

Exhibit A

Part 2

Bedrock Computer Technologies, LLC v. Softlayer Technologies, Inc. et al Doc. 274 Att. 2

Dockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/6:2009cv00269/116887/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2009cv00269/116887/274/2.html
http://dockets.justia.com/

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Dietzfelbinger discloses an
information storage and retrieval system.

For example, Dietzfelbinger discloses that “[t]he dynamic dictionary problem
is considered: provide an algorithm for storing a dynamic set, allowing the
operations insert, delete, and lookup. A dynamic perfect hashing strategy is
given: a randomized algorithm for the dynamic dictionary problem that takes
O(1) worst-case time for lookups and O(1) amortized expected time for
insertions and deletions” Martin Dietzfelbinger, Anna Karlin, Kurt
Mehlhorn, Friedhelm Meyer auf der Deide, Hans Rohnert, Robert E. Tarjan,
Dynamic Perfect Hashing: Upper and Lower Bounds, Revised Version
January 7, 1990, at 1.

“A dictionary over a universe U = {0, 1, . . . , N - 1} is a partial function S
from U to some set I. The operations Lookup(x), Insert(x, i), and Delete(x) are
available on a dictionary S; Lookup(x) returns S(x), Insert (x, i) adds x to the
domain of S and sets S(x) to I, and Delete(x) removes x from the domain of S.”
Id. at 2.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records

Dietzfelbinger discloses a linked list to store and provide access to records
stored in a memory of the system, at least some of the records automatically
expiring. Dietzfelbinger also discloses a hashing means to provide access to
records stored in a memory of the system and using an external chaining
technique to store the records with same hash address, at least some of the
records automatically expiring.

For example, Dietzfelbinger discloses that “[t]he dynamic dictionary problem

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

automatically expiring, is considered: provide an algorithm for storing a dynamic set, allowing the
operations insert, delete, and lookup. A dynamic perfect hashing strategy is
given: a randomized algorithm for the dynamic dictionary problem that takes
O(1) worst-case time for lookups and O(1) amortized expected time for
insertions and deletions” Id. at 1.

“A dictionary over a universe U = {0, 1, . . . , N - 1} is a partial function S
from U to some set I. The operations Lookup(x), Insert(x, i), and Delete(x) are
available on a dictionary S; Lookup(x) returns S(x), Insert (x, i) adds x to the
domain of S and sets S(x) to I, and Delete(x) removes x from the domain of S.”
Id. at 2.

Furthermore, Dietzfelbinger discloses that “[t]here are two major techniques
for implementing dictionaries: trees and hashing.” Id.

Dietzfelbinger discloses an extension of the Fredman, Kómlos, and Szemerédi
scheme to the dynamic situation, wherein membership queries are processed in
constant worst-case time, insertions and deletions are processed in constant
expected amortized time, and the storage used at any time is proportional to the
number of elements currently stored in the dictionary. “[F]redman, Komlós,
and Szemerédi [FKS84] described a hashing technique that achieves linear
storage (in n) and constant query time for all N and n, where n is the size of S.”
Id.

This FSK Scheme that Dietzfelbinger discloses “has two levels. At the top
level, a hash function partitions the elements being stored into s sets. The
second level consists of a perfect hash function for each of these sets.

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

Specifically, a function h chosen uniformly at random from Hs is used to
partition the set S into s blocks.” Id. at 3-4.

While Dietzfelbinger does not disclose whether or not the FKS scheme uses
hashing with chaining to handle the unavoidable key collisions problem,
Dietzfelbinger discloses other schemes that do use hashing with chaining.
“Carter and Wegman [CW79] proposed universal hashing as a way of
avoiding assumption on the distribution of input values. This approach works
particularly well in combination with the idea of “continuous rehashing”
introduced by Brassard and Kannan [BK88]. In this way an algorithm is
obtained that needs linear space and expected constant time for each single
instruction. However, for n keys being stored in the dictionary in a scheme of
this kind the best upper bound known on the expected worst case time for an
instruction (i.e., the length of the longest chain in the resulting hash table with
chaining) is O(log n / log log n)….” Id. at 2-3. Since Dietzfelbinger does not
specify which collision handling approach FKS uses (the focus of this paper is
not collision handling but a computation of the upper and lower bounds for the
time complexity of a class of deterministic algorithms for the dictionary
problem), it is inherent from the disclosure of other schemes, such as the CW
scheme, that FKS also uses hashing with chaining.

