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DIAGNOSTIC AND MANAGING
DISTRIBUTED PROCESSOR SYSTEM

This application incorporates by reference in its entirety
and is a continuation of Ser. No. 08/942,403 issued Jan. 8,
2002 filed Oct. 1, 1997, now U.S. Pat. No. 6,338,150,
entitled ‘DIAGNOSTIC AND MANAGING DISTRIB-
UTED PROCESSOR SYSTEM?, filed Oct. 1, 1997, which
in turn claims priority to the following provisional patent
applications:

Application Filing
Title No. Date
“Remote Access and Control of 60/046,397 May 13, 1997
Environmental Management System”
“Hardware and Software Architecture for 60/047,016 May 13, 1997
Inter-Connecting an Environmental
Management System with a Remote
Interface”
“Self Management Protocol for a 60/047,016 May 13, 1997
Fly-By-Wire Service Processor”
“Computer System Hardware Infra- 60/046,398 May 13, 1997
structure for Hot Plugging Single and
Multi-Function PC Cards
Without Embedded Bridges”
“Computer System Hardware Infra- 60/046,312 May 13, 1997

structure for Hot Plugging Multi-Function
PCI Cards With Embedded Bridges™

This application is related U.S. Pat. No. 6,249,885,
entitled “METHOD FOR MANAGING A DISTRIBUTED
PROCESSOR SYSTEM?”, U.S. Pat. No. 6,122,758, entitled
“SYSTEM FOR MAPPING ENVIRONMENTAL
RESOURCES TO MEMORY FOR PROGRAM ACESS”,
and U.S. Pat. No. 6,199,173, entitled “METHOD FOR
MAPPING ENVIRONMENTAL RESOURCES TO
MEMORY FOR PROGRAM ACCESS”, and each contains
related subject matter and are each incorporated by reference
in their entirety.

APPENDICES

Appendix A, which forms a part of this disclosure, is a list
of commonly owned copending U.S. patent applications.
Each one of the applications listed in Appendix A is hereby
incorporated herein it its entirety by reference thereto.

Appendix B, which forms part of this disclosure, is a copy
of the U.S. provisional patent application filed May 13,
1997, entitled “SELF MANAGEMENT PROTOCOL FOR
A FLY-BY-WIRE SERVICE PROCESSOR” and assigned
Application No. 60/046,413. Page 1, line 7 of the provi-
sional application has been changed from the original to
positively recite that the entire provisional application,
including the attached documents, forms part of the this
disclosure.

Appendix C, which forms part of this disclosure, is a copy
of the U.S. provisional patent application filed May 13,
1997, entitled “HARDWARE AND SOFTWARE ARCHI-
TECTURE FOR INTER-CONNECTING AN ENVIRON-
MENTAL MANAGEMENT SYSTEM WITH A REMOTE
INTERFACE” and assigned Application No. 60/047,016. In
view of common pages between the foregoing two
applications, a copy of only the first three pages of U.S.
provisional application has been changed from the original
to positively recite that the entire provisional application,
including the attached documents, forms part of this disclo-
sure.

COPYRIGHT RIGHTS

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
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The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent files or records, but otherwise reserves all copyright
rights whatsoever.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates to the field of fault tolerant com-
puter systems. More particularly, the invention relates to a
managing and diagnostic system for evaluating and control-
ling the environmental conditions of a fault tolerant com-
puter system.

2. Description of the Related Technology

As enterprise-class servers become more powerful and
more capable, they are also becoming ever more sophisti-
cated and complex. For many companies, these changes lead
to concerns over server reliability and manageability, par-
ticularly in light of the increasingly critical role of server-
based applications. While in the past many systems admin-
istrators were comfortable with all of the various
components that made up a standards-based network server,
today’s generation of servers can appear as an
incomprehensible, unmanageable black box. Without vis-
ibility into the underlying behavior of the system, the
administrator must “fly blind.” Too often, the only indicators
the network manager has on the relative health of a particu-
lar server is whether or not it is running.

It is well-acknowledged that there is a lack of reliability
and availability of most standards-based servers. Server
downtime, resulting either from hardware or software faults
or from regular maintenance, continues to be a significant
problem. By one estimate, the cost of downtime in mission
critical environments has risen to an annual total of $4.0
billion for U.S. businesses, with the average downtime event
resulting in a $140 thousand loss in the retail industry and a
$450 thousand loss in the securities industry. It has been
reported that companies lose as much as $250 thousand in
employee productivity for every 1% of computer downtime.
With emerging Internet, intranet and collaborative applica-
tions taking on more essential business roles every day, the
cost of network server downtime will continue to spiral
upward. Another major cost is of system downtime admin-
istrators to diagnose and fix the system. Corporations are
looking for systems which do not require real time service
upon a system component failure.

‘While hardware fault tolerance is an important element of
an overall high availability architecture, it is only one piece
of the puzzle. Studies show that a significant percentage of
network server downtime is caused by transient faults in the
I/O subsystem. Transient failures are those which make a
server unusable, but which disappear when the server is
restarted, leaving no information which points to a failing
component. These faults may be due, for example, to the
device driver, the adapter card firmware, or hardware which
does not properly handle concurrent errors, and often causes
servers to crash or hang. The result is hours of downtime per
failure, while a system administrator discovers the failure,
takes some action and manually reboots the server. In many
cases, data volumes on hard disk drives become corrupt and
must be repaired when the volume is mounted. A dismount-
and-mount cycle may result from the lack of hot pluggability
in current standards-based servers. Diagnosing intermittent
errors can be a frustrating and time-consuming process. For
a system to deliver consistently high availability, it should be
resilient to these types of faults.
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Modem fault tolerant systems have the functionality
monitor the ambient temperature of a storage device enclo-
sure and the operational status of other components such the
cooling fans and power supply. However, a limitation of
these server systems is that they do not contain self-
managing processes to correct malfunctions. Thus, if a
malfunction occurs in a typical server, the one corrective
measure taken by the server is to give notification of the
error causing event via a computer monitor to the system
administrator. If the system error caused the system to stop
running, the system administrator might never know the
source of the error. Traditional systems are lacking in detail
and sophistication when notifying system administrators of
system malfunctions. System administrators are in need of a
graphical user interface for monitoring the health of a
network of servers. Administrators need a simple point-and-
click interface to evaluate the health of each server in the
network. In addition, existing fault tolerant servers rely upon
operating system maintained logs for error recording. These
systems are not capable of maintaining information when
the operating system is inoperable due to a system malfunc-
tion.

Existing systems also do not have an interface to control
the changing or addition of an adapter. Since any user on a
network could be using a particular device on the server,
system administrators need a software application that will
control the flow of communications to a device before,
during, and after a hot plug operation on an adapter.

Also, in the typical fault tolerant computer system, the
control logic for the diagnostic system is associated with a
particular processor. Thus, if the environmental control
processor malfunctioned, then all diagnostic activity on the
computer would cease. In traditional systems, there is no
monitoring of fans, and no means to make up cooling
capacity lost when a fan fails. Some systems provide a
processor located on a plug-in PCI card which can monitor
some internal systems, and control turning power on and off.
If this card fails, obtaining information about the system,
and controlling it remotely, is no longer possible. Further,
these systems are not able to affect fan speed or cooling
capacity.

Therefore, a need exists for improvements in server
management which will result in greater reliability and
dependability of operation. Server users are in need of a
management system by which the users can accurately
gauge the health of their system. Users need a high avail-
ability system that should not only be resilient to faults, but
should allow for maintenance, modification, and growth--
without downtime. System users should be able to replace
failed components, and add new functionality, such as new
network interfaces, disk interface cards and storage, without
impacting existing users. As system demands grow, organi-
zations must frequently expand, or scale, their computing
infrastructure, adding new processing power, memory, stor-
age and I/O capacity. With demand for 24-hour access to
critical, server-based information resources, planned system
downtime for system service or expansion has become
unacceptable.

SUMMARY OF THE INVENTION

Embodiments of the inventive monitoring and manage-
ment system provide system administrators with new levels
of client/server system availability and management. It gives
system administrators and network managers a comprehen-
sive view into the underlying health of the server—in real
time, whether on-site or off-site. In the event of a failure, the
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invention enables the administrator to learn why the system
failed, why the system was unable to boot, and to control
certain functions of the server.

One embodiment of the invention is a computer monitor-
ing and diagnostic system, comprising: a computer; a plu-
rality of sensors capable of sensing conditions of the com-
puter; and a microcontroller network, comprising a plurality
of interconnected microcontrollers, connected to the sensors
and the computer, wherein the microcontroller network
processes requests for conditions from the computer and
responsively provides sensed conditions to the computer.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is one embodiment of a top-level block diagram
showing a fault tolerant computer system of the invention,
including mass storage and network connections.

