
EXHIBIT 5

Mirror Worlds, LLC v. Apple, Inc. Doc. 221 Att. 7

Dockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/6:2008cv00088/108627/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2008cv00088/108627/221/7.html
http://dockets.justia.com/

United States Patent 1191 [i l l Patent Number: 5,499,330
Lucas et al. 1451 Date of Patent: Mar. 12, 1996

DOCUMENT DISPLAY SYSTEM FOR
ORGANIZING AND DISPLAYING
DOCUMENTS AS SCREEN OBJECTS
ORGANIZED ALONG STRAND PATHS

Inventors: Peter Lucas; Jeffrey A. Senn, both of
Pittsburgh, Pa.

Assignee: Digital Equipment Corp., Maynard,
Mass.

Appl. No.: 123,403

Filed: Sep. 17, 1993

Int. ~ 1 . ~ .. G06F 15/00
U.S. C1. ... 3951145; 3951155
Field of Search 3951133, 134,

3951144-148, 153-155, 159-161; 3641419.1,
419.19

References Cited

U.S. PATENT DOCUMENTS

ceedings of CHI'91, ACMISIGCHI, 1991, pp. 181-1 88.
Goodman, D., The Complete Hypercard Handbook, Bantam
Books, New York, 1987, pp. 20-39, 85, 86, 97-105,
341413,415,469-470,529-535.
Henderson, D. A. Jr., and Card, S. K., "Rooms: The Use of
Multiple Virtual Workspaces to Reduce Space Contention in
a Window-based Graphical User Interface," ACM Transac-
tions on Graphics, vol. 5, No. 3, Jul. 1986, pp. 211-243.
Houde, S., "Iterative Design of an Interface for Easy 3-D
Direct Manipulation," Proceedings of CHI'92, ACWSIG-
CHI, 1992, pp. 135-142.
Kaufman, Lloyd, Sight and Mind: An Introduction to Visual
Perception, Oxford University Press, New York, 1974, pp.
322-366.
Mackinlay, J. D., Robertson, G. G., and Card, S. K., "The
Perspective Wall: Detail and Context Smoothly Integrated,"
Proceedings of CHI'9 1 ACWSIGCHI, 1991, pp. 173-179.
MacLean, A., Carter, K., Lovstrand, L., and Moran, T.,
"User-tailorable Systems: Pressing the Issues with But-
tons," Proceedings of CHI'90, ACMISIGCHI, 1990, pp.
175-182.

(List continued on next page.)

Primary Examiner-Heather R. Herndon
5,132,900 711992 Gilchrist et al. 3641419.19
5,204,812 411993 Kasiraj et al. 3641419.19 Assistant Examiner-Joseph R. Burwell
5,233,687 811993 Henderson, Jr. etal. 3951158 Attomex Or Firm-David A. Dagg; A. Sidney
5.303.388 411994 Kreitman et al. 3951159 Johnston , .

............................. 5,317,686 511994 Salas et al. 3951157
5,339,390 811994 Robertson et al. 3951157

OTHER PUBLICATIONS

Walter, "Interleaf 5: a complete overhaul of TPS', Seybold
Report on Publishing Systems, vol. 20, No. 3, p. 3(10) (Oct.
8, 1990).
Robertson et al., "Information visualization using 3D inter-
active animation", Comm. of the ACM, Apr. 1993, vol. 36,
No. 4, p. 56(16).
Tonomura et al., "Content Oriented Visual Interface Using
Video Icons for Visual Database Systems", 1989 IEEE
Workshop on Visual Languages, pp. 68-73 (Oct. 4, 1989).
Ballou, "DEC, Maya work toward desktop multimedia inter-
face", Digital Review, Nov. 18, 1991, vol. 8, No. 35, p.
16(1).
Card, S. K., Robertson, G. G., and Mackinlay, J. D., "The
Information Visualizer, an Information Workspace," Pro-

~571 ABSTRACT

A system for displaying documents on a computer controlled
display device is disclosed. The system displays documents
either in a completely free-form, user controlled configura-
tion or as strands, such that documents in a strand follow a
strand path. The strand path is a two dimensional line
through a three dimensional display space. The documents
displayed on the strand are known as child documents, and
each strand also has a parent document. Various constraints
defining the strand are associated with the parent document,
including a strand function defining the strand path, mini-
mum and maximum separation constraints defining the
distance between the child documents on the strand, and an
origin constraint defining the positional relationship of the
strand path to the screen object of the parent document.

22 Claims, 13 Drawing Sheets

APMW0000705

5,499,330
Pane 2

OTHER PUBLICATIONS

Malone, T. W., "How Do People Organize Their Desks?
Implications for the Design of Office Information Systems,"
ACM Transactions on Office Information Systems, Jan.
1983, pp. 99-112.
Robertson, G. G., Card, S. K., and Mackinlay, J. D., 'The
Cognitive Coprocessor Architecture for Interactive User
Interfaces," Proceedings of the ACM SIGGRAPH Sympo-
sium on User Interface Software and Technology, ACM,
1989, pp. 10-18.

Wanger, L., "The Effect of Shadow Quality on the Percep-
tion of Spatial Relationships in Computer Generated Imag-
ery," Proceedings of the Symposium on Interactive 3D
Graphics, ACMISIGGRAPH, 1992, pp. 39-42.

Wanger, L. R., Fewerda, J. A., and Greenberg, D. P.,
"Perceiving Spatial Relationships in Computer Generated
Images," IEEE Computer Graphics and Applications, pp.
44-59, May 1992.
Venolia, D., "Facile 3D Direct Manipulation," Proceedings
of INTERCHI'93, ACMISIGCHI, 1993, pp. 31-36.

APMW0000706

U.S. Patent Mar. 12,1996 Sheet 1 of 13

0

Find 0 1 ~ 1

FIG. 1

FIG. 2

APMW0000707

U.S. Patent Mar. 12,1996 Sheet 2 of 13

FIG. 3

FIG. 4

APMW0000708

U.S. Patent Mar. 12, 1996 Sheet 3 of 13

FIG. 5

FIG. 6

APMW0000709

U.S. Patent Mar. 12,1996 Sheet 4 of 13 5,499,330

FIG. 7

APMW0000710

U.S. Patent Mar. 12, 1996 Sheet 5 of 13

NETWORK a
800

810 REPOSITORY

I

FIG. 8A
NETWORK p

8 1 5 1 A'l'T'RIBuTE IL 805
INTERPRETER

REPOSITORY - -

DATABASE
SQL I I INTERFACE

J.J FIG. 8B
REPOSITORY

STORAGE -810

REPOSITORY
INTERFACE

APMW0000711

U.S. Patent Mar. 12, 1996 Sheet 6 of 13

FIG. 9

APMW0000712

126 >
I 162 DISPATCH MESSAGE MESSAC
I I

I

I 128
)

130 7
I

124
un~n 1

I INTRINSIC 132 EVPNT
I - WORKSPACE ATTRIBUTES - - - - - - - - - - - -
I
I

VIEWER
En'-"

ATTRIBUTE
I
I

DOCUMENT
RENDERER

) CHANGE
. ,A. *'S

ATTRIBUTE

SCRIPT
WORKSPACE 1 CACHE

ENGINE

I 1 - .
I
I 136

I
I

REPOSITORY
I REQUESTS/REPLIES
I . - - - - - - - - - - - - - - -

142 L-iil-
REPOSITORIES

FIG. 10

APMW0000713

U.S. Patent Mac 12,1996 Sheet 8 of 13

I REQUEST SELECT k 1 1 0 0

FIG. 11

202 \ / 204

NAME [VALUE]

FIG. 12a

FIG. 12b

APMW0000714

QUEUE' OF
RESPONSES 141

142 , ////// * e

REPOSITORIES 4
REPOSITORY

I

211 -- REQUESTS NET TRANSPORT

USEREVENTS

FIG. 13

APMW0000715

U.S. Patent Mar. 12,1996 Sheet 10 of 13

305 I SEND I

REPOSITORY :
REQUESTS I

TO CLIENT I

CLIENT I

MODULE SENDS I

REQUESTS OVER
THE LAN I

I I

RESPONSE I

RECEIVEDAND
ENTEREDINTO I

QUEUE OF I

RESPONSES I
I

s
I

I
I

1

I
I
I
I

I
I

I

I

302 1 . - -
I

I

t w WORKSPACE -330
I VIEWER
I ADDS FIND
I
I TOOL STRAND
I TO WORKSPACE
I

I

I I
I I
I I

I I
I 1

I YES I

I I
I I
I I

I I
1 I

ADDS CHILD I

I
DOCUMENT TO

-340 I

FIND TOOL I

STRAND I
I
I

I I
I
I

I

I

I
I

DISPLAY I

GREY :
BLOCK

FOR CHILD I

DOCUMENT I
I

I
350 I

n

355
I

I

I

DOCUMENT I
I

- - - - - - - - - _ - - - - - _ - - - - - - - - - I

FIG. 14

APMW0000716

U.S. Patent Mar. 12,1996 Sheet 11 of 13

REPOSITORIES 14051 m42
FIG. 15

FIG. 16

APMW0000717

U.S. Patent Mar. 12,1996 Sheet 12 of 13

1 1
I " " " " -

REWRITING I
I I
I I

I
I A SIGNALLING r - - - -

COMMAND CURSOR I

DISPLAY MEANS I \-I;~o- - - -

LAUNCHING
I

I

I
I

1715 -- MEANS I

MEANS FOR I

ISSUING A I

SIGNALLING I
DESIRED I

COMMAND I
I

I

1720 - IC,
PROCESS I

1725,
RETRIEVING 1

MULTI- I

MEANS
I

THREADED -7 I

ENVIRONMENT I
I

I
I

RETURNING I
I

MEANS
I

I

1727 @ 7 I

I
I

I
- _ _ _ _ - _ , , - , - , - - I

I

MEMORY I7
REPOSITORIES D

FIG. 17

APMW0000718

U.S. Patent Mar. 12,1996 Sheet 13 of 13

r - - - - - - - - - - - - - - - -1866
I I ((N A M E i) (v A L u E i)) ~ * 1

((NAMEZ)(VALU E Z)) + ? ~ ~ ~ ~ -
I

((N A M E3) (VALU E3))
I
I I

- - I868
I I

7

I

I 1 -1865
I I

1 I

1 - - - - - - - - - - - - - - - - -1860
I

FIG. 18

APMW0000719

5,499,330
1 2

DOCUMENT DISPLAY SYSTEM FOR and an origin constraint defining the positional relationship
ORGANIZING AND DISPLAYING of the strand path to the screen object of the parent docu-

