

EXHIBIT B

Bedrock Computer Technologies, LLC v. Softlayer Technologies, Inc. et al Doc. 251 Att. 2

Dockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/6:2009cv00269/116887/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2009cv00269/116887/251/2.html
http://dockets.justia.com/

Exhibit B

 1

Term Defendants’ Construction Supporting Evidence

1. linked list to
store and
provide
records/linked
list of records

[Claims 1, 3, 5,
and 7]

two or more records in which
each record contains a pointer
to the next record in the list
or information indicating that
there is no next record

Intrinsic Evidence

Title: “METHODS AND APPARATUS FOR INFORMATION STORAGE
AND RETRIEVAL USING A HASHING TECHNIQUE WITH EXTERNAL
CHAINING AND ON-THE-FLY REMOVAL OF EXPIRED DATA.”

 Abstract: “A method and apparatus for performing storage and retrieval in
an information storage system is disclosed that uses the hashing technique
with the external chaining method for collision resolution.”

Col. 1, ll. 58-67 and Col. 2, ll. 1-6: “Another method for resolving collisions
is called "external chaining." In this technique, each hash table location is a
pointer to the head of a linked list of records, all of whose keys translate
under the hashing function to that very hash table address. The linked list is
itself searched sequentially when retrieving, inserting, or deleting a record.
Insertion and deletion are done by adjusting pointers in the linked list.
External chaining is discussed in considerable detail in the aforementioned
text by D. E. Knuth, in Data Structures and Program Design, Second Edition,
by R. L. Kruse, Prentice-Hall, Incorporated, Englewood Cliffs, N.J., 1987,
Section 6.5, "Hashing," and Section 6.6, "Analysis of Hashing," pp. 198-215,
and in Data Structures with Abstract Data Types and Pascal, by D. F. Stubbs
and N. W. Webre, Brooks/Cole Publishing Company, Monterey, Calif., 1985,
Section 7.4, "Hashed Implementations," pp. 310-336.”

Col. 5, ll. 16-25: “A common collision resolution strategy, with which the
present invention is concerned, is called external chaining. Under external
chaining, each hash table entry stores all of the records that collided at that
location by storing not the records themselves, but instead a pointer to the
head of a linked list of those same records. Such linked lists are formed by
storing the records individually in dynamically allocated storage and

Exhibit B

 2

maintaining with each record a pointer to the location of the next record in the
chain of collided records.”

Appendix, col. 9-10:

See, e.g., Data Structures and Program Design, Robert L. Kruse (1987), p.
20: “The idea of a linked list is, for every record in the list, to put a pointer
into the record giving the location of the next record in the list.”

U.S. Pat. No. 5,287,499, Col. 5, ll. 63-68 and col. 6, ll. 1-12: “A second
general technique for collision resolution is called external chaining. Under
external chaining, each cell in the hash table effectively stores all of the
colliding records. This is accomplished by making each table entry (each cell)
consist of a pointer to the head of a linked list of records. Such linked lists are
formed by storing records randomly in any available storage space, but
maintaining in each record a pointer to the location of the next record in the
chain. When a search key is hashed to the hash table entry, the pointer located
there is used to locate the first record. If the search key does not match this
record, the pointer therein contained is used to locate the second record. In
this way, the ‘chain’ of records is traversed sequentially until the desired
record is located or until the end of the chain is reached (no pointer to a next
record). Deletion of records simply involves adjusting the pointers to bypass
the deleted record.”

Exhibit B

 3

Extrinsic Evidence

The IEEE Standard Dictionary of Electrical and Electronics Terms (6th Ed.
1996), page 590: “A list in which each item contains a pointer to the next or
preceding item in the list, making it unnecessary for the items to be physically
sequential.”

Computer Dictionary, Microsoft Press (3rd Ed. 1997), page 285: “In
programming, a list of nodes or elements of a data structure connected by
pointers. A singly linked list has one pointer in each node pointing to the next
node in the list.”

2. automatically
expiring/expired

[Claims 1, 3, 5,
and 7]

becoming obsolete and no
longer needed or desired in
the storage system because of
some external condition

Intrinsic Evidence

Col. 2, ll. 7-21: “Some forms of information are such that individual data
items, after a limited period of time, become obsolete, and their presence in
the storage system is no longer needed or desired. Scheduling activities, for
example, involve data that become obsolete once the scheduled event has
occurred. An automatically-expiring data item, once it expires, needlessly
occupies computer memory storage that could otherwise be put to use storing
an unexpired item. Thus, expired items must eventually be removed to
reclaim the storage for subsequent data insertions. In addition, the presence of
many expired items results in needlessly long search times since the linked
lists associated with external chaining will be longer than they otherwise
would be. The goal is to remove these expired items to reclaim the storage
and maintain fast access to the data.”

Col. 2, ll. 11-14: “An automatically-expiring data item, once it expires,
needlessly occupies computer memory storage that could otherwise be put to
use storing an unexpired item.”

Col. 2, ll. 14-16: “Thus, expired items must eventually be removed to reclaim

Exhibit B

 4

the storage for subsequent data insertions.”

Col. 2, ll. 57-67 and Col. 3, ll. 1-3: “In particular, during normal data
insertion or retrieval probes into the data store, the expired, obsolete records
are identified and removed from the external chain linked list. Specifically,
expired or obsolete records in the linked list including the record to be
accessed are removed as part of the normal search procedure. This
incremental garbage collection technique has the decided advantage of
automatically eliminating unneeded records without requiring that the
information storage system be taken off-line for such garbage collection. This
is particularly important for information storage systems requiring rapid
access and continuous availability to the user population.”

Col. 5, ll. 38-44: “In some common types of data storage systems, however,
the storage system is long lived and records can become obsolete merely by
the passage of time or by the occurrence of some event. If such expired,
lapsed, or obsolete records are not removed from the system, they will, in
time, seriously degrade the performance of the retrieval system.”

Col. 6, ll. 5-20: “If the end of the list has not been reached as determined by
decision box 33, decision box 38 is entered to determine if the record pointed
to has expired. This is determined by comparing some portion of the contents
of the record to some external condition. A timestamp in the record, for
example, could be compared with the current time-of-day value maintained
by all computers. Alternatively, the occurrence of an event can be compared
with a field identifying that event in the record. In any case, if the record has
not expired, decision box 39 is entered to determine if the key in this record
matches the search key. If it does, the address of the record is saved in box 40
and box 41 is entered. If the record does not match the search key, the
procedure bypasses box 40 and proceeds directly to box 41. In box 41, the
procedure advances forward to the next record in the linked list and the
procedure returns to box 33.”