FIG. 2 is one embodiment of a block diagram showing a
first embodiment of a multiple bus configuration connecting
I/O adapters and a network of microcontrollers to the
clustered CPUs of the fault tolerant computer system shown
in FIG. 1.

FIG. 3 is one embodiment of a block diagram showing a
second embodiment of a multiple bus configuration con-
necting canisters containing I/O adapters and a network of
microcontrollers to the clustered CPUs of the fault tolerant
system shown in FIG. 1.

FIG. 4 is one embodiment of a top-level block diagram
illustrating the microcontroller network shown in FIGS. 2
and 3.

FIGS. 5A 5C are detailed block diagrams showing one
embodiment of the microcontroller network shown in FIG.
4 illustrating the signals and values monitored by each
microcontroller, and the control signals generated by the
microcontrollers.

FIG. 6 is one embodiment of a flowchart showing the
process by which a remote user can access diagnostic and
managing services of the microcontroller network shown in
FIGS. 4, 5A and 5B.

FIG. 7 is one embodiment of a block diagram showing the
connection of an industry standard architecture (ISA) bus to
the microcontroller network shown in FIGS. 4, 5A and 5B.

FIG. 8 is one embodiment of a flowchart showing the
master to slave communications of the microcontrollers
shown in FIGS. 4, 5A and 5B.

FIG. 9 is one embodiment of a flowchart showing the
slave to master communications of the microcontrollers
shown in FIGS. 4, 5A and 5B.

FIGS. 10A and 10B are flowcharts showing one process
by which the System Interface, shown in FIGS. 4, SA and
5B, gets commands and relays commands from the ISA bus
to the network of microcontrollers.

FIGS. 11A and 11B are flowcharts showing one process
by which a Chassis microcontroller, shown in FIGS. 4, SA
and 5B, manages and diagnoses the power supply to the
computer system.

FIG. 12 is a flowchart showing one process by which the
Chassis controller, shown in FIGS. 4, 5A and 5B, monitors
the addition and removal of a power supply from the fault
tolerant computer system.

FIG. 13 is a flowchart showing one process by which the
Chassis controller, shown in FIGS. 4, 5A and 5B, monitors
temperature.

FIGS. 14A and 14B are flowcharts showing one embodi-
ment of the activities undertaken by CPU A controller,
shown in FIGS. 4, 5A and 5B.
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FIG. 15 is a detailed flowchart showing one process by
which the CPU A controller, show in FIGS. 4, 5A and 5B,
monitors the fan speed for the system board of the computer.

FIG. 16 is a flowchart showing one process by which
activities of the CPU B controller, shown in FIGS. 4, 5A and
5B, scans for system faults.

FIG. 17 is a flowchart showing one process by which
activities of a Canister controller, shown in FIGS. 4, 5A and
5B, monitors the speed of the canister fan of the fault
tolerant computer system.

FIG. 18 is a flowchart showing one process by which
activities of the System Recorder, shown in FIGS. 4, SA and
5B, resets the NVRAM located on the backplane of the fault
tolerant computer system.

DETAILED OF THE INVENTION

The following detailed description presents a description
of certain specific embodiments of the invention. However,
the invention can be embodied in a multitude of different
ways as defined and covered by the claims. In this
description, reference is made to the drawings wherein like
parts are designated with like numerals throughout.

FIG. 1 is one embodiment of a block diagram showing a
fault tolerant computer system of the invention. Typically
the computer system is one server in a network of servers
and communicating with client computers. Such a configu-
ration of computers is often referred to as a client-server
architecture. A fault tolerant server is useful for mission
critical applications such as the securities business where
any computer down time can result in catastrophic financial
consequences. A fault tolerant computer will allow for a
fault to be isolated and not propagate through the system
thus providing complete or minimal disruption to continuing
operation. Fault tolerant systems also provide redundant
components such as adapters so service can continue even
when one component fails.

The system includes a fault tolerant computer system 100
connecting to external peripheral devices through high speed
1/O channels 102 and 104. The peripheral devices commu-
nicate and are connected to the high speed I/O channels 102
and 104 by mass storage buses 106 and 107. In different
embodiments of the invention, the bus system 106, 107
could be Peripheral Component Interconnect (PCI),
Microchannel, Industrial Standard Architecture (ISA) and
Extended ISA (EISA) architectures. In one embodiment of
the invention, the buses 106, 107 are PCI. Various kinds of
peripheral controllers 108, 112, 116, and 128, may be
connected to the buses 106 and 107 including mass storage
controllers, network adapters and communications adapters.
Mass storage controllers attach to data storage devices such
as magnetic disk, tape, optical disk, CD-ROM. These data
storage devices connect to the mass storage controllers using
one of a number of industry standard interconnects, such as
small computer storage interface (SCSI), IDE, EIDE, SMD.
Peripheral controllers and I/O devices are generally off-the-
shelf products. For instance, sample vendors for a magnetic
disk controller 108 and magnetic disks 110 include Qlogic,
and Quantum (respectively). Each magnetic disk may hold
multiple Gigabytes of data.

A client server computer system typically includes one or
more network interface controllers (NICs) 112 and 128. The
network interface controllers 112 and 128 allow digital
communication between the fault tolerant computer system
100 and other computers (not shown) such as a network of
servers via a connection 130. For LAN embodiments of the
network adapter, the network media used may be, for
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example, Ethernet (IEEE 802.3), Token Ring (IEEE 802.5),
Fiber Distributed Datalink Interface (FDDI) or Asynchro-
nous Transfer Mode (ATM).

In the computer system 100, the high speed I/O channels,
buses and controllers (102-128) may, for instance, be pro-
vided in pairs. In this example, if one of these should fail,
another independent channel, bus or controller is available
for use until the failed one is repaired.

In one embodiment of the invention, a remote computer
130 is connected to the fault tolerant computer system 100.
The remote computer 130 provides some control over the
fault tolerant computer system 100, such as requesting
system status.

FIG. 2 shows one embodiment of the bus structure of the
fault tolerant computer system 100. A number ‘n’ of central
processing units (CPUs) 200 are connected through a host
bus 202 to a memory controller 204, which allows for access
to semiconductor memory by the other system components.
In one embodiment of the invention, there are four CPUs
200, each being an Intel Pentiumn® Pro microprocessor. A
number of bridges 206, 208 and 209 connect the host bus to
three additional bus systems 212, 214, and 216. These
bridges correspond to high speed I/O channels 102 and 104
shown in FIG. 1. The buses 212, 214 and 216 correspond to
the buses 106 and 107 shown in FIG. 1. The bus systems
212, 214 and 216, referred to as PC buses, may be any
standards-based bus system such as PCI, ISA, EISA and
Microchannel. In one embodiment of the invention, the bus
systems 212, 214, 216 are PCI. In another embodiment of
the invention a proprietary bus is used.

An ISA Bridge 218 is connected to the bus system 212 to
support legacy devices such as a keyboard, one or more
floppy disk drives and a mouse. A network of microcontrol-
lers 225 is also interfaced to the ISA bus 226 to monitor and
diagnose the environmental health of the fault tolerant
system. Further discussion of the network will be provided
below.

Abridge 230 and a bridge 232 connects PC buses 214 and
216 with PC buses 234 and 236 to provide expansion slots
for peripheral devices or adapters. Separating the devices
238 and 240 on PC buses 234 and 236 reduces the potential
that a device or other transient I/O error will bring the entire
system down or stop the system administrator from com-
municating with the system.

FIG. 3 shows an alternative bus structure embodiment of
the fault tolerant computer system 100. The two PC buses
214 and 216 contain bridges 242, 244, 246 and 248 to PC
bus systems 250, 252, 254, and 256. As with the PC buses
214 and 216, the PC buses 250, 252, 254 and 256 can be
designed according to any type of bus architecture including
PCIL, ISA, EISA, and Microchannel. The PC buses 250, 252,
254, and 256 are connected, respectively, to a canister 258,
260, 262 and 264. The canisters 258, 260, 262, and 264 are
casings for a detachable bus system and provide multiple
slots for adapters. In the illustrated canister, there are four
adapter slots.

Referring now to FIG. 4, the present invention for moni-
toring and diagnosing environmental conditions may be
implemented by using a network of microcontrollers 225
located on the fault tolerant computer system 100. In one
embodiment some of the microcontrollers are placed on a
system board or motherboard 302 while other microcontrol-
lers are placed on a backplane 304. Furthermore, in the
embodiment of FIG. 3, some of the microcontrollers such as
Canister controller A 324 may reside on a removable can-
ister.
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FIG. 4 illustrates that the network of microcontrollers 225
is connected to one of the CPUs 200 by an ISA bus 308. The
ISA 308 bus interfaces the network of microcontrollers 225
which are connected on the microcontroller bus 310 through
a System Interface 312. In one embodiment of the invention,
the microcontrollers communicate through an 1°C serial
bus, also referred to as a microcontroller bus 310. The
document “The I?C Bus and How to Use It” (Philips
Semiconductor, 1992) is hereby incorporated by reference.
The I°C bus is a bidirectional two-wire bus and operates at
a 400 kbps rate in the present embodiment. However, other
bus structures and protocols could be employed in connec-
tion with this invention. In other embodiments, IEEE 1394
(Firewire), IEEE 422, TEEE 488 (GPIB), RS-185, Apple
ADB, Universal Serial Bus (USB), or Controller Area
Network (CAN) could be utilized as the microcontroller bus.
Control on the microcontroller bus is distributed. Each
microcontroller can be a sender (a master) or a receiver (a
slave) and each is interconnected by this bus. A microcon-
troller directly controls its own resources, and indirectly
controls resources of other microcontrollers on the bus.

