EXHIBIT E

dynamicsoft.

SIP Proxies

Jonathan Rosenberg Chief Scientist

Presentation Agenda

- SIP Overview
- Definition of Proxy Roles
- Features for each role
- Generally useful capabilities

Session Initiation Protocol (SIP)

Developed in mmusic Group in IETF

- Proposed standard RFC2543, February 1999
- Work began 1995
- Part of Internet Multimedia Conferencing Suite

Main Functions

- Invite users to sessions
 - Find the user's current location, match with their capabilities and preferences in order to deliver invitation
 - Carry opaque session descriptions
- Modification of sessions
- Termination of sessions

Session Initiation Protocol (SIP) cont.

- Main Features
 - Personal mobility services
 - Wide area operation
 - Session flexibility
 - Voice; video; games; chat; virtual reality; etc.
 - Leverages other Internet protocols

Protocol Components

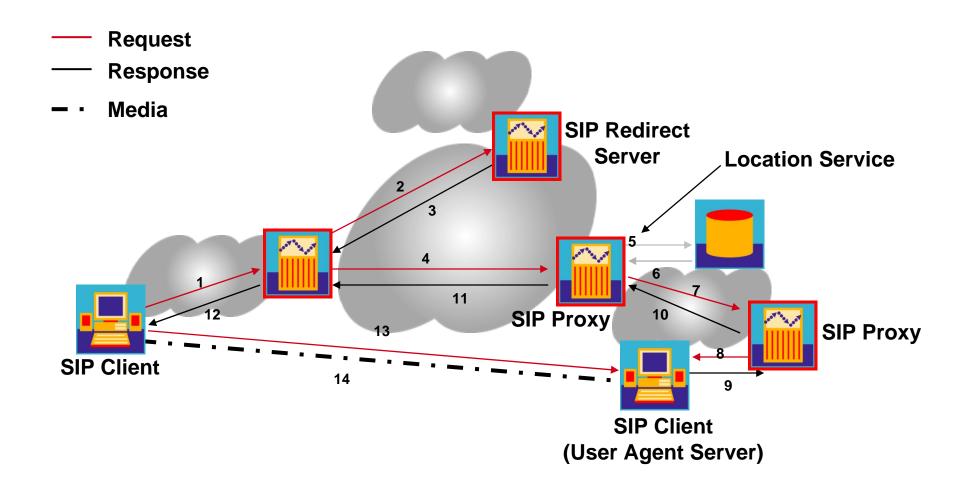
- User Agent Client (UAC)
 - End systems
 - Send SIP requests
- User Agent Server (UAS)
 - Listens for call requests
 - Prompts user or executes program to determine response
- User Agent
 - UAC plus UAS

Protocol Components cont.

Redirect Server

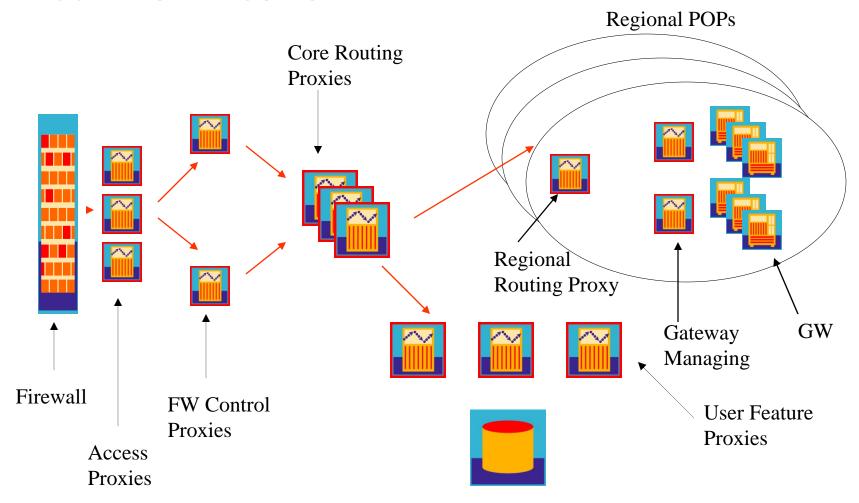
Network server - redirects users to try other server

Proxy Server


 Network server - a proxy request to another server can "fork" request to multiple servers, creating a search tree

