
Case 6:09-cv-00269-LED Document 191-1 Filed 04/13/10 Page 1 of 15

EXHIBIT A

Bedrock Computer Technologies, LLC v. Softlayer Technologies, Inc. et al Doc. 191 Att. 11

Dockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/6:2009cv00269/116887/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2009cv00269/116887/191/11.html
http://dockets.justia.com/

Case 6:09-cv-00269-LED Document

US005893 120A

United States Patent [I91 [i l l Patent Number: 5,893,120
Nemes [45] Date of Patent: Apr. 6,1999

[54] METHODS AND APPARATUS FOR R.L. Kruse, Data Structures and Program Design, Second
INFORMATION STORAGE AND RETRIEVAL Edition. Prentice-Hall, Engle\vood ClitEs, New Jersey, 1987.
USING A HASHING TECHNIQUE WITH Section 6.5, "Hashing," and Section 6.6, Analysis of Hash-
EXTERNAI. CHArNlNG ANTI ON-THE-F1.Y iny, pp. 198-215.
REMOVAL OF EXPIRED DATA D. F. Stubbs and N.W. Webre, Data Siructure with libstract

Doro Qpes md Pnscol, BrookdCole Publishing Company,
[76] Inventor: Richard Michael Nemes, 1132 E. 35th Montcrcy, California, 1985, Scction 7.1, "Hascd Implcmcn-

SI., Brooklyn, N.Y. 11234-2604 tations," pp. 310-336.

[21] Appl. No.: 775,864

[22] Filed: Jan.2,1997

[51] Int. Cl? .. G06F 17/30
[52] U.S. CI. 707t206; 70711; 707/100;

707/101; 707,202
[58] Field of Search 70711, 200-206,

707/2, 100-103

[561 References Clted

U.S. PATENT DOCUMENTS

5,121,435 611992 Nemes .. 70713
5,202,981 411993 Shackellord 70711
5,287,499 211994 Nemes 7071206

OTHER PUBLICATIONS

D.E. Knuth, The Afl of Cornpurer Programming, vol. 3,
Sorting and Searching. Addison-Wesley, Reading. Massa-
chusetts, 1973, pp. 506-549.

Prinury Exanuner-Tliomas G. Black
Assistant Examiner--Hosain T. Alam

1571 ABSTRACT

Amethod and apparatus for performing storage and retrieval
iu an inforluation storage system is disclosed that uses the
hashing technique with the external chaining method for
colli-iion resolution. In order to prevent performance dete-
rioration due to the presence o€ automatically expiring data
items, a garbage collection lechnique is used that removes
all expired records stored in the system in the external chain
targeted by a probe into the data storage system. More
particularly, each insertion, retrieval, or deletion of a record
is an occasion to search an entire linked-list chain of records
Cor expired i~cms and then remove Lhcm. Because an cxpired
data item will not remain in the system long term if the
system is frequently probed, it is useful for large information
storagc systcms that arc hcavily uscd, rcquirc the fast acccss
provided by hashing, and cannot be laken off-line for
removal of expired data.

