

Exhibit A

Vantage Point Technology, Inc. v. Apple Inc. Doc. 1 Att. 1

Dockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/2:2013cv00989/148874/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/2:2013cv00989/148874/1/1.html
http://dockets.justia.com/

United States Patent [19]

lllIllllllllllllllllllllll
USOO546375OA

[11] Patent Number: 5,463,750

Sachs [45] Date of Patent: Oct. 31, 1995

[54] METHOD AND APPARATUS FOR 5,305,444 4/1994 Becker et a1. 395/400
TRANSLATING VIRTUAL ADDRESSES [N A 5,386,530 l/l995 Hattorl 395/400
DATA PROCESSING SYSTEM HAVING 5,404,476 4/1995 Kadaira 395/400
MULTIPLE INSTRUCTION PIPELINES AND 5,404,478 4/1995 Arai et al. 395/400
SEPARATE TLB,S FOR EACH PIPELINE 5,412,787 5/1995 Forsyth et a1. 395/400

[75]

[73]

[21]

[22]

[51]
[52]

[53]

[56l

Primary Examiner-Ken S. Kim
IIIVBHIOTI HOWaI‘d G- Sachs, Belved?fe, Calif. Attorney, Agent, or Firm—Townsend and Townsend and

Crew
Assi nee: Inter a h Cor oration, Huntsville,

g Ala‘ gr p p [57] ABSTRACT

A computing system has multiple instruction pipelines,
Appl. No.: 146,818 wherein one or more pipelines require translating virtual

. _ addresses to real addresses. A TLB is provided for each
F?ed' Nov‘ 2’ 1993 pipeline requiring address translation services, and an adress
Int. C1.6 G06F 12/10 translator is Provided for each Such Pipeline for translating
US. Cl. 395/496; 364/228; 2164/2557; 3 virtual address Tecieved from its associated Pipeline into

1364/2434; 364/DIG_ 1; 364/964343; 364/DIG_ 2; corresponding real addresses. Each address translator com
364/955’5; 395/80O; 395/42L03; 395/416 prises a translation buffer accessing circuit for accessing the

Field of Search 395/400 425 TLB’ *1 translation indicating circuit f0‘ indicating Whether
39137806 translation data for the virtual address is stored in the

translation bulfer, and an update control circuit for activating
References Cited the direct address translation circuit when the translation

data for the virtual address is not stored in the TLB. The
U-S- PATENT DOCUMENTS update control circuit also stores the translation data

4 758 951 7/1988 sznyter HI _ _ _ _ _ . ‘ “ 395/400 retrieved from the main memory into the TLB. If it is desired

4:980:816 12/1990 Fukuzaz?a et' a1_ 395/400 to have the same translation information available for all the
5,197,139 3/1993 Emma et a1. 395/400 Pipelines in 3 amp, then the update control Circuit also
5,226,133 7/1993 Taylor et al. _ . .. 395/400 updates all the other TLB’s in the group.

5,247,629 9/1993 Lasamatta et a1. 395/400

5,293,612 3/1994 Shingai 395/425 14 Claims, 4 Drawing Sheets

2101“ 2105\ 2100\ [200
LOAD LOAD STORE

INSTRUCTION INSTRUCTION INSTRUCTION
PIPELINE PIPELINE PIPELINE

215A“ 2155* 21a.c\
2148 2.146

ADDRESS / 2”‘ ADDRESS / ADDRESS /

REGISTER 225A REGISTER 225B REGISTER 229C

225C
2226‘

TLB

23”] \2341"
CMP

2450
/2350

UPDATE
CONTROL /240

U/244
TO MAIN

DTU MEMORY
34

151.9 j

US. Patent Oct. 31, 1995 Sheet 1 of 4 5,463,750

72 [50

10 REGISTER i) CACHE
\ FILE MEMORY

14\ 22 75 0/55 42 [30
INSTRUCTION L MAIN MASS
ISSUING MEMORY STORAGE
UNIT DEVICE

154/ L155 L154 &5'4
50 F45 54

DATA
F16‘ ‘1 TRANSFER

UNIT

VIRTUAL MEMORY

REAL MEMORY

4G BYTE 16M BYTE
224

232 BYTES
BYTES

RM = 212 PAGES
PAGE = 212 BYTES

FIG. 2A FIG. 2B

US. Patent Oct. 31, 1995 Sheet 3 0f 4 5,463,750

150A\
1w11%\Fm

127 154 42
\ TLB/ //" 1&2WL19u To DATA

VA<18 :12> UPDATE TRANSFER UNIT
VAT RA CNTRL DTU —~—*-To MAIN

1za-»// MEMORY
1 A 34

155J/ 0
‘\455 \\455 195

j7v‘\\\ , MISS?