DOCUMENTS AS SCREEN OBJECTS ment.
ORGANIZED ALONG STRAND PATHS The system provides a powerful interface for manipulat-

5 ing documents through a display device. The representation
of documents on strands enables the user to arrange docu-

FIELD OF THE INVENTION ments on the display device in useful and intuitive ways.

The invention relates generally to office management, and These and other features and advantages of the present
more specifically to the representation and manipulation of lo i"vention will become apparent from a reading of the
documents on a display device. detailed description in conjunction with the attached draw-

ings in which like reference numerals refer to like elements

BACKGROUND
in the several views.

People have been using computers to work with their 15 BFUEiF DESCRIPTION OF THE DRAWINGS
documents for years. In known systems, finding documents
often means an expedition through a maze of directories and FIG. 1 is a drawing of a strand;
folders, and even simple jobs require learning a mysterious FIG. 2 is a drawing of a strand that has been selected by
language of commands and data objects. a user;

In known two-dimensional user interfaces, folders or 20 FIG. 3 is a drawing of a pile and scroll tool with a strand;
directories are used to organize files or documents into FIG. is a drawing of a tile strand of documents;
groups and hierarchies. The traditional way of dealing with
grouping documents is to use containers, directories or FIG. 5 is a drawing of a corkscrew strand of documents;

folders. A directory or a folder is a container in which you FIG. 6 is a drawing of an embodiment the system;
put other objects. 25 FIG. 7 is a drawing of a second embodiment of the

A problem with the known two-dimensional user inter- system;
faces is that documents in containers or directories are FIG. 8A is a drawing of a repository node having a
hidden from the user. The user is therefore unable to easily repository interface and coupled with repository storage;
browse through the documents in the system. The user FIG. 8B is a drawing showing the logical processes within
typically cannot see the documents inside a container with- 30 a repository interface;
out opening up the container. FIG. 8C is a drawing of a repository node having reposi-

For these reasons and others, a new system of document tory storage in the form of a disc drive;
representation is required, which allows users to easily FIG. is a drawing of a find tool with an output strand
manipulate documents in an environment like the real world having a knot;
of the desktop, where documents are not hidden inside 35
containers. The new system should enable the user to FIG. 10 is a block diagram of the architecture of a

organize documents in a way that is intuitively appealing, 'ystem using strands;
and is not based on artificial constructs imposed by the FIG. 11 is a flow chart showing the steps of a method for
nature of computer storage of documents or two dimensional scheduling using a blocked queue and an execution queue;
user interface displays. 40 FIG. 12a is a drawing of an example embodiment of an

attribute shown having a name, a delimiter, and a value;
SUMMARY FIG. 12B is a drawing of a second embodiment of an

L.

attribute shown having a name, a value, and delimited by The disclosed system combines the computational and parentheses;
storage power of a computer with an environment that is as 45
natural as the space outside the computer. In the space FIG. 13 is a diagram of showing a system having asyn-
outside the comuuter. it's a sirnule matter to find a document chronous access; . ,

within a pile on a desk, scan its contents, and locate the FIG. 14 is a diagram showing the steps of a find tool
needed infomation. The disclosed system provides a simi- method for retrieving documents from repositories;
lar, visually rich environment for handling documents with 50 FIG. 15 is a diagram of an apparatus for sharing a
a computer system. Documents may be typed, scanned, or document between two users;
faxes sent by remote users. The system allows the user to FIG. 16 is a diagram of an apparatus for merging multiple
organize and browse documents in an environment that documents based on their visual display and
resembles the real world of piles and papers. FIG. 17 is a diagram of an apparatus for retrieving

In accordance with principles of the invention, there is 55 documents from repositories having no busy cursor.
provided a system for displaying documents on a computer
controlled display device is disclosed. The system displays
documents either in a completely free-fom, user controlled DETAILED DESCRIPTION
configuration or as strands, such that documents in a strand
follow a strand path. The strand path is a two dimensional 60 Documents
line through a three dimensional display space. The docu-
ments displayed on the strand are known as child docu- A document is the primary object in the system. All data
ments, and each strand also has a parent document. Various are contained in documents. A document contains some
constraints defining the strand are associated with the parent number of attributes, each attribute having a name and a
document, including a strand function defining the strand 65 value. The set of attributes for any given document is
path, minimum and maximum separation constraints defin- arbitrary, and no particular attributes are required of all
ing the distance between the child documents on the strand, documents.

APMW0000720

5,499,330
3 4

A screen object is the visual representation of a document. few special characters, and generally use natural language
It may be visible or hidden at any given time. Screen objects words instead of symbols.
are generally rectangular. The script language should be uniformly structured, in

A Unique Identifier, or UID, is a string of alphanumerics that the only storage entity (object) in the language is a
that uniquely identifies a document. A UID is necessary and 5 document consisting of attributelvalue pairs. Values may be
sufficient to refer to a specific document. atomic, such as strings, numbers, dates, or images, or they

may be pointers (UID's) to other documents. Global objects
may be stored as attributes in a universal "global" document

Attribute Value Pairs which is visible to all scripts.

An attribute is a piece of data stored in a document. Each Attributes are generally not typed, but values are gener-
attribute has an attribute name and an attribute value. An ally typed. The types of values are used to determine what
attribute name uniquely identifies an attribute value within a operations are permissible. A Script is executed within a
document. document by evaluating an attribute whose value is a script,

and whose type is executable.
15

The Script Interpreter Inputs to the System

a language that can be An embodiment of the system includes an input
executed to perform some action. It is stored in attribute device, for example a mouse, to obtain information from the
values. language is a language to 20 User regarding selecting and moving documents within the
commands to the system environment. display. It will be clear to one skilled in the art of user

The script interpreters (architecturally there can be any interfaces that devices other than a mouse, such as a light
number) interpret script which is stored in attributes of pen, a voice controlled display, or a touch sensitive screen,
documents. Scripts can modify attributes of documents, potential alternatives to the mouse.
perform basic mathematical and search operations, call other 25 The locations of mouse events, for example the pressing

and basic such as insert Or and or releasing of a mouse button, are recorded as the UID
remove documents from strands. Most of the actions in the of the document in which the cursor is located when the
System are activated by calling scrip" within documents. mouse event occur-. ~h~ x, y or z position of the cursor at

D ~ ~ u m e n t s are the single abstraction structure in the the time the mouse event occurred is recorded. The results
script language. There is no persistent storage associated 30 of user actions to select or deselect one or more documents
with the script environment other than attributes of docu- are similarly recorded.
ments. Most of the actions in the system (other than simple
dragging of documents) are activated by calling scripts
within documents. A document consists of attributelvalue Scanning Documents

pairs; by referencing an attribute in an expression, the value 35 Any paper document can be entered into the system by
is returned. scanning. When scanning a document into the system, a

The value of any attribute, ephemeral or not, may be cover sheet should be used. Each cover sheet is encoded
executable script. Script thus allows the power user to with the identification of the owner of the document. Such
extend the functionality of the system. For example, a user 40 identification would, for example, consist of the unique user
may define the value of an attribute by writing his or her own name defined within the system used to log-on or gain access
script as the value of that attribute. to system.

