Round Rock Research, LLC v. Oracle Corporation et al Doc. 1 Att. 4

EXHIBIT B

Dockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/4:2011cv00332/130566/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/4:2011cv00332/130566/1/4.html
http://dockets.justia.com/

US006145098A

United States Patent 19 (111 Patent Number: 6,145,098
Nouri et al. 451 Date of Patent: Nov. 7, 2000
[54] SYSTEM FOR DISPLAYING SYSTEM FOREIGN PATENT DOCUMENTS
STATUS 0 866 403 A1 9/1998 European Pat. Off. .
[75] Inventors: Ahmad Nouri, San Jose; Karl S. g; Sgg cl)ég qugg ;apan """""""""""""""""" ggg? i/gg
h Palo Alto. both of Calif / APANL e e /
Johnson, > : 07 261 874 10/1995 JApancooccccoeeevereveens GOG6F 1/18
[73] Assignee: Micron Electronics, Inc., Nampa, Id. OTHER PUBLICATIONS
) Davis, T, Usenet post to alt.msdos.programmer, APr. 1997,
[21] Appl. No.: 08/942,347 “Re: How do I create an FDISK batch file?”.
[22] Filed: Oct. 1, 1997 Davis. T., Usenet post to alt.msdos.batch, Apr. 1997, “Re:
Need help with automating FDISK and FORMAT
Related U.S. Application Data NetFrame Systms Incorporated, Doc. No. 78—1000226-01,
[60] Provisional application No. 60/046,326, May 13, 1997, Pp. 1-2,5-8, 359404, and 471-512, Apr. 1996, “NetFrame
provisional application No. 60/046,397, May 13, 1997, Clustered Multiprocessing Software: NW0496 DC-ROM
prov@s@onal appli.cati.on No. 60/047,016, May 13, 1997, and for Novel® NetWare® 4.1 SMP, 4.1, and 3.12.7
provisional application No. 60/046,416, May 13, 1997. Shanley, and Anderson, PCI System Architecture, Third
51] Int. CL7 e GO6F 11/00 Edition, Chapter 15, pp. 297-302, Copyright 1995, “Intro To
P pp pyrig
322 [O © 714/31; 714/47 Configuration Address Space.”
(58] Field of Search 395/200.44, 200.47, ~ Shanley, and Anderson, PCI System Architecture, Third
395/200.54, 200.57, 180, 182.02, 184.01; Edition, Chapter 16, pp. 303-328, Copyright 1995, “Con-
714/31, 47 figuration Transactions”.
Sun Microsystems Computer Company, Part No.
[56] References Cited 802-5355-10, Rev. A, May 1996, “Solstice SYMON User’s
Guid.”
U.S. PATENT DOCUMENTS (List continued on next page.)
3’%8’23; I%ig;;]F“loe \;Vneiﬂgetef 12;1 """""""""""""" ggjﬁgg Primary Examiner—Robert W. Beausoliel, Jr.
4449182 5/1984 Rubinson et al. ... 364200 Assistant Examiner—Pierre E. Elisca
4,672,535 6/1987 Katzman et al. ... 364,200 Atrorney, Agent, or Firm—Knobbe, Martens, Olson & Bear,
4,692,918 9/1987 Elliott et al. coeen 370785 LLP
4,695,946 9/1987 Andreasen et al.ccoevvvnnnene 364/200
4,707,803 11/1987 Anthony, Jr. et al. . [57] ABSTRACT
j’zgi’zgg gﬁggg zﬁr;n """""""""""""""""" giéggﬁ A fault tolerant computer system for obtaining and
4821180 4 /1989 Gerely etal 364/200 displaying, or updating the status of server components
4835737 5 /1989 Herrig et al.. Jrmmmm— through a remote interface and either a local or remote client
4804792 1/1990 Mitchell ef al. w.oevvvvrerooreor 364/708 machine without intervention of the server operating system
4,049,245 8/1990 Martin et al. . software. The remote machine accesses the server by use of
4,999,787 3/1991 McNally et al. . a dial-in modem connection, while the local machine
5,006,961 4/1991 Monico . accesses the server by a local serial connection. The com-
5,007,431 4/1991 Dpnehoo, T 128/696 ponents that can be monitored include, but are not limited to,
2,0?3,048 7/1991 P1.er.ce et al. ooviieeieeeee e 371/21.2 the following: Power Supplies, Temperatures, Fans,
5’87;’38 13;}32} E(l)tst;g;iu;e;)m : 340/33;310(;22 Processors, 1/O Groups, I/O Canisters, Serial Numbers, and
5103391 471992 BAITelt .ooooorooesos oo 364/133 Revisions.

(List continued on next page.)

CLIENT
MCDEM

H 25

SERVER
MODEM 726

CLIENT
COMPUTER

122/7124

SERVER SYSTEM

35 Claims, 26 Drawing Sheets

100

| SYSTEM BCARD

750 BACK PLANE

REMOTE ‘

152 -

164 172-
\NTETEACE cPY NVRAM
] 1SA_BUS
@ 766 62 110
CPU A e SYSTEM
CONTROLLER |— SYSTEM | RECORDER
03 INTERFACE o1
10 MICRO-
cPU B | CONTROLLER CHASSIS
CONTROLLER] ———| CONTROLLER
04 168 760 02

CANISTER
CONTROLLER A
20

CANISTER
CONTROLLER B
21

CANISTER CANISTER
CONTROLLER C CONTROLLER D
22 23

172

174

76 178

6,145,098

Page 2
U.S. PATENT DOCUMENTS 5,566,339 10/1996 Perholtz et al.cccocveeeenee. 395/750
5,568,610 10/1996 Brown .

5,118,970 6/1992 01501’1 et al. 307/443 5,568,619 10/1996 Blackledge et al. .
5,121,500 6/1992 Aslington et al. - 395/750 5,572,403 11/1996 Ml ooovvevrerereveeencrmseesr e 361/695
5,123,017 6/1992 S1mpk1ns et al. 371/151 5;5777205 11/1996 vaang et al. .
5,136,708 8/1992 Lapourtre et al. ooooesrcerirenee 395/650 5,579,487 11/1996 Meyerson et al. wovevrecrrereeeees 395/280
5,138,619 8/1992 Fasang etal. 371/21.1 5;5797491 11/1996 Jeffries et al. .
5,157,663 10/1992 Major et al.ccveeveveeveene. 371/9.1 5,581,712 12/1996 Herrman .
5,210,855 5/1993 Bartol . 5,581,714 12/1996 Amini et al. .
5,245,615 971993 TIEU ..eeovvvievrereerieecevenee e 371/16.5 5,584,030 12/1996 Husak et al.ocovevvevrivvrrnnnes 395/750
5,247,683 9/1993 Holmes et al. ...ceeeuevrvervnnnne 395/700 5,588,144 12/1996 Inoue et al. .
5,253,348 10/1993 Scalise ... 395/325 5,592,611 1/1997 Midgely et al. ..., 395/182.02
5,261,094 11/1993 Everson et al.ccoceeveveveerennne 395/600 5,596,711 1/1997 Burckhartt et al. 395/182.21
5,266,838 11/1993 GEINET oooreevereereerseeeeeseeeeeeeeenon 307/19 5,598,407 1/1997 Bud et al ooeoooveevereereereeneene. 370/330
5,269,011 12/1993 Yanai et al. . 5,602,758 2/1997 Lincoln et al. .. 364/505
5,272,382 12/1993 Heald et al. veeveeveereerevescennen. 307/66 5,604,873 271997 Fite et al. wovveeeeoeeevereereereeneene 395/283
5,272,584 12/1993 Austruy et al. . 5,606,672 2/1997 Wade .
5,276,863 1/1994 Heiderc.ccocevevevnecnecrecnecnecnene 395/575 5,608,876 3/1997 Cohen et al. .
5,277,615 1/1994 Hastings et al. .. 439/377 5,615,207 3/1997 Gephardt et al. .
5,280,621 1/1994 Barnes et al. . . 395/800 5,621,159 4/1997 Brown et al. ..cviiiininiisininnn 73/9
5,283,905 2/1994 Saadeh et al. 395/750 5,621,802 471997 Co0k .o 395/200.1
5,307,354 4/1994 Cramer et al. . 5,622,221 4/1997 Genga, Jr. et al. ..ovevinnnnes 165/208
5,311,397 5/1994 Harshberger et al. 361/683 5,625,238 4/1997 Ady et al. 307/147
5,311,451 5/1994 Barrettocoecveeeeeeeeeevevernenen 364/550 5,627,962 5/1997 Goodrum et al. . 395/182.11
5,317,693 5/1994 Cuenod et al. . 5,628,028 5/1997 Michelson veeee 395/825
5,329,625 7/1994 Kannan et al. . 5,630,076 5/1997 Saulpaugh et al.ceeeenn. 395/284
5,337,413 8/1994 Lui et al. . 5,631,847 571997 KiKiniS woovvovereorrvreoeeesimrenns 364/514 R
5,351,276 9/1994 Doll, Jr. et al. . 5,632,021 5/1997 Jennings et al. .
5,367,670 11/1994 Ward et al.ccocvveveevvennennne 395/575 5,638,289 6/1997 Yamada et al. .
5,379,184 1/1995 Barraza et al.cccoeeveeeeennnne 361/685 5,644,470 7/1997 Benedict et al. .
5,379,409 1/1995 IShikawaccccceceevernrveineenenne 395/575 5,644,731 7/1997 Liencres et al. .
5,386,567 1/1995 Lien et al. . 5,651,006 7/1997 Fujino et al. .
5,388,267 2/1995 Chan et al.ccceevievvverneennenne 395/700 5,652,832 7/1997 Kane et al. .
5,402,431 3/1995 Saadeh et al.ccceeveveuennnnen. 371/67.1 5,652,839 7/1997 Giorgio et al.ccooeviins 395/200.11
5,404,494 4/1995 Garney . 5,652,892 7/1997 Ugajin veeeee 395/750
5,423,025 6/1995 Goldman et al.occceeevenrennnnne 395/575 5,652,908 7/1997 Douglas ... 395/800
5,430,717 7/1995 Fowler et al. ...cccoveeeerneninnnne 370/58.2 5,655,081 8/1997 Bonnell et al.cccoueeeeeee 395/200.32
5,430,845 7/1995 Rimmer et al. 395/275 5,655,083 8/1997 Bagley ... 395/182.31
5,432,715 7/1995 Shigematsu et al. 364/551.01 5,655,148 8/1997 Richman et al. .
5,432,946 7/1995 Allard et al.coeveeveeveeneennnne 395/750 5,659,682 8/1997 Devarakonda et al. .
5,438,678 8/1995 Smith ..c.ccocevevievevveineirecnecneencne 395/750 5,664,118 9/1997 Nishigaki et al.cccceeveueeeee 395/283
5,440,748 8/1995 Sekine et al. . 5,664,119 9/1997 Jeffries et al. .
5,448,723 9/1995 Rowett s 395/200.02 5,666,538 9/1997 DeNicola .
5,455,933 10/1995 Schieve et al. 395/183.03 5,668,943 9/1997 Attanasio et al. 395/182.05
5,460,441 10/1995 Hastings et al.ccocevveviiiincnne 312/298 5,668,992 9/1997 Hammer et al.ccccovveveceencen. 395/651
5,463,766 10/1995 Schieve et al. 395/650 5,669,009 9/1997 Buktenica et al. 395/800.35
5,471,617 11/1995 Farrand et al. .. 395/700 5,671,371 9/1997 Kondo et al. ..cccooveveerencennnen. 395/306
5,473,499 12/1995 WEIT werooveereeeereeeeerseeeeereeeeereeenon 361/58 5,675,723 10/1997 FEkrot et al. .
5,483,419 1/1996 Kaczeus, Sr. et al. . 5,680,288 10/1997 Carey et al. .
5,485,550 1/1996 Daltonccccecevmneeneeneeneeneereenees 395/51 5,684,671 11/1997 Hobbs et al. .
5,485,607 1/1996 Lomet et al. . 395/600 5,689,637 11/1997 Johnson et al. .
5,487,148 1/1996 Komori et al.cccueeeeeeee. 395/182.02 5,696,805 12/1997 Hemphill et al. 395/182.02
5,491,791 2/1996 Glowny et al. . 5,696,899 12/1997 Kalwitz .
5,493,574 2/1996 McKinley . 5,696,949 12/1997 Youngccccovvcevevenccnevinnn 395/551
5,493,666 2/1996 Fitch . 5,696,970 12/1997 Sandage et al. .
5,513,314 4/1996 Kandasamy et al. 395/182.04 5,704,031 12/1997 Mikami et al.c.cueeeee. 395/182.02
5,513,339 4/1996 Agrawal et al. ..o 395/500 5,708,775 1/1998 Nakamura 395/185.01
5,517,646 5/1996 Piccirillo et al. . 5,708,776 1/1998 Kikinis 395/185.08
5,526,289 6/1996 Dinh et al.cccoceevereenceneeneen. 364/557 5,712,754 1/1998 Sides et al. .coeeeeeeinieieienenes 361/58
5,528,409 6/1996 Cucci et al. ...ccoeeveeverceeinennenne 359/171 5,715,456 2/1998 Bennett et al. ..c.cccecveeiercennnen. 395/652
5,533,193 7/1996 Roscoe . 395/183.15 5,717,570 2/1998 KiKiNis ...coveovervevemeeereeeceeennen 361/685
5,535,326 7/1996 Baskey et al. .oooooccvoreennn. 395/182.02 5,724,529 3/1998 Smith et al. .
5,542,055 7/1996 Amini et al. .c.ccoceeriennneincencene 395/281 5,726,506 3/1998 Wood .
5,546,272 8/1996 Moss et al. ... 361/687 5,727,207 3/1998 Gates et al.cccoevevevienccennnene 395/651
5,548,712 8/1996 Larson et al.ccoeuunnee. 395/182.05 5,732,266 3/1998 Moore et al. 395/651
5,555,510 9/1996 Verseput et al. . 5,737,708 4/1998 Grob et al. .cocoveevcveneeerenene 455/557
5,559,764 9/1996 Chen et al.ccccoceeeenceneeneenee. 396/30 5,740,378 4/1998 Rehl et al. .
5,559,958 9/1996 Farrand et al. 395/183.03 5,742,514 4/1998 Bonolaccccceceeveecreevcnnenennene 364/492
5,559,965 9/1996 Oztaskin et al. . 5,742,833 4/1998 Dea et al. .. . 395/750.05
5,560,022 9/1996 Dunstan et al.ccceeevevueennnne 395/750 5,747,889 5/1998 Raynham et al. .
5,564,024 10/1996 Pemberton . 5,748,426 5/1998 Bedingfield et al. .

5,566,299 10/1996 Billings et al.ccocevennes 395/182.02 5,752,164 5/1998 JONES ..coovvviviiiiiiniiniiniee e 455/33.1

6,145,098

Page 3
5,754,797 5/1998 Takahashi . 5,852,720 12/1998 Gready et al. .
5,758,165 5/1998 Shuffccccovvviimvveriviiiiveirienne 395/712 5,852,724 12/1998 Glenn, II et al.ccoueeenee 395/200.69
5,758,352 5/1998 Reynolds et al. ..cccoocereerereeeens 707/200 5,857,074 1/1999 Johnson .
5,761,033 6/1998 Wilhelm . 5,857,102 1/1999 McChesney et al. 395/653
5,761,045 6/1998 Olson et al. . 5,864,653 1/1999 Tavallaei et al. 315/181
5,761,085 11/1998 GIOIZIO euurssssssssessessenrenre 395/200.54 5864713 1/1999 Terry - 395/872
5761462 6/1998 Neal et al. . 5,867,730 2/1999 Leyda 395/830
5761707 6/1998 Afken et al. oo U118 5,875,307 2/1999 Ma et al. cerevoreeeeerreeeerrer. 395/281
5.764.968 6/1998 Ninomiya . 5,875,308 2/1999 Egan et al. ..cccoevvvivcinninnee. 395/283
5’765}008 6/1998 Desai et al. . 5,875,310 2/1999 Buckland et al. .. 395/306
5765198 6/1998 McCrocklin c al. | 5878237 3/1999 OlArig woovvoroooooeoeeeeererreereerrer 395/308
5767.844 671998 SLOYE wovvrososooceerserssseseoereerssn 345212 5.878,238 3/1999 Gan et al. e 395/308
5’768’541 6/1998 Pan-Ratzlaff 5,881,311 3/1999 Woods 395/824
P) 5,884,027 3/1999 Garbus et al. . 395/200.8
5,768,542 6/1998 Enstrom et al. . 20
5771343 6/1998 Hafner et al. cooooooovoooooceen. 395/182.02 5,889,965 3/1999 Wallach et al. .. - 395/283
5,774,645 6/1998 Beaujard et al. 395/183.01 5.892,898 4/1999 Fujii et al. 395/185.1
5774741 6/1998 Choi . 5,892,928 4/1999 Wallach et al. .. 395/283
5,777,897 7/1998 GIOIZIO wovvvvoooers e 364/557 ?gggﬂggg jﬁ ggg Eeltlhy ~~~~~ o - ;ggggg