8 Claims, 6 Drawing Sheets

i - 3 1 SEARCH

rr OF TARGET

Case 6:09-cv-00269-LED Document 191 -1 Filed 0411 311 0 Page 3 of 15

U.S. Patent Apr. 6,1999 Sheet 1 of 6 5,893,120

P!~-Y 6 FIG. 1

j 1 5

RANDOM
ACCESS
MEMORY

L l 1

USER

+
APPLICATION
SOFTWARE

1

INPUT-
OU'TPWT

CONTROLLER

APPLICATION
SOFTWARE - - - - - - - - - - - -

L23
FIG. 2

CENTRAL
-PROCESSING-

DISK DISK
C STORAGE

--...-
UNIT , UNIT ,

1 1 4 L l 0 L1 3

Case 6:09-cv-00269-LED Document 191 -1 Filed 0411 311 0 Page 4 of 15

U.S. Patent Apr. 6,1999 Sheet 2 of 6 5,893,120

START 4""
I KEY I

1 GE;,;;D 1-32
OF TARGET

FIG. 3

(FIG. 4) *
7

ADVANCETO
NEXT

ELEMENT

41 '
1

Case 6:09-cv-00269-LED Document 191 -1 Filed 0411 311 0 Page 5 of 15

U.S. Patent Apr. 6,1999 Sheet 3 of 6 5,893,120

ADVANCE P - r ~
TO ELEMENT
FOLLOWING

ONE TO REMOVE

1 I

I DE-ALLOCATE I

>3
7 T

LIST ELEMENT

-

ADJUST
HEAD PTR TO

BY PASS
ELEMENT

FIG. 4

ADJUST
PREDECESSOR'S

PTR TO
BYPASS ELEMENT

Case 6:09-cv-00269-LED Document 191 -1 Filed 0411 311 0 Page 6 of 15

U.S. Patent ~ p r . 6, 1999 Sheet 4 of 6

START

FIG. 5

RE-I-URN
REPLACED

d T

COPY RECORD
INTO NEW

I.IST ELEMENT

1 FJ0

INSERT NEW
LlST ELEMENT
INTO TARGET

LlST
31

RETURN
INSERTED

Case 6:09-cv-00269-LED Document 191 -1 Filed 0411 311 0 Page 7 of 1 5

U.S. Patent 5,893,120 Apr. 6,1999 Sheet 5 of 6

RECORD AND
CLEAN TARGET 1 LIST 1

FIG. 6

9 3
I

RETURN
SUCCESS

RETURN
FAILURE

-

I

< I

STOP

Case 6:09-cv-00269-LED Document 191 -1 Filed 0411 311 0 Page 8 of 15

U.S. Patent A ~ I - . 6,1999 Sheet 6 of 6 5,893,120

I SEARCH FOR 1
RECORD AND

CLEAN TARGET

FIG. 7

Case 6:09-cv-00269-LED Document 191 -1 Filed 0411 311 0 Page 9 of 15

5,893,120
1 2

METHODS AND APPARATUS FOR Hall, Incorporated, Englewood Clitfs, N.J., 1987, Section
INFORMATION STORAGE ANT) RE'TRW,\'AI, 6.5. "llashing," and Section 6.6, "Analysis of IIashing," pp.

USING A HASHING '~ECHNIQUE WITH 198-215, and in Data Structures with Ahtract Data Types
EXTERNAL CHAINING AND ON-THE-FLY ard Pascal, by D. F. Stubbs and N. W. Webre, Brooks/Cole

REMOVAL OF EXPIRED DATA s Publishing Company, Monterey, Calif., 1985, Section 7.4,
"Ha.;hcd Implementations," pp. 310-336.

CROSS-REFERENCE TO RELATED Some forms of information are such that individ~~al data
APPLICATIONS items, after a limited period of time, become obsolete, and

Not Applicable their presence in the storage system is no longer needed or
10 desired. Scheduling activities, for example, involve data that

STATEMENT REGARDING FEDERALLY become obsolete once the scheduled event has occurred. An
SPONSORED RESEARCH OR DEVELOPMENT auton~atically-expiring data item, once it expires, needlessly

occupies computer memory storage that could otherwise be
No1 Applicable put to use storing an unexpired item. Thus, expired items

REFERENCE TO A MICROFICHE APPENDIX 15 must eventually be removed to reclaim the storage for
subsequent data insertions. In addition. the presence of many .

Not Applicable cxpircb itcms rcsults in nccdlcssly long scarch timcs sin& - -
the linked lists associated \vith external chaining will be

BACKGROUND OF THE INVENTION longer than they otherwise would be. The goal is to remove
This invention relates to information storage and 20 these expired items to reclaim the storage and maintain fast

systems, and, more particularly, to the use of hashing access to the dah.
techniques in such systems. The problem, then, is to provide the speed of access of

Iuforillatio~i or data stored in a coluputer-controlled stor- hashing techniques for large, heavily used information stor-
age mechanism can be retrieved by searching for a particular age systems having expiring data and, at the same time,
key value in the stored records. The stored record with a key 25 prcvcnt thc pcrfomancc dcgradation rcsulting from thc
matching the starch key va]uc is then rctricvcd. Such accumulation of many expired records. Although a hashing
searching techniques require repeated access to records into technique for dealing with expiring data is b o \ w and
the storage mechanism to perform key comparisons. In large disclosed in U.S. Pat. NO. 5,121,495, issued Jun. 9, 1992,
storage and retrieval systems, such =arching, even if aug- that technique is confined to linear probing and is entirely
mented by efficient search procedures such as the binary 30 inapplicable to external chaining. The procedure shown
search, often requires an excessive amount of time due to the there traverses, in reverse order, a consecutive sequence of
large numher or key cc~rnparist~ns required. records residing in the hash table array, continually relocat-

Ano~her well-known and much Faster way "[storing and h g unexpired records to fill gaps left by the removal of
retrieving information from computer storage, albeit at the 35 expired Ones.

expense of additional storage, is the =-called "hashing" Unlike arrays, linked lists leave no gaps when items from
tcchniquc, also callcd scattcr-storagc or kcy-transformation it are removed, and furthermore it is not possible to effi-
method. In such a system, the key is operated on by a cie~itly traverse: a singly linked list in reverse order. There are
hashing function to produce a storage address in the storage significant advantages to external chaining over linear prob-
space, called the hash table, which is a large one- ing that sometimes make it the method of choice, as dis-
diuiensional array of record locatiolis. This storage address cusscd in c~ns id~ rab l c dctail in thc aforcmcntioncd tcxts,
is then accessed directly for the desired record. Hashing and so hashing techniques for dealing with expiring data that
techniques are descrihrd in the classic text hy T). E. Knu~h do not use: external chaining prove wholly inadequate for
entitled The Art of Computer Ptogramming, Volume 3, certain applications. For example, if the data records are
Sorting and Searching, Addison-Wesley, Reading, Mass., 45 large, considerable memory can be saved using external
1973, pp. 506-549. chaining instead of linear probing. Accordingly, there is a

Hashing functions arc dcsigncd to translate the univcrsc need 10 develop hashing techniques for external chaining
of keys into addresses uniformly distributed throughout the with expiring data. ' h e methods of the above-mentioned
hash table.. Typical hashing functions include truncation, patent are limited to arrays and cannot be used with linked
folding, transposition, and modulo arithmetic, A so lists ~ U C to the significant diffcrcncc in thc organization of

tane of hashi~le is that 111ore than oue kev will ine\ritablv the computer's memory. - -
translate in the same storage address, causing "collisions" in
storage. Some form of collision resolution must therefore he BRIEF SUMMARY OF THE INVENTION

provided. For example, the simple strategy called "linear
probing," which consists of searching forward from the
initial storage address to the first empty storage location, is
often used.