To the extent that Bedrock argues that Dietzefelbinger does not anticipate
Claims 1 – 8 because it is not inherent that the FKS scheme incorporates linked
lists to handling key collisions, it would have been obvious to one of ordinary
skill in the art to store table entries in a linked list. The admitted prior art in
the Introduction discloses that linked lists/external chaining were already
common place to resolve collisions within hash tables. Id. Thus,

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

Dietzefelbinger and the admitted prior art in the Introduction show that one of
ordinary skill in the art understood how to use linked lists/external chaining to
resolve collisions within hash tables, and would recognize that it would
improve similar systems and methods in the same way.

Furthermore, Dietzfelbinger discloses that “[d]eletions are performed by
attaching a tag “deleted” to the table entry to be erased; only when a new level-
1 hash function h or a new hash function hj for the sub table Tj is chosen, do we
drop the elements with a tag “deleted” from Tj.” Id. at 5.

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

Dietzfelbinger discloses a record search means utilizing a search key to access
the linked list. Dietzfelbinger also discloses a record search means utilizing a
search key to access a linked list of records having the same hash address.

For example, Dietzfelbinger discloses that “[t]he dynamic dictionary problem
is considered: provide an algorithm for storing a dynamic set, allowing the
operations insert, delete, and lookup. A dynamic perfect hashing strategy is
given: a randomized algorithm for the dynamic dictionary problem that takes
O(1) worst-case time for lookups and O(1) amortized expected time for
insertions and deletions” Id. at 1.

“A dictionary over a universe U = {0, 1, . . . , N - 1} is a partial function S
from U to some set I. The operations Lookup(x), Insert(x, i), and Delete(x) are
available on a dictionary S; Lookup(x) returns S(x), Insert (x, i) adds x to the
domain of S and sets S(x) to I, and Delete(x) removes x from the domain of S.”
Id. at 2.

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

Furthermore, Dietzfelbinger discloses that “[t]here are two major techniques
for implementing dictionaries: trees and hashing.” Id.

Dietzfelbinger discloses an extension of the Fredman, Komlós, and Szemerédi
scheme to the dynamic situation, wherein membership queries are processed in
constant worst-case time, insertions and deletions are processed in constant
expected amortized time, and the storage used at any time is proportional to the
number of elements currently stored in the dictionary. “[F]redman, Komlós,
and Szemerédi [FKS84] describe a hashing technique that achieves linear
storage (in n) and constant query time for all N and n, where n is the size of S.”
Id.

This FSK Scheme that Dietzfelbinger discloses “has two levels. At the top
level, a hash function partitions the elements being stored into s sets. The
second level consists of a perfect hash function for each of these sets.
Specifically, a function h chosen uniformly at random from Hs is used to
partition the set S into s blocks.” Id. at 3-4.

While Dietzfelbinger does not disclose whether or not the FKS scheme uses
hashing with chaining to handle the unavoidable key collisions problem,
Dietzfelbinger discloses other schemes that do use hashing with chaining.
“Carter and Wegman [CW79] proposed universal hashing as a way of
avoiding assumption on the distribution of input values. This approach works
particularly well in combination with the idea of “continuous rehashing”
introduced by Brassard and Kannan [BK88]. In this way an algorithm is
obtained that needs linear space and expected constant time for each single
instruction. However, for n keys being stored in the dictionary in a scheme of

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

this kind the best upper bound known on the expected worst case time for an
instruction (i.e., the length of the longest chain in the resulting hash table with
chaining) is O(log n / log log n)….” Id. at 2-3. Since Dietzfelbinger does not
specify which collision handling approach FKS uses (the focus of this paper is
not collision handling but a computation of the upper and lower bounds for the
time complexity of a class of deterministic algorithms for the dictionary
problem), it is inherent from the disclosure of other schemes, such as the CW
scheme, that FKS also uses hashing with chaining.

To the extent that Bedrock argues that Dietzefelbinger does not anticipate
Claims 1 – 8 because it is not inherent that the FKS scheme incorporates linked
lists to handling key collisions, it would have been obvious to one of ordinary
skill in the art to store table entries in a linked list. The admitted prior art in
the Introduction discloses that linked lists/external chaining were already
common place to resolve collisions within hash tables. Id. Thus,
Dietzefelbinger and the admitted prior art in the Introduction show that one of
ordinary skill in the art understood how to use linked lists/external chaining to
resolve collisions within hash tables, and would recognize that it would
improve similar systems and methods in the same way.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,

Dietzfelbinger discloses the record search means including a means for
identifying and removing at least some of the expired ones of the records from
the linked list when the linked list is accessed. Dietzfelbinger also discloses
the record search means including means for identifying and removing at least
some expired ones of the records from the linked list of records when the
linked list is accessed.