Whether an attribute is executable or not is typically In an example embodiment, when a document is scanned
established by convention. For example, for a given imple- into the system, the scanned document is automatically
mentation, an architecturally defined set of messages may 45 placed in an IN BOX pile of the owner of the document.
indicate that the attributes referenced by the messages are Each scanned document has an information sticker across its
executable. Or, a button on the mouse may be architecturally top displaying the name of the owner and the date it was
defined to invoke and execute the script contained in an scanned. The cover sheet is not included.
attribute of the document in which the cursor is located when Scanned documents without cover sheets, or that have
that button is clicked by the user. In addition, or as an 50 cover sheets that do not name valid users, cannot be deliv-
alternative, an identifier process can be designed and used to ered to the true owner of the document by the system. The
determine whether the value of an attribute is script, and also system may be configured to deliver such scanned docu-
what script interpreter is needed to interpret it. The identifier ments to a designated user, who is responsible for &termin-
process does not test whether the script Can be properly ing the owner of the scanned documents.
parsed, but upon determining that the value of an attribute is 55
script, chooses which script interpreter to call to interpret the
script. For example, the identifier process can select an The Visual Presentation: The Workspace

interpreter for a dialect of the Lisp programming language A workspace is a virtual three dimensional space in which
by checking the first non-whitespace character to see if it is a set of documents are arranged. In this way a workspace
a left Paren or single-quote. If the first non-whitespace 60 contains a set of documents. Within a workspace, there is a
~haracter is a left Paren of a single-quote, the identifier list of the documents contained within the workspace, con-
process selects the interpreter for the dialect of the Lisp sisting of combinations of repository identifiers (RIDS) and
programming language to interpret the script. unique identifiers (UIDs). Also, for each document within

A goal in designing a particular script language is that the the workspace there exist ephemeral attributes, which
script language be easy to read. Users may not be computer 65 describe the current visual display of that document within
scientists, but will nevertheless want to examine and modify the workspace. Examples of ephemeral attributes include the
scripts to a certain extent. Therefore the language must have X, Y, and Z positions of the document within the workspace.

APMW0000721

5,499,330
5 6

A workspace is stored in a workspace document and reflect the actions of the user in manipulating the screen
displayed in a workspace window. A workspace document is object of a document within a workspace, typically through
a document that contains all of the state information of a using an interface device such as a mouse.
workspace. A workspace document may be contained within Ephemeral attributes are stored in workspace documents,
other workspaces. 5 which in turn are stored in repositories. All the state infor-

The display of a workspace on the display device is the mation of the last image of a workspace, including ephem-
"screen space" representation of the three dimensional eral attributes associated with each document in the display,
workspace on the two dimensional display device. In an is stored in the permanent attributes of a workspace docu-
embodiment of the system, the screen space display of a ment when that document is stored into a repository. Thus a
workspace is implemented through a window in the host 10 document may have different ephemeral attributes and val-
computer's windowing system, within which the two dimen- ues when that document is associated with different work-
sional screen space rendering of the three dimensional spaces.
workspace is displayed. An ephemeral document is a document that has existence

The system uses a three dimensional workspace to pro- only in a workspace. It has no permanent attributes, only
vide a useful display of potentially thousands of documents. l5 ephemeral ones. In an alternative embodiment, ephemeral
A workspace may display thousands of documents. In a documents may be stored in a virtual "workspace reposi-
preferred embodiment of a workspace, the workspace is tory", accessible only from its workspace, and may have
wrapped at the edges, giving a fish-eye lens effect, so that permanent attributes in this context. In such an alternative
every screen object that is not invisible has at least some embodiment, the state of the workspace repository is stored
portion of its rectangle within the screen display no matter 20 as an attribute of the workspace document.
what its position in the three dimensional workspace. An intrinsic ephemeral attribute, or intrinsic attribute, is a

Workspaces may be shared, such that multiple users have special ephemeral attribute that every document must have,
the same workspace open. For example, user one and user which directly effects the display of the screen object.
two could simultaneously have the same workspace open. In 25 Examples include x position (xpos), y position (ypos) and z
one embodiment, when user one drags a document within position (zpos). Many intrinsic attributes are available for
the workspace, user two sees it moving as well. The ephem- direct manipulation through the user interface device.
eral attributes defining the visual representation of the
documents within the workspace can be mediated via reposi- The Perspective Function
tory connections from user one to user two to support this 30
feature. For example, both user one and user two could A perspective function maps objects on the screen by
simultaneously read and write to a shared copy of the taking the three dimensional workspace coordinates, or
workspace document within a mutually accessible reposi- "world space coordinates", maintained by the workspace
tory. Alternatively, user one and user two could maintain viewer, and mapping them into two-dimensional screen
separate copies of the workspace document in their respec- 35 Space positions.
tive client modules, establish a direct network connection For example, every document has a position in world
between them, and exchange ephemeral attribute updates via space defined along the x, y, and z axis, and every document
the direct network connection. has a width and a height. When an image of the document

is drawn on the display device, the perspective function
The Renderer Process 40 takes those world space coordinates and size variables as

A renderer process is an element of the system that input parameters, and determines the actual size and location

maintains the visual three dimensional workspace. The on the display device, in "screen space coordinates", where

renderer process is by various specific renderers. the document is going to be drawn. The perspective
function is instantiated by the workspace viewer process.

A document renderer is that portion of the system that
draws inside the rectangle of the screen object associated 45
with each document in a workspace. The system supports Dragging Along the X, Y or Z Axis
multiple renderers, and which renderer is used for a particu- T~ move a document around a workspace, there are three
lar document is determined by an attribute of that document. basic actions: dragging pushing bacwpulling for-

A workspace viewer is a process in the system responsible 50 ward, and clipping. Dragging a document is the act of
for outlining the screen objects of documents within the moving the corresponding screen object for that document
workspace and managing the display of selection indication. with respect to one or more of the x, y, and z axis of the
The interior of each screen object is rendered by its asso- workspace by manipulation of the user interface device.
ciated renderer, and the workspace viewer completes the T~ ,,, a document within the workspace, the user uses
view. The workspace viewer is that part the system 55 the user interface device to place the mouse cursor near the
which is responsible for maintaining the view of a work- center of screen object of the document. The user next
space. That is, the workspace viewer contains the means for presses and holds the mouse button while moving the
arranging documents in three-space. mouse. As a result, the screen object disappears and is

replaced by an outline of its shape (called a drag box). As the
Ephemeral Attributes

60 mouse is moved, the drag box follows. This is known as
Ephemeral attributes are attributes associated with a docu- dragging. When the mouse button is released, the screen

ment in the context of a workspace. Ephemeral attributes are object reappears in its new position.
stored within a workspace document of the workspace Documents are pushed back and pulled forward via a
containing the screen object of the specific document which modified drag action, e.g. using a separate mouse button, or
the ephemeral attributes are associated with. Ephemeral 65 by first moving the mouse cursor close to a comer of the
attributes define the display characteristics of the associated screen object of the document, and then pressing and hold-
document, such as position and size. Ephemeral attributes ing a mouse button. As an alternative a track ball device may

APMW0000722

5,499,330
7 8

be used to manipulate the position of the mouse cursor. As system with no disks. In that case, all repositories exist
the mouse cursor is moved toward the bottom of the screen, within remote network nodes.
the screen object is dragged forward (towards the user) The user may retrieve documents from many different
within the workspace. AS the mouse cursor is moved toward repositories at the same time. Similarly, multiple users can
the upper left COmer of the screen instead of forward, the 5 connect to the same repository at once. A user of a document
screen object is pushed back within the workspace. Note that may put a document into a shared repository marked to the
as the screen object on the display device is being moved, attention of other specified users. Each user may configure
the virtual location of the corresponding document main- a special FZND tool (which serves as their BOX) that
tained in the world space of the workspace viewer is being constantly watches the repositories for documents marked
changed accordingly. Thus one can either say that the screen 10 for their attention and brings them into their workspace. In
object is being moved, or that the document is being moved, this way, documents may be shared between users.
and have the same meaning. Repositories are visually represented in a workspace by a

As a d ~ ~ u m e n t is pulled forward, the d ~ ~ w f - ~ e n t is moved document called a repository portal. The user accesses a
t~wards the user along the z axis of the three dimensional repository through the repository portal for that repository.
workspace. The perspective Process translates this move- l5 A repository may be password protected, such that the user
ment of the object towards the User into a screen represen- may have to enter a password into the portal document
tation of the screen object for the document. As a result, the before using the repository.
screen object for the document grows in size in its two Repositories may have characteristics (unusual
dimensional screen space representation. Conversely, when requirements, limited hours of availability, etc.)
a is pushed back, the screen for the 20 These are represented to the user on the portal document.
document is made smaller. Repository portals also have a visual indication of whether

A document can only be moved forward a certain dis- their repositories are currently available for use.
tance. When it is as big as it will get, it is plastered against Arepository server is a server that serves documents from
the workspace window and be moved any 25 a repository to a client and provides a search engine, and

The world space size of a screen object is the size of the repository interface to process search requests described by
screen object in the three dimensional space of the work- attribute value pairs from the client system, and to search the
space. This is the object's real size opposed to the screen repository using the search protocol specific to that reposi-
space size at which it appears on the screen display surface. tory.
Documents and elements of documents (e.g. buttons, text 30
fields, etc.) all have world space sizes. Although dragging
along the Z axis can make the world space size of documents Strands
very small, they will never be rendered at a size that is
invisible to the user. Strands are a system for positioning screen objects in a

three-dimensional workspace. Strands allow grouping of
In the case of dragging" in the any 35 documents, so that they can be manipulated as groups.
the four of a document may be push Or Strands are a method of applying constraints to the orgmi-

pull it. However, the document will move along somewhat zation of screen objects in three dimensions.
different paths depending on which comer is used.