Another method for resolving collisions is called "exter-
nal chaining." In this technique, each hash table location is
a pointer to the head of a linked list of records, all of whose
keys tra~lslate uuder the hashing fu~lction to that very hash
table address. The linked list is itself searched sequentially
when retrieving, inserting or deleting a record Insertion and
deletion are done by adjusting pointers in the linked list.
External chaining is discussed in considerable detail in the
aforementioned text by D. E. Knuth, in Data Structures and
Program Design, Second Edition, by R. L. Kruse, Prentice-

In accordance with the illustrative embodiment of the
55 invention, these and other problems are overcome by using

a garbage collection procedure "on-the-fly" while other
types of access to the storage space are taking place. In
particular, during norn~al data insertion or retrieval probes
into the data store, the expired, obsolete records are identi-

60 fied and removed from Ihe external chain linked lisl.
Speciiically, expired or obsolete records in the linked list
including the record lo be accessed are removed as part of
thc normal scarch proccdurc.

This incremental garbage collection technique has the
65 decided advantage of automatically eliminating unneeded

records without requiring that the information storage sys-
tem be taken off-line for such garbage collection. This is

Case 6:09-cv-00269-LED Document 191 -1 Filed 0411 311 0 Page 10 of 15

5,893,120
3 4

particularly important for information storage systems Central Processing Unit (CPU) 10 also controls an Input/
requiring rapid access and continuous availability to the user Output (110) controller 14 that, in turn, provides access to a
population. plurality of input devices such as CRT (cathode ray tube)

More specifically, a method for storing and retrieving terminal 15, as well as a plurality of output devices such as

ulforlnatio~l records using a li~lked list to store and provide 5 printer 16. Terminal 15 provides a mechanism for a corn-
access to the records, at least some of the automati- puler user to inlroduce inslruclions and commands inlo [he

cally expiring, is disclosed. The method accesses the linked Computer System of FIG. 1, and may be supplemented with
list of records and identifies at least some automatically other input devices such a s mapet ic tape readers, remotely

expired ones of the records. It also removes at least some located terminals, optical rcadcrs, and 0 t h ~ tYPcs of input
expired ones of the records from the linked list 10 devices. Similarly, printer 16 provides a mechanism for

when the linked list is accessed. Furthermore, the method displaying the results of the operation of the computer
provides for dynan~ically determining maximum nunlber of system of FIG. 1 for the computer user. Printer 16 may
explred ones of the records to be removed when the linked similarly be supplemented by line pri~lters, cathode ray tube

list is accessed. displays, phototypesetters, laser printers, graphical plotters,
IS and orher types of output devices.

BRIEF DESCRIPTION OF THE SEVERAL The constituents of the computer system of FIG. 1 and
VIEWS OF THE DRAWING thcir coopcrativc opcration arc wcll-known in thc art and arc

Acomplete understanding of the present invention may be
gained hy considering the following detailed descriplion in
conjunction with thc accompanying drawing. in which:

FIG. 1 shows a general block diagram of a computer
system hardware arrangement in which [he information
storage and retrieval system of the present invention might
be implemented;

FIG. 2 shows a general block diagram of a computer
system software arrangement in which the information stor-
age and retrieval system of the present invention might find

typical of all computer systems, from small personal com-
puters to large mainframe systems. The architecture and
operation of such systems are well-known and will not be
lurther described bere.

FIG. 2 shows a graphical representation of a typical
software architecture for a computer system such as that
shown in FIG. 1. The software of FIG. 2 comprises a user
acccss mcchanism that, for simplc pcrsonal computcrs, may
consist of nothing more than turning the system on. In larger
systems, providing service to many users, Iogin and pass-
word nrocedures would tv~icallv be im~lemented in user

A , a d

use; access mechanism 20. Once user access mechanism 20 has
FIG. 3 shows a general flow chart for a table searching 30 completed the login procedure, the user is placed in the

operation that might be used in a hashed storage syslenl in operating system environment 21. Operating system 21
accordance with the present invention; coordinates the activities of all of the hardware components

FIG. 4 shows a general flow chart for a linked-list element of the computer system (shown in FIG. 1) and ~rovides a
remove procedure rhat forms parr of the tahle searching number of utility programs22 of general use to the computer
operation of FIG. 3; 35 user. Utilities 22 mi@t, for example, comprise basic file

FIG. 5 shows a gcncral flow chart for a record insertion access and lr~a~lipulation programs, systenl rrlainte~~ance

operation that might be used in a hashed storage sysiem in and programming lanwage

accordance with the present invention; The computer software system of FIG. 2 typically also
FIG. 6 shows a general flow chart for a record retrieval includes application programs such as application software

operation for use in a hashed storage system in accordance 233 249 . . . 7 25. Application software 23 through 25 might*

wilh the prescn~ invention; and for example, comprise a text editor, document formatting
software, a spreadsheet program, a database management FIG. 7 shows a general Row chart for a record deletion
system, a game program, and so forth. opcration that might bc uscd in a hashcd storagc systcm in

accordance with the present invention. 45 The present invention is concerned with information
storage and relrieval. IL can be applicalivn sollware packages To facilitate reader understanding, identical reference
2L25, or used by other parts of the. system, such as user

numerals are used to designate elen~ents common to the
figures. access software 20 or operating system 2 1 software. The

information storagc and rctricval tcchniquc providcd by thc

DETAILED DESCRIPTION OF THE 50 present invention are herein disclosed as flowcharts in FIGS.

