag is "0". Under control of said instructions, said valve automatically outputs one instance of said EOFS WORD information at said EOFS Standard Word Location a particular number of times which particular number is the numerical value of the information at said EOFS WORD 60 Counter. (In so doing, said valve transfers information of all of the signal words received before said given signal word and not transferred to said external receiving apparatus.) Then said transfer-counted-information instructions cause said valve to set the value at said EOFS WORD Counter to zero (to 65 reflect that said valve is now empty of information of untransferred signal words). Then, whether or not said valve has

38

executed said transfer-counted-information instructions, said valve outputs information of said given signal word at said EOFS Word Evaluation Location and completes said word evaluation sequence, in respect to said given signal word.

Whenever said valve completes said word evaluation sequence, in respect to any given signal word, said valve informs said external transferring apparatus (in a so-called "handshaking" fashion, well known in the art, or in such other flow control fashion as may be appropriate) that said valve is ready to receive next signal word information. Whenever, after transferring a given signal word, said apparatus is so informed, said apparatus transfers to said decoder the next signal word of said transmission immediately following said given signal word. Receiving said next signal word causes said valve to commence said word evaluation sequence, in respect to said next signal word. Automatically said valve places information of said next signal word at said EOFS Word Evaluation Location, and in so doing, overwrites and obliterates information of said given word at said EOFS Word Evaluation Location.

In this fashion, said valve processes each successive signal word to detect those particular uninterrupted series of EOFS WORDs that constitute end of file signals.

As described above, determining, under control of said process-EOFS-WORD instructions, that the value of the information at said EOFS Complete Flag is "0" means that an end of file signal has been detected. Determining, under control of said instructions, that said value is "0" causes said valve to execute particular complete-signal-detected instructions. Said instructions cause said valve to inform said external receiving apparatus of the presence of an end of file signal in a fashion that is the preprogrammed fashion of the microprocessor, buffer/comparator, or buffer of which said valve is an adapted component.

As one example of said fashion, for a buffer or buffer/ comparator apparatus that operates under control of a controller to process received signal words and transfer signal information to a microprocessor (which may be a component of said controller), said instructions cause said valve to cause said apparatus to transmit particular EOFS-signal-detected information to said controller then to wait, in a waiting fashion well known in the art, for a control instruction from said controller. Said EOFS-signal-detected information causes said controller to determine, in a preprogrammed fashion, how to process the particular EOFS information at said valve and to transmit either a particular transmit-and-wait instruction or a particular discard-and-wait instruction to said valve. (Examples of controller operations are presented below.) Said transmit-and-wait instruction causes said valve to transfer one complete end of file signal. More precisely, said instruction causes said valve automatically to output one instance of said EOFS WORD information at said EOFS Standard Word Location a particular number of times which particular number is the numerical value of the information at said EOFS Standard Length Location. Then automatically said valve sets the information at said EOFS WORD Counter to zero (thereby signifying that no EOFS WORDs are retained), completes said word evaluation sequence, in respect to the signal word of the information at said EOFS Word Evaluation Location, and transmits particular complete-and-waiting information to said controller. Alternatively, said discardand-wait instruction causes said valve merely to set the information at said EOFS WORD Counter to zero (thereby discarding information of said end of file signal), to complete said word evaluation sequence, in respect to said signal word of the information at said EOFS Word Evaluation Location, and to transmit said complete-and-waiting information to

said controller. Subsequently, said complete-and-waiting information causes said controller to transmit further instructions that control said apparatus and said valve in the processing of further information and the detecting of further end of file signals.

In the preferred embodiment, said EOFS-signal-detected information and said complete-and-waiting information are control signals that are transmitted by said valve and said apparatus to said controller as interrupts to the CPU of said controller.

An example illustrates the operation of an EOFS valve.

FIG. 2 shows one message that is of a particular command composed of a "00" header, an execution segment, and a meter-monitor segment. The information of said command fills four bytes of binary precisely. The last bit of said metermonitor segment is the last bit of the fourth byte of said command. But because the byte in which said last bit occurs contains no MOVE bit information, according to the rules of message composition of the preferred embodiment, one full signal word of padding bits follows said command.

When the message of FIG. 2 is transmitted, a given EOFS valve receives the transmission of said message from a particular transferring apparatus and transfers information to a particular receiving apparatus. Said valve is adapted and preprogrammed to process eight-bit bytes as signal words. The 25 information at the EOFS Standard Word Location of said valve is the EOFS WORD of the preferred embodiment: "11111111". The EOFS Standard Length Location and EOFS WORD Counter of said valve each hold one byte of binary information. The binary information at said EOFS Standard Length Location is "00001011", a binary number whose decimal equivalent is eleven. The binary information at said EOFS WORD Counter is "000000000", a binary number whose decimal value is zero.

Receiving the first byte of said message causes said valve to 35 place information of said byte at said EOFS Word Evaluation Location and to compare the information at said Location, "10010100", to the EOFS WORD information at said EOFS Standard Word Location, "11111111". No match results which causes said valve automatically to set the information 40 of said EOFS WORD Flag to "1". Automatically said valve determines the value of said information at said Flag is "1" which causes said valve to execute said transfer-all-wordinformation instructions. Automatically said valve compares the information at said EOFS WORD Counter, zero, to said 45 zero information that is among the preprogrammed information of said valve. (The binary value of each instance of zero information is "00000000".) A match results which causes said valve automatically to set the information of said EOFS Empty Flag to "0". Automatically said valve determines that 50 the value of said information at said EOFS Empty Flag is "0" and skips executing said transfer-counted-information instructions. Automatically said valve continues executing conventional ones of said transfer-all-word-information instructions; transfers information of said first byte at said 55 EOFS word evaluation location—which information is "10010100"—to said receiving apparatus; completes said word evaluation sequence, in respect to said first byte; and transfers handshake information to said transferring apparatus that informs said apparatus that said valve is ready to 60 receive next signal word information.

Receiving said handshake information causes said transferring apparatus to transfer the next byte of said message to said valve.

Receiving said next byte, which is the second byte, causes 65 said valve to place information of said byte at said EOFS Word Evaluation Location and to compare the information at

40

said Location, "11001000", to the EOFS WORD information at said EOFS Standard Word Location, "11111111". No match results which causes said valve to set the information of said EOFS WORD Flag to "1". Automatically said valve determines that the information at said Flag is "1" which causes said valve to execute said transfer-all-word-information instructions. Automatically said valve compares the information at said EOFS WORD Counter, zero, to said zero information that is among the preprogrammed information of said valve. A match results which causes said valve to set the information of said EOFS Empty Flag to "0". Automatically said valve determines that the information at said EOFS Empty Flag is "0". Automatically said valve continues transfer-all-word-information executing conventional instructions; transfers information of said second byte at said EOFS word evaluation location—which information is "11001000"—to said receiving apparatus; completes said word evaluation sequence, in respect to said second byte; and informs said transferring apparatus that said valve is ready to 20 receive next signal word information which causes said apparatus to transfer to said valve the next byte of said message.

Receiving said next byte, which is the third byte, causes said valve to place information of said byte at said EOFS Word Evaluation Location and to compare the information at said Location, "11111111", to the EOFS WORD at said EOFS Standard Word Location, "11111111". A match results, causing said valve to set the information of said EOFS WORD Flag to "0". Automatically said valve determines that the information at said Flag is "0" which causes said valve to execute said process-EOFS-WORD instructions. Automatically, in a fashion well known in the art, said valve increases the value of the information at said EOFS WORD Counter by an increment of one from "00000000" to "00000001". Automatically said valve compares the information at said EOFS WORD Counter, "00000001", to the information at said EOFS Standard Length Location, "00001011". No match results which causes said valve automatically to set the information of said EOFS Complete Flag to "1". Automatically said valve determines that the value of said information at said EOFS Complete Flag is "1" which causes said valve automatically to complete said word evaluation sequence, in respect to said third byte, without transferring any information of said byte to said receiving apparatus. Automatically said valve then informs said transferring apparatus that said valve is ready to receive next signal word information which causes said apparatus to transfer to said valve the next byte of said message.

Receiving said next byte, which is the fourth byte, causes said valve to place information of said byte at said EOFS Word Evaluation Location, which information is "1111111". In so placing said information at said Location, said valve automatically overwrites and obliterates the information of the third byte that had been at said Location. Automatically said valve then compares the information at said Location, "11111111", to the EOFS WORD information at said EOFS Standard Word Location, "11111111". A match results, causing said valve to set the information of said EOFS WORD Flag to "0". Automatically said valve determines that the information at said Flag is "0", which causes said valve to increase the value of the information at said EOFS WORD Counter from "00000001" to "00000010", a binary number whose decimal equivalent is two. Automatically said valve compares said "00000010" to the information at said EOFS Standard Length Location, "00001011". No match results which causes said valve to set the information of said EOFS Complete Flag to "1". Automatically said valve determines that the value of said information at said EOFS Complete Flag

is "1" which causes said valve to complete said word evaluation sequence, in respect to said fourth byte, without transferring any information of said byte to said receiving apparatus. Automatically said valve then informs said transferring apparatus that said valve is ready to receive next signal word information which causes said apparatus to transfer to said valve the next byte of said message.

Receiving said next byte, which is the fifth and last byte, causes said valve to place information of said byte at said EOFS Word Evaluation Location, which information is "0000000". In so placing said information at said Location, said valve automatically overwrites and obliterates the information of the fourth byte at said Location. Automatically said valve then compares the information at said Location, 15 "00000000", to the EOFS WORD information at said EOFS Standard Word Location, "11111111". No match results which causes said valve to set the information of said EOFS WORD Flag to "1". Automatically said valve determines that the information at said Flag is "1" which causes said valve to 20 execute said transfer-all-word-information instructions. Automatically said valve compares the information at said EOFS WORD Counter, "00000010", to said zero information, "00000000", that is among the preprogrammed information of said valve. No match results which causes said 25 valve to set the information of said EOFS Empty Flag to "1". Automatically said valve determines that the information at said EOFS Empty Flag is "1" which causes said valve to execute said transfer-counted-information instructions. Said instructions cause said valve automatically to transfer one instance of said EOFS WORD information at said EOFS Standard Word Location, "11111111", to said receiving apparatus then decrease the value of the information at said EOFS WORD Counter by a decrement of one—that is, from 35 "00000010" to "00000001"—then compare the information at said EOFS WORD Counter to said zero information, "00000000". Because no match occurs, said valve automatically transfers one more instance of said EOFS WORD information, "11111111", to said receiving apparatus then 40 decreases the value of the information at said EOFS WORD Counter by an additional decrement of one—that is, from "00000001" to "00000000"—then compares said information to said zero information, "00000000". A match occurs. In a fashion well known in the art, the fact of said match causes 45 said valve automatically to continue executing transfer-allword-information instructions. Automatically said valve transfers information of said fifth byte at said EOFS word evaluation location—which information is "00000000"—to said receiving apparatus; completes said word evaluation 50 sequence, in respect to said fifth and last byte of the message of FIG. 2K; and informs said transferring apparatus that said valve is ready to receive next signal word information which causes said apparatus to transfer to said valve the next byte of said message as soon as said apparatus receives and is pre- 55 pared to transfer said byte.

The example of FIG. 2K illustrates how receiving each signal word causes an EOFS valve to evaluate the information content of said word; to transfer words that are not EOFS WORDs; to retain count information of words that are EOFS 60 WORDs so long as said words occur in uninterrupted sequences of EOFS WORDs which sequences are shorter than the number of EOFS WORDs in an instance of end of file signal information; and when receiving any given signal word that is not an EOFS WORD interrupts such a sequence, to 65 transfer information of each retained EOFS WORD before transferring information of said given signal word. The

42

example of FIG. 2K does not illustrate the detecting of an end of file signal; however, an example of such detecting is provided below.

In this specification, MOVE bits are called "MOVE" bits because MOVE bit information in any given signal word causes each EOFS valve that processes the information of said word to "move"—that is, to transfer—information of said word to receiving apparatus external to said valve during the word evaluation sequence of said word rather than retaining said information.

Reasons should now be clear why padding bits are always MOVE bits and why, in a SPAM message, a full signal word of padding bits follows a signal word that is the last signal word in which command information occurs and that contains no MOVE bits. The command of FIG. 2K is such a command, and the fourth byte is such a word. In its automatic fashion for identifying end of file signals, no EOFS valve that receives said fourth byte transfers said byte until it receives a subsequent signal word that contains a MOVE bit. In the present invention there is no assurance that every EOFS valve immediately receives a next signal word as soon as it completes the word evaluation sequence, in respect to any given signal word. Thus to ensure that all apparatus to which messages are addressed process message information in the fastest possible fashion, all messages that do not end with end of file signals do end with signal words that contain at least one MOVE bit.

One final rule of message composition remains. In order to define end of file signals precisely, a signal word that contains at least one MOVE bit is always transmitted immediately before the uninterrupted sequence of EOFS WORDs of any given end of file signal. Were a given signal word that contained no MOVE bits to be transmitted immediately before the uninterrupted sequence of a given end of file signal, said word would contain only EOFS bits and would be an EOFS WORD. Any EOFS valve processing said word and said signal would process said word as one of the EOFS WORDs of said uninterrupted sequence. Said valve would count said word erroneously as part of said sequence rather than as part of the information preceding said sequence and would count at least the last EOFS WORD of said sequence erroneously as part of the message following said signal rather than as part of said signal. In order to avoid such erroneous processing, any given instance of the uninterrupted sequence of EOFS WORDs of an end of file signal is preceded by signal word that is not an EOFS WORD.

This final rule may be satisfied in a number of different ways. For example, end of file signals could include the signal word preceding said uninterrupted sequence. Rather than being an uninterrupted sequence of eleven EOFS WORDs, an end of file signal could be twelve words long with the first word containing MOVE bit information. And subscriber station apparatus could be adapted and preprogrammed for detecting such signals.

As related above, in the preferred embodiment, end of file signals are composed just of the uninterrupted sequence of EOFS WORDs described above, and the signal words that precede said sequences are part of the last segment information preceding said signals. To prevent erroneous processing while satisfying the final rule of message composition, in any given pre-transmission evaluation of an instance of SPAM message information, if the EOFS valve of said evaluation retains information the last signal word of said information in the course of the word evaluation sequence of said word rather than transferring information of said word, the binary information of said instance is rewritten, in a fashion well known in the art that may be manual, before being embedded

and transmitted. Said binary information is rewritten to end with a final signal word that contains MOVE bit information and still cause substantively the same information processing at subscriber stations.

In this fashion, the signal information of any given end of 5 file signal is distinctive, and EOFS detectors detect end of file signals precisely.

Despite the fact that the use of end of file signals involves time consuming processing, the preferred embodiment's system for distinguishing individual messages from one another in message streams has significant advantages over alternate techniques.

By comparison with systems that process fixed length and/ or fixed format messages, the use of end of file signals permits great flexibility. Messages can be of any length and can contain any information that digital receiver station apparatus can process.

By comparison with systems that distinguish messages from one another by means of distinctive signals that separate the end of each message from the beginning of the next, end of file signals are used in the preferred embodiment only with some messages. Many messages, such as the second and third messages of the message stream of FIG. **2**I, do not require end of file signals. Furthermore, as will become more apparent in the course of this specification, messages that consist of commands alone often have higher priority for processing speed than do the messages that contain last segment information. Since only messages that contain last segment information require end of file signals, end of file signals are often transmitted and processed at times when speed of processing is of ³⁰ relative unimportance.

Finally, because long cadence signals are processed at ends of messages rather than at beginnings, the preferred embodiment reduces the relative importance of the processing speed associated with such signals even further. In the preferred embodiment, subscriber station apparatus have capacity for commencing to process received command and information segment information before receiving the end of file signal associated with said information. The commencement of processing of the command and information segment information of any given message need never be delayed until after an end of file signal, associated with said message, is detected.

The preferred embodiment has the advantage of requiring that long cadence signals that require time consuming processing be transmitted only with some messages and then only at times when processing speed is of relatively low priority. In so doing, the preferred embodiment makes it possible to transmit in the shortest, simplest formats messages that have high priority for processing speed and to process said messages the fastest fashion.

The Normal Transmission Location

SPAM signals are generated at original transmission stations or intermediate transmission stations and embedded in television or radio or other programming transmissions by conventional generating and embedding means, well known in the art. Said signals may be embedded in transmissions at said stations immediately prior to transmitting said transmissions via conventional broadcast or cablecast means, well known in the art. Alternatively, said signals may be embedded in transmissions that are then recorded, in a fashion well known in the art, on an appropriate conventional video, audio or other record media. Playing back said media on appropriate player apparatus will cause said apparatus to retransmit said transmissions with said SPAM signals embedded precisely as they were embedded when said transmissions were recorded.

44

SPAM signals can be embedded in many different locations in electronic transmissions. In television, SPAM signals can be embedded in the video portion or in the audio portion of the transmission. In the video portion, SPAM signals can be embedded in each frame on one line such as line 20 of the vertical interval, or on a portion of one line, or on more than one line, and they will probably lie outside the range of the television picture displayed on a normally tuned television set. SPAM signals can be embedded in radio audio transmissions. In the audio of television and radio transmissions, SPAM signals will probably be embedded in a portion of the audio range that is not normally rendered in a form audible to the human ear. In television audio, they are likely to lie between eight and fifteen kilohertz. In broadcast print and data communications transmissions, SPAM signals can accompany conventional print or data programming in the conventional transmission stream.

In television, the normal transmission location of the preferred embodiment is in the vertical interval of each frame of the television video transmission. Said location begins at the first detectable part of line 20 of the vertical interval and continues to the last detectable part of the last line of the vertical interval that is not visible on a normally tuned television set.

In radio, the preferred normal transmission location is in the audio above the range of the radio transmission that is normally audible to the human ear.

In broadcast print or data communications, the preferred normal transmission location for SPAM signals is in the same location as the conventional information. More precisely, conventional print of data information is transmitted in SPAM transmissions. Any given instance of conventional print or data information is transmitted in a SPAM information segment that is preceded by a "01" header SPAM command or a "11" header, which command or header addresses conventional print or data processing apparatus at subscriber stations and causes said apparatus to process said conventional information in the conventional fashion. In said transmissions, other SPAM commands and information address and control subscriber station apparatus in other SPAM functioning.

(Hereinafter, the preferred normal location for transmitting signals in any given communication medium is called, the "normal transmission location".)

In the preferred embodiment, while receiver station decoder apparatus may be controlled, in fashions described below, to detect information segment information outside the normal transmission locations, SPAM commands and cadence information are always transmitted in normal transmission locations. In the present invention, the object of many decoders is to detect only command information such as meter-monitor segment information. Having one unchanging location for the transmission of command information in any given television, radio, broadcast print, or data transmission permits decoder apparatus to search just one unchanging portion of said transmission to detect commands. Having the same fixed location for cadence information enables said decoder apparatus to distinguish all command information in said transmission.

Operating Signal Processor Systems . . . Introduction

Five examples illustrate methods of operating signal processing system apparatus. Each focuses on subscriber stations where the signal processor system of FIG. 2D and the combined medium apparatus of FIG. 1 share apparatus and operate in common.

FIG. 3 shows one such subscriber station. In FIG. 3, the decoder, 203, of FIG. 1 is also an external decoder of the

signal processor system of signal processor, 200. Like decoders, 27, 28, and 29, in FIG. 2D, decoder, 203, has capacity for transferring SPAM information to buffer/comparator, 8, of signal processor, 200, and to buffer/comparator, 14. In addition, signal processor, 200, has capacity for transferring 5 SPAM signals from a particular jack port of controller, 12, to microcomputer, 205.

FIG. 3 also shows SPAM-controller, 205C, to which signals that are addressed to URS microcomputers, 205, are transferred from decoder, 203, and from signal processor, 10 200. SPAM-controller, 205C, is a control unit like controller, 39, of decoder, 203, with buffer capacity for receiving multiple inputs; RAM and ROM for holding operating instructions and other information; EOFS valve capacity for detecting end of file signals and regulating the flow of SPAM signals; microprocessor capacity for processing; capacity for transferring information to and receiving information from the central processor unit (hereinafter, "CPU") of microcomputer, 205; and capacity for transferring information to one or more input buffers of microcomputer, 205. SPAM-controller, 20 205C, operates independently of said CPU although said CPU has capacity to interrupt SPAM-controller, 205C, in an interrupt fashion well known in the art. SPAM-controller, 205C, also has capacity to control directly to the aforementioned PC-MicroKey 1300 System without affecting the 25 operation of said CPU.

All five examples describe signal processing variations that relate to the FIG. 1C combining of "One Combined Medium."

The first focuses on the basic operation, in "One Combined Medium," of decoder, 203; SPAM-controller, 205C; and microcomputer, 205. No signals require decryption. No meter information is collected. No monitor information is processed. Combined information is displayed at each subscriber station.

In the second example, the combining of FIG. 1C occurs only at selected subscriber stations. The second combining synch command is partially encrypted, and said stations are preprogrammed with particular information that is necessary to decrypt said command. At said stations, said command causes its own decryption and the combining of FIG. 1C. In addition, said command causes signal processor apparatus at said stations to retain meter information that a remote billing agency can use as a basis for charging the subscribers of said stations for displaying the combined information of said combining. At all other stations, no information is decrypted, no combining occurs, and no meter information is collected.

In the third example, combined information is displayed at each subscriber station just as in the first example. In addition, monitor information is processed at selected stations for one or more so-called "ratings" agencies (such as the A. C. Nielsen Company) that collect statistics on viewership and programming usage.

The fourth example provides a second illustration of restricting the combining of FIG. 1C to selected subscriber stations through the use of encryption/decryption techniques and metering. In addition, the fourth example shows how monitor information is collected at selected ones of said selected stations.

The fifth example adds program unit identification signals 60 identified at decoders, 30 and 40, of signal processor, 200.

In the last three examples, the first combining synch command causes selected subscriber stations to transfer recorded meter information and monitor information to one or more remote computer stations of said billing agencies and ratings agencies and causes computers at said remote agencies to receive and process said transferred information.

46

Each example focuses on the processing of the three signal messages of the FIG. 1C combining. The information of said messages include three combining synch commands and one program instruction set.

The first message is of the information associated with the first combining synch command. Said first command has a "01" header, an execution segment, and a meter-monitor segment of six fields. Said command is followed by an information segment that contains said program instruction set, and said information segment is followed by an end of file signal. Said first command addresses URS microcomputers, 205, and causes said computers, 205, to load and run the program instruction set transmitted in the information segment. Each meter-monitor segment field of said command contains information that identifies one of the following:

the origin of said "Wall Street Week" transmission, the subject matter of said "Wall Street Week" program, the program unit of said program,

the day of said transmission within a particular one hundred year period,

the supplier of the program instruction set in the information segment following said first combining synch command, and

the format of said meter-monitor segment information.

(Hereinafter, meter-monitor information that identifies the program unit of a given program may also be called the "program unit identification code".)

The second message is of the information associated with the second combining synch command. Said second command has a "00" header, an execution segment, and a metermonitor segment of five fields and addresses URS microcomputers, 205. Said second command causes said computers, 205, to combine the FIG. 1A information of each microcomputer, 205, with the information of FIG. 1B and transmit the combined information to monitors, 202M. Each meter-monitor segment field of the second command contains information of one of the following:

the subject matter of said "Wall Street Week" program, the program unit of said program,

the unique code of said overlay given said program unit information.

the minute of said transmission within a particular one month period, and

the format of said meter-monitor segment information.

The third message is of the information associated with the third combining synch command. Said third command has only a "10" header and an execution segment and addresses URS microcomputers, 205. Said command causes said computers, 205, to cease combining and transmit only the received composite video transmission to monitors, 202M, and to continue processing in a predetermined fashion (which fashion may be determined by the aforementioned program instruction set).

In those examples that focus on encrypted commands, the meter-monitor segments of each encrypted command includes an additional meter-monitor field:

meter instructions.

In said examples, the meter-monitor format field information of said commands reflects the presence of said additional field

As described above, said signals are of binary information with error correcting bit information and are embedded, transmitted, and received in the normal transmission pattern of the "Wall Street Week" television transmission.

All subscriber station apparatus are fully preprogrammed to perform automatically each step of each example. No manual step is required at any station.

In each example, the apparatus of FIG. 3 are preprogrammed to detect embedded signal information, to transfer said information to addressed apparatus, and to operate under control of said information. Apparatus of decoder, 203, are preprogrammed to detect signal information embedded in the normal transmission pattern and to correct, convert, and transfer said information to its addressed apparatus. Apparatus of signal processor, 200, are preprogrammed to decrypt information upon instruction and to transfer information to its addressed apparatus. For one or more remote services that meter and charge subscribers for the use of information or that audit such remote metering services, apparatus of signal processor, 200, are preprogrammed to select, process, and record meter information and to transfer recorded meter information to one or more remote station computers.

In each example, the EOFS valves located at controller, 39, of decoder, 203; at buffer/comparator, 8, of signal processor, 200; and at SPAM-controller, 205C, are preprogrammed to detect end of file signals that consist of eleven sequentially transmitted EOFS WORDs. Thus the binary information of eleven—"00001011"—is at the EOFS Standard Length Location of each of said EOFS valves.

In the third, fourth, and fifth examples, appropriate apparatus of FIG. 3 are also preprogrammed to assemble, record, and transmit to one or more remote locations monitor information for one or more services that sample selected subscriber stations (said stations being preprogrammed for this purpose) to collect statistical data on programming and information usage and/or to audit selectively the customer accounting of remote meter services.

In each example, receiving SPAM signal information at each apparatus of FIG. 3 causes subscriber station apparatus automatically to process said information in the preprogrammed fashions of said apparatus.

At the outset of each example, particular meter record information of prior programming exists at a particular location at buffer/comparator, 14, of signal processor, 200. Said record information documents the fact that before receiving the "Wall Street Week" program, tuner, 215, transmitted to monitor, 202M, particular programming that contained embedded SPAM commands and information with particular meter instructions. Information of said commands and information caused buffer/comparator, 14, to retain said meter record information. In the third and subsequent examples, monitor record information of said prior programming also exists at a particular location at said buffer/comparator, 14, 50 associated with the source mark of decoder, 203.

In each example, the recorder, 16, of signal processor, 200, has reached a level of fullness where the recording of the next signal record received from the buffer/comparator, 14, of signal processor, 200, will cause the quantity of signal records 55 recorded at recorder, 16, to equal or exceed the particular fullness information of said recorder, 16. Whenever said quantity equals or exceeds said fullness information, recorder, 16, is preprogrammed to commences a particular telephone signal record transfer sequence that is fully auto- 60 matic for which recorder, 16; controller, 20; auto dialer, 24; and telephone connection, 22, are each preprogrammed. Under control of the preprogrammed instructions of said sequence, signal processor, 200, telephones one or more remote billing station computers and/or one or more remote 65 monitor information collection station computers and transfers selected record information to said computers.

48

In each example, all receiver station apparatus is on and fully operational.

Operating Signal Processor Systems

Example #1

The first example elaborates on the FIG. 1C combining described above in "One Combined Medium" and focuses on the operation of decoder, 203, SPAM-controller, 205C, and microcomputer, 205, on the execution of controlled functions, and on the use of cadence information to organize signal processing. The example begins as divider, 4, starts to transfer to decoder, 203, in its outputted composite video transmission, the embedded binary information of the first message. At the outset of example #1, controller, 39, of decoder, 203, and SPAM-controller, 205C, have each identified an end of file signal and await header information.

Receiving said embedded binary information at decoder, 203, (which does not include a filter, 31, or a demodulator, 32, because its input is a composite video transmission) causes line receiver, 33, automatically to detect and transfer said embedded information to digital detector, 34, which automatically detects the binary information with correcting information in said embedded information and transfers said binary information with correcting information to controller, 39. Using forward error correction techniques, well known in the art, and employing particular correcting information, controller, 39, automatically checks said information, as it is received, and corrects it as necessary then discards said particular correcting information retaining only the corrected information. Using conversion protocol techniques, well known in the art, controller, 39, then automatically converts said corrected information into binary information that receiver station apparatus can receive and process. In this fashion, the binary information of the first message—more precisely, the first combining synch command and its associated program instruction set and end of file signal-are received and converted at decoder, 203.

Once the information of any given point-to-multipoint SPAM transmission has been checked, corrected, and converted in the foregoing fashion, subscriber station apparatus communicate said information point-to-point using flow control and error correction techniques, well known in the art, that include handshaking and requesting retransmission. Thereafter, any given transmission of SPAM information, so corrected and converted, contains not only bits of communicated SPAM information but also so-called "parity bits" that convey error correcting information. At present, the conventional practice is for every ninth bit to be a parity bit that is used, in a fashion well known in the art, to check the correctness of the preceding eight bits, or "byte," of communicated data.

Frequently in this disclosure, specific quantities of bits and bit locations are cited. Said bits are often specified as being "sequential" and "in their order after conversion," and said bit locations are often "contiguous." Unless otherwise stated, said quantities refer only to bits of communicated SPAM information and bit locations that hold communicated SPAM information. No attempt is made to account for the presence of parity bits among transmitted bits of SPAM information or at particular memory locations because techniques for distinguishing bits of communicated data from parity bits and for processing bits of communicated information separately from parity bits are well known in the art.

Automatically, after said binary information is converted, said information is inputted to the EOFS valve of controller,

39, which processes said information in the fashion described above, comparing each signal word of said information to EOFS WORD information and transferring said binary information, signal word by signal word, until an end of file signal is detected.

Receiving the header and execution segment of said first message causes controller, 39, to determine that said message is addressed to URS microcomputers, 205, and to transfer said message to microcomputer, 205. So transferring said message is the controlled function that the information said 10 header and execution segment cause controller, 39, to perform. Automatically, as said EOFS valve transfers converted binary information of said first message, controller, 39, selects and records at particular SPAM-header register memory a particular preprogrammed constant number of the 15 first converted bits of said binary information. Said constant number is the number of bits in a SPAM command header. (Hereinafter, said constant number is called "H".) From the first bit of said binary information, H bits are selected and recorded, in their order after conversion, at said SPAM- 20 header memory. Then, automatically, controller, 39, determines that said information at SPAM-header memory (which is the "01" header of the first combining synch command and designates a SPAM command that is followed by an information segment) does not match particular 11-header-invoking 25 information that is "11". (In other words, the header of said message does not designate a SPAM message that consists of a header followed immediately by an information segment.) Not resulting in a match causes controller, 39, automatically to select a second preprogrammed constant number of next 30 bits and record said bits, in their order after conversion, at particular SPAM-exec register memory. Said second constant number is the particular number of bits in a SPAM execution segment. (Hereinafter, said second constant number is called "X".) Beginning with the next bit of said binary information 35 immediately after said H bits, controller, 39, selects X bits and records said bits, in their order after conversion, at said SPAM-exec memory. Then, automatically, by comparing the information at said SPAM-exec memory (which information is the execution segment of the first combining synch command) with preprogrammed controlled-function-invoking information, controller, 39, determines that said information at memory matches particular this-message-addressed-to-205 information that causes controller, 39, to execute particular preprogrammed transfer-to-205 instructions. Said instruc- 45 tions cause controller, 39, to transfer to SPAM-controller, 205C, the SPAM message associated with the particular information at SPAM-header memory. Automatically, said instructions cause controller, 39, to activate the output port that outputs to SPAM-controller, 205C, then compare said 50 information at SPAM-header memory to preprogrammed header-identification information. Automatically, controller, 39, determines that said information matches particular "01" information. Said match causes controller, 39, automatically to execute particular transfer-a-01-or-an-11-header-message 55 instructions.

A "01" header distinguishes a message that contains lowest priority information. Any given instance of a message with a "01" header ends with an end of file signal. Accordingly, said instructions cause controller, 39, to transfer, from the start of 60 said message, all information received from said valve until said valve detects and transfers the information of an end of file signal. Automatically controller, 39, commences transferring said binary information, starting with said first H bits and transferring said information in its order after conversion, 65 signal word by signal word, as said binary information is outputted by said EOFS valve. In due course, the EOFS valve

50

of controller, **39**, receives the last signal word of the information segment of said first message. To satisfy the final rule of message composition cited above, said word, being an instance of a final signal word preceding an end of file signal, contains MOVE bit information and is not an EOFS WORD. Said valve transfers said word which causes controller, **39**, to transfer said word to SPAM-controller, **205**C. (When said valve receives information of the next signal word after said word, the information of the EOFS WORD Counter of said valve is "00000000" because said word contained MOVE bit information.)

Immediately after embedding and transmitting said last word, the aforementioned program originating studio that is the original transmission station of the programming of "One Combined Medium" generates and embeds an end of file signal in said programming and transmits said signal. More precisely, said studio generates, embeds, and transmits eleven consecutive EOFS WORDs of binary information.

Receiving said first EOFS WORD causes said valve to place information of said WORD at the EOFS Word Evaluation Location of said valve and to compare the information at said Location to the EOFS WORD at the EOFS Standard Word Location of said valve. A match results, causing said valve, in the fashion described above, to increase the value of the information at said EOFS WORD Counter by an increment of one from "00000000" to "00000001". Automatically said valve determines, in the fashion described above, that the "00000001" at said EOFS WORD Counter does not match the "00001011" at said EOFS Standard Length Location which causes said valve to cause the apparatus that inputs signal words to said valve to transfer to said valve the next signal word of said message.

In this fashion, said valve processes sequentially the inputted information of each of the next ten EOFS WORDs, each time increasing the value of the information at said EOFS WORD Counter by an increment of one. When, in the course of the word evaluation sequence of the eleventh and last EOFS WORD, said valve so increases said value, the information at said Counter is "00001011". Automatically said valve determines that said "00001011" matches the "00001011" at said EOFS Standard Length Location which causes said valve to execute the complete-signal-detected instructions described above in "Detecting End of File Signals." Said instructions cause said valve to initiate the transmission of the aforementioned EOFS-signal-detected information to the CPU of controller, 39, as an interrupt signal then to wait for a control instruction from controller, 39, before processing inputted information further.

Receiving said EOFS-signal-detected information at said CPU causes controller, 39, to determine, in a predetermined fashion, that said end of file signal is part of a SPAM message being transferred under control of instructions invoked by transfer-to-addressed-apparatus information. Said determining causes controller, 39, automatically to transmit the aforementioned transmit-and-wait instruction to said valve which causes said valve to transfer one complete end of file signal (which signal is automatically transferred by controller, 39, to SPAM-controller, 205C). Automatically, said valve outputs, sequentially, the binary information of eleven instances of an EOFS WORD; then sets the information at said EOFS WORD Counter to "00000000"; initiates transmission of the aforementioned complete-and-waiting information to the CPU of controller, 39, as an interrupt signal; and commences waiting for a control instruction from controller, 39, before processing next inputted information. In so doing, controller, 39, transfers an end of file signal as a part of said first message

and ensures that apparatus to which said message is transferred receive all cadence information necessary to process said message.

Having transferred the binary information of said first message, controller, 39, prepares all apparatus of decoder, 203, as 5 required, to receive the next instance of SPAM message information. Automatically, controller, 39, deactivates all output ports; compares the information at said SPAM-header register memory to particular preprogrammed cause-retention-ofexec information that is "01" and determines a match which causes controller, 39, to transfer information of said information at SPAM-exec register memory to particular SPAM-last-01-header-exec register memory (thereby placing information of the execution segment of the first combining synch command at said SPAM-last-01-header-exec memory); then 15 causes all apparatus of decoder, 203, to delete from memory all information of said binary information except information at said SPAM-last-01-header-exec memory. Then, after receiving said complete-and-waiting information, controller, **39.** transmits particular reopen-flow instructions that cause 20 said EOFS valve to recommence processing and transferring inputted signal words in its preprogrammed fashion, and controller, 39, commences waiting to receive from said valve the binary information of a subsequent SPAM header.

(If said information at SPAM-exec memory had failed to 25 match any controlled-function-invoking information at the aforementioned comparing, said failure to match would have signified that the subscriber station of FIG. 3 did not have capacity to execute the controlled function of said command. Whenever comparing execution segment information of any 30 given command to preprogrammed controlled-function-invoking information at any given subscriber station SPAM apparatus results in a failure to match, said failure to match causes said apparatus to discard all received information of the message of said execution segment. In the case of a "01" 35 header message such as said first message, said apparatus discards all received information, except information at register memory, until the EOFS valve of said apparatus, operating in the aforementioned fashion, transfers said EOFSsignal-detected information to the CPU of said apparatus. 40 Said apparatus discards said information, in a fashion described more fully below, by placing each successively received signal word at a particular memory location, and in so doing, overwriting and obliterating the information of the prior signal word. Then receiving said EOFS-signal-detected 45 information causes said apparatus to transmit the aforementioned discard-and-wait instruction to said valve causing said valve, in its preprogrammed discard-and-wait fashion, to discard all information of the end of file signal of said message, set the information of the EOFS WORD Counter of said valve 50 to "00000000", then transmit said complete-and-waiting information to said apparatus. Said complete-and-waiting information causes said apparatus to perform all functions performed by controller, 39, in the foregoing paragraph.)

At SPAM-controller, **205**C, of the subscriber station of 55 FIG. **3** (and at SPAM-controllers, **205**C, of URS microcomputers, **205**, at other subscriber stations), receiving said transferred binary information of the first message causes all apparatus automatically to process the information of said message in the preprogrammed fashions of said apparatus.

Automatically the EOFS valve of SPAM-controller, 205C, commences processing and transferring said information until an end of file signal is detected.

Receiving the header and execution segment of said first message causes SPAM-controller, 205C, to determine the 65 controlled function or functions that said message instructs URS microcomputers, 205, to perform and to execute the

52

instructions of said functions. Automatically, as said valve transfers information, SPAM-controller, 205C, selects the first H converted bits of said information and records said bits at particular SPAM-header-@205 register memory, then determines that said information at SPAM-header-@205 memory (which is the "01" header of the first message) does not match particular 11-header-invoking-@205 information that is "11". Not resulting in a match causes controller, 39, automatically to select the next X bits of said transferred binary information and record said bits at particular SPAMexec-@205 register memory. Automatically SPAM-controller, 205C, compares the information at said SPAM-exec-@205 memory (which information is the execution segment of the first combining synch command) with preprogrammed controlled-function-invoking-@205 information. Said comparing results in a match with particular execute-at-205 information that causes SPAM-controller, 205C, to invoke particular preprogrammed load-run-and-code instructions that control the loading of particular binary information at the main RAM of microcomputer, 205; the running of the information so loaded; and the placing of particular identification code information at particular SPAM-controller memory. Said binary information that is loaded and run is the information that begins at the first bit of the information segment that follows said X bits, continues through the last bit of said segment, and is, in the "One Combined Medium" application, the information of said program instruction set. Automatically, SPAM-controller, 205C, executes said load-run-andcode instructions.

(No change takes place between controller, 39, and SPAMcontroller, 205C, in the information of the execution segment of the first combining synch command. Thus the binary image of the particular controlled-function-invoking information that said information matches at controller, 39—more precisely, the aforementioned particular this-message-addressed-to-205 information—is identical to the binary image of the particular controlled-function-invoking-@205 information that said information matches at SPAM-controller, 205C—said particular execute-at-205 information. While said this-message-addressed-to-205 information and said execute-at-205 information are identical in image, they bear different names in this specification because they invoke different controlled functions. This is but one of many instances in this specification where a given SPAM command invokes different controlled functions at different apparatus because the apparatus are preprogrammed differently.)

To load and run said information, SPAM-controller, 205C, must locate the position, in said transferred binary information, of said first bit and said last bit. Under control of said load-run-and-code instructions, SPAM-controller, 205C, compares the information at said SPAM-header-@205 memory with particular preprogrammed header-identification-@205 information and determines that said information at memory matches particular "01" information. In other words, to locate said first bit, SPAM-controller, 205C, must process the command information of an "01" header message including the length token of a meter-monitor segment.

Under control of said load-run-and-code instructions, said match causes SPAM-controller, **205**C, automatically to execute particular preprogrammed process-length-token-@205 instructions. Automatically, said instructions cause SPAM-controller, **205**C, to select a third preprogrammed constant number of next bits and record said bits at particular memory. Said third constant number is the particular number of bits in an instance of SPAM meter-monitor format field length token information. (Hereinafter, said third constant number is called "L".) Beginning with the bit of said trans-

ferred binary information immediately after the last of said X bits, SPAM-controller, 205C, selects L bits and records said bits, in their order after conversion, at particular SPAMlength-info-@205 register memory. Automatically SPAMcontroller, 205C, compares the information at said SPAM- 5 length-info-@205 memory with preprogrammed tokencomparison-@205 information and determines that said information at memory matches particular token-comparison-@205 information (which particular information is called, hereinafter, "W-token information"). Said match causes SPAM-controller, 205C, to place particular preprogrammed bit-length-number information at said SPAMlength-info-@205 memory. (Said particular bit-length-number information is called, hereinafter, "w-bits information".) Said information is the precise number of bits, following the 15 last of said L bits, that remain in the meter-monitor segment of the command associated with said length token. Said number is not a preprogrammed constant value such as H, X, and L that is the same for every SPAM command with a metermonitor segment. Rather, said number is a variable that may 20 differ from one SPAM meter-monitor segment to the next. More precisely, it is, for any given meter-monitor segment, a selected one of several preprogrammed bit-length-number information alternatives. (Hereinafter, the number of the particular selected bit-length-number alternative associated with 25 any given length token is called "MMS-L" to signify that said number is L bits less than the number bits in the metermonitor segment in which said length token occurs.)

Having executed said process-length-token-@205 instructions and continuing under control of said load-run-and-code 30 instructions, automatically SPAM-controller, 205C, adds L to the information (of MMS-L) at said SPAM-length-info-@205 memory and, in so doing, determines the exact number of bits in the meter-monitor segment of said command (which is also the exact number of bits from the first bit after the last 35 of said X bits to the last bit of said command). (Hereinafter, the exact number of bits in any given meter-monitor segment is called, "MMS".) Then SPAM-controller, 205C, causes information of the first MMS bits of said transferred binary information that begin immediately after the last of said X bits 40 to be stored at particular MMS-memory of SPAM-controller, 205C. In so doing, SPAM-controller, 205C, retains information of the meter-monitor segment of said first message. Then, automatically, SPAM-controller, 205C, executes particular preprogrammed instructions, including assess-padding-bit- 45 @205 instructions, that are described more fully elsewhere in this specification and that cause said SPAM-controller, 205C, to identify the particular signal word, associated with the command information of said first message, that is the last signal word before the first signal word of the information 50 segment of said message.

Then SPAM-controller, 205C, commences loading information at the main RAM of microcomputer, 205. Automatically, under control of said load-run-and-code instructions, SPAM-controller, 205C, instructs microcomputer, 205, to 55 commence receiving information from SPAM-controller, 205C, and loading said information at particular main RAM, in a fashion well known in the art. Automatically SPAM-controller, 205C, commences transferring information to microcomputer, 205, beginning with said selected signal 60 word. Automatically, as microcomputer, 205, receives said information, microcomputer, 205, loads said information at particular main RAM.

In due course, the EOFS valve of SPAM-controller, **205**C, receives the aforementioned last signal word of the information segment of said first message, which is the last signal word of said program instruction set, and transfers said word

54

which causes SPAM-controller, 205C, to transfer said word to microcomputer, 205, and microcomputer, 205, to load said word at said RAM. (After transferring said word, the information of the EOFS WORD Counter of said valve is "00000000".)

Then said valve commences receiving information of the eleven EOFS WORDs sequentially outputted by the EOFS valve of controller, 39, which information constitutes the end of file signal in said transferred binary information. Receiving the first EOFS WORD of said eleven causes the EOFS valve of SPAM-controller, 205C, to commence retaining information of said WORD in the fashion described above. Said retaining causes SPAM-controller, 205C, to stop transferring information to microcomputer, 205, and microcomputer, 205, to stop loading information at said RAM. As said valve receives all said EOFS WORD information, said valve detects said end of file signal just as the EOFS valve of controller, 39, detected the end of file signal in the binary information inputted to said valve. When, in the course of the word evaluation sequence of the eleventh and last EOFS WORD in said information, the EOFS valve of SPAM-controller, 205C, determines that the information at the EOFS WORD Counter of said valve matches the information at the EOFS Standard Length Location of said valve, said valve initiates the transmission of the aforementioned EOFS-signal-detected information to the CPU of SPAM-controller, 205C, as an interrupt signal and commences waiting for a control instruction from said CPU.

Receiving said EOFS-signal-detected information at said CPU while under control of said load-run-and-code instructions causes SPAM-controller, 205C, to cease loading and execute the remainder of said load-run-and-code instructions. Automatically SPAM-controller, 205C, causes microcomputer, 205, to cease loading information at said RAM and execute the information so loaded as so-called "machine executable code" of one so-called "job." Because information of said end of file signal is no longer needed, said instructions cause SPAM-controller, 205C, to transmit the aforementioned discard-and-wait instruction to said valve. Said instruction causes said valve to set the information at said EOFS WORD Counter to "00000000" without transferring any information of said detected end of file signal; to initiate transmission of the aforementioned complete-and-waiting information to the CPU of SPAM-controller, 205C, as an interrupt signal; and to wait for a control instruction from SPAM-controller, 205C, before processing next inputted information.

Then SPAM-controller, 205C, commences executing the code portion of said load-run-and-code instructions. The instructions of said portion cause SPAM-controller, 205C, to compare the information at said SPAM-header memory to particular load-run-and-code-header information that is "01". A match results (which indicates that said first message contains meter-monitor information). Said match causes SPAMcontroller, 205C, to execute particular preprogrammed evaluate-meter-monitor-format instructions and locate-programunit instructions. Under control of said instructions and in a fashion that is described more fully below, SPAM-controller, 205C, locates the "program unit identification code" information in the information of the meter-monitor segment stored at said MMS-memory. Then said code portion instructions cause SPAM-controller, 205C, to place said code information at particular SPAM-first-precondition register memory. In so doing, SPAM-controller completes said loadrun-and-code instructions and completes the controlled functions executed by the execution segment information of said first message.

Having completed said controlled functions, automatically SPAM-controller, 205C, prepares to receive the next instance of SPAM message information. Automatically, SPAM-controller, 205C, compares the information at said SPAMheader-@205 register memory to particular preprogrammed 5 cause-retention-of-exec-@205 information that is "01" and determines a match which causes SPAM-controller, 205C, to transfer information of said information at SPAM-exec-@205 register memory to particular SPAM-last-01-headerexec-@205 register memory. Then SPAM-controller, 205C, causes all apparatus of SPAM-controller, 205C, to delete from memory all information of said transferred binary information except information at said SPAM-first-precondition and SPAM-last-01-header-exec-@205 memories. Finally, after receiving said complete-and-waiting information, 15 SPAM-controller, 205C, transmits particular instructions that cause said EOFS valve to commence processing and transferring inputted signal words, in its preprogrammed detecting fashion, and SPAM-controller, 205C, commences waiting to receive from said valve the binary information of a subse- 20 quent SPAM header.

As described in "One Combined Medium" above, loading and running said program instruction set causes microcomputer, 205, (and URS microcomputers, 205, at other subscriber stations) to place appropriate FIG. 1A image information at particular video RAM. In addition, running said set also causes microcomputer, 205, after completing placing said image information at said RAM, to transfer particular number-of-overlay-completed information and instructions to SPAM-controller, 205C. Said information and instructions cause SPAM-controller, 205C, to place the number "00000001" at particular SPAM-second-precondition register memory at SPAM-controller, 205C, signifying that said image information represents the first overlay of its associated video program.

(Had said information at SPAM-exec-@205 memory failed to match any execute-at-205 information at the aforementioned comparing, SPAM-controller, **205**C, would have discarded discard all received information of the message of said information at SPAM-exec-@205 in the fashion 40 described above.)