Here are some of the features of the I°C-bus:

Only two bus line are required: a serial data line (SDA)
and a serial clock line (SCL).

Each device connected to the bus is software addressable
by a unique address and simple master/slave relation-
ships exist at all times; masters can operate as master-
transmitters or as master-receivers.

The bus is a true multi-master bus including collision
detection and arbitration to prevent data corruption if
two or more masters simultaneously initiate data trans-
fer.

Serial, 8-bit oriented, bidirectional data transfers can be

made at up to 400 kbit/second in the fast mode.

Two wires, serial data (SDA) and serial clock (SCL),
carry information between the devices connected to the I°C
bus. Each device is recognized by a unique address and can
operate as either a transmitter or receiver, depending on the
function of the device. Further, each device can operate from
time to time as both a transmitter and a receiver. For
example, a memory device connected to the I°C bus could
both receive and transmit data. In addition to transmitters
and receivers, devices can also be considered as masters or
slaves when performing data transfers (see Table1). A master
is the device which initiates a data transfer on the bus and
generates the clock signals to permit that transfer. At that
time, any device addressed is considered a slave.

TABLE 1

Definition of I*C-bus terminology

Term Description

Transmitter The device which sends the data to the bus

Receiver The device which receives the data from the bus

Master The device which initiates a transfer, generates clock
signals and terminates a transfer

Slave The device addressed by a master

Multi-master More than one master can attempt to control the
bus at the same time without corrupting the message.

Each device at separate times may act as a master.

Arbitration Procedure to ensure that, if more than one master
simultaneously tries to control the bus, only one is
allowed to do so and the message is not corrupted

Synchronization ~ Procedure to synchronize the clock signal of two

or more devices

The I2C-bus is a multi-master bus. This means that more
than one device capable of controlling the bus can be
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connected to it. As masters are usually microcontrollers,
consider the case of a data transfer between two microcon-
trollers connected to the I*C-bus. This highlights the master-
slave and receiver-transmitter relationships to be found on
the I°C-bus. It should be noted that these relationships are
not permanent, but only depend on the direction of data
transfer at that time. The transfer of data between micro-
controllers is further described in FIG. 8.

The possibility of connecting more than one microcon-
troller to the I*C-bus means that more than one master could
try to initiate a data transfer at the same time. To avoid the
conflict that might ensue from such an event, an arbitration
procedure has been developed. This procedure relies on the
wired-AND connection of all I°C interfaces to the I*C-bus.

If two or more masters try to put information onto the bus,
as long as they put the same information onto the bus, there
is no problem. Each monitors the state of the SDL. If a
microcontroller expects to find that the SDL is high, but
finds that it is low, the microcontroller assumes it lost the
arbitration and stops sending data. The clock signals during
arbitration are a synchronized combination of the clocks
generated by the masters using the wired-AND connection
to the SCL line.

Generation of clock signal on the I*C-bus is always the
responsibility of master devices. Each master microcontrol-
ler generates its own clock signals when transferring data on
the bus.

In one embodiment, the command, diagnostic, monitoring
and history functions of the microcontroller network 102 are
accessed using a global network memory and a protocol has
been defined so that applications can access system
resources without intimate knowledge of the underlying
network of microcontrollers. That is, any function may be
queried simply by generating a network “read” request
targeted at the function’s known global network address. In
the same fashion, a function may be exercised simply by
“writing” to its global network address. Any microcontroller
may initiate read/write activity by sending a message on the
I°C bus to the microcontroller responsible for the function
(which can be determined from the known global address of
the function). The network memory model includes typing
information as part of the memory addressing information.

Referring to FIG. 4, in one embodiment of the invention,
the network of microcontrollers 310 includes ten processors.
One of the purposes of the microcontroller network 225 is to
transfer messages to the other components of the server
system 100. The processors or microcontrollers include: a
System Interface 312, a CPU A controller 314, a CPU B
controller 316, a System Recorder 320, a Chassis controller
318, a Canister A controller 324, a Canister B controller 326,
a Canister C controller 328, a Canister D controller 330 and
a Remote Interface controller 332. The System Interface
controller 312, the CPU A controller 314 and the CPU B
controller 316 are located on a system board 302 in the fault
tolerant computer system 100. Also located on the system
board are one or more central processing units (CPUs) or
microprocessors 164 and the Industry Standard Architecture
(ISA) bus 296 that connects to the System Interface Con-
troller 312. The CPUs 200 may be any conventional general
purpose single-chip or multi-chip microprocessor such as a
Pentium 7, Pentium® Pro or Pentium® II processor avail-
able from Intel Corporation, A MIPS® processor available
from Silicon Graphics, Inc., a SPARC processor from Sun
Microsystems, Inc., a Power PC® processor available from
Motorola, or an ALPHA® processor available from Digital
Equipment Corporation. In addition, the CPUs 200 may be
any conventional special purpose microprocessor such as a
digital signal processor or a graphics processor.
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The System Recorder 320 and Chassis controller 318,
along with a data string such as a random access non-volatile
access memory (NVRAM) 322 that connects to the System
Recorder 320, are located on a backplane 304 of the fault
tolerant computer system 100. The data storage 322 may be
independently powered and may retain its contents when
power is unavailable. The data storage 322 is used to log
system status, so that when a failure of the computer 100
occurs, maintenance personnel can access the storage 322
and search for information about what component failed. An
NVRAM is used for the data storage 322 in one embodiment
but other embodiments may use other types and sizes of
storage devices.

The System Recorder 320 and Chassis controller 318 are
the first microcontrollers to power up when server power is
applied. The System Recorder 320, the Chassis controller
318 and the Remote Interface microcontroller 332 are the
three microcontrollers that have an independent bias 5 Volt
power supplied to them if main server power is off. This
independent bias 5 Volt power is provided by a Remote
Interface Board (not shown). The Canister controllers
324-330 are not considered to be part of the backplane 304
because each is mounted on a card attached to the canister.

FIGS. 5A and 5B are one embodiment of a block diagram
that illustrates some of the signal lines that are used by the
different microcontrollers. Some of the signal lines connect
to actuators and other signal lines connect to sensors. In one
embodiment of the invention the microcontrollers in the
network are commercially available microcontrollers.
Examples of off-the-shelf microcontrollers are the PIC16c65
and the PIC16¢74 available from Microchip Technology Inc,
the 8051 from Intel Corporation, the 8751 available from
Atmel, and a PS8OCL580 microprocessor available from
Philips, could be utilized.

The Chassis controller 318 is connected to a set of
temperature detectors 502, 504, and 506 which read the
temperature on the backplane 304 and the system board 302.
FIG. 5§ also illustrates the signal lines that connect the
System Recorder 320 to the NVRAM 322 and a timer chip
520. In one embodiment of the invention, the System
Recorder 320 is the only microcontroller that can access the
NVRAM 322. The Canister controller 324 is connected to a
Fan Tachometer Signal Mux 508 which is used to detect the
speed of the fans. The CPU A controller 314 also is con-
nected to a fan mux 508 which gathers the fan speed of
system fans. The CPU A controller 314 displays errors to a
user by writing to an LCD display 512. Any microcontroller
can request the CPU A controller 314 to write a message to
the LCD display 512. The System Interface 312 is connected
to a response buffer 514 which queues outgoing response
signals in the order that they are received. Similarly, a
request signal buffer 516 is connected to the System Inter-
face 312 and stores, or queues request signals in the order
that they are received.

Software applications can access the network of micro-
controllers 225 by using the software program header file
that is listed at the end of the specification in the section
titled “Header File for Global Memory Addresses.” This
header file provides a global memory address for each
function of the microcontroller network 225. By using the
definitions provided by this header file, applications can
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request and send information to the microcontroller network
225 without needing to know where a particular sensor or
activator resides in the microcontroller network.