A strand is associated with a first document (the "strand
parent"), and constrains the location of a set of documents

Repositories 40 not containing the strand parent. A strand is a process that

A repository is a data store that contains documents. A maps a (possibly discontinuous) line into 3 space. Each

workspace is generally used for short term storage of strand child has a position on the strand relative to the strand
documents. For long-term storage, documents are kept in "gin. A strand has and maximum
repositories. When a system tool brings documents into a 45 for the 'pacing of its
workspace, it gets them from repositories. A Repository Strands are not containers, but rather are a mechanism for
Identifier, or RID, is a string of alphanumerics that uniquely arranging screen objects without hiding them. A strand
identifies a repository. RU)s are unique on the network. An constrains the position of screen objects attached to the
MD is necessary and sufficient to refer to a repository. ~n an strand into a certain shape. The certain shape is indicated by
alternative embodiment RIDS are universally unique, and a Strand function. When the Strand function is evaluated, its
therefore permanently stable in a global environment where output defines a strand path. A pile is an example of a strand
mobile computing is increasing significant. For purposes of where all the documents attached to a strand are constrained
example, such universally unique RIDS may be assigned to be next to each other in the shape of a pile.
through a central RID allocation system, similar to how 48 The strand path is mathematically defined as a one-
bit Ethernet physical layer addresses are centrally assigned 55 dimensional path through three dimensions, along which are
to specific network controllers, to guarantee that there are no displayed the screen objects of the child documents of the
duplicates. strand. Objects attached to a strand path appear to be

The computer network that the system is connected to indirectly connected, as do pearls on a strand of string. The
may have one repository available or it may have many. Strand function can be arbitrarily set so that it is oriented in
Some repositories are generic places to put documents, 60 any direction or is any complex line. It can be a complicated
while others may be specialized. For example, a machine function like a bunch of line segments joined together, or it
that sends and receives documents as faxes over telephone could be U-sha~ed or zigzag-shaped.
lines can be a repository. The user may choose to maintain A pile of documents is a strand having a strand path
a private repository on the local computer. Most repositories defined by a function causing the strand to be oriented
are on remote machines and the system gets documents from 65 substantially parallel to the Z access of the display, that is,
them over the network. A repository may exist on the local going straight back from the surface of the display device
file system. An embodiment of the system may run on a that is closest to the user. A "tile" of documents is a set of

APMW0000723

5,499,330
9 10

documents placed next to each other so that the complete sub-strands. Knot constraints may be arbitrarily defined, and
contents of their current screen objects are showing. A tile is are generally invisible to the user. For example, knot con-
defined as a strand having a strand path substantially parallel straints may be used to subdivide the strand into two
to the glass of the screen. The strand mechanism itself is sub-parts so that the user has a pile of mail that has been
completely general. The user may define a corkscrew strand 5 read, and a pile of new mail, both within a single strand.
path to have documents spiraling back into infinity if so Knots are used to keep those sub-strands (or sub-piles)
desired. separated.

An example of a system tool having a strand is as follows. Two applications for strands are presentation of docu-
The FIND operation may be a tool having a pile for its ments in piles or tiles, and grouping documents. A strand is
output. The FIND command locates documents, and puts an object on the display device, and the user can pick up the
them into a pile below itself. The output pile is attached to strand by using the mouse to select the parent document of
the FIND tool. When the HND tool is moved, the pile the strand. All of the strand's children are moved when the
follows. The FIND tool will "let go" of a document if the strand itself is moved. The system may be configured such
document is clicked and dragged away from the pile. that when the user selects a child document on the strand and

A strand parent is a document to which a strand is 15 moves it, the document is removed from the strand. In the
attached. The strand path for that strand is defined relative to alternative, the System can be configured such that moving
an origin point defined with respect to the strand parent. For mY child document on the strand causes the entire strand
example, the strand path could be relative to an origin in the and all other documents on the strand to move without
upper left comer of the screen object for the strand parent. removing the child document from the strand.
Minimum and maximum separation constraints, associated 20 In the example shown in FIG. 1, the parent document
with the strand parent, define the spacing between any two corresponding to screen object 17 is a FIND tool. For
child documents on the strand to be greater than the sepa- example, the FIND tool may be used to locate documents
ration minimum and less than the separation maximum. The containing a particular string of characters. When the FIND
minimum and maximum separation constraints may for tool is used, the documents found to contain the string are
example be stored in the strand parent. 25 displayed along the strand 15, in this case, a pile. The FIND

FIG. 1 shows a display device 10, including an example to01 is the parent of that Strand. When the screen object for
of a strand 15. The strand 15 is shown having child docu- the FIND tool is moved on the display device, the pile is
ment screen objects 19a, 19b . . . 19e, and parent document dragged with it.
screen object 17. The strand path is shown by line 20, and In FIG. 2, the elements shown in FIG. 1 are shown after
the mouse cursor is shown by element 21. The separation of 30 the user has selected the screen object 17 of the strand parent
the child document screen objects 19 is shown at 24. for the strand 15. While the strand parent screen object 17 is

During operation of the system, with reference to the selected, the user has also selected the entire strand 15,
elements in FIG. 1, the strand path 20 is calculated by including child document screen objects 19. The strand
evaluating a strand function associated with strand parent Parent Screen object 17, and the child document Screen
represented by screen object 17. The exact orientation of the 35 objects 19 are shown as outlines while the strand 15 is
strand path 20 is determined with reference to an origin selected. Further, while the strand 15 is selected, the user
constraint associated with the strand parent screen object 17, may use the mouse to move the cursor 21 around the display
for example, the upper left hand corner of the strand parent device 10, thereby moving the entire strand 15.
screen object 17 at point 26. The outputs of this evaluation After the strand 15 is moved to its desired position, the
are three dimensional coordinates that define the strand path 40 user may deselect the strand 15, causing the screen objects
20 in the virtual representation maintained by the workspace 17 and 19 for the strand parent and strand children to be
viewer. filled in again.

The child documents of the strand (corresponding to In another example embodiment of a system tool using a
screen objects 19) are determined from a list of unique 45 strand, a pile and scroll tool is used to browse through a
identifiers of the child documents associated with a strand collection of documents. It uses a U-shaped strand that tiles
parent document corresponding to screen object 17. The a few of the documents and piles other of the collected of
separation constraints associated with the strand parent documents. The use of the U-shaped strand makes the use of
document, indicating the minimum and maximum separa- the tool more intuitive for the user, since both the currently
tion of child documents displayed along the strand path 20, tiled documents are displayed simultaneously with the piled
are also evaluated. The output of these evaluations provides documents.
three dimensional coordinates defining the appearance and The pile and scroll tool 60 is shown in FIG. 3. Pile and
location of the child document screen objects 19 along the scroll has a U-shaped strand function 62, including a first
strand path 20. pile 64 and a second pile 66. In the configuration shown, first

The three dimensional coordinates are passed to a per- 55 pile 64 in FIG. 3 is on top of a tiled section 68, and second
spective process for translation into two dimensional screen pile 66 is on the bottom of the tiled section 68. The system
space coordinates. The two dimensional screen space coor- allows other configurations and orientations of the strand.
dinates are used to display screen objects 19, representing Documents 68a, 68b, 68c, and 68d, are shown in the tiled
child documents along the strand path 20, on the display section between piles 64 and 66, and are tiled parallel to the
device 10. The strand path 20 itself is not typically, but may 60 screen.
be displayed on the display device. The separation 24 The tile and scroll tool 60 in FIG. 3 has a control button
between the child documents cannot exceed the maximum 70, with up arrow 72 and down arrow 74. When the user
separation constraint, and is not less than the minimum brings the mouse cursor over up arrow 72 within the control
Separation constraint associated with the Strand parent ~ O C U - button 70, and then clicks once on the mouse button, the tile
ment corresponding to screen object 17. 65 and scroll tool 60 moves document 68a backwards into first

Strand parents may further include a knot constraint, pile 64, moves the documents 68b, 68c, and 68d upwards
defining points in the strand that divide the strand into within the tiled documents 68, and brings forward a docu-

APMW0000724

5,499,330
11 12

ment from the second pile 66 to be displayed within the tiled engine 36. Script engine 36 and workspace viewer 35 are
section 68. If the user holds the mouse button down and does shown as processes running on processor 31, but it will be
not release it while the mouse cursor is over the up arrow 72, evident to one of skill in the art of computer science that
multiple documents are continuously tiled into view from these processes could alternatively be implemented in hard-
the second pile 66 until the mouse button is released. 5 ,,, such as an application specific integrated circuit, or in

Similarly, when the user moves the mouse cursor over the firmware or microcode.
down arrow 74, and clicks once on the mouse button, a Also contained within each document is a document

is tiled view from the first pile 64, and renderer attribute for that document. For example, parent
holding down the mouse button tiles multiple documents document 27 contains document renderer attribute 57, and
from first pile 64 until the mouse button is released. In this lo child documents 29a through 29e contain document renderer
way, the user can browse through multiple collected docu- attributes 59a through 59e. The value of the document ments using the pile and scroll tool 60.