Registrar

Receives registrations regarding current user locations



SIP Architecture

A Real ITSP Network

Proxy Servers have Roles

- Proxy is just a SIP defined logical function
 - Not useful in and of itself
 - Critical piece is value add features built on top of SIP proxy function
 - Which features you need depends on roles
- Real VoIP networks have multiple signaling points, each with specific roles and functions
 - Access Proxies
 - Firewall Control Proxies
 - Core Routing Proxies
 - Regional Routing Proxies
 - Gateway Managing Proxies
 - User Feature Proxies

Access Proxies

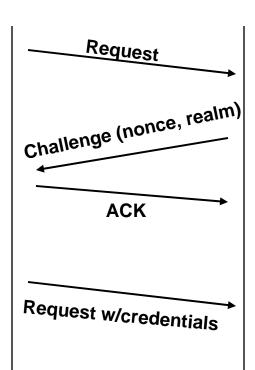
- Serve as access point into network
- What needs to be done at access point?
 - Authentication
 - Accounting
 - DoS Attack Prevention
- Authentication only need be done once at ingress point
 - From there, secure TLS based connections between elements
 - Critical for DOS prevention
- How is authentication done?
 - Wholesale, bulk traffic TLS
 - Individual consumers SIP proxy authentication mechanisms

Why is accounting needed here?

- For wholesale customers
 - Only place in network where all traffic from/to customer arrives
 - Ideal point for troubleshooting customer interface
 - Customer traffic profiling and usage metrics
 - Customer care
- Intrusion detection
- DoS attack detection
- Useful to dedicate proxies to specific customers
 - No resource contention
 - High availability
 - Common model in web server market as well

TLS Authentication

- Transport Layer Security (TLS) is newer version of Secure Sockets Layer (SSL)
- TLS/SSL is basis for web security
- HTTPS = HTTP over TLS/SSL
- Functions
 - Server to client and optionally client to server authentication using public keys
 - Negotiation of shared private session key
 - Encryption of all messages once connection established


Applications to SIP

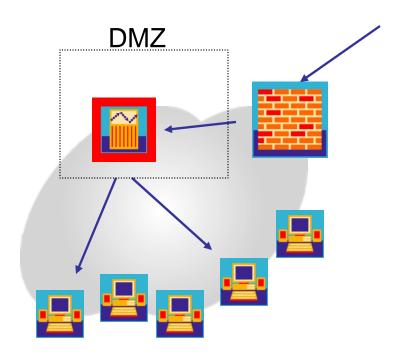
- Functions as a "Secure VolP Trunk"
- All signaling traffic between pair of providers can run over TLS
- Benefits to provider
 - Prove that all traffic is from actual customer
 - Very efficient public key operations only at beginning of connection

SIP Authentication

- Authentication Mechanisms
 - Basic
 - Digest
 - PGP (to be deprecated S/MIME and PGP/MIME to replace)
- Basic and Digest Are Shared Secret -Assume Trust Relationship Between UA and Proxy
 - Only for outgoing requests
- SIP Can Also Authenticate Responses
 - Not used will be deprecated

DoS Attack Protection

DoS Attacks


- Flooding of packets
- Malicious content

Access Proxy Acts as DMZ Machine

Sole point of entry for calls to network

Filtering Functions

- Absorbs bursts
- Blocks large messages
- Removes content with viruses
- String parsing checks and validations

Firewall Control Proxies

- Responsible for allowing SIP and media traffic to traverse firewalls and NATs at periphery of network
- Ideally isolated from access proxies
 - Security risk in directly making these accessible
 - Scalability
 - Authenticate and authorize at periphery, freeing internal boxes from performing the function again
- Logging to record firewall usage
- How do they allow SIP and media to traverse firewalls?

Getting SIP Through Firewalls

- Firewalls Typically Statically Configured to Let Traffic in/out of Specific Ports/Addresses
- SIP Itself Can Easily Be Let in/out
 - Static port 5060 opened
- But SIP Signals Media Sessions, Usually RTP
- RTP Difficult to Isolate
 - Uses dynamic UDP ports
 - Not its own protocol
 - No way to statelessly identify
- Therefore, Media Sessions Will Not Flow Through Firewall

Getting SIP Through NATs

- Network Address Translation (NAT)
- Modifies IP Addresses/Ports in Packets
- Benefits
 - Avoids network renumbering on change of provider
 - Allows multiplexing of multiple private addresses into a single public address (\$\$ savings)
 - Maintains privacy of internal addresses

Getting SIP Through NATs cont.