“\ - 190

FOR RA TAG VA<31?2> [124
COMPARISON VA<31H2>
TO DETERMINE

-cAcHE HIT/MISS
VIRTUAL ADDRESS 154

31 19 18 12 11 O

VIRTUAL ADDRESSES
FROM OTHER PIPELINES

VAT = VIRTUAL ADDRESS TAG

RA REAL ADDRESS (BITS <31n2>)
vA = VIRTUAL ADDRESS

FIG. 4

US. Patent 0a. 31, 1995 Sheet 4 0f 4 5,463,750

210“ 2IOB-\ 2100\ [200
LOAD LOAD STORE

INSTRUCTION INSTRUCTION INSTRUCTION
PIPELINE PIPELINE PIPELINE

2143 2140
ADDRESS /214A ADDRESS / ADDRESS /
REGISTER 225A REGISTER 225B REGISTER 225C 2254 L__L 225B __ 1 |_____£ 2256‘ I L_.[

2224 \ i; 2335 -\ 222C~

: TLB :I) TLB ‘:5 TLB

CMP C: CMP (I: CMP <:_

23014-1 E45B-\
238A /2355 \2485

/_
/'238C

2484 j ‘
UPDATE 240

----~ CONTROL /

250 j

3 TO MAIN
DTU MEMORY

34

5,463,750
1

METHOD AND APPARATUS FOR
TRANSLATING VIRTUAL ADDRESSES IN A
DATA PROCESSDIG SYSTEM HAVING

MULTIPLE INSTRUCTION PIPELINES AND
SEPARATE TLB’S FOR EACH PIPELINE

BACKGROUND OF THE INVENTION

The present invention relates to computing systems and,
more particularly, to a method and apparatus for translating
virtual addresses in a computing system having multiple
instruction pipelines.

FIG. 1 is a block diagram of a typical computing system
10 which employs virtual addressing of data. Computing
system 10 includes an instruction issuing unit 14 which
communicates instructions to a plurality of (e.g., eight)
instruction pipelines 18A-H over a communication path 22.
The data referred to by the instructions in a program are
stored in a mass storage device 30 which may be, for
example, a disk or tape drive. Since mass storage devices
operate very slowly (e. g., a million or more clock cycles per
access) compared to instruction issuing unit 14 and instruc
tion pipelines 18A-H, data currently being worked on by the
program is stored in a main memory 34 which may be a
random access memory (RAM) capable of providing data to
the program at a much faster rate (e.g., 30 or so clock
cycles). Data stored in main memory 34 is transferred to and
from mass storage device 30 over a communication path 42.
The communication of data between main memory 34 and
mass storage device 30 is controlled by a data transfer unit
46 which communicates with main memory 34 over a
communication path 50 and with mass storage device 30
over a communication path 54.

Although main memory 34 operates much faster than
mass storage device 30, it still does not operate as quickly
as instruction issuing unit 14 or instruction pipelines
18A-H. Consequently, computing system 10 includes a high
speed cache memory 60 for storing a subset of data from
main memory 34, and a very high speed register ?le 64 for
storing a subset of data from cache memory 60. Cache
memory 60 communicates with main memory 34 over a
communication path 68 and with register ?le 64 over a
communication path 72. Register ?le 64 communicates with
instruction pipelines 18A—H over a communication path 76.
Register ?le 64 operates at approximately the same speed as
instruction issuing unit 14 and instruction pipelines 18A-H

15

20

25

35

45

(e.g., a fraction of a clock cycle), whereas cache memory 60 /
operates at a speed somewhere between register ?le 64 and
main memory 34 (e.g., approximately two or three clock
cycles).

