Elia Data of Texas, LLC v. International Business Machines Corp.

US007113996B2

a2 United States Patent

(10) Patent No.: US 7,113,996 B2

Kronenberg 45) Date of Patent: Sep. 26, 2006
(54) METHOD AND SYSTEM FOR SECURED (56) References Cited
TRANSPORT AND STORAGE OF DATA ON A
NETWORK U.S. PATENT DOCUMENTS
5,548,649 A * 8/1996 Jacobson 713/153
(76) Inventor: Sandy Craig Kronenberg, 1 6,084,960 A * 7/2000 Wright et al. 3801271
Townhouse Cir. #10, Great Neck, NY 2001/0044905 AL* 11/2001 Novak et al. 713/201
(US) 11021 2002/0010866 Al* 1/2002 McCullough et al. 713/201
2002/0019933 Al* 2/2002 Friedman et al. 713/160
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 % .
U.S.C. 154(b) by 572 days. cited by examiner
(21) Appl. No.: 09/910,416 Primary Examiner—Rupal Dharia
. Assistant Examiner—Djenane M. Bayard
(22) Filed: Jul. 20, 2001
(65) Prior Publication Data (57) ABSTRACT
US 2002/0078227 Al Jun. 20, 2002
L A secure transport system and a secure distribution system
Related U.S. Application Data for transporting secure packets from a first node to a second
(60) Provisional application No. 60/219,639, filed on Jul. node, comprising: a first node that creates secure packets; a
21, 2000. first secure relay that receives secure packets and non secure
(51) Int.Cl packets from multiple nodes, wherein the secure relay
nt. 1. forward each secure packet to a different secure relay and
gzgi 5;;;3 (388281) forwards non-secure packets to destination relays, and
5 US. Cl (70'9/2)29. 700/229: T09/238: wherein the secure relay forwards each secure packet to the
(52) US. CL oo 709/239 700 /2lé' 713 /189,' 713 /200’ second node when a retrieval condition has been indicated,
. . . and a second node that creates a relay condition and recerves
(58) Field of Classification éearch ..., ,709/217, hd d kd h lay conditi d i
709/229, 218, 238, 239; 713/201, 200, 170, ~ he secure packets.
713/189

See application file for complete search history.

Packet enters an
interface of a
relay (router)

Is this a
secure
transport
relay ?

YES

Has the
retrieval
flag been
initiated

Pass the packet
onto the retrieval
1P address (or the

next closest
relay)

17 Claims, 5 Drawing Sheets

The packet is
forwarded on to
the temporary
destination
address given to
it from the last
secure transport
relay

The packet is
forwarded onto a
secure transport
relay chosen at
random from its
cahed list of
relays (SRNP).
The header of this
packet is modified
to contain the
destination IP of
the chosen relay.

Doc. 1 Att. 1

Dockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/2:2012cv00320/137652/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/2:2012cv00320/137652/1/1.html
http://dockets.justia.com/

U.S. Patent Sep. 26, 2006 Sheet 1 of 5

FIG. 1

FIG. 2

US 7,113,996 B2

U.S. Patent Sep. 26, 2006 Sheet 2 of 5 US 7,113,996 B2

VER.| HL T0S TOTAL LENGTH

IDENTIFICATION FLAGS |FRAG. OFFSET

PROTOCOL HEADER CHECKSUM

SOURCE ADDRESS

DESTINATION ADDRESS

OPTIONS

DATA

FIG. 3

SECURITY PARAMETERS INDEX

= INITIALIZATION VECTOR =

Ji
Ly

[}
A}

~ PAYLOAD DATA

...... PADDING PAD LENGTH | PAYLOAD TYPE

FIG. 4

A5
)
¢

RETRIEVAL KEY

SECURITY PARAMETERS INDEX

J)
.

>
¢

4 INITIALIZATION VECTOR

JL
143

PAYLOAD DATA

bRt
243

..... PADDING PAD LENGTH | PAYLOAD TYPE

FIG. 5

U.S. Patent

Sep. 26, 2006

Packet enters an
interface of a
relay (router)

Is this a
secure

Sheet 3 of 5

US 7,113,996 B2

transport
relay ?

YES

Has the
retrieval
flag been
initiated

NO

Pass the packet
onto the retrieval
IP address (or the

next closest
relay)

The packet is
forwarded on to
the temporary
destination
address given to
it from the last
secure transport
relay

The packet is
forwarded onto a
secure transport
relay chosen at
random from its
cahed list of
relays (SRNP).
The header of this
packet is modified
to contain the
destination IP of
the chosen relay.