Operating S. P. Systems

Example #1

Second Message

Subsequently, the embedded information of the second message, which conveys the second combining synch command, is transferred from divider, 4, to decoder, 203.

In the same fashion that applied to the first message, receiving said embedded information causes the apparatus of decoder, 203, to detect, check, correct as necessary, and convert said information, into binary information of said second 55 message. Automatically the EOFS valve of controller, 39, processes and transfers said information, signal word by signal word.

As with the first message, receiving the header and execution segment of said second message causes controller, **39**, to 60 determine that said message is addressed to URS microcomputers, **205**, and to transfer said second message accordingly. Automatically, as said valve transfers said binary information, controller, **39**, selects the first H converted bits and records said bits, in their order after conversion, at said 65 SPAM-header register memory. Automatically controller, **39**, determines that the information at said memory (which is the

56

"00" header of the second combining synch command and signifies a SPAM command with a meter-monitor segment but no information segment) does not match said 11-headerinvoking information that is "11". Not resulting in a match causes controller, 39, automatically to select the next X bits of said binary information immediately after said H bits, the execution segment of the second combining synch command, and record said X bits, in their order after conversion, at said SPAM-exec register memory. Then, automatically, by comparing the information at said SPAM-exec memory with said controlled-function-invoking information, controller, 39, determines that said information at memory matches particular preprogrammed this-message-addressed-to-205 information that invokes said transfer-to-205 instructions. Automatically, controller, 39, executes said instructions; activates the output port that outputs to SPAM-controller, 205C; compares said information at SPAM-header memory to header-identification information; and determines that said information matches particular "00" information. (In other words, the header of said second message is "00".) Said match causes controller, 39, automatically to invoke particular preprogrammed transfer-a-00-header-message instructions.

A "00" header distinguishes a message that contains intermediate priority information but no lowest priority information. To identify the length and last bit of a "00" header message, controller, 39, must process length token information and may need to execute the aforementioned assess-padding-bit instructions to determine whether a full signal word of padding follows the last signal word in which command information occurs.

Automatically, said transfer-a-00-header-message instructions cause controller, 39, to execute particular preprogrammed process-length-token instructions. Said instructions cause controller, 39, to select the first L bits of said binary information immediately after the last of said X bits and record said selected bits, in their order after conversion, at particular SPAM-length-info register memory. Said L bits are the bits of the length token of said "00" header message. Automatically controller, 39, compares the information at said SPAM-length-info memory to preprogrammed tokencomparison information and determines that said information at memory matches particular X-token information. (Said X-token information is different token-comparison information from the W-token information matched by the lengthtoken of the first message of example #1.) Said match causes controller, 39, automatically to select particular preprogrammed x-bits information that is bit-length-number information associated on a one to one basis with said X-token information and to place said x-bits information at said SPAM-length-info memory. The numeric value of said x-bits information is the MMS-L, the precise number of bits, after the last of said L bits, that remain in the meter-monitor segment associated with said L bits.

Then said transfer-a-00-header-message instructions cause controller, 39, to execute particular preprogrammed determine-command-information-word-length instructions. Said instructions cause controller, 39, to add a particular preprogrammed constant number that is the sum of H plus X plus L to the x-bits information at said SPAM-length-info memory. (Hereinafter, said constant is called "H+X+L".) In so doing, controller, 39, determines the number of bits in the command information of said "00" header message. Then controller, 39, divides the numeric information at said memory by the number of bits in one signal word and stores the quotient of said dividing at said SPAM-length-info memory. By determining said quotient, controller, 39, determines the number of signal words in said command information. (Said quotient may be

an integer or a so-called "floating point number" that is a whole number plus a decimal fraction.)

Having determined said number of signal words, controller, 39, can determine whether or not the possibility exists that an instance of the aforementioned full signal word of padding 5 bits follows the last signal word of said number of signal words. If said command information fills a whole number of signal words plus a decimal fraction, the last signal word in which command information occurs is not completely filled by command information bits. Padding bits that are MOVE bits fill out said signal word, and no possibility exists that a full signal word of padding bits follows said signal word. On the other hand, if said command information fills a whole number of signal words exactly, the last signal word in which command information occurs is completely filled by com- 15 mand information bits. The possibility exists that said signal word may contain no MOVE bit information and that a full signal word of padding bits may follow said signal word.

To determine whether said possibility exists, said transfera-00-header-message instructions cause controller, 39, to 20 execute particular preprogrammed evaluate-end-condition instructions. In a fashion well known in the art, said instructions cause controller, 39, to identify the largest integer that is less than or equal to the information at said SPAM-lengthinfo memory and place information of said integer at particu- 25 lar working register memory. Then controller, 39, compares the information at said working memory to the information at said SPAM-length-info memory. (For the information of said largest integer to equal the information of said quotient means that said quotient is an integer, that said command information fills a whole number of signal words exactly, and that the possibility exists that a full signal word of padding bits does follow the last signal word in which command information occurs.) If the information at said working memory is equal to the information at said SPAM-length-info memory, said 35 instructions cause controller, 39, to place "0" information at particular SPAM-Flag-working register memory. Otherwise said instructions cause controller, 39, to place "1" information at said memory.

Then said transfer-a-00-header-message instructions cause 40 controller, 39, to execute particular preprogrammed calculate-number-of-words-to-transfer instructions. Automatically, controller, 39, compares the information at said SPAM-Flag-working memory to particular end-conditioncomparison information that is "0". (If the information at said 45 SPAM-Flag-working memory is "0", said command information fills a whole number of signal words exactly; said whole number is the integer information at said working memory; but the last signal word of command information must be evaluated to ascertain whether it contains MOVE bit infor- 50 mation.) Under control of said instructions, resulting in a match with said "0" information causes controller, 39, to subtract one (1) from the numeric value of the integer information at said working memory. (On the other hand, if the information at said SPAM-Flag-working memory is "1", said 55 command information only partially fills the last of a whole number of signal words exactly; MOVE bits fill the remainder of the last of said words; and said whole number is one greater than said largest integer information that is at said working memory.) Under control of said instructions, not resulting in 60 a match with said "0" information causes controller, 39, to add one to the numeric value of the integer information at said working memory.

Next said transfer-a-00-header-message instructions cause controller, **39**, to execute particular preprogrammed commence-transfer instructions. Said instructions cause controller, **39**, to transfer a particular number of signal words of said

58

command information, starting with the signal word in which the first of said first H bits occurs and transferring said information in its order after conversion, signal word by signal word. Said number is the numeric value of the integer information at said working memory.

Finally, said transfer-a-00-header-message instructions cause controller, **39**, to execute particular preprogrammed evaluate-padding-bits-? instructions that cause controller, **39**, to compare the information at said SPAM-Flag-working memory to particular continue-? information that is "0".

Not resulting in a match means that, under control of said commence-transfer instructions, controller, 39, has transferred all command information of said "00" header message and no possibility exists that a full signal word of padding bits ends said message. Accordingly, not resulting in a match causes controller, 39, to complete said transfer-a-00-header-message instructions.

On the other hand, resulting in a match means that controller, 39, has transferred all but the last signal word of command information, and said word must be evaluated to ascertain whether it contains MOVE bit information. Accordingly, resulting in a match causes controller, 39, to execute the aforementioned assess-padding-bit instructions. instructions cause controller, 39, to compare said last word to particular preprogrammed end?-EOFS-WORD information that is the information of one EOFS WORD. If no match results, said word is the last word of said message. Otherwise, one full signal word of padding bits follows said word and ends said message. Accordingly, when said last word is compared to said EOFS WORD information, not resulting in a match causes controller, 39, to transfer just said last signal word, but resulting in a match causes controller, 39, to transfer said last signal word then the signal word, in said binary information, that is immediately after said signal word. In so doing, controller, 39, transfers the complete binary information of the message of the instance of header information at said SPAM-header memory and completes said transfer-a-00-header-message instructions.

Two specific cases illustrate the operation of said transfera-00-header-message instructions. One focuses on the "00" header message of FIG. 2H. The other focuses on the message of FIG. 2K. In either case, the signal words are eight-bit bytes, H equals two, X equals six, L equals two, and H+X+L equals ten. In both cases, controller, 39, is preprogrammed with token-comparison information, including particular 01-token information that is "01" and is associated, on a one to one basis, with particular preprogrammed 01011-bits information that is the binary representation of eleven and particular 11-token information that is "11" and is associated, on a one to one basis, with particular preprogrammed 10110-bits information that is the binary representation of twenty-two. In both cases, when said instructions are invoked, information of the first H (that is, the first two) bits of the message being processed has been recorded at SPAM-header memory and information of the next X (that is the next six, the third through the eight bits) has been recorded at SPAM-exec memory. Thus said instructions process binary information that commences at the bit that is located immediately after the eighth bit of said message which eighth bit is the last of said X bits.

FIG. 2H shows one instance of a message that contains command information that fills a whole number of signal words plus a decimal fraction. Said command information fills two bytes plus five bits (that is, 2.625 bytes). Three padding bits that are MOVE bits have been added to the third byte of said message to fill out said byte.

When said transfer-a-00-header-message instructions are executed in the course of the processing of the message of FIG. 2H, said instructions cause processing to proceed in the following fashion.

Said process-length-token instructions are executed and 5 cause controller, 39, to select the first two bits of said binary information immediately after said eighth bit and record said bits at said SPAM-length-info memory. Said two bits are "01", the length-token of said message. (After said bits are recorded at said memory, the information at said memory is 10 "000000000000001".) Automatically controller, 39, commences comparing the information at said SPAM-length-info memory to said token-comparison information. In the course of said comparing, controller, 39, automatically places at particular working register memory said 01-token information that is "01". (After said information is placed at said memory, the information at said memory "000000000000001".) Automatically, controller, 39, compares the information at said SPAM-length-info memory to the information at said working memory, and a match results. 20 Said match causes controller, 39, automatically to select said 01011-bits information that is the binary representation of eleven and place said information at said SPAM-length-info memory. (Eleven, which is the numeric value of said 01011bits information, is the MMS-L of said message.)

Then automatically said determine-command-information-word-length instructions are executed. Said instructions cause controller, **39**, to add H+X+L, which is the binary representation of ten, to the information at said SPAM-length-info memory. In so doing, controller, **39**, places at said SPAM-length-info memory the numeric value of the number of bits in the command information of said message—twenty-one (which is eleven plus ten). Then controller, **39**, divides the numeric value information at said memory (twenty-one) by the number of bits in one byte (eight) and 35 stores the quotient of said dividing (which quotient is 2.625 and is stored in a floating point fashion) at said SPAM-length-info memory. In so doing, controller, **39**, determines that said command information occupies 2.625 bytes.

Next said evaluate-end-condition instructions are 40 executed. Said instructions cause controller, **39**, to identify the integer two (2) as the largest integer that is less than or equal to the 2.625 information that is at said SPAM-length-info memory and to place binary information of said integer, two (2), at said working register memory. Automatically controller, **39**, compares said two (2) information at working memory to said 2.625 information at SPAM-length-info memory. Because the information at said working memory is not equal to the information at said SPAM-length-info memory, controller, **39**, automatically places "1" information at said SPAM-Flag-working register memory.

Then said calculate-number-of-words-to-transfer instructions are executed. Automatically, controller, **39**, compares the information at said SPAM-Flag-working memory to said end-condition-comparison information that is "0", and no match results. (The fact that the information at said SPAM-Flag-working memory is "1", means that said command information only partially fills the last byte of said message, that MOVE bits fill the remainder of said byte, and that the number of bytes in said message is one greater than said integer information at said working memory.) Not resulting in a match causes controller, **39**, to add one (1) to the numeric value two (2) that is the information at said working memory, thereby increasing the numeric value of said information at working memory to three (3).

Next said commence-transfer instructions are executed. Said instructions cause controller, 39, to transfer three (3)

60

eight-bit bytes (which three (3) is the numeric value of the integer information at said working memory) of binary information, starting with the byte in which the first bit of said message occurs and transferring said information in its order after conversion, byte by byte. In so doing, controller, 39, transfers all information of said message to the addressed apparatus of said message.

Finally, said evaluate-padding-bits-? instructions are executed and cause controller, **39**, to compare the "1" information at said SPAM-Flag-working memory to said continue-? information that is "0", and no match results. Not resulting in a match causes controller, **39**, to complete said transfer-a-00-header-message instructions.

In this fashion, said transfer-a-00-header-message instructions cause controller, **39**, to transfer the message of FIG. **2**H to the addressed apparatus of said message.

By contrast, the second illustrative case of FIG. 2K shows a message that contains command information that fills a whole number of signal words exactly and is followed by a full signal word of padding bits. The command information of said message fills four bytes. The last of said bytes contains only EOFS bits and is an EOFS WORD. Accordingly said last byte is followed by one full byte of padding bits which one byte is the fifth and last byte of said message.

Said transfer-a-00-header-message instructions cause the message of FIG. **2K**, to be processed in the following fashion.

Said process-length-token instructions cause controller, 39, to select the ninth and tenth bits of said binary information and record said bits at said SPAM-length-info memory. Said two bits are the "11" length-token of said message, and after said bits are so recorded, the information at said memory is "000000000000011". Automatically controller, 39, commences comparing said information at SPAM-length-info memory to said token-comparison information. Automatically controller, 39, places said 11-token information that is "11" at said working register memory, after which the information at said memory is "00000000000011". Automatically, controller, 39, compares said information at SPAMlength-info memory to said information at said working memory, and a match results. Said match causes controller, 39, automatically to select said 10110-bits information that is the binary representation of twenty-two and place said information at said SPAM-length-info memory. (Twenty-two, which is the decimal equivalent value of said 10110-bits information, is the MMS-L of said message.)

Then said determine-command-information-word-length instructions cause controller, 39, to add H+X+L, which is the binary representation of ten, to the information at said SPAM-length-info memory, making the information at said SPAM-length-info memory the binary representation of thirty-two. Then controller, 39, divides information at said memory (thirty-two) by the number of bits in one byte (eight) and stores the quotient of said dividing (which quotient is 4 and is stored in an integer fashion) at said SPAM-length-info memory. In so doing, controller, 39, determines that said command information occupies 4 bytes exactly.

Next said evaluate-end-condition instructions cause controller, 39, to identify the integer four (4) as the largest integer that is less than or equal to the 4 information at said SPAM-length-info memory and to place binary information of said integer, four (4), at said working register memory. Automatically controller, 39, determines that said four (4) information at working memory matches said 4 information at SPAM-length-info memory. Said match causes controller, 39, automatically to place "0" information at said SPAM-Flag-working register memory.

Then said calculate-number-of-words-to-transfer instructions cause controller, 39, to determine that the information at said SPAM-Flag-working memory matches said end-condition-comparison information that is "0". Said match causes controller, 39, to subtract one (1) from the numeric value, four (4), that is the information at said working memory, thereby decreasing the numeric value of said information at working memory to three (3).

Next said commence-transfer instructions cause controller, 39, to transfer three (3) eight-bit bytes (which three (3) is the 10 numeric value of the integer information at said working memory) of binary information, starting with the byte in which the first bit of said message occurs and transferring said information in its order after conversion, byte by byte. In so doing, controller, 39, transfers all but the last byte of command information. Controller, 39, transfers the first, second, and third bytes. But the fourth byte, which is said last byte, remains untransferred.

Finally, said evaluate-padding-bits-? instructions cause controller, **39**, to determine that the "0" information at said 20 SPAM-Flag-working memory matches said continue-? information that is "0". Resulting in a match causes controller, **39**, to execute said assess-padding-bit instructions. Said instructions cause controller, **39**, to compare said last byte to said end-? EOFS WORD information. Because the fourth byte of the message of FIG. **2**K is an EOFS WORD, a match results. Said match means that a full byte of padding bits follows said last byte of command information. Said match causes controller, **39**, to transfer two bytes of binary information which bytes are the fourth and fifth bytes of said message (which 30 fifth byte is the last signal word of said message). Then said instructions cause controller, **39**, to complete said transfer-a-00-header-message instructions.

In this fashion, said transfer-a-00-header-message instructions cause controller, **39**, to transfer the message of FIG. **2**K 35 to the addressed apparatus of said message.

In applicable fashions of said transfer-a-00-header-message instructions, controller, **39**, transfers to SPAM-controller, **205**C, the complete binary information of the message that contains the second combining synch command.

When controller, 39, completes said transfer-a-00-header-message instructions, automatically controller, 39, prepares all apparatus of decoder, 203, to receive a next SPAM message. Controller, 39, deactivates all output ports; determines that the information at said SPAM-header register memory does not match said cause-retention-of-exec information that is "11"; causes all apparatus of decoder, 203, to delete from memory all information of said binary information; then commences to wait for the binary information of a subsequent SPAM header.

At SPAM-controller, 205C, (and at the SPAM-controllers, 205C, of other URS microcomputers, 205), receiving the transferred binary information of said second message causes all apparatus automatically to process the information of said message in their preprogrammed fashions.

Automatically the EOFS valve of SPAM-controller, 205C, processes said information and transfers said information, signal word by signal word.

Receiving the header and execution segment of said second message causes SPAM-controller, **205**C, to determine the 60 controlled function or functions that said message instructs URS microcomputers, **205**, to perform and to execute the instructions of said functions. Automatically, as said valve transfers information, SPAM-controller, **205**C, selects the H first converted bits of said information, records said bits at 65 said SPAM-header-@205 register memory, and determines that the information at said memory (which is the "00" header

62

of said second message) does not match said 11-header-invoking-@205 information. No match results which causes controller, 39, automatically to select the next X bits of said transferred binary information and record said bits at particular SPAM-exec-@205 register memory. Automatically SPAM-controller, 205C, compares the information at said SPAM-exec-@205 memory with said controlled-function-invoking-@205 information. Said comparing results in a match with particular execute-conditional-overlay-at-205 information that causes SPAM-controller, 205C, to execute particular preprogrammed conditional-overlay-at-205 instructions.

Said instructions cause SPAM-controller, 205C, to execute "GRAPHICS ON" at the PC-MicroKey System of microcomputer, 205, if particular specified conditions are satisfied. To satisfy said conditions, the instance of image information at the video RAM of microcomputer, 205, (FIG. 1A) must be relevant to particular broadcast video programming transmitted immediately after the instance of broadcast programming in which said second message is embedded (FIG. 1B). More precisely, particular program unit and overlay number information specified for each instance must match. In the metermonitor segment of the second combining synch command, said command conveys specified unit and number information for said instance of broadcast programming. If, in a fashion described below, said specified information matches particular other unit and number information, said conditional-overlay-at-205 instructions cause SPAM-controller, 205C, so to execute "GRAPHICS ON". Accordingly, said second command is one example of a specified condition command.

In order to determine whether said specified information matches said other information, SPAM-controller, 205C, must locate said specified information. More precisely, SPAM-controller, 205C, must locate two particular information fields of the meter-monitor segment of said second command. One is the program unit field whose information identifies uniquely the program unit of said "Wall Street Week" program. The other is the overlay number field whose information identifies uniquely the particular one of the overlays of said program that said command specifies and causes to be overlayed.

To locate said information, said conditional-overlay-at-205 instructions cause SPAM-controller, 205C, to execute the aforementioned evaluate-meter-monitor-format instructions. (Because said conditional-overlay-at-205 instructions are executed only by SPAM commands with "00" headers, comparing information at said SPAM-header-@205 memory with header-identification-@205 information is unnecessary.) Said evaluate-meter-monitor-format instructions cause SPAM-controller, 205C, to select particular bits at particular predetermined locations in said transferred binary information and record said bits at particular SPAM-format register memory. Said bits are the bits of the meter-monitor format field of said command. Then, automatically, by comparing the information at said SPAM-format memory with preprogrammed format-specification information, SPAM-controller, 205C, determines that said information at memory matches particular information that invokes particular process-this-specific-format instructions. Automatically SPAMcontroller, 205C, executes said instructions, and said instructions cause one particular offset-address number to be placed at particular SPAM-mm-format-@205 register memory at SPAM-controller, 205C. Said number specifies the address/ location at the RAM of SPAM-controller, 205C, of the first bit of information that identifies the specific format of the metermonitor segment of said second command.

Then said conditional-overlay-at-205 instructions cause SPAM-controller, 205C, to execute the aforementioned locate-program-unit instructions. Making reference to the information at said SPAM-mm-format memory, said instructions cause SPAM-controller, 205C, to selects two particular 5 preprogrammed binary numbers located at said RAM at two particular predetermined program-unit distances from said address/location and places said numbers, respectively, at the aforementioned first- and second-working register memories. Said numbers are respectively (1) the bit distance from the 10 first bit of said transferred binary information to the first bit of said program unit field and (2) the bit length of said program field. Automatically SPAM-controller, 205C, selects particular information that begins at a bit distance after the first bit of said binary information, which bit distance is equal to the 15 information at said first-working memory, and that is of a bit length equal to the information at said second-working memory. SPAM-controller, 205C, places said selected information at said first-working memory (thereby overwriting and obliterating the information previously there). In so 20 SPAM-controller, 205C, to compare the information at said doing, SPAM-controller, 205C, selects from the bits of said transferred binary information and records at said first-working memory the information of said program unit field.

Then said conditional-overlay-at-205 instructions cause SPAM-controller, 205C, to compare the information at said 25 first-working memory, which is the unique "program unit identification code" that identifies the program unit of said "Wall Street Week" program, to the information at the aforementioned SPAM-first-precondition register memory, which is the same unique code (having been transmitted to SPAM- 30 controller, 205C, in the program unit field of the meter-monitor segment of the first combining synch command and so selected and recorded at said register memory under control of said evaluate-meter-monitor-format instructions and said locate-program-unit instructions when said instructions were 35 executed by said load-run-and-code instructions in the course of the processing of said first message). A match results (which indicates that SPAM-controller, 205C, executed said load-run-and-code instructions under control of said first

(At any subscriber station where information at first-working register memory fails to match information at SPAMfirst-precondition register memory [indicating that the SPAM-controller, 205C, had not executed said instructions], said failing to match causes the SPAM-controller, 205C, of 45 said station to execute particular preprogrammed instructions that cause the microcomputer, 205, of said station to clear all SPAM information from main and video RAMs and commence waiting for subsequent control instructions. Then the preprogrammed instructions of said SPAM-controller, 205C, 50 cause SPAM-controller, 205C, to discard all information of transferred binary information of said second message and commence waiting for the binary information of a subsequent SPAM header.)

At the subscriber station of FIG. 3, said match of information at said first-working memory and information at SPAMfirst-precondition memory, causes SPAM-controller, 205C, to continuing executing particular conditional-overlay-at-205 instructions. Said instructions cause SPAM-controller, 205C, to execute particular preprogrammed locate-overlay- 60 number instructions. Making reference to the information at said SPAM-mm-format memory, said instructions cause SPAM-controller, 205C, to selects two particular preprogrammed binary numbers located at said RAM at particular predetermined overlay-number distances from said address/ 65 location and places said numbers, respectively, at said first-an second-working register memories. Said numbers are respec64

tively (1) the bit distance from the first bit of said transferred binary information to the first bit of said overlay number field and (2) the bit length of said overlay field. Automatically SPAM-controller, 205C, selects particular information that begins at a bit distance after the first bit of said binary information, which bit distance is equal to the information at said first-working memory, and that is of a bit length equal to the information at said second-working memory. SPAM-controller, 205C, places said selected information at said first-working memory (thereby overwriting and obliterating the information previously there). In so doing, SPAM-controller, 205C, selects from the bits of said transferred binary information and records at said first-working memory the information of said overlay number field. (After the information of said overlay field is placed at said memory, the information at said memory is "00000001".)

Then said conditional-overlay-at-205 instructions cause first-working memory to the "00000001" information at the aforementioned SPAM-second-precondition memory. A match results (indicating that microcomputer, 205, has completed placing appropriate FIG. 1A image at video RAM).

(At any subscriber station where information at first-working register memory fails to match information at SPAMsecond-precondition memory [indicating that the microcomputer, 205, has failed to complete so placing information at video RAM], said failing to match causes the SPAM-controller, 205C, of said station to execute particular preprogrammed instructions that cause said SPAM-controller, 205C, to interrupt the operation of the CPU of said microcomputer, 205, in an interrupt fashion well known in the art, and transmit particular restore-efficiency instructions to said CPU that include information of the information at said firstworking memory and that cause said microcomputer, 205, in 40 a preprogrammed fashion discussed more fully below, to restore efficient operation.)

At the subscriber station of FIG. 3 (and at URS microcomputers, 205, at other subscriber stations where information at first-working memory matches information at SPAM-second-precondition memory), said match causes SPAM-controller, 205C, to continue executing particular conditionaloverlay-at-205 instructions at a particular instruction. Said instruction causes SPAM-controller, 205C, to execute "GRAPHICS ON" at said PC-MicroKey System. In so doing, SPAM-controller, 205C, completes said conditional-overlayat-205 instructions and the controlled functions of the second combining synch command.

Having completed said controlled functions, automatically SPAM-controller, 205C, prepares to receive the next instance of SPAM message information. Automatically, SPAM-controller, 205C, determines that the information at said SPAMheader-@205 register memory does not match said causeretention-of-exec information that is "01"; causes all apparatus of SPAM-controller, 205C, to delete from memory all information of said transferred binary information; and commences waiting to receive the binary information of a subsequent SPAM header.

In the foregoing fashion and as described in "One Combined Medium" above, said transferred information of the second combining synch command causes microcomputer,

205, to combine the programming of FIG. 1A and of FIG. 1B and transmit said combined programming to monitor, 202M, where FIG. 1C is displayed.

Operating S. P. Systems

Example #1

Third Message

Subsequently, the embedded information of the third message, which conveys the third combining synch command, is transferred from divider, 4, to decoder, 203.

In the same fashion that applied to the first and second messages, receiving said embedded information causes decoder, **203**, automatically to detect, check, correct as necessary, convert said information into binary information of said third message; to process and transfer said binary information at the EOFS valve of controller, **39**; and then to process the header and execution segment information in said binary information at controller, **39**.

Receiving said header and execution segment information causes controller, 39, to determine that said message is addressed to URS microcomputers, 205, and to transfer said message accordingly. Receiving the first H converted bits of said binary information from said valve causes controller, 39, to select and record said H bits (the "10" header of the third combining synch command which designates a SPAM command with only an execution segment) at said SPAM-header register memory then determine that the information at said SPAM-header memory does not match said "11" information. Not resulting in a match causes controller, 39, to process the next X received bits as the execution segment of a SPAM command. Receiving the next X bits of said binary information from said valve causes controller, 39, to select and record said next X bits (the execution segment of the third combining synch command) at said SPAM-exec register memory, compare the information at said SPAM-exec memory to said controlled-function-invoking information, determine that 40 said information at memory matches particular preprogrammed this-message-addressed-to-205 information that invokes the aforementioned transfer-to-205 instructions, and execute said instructions. Automatically controller, 39, activates the output port that outputs to SPAM-controller, 205C; compares said information at SPAM-header memory to said header-identification information; and determines that said information at memory matches particular "10" information. Said match causes controller, 39, automatically to execute particular preprogrammed transfer-a-10-header-message

A "10" header distinguishes a message that is constituted only of first priority segments. At any given time, any given instance of "10" header message command information is of one constant binary length—the aforementioned header+ exec constant length. (Hereinafter, said length is called "H+X" and is the sum of H plus X.) No length token information is processed, but it may be necessary to execute the aforementioned assess-padding-bit instructions to determine whether a full signal word of padding follows the last signal word in which command information occurs.

Said transfer-a-10-header-message instructions transfer a "10" header message by executing many of the preprogrammed instructions executed by the aforementioned transfer-a-00-header-message instructions that controlled the 65 transferring of the "00" header second message of example #1.

66

Because length token information is not processed, said transfer-a-10-header-message instructions do not cause execution of said process-length-token instructions.

Because each instance of "10" header message command information is of said one constant binary length, H+X, said transfer-a-10-header-message instructions do not cause execution of said determine-command-information-word-length instructions. Instead, said transfer-a-10-header-message instructions include particular preprogrammed 10-header-word-length information that is described more fully below.

Just as with "00" header messages, the possibility can exist that a full signal word of padding bits may follow the last signal word of command information of a "10" header message. If H+X bits of binary information fill a whole number of signal words plus a decimal fraction, the last signal word of command information of any given instance of a "10" header message is not completely filled by command information bits. Padding bits that are MOVE bits fill out said word, and no possibility exists that a full word of padding bits follows said word. But if H+X bits fill a whole number of signal words exactly, the last signal word of command information is completely filled by command information bits. Said word may contain no MOVE bit information, and a full signal word of padding bits may follow said word.

Because each instance of "10" header message command information is of said one length, said transfer-a-10-header-message instructions do not cause execution of said evaluate-end-condition instructions to determine whether said possibility exists. Instead, said transfer-a-10-header-message instructions include particular preprogrammed 10-header-end-condition information. At those times when H+X bits of binary information fill a whole number of signal words exactly, said information is the binary value of zero. At all other times, said information is the binary value of one.

Likewise, because each instance of "10" header message command information is of said one length, said transfer-a-10-header-message instructions do not cause execution of said calculate-number-of-words-to-transfer instructions. Instead, at any given time said 10-header-word-length information is preprogrammed number information that applies to every instance of "10" header message information. At those times when H+X bits of binary information fill an integer number of signal words exactly and a full signal word of padding bits may follow the last signal word in which command information occurs, said 10-header-word-length information is, itself, and integer that equals said integer number minus one. In the preferred embodiment where signal words are eight-bit bytes said 10-header-word-length information equals (H+X/8)-1. At those times when H+X bits of binary information do not fill a whole number of signal words exactly and the quotient of H+X divided by the number of bits in a signal word is a whole number plus a decimal fraction, said 10-header-word-length information equals the smallest integer larger than said quotient.

The first set of preprogrammed instructions that said transfer-a-10-header-message instructions and said transfer-a-00-header-message instructions have in common are said commence-transfer instructions. But before said transfer-a-10-header-message instructions can execute said commence-transfer instructions, said 10-header-word-length information and said 10-header-end-condition information must be at particular locations. Accordingly, when executed said transfer-a-10-header-message instructions cause controller, 39, to place information of said 10-header-word-length information at the aforementioned particular working

register memory and information of said 10-header-end-condition information at the aforementioned SPAM-Flag-working register memory.

Next said transfer-a-10-header-message instructions cause controller, 39, to execute said commence-transfer instructions. Said instructions cause controller, 39, to transfer a particular number of signal words of said command information, starting with the signal word in which the first of said first H bits occurs and transferring said information in its order after conversion, signal word by signal word. Said number is the numeric value of the integer information at said working memory.

Finally, said transfer-a-10-header-message instructions cause controller, **39**, to execute said evaluate-padding-bits-? instructions that cause controller, **39**, to compare the information at said SPAM-Flag-working memory to said continue-? information that is "0".

Not resulting in a match means that the last signal word in which command information occurs contains at least one MOVE bit of padding and that said 10-header-word-length 20 information is the length of every instance of a "10" header message. Accordingly, not resulting in a match causes controller, 39, to end execution of said transfer-a-10-header-message instructions.

On the other hand, resulting in a match means that control- 25 ler, 39, has transferred all but the last signal word of command information, and said word must be evaluated to ascertain whether it contains MOVE bit information. Accordingly, resulting in a match causes controller, 39, to execute said assess-padding-bit instructions. Said instructions cause con- 30 troller, 39, to compare said last word to said end-?-EOFS-WORD information. If no match results, said word is the last word of said message. Otherwise, one full signal word of padding bits follows said word and ends said message. Accordingly, not resulting in a match causes controller, 39, to 35 transfer just said last signal word, but resulting in a match causes controller, 39, to transfer said last signal word then the signal word, in said binary information, that is immediately after said signal word. In so doing, controller, 39, transfers the complete binary information of the message of the instance of 40 header information at said SPAM-header memory and completes said transfer-a-10-header-message instructions.

The case of the "10" message of FIG. 2J illustrates the operation of said transfer-a-10-header-message instructions. As with the "00" messages of FIG. 2H and FIG. 2K, signal 45 words are eight-bit bytes, H equals two, and X equals six. Hence, H+X equals eight. Accordingly, controller, 39, is preprogrammed with 10-header-word-length information that is integer information of (8/8)–1. More precisely, said 10-header-word-length information is integer information of 50 zero. And because H+X bits of binary information fill a whole number of signal words exactly, controller, 39, is preprogrammed with 10-header-end-condition information that is the binary value of zero.

Like FIG. 2K, FIG. 2J shows a message that contains 55 command information that fills a whole number of signal words exactly. The command information of said message fills one byte, and said byte is the last byte of said command information. As FIG. 2J shows, said last byte contains MOVE bit information. Accordingly said last byte is not followed by one full byte of padding bits. The one byte of said message is the last byte of said command information and the last byte of said message.

Said transfer-a-10-header-message instructions cause the message of FIG. **2J**, to be processed in the following fashion. 65

Executing said instructions causes controller, 39, to place information of said 10-header-word-length information at

68

said particular working register memory and information of said 10-header-end-condition information at said SPAM-Flag-working register memory. (After said 10-header-end-condition information is placed at said SPAM-Flag-working memory, the information at said memory may be "0" or "00000000".)

Next said commence-transfer instructions cause controller, 39, to transfer zero (0) eight-bit bytes (which zero (0) is the numeric value of the integer information at said working memory) of binary information. (In other words, controller, 39, transfers no information.) In so doing, controller, 39, transfers all but the last byte of command information. The one byte of said message, which is said last byte, remains untransferred.

Then said evaluate-padding-bits-? instructions cause controller, 39, to determine that the zero information at said SPAM-Flag-working memory matches said continue-? information that is "0". Resulting in a match causes controller, 39, to execute said assess-padding-bit instructions. Said instructions cause controller, 39, to compare said last byte to said end-?-EOFS-WORD information. Because the one byte of the message of FIG. 2J contains MOVE bit information, no match results. Not resulting in a match means that said one byte is the last byte of said message. Automatically, not resulting in a match causes controller, 39, to transfer one byte of binary information which byte is said one byte. Then said instructions cause controller, 39, to complete said transfer-a-10-header-message instructions.

In this fashion, said transfer-a-10-header-message instructions cause controller, **39**, to transfer the message of FIG. **2**J to the addressed apparatus of said message.

In applicable fashions of said transfer-a-10-header-message instructions, controller, **39**, transfers to SPAM-controller, **205**C, the complete binary information of the message that contains the third combining synch command.

When controller, 39, completes said transfer-a-10-header-message instructions, automatically controller, 39, prepares all apparatus of decoder, 203, to receive a next SPAM message. Controller, 39, deactivates all output ports; determines that the information at said SPAM-header register memory does not match said cause-retention-of-exec information that is "01"; causes all apparatus of decoder, 203, to delete from memory all information of said binary information; then commences to wait for the binary information of a subsequent SPAM header.

At SPAM-controller, **205**C, (and at the SPAM-controllers, **205**C, at other URS microcomputers, **205**), receiving the transferred binary information of said third message causes all apparatus automatically to process the information of said message in their preprogrammed fashions.

Automatically the EOFS valve of SPAM-controller, 205C, processes said information and transfers said information, signal word by signal word.

Receiving the header and execution segment of said third message causes SPAM-controller, 205C, to identify and execute the controlled function or functions that said message instructs URS microcomputers, 205, to perform. Receiving the first H converted bits of said transferred binary information from said valve causes SPAM-controller, 205C, to select and record said H bits at said SPAM-header-@205 register memory; determine that the information at said memory does not match said 11-header-invoking information; then process the next X received bits of said binary information as the execution segment of a SPAM command. Receiving said next X bits causes SPAM-controller, 205C, to select and record said X bits at said SPAM-exec-@205 register memory; compare the information at said memory with said controlled-

function-invoking-@205 information; determine that said information at memory matches particular cease-overlay information that causes SPAM-controller, 205C, to execute particular preprogrammed cease-overlaying-at-205 instructions; and execute said instructions.

Said instructions cause SPAM-controller, **205**C, to execute "GRAPHICS OFF" at said PC-MicroKey System then transmit a particular clear-and-continue instruction to the CPU of microcomputer, **205**, the function of which instruction is described more fully below. In so doing, SPAM-controller, 10 **205**C, completes said cease-overlaying-at-205 instructions.

(Because said cease-overlaying-at-205 instructions are executed only by SPAM commands with "10" headers, comparing information at said SPAM-header-@205 memory with header-identification-@205 information is unnecessary.)

Having completed the controlled functions of said second message, automatically SPAM-controller, **205**C, prepares to receive the next instance of SPAM message information. Automatically, SPAM-controller, **205**C, determines that the information at said SPAM-header-@205 register memory 20 does not match said cause-retention-of-exec-@205 information that is "01"; causes all apparatus of SPAM-controller, **205**C, to delete from memory all information of said transferred binary information; and commences waiting to receive the binary information of a subsequent SPAM header.

In the foregoing fashion and as described in "One Combined Medium" above, said transferred information of the third combining synch command causes microcomputer, **205**, to cease combining the programming of FIG. **1**A and of FIG. **1**B and commence transmitting to monitor, **202**M, only 30 the composite video programming received from divider, **4**, (which causes monitor, **202**M, to commence displaying only said video programming) and to continue processing in a predetermined fashion (which fashion may be determined by the aforementioned program instruction set).

Operating S. P. Systems

Example #1

A Fourth Message

The "One Combined Medium" example does not include an instance of a SPAM message with a "11" header, but decoder, 203, is preprogrammed to process such messages.

A fourth message of example #1 illustrates the processing of a "11" header message.

Immediately after transmitting the third message of example #1, the program originating studio of the "Wall Street Week" program embeds and transmits a fourth message. Said message consists of an "11" header followed immediately by an information segment containing a second program instruction set. More precisely, the first two bits of the first signal word of said message are said "11" header, and the remaining bits of said signal word are padding bits. The 55 first signal word of said information segment is the signal word immediately after said first word. And immediately after the last signal word of said segment, an end of file signal is transmitted that ends said message.

Subsequently, the embedded information of said fourth 60 message is transferred from divider, 4, to decoder, 203.

Receiving the embedded information of said message causes decoder, 203, automatically to detect, check, correct as necessary, and convert said information into binary information of said fourth message; to process and transfer said 65 binary information at the EOFS valve of controller, 39; then to process the header in said binary information.

70

Receiving said header causes controller, 39, to determine that said message is addressed to URS microcomputers, 205, and to transfer said message accordingly. Receiving the first H converted bits of said binary information from said valve causes controller, 39, to select and record said H bits (said "11" header) at said SPAM-header register memory then determine that the information at said SPAM-header memory matches said 11-header-invoking information that is "11". Said match causes controller, 39, to execute particular preprogrammed process-11-header-message instructions.

Said instructions cause controller, 39, to execute controlled functions as if the information at said SPAM-last-01-headerexec register memory were the execution segment information of said "11" header message. Automatically, said instructions cause controller, 39, to compare the information at said SPAM-last-01-header-exec memory (which information is the execution segment of the first combining synch command) with said controlled-function-invoking information. Automatically, controller, 39, determines that said information at memory matches particular preprogrammed this-message-addressed-to-205 information that invokes the aforementioned transfer-to-205 instructions. Automatically controller, 39, executes said instructions; activates the output port that outputs to SPAM-controller, 205C; and determines that said information at SPAM-header memory matches particular "11" information. Said match causes controller, 39, automatically to execute said transfer-a-01-or-a-11-headermessage instructions.

An "11" header distinguishes a message that contains lowset priority information. Just like an "01" header message,
each instance of a message with a "11" header ends with an
end of file signal. Accordingly, said instructions cause controller, 39, to transfer said fourth message in precisely the
same fashion that applied to the transfer of the first message of
example #1. Automatically controller, 39, commences transferring the binary information of said fourth message, starting
with said first H bits, and continues so transferring, as said
binary information is outputted by said EOFS valve, until said
valve detects the end of file signal of said message and causes
EOFS-signal-detected information to be inputted to the CPU
of controller, 39.

In due course and in precisely the fashion of the first message of example #1, said valve detects the eleven EOFS WORDs of said end of file signal and causes transmission of said EOFS-signal-detected information to controller, 39, which causes controller, 39, to transmit said transmit-and-wait instruction to said valve. Said instruction causes said valve to perform all the functions caused by the corresponding instruction of said first message, including transferring one complete end of file signal (which information is automatically transferred to SPAM-controller, 205C). In this fashion, controller, 39, transfers the complete information of said fourth message to the addressed apparatus of said message—the SPAM-controller, 205C.

Having transferred the binary information of said fourth message, controller, 39, prepares all apparatus of decoder, 203, to receive the next instance of SPAM message information in precisely the fashion of said first message with one exception. Unlike said first message which had an "01" header and contained a command with an execution segment, said fourth message has an "11" header and contains no execution segment information. Accordingly, receiving said fourth message does not cause controller, 39, to record information at said SPAM-last-01-header-exec memory. When controller, 39, compares the information at said SPAM-header register memory to said cause-retention-of-exec information that is "01", no match results. The information that

was at said memory when said message was received—specifically, the execution segment of the first message—remains at said memory.

(If no information were to exist at said SPAM-last-01-header-exec memory when information at said memory is compared with said controlled-function-invoking information, controller, **39**, would detect the absence of said information in a predetermined fashion and, in the fashion described above in the description of the first message, would cause all apparatus of decoder, **203**, to discard all message information until an end of file signal were received and discarded then would process the first H converted bits of the next received binary information as a subsequent SPAM header.)

At SPAM-controller, 205C, (and at SPAM-controllers, 205C, of URS microcomputers, 205) receiving the trans- 15 ferred binary information of said fourth message causes all apparatus automatically to process the information of said message in the preprogrammed fashions of said apparatus.

Automatically the EOFS valve of SPAM-controller, **205**C, processes and transfers said information until an end of file 20 signal is detected.

Receiving the header of said fourth message causes SPAM-controller, 205C, to determine the controlled function or functions that said message instructs URS microcomputers, 205, to perform and to execute the instructions of said functions. Receiving the first H bits of said transferred binary information from said valve causes SPAM-controller, 205C, to select and record said first H bits (said "11" header) at said SPAM-header-@205 register memory then determine that said information at SPAM-header-@205 memory matches said 11-header-invoking-@205 information that is "11". Said match causes SPAM-controller, 205C, to execute particular preprogrammed process-11-header-message-@205 instructions.

Said instructions cause SPAM-controller, 205C, to execute 35 controlled functions as if the information at said SPAM-last-01-header-exec-@205 register memory (which information is the execution segment of the first combining synch command) were the execution segment information of said "11" header message. Automatically, said instructions cause 40 SPAM-controller, 205C, to compare the information at said memory with said controlled-function-invoking information-@205. A match results with said execute-load-run-and-code information, causing SPAM-controller, 205C, automatically to execute said load-run-and-code instructions. As with said 45 first message, said instructions control the loading, at the main RAM of microcomputer, 205, and running of the information segment information that follows said H bits, which information is said second program instruction set.

To locate, in said transferred binary information, the first 50 bit of said information, said instructions cause SPAM-controller, **205**C, to compare the information at said SPAM-header-@205 memory with said header-identification-@205 information and determine that said information at memory matches particular "11" information. In other words, to locate said bit, SPAM-controller, **205**C, must process only the information associated with an "11" header. Accordingly, said match causes SPAM-controller, **205**C, automatically to execute particular preprogrammed prepare-to-load-11-header-message instructions.

At any given time, each instance of header information is of one constant binary length—H bits—that either does or does not fill a whole number of signal words exactly. If H bits do not, the last signal word of any given instance of a "11" header message header is not completely filled with header information, and padding bits that are MOVE bits fill out said signal word. But if H bits do fill a whole number of signal words

72

exactly, the last signal word in which header information may contain no MOVE bit information, in which case one full word of padding bits follows said signal word and precedes the first information segment signal word of said message.

To locate said first bit, said prepare-to-load-11-header-message instructions include particular preprogrammed 11-header-word-length information and particular preprogrammed 11-header-end-condition information. At those times when H bits of binary information fill a whole number of signal words exactly, said 11-header-word-length information is the largest integer that is less than said whole number, and said end-condition information is the binary value of zero. At those times when H bits do not fill a whole number of signal words exactly, said 11-header-word-length information is the smallest integer larger than the number of signal words that said H bits do fill, and said header-end-condition information is the binary value of one.

When executed, said prepare-to-load-11-header-message instructions cause SPAM-controller, 205C, to place information of said 11-header-word-length at particular first-working-@205 register memory then compare said 11-header-end-condition information to particular preprogrammed information that is "0".

Not resulting in a match means that the last signal word in which header information occurs contains at least one MOVE bit of padding and that said 11-header-word-length information is the length of every instance of a "11" header information. Accordingly, not resulting in a match causes SPAM-controller, 205C, to execute of particular preprogrammed commence-loading-11-header-message instructions.

On the other hand, resulting in a match means that the last signal word of header information must be evaluated to ascertain whether it contains MOVE bit information. Accordingly, resulting in a match causes SPAM-controller, 205C, starting with the first signal word of said transferred binary information, to skip a number of signal words of said information, which number is the number of the integer information at said first-working-@205 memory. In so doing, SPAM-controller, 205C, skips every signal word of header information but said last word. Then, automatically, said instructions cause SPAM-controller, 205C, to compare said last word to said particular preprogrammed EOFS-WORD information. If no match results, said word is the last word of said message. Otherwise, one full signal word of padding bits follows said word and ends said message. Accordingly, not resulting in a match causes SPAM-controller, 205C, to add binary information of one to said integer information at said first-working-@205 memory, but resulting in a match causes SPAM-controller, 205C, to add binary information of two to said integer information at said first-working-@205 memory. Then, automatically, SPAM-controller, 205C, executes said commenceloading-11-header-message instructions.

When executed, said commence-loading-11-header-message instructions cause SPAM-controller, 205C, starting with the first signal word of said transferred binary information, to skip a number of signal words, which number is the number of the integer information at said first-working-@205 memory. In so doing, SPAM-controller, 205C, skips every signal word of header information. Then said instructions instruct SPAM-controller, 205C, to commence loading information at the main RAM of microcomputer, 205, starting with the first signal word after the last skipped signal word, and cause SPAM-controller, 205C, to commence executing said load-run-and-code instructions at a particular instruction.

Starting at said instruction, said load-run-and-code instructions cause SPAM-controller, 205C, to instruct microcom-

puter, **205**, to commence receiving information from SPAM-controller, **205**C, and loading said information at particular main RAM, in a fashion well known in the art.

Thereafter, said instructions cause SPAM-controller, **205**C, to process said fourth message in precisely the same 5 fashion that applied to the first message of example #1.

Said load-run-and-code instructions cause SPAM-controller, 205C, to commence transferring information to microcomputer, 205, beginning with said first signal word, and transfer the remaining signal words of said transferred binary information, signal word by signal word, until said valve detects the end of file signal of said message and causes EOFS-signal-detected information to be inputted to the CPU of SPAM-controller, 205C. As microcomputer, 205, receives said information, it loads said information at particular main 15 RAM.

In due course, said valve transfers the last signal word of the information segment of said fourth message, which is the last signal word of said program instruction set, which causes SPAM-controller, 205C, to transfer said word to microcomputer, 205, and microcomputer, 205, to load said word at said RAM.

In this fashion, receiving the information of said fourth message causes the apparatus of the subscriber station of FIG. 3 to load said program instruction set at the main RAM of 25 microcomputer, 205, (and other stations to load said set at other main RAMs).