Exhibit B

 5

’120 Patent File History, August 10, 1998 Response at page 5: “Claims 1-8
of the instant application address on-the-fly deletion of at least some records
from a linked list based on automatic expiration of data, whereas ‘499 teaches
automatic reorganization of records from linked list structure to sequential
storage structure and vice versa to facilitate system efficiency. Nowhere does
‘499 teach deletion from the system, nor does it teach regarding automatically
expiring data.”

U.S. Pat. No. 5,121,495, Col. 1, ll. 57-60: "Some forms of data records have
a limited lifetime after which they become obsolete. Scheduling activities, for
example, involves records which become obsolete after the scheduled activity
has occurred."

U.S. Pat. No. 5,121,495, Col. 2, ll. 23-25: "The problem, then, is to provide
speed of access of hashing techniques for large and heavily used information
storage systems having expiring data..."

U.S. Pat. No. 5,121,495, Col. 4, ll. 23-28: In some common types of data
storage systems, data records become obsolete merely by the passage of time
or by the occurrence of some event. If such expired, lapsed or obsolete
records are not removed from the storage table, they will, in time, seriously
degrade or contaminate the performance of the retrieval system.”

U.S. Pat. No. 5,121,495, Col. 5, ll. 22-26: “If the cell tested in decision box
34 is not empty, decision box 40 is entered to determine if the record in that
cell has expired. This is determined by comparing some portion of the
contents of the record to some external condition.”

Data Structures and Program Design, Robert L. Kruse (1987), p. 5 (and
throughout): Kruse describes the Game of Life in which cells become dead
based on the condition of cells around them.

 Extrinsic Evidence

Exhibit B

 6

Computer Dictionary, Microsoft Press (3rd Ed. 1997), page 184: Expire – “to
stop functioning in whole or in part. Beta versions of software are often
programmed to expire when a new version is released.”
Dictionary of Computing, (Prentice Hall’s Illustrated) Jonar C. Nader (3rd
Edition 1998), page 230: Expiration check – “ISO A comparison of a given
date with an expiration date.”

3. identifying . . .
[expired ones of
the records /
automatically
expired ones of
the records] . . .

[Claims 1, 3, 5,
and 7]

determining whether a record
is expired by comparing some
portion of the contents of the
record to some external
condition

Intrinsic Evidence

Col. 6, ll. 5-20: “If the end of the list has not been reached as determined by
decision box 33, decision box 38 is entered to determine if the record pointed
to has expired. This is determined by comparing some portion of the contents
of the record to some external condition. A timestamp in the record, for
example, could be compared with the current time-of-day value maintained
by all computers. Alternatively, the occurrence of an event can be compared
with a field identifying that event in the record. In any case, if the record has
not expired, decision box 39 is entered to determine if the key in this record
matches the search key. If it does, the address of the record is saved in box 40
and box 41 is entered. If the record does not match the search key, the
procedure bypasses box 40 and proceeds directly to box 41. In box 41, the
procedure advances forward to the next record in the linked list and the
procedure returns to box 33.”

U.S. Pat. No. 5,121,495, Col. 5, ll. 22-26: “If the cell tested in decision box
34 is not empty, decision box 40 is entered to determine if the record in that
cell has expired. This is determined by comparing some portion of the
contents of the record to some external condition.”

Data Structures and Program Design, Robert L. Kruse (1987), p. 5 (and
throughout): Kruse describes the Game of Life in which cells become dead
based on the condition of cells around them.

Extrinsic Evidence

Exhibit B

 7

Webster’s Ninth New Collegiate Dictionary (1989), page 597: Identifying –
“To establish the identity of.”

Howard Bowman et al., Modeling Garbage Collection Algorithms using CCS
and Temporal Logic (abstract), ACM (1994), page 394: “Either the
programmer must explicitly allocate and de-allocate such objects or an
automatic storage reclamation system, a garbage collector, must be employed
to identify at run-time which objects may be in use now and in the future, and
which objects cannot be used again.”

4. identifying . . .
and
removing . . .
when the linked
list is accessed

[Claims 3 and
7]

both identification and
removal of the automatically
expired record(s) occurs
during the same traversal of
the linked list

Intrinsic Evidence

See Figs. 3 and 4.

Col. 2, ll. 57-67 and Col. 3, ll. 1-3: “In particular, during normal data
insertion or retrieval probes into the data store, the expired, obsolete records
are identified and removed from the external chain linked list. Specifically,
expired or obsolete records in the linked list including the record to be
accessed are removed as part of the normal search procedure. This
incremental garbage collection technique has the decided advantage of
automatically eliminating unneeded records without requiring that the
information storage system be taken off-line for such garbage collection. This
is particularly important for information storage systems requiring rapid
access and continuous availability to the user population.”

Col. 3, ll. 4-11: “More specifically, a method for storing and retrieving
information records using a linked list to store and provide access to the
records, at least some of the records automatically expiring, is disclosed. The
method accesses the linked list of records and identifies at least some
automatically expired ones of the records. It also removes at least some

Exhibit B

 8

automatically expired ones of the records from the linked list when the linked
list is accessed.”

FIG.3; Col. 5, l., 57 – Col. 6, l. 27: “Starting in box 30 of the search table
procedure of FIG. 3, the search key of the record being searched for is hashed
in box 31 to provide the subscript of an array element. In box 32, the hash
table array location indicated by the subscript generated in box 31 is accessed
to provide the pointer to the target linked list. Decision box 33 examines the
pointer value to determine whether the end of the linked list has been reached.
If the end has been reached, decision box 34 is entered to determine if a key
match was previously found in decision box 39 (as will be described below).
If so, the search is successful and returns success in box 35, followed by the
procedure's termination in terminal box 37. If not, box 36 is entered where
failure is returned and the procedure again terminates in box 37. If the end of
the list has not been reached as determined by decision box 33, decision box
38 is entered to determine if the record pointed to has expired. This is
determined by comparing some portion of the contents of the record to some
external condition. A timestamp in the record, for example, could be
compared with the current time-of-day value maintained by all computers.
Alternatively, the occurrence of an event can be compared with a field
identifying that event in the record. … If decision box 38 determines that the
record under question has expired, box 42 is entered to perform the on-the-fly
removal of the expired record from the linked list and the return of the storage
it occupies to the system storage pool, as will be described in connection with
FIG. 4.”

Col. 6:35-38: “It can be seen that the search table procedure of FIG. 3
operates to examine the entire linked list of records of which the searched-for
record is a part, and to remove expired records, returning storage to the
storage pool with each removal.”

Col. 6, ll. 46-53: “Though the search table procedure as shown in FIG. 3,
implemented in the APPENDIX as PASCAL-like pseudocode, and described
above appears in connection with an information storage and retrieval system

Exhibit B

 9

using the hashing technique with external chaining, its on-the-fly removal
technique while traversing a linked list can be used anywhere a linked list of
records with expiring data appears, even in contexts unrelated to hashing.”