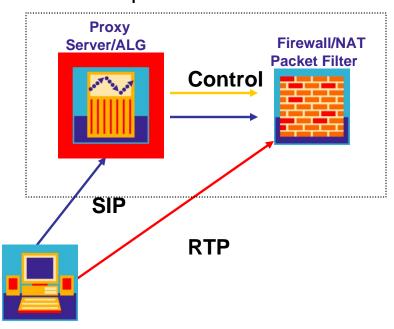
Issues

- If a host includes its IP address inside of an application packet, it is wrong to the outside
- SIP fundamentally does this
- Addresses inside of SIP must be rewritten

Where Can IP Addresses Be?

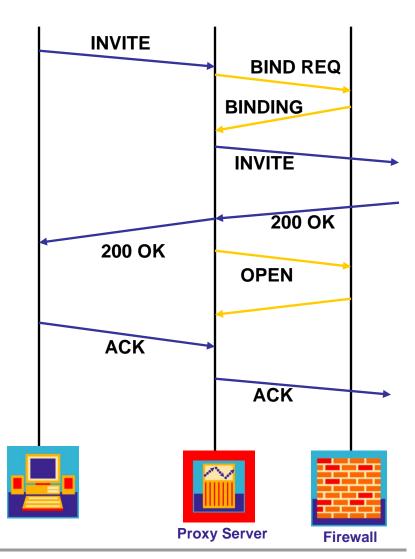
- SDP
- From field
- To field
- Contact
- Record-route
- Via

Continuing Challenges


- Other Application Protocols Have Trouble With Firewalls and NAT
 - ftp
 - H.323
- Solution is to Embed Application Layer Gateway (ALG) into Firewall/NAT
 - Actually goes into packet and modifies addresses
 - Requires understanding of protocol
- Embedding ALG in NAT is Not Ideal Solution
 - Scaling
 - Separation of function
 - Expertise issue

Proposed Solution

- Separate Application Layer NAT/Firewall from IP Layer NAT/Firewall
 - Similar to megaco decomposition
 - MG analagous to packet filter
 - MGC analagous to ALG (proxy)
 - Same benefits
 - Better scaling
 - Faster
 - Lower Cost
 - Expertise problem solved
 - Deployment paths for new apps
 - Load balancing


Decomposed Firewall/NAT

The Missing Piece

- Control Protocol Between SIP ALG and IP NAT/Firewall
- Main Requirements
 - Binding request: give a private address, obtain a public address
 - Binding release
 - Open hole (firewall)
 - Close hole (firewall)
 - Group bindings

IETF Efforts on Firewall Traversal

SIP Working Group

- Informational RFC will be developed
 - Summarizes SIP operations needed in firewall controlling proxy
 - Defines SIP ALG function for NAT

MIDCOM Working Group

- Recently approved
- Will develop framework and requirements
- Initial draft:
 - J. Kuthan, J. Rosenberg, "Firewall Control Protocol Framework and Requirements", draft-kuthan-fcp-01.txt

Routing

- Routing is one of the primary functions of a proxy
- Routing is one of the core services of a service provider
- Most general definition:
 - Connecting users to the network services required for the session by selecting a next hop server to process the request
 - Network Services
 - Gateways
 - POPs
 - Application Platforms
 - Media Servers

- Routing is best performed in a hierarchical fashion
 - Scalability
 - Ease of management
 - Delegation
 - Upgradability
 - Isolation
- Many inputs to routing process
 - Registration database
 - Telephone routing prefixes
 - TRIP and TRIP-GW
 - Caller preferences
 - External databases

Core Routing Proxy

- How does a proxy route? Depends on roles.
- Core Routing Proxy
 - Job is to take calls from all access points and figure out high level next hop service to handle call
 - Can recreate Class 4 Features
 - Next hop service is typically
 - Regional POP for PSTN termination
 - User Feature Proxies for local subscribers
 - FCP for calls out to peer networks
 - Routing generally based
 - Telephone prefixes
 - TRIP
 - Databases for domain lookups
 - Why use a core?
 - Avoids need for each service to know about each other
 - Example: CPL in user feature proxy forwards call to PSTN termination