Then, in precisely the fashion of the first message of example #1, said valve detects the eleven EOFS WORDs of said end of file signal and causes transmission of said EOFS-signal-detected information to SPAM-controller, 205C which causes SPAM-controller, 205C, to cause microcomputer, 205, to cease loading information at said RAM and execute the information so loaded as the machine executable code of one job. Continuing in said fashion, SPAM-controller, 205C, 35 transmits said discard-and-wait instruction to said valve which causes said valve to set the information at said EOFS WORD Counter to "00000000" and to process no next inputted information until a control instruction is received from SPAM-controller, 205C.

Then the code portion of said load-run-and-code instructions cause SPAM-controller, 205C, to operate in a fashion that differs from the fashion of said first message. The instructions of said portion cause SPAM-controller, 205C, to compare the information at said SPAM-header memory to said 45 load-run-and-code information that is "01". No match results because the header of said fourth message is "11" (which means that said message contains no meter-monitor information). Not resulting in a match causes SPAM-controller, 205C, automatically to skip the remaining instructions of said 50 code portion and complete said load-run-and-code instructions without placing any program unit field information at said SPAM-first-precondition register memory. Accordingly, the program unit information of said "Wall Street Week" program that was caused to be placed at said SPAM-first- 55 precondition memory by the first combining synch command remains at said memory.

Having processed the binary information of said fourth message, SPAM-controller, **205**C, prepares all apparatus of decoder, **203**, to receive the next instance of SPAM message 60 information in precisely the fashion of said first message with one exception. Receiving said fourth message does not cause SPAM-controller, **205**C, to record information at said SPAM-last-01-header-exec memory-@205. When SPAM-controller, **205**C, compares the information at said SPAM-header- @205 memory to said cause-retention-of-exec-@205 information that is "01", no match results. The information

74

that was at said memory when said message was received—specifically, the execution segment of the first message—remains at said memory.

In this fashion, the subscriber station of FIG. 3 processes a message with an "11" header.

Operating Signal Processor Systems

Example #2

In example #2, the first and third messages of the "Wall Street Week" combining are transmitted just as in example #1, but the second message is partially encrypted.

The second message conveys the second combining synch command. In example #2, before said message is embedded at the program originating studio and transmitted, the execution segment of said command and all of the meter-monitor segment except for the length-token are encrypted, using standard encryption techniques, well known in the art, that encrypt binary information without altering the number of bits in said information. Partially encrypting the second message in this fashion leaves the cadence information of said message unencrypted. In other words, the "00" header, the length-token, and any padding bits added at the end of said message remain unencrypted. Said message is only partially encrypted in order to enable subscriber stations that lack capacity to decrypt said message to process the cadence information of said message accurately.

In example #2, the encryption of said execution segment is done in such a fashion that, after encryption, said segment is identical to a particular execution segment that addresses URS signal processors, 200, and instructs said processors, 200, to use a particular decryption key J and decrypt the message in which said segment occurs.

Because said message is encrypted, its meter-monitor segment contains a sixth field, a meter instruction field. Accordingly, the length of the second message, the number of bits in its meter-monitor segment and the numeric value of MMS-L is greater in example #2 than in example #1.

As described above in "One Combined Medium," before any messages of the "Wall Street Week" programming are transmitted, control invoking instructions are embedded at said program originating studio and transmitted to all subscriber stations. Among said instructions are particular ones that command URS microcomputers, 205, to set their PC-MicroKey Model 1300 Systems to the "Graphics Off" mode. Thus, at the outset of example #2, all PC-MicroKey 1300s are in the "Graphics Off" mode, and no microcomputer, 205, is transmitting combined information of video RAM and received composite video to its associated monitor, 202M. As will be seen, this fact has particular relevance in example #2.

In example #2, the first message of the "Wall Street Week" program is transmitted precisely as in the example #1 and causes precisely the same activity at subscriber stations. At each station, a microcomputer, 205, enters appropriate FIG. 1A image information at particular video RAM.

When decoder, 203, receives the embedded information of the second message of example #2, decoder, 203, processes and transfers said information in the same fashion that applied to the second message of example #1 with three exceptions.

First, controller, **39**, determines that the second message of example #2 is addressed to URS signal processors, **200**, rather than URS microcomputers, **205**, and transfers the binary information of said message accordingly. When controller, **39**, compares the information at SPAM-exec memory, which is the encrypted execution segment information of the second message of example #2, with controlled-function-invoking

information, said information at memory does not match the this-message-addressed-to-205 information matched in example #1. Rather said information at memory matches particular preprogrammed this-message-addressed-to-200 information that invokes preprogrammed transfer-to-200 instructions. Controller, 39, executes said instructions, and rather than activating the output port that outputs to SPAM-controller, 205C, said instructions cause controller, 39, to activate the output port that outputs to buffer/comparator, 8, of signal processor, 200.

Then, subsequently, when said process-length-token instructions cause controller, **39**, to compare the information at SPAM-length-info memory, which is the length-token information of said second message of example #2, to tokencomparison information, said information at memory does not match the X-token information matched by the length-token of the second message of example #1. Rather, said information at memory matches particular preprogrammed Y-token information associated with particular preprogrammed y-bits information whose numeric value is the MMS-L of the second message of example #2. Said match causes controller, **39**, automatically to select said y-bits information and place said information at said SPAM-length-info memory. Thus controller, **39**, processes a value of MMS-L ²⁵ that is different from the value processed in example #1.

Finally, because the second message of example #2 is longer than the second message of example #1 and the MMS-L of example #2 is greater than the MMS-L of example #1, when said transfer-a-00-header-message instructions control the transfer of the second message of example #2 to signal processor, 200, said instructions transfer a longer message.

In all other respects, controller, 39 processes and transfers the second message of example #2 just as it processed and transferred the second message of example #1. And when the transfer of the second message of example #2 is complete, controller, 39, automatically deactivates all output ports, deletes all received information of said message from memory, and commences waiting for the binary information of a subsequent SPAM header.

Receiving the binary signal information of said second message causes buffer/comparator, **8**, automatically to execute a decryption sequence at signal processor, **200**, that is fully automatic and for which all apparatus are preprogrammed.

Receiving said information causes buffer/comparator, 8, first, to place said information at a particular received signal location at buffer/comparator, 8, then to compare a particular 50 portion the first X bits immediately after the first H bits of said binary information (which X bits are the executions segment of said message) to particular preprogrammed comparison information in its automatic comparing fashion. (Buffer/comparator, 8, is preprogrammed with information that identifies 55 said portion.) A match results with particular comparison information that is the bit image of particular SPAM execution segment information that instructs URS signal processors, 200, to decrypt. Said match causes buffer/comparator, 8, to transfer to controller, 20, particular decrypt-this-message 60 information that includes the memory position of the first bit location of said particular received signal location and information of the header and execution segment in said binary signal information. Receiving said information causes controller, 20, to compare the information of said execution seg- 65 ment to particular preprogrammed controlled-function-invoking-@200 information and determine a match with

76

particular decrypt-with-key-J information that instructs controller, **20**, to decrypt the received binary signal information with decryption key J.

(At subscriber stations whose URS signal processors, 200, are not preprogrammed with information of said key J, the information of said execution segment fails to match any controlled-function-invoking-@200 information. Said failures to match cause the controllers, 20, of said stations automatically to discard all information transferred by the buffer/comparators, 8; to cause said buffer/comparators, 8, to discard all received information of said second message; and to cause said controllers, 20, and said buffer/comparators, 8, to commence processing in the conventional fashion.)

(It is to facilitate SPAM processing at said stations that are not preprogrammed with necessary decryption key information that the cadence information of an otherwise encrypted SPAM message must remain unencrypted. Were either the header or length-token or any padding bits of said second message encrypted, the decoders, 203, and signal processors, 200, of said stations could process the information of the execution segment correctly but would be unable to locate the last bit of said second message and the header of the following message. Effective SPAM processing would cease and not resume until the apparatus at said stations detected an unencrypted end of file signal. Until that time, converted binary information could continue to invoke processing at said stations but said processing would be haphazard and almost certainly undesirable.)

Because the subscriber station of FIG. 3 is preprogrammed with all information needed to decrypt said second message, the aforementioned match with said decrypt-with-key-J information causes controller, 20, to execute particular preprogrammed decrypt-with-J instructions. Among said preprogrammed instructions is key information of J, and said instructions cause controller, 20, automatically to select and transfer said key information to decryptor, 10.

Decryptor, 10, receives said key information and automatically commences using it as its key for decryption.

Then said decrypt-with-J instructions cause controller, 20, to activate the output capacity of buffer/comparator, 8, that outputs to decryptor, 10; to compare said information of the header transferred from buffer/comparator, 8, to particular preprogrammed header-identification-@200 information; and to determine that said information of the header matches particular "00" header information. Said match causes controller, 20, automatically to invoke particular preprogrammed decrypt-a-00-header-message instructions.

Controller, 20, is preprogrammed with information of H, X, L, and H+X; with process-length-token, determine-command-information-word-length, evaluate-end-condition, calculate-number-of-words-to-transfer, evaluate-padding-bits-? instructions; and with token-comparison, W-token, X-token, Y-token, w-bits, x-bits, and y-bits information. Using preprogrammed information and instructions as required, said decrypt-a-00-header-message instructions transfer the received binary information of said second message from buffer/comparator, 8, to decryptor, 10, in the same fashion that the aforementioned transfer-a-00-header-message instructions controlled the transfer of the information of said message from controller, 39, to buffer/comparator, 8.

Under control of said decrypt-a-00-header-message instructions, said process-length-token instructions cause controller, 20, to select the L bits of said binary signal information that begin at the first bit location that is H+X bit locations following the memory position of the first bit location of said particular received signal location at buffer/comparator, 8. Said L bits are the length token of said second

message. Automatically controller, 20, compares the information of said L bits to token-comparison information and determines a match with preprogrammed Y-token information. Said match causes controller, 20, automatically to select y-bits information and process said information as the 5 numeric value of MMS-L. Next said determine-commandinformation-word-length instructions cause controller, 20, to determine the number of signal words in the command information of said second message by adding H+X+L to said y-bits information of MMS-L and dividing the resulting sum 10 by the number of bits in one signal word. Then said evaluateend-condition instructions cause controller, 20, to place a "0" at particular SPAM-Flag-@20 register memory if said command information fills a whole number of signal words exactly and "1" at said memory if it does not. And said 15 calculate-number-of-words-to-transfer instructions cause controller, 20, to determine a particular number of signal words to transfer and place information of said number at particular working-@20 register memory.

Then said decrypt-a-00-header-message instructions cause 20 controller, **20**, to transmit to controller, **12**, a particular transfer-decrypted-message instruction and particular decryption mark information of key J that identifies J as the decryption key.

Receiving said instruction and information causes control- 25 ler, 12, to execute particular preprogrammed transfer-and-meter instructions then record said mark of key J at particular decryption-mark-@12 register memory.

Next said decrypt-a-00-header-message instructions cause controller, **20**, to cause buffer/comparator, **8**, to transfer to 30 decryptor, **10**, a quantity of signal words of said binary information of the second message which quantity is the number at said working-@20 register memory.

Buffer/comparator, **8**, responds by transferring to decryptor, **10**, binary information that begins at the first bit at said 35 particular received signal location and transfers said information, signal word by signal word, until it has transferred said quantity of signal words.

Decryptor, 10, commences receiving said information, decrypting it using said key J information and transferring it 40 to controller, 12, as quickly as controller, 12, accepts it. The process of decryption proceeds in a particular fashion. Said decrypt-a-00-header-message instructions cause controller, 20, to cause decryptor, 10, to transfer the first H bits without decrypting or altering said bits in any fashion, to decrypt and 45 transfer the next X bits, to transfer the next L bits without decrypting or altering said bits, to decrypt and transfer the next MMS-L bits, and finally, to transfer any bits remaining after the last of said MMS-L bits without decrypting or altering said bits. In this fashion, the cadence information in said 50 message, which is not encrypted, is transferred by decryptor, 10, to controller, 12, without alteration.

Under control of said transfer-and-meter instructions, controller, 12, commences receiving decrypted information of the second message from decryptor, 10. Having been 55 decrypted, said information is identical to the binary information of the second message of example #1 (except that the meter-monitor information contains the aforementioned meter instruction information that is not in example #1 and the length token information of the meter-monitor format 60 field reflects the presence of said instruction information).

Automatically controller, 12, processes said information of the second message of example #2 as a SPAM command. Receiving the header and execution segment causes controller, 12, to determine that said message is addressed to URS 65 microcomputers, 205, and to transfer said message accordingly. Automatically, controller, 12, selects the first H con-

78

verted bits and records said bits at particular SPAM-header-@12 register memory then selects the next X bits and records said bits at particular SPAM-exec-@12 register memory. Then, automatically, by comparing the information at said SPAM-exec memory with preprogrammed controlled-function-invoking-@12 information, controller, 12, determines that said information at memory matches preprogrammed transfer-this-message-to-205-@12 information. Automatically, controller, 12, executes preprogrammed transfer-to-205-@12 instructions; activates the output port that outputs to SPAM-controller, 205C; then commences transferring information of said decrypted information of the second message under control of said transfer-and-meter instructions commencing with the first of said H bits and transferring information, signal word by signal word, in the order in which it is received from decryptor, 10. In addition, controller, 12, is preprogrammed with all instructions and information necessary for processing the length-token and determining the length of the meter-monitor segment of said second message, does so, and records at particular SPAM-meter register memory the first L plus MMS-L bits of said decrypted information immediately after the last of said X bits which is the information of the meter-monitor segment of said message.

When buffer/comparator, **8**, completes transferring to decryptor, **10**, the quantity of signal words that is the number at said working-@20 register memory, said decrypt-a-00-header-message instructions cause controller, **20**, to execute said evaluate-padding-bits-? instructions, determine which signal word is the last word of the second message of example #2, and ensure that said word is transferred to decryptor, **10**. Following the transfer of said word, controller, **20**, causes decryptor, **10**, to transmit particular decryption-complete information to controller, **20**, when decryptor, **10**, completes the transfer to controller, **12**, of said word following its decryption.

Receiving said word at controller, 12, causes controller, 12, to transfer said word to SPAM-controller, 205C, and in so doing, complete the transfer of the decrypted information of said second message.

At microcomputer, 205, (and at the URS microcomputers, 205, at other stations where the second message of example #2 is decrypted) in the fashion described in example #1, said information, which is the unencrypted binary information of the second combining synch command, executes "GRAPH-ICS ON" causing microcomputer, 205, to combine the programming of FIG. 1A and of FIG. 1B and transmit said combined programming to monitor, 202M, where FIG. 1C is displayed.

(Meanwhile, no second combining synch command reaches the URS microcomputers, 205, at those subscriber stations whose URS signal processors, 200, are not preprogrammed with information of decryption key J because all received information of the second message of example #2 has been discarded. No combining occurs at said microcomputers, 205. And at the time when FIG. 1C is displayed at subscriber stations preprogrammed with said key J, the monitors, 202M, of said subscriber stations display FIG. 1B.)

Then receiving said decryption-complete information from decryptor, 10, causes controller, 20, to cause buffer/comparator, 8, to discard any information of said second message that may remain at buffer/comparator, 8, and commence processing in the conventional fashion; to cause decryptor, 10, to discard said key information of decryption key J and any information of said second message that may remain at decryptor, 10; to transmit to controller, 12, a preprogrammed complete-transfer-phase instruction; and, itself, to commence processing in the conventional fashion.

Receiving said complete-transfer-phase instruction causes controller, 12, to cease transferring information, under control of said transfer-and-meter instructions, to deactivate all output ports, and to commence executing the meter instructions of said transfer-and-meter instructions. Said meter 5 instructions cause controller, 12, to compare the information at said SPAM-header-@12 memory with particular collectmeter-info information and determine that said H bits match particular "00" information. (In other words, said SPAM command information contains meter-monitor information.) 10 Said match causes controller, 12, automatically to transfer to buffer/comparator, 14, particular header identification information that identifies controller, 12, as the source of said transfer the information recorded at said SPAM-meter memory then the information recorded at said decryption- 15 mark-@12 register memory, which information is the decryption mark of key J. (Hereinafter, said meter information generated by the second combining synch command in example #2 is called the "2nd meter information (#2).") Following said transferring, controller, 12, automatically deletes from regis- 20 ter memory all information of said second message and commences processing in the conventional fashion.

Receiving the 2nd meter information (#2) causes buffer/comparator, **14**, automatically to execute a meter sequence that is fully automatic and for which all apparatus are preprogrammed and have capacity to perform.

Receiving said information causes buffer/comparator, 14, to compare a particular portion of the meter-monitor format field of said 2nd meter information (#2) to particular distinguishing comparison information that identifies meter-moni- 30 tor format fields that denote the presence of meter instruction fields. A match results which causes buffer/comparator, 14, to select information of bits at particular predetermined locations (which bits contain the information of the meter instruction field of said 2nd meter information (#2)) and compare 35 said selected information to preprogrammed metering-instruction-comparison information and to determine that said field matches particular increment-by-one information that instructs buffer/comparator, 14, to add one incrementally to each meter record maintained at buffer/comparator, 14, that is 40 associated with decryption key information that matches the decryption mark of the instance of meter information being processed. Accordingly, buffer/comparator, 14, compares the decryption mark of said 2nd meter information (#2) with preprogrammed decryption-key-comparison information. 45 Said comparing results in more than one match, and buffer/ comparator, 14, increments by one the meter record associated with each particular decryption-key-comparison datum that matches the decryption mark of said 2nd meter information (#2). Because the information of said meter instruction 50 field instructs signal processor, 200, only to perform said incrementing, upon completing the last step of incrementing or comparing, automatically buffer/comparator, 14, discards all information of said 2nd meter information (#2) except the incremented record information and commences processing 55 in the conventional fashion.

Thus, not only does the second message of example #2 cause the combining of FIG. 1A and FIG. 1B and the display of FIG. 1C only at selected subscriber stations that are preprogrammed with decryption key J, it also causes the retaining of meter information associated with its own decryption at said selected stations.

Subsequently, decoder, 203, receives the third message of the "Wall Street Week" program which conveys the third combining synch command.

In example #2, all signal processing apparatus process the third combining synch command precisely as in the first

80

example. Said command reaches all URS microcomputers, 205, and causes each to execute the aforementioned "GRAPHICS OFF" command. But only at those selected ones of said URS microcomputers, 205, that are preprogrammed with decryption key J does the third combining synch command actually cause combining to cease. At all other URS microcomputers, 205, executing "GRAPHICS OFF" has no effect because each of said other URS microcomputers, 205, is already in "Graphics Off" mode when said "GRAPHICS OFF" is executed. Because the aforementioned particular ones among said control invoking instructions that preceded the first message of the "Wall Street Week" program caused all URS microcomputers, 205, to set their PC-MicroKey 1300s to the "Graphics Off" mode and because no information of the second combining synch command reached said other microcomputers, 205, and executed "GRAPHICS ON", the PC-MicroKey 1300 of each of said other URS microcomputers, 205, is in "Graphics Off" mode when the third message of example #2 is transmitted.

Thus in example #2, not only does the second combining synch command cause the combining and the display of FIG. 1C only at selected subscriber stations and the retaining of meter information at (and only at) said stations, it also causes selective processing—for example, the selecting of information of decryption key J at selected stations—that enables the third combining synch command to have effect only at selected stations without any selective processing of said third command. Placing particular so-called "soft switches," one of which exists at each subscriber station, all into one given original position, "off" or "on", then transmitting a command that is processed selectively at selected stations and places said switches at said stations into the opposite position. "on" of "off", makes it possible to transmit a subsequent command that returns said switches at said selected stations (and only said switches) to said original position without any additional selective processing.

Significant advantages of simplicity and speed are achieved by devising signal processing apparatus and methods that minimize the need for selective processing. With regard to said third combining synch command, for example, no step of decrypting is required to affect only those stations that are preprogrammed with decryption key J. Accordingly, no possibility exists that an error in decrypting may occur at one or more of said stations, causing the combining of video RAM information and received video information, at said one or more, not to cease at the proper time and to continue beyond said time (until such time as some subsequent command may execute "GRAPHICS OFF" or clear information from said video RAM at said stations). Because no time is required for decrypting, no possibility exists that some station may take longer (or shorter) than proper to perform decrypting causing the image of FIG. 1A to be displayed at some monitor, 202M, longer (or shorter) than proper. Perhaps most important, because no time is required for selective processing of said third command, the time interval that separates the time of embedding said third command at said remote station that originates the "Wall Street Week" program and the time of ceasing caused by said command at URS microcomputers, 205, can be the shortest possible interval. Making it possible for said time interval to be the shortest possible interval minimizes the chance that an error may occur in the timing of the embedding of said third command at said remote station causing all URS microcomputers, 205, to cease combining at a time that is other than the proper time.

The Preferred Configuration of Controller, **39**, and SPAM-Controller, **205**C.

Heretofore, this specification has treated the controller of decoder, **203**, (which is controller, **39**) and the SPAM input controller of microcomputer, **205**, (which is SPAM-controller, **205**C) as separate controllers. This treatment has served to show how SPAM messages are transferred from one controller to another, at any given subscriber station.

But, in the preferred embodiment, the controller of the decoder that detects the SPAM signals of a combined medium transmission, at any given subscriber station, and the controller that executes the information of said signals at the microcomputer that combines the local and broadcast programming, at said station, are one and the same. More precisely, controller, 39, of decoder, 203, and SPAM-controller, 205C, are one and the same (and are called, hereinafter, "controller, 39"). Thus the preferred embodiment of controller, 39, is configured and preprogrammed not only to control the detecting, correcting, converting, and executing of controlled functions at decoder, 203, but also to input to and execute at 20 microcomputer, 205, the information of any given detected SPAM message that is addressed to URS microcomputers, 205.

FIG. 3A shows one such preferred controller, 39.

One aspect of the preferred embodiment of controller, 39, 25 is a series of buffers and processors at which forward error correction, protocol conversion, and the invoking of controlled functions take place in series. Buffer, 39A, and processor, 39B, are the first buffer and processor of the series and perform the forward error correcting functions of controller, 39. Buffer, 39C, and processor, 39D, are the second buffer and processor and perform protocol conversion functions. Buffer, 39E, and control processor, 39J, are the third buffer and processor. All controlled functions invoked at controller, 39, by received SPAM signals are invoked at control processor, 35

Performing forward error correction and protocol conversion and invoking the controlled functions at a series of processors, in this fashion, rather than sequentially at one processor has significant advantages as regards speed. Inputting 40 the information of each SPAM signal word to three processors does take longer than inputting said information to just one processor. But this is more than offset by the fact that having three processors rather than just one enables controller, 39, to process the information of three signal words simultaneously. Control processor, 39J, can invoke and process the controlled function of a first signal word while processor, 39D, converts the information of a second signal word and processor, 39B, corrects the information of a third signal word.

A second aspect of the preferred embodiment of controller, 39, is a matrix switch, 39I, that operates under control of control processor, 39J, and can transfer information of received SPAM signals from buffer, 39E, directly to addressed apparatus. Transferring said information in this 55 fashion rather than through control processor, 39J, has the advantage of freeing control processor, 39J, to perform other functions while said information is transferred.

As FIG. 3A shows, each processor, 39B, 39D, and 39J, has associated RAM and ROM and, hence, constitutes a programmable controller in its own right. Each processor, 39B, 39D, and 39J, controls its associated buffer, 39A, 39C, and 39E respectively. Each buffer, 39A, 39C, and 39E, is a conventional buffer that receives, buffers, and transfers binary information in fashions well known in the art. Each buffer, 39A 65 and 39C, transfers its received and buffered information to its associated processor, 39B and 39D respectively, for process-

82

ing. Buffer, 39E, transfers its received and buffered information, via EOFS Valve, 39F, to matrix switch, 39I.

The preferred embodiment of controller, 39, also has a buffer, 39G, that is a conventional buffer with means for receiving information from other inputs external to decoder, 203. Among said inputs is, in particular, an input from controller, 12, of signal processor, 200 (which input performs the functions of the input from controller, 12, to SPAM-controller, 205C, shown in FIG. 3). Buffer, 39G, outputs its received and buffered information, via EOFS Valve, 39H, to matrix switch, 39I. Buffer, 39G, is configured, in a fashion well known in the art, with capacity to identify to control processor, 39J, which input is the source of any given instance of information received and buffered at buffer, 39G, and capacity to output selectively, under control of control processor, 39J, any given instance of received information.

EOFS Valves, **39**F and **39**H, are EOFS valves of the type described above and transfer the buffered information of buffers, **39**E and **39**G respectively, to matrix switch, **39**I. Said valves operate under control of control processor, **39**J, and monitor all information, so transferred, continuously for end of file signals in the fashion described above.

Matrix switch, 39I, is a conventional digital matrix switch, well known in the art of telephone communication switching, that is configured for the small number of inputs and outputs required at controller, 39. Matrix switch, 39I, operates under control of control processor, 39J, and has capacity to receive SPAM signal information from a multiplicity of inputs, including EOFS Valves, 39E and 39F, and from control processor, 39J, and to transfer said information to a multiplicity of outputs, including control processor, 39J; the CPU of microcomputer, 205; buffer/comparator, 8, of signal processor, 200; buffer/comparator, 14, of signal processor, 200; and other outputs. Among such other outputs is one or more (hereinafter called, "null outputs") with capacity for accepting binary information and merely recording said information at particular memory associated with matrix switch, 39I, thereby overwriting and obliterating information previously recorded at said memory. The purpose of such a null output is to provide means whereby said switch can automatically cause information of any selected SPAM message to be discarded rather than transferred to addressed apparatus. (Other examples of other outputs are cited below.) Matrix switch, 39I, also has capacity to receive control information from control processor, 39J, and transfer said information to the CPU and/or the PC-MicroKey 1300 system of microcomputer, 205, and to receive control information from the CPU and/or the PC-MicroKey 1300 system of microcomputer, 205, and transfer said information to control processor, 39J. Matrix switch, 39I, transfers information in such a way that information inputted at any given input is transferred to a selected one or ones of said outputs without modification, and a multiplicity of information transfers can take place simultaneously.

Control processor, 39J, has capacity for computing information and processing all control information necessary for controlling all apparatus of decoder, 203 (or such other decoder as the controller of a given control processor, 39J, may be installed in). In keeping with the function of control processor, 39J, as the processor at which all controlled functions of controller, 39, are invoked, all aforementioned particular register memories of controller, 39, are located at control processor, 39J. The register memories of control processor, 39J, include (but are not limited to) particular SPAM-input-signal register memory whose length in bit locations is sufficient to contain the longest possible instance of SPAM command information with associated padding bits; the

aforementioned SPAM-header and SPAM-exec register memories; particular SPAM-Flag-monitor-info, SPAM-Flagat-secondary-control-level, SPAM-Flag-executing-secondary-command, SPAM-Flag-secondary-level-incomplete, SPAM-Flag-primary-level-2nd-step-incomplete, SPAM- 5 Flag-primary-level-3rd-step-incomplete, SPAM-Flag-secondary-level-2nd-step-incomplete, SPAM-Flag-secondarylevel-3rd-step-incomplete, SPAM-Flag-first-conditionfailed, SPAM-Flag-second-condition-failed, SPAM-Flagdo-not-meter, and SPAM-Flag-working register memories each of which are one bit location in length; the aforementioned SPAM-length-info, SPAM-mm-format, SPAM-firstprecondition, SPAM-second-precondition, SPAM-last-01header-exec register memories; particular SPAM-decryption-SPAM-primary-input-source, SPAM-secondary- 15 SPAM-next-primary-instruction-address, input-source, SPAM-next-secondary-instruction-address, SPAM-executing-secondary-command, SPAM-last-secondary-01-headerexec, SPAM-address-of-next-instruction-upon-primary-interrupt. SPAM-address-of-next-instruction-upon- 20 secondary-interrupt register memories whose functions are described below; and a plurality of working register memories that include first-working and second-working register memories. (With the exception of the memories whose names include the word "working," all the aforementioned register 25 memories are dedicated strictly to the functions described below and are not used for any other functions.) All preprogrammed information associated with the identification and execution of controlled functions and the aforementioned conventional instructions that control controller, 39, are pre- 30 programmed at the RAM and/or ROM associated with control processor, 39J. Examples of said preprogrammed information include relevant information of the aforementioned controlled-function-invoking information, process-lengthtoken instructions, and execute-conditional-overlay-at-205 35 information (that is part of the aforementioned controlledfunction-invoking-@205 information).

Besides being the processor at which all controlled functions of controller, 39, are invoked, control processor, 39J, is the processor that controls all controlled apparatus of 40 decoder, 203, (except for a decryptor, 39K, described more fully below) and controls all apparatus described above as being controlled by SPAM-controller, 205C. Control processor, 39J, controls not only buffers, 39E and 39G, valves, 39F and 39H, and switch, 39I, but also processors, 39B and 39D, 45 as well as all other apparatus of decoder, 203, controlled by controller, 39. Control processor, 39J, has all required transmission capacity for transmitting control instructions to and receiving control information from all such controlled apparatus. In addition, control processor, 39J, controls the CPU 50 and the PC-MicroKey 1300 system of microcomputer, 205, in certain SPAM functions and has capacity, via matrix switch, 39I, to transmit control information to and receive control information from said CPU and said PC-MicroKey 1300 system. In certain SPAM functions, controller, 20, of signal 55 processor, 200, controls control processor, 39J, and as FIG. 3A shows, control processor, 39J, has means for communicating control information directly with said controller, 20. The RAM and/or ROM associated with control processor, 39J, are preprogrammed with all information necessary for 60 controlling all such controlled apparatus.

As FIG. 3A shows, the preferred embodiment of controller, 39, also has a decryptor, 39K. Said decryptor, 39K, is a conventional decryptor that is identical to decryptor, 10, of signal processor, 200. Decryptor, 39K, receives inputted 65 information from matrix switch, 39I; outputs its information to buffer, 39H; has means for communicating control infor-

84

mation directly with controller, 20, of signal processor, 200; and is controlled by said controller, 20. Decryptor, 39K, is preprogrammed with relevant SPAM information (e.g., information of H, X, and L) and has capacity for processing SPAM message information if fashions described more fully below.

In the preferred embodiment, to maximize the speed of information transmission, all apparatus of controller, 39, are located physically on one so-called silicon microchip and communicate with one another, in fashions well known in the art, by means of the circuits of said chip. All apparatus of said chip function, in a fashion well known in the art, at the same clock speed. Said speed may be the speed of the control clock of microcomputer, 205, communicated to controller, 39, in an appropriate fashion, well known in the art. Or said speed may be the control clock speed of signal processor, 200.

Examples #3 and #4 of the combining of the "Wall Street Week" program described above, which relate elaborations of examples #1 and #2, illustrate in detail the operation of the preferred embodiment of controller, 39.

Operating S. P. Systems

Example #3

First Word

Example #3 differs from example #1 in just two respects. First, example #3 focuses on selected subscriber stations where signal processing apparatus and methods are used to collect monitor information for so-called "program ratings" (such as so-called "Nielsen ratings") that estimate the sizes of television (or radio) program audiences. In the present invention, subscriber stations can be preprogrammed to process and record monitor information of SPAM commands and transfer said information to one or more remote data collection stations where computers process the monitor information to generate such ratings. In example #3, all apparatus of the subscriber station of FIG. 3 are so preprogrammed, and buffer/comparator, 14, of signal processor, 200, operates, in fashions described more fully below, under control of the aforementioned on-board controller, 14A.

Second, the controller, 39, of example #3 is the preferred embodiment of controller, 39, and replaces the controller, 39, and SPAM-controller, 205C, of example #1. Insofar as messages addressed to URS microcomputers, 205, are concerned, the preferred embodiment of controller, 39, is preprogrammed to perform the controlled functions of the SPAM-controller, 205C, of example #1. Thus the preprogrammed information at the RAM and/or ROM associated with control processor, 39J, includes, for example, the execute-at-205, execute-conditional-overlay-at-205, and cease-overlay information and the load-run-and-code, conditional-overlay-at-205, and cease-overlaying-at-205 instructions preprogrammed at SPAM-controller, 205C, in example #1.

In all other respects example #3 is identical to example #1. Example #3 begins, like example #1, with divider, 4, transferring the embedded information of the first message to decoder, 203. In the same fashion that applied in example #1, receiving said embedded information at decoder, 203, causes the binary information of said first message to be received, with error correcting information, at decoder, 203, and detected at digital detector, 34. Detector, 34, inputs the detected information to controller, 39, at buffer, 39A.

The first step of processing at controller, 39, takes place at processor, 39B, where error correction occurs. As said detected information is inputted, buffer, 39A, receives, buffers, and transfers said information, signal word by signal

word, an to processor, **39**B, in a fashion well in the art. Processor, **39**B, receives each word, in turn, with its associated error correcting information and uses the error correcting information, in its forward error correcting fashion, to check the binary information of said word and correct the information of said word, as required, then transfers the correct information of said word to buffer, **39**C, and discards said error correcting information.

The second step of processing is protocol conversion and takes place at processor, 39D. Buffer, 39C, receives and buffers the corrected information of each word, in turn, and transfers said information to processor, 39D. As processor, 39D, receives said information, in its protocol conversion fashion, processor, 39B, converts the corrected binary information of each word into converted information that all appropriate 15 subscriber station apparatus can receive and process and transfers the converted information of each word to buffer, 39E.

As buffer, 39E, receives the corrected information of each word, buffer, 39E, buffers and transfers said information to 20 EOFS valve, 39F, as quickly as said valve, 39F, is prepared to receive said information. EOFS valve, 39F, processes said information, in its end of file signal detecting fashion described above, to detect information of an end of file signal and outputs said information to matrix switch, 39I, as quickly 25 as the apparatus to which said switch, 39I, transfers said information is prepared to receive said information. As matrix switch, 39I, receives the converted information of each word, said switch, 39I, transfers said information to a selected output port of said switch, 39I. Said selected port is the particular 30 port to which control processor, 39J, causes said switch, 39I, to transfer said information.

At the outset of example #3, matrix switch, 39I, is configured to input the output of EOFS Valve, 39F, to control processor, 39J, and control processor, 39J, awaits header information.

When EOFS valve, 39F, commences transferring the SPAM information of the first message of example #3, control processor, 39J, executes a first step of receiving SPAM message information and receives the header information in said 40 first message. Control processor, 39J, accepts, receives in turn, and records in sequence at particular SPAM-input-signal register memory a particular first quantity of said words. Said first quantity is the smallest number of signal words that can contain one instance of header information (that is, H 45 bits). In the simplest preferred embodiment where a SPAM header is two bits long and signal words are eight-bit bytes, said first quantity is one. Then, automatically, control processor, 39J, ceases accepting SPAM signal information transferred from EOFS valve, 39F, and said valve, 39F, com- 50 mences holding the next processed signal word of said first message until control processor, 39J, becomes prepared, once again, to accept and receive SPAM signal information.

Then control processor, **39**J, processes said header information. Automatically, control processor, **39**J, selects information of the first H bits at said SPAM-input-signal memory and records said information of H bits at said SPAM-header memory then compares the information at said SPAM-header memory to the aforementioned 11-header-invoking information that is "11". No match results.

Because control processor, 39J, and the RAM and ROM associated with said processor, 39J, are preprogrammed to process the monitor information of SPAM commands to provide viewership data for remote computer processing, not resulting in a match with said 11-header-invoking information causes control processor, 39J, to execute particular preprogrammed evaluate-message-content instructions before

86

receiving and processing the execution segment information in said first message. Automatically, said instructions cause control processor, 39J, to compare the information at said SPAM-header memory with preprogrammed invoke-monitor-processing information. A match results with particular "01" information. Said match signifies the presence of metermonitor information in said first message and causes control processor, 39J, to enter "0" at particular SPAM-Flag-monitor-info register memory that is normally "1".

Then automatically control processor, 39J, executes a second step of receiving SPAM signal information and receives the execution segment information in said first message. Automatically, control processor, 39J, commences accepting and EOFS valve, 39F, commences transferring additional SPAM signal words. Automatically, control processor, 39J, receives and records said words in sequence at said SPAMinput-signal memory immediately following the last of said first quantity of signal words until the total quantity of SPAM signal words recorded at said memory equals a particular second quantity. Said second quantity is the smallest number of signal words that can contain one instance of header and execution segment information (that is, H+X bits). (If H+X bits can be contained in one signal word, said second quantity equals said first quantity, and control processor, 39J, records no additional SPAM signal words in the course of said second step of receiving SPAM signal information.) Automatically, control processor, 39J, ceases accepting SPAM signal information transferred from EOFS valve, 39F.

Then control processor, 39J, processes said execution segment information. Automatically, control processor, 39J, selects information of the first X bits of information at said SPAM-input-signal memory immediately after the first H bits, records said information of X bits at said SPAM-exec memory, and compares the information at said SPAM-exec memory with controlled-function-invoking information that is preprogrammed at the RAM and/or ROM associated with said processor, 39J. A match results with the aforementioned execute-at-205 information that is identical to the execute-at-205 information preprogrammed at SPAM-controller, 205C, of example #1. Said match causes control processor, 39J, to execute the aforementioned load-run-and-code instructions. Said instructions cause control processor, 39J, to place "0" at the aforementioned SPAM-Flag-primary-level-2nd-step-incomplete register memory and, separately, at SPAM-Flagprimary-level-3rd-step-incomplete register memory, which information signifies that specific load-run-and-code controlled functions have not been completed, and to place information of a particular reentry-address at the aforementioned SPAM-address-of-next-instruction-upon-primary-interrupt register memory which reentry-address specifies the location of the next decrypt-process-and-meter-current-message instruction to be executed when interrupt information of a detected end of file signal is received by control processor, 39J, from EOFS valve, 39F. Then said instructions cause control processor, 39J, to compare the information at said SPAM-header memory with preprogrammed header-identification information and determine a match with particular preprogrammed "01" information.

Under control of said instructions, said match causes control processor, 39J, automatically to execute a third step of
receiving SPAM signal information and receive the length
token information in said first message. Automatically, control processor, 39J, commences accepting and EOFS valve,
39F, commences transferring additional SPAM signal words.

Automatically, control processor, 39J, receives and records
said words in sequence at said SPAM-input-signal memory
immediately following the last of said second quantity of

signal words until the total quantity of SPAM signal words recorded at said memory equals a particular third quantity. Said third quantity is the smallest number of signal words that can contain one instance of header, execution segment, and length token information (that is, H+X+L bits). Then, automatically, control processor, 39J, ceases accepting SPAM signal information transferred from EOFS valve, 39F.

Automatically, control processor, 39J, processes said length token information. The RAM and ROM associated with control processor, 39J, are preprogrammed with all information necessary to determine the length of SPAM commands including information of H, X, L, and H+X; processlength-token, determine-command-information-wordlength, evaluate-end-condition, calculate-number-of-wordsto-transfer, evaluate-padding-bits-? instructions; and token- 15 comparison, W-token, X-token, Y-token, Z-token, w-bits, x-bits, y-bits, z-bits, A-format, B-format, C-format, and D-format information. Said preprogrammed instructions and information cause control processor, 39J, to determine the number of signal words of command information in said first 20 message in precisely the same fashion that controller, 39, determined the number of signal words of command information in the second message in example #2. Automatically, control processor, 39J, selects information of the first L bits of information at said SPAM-input-signal memory immediately 25 after the first H+X bits and records said information of L bits at SPAM-length-info memory. Said L bits are the length token of said message. Automatically control processor, 39J, determines that the information at said SPAM-length-info memory matches said W-token information, selects said w-bits infor- 30 mation, and processes said information as the numeric value of MMS-L. Automatically, control processor, 39J, determines the number of signal words in the command information of said second message by adding H+X+L to said w-bits information of MMS-L and dividing the resulting sum by the 35 number of bits in one signal word. Automatically control processor, 39J, places a "0" at particular SPAM-Flag-working register memory if said command information fills a whole number of signal words exactly and "1" at said memory if it does not. Automatically, control processor, 39J, 40 then determines a particular number of signal words to transfer and place information of said number at particular working register memory.

Next said load-run-and-code instructions cause control processor, 39J, to execute a fourth step of receiving SPAM signal information and commence receiving all remaining command information and padding bits in said first message. Automatically, control processor, 39J, commences accepting and EOFS valve, 39F, commences transferring additional SPAM signal words. Automatically, control processor, 39J, receives and records said words in sequence at said SPAM-input-signal memory immediately following the last of said third quantity of signal words until the total quantity of SPAM signal words recorded at said memory equals a particular fourth quantity. Said fourth quantity is the number at said working register memory. Then, automatically, control processor, 39J, compares the information at said SPAM-Flagworking register memory to particular information that is "0".

Not resulting in a match means that EOFS valve, **39**F, has transferred and control processor, **39**J, has recorded all command information of said first message together with any associated padding bits. Accordingly, not resulting in a match causes control processor, **39**J, to cease accepting SPAM signal information from EOFS valve, **39**F.

On the other hand, resulting in a match means that one full 65 signal word of padding bits may follow the last signal word of said message that contains command information and that

said last word must be evaluated to ascertain whether it contains MOVE bit information. Accordingly, under control of said preprogrammed instructions, resulting in a match causes control processor, 39J, to receive one additional signal word from EOFS valve, 39F, to compare said word to particular preprogrammed information of one EOFS WORD, and to record said word at said SPAM-input-signal memory immediately following the last of said fourth quantity of signal words. Said word is the last signal word of said message that contains command information. If said word matches said information of one EOFS WORD, one full signal word of padding bits follows said word, and said preprogrammed instructions cause control processor, 39J, to receive one more signal word from EOFS valve, 39F, and to record said word at said SPAM-input-signal memory immediately following said last signal word that contains command information. Then, whether or not a match has occurred with said information of one EOFS WORD, said preprogrammed instructions cause control processor, 39J, to cease accepting SPAM signal information from EOFS valve, 39F.

By receiving all command information and padding bits in said first message in the course of said four steps of receiving SPAM signal information, control processor, **39**J, causes EOFS valve, **39**F, to transfer every signal word in said first message prior to the first word of the information segment of said first message. Accordingly, the next signal word transferred by said valve, **39**F, is the first word of said information segment, which is the first word of the program instruction set of the "Wall Street Week" combining.

Then said load-run-and-code instructions cause control processor, 39J, to commence loading information at the main RAM of microcomputer, 205. Automatically, under control of said instructions, control processor, 39J, causes matrix switch, 39I, to cease transferring information from EOFS valve, 39F, to control processor, 39J, and to commence transferring information from control processor, 39J, to the CPU of microcomputer, 205; transmits an instruction to said CPU that causes said CPU to commence receiving information from matrix switch, 39I, and loading said information at particular main RAM in a fashion well known in the art; and causes matrix switch, 39I, to commence transferring information from EOFS valve, 39F, to said CPU. Automatically, microcomputer, 205, commences receiving the information of the program instruction set in said first message, beginning with the first signal word of said set, and loads said information at particular main RAM.

Then, while EOFS valve, 39F, processes the information of the information segment of said first message to detect the end of file signal and while microcomputer, 205, loads the information of said program instruction set at RAM, said loadrun-and-code instructions cause control processor, 39J, to commence executing the code portion of said instructions. The instructions of said portion cause control processor, 39J, to compare the information at said SPAM-header memory to particular load-run-and-code-header information that is "01". A match results (which indicates that said first message contains meter-monitor information). Control processor, 39J is preprogrammed with evaluate-meter-monitor-format, process-this-specific-format, and locate-program-unit instructions and with format-specification information and offsetaddress information, and said match control processor, 39J, to locate the "program unit identification code" information in the information at said SPAM-input-signal memory and record information of said "code" information at SPAM-firstprecondition register memory in the same fashion that SPAM-controller, 205C, performed these functions in

To locate said "code" information, said code portion instructions cause control processor, 39J, to execute said evaluate-meter-monitor-format instructions. Said instructions cause control processor, 39J, to select information of bits at particular predetermined locations at said SPAM-in-5 put-signal memory and record said information at SPAMmm-format register memory. Said bits are the bits of the meter-monitor format field in said first message. Then said instructions cause control processor, 39J, to compare the information at said SPAM-mm-format memory with said for- 10 mat-specification information, determine a match with particular A-format information that invokes particular process-A-format instructions, and execute said instructions. Said instructions cause control processor, 39J, to place a particular A-offset-address number at said SPAM-mm-format memory 15 (thereby overwriting and obliterating the information previously at said memory) which number specifies the address/ location at the RAM associated with control processor, 39J, of the first bit of information that identifies the specific format of the meter-monitor segment in said first message.

Then said code portion instructions cause control processor, 39J, to execute the aforementioned locate-program-unit instructions. Said instructions cause controller, 39J, to add a particular preprogrammed program-unit-field-start-datumlocation number to information of said A-offset-address num- 25 ber and record the resulting first sum then add a particular preprogrammed program-unit-field-length-datum-location number to information of said A-offset-address number and record the resulting second sum. Next said instructions cause control processor, 39J, to select preprogrammed binary information of a particular preprogrammed datum-cell-length number of contiguous bit locations that begin at said first sum number of bit locations after a particular predetermined firstbit location at said RAM and place said binary information at first-working register memory and to select preprogrammed 35 binary information of said datum-cell-length number of contiguous bit locations that begin at said second sum number of locations after said first-bit location and place said binary information at second-working register memory. In so doing, control processor, 39J, places at said first-working memory 40 information of the bit distance from the first bit location of said SPAM-input-signal memory to the first bit location of said program unit field and places at said second-working memory information of the bit location length of said program unit field. Automatically, control processor, 39J, selects 45 binary information of the second-working memory information number of contiguous bit locations at said SPAM-inputsignal memory that begin at the first-working memory information number of bit locations after the first bit location at said memory. Automatically, control processor, 39J, places 50 said binary information at said first-working memory. In so doing, control processor, 39J, selects information of the unique "program unit identification code" that identifies said "Wall Street Week" program.

Then said code portion instructions cause control processor, **39**J, to place at the aforementioned SPAM-first-precondition memory information of said information at first working memory. In so doing, control processor, **39**J, places said "code" at said memory. Then the final instructions of said portion cause control processor, **39**J, place "1" at SPAM-Flag-primary-level-3rd-step-incomplete register memory (thereby overwriting and obliterating the "1" information at said memory), which "1" signifies the completion of the code step executed by said load-run-and-code instructions.

(At stations that are not preprogrammed to collect monitor 65 information, each control processor, **39**J, commences waiting for interrupt information of the end of file signal at the end of

90

said first message from EOFS valve, 39F, when each completes the code portion of said load-run-and-code instructions.)

The station of FIG. 3 is preprogrammed to collect monitor information, and at any point where the control processor, 39J, of a station that is not so preprogrammed commences waiting, the control processor, 39J, of the station of FIG. 3 is preprogrammed automatically to execute particular preprogrammed collect-monitor-info instructions. Said instructions cause control processor, 39J, of the station of FIG. 3 to compare the information at said SPAM-Flag-monitor-info memory with particular preprogrammed "0" information. A match results. Under control of said instructions, said match causes control processor, 39J, to cause matrix switch, 39I, to commence transferring information from control processor, 39J, to buffer/comparator, 14, of signal processor, 200, (while said switch is simultaneously transferring information from control processor, 39J, to the CPU of microcomputer, 205); to transfer to said buffer/comparator, 14, header information that identifies a transmission of monitor information then particular decoder-203 information that is the source mark of said decoder, 203, (which source mark is binary information that is preprogrammed at control processor, 39J) then all of the received binary information of said first message that is recorded at said SPAM-input-signal memory; then to cause matrix switch, 39I, to cease transferring information from control processor, 39J, to said buffer/comparator, 14. (Said received information is complete information of the first combining synch command, and said information transmitted to buffer/comparator, 14, is called, hereinafter, the "1st monitor information (#3).") Then control processor, 39J, enters "1" at said SPAM-Flag-monitor-info memory, signifying completion of the transfer of said 1st monitor information (#3); completes said collect-monitor-info instructions; and commences waiting for interrupt information of end of file signal, transmitted by control transmission means.