FIG. 6

U.S. Patent Sep. 26, 2006 Sheet 4 of 5 US 7,113,996 B2

Secure Transport Client

Keying |4359876213288 |v|

Avail, Files for | Diagram 432.dxf |+
Retrieval g U

Get Re/Sequencing Key |1908732650187 I:l
En/De Cryption Key 1234892304567 ||
Retrieval Key (5398470239843 | ¥ |

Drag and Drop Files to be Sent

Redundancy D|3 | Send
Triple DES [

FIG. 7

U.S. Patent

Sep. 26, 2006 Sheet 5 of 5

Client requests
data retrieval

Y

Data packet with
retrieval key is
sent out to secure
transport relays
that the client is
aware of through
SRNP

Y

Receipt of second
copy of retrieval
key is dropped

and not forwarded

FIG. 8

Relay holds
received retrieval
packets for
designated TTL
(time to live) and
forwards retrieval
packet to other
known relays

Y

Retrieval flag is
set and relay
waits to forward
any secure
packets with
matching retrieval
sequence to
retrieval packet's
designated
destination

US 7,113,996 B2

US 7,113,996 B2

1

METHOD AND SYSTEM FOR SECURED
TRANSPORT AND STORAGE OF DATA ON A
NETWORK

STATEMENT OF PRIORITY

Provisional Patent Application No. 60/219,639, titled
“Method and System For Secure Transport and Storage of
Data on a Network” filed Jul. 21, 2000 is hereby relied upon
and incorporated by reference.

BACKGROUND OF THE INVENTION

A. Field of the Invention

This invention relates generally to data processing sys-
tems and, more particularly, to secured transport systems
and storing data on a network.

B. Description of the Related Art

The Internet has been hailed the marketplace of the future.
A computer equipped with a communication mechanism
such as a modem and telephone connection is nearly all that
is necessary to gain access to the Internet and shop for goods
and services. A program called a Web browser, such as the
NETSCAPE NAVIGATOR from NETSCAPE Corporation,
makes it a simple task to traverse the vast network of
information available on the Internet and, specifically, its
subpart known as the “World Wide Web.”

The architecture of the Web follows a client-server model.
The terms “client” and “server” refer to a computer’s general
role as a requester of data (the client) or provider of data (the
server). In conventional settings, a Web browser resides in
each client and is used to access specially formatted “Web
documents” that reside on Internet (Web) servers. Web
clients and Web servers communicate using a conventional
protocol called “HyperText Transfer Protocol” (HTTP).

In operation, a browser opens a connection to a server and
initiates a request for a document. The server delivers the
requested document, typically in a standard coded format
such as the “HyperText Markup Language” (HTML) format.
After the document is delivered, the connection is closed.
The browser displays the document or performs a function
designated by the document.

Every day, as more people gain access to the Web, people
need to securely transmit data to one another. In response to
this need, many different protocols have sprung up to enable
users to transmit data securely.

For example, IPSec is a series guidelines for the protec-
tion of Internet Protocol (IP) communications. It specifies
ways for securing private information transmitted over pub-
lic networks. Services supported by IPSec include confiden-
tiality (encryption), authenticity (proof of sender), integrity
(detection of data tampering) and replay protection (defense
against unauthorized re-sending of data). IPSec also speci-
fies methodologies for key management. Internet Key
Exchange (IKE), the IPSec key management protocol, is a
series of steps that establishes keys for encrypting and
decrypting information; it defines a common language on
which communications between two parties is based. Devel-
oped by the Internet Engineering Task Force (IETF), IPSec
and IKE together standardize the way data protection is
performed, thus making it possible for security systems
developed by different vendors to interoperate.” (IPSEC-
.ORG).

With the release of new transmission mediums and light
switching technology at speeds up to 40 Gigabits per second
(OC 768), the bandwidth congestion of today may soon not
exist. When these restraints are gone, people around the

20

25

30

35

40

45

50

55

60

65

2

world may wish to transport data even more securely than
current methods and perhaps there may be a desire to
securely store data on these new “highways.” With these
developments in optical DWDM technology the Internet
will be able to transmit data at ever increasing rates. New
DWDM systems are now in development to run at 10 trillion
bits per second (10 Tbps) per fiber.