renderer attribute for each document indicates the document
In the documents look like beside each renderer for that document. In the example of FIG. 7 ,

other, like pieces of paper On a appear at the renderer attribute 57 indicates a document renderer 700, same distance from the user' documents that are 15 renderer attribute 59a indicates a renderer 701, and renderer tiled are at the same Z position in the workspace, relative to
the front of the display device. attribute 59b indicates a renderer 703. Further, renderer

attribute 59c indicates a renderer 704, renderer attribute 59d
In an shown in FIG' 4' the strand function indicates a renderer 702, and renderer attribute 59e indicates 82 runs parallel to Ihe screen, that the documents a renderer 705. Thus in the example of FIG, 7 each docu- through 80g are threaded along the strand parallel to the zo

screen. In a tile, the world space coordinates of the strand as indicates a potentially different document renderer.
maintained in three dimensions by the workspace viewer is Each document may optionally contain a layout attribute,
parallel to the screen. In a pile, as shown above, the strand having a value equal to a script used to control the document
is not parallel, but perhaps perpendicular to the screen. renderer for that document. The script within the value of
nus it is seen that the strand function is an arbitrarily 25 each layout attribute is capable of being interpreted by a

definable geometric function. An implementation may offer script engine within the System, for example the script
the user multiple pre-calculated strand functions, or an engine 36. In the example of FIG. 7 , parent document 27
interface through which the user can define her own strand contains a layout attribute 710, for controlling the renderer
functions. As a further example of the flexibility of display 700, child document 29a contains a layout attribute 711 for
provided by strands, FIG. 5 shows a corkscrew pile 90, controlling the renderer 701, child document 296 contains a
having a strand function 92 defining a corkscrew shape. 30 layout attribute 712 for controlling the renderer 703, child

FIG. 6 shows an example embodiment of the document document 29c contains a layout attribute 713 for controlling
display system. A mother board 605 is shown having daugh- the renderer 704, child document 29d contains a layout
ter boards 610, individually numbered 610a, 610b, 610c and attribute 714 for controlling the renderer 702, and child
610d. The daughter boards 610 are coupled with the mother document 29e contains a layout attribute 715 for controlling
board 605 through parallel bus 615. Daughter board 610a is 35 the renderer 705.
coupled with a display device 10 through serial interconnect Now with reference to the elements of FIG. 7 , operation
635, daughter board 610b is coupled with user input device of the system is described, The workspace viewer 35 uses
620, and daughter board 610c is with constraints from the strand parent document 27 to create
625 via network 640.

40 three dimensional world space representation of the strand
During operation of the elements in FIG. 6, the user 15. The workspace viewer 35 maintains the current view to

manipulates the user input device 620, thereby sending user b, displayed on the display device 10, including outlines of
input c ~ n ~ m a n d s to the daughter board 6 1 0 ~ . The logic those documents currently displayed, and information defin-
within the daughter boards 610 then responds to the user ing which documents are currently selected. The document
~ ~ m m a n d s by changing the view on the display device 10, renderer attributes 57 and 59a through 59e indicate the
and requesting and retrieving d ~ ~ u m e n t s from the re~osito- 45 document renderers 700 through 705 to be used to fill in the
ries 625. screen objects of those documents currently displayed on the

FIG. 7 shows elements in an example embodiment of the display device 10. The workspace viewer 35 contains a
system. A display device 10 is shown displaying the example perspective function to translate between three dimensional
from FIG. 1. The display device 10 is coupled with a display 50 workspace coordinates and two dimensional screen space
controller 610 through serial interconnect 635. coordinates.

The display controller 610 includes a memory 25, the In a preferred implementation, document renderers 700
memory 25 having parent document 27 (shown as screen through 705 are implemented in an efficient programming
object 17 in FIGS. 1 and 2), and child documents 29a, 29b, language such as C, and controlled during execution by a
. . .29e (shown as screen objects 19 in FIGS. 1 and 2). Parent 55 script language contained in the values of layout attributes
document 27 includes minimum and maximum separation 710 through 715. The script in the values of layout attributes
constraints 37 and 39 respectively, child document list 41, 710 through 715 is interpreted by the script engine 36. The
containing the unique identifiers for the child documents 29, primary task of the script language in this context is to set
strand origin constraint 43 and strand function constraint 45. the values of attributes within documents. The script lan-
The child documents 29 each contain parent pointer 47, 60 guage therefore requires few verbs, as the values of a
containing the unique identifier of the parent document 27, pre-defined set of attributes, known as intrinsic attributes,
and flags field 49, containing flags indicating whether the are used to control associated functions in the renderers 700
child may be removed from the strand when selected, and through 705.
whether the child is to be displayed or concealed when the fie strand function 45 within strand parent 27 is a
strand is displayed. 65 mathematical equation defining the strand path. The work-

Also shown in FIG. 7 are processor 31, coupled with space viewer 35 processes the strand function 45 to obtain
memory 25, as well as workspace viewer 35, and script three space coordinates for the strand path 20 of the strand

APMW0000725

5,499,330
13 14

15. The workspace viewer 35 inputs the strand origin having parent find tool document 103, and child documents
constraint 43 to adjust the actual orientation of the strand 100a, 100b, 100c, 100d, and 100e. The output strand 101
path 20 relative to the upper left hand comer 20 of the screen further is shown having a knot 104, the knot 104 dividing the
object 17 of the strand parent 27. output strand 101 into a first substrand 106 and a second

The workspace viewer 35 inputs the child document list 5 substrand 108. The first substrand 106 contains child docu-
41 and the minimum and maximum spacing constraints 37 ments 100a, 100b, and 100c, and second substrand 108
and 39 to create world space three dimensional coordinates contains child documents 100d, and 100e.
for the the strand path 20. The During the operation of the elements shown in FIG. 9, the
workspace viewer 35 passes the world Vace of user activates the find tool 100 to search for needed docu-
thechilddocurnents29through a~ers~ectiveprocess, which 10 ments, for example, those mail messages received from a
converts the three dimensional coordinates into two dimen- given sender. The user also specifies a grouping for the find
sional screen space coordinates. The works~ace viewer 35 tool to use, for example all such mail messages previously
then sends the resulting screen space display through serial read versus those not yet read. The user specifies that
interconnect 635 to display device 10, causing the outlines previously read documents be displayed in the background
of the screen objects of strand 15 to be displayed. 15 of the display relative to documents not yet read. The find

The layout attributes 710 through 715 are interpreted by tool 100 then locates those mail messages received from the
the script engine 36. The system allows use of multiple Script specified sender.
engines, and a document may either contain indication of The find tool puts the unread mail messages received
which specific script engine to to the layout from the specified sender in the foreground of the output
attribute for that document and thus control the document 20 strand 101, followed by knot 104, Therefore, in the example
renderer for that document. of FIG. 9, the child documents 100a, 100b, and lOOc are

FIGS. 8a through 8c show an m h d i m e n t o f areposito~y mail messages received from the specified sender, that are
node 800. In FIG. 8-4, the repository node 800 consists of a not yet read. The find tool 100 puts those mail messages
repository interface 805 coupled with a repository storage received from the specified sender that have been read after
810. During operation, the repository interface 805 receives 25 the knot 104, in substrand 108. Thus, child documents lOOd
repository requests from a client on a network 835. The and lOOe are mail messages from the specified sender that
repository interface 805 interprets the repository requests, have previously been read.
and returns data from the repository storage 810. As an alternative, the user requests that all mail messages

FIG. 8B shows the logical Processes within the repository received after a specified date be grouped in the foreground,
interface 805. The repository interface 805 is shown to 30 and all others in the background. The knot 104 divides the
include an attribute interpreter Process 815, coupled to a two requested groups, and child documents 100a, lOOb and
database standard query language (SQL) library 820. During 100c, in substrand 106, are those mail messages received
operation, the attribute interpreter Process 815 receives after the specified date, and child documents lOOd and 100e,
repository requests from the network 835, and tmnslates the 35 in substrand 108, are those received prior to the specified
repository requests into database SQL commands, which are date.
passed to the database SQL library 820. The database SQL
library 820 returns the results of the commands issued by the Sliding
attribute interpreter process 815, and the attribute interpreter
process 815 then responds to the repository requests over the Sliding is the direct manipulation r~echanism for chang-

network 835. In this way, the attribute interpreter process 40 ing a strand child's strand position. Other children of the
815 translates between the protocol of requests based on strand may be rearranged to satisfy the constraints of the
attribute having names and values, and the database SQL. strand.
Repository requests therefore may be based on attributes A document may be moved along a strand through sliding,
having names and values, independent of the type of search just like sliding a bead along a string. When the user slides
language used within the individual repository. 45 a document on a strand, other documents on the strand move

FIG. 8c shows a repository node 870, having repository as well, either pulling behind or pushing ahead of the sliding
storage in the form of a disc drive 810, also having a document. For example, if the strand max constraint is set,
repository interface 80s. me repository interface 805 is other documents follow along the sliding document such
coupled with the disc drive 810, as well as the network 835. 50 that the max constraint isn't violated.
The repository interface 805 includes the attribute inter- Sliding may be either a user driven event, or script driven
preter process 815, as well as the database SQL library 820. event. A user may slide a document by selecting the docu-

~ u r i ~ ~ operation of the elements in FIG. gc, the reposi- ment with the cursor or other user interface device, and then
tory interface 805 receives repository requests over the directly changing the position of the document on the strand.
network 835. The repository requests refer to documents in s5 Sliding may also be done when script is executed, for
terms of attributes having names and values. The amibute example as a result of execution of an attribute having script
interpreter process 815 translates the repository requests into as a value.
calls to functions in the database SQL library 820. The The minimum and maximum separation constraints are
database SQL library 820 functions return information evaluated such that a line in between the two documents in
stored on discs within the disc drive 810. The attribute 60 three space, in between the closest two points of the docu-
interpreter process 815 then responds to the repository ments in three space, is guaranteed to be of greater length
requests with the information returned by the database SQL than the strand rnin and less than the strand max.
library 820, formatting the responses into attribute value A document can be removed from the strand or inserted
pairs. onto the strand. A user may insert a document into a strand