In due course, EOFS valve, **39**F, receives the last signal word of the information segment of said first message, which is the last signal word of said program instruction 7set, and transfers said word, via matrix switch, **39**I, to microcomputer, **205**, which causes microcomputer, **205**, to load said word at said RAM.

Then said valve, 39F, commences receiving information of the eleven EOFS WORDs that constitute the end of file signal at the end of said first message. Receiving the first EOFS WORD of said eleven causes EOFS valve, 39F, to commence retaining information of said WORD, in the fashion described above, and to cease transferring information to microcomputer, 205. Accordingly, microcomputer, 205, ceases loading information at said RAM. Said valve, 39F, detects and retains information of the next nine EOFS WORDs in its end of file signal detection fashion. Then, receiving the eleventh and last EOFS WORD of said end of file signal causes EOFS valve, 39F, to increment the information at the EOFS WORD Counter of said valve, 39F, by one then determine that the information at said Counter matches the information at the EOFS Standard Length Location of said valve, 39F, which causes EOFS valve, 39F, to transmit EOFS-signal-detected information to control processor, 39J, as an interrupt signal then commence waiting for a control instruction from control processor, 39J.

Receiving an interrupt signal of EOFS-signal-detected information from an EOFS valve, 39F or 39H, while under control of any given set of preprogrammed controlled function instructions causes control processor, 39J, to execute a so-called "machine language jump" to a predesignated por-

tion of said instructions, in a fashion well known in the art, and execute the instructions of said portion.

In the case of said load-run-and-code instructions, receiving an EOFS-signal-detected interrupt signal causes control processor, 39J, to jump to and execute the run portion of said 5 instructions. Receiving the EOFS-signal-detected interrupt signal that the eleventh EOFS WORD of the end of file signal at the end of said first message causes EOFS valve, 39F, to transmit causes control processor, 39J, to jump to and execute instructions that begin with that particular one whose location 10 is identified by the reentry-address information at the afore-SPAM-address-of-next-instruction-upon-primary-interrupt register memory. Said instructions are the instructions of said run portion. Automatically, said instructions cause control processor, 39J, to cause matrix switch, 39I, to cease transferring information from EOFS valve, 39F, to the CPU of microcomputer, 205, and to commence transferring information from control processor, 39J, to said CPU; to transmit a control instruction to said CPU that causes microcomputer, 205, to cease loading information at said 20 main RAM and execute the information so loaded as socalled "machine executable code" of one so-called "job"; then to transmit the aforementioned discard-and-wait instruction, via control transmission means, to EOFS valve, 39F. In so doing, control processor, 39J, completes the instructions of 25 said run portion.

Receiving said discard-and-wait instruction causes EOFS valve, 39F, to set the information at said EOFS WORD Counter to "00000000", to transmit the aforementioned complete-and-waiting information to control processor, 39J, as a second interrupt signal, then to commence waiting for a further control instruction from control processor, 39J.

Automatically said load-run-and-code instructions cause control processor, 39J, to compare the information at said SPAM-Flag-primary-level-3rd-step-incomplete memory with particular preprogrammed "1" information. A match results which signifies that control processor, 39J, has already completed the code portion of said load-run-and-code instructions. Said match causes control processor, 39J, to complete said load-run-and-code instructions.

Having completed the controlled functions of said first message, automatically control processor, 39J, prepares to receive the next SPAM message. Automatically, control processor, 39J, determines, in a predetermined fashion, that EOFS valve, 39F, is the primary input to control processor, 45 39J, of SPAM message information; causes matrix switch, **39**I, to commence transferring information from EOFS valve, 39F, to control processor, 39J; then compares the information at said SPAM-header memory to particular preprogrammed cause-retention-of-exec information that is "01". A match 50 results which causes control processor, 39J, to place at the aforementioned SPAM-last-01-header-exec register memory information of the information at said SPAM-exec memory. Being preprogrammed to collect monitor information, control processor, 39J, automatically compares the information 55 at said SPAM-Flag-monitor-info memory with particular preprogrammed "0" information. No match results which indicates that control processor, 39J, has completed collect-monitor-info instructions in respect to said first message. Then, automatically, control processor, 39J, causes all apparatus of 60 control processor, 39J, to delete from memory all information of said first message except information at said SPAM-firstprecondition and SPAM-last-01-header-exec memories. Finally, after receiving said complete-and-waiting information from EOFS valve, 39F, control processor, 39J, causes said valve, 39F, to commence processing inputted signal words, in its preprogrammed detecting fashion, and output92

ting information to matrix switch, 39I, and control processor, 39I, commences waiting to receive information of a subsequent SPAM header from said switch, 39I.

As described in "One Combined Medium" above, running the information of said program instruction set causes microcomputer, 205, (and URS microcomputers, 205, at other subscriber stations) to place appropriate FIG. 1A image information at particular video RAM. In addition, running said set also causes microcomputer, 205, after completing placing said image information at said RAM, to transfer particular number-of-overlay-completed information and instructions to control processor, 39J. Said information and instructions cause control processor, 39J, to place the number "00000001" at particular SPAM-second-precondition register memory at control processor, 39J, signifying that said image information represents the first overlay of its associated video program.

Receiving said 1st monitor information (#3) causes buffer/comparator, 14, to compare the information, in said 1st information, of the header information that identifies a transmission of monitor information to particular preprogrammed header-identification-@14 information. A match results with particular monitored-instruction-fulfilled-identification information which causes buffer/comparator, 14, to input said 1st monitor information (#3) to onboard controller, 14A.

Receiving said 1st monitor information (#3) causes onboard controller, 14A, to record the source mark information in said 1st information at particular source-mark-@14A register memory; to record at particular SPAM-input-signal-@14A register memory all of the received binary information of said first message that was recorded at the aforementioned SPAM-input-signal memory of controller, 39J; and to execute particular preprogrammed process-monitor-info instructions. (Onboard controller, 14A, processes the 1st monitor information (#3) upon receipt, and this processing can occur simultaneously with the loading of the program instruction set of said first message at RAM at microcomputer, 205, while control processor, 39J, waits to receive an EOFS-signal-detected signal from EOFS valve, 39F.) Automatically, said instructions cause onboard controller, 14A, to compare the information at said source-mark-@14A memory, in a predetermined fashion, with particular pre-entered sourceidentification mark information that onboard controller, 14A, retains in memory associated with its pre-entered signal records of monitor information. A match results with that particular decoder-203 source mark information that is associated with the aforementioned record of the prior programming displayed at monitor, 202M. Said match causes onboard controller, 14A, to locate the instance of "program unit identification code" information in the information at said SPAMinput-signal-@14A register memory in precisely the same fashion that the code portion instructions of the aforementioned load-run-and-code instructions caused controller, 39J. to locate "program unit identification code" information in information of said first message. (Onboard controller, 14A, is preprogrammed with all information necessary for locating and processing the information of all the meter-monitor fields in any monitor information transmission such as said 1st monitor information (#3)—said preprogrammed information includes, for example, format-specification information, A-format information, and locate-program-unit instructions.) Automatically, said process-monitor-info instructions cause onboard controller, 14A, in a predetermined fashion, to locate the instance of "program unit identification code" information in said record of the prior programming displayed at monitor, 202M, and to compare said first named instance of "program unit identification code" information to said second named instance. No match results.

Not resulting in a match causes onboard controller, 14A, to cause signal processor, 200, to record said record of prior programming at recorder, 16. Automatically, under control of said process-monitor-info instructions, onboard controller, transmits to controller, 20, a particular preprogrammed 5 instruct-to-record instruction that causes controller, 20, to cause onboard controller. 14A, to transmit the monitor record of said prior programming to recorder, 16, in a predetermined fashion and that causes controller, 20, to cause recorder, 16, to record said monitor record information in a predetermined fashion. (Certain transfer functions caused by said transmission of instruct-to-record information are described more fully below in "Operating Signal Processing Systems . . . Signal Record Transfer.")

Then said process-monitor-info instructions cause onboard controller, 14A, to initiate a new monitor record that reflects the new "Wall Street Week" programming. Automatically, said instructions cause onboard controller, 14A, in a predetermined fashion, to delete all information at the monitor 20 record location of said monitor record of prior programming except the source mark information associated with said record; to record information of said first named instance of "program unit identification code" information (which is the "program unit identification code" of said "Wall Street Week" 25 program to a particular "program unit identification code" location at said record location; to select particular information located at said SPAM-input-signal-@14A register memory and record information at said record location; to select particular preprogrammed record format information that identifies the format of the information at said record location and place information of said information at a particular location at said record location and, separately, at a particular format comparison location; and finally, to discard 35 all unrecorded information of said 1st monitor information (#3) and commence waiting for the next inputted instance of

The content of the 1st monitor information (#3) [more ment and of the meter-monitor format field] causes onboard controller, 14A, to organize the information of said new monitor record in a particular fashion. The command execution segment of the 1st monitor information (#3) causes signal processor, 200, to assemble the this new monitor record in a particular format of a combined video/computer medium display and to include a particular record format field within said format identifying the format of said record. (Were the execution segment of said command of the aforementioned pseudo command, signal processor, 200, would initiate a record for a conventional television program.) From the command metermonitor segment of the 1st monitor information (#3), onboard controller, 14A, selects and records at particular signal record field locations at said record location the information that 55 identifies the program unit of the particular "Wall Street Week" program, the origin of the "Wall Street Week" transmission, and the day of the particular transmission within a one hundred year period. In a predetermined fashion, onboard controller, 14A, also records in a particular monitor record 60 field location at said record location a particular display unit identification code that identifies monitor, 202M, as the display apparatus of said new monitor record. In a predetermined fashion, signal processor, 200, records date and time information received from clock, 18, in first and last particular time field locations at said record location that document the date and time respectively of the first and of the last

received instances of monitor information of the particular program unit and source mark.

Operating S. P. Systems

Example #3

Second Message

Subsequently, the embedded information of the second message of the "Wall Street Week" program is inputted to decoder, 203. Receiving said embedded information at decoder, 203, causes the SPAM information of said second message to be detected at detector 34; inputted to controller, 39, at buffer, 39A; checked and corrected, as necessary, at processor, 39B; converted into locally usable binary information at processor, 39D; and processed by EOFS valve, 39F, in the end of file signal detecting fashion of said valve, 39F, with all these functions occurring in the same fashions that applied to the SPAM information of the first message.

When EOFS valve, 39F, commences transferring the SPAM information of the second message, receiving the information of the header of said message causes control processor, 39J, to commence processing the information of said message under control of the preprogrammed instructions at the RAM and ROM associated with said processor, 39J, and to process, in particular, the information of said header. Automatically, control processor, 39J, accepts the smallest number of signal words that can contain one instance of header information, records the information of said words in sequence at SPAM-input-signal register memory, then ceases accepting SPAM signal information transferred from EOFS valve, 39F. Automatically, control processor, 39J, selects information of the first H bits at said SPAM-inputsignal memory and records said information of H bits at SPAM-header memory then compares the information at said SPAM-header memory to the aforementioned 11-header-invoking information that is "11". No match results.

Not resulting in a match causes control processor, 39J, first, particularly, the information of the command execution seg- 40 to execute the aforementioned evaluate-message-content instructions then to receive and process the execution segment information in said second message. Automatically, control processor, 39J, compares the information at said SPAM-header memory with preprogrammed invoke-monitor-processing information. A match results with particular "00" information. Said match signifies the presence of metermonitor information in said second message and causes control processor, 39J, to enter "0" at SPAM-Flag-monitor-info register memory that is normally "1". Then, automatically, control processor, 39J, commences accepting additional SPAM signal words from EOFS valve, 39F; receives and records additional words at said SPAM-input-signal memory, in sequence after the information already there, until the total quantity of SPAM signal words recorded at said memory equals the smallest number of signal words that can contain one instance of header and execution segment information; then ceases accepting SPAM signal information from EOFS valve, 39F. Automatically, control processor, 39J, selects information of the first X bits of information at said SPAMinput-signal memory immediately after the first H bits, records said information of X bits at said SPAM-exec memory, and compares the information at said SPAM-exec memory with controlled-function-invoking information that is preprogrammed at the RAM and/or ROM associated with said processor, 39J. A match results with the aforementioned execute-conditional-overlay-at-205 information that is identical to the execute-conditional-overlay-at-205 information

preprogrammed at SPAM-controller, **205**C, of example #1. Said match causes control processor, **39**J, to execute the aforementioned conditional-overlay-at-205 instructions. Said instructions cause SPAM-controller, **205**C, to execute "GRAPHICS ON" at the PC-MicroKey System of microcomputer, **205**, if the information of the program unit field in the meter-monitor information of said second message matches the information at said SPAM-first-precondition register memory and the information of the overlay number field in said meter-monitor information matches the information at said SPAM-second-precondition register memory.

Automatically, said conditional-overlay-at-205 instructions cause control processor, 39J, to receive and process the length token information in said second message. Automatically, control processor, 39J, recommences accepting additional SPAM signal words from EOFS valve, 39F; receives and records additional words at said SPAM-input-signal memory, in sequence after the information already there, until the total quantity of SPAM signal words recorded at said 20 memory equals the smallest number of signal words that can contain one instance of header, execution segment, and length token information; then ceases accepting SPAM signal information from EOFS valve, 39F. Under control of the same preprogrammed instructions that controlled the processing of 25 the length token of the first message, control processor, 39J, processes the length token of the second message in the same fashion that applied to the first message but with one exception. Control processor, 39J, determines that the length token of said second message matches X-token information, when 30 compared with token-comparison information, rather than Y-token information (which was the information matched by the length token information of the second message of example #2). Said match causes control processor, 39J, to select x-bits information, place said information at SPAM- 35 length-info memory, and process said x-bits information as the numeric value of MMS-L. Then, in precisely the same fashion that applied in the case of the first message, control processor, 39J, determines a particular number of signal words to transfer and places information of said number at 40 particular working register memory.

Next said conditional-overlay-at-205 instructions cause control processor, 39J, to receive all remaining command information and padding bits of said second message and to load said information and bits at said SPAM-input-signal 45 memory in precisely the same fashion that applied in the case of the first message. Automatically, control processor, 39J, recommences accepting additional SPAM signal words from EOFS valve, 39F, and receives and records additional words at said SPAM-input-signal memory, in sequence after the 50 information already there, until the total quantity of SPAM signal words recorded at said memory equals the number at said working register memory. Then, if the command information in said second message does not fill a whole number of signal words exactly, control processor, 39J, automatically 55 ceases accepting SPAM signal information from EOFS valve, 39F. But if, instead, said command information does fill a whole number of signal words exactly, automatically control processor, 39J, receives one additional signal word from EOFS valve, 39F; compares said word to information of one 60 EOFS WORD; records said word at said SPAM-input-signal memory immediately following the information already recorded at said memory; receives one more signal word from EOFS valve, 39F, and records said word at said SPAM-inputsignal memory immediately following the information of 65 said one additional signal word if said additional word matched said information of one EOFS WORD at the afore96

mentioned comparing; and ceases accepting SPAM signal information from EOFS valve, 39F.

By receiving all command information and padding bits in said second message, control processor, 39J, causes EOFS valve, 39F, to transfer every signal word in said message. Accordingly, the next signal word to be transferred by said valve, 39F, is the first word of the next message embedded in the "Wall Street Week" programming transmission after said second message.

Then, in order to locate the information of the program unit and overlay number fields in the meter-monitor information of said second message, said conditional-overlay-at-205 instructions cause control processor, 39J, to execute said evaluate-meter-monitor-format instructions and said instructions cause control processor, 39J, to place a selected offsetaddress number at SPAM-mm-format memory in the same fashion that applied in the case of the first message. Automatically, control processor, 39J, selects information of the bits of the meter-monitor format field in said first message, records said information at SPAM-mm-format register memory, compares the information at said memory with format-specification information, determines a match with B-format information that invokes process-B-format instructions that cause control processor, 39J, to place at said SPAMmm-format memory a particular B-offset-address number that is different from the aforementioned A-offset-address number and that specifies the RAM address/location of the first bit of information that identifies the specific format of the meter-monitor segment in said second message.

Then said conditional-overlay-at-205 instructions cause control processor, 39J, to execute the aforementioned locateprogram-unit instructions and locate the program unit field in the meter-monitor information of said second message in the same fashion that applied in the case of the first message. Automatically, controller, 39J, adds the aforementioned program-unit-field-start-datum-location number to information of said B-offset-address number and records the resulting first sum then adds the aforementioned program-unit-fieldlength-datum-location number to information of said B-offset-address number and records the resulting second sum. Next said instructions cause control processor, 39J, to select information of the starting bit location of said program unit field which information is the number of bit locations from the first bit location at said SPAM-input-signal memory to the first bit location of said field. Automatically, control processor, 39J, places said information at first-working register memory then selects second information of the length of said program unit field in contiguous bit locations and places said second information at second-working register memory. Automatically, control processor, 39J, selects binary information of the second-working memory information number of contiguous bit locations at said SPAM-input-signal memory that begin at the first-working memory information number of bit locations after the first bit location at said memory. Automatically, control processor, 39J, places said binary information at said first-working memory. In so doing, control processor, 39J, places at said memory information of the unique "program unit identification code" that identifies the program unit of said "Wall Street Week" program.

Then said conditional-overlay-at-205 instructions cause control processor, 39J, to compare the information at said first-working memory to the information at the aforementioned SPAM-first-precondition register memory (which is the same unique code). A match results (which indicates that control processor, 39J, executed the aforementioned load-run-and-code instructions under control of the first message.)

Said match causes control processor, 39 J, to continue executing said conditional-overlay-at-205 instructions.

(As described in the case of the second message of example #1, at any subscriber station where information at first-working register memory fails to match information at SPAM-first-precondition register memory, said failing to match causes the control processor, 39J, of said station to clear all SPAM information from main and video RAMs of the microcomputers, 205, of said stations and, themselves, to discard all information of said second message and commence waiting for the binary information of a subsequent SPAM header.)

Next said conditional-overlay-at-205 instructions cause control processor, 39J, to execute the aforementioned locateoverlay-number instructions and locate the overlay number field in said meter-monitor information in the same fashion that the information of the program unit field is located. Said locate-overlay-number instructions cause controller, 39J, to add a particular preprogrammed overlay-number-field-startdatum-location number (that is different from the aforementioned program-unit-field-start-datum-location number) to information of said B-offset-address number and record the resulting first sum then add a particular preprogrammed overlay-number-field-length-datum-location number to information of said B-offset-address number and record the resulting second sum. Next said instructions cause control processor, 39J, to select preprogrammed binary information of the aforementioned datum-cell-length number of contiguous bit locations that begin at said first sum number of bit locations after the aforementioned first-bit location at said RAM and place said binary information at first-working register memory and to select preprogrammed binary information of said datumcell-length number of contiguous bit locations that begin at said second sum number of locations after said first-bit location and place said binary information at second-working register memory. In so doing, control processor, 39J, places at said first-working memory information of the bit distance from the first bit location of said SPAM-input-signal memory to the first bit location of said overlay number field and places at said second-working memory information of the number of $_{40}$ contiguous bit locations in said overlay number field. Automatically, control processor, 39J, selects binary information of the second-working memory information number of contiguous bit locations at said SPAM-input-signal memory that begin at the first-working memory information number of bit locations after the first bit location at said memory. Automatically, control processor, 39J, places said binary information at said first-working memory (thereby overwriting and obliterating the information previously there). In so doing, control processor, 39J, selects from the information at said SPAMinput-signal memory and records at said first-working memory the information of said overlay number field. (After the information of said overlay field is placed at said memory, the information at said memory is "00000001".)

Then said conditional-overlay-at-205 instructions cause 55 control processor, **39**J, to compare the information at said first-working memory to the "00000001" information at the aforementioned SPAM-second-precondition register memory. A match results (indicating that microcomputer, **205**, has completed placing appropriate FIG. **1**A image information at video RAM).

(As described in the case of the second message of example #1, at any subscriber station where information at first-working register memory fails to match information at SPAM-second-precondition memory, the control processor, 39J, of 65 said station interrupts the operation of the CPU of said microcomputer, 205, in an interrupt fashion well known in the art,

98

and causes said microcomputer, 205, to restore efficient operation in a fashion described more fully below.)

At the subscriber station of FIG. 3 (and at URS microcomputers, 205, at other subscriber stations where information at first-working memory matches information at SPAM-second-precondition memory), said match causes control processor, 39J, to cause matrix switch, 39I, to cease transferring information from EOFS valve, 39F, to control processor, 39J, and commence transferring information from control processor, 39J, to the PC-MicroKey System of microcomputer, 205; to transmit the instruction, "GRAPHICS ON", to said PC-MicroKey System; and to complete said conditional-overlay-at-205 instructions, the controlled functions of the second combining synch command, and the controlled functions of said second message.

At the subscriber station of FIG. 3 (and at URS microcomputers, 205, at other subscriber stations), said instruction, "GRAPHICS ON", causes said PC-MicroKey System to combine the programming of FIG. 1A and of FIG. 1B and transmit the combined programming to monitor, 202M, where FIG. 1C is displayed.

Automatically, the preprogrammed instructions that control control processor, 39J, cause said processor, 39J, to prepare to receive the next SPAM message. Automatically, control processor, 39J, determines, in a predetermined fashion, that EOFS valve, 39F, is the primary input to control processor, 39J, of SPAM message information; causes matrix switch, 39I, to commence transferring information from EOFS valve, 39F, to control processor, 39J; determines that the information at said SPAM-header memory does not match the aforementioned cause-retention-of-exec information that is "01".

Then, being preprogrammed to collect monitor information, control processor, 39J, automatically compares the information at said SPAM-Flag-monitor-info memory with particular preprogrammed "0" information. A match results. Said match causes control processor, 39J, to execute particular ones of its preprogrammed collect-monitor-information instructions. Under control of said ones, control processor, 39J, transfers to the buffer/comparator, 14, of signal processor, 200, header information that identifies a transmission of monitor information then the aforementioned decoder-203 source mark information then all of the received binary information of said second message that is recorded at said SPAMinput-signal memory. (Said information is complete information of the second combining synch command, and said information transmitted to buffer/comparator, 14, is called, hereinafter, the "2nd monitor information (#3).") Then control processor, 39J, enters "1" at said SPAM-Flag-monitorinfo memory, completes said collect-monitor-info instructions, and continues the conventional preprogrammed instructions of said control processor, 39J.

Automatically control processor, 39J, deletes from memory all information of said second message and commences waiting to receive the binary information of a subsequent SPAM header from matrix switch, 39I.

At signal processor, 200, receiving said 2nd monitor information (#3) causes buffer/comparator, 14, to determine that the header information, in said 2nd monitor information (#3), that identifies a transmission of monitor information matches the aforementioned monitored-instruction-fulfilled-identification information which causes buffer/comparator, 14, to input said 2nd monitor information (#3) to onboard controller, 14A.

Receiving said 2nd monitor information (#3) causes onboard controller, **14**A, to record the source mark information in said 2nd monitor information (#3) at source-mark-

@14A register memory; to record, at particular SPAM-inputsignal-@14A register memory, all of the received binary information of said first message that was recorded at the aforementioned SPAM-input-signal memory of controller, **39**J; and to execute the aforementioned process-monitor-info 5 instructions. Said instructions cause onboard controller, 14A, to compare the information at said source-mark-@14A memory with the aforementioned source-identification information. A match results with the aforementioned decoder-203 source mark information. Said match causes onboard 10 controller, 14A, to locate the instance of "program unit identification code" information at said SPAM-input-signal-@14A register memory, in the fashion described above; to locate the instance of "program unit identification code" information in the aforementioned new monitor record; and 15 to compare said first named instance to said second named instance. A match results. Under control of said processmonitor-info instructions, said match causes onboard controller, 14A, to record date and time information, received from clock, 18, at the aforementioned last particular time field 20 of said new monitor record and, in a predetermined fashion, to compare the meter-monitor format field at said SPAM-inputsignal-@14A register memory to the aforementioned record format field associated with said monitor record. No match results which indicates that said 2nd monitor information (#3) 25 contains new information. Not resulting in a match causes onboard controller, 14A, in a predetermined fashion, to evaluate said new information and modify the information content of said new monitor record by adding and/or deleting and/or replacing information. One element of information modified 30 at said new monitor record is said record format information which is replaced with new record format information that specifies the format in which the information of said new record is organized. Finally, said process-monitor-info instructions cause onboard controller, 14A, to discard all 35 unrecorded information of said 2nd monitor information (#3) and commence waiting for the next inputted instance of monitor information.

The new information content of the 2nd monitor information (#3) causes controller, 20, to modify the information of 40 said new monitor record in a particular fashion. The command meter-monitor segment information of the minute of the particular transmission within a particular one month period provides new information. By comparing said information with date and time information from clock, 18, in a 45 predetermined fashion, controller, 20, determines whether said "Wall Street Week" programming is being displayed at the time of its original transmission or whether it has been so-called "time shifted"; that is, recorded at one time an a receiver station video tape recorder and played back at a 50 subsequent time. If controller, 20, determines that the time of clock, 18, is the time of original transmission (plus or minus particular error parameter information), controller, 20, deletes the information of the day of the particular transmission within a one hundred year period from said monitor 55 record, modifies the record format field with information that distinguishes said new record as a record of a display of an original transmission, and enters all other recorded information of said new monitor record into the particular fields of said format. If controller, 20, determines that the original 60 transmission has been time shifted, controller, 20, modifies the record format field with information that distinguishes said new record as a record of a time shifted display, enters all previously recorded information within the proper fields of said format, and records the new information of the minute of the particular transmission within a particular one month period.

100

The particular overlay information of the command metermonitor segment of the 2nd monitor information (#3) also provides new information. Controller, 20, uses said particular overlay information in several fashions. It records in a particular field of said new monitor record a count, starting with "1" for said first overlay, of the number of overlays processed in the course of said program unit. It increments by one a separate monitor record count of the aggregate number of overlays displayed at monitor, 202M, over a particular calendar month period. And it increments by one a separate monitor record count of the aggregate number of combinings processed by all receiver station apparatus over a particular time period.

Operating S. P. Systems

Example #3

Third Message

Subsequently, the embedded information of the third message of the "Wall Street Week" program is inputted to decoder, 203. Just as with the information of the first and second messages, receiving the embedded information of said third message causes the SPAM information of said message to be detected at detector, 34, and inputted to controller, 39, at buffer, 39A; checked and corrected, as necessary, at processor, 39B; converted into locally usable binary information at processor, 39D; and processed for end of file signal information at EOFS valve, 39F.

When EOFS valve, **39**F, commences transferring the SPAM information of said third message, control processor, **39**J, automatically accepts the smallest number of signal words that can contain one instance of header information, records the information of said words in sequence at SPAM-input-signal register memory, then ceases accepting SPAM signal information transferred from EOFS valve, **39**F. Automatically, control processor, **39**J, selects information of the first H bits at said SPAM-input-signal memory, records said information of H bits at SPAM-header memory, and compares the information at said SPAM-header memory to the aforementioned 11-header-invoking information that is "11". No match results.

Not resulting in a match causes control processor, 39J, first, to execute evaluate-message-content instructions then to receive and process the execution segment information in said third message. Automatically, control processor, 39J, compares the information at said SPAM-header memory with preprogrammed invoke-monitor-processing information. No match results which signifies the absence of meter-monitor information in said third message. Accordingly, the information at said SPAM-Flag-monitor-info register memory remains "1". Then control processor, 39J, recommences accepting additional SPAM signal words from EOFS valve, 39F; receives and records additional words at said SPAMinput-signal memory, in sequence after the information already there, until the total quantity of SPAM signal words recorded at said memory equals the smallest number of signal words that can contain one instance of header and execution segment information; then ceases accepting SPAM signal information from EOFS valve, 39F. Automatically, control processor, 39J, selects information of the first X bits of information at said SPAM-input-signal memory immediately after the first H bits, records said information of X bits at said SPAM-exec memory, and compares the information at said SPAM-exec memory with controlled-function-invoking information that is preprogrammed at the RAM and/or ROM

associated with said processor, 39J. A match results with the aforementioned cease-overlay information causing control processor, 39J, to execute the aforementioned cease-overlaying-at-205 instructions.

Automatically, said instructions cause control processor, 5 39J, to cause matrix switch, 39I, to cease transferring information from EOFS valve, 39F, to control processor, 39J, and commence transferring information from control processor, 39J, to the PC-MicroKey System of microcomputer, 205; to transmit the instruction, "GRAPHICS OFF", to said PC- 10 MicroKey System; to cause matrix switch, 39I, to cease transferring information from control processor, 39J, to said PC-MicroKey System and commence transferring information from control processor, 39J, to the CPU of microcomputer, 205; then to transmit the aforementioned clear-and-continue 15 instruction (the function of which is described more fully below) to said CPU; and finally, to cause matrix switch, 39I, to cease transferring information from control processor, 39J, to said CPU. In so doing, control processor, 39J, completes said cease-overlaying-at-205 instructions.

At the subscriber station of FIG. 3 (and at URS microcomputers, 205, at other subscriber stations), said instruction, "GRAPHICS OFF", causes said PC-MicroKey System to cease combining the programming of FIG. 1A and of FIG. 1B and commence transmitting to monitor, 202M, only the composite video programming received from divider, 4, (which causes monitor, 202M, to commence displaying only said video programming). And said clear-and-continue instruction causes microcomputer, 205, to commence processing in a predetermined fashion (which fashion may be determined by the aforementioned program instruction set).

Having completed the controlled functions of said third message, the conventional control instructions that control control processor, **39**J, cause said processor, **39**J to prepare to receive the next instance of SPAM message information in the 35 following fashion.

Automatically, control processor, 39J, determines, in a predetermined fashion, that EOFS valve, 39F, is the primary input to control processor, 39J, of SPAM message information; causes matrix switch, 39I, to commence transferring 40 information from EOFS valve, 39F, to control processor, 39J; determines that the information at said SPAM-header memory does not match said cause-retention-of-exec information that is "01"; then, being preprogrammed to collect monitor information, compares the information at said 45 SPAM-Flag-monitor-info memory with particular preprogrammed "0" information. No match results, and receiving said third message does not cause control processor, 39J, to transmit monitor information to buffer/comparator, 14, of signal processor, 200. Automatically, control processor, 39J, 50 completes said collect-monitor-info instructions and continues the conventional preprogrammed instructions of said control processor, 39J.

Automatically control processor, 39J, deletes from memory all information of said third message, but in so doing, 55 control processor, 39J, may perform particular functions that are not performed in deleting from memory information of the first and second messages. Control processor, 39J, has received all command information in said third message but may not have received all padding bits. If the command information in the smallest number of signal words that can contain one instance of header and execution segment information fills a whole number of signal words exactly, the last signal word of said command information may contain no MOVE bits and be followed by one full signal word of padding bits. To ensure that all padding bits of said third message are transferred from EOFS valve, 39F, control processor, 39J,

102

is preprogrammed with particular additional conventional instructions if H+X fills a whole number of signal words exactly. Before information of said third message at said SPAM-header memory is deleted, said particular instructions cause control processor, 39J, to compare said information to particular preprogrammed "10" information. A match results which causes control processor, 39J, under control of said particular instructions, to compare the last signal word of information at said SPAM-input-signal memory to information of one EOFS WORD; to receive one additional signal word from EOFS valve, 39F, if said last word matches said information of one EOFS WORD; then to cease accepting SPAM signal information from EOFS valve, 39F. In this fashion, control processor, 39J, ensures automatically that the next signal word to be transferred by said valve, 39F, will be the first word of the next message embedded in the "Wall Street Week" programming transmission after said third message.

Then, having deleted from memory all information of said 20 third message, automatically control processor, 39J, commences waiting to receive the binary information of a subsequent SPAM header from matrix switch, 39I.

Operating Signal Processor Systems

Example #4

In example #4, the first and second messages are both partially encrypted, and the combining of FIG. 1A and FIG. 1B information occurs only at selected subscriber stations where the information of said messages causes decrypting and collecting of meter information as well as combining. In addition, the information of said messages also causes the collecting of monitor information at selected ones of said selected stations which selected ones are preprogrammed to collect monitor information in the fashion of example #3. In example #4, all appropriate apparatus of the subscriber station of FIG. 3 are preprogrammed to collect monitor information, and buffer/comparator, 14, operates under control of the aforementioned on-board controller, 14A, in fashions elaborated on below.

Example #4 elaborates on the process of monitor information collection in one particular respect. The second message of example #2 causes particular monitor information to be recorded at those particular stations, preprogrammed to collect monitor information, where microcomputers, 205, fail to satisfy either condition of the invoked conditional-overlayat-205 instructions. Thus the monitor information collected in example #4 documents not only what programming is displayed at the subscriber station monitors, 202M, of the present invention but also the efficiency of the operation of the system of subscriber station microcomputers, 205. Said monitor information also provides statistics on those particular subscriber stations that tune to and process the programming of said "Wall Street Week" program but cannot display FIG. 1C combined medium image information because said particular stations are preprogrammed with decryption key information of J but not of Z. Such statistics enable programming suppliers to evaluate their strategies for marketing and pricing programming.

In example #4, before the first message is embedded at the "Wall Street Week" program originating studio and transmitted, all information of the execution segment, the metermonitor segment, and the program instruction set in the information segment are encrypted, using standard encryption techniques that encrypt binary information without altering the number of bits in said information. However, the cadence

information of said message remains unencrypted. More precisely, the "01" header, any padding bits added at the end of the information segment, and the end of file signal that ends said message remain unencrypted. (The length token and any padding bits at the end of the command information in a 5 message that ends with an end of file signal are not, strictly speaking, cadence information because they provide no information as to the location of the header that follows such a message.) Like the second message of example #2, the first message of example #4 is only partially encrypted in order to 10 enable subscriber stations that lack capacity to decrypt said message to process accurately the cadence information of said message.

In example #4, the encryption of the execution segment of said first message is done in such a fashion that, after encryption, said segment is identical to a particular execution segment that addresses URS signal processors, 200, and instructs said processors, 200, to use a particular decryption key Z (different from the decryption key J that decrypted the second message of example #2) and decrypt the message in which 20 said segment occurs.

Because said first message is encrypted, its meter-monitor segment contains a seventh field: a meter instruction field. Accordingly, the length of said first message, the number of bits in its meter-monitor segment, the information of the meter-monitor format field, and the numeric value of MMS-L is greater in example #4 than in example #1 and example #3.

As described above in "One Combined Medium," before any messages of the "Wall Street Week" programming are transmitted, control invoking instructions are embedded at said program originating studio and transmitted to all subscriber stations. Among said instructions are particular instructions, cited in example #2, that set PC-MicroKey Model 1300 Systems to the "Graphics Off" mode, and also 35 instructions that command URS microcomputers, 205, to clear all RAM (except RAM containing operating system information). In addition (and not described in "One Combined Medium"), said instructions also include particular instructions that cause information of zero to be placed at the 40 aforementioned SPAM-first-precondition and SPAM-second-precondition register memories. Accordingly, at the outset of example #4, no PC-MicroKey 1300 is in "Graphics On" mode; no microcomputer, 205, contains any image information at video RAM; and no "program unit identification code" information exists at the SPAM-first-precondition register memory of any control processor, 39J.

At the outset of example #4, information of "1" is at each of the aforementioned SPAM-Flag-monitor-info, SPAM-Flag-at-secondary-control-level, SPAM-Flag-executing-secondary-command, SPAM-Flag-secondary-level-incomplete, SPAM-Flag-primary-level-2nd-step-incomplete, SPAM-Flag-primary-level-3rd-step-incomplete, SPAM-Flag-secondary-level-2nd-step-incomplete, SPAM-Flag-secondary-level-3rd-step-incomplete, SPAM-Flag-first-condition-failed, SPAM-Flag-second-condition-failed, and SPAM-Flag-do-not-meter register memories, and matrix switch, 39I is configured to transfer SPAM message information from EOFS valve, 39F, to control processor, 39J.

Example #4 begins, like example #3, with divider, 4, transferring the embedded information of said first message to decoder, 203. In the same fashion that applied in example #3, receiving said embedded information at decoder, 203, causes the binary SPAM information of said first message to be received, with error correcting information, at decoder, 203; 65 detected at detector, 34; inputted to controller, 39, at buffer, 39A; checked and corrected, as necessary, at processor, 39B;

104

converted into locally usable binary information at processor, **39**D; and processed for end of file signal information at EOFS valve, **39**F.

Receiving said first message causes the apparatus of the station of FIG. 3, in the following fashion, to decrypt the encrypted portions of said message; to execute the controlled functions of the decrypted information of said message; to collect meter information and monitor information relating to said message; and in the fashion described more fully below in "Operating Signal Processing Systems . . . Signal Record Transfer," to transfer meter information and monitor information to one or more remote processing stations, causing said stations to process said information.

When EOFS valve, 39F, commences transferring the SPAM message information of said first message, control processor, 39J, automatically accepts the smallest number of signal words that can contain H bits; records the information of said words at SPAM-input-signal register memory; ceases accepting SPAM message information from EOFS valve, 39F; selects information of the first H bits at said SPAM-input-signal memory; records said information at SPAM-header memory; and compares the information recorded at said memory to the aforementioned 11-header-invoking information that is "11". No match results.

Not resulting in a match causes control processor, 39J, first, to execute the aforementioned evaluate-message-content instructions (because the stations of FIG. 3 is preprogrammed to collect monitor information) then to receive and process the execution segment information in said first message. Automatically, control processor, 39J, compares the information at said SPAM-header memory with preprogrammed invoke-monitor-processing information. A match results with particular "01" information. Said match signifies the presence of meter-monitor information (albeit encrypted) in said first message and causes control processor, 39J, to enter "0" at the aforementioned SPAM-Flag-monitor-info register memory. Then control processor, 39J, recommences accepting additional SPAM signal words from EOFS valve, 39F; receives and records said words at said SPAM-input-signal memory, in sequence after the information already there, until the total quantity of SPAM signal words recorded at said memory equals the smallest number of signal words that can contain H+X bits; ceases accepting SPAM signal information from EOFS valve, 39F; selects information of the first X bits of information at said SPAM-input-signal memory immediately after the first H bits; records said information at said SPAM-exec memory, and compares the information at said memory with the aforementioned controlled-function-invoking information. A match results with particular preprogrammed this-message-addressed-to-200 information.

In examples #1 and #2, whenever controller, 39, determined matches with either this-message-addressed-to-205 information or this-message-addressed-to-200 information, controller, 39, transferred the entire message containing the identified information to the addressed apparatus. But in the preferred embodiment, controller, 39, may be preprogrammed to transfer, by control information transmission means, only particular information of any given message that contains this-message-addressed-to-200 information. The first and second messages of example #4 illustrate instances of such transferring.

Said match with this-message-addressed-to-200 information causes control processor, 39J, automatically to execute particular preprogrammed transfer-header-and-exec-seg-info-to-200 instructions. Automatically, said instructions cause control processor, 39J, to transfer to controller, 20, of signal processor, 200, via control information transmission

means, an interrupt signal that interrupts the operation of said controller, **20**, in a fashion well known in the art, then particular process-this-message information then particular at-39J information that identifies control processor, **39**J, as the source of the transmission of said process-this-message information then information of the header and execution segment of said first message (that is, information of the information recorded at said SPAM-header and SPAM-exec memories).

Receiving said interrupt signal and information causes 10 controller, 20, to compare the information of said execution segment to the aforementioned controlled-function-invoking-@200 information and determine a match with particular decrypt-with-key-Z information that instructs controller, 20, to cause the decryption of the received binary signal information of said first message with decryption key Z.

(At subscriber stations whose URS signal processors, 200, are not preprogrammed with information of said key Z, the information of said execution segment fails to match any controlled-function-invoking-@200 information. Automati- 20 cally, failing to match causes the controllers, 20, of said stations to cause the control processors, 39 J, of said stations to discard all information of said first message by causing matrix switch, 39I, to transfer all information inputted from EOFS valve, 39F, to its null output; then causing EOFS valve, 25 39F, to transfer all received SPAM information until an end of file signal is detected; then, after said signal is detected, causing said valve, 39F, to discard its recorded information of said end of file signal; causing matrix switch, 39I, to commence transferring all information inputted from EOFS 30 valve, 39F, to control processor, 39J; and, itself, deleting all recorded information of said message and commencing to wait for inputted information of a SPAM header.)

However, the subscriber station of FIG. 3 is preprogrammed with all information needed to decrypt said first 35 message. The aforementioned at-39J information and match with decrypt-with-key-Z information cause controller, 20, to execute particular preprogrammed decrypt-with-Z-at-39K instructions. Said instructions cause controller, 20, to select particular preprogrammed key information of Z and transfer 40 said key information to decryptor, 39K, of controller, 39. Then said decrypt-with-Z-at-39K instructions cause controller, 20, to compare said information of the header transferred from control processor, 39J, to particular preprogrammed header-identification-@200 information and to determine 45 that said information of the header matches particular "01" header information. Said match causes controller, 20, automatically to transmit a particular decrypt-in-a-01-or-11header-message-fashion instruction to decryptor, 39K.

Receiving said key information and said last named 50 instruction causes decryptor, 39K, to commence using said key information as its key for decryption and decrypting inputted information in a predetermined 01-or-11-header-message fashion that is described more fully below.

Then said decrypt-with-Z-at-39K instructions cause controller, **20**, to transmit to control processor, **39**J, a particular decrypt-process-and-meter-a-01-or-11-header-message instruction and particular decryption mark information of key Z that identifies Z as the decryption key. Receiving said instruction and mark information causes control processor, 60 **39**J, to record said mark information at the aforementioned SPAM-decryption-mark register memory, to enter "1" at the aforementioned SPAM-Flag-monitor-info register memory because any meter-monitor information in the SPAM message being processed is encrypted, then to execute particular preprogrammed decrypt-process-and-meter-current-01-or-11-header-message instructions.

106

Said instructions cause control processor, 39J, first, to identify EOFS valve, 39F, in a predetermined fashion, as the primary source of input SPAM message information; to place particular from-39F information at the aforementioned SPAM-primary-input-source register memory; and to place information of a particular reentry-address at the aforementioned SPAM-address-of-next-instruction-upon-primary-interrupt register memory which reentry-address specifies the location of the next decrypt-process-and-meter-current-01-or-11-header-message instruction to be executed when interrupt information of end of file signal detected information is next received by control processor, 39J, from said primary source of input SPAM message information, EOFS valve, 39F.

Then said instructions cause control processor, 39J, to transfer to decryptor, 39K, the SPAM message associated with the particular information at the SPAM-header memory of control processor, 39J. Automatically, said instructions cause control processor, 39J, to cause matrix switch, 39I, to cease transferring information from EOFS valve. 39F, to control processor, 39J, and commence transferring information from control processor, 39J, to decryptor, 39K. Then said instructions cause control processor, 39J, to transfer all SPAM message information recorded at said SPAM-inputsignal memory of control processor, 39J. Said information is all the information of said first message that EOFS valve, 39F, has already transferred. Automatically, decryptor, 39K, commences receiving SPAM signal information. Then said instructions cause control processor, 39J, to cause matrix switch, 39I, to cease transferring information from control processor, 39J, to decryptor, 39K, and to commence transferring SPAM message information from EOFS valve, 39F, to decryptor, 39K. As decryptor, 39K, then accepts transferred information from matrix switch, 39I, automatically EOFS valve, 39F, commences transferring SPAM signal information, beginning with the first signal word of said first message that is immediately after the information of said first message that EOFS valve, 39F, has already transferred. In this fashion, control processor, 39J, causes all information of said first message to be transferred to decryptor, 39K.

Then said decrypt-process-and-meter-current-01-or-11header-message instructions cause control processor, 39J, to prepare to receive the decrypted information of said first message and to execute, at a secondary control level under primary control of said decrypt-process-and-meter-current-01-or-11-header-message instructions, the controlled functions invoked by said decrypted information. Under control of decrypt-process-and-meter-current-01-or-11-headermessage instructions, control processor, 39J, places information of a particular reentry-address at the aforementioned SPAM-next-primary-instruction-address register memory which reentry-address specifies the location of the next decrypt-process-and-meter-current-01-or-11-header-message instruction to be executed when control of control processor, 39J, reverts from the secondary control level to the primary control level; places information of "0" at the aforementioned SPAM-Flag-primary-level-2nd-step-incomplete register memory and, separately, at SPAM-Flag-primarylevel-3rd-step-incomplete register memory which information signifies that specific primary level functions have not been completed; places information of "0" at the aforementioned SPAM-Flag-secondary-level-incomplete register memory that is normally "1" which information signifies that secondary control level functions have not been completed; compares the information at said SPAM-header memory to cause-retention-of-exec information that is "01" and places information of said information at SPAM-exec register

memory at said SPAM-last-01-header-exec register memory because a match results; compares the information at said SPAM-Flag-monitor-info memory with particular preprogrammed "0" information and skips all steps of collecting monitor information because no match results; causes all 5 apparatus of control processor, 39J, to delete from memory all information of said first message except information at said SPAM-last-01-header-exec, SPAM-decryption-mark, SPAM-Flag-at-secondary-control-level, SPAM-Flag-primary-level-2nd-step-incomplete, SPAM-Flag-primary- 10 level-3rd-step-incomplete, SPAM-primary-input-source, SPAM-next-primary-instruction-address register memories; places particular from-39H information at the aforementioned SPAM-secondary-input-source register memory that identifies EOFS valve, 39H, as the secondary level source of 15 input SPAM message information; causes matrix switch, 39I, to commence transferring SPAM message information from EOFS valve, 39H to control processor, 39J; places information of "0" at the aforementioned SPAM-Flag-executing-secondary-command register memory which information signi- 20 fies that information placed subsequently at SPAM-exec register memory is secondary command level information; places information of "0" at the aforementioned SPAM-Flagat-secondary-level register memory that is normally "1" which information signifies that control functions are being 25 executed at said secondary level; and commences waiting to receive information of a subsequent SPAM header from said switch. 39L

As decryptor, 39K, receives SPAM message information from matrix switch, 39I, decryptor, 39K, decrypts said information, using decryption key Z, in the aforementioned 01-or-11-header-message fashion and transfers the decrypted information to buffer, 39G. The aforementioned decrypt-in-a-01-or-11-header-message-fashion instruction causes decryptor, 39K, to transfer the first H bits received from matrix switch, 35 39I, without decrypting or altering said bits in any fashion then to decrypt and transfer all information following said first H bits. In this fashion, the cadence information of the header in said first message, which is not encrypted, is transferred by decryptor, 39K, to buffer, 39G, without alteration.

As buffer, 39G, receives said decrypted information, buffer, 39G, buffers said information and transfers it to EOFS valve, 39H. EOFS valve, 39H, checks said information for end of file signal information, in its preprogrammed end of file signal detection fashion, and transfers information that is 45 not end of file signal, via matrix switch, 39I, to control processor, 39J, as fast as control processor, 39J, is prepared to receive said information.

Having been decrypted, said information is identical to the binary information of the first message of example #3 (except 50 that the meter-monitor information contains the aforementioned meter instruction information that is not in example #3 and the information of the meter-monitor format field reflects the presence of said instruction information). Accordingly, receiving the decrypted information of the first message of example #4 from EOFS valve, 39H, causes control processor, 39J, to function, at the aforementioned secondary control level, in fashions that are identical (except as concerns the processing of the meter-monitor information) to the fashions invoked, at the primary control level, by receiving the information of the first message of example #3 from EOFS valve, 39F.

When EOFS valve, **39**H, commences transferring the decrypted SPAM information of the first message of example #4, control processor, **39**J, receives the smallest number of 65 signal words that can contain H bits, records information said words in sequence at SPAM-input-signal memory, selects

108

information of the first H bits at said memory, records said information at SPAM-header memory, and determines that the information at said memory does not match the aforementioned 11-header-invoking information.