INVENTION 3 through 7, and shown as PASCAL-like pseudocode in the
APPENDIX to this specification.

FIG. 1 of the drawings shows a general block diagram of ~~f~~~ proceeding to a description of one embodiment of
a computer hardware system comprising a Central Process- lhc prewnt invention, il is firs1 useful to discuss hashing
ing "nit (CPU) lo and a Random Access Memory (RAM) ss techniques in general. Many fast techniques for storing and
unit 11. Computer Programs stored in the RAM 11 are retrieving data are known in the prior art. In situations where
accessed by cPU 10 and executed, one instruction at a time, storagc spacc is considcrcd chcap comparcd with rctricval
by CPU 10. ~ a t a , stored in other portions of RAM 11, are time, a technique called hashing is often used. In classic
operated on by the Program instructions accessed by CPU 1 0 hashing, each record in the informa tion storage system
from RAM 11, all in ~ - ~ o r d a l l c e with well-known data 60 includes a distinguished field unique in value to each record,
processing techniques. called the key, which is used as the basis for storing and

Central Processing Unit (CPU) 1 U also controls and retrieving the associated record. Taken as a whole, a hash
accesses a disk controller nnit 12 that, in turn, accesses a tahle is a large, one-dimensional array of logically
digital data stored on one or more disk storage units such as contiguous, consecutively numbered, fixed-size storage
disk slorage unit 13 until required by CPU 10. At this time, 65 units. Such a table of records is typically stored in R A M 11
such programs and data are retrieved from disk storage unit of TIG. 1, where each record is an identifiable and addres-
13 in blocks and slored in R A M U for rapid access. sable location in physical memory. A hashing function

Case 6:09-cv-00269-LED Document 191 -1 Filed 0411 311 0 Page 1 1 of 15

5,893,120
5 6

translates the key into a hash table array subscript, which is successful and returns success in box 35, followed by the
used as an index into the array where searches for the data procedure's termination in terminal box 37. If not, box 36 is
record begin. The hashing filnction can be any operation on entered where failure is returned and the procedure again
the. key that results in subscripts mostly uniformly distrib- temlinates in box 37,
'led across the iuclude 5 If the end of the list has llot been reached as detrrllliued
truncation, folding, transposition, modulo arithmetic, and by decision box 33, decision box 38 is entered to determine
combinations of these operations. Unfortunately, hashing

if the record pointed to has expired, This is determined by
functions generally do not produce unique locations in the comparing some portion of the contents of the record to
l~ash table, in that mal~y distinct keys map to the same some external condition. A timestamp in the record, for
location, producing what are called collisions. Some form of

10 example, could be compared with the current time-of-day
collision resolution is required in all hashing systems. In value maintained by all computers. Alternatively, the occur-
every occurrence of collision, finding an alternate location rence of an event can be compared with a field identifying
for a collided record is necessary. Moreover, the alternate that event in the rewrd. In any case, if the rewrd has not
location must be readily reachable during future searches for expired, decision hox 39 is entered to determine if the key
the displaced record. 1s in this record matches the search key. If it does, the address

A common collision resolution strategy, with which the of the record is saved in box 40 and box a1 is entered, If the
prcscnt invention is conccrncd, is callcd cxtcrnal chaining. record docs not match starch key, proccdurc
Under external chaining, each hash table entry stores all of bypasses box 40 and proceeds directly to box al. In box 11,
the records that collided at that location by storing not the the procedure advances forward to the next record in the
records themselves, but instead a pointer to the head of a zo linked list and the procedure returns to box 33.
linked list of those same records. Such liuked lists are
formed by storing the records individually in dyuamicauy If decision box 38 determines that the record under

storage and maintaining with each record a pointer qllestion has 42 is entered perform the
to the location of the next record in the chain of collided on-the-fly removal of the expired rewrd from the linked list

records, When a search key is hashed to a hash table entry, 25 and the return lhe it lhe system

the pointer found there is used to locate the first record. If the poO', as bc dcscribcd in connection with 4' In

search key does not match the key found there, the pointer genera', lhe remove procedure of box 42 4, Operates

here is used to locate the second record, In this way, the to remove an element from the Linked list by adjusting its

of records is traversed sequentially until the desired predecessor's pointer to bypass that element. (However, if

is or md the chain is reachd, 30 the element to he removed is the first element orthe list, then
Deletion of involves merely the pointers to here is predecessor the bash array entry is
bypass the delered record and retl~rning the storage it occu- adjusted instead') On of procedure

picd to thc availablc storagc pool maintained by thc systcm. from box 429 lhe search procedure returns

Hashing techniques have been used classically for very
box 33.

fast access to static, short term data such as a compiler 35 It can be seen thal lhe search procedure of FIG.