Although the overall speed and capacity of the Internet is
increasing, backbone providers are looking to provide pre-
mium services that they can charge their clients additional
revenue for, while clients are looking for every increasing
speed and security. In other words, current security protocols
are inflexible and therefore do not lend themselves well to
increased speed and security. There is therefore a need to
improve existing security protocols to provide users and
backbone providers with a flexible and convenient way to
securely transport and store data.

SUMMARY OF THE INVENTION

What is described herein is a method of using the ever-
increasing capacity of the Internet and telecommunications
companies backbones as a storage mechanism (for efficient
delivery of any data) and a secure transport (for the possible
untraceable, unanimous, ultra-secure delivery of any data).
Where IPSEC ends—Secure Transport begins, taking IP
Security to the next level by providing a distributed storage/
transport system providing increased security. With this new
highway, Secure Transport can utilize the largest storage
system and efficient secure delivery mechanism ever cre-
ated, the fiber of every communications carrier.

Methods and systems consistent with the present inven-
tion solve the inherent problems with existing transport
systems by providing a secured transport engine that enables
a user to securely transport data to another user. A method
of secure transport and storage on a network that adds to
many of today’s commonly used methods of Public Key
Infrastructure (PKI), Internet Protocol Security (IPSEC),
Digital Certificates and Certificate Authorities (CA)—and
dramatically increases the security during transport, redun-
dancy, reliability, while allowing for rapid distribution.

Secure transport can use many widely used protocols such
as Ethernet and TCP/IP with slight modifications to allow
for the re-direction of data instead of simply delivering data
to its destination. This re-direction occurs because perhaps
the requirement is not simply to transfer data back and forth
between location A and B, but perhaps the requirement is to
store data on the network, so at sometime in the future A or
B could retrieve this data. Or perhaps A needs to send B
some data, but sending that data straight to B is dangerous—
along the way to B there are many opportunities for this data
to be intercepted, so instead portions this data are routed
though many different locations on the way to B.

Systems consistent with the present invention transport
secure packets from a first node to a second node. The
system comprises a first node that creates secure packets.
The system also comprises a first secure relay that receives
secure packets and non secure packets from multiple nodes,
the secure relay forward each secure packet to a different
secure relay and forwards non-secure packets to destination
relays. The secure relay forwards each secure packet to the
second node when a retrieval condition has been indicated.
The system also comprises a second node that creates a relay
condition and receives the secure packets.

US 7,113,996 B2

3
BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this specification, illustrate an
implementation of the invention and, together with the
description, serve to explain the advantages and principles
of the invention. In the drawings,

FIG. 1 is a block diagram of the architecture of a network
in a manner consistent with the principle of the present
invention;

FIG. 2 depicts a more detailed diagram of the architecture
of a network in a manner consistent with the present
invention depicted in FIG. 1;

FIG. 3 depicts an exemplary Internet Protocol header;

FIG. 4 depicts an exemplary Internet Protocol Security
header;

FIG. 5 depicts an exemplary Internet Protocol header with
secured transport consistent with the principles of the
present invention;

FIG. 6 depicts a flow chart of the steps for packet
information entering relays consistent with the principles of
the present invention;

FIG. 7 depicts an exemplary client user interface consis-
tent with the principles of the present invention; and

FIG. 8 depicts an exemplary retrieval sequence as viewed
by a relay consistent with the principles of the present
invention

DETAILED DESCRIPTION

The following detailed description of the invention refers
to the accompanying drawings. Although the description
includes exemplary implementations, other implementations
are possible, and changes may be made to the implementa-
tions described without departing from the spirit and scope
of'the invention. The following detailed description does not
limit the invention. Instead, the scope of the invention is
defined by the appended claims. Wherever possible, the
same reference numbers will be used throughout the draw-
ings and the following description to refer to the same or like
parts.

Overview

Currently used networks can be slightly modified to not
only transport data, but can also act as a secure distributed
storage system/transport system unlike any other.

One example of just such a WAN is the Internet, whereby
data could forever be traveling on an endless journey around
the globe. What this creates is a distributed data system that
only with the proper keys (perhaps employing PKI) can data
be retrieved and re-sequenced. Re-assembly could happen
anywhere in the world, faster than traditional methods of
transport—simply because the data could potentially arrive
from many different locations—only the receiving connec-
tion is the bottleneck, not the sending and receiving con-
nections. Redundancy can be added into the system by
generating multiple data streams. Security is inherent in that
the data is never in any one location, is encrypted and only
with the proper algorithm could the data ever be re-se-
quenced.