PIGS. 2A-B are block diagrams illustrating the concept
of virtual addressing. Assume computing system 10 has 32
bits available to address data. The addressable memory
space is then 232 bytes, or four gigabytes (4 GB), as shown
in FIG. 2A. However, the physical (real) memory available
in main memory 34 typically is much less than that, e.g.,
1—256 megabytes. Assuming a 16 megabyte (16 MB) real
memory, as shown in FIG. 2B, only 24 address bits are
needed to address the memory. Thus, multiple virtual
addresses inevitably will be translated to the same real
address used to address main memory 34. The same is true
for cache memory 60, which typically stores only l—36
kilobytes of data. Register ?le 64 typically comprises, e.g.,
32 32-bit registers, and it stores data from cache memory 60
as needed. The registers are addressed by instruction pipe
lines 18A—H using a different addressing scheme.

50

55

65

2
To accommodate the difference between virtual addresses

and real addresses and the mapping between them, the
physical memory available in computing system 10 is
divided into a set of uniform-size blocks, called pages. If a
page contains 212 or 4 kilobytes (4 KB), then the full 32-bit
address space contains 220 or 1 million (lM) pages (4
KB><1M=4 GB). Of course, if main memory 34 has 16
megabytes of memory, only 212 or 4K of the 1 million
potential pages actually could be in memory at the same time
(4KX4 KB=16 MB).
Computing system 10 keeps track of which pages of data

from the 4 GB address space currently reside in main
memory 34 (and exactly where each page of data is physi
cally located in main memory 34) by means of a set of page
tables 100 (FIG. 3) typically stored in main memory 34.
Assume computing system 10 speci?es 4 KB pages and each
page table 100 contains 1K entries for providing the location
of 1K separate pages. Thus, each page table maps 4 MB of
memory (lK><4KB=4 MB), and 4 page tables su?ice for a
machine with 16 megabytes of physical main memory (16
MB/4 MB=4).
The set of potential page tables are tracked by a page

directory 104 which may contain, for example, 1K entries
(not all of which need to be used). The starting location of
this directory (its origin) is stored in a page directory origin
(PDO) register 108.
To locate a page in main memory 34, the input virtual

address is conceptually split into a 12-bit displacement
address (VA<I1:0>), a 10-bit page table address
(VA<21:12>) for accessing page table 100, and a lO-bit
directory address (<VA 31:22>) for accessing page directory
104. The address stored in PDO register 108 is added to the
directory address VA<31:22> of the input virtual address in
a page directory entry address accumulator 112. The address
in page directory entry address accumulator 112 is used to
address page directory 104 to obtain the starting address of
page table 100. The starting address of page table 100 is then
added to the page table address VA<21:12> of the input
virtual address in a page table entry address accumulator
116, and the resulting address is used to address page table
100. An address ?eld in the addressed page table entry gives
the starting location of the page in main memory 34 corre
sponding to the input virtual address, and a page fault ?eld
PF indicates whether the page is actually present in main
memory 34. The location of data within each page is
typically speci?ed by the 12 lower-order displacement bits
of the virtual address.

When an instruction uses data that is not currently stored
in main memory 34, a page fault occurs, and the faulting
instruction abnormally terminates. Thereafter, data transfer
unit 42 must ?nd an unused 4 KB portion of memory in main
memory 34, transfer the requested page from mass storage
device 30 into main memory 34, and make the appropriate
update to the page table (indicating both the presence and
location of the page in memory). The program then may be
restarted.

FIG. 4 is a block diagram showing how virtual addresses
are translated in the computing system shown in FIG. 1.
Components which remain the same as FIGS. 1 and 3 retain
their original numbering. An address register 154 receives
an input virtual address which references data used by an
instruction issued to one of instruction pipelines 14A—H, a
translation memory (e.g., a translation lookaside buifer
(TLB)) 158 and comparator 170 for initially determining
whether data requested by the input virtual address resides
in main memory 34, and a dynamic translation unit (DTU)

5,463,750
3

162 for accessing page tables in main memory 34. Bits
VA[18112] of the input virtual address are communicated to
TLB 158 over a communication path 166, bits VA[31:12] of
the input virtual address are communicated to DTU 162 over
a communication path 174, and bits VA[31:19] are commu
nicated to comparator 170 over a communication path 176.