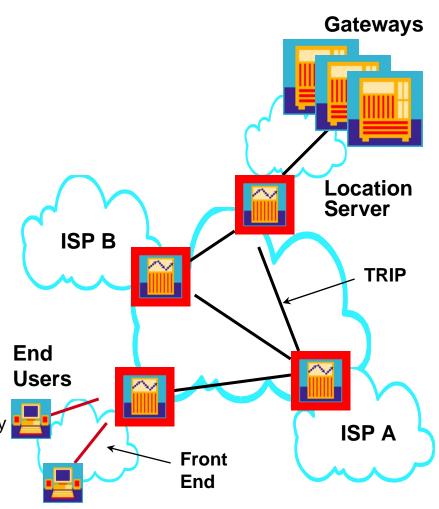
Telephone Routing Prefixes

- SIP INVITE Can Contain Phone Numbers
 - sip:17325551212@domain.com
 - tel:17325551212
- Do Not Correspond to Users on IP Network, but PSTN Terminals
- Call Must Be Routed to Gateway

sip:19735551212@ longdistance.com

1-732

- Gateways Often Arranged Through Peering
- Which One to Use Based on Prefixes
 (Domestic = gw1, Europe = gw2)
- Route Table is Mapping From Prefixes to Next Hop IP address/port/transport
 Plus URL Rewrite Rules


regional.com longdistance.com

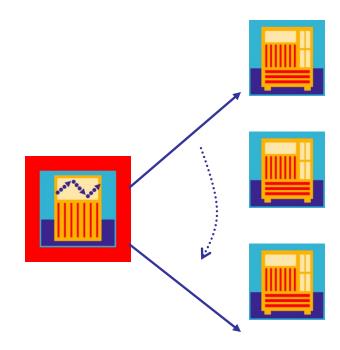
international.com

Telephony Routing Over IP (TRIP)

- Inter-domain Protocol for Gateway Route Exchange
 - Currently in working group last call in IETF
- TRIP Supports Various Models
 - Bilateral agreements
 - Centralized settlements provider
 - Wholesaler service
- TRIP Based on Scalable IP Routing Technology
 - Uses BGP4 as a basis
 - Supports aggregation
 - Uses proven algorithms
- Proxy = TRIP LS
 - Allows proxy to build routing table dynamically
- Core Proxy would use TRIP to determine whether to route call to a peer provider

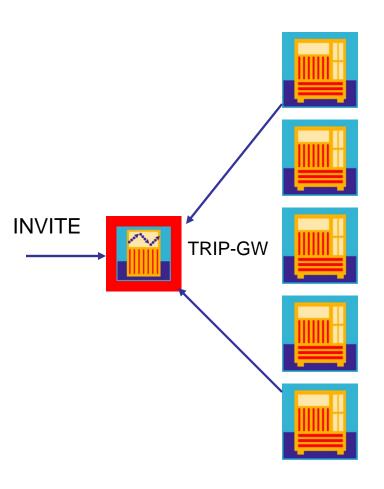
External Databases

- Routing Information Can Also Be Located in External Databases
 - LDAP
 - SQL
 - whois++
- Static or Dynamic
- Several Standards

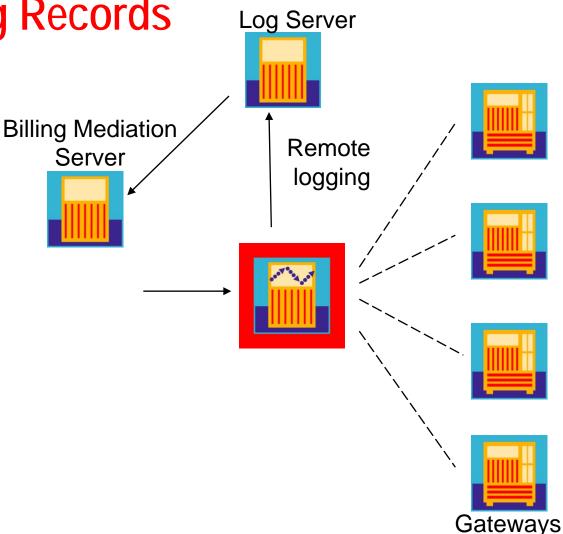

Regional Proxy

- Manages all gateways in a geographical region
 - Country, state, province
 - Depends on size
- Why separate from Core proxy?
 - Separate administrators for POPs
 - Information on optimal routing not known globally
- May be additional sub-regions depending on size
- Generally you want regional proxy when there are more than one heterogeneous gateways in a POP