Col. 6, ll. 56-59: “The search table procedure shown in FIG. 3, implemented
as pseudocode in the APPENDIX, and described above traverses the entire
linked list removing all expired records as it searches for a key match.”

Col. 11-12, see pseudocode: "HEART OF THE TECHNIQUE: Traverse
entire list, deleting expired records as we search"

Fig. 3 shows that the Remove function (Fig. 4) is called while the linked list is
being traversed – it is in the “END OF LIST” loop 33.

See Figs. 3-7, col. col. 5, l. 53 - col. 8, l. 60; and the pseudocode in cols. 9-14.

’120 Patent File History, August 10, 1998 Response at page 3: “Although it
is true that in the instant application “external chaining” and “chaining” are
each equivalent to being linked, '499 does not teach or suggest on-the-fly
deletion of at least some records based on automatic expiration of data, which
is claimed here.”

’120 Patent File History, August 10, 1998 Response at pages 3-4: “Item 6
states that as to claim 5 and 7, '499 does not recite the terms “linked list,”
“insert,” “retrieve,” or “delete,” but instead recites “external chaining” and
“storing,” and that “it would have been obvious to a person of ordinary skill
in the art at the time the invention was made to use a linked list of records
because a chain of records chained by an external chaining generates a linked
list” (sic). The'499 patent, however, does not teach means or methods for
identifying and removing “at least some expired ones of the records” from the
linked list “when the linked list is accessed” (see claims 5 and 7), which is
taught by the instant application and is integral to claims 5 and 7. Thus, the
rejection should be withdrawn.”

Exhibit B

 10

’120 Patent File History, August 10, 1998 Response at page 5: “Claims 1-8
of the instant application address on-the-fly deletion of at least some records
from a linked list based on automatic expiration of data, whereas '499 teaches
automatic reorganization of records from linked list structure to sequential
storage structure and vice versa to facilitate system efficiency. Nowhere does
'499 teach deletion from the system, nor does it teach regarding automatically
expiring data.”

’120 Patent File History, August 10, 1998 Response at page 6: “Item 11
states that claims 1-8 are rejected under 35 U.S.C. 8 103 as being
unpatentable over '499 directed to the linked lists and the step of removing, as
set forth in the Double Patenting discussion, which is item 6 in the Office
action. Neither '499 nor Shackelford suggest what is recited in claims 1, 3, 5,
and 7, for example, means and methods for identifying and removing “at least
some expired ones of the records” from the linked list “when the linked list is
accessed.”

’120 Patent File History, September 22, 1998 Notice of Allowability at page
2: “The prior art does not teach or fairly suggest a method and apparatus for
on-the-fly deletion of records in linked lists based on automatic expiration of
data as claimed. In other words, the prior art of record does not teach or fairly
suggest the means (or an equivalent step in the method claim) of “means
for . . . accessing a linked list, at the same time, removing some of the
expired ones of the records in the linked list,” as recited in lines 7-8 of claim
1. Although the prior art of record (Nemes, '495 reference) teaches the use of
chains of records and the deletion of records, the Applicant, in the Response
dated August 11, 1998, Paper No. 5, provided arguments as to why the chain
of records as taught in the '495 reference is not the same as the linked list as
claimed. The Applicant also distinguishes the claimed invention over the
teachings of the '499 references, see page 3, Paper no. 5.”

Robert L. Kruse, Data Structures & Program Design (2nd Ed. 1987), pages
121-124, Section 4.3.1 Sub-sections 1, 2, and 3.

Exhibit B

 11

Extrinsic Evidence

Computer Dictionary, Microsoft Press (3rd Ed. 1997), page 135: Deallocate
– “To free previously allocated memory.”

Webster’s New World Dictionary of Computer Terms (4th Ed. 1992), page
105: Deallocation – “The release of a resource by a program when the
program no longer needs it.”

Richard Jones and Raphael Lins, Garbage Collection (1997 reprinted in
2007), page 324: Deallocation – “the return of space to the storage manager.”

Stanley B. Lippman, C++ Primer (1989), page 147:

[snip]

While (pt && pt-> val == val) {
 tmp= pt->next; // pointer adjustment for removal
 delete pt; // this is the memory de-allocation.
 ++cnt;
 pt = tmp;
}
[snip]

Clifford A. Shaffer, A practical introduction to Data Structures and Algorithm
Analysis (2nd Ed. 2001), page 100:

Remove (elem & it) {
 If (fence->next == NULL) return false;
 It = fence->next->element;
Link <Elem>* ltem = fence->next; //pointer adjustment

Exhibit B

 12

Fence->next = ltem ->next; // pointer adjustment for removal
If (tail==ltem) tail = fence;
Delete ltemp; // memory disposal
Rightcnt--;
Return true;
}

Ellis Horowitz and Sartaj Sahni, Fundamentals of Data Structures in
PASCAL (1984), page 103: Shows a PASCAL procedure for delete (i.e,
remove) for linked list.

Procedure delete (x,y: pointer; var fist:pointer)
Begin
 If y = nul then first = first->link;
 Else y->link = x->link; // link adjustment
 Dispose(x); //memory disposal
end

Webster’s Ninth New Collegiate Dictionary (1989), page 597: Identifying –
“To establish the identity of.”

Howard Bowman et al., Modeling Garbage Collection Algorithms using CCS
and Temporal Logic (abstract), ACM (1994), page 394: “Either the
programmer must explicitly allocate and de-allocate such objects or an
automatic storage reclamation system, a garbage collector, must be employed
to identify at run-time which objects may be in use now and in the future, and
which objects cannot be used again.”

Moshe Augenstein and Aaron Tenenbaum, Data Structures and pl/I
Programming (1979), page 280: "An item is accessed in a linked list by
traversing the list from its beginning. An array implementation allows access
to the nth item in a group using a single operation, while a list implementation
requires n operations."

Exhibit B

 13

Computer Dictionary, Microsoft Press (3rd Ed. 1997), page 138: Delete – “to
eliminate text, a file, or part of a document with the intention of removing the
information permanently.”

Webster’s New World Dictionary of Computer Terms (4th Ed. 1992), page
109: Delete – “To remove or eliminate, as to erase data from a field or to
eliminate a record from a file.”

Webster’s Third New International Dictionary. Merriam-Webster, Inc.
(1993), page 2122: Simultaneous – “at the same time.”

Webster’s Third New International Dictionary. Merriam-Webster, Inc.
(1993), page 2602: When – “at or during the time that.”

Webster’s Ninth New Collegiate Dictionary at 1342 (1989), page 1342: When
– “at or during the time that; while.”