Not resulting in a match causes control processor, 39J, automatically to compare the information at said SPAM-header memory with the aforementioned invoke-monitor-processing information, determine a match, and enter "0" at SPAM-Flag-monitor-info register memory.

Automatically, control processor, 39J, then receives additional SPAM signal words; records information of said words at said SPAM-input-signal memory in sequence immediately following the signal word information already recorded at said memory until the total quantity of SPAM signal words recorded at said memory is the smallest number of signal words that can contain H+X bits; selects information of the first X bits of information at said memory immediately after the first H bits, records said selected information at SPAM-exec memory, compares the information at said last named memory with controlled-function-invoking information, and determines a match with the aforementioned execute-at-205 information.

Said match causes control processor, 39J, to execute the aforementioned load-run-and-code instructions. instructions cause control processor, 39J, to determine that the information at said SPAM-Flag-at-secondary-level register memory is "0" which causes said processor, 39J, to place "0" at the aforementioned SPAM-Flag-secondary-level-2ndstep-incomplete register memory and, separately, at SPAM-Flag-secondary-level-3rd-step-incomplete register memory (rather than SPAM-Flag-primary-level-2nd-step-incomplete and SPAM-Flag-primary-level-3rd-step-incomplete memories) and to place information of a particular reentry-address at the aforementioned SPAM-address-of-next-instructionupon-secondary-interrupt register memory (rather than SPAM-address-of-next-instruction-upon-primary-interrupt memory). Then said instructions cause control processor, 39J, to compare the information at said SPAM-header memory with header-identification information and determine a match with "01" information.

Said match causes control processor, 39J, to receive all remaining command information and padding bits in said first message in the fashion that applies to a SPAM message that contains meter-monitor information. Automatically, control processor, 39J, receives and processes decrypted length token information. Automatically, control processor, 39J, receives and records additional SPAM signal words at said SPAMinput-signal memory until the quantity of SPAM words recorded at said memory is the smallest number of words that can contain H+X+L bits, selects information of the first L bits of information at said memory immediately after the first H+X bits, records said information at SPAM-length-info memory, determines that the information at said last named memory matches Z-token information, selects z-bits information associated with said Z-token information, records said z-bits information at said SPAM-length-info memory (thereby overwriting and obliterating the information previously at said memory), and processes the information at said memory as the numeric value of MMS-L. Automatically, control processor, 39J, adds H+X+L to the information of z-bits at said memory, divides the information of the resulting sum by the number of bits in one signal word, places a "0" at particular SPAM-Flag-working register memory if the information of the resulting quotient is a whole number or "1" at said SPAM-Flag-working memory if it is not. Automatically, control processor, 39J, determines a particular number of signal words to receive, commences receiving additional

SPAM signal words, and records said words in sequence at said SPAM-input-signal memory immediately following the last SPAM signal word previously recorded at said memory until the total quantity of SPAM signal words recorded at said memory equals the number at said working register memory. Then, if the information at said SPAM-Flag-working register memory is "0", control processor, 39J, ceases accepting SPAM signal information. Or, if the information at said SPAM-Flag-working register memory is not "0", control processor, 39J, receives one additional signal word, compares the 10 information of said word to information of one EOFS WORD, records said word at said SPAM-input-signal memory immediately following the last SPAM signal word recorded at said memory, receives one more SPAM signal word and records the information of said word at said SPAM- 15 input-signal memory immediately following the last SPAM signal word recorded at said memory if said one additional signal word has matched said EOFS WORD information, and ceases accepting SPAM signal information.

When control processor, 39J, ceases accepting SPAM sig- 20 nal information, said load-run-and-code instructions cause control processor, 39J, to commence loading information at the main RAM of microcomputer, 205. Automatically, control processor, 39J, causes matrix switch, 39I, to cease transferring information from EOFS valve, 39H, to control pro- 25 cessor, 39J, and commence transferring information from control processor, 39J, to the CPU of microcomputer, 205; instructs said CPU to commence receiving information from matrix switch, 39I, and loading said information at particular main RAM; and causes matrix switch, 39I, to cease transfer- 30 ring information from control processor, 39J, to said CPU and commence transferring information from EOFS valve, 39H, to said CPU. Automatically, microcomputer, 205, commences receiving the information, beginning with the first signal word at EOFS valve, 39H, which is the decrypted 35 information of the first word of the program instruction set in said first message. Automatically, microcomputer, 205, loads the received information at particular main RAM in a fashion well known in the art.

Then said load-run-and-code instructions cause control 40 processor, 39J, to execute the code portion of said instructions. In the same fashion that that applied in example #3, the instructions of said portion cause control processor, 39J, to determine that said first message contains meter-monitor information, to locate the "program unit identification code" information in the information at said SPAM-input-signal memory, and to record information of said "code" information at SPAM-first-precondition register memory. Said instructions cause control processor, 39J, to select information of bits of the meter-monitor format field at said SPAM- 50 input-signal memory, to record said information at SPAMmm-format memory, to compare the information at said memory with the aforementioned format-specification information, to determine a match with C-format information, and to execute particular preprogrammed process-C-format 55 instructions. Automatically, said last named instructions cause control processor, 39J, to place a particular C-offsetaddress number at SPAM-mm-format memory that identifies the address/location of the first bit of C format information. Then said instructions of the code portion cause control pro- 60 cessor, 39J, to execute the aforementioned said locate-program-unit instructions; to select binary information of particular bit locations at said SPAM-input-signal memory, using the information of said C-offset-address number; and to place said selected information at said SPAM-first-precondi- 65 tion memory. Finally, said instructions of the code portion cause control processor, 39J, to determine, in a predetermined

110

fashion, that control processor, 39J, is operating at secondary control level and place "1" at SPAM-Flag-secondary-level-3rd-step-incomplete register memory (rather than SPAM-Flag-primary-level-3rd-step-incomplete memory) signifying the completion of the code step executed by said load-run-and-code instructions.

Next said load-run-and-code instructions control processor, 39J, to determine that the information at said SPAM-Flag-at-secondary-level register memory is "0" which signifies that the run portion of said instructions remain uncompleted and which causes control processor, 39J, in a predetermined fashion, to commence waiting for interrupt information of the end of file signal from the EOFS valve that is inputting SPAM signal information to control processor, 39J, which is EOFS valve, 39H.

Whenever the control processor, 39J, of the station of FIG. 3 is instructed to commence waiting, the conventional instructions that control said processor, 39J, cause said processor, 39J, to execute particular steps before actually commencing to wait. Example #3 showed one such step: execution of particular collect-monitor-info instructions. In the preferred embodiment, said conventional instructions cause control processor, 39J, to execute particular primary-level-? instructions before executing said collect-monitor-info instructions. Said primary-level-? instructions cause control processor, 39J, to compare the information at the aforementioned SPAM-Flag-at-secondary-control-level memory with particular preprogrammed "0" information. A match results which means that control processor, 39J, has been instructed to wait at a secondary control level and instructions may exist at the primary control level that control processor, 39J, should execute before commencing to wait. Accordingly, said match causes control processor, 39J, to place information of a particular reentry-address at the aforementioned SPAM-nextsecondary-instruction-address register memory which reentry-address is the location of the next instruction to be executed when the control of control processor, 39J, reverts from primary control level instructions to the secondary level instructions; to place "1" at the aforementioned SPAM-Flagat-secondary-control-level memory signifying that control processor, 39J, is not operating at the secondary control level; and to commence executing control instructions beginning with that instruction whose particular address/location is the address/location of the information at the aforementioned SPAM-next-primary-instruction-address memory

Automatically, the particular ones of said decrypt-processand-meter-current-01-or-11-header-message instructions that begin at said address/location cause control processor, 39J, to execute the meter portion of said instructions. Under control of the instructions of said portion, control processor, 39J, compares the information at the aforementioned SPAMdecryption-mark register memory to particular preprogrammed information of zero. No match results. Not resulting in a match signifies the presence of decryption mark information and causes control processor, 39J, under control said instructions, to cause matrix switch, 39I, to commence transferring information from control processor, 39J, to the buffer/comparator, 14, of signal processor, 200; then to transfer header information that identifies a transmission of meter information then the aforementioned decoder-203 source mark information then information of the decryption mark of key Z information recorded at SPAM-decryption-mark register memory then all of the received binary information of said first message that is recorded at said SPAM-input-signal memory; then to cause matrix switch, 39I, to cease transferring information from control processor, 39J, to said buffer/ comparator, 14. (Said received information is complete infor-

mation of the first combining synch command of example #4, and said information that is transmitted to buffer/comparator, 14, is called, hereinafter, the "1st meter-monitor information (#4).") Then the instructions of said portion cause control processor, 39J, to enter "1" at said SPAM-Flag-monitor-info 5 memory because the information of said 1st meter-monitor information (#4) is monitor information as well as meter information, to enter "1" at the aforementioned SPAM-Flag-primary-level-3rd-step-incomplete register memory signifying the completion of the meter step executed by said decrypt-process-and-meter-current-01-or-11-header-message instructions, and to commence waiting for interrupt information of an end of file signal.

In due course, EOFS valve, 39F, receives the last signal word of the information segment of said first message, which 15 is the last signal word of said program instruction set. Receiving said word causes EOFS valve, 39F, to transfer said word, via matrix switch, 39I, to decryptor, 39K, which causes decryptor, 39K, to decrypt the information of said word and transfer the decrypted information of said word, via buffer, 20 39G, to EOFS valve, 39H. If the decrypted information of said word contains MOVE bit information, receiving said information causes EOFS valve, 39H, to transfer said information, via matrix switch, 39I, to the CPU of microcomputer, 205, which causes microcomputer, 205, to load said information at particular main RAM.

Then said valve, **39**F, commences receiving information of the eleven EOFS WORDs that constitute the end of file signal at the end of said first message.

Receiving the first EOFS WORD of said eleven causes 30 EOFS valve, 39F, to cease transferring SPAM message information which causes decryptor, 39K, to cease decrypting and causes microcomputer, 205, to cease loading information at main RAM if the decrypted information of the last signal word of the information segment of said first message contains MOVE bit information (which MOVE bit information causes EOFS valve, 39H, automatically to transfer inputted information of said word).

Subsequently, in the fashion described in the following twelve paragraphs, receiving the eleventh and last EOFS 40 WORD of said end of file signal causes the apparatus of the subscriber station of FIG. 3 to load decrypted information of the last signal word of the information segment of said first message at main RAM if said decrypted information contains no MOVE bit information and cease loading; to terminate the 45 process of decrypting at decryptor, 39K; to execute the program instruction set information loaded at said main RAM as a machine language program, thereby causing the events described in the thirteenth paragraph hereinafter (which begins, "As described in "One Combined Medium" above, 50 running . . . "); and to commence waiting to receive from EOFS valve, 39F, the header information of a subsequent SPAM message.

Receiving the eleventh and last EOFS WORD of said end of file signal at EOFS valve, **39**F, causes said valve, **39**F, to 55 transmit an interrupt signal of EOFS-signal-detected information to control processor, **39**J, and to commence waiting for a control instruction from said processor, **39**J.

Receiving said interrupt signal causes control processor, **39**J, to determine, in a predetermined fashion, a match 60 between information that identifies the EOFS valve that transmitted said signal and the aforementioned from-39F information at the aforementioned SPAM-primary-input-source register memory. Said match causes control processor, **39**J, automatically to execute that particular portion of said 65 decrypt-process-and-meter-current-01-or-11-header-message instructions that begins with the instruction that is

112

located at the particular reentry-address of the reentry-address information at the aforementioned SPAM-address-of-next-instruction-upon-primary-interrupt register memory. Automatically, the instructions of said portion cause control processor, 39J, to transmit to controller, 20, of signal processor, 200, via control information transmission means, a particular preprogrammed first-EOFS-signal-detected interrupt signal then particular primary-end-of-file-signal-detected information and one instance of the aforementioned at-39J information. Receiving said interrupt signal of EOFS-signal-detected information causes control processor, 39J, then to cause matrix switch, 39I, to cease transferring information from EOFS valve, 39F, to decryptor, 39K.

Receiving first-EOFS-signal-detected said interrupt signal and information causes controller, 20, to execute particular ones of the aforementioned decrypt-with-Z-at-39K and decrypt-a-01-or-11-header-message instructions. Automatically, said ones cause controller, 20, to transmit a particular interrogate-message-end instruction to decryptor, 39K. Said instruction causes decryptor, 39K, in a predetermined fashion and after transferring the aforementioned decrypted information of the last signal word of the information segment of said first message, to transmit particular decryption-complete information to controller, 20, which information includes particular last-word information that is the binary image of said decrypted information of the last signal word.

Receiving said decryption-complete information causes controller, 20, to execute particular preprogrammed end-01or-11-message-decryption instructions that cause controller, 20, to compare said last-word information to preprogrammed information of one EOFS WORD. Resulting in a match, under control of said instructions, causes controller, 20, automatically to transmit a particular transmit-padding-bits instruction to decryptor, 39K, that decryptor, 39K, has capacity to respond to in a predetermined fashion, which instruction causes decryptor, 39K, to transfer one signal word of padding bits to buffer, 39G, causing said buffer, 39G, automatically to input said word of padding bits to EOFS valve, 39H. (If the decrypted information of the last signal word of the information segment of said first message contains no MOVE bit information—in other words, if said word is an EOFS WORD—receiving said information causes EOFS valve, 39H, to transfer previously inputted information of said last word, via matrix switch, 39I, to microcomputer, 205, which causes microcomputer, 205, to load said information at particular main RAM.) Then said end-01-or-11-message-decryption instructions cause controller, 20, to cause decryptor, 39K, to discard said key information of decryption key Z, to cease decrypting inputted information and to commence transferring all inputted information to buffer, 39G, without alteration. Next said instructions cause controller, 20, to transmit a particular preprogrammed transmit-EOF-Signaland-continue instruction to control processor, 39J. In so doing, controller, 20, completes said end-01-or-11-messagedecryption instructions, said decrypt-a-01-or-11-headermessage instructions and said decrypt-with-Z-at-39K instructions and commences processing in the conventional fashion.

Receiving said transmit-EOF-Signal-and-continue instruction causes control processor, 39J, in a predetermined fashion, to transmit the aforementioned transmit-and-wait instruction to EOFS valve, 39F, then to execute particular instructions of the process portion of said decrypt-process-and-meter-current-01-or-11-header-message instructions. Automatically said instructions cause control processor, 39J, to place "0" at the aforementioned SPAM-Flag-at-secondary-control-level memory signifying that control processor, 39J,

is operating at the secondary control level and to commence executing control instructions beginning with that instruction whose particular address/location is the address/location of the information at the aforementioned SPAM-next-secondary-instruction-address memory. Automatically, control processor, 39J, executes particular instructions prior to commencing to wait, compares the information at SPAM-Flagmonitor-info memory with particular preprogrammed "0" information, and no match results. Not resulting in a match causes control processor, 39J, automatically to skip collectmonitor-info instructions and commence waiting for interrupt information of the end of file signal.

Receiving said transmit-and-wait instruction causes EOFS valve, 39F, to transfer sequentially eleven instances of EOFS WORD information—that is, one complete end of file signal-via switch, 39I, to decryptor, 39K; to set the information at the EOFS WORD Counter of said valve, 39F, to zero; to transmit the aforementioned complete-and-waiting information to said control processor, 39J, as an interrupt signal; and to commence waiting for a control instruction from control processor, 39J, before processing next inputted information.

Receiving said eleven instances of EOFS WORD information causes decryptor, 39K, to transfer said information, without alteration, via buffer, 39G, to EOFS valve, 39H.

Receiving said information—more precisely, receiving the eleventh instance of an EOFS WORD in said informationcauses EOFS valve, 39H, to transmit an interrupt signal of EOFS-signal-detected information to control processor, 39J, and to commence waiting for a control instruction from said 30 processor, 39J.

Receiving said interrupt signal causes control processor, 39J, to determine, in a predetermined fashion, that the EOFS valve that transmitted said signal is the valve identified by the aforementioned from-39H information at the aforementioned 35 SPAM-secondary-input-source memory. Said determining causes control processor, 39J, automatically to jump to and execute that particular portion of said load-run-and-code instructions that begins with the instruction that is located at tion at the aforementioned SPAM-address-of-next-instruction-upon-secondary-interrupt memory. Said particular portion is the run portion of said load-run-and-code instructions. Automatically, the instructions of said portion cause control processor, 39J, to cause matrix switch, 39I, to cease transfer- 45 ring information from EOFS valve, 39H, to the CPU of microcomputer, 205, and to commence transferring information from control processor, 39J, to said CPU; to transmit a control instruction to said CPU that causes microcomputer, 205, to cease loading information at said main RAM and 50 execute the information so loaded as so-called "machine executable code" of one so-called "job"; to cause matrix switch, 39I, to cease transferring information from control processor, 39J, to said CPU; then to transmit the aforementioned discard-and-wait instruction, via control transmission 55 means, to EOFS valve, 39H, (causing said valve, 39H, to set the information at said EOFS WORD Counter to "00000000", to transmit the aforementioned complete-andwaiting information to control processor, 39J, as a second interrupt signal, then to commence waiting for a further control instruction from control processor, 39J); and finally, to determine that the information at the aforementioned SPAM-Flag-at-secondary-control-level memory matches particular preprogrammed "0" information and, accordingly, to place "1" at the aforementioned SPAM-Flag-secondary-level-2ndstep-incomplete memory which information indicates that control processor, 39J, has completed the instructions of said

114

run portion. In so doing, control processor, 39J, completes the instructions of said run portion.

Automatically said load-run-and-code instructions cause control processor, 39J, to compare the information at the aforementioned SPAM-Flag-secondary-level-3rd-step-incomplete memory with particular preprogrammed information that is "1". No match results which signifies that control processor, 39J, has already completed the code portion of said load-run-and-code instructions. Not resulting in a match causes control processor, 39J, to complete said load-run-andcode instructions, to place "1" at the aforementioned SPAM-Flag-secondary-level-incomplete register memory signifying completion of the secondary level control functions, to place "1" at the aforementioned SPAM-Flag-at-secondary-controllevel register memory, and to commence executing control instructions beginning with that instruction whose particular address/location is the address/location of the information at the aforementioned SPAM-next-primary-instruction-address

Automatically, the particular instructions that begin at said address/location cause control processor, 39J, to execute particular end-process-portion-? instructions of said decryptprocess-and-meter-current-01-or-11-header-message instructions. Under control of said end-process-portion-? instructions, control processor, 39J, determines that the information at said SPAM-Flag-secondary-level-incomplete register memory matches a particular preprogrammed "1"; places "1" at the aforementioned SPAM-Flag-primary-level-2nd-step-incomplete register memory, signifying completion of the process portion of said decrypt-process-and-metercurrent-01-or-11-header-message instructions; determines that the information at the aforementioned SPAM-Flag-primary-level-3rd-step-incomplete register memory matches a particular preprogrammed "1", signifying the completion of the meter portion of said decrypt-process-and-meter-current-01-or-11-header-message instructions; and completes execution of said decrypt-process-and-meter-current-01-or-11header-message instructions.

Completing the controlled functions of said first message the particular reentry-address of the reentry-address informa- 40 causes control processor, 39J, automatically to prepare to receive the next SPAM message. Automatically, control processor, 39J, compares the information at said SPAM-header memory to particular preprogrammed cause-retention-ofexec information that is "01". A match results which causes control processor, 39J, to compare the information at the aforementioned SPAM-Flag-executing-secondary-command register memory to particular preprogrammed information that is "0". A match results which signifies that control processor, 39J, is executing control functions invoked by information of a secondary level execution segment. Accordingly, said match causes control processor, 39J to place information of the information at said SPAM-exec memory at the aforementioned SPAM-last-secondary-01-header-exec register memory (rather than at SPAM-last-01-header-exec register memory). Being preprogrammed to collect monitor information, control processor, 39J, automatically compares the information at said SPAM-Flag-monitor-info memory with particular preprogrammed "0" information. No match results which indicates that control processor, 39J, has transferred monitor information in respect to said first message. Then, automatically, control processor, 39J, causes all apparatus of control processor, 39J, to delete from memory all information of said first message except information at said SPAM-first-precondition, SPAM-last-01-header-exec, and SPAM-last-secondary-01-header-exec memories. Finally, control processor, 39J, causes EOFS valves, 39F and 39H, to commence processing inputted signal words, in their prepro-

grammed detecting fashions, and outputting information to matrix switch, 39I; causes matrix switch, 39I, to commence transferring information from the EOFS valve identified by the information at the aforementioned SPAM-primary-input-source register memory, which is EOFS valve, 39F, to control 5 processor, 39J; and commences waiting to receive information of a subsequent SPAM header from matrix switch, 39I.

As described in "One Combined Medium" above, running said program instruction set causes microcomputer, **205**, (and URS microcomputers, **205**, at other subscriber stations) to 10 place appropriate FIG. 1A image information at particular video RAM then to transfer particular-number-of-overlay-completed information and instructions to control processor, **39**J. Receiving said information and instructions causes control processor, **39**J, to place the number "00000001" at the 15 aforementioned SPAM-second-precondition register memory, signifying that said image information represents the first overlay of its associated video program.

Receiving said 1st meter & monitor information (#4) causes buffer/comparator, 14, automatically to compare the 20 information, in said 1st information, of the header information that identifies a transmission of meter information to particular preprogrammed header-identification-@14 information. A match results with particular meter-identification information which causes buffer/comparator, 14, to select 25 information of particular predetermined bit locations (which locations contain the information of the meter instruction field of said 1st meter & monitor information (#4)) and to compare said selected information to preprogrammed metering-instruction-comparison information. (Matches with particular metering-instruction-comparison information invoke simple metering processes that buffer/comparator, 14, has capacity to perform by itself). No match results (which signifies that the meter processing caused by the information said field is too complex to occur under control of buffer/ 35 comparator, 14, alone). Not resulting in a match causes buffer/comparator, 14, automatically to transmit to controller, 20, particular preprogrammed instruct-to-meter information then said selected information (which the meter instruction information of said first message).

Receiving said information causes controller, 20, to compare said meter instruction information to preprogrammed instruct-to-meter-@20 information and to determine that said information matches particular 1-2-3-meter information that invokes three particular sets of instructions preprogrammed 45 at controller, 20. The first set initiates assembly at buffer/ comparator, 14, of a first particular meter record that is based on the information, in one meter-monitor field of the first message, of the program unit information of said first command. Assembly of said record enables a particular remote 50 metering station to account for the use of the information of said "Wall Street Week" program and bill subscribers who use said information. The second set causes assembly at buffer/ comparator, 14, of a second particular meter record that is based on the information, in a second meter-monitor field, of 55 the supplier of the program instruction set that follows said first command. The capacity for a given command to cause the assembly of more than one record enables separate ownership properties that are used jointly in a given instance of SPAM information to be accounted for separately. For 60 example, the copyright owner of said "Wall Street Week" program (who owns the FIG. 1B image) and said supplier (whose information generates the FIG. 1A image) may be different parties. Said second record enables said remote station (or alternatively, a separate remote metering station) to 65 account for use of said program set separately from the accounting of said "Wall Street Week" program and to charge

116

subscribers separately. The third set causes the recording at recorder, 16, of said second meter record.

Said match causes controller, **20**, to execute said instructions. Under control of said first set, controller, **20**, initiates assembly of said first meter record by selecting and placing at particular record locations at buffer/comparator, **14**, particular record format information, then program unit information from a particular meter-monitor field of said 1st meter & monitor information (#4), origin of transmission information from a second field, date and time of transmission information from a third field, decryption key information from the decryption mark of said 1st meter & monitor information (#4), and finally date and time of processing information from clock. **18**.

In its preprogrammed fashion, when said first specified set is completed, controller, 20, executes said second specified set which causes controller, 20, to assemble said second record. Under control of said second set, controller, 20, places at a particular second record locations at buffer/comparator, 14, particular record format information, then information of the supplier of said program instruction set from a particular meter-monitor field of 1st meter & monitor information (#4), program unit information from a second field, origin of transmission information from a third field, date and time of transmission information from a fourth field, and finally date and time of processing information from clock, 18.

When said second set is completed, controller, 20, executes said third specified set which causes controller, 20, to cause buffer/comparator, 14, to transfer said second meter record to recorder, 16, in a predetermined fashion then discard all information of said record from its memory and to cause recorder, 16, to process and record said transferred meter record in its preprogrammed fashion.

Buffer/comparator, 14, and controller, 20, are preprogrammed to process monitor information, and completing the metering functions invoked by said 1-2-3-meter information causes controller, 20, to cause buffer/comparator, 14, to execute its preprogrammed automatic monitoring functions. These functions proceed in the same fashion that applied to the 1st monitor information (#3). Buffer/comparator, 14, determines that the source mark of said 1st meter & monitor information (#4) matches source information associated with the monitor record of the prior programming displayed at monitor, 202M, but that the program unit information of said 1st meter & monitor information (#4) does not match the program unit information of said monitor record. Accordingly, buffer/comparator, 14, causes the apparatus of signal processor, 200, to record said monitor record at recorder, 16, and to replace said monitor record at buffer/comparator, 14, with a new monitor record based on the information of the 1st meter & monitor information (#4). When buffer/comparator, 14, completes said monitoring functions, buffer/comparator, 14, deletes all unrecorded information of said 1st meter & monitor information (#4) and commences waiting for the next instance of inputted information.

The content of the 1st meter & monitor information (#4) causes controller, 20, to organize the information of said new monitor record in a particular fashion that differs, in one respect, from the new monitor record generated in the third example by the 1st monitor information (#3). Unlike the first combining synch command in the third example, the first combining synch command in the fourth example must be decrypted, and the 1st meter & monitor information (#4) includes a decryption mark. Thus the new monitor record generated by the 1st meter & monitor information (#4) includes decryption key information, not included in the new monitor record generated by the 1st monitor information (#3),

and record format field information that reflects the presence of said decryption field information.

Operating S. P. Systems

Example #4

Second Message

With one exception, the information of the second message 10 of example #4 is identical to the information of the second message of example #2. The meter instruction information the second message of example #4 instruct subscriber station apparatus to perform certain meter operations, described more fully below, that are not performed in example #2. In all 15 other respects the second message of example #4 is identical to the second message of example #2 and is encrypted, embedded, and transmitted at the "Wall Street Week" program originating studio just as in example #2.

But a significant difference exists between examples #2 20 and #4. Unlike example #2 wherein FIG. 1A image information exists at all URS microcomputers, 205, FIG. 1A image information exists in example #4 only at those subscriber stations where the encrypted information of the first message has been decrypted, causing the apparatus of said stations to 25 load and execute program instruction set information at the microcomputers, 205. Only at said stations does "program unit identification code" information of said "Wall Street Week" program exist at the SPAM-first-precondition register memories of the control processors, 39J. Only at said sub- 30 scriber stations can the second combining synch command cause the display of FIG. 1C information.

Receiving said second message causes the apparatus of the station of FIG. 3 (and other stations that are configured and preprogrammed like the station of FIG. 3), in the following 35 fashion, to decrypt the encrypted portions of said message, to execute the controlled functions of the decrypted information of said message; and to record meter information and monitor information relating to said message. (Simultaneously, ured and/or preprogrammed differently from the station of FIG. 3 to respond, automatically, in fashions that differ from the fashion of the station of FIG. 3 in ways that are described below parenthetically.)

When divider, 4, commences transferring the embedded 45 information of said second message to decoder, 203, the binary SPAM information of said message is received at decoder, 203; detected at detector, 34; checked and corrected, as necessary, at processor, 39B; converted into locally usable binary information at processor, 39D; and processed for end 50 of file signal information at EOFS valve, 39F. Receiving the SPAM message information of said message causes EOFS valve, 39F, to transfer said information, via matrix switch, 39I, to control processor, 39J, as fast as control processor, 39J, is prepared to receive said information.

Receiving said information causes control processor, 39J. to record the smallest number of signal words that can contain H bits at SPAM-input-signal memory; to select information of the first H bits at said memory; to record said information at SPAM-header memory; to compare the information at said 60 SPAM-header memory with the aforementioned invokemonitor-processing information, determine a match with particular preprogrammed "00" information, and enter "0" at the aforementioned SPAM-Flag-monitor-info register memory; to record additional SPAM signal words at said SPAM-input- 65 signal memory until the total quantity of SPAM signal words recorded at said memory equals the smallest number of signal

118

words that can contain H+X bits; to record information of the first X bits of information at said SPAM-input-signal memory immediately after the first H bits at said SPAM-exec memory; to compare the information at said memory with the aforementioned controlled-function-invoking information and determine a match with particular preprogrammed this-message-addressed-to-200 information; and to execute the aforementioned transfer-header-and-exec-seg-info-to-200 instructions.

Executing said instructions causes control processor, 39J, to transfer to controller, 20, of signal processor, 200, via control information transmission means, an interrupt signal, the aforementioned process-this-message information and at-39J information, and information of the header and execution segment of said second message.

Receiving said interrupt signal and information causes controller, 20, in a predetermined fashion, to cease a processing task that is unrelated to the processing of said second message; to compare said information of the execution segment to the aforementioned controlled-function-invoking-@200 information and determine a match with particular decrypt-with-key-J information; to execute particular preprogrammed decrypt-with-J-at-39K instructions; to select and transfer key information of J to decryptor, 39K; to compare said information of the header to the aforementioned headeridentification-@200 information and determine a match with particular "00" header information; to execute particular preprogrammed decrypt-a-00-header-message-at-39K instructions; to transmit a particular preprogrammed process-andtransmit-info-of-MMS-L instruction, transmission means, to control processor, 39J; then, in a predetermined fashion, to commence an unrelated processing task.

Receiving said last named instruction causes control processor, 39J, to execute particular preprogrammed processlength-token-and-transmit-MMS-L instructions; to record additional SPAM signal words at said SPAM-input-signal memory until the quantity of SPAM words recorded at said memory is the smallest number of words that can contain receiving said message causes other stations that are config- 40 H+X+L bits; to select information of the first L bits at said memory immediately after the first H+X bits; to determine that said information matches Y-token information; to select y-bits information associated with said Y-token information and record said y-bits information at said SPAM-length-info memory (thereby placing at said memory information of the number of encrypted meter-monitor segment bits in said second message after the last bit of length token—that is, the numeric value of MMS-L); and to transmit to controller, 20, via control transmission means, an interrupt signal, the aforementioned at-39J information, information of said numeric value of MMS-L.

> Receiving said interrupt signal, at-39J information, information of MMS-L causes controller, 20, in the aforementioned predetermined fashion, to cease an unrelated processing task; to execute, in a predetermined fashion, particular preprogrammed ones of the aforementioned decrypt-a-00header-message-at-39K instructions; to transmit to decryptor, 39K, particular decrypt-a-00-header-message instructions (which instructions include information of MMS-L); to transmit to control processor, 39J, a particular decrypt-process-and-meter-a-00-message instruction and particular decryption mark information of key J; then, in a predetermined fashion, to commence an unrelated processing task.

> Receiving said last named instruction and mark information causes control processor, 39J, to record said mark information at the aforementioned SPAM-decryption-mark register memory; to enter "1" at the aforementioned SPAM-Flag-

monitor-info register memory; to place particular from-39F information at the aforementioned SPAM-primary-input-source register memory; and to execute particular preprogrammed decrypt-process-and-meter-current-00-header-message instructions.

Executing said instructions causes control processor, 39J, first, to receive all remaining command information and padding bits in said second message in the following fashion. Said instructions cause control processor, 39J, to add H+X+L to the information of y-bits at the aforementioned SPAM- 10 length-info memory; to determine a particular number of signal words to receive from EOFS valve, 39F; to receive and record said words at said SPAM-input-signal memory immediately following SPAM signal word previously recorded at said memory; if the command information of said message 15 fills a whole number of signal words, to receive one additional signal word, compare the information of said word to information of one EOFS WORD, record said word at said SPAMinput-signal memory immediately following the last SPAM signal word recorded at said memory, and receive and record 20 the information of one more SPAM signal word at said SPAM-input-signal memory immediately following the last SPAM signal word recorded at said memory if said one additional signal word has matched said EOFS WORD information; and to cease accepting SPAM signal information from 25 EOFS valve, 39F.

Executing said decrypt-process-and-meter-current-00-header-message instructions causes control processor, 39J, then, to transfer to decryptor, 39K, the SPAM information of said second message in the following fashion. Said instructions cause control processor, 39J, to cause matrix switch, 39I, to cease transferring information from EOFS valve, 39F, to control processor, 39J, and commence transferring information from control processor, 39J, to decryptor, 39K, and cause control processor, 39J, to transfer all information 35 recorded at said SPAM-input-signal memory of control processor, 39J, which information is complete information of said second message.

Automatically, decryptor, 39K, commences receiving SPAM signal information.

Executing said decrypt-process-and-meter-current-00header-message instructions causes control processor, 39J, then, in the following fashion, to prepare to receive the decrypted information of said second message and to execute, at a secondary control level under primary control of said 45 decrypt-process-and-meter-current-00-header-message instructions, the controlled functions invoked by said decrypted information. Said instructions cause control processor, 39J, to place information of a particular reentry-address at the aforementioned SPAM-next-primary-instructionaddress register memory; to place information of "0" at the aforementioned SPAM-Flag-primary-level-2nd-step-incomplete register memory and, separately, at SPAM-Flag-primary-level-3rd-step-incomplete register memory; to place information of "0" at the aforementioned SPAM-Flag-sec- 55 ondary-level-incomplete register memory; to compare the information at said SPAM-Flag-monitor-info memory with particular preprogrammed "0" information and skip all steps of collecting monitor information because no match results; to cause all apparatus of control processor, 39J, to delete from 60 memory all information of said second message except information at said SPAM-decryption-mark, SPAM-Flag-at-secondary-control-level, SPAM-primary-input-source, SPAMnext-primary-instruction-address register memories; to cause matrix switch, 39I, to cease transferring SPAM message information from control processor, 39J, to decryptor, 39K, and commence transferring SPAM message information

120

from EOFS valve, 39H, to control processor, 39J; to place information of "0" at the aforementioned SPAM-Flag-executing-secondary-command register memory; to place information of "0" at the aforementioned SPAM-Flag-at-secondary-level register memory; and to commence waiting to receive information of a subsequent SPAM header from said switch, 39I.

Receiving from controller, 20, the aforementioned key information of J and decrypt-a-00-header-message instructions (that include information of MMS-L) and from matrix switch, 39I, the aforementioned transferred SPAM message information that is complete information of said second message causes decryptor, 39K, to transfer the first H bits of said SPAM information to buffer, 39G, without decrypting or altering said bits in any fashion; to decrypt and transfer the next X bits of said information; to transfer the next L bits without decrypting or altering said bits; to decrypt and transfer the next MMS-L bits; and finally, to transfer any bits remaining after the last of said MMS-L bits without decrypting or altering said bits remaining. In so doing, decryptor, 39K, inputs complete unencrypted information of said second message to buffer, 39G. Said complete unencrypted information is identical to the SPAM message information that decryptor, 10, inputs to controller, 12, in example #2.

Receiving said complete unencrypted information causes buffer, 39G, automatically to buffer said information and input said information to EOFS valve, 39H, and causes EOFS valve, 39H, to transfer said information, via matrix switch, 39I, to control processor, 39J, as fast as control processor, 39J, is prepared to receive said information.

Receiving said information causes control processor, 39J, to record the smallest number of signal words that can contain H bits at SPAM-input-signal memory; to select information of the first H bits at said memory; to record said information at SPAM-header memory; to compare the information at said SPAM-header memory with the aforementioned invokemonitor-processing information, determine a match with particular preprogrammed "00" information, and enter "0" at the aforementioned SPAM-Flag-monitor-info register memory; 40 to record additional SPAM signal words at said SPAM-inputsignal memory until the total quantity of SPAM signal words recorded at said memory equals the smallest number of signal words that can contain H+X bits; to record information of the first X bits of information at said SPAM-input-signal memory immediately after the first H bits at said SPAM-exec memory; to compare the information at said memory with the aforementioned controlled-function-invoking information and determine a match with the aforementioned execute-conditional-overlay-at-205 information; and to execute the aforementioned conditional-overlay-at-205 instructions.

Executing said instructions causes control processor, 39J, first, to receive all remaining command information and padding bits in said second message in the following fashion. Said instructions cause control processor, 39 J, to record additional SPAM signal words at said SPAM-input-signal memory until the quantity of SPAM words recorded at said memory is the smallest number of words that can contain H+X+L bits; to select information of the first L bits at said memory immediately after the first H+X bits; to determine that said information matches Y-token information; to select y-bits information that is information of the numeric value of MMS-L and record said information at said SPAM-lengthinfo memory; add H+X+L to the information said memory; to determine a particular number of signal words to receive from EOFS valve, 39H; to receive and record said words at said SPAM-input-signal memory immediately following SPAM signal word previously recorded at said memory; if the com-

mand information of said message fills a whole number of signal words, to receive one additional signal word, compare the information of said word to information of one EOFS WORD, record said word at said SPAM-input-signal memory immediately following the last SPAM signal word recorded at said memory, and receive and record the information of one more SPAM signal word at said SPAM-input-signal memory immediately following the last SPAM signal word recorded at said memory if said one additional signal word has matched said EOFS WORD information; and to cease accepting 10 SPAM signal information.

By receiving all command information and padding bits in said second message, control processor, **39**J, receives all of the unencrypted complete information of said second message. Accordingly, the next signal word to be transferred by 15 said valve, **39**H, will be the first word of a subsequent message inputted to buffer, **39**G.

Executing said conditional-overlay-at-205 instructions causes control processor, 39J, then, in the following fashion, to locate information of the unique "program unit identifica- 20 tion code" that identifies the program unit of said "Wall Street Week" program and determine that said information matches the information at the aforementioned SPAM-first-precondition register memory. Said instructions cause control processor, 39J, to select information of the bits of the meter-monitor 25 format field in said first message; to compare said information with format-specification information; to determine a match with particular D-format information; to place at the aforementioned SPAM-mm-format memory a particular D-offsetaddress number that is different from the aforementioned A-, 30 B-, and C-offset-address numbers; to execute the aforementioned locate-program-unit instructions and locate the program unit field in the meter-monitor information of said second message in the fashion described above; to select binary information of a particular number of contiguous bit locations 35 at said SPAM-input-signal memory that begin at a particular number of bit locations after the first bit location at said memory (which binary information is said information of the unique "program unit identification code"); and to compare said binary information to the information at the aforemen- 40 tioned SPAM-first-precondition register memory, causing a match to result.

(At those subscriber stations where the information of the program unit field in the meter-monitor information of said second message fails to match information at SPAM-first- 45 precondition register memory—including all stations that are preprogrammed with decryption key information of J but not with decryption key information of Z-particular first-condition-test-failed instructions of said conditional-overlay-at-205 instructions cause the control processors, 39J, of said 50 results. stations to enter "0" at each of the aforementioned SPAM-Flag-first-condition-failed and SPAM-Flag-do-not-meter register memories, which memories are each normally "1"; to cause all SPAM information at the main and video RAMs of the microcomputers, 205, of said stations to be cleared; and to 55 complete all conditional-overlay-at-205 instructions and, in so doing, to complete all controlled functions invoked by said second message at the secondary control level.)

So resulting in a match, under control of the conditionaloverlay-at-205 instructions at the station of FIG. 3, causes 60 control processor, 39J, then, to execute the aforementioned locate-overlay-number instructions and locate the overlay number field in the meter-monitor information of said second message in the fashion described above; to select binary information of a particular number of contiguous bit locations at 65 said SPAM-input-signal memory that begin at a particular number of bit locations after the first bit location at said

memory (which binary information is the information of said overlay number field); and to compare said binary information to the information at the aforementioned SPAM-secondprecondition register memory, causing a match to result.

(At those subscriber stations where the information of the overlay number fails to match information at SPAM-second-precondition memory, particular second-condition-test-failed instructions of said conditional-overlay-at-205 instructions cause the control processors, 39J, of said stations to interrupt the operation of the CPUs of the microcomputers, 205, of said stations; to cause said microcomputers, 205, to restore efficient operation in a fashion described more fully below; to enter "0" at the aforementioned SPAM-Flag-second-condition-failed register memory, which memories is normally "1"; and to complete all conditional-overlay-at-205 instructions and controlled functions invoked by said second message at the secondary control level.)

So resulting in a match, under control of said conditionaloverlay-at-205 instructions at the station of FIG. 3, causes control processor, 39J, (and control processors, 39J, at other subscriber stations where matches with information at SPAM-second-precondition memory result) to cause matrix switch, 39I, to cease transferring information from EOFS valve, 39H, to control processor, 39J, and commence transferring information from control processor, 39J, to the PC-MicroKey System of microcomputer, 205; to transmit the instruction, "GRAPHICS ON", to said PC-MicroKey System; to cause matrix switch, 39I, to cease transferring information from control processor, 39J, to said PC-MicroKey System; and to complete all conditional-overlay-at-205 instructions and controlled functions invoked by said second message at the secondary control level.

Transmitting the instruction, "GRAPHICS ON", to the PC-MicroKey System of the subscriber station of FIG. 3 (and transmitting "GRAPHICS ON" to other PC-MicroKey Systems at other subscriber stations where the program instruction set of the first message has been run at a microcomputer, 205, and where said second message causes "GRAPHICS ON" to be transmitted) causes said PC-MicroKey System to combine the programming of FIG. 1A and of FIG. 1B and transmit the combined programming to monitor, 202M, where FIG. 1C is displayed.

Completing all conditional-overlay-at-205 instructions and controlled functions invoked at the secondary control level causes control processors, 39J, (and causes control processors, 39J, at other stations) to execute conventional control-function-complete instructions and compare the information at the aforementioned SPAM-Flag-at-secondary-control-level memory to particular "0" information. A match results

Resulting in a match, under control of said instructions causes control processor, 39J, to place "1" at the aforementioned SPAM-Flag-secondary-level-incomplete memory, to place "1" at said SPAM-Flag-at-secondary-control-level memory, and to commence executing control instructions beginning with that instruction whose particular address/location is the address/location of the information at the aforementioned SPAM-next-primary-instruction-address memory.

Automatically, the particular instructions that begin at said address/location cause control processor, 39J, to execute the particular end-process-portion-? instructions of said decrypt-process-and-meter-current-00-header-message instructions. Under control of said end-process-portion-? instructions, control processor, 39J, determines that the information at said SPAM-Flag-secondary-level-incomplete memory matches a particular preprogrammed "1"; places "1" at the aforemen-

tioned SPAM-Flag-primary-level-2nd-step-incomplete register memory; determines that a comparison of the information at the aforementioned SPAM-Flag-primary-level-3rd-step-incomplete register memory with a particular preprogrammed "1" does not result in a match, signifying that 5 the meter portion of said decrypt-process-and-meter-current-00-header-message instructions remains uncompleted.

Not resulting in a match causes control processor, 39J, under control of said decrypt-process-and-meter-current-00-header-message instructions, to execute the meter portion of 10 said instructions. Under control of the instructions of said portion, control processor, 39J, compares the information at the aforementioned SPAM-Flag-do-not-meter register memory to particular preprogrammed information of "0". No match results.

(At those subscriber stations where the aforementioned first-condition-test-failed instructions caused "0" to be entered at the SPAM-Flag-do-not-meter memories of said stations, matches result when the information at said memories is compared to "0". Said matches cause the control processors, 39J, of said stations to complete the decrypt-process-and-meter-current-00-header-message instructions of said stations and all controlled functions invoked by said second message immediately, without transferring any meter information to the buffer/comparators, 14, of said stations and, at 25 particular selected ones of said stations, without entering "1" at the SPAM-Flag-monitor-info memories. Said selected stations are stations that are preprogrammed to collect monitor information.)

Not resulting in a match, under control said meter portion 30 at the station of FIG. 3, causes control processor, 39J, to compare the information at the aforementioned SPAM-Flag-second-condition-failed register memory to particular preprogrammed information of "1". A match results.

(At such other stations where no matches result, not result- 35 ing in a match, under control of said instructions, causes the control processor, 39J, of each one of said other stations, to execute particular second-precondition-failed-meter instructions of said meter portion. Automatically, said instructions cause control processor, 39J, to transfer to the buffer/com- 40 parator, 14, of said one, particular header information that identifies a transmission of meter information at a station where inefficient operation of a microcomputer, 205, prevented combining; then the decoder-203 source mark of the decoder, 203, of said station; then information of the decryp- 45 tion mark of key Jinformation recorded at SPAM-decryptionmark register memory of said station; then all of the received binary information of said second message that is recorded at said SPAM-input-signal memory of said station. Said transmitted information is called, hereinafter, the "2nd meter- 50 monitor information—second precondition failed—(#4)." Then said instructions cause control processor, 39J, to place "1" at said SPAM-Flag-second-condition-failed memory and continue the regular instructions of said portion.)

Resulting in a match, under control said meter portion at 55 the station of FIG. 3, causes control processor, 39J, to cause matrix switch, 39I, to commence transferring information from control processor, 39J, to buffer/comparator, 14, of signal processor, 200; to transfer the aforementioned header information that identifies a conventional transmission of 60 meter information then the aforementioned decoder-203 source mark then information of the information recorded at said SPAM-decryption-mark register memory, which is the decryption mark of key J, then all of the received binary information of said second message that is recorded at said 65 SPAM-input-signal memory; then to cause matrix switch, 39I, to cease transferring information from control processor,

124

39J, to said buffer/comparator, 14. (Said received information is complete information of the second combining synch command of example #4, and said information that is transmitted to buffer/comparator, 14, is called, hereinafter, the "2nd meter-monitor information (#4).") Then the instructions of said portion cause control processor, 39J, to enter "1" at said SPAM-Flag-monitor-info memory; to enter "1" at the aforementioned SPAM-Flag-primary-level-3rd-step-incomplete register memory; and to determine that a comparison of the information at the aforementioned SPAM-Flag-primary-level-2nd-step-incomplete register memory with a particular preprogrammed "1" results in a match, signifying the completion of the process portion of said decrypt-process-and-meter-current-00-header-message instructions.

Resulting in a match causes control processor, 39J, to complete said decrypt-process-and-meter-current-00-header-message instructions and all controlled functions of said second message.

Completing the controlled functions of said second message causes control processor, 39J, automatically to prepare to receive the next SPAM message. Automatically, control processor, 39J, compares the information at said SPAM-header memory to particular preprogrammed cause-retention-of-exec information that is "01". No match results. Not resulting in a match causes control processor, 39J, to execute particular collect monitor information and to compare the information at said SPAM-Flag-monitor-info memory with particular preprogrammed "0" information. No match results.

(By contrast, matches result at every station that is preprogrammed to collect monitor information where said second message is decrypted but FIG. 1C image information is not displayed because the "program unit identification code" information in said second message fails to match information at SPAM-first-precondition register memory. Said matches cause the control processors, 39J, of said stations to execute the aforementioned collect-monitor-information instructions. Said instructions cause said control processors, 39J, to transfer to the buffer/comparators, 14, particular header information that identifies a transmission of monitor information at a station where no combining occurred because first precondition program unit information failed to match and which transmission contains decryption mark information, then to transfer the aforementioned decoder-203 source mark information, then information of the decryption mark of key J information recorded at SPAM-decryptionmark register memory, then all of the received binary information of said second message that is recorded at the SPAMinput-signal memories of said stations. Said information that is transmitted to said buffer/comparators, 14, is called, hereinafter, the "2nd monitor information (#4)." Then said instructions cause said control processors, 39J, to place "1" at said SPAM-Flag-monitor-info memory, at the aforementioned SPAM-Flag-first-condition-failed memory, and at the aforementioned SPAM-Flag-do-not-meter memory and to continue executing conventional control instructions. Then the conventional control instructions of said stations cause said control processors, 39J, to cause all apparatus of the controllers, 39, to delete from memory all information of said second message and to commence waiting to receive information of a subsequent SPAM header from the matrix switches, 39I.)