,898, uthrie et al. ...cooovveveveeveeeennes

g,;gfli,;g; ;ﬁggg B::;lia:tl al 395/284 5905867 5/1999 Giorgio ... 305/200.54
5,781,716 7/1998 Hemphill et al. 395/182.02 2:9077672 5/1999 Maizelet ale 392/18226
5781744 7/1998 Johnsom et al. w..ooooooooovorevevee.. 395,283 913,034 6/1999 Malcolm w.vvvvvvenenvcns 395/200.53
5781767 7/1998 Inoue et al. . 5,922,060 7/1999 Goodrum ... v 710/103
5781798 7/1998 Beatty ct al. . 5,935,262 8/1999 Barrett et al. v 714746
5’784’555 7/1998 Stone 395/200.5 5,936,960 8/1999 Stewart 370/438
,784, e . 5038751 8/1999 Tavallaci ot ol 10103
5,784,576 7/1998 Guthrie et al. . 7= :
5,787,019 7/1998 Kuight et al. .oovvrroocoresroce 364/550 5941996 8/1999 Smith et al. ... v T14/47
5.787.459 7/1998 Stallmo et al. . 7112 5,987,554 111999 Ll“gt al. - - 7107129
5787491 7/1998 Merkin et al. wooovorormsverevrvee.n 711/173 6,012,130 1/2000 Beyda et al. cooovovvovevcvrririiennnnens 7111173
5,790,775 8/1998 Marks et al.ccoeevvennennee. 395/182.07
5,790,831 8/1998 Lin et al. . OTHER PUBLICATIONS
5,793,948 8/1998 Asahi et al. .ovveerieirerinnnne. 395/184.01 Sun Microsystems, Part No. 802-6569—11, Release 1.0.1,
?;g}ggz S/ ggg 8“;’011)@1?“1511 etal.. Nov. 1996, “Remote Systems Diagnostics Installation &
5.796.185 8;1998 Tokata of al. User GUide.” . .
5,796,580 8/1998 Komatsu et al. oocororoomreroe 361/687 ~ Shanley and Anderson, PCI System Architecture, Third
5:796:981 8/1998 Abudayyeh et al. . Edition, Chapters 15 & 16, pp. 297-328, CR 1995.
5,797,023 8/1998 Berman et al.coceoueee.. 395/750.06 PCI Hot-Plug Specification, Preliminary Revision for
5,798,828 8/1998 Thomas et al. . Review Only, Revision 0.9, pp. i—vi, and 1-25, Mar. 5, 1997.
5,799,036 8/1998 Staples . SES SCSI-3 Enclosure Services, X3T10/Project 1212-D/
5,799,196 8/1998 Flz.innery terrreerneneeiensennenes. 395/750.03 Rev 8a, pp. i, iii-x, 1-76, and I-1 (index), Jan. 16, 1997.
5,801,921 971998 Miller . C C o C tion. Techmol Brief
5,802,260 971998 Poisner et al. . ompaq tomputer L-orporation, IeChology BIICl, Pp.
5’802’298 9/1998 Imai et al 395/200.47 1-13, Dec. 1996, “Where Do I Plug the Cable? Solving the
5,802,305 971998 McKaughan et al. .. . 395120057 Logical-Physical SLot Numbering Problem.”
5,802,324 9/1998 Wunderlich et al. 395/281 NetFRAME Systems Incorporated, News Release, 3 pages,
5,802,393 9/1998 Begun et al. . referring to May 9, 1994, “NetFRAME’s New High—Avail-
5,802,552 9/1998 Fandrich et al. . ability ClusterServer Systems Avoid Scheduled as well as
5,802,592 9/1998 ChC.SS et al. e, 711/164 Unscheduled Downtime.”
gﬂggzigz g/ ggg iakm tl """"""""""""" 39253% 7(?0]3 Herr, et al., Linear Technology Magazine, Design Features,
805, / AUISED €L al. v /200. pp. 21-23, Jun. 1997, “Hot Swapping the PCI Bus.”
5,805,834 9/1998 McKinley et al. . .
5809224 9/1998 Schulz et al. . Lockareft, M., HTINews,, http://www.hometoys.com/htin-
5.800.256 0/1998 NAJEMY evevoroerrsersrrsrrrs e 395083 ews/decb/article/lonworks.htm, Dec. 1996, “Lonworks—
5,809,287 9/1998 Stupek, Jr. et al.coooerennee. 395/500 An Introduction”.
5,809,311 9/1998 Jonesuen. ... 395/750.01 NetFRAME Systems Incorporated, datasheet, Feb. 1992,
5,812,748 9/1998 Ohran et al. . 395/182.02 “NF450FT Network Mainframe”.
272}%;22 g; }ggg gliv et tal. D — 395/182.02 NetFRAME Systems Incorporated, datasheet, Mar. 1996,
,812, amoto et al. . « o
5.812.858 971998 Nookala ct al. . NetFRAME Cluster Server 8000”.
5815117 9/1998 Kolanck . Schofield, M.J., http:/www.omegas.co.uk/CAN/canwork-
5815.647 9/1998 Buckland et al. ... 395/182.01 S-him, Copyright 1996, 1997, “Controller Area Network—
5,815,652 9/1998 Ote et al. . How CAN Works™.
5,821,596 10/1998 Miu et al. .oocovveivreereeeeceenee 257/419 http://www.nrtt.demon.co.uk/cantech.html, May 28, 1997,
5,822,547 10/1998 Boesch et al. . “CAN: Technical overview”.
5,835,719 11/1998 Gibson et al.cccccoeeeee. 395/200.51 fip.cdrom.comfpublos2/diskutil/, PHDX software, phdx.zip
5,835,738 1171998 Blackledge, Ir. et al. . download, Mar. 1995, “Parallel Hard Disk Xfer.”
5,838,932 11/1998 Alzien ...c..cccccevceveeeeecnevencannenne 395/308 . . .
5.841.964 11/1998 Yamaguchi ... 305/113.21 Cmasters, Usenet post to rm(?rosoft.pubhc.Wlndowsnt.setup,
5,841,991 11/1998 Russell . Aug 1997, Re: FDISK switches.
5,845,061 12/1998 Miyamoto et al. 395/182.02 Hildebrand, N., Usenet post to comp.msdos.programmer,
5,845,095 12/1998 Reed et al. ..ccceeevvcveeenecnen. 395/283 May 1995, “Re: Structure of disk partition info.”

6,145,098
Page 4

Lewis, L., Usenet post to alt.msdos.batch, Apr. 1997, “Re:
Need help with automating FDISK and FORMAT.”
Netframe, htip://www.netframe—support.com/technology/
datasheets/data.him, before Mar. 1997, “Netframe Cluster-
System 9008 Data Sheet.”

Simos, M., Usenet post to comp.os.msdos.misc, Apr. 1997,
“Re: Auto FDISK and FORMAT.”

Wood, M. H., Usenet post to comp.os.netware.misc, Aug.
1996, “Re: Workstation duplication method for WIN95.”

Gorlick, M., Conf. Proceedings: ACM/ONR Workshop on
Parallel and Distributed Debugging, pp. 175-181, 1991,
“The Flight Recorder: An Architectural Aid for System
Monitoring.”

IBM Technical Disclosure Bulletin, 92A+62947, pp.
391-394, Oct. 1992, Method for Card Hot Plug Detection
and Control.

U.S. Patent Nov. 7, 2000 Sheet 1 of 26 6,145,098
700~
SERVER SYSTEM
108 702
~
706,
NT /NETWARE
OPERATING SYSTEM ') SYSTEM MICROCONTROLLER
(0S) INTERFACE NETWORK
770
~
772
NVRAM SYSTEM
RECORDER
704
REMOTE
INTERFACE
722 720 [—_y“j
AN SWITCH
LOCAL CLIENT D
] | s | oo
MANAGER (LOCAL CONNECTION)
732 | OPERATING
N SYSTEM
723
728~
727
MODEM <42 MODEM
729 \
126
724 N
~
REMOTE CLIENT |
730 | RECOVERY
- MANAGER
732 | OPERATING
| SYSTEM
F1G. 7

6,145,098

Sheet 2 of 26

Nov. 7, 2000

U.S. Patent

841~ 94~ P~ 1~
cT 44 ¥4 0z
0 ¥3TI041NOD O ¥ITIONINOD 8 ¥3TT04INOD V ¥3T1041NOD
¥3LSINYD ¥3LSINVD ¥3LSINVD ¥ILSINVD
_ [[J
20 N-oz/ N%\ &9/ 0
43T7TOYINOD SNg 43TT0¥INOD
SISSVHI 43TI04LNOD 8 Ndo
~O¥OIN 0l
0 JOVAHILINI 0
43038003y NILSAS ¥3TT041INOD
V Ndd
NILSAS g T o
o1/ Z9/ 997~
_ sng’ Vsl 002~
Ll
WVEIAN -\ ., yos | ND 30VAAILNI
g JLOW3Y
INV1d XOVE ¢t aqyv0o8 WILSAS
N\ g0/ NILSAS ¥IAYIS
92/ ~] WIQON
¥IANIS
¥3LNdNOD NIAON
IN3ID IN3ND

U.S. Patent Nov. 7, 2000 Sheet 3 of 26 6,145,098

REMOTE INTERFACE SER/AL
FROTOCOL MESSAGE FORMATS

207

7

REQUEST:
202{ SoM |SEQ. #| TYPE | DATA ... |cHEck| EOM
N206 208 210 2712 N4 276
RESPONSE:
204{ SOM |SEQ. #|STATUS| DATA ... |cHeck| eom
278
RESPONSE:
INT

N 220

rG. 5

U.S. Patent

Nov. 7, 2000

POWER—-ON FROCLSS

F6. 44 \

272
(START)

1

ENTER PASSWORD;

TELEPHONE NUMBER AS
APPROPRIATE

SELECT LOCAL OR REMOTE;
ENTER COM PORT OR SERVER

273

YES

Sheet 4 of 26

6,145,098

CONNECT CLIENT
COMPUTER TO CLIENT
MODEM

276

|

CONNECT CLIENT
MODEM TO SERVER
MODEM

278

\

CONNECT SERVER
MODEM TO REMOTE
INTERFACE

|~ 250

Y

CONNECT REMOTE
INTERFACE TO SERVER

282

CONNECT LOCAL
CLIENT COMPUTER TO
REMOTE INTERFACE

288

\

CONNECT REMOTE
INTERFACE TO SERVER

292

\

CLIENT DIALS SERVER
MODEM AND
HANDSHAKES WITH
REMOTE INTERFACE
BOARD

286

—

-

Y

F1G. 44\ F16. 46

Fl1G. 4

SELECT SERVER ICON
ON CLIENT DISPLAY

296

Y

SELECT POWER-ON
BUTTON

298

DISPLAY USER
CONFIRMATION
WINDOW

300

Foz

U.S. Patent Nov. 7, 2000 Sheet 5 of 26 6,145,098

02
ﬂ
322

\ S04 CLIENT MODEM SENDS
CLIENT PROVIDES RESPONSE BACK TO
MICROCONTROLLER CLIENT

NETWORK COMMAND
AND SENDS IT TO
COMMUNICATION LAYER

YES COMMAND

SUCCESSFUL
?

‘ 306

COMMUNICATION LAYER
PUTS PROTOCOL AROUND

COMMAND AND SENDS IT | 526 J2E
TO THE SERVER
DISPLAY RESULT DISPLAY RESULT
WINDOW SHOWING WINDOW SHOWING
‘ 370 SUCCESS FAILURE
SERVER RECENVES THE OF COMMAND OF COMMAND
COMMAND AND POWERS—
ON THE SERVER \
IF DESIRED,
‘ 4 USER SELECTS
SERVER SENDS DETAILS BUTTON
TO VIEW DETAILS
RESPONSE TO REMOTE OF COMMAND
INTERFACE BOARD NFORMATION

F74

Jiz
NO (END Y

y 376 \ 318

REMOTE INTERFACE REMOTE INTERFACE
BOARD SENDS RESPONSE BOARD SENDS RESPONSE
TO SERVER MODEM (OR TO SERVER MODEM (OR
LOCAL CLIENT) INDICATING LOCAL CLIENT) INDICATING
SUCCESS OF COMMAND FAILURE OF COMMAND

YES POWER-ON

SUCCESSFUL
?

I — |

\ 320

REMOTE INTERFACE
BOARD SENDS THE
RESPONSE BACK THROUGH
SERVER MODEM TO

CLIENT MODEM /-/6: 45

U.S. Patent Nov. 7, 2000 Sheet 6 of 26 6,145,098

START POWER-ON\ 60 570
OF SERVER /

\

LOG THE REQUESTED |~ J62

POWER—ON
556
| | BIOS POST
YES SYSTEM NO ™ | COLDSTART
OVERTEMP SET)—
?
Y /..73(9
LOG BIOS POST
Y 366 ez EVENTS IN
SEND TEMPERATURE SET INTERNAL NON—VOLATILE RAM
MESSAGE TO THE POWER—-ON INDICATOR;
REMOTE SET RESET/RUN | I
INTERFACE BOARD COUNTDOWN TIMER BIOS POST PORT
INITIALIZATION
+ 368 \ 5
STOP POWER—ON TURN ON POWER |
PROCESS AND COOLING FAN FOR BIOS POST
MOTHERBOARD, BACKPLANE CONTROLLERS
y AND CANISTERS INITIALIZATION

370 AND BUILD OF
(RETURN) Y 576 MULT!PROCESSOR

TABLE
CALL BIOS POWER

ON SELF TEST y
(POST) ROUTINE ! %

BIOS POST OS BOOT
PREPARATION

\ &
BIOS INITIALIZES

Y 398
PCI-ISA BRIDGE AND
MICROCONTROLLER RETURN

NETWORK DRIVER

Y J50

MICROCONTROLLER NETWORK
SOFTWARE MONITORS
HARDWARE TEMPERATURE,
SWITCHES ON SWITCH
CONTROL PANEL, AND
SIGNALS FROM REMOTE

INTERFACE BOARD /_/6: 5

U.S. Patent Nov. 7, 2000
POWER—OFF FPROCLSS
420

FIG. 64 \
|l!ﬁﬂﬂﬁl' 427

ENTER PASSWORD; Sl

SELECT LOCAL OR REMOTE;
ENTER COM PORT OR SERVER
TELEPHONE NUMBER AS
APPROPRIATE

424

MODEM YES

Sheet 7 of 26

6,145,098

CONNECT CLIENT
=i COMPUTER TO CLIENT

CONNECTION
7

NO

CONNECT LOCAL e

CLIENT COMPUTER TO
REMOTE INTERFACE

|
CONNECT REMOTE

442

MODEM

426

Y

CONNECT CLIENT
MODEM TO SERVER
MODEM

428

]

CONNECT SERVER
MODEM TO REMOTE
INTERFACE

430

!

CONNECT REMOTE
INTERFACE TO SERVER

432

1

CLIENT DIALS SERVER
MODEM AND
HANDSHAKES WITH
REMOTE INTERFACE
BOARD

456

]

INTERFACE TO SERVER

F/G. 64\F/6. 665

f/6. 6

o

|

SELECT SERVER ICON
ON CLIENT DISPLAY

|~ 446

|

SELECT POWER-OFF
BUTTON

- 445

1

DISPLAY USER
CONFIRMATION
WINDOW

|~ 450

£52

U.S. Patent Nov. 7, 2000 Sheet 8 of 26 6,145,098
L5272
[+
\ 472
| Jihicad CLIENT MODEM SENDS
CLIENT PROVIDES RESPONSE BACK TO
MICROCONTROLLER CLIENT

NETWORK COMMAND
AND SENDS IT TO

COMMUNICATION LAYER
474

COMMAND
SUCCESSFUL
?

1 %

COMMUNICATION LAYER
PUTS PROTOCOL AROUND
COMMAND AND SENDS IT \

TO THE SERVER

476 Y 47

DISPLAY RESULT
WINDOW SHOWING

DISPLAY RESULT
WINDOW SHOWING

] 460 SUCCESS FAILURE
SERVER RECEIVES THE OF COMMAND OF COMMAND
COMMAND AND POWERS—
OFF THE SERVER | a0
IF DESIRED,
\ 462 USER SELECTS
SERVER SENDS DETAILS BUTTON
RESPONSE TO REMOTE TOOFVIEV(;ME:AEAT'%LS
INTERFACE BOARD OF COMMANT
164 "‘
YES ~POWER-OFF™> NO —~r 252
SUCCESSFUL
?
' #66 Y 465

REMOTE INTERFACE
BOARD SENDS RESPONSE
TO SERVER MODEM (OR
LOCAL CLIENT) INDICATING LOCAL CLIENT) INDICATING
SUCCESS OF COMMAND FAILURE OF COMMAND

| — |
\ 470
REMOTE INTERFACE
BOARD SENDS THE
RESPONSE BACK THROUGH

SERVER MODEM TO
CLIENT MODEM

REMOTE INTERFACE
BOARD SENDS RESPONSE
TO SERVER MODEM (OR

F1G6. 68

U.S. Patent Nov. 7, 2000 Sheet 9 of 26 6,145,098

460

~

START POWER-OFF 500
OF SERVER

]

LOG THE REQUESTED 502
POWER-OFF

|

CLEAR SYSTEM RUN
INDICATOR
(WS_SYS_RUN);
CLEAR RESET/RUN
COUNTDOWN TIMER

504

|

CLEAR INTERNAL |~ 506
POWER—-ON INDICATOR
(S4_POWER_ON)

|

TURN OFF POWER AND
COOLING FANS FOR
MOTHERBOARD,
BACKPLANE AND
CANISTERS

|~ 508

‘ 572

C RETURN) /_/6‘ 7

U.S. Patent Nov. 7, 2000 Sheet 10 of 26 6,145,098

CONNECT CLIENT 546
540 = COMPUTER TO CLIENT
\\\\‘\ MODEM
CONNECT CLIENT el
(s)/’542 MODEM TO SERVER
MODEM
! 543 Y
ENTER PASSWORD; ~ 550
SELECT LOCAL OR REMOTE; CONNECT SERVER
ENTER COM PORT OR SERVER MODEM TO REMOTE
TELEPHONE NUMBER AS INTERFACE
APPROPRIATE
' 552
CONNECT REMOTE @
INTERFACE TO SERVER
YES
! 556
CLIENT DIALS SERVER V~
MODEM AND
s5g HANDSHAKES WITH
CONNECT LOCAL - REMOTE INTERFACE
CLIENT COMPUTER TO BOARD
REMOTE INTERFACE ’l,
566
] 52 SELECT SERVER ICON [~
CONNECT REMOTE a ON CLIENT DISPLAY
INTERFACE TO SERVER
‘ 568
SELECT SYSTEM RESET |~
BUTTON
‘ 570
DISPLAY USER a
CONFIRMATION
F1G. EA\F/1G. &5 NFIRMAT

572

£6.8)

6,145,098

U.S. Patent Nov. 7, 2000 Sheet 11 of 26
577
Y 600
574 REMOTE INTERFACE

IS SERVER
RUNNING (UP
?

YES

NO 576
WARNING MESSAGE
DISPLAYED TO USER THAT
SERVER MUST BE RUNNING

v /.550

CLIENT APPLICATION
PROVIDES MICROCONTROLLER
NETWORK COMMAND AND SENDS
IT T0O COMMMUNICATION LAYER

| /55,_7

COMMUNICATION LAYER

PUTS PROTOCOL AROUND

COMMAND AND SENDS IT
TO THE SERVER

\ 590

BOARD SENDS THE
RESPONSE BACK THROUGH
SERVER MODEM TO
CLIENT MODEM

578 1 602

CLIENT MODEM SENDS
RESPONSE BACK TO
CLIENT

END

604

COMMAND

SUCCESSFUL
?

YES

| e !

608

SERVER RECEIVES THE
COMMAND AND RESETS
THE SERVER; "RESET”

DISPLAYED ON SERVER LCD

| /5.92

SERVER SENDS
RESPONSE TO REMOTE
INTERFACE BOARD

/.5.94
NO

YES RESET

DISPLAY RESULT
WINDOW SHOWING
SUCCESS
OF COMMAND

DISPLAY RESULT
WINDOW SHOWING
FAILURE
OF COMMAND

\ 670

[F DESIRED,
USER SELECTS
DETAILS BUTTON
TO VIEW DETAILS
OF COMMAND

INFORMATION

SUCCESSFUL
?

596

\ 598

REMOTE INTERFACE
BOARD SENDS RESPONSE
TO SERVER MODEM (OR
LOCAL CLIENT) INDICATING
SUCCESS OF COMMAND

REMOTE INTERFACE
BOARD SENDS RESPONSE
TO SERVER MODEM (OR
LOCAL CLIENT) INDICATING
FAILURE OF COMMAND

\

!
A

END

672

FG. 56

U.S. Patent Nov. 7, 2000 Sheet 12 of 26 6,145,098

590

.

START RESET OF 630
SERVER

BIOS POST |~ &4
WARMSTART

!

LOG BIOS POST EVENTS |35
IN NON-VOLATILE RAM

|

BIOS POST PORT -390
INITIALIZATION

|

BIOS POST 392
CONTROLLERS
INITIALIZATION
AND BUILD OF

MULTIPROCESSOR
TABLE

l

BIOS POST 0S BOOT |~ 394
PREPARATION

l

BIOS INITIATES 0S 652
BOOT

l /635

C RETURN) /76: 9

U.S. Patent

Nov. 7, 2000

CONNECT CLIENT
COMPUTER TO CLIENT
MODEM

676

—

\

CONNECT CLIENT 677
MODEM TO SERVER
MODEM

‘ 650
CONNECT SERVER a
MODEM TO REMOTE

INTERFACE

! 652

CONNECT REMOTE @
INTERFACE TO SERVER
Y
/555

CLIENT DIALS SERVER
MODEM AND
HANDSHAKES WITH
REMOTE INTERFACE
BOARD

e
—

Sheet 13 of 26

6,145,098

DISPLAYING FLIGHT

FRECORDER FPROCESS

6 104
ELD A

\

ENTER PASSWORD;

SELECT LOCAL OR REMOTE;
ENTER COM PORT OR SERVER
TELEPHONE NUMBER AS

APPROPRIATE

673

\

SELECT FLIGHT RECODER
ICON ON CLIENT DISPLAY

696

\

SELECT DOWNLOAD
BUTTON

695

|

DISPLAY USER CONFIRMATION) 722

WINDOW WITH NUMBER OF
MESSAGES IN THE SERVER

SYSTEM _LOG

\

IF USER SELECTS "OK”,
DISPLAY PROGRESS WINDOW
FOR DOWNLOADING MESSAGES

702

\

703
A

&74

MODEM
CONNECT!ION
?