5. removing at
least some of
the expired ones
of the records
from the linked
list when the
linked list is
accessed

[Claims 3 and
7]

while traversing the linked
list, both adjusting the
pointers in the linked list to
bypass the previously
identified expired records and
de-allocating the memory
occupied by those records

Intrinsic Evidence

Col. 2, ll. 57-67 and Col. 3, ll. 1-3: “In particular, during normal data
insertion or retrieval probes into the data store, the expired, obsolete records
are identified and removed from the external chain linked list. Specifically,
expired or obsolete records in the linked list including the record to be
accessed are removed as part of the normal search procedure. This
incremental garbage collection technique has the decided advantage of
automatically eliminating unneeded records without requiring that the
information storage system be taken off-line for such garbage collection. This
is particularly important for information storage systems requiring rapid
access and continuous availability to the user population.”

Col. 5, ll. 25-33: “When a search key is hashed to a hash table entry, the
pointer found there is used to locate the first record. If the search key does not

Exhibit B

 14

match the key found there, the pointer there is used to locate the second
record. In this way, the "chain" of records is traversed sequentially until the
desired record is found or until the end of the chain is reached. Deletion of
records involves merely adjusting the pointers to bypass the deleted record
and returning the storage it occupied to the available storage pool maintained
by the system.”

FIG.3 and FIG. 4. Col. 5:64 – Col. 6:39: “Decision box 33 examines the
pointer value to determine whether the end of the linked list has been
reached. …. If the end of the list has not been reached as determined by
decision box 33, decision box 38 is entered to determine if the record pointed
to has expired. …. If decision box 38 determines that the record under
question has expired, box 42 is entered to perform the on-the-fly removal of
the expired record from the linked list and the return of the storage it occupies
to the system storage pool, as will be described in connection with FIG. 4. In
general, the remove procedure of box 42 (FIG. 4) operates to remove an
element from the linked list by adjusting its predecessor's pointer to bypass
that element. (However, if the element to be removed is the first element of
the list, then there is no predecessor and the hash table array entry is adjusted
instead.) On completion of procedure remove invoked from box 42, the
search table procedure returns to box 33. It can be seen that the search table
procedure of FIG. 3 operates to examine the entire linked list of records of
which the searched-for record is a part, and to remove expired records,
returning storage to the storage pool with each removal. If the storage pool is
depleted and many expired records remain despite such automatic garbage
collection, then the insertion of new records is inhibited (boxes 76 and 77 of
FIG. 5) until a deletion is made by the delete procedure (FIG. 7) or until the
search table procedure has had a chance to replenish the storage pool through
its on-the-fly garbage 45 collection.”

Col. 6, ll. 56-59: “The search table procedure shown in FIG. 3, implemented
as pseudocode in the APPENDIX, and described above traverses the entire
linked list removing all expired records as it searches for a key match.”

Exhibit B

 15

Col. 7, ll. 15-42: “In FIG. 4 there is shown a flowchart of a remove procedure
that removes a record from the retrieval system, either an unexpired record
through the delete procedure as will be noted in connection with FIG. 7, or an
expired record through the search table procedure as noted in connection with
FIG. 3. In general, this is accomplished by the invoking procedure, being
either the delete procedure (FIG. 7) or the search table procedure (FIG. 3),
passing to the remove procedure a pointer to a linked list element to remove, a
pointer to that element's predecessor element in the same linked list, and the
subscript of the hash table array location containing the pointer to the head of
the linked list from which the element is to be removed. In the case that the
element to be removed is the first element of the linked list, the predecessor
pointer passed to the remove procedure by the invoking procedure has the
NIL (sometimes called NULL, or EMPTY) value, indicating to the remove
procedure that the element to be removed has no predecessor in the list. The
invoking procedure expects the remove procedure, on completion, to have
advanced the passed pointer that originally pointed to the now-removed
element so that it points to the successor element in that linked list, or NIL if
the removed element was the final element. (The search table procedure of
FIG. 3, in particular, makes use of the remove procedure's advancing this
passed pointer in the described way; it is made use of in that box 33 of FIG. 3
is entered directly following completion of box 42, as was described above in
connection with FIG. 3.).”

Col. 7, ll. 43-50: “The remove procedure causes actual removal of the
designated element by adjusting the predecessor pointer so that it bypasses the
element to be removed. In the case that 45 the predecessor pointer has the
NIL value, the hash table array entry indicated by the passed subscript plays
the role of the predecessor pointer and is adjusted the same way in its stead.
Following pointer adjustments, the storage occupied by the removed element
is returned to the system storage pool for future allocation.”

Col. 7, ll. 57-64: “If so, box 54 is entered to adjust the linked list head pointer

Exhibit B

 16

in the hash table array to bypass the first element, after which the procedure
continues on to box 55. If not, box 53 is entered where the predecessor
pointer is adjusted to bypass the 60 element to remove, after which the
procedure proceeds, once again, to box 55. Finally, in box 55 the storage
occupied by the bypassed element is returned to the system storage pool and
the procedure terminates in terminal box 56.” (FIG. 4, described by this text
is referred to as a “remove procedure”)

Col. 8, ll. 22-25: “If decision box 76 determines that sufficient storage can be
allocated from the system storage pool for a new linked list element, then box
78 is entered where the actual memory allocation is made.”

Col. 8, ll. 60-64: The attached APPENDIX contains PASCAL-like
pseudocode listings for all of the programmed components necessary to
implement an information storage and retrieval system operating in
accordance with the present invention.

Col. 11-12, see pseudocode: "HEART OF THE TECHNIQUE: Traverse
entire list, deleting expired records as we search"

Col. 13-14: The “remove” procedure includes both deletion (adjusting the
pointer) and dispose (de-allocating).

Fig. 3 shows that the Remove function (Fig. 4) is called while the linked list is
being traversed – it is in the “END OF LIST” loop 33.

’120 Patent File History, August 10, 1998 Response at page 3: “Although it
is true that in the instant application “external chaining” and “chaining” are
each equivalent to being linked, ’499 does not teach or suggest on-the-fly
deletion of at least some records based on automatic expiration of data, which
is claimed here.”

’120 Patent File History, August 10, 1998 Response at pages 3-4: “Item 6

Exhibit B

 17

states that as to claim 5 and 7, '499 does not recite the terms “linked list,”
“insert,” “retrieve,” or “delete,” but instead recites “external chaining” and
“storing,” and that “it would have been obvious to a person of ordinary skill
in the art at the time the invention was made to use a linked list of records
because a chain of records chained by an external chaining generates a linked
list” (sic). The'499 patent, however, does not teach means or methods for
identifying and removing “at least some expired ones of the records” from the
linked list “when the linked list is accessed” (see claims 5 and 7), which is
taught by the instant application and is integral to claims 5 and 7. Thus, the
rejection should be withdrawn.”

’120 Patent File History, August 10, 1998 Response at page 5: “Claims 1-8
of the instant application address on-the-fly deletion of at least some records
from a linked list based on automatic expiration of data, whereas '499 teaches
automatic reorganization of records from linked list structure to sequential
storage structure and vice versa to facilitate system efficiency. Nowhere does
'499 teach deletion from the system, nor does it teach regarding automatically
expiring data.”