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

accessed, and and For example, Dietzfelbinger discloses that “[t]he dynamic dictionary problem
is considered: provide an algorithm for storing a dynamic set, allowing the
operations insert, delete, and lookup. A dynamic perfect hashing strategy is
given: a randomized algorithm for the dynamic dictionary problem that takes
O(1) worst-case time for lookups and O(1) amortized expected time for
insertions and deletions” Id. at 1.

“A dictionary over a universe U = {0, 1, . . . , N - 1} is a partial function S
from U to some set I. The operations Lookup(x), Insert(x, i), and Delete(x) are
available on a dictionary S; Lookup(x) returns S(x), Insert (x, i) adds x to the
domain of S and sets S(x) to I, and Delete(x) removes x from the domain of S.”
Id. at 2.

Furthermore, Dietzfelbinger discloses that “[t]here are two major techniques
for implementing dictionaries: trees and hashing.” Id.

Dietzfelbinger discloses an extension of the Fredman, Komlós, and Szemerédi
scheme to the dynamic situation, wherein membership queries are processed in
constant worst-case time, insertions and deletions are processed in constant
expected amortized time, and the storage used at any time is proportional to the
number of elements currently stored in the dictionary. “[F]redman, Komlós,
and Szemerédi [FKS84] describe a hashing technique that achieves linear
storage (in n) and constant query time for all N and n, where n is the size of S.”
Id.

This FSK Scheme that Dietzfelbinger discloses “has two levels. At the top
level, a hash function partitions the elements being stored into s sets. The

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

second level consists of a perfect hash function for each of these sets.
Specifically, a function h chosen uniformly at random from Hs is used to
partition the set S into s blocks.” Id. at 3-4.

While Dietzfelbinger does not disclose whether or not the FKS scheme uses
hashing with chaining to handle the unavoidable key collisions problem,
Dietzfelbinger discloses other schemes that do use hashing with chaining.
“Carter and Wegman [CW79] proposed universal hashing as a way of
avoiding assumption on the distribution of input values. This approach works
particularly well in combination with the idea of “continuous rehashing”
introduced by Brassard and Kannan [BK88]. In this way an algorithm is
obtained that needs linear space and expected constant time for each single
instruction. However, for n keys being stored in the dictionary in a scheme of
this kind the best upper bound known on the expected worst case time for an
instruction (i.e., the length of the longest chain in the resulting hash table with
chaining) is O(log n / log log n)...” Id. at 2-3. Since Dietzfelbinger does not
specify which collision handling approach FKS uses (the focus of this paper is
not collision handling but a computation of the upper and lower bounds for the
time complexity of a class of deterministic algorithms for the dictionary
problem), it is inherent from the disclosure of other schemes, such as the CW
scheme, that FKS also uses hashing with chaining.

To the extent that Bedrock argues that Dietzefelbinger does not anticipate
Claims 1 – 8 because it is not inherent that the FKS scheme incorporates linked
lists to handling key collisions, it would have been obvious to one of ordinary
skill in the art to store table entries in a linked list. The admitted prior art in
the Introduction discloses that linked lists/external chaining were already

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

common place to resolve collisions within hash tables. Id. Thus,
Dietzefelbinger and the admitted prior art in the Introduction show that one of
ordinary skill in the art understood how to use linked lists/external chaining to
resolve collisions within hash tables, and would recognize that it would
improve similar systems and methods in the same way.

Furthermore, Dietzfelbinger discloses that “[d]eletions are performed by
attaching a tag “deleted” to the table entry to be erased; only when a new level-
1 hash function h or a new hash function hj for the sub table Tj is chosen, do we
drop the elements with a tag “deleted” from Tj.” Id. at 5.

A call to the procedure Insert(x) conducts the following steps, as displayed by
the code in the figure below. The procedure hashes x to determine the proper
position for x, hj(x). If the position in which x is to be placed is empty, then x
is stored in the position. However, if the position is not empty, then the
procedure goes through and places all the elements in the sub table that are not
labeled “deleted” into a list Lj, and marks all positions in the sub table as
empty. Then, x is appended to the list Lj. By marking all positions in the sub
table as empty, the procedure effectively deletes all those that are left in the
sub table -- those that were labeled “deleted.” Id. at 6.

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

Dietzfelbinger discloses the record search means including a means for
identifying and removing at least some of the expired ones of the records from
the linked list when the linked list is accessed. Dietzfelbinger also discloses
the record search means including means for identifying and removing at least
some expired ones of the records from the linked list of records when the
linked list is accessed.