symbol table. ~ ~ ~ i ~ ~ l l ~ , in such systems, deletions operates to examine the entire linked list of records of which

are infrequent and the need for the storage system disappears the searched-for record a park and remove expired

some common t,Tes of data systems, records, returahg storage to the storage pool wit11 each
however, the storage system is long lived and records can removal. If the storage ~ o o l is depleted and many expired
become obsolete merely by the passage of time or by the 40 records remain despite such garbage

occurrence of some event, lf such expired, lapsed, or obso- thcn thc inscrtion of ncw rccords is inhibitcd (boxcs 76 and
lete record\ are not removed from the system, they will, in 770f FIG. 5) until a deletion is made by the delete procedure

time, seriously depade the performance of the retrieval (PIC. 7) or until the search table procedure has had a chance
system. Degradation shows up in two ways. First, the to replenish the storage pool through its on-the-fly garbage
prcscncc of cxpircd rccords lcngthcns scarch timcs sincc 45
they cause the external chains to be longer than they Though the search table procdure as shown in FIG. 3,
othenvise would be. Second, expired records occupy implemented in the APPENDIX a s PASCAL-like
dynamically allocated memory storage that could be pseudocode, and described above appears in connection
retunled to the systern n~erl~ory pool for useful allocation. with an information storagc and rctricval systcm using the
'Ihus, when the system memory pool is depleted, a new data 50 hashing technique with exlernal chaining, its on-the-fly
item can he inserted into the storage system only if the removal technique while traversing a linked list can be used
memory occupied by an expired one is reclaimed. anywhere a linked list of records with expiring data appears,

Referring then to 3, there is shown a flowchart of a eveu UI contexts u~irelated to haslling. Apersor~ skilled ill the
search table procedure [or =arching the hash tahlr. preps- art will appreciate that this technique can be readily applied
ratory to inserting, retrieving, or deleting record, in ac-0~. 5s to manipulate linked lists not necessarily used with hashing.
dance with the present invention, and involving the dynamic The search table procedure shown in FIG. 3, implemented
rcmoval of cxpircd rccords in a targctcd linkcd list. Starting as pscudocodc in thc APPENDIX, and described abovc
in box 30 of the search table procedure of FIG. 3, the search traverses the entire linked list removing all expired records
key of the record being searched for is hashed in box 31 to as it searches for a key match. I h e procedure can be readily
provide the subscript of an array element. In box 32, the hash 60 adapted to remove some but not all of the expired records,
table array locatior~ indicated by the subscript generated iu thereby shorteniug the linked list traversal time a d speediug
box 31 is accessed to provide the pointer to the target linked up the search at the expense of perhaps leaving some expired
list. Decision box 33 examines the pointer value to deter- records in the list. For example, the procedure can be
mine whether the end of the linked list has been reached. If modified to terminate when a key match occurs. (PASCAL-
the end has been reached, decision box 34 is entered to 65 like pseudocode for this alternate version of search table
determine if a key match was previously found in decision appears in the APPENDIX.) The implementor even has the
box 39 (as will be described below). If so, the search is prerogative of choosing among these strategies dynamically

Case 6:09-cv-00269-LED Document 1 91 -1 Filed 0411 311 0 Page 1 2 of 1 5

5,893,120
7 8

at the time search table is invoked by the caller, thus 5 begins at staring box 70 from which box 71 is entered. In
sometimes removing all expired records, at other times box 71, the search table procedure of FIG. 3 is invoked with
removing some but not all of them, and yet at other times the X X C ~ key of the record 10 be uilserted. AS noted in
,-boosing to remove none of them, such a dynamic ruutinle connection with FIG. 3, the search table procedure finds the
decision might be based on factors such as, for example, linked list element whose key value of the record contained

how much memory is available in the svslem storage pool, therein matches lhe search key at the same time,
general system load, time of dav, the number of records rcmovcs cxpircd rccords on-thc-fly from that linkcd list.

currently residing in the system, and other Decision box 72 is then entered where it is determined

factors both intcmal and cxtcrnal to storage whether the search table procedure found a record with
matclung key value. If so, box 73 isentered where the record

and retrieval system itself A person skilled in the art will 10 to be is put into the linked list element in the
appreciate that the technique of removing all expired records position of the old record with matching key value, box
while searching lhe linked list can be to 74, the insert procedure reports that the old record has been
tecllrliques wllereby not necessarily all expired records are rcplaad by ,hc record and the proccdurc tcrminatcs in
removed, and that the decision regarding if and how many terminal box 75,
records to delefe can be a dynamic one. Is Returning to decision box 72, if a matching record is not