NO

CONNECT LOCAL
CLIENT COMPUTER TO
REMOTE INTERFACE

6588

\

CONNECT REMOTE

INTERFACE TO SERVER

692

#16. 704

f16. 706

F16. 70

U.S. Patent Nov. 7, 2000

/>4
Z{::E::XI

| 704

CLIENT APPLICATION
BUILDS MICROCONTROLLER
NETWORK COMMAND
AND SENDS IT TO
COMMUNICATION LAYER

Y

COMMUNICATION LAYER
PUTS PROTOCCOL AROUND
COMMAND AND SENDS IT

TO THE SERVER

| I

SERVER RECEIVES THE
COMMAND AND READS
CONTENTS OF NON-

VOLATILE RAM (NVRAM)

vz

SERVER SENDS ALL
RESPONSES TO REMOTE
INTERFACE BOARD
ONE AT A TIME

Y 714

REMOTE INTERFACE
BOARD SENDS EACH
RESPONSE BACK THROUGH

Sheet 14 of 26 6,145,098

| 716

CLIENT MODEM SENDS
RESPONSE BACK TO
CLIENT

778

ENTIRE
DOWNLOAD

SUCCESSFUL
?

| | /720 Y /72’2

CLIENT CLIENT APPLICATION

APPLICATION STORES STORES AND DISPLAYS
AND DISPLAYS ALL DOWNLOADED

ALL MESSAGES MESSAGES

SERVER MODEM TO CLIENT
MODEM (OR DIRECTLY
TO LOCAL CLIENT)

|
)

' 724
END

F16. 708

U.S. Patent Nov. 7, 2000 Sheet 15 of 26 6,145,098

710

START READ NVRAM 740
CONTENTS

LOAD BLOCK LOG |~ 742
POINTER

READ LOG MESSAGE AT edsd
LOG POINTER ADDRESS

|

RETURN THE LOG |~ 746
MESSAGE

|

INCREMENT THE LOG 745
POINTER

752

GETURN NORMAL

750 754

YES RETURN STATUS
END OF MESSAGES

END OF
MESSAGES IN

BLOCK
?

F1G. 77

U.S. Patent Nov. 7, 2000 Sheet 16 of 26 6,145,098

' /60
Microcontroller Network Bus -~ D

Backplane
Power from Bias +5v

~—— Chassis Type Detection
-+— Canister SN Detection
770 l«— Motherboard SN Detection 157
Backplane SN Detection 4
PS Control/Monitoring |
<«—— PS On Switch |
— PS On Signal |
-—— PS SN Detection
e—— PS DC OKs |
«—— PS AC OKs |
Power Voltage Level Detection [
|
|
|
|

_|
l
|
|
|
|

Chassis
Controller

lt—— +3v +5v +12v -12v VRef
PIC16c74 Power from Bias +5v
Exhaust Temp (4/2 wire Detectors)

Analog Temperature Detector (2) |On Backplane

|

|

| Ambient Temp (1/2 wire detector)

[Temperature Detector (2) |On Motherboard

L -
.
Power from Bias +5v |
Non Volatile RAM |
System S:SJess Power from Bias +5v :
Recorder - R/w/E /-//Z |
PIC16¢65 |
Timer Chip |
770 Reset Power from Bias +5v :
™1 Data
*~| Clock % 760 |
________________________ _
_____________________ Canister Card'
<« Canister Address Detection I
— = 1/0 Processor NMI |
|
— PCl Card P Control
Canister ord Fower Loniro |L/,--755

Controller L o TAG Control

— FRU/Fan Fault LEDs (2)

|

PIC16¢65 — /_757 | 55 :
72 Mux [+ Fan Speed Defection <~ |
— Fan Speed Control r———-— -

~—— PCl Ext Bd Detection
«— | /O Processor SN Detection |

______________________ 3 f1G. 724

U.S. Patent

Nov. 7, 2000

Sheet 17 of 26

6,145,098

CPU A
Controller

PIC16c65
165

|«——— DIMM Type Detection

L~ DIMM Bank/CPU Bus/Core Ratio

——= System Reset
«—— System Reset Switch

= Fan

Mux Fan Speed Detection

765

— Fan Speed Control
= Fan Fault Reporting (1 LED)

LCD Display

= Data

Control

CPU B
Controller

PIC16c65
168

«——— CPU Presence Detection

+——— CPU Error Detection

«<——— CPU DC OKs

+—— CPU Therma! Fault Detection
— CPU NMis

«—— SW Flash/NMI

— CPU JTAG

— Flash Progam Enable

| = System Fault Reporting (4 LEDs)

Bus
Extender

RJ45

System
Interface

PIC16¢c65
106

Reset

Retrans/Writez

- Eull ZHalt/mpty *

FIFO —

FIFO

Full/Half /Empty

Retra ns(Reodz
RDz

— Wz |Rz

CSz

WRz PAL

INT

6. 7258

U.S. Patent

RJ45

Bus
Extender

Nov. 7, 2000

Power from Bias +5v

Remote
Interface

-
|
!
}
\
!
|
|
I
|
|
l
|
l
|
|
|
!
|

PIC16¢65

200

Sheet 18 of 26

6,145,098

Remote Ccrdj

P Select
g;:at;‘ec Power from Bias +5v
Dat 32K SRAM
,—— ata -
»| Address
Data 62

— Status/Power (1LED)
RS—-232 Interface

Outside World

Power from Bias +5v

|
I
|
|
|
|
|
I
R/W/E :
|
|
|
|
[
|
l
|

£16.72C

U.S. Patent

Sheet 19 of 26 6,145,098

SYSTEM STATUS

CONNECT REMOTE
INTERFACE TO SERVER

Nov. 7, 2000
CONNECT CLIENT 776
COMPUTER TO CLIENT |=
MODEM
‘ 778
CONNECT CLIENT é
MODEM TO SERVER
MODEM
‘ 780
CONNECT SERVER @
MODEM TO REMOTE
INTERFACE
\
/752

\

BOARD

CLIENT DIALS SERVER
MODEM AND HANDSHAKES
WITH REMOTE INTERFACE

|~ /56

J—

e 134
Cmer

]

/773

ENTER PASSWORD;
SELECT LOCAL OR REMOTE;
ENTER COM PORT OR SERVER
TELEPHONE NUMBER AS
APPROPRIATE

CONNECT LOCAL el

\

SELECT SYSTEM STATUS ICON
ON CLIENT DISPLAY TO OPEN
SYSTEM STATUS WINDOW

796

]

- 798

CLIENT COMPUTER TO
REMOTE INTERFACE

|

CONNECT REMOTE
INTERFACE TO SERVER

/7.92

SELECT A SERVER HARDWARE
COMPONENT ICON TO OPEN
CORRESPONDING WINDOW

RETRIEVE NEW

INFORMATION FROM SERVER

TO BE DISPLAYED

800

RECEIVE CHANGES ON
VISUAL SCREEN FOR UPDATING
ITEMS TO BE CHANGED

802

503

U.S. Patent

E0F
[+

Y /304

CLIENT APPLICATION
BUILDS MICROCONTROLLER
NETWORK COMMANDS
FOR EACH ITEM TO BE
RETRIEVED OR UPDATED
AND SENDS THEM TO
COMMUNICATION LAYER

| sus

COMMUNICATION LAYER
PUTS PROTOCOL AROUND
COMMANDS AND SENDS

Nov. 7, 2000

Sheet 20 of 26

RETRIEVE

6,145,098

i /JZZ

CLIENT MODEM SENDS
RESPONSE BACK TO
CLIENT

RETRIEVE OR
UPDATE

?

&2+
UPDATE

THEM TO THE SERVER 828 8I0~ | 856 838~
CLIENT CLIENT CLIENT
870 | |appLicATION| | CLIENT | |AP gﬂgchs'ON APEHSCVTS'ON
APPLICATION
SER(\:/gsMiijCDEs!ViiDTHE D'SNPEL;/\YS DOES NOT | |SUCCESS OF| [FAILURE oF
RETRIEVES OR UPDATES INFORMATION| |SHOW VALUE] | OFLReBOR | | OFFRATION
EACH CF THE SELECTED FOR ITEM || FOR ITEM
THE winDow || winpow
840\
v %7 IF DESIRED,
SERVER SENDS USER SELECTS
RESPONSE TO REMOTE DETAILS
INTERFACE BOARD BUTTON TO
FOR EACH COMMAND GET DETAILS
OF COMMAND
INFORMATION
Y 820
REMOTE INTERFACE
BOARD SENDS
RESPONSE BACK THROUGH S |
SERVER MODEM TO CLIENT -
MODEM (OR DIRECTLY
TO LOCAL CLIENT) " 842

F/G.

736

Sheet 21 of 26

6,145,098

START SERVER SYSTEM \~ 477
STATUS

U.S. Patent Nov. 7, 2000
70
|
;
|
880
ACCESS NEXT YES

COMMAND

!

i

EACH MICROCONTROLLER
ON MICROCONTROLLER
NETWORK BUS CHECKS

TO SEE IF ADDRESS FIELD
OF COMMAND MATCHES

| -872

1

THE ADDRESSED
MICROCONTROLLER
EXECUTES THE COMMAND
(E.G., RETRIEVE OR
UPDATE DATA)

| -574

V

THE ADDRESSED
MICROCONTROLLER SENDS
A RESPONSE MESSAGE
BACK ON THE BUS TO
THE REMOTE INTERFACE

| -576

ARE
ADDITIONAL ITEMS
SELECTED FOR RETRIEVAL
OR UI;DATE?

RETURN

Fl6. 74

RECOVERY
MANAGER

6,145,098

Sheet 22 of 26

Nov. 7, 2000

U.S. Patent

LYav/44

D office

14 ssaid ‘*djpH Jo4

] o]

sJonias sy} dn samod Q

0} jupm nok auns nok auy

‘\

X

Jobouny A1aA008y 0I}SBDN

956

P56

)

den 1850y WasAg
56
\ALM_Jm / uCO|L®;O&
palianb useq uQ—ismod

jou spy Jamod sisAIaS

/

&6

/

712
/
PETPELS q

Jepaooay by []

smpys wayshs [] @

ooos AN [_J—=

056"

diof MoIA J8AUSS

1an1eg — Jabpoupp Ausaooay obmwc_zm_

oc6

6,145,098

Sheet 23 of 26

Nov. 7, 2000

U.S. Patent

9/ 9L

N D_H__H_ 14 ssaud ‘djpH 404
<] / _ / / >
856~ 956~ 756
V¢4
cFb
1dwoud Aay g4 esp.3 sQid [puoiloLLIo)uU| L1040 62 BNy 1661
SpOp pay Ajlsp soig [ouUOIIDLLIGU) S0:£0+%0 62 Bnv /661 JAAIDG
LLO9XQ |DUlSlU| 3DIAIRS BJIM buluiom 82:01:¥0 62 bny /661 Q
0L09XQ [DUIBIU| BDIAIIS BJM pUODWLCU]| ¥¥:0L¥0 6Z bny /6Bl Japioosy b4 []
ZO0BX0) |DUJB}U| 9DIAIBS Bip 10443 [sv:01%0 BZ Bny mmm:@ snioys weysks [=
Y sbossap Yy 30inog abpssap Y LSTIET TN Y dwoig awi] 0006 AN [=
/ / /
ﬁ ﬁ ﬁ dia M3IA J48A195
v w v 19pJo2ay 1ybi|4 ~ Joboupbpy Ausnooday obmmo_z\ﬂ__
56 o56 K742 742

oré

6,145,098

Sheet 24 of 26

Nov. 7, 2000

U.S. Patent

AR/

14 ssoud ‘djaH Jo4

JaquWinN |D14eS

s4ays|uD] 0/

Jossas0.d sup

¢l e

] &

\%m/ N%m/ %m/ %\m/ m\m/ \\m/ 742 /

SUCISIABY

sainjpseduwa)

i
W

waysAsqng
Jamogd

3

c96
ll\\

daases [

Jspioday iy FE —
suoismey [—
SJOQUINN |DLISS (zeoots) -
sioysiup) O/ 1=
mLommmuoLn_@ @
suod &
saJnjpJadwa] qm -
ss|ddng Jomog [Bg —
SN}bIS WalsAS D\

0

oooe AN (=

L]

diaFf M8I|A J9AJ3T

XEC

snyp)g WolsAg — JabDuppy AJoAcday OJISBDN D_

096

| O/6

6,145,098

Sheet 25 of 26

Nov. 7, 2000

U.S. Patent

&/ I

|4 ssaid ‘djaH Jo4

/

\\

\\\\

7 [1L _1C_]
N&/ 096
EEI [yssyeg | Jonsos
Jspiooay by FE
r66 =
ou 0sls Z 1(\ suoisinay
ovLvy ou NO ybly oviv L a Jesiuoy &) SI8QUINN |DII3S (zeonts)
ou 09lS 2 simysiuo) g/l
oviv ou NO ubly ovivy l J 48}slun) @ m_ommwooLa. N
ou 0918 T 0 opsog @) —
oviY ou NO Wby oy L g Jesiuoy &)
0 Jeysiun) @
ou 09ic ¢
ovL¥ ou NO yely obLy L y sasiuon (R) g Jesiuod () - 96
ou (01234 9 v J42151uny (K
ou 0vSE G pipog walsAg @@ 1 \
S3A 0zs8 b o200/ B
S3A 09zy ¢ saumpledwa] o —
S3A 0915 2 sajddng Jamod [LE —
ObLb S3A NO Wbl Ovzy L panog woeyshs () smoys weyshs (1 |
paads p|oysaiy) }noj kuam MO _ “_:o..__ an l_oucu_uc_ ::cl.__ _obcoo waam_ umoam_ \com_ y uo1}1D207 0006 N [}—=
: \ diaff Mmsip JoAueg

o

77 7 7

sup] — Jobouppyy AUsa029) OJ}SODW D_

\

/66

\ /
066 686

/ [/
G86 L56 956 556

6,145,098

Sheet 26 of 26

Nov. 7, 2000

U.S. Patent

6/ IS

joi3uo) pasdg

020/ ——1 0viv]

pasds pjoysadyl

}IND} paads Mo

[ou| 43no4 | ou] aynoy

_09lg] peads | oviv| peeds
————— g UD{ — _— e | UD4 —
,%\ g00/ @@

jussald Jajsiun) H\

& | | | {4 ssaud ‘djaH 404
[\NQQ\ senteg [
1apioosy Iuby FL
VNQ\// N\Q\/ suoisiney &y —
E _ aiopdn _ _ ysaijay _ S/2AUINN 10L9S fen) -
s183s1un) O/ 1
o/0/ $10sS820.d @ &
900/ roo/ a sesiuey & —
770/ YbIH @ v [NO| 4031 Jo1paipu| 3inoJ p 5 smsuoy @
wo7 O ~ g Jeysiun))

[v 181s1un)] (&5 —
ploog walsAg @ —
000/~ 51 @
saJnipiadwa] i _|
salddng 1amod @ —

smois wayshs]

1]

0006 AN [I-=

disf malf JealeS

v 131S1uDy — JoBDUDW AJSA00SY 0J1SODW D;

6,145,098

1

SYSTEM FOR DISPLAYING SYSTEM
STATUS

RELATED APPLICATIONS

This application is related to U.S. application Ser. No.
08/943,076, entitled “SYSTEM FOR POWERING UP AND
POWERING DOWN A SERVER”, Attorney Docket No.
MNFRAME.O18A; U.S. application Ser. No. 08/943,077,
entitled “METHOD OF POWERING UP AND POWER-
ING DOWN A SERVER”, Attorney Docket No.
MNFRAME.019A; U.S. application Ser. No. 08/942,333,
entitled “SYSTEM FOR RESETTING A SERVER”, Attor-
ney Docket No. MNFRAME.020A; U.S. application Ser.
No. 08/942,405, entitled “METHOD OF RESETTING A
SERVER”, Attorney Docket No. MNFRAME.021A; U.S.
application Ser. No. 08/942,070, entitled “SYSTEM FOR
DISPLAYING FLIGHT RECORDER”, Attorney Docket
No. MNFRAME.022A; U.S. application Ser. No. 08/942,
068, entitled “METHOD OF DISPLAYING FLIGHT
RECORDER”, Attorney Docket No. MNFRAME.023A;
U.S. application Ser. No. 08/942,071, entitled “METHOD
OF DISPLAYING SYSTEM STATUS”, Attorney Docket
No. MNFRAME.045A, which are being filed concurrently
herewith on Oct. 1, 1997.

PRIORITY CLAIM

The benefit under 35 U.S.C. § 119(e) of the following
U.S. provisional application(s) is hereby claimed:

Application

Title No. Filing Date
“Remote Software for Monitoring and 60/046,326 May 13, 1997
Managing Environmental Management

System”

“Remote Access and Control of 60/046,397 May 13, 1997
Environmental Management System”

“Hardware and Software Architecture for 60/047,016 May 13, 1997
Inter-Connecting an Environmental

Management System with a Remote

Interface”

“Self Management Protocol for a 60/046,416 May 13, 1997

Fly-By-Wire Service Processor”

APPENDICES

Appendix A, which forms a part of this disclosure, is a list
of commonly owned copending U.S. patent applications.
Each one of the applications listed in Appendix A is hereby
incorporated herein in its entirety by reference thereto.

Appendix B, which forms part of this disclosure, is a copy
of the U.S. provisional patent application filed May 13,
1997, entitled “Remote Software for Monitoring and Man-
aging Environmental Management System” and assigned
application Ser. No. 60/046,326. Page 1, line 6 of the
provisional application has been changed from the original
to positively recite that the entire provisional application,
including the attached documents, forms part of this disclo-
sure.

COPYRIGHT RIGHTS

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office

10

15

20

25

30

35

40

45

50

55

60

65

2

patent files or records, but otherwise reserves all copyright
rights whatsoever.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to fault tolerant computer
systems. More specifically, the invention is directed to a
system for providing remote access and control of server
environmental management.

2. Description of the Related Technology

As enterprise-class servers become more powerful and
more capable, they are also becoming increasingly sophis-
ticated and complex. For many companies, these changes
lead to concerns over server reliability and manageability,
particularly in light of the increasingly critical role of
server-based applications. While in the past many systems
administrators were comfortable with all of the various
components that made up a standards-based network server,
today’s generation of servers can appear as an
incomprehensible, unmanageable black box. Without vis-
ibility into the underlying behavior of the system, the
administrator must “fly blind.” Too often the only indicators
the network manager has on the relative health of a particu-
lar server is whether or not it is running.

It is well-acknowledged that there is a lack of reliability
and availability of most standards-based servers. Server
downtime, resulting either from hardware or software faults
or from regular maintenance, continues to be a significant
problem. By one estimate, the cost of downtime in mission
critical environments has risen to an annual total of $4.0
billion for U.S. businesses, with the average downtime event
resulting in a $140 thousand loss in the retail industry and a
$450 thousand loss in the securities industry. It has been
reported that companies lose as much as $250 thousand in
employee productivity for every 1% of computer downtime.
With emerging Internet, intranet and collaborative applica-
tions taking on more essential business roles every day, the
cost of network server downtime will continue to spiral
upward.

‘While hardware fault tolerance is an important element of
an overall high availability architecture, it is only one piece
of the puzzle. Studies show that a significant percentage of
network server downtime is caused by transient faults in the
I/O subsystem. These faults may be due, for example, to the
device driver, the adapter card firmware, or hardware which
does not properly handle concurrent errors, and often causes
servers to crash or hang. The result is hours of downtime per
failure, while a system administrator discovers the failure
takes some action, and manually reboots the server. In many
cases, data volumes on hard disk drives become corrupt and
must be repaired when the volume is mounted. A dismount-
and-mount cycle may result from the lack of “hot plugga-
bility” in current standards-based servers. Diagnosing inter-
mittent errors can be a frustrating and time-consuming
process. For a system to deliver consistently high
availability, it must be resilient to these types of faults.
Accurate and available information about such faults is
central to diagnosing the underlying problems and taking
corrective action.

Modern fault tolerant systems have the functionality to
provide the ambient temperature of a storage device enclo-
sure and the operational status of other components such as
the cooling fans and power supply. However, a limitation of
these server systems is that they do not contain self-
managing processes to correct malfunctions. Also, if a
malfunction occurs in a typical server, it relies on the

6,145,098

3

operating system software to report, record and manage
recovery of the fault. However, many types of faults will
prevent such software from carrying out these tasks. For
example, a disk drive failure can prevent recording of the
fault in a log file on that disk drive. If the system error caused
the system to power down, then the system administrator
would never know the source of the error.