A strand may be defined having one or more knots that 65 by dragging the screen object for that document into contact
divide the strand into substrands. FIG. 9 shows a find tool with the stand as displayed on the display device. When the
100 having an output strand 101, the output strand 101 user performs this action, the document is inserted into the

APMW0000726

5,499,330
15 16

strand with which the screen object came into contact, and The workspace viewer 128 manipulates screen objects in
the document becomes a child document of that strand. three dimensions and allows direct manipulation by the user
Similarly a user may remove a document from a strand, by 120. The workspace viewer 128 manipulates attributes
dragging the document away from the strand, when the stored in the workspace cache 132, that are from documents
system is configured such that the strand itself is not moved 5 stored in the repositories 142. The workspace viewer 128
by such an action. When the user drags the screen object for data (attributes) that are stored in a workspace
a document away from the strand, the document is removed document as well as attributes of other documents refer-

from the list of child documents contained the parent enced by the workspace viewer 128. A workspace document

document of that strand. Both of those operations cause the contains references other documents and when 'pened

constraints of the entire strand to be recomputed, resulting in lo that data (attributes) 'On-

other documents being repositioned on the strand if the tained within the referenced documents. Approximately
constraints are no longer satisfied. When a document is there is One screen per reference.
moved, the spacing constraints are re-evaluated. If the Intrinsic attributes 130 are those attributes that each
spacing constraints are no longer satisfied, the changes are document has in workspace cache 123 while it is being
propagated to all of the documents to make sure that the 15 referenced by a workspace d~cument. An example of an
documents are positioned in a way that causes the con- intrinsic attribute is the "X" position of a document's screen
straints to be satisfied. In an implementation of strands using object within the workspace window. Intrinsic attributes are
knots, there may result a situation where it is impossible for sufficient to outline the screen object for a document.
all of the constraints to be satisfied. That is, there might be The system maintains an asynchronous connection with
two knots and so many documents between them that the 20 any repositories 142 that it needs to access, and makes
minimum distance constraint could not be satisfied. Under requests to the repository for any information needed to
those circumstances the strand would spread the discrepancy complete the current display. Repository requests are
out equally among all the documents on the effected strand handled by an asynchronous remote procedure call mecha-
or substrand. nism.

25 The workspace viewer 128 operates on data contained in
the workspace cache 132, from a workspace document. The

Components in an Example Embodiment of the workspace viewer 128 maps attributes for each document
System referenced by the workspace document into the outline of a

FIG, is a block diagram of the architecture of a 3o screen object that is associated with that document.

document display system. A user 120 interfaces with an For example, in an implementation of workspace viewer
input device 164, for example a mouse and/or a keyboard, to 128, the position of a document on the screen is affected by
detect user actions 122. A message handler 124 is shown changing the intrinsic attributes cofles~onding to the x
responsive to user actions 122. Message handler 124 is position, Y position, and z position of the document in the
further coupled with a workspace viewer 128, such that 35 Context of the current arrangement of the workspace docu-
message handler 124 sends and receives dispatch messages ment. Similarly, a direct manipulation by the user 120 of the
126 to and from workspace viewer 128. The workspace screen position of a document changes the intrinsic
viewer 128 is also coupled with a workspace cache 132, attributes of that document.
such that the message handler 124 can receive data change The inside of the screen object for each document is
events from the workspace cache 132. The workspace 40 rendered by a document renderer 136. The workspace
viewer 124 is coupled with a script engine 146, such that viewer 128 maintains the locations of the screen objects
script engine 146 performs script evaluation 150 for the within the workspace, draws the outline of the screen
message handler 124. objects, and then negotiates with the document renderer 136

The workspace cache 132 is coupled with repositories to fill in each document. The document renderer 136 draws
142, and sends repository requests 140 and receives reposi- 45 appropriate data inside the documents based on attributes of
t o ~ y replies 141. The workspace cache 132 is further coupled the documents. Each document may indicate its own ~ O C U -

with the workspace viewer 128, and the workspace viewer merit renderer 136, based on the value of a document
128 is capable of and writing intrinsic attributes 130 renderer attribute within the document. Both the workspace
in the workspace cache 132. The workspace cache 132 is viewer 128 and the document renderer 136 interpret user-
also coupled with a document renderer 136, and the doc,,- 50 manipulation messages that are directed at screen objects in
ment renderer 136 performs attribute edits 134 on attributes the current arrangement of the workspace d~cument being
within the workspace cache 132. The workspace viewer 128 displayed.
and the document renderer 136 are coupled with a display The script engine 146 executes script written in a system
device 160, by means of screen update operations 162. Also, compatible scripting language. Script is executed in the
the workspace cache 132 is coupled with a watchdog timer 55 context of the workspace in which it was initiated, and is
process 138, and the script engine 146. The script engine 146 able to read, write, and search all attributes of documents in
is capable of performing attribute edits 148 on attributes the workspace as well as add and delete document refer-
stored within the workspace cache 132. Those components ences from the workspace, and perform repository specific
within the dotted line 175 are core elements of the system. actions.

The interaction of the elements in FIG. 10 is now 60 A further example of the operation of the example system
described. The message handler 124 coordinates the com- in FIG. 10 is now described. The user 120 initiates a user
putation necessary to execute scripts in the script engine action 122, which is detected by the message handler 124.
146, read and write data into the repositories 142, and keep The message handler 124 then executes script using the
the workspace on the screen consistent with data and user script engine 146, and dispatches a message 126 to the
actions 122. The message handler 124 translates user actions 65 workspace viewer 128, thus translating the original user
122 into messages that are dispatched 126 to the workspace action 122 into a command, or instruction for the workspace
viewer 128. viewer 128.

APMW0000727

5,499,330
17 18

The workspace viewer 128 receives the message 126 from A client module 210 is shown coupled with a LAN 211,
the message handler 124, and reads those intrinsic attributes the LAN 211 in turn coupled with repositories 142. The
130 effected by the user action 122, from the workspace client module 210 includes a network transport layer module
cache 132, and recalculates those attributes in the context of 214, and a queue of responses 212. The core elements 175
the three dimensional workspace. The workspace viewer 5 are coupled with the client module 210, receiving repository
128 then writes the recalculated intrinsic attributes 130 to replies 141, and issuing repository requests 140.
the workspace cache 132. During operation of the elements in FIG. 13, the client

The document renderer 136 is signaled to update the module 210 deals with the interactions with the repositories
screen display for each document by either a periodic 142. The client module 210 supports making connections
watchdog process 138, or by a signal from the workspace 10 and asynchronous requests for data from the repositories
cache 132 indicating that attributes within the workspace 142. Responses are placed in the queue of responses 212.
cache 132 have been modified. When the core elements 175 issue a repository requests 140,

FIG. 11 is a flow diagram of steps performed by the the client module 200 calls the network transport layer
message handler 124 to handle events requiring script module 214 to send a request message over the LAN 211 to
execution. In step 1100, the message handler receives a l5 the repositories 142. When a response is received from the
request indicating an event has occurred requiring script rep0Sit0rieS 142 Over the LAN 211 by the network transport
execution. Next, step 1105, the message handler 124 deter- layer module 214, the client module 210 Puts the response
mines whether the script to be executed requires data from into the queue of responses 212. The core elements 175
a repository. If the script does require data from a repository, eveahally dequeue the response from the queue of
the message handler 124 sends a message in step 1110 to the 20 responses 212. In this way, multiple repository requests 140
repository requesting the data, and puts the script to be may be simultaneousl~ outstanding, responses from the
executed onto a blocked queue in step 1115. If the script to repositories 142 may be received as~nchronousl~, and the
be executed can be executed without data being retrieved responses may bedequeued fromthe queue of responses 212
from a repository, the message handler 124 causes the script as is convenient for scheduling by the core elements 175.
to be placed into an execution queue in step 1120, to be 25

interpreted by the script interpreter and executed. When a A Method for Retrieving and Displaying Document
response is received in step 1125 from the repository having Information From Repositories
data needed to execute script placed on the blocked queue in
step 1115, the next step is step 1130. In step 1130, the script FIG. 14 is a flow chart showing the steps of a method for
previously moved to the blocked queue in step 1115 is 30 retrieving attributes from repositories. In step 300 a FIND
moved to the execution queue. tool is activated to assemble files matching a given set of

parameters into a strand. For example of a given set of
parameters, the user could request the FIND tool to retrieve

The Attribute Format all files with a given extension, or of a common file type. The

FIG. 12 is a diagram of an embodiment of the format of 35 find tool Starts a first process 301, having steps 305, 310,
an attribute. In FIG. l Z a , a first embodiment of an attribute 315,320, and 325. In Step 305, the find tool sends repository

207 is shown having a name 202, a delimiter 203, and a requests to a client module, requesting the client module to
value 204. ln FIG. 12b, a second embodiment of an attribute obtain files from all repositories matching the given set of
206 is shown having a name 202, a ,,due 204 delimited parameters. In step 310, the client module sends requests

by parenthesis 205. ne name 202 and the ,,due 204 are over a LAN to the repositories, for files matching the given
grouped together in a list, delimited by outer parenthesis Set parameters.
206. In list processing languages, core operations are avail- As each repository receives the requests sent by the client
able to extract the first element of the list, in this case module, the repository processes the request and issues a
accessing the name 202 part of the attribute, and also to 45 response for any files matching the given set of parameters.
extract or evaluate the remainder of the list other than the In step 315, the client module receives a response from one
first element, in this case the value 204 of the attribute. The of the repositories, and enters the response into the queue for
value 204 of the attribute may consist of script language, and responses within the client module. Responses from the
when evaluated or referenced may be interpreted by the repositories may be received in any order.
script engine. 50 Decision block 320 determines whether all the needed

responses have been received. This may be implemented

Scheduling Repository Requests

FIG. 13 is a diagram of an embodiment of the system
having remote repository access. The core elements 175 of 55
the system (as shown in FIG. lo) , are shown coupled to
windowing system interface module 200. The interface
module 200 is coupled with the display device 160, and also
detects user events 123 from a user 120. User events 123 are
translated into user actions 122 as understood by the core 60
elements 175. The interface module 200 receives screen
update operations 162, and translates the screen update
operations into drawing operations 163 specific to the indi-
vidual windowing system for the implementation. The inter-
face module 200 is responsible for drawing on the display 65
surface of the display device 160 and providing all user
interaction events to the core elements 175.

either through a timer mechanism, or by requiring all
repositories to respond whether or not they contain files that
match the given set of parameters. When all the responses
are received from the repositories, decision block 320 ter-
minates the first process 301 in end state 325.