In FIG. 4 there is shown a flowchart of a remove proce- found, decision box 76 is entered to determine if there is
dure that removes a record from the retrieval system, either sufEcicnt storagc in thc systcm storagc pool to accommodate
an unexpired rewlrd through the dcletc p r r d u r e as will he a new linked list element. If not, box 77 is entered to report
noted in connection with FIG. 7, or an expired record that the storage system is full and the record cannot be
through the search table procedure as noted in connection 20 inserled. Fr)llowing that, the procedure Lerminaltis in Lami-
with FIG. 3. In general, thisis accomplished by the invoking nal box 75.
procedure, being either the delete procedure (PIC. 7) or the If decision box 76 determines that sufficienr storage can
search table procedure (FIG. 3), passing to the remove be allocated from the system storage pool for a new linked
procedure a pointer to a Linked list element to remove, a list element, then box 78 is enlered where the actual memory
pointer to that element's predecessor element in the same 25 aUocalion is made. In box 79, the record to be inserted is
linked List, and the subscript of the hrish table array location copied into the storage box 78, and box 80 is
col~tail~illg the pul le r to the bead of the linked list Gem entered. In box 80, the linked list element containing the
which the element is to be removed. In the case that the record copied into it in box 79 is inserted into the linked list
element to be removed is the first element of the linked list, to which the contained record hashed. The procedure then
tbe predecessor pointer passed to the remove procedure by reports that the record was inserted into the information
the invoking procedure has the NIL (sometimes called 30 storage and rct"cva1 syslem in ~ I I X 81 and he prtxedure
NULL, or EMPTY) value, indicating to the remove proce- terminates in box 75.
dure that the element to be removed has no predecessor in FIG. 6 a detailed flowchart of a retrieve procedure
the list. The invoking procedure expecls the remove used to retrieve a record from the infomation storage and
procedure, on completion, to have advanad the passed retrieval system. Starting in box 90, the search table proce-
pointer that originally pointed to the now-removed element 35 dure of FIG, 3 is invoked in box 91, using the key of the
so that it points to the successor element in that linked list, record to be retrieve. as tile lsearcl, key, I,, deckioU box 92
or NIL if the removed element was the final ekment. m e it is determined if a record with a matching key was found
search table p r o d u r e of FIG. 3, in particular, makes use of by the search table procedure. If not, box 93 is entered to
the remove procedure's advancing this passed pointer in the report failure of the retrieve procedure, and the procedure
described way; il is made ust: or in Lhal hr)x 33 oI-FIG. 3 is 40 tcmhatcs in tcminal box 96. If a matching record was
entered directly following completion of box 42, as was found, box 94 is entered to copy the matching record into a
described above in connection with FIG. 3.) record store for processing by the calling program, box 95

Thc rcmovc proccdurc causcs actual rcmoval of thc is entered to returu an indication of successful retrieval, and
designated element by adjusting the predecessor pointer so the procedure terminates in terminal box 96.
that it b ~ ~ a s s s the ekment to be removed. In the case that 4s FIG.7 shows a detailed flowchart of a delete procedure
the predeceswr pointer has the NIL value, h e hash (able useful for actively removing records from the information
array entry indicated by the passed subscript plays the role storage and retrieval systerl~. Startin~g at box 100, the pro-
of the predecessor pointer and is adjusted the same way in cedure of FIG. 7 invokes the search table procedure of FIG.
its stead. Following pointer adjustments, the storage OcCu- 3 in box 101, using the key of the record to be deleted as the
pied by the rcmovcd clcmcnt is rcturncd to thC SYstcm search key. In decision box 102, it is determined if the search
storage pool for future allocation. tablc proccdurc was ablc to find a rccord with matching kcy.

Reginning, Lhen, a1 slarting box 50 of FIG. 4, Lhe poinlcr If not, box 103 is entered to report failure of the deletion
to the list element to remove is advanced in box 51 so that procedure, and the procedure terminates in terminal box
it points to its successor in the Linked list. Next, decision box 106. IT a matching record was round, as determined by
52 determines if the element to remove is the 6rst element decision box 102, the remove procedure of FIG. 4 is invoked
in the containing linked list by testing the predecessor ss in box 104. As noted in connection with FIG. 4, the remove
pointer for the NIL value, a s described above. If so, box 54 procedure causes removal of a designated linked list element
is entered to adjust the linked list head pointer in the hash from its containing linked list. Dox 105 is Lhen entered to
table array to bypass Lhe first element, after which the report successful deletion to the calling program, and the
procedure continues on to box 55. I € not, box 53 is entered procedure terminates in terminal box 106.
where the predecessor pointer is adjusted to bypass the The attached APPENDIX contains PASCAL-like
element to remove, after which the procedure proceeds, once pseudocode listings for all of the programmed components
again, to box 55. Pinally, in box 55 the storage occupied necessary to implement an information storage and retrieval
the bypassed ekment is returned to the system Storage pool system operating in accordance with the present invention.
and the procedure terminates in terminal box 56. Any pcrxln or ordinary skill in Ihe art will havc no dilliculty

FIG. 5 shows a detailed flowchart of an insert procedure 65 implementing the disclosed system and proceduresshown in
suitable for use in the information storage and retrieval the APPENDIX, including programs for all common hard-
system of the present invention. The insert procedure of FIG. ware and system software arrangements, on the basis of this

Case 6:09-cv-00269-LED Document 191 -1 Filed 0411 311 0 Page 13 of 15

5,893,120
9 10

description, including flowcharts and information shown in present invention. It is also clear to those skilled in the art
the APPENDIX. that the invention can be used in diverse computer

It should also be clear to those skilled in the art that other applications, and that it is not limited to the use of hash
embodiments of the present invention may be made by those tables, but is applicable to other techniques requiring linked
skillcd in thc art without dcparting from thc tcachinps of thc lists with cxpiring rccords.

Appendix
-

Fundions Provided

The following functions are made available ro the appliortinn program:
1. insert (record: record-type)

Keturns replaced if a record associated with recordkey was found and
subsequently replaced.
Returns inserted lf a record associated wilh remrd.key was not found and the
passed remrd was subsequently inserted.
Returns full if a record associated wilh record.key was not found and the passed
record could not be inserted because no memory is available.