Distributing data is inherently insecure. A typical network
has its secure data—should this data need to be distributed
it would have to be encrypted and past on to the Internet
through a VPN to its destination. This stream can easily be
intercepted along many of the routers along the single route
the data takes.

25

30

35

40

45

50

55

60

65

4

If the data is sent in multiple streams to many locations
“sniffing” would provide no information. The follow-
ing example provides some more insight:

In FIG. 1 communication would travel normally from
point A to B through relays 1 and then 2. In one
example of the proposed method, data could origi-
nate from point A, could travel between relays 1, 2
and 3 in separate smaller bursts that would be
redirected back and forth between 1, 2 and 3 out of
sequence and in what would seem to be a random
fashion. One re-sequencing scheme could be to
generate the proper key that would instruct the relays
to send any data with the matching lock to a specific
IP address. Once the all of the data arrived at the
destination another key would decrypt and re-se-
quence the data.

If data was sent to the network to be stored, you could
imagine that even if someone were to “sniff” the
network lines it would do a “malicious interceptor” no
good. The reason is due to the data being sent along
multiple paths in random order, all while being
encrypted.

Multiple Keys are necessary (in this example we use 3
keys): Imagine sniffing the communication line some-
where between relay 1 and 2. Pieces of data from A
being sent to B would be going in both directions
completely out of sync. Also, it is possible that some of
the data would never cross the link between 1 and 2.
Which is why one would require a “Retrieval Key”—to
assure that all of the pieces of the puzzle are gathered.
Once all of the data was gathered one would need to
sort out which fragments of data are duplicates and in
which order they go, hence the need for a “Re-sequenc-
ing Key”, finally the IPSec datagram (requiring an
“Encryption Key”) encapsulates the traditional TCP/IP
packet. Note that the Re-sequencing is part of the
payload of a IPSec datagram and may or may not be
encrypted depending on the level of security required.
In FIG. 2 one may note that in a relatively small

network with less than 20 relays, there are thousands
of routes data can take.

The Secure Transport system may use both secure relays
and standard non-secure relays, such as traditional routers or
other network devices (e.g., Cisco routers). In other
examples, Secure Transport may be over private/semi-pri-
vate networks of which all relays will be Secure Transport
relays while other implementations of Secure Transport will
transmit over Secure Transport relays as well as relays that
are not secure transport relays. In such instances where non
secure transport relays are used, Secure Transport datagrams
will appear to be standard IP traffic and the non secure
transport relay will forward these datagrams to other trans-
port relays, which may include Secure Transport relays.
Thus, the Secure Transport system may be effectively used
in existing networks where replacement of all relays would
be not cost effective. Only when a Secure Transport data-
gram is relayed to a Secure Transport relay will information
related to the Secure Transport be obtainable.

System Processes

FIG. 6 depicts a flow chart of the steps for packet
information entering relays consistent with the principles of
the present invention

To achieve this type of secure transport, two modifications
to current routing schemes would need to occur.

If Internet Protocol (IP) were to be employed as the
communication protocol (see FIG. 3 for the IP header) then

US 7,113,996 B2

5

as an example, IPSec datagrams would need to be encap-
sulated in Secure Transport datagrams, just as [P datagrams
are encapsulated in IPSec datagrams. (RFC 1829, FIG. 4)
[As all of this information is “encapsulated” there is often a
concern for performance (how fast can the devices encap-
sulate and de-capsulate datagrams) but current hardware
implementations can operate at teraflops per second.] IPSec
datagrams (FIG. 4.) would be encapsulated inside Secure
Transport datagrams (FIG. 5.) and re-sequencing data would
be embedded within the data payload portion of the IPSec
datagram. In case a datagram were to cross a non-secure
router, that router would still know to forward that datagram
to another secure transport router. The mechanism behind
this behavior would be that the secure transport router just
“upstream” from a non-secure transport router would place
a destination address bound for the chosen secure transport
router from its “cached table”. A table of secure transport
routers can be created by any number of methods, perhaps
a Secure Router Notification Protocol (SRNP). This notifi-
cation protocol would be very similar to other Routing
Protocols such as Routing Information Protocol (RIP) or
Open Shortest Path First (OSPF).

Modification of the IP/IPSec protocol stack on the relay to
allow for new functionality that could be required to perform
secure transport. The first example of new functionality
would be the addition of Secure Router Notification Protocol
(SRNP) to build a list or “table” of known secure relays. The
second example would be the necessity to randomly choose
a secure relay to forward the IPSEC datagram onto and the
third is the addition of code that should a “retrieval” data-
gram with a special flag be set—the behavior of the secure
transport router would be altered to forward any and all
secure datagrams it receives to the “retrieval destination”.