Traditional systems are lacking in detail and sophistica-
tion when notifying system administrators of system mal-
functions. System administrators are in need of a graphical
user interface for monitoring the health of a network of
servers. Administrators need a simple point-and-click inter-
face to evaluate the health of each server in the network. In
addition, existing fault tolerant servers rely upon operating
system maintained logs for error recording. These systems
are not capable of maintaining information when the oper-
ating system is inoperable due to a system malfunction.
Existing systems do not have a system log for maintaining
information when the main computational processors are
inoperable or the operating system has crashed.

Another limitation of the typical fault tolerant system is
that the control logic for the diagnostic system is associated
with a particular processor. Thus, if the environmental
control processor malfunctioned, then all diagnostic activity
on the computer would cease. In traditional systems, if a
controller dedicated to the fan system failed, then all fan
activity could cease resulting in overheating and ultimate
failure of the server. What is desired is a way to obtain
diagnostic information when the server OS is not operational
or even when main power to the server is down.

Existing fault tolerant systems also lack the power to
remotely control a particular server, such as powering up and
down, resetting, retrieving or updating system status, dis-
playing flight recorder information and so forth. Such con-
trol of the server is desired even when the server power is
down. For example, if the operating system on the remote
machine failed, then a system administrator would have to
physically go to the remote machine to re-boot the malfunc-
tioning machine before any system information could be
obtained or diagnostics could be started.

Therefore, a need exists for improvements in server
management which will result in greater reliability and
dependability of operation. Server users are in need of a
management system by which the users can accurately
gauge the health of their system. Users need a high avail-
ability system that must not only be resilient to faults, but
must allow for maintenance, modification, and growth—
without downtime. System users must be able to replace
failed components, and add new functionality, such as new
network interfaces, disk interface cards and storage, without
impacting existing users. As system demands grow, organi-
zations must frequently expand, or scale, their computing
infrastructure, adding new processing power, memory, stor-
age and I/O capacity. With demand for 24-hour access to
critical, server-based information resources, planned system
downtime for system service or expansion has become
unacceptable.

SUMMARY OF THE INVENTION

The inventive remote access system provides system
administrators with new levels of client/server system avail-
ability and management. It gives system administrators and
network managers a comprehensive view into the underly-
ing health of the server—in real time, whether on-site or
off-site. In the event of a failure, the invention enables the
administrator to learn why the system failed, why the system

10

15

20

25

30

35

40

45

50

55

60

65

4

was unable to boot, and to control certain functions of the
server from a remote station.

One embodiment of the present invention is a system for
retrieving or updating system status for a computer, the
system comprising: a first computer; a microcontroller
capable of providing a retrieve or update system status
signal to the first computer; a remote interface connected to
the microcontroller; and a second computer connected to the
first computer via the remote interface and communicating
a retrieve or update system status command to the micro-
controller.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a top level block diagram of a server system
having a microcontroller network in communication with a
local client computer or a remote client computer utilized by
one embodiment of the present invention.

FIG. 2 is a detailed block diagram of the microcontroller
network shown in FIG. 1.

FIG. 3 is a diagram of serial protocol message formats
utilized in communications between the client computer and
remote interface shown in FIGS. 1 and 2.

FIGS. 4a and 4b are one embodiment of a flow diagram
of a power-on process performed by the microcontroller
network and client computer of FIGS. 1 and 2.

FIG. 5 is one embodiment of a flow diagram of the
power-on function shown in FIG. 4b.

FIGS. 6a and 6b are one embodiment of a flow diagram
of a power-off process performed by the microcontroller
network and client computer of FIGS. 1 and 2.

FIG. 7 is one embodiment of a flow diagram of the
power-off function shown in FIG. 6b.

FIGS. 8a and 8b are one embodiment of a flow diagram
of a reset process performed by the microcontroller network
and client computer of FIGS. 1 and 2.

FIG. 9 is one embodiment of a flow diagram of the reset
function shown in FIG. 8b.

FIGS. 10a and 105 are one embodiment of a flow diagram
of a display flight recorder process performed by the micro-
controller network and client computer of FIGS. 1 and 2.

FIG. 11 is one embodiment of a flow diagram of the read
non-volatile RAM (NVRAM) contents function shown in
FIG. 10b.

FIGS. 124, 12b and 12c are a detailed block diagram of
the microcontroller network components showing a portion
of the inputs and outputs of the microcontrollers shown in
FIG. 2.

FIGS. 134 and 13b are one embodiment of a flow diagram
of a system status process performed by the microcontroller
network and client computer of FIGS. 1 and 2.

FIG. 14 is one embodiment of a flow diagram of the
system status function shown in FIG. 13b.

FIG. 15 is an exemplary screen display of a server
power-on window seen at the client computer to control the
microcontroller network of FIGS. 1 and 2.

FIG. 16 is an exemplary screen display of a flight recorder
window seen at the client computer to control the micro-
controller network of FIGS. 1 and 2.

FIG. 17 is an exemplary screen display of a system status
window seen at the client computer to control the micro-
controller network of FIGS. 1 and 2.

FIG. 18 is an exemplary screen display of a system
status:fans window seen at the client computer to control the
microcontroller network of FIGS. 1 and 2.

6,145,098

5

FIG. 19 is an exemplary screen display of a system
status:fans:canister A window seen at the client computer to
control the microcontroller network of FIGS. 1 and 2.

DETAILED DESCRIPTION OF THE
INVENTION

The following detailed description presents a description
of certain specific embodiments of the present invention.
However, the present invention can be embodied in a
multitude of different ways as defined and covered by the
claims. In this description, reference is made to the drawings
wherein like parts are designated with like numerals
throughout.

For convenience, the description will be organized into
the following principal sections: Introduction, Server
System, Microcontroller Network, Remote Interface Serial
Protocol, Power-On Flow, Power-Off Flow, Reset Flow,
Flight Recorder Flow, and System Status Flow.

1. INTRODUCTION

The inventive computer server system and client com-
puter includes a distributed hardware environment manage-
ment system that is built as a small self-contained network
of microcontrollers. Operating independently of the system
processor and operating software, the present invention uses
one or more separate processors for providing information
and managing the hardware environment that may include
fans, power supplies and/or temperature.

One embodiment of the present invention facilitates
remotely powering-on and powering-off of the server system
by use of a client computer. The client computer may be
local to the server system, or may be at a location remote
from the server system, in which case a pair of modems are
utilized to provide communication between the client com-
puter and the server system. A remote interface board
connects to the server and interfaces to the server modem.
Recovery manager software is loaded on the client computer
to control the power-on and power-off processes and to
provide feedback to a user though a graphical user interface.

Another embodiment of the present invention facilitates
remotely resetting the server system by use of the client
computer. Resetting the server system brings the server and
operating system to a normal operating state. Recovery
manager software is loaded on the client computer to control
the resetting process and to provide feedback to a user
though a graphical user interface.

Another embodiment of the present invention provides for
a system log, known as a “flight recorder,” which records
hardware component failure and software crashes in a
Non-Volatile RAM. With real time and date referencing, the
system recorder enables system administrators to
re-construct system activity by accessing the log. This
information is very helpful in diagnosing the server system.

Initialization, modification and retrieval of system condi-
tions is performed through utilization of a remote interface
by issuing commands to the environmental processors. The
system conditions may include system log size, presence of
faults in the system log, serial number for each of the
environmental processors, serial numbers for each power
supply of the system, system identification, system log
count, power settings and presence, canister presence,
temperature, BUS/CORE speed ratio, fan speeds, settings
for fan faults, LCD display, Non-Maskable Interrupt (NMI)
request bits, CPU fault summary, FRU status, JTAG enable
bit, system log information, remote access password, over-
temperature fault, CPU error bits, CPU presence, CPU
thermal fault bits, and remote port modem. The aforemen-
tioned list of capabilities provided by the present environ-
mental system is not all-inclusive.

10

15

20

25

30

35

40

45

50

55

60

65

6

The server system and client computer provides mecha-
nisms for the evaluation of the data that the system collects
and methods for the diagnosis and repair of server problems
in a manner that system errors can be effectively and
efficiently managed. The time to evaluate and repair prob-
lems is minimized. The server system ensures that the
system will not go down, so long as sufficient system
resources are available to continue operation, but rather
degrade gracefully until the faulty components can be
replaced.

II. SERVER SYSTEM

Referring to FIG. 1, a server system 100 with a client
computer will be described. In one embodiment, the server
system hardware environment 100 may be built around a
self-contained network of microcontrollers, such as, for
example, a remote interface microcontroller on the remote
interface board or circuit 104, a system interface microcon-
troller 106 and a system recorder microcontroller 110. This
distributed service processor network 102 may operate as a
fully self-contained subsystem within the server system 100,
continuously monitoring and managing the physical envi-
ronment of the machine (e.g., temperature, voltages, fan
status). The microcontroller network 102 continues to oper-
ate and provides a system administrator with critical system
information, regardless of the operational status of the server
100.

Information collected and analyzed by the microcontrol-
ler network 102 can be presented to a system administrator
using either SNMP-based system management software (not
shown), or using microcontroller network Recovery Man-
ager software 130 through a local connection 121 or a dial-in
connection 123. The system management software, which
interfaces with the operating software (OS) 108 such as
Microsoft Windows NT Version 4.0 or Novell Netware
Version 4.11, for example, provides the ability to manage the
specific characteristics of the server system, including Hot
Plug Peripheral Component Interconnect (PCI), power and
cooling status, as well as the ability to handle alerts asso-
ciated with these features when the server is operational.

The microcontroller network Recovery Manager software
130 allows the system administrator to query the status of
the server system 100 through the microcontroller network
102, even when the server is down. In addition, the server
Operating Software 108 does not need to be running to
utilize the Recovery Manager 130. Users of the Recovery
Manager 130 are able to manage, diagnose and restore
service to the server system quickly in the event of a failure
through a friendly graphical user interface (GUI).

Using the microcontroller network remote management
capability, a system administrator can use the Recovery
Manager 130 to re-start a failed system through a modem
connection 123. First, the administrator can remotely view
the microcontroller network Flight Recorder, a feature that
may, in one embodiment, store all system messages, status
and error reports in a circular System Recorder memory. In
one embodiment, the System Recorder memory may be a
Non-Volatile Random Access Memory buffer (NVRAM)
112. Then, after determining the cause of the system
problem, the administrator can use microcontroller network
“fly by wire” capability to reset the system, as well as to
power the system off or on. “Fly by wire” denotes that no
switch, indicator or other control is directly connected to the
function it monitors or controls, but instead, all the control
and monitoring connections are made by the microcontroller
network 102.

The remote interface or remote interface board (RIB) 104
interfaces the server system 100 to an external client com-

6,145,098

7

puter. The RIB 104 connects to either a local client computer
122 at the same location as the server 100 or to a remote
client computer 124 either directly or through an optional
switch 120. The client computer 122/124 may in one
embodiment run either Microsoft Windows 95 or Windows
NT Workstation version 4.0 operating software (OS) 132.
The processor and RAM requirements of the client computer
122/124 are such as may be specified by the vendor of the
OS 132. The serial port of the client computer 122/124 may
utilize a type 16550A Universal Asynchronous Receiver
Transmitter (UART). The switch facilitates either the local
connection 121 or the modem connection 123 at any one
time, but allows both types of connections to be connected
to the switch. In an another embodiment, either the local
connection 121 or the modem connection 123 is connected
directly to the RIB 104. The local connection 121 utilizes a
readily available null-modem serial cable to connect to the
local client computer. The modem connection may utilize a
Hayes-compatible server modem 126 and a Hayes-
compatible client modem 128. In one embodiment, a model
fax modem V.34X 33.6K available from Zoom is utilized as
the client modem and the server modem. In another
embodiment, a Sportster 33.6K fax modem available from
US Robotics is utilized as the client modem.

The steps of connecting the remote client computer 124 to
the server 100 will now be briefly described. The remote
interface 104 has a serial port connector (not shown) that
directly connects with a counterpart serial port connector of
the external server modem 126 without the use of a cable. If
desired, a serial cable could be used to interconnect the
remote interface 104 and the server modem 126. The cable
end of an AC to DC power adapter (not shown, for example
120 Volt AC/7.5 Volt DC) is then connected to a DC power
connector (not shown) of the remote interface, while the
double-prong end is plugged into a 120 Volt AC wall outlet.
One end of an RJ-45 parallel-wire data cable 103 is then
plugged into an RJ-45 jack (not shown) on the remote
interface 104, while the other end is plugged into a RJ-45
Recovery Manager jack on the server 100. The RJ-45 jack
on the server then connects to the microcontroller network
102. The server modem 126 is then connected to a commu-
nications network 127 using an appropriate connector. The
communications network 127 may be a public switched
telephone network, although other modem types and com-
munication networks are envisioned. For example, if cable
modems are used for the server modem 126 and client
modem 128, the communications network can be a cable
television network. As another example, satellite modulator/
demodulators can be used in conjunction with a satellite
network.

In another embodiment, the server modem to client
modem connection may be implemented by an Internet
connection utilizing the well known TCP/IP protocol. Any
of several Internet access devices, such as modems or
network interface cards, may be utilized. Thus, the commu-
nications network 127 may utilize either circuit or packet
switching.

At the remote client computer 124, a serial cable (for
example, a 25-pin D-shell) 129 is used to interconnect the
client modem 128 and the client computer 124. The client
modem 128 is then connected to the communications net-
work 127 using an appropriate connector. Each modem is
then plugged into an appropriate power source for the
modem, such as an AC outlet. At this time, the Recovery
Manager software 130 is loaded into the client computer
124, if not already present, and activated.

The steps of connecting the local client computer 122 to
the server 100 are similar, but modems are not necessary.

10

15

20

25

30

35

40

45

50

55

60

65

8

The main difference is that the serial port connector of the
remote interface 104 connects to a serial port of the local
client computer 122 by the null-modem serial cable 121.
[II. MICROCONTROLLER NETWORK

In one embodiment, the current invention may include a
network of microcontrollers 102 (FIG. 1). The microcon-
trollers may provide functionality for system control, diag-
nostic routines, self-maintenance control, and event logging
processors. A further description of the microcontrollers and
microcontroller network is provided in U.S. patent applica-
tion Ser. No. 08/942402, entitled “Diagnostic and Managing
Distributed Processor System™.

Referring to FIG. 2, in one embodiment of the invention,
the network of microcontrollers 102 includes ten processors.
One of the purposes of the microcontroller network 102 is to
transfer messages to the other components of the server
system 100. The may processors include: a System Interface
controller 106, a CPU A controller 166, a CPU B controller
168, a System Recorder 110, a Chassis controller 170, a
Canister A controller 172, a Canister B controller 174, a
Canister C controller 176, a Canister D controller 178 and a
Remote Interface controller 200. The Remote Interface
controller 200 is located on the RIB 104 (FIG. 1) which is
part of the server system 100, but may be external to a server
enclosure. The System Interface controller 106, the CPU A
controller 166 and the CPU B controller 168 are located on
a system board 150 (also sometimes called a motherboard)
in the server 100. Also located on the system board are one
or more central processing units (CPUs) or microprocessors
164 and an Industry Standard Architecture (ISA) bus 162
that connects to the System Interface Controller 106. Of
course, other buses such as PCI, EISA and Microchannel
may be used. The CPU 164 may be any conventional general
purpose single-chip or multi-chip microprocessor such as a
Pentium®, Pentium® Pro or Pentium® II processor avail-
able from Intel Corporation, a SPARC processor available
from Sun Microsystems, a MIPS® processor available from
Silicon Graphics, Inc., a Power PC® processor available
from Motorola, or an ALPHA® processor available from
Digital Equipment Corporation. In addition, the CPU 164
may be any conventional special purpose microprocessor
such as a digital signal processor or a graphics processor.

The System Recorder 110 and Chassis controller 170,
along with the System Recorder memory 112 that connects
to the System Recorder 110, may be located on a backplane
152 of the server 100. The System Recorder 110 and Chassis
controller 170 are the first microcontrollers to power up
when server power is applied. The System Recorder 110, the
Chassis controller 170 and the Remote Interface microcon-
troller 200 (on the RIB) are the three microcontrollers that
have a bias 5 Volt power supplied to them. If main server
power is off, an independent power supply source for the
bias 5 Volt power is provided by the RIB 104 (FIG. 1). The
Canister controllers 172—178 are not considered to be part of
the backplane 152 because they are located on separate cards
which are removable from the backplane 152.

Each of the microcontrollers has a unique system identi-
fier or address. The addresses are as follows in Table 1:

TABLE 1
Microcontroller Address
System Interface controller 106 10
CPU A controller 166 03
CPU B controller 168 04
System Recorder 110 01

6,145,098

9

TABLE 1-continued

Microcontroller Address
Chassis controller 170 02
Canister A controller 172 20
Canister B controller 174 21
Canister C controller 176 22
Canister D controller 178 23
Remote Interface controller 200 11

The microcontrollers may be Microchip Technologies,
Inc. PIC processors in one embodiment, although other
microcontrollers, such as an 8051 available from Intel, an
8751, available from Atmel, or a PRSOCL580 microprocessor
available from Philips Semiconductor, could be utilized. The
PIC16C74 (Chassis controller 170) and PIC16C65 (the
other controllers) are members of the PIC16CXX family of
high-performance CMOS, fully-static, EPROM-based 8-bit
microcontrollers. The PIC controllers have 192 bytes of
RAM, in addition to program memory, three timer/counters,
two capture/compare/Pulse Width Modulation modules and
two serial ports. The synchronous serial port is configured as
a two-wire Inter-Integrated Circuit (I°C) bus in one embodi-
ment of the invention. The PIC controllers use a Harvard
architecture in which program and data are accessed from
separate memories. This improves bandwidth over tradi-
tional von Neumann architecture controllers where program
and data are fetched from the same memory. Separating
program and data memory further allows instructions to be
sized differently than the 8-bit wide data word. Instruction
opcodes are 14-bit wide making it possible to have all single
word instructions. A 14-bit wide program memory access
bus fetches a 14-bit instruction in a single cycle.

In one embodiment of the invention, the microcontrollers
communicate through an I°C serial bus, also referred to as
a microcontroller bus 160. The document “The I°C Bus and
How to Use It” (Philips Semiconductor, 1992) is hereby
incorporated by reference. The I°C bus is a bidirectional
two-wire bus and operates at a 400 kbps rate in the present
embodiment. However, other bus structures and protocols
could be employed in connection with this invention. For
example, the Apple Computer ADB, Universal Serial Bus,
1IEEE-1394 (Firewire), IEEE-488 (GPIB), RS-485, or Con-
troller Area Network (CAN) could be utilized as the micro-
controller bus. Control on the microcontroller bus is distrib-
uted. Each microcontroller can be a sender (a master) or a
receiver (a slave) and each is interconnected by this bus. A
microcontroller directly controls its own resources, and
indirectly controls resources of other microcontrollers on the
bus.

Here are some of the features of the I*C-bus:

Two bus lines are utilized: a serial data line (SDA) and a

serial clock line (SCL).

Each device connected to the bus is software addressable
by a unique address and simple master/slave relation-
ships exist at all times; masters can operate as master-
transmitters or as master-receivers.

The bus is a true multi-master bus including collision
detection and arbitration to prevent data corruption if
two or more masters simultaneously initiate data trans-
fer.

Serial, 8-bit oriented, bidirectional data transfers can be
made at up to 400 kbit/second in the fast mode.

Two wires, serial data (SDA) and serial clock (SCL),

carry information between the devices connected to the I°C
bus. Each device is recognized by a unique address and can

10

15

20

25

30

35

40

45

50

55

65

10

operate as either a transmitter or receiver, depending on the
function of the device. For example, a memory device
connected to the I°C bus could both receive and transmit
data. In addition to transmitters and receivers, devices can
also be considered as masters or slaves when performing
data transfers (see Table 2). A master is the device which
initiates a data transfer on the bus and generates the clock
signals to permit that transfer. At that time, any device
addressed is considered a slave.