2. retrieve (record: record-type)
Rcturns succcss if rccord associatcd with rccord.kcy was found and assigncd to
record.
Returns failure if search w s unsucassful.

3. delclc (record-key: record-kcv-type)
Rctu~ns success if recold associated with record-key was Iculid alid subse-
quently delekd.
Relurns hilure iC nu1 round.

Definitions

The following formal definitions are requued for specifying the imertion, retrieval, and deletion
procedures. They are global to all procedures and hnclions shown below.
1. const table-size I* S u e of hash rahle. ' 1
2. type list-elemenl-poinler - f lit-element I' Pointer to elements of linked Ikt. *I
3. type IistLelemenl = I* tach elemenr o i linked list. *I

record
record-contents: record-type;
next: list-element-pointer i* Singly-linked list. 'I

end
4. m r table: am). [O . . . table-size - 11 of list-element-pointer I* Haah cable. *I

1' Ench orroy e n t ~ y is pointer lo head of list. *I
Icirial statc of lablc: tablc[i] = nil V i 0 5 i c table-sizc I* Inilialiy cmpty. *I

lnscrt Proccdurc

Functioli insert (recold: rword-lype): (replaced, inserted, full);
var position: list-elcment-pointer; !* Painter into lisl of found record, ' 1

I* or new element if not found. 'I
dummy-pointer: listelemenl-pointer; I' Don't need paltion's predecessor. *I
index: 0 . . . hb led ize - I; I* Table index mapped to by hash function. *I

bcgin
iC bearchlahle (recurd.key, pobilion, dummy-pointer, inJer) !' Reiurd already exist? ' I

then begin /' Yes, update it with passed record. *I
positionf .rerard_cnntentr := record;
return (replaced)

end
else I* No: insert new record at head of list, *I

if nc memory available then relurn (full) I' if memory amilable ro do so. ' I
else begin 1' Memory is available far a node. 'I

new@osition!; 1' L)gnamically allocate new- node. 'I
positionf .record-contents :- record; ;* Hook it in. *I
positionf .ncxt := tablc[indcx];
table(index1 := position;
return (inserted)

end 1' else hegin 'I
end I* insert *:

Relrieve Procedure

function letrirve (var recold: ~cco~d-type): jsuceess, failure);
var position: list-clement-pointer; !' Pointcr into list of found record. 'I

dnmmy-pointer: list-element-pointer: I* Don't need position's predecessor. */
dummy-index: 0 . . . table-size - I; I* Don't need table index mapped to by hash function. '1

begin
if searchtable (record.key, position, dummy-pointer, dumn?yindcx) :* Record exist? ' 1

then begin I' Yes. return It to caller. ' 1
record := positionf .recnrdLcontentc;
relurn (success)

end
clse return (failure) I* No, rcport failure. */

cud I' retrieve '1

Case 6:09-cv-00269-LED Documelit 191 -1 Filed 0411 311 0 Page 14 of 15

Delerc Procedure

function delete (record-key: record-key-type): (success,bilure);
var pusiliun: list~clcmcnt-pointer; 1- Puinlcr inlo Ikl u l lound rccurd. '1

prcviuus_pusitiun: list-rlcrncnl_puinl~r; I* Poinb co pusition's prcd~essor . "1
index: 0 . . . table s h e - 1; !* Thble index mapped to by hash function. 'I

begin
if searchtable (r e m r U e y , position, previous_position, index)

then begin
remove (position, previous-position, index);
return (success)

end
else retum (failure)

end I' delete '1

I* Record exist? */
I* Yes, remove it. ' 1

i* No, report failure. 'I

Search 'bble Procedure

function search-bblc (recordAey: record-key-type;
var position: list._element--pointer;
var prcvi~us~posi l ion: listclcmcntLpointcr;
var index: 0 . . . table-size - 1): boolean;

I' Search table for record3ey and delete expired recorck in targct list; if found, position is madc tc
point to locatcd record and previousgosition to its predecessor, and TRUE is returned; othenvisc
FALSE is ~cturned. ii~dex is set to table subscript that is mapped to by hash fu~ictiou in citl~er
caar. ' 1

var p: lit-elemmt_puintcr; /' Usrd Cur iravcrjing chain. */
previous p: list element pointer; 1' Points to p's predecessor. */

begin
indcx := hash (recorcLkcy);
p := table[index];
pre\,ious-p := nil;
position := nil;

;* hash returns value in the range 0 . . . table-size - 1. 'I
I* Initialization before loop. '1

/* L),tt0 ' 1
1' L)itto ' 1

previau-posilion := nil; I* Ditto '1
while p i nil :' HEART OF THE TECHNIQUE: Travelse entire list, de!eting */

I* expired records as we search. */
begin

if p l . recodrontenta is expired
then remove @, previous-p, index) !* ON-THE-FIB REMOVAL OF EXPIRED RECORD! */
else begin

if position - nil thcn if p t .record-contcnts.kcy = rccord_kcy
!* If this is rccord wanted,*/

then begin position := p; previous-position :- p r e n o u h p end;
1' save its position. '1

previous> := p; 1' Advar~cr to 'I
p := p t .nex~ 1' ncx~ r w r d . */

erid I* else brgin ' 1
end;

return @osition * nil) ;' Return TRUE if record located, otherwise FALSE. 'I
end I* searchtable *I