Client Architecture

With the notion of data traveling many paths on for the
purposes of secure transport as well as storage and modifi-
cation of currently used protocols one must now focus on the
Initialization and Retrieval of Data to fully understand these
new methods. To best understand initialization and retrieval
read the following example:

A 100 kb file needs to be securely transmitted from
research facility A to Smart Bomb manufacturer B (lets
assume it’s a diagram of new prototype). This 100 kb
file would be fed into A’s secure transport “client” (see
an example user interface in FIG. 7), which would
breakdown the file into 100 small 1 kb datagrams. The
client would then multiply the number of datagrams, in
this case the multiplier will be 3 (the higher the
multiplier, the faster retrieve and the more redundant,
but then the more data “storage” in use). We now have
300 1 kb datagrams. These 1 kb datagrams have a
traditional IP header and payload that is then encapsu-
lated by an IPSEC header that are now shuffled into
some random order and then released to bounce
between the secure transport relays. When B holds out
a “magnet”, all these datagrams are gathered at B’s
secure transport “client”.

The secure transport client referred to above is computer
program responsible for a number of activities, possibly
maintaining a key ring, listing available programs to retrieve
(because the client itself can act as a relay), send new files
over the secure transport relay system. Advanced features
could include setting the level of redundancy of the data (in
the above example we set the 100 kb file to have 3 “streams™
or “copies” of the data on the secure transport relay system.
Another advance features could be to define auto-retrieval

20

25

30

35

40

45

50

55

60

65

6

sequences at scheduled times or events, also the client could
also be set to limit the secure transport relay’s to just a few
defined units they may have special properties or that are
controlled by trusted peers.

The user interface in FIG. 7 may be used on a computer,
which contains a memory, a secondary storage device, a
central processing unit (CPU), an input device, and a video
display. Memory may include a program that allows users to
interact with secured transport relays by transmitting and
receiving keys, such as web pages.

Secondary storage device may contain a database that
includes information relating to various keys rings, files, or
secure transport relays.

Although aspects of the present invention are described in
terms of relays and routers, one skilled in the art will
appreciate that these aspects may reflect additional situa-
tions, such as node hopping, wireless LANS, VPNs, or even
WANSs. Additionally, although aspects of the present inven-
tion are described as being stored in memory, one skilled in
the art will appreciate that these aspects may be stored on or
read from other computer readable media, such as secondary
storage devices, like hard disks, floppy disks, and CD-ROM;
a carrier wave received from a network like the Internet; or
other forms of ROM or RAM. Additionally, although spe-
cific components and programs of the various computer
and/or servers have been described, one skilled in the art will
appreciate that these may contain additional or different
components or programs.

Data Process

FIG. 8 depicts an exemplary retrieval sequence as viewed
by a relay consistent with the principles of the present
invention.

In the above example (Client Architecture) the “Magnet”
is the retrieval key. This retrieval key could be an IPSEC
datagram with two pieces of information that could be
interpreted by a Secure Transport Relay. The first piece of
information would be a unique identifying flag that would
set the relay to look for specific Secure Transport datagrams
(say all of those datagrams associated with the 100 kb
diagram of the Smart Bomb), the second piece of informa-
tion would tell the relay the destination for these identified
datagrams (FIG. 8).

Now multiple IPSec tunnels can exist between two peers
to secure different data streams, and each tunnel would a
separate set of security associations. For example, some data
streams might be just authenticated while other data streams
are both encrypted and authenticated. With the possibility of
multiple IPSec tunnels there may also be multiple IPSec
traffic, Secure Transport Traffic, SRNP traffic and Retrieval
Datagram traffic on any relay. The Security Parameters
Index (FIG. 5) field in the secure transport header datagrams
can list unique identifiers necessary for the secure transport
relay to identify the proper course of action for the packet:

1. To randomly choose another secure relay to forward the
datagram to or

2. Send datagram to be retrieved since a key match was
made

To better understand how the re-sequencing of Secure
Transport datagrams would occur, read the following
excerpt from RFC 815, which covers the re-sequencing of
fragmented IP datagrams RFC 815:

The general form of the algorithm is as follows. When a
new fragment of the datagram arrives, it will possibly fill in
one or more of the existing holes. We will examine each of
the entries in the hole descriptor list to see whether the hole
in question is eliminated by this incoming fragment. If so,

US 7,113,996 B2

7

we will delete that entry from the list. Eventually, a fragment
will arrive which eliminates every entry from the list. At this
point, the datagram has been completely reassembled and
can be passed to higher protocol levels for further process-
ing. The algorithm will be described in two phases. In the
first part, we will show the sequence of steps which are
executed when a new fragment arrives, in order to determine
whether or not any of the existing holes are filled by the new
fragment. In the second part of this description, we will
show a ridiculously simple algorithm for management of the
hole descriptor list.