’120 Patent File History, August 10, 1998 Response at page 6: “Item 11
states that claims 1-8 are rejected under 35 U.S.C. 8 103 as being
unpatentable over '499 directed to the linked lists and the step of removing, as
set forth in the Double Patenting discussion, which is item 6 in the Office
action. Neither '499 nor Shackelford suggest what is recited in claims 1, 3, 5,
and 7, for example, means and methods for identifying and removing “at least
some expired ones of the records” from the linked list “when the linked list is
accessed.”

’120 Patent File History, September 22, 1998 Notice of Allowability at page
2: “The prior art does not teach or fairly suggest a method and apparatus for
on-the-fly deletion of records in linked lists based on automatic expiration of
data as claimed. In other words, the prior art of record does not teach or fairly
suggest the means (or an equivalent step in the method claim) of “means

Exhibit B

 18

for . . . accessing a linked list, at the same time, removing some of the
expired ones of the records in the linked list,” as recited in lines 7-8 of claim
1. Although the prior art of record (Nemes, '495 reference) teaches the use of
chains of records and the deletion of records, the Applicant, in the Response
dated August 11, 1998, Paper No. 5, provided arguments as to why the chain
of records as taught in the '495 reference is not the same as the linked list as
claimed. The Applicant also distinguishes the claimed invention over the
teachings of the '499 references, see page 3, Paper no. 5.”

Robert L. Kruse, Data Structures & Program Design (2nd Ed. 1987), pages
121-124, Section 4.3.1 Sub-sections 1, 2, and 3.

Extrinsic Evidence

Computer Dictionary, Microsoft Press (3rd Ed. 1997), page 135: Deallocate
– “To free previously allocated memory.”

Webster’s New World Dictionary of Computer Terms (4th Ed. 1992), page
105: Deallocation – “The release of a resource by a program when the
program no longer needs it.”

Richard Jones and Raphael Lins, Garbage Collection (1997 reprinted in
2007), page 324: Deallocation – “the return of space to the storage
manager.”

Stanley B. Lippman, C++ Primer (1989), page 147:

[snip]

While (pt && pt-> val == val) {
 tmp= pt->next; // pointer adjustment for removal
 delete pt; // this is the memory de-allocation.
 ++cnt;

Exhibit B

 19

 pt = tmp;
}
[snip]

Clifford A. Shaffer, A practical introduction to Data Structures and Algorithm
Analysis (2nd Ed. 2001), page 100:

Remove (elem & it) {
 If (fence->next == NULL) return false;
 It = fence->next->element;
Link <Elem>* ltem = fence->next; //pointer adjustment
Fence->next = ltem ->next; // pointer adjustment for removal
If (tail==ltem) tail = fence;
Delete ltemp; // memory disposal
Rightcnt--;
Return true;
}

Ellis Horowitz and Sartaj Sahni, Fundamentals of Data Structures in
PASCAL (1984), page 103: Shows a PASCAL procedure for delete (i.e,
remove) for linked list.

Procedure delete (x,y: pointer; var fist:pointer)
Begin
 If y = nul then first = first->link;
 Else y->link = x->link; // link adjustment
 Dispose(x); //memory disposal
end

Moshe Augenstein and Aaron Tenenbaum, Data Structures and pl/I
Programming (1979), page 280: "An item is accessed in a linked list by
traversing the list from its beginning. An array implementation allows access
to the nth item in a group using a single operation, while a list implementation
requires n operations."

Exhibit B

 20

Computer Dictionary, Microsoft Press (3rd Ed. 1997), page 138: Delete – “to
eliminate text, a file, or part of a document with the intention of removing the
information permanently.”

Webster’s New World Dictionary of Computer Terms (4th Ed. 1992), page
109: Delete – “To remove or eliminate, as to erase data from a field or to
eliminate a record from a file.”

Webster’s Third New International Dictionary. Merriam-Webster, Inc.
(1993), page 2122: Simultaneous – “at the same time.”

Webster’s Third New International Dictionary. Merriam-Webster, Inc.
(1993), page 2602: When – “at or during the time that.”

Webster’s Ninth New Collegiate Dictionary at 1342 (1989), page 1342: When
– “at or during the time that; while.”

6. dynamically
determining
maximum
number of
expired ones of
the records to
remove when
the linked list is
accessed

[Claims 4 and
8]

immediately before the linked
list is traversed, determining
a single number that serves as
an upper limit on the number
of records to remove as the
linked list is traversed

Intrinsic Evidence

Col. 6, ll. 56-67 and Col. 7, ll. 1-15: “The search table procedure shown in
FIG. 3, implemented as pseudocode in the APPENDIX, and described above
traverses the entire linked list removing all expired records as it searches for a
key match. The procedure can be readily adapted to remove some but not all
of the expired records, thereby shortening the linked list traversal time and
speeding up the search at the expense of perhaps leaving some expired
records in the list. For example, the procedure can be modified to terminate
when a key match occurs. (PASCAL-like pseudocode for this alternate
version of search table appears in the APPENDIX.) The implementor even
has the prerogative of choosing among these strategies dynamically at the
time search table is invoked by the caller, thus sometimes removing all
expired records, at other times removing some but not all of them, and yet at

Exhibit B

 21

other times choosing to remove none of them. Such a dynamic runtime
decision might be based on factors such as, for example, how much memory
is available in the system storage pool, general system load, time of day, the
number of records currently residing in the information system, and other
factors both internal and external to the information storage and retrieval
system itself A person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be expanded
to include techniques whereby not necessarily all expired records are
removed, and that the decision regarding if and how many records to delete
can be a dynamic one.”

’120 Patent File History, August 10, 1998 Response, at page 4: “Item 6 states
that as to claims 6 and 8,' '499 does not recite a “maximum number of
records” but instead recites “threshold,” and that “It would have been obvious
to a person of ordinary skill in the art at the time the invention was made to
group a number or records for determining the threshold and thus to
predetermine the maximum number for the threshold to facilitate an efficient
processing of records” The “maximum number of records” (in the instant
application) and “threshold” (in '499) serve different purposes and are
structured and determined differently. In the instant application, the number is
a single quantity that serves as an upper limit on the number of records
removed from the linked list whenever the linked list is accessed (see claims 6
and 8), whereas in '499 the threshold is a pair of coupled quantities, an upper
threshold and a lower threshold, that serve as two-way signals indicating
when the system should automatically reorganize a group of records that
reside in cells of the hash table into a linked list, and vice versa (col. 6, lines
44-54 and 61-65; APPENDIX). Since neither the maximum number of
records nor the upper threshold can be learned from the other by a person of
ordinary skill in the art from either '499 or the instant application, the
rejection should be removed.”