TLB 158 includes a plurality of addressable storage
locations 178 that are addressed by bits VA[18:12] of the
input virtual address. Each storage location stores a virtual
address tag (VAT) 180, a real address (RA) 182 correspond
ing to the virtual address tag, and control information
(CNTRL) 184. How much control information is included
depends on the particular design and may include, for
example, access protection ?ags, dirty ?ags, referenced
?ags, etc.

The addressed virtual address tag is communicated to
comparator 170 over a communication path 186, and the
addressed real address is output on a communication path
188. Comparator 170 compares the virtual address tag with
bits VA[31:22] of the input virtual address. If they match (a
TLB hit), then the real address output on communication
path 188 is compared with a real address tag (not shown) of
a selected line in cache memory 60 to determine if the
requested data is in the cache memory (a cache hit). An
example of this procedure is discussed in US. Pat. No.
4,933,835 issued to Howard G. Sachs, et a1. and incorpo
rated herein by reference. If there is a cache hit, then the
pipelines may continue to run at their highest sustainable
speed. If the requested data is not in cache memory 60, then
the real address bits on communication path 188 are com
bined with bits [11:0] of the input virtual address and used
to obtain the requested data from main memory 34.

If the virtual address tag did not match bits VA[31:19] of
the input virtual address, then comparator 17 0 provides a
miss signal on a communication path 190 to DTU 162. The
miss signal indicates that the requested data is not currently
stored in main memory 34, or else the data is in fact present
in main memory 34 but the corresponding entry in TLB 158
has been deleted.

When the miss signal is generated, DTU 162 accesses the
page tables in main memory 34 to determine whether in fact
the requested data is currently stored in main memory 34. If
not, then DTU 162 instructs data transfer unit 42 through a
communication path 194 to fetch the page containing the
requested data from mass storage device 30. In any event,
TLB 158 is updated through a communication path 196, and
instruction issuing resumes.

TLB 158 has multiple ports to accommodate the
addresses from the pipelines needing address translation
services. For example, if two load instruction pipelines and
one store instruction pipeline are used in computing system
10, then TLB 158 has three ports, and the single memory
array in TLB 158 is used to service all address translation
requests.
As noted above, new virtual-to-real address translation

information is stored in TLB 158 whenever a miss signal is
generated by comparator 170. The new translation informa
tion typically replaces the oldest and least used entry pres
ently stored in TLB 158. While this mode of operation is
ordinarily desirable, it may have disadvantages when a
single memory array is used to service address translation
requests from multiple pipelines. For example, if each
pipeline refers to different areas of memory each time an
address is to be translated, then the translation information
stored in TLB 158 for one pipeline may not get very old
before it is replaced by the translation information obtained

10

25

30

35

50

55

65

4
by DTU 162 for the same or another pipeline at a later time.
This increases the chance that DTU 162 will have to be
activated more often, which degrades performance. The
effect is particularly severe and counterproductive when a
?rst pipeline repeatedly refers to the same general area of
memory, but the translation information is replaced by the
other pipelines between accesses by the ?rst pipeline.

SUMMARY OF THE INVENTION

The present invention is directed to a method and appa
ratus for translating virtual addresses in a computing system
having multiple pipelines wherein a separate TLB is pro
vided for each pipeline requiring address translation ser
vices. Each TLB may operate independently so that it
contains its own set of virtual-to-real address translations, or
else each TLB in a selected group may be simultaneously
updated with the same address translation information
whenever the address translation tables in main memory are
accessed to obtain address translation information for any
other TLB in the group.

In one embodiment of the present invention, a TLB is
provided for each load/store pipeline in the system, and an
address translator is provided for each such pipeline for
translating a virtual address recieved from its associated
pipeline into corresponding real addresses. Each address
translator comprises a translation bu?’er accessing circuit for
accessing the TLB, a translation indicating circuit for indi
cating whether translation data for the virtual address is
stored in the translation bu?fer, and an update control circuit
for activating the direct address translation circuit when the
translation data for the virtual address is not stored in the
TLB. The update control circuit also stores the translation
data retrieved from the main memory into the TLB. If it is
desired to have the same translation information available
for all the pipelines in a group, then the update control circuit
also updates all the other TLB’s in the group.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a known computing system;
FIGS. 2A and 2B are each diagrams illustrating virtual

addressing;
FIG. 3 is a diagram showing how page tables are accessed

in the computing system shown in FIG. 1;
FIG. 4 is a block diagram illustrating how virtual

addresses are translated in the computing system shown in
FIG. 1; and

FIG. 5 is a block diagram of a particular embodiment of
a multiple TLB apparatus for translating virtual addresses in
a computing system according to the present invention.