Fragment Processing Algorithm

Arriving fragment can fill any of the existing holes in a
number of ways. Most simply, it can completely fill a hole.
Alternatively, it may leave some remaining space at either
the beginning or the end of an existing hole. Or finally, it can
lie in the middle of an existing hole, breaking the hole in half
and leaving a smaller hole at each end. Because of these
possibilities, it might seem that a number of tests must be
made when a new fragment arrives, leading to a rather
complicated algorithm. In fact, if properly expressed, the
algorithm can compare each hole to the arriving fragment in
only four tests. We start the algorithm when the earliest
fragment of the datagram arrives. We begin by creating an
empty data buffer area and putting one entry in its hole
descriptor list, the entry which describes the datagram as
being completely missing. In this case, hole first equals zero,
and hole.last equals infinity. (Infinity is presumably imple-
mented by a very large integer, greater than 576, of the
implementor’s choice.) The following eight steps are then
used to insert each of the arriving fragments into the buffer
area where the complete datagram is being built up. The
arriving fragment is described by fragment.first, the first
octet of the fragment, and fragment.last, the last octet of the
fragment.

1. Select the next hole descriptor from the hole descriptor
list. If there are no more entries, go to step eight.

2. If fragment first is greater than hole.last, go to step one.

3. If fragment.last is less than hole.first, go to step one. (If
either step two or step three is true, then the newly arrived
fragment does not overlap with the hole in any way, so we
need pay no further attention to this hole. We return to the
beginning of the algorithm where we select the next hole for
examination.)

4. Delete the current entry from the hole descriptor list.
(Since neither step two nor step three was true, the newly
arrived fragment does interact with this hole in some way.
Therefore, the current descriptor will no longer be valid. We
will destroy it, and in the next two steps we will determine
whether or not it is necessary to create any new hole
descriptors.)

5. If fragment first is greater than hole. first, then create a
new hole descriptor “new_hole” with new_hole.first equal to
hole first, and new_hole.last equal to fragment.first minus
one. (If the test in step five is true, then the first part of the
original hole is not filled by this fragment. We create a new
descriptor for this smaller hole.)

6. If fragment.last is less than hole.last and fragment.more
fragments is true, then create a new hole descriptor
“new_hole”, with new_hole.first equal to fragment.last plus
one and new_hole.last equal to hole.last. (This test is the
mirror of step five with one additional feature. Initially, we
did not know how long the reassembled datagram would be,
and therefore we created a hole reaching from zero to
infinity. Eventually, we will receive the last fragment of the
datagram. At this point, that hole descriptor which reaches

20

25

30

35

40

45

50

55

60

65

8

from the last octet of the buffer to infinity can be discarded.
The fragment which contains the last fragment indicates this
fact by a flag in the internet header called “more fragments”.
The test of this bit in this statement prevents us from creating
a descriptor for the unneeded hole which describes the space
from the end of the datagram to infinity.)

7. Go to step one.

8. If the hole descriptor list is now empty, the datagram is
now complete. Pass it on to the higher level protocol
processor for further handling. Otherwise, return.

Part Two: Managing the Hole Descriptor List

The main complexity in the eight step algorithm above is
not performing the arithmetical tests, but in adding and
deleting entries from the hole descriptor list. One could
imagine an implementation in which the storage manage-
ment package was many times more complicated than the
rest of the algorithm, since there is no specified upper limit
on the number of hole descriptors which will exist for a
datagram during reassembly. There is a very simple way to
deal with the hole descriptors, however. Just put each hole
descriptor in the first octets of the hole itself. Note that by
the definition of the reassembly algorithm, the minimum
size of a hole is eight octets. To store hole first and hole.last
will presumably require two octets each. An additional two
octets will be required to thread together the entries on the
hole descriptor list. This leaves at least two more octets to
deal with implementation idiosyncrasies.