TABLE 2

Definition of [°C-bus terminology

Term Description

Transmitter The device which sends the data to the bus

Receiver The device which receives the data from the bus

Master The device which initiates a transfer, generates clock
signals and terminates a transfer

Slave The device addressed by a master

Multi-master More than one master can attempt to control the bus at

the same time without corrupting the message

Arbitration Procedure to ensure that, if more than one master
simultaneously tries to control the bus, only one is
allowed to do so and the message is not corrupted

Synchroniza- Procedure to synchronize the clock signal of two or more

tion devices

The I*C-bus is a multi-master bus. This means that more
than one device capable of controlling the bus can be
connected to it. As masters are usually microcontrollers,
consider the case of a data transfer between two microcon-
trollers connected to the I*C-bus. This highlights the master-
slave and receiver-transmitter relationships to be found on
the I°C-bus. It should be noted that these relationships are
not permanent, but depend on the direction of data transfer
at that time. The transfer of data would proceed as follows:

1) Suppose microcontroller A wants to send information

to microcontroller B:
microcontroller A (master), addresses microcontroller B
(slave);

microcontroller A (master-transmitter), sends data to

microcontroller B (slave-receiver);

microcontroller A terminates the transfer.

2) If microcontroller A wants to receive information from
microcontroller B:

microcontroller A (master addresses microcontroller B

(slave);

microcontroller A (master-receiver) receives data from

microcontroller B (slave-transmitter);

microcontroller A terminates the transfer.

Even in this situation, the master (microcontroller A)
generates the timing and terminates the transfer.

The possibility of connecting more than one microcon-
troller to the I*C-bus means that more than one master could
try to initiate a data transfer at the same time. To avoid the
chaos that might ensue from such an event, an arbitration
procedure has been developed. This procedure relies on the
wired-AND connection of all I°C interfaces to the [°C-bus.

If two or more masters try to put information onto the bus,
the first to produce a ‘one’ when the other produces a ‘zero’
will lose the arbitration. The clock signals during arbitration
are a synchronized combination of the clocks generated by
the masters using the wired-AND connection to the SCL
line.

Generation of clock signal on the I*C-bus is the respon-
sibility of master devices. Each master microcontroller gen-
erates its own clock signals when transferring data on the
bus.

6,145,098

11

The command, diagnostic, monitoring and history func-
tions of the microcontroller network 102 are accessed using
a global network memory model in one embodiment. That
is, any function may be queried simply by generating a
network “read” request targeted at the function’s known
global network address. In the same fashion, a function may
be exercised simply by “writing” to its global network
address. Any microcontroller may initiate read/write activity
by sending a message on the I°C bus to the microcontroller
responsible for the function (which can be determined from
the known global address of the function). The network
memory model includes typing information as part of the
memory addressing information.

Using a network global memory model in one embodi-
ment places relatively modest requirements for the I°C
message protocol.

All messages conform to the I°C message format includ-

ing addressing and read/write indication.
All I>C messages use seven bit addressing.
Any controller can originate (be a Master) or respond (be
a Slave).

All message transactions consist of I°C “Combined for-
mat” messages. This is made up of two back-to-back
I*C simple messages with a repeated START condition
between (which does not allow for re-arbitrating the
bus). The first message is a Write (Master to Slave) and
the second message is a Read (Slave to Master).

Two types of transactions are used: Memory-Read and

Memory-Write.
Sub-Addressing formats vary depending on data type
being used.
IV. REMOTE INTERFACE SERIAL PROTOCOL

The microcontroller network remote interface serial pro-
tocol communicates microcontroller network messages
across a point-to-point serial link. This link is between the
RIB controller 200 that is in communication with the
Recovery Manager 130 at the remote client 122/124. This
protocol encapsulates microcontroller network messages in
a transmission packet to provide error-free communication
and link security.

In one embodiment, the remote interface serial protocol
uses the concept of byte stuffing. This means that certain
byte values in the data stream have a particular meaning. If
that byte value is transmitted by the underlying application
as data, it must be transmitted as a two-byte sequence.

The bytes that have a special meaning in this protocol are:

SOM 206 Start of a message

EOM 216 End of a message

SUB The next byte in the data stream must be substituted
before processing.

INT 220 Event Interrupt

Data 212 An entire microcontroller network message

As stated above, if any of these byte values occur as data
in a message, a two byte sequence must be substituted for
that byte. The sequence is a byte with the value of SUB,
followed by a type with the value of the original byte, which
is incremented by one. For example, if a SUB byte occurs in
a message, it is transmitted as a SUB followed by a byte that
has a value of SUB+1.

Referring to FIG. 3 the two types of messages 201 used
by the remote interface serial protocol will be described.

1. Requests 202, which are sent by remote management

(client) computers 122/124 (FIG. 1) to the remote
interface 104.

10

15

20

25

30

35

40

45

50

55

60

65

12

2. Responses 204, which are returned to the requester
122/124 by the remote interface 104.
The fields of the messages are defined as follows:

SOM 206
EOM 216
Seq. #208

A special data byte value marking the start of a message.
A special data byte value marking the end of a message.
A one-byte sequence number, which is incremented on
each request. It is stored in the response.

TYPE 210 One of the following types of requests:
IDENTIFY Requests the remote interface to send back identification
information about the system to which it is connected.

It also resets the next expected sequence number.
Security authorization does not need to be established
before the request is issued.

Establishes secure authorization on the serial link by
checking password security data provided in the message
with the microcontroller network password.

Clears security authorization on the link and attempts to
disconnect it. This requires security authorization to
have been previously established.

Passes the data portions of the message to the
microcontroller network for execution. The response
from the microcontroller network is sent back in the data
portion of the response. This requires security
authorization to have been previously established.
Queries the status of the remote interface. This request
is generally used to determine if an event is pending in
the remote interface.

One of the following response status values:

SECURE

UNSECURE

MESSAGE

POLL

STATUS 218
OK Everything relating to communication with the remote
interface is successful.

Everything relating to communication with the remote
interface is successful. In addition, there is one or more
events pending in the remote interface.

The sequence number of the request is neither the
current sequence number or retransmission request, nor
the next expected sequence number or new request.
Sequence numbers may be reset by an IDENTIFY
request.

The check byte in the request message is received
incorrectly.

Something about the format of the message is incorrect.
Most likely, the type field contains an invalid value.
The message requires that security authorization be in
effect, or, if the message has a TYPE value of SECURE,
the security check failed.

Indicates a message integrity check byte. Currently the
value is 256 minus the sum of previous bytes in the
message. For example, adding all bytes in the message
up to and including the check byte should produce a
result of zero (0).

A special one-byte message sent by the remote interface
when it detects the transition from no events pending to
one or more events pending. This message can be used
to trigger reading events from the remote interface.
Events should be read until the return status changes
form OK__EVENT to OK.

OK_EVENT

SEQUENCE

CHECK

FORMAT

SECURE

Check 214

INT 220

V. POWER-ON FLOW

The microcontroller network 102 (FIG. 1) performs vari-
ous system administration tasks, such as, for example,
monitoring the signals that come from server control
switches, temperature sensors and client computers. By such
signals, the microcontroller network 102, for example, turns
on or turns off power to the server components, resets the
server system, turns the system cooling fans to high, low or
off, provides system operating parameters to the Basic
Input/Output System (BIOS), transfers power-on self test
(POST) events information from the BIOS, and/or sends
data to a system display panel and remote computers.
Microcontroller Communication

A microcontroller, such as the remote interface microcon-
troller 200, handles two primary tasks: Sending and Receiv-
ing messages.

6,145,098

13

1. Handling the requests from other microcontrollers:

Incoming messages are handled based on interrupt, where
a first byte of an incoming message is the Slave Address
which is checked by all controllers connected to the micro-
controller bus 160 (FIG. 2). Whichever microcontroller has
the matched ID would respond with an acknowledgement to
the sender controller. The sender then sends one byte of the
message type followed by a two byte command ID, low byte
first. The next byte of the message defines the length of the
data associated with the message. The first byte of the
message also specifies whether it is a WRITE or READ
command. If it is a WRITE command, the slave controller
executes the command with the data provided in the mes-
sage and sends back a status response at the end of the task.
If it is a READ command, the slave controller gathers the
requested information and sends it back as the response. The
codes to execute request commands are classified in groups
according to the data type to simplify the code.

2. Sending a message to other microcontrollers:

Messages can be initiated by any controller on the bus 160
(FIG. 2). For example, the message can be an event detected
by a controller and sent to the System Recorder controller
and System Interface controller 106, or it could also be a
message from the remote interface 104 (FIG. 1) to a specific
controller on the bus 160. The sender usually sends the first
byte defining the target processor and waits for the
acknowledgement, which is the reverse logic from the
Receiving a Message sequence. The sender also generates
the necessary clock for the communication.

Referring to FIGS. 4a, 4b and FIG. 1, a Power-On process
270 will now be described. Process 270 begins at start state
272 and if a connection between the client computer 122/
124 and the server 100 is already active, process 270
proceeds to directly to state 296. Otherwise, if a connection
is not already active, process 270 proceeds to state 273 and
utilizes the Recovery Manager software 130 to present a
dialog window to the user on a display of the client computer
122/124 requesting information. The user is requested to
enter a password for security purposes. The dialog window
also has a pair of radio-buttons to select either a serial (local)
connection or a modem (remote) connection. If serial is
selected, the user is requested to select a COM port. If
modem is selected, the user is requested to enter a telephone
number to be used in dialing the server modem.

Moving to decision state 274, process 270 determines if
a modem-type connection was selected. A modem-type
connection is generally utilized in the situation where the
client computer 124 is located at a location remote from the
server 100. If it is determined at decision state 274 that a
modem connection is utilized, process 270 moves to state
276 wherein the client computer 124 is connected to the
client modem 128. Moving to state 278, a connection is
established between the client modem 128 and the server
modem 126 via a communications network 127, as previ-
ously described above. Continuing at state 280, the server
modem 126 connects with the remote interface 104. Pro-
ceeding to state 282, the remote interface 104 connects to the
server 100 via the RJ-45 cable 103. Moving to state 286, the
Recovery Manager software 130 at the client computer 124
dials the server modem 126 through the client modem 128,
handshakes with the remote interface 104, and checks the
previously entered password. Process 270 remains at state
286 until a successful communication path with the remote
interface 104 is established.

Returning to decision state 274, if a local connection 121
is utilized instead of the modem connection 123, process 270
proceeds to state 288 wherein the local client computer 122

10

15

20

25

30

35

40

45

50

55

60

65

14

is connected with the remote interface 104. Moving to state
292, the remote interface 104 is connected with the server
100. The previously entered password (at state 273) is sent
to the remote interface 104 to identify the user at the local
computer 122. If the password matches a password that is
stored in the server system 100, the communication path
with the remote interface is enabled.

After successful modem communication has been estab-
lished and the password confirmed at state 286, or at the
completion of connecting the remote interface to the server
and checking the password at state 292, process 270 con-
tinues at state 296. At state 296, the Recovery Manager
software 130 will in one embodiment display a recovery
manager window 920, which includes a server icon 922 as
shown in FIG. 15. A server window panel 928 and a
confirmation dialog box 936 are not displayed at this time.
The user at the client computer 122/124 then selects the
server icon on the display, such as, for example by clicking
a pointer device on the icon. Moving to state 298, the server
window panel 928 is then displayed to the user. The user
confirmation box 936 is not displayed at this time. The user
selects a Power On button 930 on the window panel 928 to
trigger the power-on operation. Continuing at state 300, the
user confirmation dialog box 936 is then displayed on the
client computer display. If the user confirms that the server
is to be powered up, process 270 proceeds through off page
connector A 302 to state 304 on FIG. 4b.

At state 304, the Recovery Manager software 130 at the
client computer 122/124 provides a microcontroller network
command (based on selecting the Power On button) and
sends it to communication layer software. Proceeding to
state 306, the communication layer puts a communications
protocol around the command (from state 304) and sends the
encapsulated command to the server through the client
modem 128, the server modem 126 and the remote interface
104. The communications protocol was discussed in con-
junction with FIG. 3 above. The encapsulated command is
of the Request type 202 shown in FIG. 3. The remote
interface 104 converts the encapsulated command to the
microcontroller network format, which is described in U.S.
patent application Ser. No. 08/942402, entitled “DIAGNOS-
TIC AND MANAGING DISTRIBUTED PROCESSOR
SYSTEM,” and in U.S. patent application Ser. No.
08/942160, entitled “SYSTEM ARCHITECTURE FOR
REMOTE ACCESS AND CONTROL OF ENVIRONMEN-
TAL MANAGEMENT.” Process 270 then continues to a
function 310 wherein the server receives the command and
powers on the server. Function 310 will be further described
in conjunction with FIG. 5.

Moving to state 312, the response generated by the server
is then sent to the remote interface 104. In one embodiment,
the microcontroller (the Chassis controller 170 in this
instance) performing the command at the server returns
status at the time of initiation of communication with the
microcontroller. At the completion of the power-on opera-
tion by the Chassis controller 170, the Recovery Manager
130 sends a read status command to the Chassis controller
(using states 304 and 306) to retrieve information on the
results of the operation.

Proceeding to decision state 314, process 270 determines
if the power on command was successful. If so, process 270
proceeds to state 316 wherein the remote interface 104 sends
the response to the server modem 126 indicating the success
of the command. Alternatively, if a local connection 121 is
utilized, the response is sent to the local client computer 122.
However, if the power on is not successful, as determined at
decision state 314, process 270 proceeds to state 318

6,145,098

15

wherein the remote interface 104 sends the response to the
server modem (or local client computer) indicating a failure
of the command. At the conclusion of either state 316 or 318,
process 270 proceeds to state 320 wherein the remote
interface 104 sends the response back through the server
modem 126 to the client modem 128. Moving to state 322,
the client modem 128 sends the response back to the
Recovery Manager software 130 at the remote client com-
puter 124. Note that if the local connection 121 is being
utilized, states 320 and 322 are not necessary. Proceeding to
decision state 324, process 270 determines whether the
command was successful. If so, process 270 continues at
state 326 and displays a result window showing the success
of the command on the display at the client computer
122/124. However, if the command was not successful,
process 270 proceeds to state 328 wherein a result window
showing failure of the command is displayed to the user.
Moving to state 330, the details of the command information
are available, if the user so desires, by selecting a details
button. At the completion of state 326 or state 330, process
270 completes at end state 332.

Referring to FIG. §, one embodiment of the server Power
On function 310 will now be described. Beginning at start
state 360, function 310 proceeds to state 362 and logs the
requested power-on to the server 100 in the System Recorder
memory 112. Proceeding to decision state 364, function 310
determines if a system over-temperature condition is set. If
so, function 310 proceeds to state 366 and sends a over-
temperature message to the remote interface 104. Advancing
to state 368, because the system over-temperature condition
is set, the power-on process is stopped and function 310
returns at a return state 370.

Returning to decision state 364, if the system over-
temperature condition is not set, function 310 proceeds to
state 372 and sets an internal power-on indicator and a
reset/run countdown timer. In one embodiment, the reset/run
countdown timer is set to a value of five. Advancing to state
374, function 310 turns on the power and cooling fans for the
server system board 150, backplane 152 and I/O canisters.
The microcontroller network holds the main system proces-
sor reset/run control line in the reset state until the reset/run
countdown timer expires to allow the system power to
stabilize. When the timer expires then the reset/run control
is set to “run” and the system processor(s) begin their startup
sequence by proceeding to state 376 and calling a BIOS
Power-On Self Test (POST) routine. Moving to state 378,
the BIOS initializes a PCI-ISA bridge and a microcontroller
network driver. Continuing to state 380, the microcontroller
network software monitors: hardware temperatures,
switches on a control panel on the server, and signals from
the remote interface 104. In one embodiment, state 380 may
be performed anywhere during states 376 to 394 because the
BIOS operations are performed by the server CPUs 164
(FIG. 2) independently of the microcontroller network 102.
Function 310 then moves to a BIOS POST Coldstart func-
tion 386. In the Coldstart POST function, approximately 61
BIOS subroutines are called. The major groups of the
Coldstart path include: CPU initialization, DMA/timer reset,
BIOS image check, chipset initialization, CPU register
initialization, CMOS test, PCI initialization, extended
memory check, cache enable, and message display.

At the completion of the BIOS POST Coldstart function
386, function 310 proceeds to state 388 where BIOS POST
events are logged in the System Recorder memory 112.
Proceeding to state 390, the BIOS POST performs server
port initialization. Continuing at state 392, the BIOS POST
initializes the Operating System related controllers (e.g.,

10

15

20

25

30

35

40

45

50

55

60

65

16
floppy controller, hard disk controller) and builds a multi-
processor table. Advancing to state 394, the BIOS POST
performs an OS boot preparation sequence. Function 310
ends at a return state 398.
VI. POWER-OFF FLOW

Referring to FIGS. 6a, 66 and FIG. 1, one embodiment of
a Power-Off process 420 will now be described. Process 420
begins at start state 422 and if a connection between the
client computer 122/124 and the server 100 is already active,
process 420 proceeds to directly to state 446. Otherwise, if
a connection is not already active, process 420 proceeds to
state 423 and utilizes the Recovery Manager software 130 to
present a dialog window to the user on a display of the client
computer 122/124 requesting information. The user is
requested to enter a password for security purposes. The
dialog window also has a pair of radio-buttons to select
either a serial (local) connection or a modem (remote)
connection. If serial is selected, the user is requested to
select a COM port. If modem is selected, the user is
requested to enter a telephone number to be used in dialing
the server modem.

Moving to decision state 424, process 420 determines if
the modem-type connection 123 will be utilized. The
modem-type connection is generally utilized in the situation
where the client computer 124 is located at a location remote
from the server 100. If it is determined at decision state 424
that a modem connection is utilized, process 420 moves to
state 426 wherein the client computer 124 is connected to the
client modem 128. Moving to state 428, a connection is
established between the client modem 128 and the server
modem 126 via the communications network 127. Continu-
ing at state 430, the server modem 126 connects with the
remote interface 104. Proceeding to state 432, the remote
interface 104 connects to the server 100 via the RJ-45 cable
103. Moving to state 436, the Recovery Manager software
130 at the client computer 124 dials the server modem 126
through the client modem 128, handshakes with the remote
interface 104, and checks the previously entered password.
Process 420 remains at state 436 until a successful commu-
nication path with the remote interface 104 is established.

Returning to decision state 424, if the local connection
121 is utilized instead of the modem connection 123, process
420 proceeds to state 438 wherein the local client computer
122 is connected with the remote interface 104. Moving to
state 442, the remote interface 104 is connected with the
server 100. The previously entered password (at state 423)
is sent to the remote interface 104 to identify the user at the
local computer 122. If the password matches the password
that is stored in the server system 100, the communication
path with the remote interface 104 is enabled.

After successful modem communication has been estab-
lished and the password confirmed at state 436, or at the
completion of checking the password at state 442, process
420 continues at state 446. At state 446, the Recovery
Manager software 130 will in one embodiment display the
Recovery Manager window 920, which includes the server
icon 922 as shown in FIG. 15. The server window panel 928
and the confirmation dialog box 936 are not displayed at this
time. The user at the client computer 122/124 then selects
the server icon 922 on the display, such as by clicking the
pointer device on the icon. Moving to state 448, the server
window panel 928 (FIG. 15) is then displayed to the user.
The user selects a Power Off button 932 on the window
panel 928 to trigger the power-off operation. Continuing at
state 450, a user confirmation dialog box is then displayed
on the client computer display. If the user confirms that the
server is to be powered down, process 420 proceeds through
off page connector A 452 to state 454 on FIG. 6b.

6,145,098

17

At state 454, the Recovery Manager software 130 at the
client computer 122/124 provides a microcontroller network
command (based on selecting the Power Off button) and
sends it to communication layer software. Proceeding to
state 456, the communication layer puts a communications
protocol around the command (from state 454) and sends the
encapsulated command to the server through the client
modem 128, the server modem 126 and the remote interface
104. The encapsulated command is of the Request type 202
shown in FIG. 3. Process 420 then continues to a function
460 wherein the server receives the command and powers
off the server. Function 460 will be further described in
conjunction with FIG. 7.