BRIEF DESCRIPTION OF THE PREFERRED
EMBODIMENTS

FIG. 5 is a block diagram of a particular embodiment of
an apparatus 200 according to the present invention for
translating virtual addresses in a computing system such as
computing system 10 shown in FIG. 1. Apparatus 200
includes, for example, a load instruction pipeline 210A, a
load instruction pipeline 2103, and a store instruction pipe
line 210C. These pipelines may be three of the pipelines
18A—H shown in FIG. 1. Pipelines 210A-C communicate
virtual addresses to address registers 214A-C over respec
tive communication paths 218A-C. Relevant portions of the
virtual addresses stored in address registers 218A-C are
communicated to TLB’s 222A—C and to comparators

5,463,750
5

230A-C over communication paths 226A—C and 228A—C,
respectively. TLB’s 222A—C are accessed in the manner
noted in the Background of the Invention, and the addressed
virtual address tags in each TLB are communicated to
comparators 230A-C over respective communication paths
234A-C. Comparators 238A-C compare the virtual address
tags to the higher order bits of the respective virtual
addresses and provide hit/miss signals on communication
paths 238A-C to an update control circuit 240.

Update control circuit 240 controls the operation of DTU
162 through a communication path 244 and updates TLB’s
222A-C through respective update circuits 241-243 and
communication paths 248A-C whenever there is a miss
signal generated on one or more of communication paths
238A—C. That is, update control circuit 240 activates DTU
162 whenever a miss signal is received over communication
path 238A and stores the desired translation information in
TLB 222A through communication path 248A; update con
trol circuit 240 activates DTU 162 whenever a miss signal
is received over communication path 238B and stores the
desired translation information in TLB 222B through com
munication path 248B; and update control circuit 240 acti
vates DTU 162 whenever a miss signal is received over
communication path 238C and stores the desired translation
infonnation in TLB 222C through communication path
248C.

If desired, each TLB 222A-C may be updated indepen
dently of the others, which results in separate and indepen
dent sets of virtual-to-real address translation data in each
TLB. Thus, if, for example, pipeline 210A tends to refer to
a particular area of memory more than the other pipelines
210B—C, then TLB 222A will store a set of virtual-to-real
address translations that maximize the hit rate for pipeline
210A. Even if pipeline 210A does not favor a particular area
of memory, having a separate and independent set of virtual
to~real address translation data eliminates the possibility that
needed translation information in TLB 222A is deleted and
replaced by translation data for another pipeline.

If all three pipelines tend to refer to a common area of
memory, then update control circuit 240 can be hardware or
software programmed to simultaneously update all TLB’s
with the same translation data whenever the address trans
lation tables in main memory are accessed to obtain address
translation information for any other TLB. That is, every
time DTU 162 is activated for translating a virtual address
supplied by pipeline 210A, then update control circuit stores
the translation data in each of TLB’s 222A-C. While this
mode of operation resembles that described for a multi
ported TLB as described in the Background of the Invention,
this embodiment still has bene?ts in that three separate
single-port TLB’s are easier to implement than one multi
port TLB and takes up only slightly more chip area.

If one group of pipelines tends to refer to a common area
of memory and other pipelines do not, then update control
circuit 240 can be hardware or software programmed to
maintain a common set of translations in the TLB’s associ—
ated with the group while independently updating the other
TLB’s. For example, if load pipelines 210A and 210B tend
to refer to a common area in memory and store pipeline
210C tends to refer to a di?’erent area of memory (or to
random areas of memory), then control circuit 240 activates
DTU 162 whenever a miss signal is received over commu
nication path 238A and stores the desired translation infor
mation in both TLB 222A and TLB 222B. Similarly, update
control circuit 240 activates DTU 162 whenever a miss
signal is received over communication path 238B and stores
the desired translation information in both TLB 222A and

10

25

40

45

55

65

6
TLB 222B. On the other hand, update control circuit 240
activates DTU 162 whenever a miss signal is received over
communication path 238C and stores the desired translation
information only in TLB 222C.