There is only one obvious pitfall to this storage strategy.
One must execute the eight step algorithm above before
copying the data from the fragment into the reassembly
buffer. If one were to copy the data first, it might smash one
or more hole descriptors. Once the algorithm above has been
run, any hole descriptors which are about to be smashed
have already been rendered obsolete.

5. Loose Ends

Scattering the hole descriptors throughout the reassembly
buffer itself requires that they be threaded onto some sort of
list so that they can be found. This in turn implies that there
must be a pointer to the head of the list. In many cases, this
pointer can be stored in some sort of descriptor block which
the implementation associates with each reassembly buffer.
If no such storage is available, a dirty but effective trick is
to store the head of the list in a part of the internet header in
the reassembly buffer which is no longer needed. An obvious
location is the checksum field. When the final fragment of
the datagram arrives, the datagram length field in the internet
header should be filled in.

<END OF RFC EXPERT>

Billing

Internet Service Providers, Application Service Providers
and other communications carriers may also utilize the
secure transport service by offering such services to its users.
This way, such providers may derive revenue from the
secure transport service. For example, an ISP may create
secure packets for a user and require a fee from such user to
put the packets into the network of relays. The ISP may also
create retrieval keys and trigger billing (ex. Invoice gener-
ated or charge a credit card) based on a creation of the
retrieval key. For example, the billing trigger could be based
on any one or many parameters (time, size, source, desti-
nation, tariffs, encryption level, iterations of data).

Conclusion

In essence the mechanism for Secure Transport re-se-
quencing upon delivery would be the same as IP fragmen-
tation and re-sequencing except that an added layer of

US 7,113,996 B2

9

security can be added by using PKI encryption on the
Internet Header to hide the list of hole descriptors, therefore
no malicious interceptor of data would know the start,
middle, end or any repeat fragments of any file.

Methods and systems consistent with the present inven-
tion solve the inherent problems with existing transport
systems by providing a secured transport engine that enables
a user to securely transport data to another user. A method
of secure transport and storage on a network that adds to
many of today’s commonly used methods of Public Key
Infrastructure (PKI), Internet Protocol Security (IPSEC),
Digital Certificates and Certificate Authorities (CA)-and
dramatically increases the security during transport, redun-
dancy, reliability, while allowing for rapid distribution.

The foregoing description of an implementation of the
invention has been presented for purposes of illustration and
description. It is not exhaustive and does not limit the
invention to the precise form disclosed. Modifications and
variations are possible in light of the above teachings or may
be acquired from practicing of the invention. For example,
the described implementation includes software but the
present invention may be implemented as a combination of
hardware and software or in hardware alone. The invention
may be implemented with both object-oriented and non-
object-oriented programming systems.

What is claimed is:

1. A secure transport system for transporting secure pack-
ets from a first node to a second node, comprising:

a first node that creates secure packets, wherein each

secure packet contains identical retrieval information;
multiple secure relays that receive secure packets and non
secure packets from multiple nodes or other secure
relays, wherein said multiple secure relays are capable
of identifying retrieval information in each secure
packet, wherein each of said multiple secure relays
forwards secure packets to another of said multiple
secure relay and forwards non-secure packets to desti-
nation relays, end wherein said multiple secure relays
forward secure packets to the second node when a
retrieval condition has been indicated, and wherein
each of said multiple secure relays forwards secure
packets to another of said multiple secure relays when
the retrieval condition has not been indicated; and

a second node that creates a retrieval condition related to

said retrieval information in said multiple secure pack-
ets and receives the secure packets, wherein said first or
second nodes are not associated with said multiple
secure relays.

2. The system of claim 1, wherein the second node creates
a retrieval condition by generating a unique identifying flag
that identifies said multiple secure packets that contain the
same retrieval information, and wherein said second node
transmits said identifying flag to said multiple secure relays
to initiate transmission of said multiple secure packets to
said second node, and wherein said first or second nodes
may create said retrieval condition.

3. The system of claim 1, wherein the second node
successively forwards multiple identical retrieval packets to
said multiple secure relays, wherein each retrieval packet
indicates the retrieval condition for secure packets and
wherein each said retrieval packet contains a flag that
instructs said multiple secure relays to identify secure pack-
ets that contain the same retrieval information.