FIG. 6 is one embodiment of a flowchart illustrating the
process by which under one implementation of the present
invention, a remote application connected, say, through the
connection of FIG. 1, can access the network of microcon-
trollers 225. Starting at state 600, a remote software
application, such as a generic system management applica-
tion like Hewlett-Packard Open View, or an application
specific to this computer system, retrieves a management
information block (MIB) object by reading and interpreting
a MIB file, or by an application’s implicit knowledge of the
MIB object’s structure. This retrieval could be the result of
an operator using a graphical user interface (GUI), or as the
result of some automatic system management process. The
MIB is a description of objects, which have a standard
structure, and contain information specific to the MIB object
ID associated with a particular MIB object. At a block 602,
the remote application builds a request for information by
creating a request which references a particular MIB object
by its object ID, sends the request to the target computer
using a protocol called SNMP (simple network management
protocol). SNMP is a type of TCP/IP protocol. Moving to
state 604, the remote software sends the SNMP packet to a
local agent Microsoft WinSNMP, for example, which is
running on the fault tolerant computer system 100, which
includes the network of microcontrollers 225 (FIG. 4). The
agent is a specialized program which can interpret MIB
object Ids and objects. The local agent software runs on one
of the CPUs 200 of FIGS. 2 and 3.

The local agent examines the SNMP request packet (state
606). If the local agent does not recognize the request, the
local agent passes the SNMP packet to an extension SNMP
agent. Proceeding to state 608, the extension SNMP agent
dissects the object ID. The extension SNMP agent is coded
to recognize from the object ID, which memory mapped
resources managed by the network of microcontrollers need
to be accessed (state 608). The agent then builds the required
requests for the memory mapped information in the com-
mand protocol format understood by the network of micro-
controllers 225. The agent then forwards the request to a
microcontroller network device driver (state 610).

The device driver then sends the information to the
network of microcontrollers 225 at state 612. The network of
microcontrollers 225 provides a result to the device driver in
state 614. The result is returned to the extension agent,
which uses the information to build the MIB object, and
return it to the extension SNMP agent (state 616). The local
SNMP agent forwards the MIB object via SNMP to the
remote agent (state 616). Finally, in state 620, the remote
agent forwards the result to the remote application software.

For example, if a remote application needs to know the
speed of a fan, the remote application reads a file to find the
object ID for fan speed. The object ID for the fan speed
request may be “837.2.3.6.2”. Each set of numbers in the
object ID represent hierarchical groups of data. For example
the number “3” of the object ID represents the cooling
system. The “3.6” portion of the object ID represents the
fans in the cooling. All three numbers “3.6.2” indicate speed
for a particular fan in a particular cooling group.
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In this example, the remote application creates a SNMP
packet containing the object ID to get the fan speed on the
computer 100. The remote application then sends the SNMP
packet to the local agent. Since the local agent does not
recognize the fan speed object ID, the local agent forwards
the SNMP packet to the extension agent. The extension
agent parses the object ID to identify which specific memory
mapped resources of the network of microcontrollers 225
are needed to build the MIB object whose object ID was just
parsed. The extension agent then creates a message in the
command protocol required by the network of microcon-
trollers 225. A device driver which knows how to commu-
nicate requests to the network of microcontrollers 225 takes
this message and relays the command to the network of
microcontrollers 225. Once the network of microcontrollers
225 finds the fan speed, it relays the results to the device
driver. The device driver passes the information to the
extension agent. The agent takes the information supplied by
the microcontroller network device driver and creates a new
SNMP packet. The local agent forwards this packet to the
remote agent, which then relays the fan speed which is
contained in the packet to the remote application program.

FIG. 7 is one embodiment of a block diagram of the
interface between the network of microcontrollers 225 and
the ISA bus 308 of FIGS. 2 and 3. The interface to the
network of microcontrollers 225 includes a System Interface
processor 312 which receives event and request signals,
processes these signals, and transmits command, status and
response signals to the operating system of the CPUs 200. In
one embodiment, the System Interface processor 312 is a
PIC16C65 controller chip, available from Microchip, Tech-
nology Inc., which includes an event memory (not shown)
organized as a bit vector, having at least sixteen bits. Each
bit in the bit vector represents a particular type of event.
‘Writing an event to the System Interface processor 312 sets
a bit in the bit vector that represents the event. Upon
receiving an event signal from another microcontroller, the
System Interface 312 interrupts CPUs 200. Upon receiving
the interrupt, the CPUs 200 will check the status of the
System Interface 312 to ascertain that an event is pending.
Alternatively, the CPUs 200 may periodically poll the status
of the System Interface 312 to ascertain whether an event is
pending. The CPUs 200 may then read the bit vector in the
System Interface 312 to ascertain the type of event that
occurred and thereafter notify a system operator of the event
by displaying an event message on a monitor connected to
the fault tolerant computer 100 or another computer in the
server network. After the system operator has been notified
of the event, as described above, she may then obtain farther
information about the system failure which generated the
event signal by accessing the NVRAM 322.

The System Interface 312 communicates with the CPUs
200 by receiving request signals from the CPUs 200 and
sending response signals back to the CPUs 200.
Furthermore, the System Interface 312 can send and receive
status and command signals to and from the CPUs 200. For
example, a request signal may be sent from a software
application inquiring as to whether the System Interface 312
has received any event signals, or inquiring as to the status
of a particular processor, subsystem, operating parameter.
The following discussion explains how in further detail at
the state 612, the device driver sends the request to the
network on microcontrollers, and then, how the network on
microcontrollers returns the result (state 614). A request
signal buffer 516 is connected to the System Interface 312
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and stores, or queues, request signals in the order that they
are received, first in-first out (FIFO). Similarly, a response
buffer 514 is connected to the System Interface 312 and
queues outgoing response signals in the order that they are
received (FIFO). These queues are one byte wide, (messages
on the I°C bus are sequences of 8-bit bytes, transmitted bit
serially on the SDL).

A message data register (MDR) 707 is connected to the
request and response buffers 516 and 514 and controls the
arbitration of messages to and from the System Interface 312
via the request and response buffers 516 and 514. In one
embodiment, the MDR 707 is eight bits wide and has a fixed
address which may be accessed by the server’s operating
system via the ISA bus 226 connected to the MDR 707. As
shown in FIG. 7, the MDR 707 has an I/O address of
OCCOh. When software application running on one of the
CPUs 200 desires to send a request signal to the System
Interface 312, it does so by writing a message one byte at a
time to the MDR 707. The application then indicates to the
system interface processor 312 that the command has been
completely written, and may be processed.

The system interface processor 312 writes the response
one byte at a time to the response queue, then indicates to the
CPU (via an interrupt or a bit in the status register) that the
response is complete, and ready to be read. The CPU 200
then reads the response queue one byte at a time by reading
the MDR 707 until all bytes of the response are read.

The following is one embodiment of the command pro-
tocol used to communicate with the network of microcon-

trollers 2285.
TABLE 2
Command Protocol Format
READ REQUEST FORMAT WRITE REQUEST FORMAT
Offset Offset
Byte 0 Slave Addr 0 Byte 0 Slave Addr 0
(7 bits) LSBit (7 bits) LSBit
Byte 1 MSBit (1) Type Byte 1 MSBit (0) Type
Byte 2 Command ID (LSB) Byte 2 Command ID (LSB)
Byte 3 Command ID (MSB) Byte 3 Command ID (MSB)
Byte 4 Read Request Length Byte 4 Write Request Length
™ S
Byte 5 Check Sum Byte 5 Data Byte 1
Byte N+4 Data Byte N
READ RESPONSE FORMAT
Offset Byte N+5 Check Sum
Byte 0 Slave Addr 1
(7 bits) LSBit
‘WRITE RESPONSE FORMAT
Byte 1  Read Response Length Offset
™
Byte 2 Data Byte 1 Byte 0 Slave Addr 1
(7 bits) LSBit
Byte 1 Write
Response
Length (0)
Byte Data Byte N Byte 2 Status
N+1
Byte Status Byte 3 Check Sum
N+2
Byte Check Sum Byte 4 Inverted Slave Addr
N+3
Byte Inverted Slave Addr
N+4

The following is a description of each of the fields in the
command protocol.
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TABLE 3

Description of Command Protocol Fields

FIELD DESCRIPTION
Slave Addr Specifies the processor identification code. This field is 7
bits wide. Bit [7...1].
LSBit Specifies what type of activity is taking place. If LSBit is
clear (0), the master is writing to a slave. If LSBit is set (1),
the master is reading from a slave.
MSBit Specifies the type of command. It is bit 7 of byte 1 of a request. If
this bit is clear (0), this is a write command. If it is set (1),
this is a read command.
Type Specifies the data type of this command, such as bit or

Command ID (LSB)

Command ID (MSB)
Length (N)

Read Request

Read Response

‘Write Request

‘Write Response

string.

Specifies the least significant byte of the address of the

processor.

Specifies the most significant byte of the address of the processor.

Specifies the length of the data that the master expects to get back
from a read response. The length, which is in bytes, does

not include the Status, Check Sum, and Inverted Slave

Addr fields.

Specifies the length of the data immediately following this
byte, that is byte 2 through byte N+1. The length, which is

in bytes, does not include the Status, Check Sum, and

Inverted Slave Addr fields.