’120 Patent File History, August 10, 1998 Response, at pages 5-6: “The
instant application teaches and claims (claims 2, 4, 6, and 8) means and

Exhibit B

 22

method for dynamically determining the maximum number of records to be
removed on-the-fly from a linked list when that linked list is accessed.
Shackelford, on the other hand, teaches an unrelated quantity, the existence of
a stored quantity accompanying the stream class data structure that identifies
the maximum number of pointers that are permitted to exist (col. 3, line 61
through col. 4, line 2). Shackelford does not address an application with
automatically expiring data, nor does he address how many items to delete.
These references separately or in combination do not suggest the claims of the
present application. The rejection, therefore, should be withdrawn.”

Extrinsic Evidence

Webster’s Ninth New Collegiate Dictionary (1989), page 734: Maximum --
“the greatest quantity or value attainable or attained.”

Webster’s Third New International Dictionary. Merriam- Webster, Inc.
(1993), page 1396: Maximum – “the greatest quantity or value attainable in a
given case.”

Computer Dictionary, Microsoft Press (3rd Ed. 1997), page, page 165:
“dynamic” – “Occurring immediately and concurrently. The term is used in
describing both hardware and software; in both cases it describes some action
or event that occurs when and as needed. In dynamic memory management, a
program is able to negotiate with the operating system when it needs more
memory.”

American Heritage Dictionary, Second College Edition (1985), page 388:
“determine” – “To establish or ascertain definitely, as after consideration,
investigation, or calculation.”

IBM Dictionary of Computing (10th ed. 1994), page 224: dynamic – “(1) In
programming languages, pertaining to properties that can only be established
during the execution of a program, for example, the length of a variable-

Exhibit B

 23

length data object is dynamic. (2) Pertaining to an operation that occurs at the
time it is needed rather than at a predetermined or fixed time. (3) Pertaining to
events occurring at run time, or during processing. (4) Contrast with static.”

7. a record search
means utilizing
a search key to
access the
linked list

[Claim 1]

a record search
means utilizing
a search key to
access a linked
list of records
having the same
hash address

[Claim 5]

Means plus function
limitation.

Indefinite.

For all means-plus-function limitations, see that which is cited for the
words/phrases within the means-plus-function limitation above.

Intrinsic Evidence

Col. 4:67 – 5:15: “A hashing function translates the key into a hash table
array subscript, which is used as an index into the array where searches for
the data record begin. The hashing function can be any operation on the key
that results in subscripts mostly uniformly distributed across the table. Known
hashing functions include truncation, folding, transposition, modulo
arithmetic, and combinations of these operations. Unfortunately, hashing
functions generally do not produce unique locations in the hash table, in that
many distinct keys map to the same location, producing what are called
collisions. Some form of collision resolution is required in all hashing
systems. In every occurrence of collision, finding an alternate location for a
collided record is necessary. Moreover, the alternate location must be readily
reachable during future searches for the displaced record.”

8. a hashing means
to provide
access to
records stored
in a memory of
the system and
using an
external
chaining
technique to
store the records
with same hash

Means plus function
limitation.

Indefinite.

For all means-plus-function limitations, see that which is cited for the
words/phrases within the means-plus-function limitation above.

Intrinsic Evidence

Col. 2. 4:67 – 5:15: “A hashing function translates the key into a hash table
array subscript, which is used as an index into the array where searches for
the data record begin. The hashing function can be any operation on the key
that results in subscripts mostly uniformly distributed across the table. Known
hashing functions include truncation, folding, transposition, modulo
arithmetic, and combinations of these operations. Unfortunately, hashing
functions generally do not produce unique locations in the hash table, in that

Exhibit B

 24

address, at least
some of the
records
automatically
expiring

[Claim 5]

many distinct keys map to the same location, producing what are called
collisions. Some form of collision resolution is required in all hashing
systems. In every occurrence of collision, finding an alternate location for a
collided record is necessary. Moreover, the alternate location must be readily
reachable during future searches for the displaced record.”

9. means for
identifying and
removing at
least some of
the expired ones
of the records
from the linked
list when the
linked list is
accessed

[Claim 1]

means for
identifying and
removing at
least some
expired ones of
the records from
the linked list of
records when
the linked list is
accessed

[Claim 5]

Means plus function
limitation.

Function: identifying and
removing at least some [of
the] expired ones of the
records from the linked list
[of records] when the linked
list is accessed.

Both identification and
removal of an automatically
expired record occurs during
the same traversal of the
linked list.

For claim 1, the phrase "when
the linked list is accessed"
refers to the time during
which the "utilizing a search
key to access the linked list"
function in limitation is
carried out in claim 1.

For claim 5, the phrase "when
the linked list is accessed"

For all means-plus-function limitations, see that which is cited for the
words/phrases within the means-plus-function limitation above.

Intrinsic Evidence

See Claims 1 and 5; Figs. 1, 3, and 4; col. 3, l. 53 to col. 4, l. 22 and col.5, l.
53 to col. 7, l. 64; and pseudocode at cols. 11-14.

Col. 5, ll. 53-57: “Referring then to FIG. 3, there is shown a flowchart of a
search table procedure for searching the hash table preparatory to inserting,
retrieving, or deleting a record, in accordance with the present invention, and
involving the dynamic removal of expired records in a targeted linked list.”

Col. 6, ll. 5-34 (emphasis added): ”If the end of the list has not been reached
as determined by decision box 33, decision box 38 is entered to determine if
the record pointed to has expired. This is determined by comparing some
portion of the contents of the record to some external condition. A timestamp
in the record, for example, could be compared with the current time-of-day
value maintained by all computers. Alternatively, the occurrence of an event
can be compared with a field identifying that event in the record. In any case,
if the record has not expired, decision box 39 is entered to determine if the
key in this record matches the search key. If it does, the address of the record
is saved in box 40 and box 41 is entered. If the record does not match the
search key, the procedure bypasses box 40 and proceeds directly to box 41. In
box 41, the procedure advances forward to the next record in the linked list
and the procedure returns to box 33.

Exhibit B

 25

refers to the time during
which the "utilizing a search
key to access a linked list of
records having the same hash
address" function is carried
out in claim 5.

Removing requires, while
traversing the linked list, both
adjusting the pointers in the
linked list to bypass the
previously identified expired
records and de-allocating the
memory occupied by those
records.

Means disclosed: Boxes 10
and 11 of Fig. 1, Boxes 38
and 42 of Fig. 3, Fig 4,
pseudocode in the Search
Procedure (cols. 11-14) and
Remove Procedure (cols. 13-
14), and corresponding
portions of the specification.

The inclusion of "the records
search means," however,
renders these limitations
indefinite as the "record
search means" limitation is
indefinite.