While the above is a complete description of a preferred
embodiment of the present invention, various modi?cations
may be employed. For example, signals on a communication
path 260 could be used to control which TLB’s are com
monly updated and which TLB’s are separately updated
(e.g., all TLB’s updated independently, TLB’s 222A and
222C updated in common while TLB 222B is updated
independently, or TLB’s 222A-C all updated in common).
That is useful when common memory references by the
pipelines are application or program dependent. Conse
quently, the scope of the invention should be ascertained by
the following claims.
What is claimed is:
1. An apparatus for translating virtual addresses in a

computing system having at least a ?rst and a second
instruction pipeline and a direct address translation unit for
translating virtual addresses into real addresses, the direct
address translation unit including a master translation
memory for storing translation data, the direct address
translation unit for translating a virtual address into a
corresponding real address, comprising:

a ?rst translation buffer, associated with the ?rst instruc
tion pipeline, for storing a ?rst subset of translation data
from the master translation memory;

a ?rst address translator, coupled to the ?rst instruction
pipeline and to the ?rst translation buffer, for translat
ing a ?rst virtual address received from the ?rst instruc
tion pipeline into a corresponding ?rst real address, the
?rst address translator comprising:
?rst translation bulfer accessing means for accessing

the ?rst translation buffer;
?rst translation indicating means, coupled to the ?rst

translation bu?’er accessing means, for indicating
whether translation data for the ?rst virtual address is
stored in the ?rst translation buffer; and

?rst direct address translating means, coupled to the
?rst translation indicating means and to the direct
address translation unit to translate the ?rst virtual
address when the ?rst translation indicating means
indicates that the translation data for the ?rst virtual
address is not stored in the ?rst translation buffer, the
?rst direct address translating means including ?rst
translation buffer storing means, coupled to the ?rst
translation buffer, for storing the translation data for
the ?rst virtual address from the master translation
memory into the ?rst translation buffer;

a second nanslation buffer, associated with the second
instruction pipeline, for storing a second subset of
translation data from the master translation memory;
and

a second address translator, coupled to the second instruc
tion pipeline and to the second translation buifer, for
translating a second virtual address received from the
second instruction pipeline into a corresponding second
real address, the second address translator comprising:
second translation buffer accessing means for accessing

the second translation buffer;
second translation indicating means, coupled to the

second translation buffer accessing means, for indi
cating whether translation data for the second virtual
address is stored in the second translation bu?cer; and

second direct address translating means, coupled to the

5,463,750
7

second translation indicating means and to the ?rst
address translation unit, for activating the direct
address translation unit to translate the second virtual
address when the second translation indicating
means indicates that the translation data for the
second virtual address is not stored in the second
translation buffer, the second direct address translat
ing means including second translation bulfer storing
means, coupled to the second translation butter, for
storing the translation data for the second virtual
address from the master translation memory into the
second translation buffer.

2. The apparatus according to claim 1,
wherein the ?rst direct address translating means further

comprises second translation buffer storing means,
coupled to the second translation butter, for storing the
translation data for the ?rst virtual address from the
master translation memory into the second translation
buiTer.

3. The apparatus according to claim 2:
wherein the second direct address translating means fur

ther comprises ?rst translation buffer storage means,
coupled to the ?rst translation bu?’er, for storing the
translation data for the second virtual address from the
master translation memory into the ?rst translation
buffer.

4. The apparatus according to claim 3 further comprising:
a third translation buffer, associated with a third instruc

tion pipeline, for storing a third subset of translation
data from the master translation memory;

a third address translator, coupled to the third instruction
pipeline and to the third translation bu?'er, for translat
ing a third virtual address received from the third
instruction pipeline into a corresponding third real
address, the third address translator comprising:
third translation buffer accessing means for accessing

the third translation buffer;
third translation indicating means, coupled to the third

translation buffer accessing means, for indicating
whether translation data for the third virtual address
is stored in the third translation buffer; and

third direct address translating means, coupled to the
third translation indicating means and to the direct
address translation unit, for activating the direct
address translation unit to translate the third virtual
address when the third translation indicating means
indicates that the translation data for the third virtual
address is not stored in the third translation buifer,
the third direct address translating means including
third translation butfer storing means, coupled to the
third translation buffer, for storing the translation
data for the third virtual address from the master
translation memory into the third translation buffer.