Alternate Version of Search Table Procedure

ftlnction searshtahle (recordAey: remrdAey-type;
var position: list~~elementppointer;
var previous-position: lisr-element-pointer;
var index: 0 . . . table-size - 1): boolean;

P SAME AS VERSIO'V SHOWK ABOVE EXCEW THAT I H E SEARCH TERhltNATES IF
RECORD IS FOUND, NSTEAD OF ALWAYS TRAVERSING THE EhTIRE CHAIN. ' 1

vnr p: listLelement_pointer; !' Used for rrnversing chnin. 'I
pre\.iou-p: list-element-pointer; I* Points to ~ ' s predecessor. */ . .

bc&
indcx := hash (record-kcy); ;' hash rctums valuc in thc rangc 0 . . . lahlc-six - 1. */
p := table[indcx]; 1' Initialization before loop. 'I
preriou-p := nil; I' Ditto *I
position := nil; I* Ditto *I
previous-pusiliun := nil; 1" Dilb */
while p r nil I* HEART OF THE TECHNIQUE: Traverse list, deleting 'I

I* expired records as we search. 'I
begin

if p i .record-contenu is expired
then remove (p, previous-p, index) ,'* ON-THE-F1.Y RFMOVAI. OF FXPIRFTJ RECORD! *I
else begin

if p f .rerordLc~nlents.key = r e ro rd2ey I* If this is record wanted;/
then begin /* save its posilion. 'I

position := p;
previous-position := previous-p;
return (true) I* We found the record, so terminate search. */

end
previous_p :- p; 1' Advance to */
p := p t .next I' next rem~d. */

Case 6:09-cv-00269-LED Document 191 -1 Filed 0411 311 0 Page 15 of 15

-continued

Appendix

cnd /' c16e begin ' 1
cnd;
return (false) I* Record net found. ' 1

cnJ I* bcarch-kble */
Remove Prucetlurc

procedure remove (var elem to del: list element pointer;
previous-elem: lisl-elemencpoinrer;
index: 0 . . . table-size - 7);

/ Delete elem-to-dell from list, advancing elem-to-del lo next element previouq-elem points to
elem-to-del's predecesor, or nil if elem-to-delf is 1" element in lisl.'/

var p: IistLelementLpointer; i* Save pointer lo elem-to-del €or disposal. ' 1
begin

p : = elem-to-&I; ," Save so we can dispose when finished adjusting pointers. *I
elem-to-del : = elemto-del l .next;
if previous_elem = nil 1' Deleting 1" element requires changing ' 1

then lable[index] :- elem-to-del !* head pointer, as opposed to ' 1
else previous-elemf .next :- elem-to_del; I* predecessor's next pointer. */
disposc @) j* Dynamically dc-allocntc nodc. */

end 1' remove';

I claim: technique to store the records with same hash address,
1. An information storage and retrieval system, the system at least some of the records automatically expiring,

comprising: 25 a record search means utilizing a search key to access a
a linked list to store and provide access to records stored linked list of records having the same hash address,

in a memory of the system, at least some of the records
automatically expiring, the record search means including means for identifying

and removing at least some expired ones of Ihe records
a record search means utilizing a search key to access the

linked list. 30 rrom the linkcd list o r records whcn the linked list is
~ ~ ~~ ~

accwed, and the record search means including a means for identifying
and removing at least some of the expired ones of the meals, utilizing the record search means, for inserting,

records from the linked list when the linked list is retrieving, and dclcliny records from the system and, at
accessed, and the same time, removing at least some expired ones of

means, utilizing the record search means, for accessing 3s the records in the accessed linked list of records.
the linked list and, at the same time, removing at least 6 . The information storage and retrieval system according
some of the expired ones of the records in the linked to claim 5 further including means for dynamically deter-
list. mining maximum number for the record search means to

2. The information storage and retrieval system according 40 remove in the accessed linked list of records.
to claim 1 furthcr including mcans for dynamically dctcr- 7. Amethod for storing arid retrievllig infom~ation records
mining maximum number for the record search means to using a bashing technique to provide a c a s s to the records
remove in the accessed linked list of records. and using an external chaining technique to store the records

3. Amethod for storing and retrieving information records hash address, at lcasL the records
using a linked list to store and provide access to the records. 4s matically cxpirhg, method steps of:
at least some of the records automatically expiring, the
method comprising the steps oE accessing a linked list of records having same hash

address,
accessing the linked lisl of records,

identifying at least some of the automatically expired ones identifying at least some of the automatically expired ones
of the records. and of the records,

so
removing at least of the automatically expired removing a' least of cx~ircd

records from the linked list when the linked list is records from the linked list when the linked list is

a c c w e d . acce.cwd, and
4. The method according to claim 3 further including the inserting, retrieving or deleting one of the records from

step of dynamically determining maximr~m nilmber of 5s the syste~u following the step of removing.
cxpircd oncs of thc rccords to rcmovc whcn thc linkcd list 8. Thc mcthod according to claim 7 furthcr including thc
is accessed step of dynamically determining maximum number of

5. An information storage and retrieval system, the system expired ones of the records to remove when the linked list
comprising: is accessed.

a hashing means to provide access to records stored in a 60

memory or the system and u~irlg an external chaining + * * * *