Second process 302 executes independently from, and in
parallel with first process 301. After the FIND tool is
activated in step 300, in step 330 the workspace viewer adds
the FIND tool strand to the workspace. Until responses are
received from the repositories, the FIND tool strand will
contain no documents. While the FIND tool itself is the
parent document of the strand, and the strand is visually
anchored to the FIND tool, the parent document is not on the
strand. As the responses are received from the repositories,
those documents matching the given set of parameters are
added as child documents to the strand.

APMW0000728

5,499,330
19 20

In step 335, the queue for responses is checked for To add a note to a document, for example when the
responses from the repositories. When a response is received document is shared by multiple users, a user can also staple
indicating a document from one of the repositories that a sticker onto a document. The sticker is actually a simple
matches the given set of parameters, a child document is text document that can be edited by the user.
added to the FIND tool strand in step 340. In step 345, it is 5 Any page of any document can have a sticker stapled to
determined whether the document renderer attribute for the it. TO get a sticker, the user shift-drags a sticker off of a
child document has been received from the repository. If not, sticker pad. Specifically, the user may move the mouse
then in Step 350 a grey block is displayed on the FIND tool cursor over a sticker pad screen object, press the mouse
strand for the child document. When it is determined that the button and the shift key simultaneously, and remove a
document renderer attribute has been received from the 10 sticker off of the sticker pad. The user then moves the sticker
re~ository, the child document is filled in at Step 355, by the over a document and releases the mouse button and shift key
renderer indicated by the renderer attribute. to staple the sticker to the document.

Thus, as the FIND tool retrieves documents asynchro-
nously from remote repositories over a LAN, each retrieved Clip Marks on Stickers
document is added to the FIND tool strand in the order the 15
response was received. Until sufficient information is To add more information than there is room to add on the
received to fill in the display of the document, the document the user may pull On the 'lip mark to make
is displayed as a grey block. Therefore, the requests to the more room in which type. To make the sticker

repositories do not lock up the workspace viewer, which the user may grab the mark and drag it up the

may update the workspace independently of the FTND tool 20 sticker is the desired size.
operation, or may update the workspace in part as the results
of the m D tool are asynchronously received over the LAN. Removing a Document from the Workspace

Removing a document from the workspace may cause the
Clipping 25 document, and its permanent attributes to be written back to

the repository. When a document is removed from the
To clip a document is to restrict the viewable area of the workspace, the ephemeral attributes for that document

screen object associated with a document in a view. This within that workspace are lost. To remove a document from
may be done by dragging any edge of a Screen object toward the workspace in an example embodiment, the user holds
its center. Clipping makes documents look smaller without 30 down the Shift key and drags the document out of the
moving them back in the Z dimension. A clip Stop constrains workspace window. When the mouse button is released
the clipping edge of a document such that it can only be while the document is outside of the window, the document
clipped to a specified set of positions. or documents being dragged will be removed from the

Documents with clip marks contain hidden information workspace. The documents are not deleted from their reposi-
beyond the edge of the document. The hidden information 35 tories, just from the workspace.
may be revealed by clicking on the clip mark, dragging the
clip mark as far down as it will go, and releasing the mouse Sharing Documents Among Multiple Users
button. This unclips the hidden information.

A first user and a second user sharing a repository can
share documents. For example, a first user may show a

Annotating Documents: Information Stickers 40 document to a second user using a SHOW TO tool. The
system allows the first user to call the document to the

a new document is faxed Or sent attention of the second user, and add a note to it if needed.
through and then fetched a The first user first selects the document and locates the
workspace, the system that to SHOW TO tool in the tool rack. The first user then presses

that it has not been read. The 'ystem may an 45 the SHOW TO tool's button by ,-licking the mouse over the
information sticker to the new document, thereby creating a button displayed on the SHOW TO tool, and the SHOW TO
fixed visual relationship between the information sticker and tool unclips one clip stop. Next, the first user enters the
the new document. After the information sticker is stapled to username of the second user, and optionally, a note regard-
the document, the information sticker will be displayed in ing the selected document. The first user then presses the
the position at which it was stapled relative to the new 50 SHOW TO tool,s button a second time, and the SHOW TO
document whenever the new document is The tool clips to its original size, and the documents remain
fields of the information sticker and their contents depend on where they are in the current workspace.
where the document came from. The user can add or delete
fields within the information sticker and edit them as needed. The person named will find the document in his or her IN
The user will typically add information to help find the 55 BOX pile. An information sticker is added to the top of any

document later. The user may in the fields document called to someone's attention. The sticker has the

by dragging the document over a tool which has been set up first user's name and the date it was called to their attention,

to automatically fill in fields of the infomation along with any notes the first user. If the document

sticker. once the desired fields are added and filled in, there already has an information sticker on it, a new one with the

is no need to "file" the document in the traditional sense. The 60 information is placed On of it.

user can remove it from the workspace, put it in a pile, or If the first user enters more than one name into the SHOW
retrieve it later using the values typed in the information TO tool, the document is called to the attention of each of
sticker fields. As an alternative to stapling information those users.
stickers to new documents, the system may use another To create a customized SHOW TO tool to bring docu-
means of annotation, such as making the new document a 65 ments to the attention of a second user, the first user first
specific color, or writing text to an attribute or editable field selects the SHOW TO tool. The first user then presses the
of the new document. button on the DUPLICATE tool in the tool rack, or drops the

APMW0000729

5,499,330
21 22

SHOW TO tool onto the DUPLICATE tool. A new tool is space cache 132b is coupled with a second client module
thus created called "SHOW TO copy". The first user then 210b and the network connection 400. The second client
changes the title of the tool so it contains the second user's module 210b is coupled with the LAN 211. The network
name. Every time this tool is used, either by selecting connection 400 may optionally be coupled with the
documents and clicking its button, or by dropping docu- 5 LAN 211.
ments on it, it marks the documents to the attention of the During operation of the elements in FIG. 15, the first user
second user. 120a references document 405, and the client module 210a

As stated above, when the first user calls a document to requests that document 405 be retrieved from the reposito-
the second user's attention, the document appears piled ries 142 over LAN 211. The client module 210a receives
under the IN BOX of the second user. When several new '0 document 405 over LAN 211, and the first copy 405a of
documents are called to the second user's attention at once, document 405 is written into workspace cache 132A. As the
the first one to arrive is on top of the pile, the next to arrive first user 120a manipulates the display of document 405 on
just behind that, and so on. Documents on the pile that have display device 160a, the values of ephemeral attributes 406a
already been seen but that have been left on the IN BOX pile change to reflect the actual display of document 405 on
are piled behind the batch of new documents. 15 display device 160a.

When a document is piled in an IN BOX pile because a Further during operation of the elements in FIG. 15, the
first user has marked it for a second user's attention, an second user 120b requests the document 405 be retrieved
information sticker is placed across the top of the document. from the repositories 142 over LAN 211. The second client
A document that has not been read has a colored line across module 210b requests that document 405 be retrieved from
the top of the new document's information sticker. Other 20 repositories 142 over LAN 211. The second client 210b
documents in the IN BOX pile have no colored line on their receives document 405 over LAN 211, and the second copy
information sticker. 405b of document 405 is written into the second workspace

To read a document from the IN BOX, the user grabs it by cache 132b. The ephemeral attributes 406a are then trans-
the comer and pulls it close to the front of the workspace. 25 mitted through the network connection 400, and written into
Then the infomation sticker can be moved in order to see all second ephemeral attributes 406b. The second ephemeral
of the first page of the document. The sticker can be moved attributes 406b are then used by the second workspace
to some other place on the document or pulled completely viewer 128b, and the second document renderer 136b to
off. display document 405 on second display device 160b, such

The sticker may have a hidden message. To read the 30 that second user 120b views document 405 consistent with

hidden message, the sticker must be unclipped. when the the display of document 405 on display device 16% as seen

sticker is moved or unclipped, its colored line will disappear, and by the first user 120a.

signifying that the document is no longer new. As an alternative method for sharing the visual display

Every time a document is to a user's attention, it is between the two users, the ephemeral attributes 406a and

piled near the IN BOX if that tool is in the user's workspace. 35 406b be promoted permanent attributes by each

The user can set the tirne when documents are gathered, user, and then stored back to the repositories 142. Each client

either to collect them only when requested or constantly. may then access the 142
those permanent attributes, convert the permanent attributes
to ephemeral attributes, and update thi local display.