 If decision box 38 determines that the record under question has expired,
box 42 is entered to perform the on-the-fly removal of the expired record
from the linked list and the return of the storage it occupies to the system
storage pool, as will be described in connection with FIG. 4. In general, the
remove procedure of box 42 (FIG. 4) operates to remove an element from the
linked list by adjusting its predecessor's pointer to bypass that element.
(However, if the element to be removed is the first element of the list, then
there is no predecessor and the hash table array entry is adjusted instead.) On
completion of procedure remove invoked from box 42, the search table
procedure returns to box 33.”

Col. 6, ll. 35-39: “It can be seen that the search table procedure of FIG. 3
operates to examine the entire linked list of records of which the searched-for
record is a part, and to remove expired records, returning storage to the
storage pool with each removal. If the storage pool is depleted and many
expired records remain despite such automatic garbage collection, then the
insertion of new records is inhibited (boxes 76 and 77 of FIG. 5) until a
deletion is made by the delete procedure (FIG. 7) or until the search table
procedure has had a chance to replenish the storage pool through its on-the-
fly garbage collection.”

Col. 6, ll. 46-55: “Though the search table procedure as shown in FIG. 3,
implemented in the APPENDIX as PASCAL-like pseudocode, and described
above appears in connection with an information storage and retrieval system
using the hashing technique with external chaining, its on-the-fly removal
technique while traversing a linked list can be used anywhere a linked list of
records with expiring data appears, even in contexts unrelated to hashing. A
person skilled in the art will appreciate that this technique can be readily
applied to manipulate linked lists not necessarily used with hashing.”

Col. 6, ll. 56-67 and Col. 7, ll. 1-15: The search table procedure shown in
FIG. 3, implemented as pseudocode in the APPENDIX, and described above
traverses the entire linked list removing all expired records as it searches for a

Exhibit B

 26

key match. The procedure can be readily adapted to remove some but not all
of the expired records, thereby shortening the linked list traversal time and
speeding up the search at the expense of perhaps leaving some expired
records in the list. For example, the procedure can be modified to terminate
when a key match occurs. (PASCAL-like pseudocode for this alternate
version of search table appears in the APPENDIX.) The implementor even
has the prerogative of choosing among these strategies dynamically at the
time search table is invoked by the caller, thus sometimes removing all
expired records, at other times removing some but not all of them, and yet at
other times choosing to remove none of them. Such a dynamic runtime
decision might be based on factors such as, for example, how much memory
is available in the system storage pool, general system load, time of day, the
number of records currently residing in the information system, and other
factors both internal and external to the information storage and retrieval
system itself A person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be expanded
to include techniques whereby not necessarily all expired records are
removed, and that the decision regarding if and how many records to delete
can be a dynamic one.”

’120 Patent File History, August 10, 1998 Response at page 3: “Although it
is true that in the instant application “external chaining” and “chaining” are
each equivalent to being linked, ’499 does not teach or suggest on-the-fly
deletion of at least some records based on automatic expiration of data, which
is claimed here.”

’120 Patent File History, August 10, 1998 Response at pages 3-4: “Item 6
states that as to claim 5 and 7, '499 does not recite the terms “linked list,”
“insert,” “retrieve,” or “delete,” but instead recites “external chaining” and
“storing,” and that “it would have been obvious to a person of ordinary skill
in the art at the time the invention was made to use a linked list of records
because a chain of records chained by an external chaining generates a linked
list” (sic). The'499 patent, however, does not teach means or methods for

Exhibit B

 27

identifying and removing “at least some expired ones of the records” from the
linked list “when the linked list is accessed” (see claims 5 and 7), which is
taught by the instant application and is integral to claims 5 and 7. Thus, the
rejection should be withdrawn.”

’120 Patent File History, August 10, 1998 Response at page 5: “Claims 1-8
of the instant application address on-the-fly deletion of at least some records
from a linked list based on automatic expiration of data, whereas '499 teaches
automatic reorganization of records from linked list structure to sequential
storage structure and vice versa to facilitate system efficiency. Nowhere does
'499 teach deletion from the system, nor does it teach regarding automatically
expiring data.”

’120 Patent File History, August 10, 1998 Response at page 6: “Item 11
states that claims 1-8 are rejected under 35 U.S.C. 8 103 as being
unpatentable over '499 directed to the linked lists and the step of removing, as
set forth in the Double Patenting discussion, which is item 6 in the Office
action. Neither '499 nor Shackelford suggest what is recited in claims 1, 3, 5,
and 7, for example, means and methods for identifying and removing “at least
some expired ones of the records” from the linked list “when the linked list is
accessed.”

’120 Patent File History, September 22, 1998 Notice of Allowability at page
2: “The prior art does not teach or fairly suggest a method and apparatus for
on-the-fly deletion of records in linked lists based on automatic expiration of
data as claimed. In other words, the prior art of record does not teach or fairly
suggest the means (or an equivalent step in the method claim) of “means
for . . . accessing a linked list, at the same time, removing some of the
expired ones of the records in the linked list,” as recited in lines 7-8 of claim
1. Although the prior art of record (Nemes, '495 reference) teaches the use of
chains of records and the deletion of records, the Applicant, in the Response
dated August 11, 1998, Paper No. 5, provided arguments as to why the chain
of records as taught in the '495 reference is not the same as the linked list as

Exhibit B

 28

claimed. The Applicant also distinguishes the claimed invention over the
teachings of the '499 references, see page 3, Paper no. 5.”

10. means, utilizing
the record
search means,
for accessing
the linked list
and, at the same
time, removing
at least some of
the expired ones
of the records in
the linked list

[Claim 1]

Means plus function
limitation.

Function: using the record
search means defined above,
accessing and during the
same traversal of the linked
list removing at least some of
the expired ones of the
records in the linked list.

“at the same time” means
during the same traversal of
the linked list.

This limitation requires that
the referenced means remove
at least one of the expired
ones of the records in the
linked list while utilizing a
search key to access the
linked list.

Removing requires, while
traversing the linked list, both
adjusting the pointers in the
linked list to bypass the
previously identified expired
records and de-allocating the

For all means-plus-function limitations, see that which is cited for the
words/phrases within the means-plus-function limitation above.

Intrinsic Evidence

See Claim 1; Figs. 1, 4-7; col. 3, l. 53 - col. 4, l. 22 and col. 7, l. 16 - col. 9, l.
2; and pseudocode at cols. 9-14.

See Intrinsic Evidence citations related to “removing” under Term 9 supra.

Exhibit B

 29

memory occupied by those
records.

Means: Boxes 10 and 11 of
Fig. 1; Figs. 4, 5, 6, and 7,
pseudocode in the Search
Procedure (cols. 11-14),
Insert Procedure (cols. 9 and
10), Retrieve Procedure (cols.
9 and 10), Delete Procedure
(cols. 11-12), and Remove
Procedure (cols. 13-14), and
corresponding portions of the
specification. Inserting,
retrieving, and deleting are all
required.