Specifies the length of the data immediately following this byte,
that is byte 2 through byte N+1. The length, which is in

bytes, does not include the Status, Check Sum, and

Inverted Slave Addr fields.

Always specified as 0.

Data Byte 1 Specifies the data in a read request and response, and a
write request.

Data Byte N

Status Specifies whether or not this command executes
successfully. A non-zero entry indicates a failure.

Check Sum Specifies a direction control byte to ensure the integrity of a

message on the wire.

Inverted Slave Addr  Specifies the Slave Addr, which is inverted.

The System Interface 312 further includes a command
and status register (CSR) 709 which initiates operations and
reports on status. The operation and functionality of CSR
709 is described in further detail below. Both synchronous
and asynchronous I/O modes are provided by the System
Interface 312. During a synchronous mode of operation, the
device driver waits for a request to be completed. During an
asynchronous mode of operation the device driver sends the
request, and asks to be interrupted when the request com-
pletes. To support asynchronous operations, an interrupt line
711 is connected between the System Interface 312 and the
ISA bus 226 and provides the ability to request an interrupt
when asynchronous I/O is complete, or when an event
occurs while the interrupt is enabled. As shown in FIG. 7, in
one embodiment, the address of the interrupt line 711 is
fixed and indicated as IRQ 15 which is an interrupt address
number used specifically for the ISA bus 226.

The MDR 707 and the request and response buffers 516
and 514, respectively, transfer messages between a software
application running on the CPUs 200 and the failure report-
ing system of the invention. The buffers 516 and 514 have
two functions: (1) they store data in situations where one bus
is running faster than the other, i.e., the different clock rates,
between the ISA bus 226 and the microcontroller bus 310;
and (2) they serve as interim buffers for the transfer of
messages—this relieves the System Interface 312 of having
to provide this buffer.

When the MDR 707 is written to by the ISA bus 226, it
loads a byte into the request buffer 516. When the MDR 707
is read from the ISA bus 516, it unloads a byte from the
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response buffer 514. The System Interface 312 reads and
executes messages from buffer 516 when a message com-
mand is received in the CSR 709. A response message is
written to the response buffer 514 when the System Interface
312 completes executing the command. The system operator
receives a completed message over the microcontroller bus
310. A software application can read and write message data
to and from the buffers 516 and 514 by executing read and
write instructions through the MDR 707.

The CSR 709 has two functions. The first is to initiate
commands, and the second is to report status. The System
Interface commands are usually executed synchronously.
That is, after issuing a command, the microcontroller net-
work device driver should continue to poll the CSR 709
status to confirm command completion. In addition to syn-
chronous I/O mode, the microcontroller network device
driver can also request an asynchronous I/O mode for each
command by setting a “Asyn Req” bit in the command. In
this mode, an interrupt is generated and sent to the ISA bus
226, via the interrupt line 711, after the command has
completed executing.

In the described embodiment, the interrupt is asserted
through IRQ1S5 of the ISA programmable interrupt controller
(PIC). The ISA PIC interrupts the CPU 200s when a signal
transitioning from high to low, or from low to high, is
detected at the proper input pin (edge triggered).
Alternatively, the interrupt line 711 may utilize connect to a
level-triggered input. A level-triggered interrupt request is
recognized by keeping the signal at the same level, or
changing the level of a signal, to send an interrupt. The
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microcontroller network device driver can either enable or
disable interrupts by sending “Enable Ints” and “Disable
Ints” commands to the CSR 701. If the interrupt 711 line is
enabled, the System Interface 312 asserts the interrupt signal
IRQ 15 of the PIC to the ISA bus 226, either when an
asynchronous I/O is complete or when an event has been
detected.

In the embodiment shown in FIG. 2, the System Interface
312 may be a single-threaded interface. Since messages are
first stored in the queue, then retrieved from the queue by the
other side of the interface, a device driver should write one
message, containing a sequence of bytes, at a time. Thus,
only one message should be in progress at a time using the
System Interface 312. Therefore, a program or application
must allocate the System Interface 312 for its use before
using it, and then de-allocate the interface 514 when its
operation is complete. The CSR 709 indicates which opera-
tor is allocated access to the System Interface 312.

Referring to FIGS. 2 and 7, an example of how messages
are communicated between the System Interface 312 and
CPUs 200 in one embodiment of the invention is as follows
(all byte values are provided in hexadecimal numbering). A
system management program (not shown) sends a command
to the network of microcontrollers 225 to check temperature
and fan speed. To read the temperature from CPU A con-
troller 314 the program builds a message for the device
driver to forward to the network of microcontrollers 225.
First, the device driver on CPUs 200 allocates the interface
by writing the byte “01” to the CSR 709. If another request
was received, the requestor would have to wait until the
previous request was completed. To read the temperature
from Chassis controller 318 the device driver would write
into the request queue 516 through the MDR 707 the bytes
“02 83 03 00 FF”. The first byte “02” would signify to the
System Interface 312 that a command is intended for the
Chassis controller 318. The first bits of the second byte “83”
indicates that a master is writing to a slave. The last or least
significant three bits of the byte “83” indicate the data type
of the request. The third and fourth bytes “03 00” indicate
that the read request temperature function of the Chassis
controller 318 is being requested. The final byte “FF” is the
checksum.

After writing the bytes to the MDR 707, a “13” (message
command) is written by the device driver to the CSR 709,
indicating the command is ready to be executed. The System
Interface processor 312 passes the message bytes to the
microcontroller bus 310, receives a response, and puts the
bytes into the response FIFO 514. Since there is only one
system interface processor 312, there is no chance that
message bytes will get intermingled.

After all bytes are written to the response FIFO, the
System Interface processor 312 sets a bit in the CSR 709
indicating message completion. If directed to do so by the
device driver, the system interface 312 asserts an interrupt
on IRQ1S5 upon completion of the task.

The CPUs 200 would then read from the response buffer
516 through the MDR 707 the bytes “02 05 27 3C 27 26 27
00”. The first byte in the string is the slave address shown as
Byte 0 in the Read Response Format. The first byte 02
indicates that the CPU A Chassis controller 318 was the
originator of the message. The second byte “05” indicates
the number of temperature readings that follow. The second
Byte “05” maps to Byte 1 of the Read Response Format. In
this example, the Chassis controller 318 returned five tem-
peratures. The second reading, byte “3C” (60 decimal) is
above normal operational values. The last byte “00” is a
check sum which is used to ensure the integrity of a
message.
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The CPUs 200 agent and device driver requests the fan
speed by writing the bytes “03 83 04 00 FF” to the network
of microcontroller 225. Each byte follows the read request
format specified in Table 2. The first byte “03” indicates that
the command is for the CPU A Controller 314. The second
byte “83” indicates that the command is a read request of a
string data type.

Acresponse of “03 06 41 43 41 42 41 40 00” would be read
from MDR 707 by the device driver. The first byte “03”
indicates to the device driver that the command is from the
CPU A controller 314. The speed bytes “41 43 41 42 41 40”
indicate the revolutions per second of a fan in hexadecimal.
The last byte read from the MDR 707 “00” is the checksum.

Since one of the temperatures is higher than the warning
threshold, 55° C., and fan speed is within normal (low)
range, a system administrator or system management soft-
ware may set the fan speed to high with the command bytes
“03 01 01 00 01 01 FF”. The command byte “03” indicates
that the command is for the CPU A 314. The first byte
indicates that a write command is requested. The third and
fourth bytes, which correspond to byte 2 and 3 of the write
request format, indicate a request to increase the fan speed.
The fifth byte, which corresponds to byte 4 of the write
request format indicates to the System Interface 312 that one
byte is being sent. The sixth byte contains the data that is
being sent. The last byte “FF” is the checksum.

FIG. 8 is one embodiment of a flowchart describing the
process by which a master microcontroller communicates
with a slave microcontroller. Messages between microcon-
trollers can be initiated by any microcontroller on the
microcontroller bus 310 (FIG. 4). A master microcontroller
starts out in state 800.