Gateway Managing Proxies

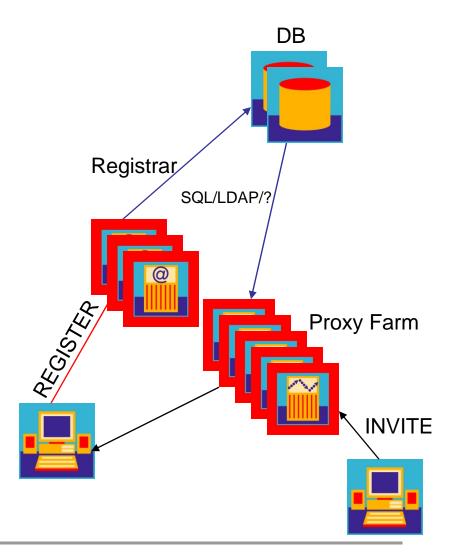

- Responsible for managing routing of calls to sets of gateways
- Routing decisions based on
 - Gateway availability (up/down)
 - Available gateway capacity
 - Codecs and other features
 - Possibly cost
- May want to handle temporary overload cases
 - Gateway responds with 503; should try another one
- Generation of CDRs for calls
- Ideally should utilize full capacity of gateways
- Question: how does proxy know available capacity of gateways?

TRIP and Gateways


- Normal TRIP Runs Interdomain
- TRIP-GW: Lightweight Version That Runs Between LS and Local Gateways
- Provides Gateway Information
 Exported to Other Domains Via TRIP
- Provides Gateway Management Capabilities
 - Load balancing based on available ports/codecs
 - Liveness detection
 - Failover

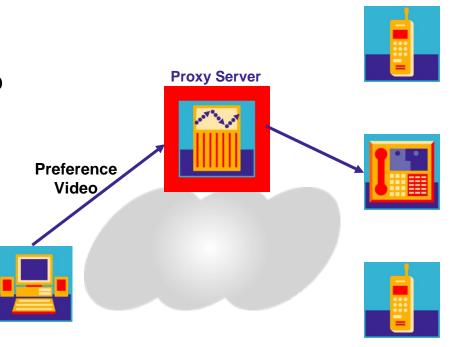
Generating Billing Records

- Billing Issues
 - Must bill for a real service
 - Gateways
 - MCUs
 - Proxy "fronts" gateway
 - Need secure association to gateway
 - Session timer
- Logging to Remote Logging Server is Key Benefit
- Real time not needed


User Feature Proxies

- Proxies "closest" to users
- Responsible for routing calls based on
 - User Location
 - User preferences
- Execution of user services
- Accounting for billing of user services
- Authentication and Authorization of end users
- Back end DB for location and feature data
- Can recreate Class 5 Features

Registration Database


- On Startup, SIP UA Sends REGISTER to Registrar
- Registration Data Provides
 Addresses to Reach User
- Registration Database Forms a Dynamic Routing Database of Users
- Centralized Store is Desired for Scalability

SIP Caller Preferences

- SIP Extensions for Specifying Caller Preferences and Callee State
 - Presence
- Preferences Carried in INVITE Setup Message
- Preferences for
 - Reaching callee at home or work
 - Fax, video, audio call
 - Mobile or landline
 - Secretary or voicemail
 - Priority locations
- Caller Can Specify Proxy Routing

Checklist of Other Desired Features

Configuration and Management

- Command line interface
- web
- SNMP

Fault tolerance

- No single point of failure
 - Its not for free with SIP
- Alarms to report device failures
- Many approaches to handle backups

Scale

- \$\$/Call or \$\$/Transaction is the key
- Linear scalability in performance is ideal

Checklist of Other Desired Features cont.

- Subscriber Management
 - Add users to system
 - Define services and capabilities
 - CPL or not?
 - Authorize services against subscriber lists
- Dynamic Reconfiguration
 - Change parameters/routing table entries on the fly
- Customized Logging Outputs
 - XML, apache, etc.

Information Resource

- Jonathan Rosenberg
 - jdrosen@dynamicsoft.com
 - **+**1 973.952.5000