Moving to state 462, the response generated by the server
is then sent to the remote interface 104. In one embodiment,
the microcontroller (the Chassis controller 170 in this
instance) performing the command at the server returns
status at the time of initiation of communication with the
microcontroller. At the completion of the power-off opera-
tion by the Chassis controller 170, the Recovery Manager
130 sends a read status command to the Chassis controller
(using states 454 and 456) to retrieve information on the
results of the operation.

Proceeding to decision state 464, process 420 determines
if the power off command was successful. If so, process 420
proceeds to state 466 wherein the remote interface 104 sends
the response to the server modem 126 indicating the success
of the command. Alternatively, if a local connection 121 is
utilized, the response is sent to the local client computer 122.
However, if the power off is not successful, as determined at
decision state 464, process 270 proceeds to state 468
wherein the remote interface 104 sends the response to the
server modem (or local client computer) indicating a failure
of the command. At the conclusion of either state 466 or 468,
process 420 proceeds to state 470 wherein the remote
interface 104 sends the response back through the server
modem 126 to the client modem 128. Moving to state 472,
the client modem 128 sends the response back to the
Recovery Manager software 130 at the remote client com-
puter 124. Note that if the local connection 121 is being
utilized, states 470 and 472 are not necessary. Proceeding to
decision state 474, process 420 determines whether the
command was successful. If so, process 420 continues at
state 476 and displays a result window showing the success
of the command on the display at the client computer
122/124. However, if the command was not successful,
process 420 proceeds to state 478 wherein a result window
showing failure of the command is displayed to the user.
Moving to state 480, the details of the command information
are available, if the user so desires, by selecting a details
button. At the completion of state 476 or state 480, process
420 completes at end state 482.

Referring to FIG. 7, the server Power-Off function 460
will now be described. Beginning at start state 500, function
460 proceeds to state 502 and logs the requested Power-Off
message in the System Recorder memory 112 (FIG. 2) by
use of the System Recorder controller 110. Moving to state
504, function 460 clears a system run indicator and clears
the reset/run countdown timer. Moving to state 506, function
460 clears an internal power-on indicator. In one
embodiment, the power-on indicator is stored by a variable
“S4 power_on”. Function 460 utilizes the CPU A control-
ler 166 for state 504 and the Chassis controller 170 for state
506. Continuing at state 508, function 460 turns off the
power and the cooling fans for the system board 150, the
backplane 152 and the canister(s) associated with the Can-
ister controllers 172—178. Function 460 ends at a return state
512.

10

15

20

25

30

35

40

45

50

55

60

65

18
VII. RESET FLOW

Referring to FIGS. 8a, 8 and FIG. 1, one embodiment of
a Reset process 540 will now be described. Process 540
begins at start state 542 and if a connection between the
client computer 122/124 and the server 100 is already active,
process 540 proceeds to directly to state 566. Otherwise, if
a connection is not already active, process 540 proceeds to
state 543 and utilizes the Recovery Manager software 130 to
present a dialog window to the user on a display of the client
computer 122/124 requesting information. The user is
requested to enter a password for security purposes. The
dialog window also has a pair of radio-buttons to select
either a serial (local) connection or a modem (remote)
connection. If serial is selected, the user is requested to
select a COM port. If modem is selected, the user is
requested to enter a telephone number to be used in dialing
the server modem.

Moving to decision state 544, process 540 determines if
the modem-type connection 123 was selected. The modem-
type connection is generally utilized in the situation where
the client computer 124 is located at a location remote from
the server 100. If it is determined at decision state 544 that
a modem connection is utilized, process 540 moves to state
546 wherein the client computer 124 is connected to the
client modem 128. Moving to state 548, a connection is
established between the client modem 128 and the server
modem 126 via the communications network 127. Continu-
ing at state 550, the server modem 126 connects with the
remote interface 104. Proceeding to state 552, the remote
interface 104 connects to the server 100 via the RJ-45 cable
103. Moving to state 556, the Recovery Manager software
130 at the client computer 124 dials the server modem 126
through the client modem 128, handshakes with the remote
interface 104, and checks the previously entered password.
Process 540 remains at state 556 until a successful commu-
nication path with the remote interface 104 is established.

Returning to decision state 544, if the local connection
121 is utilized instead of the modem connection 123, process
540 proceeds to state 558 wherein the local client computer
122 is connected with the remote interface 104. Moving to
state 562, the remote interface 104 is connected with the
server 100. The password previously entered (at state 543)
is sent to the remote interface 104 to identify the user at the
local computer 122. If the password matches the password
that is stored in the server system 100, the communication
path with the remote interface 104 is enabled.

After successful modem communication has been estab-
lished and the password confirmed at state 556, or at the
completion of connecting the remote interface to the server
and checking the password at state 562, process 540 con-
tinues at state 566. At state 566, the Recovery Manager
software 130 will in one embodiment display the Recovery
Manager window 920, which includes the server icon 922 as
shown in FIG. 15. The server window panel 928 and the
confirmation dialog box 936 are not displayed at this time.
The user at the client computer 122/124 then selects the
server icon 922 on the display, such as by clicking the
pointer device on the icon. Moving to state 568 the server
window panel 928 (FIG. 15) is then displayed to the user.
The user confirmation box 936 is not displayed at this time.
The user selects a System Reset button 934 on the window
panel 928 to trigger the System Reset operation. Continuing
at state 570, a user confirmation dialog box is then displayed
on the client computer display. If the user confirms that the
system is to be reset, process 540 proceeds through off page
connector A 572 to decision state 574 on FIG. 8b.

At decision state 574, process 540 determines if the server
is currently running (powered up, such as after a power on

6,145,098

19

command has been issued). If not, process 540 continues to
state 576 wherein a warning message that the server must be
running to execute a system reset is displayed on the client
computer display to the user. After the warning has been
displayed, process 540 moves to end state 578 to terminate
the reset process. However, if the server is running, as
determined at decision state 574, process 540 proceeds to
state 580.

At state 580, the Recovery Manager software 130 at the
client computer 122/124 provides a microcontroller network
command (based on selecting the System Reset button) and
sends it to the communication layer software. Proceeding to
state 582, the communication layer puts a communications
protocol around the command (from state 580) and sends the
encapsulated command to the server through the client
modem 128, the server modem 126 and the remote interface
104. The encapsulated command is of the Request type 202
shown in FIG. 3. Process 540 then continues to a function
590 wherein the server receives the command and resets the
server. Function 590 will be further described in conjunction
with FIG. 9.

Moving to state 592, the response generated by the server
is then sent to the remote interface 104. In one embodiment,
the microcontroller (the CPU A controller 166 in this
instance) performing the command at the server returns
status at the time of initiation of communication with the
microcontroller. At the completion of the reset operation by
the CPU A controller 166, the Recovery Manager 130 sends
a read status command to the CPU A controller (using states
580 and 582) to retrieve information on the results of the
operation.

Proceeding to decision state 594, process 540 determines
if the system reset command was successful. If so, process
540 proceeds to state 596 wherein the remote interface 104
sends the response to the server modem 126 indicating the
success of the command. Alternatively, if a local connection
121 is utilized, the response is sent to the local client
computer 122. However, if the system reset is not successful,
as determined at decision state 594, process 540 proceeds to
state 598 wherein the remote interface 104 sends the
response to the server modem (or local client computer)
indicating a failure of the command. At the conclusion of
cither state 596 or 598, process 540 proceeds to state 600
wherein the remote interface 104 sends the response back
through the server modem 126 to the client modem 128.
Moving to state 602, the client modem 128 sends the
response back to the Recovery Manager software 130 at the
remote client computer 124. Note that if the local connection
121 is being utilized, states 600 and 602 are not necessary.
Proceeding to decision state 604, process 540 determines
whether the command was successful. If so, process 540
continues at state 606 and displays a result window showing
the success of the command on the display at the client
computer 122/124. However, if the command was not
successful, process 540 proceeds to state 608 wherein a
result window showing failure of the command is displayed
to the user. Moving to state 610, the details of the command
information are available, if the user so desires, by selecting
a details button. At the completion of state 606 or state 610,
process 540 completes at end state 612.

Referring to FIG. 9, the server reset function 590 will now
be described. Beginning at start state 630, function 590
proceeds to the BIOS POST Warmstart function 384. In the
Warmstart function 384, approximately 41 subroutines are
called. These include the general operations of: reset flag,
DMA/timer reset, chipset initialization, CMOS test, PCI
initialization, cache enable, and message display. At the

10

15

20

25

30

35

40

45

50

55

60

65

20

completion of the BIOS POST Warmstart function 384,
function 590 proceeds to state 388 where BIOS POST events
are logged in the System Recorder memory 112. Proceeding
to state 390, the BIOS POST performs server port initial-
ization. Continuing at state 392, the BIOS POST initializes
the Operating System related controllers (e.g., floppy disk
controller, hard disk controller) and builds a multi-processor
table. Advancing to state 394, the BIOS POST performs an
OS boot preparation sequence. Moving to state 632, the
BIOS initiates an OS boot sequence to bring the operating
software to an operational state. Function 590 ends at a
return state 636.

VIII. FLIGHT RECORDER FLOW

A Flight Recorder, which includes the System Recorder
controller 110 and the System Recorder memory 112, pro-
vides a subsystem for recording a time-stamped history of
events leading up to a failure in server system 100. The
System Recorder memory 112 may also store identification
of components of the server system. In one embodiment, the
System Recorder 110 is the only controller which does not
initiate messages to other controllers. The System Recorder
110 receives event log information from other controllers
and stores the data into the System Recorder memory 112.
Upon request, the System Recorder 110 can send a portion
and/or the entire logged data to a requesting controller. The
System Recorder 110 puts a time stamp from a real-time
clock with the data that is saved.

Referring to FIGS. 10a, 10b and FIG. 1, one embodiment
of a Display Flight Recorder process 670 will now be
described. Process 670 begins at start state 672 and if a
connection between the client computer 122/124 and the
server 100 is already active, process 670 proceeds to directly
to state 696. Otherwise, if a connection is not already active,
process 670 proceeds to state 673 and utilizes the Recovery
Manager software 130 to present a dialog window to the user
on a display of the client computer 122/124 requesting
information. The user is requested to enter a password for
security purposes. The dialog window also has a pair of
radio-buttons to select either a serial (local) connection or a
modem (remote) connection. If serial is selected, the user is
requested to select a COM port. If modem is selected, the
user is requested to enter a telephone number to be used in
dialing the server modem.

Moving to decision state 674, process 670 determines if
the modem-type connection 123 was selected. The modem-
type connection is generally utilized in the situation where
the client computer 124 is located at a location remote from
the server 100. If it is determined at decision state 674 that
a modem connection is utilized, process 670 moves to state
676 wherein the client computer 124 is connected to the
client modem 128. Moving to state 678, a connection is
established between the client modem 128 and the server
modem 126 via the communications network 127. Continu-
ing at state 680, the server modem 126 connects with the
remote interface 104. Proceeding to state 682, the remote
interface 104 connects to the server 100 via the RJ-45 cable
103. Moving to state 686, the Recovery Manager software
130 at the client computer 124 dials the server modem 126
through the client modem 128, handshakes with the remote
interface 104, and checks the previously entered password.
Process 670 remains at state 686 until a successful commu-
nication path with the remote interface 104 is established.

Returning to decision state 674, if the local connection
121 is utilized instead of the modem connection 123, process
670 proceeds to state 688 wherein the local client computer
122 is connected with the remote interface 104. Moving to
state 692, the remote interface 104 is connected with the

6,145,098

21

server 100. The previously entered password (at state 673)
is sent to the remote interface 104 to identify the user at the
local computer 122. If the password matches the password
that is stored in the server system 100, the communication
path with the remote interface 104 is enabled.

After successful modem communication has been estab-
lished and the password confirmed at state 686, or at the
completion of connecting the remote interface to the server
and checking the password at state 692, process 670 con-
tinues at state 696. At state 696, the Recovery Manager
software 130 will in one embodiment display a Recovery
Manager window 940, which includes a Flight Recorder
icon 942 as shown in FIG. 16. A Flight Recorder window
panel 944 is not displayed at this time. The user at the client
computer 122/124 then selects the Flight Recorder icon 942
on the display, such as by clicking the pointer device on the
icon. Moving to state 698, the Flight Recorder window panel
944 (FIG. 16) is then displayed to the user. The user selects
a Download button 954 on the window panel 944 to trigger
the display of the Flight Recorder operation. Note that other
options in the Flight Recorder window panel 944 include a
Save button 956 for saving a downloaded Flight Recorder
(system log or System Recorder memory 112, FIG. 1) and a
Print button 958 for printing the downloaded Flight
Recorder. Continuing at state 700, a user confirmation dialog
box (not shown) is then displayed on the client computer
display showing a number of messages in the server system
log. Moving to state 702, if the user selects the “OK” button,
process 670 displays a progress window of downloaded
messages. Process 670 proceeds through off page connector
A 703 to state 704 on FIG. 105.

At state 704, the Recovery Manager software 130 at the
client computer 122/124 provides a microcontroller network
command (based on selecting the Download Flight Recorder
button 954) and sends it to the communication layer soft-
ware. Proceeding to state 706, the communication layer puts
a communications protocol around the command (from state
704) and sends the encapsulated command to the server
through the client modem 128, the server modem 126 and
the remote interface 104. The encapsulated command is of
the Request type 202 shown in FIG. 3. Process 670 then
continues to a function 710 wherein the server receives the
command and reads the contents of the System Recorder
memory 112 (FIG. 1). In one embodiment, each read request
generates one response such that the Recovery Manager 130
generates multiple read requests to read the complete system
log. The server generates one log response during function
710. Function 710 will be further described in conjunction
with FIG. 11.

Moving to state 712, each of the responses generated by
the server are then sent one at a time to the remote interface
104. Process 670 then proceeds to state 714 wherein the
remote interface 104 sends each response back through the
server modem 126 to the client modem 128. Alternatively, if
a local connection 121 is utilized, each response is sent
directly to the local client computer 122. Moving to state
716, the client modem 128 sends the response back to the
Recovery Manager software 130 at the remote client com-
puter 124. Note that if the local connection 121 is being
utilized, state 716 is not necessary. Proceeding to decision
state 718, process 670 determines whether the entire down-
load of the Flight Recorder was successful by checking for
an end of system log messages status. If so, process 670
continues at state 720 wherein the Recovery Manager 130
(FIG. 1) displays (and optionally stores) all messages in the
Flight Recorder window panel 944 on the display at the
client computer 122/124. However, if the entire download

10

15

20

25

30

35

40

45

50

55

60

65

22

was not successful, process 670 proceeds to state 722
wherein the Recovery Manager 130 displays (and optionally
stores) all messages that were received by the Recovery
Manager 120 in the Flight Recorder window panel 944. At
the completion of state 720 or state 722, process 670
completes at end state 724.

In one embodiment, the Flight Recorder window panel
944 includes four fields: Time Stamp 946, Severity 948,
Message Source 950, and Message 952. Each message in the
system log 112 includes a time stamp 946 of when the item
was written to the log 112. The time stamp includes the date
and the local time zone of the client computer 122/124
running the Recovery Manager 130. In one embodiment, the
time stamp information is generated by a timer chip 760
(FIG. 12a). The Severity ficld 948 includes a severity value
selected from: unknown, informational, warning, error, and
severe/fatal. The Message Source field 950 includes a source
selected from: microcontroller network internal, onboard
diagnostics, external diagnostics, BIOS, time synchronizer,
Windows®, WindowsNT®, NetWare, 0S/2, UNIX, and
VAX/VMS. The messages in the Message field 952 corre-
spond to the data returned by the controllers on the micro-
controller network 102. The controller message data is used
to access a set of Message tables associated with the
Recovery Manager 130 on the client computer 122/124 to
generate the information displayed in the Message field 952.
The Message tables include a microcontroller network (wire
services) table, a BIOS table and a diagnostics table. An
exemplary message from the microcontroller network table
includes “temperature sensor #5 exceeds warning thresh-
old”. An exemplary message from the BIOS table includes
“check video configuration against CMOS”. An exemplary
message from the diagnostics table includes “correctable
memory error’.

Referring to FIG. 11, the Read NVRAM Contents func-
tion 710 will now be described. Beginning at start state 740,
function 710 proceeds to state 742 and loads a block log
pointer. The System Recorder memory or NVRAM 112
(FIG. 2) has two 64K byte memory blocks. The first block
is a memory block which stores ID codes of the devices
installed in the network. Hence, a command addressed to the
first block is typically generated by a controller responsible
for updating the presence or absence of devices in the
network. The second block of the memory 112 is a memory
block that stores event messages in connection with events
occurring in the network. Hence, controllers addressing the
second block do so to add entries to the system log or to read
previous entries contained in the system log. The System
Recorder uses log address pointers to determine where the
next new entry in the log should be placed and also to
determine where the log is currently being read from. A
further description of the System Recorder 110 and the
NVRAM 112 is provided in U.S. patent application Ser. No.
08/942381, entitled, “BLACK BOX RECORDER FOR
INFORMATION SYSTEM EVENTS”.

Moving to state 744, function 710 reads the log message
as addressed by the log pointer. Proceeding to state 746,
function 710 returns the log message to the requestor on the
microcontroller bus 160 (FIG. 2), which is the remote
interface controller 200 in this situation. In one embodiment,
the remote interface 104 stores the message in a memory 762
(FIG. 12¢) on the RIB. Proceeding to state 748, process 710
increments the log pointer to point to the next address in the
NVRAM block. Continuing at decision state 750, function
710 determines if the end of the messages in the System
Recorder memory block has been reached. If not, function
710 proceeds to a normal return state 752. If the end of the

6,145,098

23

messages has been reached, as determined at decision state
750, function 710 moves to a return state 754 and returns a
End of Messages status. The Recovery Manager 130 utilizes
this status information to stop sending requests to read the
System Recorder memory 112.
IX. SYSTEM STATUS FLOW

FIGS. 124, 12b and 12c are a detailed block diagram of
the microcontroller network components showing specific
inputs and outputs of the microcontrollers. An I/O Canister
card 758 has fan speed detection circuitry 766 to provide fan
speed information to the Canister controller 172 through a
fan multiplexer 767. The CPU A controller 166 receives fan
speed information from fan speed detection circuitry 764
through a fan multiplexer 7685.

Referring to FIGS. 134, 13b and FIG. 1, one embodiment
of a System Status process 770 will now be described.
Process 770 begins at start state 772 and if a connection
between the client computer 122/124 and the server 100 is
already active, process 770 proceeds to directly to state 796.
Otherwise, if a connection is not already active, process 770
proceeds to state 773 and utilizes the Recovery Manager
software 130 to present a dialog window to the user on a
display of the client computer 122/124 requesting informa-
tion. The user is requested to enter a password for security
purposes. The dialog window also has a pair of radio-buttons
to select either a serial (local) connection or a modem
(remote) connection. If serial is selected, the user is
requested to select a COM port. If modem is selected, the
user is requested to enter a telephone number to be used in
dialing the server modem.

Moving to decision state 774, process 770 determines if
the modem-type connection 123 was selected. The modem-
type connection is generally utilized in the situation where
the client computer 124 is located at a location remote from
the server 100. If it is determined at decision state 774 that
a modem connection is utilized, process 770 moves to state
776 wherein the client computer 124 is connected to the
client modem 128. Moving to state 778, a connection is
established between the client modem 128 and the server
modem 126 via the communications network 127. Continu-
ing at state 780, the server modem 126 connects with the
remote interface 104. Proceeding to state 782, the remote
interface 104 connects to the server 100 via the RJ-45 cable
103. Moving to state 786, the Recovery Manager software
130 at the client computer 124 dials the server modem 126
through the client modem 128, handshakes with the remote
interface 104, and checks the previously entered password.
Process 770 remains at state 786 until a successful commu-
nication path with the remote interface 104 is established.