Not resulting in a match, at the station of FIG. 3, causes control processor, 39J, to cause all apparatus of controller, 39, to delete from memory all information of said second message; to cause matrix switch, 39I, to commence transferring information from the EOFS valve identified by the information at the aforementioned SPAM-primary-input-source reg-

ister memory, which is EOFS valve, **39**F, to control processor, **39**J; and to commence waiting to receive information of a subsequent SPAM header from matrix switch, **39**I.

Receiving said 2nd meter & monitor information (#4) causes buffer/comparator, 14, automatically to compare the 5 header information that identifies a transmission of meter information to particular preprogrammed header-identification-@14 information. A match results with the aforementioned meter-identification information, causing buffer/comparator, 14, to select the meter instruction information of the 10 aforementioned particular bit locations of the meter instruction field of said 2nd meter & monitor information (#4) and to compare said selected information to the aforementioned metering-instruction-comparison information. No match results, causing buffer/comparator, 14, automatically to 15 transmit to controller, 20, the aforementioned instruct-to-meter information then said meter instruction information.

Receiving said information causes controller, 20, to compare said meter instruction information to the aforementioned instruct-to-meter-@20 information and to determine that said 20 meter instruction information matches particular preprogrammed update-program-record-&-increment-by-one information that causes controller, 20, to execute particular update-and-increment instructions. Said instructions cause signal processor, 200, not only to add one incrementally to 25 each meter record maintained at buffer/comparator, 14, that is associated with decryption key information of the instance of meter information being processed (which is, substantively, the metering function invoked by the 2nd meter information (#2)) but also to modify the information of the aforemen- 30 tioned first particular meter record, initiated by the 1st meter & monitor information (#4). (The particular metering function invoked by said 2nd meter information (#2) could not modify any of the information of said first particular meter record, even by incrementing by one, because no information 35 of decryption key J is associated with said record when the 2nd meter & monitor information (#4) is received at buffer/ comparator, 14.)

Executing said update-and-increment instructions causes controller, 20, in a predetermined fashion, to analyze the 40 information of said 2nd meter & monitor information (#4); to place information of the information of the overlay number field in said 2nd information at a particular record field associated with said first particular meter record, signifying the combining of said overlay at the subscriber station of FIG. 3; 45 and to place, at the particular record location occupied by record format information, particular new record format information that identifies the new format of said first particular meter record; to compare the decryption mark information in said 2nd meter & monitor information (#4) with the 50 aforementioned decryption-key-comparison information, preprogrammed at buffer/comparator, 14; to determine several matches; to increment by one the meter record, at buffer/ comparator, 14, associated with each particular decryptionkey-comparison datum that matches the decryption mark of 55 said 2nd meter & monitor information (#4); to discard all information of said 2nd meter & monitor information (#4) from its memory; and to complete said update-and-increment instructions.

Completing the metering functions invoked by said meter 60 instruction information causes controller, **20**, to cause buffer/comparator, **14**, to execute its preprogrammed automatic monitoring functions. These functions proceed in the fashion that applied to the 2nd monitor information (#3).

The content of the 2nd meter & monitor information (#4) 65 causes onboard controller, **14**A, to organize the information of said new monitor record in a particular fashion that differs,

126

in one respect, from the new monitor record generated in the third example by the 2nd monitor information (#3). The 2nd meter & monitor information (#4) includes a decryption mark. The presence of said mark causes causes onboard controller, 14A, to includes decryption key information of J, not included in the new monitor record generated by the 1st monitor information (#3), and record format field information that reflects the presence of said decryption field information.

(At each station where the aforementioned 2nd meter & monitor information—second precondition failed—(#4) is transmitted, receiving said 2nd information—failed—(#4) causes the buffer/comparator, 14, of said station automatically to compare the information, in said 2nd information failed—(#4), of the header that identifies a transmission of meter information at a station where inefficient operation of a microcomputer, 205, prevented combining to the aforementioned header-identification-@14 information. A match results with particular second-precondition-failed information, causing buffer/comparator, 14, to select information of the aforementioned particular bit locations that contain the information of the meter instruction field of said 2nd information—failed—(#4) then automatically to transmit to controller, 20, a particular preprogrammed instruct-to-processinfo-failed information then said selected information, which is the meter instruction information of said second message. Receiving said information causes controller, 20, in a predetermined fashion, to execute particular preprogrammed increment-by-one-&-record-failed-combining-info information that invokes to particular sets of instructions preprogrammed at controller, 20. The first set causes controller, 20, to cause buffer/comparator, 14, to add one incrementally to each meter record maintained at buffer/comparator, 14, that is associated with decryption key information that matches the decryption mark of said 2nd information—failed—(#4) in the fashion of example #2. Then the second set causes controller, 20, to assemble a record of a failed combining at buffer/comparator, 14; to record said record at recorder, 16, in the fashion of the second and third sets of example #4 (first message); and to complete the metering functions invoked by said incrementby-one-&-record-failed-combining-info information. The content of said record includes information that identifies said record as information of a combining aborted due to inefficient operation of a subscriber station microcomputer, 205; the unique digital code information capable of identifying the subscriber station of FIG. 3 uniquely, which information is preprogrammed at controller, 20; and the "program unit identification code" and overlay number information of the metermonitor segment information of said second message in said 2nd information—failed—(#4). At each station that processes said 2nd information—failed—(#4) and that is preprogrammed to collect monitor information, completing said metering functions causes the controller, 20, of said station to cause the buffer/comparator, 14, to execute its preprogrammed automatic monitoring functions. These functions proceed in the fashion that applied to the 2nd meter & monitor information (#4) with particular exceptions. Receiving said 2nd information—failed—(#4) causes the onboard controller, 14A, to add not only decryption key information but also information that combining failed to occur because of inefficient microcomputer operation and that the combining is of the overlay number of the information of the overlay number field in said 2nd information—failed—(#4).)

(At each station where the aforementioned 2nd monitor information (#4) is transmitted, no 1st meter & monitor information (#4) transmission occurred; onboard controller, 14A, has not initiated a new monitor record of the "Wall Street

Week" program; and the aforementioned record of the prior programming displayed at monitor, 202M, remains at buffer/ comparator, 14. Accordingly, receiving said 2nd monitor information (#4) causes the buffer/comparator, 14, of said station to process information in the fashion of the 1st monitor 5 information (#3). Automatically, said buffer/comparator, 14, determines that the header information in said 2nd monitor information (#4) matches particular preprogrammed monitored-instruction-not-fulfilled information which causes buffer/comparator, 14, to input said 2nd monitor information 10 (#4) to onboard controller, 14A. Receiving said 2nd monitor information (#4) causes onboard controller, 14A, to execute the aforementioned process-monitor-info instructions; to determine that the "program unit identification code" in said 2nd monitor information (#4) does not match the "program 15 unit identification code" information in said record of prior programming; to cause signal processor, 200, to record said record of prior programming at recorder, 16; to initiate a new monitor record that reflects the new "Wall Street Week" programming; and finally, to discard all unrecorded information 20 of said 2nd monitor information (#4) and commence waiting for the next inputted instance of monitor information. The header information of the 2nd monitor information (#4) causes signal processor, 200, to assemble said new monitor record in the particular format of a combined video/computer 25 medium transmission at a station where no combining occurred because first precondition program unit information failed to match and to include a particular record format field within said format identifying the format of said record. From the meter-monitor segment of said 2nd monitor information 30 (#4), onboard controller, 14A, selects and records at particular signal record field locations the "program unit identification code" of the "Wall Street Week" program, the overlay number information, and minute of the "Wall Street Week' program transmission within a one month period. And 35 onboard controller, 14A, records in a particular monitor record field location the aforementioned display unit identification code that identifies monitor, 202M, as the display apparatus of said new monitor record and date and time information received from clock, 18.)

Operating S. P. Systems

Example #4

Third Message

Subsequently, the embedded information of the third message of the "Wall Street Week" program is inputted to decoder, 203. Said information is identical to the embedded information of the third message of examples #1, #2, and #3 and causes the same processing at decoder, 203, that the information of the third message of example #3 caused. The information of the third message of example #4 causes "GRAPHICS OFF" to be executed at the PC-MicroKey System of the microcomputers, 205, of all subscriber stations tuned to the "Wall Street Week" transmission. But like the third message of example #4 causes combining actually to cease only each selected one of said stations where information of the second message previously caused combining to commence.

However, example #4 does differ from example #2. In example #2, the second message causes combining to commence at every selected station where the information of said second message is decrypted; that is, every station preprogrammed with information of decryption key J. But the second message of example #4 causes combining to commence

128

only at those selected stations where information not only of said second message is decrypted but also where information of the first message of example #4 had been decrypted; that is, only at those stations preprogrammed not only with information of decryption key J but also information of decryption key Z.

Thus example #4 illustrates a case where not only does selective processing of the second message enable the third message to have effect only at selected stations without any selective processing of said third message, the selective processing of the first message enables the third message to have effect only at an even more selective group of stations than would otherwise be the case. Placing the PC-MicroKey Systems of all stations into the "Graphics Off" mode prior to transmitting the first message of example #4 enables the third message of example #4 in the simplest possible fashion to cause combining to cease only at those stations that are preprogrammed with decryption key information not only of J but also of Z, with all the benefits outlined at the end of example #2.

Placing particular so-called "soft switches," one of which exists at each subscriber station, all into one given original position, "off" or "on", then transmitting a command that is processed selectively at selected stations and places said switches at said stations into the opposite position, "on" of "off", makes it possible to transmit a subsequent command that returns said switches at said selected stations (and only said switches) to said original position without any additional selective processing.

Significant advantages of simplicity and speed are achieved by devising signal processing apparatus and methods that minimize the need for selective processing. With regard to said third combining synch command, for example, no step of decrypting is required to affect only those stations that are preprogrammed with decryption key J. Accordingly, no possibility exists that an error in decrypting may occur at one or more of said stations, causing the combining of video RAM information and received video information, at said one or more, not to cease at the proper time and to continue 40 beyond said time (until such time as some subsequent command may execute "GRAPHICS OFF" or clear information from said video RAM at said stations). Because no time is required for decrypting, no possibility exists that some station may take longer (or shorter) than proper to perform decrypting causing the image of FIG. 1A to be displayed at some monitor, 202M, longer (or shorter) than proper. Perhaps most important, because no time is required for selective processing of said third command, the time interval that separates the time of embedding said third command at said remote station that originates the "Wall Street Week" program and the time of ceasing caused by said command at URS microcomputers, 205, can be the shortest possible interval. Making it possible for said time interval to be the shortest possible interval minimizes the chance that an error may occur in the timing of the embedding of said third command at said remote station causing all URS microcomputers, 205, to cease combining at a time that is other than the proper time.

Operating Signal Processor Systems

Example #5

Example #5 focuses on program unit identification signals detected at decoders, 30 and 40, of signal processor, 200.

Signal processor, 200, is preprogrammed with information that identifies each cable and over-the-air (hereinafter, "wireless") transmission or frequency in the locality of the sub-

scriber station of FIG. 3 as well as the standard broadcast and cablecast practices that apply on said transmissions and frequencies. Via a conventional multi-channel cable transmission, in a fashion well known in the art, four channels of conventional television programming and two conventional 5 FM radio signals are inputted to a first alternate contact of switch, 1, and to mixer, 2. Said television channels are transmitted normally assigned to channels 2, 4, 7, and 13 of the television frequency spectrum. Said radio signals are transmitted on 99.0 MHz and 100.0 MHz of the FM frequency spectrum. Via a conventional television receiving antenna, three conventional wireless television transmissions are inputted to the second alternate contact of switch, 1. Said wireless transmissions are on the frequencies of the television spectrum normally assigned to channels 5, 9, and 13. In a 15 predetermined fashion, controller, 20, controls oscillator, 6, to sequence local oscillator, 6, in the pattern: cable channel 2, cable channel 4, cable channel 7, cable channel 13, wireless channel 5, wireless channel 9, wireless channel 13, then to repeat said pattern.

In example #5, the "Wall Street Week" combining synch commands are transmitted unencrypted as in the first example, and the "Wall Street Week" program is transmitted on the frequency of channel 13 by a wireless broadcast station whose transmission is retransmitted on the frequency of 25 channel 13 on said cable. Thus a viewer can tune to the "Wall Street Week" program on either wireless channel 13 or cable channel 13. Simultaneously, different programs are transmitted on each of the other television and radio transmissions.

Controller, 20, has preprogrammed the RAM associated 30 with the control processor, 39J, of the controller, 39, of decoder, 30, with bit information of a channel mark associated with each transmission of television programming received at decoder, 30. (While wireless channel 13 and cable channel 13 may transmit the same programming, they have 35 different channel marks.) At said RAM, said control processor, 39J, maintains, associated with appropriate channel mark information, monitor information records of the last command containing meter-monitor program identification information inputted via each channel transmission. Said records 40 include program unit identification information. At the outset of the example, no transmission of "Wall Street Week" program unit identification information has yet occurred, and the program unit information associated with the source mark of wireless channel 13 and, separately, with the source mark of 45 cable channel 13 is the unit information of the television programming transmitted immediately before the start of the "Wall Street Week" transmission.

At the outset of example #5, the contact lever of switch, 1, is connected to said first alternate contact of switch, 1, to 50 which is inputted the full spectrum of frequencies transmitted on said cable, and mixer, 3, is set to select the frequency of channel 13. Thus transmissions on cable channel 13 are inputted to decoder, 30. Furthermore, the EOFS valve, 39F, of controller, 39, of decoder, 30, has identified an end of file signal embedded in the inputted channel 13 transmission and is set to receive transfer SPAM message information; the matrix switch, 39I, of said controller, 39, is set to transfer SPAM message information from said EOFS valve, 39F, to said control processor, 39J; and said control processor, 39J is set to receive and process header information of a SPAM message.

Example #5 begins with the embedding and transmitting, at the remote station that originates the "Wall Street Week" broadcast, of the first message of the "Wall Street Week" 65 program which is the message of the first combining synch command. The transmission of said broadcast is received at

the remote cable transmission station that transmits the multichannel cable transmission inputted to signal processor, 200; combined into the full spectrum cable transmission on the frequency of channel 13; and retransmitted. Said cable transmission is inputted via said first alternate contact of switch, 1, and said contact lever to mixer, 3. Mixer, 3, selects the frequency of channel 13 and inputs said frequency of interest, at a fixed frequency, to TV signal decoder, 30.

Receiving said frequency of interest causes decoder, 30, (which is shown in greater detail in FIG. 2A and whose controller, 39, is shown in greater detail in FIG. 3A) to receive and process the command information of said first message. The inputted frequency of channel 13 is inputted, first, to filter, 31, which filters said input and outputs the one TV channel signal of channel 13 to amplitude demodulator, 32. Demodulator, 32, demodulates said inputted channel signal using standard demodulator techniques and transfers the demodulated channel signal of said channel 13 to digital detector, 38; line receiver, 33; and audio demodulator, 35. 20 Thereafter, the embedded information of the first combining synch command is caused to be recorded at the SPAM-inputsignal register memory of the control processor, 39J, of said decoder, 30, in the same fashion that the embedded information of said message is detected and recorded at decoder, 203, in example #3. Receiving said embedded information causes the binary SPAM information of said first command, with error correcting information, to be detected at detector, 34; checked and corrected, as necessary, at processor, 39B; converted into locally usable binary information at processor, 39D; and recorded at the SPAM-input-signal memory of said control processor, 39J. The control apparatus of decoder, 30, is preprogrammed to process said information as monitor information and local control information. (Hereinafter, said first command may be called the 1st command (#5).) Receiving said first command causes the preprogrammed instructions at the RAM and ROM associated with control processor, 39J, to cause control processor, 39J, to process the information of said command in the following fashion. In a predetermined fashion, control processor, 39J, locates the monitor information that it retains in said RAM associated with the channel mark of cable channel 13 and compares the "program unit identification code" of said first command with the program unit information of said monitor information in RAM. No match results which indicates cable channel 13 is transmitting a new program unit. Not resulting in a match causes said controller, 39, automatically to transfer information of new programming to microcomputer, 205, and to transfer to buffer/comparator, 14, for further processing said monitor information in RAM which is monitor information of the programming transmitted on cable channel 13 prior to the "Wall Street Week" program. Automatically, said control processor, 39J, causes matrix switch, 39I, to cease transferring information from said EOFS valve, 39F, to control processor, **39**J, and commence transferring information from control processor, 39J, to buffer/comparator, 8, (to which said matrix switch, 39I, has capacity to transfer information). Automatically said control processor, 39J, transmits a message that consists of binary information of a "00" header (indicating a command with execution and meter-monitor segments) then the execution segment information of the pseudo command then a meter-monitor segment containing said monitor information in RAM (including the associated channel mark and the format information of said information) then any padding bits required to end said message. (Hereinafter, said message whose transmission is caused by receiving said first command is called the "1st-old-program-command (#5).") Then, in a predetermined fashion, control processor, 39J, determines

that said first command contains subject matter meter-monitor information causing said control processor, 39J, to transmit a message that consists of binary information of a "00" header then particular execution segment information that is addressed to microcomputer, 205, (and that causes microcomputer, 205, to process the information of the meter-monitor segment immediately following said execution segment information as new programming now being transmitted on the channel of the channel mark of said meter-monitor segment segment) then meter-monitor segment information that includes the "program unit identification code" and subject matter information of said first command and the channel mark of cable channel 13 as well as appropriate meter-monitor format information then any padding bits required to end said message. (Said message whose transmission is caused by receiving said first command enables microcomputer, 205, in a fashion described more fully below, to tune automatically to receive the program that said "program unit identification code" identifies if said program is of interest, and said message is called, hereinafter, the "1st-new-program-message (#5)".) Then said control processor, 39J, deletes from said RAM all information of said monitor information in RAM except the information of said channel mark and records at said RAM, associated with said channel mark, the metermonitor segment information of the information at said SPAM-input-signal memory, which is said first command, but replaces the meter-monitor format information that is recorded with new format information that reflects the addition of a channel mark. Finally, controller, 39J, transmits particular detection-complete information to controller, 20; causes all apparatus of decoder, 30, except said RAM to cease receiving SPAM message information and delete all information received on said frequency of interest (that is, cable channel 13); and causes said matrix switch, 39I, to cease transferring information from said control processor, 39J, to said buffer/comparator, 8, and commence transferring SPAM message information from EOFS valve, 39F, to its null out-

Receiving said detection-complete information causes controller, 20, to cause oscillator, 6, to cause the selection of the next channel in the predetermined television channel selection pattern: wireless channel 5. Automatically oscillator, 6, causes switch, 1, to shift its contact lever from the first alternate contact to the second alternate contact to which wireless transmissions are inputted and causes mixer, 3, to select the frequency of channel 5 and input said frequency of interest, at a fixed frequency, to decoder, 30. Controller, 20, then transmits a particular preprogrammed wireless-5 instruction to said control processor, 39J, that informs said processor, 39J, wireless channel 5 is inputted to decoder, 30.

Receiving said wireless-5 instruction causes control processor, 39J, to cause all apparatus of decoder, 30, to commence receiving, detecting, and processing SPAM message information embedded in the inputted frequency of interest. 55

When the input of wireless channel 5 to decoder, **30**, commences, the remote wireless station transmitting the channel 5 transmission is transmitting the embedded signal information of an information segment following a SPAM command. Shortly thereafter, embedded signal information of an end of 60 file signal then a combining synch command with a "01" header is transmitted on wireless channel 5. Said command instructs ITS controller/computers, such as **73** in FIG. **6** (except that the intermediate transmission station of this transmission is a wireless transmission station rather than a cable 65 station), to load and run the contents of the information segment following said command. The meter-monitor field of

132

said command contains no subject matter information but identifies a particular super market chain commercial program unit.

Receiving the inputted frequency of interest of wireless channel 5 at decoder, 30, causes filter, 31, to filters the inputted fixed frequency and output the one TV channel signal of channel 5 to amplitude demodulator, 32; causing demodulator, 32, to demodulate said inputted channel signal and transfer the demodulated signal to line receiver, 33; causing line receiver, 33, to detect said embedded signal information and transmit it to digital detector, 34; causing digital detector, 34, to detect the binary information of said signal information and transfer said binary information to controller, 39. Receiving said binary information at controller, 39, causes the binary SPAM information of the wireless channel 5 transmission to be checked and corrected, as necessary, at processor, 39B; converted into locally usable binary information at processor, 39D; and checked for end of file signal information at EOFS valve, 39F, and transmitted to the null output of matrix switch, **39**I. until EOFS valve. **39**F. detects an end of file signal.

In due course, said EOFS valve, 39F, receives the aforementioned end of file signal causing said valve, 39F, to detect said signal and transmit the aforementioned interrupt signal of EOFS-signal-detected information to said control processor, 39J. Receiving said EOFS-signal-detected information causes control processor, 39J, to transmit the aforementioned discard-and-wait instruction to EOFS valve, 39F, and to cause said matrix switch, 39I, to cease transferring SPAM message information from said EOFS valve, 39F, to its null output information and commence transferring SPAM message information from said valve, 39F, to said control processor, 39J. Receiving said instruction causes said valve, 39F, to set the information at the EOFS WORD Counter of said valve, 39F, to "00000000" (thereby discarding information of said end of file signal) and to transmit the aforementioned complete-and-waiting information to control processor, 39J, as an interrupt signal. Receiving said complete-and-waiting information causes control processor, 39J, to transmit the aforementioned reopen-flow instructions to EOFS valve, 39F, causing said valve, 39F, to recommence processing inputted signal words in its preprogrammed fashion and transferring said words to matrix switch, 39I, and control processor, 39J, commences waiting to receive from said valve the binary information of a subsequent SPAM header.

The command that then follows on wireless channel 5 contains one example of an execution segment that invokes no controlled functions at the station of FIG. 3. Said command is addressed to intermediate transmission station controller/computers. Its instructions control, among others, the controller/computer of the remote station transmitting the wireless channel 5 transmission. (FIG. 6 shows one example of such a controller/computer, 73.) The subscriber station of FIG. 3 is an ultimate subscriber station, and the commands that invoke controlled functions at the computer of the station of FIG. 3 are those that are addressed to URS microcomputers, 205.

Nevertheless, control processor, **39**J, of decoder, **30**, certainly has capacity to process the meter-monitor information of said command for information that identifies the programming in which it is embedded. (Hereinafter, said command is called the "2nd command (#5).")

Receiving the binary information of said command causes control processor, 39J, to record said binary information at said SPAM-input-signal register memory then locate and compare the "program unit identification code" of said command with the program unit information of the monitor information that it retains in said RAM associated with the channel

mark of wireless channel 5. Said "code" identifies a particular super market chain commercial program unit and because no information of said "code" has previously been received at control processor, 39J, no match results. Not resulting in a match causes said control processor, 39J, to cause matrix switch, 39I, to cease transferring information from said EOFS valve, 39F, to control processor, 39J, and commence transferring information from control processor, 39J, to buffer/ comparator, 8; to transmit a message that consists of binary information of a "00" header then the execution segment 10 information of the pseudo command then a meter-monitor segment containing said monitor information in RAM (including the associated channel mark and the format information of said information) then any padding bits required to end said message (which message is called, hereinafter, the "2nd-15" old-program-message (#5)"); to determine that said command does not contain subject matter meter-monitor information (causing said control processor, 39J, not to transmit a message that enables microcomputer, 205, to tune receiver apparatus automatically but to transmit a new program mes- 20 sage for processing by buffer/comparator, 14, alone); and to transmit a message that consists of binary information of a "00" header then the execution segment information of the pseudo command then meter-monitor segment information that includes the "program unit identification code" of said 25 2nd command (#5) and the channel mark of cable channel 13 as well as appropriate meter-monitor format information then any padding bits required to end said message (which message is called, hereinafter, the "2nd-new-program-message (#5)") Automatically, said control processor, 39J, then deletes 30 from said RAM all information of said monitor information in RAM except the information of said channel mark and records at said RAM, associated with said channel mark, the meter-monitor segment information of the information at said SPAM-input-signal memory, which is said 2nd command 35 (#5), but replaces the meter-monitor format information that is recorded with new format information that reflects the addition of a channel mark. Finally, controller, 39J, transmits particular detection-complete information to controller, 20; causes all apparatus of decoder, 30, except said RAM to cease 40 receiving SPAM message information and delete all information received on said wireless channel 5; and causes said matrix switch, 39I, to cease transferring information from said control processor, 39J, to said buffer/comparator, 8, and commence transferring SPAM message information from 45 EOFS valve, 39F, to its null output.

Said detection-complete information causes controller, 20, to cause oscillator, 6, to cause the selection of the next channel in the predetermined television channel selection pattern: wireless channel 9. Automatically oscillator, 6, causes mixer, 50, to select the frequency of channel 9 and input said frequency of interest, at a fixed frequency, to decoder, 30. Controller, 20, then transmits a particular preprogrammed wireless-9 instruction to said control processor, 39J, that informs said processor, 39J, wireless channel 9 is inputted to decoder, 55, 30.

Receiving said wireless-9 instruction causes control processor, 39J, to cause all apparatus of decoder, 30, to commence receiving, detecting, and processing SPAM message information embedded in the inputted frequency of interest. 60

When the input of wireless channel 9 to decoder, 30, commences, the remote wireless station transmitting the channel 9 transmission is transmitting no signal information in the normal transmission pattern.

EOFS valve, 39F, of decoder, 30, waits to receive detected 65 SPAM signal information, but none is transmitted by said remote wireless station.

134

Controller, 20, has capacity for keeping track of elapsed time, and after determining in a predetermined fashion that a particular predetermined period of time has elapsed from the input of wireless channel 9 to decoder, 30, controller, 20, automatically causes control processor, 39J, to cause all apparatus of decoder, 30, cease receiving SPAM message information and delete all information received on said wireless channel 9 and causes oscillator, 6, to cause the selection of the next channel in the predetermined television channel selection pattern: wireless channel 13. Automatically, oscillator, 6, causes mixer, 3, to select the frequency of channel 13 and input said frequency to decoder, 30. Controller, 20, then transmits a particular preprogrammed wireless-13 instruction to said control processor, 39J, that informs said processor, 39J, wireless channel 13 is inputted to decoder, 30.

Receiving said wireless-13 instruction causes control processor, 39J, to cause all apparatus of decoder, 30, to commence receiving, detecting, and processing SPAM message information embedded in the inputted frequency of interest.

The remote wireless station transmitting the channel 13 transmission is transmitting the same "Wall Street Week" program that is transmitted by the remote cable station transmitting the cable channel 13 transmission. When the input of wireless channel 13 to decoder, 30, commences, said remote wireless station is still transmitting the binary information of the information segment following the first combining synch command of said "Wall Street Week" program.

In due course said remote wireless station transmits the end of file signal that terminates said information segment, and the EOFS valve, 39F, of decoder, 30, receives and detects said signal, in its end of file detecting fashion, causing said valve, 39F, to transmit the aforementioned EOFS-signal-detected information to said control processor, 39J. Just as applied in the case of the 2nd command (#5), receiving said EOFSsignal-detected information causes control processor, 39J, to cause EOFS valve, 39F, to discard all information of said end of file signal; to cause said matrix switch, 39I, to cease transferring SPAM message information from said EOFS valve, 39F, to its null output information and commence transferring SPAM message information from said valve, 39F, to said control processor, 39J; then to cause EOFS valve, 39F, to recommence processing inputted signal words in its preprogrammed fashion and transferring said words to matrix switch, 39I; and to commence waiting to receive from said switch, 39I, the binary information of a subsequent SPAM header.

Subsequently, said remote wireless station transmits the second combining synch command of the "Wall Street Week" program. (Hereinafter, said command may be called the "3rd command (#5).")

Receiving the binary information of said command causes control processor, 39J, to record said binary information at said SPAM-input-signal register memory then locate and compare the "program unit identification code" of said command with the program unit information of the monitor information that it retains in said RAM associated with the channel mark of wireless channel 13. Since this is the first monitor information of the "Wall Street Week" program received at control processor, 39J, from an inputted wireless channel 13 transmission, no match results. Not resulting in a match causes said control processor, 39J, automatically to cause matrix switch, 39I, to cease transferring information from said EOFS valve, 39F, to control processor, 39J, and commence transferring information from control processor, 39J, to buffer/comparator, 8, then to transmit a message that consists of binary information of a "00" header then the execution segment information of the pseudo command then a meter-

monitor segment containing said monitor information in RAM (including the associated channel mark and the format information of said information) then any padding bits required to end said message. (Hereinafter, said message is called the "3rd-old-program-message (#5)".) Then, in a pre- 5 determined fashion, control processor, 39J, determines that said command contains subject matter meter-monitor information causing said control processor, 39J, to transmit a message that consists of binary information of a "00" header then the aforementioned execution segment information that 10 is addressed to microcomputer, 205, (and that causes microcomputer, 205, to process the information of the meter-monitor segment immediately following said execution segment information as new programming now being transmitted on the channel of the channel mark of said meter-monitor segment segment) then meter-monitor segment information that includes the "program unit identification code" and subject matter information of said command and the channel mark of wireless channel 13 as well as appropriate meter-monitor format information then any padding bits required to end said 20 message. (Hereinafter, said message is called the "3rd-newprogram-message (#5)".) Then automatically said control processor, 39J, deletes from said RAM all information of said monitor information in RAM except the information of said channel mark and records at said RAM, associated with said 25 channel mark, the meter-monitor segment information of the information at said SPAM-input-signal memory, which is said 3rd command (#5), but replaces the meter-monitor format information that is recorded with new format information that reflects the addition of a channel mark. Finally, controller, 39J, transmits particular detection-complete information to controller, 20; causes all apparatus of decoder, 30, except said RAM to cease receiving SPAM message information and delete all information received on said frequency of interest (that is, wireless channel 13); and causes said matrix switch, 35 39I, to cease transferring information from said control processor, 39J, to said buffer/comparator, 8, and commence transferring SPAM message information from EOFS valve, 39F, to its null output.

Receiving said detection-complete information causes 40 controller, 20, to cause oscillator, 6, to cause selection of the next channel in the predetermined television channel selection pattern: cable channel 2. Automatically oscillator, 6, causes switch, 1, to shift its contact lever from the second alternate contact to the first alternate contact to which cable 45 transmissions are inputted and causes mixer, 3, to select the frequency of channel 2 and to input said frequency of interest, at a fixed frequency, to decoder, 30. Controller, 20, then transmits a particular preprogrammed cable-2 instruction to said control processor, 39J, that informs said processor, 39J, 50 cable channel 2 is inputted to decoder, 30.

While TV signal decoder, **30**, is processing signal information in video transmissions inputted from switch, **1**, and mixer, **3**, radio signal decoder, **40**, is, in a similar fashion, processing SPAM information in radio transmissions inputted from mixer. **2**.

(Radio signal decoder, 40, is shown in greater detail in FIG. 2B. The controller, 44, of decoder, 40, is identical, in composition, to the controller, 39, of FIG. 3A. And the components of said controller, 44, are referred to, hereinafter, using the 60 same alphanumeric identification system that applies to the components of FIG. 3A. For example, the control processor of said controller, 44, is referred to, hereinafter, as control processor, 44J.)

Controller, **20**, has preprogrammed all apparatus of 65 decoder, **40**, appropriately to receive and process the SPAM information of said radio transmission in the same fashion

136

that controller, 30, receives and processes SPAM information embedded in its inputted television transmissions. Control processor, 44J, controls all controlled apparatus of decoder, 40, and causes radio decoder, 42, to detect signal information in the normal radio transmission location. At the RAM associated with the control processor, 44J, is bit information of a channel mark associated with each radio frequency transmission received at decoder, 40. (The frequency identification information of decoder, 40, is called "channel marks" here rather than "frequency marks" for simplicity of exposition.) At said RAM, control processor, 44J, maintains, associated with appropriate channel mark information, monitor information records of the last command containing meter-monitor program identification information inputted via each frequency transmission.

At the outset of the example, mixer, 2, is selecting the frequency of 100.0 MHz of the FM frequency spectrum and inputting said frequency, at a fixed frequency, to decoder, 40. EOFS valve, 44F, has identified an end of file signal embedded in the inputted 100.0 MHz frequency transmission and is set to receive and transfer SPAM message information. Matrix switch, 44I, is set to transfer SPAM message information from EOFS valve, 44F, to control processor, 44J. And control processor, 44J is set to receive and process header information of a SPAM message.

Subsequently, the remote FM radio station that originates the 100.0 MHz broadcast embeds in the normal transmission location of its transmission and transmits a SPAM message that consists of a "00" header; the pseudo command execution segment; a meter-monitor segment that includes particular program unit identification information, particular subject matter information, and particular appropriate meter-monitor format information; and any required padding bits. (Hereinafter, the command of said message is called the "4th command (#5).") Said transmission is received at the remote cable transmission station that transmits the multi-channel cable transmission inputted to signal processor, 200; combined into the full spectrum cable transmission on the 100.0 MHz frequency; and retransmitted. Mixer, 2, selects said 100.0 MHz frequency of said transmission and inputs said frequency, at a fixed frequency, to radio signal decoder, 40.

Receiving said frequency causes decoder, 40, to detect and process the command information of said 4th command (#5). The inputted frequency of channel 13 is inputted, first, to radio receiver circuitry, 41, which receives the radio information of said frequency and inputs said information to radio decoder, 42, which decodes the embedded signal information of said command and transmits said signal information to digital detector, 43, which detects the binary information with error correcting bit information of said command and transfers said binary and bit information to controller, 44. Thereafter, the embedded information of said command is caused to be recorded at the SPAM-input-signal register memory of control processor, 44J, in the same fashion that the embedded information of the 1st command (#5) is detected and recorded at decoder, 30. Receiving the embedded information of the 4th command (#5) causes the binary SPAM information of said command to be detected at detector, 44; checked and corrected, as necessary, at processor, 44B; converted into locally usable binary information at processor, 44D; and recorded at the SPAM-input-signal memory of said control processor, 44J.

Receiving said command causes the instructions preprogrammed at the RAM and ROM associated with control processor, 39J, to cause control processor, 44J, to process the information of said command in the following fashion. In a predetermined fashion, control processor, 44J, locates the

monitor information that it retains in said RAM associated with the channel mark of the 100.0 MHz frequency and compares the "program unit identification code" of said command with the program unit information of said monitor information in RAM. No match results which indicates a new program unit is being transmitted on said frequency. Not resulting in a match causes said controller, 44, automatically to transfer information of new programming to microcomputer, 205, and to transfer to buffer/comparator, 14, for further processing said monitor information in RAM which is monitor information of prior programming transmitted on said frequency. Automatically, said control processor, 44J, causes matrix switch, 44I, to cease transferring information from EOFS valve, 44F, to control processor, 44J, and commence transferring information from control processor, 44J, to buffer/comparator, 8, (to which said matrix switch, 44I, has capacity to transfer information). Automatically said control processor, 44J, transmits a message that consists of binary information of a "00" header then the execution segment 20 information of the pseudo command then a meter-monitor segment containing said monitor information in RAM (including the associated channel mark and the format information of said information) then any padding bits required to end said message. (Hereinafter, said transmission of is called the 25 "1st-old-radio-program-message (#5)".) Then, in a predetermined fashion, control processor, 44J, determines that said command contains subject matter meter-monitor information, causing control processor, 44J, to transmit a message that consists of binary information of a "00" header then 30 particular execution segment information that is addressed to microcomputer, 205, (and that causes microcomputer, 205, to process the meter-monitor information of said message as new programming now being transmitted on said 100.0 MHz frequency) then meter-monitor segment information that 35 includes the "program unit identification code" and subject matter information of said first command and the channel mark of said 100.0 MHz frequency as well as appropriate meter-monitor format information then any padding bits required to end said message. (Said message is called, here-40 inafter, the "1st-new-radio-program-message (#5)".) Then said control processor, 44J, deletes from said RAM all information of said monitor information in RAM except the information of said channel mark and records at said RAM, associated with said channel mark, the meter-monitor segment 45 information of the information at said SPAM-input-signal memory, which is said command, but replaces the metermonitor format information that is recorded with new format information that reflects the addition of a channel mark. Finally, controller, 44J, transmits particular radio-detectioncomplete information to controller, 20; causes all apparatus of decoder, 40, except said RAM to cease receiving SPAM message information and delete all information received on said frequency of interest (that is, frequency 100.0 MHz); and causes said matrix switch, 44I, to cease transferring information from said control processor, 44J, to said buffer/comparator, 8, and commence transferring SPAM message information from EOFS valve, 44F, to its null output.

Said radio-detection-complete information causes controller, **20**, to cause oscillator, **6**, to cause the selection of the next frequency in the predetermined radio frequency selection pattern: 99.0 MHz. Automatically oscillator, **6**, causes mixer, **2**, to select said frequency and input it, at a fixed frequency, to decoder, **40**. Controller, **20**, then transmits a particular preprogrammed radio-99.0 instruction to control processor, **44J**, 65 that informs said processor, **44J**, 99.0 MHz is inputted to decoder, **40**.

138

Receiving said radio-99.0 instruction causes control processor, 44J, to cause all apparatus of decoder, 40, to commence receiving, detecting, and processing SPAM message information embedded in the inputted frequency of interest.

When the input of FM radio frequency 99.0 MHz to decoder, 40, commences, the remote station transmitting the 99.0 MHz radio transmission is transmitting no SPAM information in the normal transmission location.

EOFS valve, **44**F, of decoder, **40**, waits to receive detected SPAM signal information, but none is transmitted by said remote wireless station.

After determining, in a predetermined fashion, that a particular predetermined period of time has elapsed from the input of said 99.0 MHz frequency to decoder, 40, controller, 20, automatically causes control processor, 44J, to cause all apparatus of decoder, 40, to cease acting to receive SPAM message information embedded in said frequency and to delete all information received on said frequency and causes oscillator, 6, to cause the selection of the next frequency in the predetermined radio frequency selection pattern: 100.0 MHz. Automatically, oscillator, 6, causes mixer, 2, to select said frequency and input it, at a fixed frequency, to decoder, 40. Controller, 20, then transmits a particular preprogrammed radio-100.0 instruction to control processor, 44J, that informs said processor, 44J, 100.0 MHz is inputted to decoder, 40.

In the example, buffer/comparator, **8**, receives from decoder, **30**, the 1st-, 2nd-, and 3rd-old-program-message (#5) messages and the 1st-, 2nd-, and 3rd-new-program-message (#5) messages and from decoder, **40**, the 1st-old-radio-program-message (#5) and 1st-new-radio-program-message (#5) messages.

Receiving each one of said messages causes buffer/comparator, **8**, first, to place said one at a particular received signal location at buffer/comparator, **8**, then to compare a particular portion the first X bits immediately after the first H bits of said binary information (which X bits is the execution segment of said one) to the aforementioned particular comparison information in its automatic comparing fashion. In each case, no match results which signifies that none of said messages instructs URS signal processors, **200**, to decrypt. Not resulting in a match causes buffer/comparator, **8**, to transfer each one directly to controller, **12**, as soon as controller, **12**, becomes prepared to receive said one.

(The system of the present invention has capacity for processing encrypted SPAM program identification information; however, in the preferred embodiment, the decryption of said information takes place at the decryptors, 39K, 44K, or 47K, of the controllers, 39, 44, or 47, of decoders, 30, 40, or of FIG. 2C, before said decoders input their detected SPAM program identification information to buffer/comparators, 8. Such decryption is affected in the fashion of the decryption of the first and second messages of example (#4) at decoder, 203.)

All eight of said messages are commands. The 1st- and 3rd-new-program-message (#5) and the 1st-new-radio-program-message (#5) signals are addressed to microcomputer, 205. Each informs said microcomputer of new programming transmissions to which said microcomputer can tune appropriate station receiver and display apparatus in fashions described below. (Hereinafter said commands are called "guide commands" because they can guide station control apparatus to desired programming.) By contrast, the 1st-, 2nd-, and 3rd-old-program-message (#5) messages, the 2nd-new-program-message (#5), and the 1st-old-radio-program-message (#5) inform no station control apparatus of new programming transmissions because said commands are addressed to no apparatus; the execution segment of each is the aforementioned pseudo-command. (Hereinafter, each

said signal is called a "transparent command" because no subscriber station control apparatus "sees" said signal.)

Receiving each transparent or guide command from buffer/ comparator, 8, causes controller, 12, (which is equipped with a matrix switch, 121, and a control processor, 12J, with associated RAM and ROM) to process each, in turn, in its preprogrammed fashions (which are similar to the preprogrammed fashions of controller, 39, of decoder, 203). Receiving each command causes controller, 12, to record said command at the SPAM-input-signal register memory of controller, 12, then to compare the execution segment of each command to aforementioned controlled-function-invoking-@12 information. Each execution segment of a guide command matches particular preprogrammed transfer-this-message-to-205-@12 information that invokes particular preprogrammed instructions that cause controller, 12, to input the message of said command to buffer, 39G, of controller, 39, of decoder, 203. (Receiving said message causes said controller, 39, to input information of said command to microcomputer, 205, 20 thereby informing microcomputer, 205, that new programming of the particular subject matter and program identification unit identified of said guide command is being transmitted on the channel of the channel mark of said guide command and causing microcomputer, 205, to process in a fashion that is described more fully below.) Each execution segment of a transparent command matches particular preprogrammed pseudo-function-@12 information that invokes no particular preprogrammed controlled function instructions.

In example #5, controller, 12, is preprogrammed to process monitor information, and completing the controlled functions invoked by any given message causes controller, 12, automatically to process the information of said message as monitor information, in the fashion of controller, 39, of decoder, 203, in example #3. Automatically after transmitting the last bit of each guide command or determining that the execution segment of each transparent command invokes no controlled tion at said SPAM-input-signal memory as monitor information. Automatically, control processor, 12J, transfers to buffer/comparator, 14, via matrix switch, 12 I, header information that identifies a transmission of monitor information of available programming then all of the information that is 45 recorded at said SPAM-input-signal memory. (In each example #5 case, the information that is transferred-together with its newly added header information—continues to be called by its previously assigned name; for example, the 1st-old-radio-program-message (#5).) Then controller, 12, 50 from memory all information of said given message and commences waiting to receive the binary information of a subsequent message from buffer/comparator, 8.

Particular ones of said eight messages convey first instances of particular program unit identification monitor 55 information associated with particular channel marks. Said ones are the 1st-, 2nd-, and 3rd-new-program-message (#5) messages and the 1st-new-radio-program-message (#5). Others of said messages convey last instances of such information associated with said channel marks. Said others are the 1st-, 60 2nd-, and 3rd-old-program-message (#5) messages and the 1st-old-radio-program-message (#5). (Hereinafter, monitor information messages that convey first instances of particular program unit identification information associated with particular channel marks are called "new programming messages," and messages that convey last instance information are called "old programming messages.")

140

Signal processor, 200, processes the monitor information of said messages in a fashion that is similar to the monitor information processing of examples #3 and #4.

Receiving each of said eight messages (with said header information that identifies monitor information of available programming added) causes buffer/comparator, 14, to determine that said header information matches particular preprogrammed monitor-information-identification information, causing buffer/comparator, 14, to input each message, in turn, to onboard controller, 14A.

Receiving any given old programming message causes onboard controller, 14A, to execute particular preprogrammed process-monitor-info-of-available-programming instructions. Said instructions cause onboard controller, 14A, to determine that the channel mark and program unit identification information in said old programming message matches the channel mark and program unit identification information of a selected monitor information record previously initiated by a particular new programming message and to update the information of said selected record by modifying the information content of said record by adding and/or deleting and/or replacing information in such a way that the information of said record reflects to the fullest extent which particular programming is available on which channels at the station of FIG. 3 (and at selected other stations that are preprogrammed and preconfigured to collect monitor information) and by recording date and time information, received from clock, 18, in such a way that the information of said record reflects when said particular programming is available. The programming monitored for availability and the information recorded can include not only programming identified by the aforementioned "program unit identification codes" that identify television programs but also, for example, computer programming information such as the information, in the meter-monitor segment of the first combining synch command of the "Wall Street Week" example, that identifies the program instruction set that follows said command and the supplier of said set.

Receiving any given new programming message causes function, controller, 12, commences processing the informa- 40 onboard controller, 14A, to determine that the program unit identification information in said message does not match the program unit identification information of that selected monitor information record whose channel mark matches the channel mark of said new programming message, causing onboard controller, 14A, automatically to cause signal processor, 200, to record said selected monitor information record at recorder. 16, in the fashion that onboard controller. 14A, caused signal processor, 200, to record the aforementioned record of prior programming upon receiving the 1st monitor information (#3). Then, automatically, onboard controller, 14A, executes the aforementioned process-monitorinfo-of-available-programming instructions. Said instructions cause onboard controller, 14A, to initiate a new monitor record that reflects the availability of the programming identified in said new programming message. Automatically, said instructions cause onboard controller, 14A, to delete all information at the record location of said selected monitor information record except the channel mark associated with said record and to record at said record location the "program unit identification code" information of said new programming message, such other selected information of said new programming message that identifies other particular programming is available on the channel of said channel mark, and current date and time information, received from clock, 18. In this fashion, the system of the present invention initiates records at the station of FIG. 3 (and at selected other stations that are preprogrammed and preconfigured to collect monitor

information) that reflect to the fullest extent which particular programming becomes available at said station (and said other stations), on which channels, and when.

Operating Signal Process of Systems . . . Signal Record $_{\ 5}$ Transfer

In examples #3, #4, and #5, the transmission of SPAM signal information causes signal processor, 200, to transfer signal record information by telephone to remote station computers. At the outset of each example, recorder, 16, has reached a level of fullness where recording the next signal record will cause the quantity of recorded information to equal or exceed the particular fullness information of said recorder, 16. In example #3 and #4, receiving the first message of the "Wall Street Week" program causes decoder, 203, $_{15}$ to transfer to buffer/comparator, 14, the 1st monitor information (#3) and the 1st meter & monitor information (#4), respectively, and receiving the 1st monitor information (#3) and the 1st meter & monitor information (#4) causes buffer/ comparator, 14, to transfer record information of the prior program displayed at monitor, 202M, to recorder, 16, and causes recorder, 16, to record said information. In example #5, receiving transmitted SPAM message information causes decoders, 30 and 40, to transmit the 1st-new-program-message (#5) and the 1st-new-radio-program-message (#5) messages, respectively, and receiving information of said 1stnew-program-message (#5) and said 1st-new-radio-programmessage (#5) causes buffer/comparator, 14, to transfer old programming record information to recorder, 16, and causes recorder, 16, to record said information. In each example, the 30 transfer of the first record information from buffer/comparator, 14, causes recorder, 16, to execute the automatic telephone signal record transfer sequence described above.

In each example, when the automatic processing caused by the received SPAM signal information reaches the point at which recorder, **16**, finishes recording the first signal record information transferred from buffer/comparator, **14**, recorder, **16**, measures the quantity of its recording capacity that holds signal records, in a predetermined fashion, and determines that said quantity is equal to or greater than said particular fullness information. Said determining causes recorder, **16**, to transfer a particular instruct-to-call instruction to controller, **20**, that causes controller, **20**, to activate telephone connection, **22**, and proceed with a particular preprogrammed telephone signal record transfer sequence that is fully automatic.