5. The apparatus according to claim 4,
wherein the third translation buffer storing means is the

only means for storing translation data into the third
translation buifer.

6. The apparatus according to claim 5,
wherein the ?rst instruction pipeline comprises a ?rst load

instruction pipeline for processing instructions which
cause data to be loaded from a memory; and

wherein the third instruction pipeline comprises a store
instruction pipeline for processing instructions which
cause data to be stored into the memory.

7. The apparatus according to claim 6,
wherein the second instruction pipeline comprises a sec

10

25

35

40

45

55

65

8
0nd load instruction pipeline for processing instruc
tions which cause data to be loaded from the memory.

8. A method for translating virtual addresses in a com
puting system having at least a ?rst and a second instruction
pipeline and a direct address translation unit for translating
virtual addresses into real addresses, the direct address
translation unit including a master translation memory for
storing translation data, the direct address translation unit for
translating a virtual address into a corresponding real
address, comprising the steps of:

storing a ?rst subset of translation data from the master
translation memory into a ?rst translation buffer asso
ciated with the ?rst instruction pipeline;

translating a ?rst virtual address received from the ?rst
instruction pipeline into a corresponding ?rst real
address, wherein the ?rst virtual address translating
step comprises the steps of:
accessing the ?rst translation buffer;
indicating whether translation data for the ?rst virtual

address is stored in the ?rst translation buffer;
activating the direct address translation unit to translate

the ?rst virtual address when the translation data for
the ?rst virtual address is not stored in the ?rst
translation buffer; and

storing the translation data for the ?rst virtual address
from the master translation memory into the ?rst
translation bu?er;

storing a second subset of translation data from the master
translation memory into a second translation buffer
associated with the second instruction pipeline; and

translating a second virtual address received from the
second instruction pipeline into a corresponding second
real address, wherein the second virtual address trans
lating step comprises the steps of:
accessing the second translation buffer;
indicating whether translation data for the second vir

tual address is stored in the second translation bulfer;
activating the direct address translation unit to translate

the second virtual address when the translation data
for the second virtual address is not stored in the
second translation bulfer; and

storing the translation data for the second virtual
address from the master translation memory into the
second translation buffer.

9. The method according to claim 8 further comprising the
step of:

storing the translation data for the ?rst virtual address
from the master translation memory into the second
translation buffer whenever translation data for the ?rst
virtual address from the master translating memory is
stored into the ?rst translation bu?rer.

10. The method according to claim 9 further comprising
the step of:

storing the translation data for the second virtual address
from the master translation memory into the ?rst trans
lation buifer whenever translation data for the second
virtual address from the master translation memory is
stored into the second translation buffer.

11. The method according to claim 10 further comprising
the steps of:

storing a third subset of translation data from the master
translation memory into a third translation bulfer asso
ciated with the third instruction pipeline; and

translating a third virtual address received from the third
instruction pipeline into a corresponding third real
address, where in the third virtual address translating

5,463,750
9

step comprises the steps of:
accessing the third translation butler;
indicating whether translation data for the third virtual

address is stored in the third translation buffer;
activating the direct address translation unit to translate

the third virtual address when the translation data for
the third virtual address is not stored in the third
translation bu?’er; and

storing the translation data for the third virtual address
from the master translation memory into the third 10
translation buifer.

12. The method according to claim 11,
wherein the step of storing the translation data for the

third virtual address comprises the step of storing
translation data for only the third virtual address in the

5

10
third translation bulfer.

13. The method according to claim 12,

wherein the ?rst instruction pipeline comprises a ?rst load
instruction pipeline for processing instructions which
cause data to be loaded from a memory; and

wherein the third instruction pipeline comprises a store
instruction pipeline for processing instructions which
cause data to be stored in the memory.

14. The method according to claim 13,

wherein the second instruction pipeline comprises a sec
ond load instruction pipeline for processing instruc—
tions which cause data to be loaded from the memory.