Returning to decision state 774, if the local connection
121 is utilized instead of the modem connection 123, process
770 proceeds to state 788 wherein the local client computer
122 is connected with the remote interface 104. Moving to
state 792, the remote interface 104 is connected with the
server 100. The previously entered password (at state 773)
is sent to the remote interface 104 to identify the user at the
local computer 122. If the password matches the password
that is stored in the server system 100, the communication
path with the remote interface 104 is enabled.

After successful modem communication has been estab-
lished and the password confirmed at state 786, or at the
completion of connecting the remote interface to the server
and checking the password at state 792, process 770 con-
tinues at state 796. At state 796, the Recovery Manager
software 130 will in one embodiment display a Recovery
Manager window 960, which includes a System Status icon
970 as shown in FIG. 17. A System Status window panel 962

10

15

20

25

30

35

40

45

50

55

60

65

24

is not displayed at this time. The user at the client computer
122/124 then selects the System Status icon 970 on the
display, such as by clicking the pointer device on the icon.
Moving to state 798, the System Status window panel 962
(FIG. 17) is then displayed to the user. The user selects one
of a multiple set of component icons 972-984 on the
window panel 962 to initiate a System Status operation. In
one embodiment, icon 972 is for Power Supplies, icon 974
is for Temperatures, icon 976 is for Fans, icon 978 is for
Processor, icon 980 is for 1/0 Canisters, icon 982 is for
Serial Numbers and icon 984 is for Revisions. When the user
selects one of the icons 972-984, the Recovery Manager 130
displays a component window panel to the user, such as
exemplary Fans window panel 994 (FIG. 18) if the user
selected the Fans icon 976.

In one embodiment, the exemplary Fans window panel
994 (FIG. 18) includes several fields 985-991: field 985 is
for Fan Location, field 986 is for Fan Number within the
Location, field 987 is for Fan Speed (rpm, as detected by the
microcontrollers 166 and 172 (FIG. 12)), field 988 is for Fan
Speed Control (high or low), field 989 is for Fault Indicator
LED (on or off), field 990 is for Fan Fault (yes or no), and
field 991 is for Fan Low-speed Fault Threshold Speed (rpm).
Note that this exemplary Fans window panel 994 includes a
Refresh button 992 which triggers a retrieval of new values
for the fields of the panel.

If the user selects a Canister A icon 1000 in the Recovery
Manager window panel 960, the Recovery Manager 130
displays an exemplary Fans detail window panel 1002 (FIG.
19). This exemplary panel 1002 provides status information
for the fans of the selected Canister A, which in this
embodiment includes a status box 1004 for a Fan 1 and a
status box 1006 for Fan 2 along with a Canister Present
indicator 1008 and a Fault Indicator Led box 1010. These
status items 1004—1010 are refreshed (new status informa-
tion is retrieved) if the user selects a Refresh button 1012. A
Fan Low-speed Fault Threshold Speed entry box 1020 and
a Fan Speed Control radio button box 1022 allow the user to
enter new values if it desired to change the current settings.
An Update operation to change the values of the settings is
initiated if the user selects the Update button 1024.

Continuing in FIG. 134 at decision state 799, process 770
determines if the Refresh Status operation is to be
performed, if for example, the user selected a Refresh button
on one of the System status windows. If so, process 770
proceeds to state 800 and initiates the Refresh operation to
retrieve new status information for display to the user. If the
Refresh operation is not selected, as determined at decision
state 799, process 770 advances to decision state 801 to
determine if the Update operation is to be performed, if for
example, the user selected a Update button on one of the
System status windows. If so, process 770 proceeds to state
802 and initiates the Update operation to update item
settings that the user desires to change. At the completion of
either state 800 or state 802, or if the user selects another
status option (e.g., Help), process 670 proceeds through off
page connector A 803 to state 804 on FIG. 13b.

At state 804, the Recovery Manager software 130 at the
client computer 122/124 provides a microcontroller network
command (based on selecting one of System Status opera-
tions (e.g., Update, Refresh)) and sends it to the communi-
cation layer software. Proceeding to state 806, the commu-
nication layer puts a communications protocol around the
command (from state 804) and sends the encapsulated
command to the server through the client modem 128, the
server modem 126 and the remote interface 104. The encap-
sulated command is of the Request type 202 shown in FIG.

6,145,098

25

3. Process 770 then continues to a function 8§10 wherein the
server receives the command and retrieves or updates the
selected status information for the selected item(s), e.g.,
Fans. In one embodiment, for example, each Refresh request
generates one response such that the Recovery Manager 130
generates multiple Refresh requests to retrieve the complete
set of status information. Function 810 will be further
described in conjunction with FIG. 14.

Moving to state 812, each of the responses generated by
the server are then sent one at a time to the remote interface
104, Process 770 then proceeds to state 814 wherein the
remote interface 104 sends each response back through the
server modem 126 to the client modem 128. Alternatively, if
a local connection 121 is utilized, each response is sent
directly to the local client computer 122. Moving to state
822, the client modem 128 sends the response back to the
Recovery Manager software 130 at the remote client com-
puter 124. Proceeding to decision state 824, process 770
determines whether the executed command was a Retrieve
(Refresh) or Update command. If the command was a
Retrieve, process 770 moves to decision state 826 to deter-
mine if the Retrieve operation was successful. If so, process
770 continues to state 828 wherein the Recovery Manager
130 (FIG. 1) displays the new system status information in
a System Status window panel (such as window panel 994
(FIG. 18) or window panel 1002 (FIG. 19)) on the display
at the client computer 122/124. However, if the Refresh
operation was not successful, process 770 proceeds to state
830 wherein the Recovery Manager 130 shows new status
information for the items that the new status information has
been successfully received (if any).

Returning to decision state 824, if the command was an
Update, process 770 moves to decision state 834 to deter-
mine if the Update operation was successful. If so, process
770 continues to state 836 wherein the Recovery Manager
130 (FIG. 1) displays an Update Successful indication in the
appropriate Status window. However, if the Update opera-
tion was not successful, process 770 proceeds to state 8§38
wherein the Recovery Manager 130 displays an Update
Failure indication in the appropriate Status window. Moving
to state 840, the details of the command information are
available, if the user so desires, by selecting a Details button
(not shown). At the completion of any of states 828, 830, 836
or 840, process 770 completes at end state 842.

Referring to FIG. 14, the Server System Status function
810 will now be described. Beginning at start state 870,
function 810 proceeds to state 872 wherein each microcon-
troller on the microcontroller network bus 160 (FIG. 2)
checks to see if the address field of the system command
received from the recovery manager 130 (FIG. 1) at the
client computer matches that of the microcontroller. Con-
tinuing at state 874, the addressed microcontroller executes
a command, e.g., retrieve data or update data. Continuing at
state 876 the addressed microcontroller sends a response
message back on the microcontroller bus 160 to the con-
troller that initiated the command, which is the remote
interface controller 200 (FIG. 2) in this situation. Moving to
decision state 878, function 810 determines whether addi-
tional items are selected for retrieval or update. If so,
function 810 moves to state 880 to access the next command
and then moves back to state 872 wherein each microcon-
troller again checks to see if it is addressed. The single
addressed microcontroller performs states 872, 874 and 876.
If there are no more items selected for retrieval or update, as
determined at decision state 878, function 810 proceeds to a
return state 882 where function 810 completes.

States 878, 880 and 882 are performed by the Recovery
Manager 130 at the client computer 122/124. For example,

10

15

20

25

30

35

40

45

50

55

60

65

26

if the user wanted system status on all the fans by selecting
the Fan icon 976 (FIG. 18), the Recovery Manager 130
generates one command for each of a selected group of
microcontrollers for retrieving fan information. Thus, a
command to read fan information from CPU A controller
166 (FIG. 2) is sent out and a response received, followed by
a command to and response from Canister A controller 172,
and so on through Canister B controller 174, Canister C
controller 176 and Canister D controller 178.

In one embodiment, the System Status windows provide
the following status information:
System Status: Power Supplies

This window displays power supply status information.
To obtain current information, click Refresh. This informa-
tion includes:

Present: Indicates the power supply is installed and present

AC.: Indicates whether the power supply is receiving A.C.
power.

D.C.: Indicates whether the power supply is supplying D.C.
voltage.

Power: Indicates the server is On or Off.

Output Voltages: Indicates the power (in volts) generated by each power

supply line.

System Status: Temperature

This window displays information about the operational
temperatures of the server. To obtain current temperature
information, click Refresh. To apply any changes made in
this window, click Update.

Temperature Sensor 1:
Temperature Sensor 2:
Temperature Sensor 3:
Temperature Sensor 4:
Temperature Sensor 5:
Warning Level:

Indicates the temperature measured by Sensor 1.
Indicates the temperature measured by Sensor 2.
Indicates the temperature measured by Sensor 3.
Indicates the temperature measured by Sensor 4.
Indicates the temperature measured by Sensor 5.
Shows the temperature warning level (in one
embodiment, the default is 55 degrees Celsius).
When any temperature sensor measures this level
or higher, a warning is issued. To change the
warning level, enter a new temperature and click
Update.

Shows the temperature shutdown level (in one
embodiment, the default is 70 degrees Celsius).
When any temperature sensor measures this level
or higher, the server is automatically shut down.
To change the shutdown level, enter a new
temperature and click Update.

Select whether the temperatures are in Celsius or
Fahrenheit.

Indicates whether the server temperature is above
the Warning threshold.

Shutdown Level:

Show Temp in
Degrees:
System Overtemp?:

System Status: Fans

This window displays server and group fan status infor-
mation. To obtain current status information, click Refresh.
The information that appears in this window includes:

Indicates the location of the fan.
Options include System Board
and Groups A or B.

Indicates the location of the fan.
For information on the physical
location, click here Location
icon.

Displays the fan operating speed
(in RPM).

Location:

Fans 1-6 (System Board), 1-2 (Group):

Speed:

6,145,098

27

-continued

Speed Control: Indicates the fan is operating at
High or Low speed.

Indicates the Fan Fault LED on
the server enclosure is On or
Off.

Indicates whether the fan failed.
Displays the low-speed fault
threshold speed. When a fan
drops below this speed, the fan
is reported as failed. To change
failure level, enter a new speed
(in RPM) and click Update. In
one embodiment, the speed is
entered in increments of 60
(e.g., 60, 120, 180, etc.).

Fault Indicator LED:

Fault:
Low-speed Fault Threshold Speed:

Note: To view status information on a specific group of fans, change their
speed, or modify the speed at which they are considered failed, double-
click the fan group’s icon.

System Board Fans

This window displays information about the status of the
system board fans. To obtain current information, click
Refresh. To apply any changes made in this window, click
Update.
Group X Fans

This window displays information about the status of the
fans in the selected group. To obtain current information,
click Refresh. To apply any changes made in this window,
click Update.
Canister X Fans

This window displays information about the status of the
fans in the selected canister. To obtain current information,
click Refresh. To apply any changes made in this window,
click Update.
System Status: Processor

This window displays processor status information. To
obtain current information, click Refresh. This information
includes:

CPU 1-4: Indicates the location of the CPU.

Present: Indicates whether the CPU is installed.

Power: Indicates whether the system is receiving power.

Overtemp: Indicates whether the system is running above
operating temperature.

Error: Indicates whether a CPU internal error occurred.

NMI Control: Indicates whether NMI control is active or
inactive.

Indicates whether faults or errors occurred on any
installed processors.

Indicates the server’s Bus/Core speed ratio, a

relative indicator of processor performance.

Any Fault?:

Bus/Core Speed Ratio:

CPU X Status:

This window displays status information for the selected
CPU. To obtain current information, click Refresh. To apply
any changes made in this window, click Update.

10

15

20

25

30

35

40

45

50

28
Present: ‘When selected, the CPU is installed.
Power: Indicates whether the system is receiving power.
Overtemp: Indicates whether the system is running above operating
temperature.
Error: Indicates whether a CPU internal error occurred.

NMI Control: Indicates NMI control is active or inactive.

System Status: I/O Groups

This window displays I/O group status information. To
obtain current information, click Refresh. This information
includes:

PCI 1-4: Indicates whether a peripheral card is installed in the
specified PCI slot.
PCI Power: Indicates whether the canister’s PCI bus is receiving power.

System Status: I/0 Canisters

This window displays I/O canister status information. To
obtain current information, click Refresh. This information
includes:

Status: Indicates the canister is inserted or removed.

PCI 1-4: Indicates whether a peripheral card is installed in the
specified PCI slot.

PCI Power: Indicates whether the canister’s PCI bus is receiving power.

System Status: Serial Numbers

This window lists the serial numbers of the system board,
backplane, canisters, power supplies, and remote interface.
To obtain current information, click Refresh.

System Status: Revisions

This window displays server component revision infor-
mation for the backplane, system board, power supplies, I/O
canisters or I/O groups, system interface and remote inter-
face. To obtain current information, click Refresh.

While the above detailed description has shown,
described, and pointed out the fundamental novel features of
the invention as applied to various embodiments, it will be
understood that various omissions and substitutions and
changes in the form and details of the system illustrated may
be made by those skilled in the art, without departing from
the intent of the invention.

Appendix A
Incorporation by Reference of Commonly Owned Applica-
tions
The following patent applications, commonly owned and
filed on the same day as the present application are hereby
incorporated herein in their entirety by reference thereto:

Application Attorney
Title No. Docket No.
“System Architecture for Remote MNFRAME.002A1

Access and Control of Environmental

Management”

“Method of Remote Access and

MNFRAME.002A2

Control of Environmental Management”

“System for Independent Powering of

MNFRAME.002A3

Diagnostic Processes on a Computer System”

29

6,145,098

-continued
Application Attorney

Title No. Docket No.
“Method for Independent Powering of MNFRAME.002A4
Diagnostic Processes on a Computer System”
“Diagnostic and Managing Distributed MNFRAME.005A1
Processor System”
“Method for Managing a Distributed MNFRAME.005A2
Processor System”
“System for Mapping Environmental MNFRAME.005A3
Resources to Memory for Program Access”
“Method for Mapping Environmental MNFRAME.005A4
Resources to Memory for Program Access”
“Hot Add of Devices Software Architecture” MNFRAME.006A1
“Method for The Hot Add of Devices™ MNFRAME.006A2
“Hot Swap of Devices Software Architecture” MNFRAME.006A3
“Method for The Hot Swap of Devices” MNFRAME.006A4
“Method for the Hot Add of a Network MNFRAME.006AS5
Adapter on a System Including a
Dynamically Loaded Adapter Driver”
“Method for the Hot Add of a Mass MNFRAME.006A6
Storage Adapter on a System Including
a Statically Loaded Adapter Driver”
“Method for the Hot Add of a Network MNFRAME.006A7
Adapter on a System Including a
Statically Loaded Adapter Driver”
“Method for the Hot Add of a Mass MNFRAME.006AS8
Storage Adapter on a System Including
a Dynamically Loaded Adapter Driver”
“Method for the Hot Swap of a Network MNFRAME.006A9
Adapter on a System Including a
Dynamically Loaded Adapter Driver”
“Method for the Hot Swap of a Mass MNFRAME.006A10
Storage Adapter on a System Including
a Statically Loaded Adapter Driver”
“Method for the Hot Swap of a Network MNFRAME.006A11
Adapter on a System Including a
Statically Loaded Adapter Driver”
“Method for the Hot Swap of a Mass MNFRAME.006A12
Storage Adapter on a System Including
a Dynamically Loaded Adapter Driver”
“Method of Performing an Extensive MNFRAME.008A
Diagnostic Test in Conjunction with a
BIOS Test Routine”
“Apparatus for Performing an MNFRAME.009A
Extensive Diagnostic Test in Conjunction
with a BIOS Test Routine”
“Configuration Management Method MNFRAME.010A
for Hot Adding and Hot Replacing Devices™
“Configuration Management System MNFRAME.011A
for Hot Adding and Hot Replacing Devices”
“Apparatus for Interfacing Buses” MNFRAME.012A
“Method for Interfacing Buses” MNFRAME.013A
“Computer Fan Speed Control Device” MNFRAME.O16A
“Computer Fan Speed Control Method” MNFRAME.017A
“System for Powering Up and Powering Down MNFRAME.018A
a Server”
“Method of Powering Up and Powering Down MNFRAME.019A
a Server”
“System for Resetting a Server” MNFRAME.020A
“Method of Resetting a Server” MNFRAME.021A
“System for Displaying Flight Recorder” MNFRAME.022A
“Method of Displaying Flight Recorder” MNFRAME.023A
“Synchronous Communication Interface” MNFRAME.024A
“Synchronous Communication Emulation” MNFRAME.025A
“Software System Facilitating the MNFRAME.026A
Replacement or Insertion of Devices in
a Computer System”
“Method for Facilitating the MNFRAME.027A
Replacement or Insertion of Devices in
a Computer System”
“System Management Graphical User Interface” MNFRAME.028A
“Display of System Information” MNFRAME.020A
“Data Management System Supporting MNFRAME.030A
Hot Plug Operations on a Computer”
“Data Management Method Supporting MNFRAME.031A
Hot Plug Operations on a Computer”
“Alert Configurator and Manager” MNFRAME.032A
“Managing Computer System Alerts” MNFRAME.033A

6,145,098

31 32
-continued
Application Attorney
Title No. Docket No.
“Computer Fan Speed Control System” MNFRAME.034A
“Computer Fan Speed Control System Method” MNFRAME.035A
“Black Box Recorder for Information MNFRAME.036A
System Events”
“Method of Recording Information MNFRAME.037A
System Events”
“Method for Automatically Reporting a MNFRAME.(040A
System Failure in a Server”
“System for Automatically Reporting a MNFRAME.041A
System Failure in a Server”
“Expansion of PCI Bus Loading Capacity” MNFRAME.042A
“Method for Expanding PCI Bus Loading Capacity” MNFRAME.043A
“System for Displaying System Status™ MNFRAME.044A
“Method of Displaying System Status” MNFRAME.045A
“Fault Tolerant Computer System” MNFRAME.046A
“Method for Hot Swapping of Network MNFRAME.047A
Components™
“A Method for Communicating a MNFRAME.048A
Software Generated Pulse Waveform
Between Two Servers in a Network”
“A System for Communicating a MNFRAME.049A
Software Generated Pulse Waveform
Between Two Servers in a Network”
“Method for Clustering Software MNFRAME.050A
Applications”
“System for Clustering Software MNFRAME.051A
Applications”
“Method for Automatically Configuring MNFRAME.052A
a Server after Hot Add of a Device”
“System for Automatically Configuring MNFRAME.053A
a Server after Hot Add of a Device”
“Method of Automatically Configuring MNFRAME.054A
and Formatting a Computer System
and Installing Software”
“System for Automatically Configuring MNFRAME.055A
and Formatting a Computer System
and Installing Software”
“Determining Slot Numbers in a Computer” MNFRAME.056A
“System for Detecting Errors in a Network” MNFRAME.058A
“Method of Detecting Errors in a Network™ MNFRAME.059A
“System for Detecting Network Errors” MNFRAME.060A
“Method of Detecting Network Errors™ MNFRAME.061A
Appendix B connected to the device which they control, but are con-
. o nected to a microcontroller, which then actuates the control
Provisional Patent Application or provides the information being monitored.
6391-709: 45 Self-Managing Intelligence

Title: REMOTE SOFTWARE FOR MONITORING AND
MANAGING ENVIRONMENTAL MANAGEMENT
SYSTEM
Invs: Ahmad Nouri

THe following documents are attached and form part of
this disclosure:

1. Maestro Recovery Manager Analysis—Problem

Statement, pp. 1-10.
2. Remote Interface Board Specification, Revision 2
13-000072-01, Jun. 21, 1996, pp. 1-11.

Multiple Node Service Processor Network

A means is provided by which individual components of
a system are monitored and controlled through a set of
independent, programmable microcontrollers intercon-
nected through a network. Further means are provided to
allow access to the microcontrollers and the interconnecting
network by software running on the host processor.