The first stage of said sequence involves transferring audit information to a particular first host computer at a first remote station. Controller, 20, transfers the telephone number, 1-800-AUDITOR, to auto dialer, 24, and causes said dialer, 24, to dial said number. Said first computer answers said 50 telephone call, and in a fashion well known in the art, controller, 20, and said first computer automatically establish telephone communications. Automatically, controller, 20, causes telephone connection, 22, to transfer particular identifying information that includes the unique digital identify- 55 ing code of ROM, 21, to said first computer followed by a particular instruct-to-receive signal. Said instruct-to-receive signal causes said first computer automatically to prepare to receive audit records then to transfer a particular start signal via connection, 22, to controller, 20. Receiving said start 60 signal, sent automatically in response to controller, 20's, instruct-to-receive signal, causes controller, 20, to cause recorder, 16, to transmit all recorded meter audit records and particular other audit information to telephone connection, 22, which causes said connection, 22, to transmit said records 65 and information to said first computer. When recorder, 20, transmits the last bit of said record and other information,

142

recorder, 20, transmits particular finished-with-first-stage information to controller, 20, which causes controller, 20, to transmit a particular acknowledge receipt instruction to said first computer. Automatically said first computer determines, in a predetermined fashion, that the audit information has been received correctly and completely, and said determining causes said first computer automatically to transmit a particular transmission complete signal to controller, 20. Receiving said complete signal causes controller, 20, to cause telephone connection, 22, to terminate said telephone call. Then controller, 20, transfers information to recorder, 16, that causes recorder, 16, to erase from memory all said record and other information that is not also meter charge information or monitor information.

Having completed the first stage, controller, 20, then commences automatically the second stage of said sequence which involves transferring meter charge information to a particular second host computer at a second remote station. Controller, 20, transfers the telephone number, 1-800-CHARGES, to auto dialer, 24, and causes the dialing of said number. But said number is busy. Telephone connection, 22, receives a telephone busy signal, well known in the art, and transfers information of said signal to controller, 20. Receiving said information causes controller, 20, to execute a preprogrammed redial sequence. Thereafter, whenever controller, 20, polls its input sources for input signal information in a polling fashion well known in the art, it causes dialer, 24, regularly to redial said number. Controller, 20, continues said redialing until said second computer answers said call.

Said redial sequence does not prevent controller, 20, from proceeding with other processing tasks; it merely defers execution of the remaining preprogrammed instructions of the second stage. When said second computer answers said call, controller, 20, will automatically execute said remaining instructions.

Having deferred further execution of the second stage, controller, 20, proceeds to the third stage which involves transferring monitor information to a particular third host computer at a third remote station. Controller, 20, causes the dialing of the telephone number, 1-800-MONITOR, and establishes telephone communications with said third computer. Automatically, controller, 20, causes the transfer to said third computer of particular identifying information and a particular instruct-to-receive signal causing said third computer to determine that it is not prepared to receive information and to respond with a particular call-back signal. Said call-back signal instructs controller. 20, to defer further execution of the third stage until a particular deferred timethe first waiting moment after 1:00 AM the following morning—and causes controller, 20, to execute a preprogrammed time-check-and-determining sequence. Under control of said sequence, as a regular step in the sequence of the aforementioned polling fashion, controller, 20, checks the time of clock, 18, and determines whether said clock time is after said deferred time.

Having deferred further execution of the third stage, controller, 20, proceeds with other processing. The third stage is the final stage of said automatic telephone signal record transfer sequence. Accordingly, controller, 20, starts polling for instructions and commences regularly executing said redial and said time-check-and-determining sequences.

Subsequently, in the course of executing said redial instructions, controller, 20, and said second computer establish telephone communications in the fashion described in the first stage above. Controller, 20, then causes the transfer to said second computer of particular identifying information followed by a particular instruct-to-receive signal causing

said second computer to respond with a particular start signal that causes controller, **20**, to cause the transmitting of all recorded meter charge records to said second computer. When recorder, **20**, finishes transmitting meter charge information, controller, **20**, transmits a particular acknowledge 5 receipt instruction to said second computer. Automatically said second computer responds with a particular transmission complete signal that causes controller, **20**, to terminate said telephone call then to cause recorder, **16**, to erase from memory all said meter charge information. Then, in a preprogrammed fashion, controller, **20**, deactivates the redial sequence instruction portion of said polling sequence.

So completing the second stage causes controller, **20**, once again to commence polling for instructions.

Subsequently, controller, **20**, determines that said clock 15 time is after said deferred time which causes controller, **20**, automatically to deactivate said time-check-and-determining sequence and recommence said third stage. Automatically, controller, **20**, reestablishes telephone communications with said third computer and causes said third computer to transfer to controller, **20**, its particular start signal. Then controller, **20**, causes the transmitting of all recorded monitor records to said third computer. When said transmitting is finished, controller, **20**, transmits a particular acknowledge receipt instruction to said third computer. Automatically said third computer responds with a particular transmission complete signal that causes controller, **20**, to terminate said telephone call then to cause recorder, **16**, to erase from memory all said monitor record information.

Completing the final deferred instructions of said automatic telephone signal record transfer sequence causes controller, **20**, to end said sequence and commence processing in the conventional fashion.

In examples #3 and #4 (and #5 if information of said 1st-new-program-message (#5) reaches buffer/comparator, 35 14, before any other instance of monitor information), receiving the first message of the "Wall Street Week" program causes the apparatus of the FIG. 3 subscriber station to carry out said signal record transfer sequence. Simultaneously, other stations have reached a similar level of fullness, and said 40 command causes said other stations also to execute said transfer sequence. Accordingly, not only does transmitting said first message cause all the functions described above in example #3 and #4 (and #5), transmitting said message also causes apparatus at one and more subscriber stations to trans- 45 fer recorded information selectively to one and more remote stations at the time of execution and at deferred times, causes computers at said stations to process said information, and causes said computers to transfer information, point-to-point, to said subscriber station apparatus.

Examples #3, #4, and #5 do not show the second message of the "Wall Street Week" program causing information to be recorded at the recorder, **16**, of the subscriber station of FIG. **3**. Accordingly, said message does not cause apparatus of said station to transfer of record information to one or more remote 55 station computers.

Nevertheless, it is clear from the above exposition that the transmission of any SPAM command (including the pseudo command) that includes meter-monitor information can cause monitor record information to be recorded at the 60 recorder, 16, of selected stations and can cause signal processors, 200, at selected ones of said stations (that is, at stations where recorders, 16, equal or exceed particular fullness information) to transfer meter and/or monitor record information selectively to one or more remote stations and cause computers at said stations to process the information in the fashions described herein.

144

(Indeed, as the above exposition makes clear, the impact of the transmission of SPAM information can be yet more complex and meaningful. In example #4, receiving the second message does cause selected stations to record monitor record information the recorders, 16, of said stations. Said stations are those stations that are preprogrammed to collect monitor information at which the first message is not decrypted but the second message is; at which, as a consequence, program unit identification information does not exist at SPAM-first-precondition memories and, hence, where FIG. 1C combinings fail to occur because the first precondition is not satisfied; and at which, as a consequence, receiving said second messages causes a 2nd monitor information (#4) transmission and causes processing of said 2nd monitor information (#4) at buffer/comparators, 14. At said stations, because no monitor information of the first "Wall Street Week" program message was previously processed—because none was decryptedmonitor record information of prior programming still exists at said buffer/comparators, 14, when said 2nd monitor information (#4) is received at said buffer/comparators, 14. At selected ones of said stations which ones where recorders, 16, will equal or exceed particular fullness information when the next instance of record information is recorded, receiving said second message causes the recording of said monitor record information of prior programming, causes the transferring of meter and/or monitor record information selectively to one or more remote stations, and causes computers at said stations to process the information in the fashions described herein.)

Regulating the Reception and Use of Programming

Including Example #6

Examples #2 and #4, above, illustrate methods of controlling encryption and decryption means, well known in the art, within signal processing systems to regulate (and meter) the reception and use of control instructions that generate combined medium overlay information and cause combinings to commence and cease at selected stations. Said means and methods involve the operation of preprogrammed cipher keys (such as keys J and Z) and cipher algorithms to decrypt transmitted information.

The present invention includes other apparatus and methods for regulating the reception and use of combined medium control instructions, and the apparatus and methods of the present invention that are used to control (and meter) combined medium communication can also regulate the reception and use of prior art electronic programming transmissions.

In the prior art, various means and methods exist for regulating the reception and use of electronically transmitted programming. Various scrambling means are well known in the art for scrambling, usually the video portion of analogue television transmissions in such a fashion that only subscriber stations with appropriate descrambling means have capacity to tune suitably to the television transmissions and display the transmitted television image information. Encryption/decryption means and methods, well known in the art, can regulate the reception and use of, for example, digital video and audio television transmissions, digital audio radio and phonograph transmissions, digital broadcast print transmission, and digital data communications. Other techniques, well known in the art, involve controlling interrupt means that may be as simple as on/off switches to interrupt or disconnect programming transmissions at stations that lack authorizing information or are determined in other fashions not to be duly authorized. Still other techniques, also well known in the art,

involve controlling jamming means that spoil transmitted programming at stations that lack authorizing information or are determined not to be duly authorized, thereby degrading the usefulness of said programming. Such other techniques include, for example, inserting so-called "noise" into the 5 transmitted programming which noise may be, for example, overlays of one or more separate transmissions.

The means and methods of the present invention for regulating reception and use of programming relate, in particular, to three features of the present invention. The computer system of the present invention has capacity at each subscriber station to compute station specific information based on preprogrammed information that exists at each station and that differs from station to station. Given this capacity, any central control station of the present invention that originates a 15 SPAM transmission can cause subscriber station apparatus to decrypt received SPAM information in different fashions with each station decrypting its received information is its own station specific fashion. A central station can cause different stations to compute different station specific decryp- 20 tion cipher keys and/or algorithms to use in any given step of decryption or to compute station specific key and/or algorithm identification information that differs from station to station and controls each station in identifying the key and/or algorithm to use for any given step of decrypting. A second 25 feature of the present invention is that effective SPAM processing depends on the correspondence between the transmitted SPAM information that causes processing at the subscriber stations and the information preprogrammed at the various stations that controls the SPAM processing at each 30 station. In order for any given SPAM execution segment to invoke any given controlled function at any given station, the received binary information of said segment (for example, "010011") must match preprogrammed controlled-functioninvoking information ("010011") at each station. This feature 35 permits each station to be preprogrammed with station specific controlled-function-invoking information that differs from station to station (which means that no single SPAM execution segment could invoke a given function at all stations without first being processed at selected stations to 40 render its information to correspond to the station specific preprogrammed invoking information of said stations). The third feature of the present invention is an extended system of means and methods for regulating the reception and use of SPAM information—including decryption key and algorithm 45 information—that is illustrated in FIG. 4 and discussed more fully below.

By themselves, the first and second features provide a technique whereby a message such as the second message of the "Wall Street Week" program can take affect at only 50 selected stations (such as those stations preprogrammed with decryption key J) without being decrypted at said stations. (Hereinafter, this technique is called "covert control.")

An example #6, that focuses on the second message of the "Wall Street Week" program and is set within the context of 55 example #4, illustrates the operation of covert control.

In examples #1, #2, #3, and #4, the information of the execution segment of said second message, when unencrypted, is identical from example to example. For example, if said information is "100110" in example #1, it is "100110" 60 in example #3 and, after decryption, in examples #2 and #4. And the preprogrammed execute-conditional-overlay-at-205 information that said information of the execution segment matches when compared with controlled-function-invoking information is also "100110".

But in example #6 the information of the execution segment of said second message is different; for example, said 146

information is "111111". And the particular binary number that is selected—"111111" in the particular example—is selected because no subscriber station is preprogrammed, at the outset of the example, with any controlled-function-invoking information that is "111111". (In other words, were said "111111" information of the execution segment transmitted without any other action taking place first, transmitting said information would cause no controlled function to be executed at any subscriber station because said information would not match any controller-function-invoking information at any station.)

In example #6, two particular messages are transmitted each of which consists of a "01" header; execution, metermonitor, and information segments; and an end of file signal. (Hereinafter, said messages are called the "1st supplementary message (#6)" and the "2nd supplementary message (#6)".) In each message, the information of said segments is encrypted prior to transmission in the same fashion that the information of the first message of example #4 is encrypted, except that the encryption is done with key J rather than key Z and the encrypted information of the execution segment instructs subscriber stations to decrypt with key J.

The "Wall Street Week" program originating studio embeds and transmits the 1st supplementary message (#6) before transmitting said second message.

Just as is the case with the first message of example #4, at the subscriber station of FIG. 3 (and at other stations that are preprogrammed with decryption key J), receiving the 1st supplementary message (#6) causes the apparatus of said station to decrypt said message (using key J) and execute any controlled functions that are invoked by the unencrypted execution segment of said message. Automatically, control processor, 39J, causes decryptor, 39K, to receive the information of said message; decryptor, 39K, decrypts the encrypted information of said message and transfers said message to EOFS valve, 39H; and EOFS valve, 39H, inputs the information of said message, unencrypted, to control processor, 39J, until the end of file signal of said message is detected. Automatically, control processor, 39J, compares the unencrypted information of the execution segment in said message to the aforementioned controlled-function-invoking information, and a match occurs with particular preprogrammed execute-at-39J information that causes control processor, 39J, to execute particular preprogrammed load-andrun-at-39J instructions.

Executing said instructions causes control processor, 39J, to record the received SPAM information of said 1st supplementary message (#6) in a fashion similar to the recording of the first message of example #4 except that the information of the information segment of said 1st supplementary message (#6) is recorded at particular RAM associated with control processor, 39J, rather than particular RAM of microcomputer, 205. Automatically, control processor, 39J, records all remaining command information of said 1st supplementary message (#6) together with any padding bits immediately following said command at the aforementioned SPAM-inputsignal register memory then continues receiving the SPAM information of said message and loads said information (which is the information of the information segment of said message) at particular working memory of said RAM associated with control processor, 39J.

In due course, EOFS valve, 39H, receives complete information of the end of file signal that ends said 1st supplementary message (#6). Receiving said information causes EOFS valve, 39H, to transmit the aforementioned interrupt signal of EOFS-signal-detected information to control processor, 39J.

Receiving said signal while under control of said load-and-run-at-39J instructions causes control processor, **39**J, to execute the information of the information segment of said 1st supplementary message (#6) that is loaded at said RAM as the so-called machine language instructions of one so-called 5 job.

Executing said information causes control processor, 39J, in the predetermined fashion of the said information that is preprogrammed at said RAM at the time of execution by virtue of being so loaded prior to being so executed, to locate 10 the location of that particular instance of controlled-function-invoking information that is "100110" (which is the execute-conditional-overlay-at-205 information that causes control processor, 39J, to execute the controlled function of said conditional-overlay-at-205 instruction) and modify the information at said location to be "111111". (Simultaneously, other control processors, 39J, and at other stations that are preprogrammed with decryption key J execute information of loaded information of said information segment and modify information of the execute-conditional-overlay-at-205 information, at said control processors, 39J, to be "111111".)

In this fashion, the execute-conditional-overlay-at-205 information at the control processors, 39J, of those selected subscriber stations that are preprogrammed with information of decryption key J is altered from its standard "100110" and 25 becomes "111111".

Accordingly, when the second message of the "Wall Street Week" program of example #6 is transmitted with its "111111" execution segment, said message is processed at those stations that are preprogrammed with said information 30 of decryption key J precisely as the second message of example #3 is processed at said stations. (At all other stations, all information of said message is automatically discarded because the "111111" information of its execution segment fails to match any preprogrammed controlled-function-in- 35 voking information.)

The "Wall Street Week" program originating studio embeds and transmits the 2nd supplementary message (#6) after transmitting said second message.

At the subscriber station of FIG. 3 (and at other stations that are preprogrammed with decryption key J), receiving said 2nd supplementary message (#6) causes precisely the same processing that is caused by receiving the 1st supplementary message (#6) with just one exception. Whereas executing the loaded information of the information segment of the 1st supplementary message (#6) causes control processor, 39J, to locate that instance of controlled-function-invoking information that is "100110" and modify the information at the location of said "100110" to be "1111111", executing the loaded information of the information segment of the 2nd supplementary message (#6) causes control processor, 39J, to locate that instance of controlled-function-invoking information that is "111111" and modify the information at the location of said "111111" to be "100110".

In this fashion, the execute-conditional-overlay-at-205 information at the control processors, **39**J, of those selected subscriber stations that are preprogrammed with information of decryption key J is returned to its standard value: "100110". (Hereinafter, the normal binary value of a given instance of information that invokes a preprogrammed function—such as, for example, the "100110" that is the normal value of said execute-conditional-overlay-at-205 information—is called a "standard control-invoking value", and a value that temporary replaces a standard control-invoking value in the course a covert control application—such as "111111" in example #6—is called a "covert control-invoking value".)

148

Covert control provides significant benefits. One benefit is speed. For example, when covert control is employed, no time is spent decrypting messages (such as the second "Wall Street Week" message of examples #2 or #4) that convey combining synch commands. Thus the shortest possible interval of time can exist between the moment when a given combining synch command (such as the command of said second message) is embedded at the program originating studio and transmitted and the moment when it causes combining at those selected stations at which it causes combining. A second benefit arises out of the capacity to repeat. In example #6, after transmitting said 1st supplementary message (#6) and causing the covert control-invoking value, "111111", to replace the standard control-invoking value of the execute-conditional-overlay-at-205 information at those selected subscriber stations that are preprogrammed with decryption key J, the "Wall Street Week" program originating studio can invoke the aforementioned conditional-overlay-at-205 instructions at said selected stations not just once but many time by transmitting execution segments that are "111111" before transmitting said 2nd supplementary message (#6) and causing the standard control-invoking value of said execute-conditionaloverlay-at-205 information, "100110", to replace said covert control-invoking value at said selected stations.

FIG. 4 shows the Signal Processing Programming Reception and Use Regulating System that is the third feature of the present invention.

The subscriber station of FIG. 4 has capacity for receiving wireless television programming transmissions at a conventional antenna, 199, and a multi-channel cable transmission at converter boxes, 201 and 222. Said boxes, 201 and 222, are conventional cable converter boxes with capacity, well known in the art, for receiving information of a selected channel of a multiplexed multi-channel transmission and converting the selected information to a given output frequency. The selected channels whose information is received at said boxes, 201 and 222 respectively, are selected by tuners, 214 and 223 respectively, which are conventional tuners, well known in the art, each with capacity for tuning to a selected channel. Antenna, 199, and boxes, 201 and 222, transmit their received information to matrix switch, 258, which is a conventional matrix switch, well known in the art, with capacity for receiving multiple inputs and outputting said inputs selectively to selected output apparatus. One apparatus that said switch has capacity for outputting to is television tuner, 215. However, the configuration FIG. 4 differs from the configuration of FIGS. 1 and 3 in that television tuner, 215, outputs its audio and video outputs to said matrix switch, 258, rather than to monitor, 202M, and divider, 4, respectively. Instead, in FIG. 4, it is said switch, 258, that outputs the information that is input to said monitor, 202M, and divider, 4. FIG. 4 shows five additional devices—three decryptors, 107, 224 and 231, a signal stripper, 229, and a signal generator, 230—associated with matrix switch, 258. Decryptors, 107, 224 and 231, are conventional decryptors, well known in the art, with capacity for receiving encrypted digital information, decrypting said information by means of a selected cipher algorithm and a selected cipher key, and outputting the decrypted information. Signal stripper, 229, is a conventional signal stripper, well known in the art, with capacity for receiving a transmission of video information, removing embedded or otherwise inserted signal information selectively, and outputting the transmission absent the removed information. Signal generator, 230, is a conventional signal inserter, well known in the art, with capacity for receiving a transmission of video information, embedding or otherwise inserting signal information selectively, and outputting the transmission with the embed-

ded or otherwise inserted information. Matrix switch, 258, has capacity for outputting selected inputted transmissions to each said five devices, and each of said devices processes its inputted information in its specific fashion and outputs its processed information to said switch, 258.

As FIG. 4 shows, signal processor, 200, controls all the aforementioned apparatus. Signal processor, 200, controls the tuning of tuners, 214, 215, and 223; controls the switching of matrix switch, 258; supplies cipher algorithm and cipher key information to and controls the decrypting of decryptors, 107, 224 and 230; controls signal stripper, 229, in selecting transmission locations and/or information to strip and in signal stripping; and controls signal generator, 230, in selecting transmission locations at which to insert signals, in generating specific signals to insert, and in inserting.

In addition, FIG. 4 also shows divider, 4, monitor, 202M, decoder, 203, and microcomputer, 205, all of which function and are controlled as in FIGS. 1 and 3.

Finally, FIG. 4 shows local input, 225, well known in the art, which has means for generating and transmitting control information to controller, 20, of signal processor, 100. The function of local input, 225, is to provide means whereby a subscriber may input information to the signal processor of his subscriber station, thereby controlling the functioning of his personal signal processor system is specific predetermined fashions that are described more fully below. In the preferred embodiment, local input, 225, is actuated by keys that are depressed manually by the subscriber in the fashion of the keys of a so-called touch-tone telephone or the keys of a typewriter (or microcomputer) keyboard. As FIG. 4 shows, microcomputer, 205, also has capacity for inputting control information to microcomputer, 205, via decoder, 203, and in the preferred embodiment, microcomputer, 205, may also automatically substitute for local control, 225, in predetermined fashions in inputting control information to said controller, 20, on the basis of preprogrammed instructions and information previously inputted to said microcomputer, 205.

Operating S. P. Regulating Systems

Example #7

Example #7 illustrates the operation of the signal processing regulating system of FIG. 4 and demonstrates the interaction of the aforementioned first and third features of the present invention—the capacity to compute station specific information at each subscriber station and the system of regulating (and metering) means and methods that is illustrated in FIG. 4.

In example #7, the program originating studio that originates the "Wall Street Week" transmission transmits a television signal that consists of so-called "digital video" and "digital audio," well known in the art. Prior to being transmitted, the digital video information is doubly encrypted, by means of particular cipher algorithms A and B and cipher keys Aa and Ba, in such a way that said information requires decryption at subscriber stations in the fashion described below. The digital audio is transmitted in the clear. Said studio transmits the information of said program to a plurality of intermediate transmission stations by so-called "landline" means and/or Earth orbiting satellite transponder means, well known in the art.

Each of said intermediate transmission stations receives the transmission originated by said studio and retransmits the information of said transmission to a plurality of ultimate receiver stations. 150

In example #7, the intermediate station that retransmits "Wall Street Week" program information to the subscriber station of FIG. 4 is a cable television system head end (such as the head end of FIG. 6). Prior to retransmission, said station encrypts the digital audio information of said transmission, in a fashion well known in the art, using particular cipher algorithm C and cipher key Ca, then transmits the information of said program on cable channel 13, commencing at a particular 8:30 PM time on a particular Friday night.

In example #7, the controller, 20, of the signal processor, 200, of FIG. 4 is preprogrammed at a particular time with particular information that indicates that the subscriber of said station wishes to view said "Wall Street Week" program when transmission of said program on cable cable 13 commences

(So preprogramming controller, **20**, can occur in several fashions. For example, prior to a particular time, a subscriber may enter particular please-fully-enable-WSW-on-CC-at-particular-8:30 information at local input, **225**, and cause said information, in a predetermined fashion, to be inputted to controller, **20**, by local input, **225**. Alternately, microcomputer, **205**, can be preprogrammed with particular specific-WSW information and, in a predetermined fashion that is described more fully below, caused to input said please-fully-enable-WSW-on-CC13-at-particular-8:30 information to said controller, **20**.)

Receiving any given instance of please-fully-enable-WSW-on-CC13-at-particular-8:30 information causes controller, **20**, in a predetermined fashion, to select particular WSW-on-CC13-at-particular-8:30 information in said received information, record said selected information at particular memory, and execute particular receive-authorizing-info-at-appointed-time instructions.

In a predetermined fashion, executing said instructions causes controller, 20, causes prepare to receive a particular enabling SPAM message at a particular time. Automatically, controller, 20, checks the time of the clock, 18, of signal processor, 200, periodically. At a particular commence-enabling time that is a predetermined interval prior to the afore-40 mentioned 8:30 PM time (when said originating studio commences transmitting the "Wall Street Week" program), controller, 20, causes all apparatus of the TV signal decoder, 30, to delete from memory all information of received SPAM information; transmits particular preprogrammed enablenext-program-on-CC13 information to the control processor, 39J, of said decoder, 30, and causes said control processor, 39J, to place one instance of said information at a particular controlled-function-invoking information location; causes the oscillator, 6, then to cause switch, 1, and mixer, 3, to select information of a particular master cable control channel (that may or may not be cable channel 13) from the multi-channel cable system transmission inputted to signal processor, 200, and to input said selected to TV signal decoder, 30; causes said control processor, 39J, to cause digital detectors, 34, 37, and 38, to cease inputting detected information to controller, 39, and commence discarding said information (which said detectors, 34, 37, and 37, have capacity to do) and to cause particular apparatus of decoder, 30, —for example, line receiver, 33, and digital detector, 34—to commence receiving and inputting to controller, 39, SPAM information detected in the frequency inputted to decoder, 30; causes said control processor, 39J, to commence waiting to receive the header information of a SPAM message; and places one instance of said enable-next-program-on-CC13 information at a particular controlled-function-invoking-@20 information location.

In the interval between said commence-enabling time and said 8:30 PM time, said head end is caused, in a predeter-

mined fashion, to transmit a particular enabling SPAM message that consists of a "01" header, execution segment information that matches said enable-next-program-on-CC13 information, particular meter-monitor information, information segment information of particular enable-CC13 instruc- 5 tions and particular enable-WSW instructions that include particular enable-WSW-programming information, and an end of file signal on the frequency of said master control channel. (Hereinafter said message is called the "local-cableenabling-message (#7).")

In the fashions described above, so transmitting said SPAM message causes signal processor, 200, at decoder, 30, (to which said master control channel is inputted), to detect the information of said message, select the information of the execution segment in said message, and determine that said selected information matches the aforementioned instance of enable-next-program-on-CC13 information at said particular controlled-function-invoking information location. So determining a match causes the control processor, 39J, to execute particular preprogrammed transfer-this-message-to-control- 20 ler-20 instructions that are associated with the instance of information at said particular location.

The matrix switch, 39I, of the controller, 39 of decoder, 30, has capacity to transfer information to controller, 20, via control transmission means and executing said instructions 25 causes said control processor, 39J, to cause the transfer of the information of said message to controller, 20, in the fashion in which information of first message of example #4 is transferred from control processor, 39J, and buffer, 39E (by way of EOFS valve, 39F), via matrix switch, 39I, to decryptor, 39K. 30

Receiving said message causes controller, 20, to load the enable-CC13 instructions and the enable-WSW instructions of the information segment of said message at particular RAM of controller, 20, and execute said instructions as the machine language instructions of one job. Automatically, 35 controller, 20, selects the information of the execution segment in said message, determines that said selected information matches the aforementioned instance of enable-nextprogram-on-CC13 information at said particular controlledfunction-invoking-@20 information location, executes 40 particular preprogrammed load-and-run-@20 instructions that are associated with the instance of information at said particular location, loads the information of the information segment of said message—which information is said enable-CC13 instructions—at said RAM, and executes the informa- 45 tion so loaded. (The process of so receiving, loading, and executing the information of said message proceeds at controller, 20, in the fashion of the receiving, loading, and executing the information of the aforementioned 1st supplementary message (#6) at the apparatus of the controller, 39, of decoder, 50 203, following the transfer of the converted information of said 1st supplementary message (#6) by the processor, 39D, of said controller, 39.)

Executing said enable-CC13 instructions at controller, 20, in this fashion, causes controller, 20, to sample selected pre- 55 ler, 20, in the predetermined fashion of the said portion, to programmed SPAM information of the station of FIG. 4 and determine whether unauthorized tampering has occurred at said station. Automatically, in the predetermined fashion of the said instructions, controller, 20, selects information of the unique digital code at ROM, 21, that identifies signal proces- 60 sor, 200, and the subscriber station of FIG. 4 uniquely; computes the quotient that results from dividing said selected information by 65,536 (which is 2 raised to the 16th power); selects the integer portion of said quotient; branches, in a branching fashion well known in the art, to a selected one of 65 a plurality of subroutines of said enable-CC13 instructions on the basis of the value of said integer; and executes said

selected one subroutine. Executing said subroutine causes controller, 20, in a predetermined fashion, to select information of a particular sixteen contiguous bit locations that contain information of said enable-CC13 instructions and compare said selected information to selected information of a particular sixteen contiguous bit locations that hold preprogrammed SPAM operating information. (Said contiguous bit locations that hold preprogrammed SPAM operating information may be bit locations at any signal processing RAM or ROM at the station of FIG. 4, such as, for example, the RAM of controller, 20; the RAM of controller, 12; the RAM associated with the control processor, 39J, of decoder, 203; the RAM associated with the processor, 39B, of the decoder, 30, of signal processor, 200; etc.) A match indicates that said

sixteen contiguous bit locations that hold preprogrammed

SPAM operating information are preprogrammed with prop-

erly. A match occurs at the station of FIG. 4.

152

(Simultaneously other stations compare information of other selected information of bit locations that contain information of said enable-CC13 instructions with information of other local bit locations that hold preprogrammed SPAM operating information. At each station where a match fails to occur—which suggests that the preprogrammed SPAM operating information of said station has been tampered with in an unauthorized fashion—not resulting in a match causes the controller, 20, of said station to cause all information of said local-cable-enabling-message (#7) to be erased from all memory of said station except for a particular portion of said enable-CC13 instructions loaded at the RAM of said controller, 20, then to execute the information of said portion as information of a so-called "machine language job". Erasing said information from memory prevents the apparatus of said station from decrypting the encrypted information of said "Wall Street Week" program, and executing said portion causes said controller, 20, to cause the auto dialer, 24, and telephone connection, 22, to establish telephone communications with a particular predetermined remote station, in the fashion described above in "Operating Signal Processor Systems . . . Signal Record Transfer," and causes controller, 20, then to transmit information of the aforementioned unique digital code at ROM, 21, that identifies said station and signal processor, 200, of said station uniquely as well as particular predetermined appearance-of-tampering information. Transmitting said unique code and appearance-of-tampering information enables apparatus at said remote station to identify said remote station. If telephone communications are not established with said remote station in a predetermined fashion and/or within a predetermined time interval, executing said portion causes said controller, 20, to erase all preprogrammable RAM and EPROM of the signal processing apparatus at said station, thereby disabling said apparatus.)

Resulting in a match causes controller, 20, to execute a particular portion of said enable-CC13 instructions.

Executing the instructions of said portion causes controlcause selected apparatus of the station of FIG. 4 to receive the cable channel 13 transmission, to cause selected apparatus to decrypt the audio portion of said transmission, to cause selected apparatus to commence waiting to receive further enabling information, and to create a meter record that documents the decryption of the cable audio transmission at the station of FIG. 4. Automatically, controller, 20, causes matrix switch, 258, to cease transferring video and audio information to monitor, 202M. Then, automatically, controller, 20, causes a selected tuner, 214, to tune to the frequency of cable channel 13, thereby causing its associated converter box, 201, to convert its received information of said frequency (which

information is received by means of its multi-channel cable system transmission input) to a selected output frequency and transfer said information at said frequency to matrix switch, 258. (Said selected tuner, 214, said selected frequency, and all other apparatus and/or modes of operation selected by con- 5 troller, 20, under control of the information of said information segment are selected in predetermined fashions.) Automatically, controller, 20, causes matrix switch, 258, to transfer the information inputted from said box, 201, to the output that outputs to television tuner, 215, and causes said 10 tuner, 215, to tune to said selected frequency, thereby causing said tuner, 215, to receive the information of cable channel 13 and output the audio and video portions of said information to matrix switch, 258, on the separate audio and video outputs of said tuner, 215. Automatically, controller, 20, causes matrix switch, 258, to transfer the information of said audio portion inputted from said tuner, 215, to the output that outputs to a selected decryptor, 107, thereby causing said decryptor, 107, to receive the information of said audio portion (said information being, as explained above, encrypted digital audio). 20 Automatically, controller, 20, selects information of cipher key Ca from among the information of said portion; transfers said cipher key information to decryptor, 107; and causes decryptor, 107, to commence decrypting its received audio information, using said key information and selected decryp- 25 tion cipher algorithm C, and outputting decrypted information of the audio portion of the "Wall Street Week" program transmission to matrix switch, 258. Automatically, controller, 20, causes matrix switch, 258, to transfer the information inputted from decryptor, 107, to the output that that outputs to 30 signal processor, 200, thereby causing signal processor, 200, to receive said information at a particular third alternate contact of switch, 1, (that is not shown in FIG. 2). Automatically, controller, 20, clears all information of any prior SPAM message from decoder, 30; causes switch, 1, to connect to said 35 third contact, thereby inputting said information to mixer, 3; and causes mixer, 3, (by control transmission means via oscillator, 6) to transfer said information without any modification; causes the control processor, 39J, of decoder, 30, to cause the filter, 31, and modulator, 32, to transfer said infor- 40 mation without any modification; causes said control processor, 39J, to cause digital detectors, 34 and 37, to cease inputting detected information to controller, 39, and commence discarding said information and to cause digital detector, 38, to commence inputting detected information to controller, 39; 45 and causes said control processor, 39J, to commence waiting to receive the header information of a SPAM message. Then automatically, said enable-CC13 instructions cause controller, 20, to execute said enable-WSW instructions.

Executing said enable-WSW instructions causes controller, **20**, to cause the control processor, **39**J, of said decoder, **30**, to place one instance of said enable-WSW-programming information (that said enable-WSW instructions include) at the particular controlled-function-invoking information location occupied by said enable-next-program-on-CC13 information (thereby overwriting said information), and said instruction cause controller, **20**, to places one instance of said enable-WSW-programming information at the particular controlled-function-invoking-@20 information location occupied by said enable-next-program-on-CC13 information (thereby overwriting said information at said location, too).

Finally, controller, **20**, completes execution of all information of the information segment of local-cable-enabling-message (#7) loaded at controller, **20**, then in the fashion of the first message of example #4, controller, **20**, processes automatically the information of the meter-monitor segment as meter information, causes a meter record of prior program-

ming to be transferred from buffer/comparator, 14, and recorded at recorder, 16, (and causes the aforementioned signal record transfer sequence if recorder, 16, equals or exceeds if predetermined level of fullness); causes information of the meter-monitor segment to be placed at particular locations of buffer/comparator, 14, thereby creating a meter record that records the decryption of the audio portion of the "Wall Street Week" program transmission; and causes monitor information to be recorded by onboard controller, 14A, if the station of FIG. 4 is preprogrammed to collect monitor information.

Subsequently, but still in the interval between said commence-enabling time and said 8:30 PM time, said program originating studio embeds in the audio portion and transmits a particular SPAM message that consists of a "01" header, execution segment information that matches said enable-WSW-programming information, particular meter-monitor information, particular 1st-stage-enable-WSW-program instructions as the information segment information, and an end of file signal. (Hereinafter said message is called the "1st-WSW-program-enabling-message (#7).")

In the fashions described above, so transmitting said SPAM message causes signal processor, 200, at the digital detector, 38, of decoder, 30, to detect the information of said message and at the control processor, 39J, to select the information of the execution segment in said message and determine that said selected information matches the aforementioned instance of enable-WSW-programming information at said particular controlled-function-invoking information location. So determining a match causes said control processor, 39J, to execute the aforementioned transfer-this-message-to-controller-20 instructions.

Executing said instructions causes said control processor, **39**J, to transfer the information of said message to controller, **20**, in the fashion of the local-cable-enabling-message (#7).

Receiving the "1st-WSW-program-enabling-message (#7) causes controller, 20, to execute the aforementioned load-and-run-@20 instructions, to load the 1st-stage-enable-WSW-program instructions of the information segment at particular RAM of controller, 20, then to execute the information so loaded as the so-called machine language instructions of one so-called job.

Executing said 1st-stage-enable-WSW-program instructions causes controller, 20, in the predetermined fashion of said instructions, to affect a first stage of decrypting the video information of the "Wall Street Week" program transmission. Automatically, controller, 20, causes the control processor, 39J, of decoder, 30, to accept no SPAM message information from the EOFS valve, 39F. Then automatically, controller, 20, selects information of the last three significant digits of the binary information of the aforementioned unique digital code at ROM, 21; computes that particular Q quantity that is 16 less than the product of multiplying the numerical information of said digits times 256 (which is 2 to the 8th power); and selects information of those particular sixteen contiguous bit locations at the RAM associated with the control processor, 39J, of decoder, 30, that commence at the first bit location that is said Q quantity of bit locations after a particular first bit location at said RAM. At the station of FIG. 4, the preprogrammed information of said sixteen contiguous bit locations is decryption cipher key Ba. (In the present invention, the preferred method of preprogramming subscriber station signal processing apparatus is to preprogram each station with all authorized information but to vary the locations of the information from station to station in accordance with station specific information that varies from station to station—for example, in example #7, Ba cipher information can be pre-

programmed at eight different RAM locations and the particular location that applies at any given station that is authorized with such information relates to the last three significant digits of the unique digital code of said station in the fashion of the above Q quantity computation.) Automatically, con- 5 troller, 20, transfers said decryption cipher key Ba information to a selected decryptor, 224, and causes decryptor, 224, to commence decrypting any received information, using said key information and selected decryption cipher algorithm B, and outputting decrypted information to matrix switch, 258. 10 Automatically, controller, 20, causes matrix switch, 258, to transfer the information of the aforementioned video output inputted from said tuner, 215, to the output that outputs to decryptor, 224, thereby causing said decryptor, 224, to receive the information of said video portion (said informa- 15 tion being, as explained above, encrypted digital video), to decrypt said information, and to transfer decrypted information of said video portion to matrix switch, 258. Automatically, controller, 20, causes matrix switch, 258, to transfer the information inputted from decryptor, 224, to the output that 20 that outputs to signal processor, 200, thereby causing signal processor, 200, to receive said information at the aforementioned third alternate contact of switch, 1. Automatically, controller, 20, clears all information of any prior SPAM message from decoder, 30; causes mixer, 3, and the filter, 31, and 25 the modulator, 32, of decoder, 30, to input said information to the digital detector, 38, without any modification (switch, 1, is already connected to said third contact); and causes the control processor, 39J, of decoder, 30, to commence accepting SPAM message information from EOFS valve, 39F, and 30 record all received SPAM message information in a predetermined fashion at the RAM associated with said control processor, 39J, until an interrupt signal of EOFS-signal-detected information is received and then to process said EOFS-signaldetected information in a predetermined fashion.

In due course, but still before said 8:30 PM time, said program originating studio embeds in the video portion and transmits particular SPAM check information that is not a SPAM message and consists only of a particular check sequence of binary information followed by an end of file 40 signal. (Hereinafter said SPAM check information is called the "1st-WSW-decryption-check (#7).") Then said program originating studio ceases transmitting a television signal of digital video and digital audio.

Receiving the binary information of said check sequence at decoder, 30, causes digital detector, 38, to detect said information and causes control processor, 39J, to record said information at the RAM associated with said control processor, 39J, in the aforementioned predetermined fashion. Then receiving said end of file signal causes EOFS valve, 39F, to transmit an interrupt signal of EOFS-signal-detected information to control processor, 39J, thereby causing said processor, 39J, to transmit a particular check-data-loaded signal to controller, 20, in the aforementioned predetermined fashion.

Receiving said check-data-loaded signal causes controller, 20, under control of said 1st-stage-enable-WSW-program instructions, to cause the control processor, 39J, of decoder, 30, to transfer to controller, 20, selected information of said check sequence of binary information and compare said 60 selected information to selected information of said 1st-stage-enable-WSW-program instructions. A match occurs at the station of FIG. 4, indicating that decryptor, 224, is decrypting its received information correctly.

(Simultaneously other stations compare selected information of said check sequence to selected information of said 1st-stage-enable-WSW-program instructions. At each station 156

where a match fails to occur—which indicates that a decryptor, 224, is not decrypting its received information correctly and suggests that the preprogrammed SPAM operating information of said station may have been tampered with—not resulting in a match causes the controller, 20, of said station to cause all information of said 1st-WSW-program-enablingmessage (#7) to be erased from all memory of said station except for a particular portion of said 1st-stage-enable-WSWprogram instructions loaded at the RAM of said controller, 20, then to execute the information of said portion as instructions of a machine language job. Executing said portion causes controller, 20, to cause the auto dialer, 24, and telephone connection, 22, of said station to establish telephone communications with a particular predetermined remote station, in the fashion described above, and causes controller, 20, then to transmit the aforementioned appearance-of-tampering information together with complete information of the unique digital code that identifies said station uniquely. If telephone communications are not established with said remote station in a predetermined fashion and/or within a predetermined time interval, the instructions of said portion cause said controller, 20, to erase all preprogrammable RAM and EPROM of the signal processing apparatus at said station, thereby disabling said apparatus.)

Resulting in a match causes controller, **20**, to execute a particular portion of said 1st-stage-enable-WSW-program instructions.

Executing the instructions of said portion causes controller, 20, to cause the apparatus of the station of FIG. 4 to cease receiving and decrypting the television information of said cable channel 13 as digital video and audio, to commence receiving said television information as conventional analog television, and to prepare to receive particular embedded SPAM information at the decoder, 30, of signal processor, 200. Automatically, controller, 20, causes matrix switch, 258, to cease transferring the information inputted from said converter box, 201, to the output that outputs to television tuner, 215; to cease transferring the information inputted from decryptor, 224, to the output that outputs to third alternate contact of switch, 1; and to commence transferring the information inputted from said converter box, 201, to the output that outputs to said third alternate contact. Automatically, controller, 20, causes mixer, 3, to select the frequency of channel 13 and input said frequency, at a fixed frequency, to TV signal decoder, 30. Automatically, controller, 20, causes decoder, 30, to cease transferring detected digital information from digital detector, 38, to controller, 39, and to commence filtering and demodulating inputted information at filter, 31, and demodulator, 32. Automatically, controller, 20, selects information of the first three of the last four significant digits of the binary information of the aforementioned unique digital code at ROM, 21; computes that particular Q quantity that is the sum of the numerical information of said three digits plus 20; and causes decoder, 30, to commencing receiving information embedded on the line Q (and only on line Q) of the inputted video at line receiver, 33, and transferring detected digital information from detector, 34, to controller, 39. (In other words, if the binary information of said three digits is "000", decoder, 30, receives information embedded on line 20; if the binary information of said three digits is "001", decoder, 30, receives information embedded on line 21; etc.) Finally, controller, 20, completes execution of said 1st-stage-enable-WSW-program instructions then, in the fashion of the first message of example #4, processes automatically the information of the meter-monitor segment of said 1st-WSW-program-enabling-message (#7) as meter information; causes the meter record that records the decryp-

tion of the audio portion of the "Wall Street Week" program transmission to be transferred from buffer/comparator, 14, and recorded at recorder, 16, (and causes the aforementioned signal record transfer sequence if recorder, 16, equals or exceeds if predetermined level of fullness); causes information of said meter-monitor segment to be placed at particular locations of buffer/comparator, 14, thereby initiating a meter record that records the decryption of the program transmission of the "Wall Street Week" program originating studio; and causes monitor information to be recorded by onboard controller, 14A, if the station of FIG. 4 is preprogrammed to collect monitor information.

In due course, but still before said 8:30 PM time, said program originating studio commences transmitting analog television information on its transmission frequency and embeds and transmits particular SPAM message information on lines 20, 21, 22, 23, 24, 25, 26, and 27. On each line said station transmits one particular message, and the messages of said lines are addressed to apparatus at subscriber stations where the first three of the last four significant digits of the 20 binary information of the unique digital code at the ROMs, 21, are "000", "001", "010", "011", "100", "101", "110", and "111" respectively. Each of said messages consists of a "01" header, execution segment information that matches said enable-WSW-programming information, particular meter- 25 monitor information, particular 2nd-stage-enable-WSW-program instructions as the information segment information, and an end of file signal. Each of said messages is identical except as regards certain differences in said 2nd-stage-enable-WSW-program instructions that are described below. 30 Prior to being embedded and transmitted the information of each of said messages is encrypted, in the same fashion as the first message of example #4 (except that key J is used), and the encrypted information of the execution segment is identical to particular controlled-function-invoking information that 35 instructs use decryption key J to decrypt the information of said message in the fashion of the decrypting of said second message. (Hereinafter, each of said SPAM messages is called a "2nd-WSW-program-enabling-message (#7).") Then said program originating studio ceases transmitting analog televi- 40 sion information.

Transmitting said message causes the line receiver, 33, of decoder, 30, to receive the embedded SPAM information of that particular 2nd-WSW-program-enabling-message (#7) that is embedded on said line Q; the detector, 34, to detect the 45 digital information of said message; and the controller, 39, to process said information. Automatically, control processor, 39J, causes controller, 20, to cause the decryptor, 39K, of decoder, 30, to commence decrypting using decryption key J and causes decryptor, 39K, to receive the information of said 50 message. Automatically, decryptor, 39K, decrypts the encrypted information of said message and transfers said message to EOFS valve, 39H. Automatically, EOFS valve, **39**H, inputs the information of said message, unencrypted, to control processor, 39J, until the end of file signal of said 55 message is detected. Automatically, control processor, 39J, determines that the unencrypted information of the execution segment of said message matches the aforementioned instance of enable-WSW-programming information at said particular controlled-function-invoking information location 60 and executes the aforementioned transfer-this-message-tocontroller-20 instructions.

Executing said instructions causes the transfer of the information of said message to controller, **20**, in the fashion of the local-cable-enabling-message (#7).

Receiving said 2nd-WSW-program-enabling-message (#7) causes controller, 20, to execute the aforementioned

158

load-and-run-@20 instructions, to load the 2nd-stage-enable-WSW-program instructions of the information segment at particular RAM of controller, 20, then to execute the information so loaded as the machine language instructions of one job.

Executing said 2nd-stage-enable-WSW-program instructions causes controller, 20, in the predetermined fashion of said instructions, to strip particular SPAM information from said "Wall Street Week" program transmission, to generate and insert particular information into said transmission, and to affect a second and last stage of decrypting the digital video information of the "Wall Street Week" program transmission. Automatically, controller, 20, causes the control processor, 39J, of decoder, 30, to accept no SPAM message information from the EOFS valve, 39F. Automatically, controller, 20, causes matrix switch, 258, to cease transferring the information inputted from said converter box, 201, to the output that outputs to said third alternate contact; to commence transferring the information inputted from said converter box, 201, to the output that outputs to television tuner, 215; to commence transferring the information inputted from decryptor, 224, to the output that outputs to signal stripper, 229; to commence transferring the information inputted from signal stripper, 229, to the output that outputs to signal generator, 230; to commence transferring the information inputted from signal generator, 230, to the output that outputs to decryptor, 231; and to commence transferring the information inputted from decryptor, 231, to the output that outputs to said third alternate contact of switch, 1. Automatically, controller, 20, causes signal stripper, 229, to strip information, in a fashion well known in the art, from a particular strip-designated portion of the video transmission received at said stripper, 229, and transfer the received video, without said stripped information, to matrix switch, 258. (Said stripped information may be information that would cause disabling chips, well known in the art, to prevent microcomputer, 205, or monitor, 202M, from processing or displaying the information of said video transmission if said stripped information were present in said transmission when said transmission was received at microcomputer, 205, or monitor, 202M.) Automatically, controller, 20, selects complete information of the aforementioned unique digital code at ROM, 21, transmits said complete information to signal generator, 230, and causes said generator, 230, to insert said complete information, in a predetermined periodic fashion and in an inserting fashion well known in the art, into a particular insertion-designated portion of the video transmission received at said generator, 230, and to transfer the received video, with said inserted information, to matrix switch, 258. (By causing information that identifies the station at which encrypted information is decrypted to be so inserted, the present invention makes it possible to identify particular stations where their information is misused—for example, if pirated decrypted copies of information are distributed, the station at which decryption occurred can be identified by means of the inserted information—and by causing said information to be inserted and then processed at a decryptor as if said inserted information were encrypted, the present invention renders the inserted information into a form that can easily be rendered back into clear form—for example, by using the same cipher algorithm and cipher key to "encrypt" said information into its predecryption form—while rendering said inserted information into a form that others, such as pirates, can find very difficult to distinguish from other binary information, to locate or identify and, therefore, to remove.) Automatically, controller, 20, selects information of the aforementioned first three of the last four significant digits of the binary information of the

aforementioned unique digital code at ROM, 21 and computes a particular Q quantity according to a particular formula that is preprogrammed in said 2nd-stage-enable-WSW-program instructions. The information of said Q quantity is the decryption key Aa. (The formulas in each of the eight different 2nd-WSW-program-enabling-message (#7) messages differ from each other in such a way that when each station computes its own Q quantity according to its own first three of last four significant unique digital code digits, the Q quantities computed all properly preprogrammed and functioning stations are identical—for example, at stations where said three digits are "000" can compute by a formula that instructs said stations to add binary information of 9999 to the information of said three digits to compute the quantity Q while stations where said three digits are "001" can compute by a 15 formula that instructs said stations to add binary information of 10000 to the information of said three digits to compute the quantity Q, etc.) Automatically, controller, 20, clears all information of any prior SPAM message from decoder, 30; causes mixer, 3, and the filter, 31, and the modulator, 32, of decoder, 20 30, to input said information to the digital detector, 38, without any modification (switch, 1, is already connected to said third contact); and causes the control processor, 39J, of decoder, 30, to commence accepting SPAM message information from EOFS valve, 39F, and record all received SPAM 25 message information in a predetermined fashion at the RAM associated with said control processor, 39J, until an interrupt signal of EOFS-signal-detected information is received and then to process said EOFS-signal-detected information in a predetermined fashion.