In state 802, the microcontroller arbitrates for the start bit.
If a microcontroller sees a start bit on the microcontroller
bus 310, it cannot gain control of the microcontroller bus
310. The master microcontroller proceeds to state §04. In the
state 804, the microcontroller increments a counter every
millisecond. The microcontroller then returns to state 800 to
arbitrate again for the start bit. If at state 806 the count
reaches 50 ms, the master has failed to gain the bus (states
808 and 810). The microcontroller then returns to the state
800 to retry the arbitration process. If in the state 802, no
start bit is seen on the microcontroller bus 310, the micro-
controller bus 310 is assumed to be free (i.e., the microcon-
troller has successfully arbitrated won arbitration for the
microcontroller bus 310). The microcontroller sends a byte
at a time on the microcontroller bus 310 (state 812). After the
microcontroller has sent each byte, the microcontroller que-
ries the microcontroller bus 310 to insure that the micro-
controller bus 310 is still functional. If the SDA and SCL
lines of the microcontroller bus 310 are not low, the micro-
controller is sure that the microcontroller bus 310 is func-
tional and proceeds to state 816. If the SDA and SCL lines
are not drawn high, then the microcontroller starts to poll the
microcontroller bus 310 to see if it is functional. Moving to
state 819, the microcontroller increments a counter Y and
waits every 22 microseconds. If the counter Y is less than
five milliseconds (state 820), the state 814 is reentered and
the microcontroller bus 310 is checked again. If the SDA and
SCL lines are low for 5 milliseconds (indicated when, at
state 820, the counter Y exceeds 5 milliseconds), the micro-
controller enters state 822 and assumes there is a microcon-
troller bus error. The microcontroller then terminates its
control of the microcontroller bus 310 (state 824).

If in the state 814, the SDA/SCL lines do not stay low
(state 816), the master microcontroller waits for a response
from a slave microcontroller (state 816). If the master
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microcontroller has not received a response, the microcon-
troller enters state 826. The microcontroller starts a counter
which is incremented every one millisecond. Moving to
state 828, if the counter reaches fifty milliseconds, the
microcontroller enters state 830 indicating a microcontroller
bus error. The microcontroller then resets the microcontrol-
ler bus 310 (state 832).

Returning to state 816, if the master microcontroller does
receive a response in state 816, the microcontroller enters
state 818 and receives the data from the slave microcontrol-
ler. At state 820, the master microcontroller is finished
communicating with the slave microcontroller.

FIG. 9 is one embodiment of a block diagram illustrating
the process by which a slave microcontroller communicates
with a master microcontroller. Starting in state 900, the slave
microcontroller receives a byte from a master microcontrol-
ler. The first byte of an incoming message always contains
the slave address. This slave address is checked by all of the
microcontrollers on the microcontroller bus 310. Whichever
microcontroller matches the slave address to its own address
handles the request.

At a decision state 902, an interrupt is generated on the
slave microcontroller. The microcontroller checks if the byte
received is the first received from the master microcontroller
(state 904). If the current byte received is the first byte
received, the slave microcontroller sets a bus time-out flag
(state 906). Otherwise, the slave microcontroller proceeds to
check if the message is complete (state 908). If the message
is incomplete, the microcontroller proceeds to the state 900
to receive the remainder of bytes from the master micro-
controller. If at state 908, the slave microcontroller deter-
mines that the complete message has been received, the
microcontroller proceeds to state 909.

Once the microcontroller has received the first byte, the
microcontroller will continue to check if there is an interrupt
on the microcontroller bus 310. If no interrupt is posted on
the microcontroller bus 310, the slave microcontroller will
check to see if the bus time-out flag is set. The bus time-out
flag is set once a byte has been received from a master
microcontroller. If in the decision state 910 the microcon-
troller determines that the bus time-out flag is set, the slave
microcontroller will proceed to check for an interrupt every
10 milliseconds up to 500 milliseconds. For this purpose, the
slave microcontroller increments the counter every 10 mil-
liseconds (state 912). In state 914, the microcontroller
checks to see if the microcontroller bus 310 has timed out.
If the slave microcontroller has not received additional bytes
from the master microcontroller, the slave microcontroller
assumes that the microcontroller bus 310 is hung and resets
the microcontroller bus 310 (state 916). Next, the slave
microcontroller aborts the request and awaits further
requests from other master microcontrollers (state 918).

Referring to the state 909, the bus timeout bit is cleared,
and the request is processed and the response is formulated.
Moving to state 920, the response is sent a byte at a time. At
state 922, the same bus check is made as was described for
the state 814. States 922, 923 and 928 form the same bus
check and timeout as states 814, 819 and 820. If in state 928
this check times out, a bus error exists, and this transaction
is aborted (states 930 and 932).

FIGS. 10A and 10B are flow diagrams showing one
process by which the System Interface 312 handles requests
from other microcontrollers in the microcontroller network
and the ISA bus 226 (FIGS. 4 and 5). The System Interface
312 relays messages from the ISA bus 226 to other micro-
controllers in the network of microcontrollers 225. The
System Interface 312 also relays messages from the network
of microcontrollers to the ISA bus 226.
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Referring to FIGS. 10A and 10B, the System Interface
312 initializes all variables and the stack pointer (state
1000). Moving to state 1002, the System Interface 312 starts
its main loop in which it performs various functions. The
System Interface 312 next checks the bus timeout bit to see
if the microcontroller bus 310 has timed-out (decision state
1004). If the microcontroller bus 310 has timed-out, the
System Interface 312 resets the microcontroller bus 310 in
state 1006.

Proceeding to a decision state 1008, the System Interface
312 checks to see if any event messages have been received.
An event occurs when the System Interface 312 receives
information from another microcontroller regarding a
change to the state of the system. At state 1010, the System
Interface 312 sets the event bit in the CSR 709 to one. The
System Interface 312 also sends an interrupt to the operating
system if the CSR 709 has requested interrupt notification.

Proceeding to a decision state 1012, the System Interface
312 checks to see if a device driver for the operating system
has input a command to the CSR. If the System Interface 312
does not find a command, the System Interface 312 returns
to state 1002. If the System Interface does find a command
from the operating system, the System Interface parses the
command. For the “allocate command”, the System Inter-
face 312 resets the queue to the ISA bus 226 resets the done
bit in the CSR 709 (state 1016) and sets the CSR Interface
Owner ID (state 1016). The Owner ID bits identify which
device driver owns control of the System Interface 312.

For the “de-allocate command”, the System Interface 312
resets the queue to the ISA bus 226, resets the done bit in the
CSR 709, and clears the Owner ID bits (state 1018).

For the “clear done bit command” the System Interface
312 clears the done bit in the CSR 709 (state 1020). For the
“enable interrupt command” the System Interface 312 sets
the interrupt enable bit in the CSR 709 (state 1022). For the
“disable interrupt command,” the System Interface 312 sets
the interrupt enable bit in the CSR 709 (state 1024). For the
“clear interrupt request command”, the System Interface 312
clears the interrupt enable bit in the CSR 709 (state 1026).

If the request from the operating system was not meant for
the System Interface 312, the command is intended for
another microcontroller in the network 225. The only valid
command remaining is the “message command.” Proceed-
ing to state 1028, the System Interface 312 reads message
bytes from the request buffer 516. From the state 1028, the
System Interface 312 proceeds to a decision state 1030 in
which the System Interface 312 checks whether the com-
mand was for itself. If the command was for the System
Interface 312, moving to state 1032, the System Interface
312 processes the command. If the ID did not match an
internal command address, the System Interface 312 relays
the command the appropriate microcontroller (state 1034)
by sending the message bytes out over the microcontroller
bus 310.

FIGS. 11A and 11B are flowcharts showing an embodi-
ment of the functions performed by the Chassis controller
318. Starting in the state 1100, the Chassis controller 318
initializes its variables and stack pointer.

Proceeding to state 1102, the Chassis controller 318 reads
the serial numbers of the microcontrollers contained on the
system board 302 and the backplane 304. The Chassis
controller 318 also reads the serial numbers for the Canister
controllers 324, 326, 328 and 330. The Chassis controller
318 stores all of these serial numbers in the NVRAM 322.

Next, the Chassis controller 318 start its main loop in
which it performs various diagnostics (state 1104). The
Chassis controller 318 checks to see if the microcontroller
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bus 310 has timed-out (state 1106). If the bus has timed-out,
the Chassis controller 318 resets the microcontroller bus 310
(state 1008). If the microcontroller bus 310 has not timed out
the Chassis controller proceeds to a decision state 1110 in
which the Chassis controller 318 checks to see if a user has
pressed a power switch.

If the Chassis controller 318 determines a user has pressed
a power switch, the Chassis controller changes the state of
the power to either on or off (state 1112). Additionally, the
Chassis controller logs the new power state into the
NVRAM 322.

The Chassis controller 318 proceeds to handle any power
requests from the Remote Interface 332 (state 1114). As
shown in FIG. 9, a power request message to this micro-
controller is received when the arriving message interrupts
the microcontroller. The message is processed and a bit is set
indicating request has been made to toggle power. At state
1114, the Chassis controller 318 checks this bit. If the bit is
set, the Chassis controller 318 toggles the system, i.e.,
off-to-on or on-to-off, power and logs a message into the
NVRAM 322 that the system power has changed state (state
1116).

Proceeding to state 1118, the Chassis controller 318
checks the operating system watch dog counter for a time
out. If the Chassis controller 318 finds that the operating
system has failed to update the timer, the Chassis controller
318 proceeds to log a message with the NVRAM 322 (state
1120). Additionally, the Chassis controller 318 sends an
event to the System Interface 312 and the Remote Interface
332.