Using Ephemeral Attributes to Share Documents
Among Multiple Users 40 Creating a Document via the Merging of Existing

Documents
FIG. 15 shows an apparatus for sharing the visual display

of a document using ephemeral attributes. A first user 120a FIG. 16 is a diagram of a method for merging multiple
and a second user 120b are shown sharing a document 405. documents based on their visual display attributes. A first
The first user 120a is shown using display device 160a. The 45 document 500 is shown associated with ephemeral attributes
display device 160a is shown coupled with a workspace 502 within a first workspace 506. Applying ephemeral
viewer process 128a and a document renderer process 136a. attributes 502 to first document 500 result in the first
The workspace viewer process 128a and document renderer workspace 506 having screen object 504 representing first
process 136a are coupled with workspace cache 132a. The document 500. Similarly, second ephemeral attributes 512
workspace cache 132a contains a first copy 405a of docu- 50 applied to a second document 510 result in a second work-
ment 405, as well as ephemeral attributes 406a describing space 516 having a screen object 514 representing second
the visual display of document 405 on the display device document 510.
160a. The workspace cache 132a is coupled with a client A merging process 520, typically implemented in script
module 210a and a network connection 400. The client language, takes as input first document 500, ephemeral
module 210a is coupled with a LAN 211. The network 55 attributes 502, second document 510, and ephemeral
connection 400 may optionally be coupled with the attributes 512. The merging process 520 outputs a new
LAN 211. workspace document 522, including a copies of the first

A second user 120b is shown using a second display document 500a, ephemeral attributes 502a, second docu-
device 160b. The second display device 160b is shown ment 510a and ephemeral attributes 512a. The new work-
coupled with a second workspace viewer process 128b and 60 space document 522 produces a visual display 540 having
a second document renderer process 136b. The second screen objects 542 (corresponding to screen object 504), and
workspace viewer process 128b and second document ren- 544 (corresponding to screen object 514).
derer process 136b are coupled with second workspace A Multithreaded System for Retrieving Documents
cache 132b. The second workspace cache 132b contains a
second copy 405b of documeni 405, as well as ephemeral 65 FIG. 17 shows a multithreaded system for retrieving
attributes 406b describing the visual display of document documents, including a display device 1750 coupled to a
405 on the second display device 1606. The second work- client device 1700. The client device 1700 includes a

APMW0000730

5,499,330
23 24

multithreading environment 1730, the multithreaded envi- 4. The apparatus as in claim 1, further comprising:
ronrnent having a icon display means 1705, a cursor display user interface means for manipulating the position of said
means 1710, a launching means 1715, a desired process strand as displayed on said display device.
1720, a retrieving means 1725, and a means for returning 5. The apparatus as in claim 4, said user interface means
1727. The client device 1700 is further coupled with a user 5 further comprising:
interface device 1760, and repositories 1765. a mouse; and

During operation of the elements shown in FIG. 17, the strand moving means, responsive to said mouse, for
client device displays an icon 1755, through the icon display selecting said strand and moving the location of said
means 1705, and a cursor, through the cursor display means strand as a whole in said workspace. 1710, on the display device 1750. The user manipulates the 10 6. The apparatus as in claim 5, further comprising docu-

interface device 1760 a command to ment removing means, responsive to said mouse, for select-
the client device 1700, the signalling command requesting ing one of said child documents, and removing said child that desired process 1720 be executed. The client device document from said strand by dragging said document 1700 receives the signalling command, and the launching of said strand path. means 1715 then launches the desired process 1720, such 7. The apparatus as in claim
that the desired process 1720 runs within the multithreaded l5
environment 1730. The desired process 1720 then executes said parent a 'pacing 'On-
on the CPU 1740. Before the desired process 1720 com- straint defining a minimum distance along said strand
pletes execution, the cursor display means 1710 is allowed path between each screen object on said strand.
to execute on the CPU 1740, thereby maintaining an active 8. The apparatus as in '1 said parent
cursor while the desired process 1720 makes progress in 20 a spacing constraint defining a maxi-
execution. mum distance along said strand path between each screen

object on said strand.
It is to be understood that the invention is not necessarily g. The apparatus as in claim said parent document limited to the particular embodiment shown herein. The including a knot constraint, defining a point on said strand

invention may be adapted to a wide variety of information path, such that any of said child documents displayed
management systems. It is also to be understood that various 25 between said parent document and said knot constraint
adaptations and modifications may be made within the spirit belong to a first sub-strand, and all other of said child
and scope of the invention.

What is claimed is:
documents belong to a second sub-strand.

10. The apparatus as in claim 1, said parent document
An apparatus for documents, including an origin constraint, said origin constraint defining

a computer controlled display device; 30 the position of said strand on said display device relative to
means for displaying a strand of documents on said the screen object of said Parent document.

display device, said strand having a parent document 11. The apparatus as in claim 1, wherein said display
and one or more child documents, said parent docu- device is a CRT.
ment represented on said display device by a screen 12. An apparatus for displaying documents, comprising:
object, each one of said child documents represented on 35 a processor;
said display device by a screen object displayed on a display memory means coupled with said processor;
strand path, said strand path consisting of a two dimen- a display device, coupled with said display memory
sional line through a three dimensional virtual display means, for displaying screen objects described in
space in which said parent document and said child

40 screen coordinates stored in said display memory
documents are arranged; means;

said parent document including a strand function, said document memory means, coupled with said processor,
strand function being an attribute having a value equal for holding one or more documents;
to a script representation of a mathematical equation one or more child documents stored in said document
which when interpreted and executed outputs the coor- 45 memory means;
dinates of said strand path; and

a parent document stored in said document memory
each one of said child documents identified by an entry in means, said parent document having a strand function,

a child document list contained within said parent said strand function being an attribute having a value
document, each entry in said child document list con- equal to a script representation of a mathematical
taining a unique identifier for one of said child docu- 50 equation which when interpreted and executed outputs
ments. the coordinates of a strand path;

2. The apparatus as in claim 1, further comprising:
one or more screen objects representing each one of said

a workspace viewer process for maintaining said three- one or more child documents and displayed on said
dimensional virtual display space, said three dimen- display device on said strand path;
sional virtual display space known as a workspace; 55

script interpreter means, coupled with said document
a perspective function, within said workspace viewer memory means, for interpreting and executing said

process, for translating coordinates of said parent docu- strand function and outputting three dimensional world
ment and said child documents in said three-dimen- space coordinates of said strand path; and
sional workspace from three-dimensional coordinates
into two dimensional screen coordinates. 60 perspective function means, coupled with said processor,

3. The apparatus as in claim 2, further comprising: said display memory means, and said document
memory means, and

a processor;
responsive to said three dimensional world space coordi-

a memory coupled with said processor; nates, for translating said world space coordinates into
said documents stored as data in said memory; 65 two dimensional screen space coordinates, and storing
said perspective function consisting of software stored in said screen space coordinates into said display memory

said memory and executing on said processor. means.

APMW0000731

5,499,330
25 26

13. The apparatus as in claim 12, further comprising: said parent document including a child document list,
said script interpreter means and said perspective means each element in said child document list containing a

are computer programs executing on said processor; unique identifier of one of said one or more child
and documents;

said strand function is code stored as a high level language document inserting means, responsive to a screen object
in said parent document, and said strand function is of a new document being dragged into contact with said
interpreted into executable code by said script inter- strand path, for inserting said document into said strand
preter means, and said executable code is executed on by adding a unique identifier for said new document to
said processor. said child document list in said parent document, said

14. The apparatus as in claim 12 said parent document lo new document thereby becoming a child document of
further comprising: said strand.

a child document list identifying all child documents on 17. The apparatus as in claim 16, further comprising:
said strand; document removing means, responsive to a screen object

a strand minimum constraint defining a minimum dis- 15 corresponding to one of said on or more child docu-
tance between screen objects on the strand; ments being dragged off of said strand path, for remov-

a strand maximum constraint defining a maximum dis- ing a unique identifier of said on of said one or more
tance between screen objects on the strand; and child documents from said child document list in said

a strand origin constraint defining a position of said strand parent document.
relative to position of a screen object representing said 20 18. The apparatus as in claim 16, wherein said user
parent document on said display device. interface device is a mouse.

15. The apparatus as in claim 12 each one of said one or 19. The apparatus as in claim 16, wherein said user
more child documents further comprising: interface device is a track ball.

a strand position constraint defining a location of a screen 20. The apparatus as in claim 16, wherein said user
object representing said child document on said strand 25 interface device is a touch sensitive display screen.
on said display device relative to said parent document; 21. The apparatus as in claim 16, wherein said user
and interface device is a light pen.

a strand parent constraint identifying said parent docu- 22. The apparatus as in claim 16, wherein said user
ment. 30 interface device is a pressure sensitive pad for inputting user

16. The apparatus as in claim 12 further comprising: handwriting.
a user interface, having a user interface device, for drag-

ging screen objects shown on said display device; * * * * *

APMW0000732

	Bibliographic Data
	Claim
	Drawing
	Description
	Abstract