In due course, but still before said 8:30 PM time, said program originating studio encrypts and transmits, in its digital video transmission, particular SPAM check information that consists of a particular check sequence of binary information followed by an end of file signal (and is not a SPAM 35 message). (Hereinafter said SPAM check information is called the "2nd-WSW-decryption-check (#7).")

As with the 1st-WSW-decryption-check (#7), receiving the 2nd-WSW-decryption-check (#7) causes control processor, **39**J, to record the information of the check sequence of said 40 2nd-WSW-decryption-check (#7) at the RAM associated with said control processor, **39**J, then to transmit a particular check-data-loaded signal to controller, **20**.

Receiving said signal causes controller, 20, under control of said 2nd-stage-enable-WSW-program instructions, to 45 cause said control processor, 39J, to transfer to controller, 20, selected information of said check sequence; to compare said selected information to selected information of said 2ndstage-enable-WSW-program instructions; and to determine that a match results, indicating that decryptors, 224 and 231, 50 are decrypting received information correctly. Determining a match causes controller, 20, to determine, in a predetermined fashion, that signal stripper, 229, is correctly stripping information from the aforementioned strip-designated portion of the video transmission and transferring received video with- 55 out said stripped information and that signal generator, 230, is correctly inserting complete information of the aforementioned unique digital code into the aforementioned insertiondesignated portion of the video transmission and transferring received video with said inserted information.

(Simultaneously other stations compare selected information of said check sequence to selected information of said 2nd-stage-enable-WSW-program instructions and verify the correct functioning of local signal strippers, 229, and generators, 230. At each station where a controller, 20, determines that a match does not result—which indicates that a decryptor, 224 or 231, is not decrypting its received information

160

correctly and suggests that the preprogrammed SPAM operating information of said station may have been tampered with—or determines that a stripper, 229, or a generator, 230, fails to function correctly, so determining match causes said controller, 20, to cause all information of said 2nd-WSWprogram-enabling-message (#7) to be erased from all memory of said station except for a particular portion of said 2nd-stage-enable-WSW-program instructions loaded at the RAM of said controller, 20, then to execute the information of said portion as instructions of a machine language job. Executing said portion causes said controller, 20, to cause the auto dialer, 24, and telephone connection, 22, of said station to establish telephone communications with a particular predetermined remote station, in the fashion described above, and causes said controller, 20, then to transmit the aforementioned appearance-of-tampering information together with complete information of the unique digital code that identifies said station uniquely. If telephone communications are not established with said remote station in a predetermined fashion and/or within a predetermined time interval, the instructions of said portion cause said controller, 20, to erase all preprogrammable RAM and EPROM of the signal processing apparatus at said station, thereby disabling said apparatus.)

Determining that signal stripper, 229, and that signal generator, 230, are stripping and inserting correctly (after having determined that that decryptors, 224 and 231, are decrypting correctly) causes the controller, 20, of the station of FIG. 4 (and causes controllers, 20, at other stations where so determining occurs) to execute particular additional 2nd-stageenable-WSW-program instructions, and executing said instructions causes controller, 20, to cause the apparatus of the station of FIG. 4 to commence transferring the decrypted television information of the "Wall Street Week" program to microcomputer, 205, and monitor, 202M. Automatically, controller, 20, causes matrix switch, 258, to transfer the decrypted audio information inputted from decryptor, 107, to monitor, 202M, thereby causing monitor, 202M, to commence receiving said audio information and emitting sound in accordance with said audio information. Automatically, controller, 20, causes matrix switch, 258, to cease transferring the decrypted video information inputted from decryptor, 231, to the output that outputs to said third alternate contact of switch, 1, and to commence transferring said video information inputted from said decryptor, 231, to divider, 4, thereby causing divider, 4, to transfer said decrypted video information to microcomputer, 205, and to decoder, 203. Automatically, controller, 20, causes decoder, 203, to discard any previously received SPAM information; to commence detecting SPAM information in the inputted decrypted video information and waiting to receive SPAM header information; and to cause microcomputer, 205, to commence transferring the decrypted information of the transmitted video image to monitor, 202M, thereby causing monitor, 202M, to commence displaying, at its television picture tube, the information of the transmitted television image. Automatically, controller, 20, causes decoder, 30, to discard all previously received SPAM information (including all information of said 2nd-WSW-program-enabling-message (#7) and said 60 2nd-WSW-decryption-check (#7)); causes oscillator, 6, and decoder, 30, to commence the detecting of example (#7); and in a predetermined fashion, causes oscillator, 6, to cause switch, 1, to connect to connect its contact lever to the aforementioned first alternate contact of switch, 1. Finally, controller, 20, completes execution of said 2nd-stage-enable-WSW-program instructions then processes the information of the meter-monitor segment of said message as meter infor-

mation; causes selected information of said meter-monitor segment to be placed at particular locations of buffer/comparator, 14, thereby incrementing the information of the aforementioned meter record that records the decryption of the program transmission of the "Wall Street Week" program 5 originating studio; and causes monitor information to be recorded by onboard controller, 14A, if the station of FIG. 4 is preprogammed to collect monitor information.

In due course, at said 8:30 PM time, said program originating studio commences transmitting the programming 10 information of said "Wall Street Week" program, thereby causing the apparatus of the station of FIG. 4 (and of other correctly regulated and connected stations) to commence functioning in the fashions described above in "One Combined Medium" and in examples #1, #2, #3, and #4.

It is obvious to one of ordinary skill in the art that the foregoing is presented by way of example only and that the invention is not to be unduly restricted thereby since modifications may be made in the structure of the various parts without functionally departing from the spirit of the inven- 20 tion. For example, the decryption cipher key information and/or algorithm instructions and/or the location or locations of said key information and/or instructions may be computed in other, more complex or less complex, fashions. And for example, the transmitted programming may be processed 25 through fewer than three steps of decryption or more than three. And for example, the "Wall Street Week" transmission may be of conventional analog television, and the decryptors, 107, 224, and 231, may be conventional descramblers, well, known in the art, that descramble analog television transmissions and are actuated by receiving digital key information. And for example, determining that a local station is not preprogrammed properly and/or that decryption, stripping, and/ or signal generating apparatus are not functioning correctly may cause apparatus of said station to perform other steps of 35 disabling and/or communicating-eg., the local apparatus may disable local apparatus selectively and only partially by, for example, preventing a decoder, 203, from processing embedded SPAM combining synch commands and may interrogate remote station apparatus, by telephone, for cipher 40 key and/or cipher algorithm instructions and information. And for example, the transmitted programming may be caused, in a predetermined fashion to be recorded at an apparatus such as a properly configured video recorder rather than being played and displayed at a monitor, 202M. And for 45 example, the transmitted programming may be only audio (for example, of a radio transmission) or print (for example, of broadcast print) rather than television. And for example, the output apparatus may be speakers or one or more printers rather than a television monitor. And for example, rather than 50 being a transmitter at a remote wireless or cable transmission station, the source of the transmission may be a local apparatus such as a video (or audio or digital information) tape recorder or a laser disc player, well known in the art, that transmits a transmission of conventional rerecorded program- 55 other types of communications and computer apparatus could ming that has been encrypted (either fully or partially) and in which SPAM regulating instructions and information have been appropriately prerecorded which transmission is inputted to matrix switch, 258, from said local apparatus and which SPAM regulating instructions cause the decryption of the 60 encrypted programming in the fashions of the present invention. And for example, covert control means may be used to control any regulating process of the present invention.

Monitoring Receiver Station Reception and Operation

FIG. 5 illustrates means and methods for monitoring receiver station reception and use of programming and modes

162

of receiver station operation and exemplifies one embodiment of a subscriber station that is preconfigured and preprogrammed to collect monitor information. The means and methods facilitate the collection of statistics that identify not only what programming is received and displayed at given subscriber stations but also, for example, which local apparatus receives programming and which displays programming, how received programming is processed, what local apparatus is controlled in the course of processing and how, what locally preprogrammed data is processed by or with the received programming, which local apparatus is caused to transmit programming, etc. Efficient collection of such statistics enables suppliers of programming and of subscriber station apparatus to identify which programming subscribers demand and how subscribers use their programming and

FIG. 5 shows a variety of input apparatus with capacity for inputting programming (including SPAM information) selectively, via matrix switch, 258, to apparatus of the subscriber station of FIG. 5, intermediate apparatus with capacity for processing and/or recording inputted programming selectively, and output apparatus for displaying or otherwise outputting programming selectively to human senses.

Input apparatus include antenna, 199, and converter boxes, 201 and 222, that input programming transmitted from remote stations. Laser disc player, 232, and record turn table, 280, which are apparatus well known in the art, input prerecorded programming. The programming input by laser disc player, 232, in particular, may include video (as, for example, from a so-called "laser videodisc player"), digital audio (as, for example, from a so-called "compact disc player"), and digital data (as, for example, from a so-called "CD ROM"), and systems are well known in the art with capacity for playing all three forms of programming prerecorded on one given disc. Other input, 252, which may be, for example, a telephone, also has capacity for inputting programming to matrix switch, 258.

Intermediate apparatus include microcomputer, 205, radio tuner & amplifier, 213, TV tuner, 215, audio recorder/player, 255, and video recorder/player, 217, all of which are well known in the art. The station of FIG. 5 also has capacity for including one or more other tuners and/or recorder/players, 257, well known in the art, such as, for example, computer peripheral MODEMs and/or such expanded memory units as so-called "fixed disk" recorder/players.

Output apparatus that display or otherwise output programming selectively to human senses include, for example, TV monitor, 202M, multi-picture television monitor, 148, speaker system, 263, and printer, 221, all of which are well known in the art. Said apparatus that output could also include one or more other output systems, 261.

(This is only a representative group of equipment; many be included in FIG. 5.)

Associated with each intermediate apparatus and output apparatus is one or more appropriate decoders. At radio tuner & amplifier, 138, are radio decoder, 138, and other decoder, 281. At TV tuner, 215, is TV decoder, 282. At audio recorder/ player, 255, is other decoder, 284. At video recorder/player, 217, is TV decoder, 218. At microcomputer, 205, is TV decoder, 203. At other tuner and/or recorder/player, 257, is other decoder, 283. At TV monitor, 202M, is TV decoder, 145. At multi-picture TV monitor, 148, are TV decoders, 149 and 150. At speaker system, 263, is other decoder, 285. At printer, 221, is other decoder, 227. At other output system,

261, is other decoder, **286**. Each decoder is likely to be located physically inside the unit of its associated intermediate or output apparatus.

At any given subscriber station, any given SPAM decoder may merely monitor the operation of its associated subscriber station apparatus or may function not only to monitor the operation of its associated apparatus but also to control said apparatus in the execution of SPAM controlled functions (in which case said decoder is preprogrammed to execute one or more controlled functions).

FIG. 5 shows each decoder as having capacity for transferring monitor information to signal processor, 200, by bus communications means. Said information is received (and processed) at signal processor, 200, by the onboard controller, 14A, which controls the communications of said bus means in 15 a fashion well known in the art.

In FIG. 5, decoders, 138, 281, 282, 284, 218, 283, 145, 149, 150, 285, 227, and 286, merely monitor the operation of associated subscriber station apparatus. In the preferred embodiment, each one of said decoders is located at a point in 20 the circuitry of its associated apparatus where said one receives (so as to detect all SPAM information on) the information of the selected frequency, channel or transmission to which its associated apparatus is tuned. Each one of said decoders is preprogrammed to detect and transfer to said 25 onboard controller, 14, via said bus means, the meter-monitor information of every unencrypted SPAM message in the transmission to which its associated apparatus is tuned.

In FIG. 5, decoder, 203, which is part of the signal processor system of the station of FIG. 5, not only monitors the 30 operation of its associated apparatus, microcomputer, 205, but also controls said apparatus, in the fashions described above, in the execution of SPAM controlled functions. Decoder, 203, has means for detecting SPAM information in any programming transmission inputted to its associated 35 apparatus, microcomputer, 205, and not only for detecting and transferring to said onboard controller, 14, via said bus means, the meter-monitor information of every unencrypted SPAM message of said transmissions but also for inputting selected detected information to microcomputer, 205, and for 40 controlling microcomputer, 205, in selected fashions. (FIG. 5 also shows that decoder, 203, has capacity for inputting detected information to signal processor, 200, and for receiving from and transferring control information to signal processor, 200.)

Any given decoder may have more or less apparatus than that shown if FIG. 2A, 2B, or 2C. For example, each one of said decoders, 138, 281, 282, 284, 218, 283, 145, 149, 150, 285, 227, and 286, requires less apparatus than is shown in the appropriate corresponding FIG. 2A, 2B, or 2C. Said decoders 50 can be located in the aforementioned circuitry of their associated apparatus in such fashions that said decoders do not require filters, 31, and demodulators, 32 and 35, (in the case of TV signal decoders) or radio receiver circuitry, 41, (in the case of radio signal decoders) or other receiver circuitry, 45, 55 (in the case of other signal decoders). On the other hand, decoder, 203, may have more apparatus that that shown in FIG. 2A. FIG. 7D, which is described more fully below, shows that a microcomputer, 205, can be controlled by SPAM information embedded in transmissions other than television 60 transmissions. Thus, because the particular decoder that controls a particular associated apparatus will be configured and preprogrammed to detect SPAM information in every transmission that can be inputted to and control said apparatus, the decoder, 203, associated with microcomputer, 205, may be modified to constitute an "All Signal Decoder" through the addition of additional apparatus such as the radio receiver

164

circuitry, **41**, radio decoder, **42**, and digital detector, **43**, of the Radio Signal Decoder of FIG. **2**B and the other receiver circuitry, **45**, and digital detector, **46**, of the Other Signal Decoder of FIG. **2**C, said additional apparatus operating under the control of the controller, **39**, of said decoder, **203**, and inputting detected digital information to the buffer, **39**A, of said controller, **39**.

If a given intermediate or output apparatus can receive transmissions from more than one source or of more than one kind-television, radio, or other-it will have sufficient apparatus to monitor every channel and kind of transmission it can receive. For example, FIG. 5 shows multi-picture TV monitor, 148, that has capacity to receive two inputted transmissions and has two TV decoders, 149 and 150. In the preferred embodiment, one decoder, 149, is located at a point in the circuitry of monitor, 148, where said decoder, 149, receives the information of one inputted transmission; the other decoder, 150, is located at a point in said circuitry said decoder, 150, receives the information of the other inputted transmission. And for example, FIG. 5 shows radio tuner & amplifier, 213, that also has capacity to receive two inputted transmissions and has two decoders: radio decoder, 138, and other decoder, 281. In the preferred embodiment, one decoder, 138, is located at a point in the circuitry of tuner & amplifier, 213, where said decoder, 138, receives information of one inputted transmission (eg., the selected radio frequency that is the particular frequency, of the spectrum of wireless frequencies received at antenna, 199, and inputted via switch, 258, that is the frequency that the radio tuner of tuner & amplifier tunes to); the other decoder, 281, is located at a point in said circuitry where said decoder, 281, receives the information of the other inputted transmission (eg., the output frequency of record turn table, 280, inputted via said switch, 258).

The onboard controller, 14A, controls the operation of all the decoders that merely monitor the operation of associated subscriber station apparatus and also controls other particular apparatus of the subscriber station of FIG. 5 in particular monitor information functions. FIG. 5 shows that signal processor, 200, (at onboard controller, 14A) has bus communications means for communicating control information to the aforementioned decoders, 138, 281, 282, 284, 218, 283, 145, 149, 150, 285, 227, and 286. By such bus means, onboard controller, 14A, can cause any on or all of said decoders to commence or cease processing and transmitting SPAM monitor information and can cause any one or all of said decoders to change the location or locations that are searched for SPAM information. FIG. 5 shows that, via said bus communications means, signal processor, 200, has capacity for communicating control information (from onboard controller, 14A) to subscriber station player apparatus that has capacity for playing prerecorded programming (and in so doing, originating transmission at said station of said programming). Said player apparatus includes laser disc player, 232, record turn table, 280, audio recorder/player, 255, video recorder/player, 217, and other recorder/player, 257. Each of said player apparatus has capacity, under control of onboard controller, 14A, for generating, embedding in programming transmissions, and transmitting source mark information that identifies (and distinguishes from one another) each one of said player apparatus. By causing said player apparatus to transmit identifying source mark information, onboard controller, can cause local apparatus to collect monitor information that identifies which local player apparatus is the source of any given output of a locally originated, prerecorded programming transmission.

But the onboard controller, 14A, does not control the operation of those decoders that control the operation of

subscriber station apparatus in the execution of SPAM controlled functions. Instead, all decoders that execute SPAM controlled functions are controlled, even in monitoring the operation of their associated apparatus, by the controller, 20, of signal processor, 200. In FIG. 5, decoder, 203, is the only 5 such decoder with capacity to execute SPAM controlled functions. As FIG. 5 shows, decoder, 203, and signal processor, 200, (at onboard controller, 14A) have no capacity to communicate with each other via the aforementioned bus communications means for communicating control information. 10 Rather decoder, 203, communicates control information directly with the controller, 20, of signal processor, 200, as in FIG. 3. (In respect to a decoder and other apparatus that are controlled by a controller, 20, the onboard controller, 14A, of the signal processor, 200, of said controller, 20, is prepro- 15 grammed to input to said controller, 20, all monitor instructions addressed to said decoder or associated apparatus, and said controller, 20, is preprogrammed to receive said instructions and transfer said instructions to said decoder or associated apparatus appropriately in accordance with the priority 20 of the operation of said decoder or associated apparatus.)

Decoders that execute SPAM controlled functions are controlled in regard to monitoring by controller, **20**, rather than onboard controller, **14**A, because timely execution of controlled functions (and the transmission of control information 25 related to such execution such as, for example, decryption key information as in example #4 above) has far higher priority that the collection of monitor information.

One particular advantage of these methods for monitoring programming is that, by embedding the SPAM information in 30 the audio and/or video and/or other parts of the programming that are conventionally recorded by, for example, conventional video cassette recorders, these methods provide techniques for gathering statistics on what is recorded, for example, on video and audio cassette recorders and on how 35 people replay such recordings. For example, a subscriber might instruct video recorder/player, 217, automatically to record the NBC Network Nightly News as broadcast over station WNBC in New York City. Recorder, 217, might receive the programming over Manhattan Cable TV channel 40 4 and record the programming at the time of original broadcast transmission—from 7:00 PM to 7:30 PM on the evening of Jul. 15, 1985. Each discrete bit of this information could be transmitted to the subscriber station of FIG. 5 in meter-monitor information (of a SPAM command with an appropriate 45 execution segment such as information of the pseudo command) embedded in the transmitted programming. So embedding and transmitting said meter-monitor information would cause recorder, 217, to record said information. In addition, decoder, 218, would detect said information and transfer said 50 information to signal processor, 200, together with appropriate source mark information, but no decoder apparatus associated with any of the aforementioned output apparatus would detect said information, causing said signal processor, 200, in a predetermined fashion to record a signal record of program- 55 ming recorded at recorder, 217. (Simultaneously, the information of said programming is being displayed at the monitors, 202M, of other subscriber stations that are tuned to the frequency of said News as broadcast; decoders, 145, associated with said monitors, 202M, are detecting said embedded 60 meter-monitor information and transmitting said information to the signal processors, 200, of said stations; and said signal processors, 200, are recording signal records of programming displayed at said monitors, 202M.) Subsequently, the subscriber might play back the recorded programming and view 65 said programming on TV monitor, 202M, from 10:45 PM to 11:15 PM the same evening. So playing back and transmitting

166

the recorded programming to monitor, 202M, would cause TV signal decoder, 145, to detect said meter-monitor information and transfer said information, together with appropriate source mark information, to signal processor, 131, causing said signal processor, 200, to record a signal record of said information together with date and time information of said 10:45 PM to 11:15 PM the same evening selected from the clock, 18, of signal processor, 200.

Prerecorded, commercially distributed video and audio tapes, videodiscs, so-called "compact discs" of audio, and so-called "CD ROM" discs of data can also contain unique codes, embedded in the prerecorded programming, that identify the use and usage of said programming when said tapes or discs are played. For example, laser disc player, 232, can be a compact disc player upon which is loaded a compact disc. SPAM messages, embedded in the programming prerecorded on said disc, can contain pseudo command execution segment information and meter-monitor information that documents that said prerecorded programming is of Anton Bruckner's Symphony No. 4 as recorded by the Berlin Philharmoniker and the disc is distributed by EMI Records Ltd. on the Angel label with a particular catalog serial number. Through matrix switch, 258, the output of player, 232, is inputted to the amplifier, 213, and the output of amplifier, 213, is inputted to speaker system, 263. When player, 232, commences playing and transmitting said prerecorded programming, transmitting said programming causes other decoder, 281, and other decoder, 285, to detect said embedded messages at amplifier, 213, and speaker system, 263, respectively, and transmit said meter-monitor information to signal processor, 200, via the aforementioned bus communications means for transferring monitor information, thereby causing onboard controller, 14A, to commence retaining monitor information in a signal record that reflects the outputting of said programming and, in a predetermined fashion, to determine that the information of said record includes no information identifying a station or apparatus originating the transmission of said programming. So determining causes onboard controller, 14A, to transmit a particular transmit-source-code instruction, via the aforementioned bus communications means for transferring control information, to the local apparatus that have capacity for playing prerecorded programming, which apparatus include player, 232, and record turn table, 280. Receiving said instruction causes player, 232, and turn table, 280, each to generate, embed in its transmitted programming in a predetermined fashion, and transmit its own preprogrammed identifier code information that identifies each distinctly differently it from all other subscriber station apparatus (all of which apparatus have the capacity so to do). Causing player, 232, to transmit its distinct code causes other decoders, 281 and 285, to detect said code and transmit information of said code to signal processor, 200, causing onboard controller, 14A, to retain information of said code in said signal record, thereby adding to said record information of the apparatus originating the transmission of said programming.

In the case of any given programming that is outputted at any given output apparatus, thereby enabling a subscriber to view or hear or read or in some other way perceive the information of said programming, the onboard controller, 14A, may and probably will receive monitor information from several different sources. For example, in the case of the "Wall Street Week" program, transmitting the first and second SPAM messages of example #3 (which are not encrypted) will cause not only decoder, 203, to process the meter-monitor information of said messages and transmit the aforementioned 1st monitor information (#3) and 2nd monitor information (#3), via the monitor information bus means of FIG. 5,

to onboard controller, 14A. The programming of said "Wall Street Week" program is received at tuner, 215, and displayed at monitor, 202M. Accordingly, transmitting said messages will also cause the decoder associated with tuner, 215decoder, 282—to detect, process, and transmit monitor infor- 5 mation of said messages to onboard controller, 14A, that is identical to said 1st monitor information (#3) and 2nd monitor information (#3) except that the source mark information identifies decoder, 282, rather than decoder, 203. Likewise, unless the FIG. 1B information overlaid at microcomputer. 10 205, covers and obliterates the embedded information of said messages that is inputted from divider, 4, to microcomputer, 205, and would otherwise be transmitted to monitor, 202M, in the combined programming outputted by microcomputer, 205, (which covering and obliterating does not occur in example #3), transmitting said messages will also cause the decoder, 145, to detect, process, and transmit monitor information of said messages to onboard controller, 14A, that is also identical to said 1st and 2nd monitor information (#3) except that the source mark information identifies decoder, 20

As described above, onboard controller, 14A, organizes its contained signal records on the basis of the different source mark information of the separate decoders of its subscriber station. Were onboard controller, 14A, preprogrammed to 25 process monitor information just in this simple fashion, transmitting the first and second messages of example #3 would cause onboard controller, 14A, to record (and subsequently transmit to recorder, 16, then later to one or more remote stations) three separate signal records that would duplicate 30 each other except that each would be associated with the source mark of a different decoder, 282, 203, or 145.

In the preferred embodiment, to minimize unnecessary duplication, prior to retaining monitor information in signal records, onboard controller, 14A, is preprogrammed to consolidate, in a predetermined fashion or fashions, monitor information transmissions that contain different source mark information but common "program unit identification code" information in such a way that subordinate sources are identified—which, in the "Wall Street Week" example, are tuner, 40 215/decoder, 282, and monitor, 202M/decoder, 145, where no combined medium functions and no SPAM controlled functions are executed—the monitor information from said sources is included, in a predetermined fashion, within the signal record information of the principal source—which 45 source is, in the example, decoder, 203, at microcomputer, 205—in such a way that only exception information is recorded in the recorded information of the monitor information transmitted from the subordinate sources.

Automating Intermediate Transmission Stations

The signal processing apparatus outlined in FIGS. 2, 2A, 2B, 2C, and 2D, and their variants as appropriate, can be used to automate the operations of intermediate transmission stations that receive and retransmit programming. The stations so automated may transmit any form of electronically transmitted programming, including television, radio, print, data, and combined medium programming and may range in scale of operation from wireless broadcast stations that transmit a single programming transmission to cable systems that cablecast many channels simultaneously.

FIG. 6 illustrates Signal Processing Apparatus and Methods at an intermediate transmission station that is a cable television system "head end" and that cablecasts several channels of television programming. The means and methods 65 for transmitting conventional programming are well known in the art. The station receives programming from many

168

sources. Transmissions are received from a satellite by satellite antenna, 50, low noise amplifiers, 51 and 52, and TV receivers, 53, 54, 55, and 56. Microwave transmissions are received by microwave antenna, 57, and television video and audio receivers, 58 and 59. Conventional TV broadcast transmissions are received by antenna, 60, and TV demodulator, 61. Other electronic programming transmissions are received by other programming input means, 62. Each receiver/modulator/input apparatus, 53 through 62, transfers its received transmissions into the station by hard-wire to a a conventional matrix switch, 75, well known in the art, that outputs to one or more recorder/players, 76 and 78, and/or to apparatus that outputs said transmissions over various channels to the cable system's field distribution system, 93, which apparatus includes cable channel modulators, 83, 87, and 91, and channel combining and multiplexing system, 92. Programming can also be manually delivered to said station on prerecorded videotapes and videodiscs. When played on video recorders, 76 and 78, or other similar equipment well known in the art, such prerecorded programming can be transmitted via switch 75 to field distribution system, 93.

In the prior art, the identification of incoming programming, however received; the operation of video player and recorder equipment, **76** and **78**; and the maintenance of records of programming transmissions are all largely manual operations.

FIG. **6** shows the introduction of signal processing apparatus and methods to automate these and other operations.

In line between each of the aforementioned receiver/demodulator/input apparatus, 53, 54, 55, 56, 57, 58, 59, 60, 61, or 62, and matrix switch, 75, is a dedicated distribution amplifier, 63, 64, 65, 66, 67, 68, 69, or 70, that splits each incoming feed into two paths. One path is the conventional path whereby programming flows from each given receiver/demodulator/input apparatus, 53, 54, 55, 56, 57, 58, 59, 60, 61, or 62, to matrix switch, 75. The other path inputs the transmission of said given receiver/demodulator/input apparatus, 53, 54, 55, 56, 57, 58, 59, 60, 61, or 62, individually to signal processor system, 71. (In other words, distribution amplifier, 63, continuously inputs the programming transmission of receiver, 53, to matrix switch, 75, and separately to signal processor system, 71; distribution amplifier, 64, inputs the programming transmission of receiver, 54, to matrix switch, 75, and separately to signal processor system, 71; etc.)

At signal processor system, 71, which is a system as shown in FIG. 2D, the outputted transmission of each distribution amplifier, 63, 64, 65, 66, 67, 68, 69, or 70, is inputted into a dedicated decoder (such as decoders, 27, 28, and 29 in FIG. 2D) that processes continuously the inputted transmission of 50 said distribution amplifier, **63**, **64**, **65**, **66**, **67**, **68**, **69**, or **70**; selects SPAM messages in said transmission that are addresses to ITS apparatus of said intermediate transmission station; automatically adds, in a predetermined fashion, source mark information that identifies said associated distribution amplifier, 63, 64, 65, 66, 67, 68, 69, or 70; and transfers said selected messages, with said source mark information, to code reader, 72. Signal processor system, 71, also has signal processor means to control signal processor system, 71, to record meter-monitor information of said message information, and to transfer recorded information to external communications network, 97.

Code reader, **72**, buffers and passes the received SPAM message information, with source mark information, to cable program controller and computer, **73**.

Cable program controller and computer, 73, is the central automatic control unit for the transmission station. Computer, 73, has an installed clock and is preprogrammed with infor-

mation on the operating speeds and capacities of all station apparatus and the connections of said apparatus with matrix switch 75

Computer, 73, has capacity for maintaining records on the station's programming schedule and records on the status of 5 operating apparatus. Computer, 73, has means for receiving input information from local input, 74, and from remote stations via telephone or other data transfer network, 98. Such input information can include the complete programming schedule of the station of FIG. 6, with each discrete unit of programming identified by its own "program unit identification code" information. Such input information can indicate when and how the station should expect to receive each program unit, when and on which channel or channels and how the station should transmit the unit, what kind of program- 15 ming the unit is—eg., conventional television, television/ computer combined medium programming, etc.—and how the station should process the programming. Computer, 73, is preprogrammed to receive and record said schedule information and may record it in RAM or on an appropriate recording 20 medium such as a magnetic disk at a disk drive. Likewise, computer, 73, is preprogrammed to maintain records of the control instructions that computer, 73, transmits to all controlled apparatus which records indicate, at any given time, the operating status of each controlled apparatus.

Computer, 73, monitors the operation of the head end station by means of TV signal decoders, 77, 79, 80, 84, and 88, each of which are shown in detail in FIG. 2A. Computer, 73, has means to communicate control information with each decoder, 77, 79, 80, 84, and 88, to instruct each how to operate and how and where to search for SPAM information. (The control system of the station of FIG. 6 may be reconfigured to have the signal processor of system, 71, control said decoders, 77, 79, 80, 84, and 88, if decryption of encrypted SPAM message information is required at said decoders.)

Computer, 73, monitors outgoing programming by means of decoders, 80, 84, and 88. By decoders, 80, 84, and 88, to select and transfer SPAM meter-monitor information and by comparing said information to information of its contained schedule records, computer, 73, can determine whether 40 scheduled programming is being transmitted properly to field distribution system, 93, on each cable channel of the station of FIG. 6. Whenever computer, 73, detects errors, computer, 73, can execute predetermined error correction procedures which may include sounding an alarm to alert station personnel.

Computer, 73, monitors incoming programming by means of the aforementioned dedicated decoders of signal processor system, 71. By means of the SPAM message information, with source mark information, received from code reader, 72, computer, 73, determines what specific program unit has been 50 received by each receiver, 53 through 62, and is passing in line, via each distribution amplifier, 63 through 70, to matrix switch, 75.

By comparing selected meter-monitor information of said message information with information of the programming 55 schedule received earlier from input, 74, and/or network, 98, computer, 73, can determine, in a predetermined fashion, when and on what channel or channels the station of FIG. 6 should transmit the programming of each received program unit.

Computer, 73, has means for communicating control information with matrix switch, 75, and video recorders, 76 and 78, and can cause selected programming to be transmitted to field distribution system, 93, or recorded.

Determining that particular incoming programming is 65 scheduled for immediate retransmission can cause computer, 73, to cause matrix switch, 75, to configure its switches so as

170

to transfer said incoming programming to a scheduled output channel. For example, computer, 73, receives a given SPAM message that contains given "program unit identification code" information and the added source mark information of said message identifies distribution amplifier, 63. Receiving said message causes computer, 73, to determine, in a predetermined fashion, that said "code" information matches particular preprogrammed schedule information of programming that is scheduled to be retransmitted immediately upon receipt to field distribution system, 93, via cable channel modulator, 87. In its preprogrammed fashion, so determining causes computer, 73, to cause matrix switch, 75, to configure its switches so as to transfer the programming transmission inputted (via distribution amplifier, 63) to matrix switch, 75, from TV receiver, 53, to that output of matrix switch, 75, that outputs to modulator, 87.

Determining that particular incoming programming is scheduled for time deferred transmission can cause computer, 73, to cause the recording of said programming. For example, computer, 73, receives a given SPAM message that contains given "program unit identification code" information and the added source mark information of said message identifies distribution amplifier, 67. Receiving said message causes computer, 73, to determine, in a predetermined fashion, that said "code" information matches particular preprogrammed schedule information of programming that is scheduled to be recorded upon receipt and transmitted to the field system, 93, at a later time. So determining causes computer, 73, in its preprogrammed fashion, to select a video recorder/player, 76 or 78; to cause said selected recorder, 76 or 78, to turn on and record programming; and to cause matrix switch, 75, to configure its switches so as to transfer the programming transmission inputted (via distribution amplifier, 67) from television receiver, 58, to the output that leads to said selected 35 recorder, 76 or 78. In so doing, computer, 73, causes said selected recorder, 76 or 78, to record said programming.

Determining that particular incoming programming is not scheduled for transmission can cause computer, 73, to cause station apparatus to discard the transmission of said programming. For example, computer, 73, receives a given SPAM message that contains given "program unit identification code" information and the added source mark information of said message identifies distribution amplifier, 69. Receiving said message causes computer, 73, to determine, in a predetermined fashion, that said "code" information matches no particular preprogrammed schedule information. In its preprogrammed fashion, so determining causes computer, 73, either to cause matrix switch, 75, to configure its switches so as to transfer the programming transmission inputted (via distribution amplifier, 69) to matrix switch, 75, from TV demodulator, 61, to no output of matrix switch, 75; or to cause a selected recorder, 76 or 78, to cease recording; or both.

Computer, 73, has capacity for determining what programming is prerecorded on the magnetic tapes (or other recording media) loaded on the recorders, 76 and 78, and capacity for positioning the start points (or other selected points) of program units at the play heads of said recorders. Whenever programming is played on recorder, 76 or 78, decoder, 77 or 79 respectively, detects SPAM information embedded in the prerecorded programming played at the play heads of recorder, 76 or 78, and transmits said SPAM information to computer, 73. Said SPAM information can include not only "program unit identification code" information but also information regarding of the distance from the point on the tape at which a given SPAM message is embedded to the point on the tape where the program unit begins and ends (or to any other selected point). To position the start point (or another selected

point) of a given program unit at the play heads of a given recorder, 76, computer, 73, instructs switch, 75, to configure its switches so as to transfer the transmission input from said recorder, 76, to no output. Then by instructing recorder, 76, to play and decoder, 77, to detect SPAM information in a particular location or locations, computer, 73, causes decoder, 77, to detect and transfer to computer, 73, said program unit and distance information. Receiving said information causes computer, 73, to cause recorder, 76, to stop playing; to analyze said distance information in a predetermined fashion; and to compute the precise time required to rewind to reach the start of the program unit or to move fast forward to reach the end. Then automatically, computer, 73, causes said recorder, 76, first, to start rewinding or moving fast forward then to stop after the precise time elapses.

(Such distance information can be embedded as SPAM message information segment information anywhere in the programming that SPAM information can be embedded and need not repeat continuously—one embedded signal word is sufficient for this method to work. But a method wherein only 20 one instance of distance information is embedded in any given program unit of programming has the disadvantage of causing too much apparatus at too many stations to spend too much time searching for said instance. In the preferred embodiment, distance information is embedded in the rel- 25 evant normal transmission location of its programming and occurs periodically throughout a program unit with increasing frequency as the closeness of the start or end of the programming approaches and with one instance, in television programming, occurring on the first and fourth frames and the 30 last two frames of the programming.)

Computer, 73, has capacity for automatically organizing the locations of units of prerecorded programming on recording media such as magnetic video tapes loaded on a plurality of recorder/players to play according to a given schedule. For 35 example, four spot commercials—program units Q, Y, W, and D-are loaded on 76 and 78. D and Q are recorded on the video tape loaded on recorder, 76, with D first. W and Y are recorded on the tape on recorder, 78, with W first. According to the schedule recorded at computer, 73, Q should play first 40 on the cable channel modulated by cable channel modulator, 83; then subsequently Y and W should start to play simultaneously on the channels modulated by modulators, 83 and 87 respectively; then D should play on the channel modulated by modulator, 83, immediately after Y ends. Caused to organize 45 the locations of said units to play according to said schedule, computer, 73, determines automatically, in a predetermined fashion, that units Q, Y and D should be recorded on the tape loaded on recorder, 76, with Q recorded first and D recorded immediately after Y. In a predetermined fashion, computer, 50 73, determines that insufficient available space exists on the tape on recorder, 76, to record Y immediately before D or on recorder, 78, to record D immediately after Y. So determining causes computer, 73, automatically to locate a place on the tape loaded on recorder, 78, that contains sufficient space for 55 recording D. (Computer, 73, can contain records that identify how space on particular tapes is allocated or it can locate this space by playing the tapes, retaining information of "program unit identification code" and distance information prerecorded on said tapes [or the absence of such information], and 60 analyzing said information in a predetermined fashion.) Automatically, computer, 73, verifies that the space is truly available by causing recorder, 78, to move forward or rewind to the start of the located space then to play for the duration of the space; by causing decoder, 79, simultaneously to search 65 for embedded SPAM message information, detect said information, and transfer said information to computer, 73; and by

checking the detected SPAM information in a predetermined fashion to ensure that detected meter-monitor information does not identify a program unit that is scheduled to be transmitted at a future time. Determining said located space to be available causes computer, 73, to cause recorder, 76, to move forward or rewind to the start of program unit D; to cause recorder, 78, to rewind to the start of said located space; and to cause switch, 75, to configure its switches so as to transfer the output of recorder, 76, to the input of recorder, 78. Automatically, computer, 73, then causes recorder, 76, to play and recorder, 78, to record for the duration of program unit D. Then automatically, in a predetermined fashion, computer, 73, alters the records it contains to reflect the location of unit D on recorder, 78, and that the space on the tape on recorder, 76, that program unit D had occupied is now available and may be recorded over. (Computer, 73, may automatically make available the space on the tape on recorder, 76, that program unit D has occupied by causing recorder, 76, to rewind to the start of said space and to erase or record for the duration of D—since the output of recorder, 78, is the input to recorder, 76, and since recorder, 78, is not playing, a recording so recorded by recorder, 76, would contain no programming or SPAM information.) Program unit D is now recorded on the tape on recorder, 78, and program unit Q is the only unit on recorder, 76. Then automatically, in the locating fashion described above, computer, 73, locates an available space on the tape on recorder, 76, that is large enough for recording program units Y and D together. Computer, 73, verifies the availability of the space in the verifying fashion above. Computer, 73, causes recorder, 78, to move forward or rewind to the start of program unit Y; causes recorder, 76, to rewind to the start of the available space; and causes switch, 75, to configure its switches so as to transfer the output of recorder, 78, to the input of recorder, 76. Computer, 73, causes recorder, 78, to play and recorder, 76, to record for the duration of program unit Y. Computer, 73, causes recorder, 78, to move forward or rewind to the start of program unit D and causes recorder, 78, to play and recorder, 76, to record for the duration of program unit D. Finally, in the record keeping fashion above, computer, 73, alters its contained records to document the locations of Y and D on the tape on recorder, 76, and the availability of the spaces that Y and D have occupied on the tape on recorder, 78, for recording other programming. (The station of FIG. 6 may have, at recorders, 76 and 78, stripping and embedding apparatus such as signal strippers, 81 and 85, and signal generators, 82 and 86, and computer, 73, may cause said generator apparatus to record at particular places on the tapes loaded at recorders, 76 and 78, information of the contained records of computer, 73, that identify how space on said tapes is allocated.) In this fashion, computer, 73, causes units Y and W to be located on different recorders because said units are scheduled to be transmitted simultaneously and units Y then D to be located in sequence on the same recorder because unit D is scheduled to play on the same channel immediately after Y.

Computer, 73, has capacity for automatically playing organized scheduled program units according to its recorded station schedule. Computer, 73, may be caused to commence playing any given unit of programming previously loaded at a recorder, 76 or 78, in any of a number of different fashions. For example, a remote program originating studio can embed and transmit a SPAM message that contains particular cueing information, and receiving said message can cause controller, 73, to cause a selected recorder, 76 or 78, to commence playing a tape that has been positioned at the tape head of said recorder, 76 or 78, according to the schedule of computer, 73. Or for example, the aforementioned clock of computer, 83,

may be caused, in a predetermined fashion, to transmit time information periodically, and receiving particular time information can cause controller, 73, to cause a selected recorder, 76 or 78, to commence playing said tape.

In the preferred embodiment, in the case of so-called "cut 5 ins" to network transmissions, any given intermediate station computer, 73, is cued (that is, caused) to cut in any given local transmission of prerecorded programming (or top a given local transmission) by a SPAM message (that contains an execution segment and a meter-monitor segment that contains "program unit identification code" information of the program unit in which it is embedded) that is a cueing message and that is embedded in a given network transmission and transmitted by the program originating studio that originates the transmission of said network. In the case of sequential transmissions of more than one program unit of so-called "local origination" programming, each intermediate station computer, 73, is cued to start transmission of the first unit by a time transmission of the aforementioned clock of said comby a network transmitted SPAM cueing message), and the transmission of each subsequent unit is cued by such a SPAM cueing message that is embedded in the last one-half second of the programming of its predecessor program unit.

For example, in the case of the aforementioned schedule of 25 computer, 73, units Q, Y, and D are scheduled to be cut into a particular first network transmission that is received at receiver, 53, and is transferred to field distribution system, 93, via modulator, 83. Unit W is scheduled to be cut into a particular second network transmission that is received at 30 receiver, 58, and is transferred to field distribution system, 93, via modulator, 87.

Completing the organization of any given group of prescheduled tapes causes computer, 73, automatically to position the first organized unit or units to play according to 35 schedule. Accordingly, completing the above described organization of any units Q, Y, W, and D causes computer, 73, automatically to cause recorder, 76, to move forward or rewind to the start of unit Q and to cause recorder, 78, to move forward or rewind to the start of unit W.

In due course, a particular first instance of the aforementioned SPAM cueing message is embedded in said first network transmission and transmitted at the program originating studio that originates said transmission (hereinafter, said first instance is called the "first-network-cue-to-transmit-locally 45 message (#8)") then, after an interval of time equal to the duration of the playing of unit Q passes, a particular second instance of said message is embedded at said studio and transmitted in said transmission (hereinafter, said second instance is called the "first-network-cue-to-transmit-network 50 message (#8)").

Said first and second instances are each detected at that decoder of signal processor system, 71, that continuously processes the transmission outputted by distribution amplifier, 63, and are inputted to computer, 73, with appropriate 55 source mark information.

Receiving said first instance causes computer, 73, under control of instructions of said schedule, to cause recorder, 76, to commence playing and to cause matrix switch, 75, to configure its switches to cease transferring the transmission 60 received at receiver, 53, to modulator, 83, and to commence transferring the output of recorder, 76, to modulator, 83. In so doing, computer, 73, causes the cable head end station of FIG. 6 to cease transmitting said first network transmission to field distribution system, 93, and to commence transmitting the 65 locally originated transmission of unit Q. Then receiving said second instance causes computer, 73, under control of

174

instructions of said schedule, to cause matrix switch, 75, to configure its switches to cease transferring the output of recorder, 76, to modulator, 83, and to commence transferring the transmission received at receiver, 53, to modulator, 83, and to cause recorder, 76, to cease playing and to move forward or rewind to the start of unit Y. In so doing, computer, 73, causes the head end station of FIG. 6 to cease transmitting to field distribution system, 93, the locally originated transmission of unit Q; to recommence transmitting said first network transmission; and to prepare to play the locally originated transmission of unit Y. In this locating and playing fashion, computer, 73, can then play program units Y, W, and D according to its recorded schedule. (Because unit D is scheduled to play immediately after Y on the same channel, no SPAM cueing message causes computer, 73, to cause recorder, 76, to stop playing or matrix switch, 75, to switch another transmission to modulator, 83, until Y and D have both played.)

FIG. 6 shows particular signal processor system monitorputer, 73. (or in the case of a cut in to a network transmission. 20 ing apparatus associated with the intermediate station of FIG. 6. In field distribution system, 93, amplifier, 94, inputs programming transmissions to signal processor system, 71, (where said transmissions are inputted to one alternate contact of the switch, 1, of the signal processor of said system, 71), and amplifier, 95, inputs programming transmissions to signal processor, 96, which permits both signal processor apparatus to monitor all programming transmitted by the cable television system head end station to field distribution system, 93, in the fashion of the signal processor, 200, of FIG. 3 in example #5. By recording all different received "program unit identification code" information in the fashion described above, said signal processor apparatus can automatically record, for each transmission channel of the station of FIG. 6, information, for example, that the U.S. Federal Communications Commission requires broadcast station operators to maintain as station logs. And said signal processor apparatus can transmit such records of programming to remote sites via telephone or other data transfer networks, 97 and 99 respectively. In this fashion, said signal processor apparatus can automatically provide their contained records to one or more remote independent auditor stations.

In the preferred embodiment, at least two signal processors (such as the signal processor of said system, 71, and signal processor, 96) monitor the transmissions of any given transmission station. One (eg., the signal processor of said system, 71) is at said station which permits station personnel to inspect said one and ensure that said one is operating continuously and correctly. At least one other (eg., signal processor, 96) is located at a site within the distribution system of said station (eg., field system, 93) that is remote from the transmission station of said site, and said is inspected and serviced by independent auditor personnel. The records of said processors are regularly caused to be transmitted to one or more remote auditing stations (eg., by networks, 98 and 99), in the fashions described above, and computers at said stations are caused to receive said records, compare said records with each other, and record any differences between the two sets of records are recorded.

The cases of the transmission of units Q, Y, W, and D provide examples of the operation of signal processor apparatus, 71 and 96. As the aforementioned program originating studio of the aforementioned first and second network transmissions transmit programming, at said signal processor apparatus, 71 and 96, switches, 1; mixers, 3; and TV signal decoders, 30, detect SPAM message information in successive channel transmissions of the station of FIG. 6, under control of controllers, 20, and oscillators, 6, and transmit