Since it takes some time for the power supplies to settle
and produce stable DC power, the Chassis controller delays
before proceeding to check DC (state 1122).

The Chassis controller 318 then checks for changes in the
canisters 258-264 (state 1124), such as a canister being
inserted or removed. If a change is detected, the Chassis
controller 318 logs a message to the NVRAM 322 (state
1126). Additionally, the Chassis controller 318 sends an
event to the System Interface 312 and the Remote Interface
332.

The Chassis controller 318 proceeds to check the power
supply for a change in status (state 1128). The process by
which the Chassis controller 318 checks the power supply is
described in further detail in the discussion for FIG. 12.

The Chassis controller then checks the temperature of the
system (state 1132). The process by which the Chassis
controller 318 checks the temperature is described in further
detail in the discussion for FIG. 13.

At state 1136, the Chassis controller 318 reads all of the
voltage level signals. The Chassis controller 318 saves these
voltage levels values in an internal register for reference by
other microcontrollers.

Next, the Chassis controller 318 checks the power supply
signals for AC/DC changes (state 1138). If the Chassis
controller 318 detects a change in the Chassis controller 318,
the Chassis controller 318 logs a message to the NVRAM
322 (state 1140). Additionally, the Chassis controller 318
sends an event to the System Interface 312 and the Remote
Interface 332 that a AC/DC signal has changed. The Chassis
controller 318 then returns to state 1104 to repeat the
monitoring process.

FIG. 12 is a flowchart showing one process by which the
Chassis controller 318 checks the state of the redundant
power supplies termed number 1 and 2. These power sup-
plies are monitored and controlled by the chassis controller
318 through the signal lines shown in FIG. SA. When a
power supply fails or requires maintenance, the other supply
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maintains power to the computer 100. To determine whether
a power supply is operating properly or not, its status of
inserted or removed (by maintenance personnel) should be
ascertained. Furthermore, a change in status should be
recorded in the NVRAM 322. FIG. 12 describes in greater
detail the state 1128 shown in FIG. 11B.

Starting in state 1202, the Chassis controller 318 checks
the power supply bit. If the power supply bit indicates that
a power supply should be present, the Chassis controller
checks whether power supply “number 1" has been removed
(state 1204). If power supply number 1 has been removed,
the chassis microcontroller 318 checks whether its internal
state indicates power supply number one should be present.
If the internal state was determined to be present, then the
slot is checked to see whether power supply number 1 is still
physically present (state 1204). If power supply number 1
has been removed, the PS_ PRESENT#1 bit is changed to
not present (state 1208). The Chassis controller 318 then
logs a message in the NVRAM 322.

Referring to state 1206, if the PS  PRESENT#1 bit indi-
cates that power supply number 1 is not present, the Chassis
controller 318 checks whether power supply number 1 has
been inserted (i.e., checks to see if it is now physically
present) (state 1206). If it has been inserted, the Chassis
controller 318 then logs a message into the NVRAM 322
that the power supply number 1 has been inserted (state
1210) and changes the value of PS_ PRESENT#1 to present.

After completion, states 1204, 1206, 1208, and 1210
proceed to state 1212 to monitor power supply number 2.
The Chassis controller 318 checks whether the
PS_PRESENT#2 bit is set to present. If the
PS__PRESENT#2 bit indicates that power supply “number
2” should be there, the Chassis controller 318 proceeds to
state 1224. Otherwise, the Chassis controller 318 proceeds
to state 1226. At state 1224, the Chassis controller 318
checks if power supply number 2 is still present. If power
supply number 2 has been removed, the Chassis controller
318 logs in the NVRAM 322 that power supply number 2
has been removed (state 1228). The chassis controller also
changes the value of PS_ PRESENT#2 bit to not present.

Referring to decision state 1226, if the PS PRESENT#2
bit indicates that no power supply number 2 is present, the
Chassis controller 318 checks if power supply number 2 has
been inserted. If so, the Chassis controller 318 then logs a
message into the NVRAM 322 that power supply number 2
has been inserted and changes the value of
PS__PRESENT#2 to present (state 1230). After completion
of states 1224, 1226, 1228, and 1230, the chassis controller
318 proceeds to state 1232 to monitor the AC/DC power
supply changed signal.

If in decision state 1234 the Chassis controller 318 finds
that the AC/DC power supply changed signal from the
power supplies is asserted, the change in status is recorded
in state 1236. The Chassis controller 318 continues the
monitoring process by proceeding to the state 1132 in FIG.
11B.

FIG. 13 is a flowchart showing one process by which the
Chassis controller 318 monitors the temperature of the
system. As shown in FIG. 5A, the Chassis controller 318
receives temperature detector signal lines from five tem-
perature detectors located on the backplane and the moth-
erboard. If either component indicates it is overheating,
preventative action may be taken manually, by a technician,
or automatically by the network of microcontrollers 225.
FIG. 13 describes in greater detail the state 1132 shown in
FIG. 11B.

To read the temperature of the Chassis, the Chassis
controller 318 reads the temperature detectors 502, 504, and
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506 (state 1300). In the embodiment of the invention shown
in FIG. 13 there are five temperature detectors (two tem-
perature detectors not shown). Another embodiment
includes three temperature detectors as shown.

The Chassis controller 318 checks the temperature detec-
tor 502 to see if the temperature is less than —25° C. or if the
temperature is greater than or equal to 55° C. (state 1308).
Temperatures in this range are considered normal operating
temperatures. Of course, other embodiments may use other
temperature ranges. If the temperature is operating inside
normal operating boundaries, the Chassis controller 318
proceeds to state 1310. If the temperature is outside normal
operating boundaries, the Chassis controller 318 proceeds to
state 1312. At state 1312, the Chassis controller 318 evalu-
ates the temperature a second time to check if the tempera-
ture is greater than or equal to 70° C. or less than or equal
to —25° C. If the temperature falls below or above outside of
these threshold values, the Chassis controller proceeds to
state 1316. Temperatures in this range are considered so far
out of normal operating temperatures, that the computer 100
should be shutdown. Of course, other temperature ranges
may be used in other embodiments.

Referring to state 1316, if the temperature level reading is
critical, the Chassis controller 318 logs a message in the
NVRAM 322 that the system was shut down due to exces-
sive temperature. The Chassis controller 318 then proceeds
to turn off power to the system in state 1320, but may
continue to operate from a bias or power supply.

Otherwise, if the temperature is outside normal operating
temperatures, but only slightly deviant, the Chassis control-
ler 318 sets a bit in the temperature warning status register
(state 1314). Additionally, the Chassis controller 318 logs a
message in the NVRAM 322 that the temperature is reach-
ing dangerous levels (state 1318).

The Chassis controller 318 follows the aforementioned
process for each temperature detector on the system. Refer-
ring back to state 1310, which was entered after determining
a normal temperature from one of the temperature detectors,
the Chassis controller 318 checks a looping variable “N” to
see if all the sensors were read. If all sensors were not read,
the Chassis controller 318 returns to state 1300 to read
another temperature detector. Otherwise, if all temperature
detectors were read, the Chassis controller 318 proceeds to
state 1322. At state 1322, the Chassis controller 318 checks
a warning status register (not shown). If no bit is set in the
temperature warning status register, the Chassis controller
318 returns to the state 1136 in FIG. 11B. If the Chassis
controller 318 determines that a bit in the warning status
register was set for one of the sensors, the Chassis controller
318 proceeds to recheck all of the sensors (state 1324). If the
temperature of the sensors are still at a dangerous level, the
Chassis Controller 318 maintains the warning bits in the
warning status register. The Chassis controller 318 then
proceeds to the state 1136 (FIG. 11B). At state 1324, if the
temperatures of the sensors are now at normal operating
values, the Chassis controller 318 proceeds to clear all of the
bits in the warning status register (state 1326). After clearing
the register, the Chassis controller 318 proceeds to state
1328 to log a message in the NVRAM 322 that the tem-
perature has returned to normal operational values, and the
Chassis controller 318 proceeds to the state 11136 (FIG.
11B).

FIGS. 14A and 14B are flowcharts showing the functions
performed by one embodiment of the CPU A controller 314.
The CPU A controller 314 is located on the system board
302 and conducts diagnostic checks for: a microcontroller
bus timeout, a manual system board reset, a low system fan
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speed, a software reset command, general faults, a request to
write to flash memory, checks system flag status, and a
system fault.

The CPU A controller 314, starting in state 1400, initial-
izes its variables and stack pointer. Next, in state 1402 the
CPU A controller 314 starts its main loop in which it
performs various diagnostics which are described below. At
state 1404, the CPU A controller 314 checks the microcon-
troller bus 310 for a time out. If the microcontroller bus 310
has timed out, the CPU A controller 314 resets the micro-
controller bus 310 (state 1406). From either state 1404 or
1406, the CPU A controller 314 proceeds to check whether
the manual reset switch (not shown) is pressed on the system
board 302 (decision state 1408). If the CPU A controller 314
determines that the manual reset switch is pressed, the CPU
A controller resets system board by asserting a reset signal
(state 1410).