Fly-by-wire

Ameans is provided by which all indicators, push buttons
and other physical control means are actuated via the
multiple node service processor network. No indicators,
push buttons or other physical control means are physically

50

55

60

65

Ameans is provided by which devices are managed by the
microcontrollers in a multiple node service processor net-
work by software running on one or more microcontrollers,
communicating via the interconnecting network. Manage-
ment of these devices is done entirely by the service pro-
cessor network, without action or intervention by system
software or an external agent.

Flight Recorder

A means is provided for recording system events in a
non-volatile memory, which may be examined by external
agents. Such memory may be examined by agents external
to the network interconnecting the microcontrollers.

Replicated components: no single point of failure

A means is provided by which no single component
failure renders the monitoring and control capability of the
system inoperable.

Extension by serial or modem gateway

A means is provided allowing an external agent to com-
municate with the microcontrollers by extending the inter-
connecting network beyond the physical system.

Software means are provided to monitor and/or control a
system using a remote agent. Means are provided for imple-

6,145,098

33

menting an extension to the interconnecting network, con-
verting protocols between media and communicating with
and directing the microcontroller, and the state managed by
those microcontrollers.

The following provisional patent applications, commonly
owned and filed on the same day as the present application,
are related to the present application and are incorporated by
reference:

COMPUTER SYSTEM HARDWARE INFRASTRUC-
TURE FOR HOT PLUGGING MULTI-FUNCTION PCI
CARDS WITH EMBEDDED BRIDGES (6391-704);
invented by:

Don Agneta

Stephen E. J. Papa

Michael Henderson

Dennis H. Smith

Carlton G. Amdahl

Walter A. Wallach

COMPUTER SYSTEM HARDWARE INFRASTRUC-
TURE FOR HOT PLUGGING SINGLE AND MULTI-
FUNCTION PC CARDS WITHOUT EMBEDDED
BRIDGES (6391-705); invented by:

Don Agneta

Stephen E. J. Papa

Michael Henderson

Dennis H. Smith

Carlton G. Amdahl

Walter A. Wallach

ISOLATED INTERRUPT STRUCTURE FOR INPUT/
OUTPUT ARCHITECTURE (6391-706); invented by:
Dennis H. Smith

Stephen E. J. Papa

THREE BUS SERVER ARCHITECTURE WITH A
LEGACY PCI BUS AND MIRRORED I/O PCI BUSES
(6391-707); invented by:

Dennis H. Smith

Cariton G. Amdahl

Don Agneta

HOT PLUG SOFTWARE ARCHITECTURE FOR OFF
THE SHELF OPERATING SYSTEMS (6391-708);
invented by:

Walter A. Wallach

Mehrdad Khalili

Mallikarunan Mahalingarn

John Reed

REMOTE SOFTWARE FOR MONITORING AND MAN-
AGING ENVIRONMENTAL MANAGEMENT SYSTEM
(6391-709); invented by:

Ahmad Nouri

REMOTE ACCESS AND CONTROL OF ENVIRONMEN-
TAL MANAGEMENT SYSTEM (6391-710); invented by:
Karl Johnson

Tahir Sheik

HIGH PERFORMANCE NETWORK SERVER SYSTEM
MANAGEMENT INTERFACE (6391-711); invented by:
Srikumar Chari

Kenneth Bright

Bruno Sartirana

CLUSTERING OF COMPUTER SYSTEMS USING UNI-
FORM OBJECT NAMING AND DISTRIBUTED SOFT-
WARE FOR LOCATING OBJECTS (6391-712); invented
by:

Walter A. Wallach

Bruce Findley

MEANS FOR ALLOWING TWO OR MORE NETWORK
INTERFACE CONTROLLER CARDS TO APPEAR AS
ONE CARD TO AN OPERATING SYSTEM (6391-713),
invented by:

10

15

20

25

30

35

40

45

50

55

60

65

34
Walter A. Wallach
Mallikarunan Mahalingam
HARWARE AND SOFTWARE ARCHITECTURE FOR
INTER-CONNECTING AN ENVIRONMENTAL MAN-
AGEMENT SYSTEM WITH A REMOTE INTERFACE
(6391-714); invented by:
Karl Johnson
Walter A. Wallach
Dennis H. Smith
Carl G. Amdahl
SELF MANAGEMENT PROTOCOL FOR A FLY-BY-
WIRE SERVICE PROCESSOR (6391-715); invented by:
Karl Johnson
Walter A. Wallach
Dennis H. Smith
Carl G. Amdahl

Problem Statement

Introduction

Maestro Recovery Manager(MRM) is a software which
locally or remotely manage a Raptor when a server is down
or up, operating system died, LAN communication failed, or
other server components failed.

User will be able to manage the server in very simple,
usable, and friendly GUI environment. MRM use modem
for remote and serial communication port for local to
communicate with server for diagnostic and recovery.

Primary role of remote management is diagnosing and
restoring service as quickly as possible in case of a service
failure.

System administrator, LAN administrator in customer

shop and NetFrame Technical support will be primary user
for the system.

Requirement Sources

MRM requirements comes from the following
1 Focus Group (Customer Support and Training)

2 User Walkthrough held by MRM team and Customer
Support in December 1996

3 Down System Management Road map (96) This road
map is preliminary road map combined with Up Sys-
tem Management road map.

4 MRM Road Map 97-98 This Road Map presented to
Engineering Council Meeting on Mar. 10, 1997.

5 Raptor System, A Bird’s Eye View.

6 Raptor Wire Service Architecture

The following requirements have been identified for
MRM

Support Remote Management for Diagnostic and
Recovery

Remote Management cover remote access to the Raptor
Out Of Band management features. Remote Management
will use Out of Band, Control Diagnostic and Monitor
Subsystem (CDM) remote management to cover the other
high value added remote management functions. Primary
role of remote management is diagnosing and restoring
service as quickly as possible in case of service failure.

Support Remote Management . . . (continue)

The control of Raptor is completely “Fly By Wire”—i.e.
no physical switch directly controls any function and no
indicator is directly controlled by system hardware. All such

6,145,098

35

functions referred to as “Out of Band ” functions are
controlled through a CDM. CDM basic functions are avail-
able so long as A/C power is available at the input to any of
the power supplies.

CDM Subsystem supervises or monitors the following
system features.

Power supplies—Presence, status, A/C good, Power
on/off and output voltage.

Environment—Ambient and exhaust temperatures, Fan
speed, speed control, Fan fault and overtemp indica-
tors.

Processor—CPU Presence, Power OK, Overtemp and
Fault, NMI control, System reset, Memory type/
location and Bus/Core speed ratio.

I/O—I1/O canister insertion/removal and status indicator,
PCI card presence, PCI card power and smart [/O
processor Out Of Band control.

Historical—Log of all events, Character mode screen
image, and Serial number

Support for Object Oriented Graphic User Interface

00O-GUI is graphic user interface with the following
characteristic.
User task oriented
It uses tasks which user familiar and daily working
with. User does not need to learn the tasks.
User objects
It uses objects which user working with during her or
his daily work.
Simplicity and useablity
It is very simple to use and does not need long learning
period.
Point and click with context sensitive help
Context sensitive help and point and click will help
user to be very productive and get any information
he needs on specific object or field or subject.
Drag and drop
Drag and Drop capability works with user object very
well to accomplish the tasks.

Release Requirements (ARM V2.0, 4Q96)

Maestro Recovery Manager (MRM)will support the fol-
lowing features locally through serial port and Wire Service
Remote Interface card on the Raptorlé.

MRM provide user friendly GUI with point and click
capability to perform the following tasks which reviewed
and accepted by the Focus Group for 4Q96 release.

Power On/Off

MRM support Power On/Off the server.

User can do this task by right mouse click on the server
object in the screen and see the result.

Display Flight Recorder.

While the server is working, Wire Service record all the
server information in the 64K NVRAM. After the
server failed, MRM will display the system log
recorded in the NVRAM. User can evaluate the
information and find the cause for the server failure.
This can be done by right mouse click on the Flight
Recorder object in the screen.

System Reset

MRM support rebooting the server by right mouse click
on the server object in the screen. This is warm
reboot of the server and works as pushing the “reset”
button on the server.

15

20

25

30

35

40

45

50

55

60

65

36

Save
MRM will support saving Flight Recorder data, so user
can send the file to the technical support for further
diagnostic and recovery. It also can save the response
for any Wire Service command failure.

On Line help
MRM will support online help contains overview,
Getting Started, MRM tasks, Diagnostic and
Recovery, and BIOS help.

BO back plane support
MRM will support the server with BO back plane.
Server with BO back plane display wrong time
stamp. MRM uses NetWare 4.11 Operating system
time stamp to display correct time stamp.

Release Requirements MRM V2.1, 1Q97)

Maestro Recovery Manager (MRM) will support Rap-
tor16 Phase 2 for next release as follow. This release will
delivered to customer by NetFrame Customer Support on
CD.

MRM V2.1

MRM V 2.1 will support the MRM V2.0 plus the follow-

ing new features for next release.

User Walkthrough Requirements held on Dec. 17, 1996

Recovery and Diagnostic help.

This help enable the user to display help based on
message source or severity (fatal error, error,
warning,). In each case the help inform the user the
cause for the error and what steps to take to solve the
problem.

CO0/E18 back plane support

New CO0 back plane Wire Service, Diagnostic, and BIOS
message structure

Release Requirements (MRM V2.2, 2Q97)
MRM V2.2 for Raptor 16
MRM V2.2 will support MRM V2.1 plus the following
new features.
Remote connection via modem
MRM supports remote connection to an NF9000-16 via
an external modem. MRM needs one external modem
for client side and one external modem for the server
side. The client modem can be installed and set up via
the Windows NT/95 standard control panel/Modems
installation. The server side modem has to be set up and
connected to the server. Details of installation and setup
for the modem are provided in the
NF9000 Maestro Recovery Manager Installation Guide.
MRM does not support internal modems.
The following external Hayes compatible modems have
been tested and worked with MRM.
Client Modem
US Robotics Sportster 33.6 Fax modem
ZOOM fax MODEM V.34X 33.6
Server Modem
ZOOM fax MODEM V.34X 33.6
System Status
MRM supports retrieve and update of the system status
components.
System status comprised of the following components.
Power Supplies
The following information will be displayed for
this feature.
1. Presence
2. Status(ACOK, DCOK)
3. Power On/off

6,145,098

37

4. Output voltage (Analog measure of main
supply+VREF)
Temperatures
We will support four types of temperature for 5
sensors and display Operating (10-35 degree
C.) and None-operating (-40 to 70 degree C.).
1. Temperature of all sensors
2. Warning temperature
3. Shutdown temperature
4. System over temp
Fans
There are different type of fans in the system such
as system fan and canister fan. All of them
have the common following characteristics.
5. Speed (speed data)
6. Control (LOLIM, can be set to LOW or
HIGH)
7. Fault (LED, Bits)
Processors
There are 4 CPU in the Raptorlé with the fol-
lowing parameters.
1. CPU presence
2. CPU Power OK
3. System over temp
4. System Fault If system over temp or CPU
internal error or system power failure. then
wire service report System Fault
5. CPU Error If internal CPU error occurred,
then report CPU error
6. CPU NMI control
7. System Board Bus/Core speed ratio
Canisters
There are four canisters available
1. I/O canister (insertion, removal) This shows
presence bits for canister.
2. PCI cards This reflect PCI card slots [1-4]
presence
3. PCI card power This controls canister PCI
slot power
Serial Numbers
This is the last known serial data for the follow-
ing server parts
1. Back plane
2. Canister 1-4
3. Remote Interface (not implemented)
4. System Board
5. Power supply 1-2
Revisions
MRM will support the following chips revision
1. Back Plane
2. System board
3. Power Supply 1-2
4. Canisters 14
5. Local Interface
6. Remote Interface

Context-sensitive Help
All elements in the window such as icon, entry field,
push button, and radio button have context-sensitive
help. This help contains the following type.
What’s this
It shows description of each elements in the
window which it is not disabled. This can be
accomplished by right mouse click on each
element in the window.
Help push button.
This display general help for all windows.

38

F1 Key
The key displays the help for any entry field in the
window.

Print
MRM supports printing of flight recorder based on all
messages, warning & errors, and errors with one type
of font.

Password
Wire Service password is originally set by Manufac-
turing to “NETFRAME” (case sensitive) for every
NF9000-16 server. MRM provides a password
changing mechanism for the Wire Service system.
For security purposes, MRM only allows the password to
be changed via the local serial port connection and not via
the remote connection

Support BO/E18 on NT4.0 server

MRM supports BO/E18 configurations by utilizing a
time stamp software component which resides on the
NT4.0 server.

Installation instructions for the time stamp are provided
in the NTReadMe file on a floppy disk packaged
with MRM.

MRM requires the NetFRAME NT Value Add software

25 to operate.

The NetFRAME NT Value Add software will automati-
cally install the time stamp for you. If you have not
installed NetFRAME NT Value Add, then you need
to install the time stamp provided for you on the

10 NTSup floppy disk.
Support for InstallShield

InstallShield setup software is used to install MRM on

the client workstation.
Delivery

wn

10

20

35 MRM package contains the following.
NF9000 Maestro Recovery Manager CD release.
This CD contains MRM software and documenta-
tion.
Two support floppy disks for NF9000-16 BO back plane
40 for NT and NetWare.
Boxes contain above items, Remote Interface Card,
adapter, cables, and documentation.
Dependency

MRM version 2.2 depends on the following items:

5 Remote Interface chip provided by Wire Service(Firm
Ware) department.
Remote Interface card provided by Hardware Engineer-
ing department.
Remote Interface boxes, cables, and power adapters
50 provided by Manufacturing.
Release Requirements (MRM V2.2, 2Q97)
MRM V2.2 for Raptor 8
S5 MRM V2.2 for Raptor 8 has the same features as MRM

v2.2 for Raptor16 with the following different.
Support for CO back plane and F18 BIOS

System Status
The following components of System Status are dif-
60 ferent from MRM V2.2 for Raptor16.
Power Supplies
1. User can not turn off and on specific power
supply.
2. Raptor 8 has three power supply.
65 3. There are no DC (OK, BAD) for RaptorS8.
4. AC for all power supplies are good all the
times.

6,145,098

39

Fans
1. Four system board fans in front
2. Two system board fans (Storage fans) in back
3. Group A and group B sharing two fans.
I/O Groups
1. Group A contains 4 PCI card slots
2. Group B contains 4 PCI card slots.
Serial Numbers
1. Serial number for Group A and B fans are the
same.
2. There is serial number for power supply # 3.
Revisions
1. Group A and B fans have the same revision.
2. There is revision for power supply #3

Delivery

MRM package contains the following.
NF9000 Maestro Recovery Manager CD release.
This CD contains MRM software and documen-
tation.
Boxes contain above items, Remote Interface Card,
adapter, cables, and documentation.

What is claimed is:

1. A system for retrieving or updating system status for a
computer, the system comprising:

a first computer;

a microcontroller configured to provide a retrieve or
update system status signal to the first computer,
wherein the signal causes retrieval of status information
from the first computer or an update of an item setting
of the first computer;

a remote interface connected to the microcontroller,
wherein the remote interface is configured to provide
external access to the first computer; and

a second computer connected to the first computer via the
remote interface and communicating a retrieve or
update system status command to the microcontroller.

2. The system defined in claim 1, wherein the remote
interface includes an external port for connection to the
second computer.

3. The system defined in claim 1, wherein the second
computer is at the same location as the first computer.

4. The system defined in claim 1, wherein the second
computer is at a location remote to the first computer.

5. The system defined in claim 4, additionally comprising
a pair of modems, wherein a first modem connects to the first
computer via the remote interface and a second modem
connects to the second computer, and wherein the first
modem is in data communication with the second modem.

6. The system defined in claim 5, wherein each modem
further connects to the public switched telephone network.

7. The system defined in claim 5, wherein each modem
further connects to a cable network.

8. The system defined in claim 5, wherein each modem
facilitates connection to a satellite.

9. The system defined in claim 1, wherein the remote
interface includes a remote interface microcontroller that
connects via a bus to the microcontroller.

10. The system defined in claim 1, wherein the remote
interface is responsive to a command sent from the second
computer to retrieve or update system status from the
microcontroller.

11. The system defined in claim 1, wherein the first
computer generates status information.

12. The system defined in claim 11, wherein the second
computer displays the status information.

13. The system defined in claim 1, wherein the remote
interface includes a power source which is independent of a
power source for the first computer.

15

20

25

30

35

40

45

50

55

60

65

40

14. The system defined in claim 13, wherein the indepen-
dent power source included with the remote interface pro-
vides power to the first computer when the first power
supply fails.

15. The system defined in claim 1, wherein the remote
interface is directly connected to and proximately located to
the first computer.

16. A system for updating system status for a computer,
the system comprising:

a first computer comprising:

an environmental circuit; and
a microcontroller connected to the environmental
circuit, wherein the

environmental circuit receives item settings;

a remote interface connected to the microcontroller; and

a second computer in data communication with the first

computer via the remote interface, the second computer
capable of communicating an update system status
command to the microcontroller.

17. The system defined in claim 16, wherein the remote
interface is connected to the microcontroller by a microcon-
troller bus.

18. The system defined in claim 16, wherein the update
system status command includes the item settings.

19. The system defined in claim 16, wherein the item
settings include a threshold temperature for the first com-
puter.

20. The system defined in claim 16, wherein the item
settings include a fan threshold speed for the first computer.

21. A system for retrieving system status for a computer,
the system comprising:

a first computer comprising:

an environmental circuit; and
a microcontroller connected to the environmental
circuit, wherein the

environmental circuit obtains status information;

a remote interface connected to the microcontroller; and

a second computer in data communication with the first

computer via the remote interface, the second computer
capable of communicating a retrieve system status
command to the microcontroller.

22. The system defined in claim 21, wherein the remote
interface is connected to the microcontroller by a microcon-
troller bus.

23. The system defined in claim 21, wherein the status
information comprises a temperature for the first computer.

24. The system defined in claim 21, wherein the status
information comprises a fan parameter for the first computer.

25. A microcontroller system for updating the system
settings of a first computer, the microcontroller system
comprising:

a microcontroller bus; and

a plurality of microcontrollers that are interconnected by

the microcontroller bus and wherein the microcontrol-
lers manage the system settings of the first computer,
and wherein a selected one of the microcontrollers
communicates an update command to at least one of the
other microcontrollers and supplies at least one item
setting for updating the system settings.

26. The system defined in claim 25, wherein the item
setting is provided by a second computer.

27. The system defined in claim 26, wherein the second
computer utilizes a graphical user interface to obtain at least
a portion of the item setting from a user.

28. A microcontroller system for retrieving the system
status of a first computer having an environmental circuit,
the microcontroller system comprising:

6,145,098

41

a microcontroller bus; and

a plurality of microcontrollers that are interconnected by
the microcontroller bus and wherein the microcontrol-
lers manage the system status of the first computer, and
wherein a selected one of the microcontrollers com-
municates a retrieve system status command to at least
one of the other microcontrollers and retrieves system
status information from the environmental circuit.

29. The system defined in claim 28, wherein the system

status is provided to a second computer.

30. The system defined in claim 29, wherein the second
computer utilizes a graphical user interface to display at
least a portion of the system status.

31. A system for updating and retrieving system status
information of a first computer, the system comprising:

a microcontroller bus;

a plurality of microcontrollers that are interconnected by
the microcontroller bus, wherein at least one of the
plurality of microcontrollers is configured to cause
retrieval of status information or an update of an item
setting; and

10

15

20

42

a recovery manager program executing on a second
computer in data communication with the microcon-
troller bus, the recovery manager program configured
to manage system status information of the first com-
puter.

32. The system of claim 31, wherein the recovery man-
ager program obtains, via a graphical user interface, item
settings utilized in updating the system status information in
the first computer.

33. The system of claim 31, wherein the recovery man-
ager program displays the system status information
retrieved from the first computer.

34. The system of claim 31, wherein one of the micro-
controllers is a remote interface.

35. The system of claim 34, wherein the remote interface
provides a data communication path between the microcon-
troller bus and the recovery manager program.

	Bibliography
	Abstract
	Drawings
	Description
	Claims