4. A method for transmitting packets in a secure format
from a first node to a second node, comprising the steps,
executed in a data processing system, of:

20

30

35

40

45

50

55

60

65

10

receiving secure packets in a first secure relay or a second
secure relay from the first node wherein said secure
packets contain retrieval information based on infor-
mation provided by the first node;

determining if a retrieval condition has been indicated by

identifying said secure packets that contain the same
retrieval information based on information provided by
the second node;

forwarding all secure packets associated with the retrieval

condition to the second node if the retrieval condition
has been indicated, wherein said second node may be
the first node; and

forwarding all secure packets to another secure relay if the

retrieval condition has not been indicated.
5. The method of claim 4, further comprising:
creating secure packets in a first node, wherein said secure
packets contain identical retrieval information;

transmitting the secure packets to random secure relays,
wherein the random secure relays include the first
secure relay and the second secure relay; and

providing a unique identifying flag from the second node
to the fist and second secure relays, wherein said unique
identifying flag identifies secure packets that contain
the same retrieval information.

6. The method of claim 4, wherein determining if a
retrieval condition has been indicated further comprises:

receiving a retrieval packet from the second node in the

first and second secure relays that indicates the retrieval
condition for secure packets, wherein said retrieval
packet contains a flag that instructs said first and second
secure relays to identify secure packets that contain the
same retrieval information; and

forwarding any secure packet from said first and second

secure relays associated with the retrieval packet to the
second node once the retrieval packet has been
received.

7. The method of claim 6, further comprising: determin-
ing if a secure packet is associated with the retrieval packet
by using a key algorithm.

8. The method of claim 4, wherein forwarding the secure
packet to the second node further comprises forwarding
secure packets associated with the retrieval condition to the
second node.

9. The method of claim 4, wherein forwarding the secure
packets to another secure relay further comprises:

randomly selecting other secure relays to forward a secure

packet to, wherein said secure packets are in transition
and not discoverable until a retrieval condition has been
indicated; and

modifying a header associated with each secure packet to

reflect the other secure relay.

10. The method of claim 4, wherein forwarding all secure
packets to another secure relay further comprises the steps
of:

at the forwarding secure relay, replacing a destination

header in all secure packets with a random secure relay;
and

at the forwarding secure relay, replacing a destination

header in all secure packets with the second node when
the retrieval condition has been indicated.

11. The method of claim 4 further comprising:

creating secure packets, wherein said secure packets in

said first node require a fee to be transmitted to said first
and second secure relays;

creating a retrieval condition, wherein said retrieval con-

dition initiates forwarding of said secure packets to said
second node;

US 7,113,996 B2

11

generating a billing event and wherein said billing event
is based on parameters, such as time size, source
destination, encryption level, iterations of data.

12. The method of claim 4, further comprising the steps
of:

forwarding all secure packets to a non secure relay,

wherein said non secure relay forwards said secure
packet to other secure relays based on a table.

13. The method of claim 4, wherein determining if a
retrieval condition has been indicated further comprises the
steps of:

at the first or second node, successively forwarding mul-

tiple identical retrieval packets to the first and second
secure relays, wherein each retrieval packet indicates
the retrieval condition for secure packets and wherein
said retrieval packet contains a flag that instructs mid
first and second secure relays identify secure packets
that contain the same retrieval information.

14. A method for maintaining a secure distributed storage
system by initiating a transmission of a message from a first
node to a second node in a secure manner, wherein the
second node may be the first node, comprising the steps,
executed in a data processing system, of:

creating a set of secure packets associated with the

message, wherein each secure packet contains an iden-
tical first retrieval key, wherein the first retrieval key is
created by the first node;

forwarding the set of secure packets to multiple secure

relays from the first node;

forwarding the set of secure packets among secure relays

so long as a second retrieval key associated with the

15

20

25

30

12

first retrieval key is not received in the said multiple
secure relays, wherein said second retrieval key is
created by the first or second node; and

forwarding the set of secure packets to the second node
once the second retrieval key is received in the said
multiple secure relays.

15. The method of claim 14, further comprising:

creating a second retrieval key in a second node, wherein
said second retrieval key is associated with destination
information for the set of secure packets and informa-
tion for identification of said first retrieval key;

transmitting said second retrieval key from the second
node to said multiple secure relays.

16. The method of claim 14, further comprising the steps

of:

at the second node, resequencing the set of secure packets
to recreate the message based on resequencing infor-
mation associated with the set of secure packets.

17. The method of claim 16, further comprising the steps

at the second node, creating a second retrieval key based
on the location of the second node, wherein said second
retrieval key is created based on the following methods;

automatically using a built in time delay created during
the creation of the secure packets of data, by a client
transmitting a retrieval key to relays, or some other
event, such as data integrity check, network outage or
insufficient client funds.