From ecither state 1408 or 1410, the CPU A controller 314
proceeds to check the fan speed (decision state 1412). If any
of a number of fans speed is low (see FIG. 15 and discussion
below), the CPU A controller 314 logs a message to
NVRAM 322 (state 1414). Additionally, the CPU A con-
troller 314 sends an event to the Remote Interface 334 and
the System Interface 312. The CPU A controller 314 next
proceeds to check whether a software reset command was
issued by either the computer 100 or the remote computer
132 (state 1416). If such a command was sent, the CPU A
controller 314 logs a message in NVRAM 322 that system
software requested the reset command (state 1418).
Additionally, the CPU A controller 314 also resets the
system bus 202.

From ecither state 1416 or 1418, the CPU A controller 314
checks the flags bits (not shown) to determine if a user
defined system fault occurred (state 1420). If the CPU A
controller 314 determines that a user defined system fault
occurred, the CPU A controller 314 proceeds to display the
fault on an LCD display 512 (FIG. 5B) (state 1422).

From either state 1420 or 1422 the CPU A controller 314
proceeds to a state 1424 (if flash bit was not enabled) to
check the flash enable bit maintained in memory on the CPU
B controller 316. If the flash enable bit is set, the CPU A
controller 314 displays a code for flash enabled on the LCD
display 512. The purpose of the flash enable bit is further
described in the description for the CPU B controller 316
(FIG. 16).

From either state 1424 or 1426 (if the flash bit was not
enabled), the CPU A controller 314 proceeds to state 1428
and checks for system faults. If the CPU A controller 314
determines that a fault occurred, the CPU A controller 314
displays the fault on the LCD display 512 (state 1430). From
state 1428 if no fault occurred, or from state 1430, the CPU
A controller 314 proceeds to the checks the system status
flag located in the CPU A controller’s memory (decision
state 1432). If the status flag indicates an error, the CPU A
controller 314 proceeds to state 1434 and displays error
information on the LCD display 512.

From ecither state 1432 or 1434, the CPU controller
proceeds to state 1402 to repeat the monitoring process.

FIG. 15 is a flowchart showing one process by which the
CPU A controller 314 monitors the fan speed. FIG. 15 is a
more detailed description of the function of state 1412 in
FIG. 14A. Starting in state 1502, the CPU A controller 314
reads the speed of each of the fans 1506, 1508, and 1510.
The fan speed is processed by a Fan Tachometer Signal Mux
508 (also shown in FIG. 5B) which updates the CPU A
controller 314. The CPU A controller 314 then checks to see
if a fan speed is above a specified threshold (state 1512). If
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the fan speed is above the threshold, the CPU A controller
314 proceeds to state 1514. Otherwise, if the fan speed is
operating below a specified low speed limit, the CPU A
controller 314 proceeds to state 1522. On the other hand,
when the fan is operating above the low speed limit at state
1514, the CPU A controller 314 checks the hot_swap_ fan
register (not shown) if the particular fan was hot swapped.
If the fan was hot swapped, the CPU A controller 314
proceeds to clear the fan’s bit in both the fan_ fault register
(not shown) and the hot_swap_ fan register (state 1516).
After clearing these bits, the CPU A controller 314 checks
the fan fault register (state 1518). If the fan fault register is
all clear, the CPU A controller 314 proceeds to set the fan to
low speed (state 1520) and logs a message to the NVRAM
322. The CPU A controller 314 then proceeds to state 1536
to check for a temperature warning.

Now, referring back to state 1522, if a fan speed is below
a specified threshold limit, the CPU A controller 314 checks
to see if the fan’s speed is zero. If the fan’s speed is zero, the
CPU A controller 314 sets the bit in the hot swap_ fan
register in state 1524 to indicate that the fan has a fault and
should be replaced. If the fan’s speed is not zero, the CPU
A controller 314 will proceed to set a bit in the fan_ fault
register (state 1526). Moving to state 1528, the speed of any
fans still operating is increased to high, and a message is
written to the NVRAM 322.

In one alternative embodiment, the system self-manages
temperature as follows: from either state 1520 or 1528, the
CPU A controller 314 moves to state 1536 and checks
whether a message was received from the Chassis controller
318 indicating temperature warning. If a temperature warn-
ing is indicated, and if there are no fan faults involving fans
in the cooling group associated with the warning, the speed
of fans in that cooling group is increased to provide more
cooling capacity (state 1538).

Proceeding to state 1530 from either state 1536 or 1538,
the CPU A controller 314 increments a fan counter stored
inside of microcontroller memory. If at state 1531, there are
more fans to check, the CPU A controller 314 returns to state
1502 to monitor the speed of the other fans. Otherwise, the
CPU controller 314 returns to state 1416 (FIG. 14).

FIG. 16 is one embodiment of a flow diagram showing the
functions performed by the CPU B controller 316. The CPU
B controller 316 scans for system faults, scans the micro-
controller bus 310, and provides flash enable. The CPU B
controller 316, starting at state 1600, initializes its variables
and stack pointer.

After initializing its internal state, the CPU B controller
316 enters a diagnostic loop at state 1602. The CPU B
controller 316 then checks the microcontroller bus 310 for a
time out (decision state 1604). If the microcontroller bus 310
has timed out, the CPU B controller 316 resets the micro-
controller bus 310 in state 1606. If the microcontroller bus
310 has not timed out (state 1604) or after state 1606, the
CPU B controller 316 proceeds to check the system fault
register (not shown) (decision state 1608).

If the CPU B controller 316 finds a system fault, the CPU
B controller 316 proceeds to log a message into the NVRAM
322 stating that a system fault occurred (state 1610). The
CPU B controller 316 then sends an event to the System
Interface 312 and the Remote Interface 332. Additionally,
the CPU B controller 316 turns on one of a number of LED
indicators 518 (FIG. 5B).

If no system fault occurred, or from state 1610, the CPU
B controller 316 scans the microcontroller bus 310 (decision
state 1612). If the microcontroller bus 310 is hung then the
CPU B controller 316 proceeds to flash an LED display 512
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that the microcontroller bus 310 is hung (state 1614).
Otherwise, if the bus is not hung the CPU B controller 316
then proceeds to state 1624.

The CPU B controller 316 proceeds to check for a bus
stop bit time out (decision state 1624). If the stop bit has
timed out, the CPU B controller 316 generates a stop bit on
the microcontroller bus for error recovery in case the stop bit
is inadvertently being held low by another microcontroller
(state 1626).

From ecither state 1624 or 1626, the CPU B controller 316
proceeds to check the flash enable bit to determine if the
flash enable bit (not shown) is set (state 1628). If the CPU
B controller 316 determines that the flash enable bit is set
(by previously having received a message requesting it), the
CPU B controller 316 proceeds to log a message to the
NVRAM 322 (state 1630). A flash update is performed by
the BIOS if the system boot disk includes code to update a
flash memory (not shown). The BIOS writes new code into
the flash memory only if the flash memory is enabled for
writing. Asoftware application running on the CPUs 200 can
send messages requesting that BIOS flash be enabled. At
state 1630, the 12 Volts needed to write the flash memory is
turned on or left turned on. If the flash enable bit is not on,
control passes to state 1629, where the 12 Volts is turned off,
disabling writing of the flash memory.

From ecither state 1629 or 1630, the CPU B controller 316
proceeds to repeat the aforementioned process of monitoring
for system faults (state 1602).

FIG. 17 is one embodiment of a flowchart showing the
functions performed by the Canister controllers 324, 326,
328 and 330 shown in FIGS. 4 and 5. The Canister control-
lers 324, 326, 328 and 330 examine canister fan speeds,
control power to the canister, and determine which canister
slots contain cards. The Canister controllers 324-330, start-
ing in state 1700, initialize their variables and stack pointers.

Next, in state 1702 the Canister controllers 324—-330 start
their main loop in which they performs various diagnostics,
which are further described below. The Canister controllers
324-330 check the microcontroller bus 310 for a time out
(state 1704). If the microcontroller bus 310 has timed out,
the Canister controllers 324-330 reset the microcontroller
bus 310 in state 1706. After the Canister controller 324-330
reset the microcontroller bus 310, or if the microcontroller
bus 310 has not timed out, the Canister controllers 324-330
proceed to examine the speed of the fans (decision state
1708). As determined by tachometer signal lines connected
through a fan multiplexer 508 (FIG. 5), if either of two
canister fans is below the lower threshold, the event is
logged, an event is sent to the System Interface 312 and,
speed, in a self-management embodiment, the fan speed is
set to high. The Canister controllers 324-330 check the fan
speed again, and if they are still low the canister controlling
324-330 signal a fan fault and register an error message in
the NVRAM 322 (state 1710).

If the Canister controller