The inclusion of "utilizing the
records search means,"
however, renders this
limitation indefinite as the
"record search means"
limitation is indefinite.

11. mea[n]s,
utilizing the
record search
means, for
inserting,
retrieving, and
deleting records
from the system
and, at the same
time, removing

Means plus function
limitation.

Function: Using the record
search means defined above,
inserting, retrieving, and
deleting during the same
traversal of the linked list
removing at least some
expired ones of the records in

For all means-plus-function limitations, see that which is cited for the
words/phrases within the means-plus-function limitation above.

Intrinsic Evidence

See Claim 5; Figs. 1, 4-7; col. 3, l. 53 - col. 4, l. 22 and col. 7, l. 16 - col. 9, l.
2; and pseudocode at cols. 9-14.

See Intrinsic Evidence citations related to “removing” under Term 9 supra.

Exhibit B

 30

at least some
expired ones of
the records in
the accessed
linked list of
records

[Claim 5]

the accessed linked list of
records.

“at the same time” means
during the same traversal of
the linked list.

This limitation requires that
the referenced means remove
at least one of the expired
ones of the records in the
linked list while utilizing a
search key to insert, retrieve,
and delete records having the
same hash address from the
system.

Removing requires, while
traversing the linked list, both
adjusting the pointers in the
linked list to bypass the
previously identified expired
records and de-allocating
those records from memory

Means: Boxes 10 and 11 of
Fig. 1; Figs. 4, 5, 6, and 7,
pseudocode in the Search
Procedure (cols. 11-14),
Insert Procedure (cols. 9 and
10), Retrieve Procedure (cols.
9 and 10), Delete Procedure
(cols. 11-12), and Remove

Exhibit B

 31

Procedure (cols. 13-14), and
corresponding portions of the
specification. Inserting,
retrieving, and deleting are all
required.

The inclusion of "utilizing the
records search means,"
however, renders this
limitation indefinite as the
"record search means"
limitation is indefinite.

12. means for
dynamically
determining
maximum
number for the
record search
means to
remove in the
accessed linked
list of records

[Claims 2 and
6]

Means plus function
limitation

Indefinite.

For all means-plus-function limitations, see that which is cited for the
words/phrases within the means-plus-function limitation above.

Intrinsic Evidence

Col. 6, ll. 56-67 and Col. 7, ll. 1-15: “The search table procedure shown in
FIG. 3, implemented as pseudocode in the APPENDIX, and described above
traverses the entire linked list removing all expired records as it searches for a
key match. The procedure can be readily adapted to remove some but not all
of the expired records, thereby shortening the linked list traversal time and
speeding up the search at the expense of perhaps leaving some expired
records in the list. For example, the procedure can be modified to terminate
when a key match occurs. (PASCAL-like pseudocode for this alternate
version of search table appears in the APPENDIX.) The implementor even
has the prerogative of choosing among these strategies dynamically at the
time search table is invoked by the caller, thus sometimes removing all
expired records, at other times removing some but not all of them, and yet at
other times choosing to remove none of them. Such a dynamic runtime
decision might be based on factors such as, for example, how much memory
is available in the system storage pool, general system load, time of day, the
number of records currently residing in the information system, and other

Exhibit B

 32

factors both internal and external to the information storage and retrieval
system itself. A person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be expanded
to include techniques whereby not necessarily all expired records are
removed, and that the decision regarding if and how many records to delete
can be a dynamic one.”

’120 Patent File History, August 10, 1998 Response, at page 4: “Item 6 states
that as to claims 6 and 8,' '499 does not recite a “maximum number of
records” but instead recites “threshold,” and that “It would have been obvious
to a person of ordinary skill in the art at the time the invention was made to
group a number or records for determining the threshold and thus to
predetermine the maximum number for the threshold to facilitate an efficient
processing of records” The “maximum number of records” (in the instant
application) and “threshold” (in '499) serve different purposes and are
structured and determined differently. In the instant application, the number
is a single quantity that serves as an upper limit on the number of records
removed from the linked list whenever the linked list is accessed (see claims 6
and 8), whereas in '499 the threshold is a pair of coupled quantities, an upper
threshold and a lower threshold, that serve as two-way signals indicating
when the system should automatically reorganize a group of records that
reside in cells of the hash table into a linked list, and vice versa (col. 6, lines
44-54 and 61-65; APPENDIX). Since neither the maximum number of
records nor the upper threshold can be learned from the other by a person of
ordinary skill in the art from either '499 or the instant application, the
rejection should be removed.”

’120 Patent File History, August 10, 1998 Response, at pages 5-6: “The
instant application teaches and claims (claims 2, 4, 6, and 8) means and
method for dynamically determining the maximum number of records to be
removed on-the-fly from a linked list when that linked list is accessed.
Shackelford, on the other hand, teaches an unrelated quantity, the existence of
a stored quantity accompanying the stream class data structure that identifies

Exhibit B

 33

the maximum number of pointers that are permitted to exist (col. 3, line 61
through col. 4, line 2). Shackelford does not address an application with
automatically expiring data, nor does he address how many items to delete.
These references separately or in combination do not suggest the claims of the
present application. The rejection, therefore, should be withdrawn.”

13. Ordering of
limitations of
claim 3

The elements of claim 3 must
be executed in order.
Moreover, "when the linked
list is accessed" in the
removing step refers to the
accessing step, and the
identifying and removing
steps must occur during the
same traversal of the linked
list of records.

Intrinsic Evidence

Claim 3: “A method for storing and retrieving information records using a
linked list to store and provide access to the records, at least some of the
records automatically expiring, the method comprising the steps of:

accessing the linked list of records,

identifying at least some of the automatically expired ones of the records, and

removing at least some of the automatically expired records from the linked
list when the linked list is accessed.”

See Figs. 3 and 4; col. 5, l. 53 through col. 7, l. 64; and the pseudocode in
cols. 11-14.

14. Ordering of
limitations of
claim 7

The elements of claim 7 must
be executed in order.
Moreover, "when the linked
list is accessed" in the
removing step refers to
accessing step, and the
identifying and removing
steps must occur during the
same traversal of the linked
list of records.

Intrinsic Evidence

Claim 7: “A method for storing and retrieving information records using a
hashing technique to provide access to the records and using an external
chaining technique to store the records with same hash address, at least some
of the records automatically expiring, the method comprising the steps of:

accessing a linked list of records having same hash address,

identifying at least some of the automatically expired ones of the records,

Exhibit B

 34

removing at least some of the automatically expired records from the linked
list when the linked list is accessed, and

inserting, retrieving or deleting one of the records from the system following
the step of removing.”

See Figs. 3-7; col. 5, l. 53 through col. 8, l. 60; and the pseudocode in cols. 9-
14.