For example, Dietzfelbinger discloses that “[t]he dynamic dictionary problem
is considered: provide an algorithm for storing a dynamic set, allowing the
operations insert, delete, and lookup. A dynamic perfect hashing strategy is
given: a randomized algorithm for the dynamic dictionary problem that takes
O(1) worst-case time for lookups and O(1) amortized expected time for
insertions and deletions” Id. at 1.

“A dictionary over a universe U = {0, 1, . . . , N - 1} is a partial function S
from U to some set I. The operations Lookup(x), Insert(x, i), and Delete(x) are
available on a dictionary S; Lookup(x) returns S(x), Insert (x, i) adds x to the
domain of S and sets S(x) to I, and Delete(x) removes x from the domain of S.”
Id. at 2.

Furthermore, Dietzfelbinger discloses that “[t]here are two major techniques
for implementing dictionaries: trees and hashing.” Id.

Dietzfelbinger discloses an extension of the Fredman, Komlós, and Szemerédi
scheme to the dynamic situation, wherein membership queries are processed in
constant worst-case time, insertions and deletions are processed in constant
expected amortized time, and the storage used at any time is proportional to the

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

number of elements currently stored in the dictionary. “[F]redman, Komlós,
and Szemerédi [FKS84] describe a hashing technique that achieves linear
storage (in n) and constant query time for all N and n, where n is the size of S.”
Id.

This FSK Scheme that Dietzfelbinger discloses “has two levels. At the top
level, a hash function partitions the elements being stored into s sets. The
second level consists of a perfect hash function for each of these sets.
Specifically, a function h chosen uniformly at random from Hs is used to
partition the set S into s blocks.” Id. at 3-4.

While Dietzfelbinger does not disclose whether or not the FKS scheme uses
hashing with chaining to handle the unavoidable key collisions problem,
Dietzfelbinger discloses other schemes that do use hashing with chaining.
“Carter and Wegman [CW79] proposed universal hashing as a way of
avoiding assumption on the distribution of input values. This approach works
particularly well in combination with the idea of “continuous rehashing”
introduced by Brassard and Kannan [BK88]. In this way an algorithm is
obtained that needs linear space and expected constant time for each single
instruction. However, for n keys being stored in the dictionary in a scheme of
this kind the best upper bound known on the expected worst case time for an
instruction (i.e., the length of the longest chain in the resulting hash table with
chaining) is O(log n / log log n)...” Id. at 2-3.Since Dietzfelbinger does not
specify which collision handling approach FKS uses (the focus of this paper is
not collision handling but a computation of the upper and lower bounds for the
time complexity of a class of deterministic algorithms for the dictionary
problem), it is inherent from the disclosure of other schemes, such as the CW

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

scheme, that FKS also uses hashing with chaining.

To the extent that Bedrock argues that Dietzefelbinger does not anticipate
Claims 1 – 8 because it is not inherent that the FKS scheme incorporates linked
lists to handling key collisions, it would have been obvious to one of ordinary
skill in the art to store table entries in a linked list. The admitted prior art in
the Introduction discloses that linked lists/external chaining were already
common place to resolve collisions within hash tables. Id. Thus,
Dietzefelbinger and the admitted prior art in the Introduction show that one of
ordinary skill in the art understood how to use linked lists/external chaining to
resolve collisions within hash tables, and would recognize that it would
improve similar systems and methods in the same way.

Furthermore, Dietzfelbinger discloses that “[d]eletions are performed by
attaching a tag “deleted” to the table entry to be erased; only when a new level-
1 hash function h or a new hash function hj for the sub table Tj is chosen, do we
drop the elements with a tag “deleted” from Tj.” Id. at 5.

A call to the procedure Insert(x) conducts the following steps, as displayed by
the code in the figure below. The procedure hashes x to determine the proper
position for x, hj(x). If the position in which x is to be placed is empty, then x
is stored in the position. However, if the position is not empty, then the
procedure goes through and places all the elements in the sub table that are not
labeled “deleted” into a list Lj, and marks all positions in the sub table as
empty. Then, x is appended to the list Lj. By marking all positions in the sub
table as empty, the procedure effectively deletes all those that are left in the
sub table -- those that were labeled “deleted.” Id. at 6.

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

Id. at Figure 1.

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed

Dietzfelbinger discloses an information storage and retrieval system further
including means for dynamically determining maximum number for the record
search means to remove in the accessed linked list of records.

For example, a call to the procedure Insert(x) conducts the following steps, as
displayed by the code in the figure below. The procedure hashes x to
determine the proper position for x, hj(x). First, the procedure determines if x
already exists in the sub table. If x does exist, then the only determination to

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

linked list of records. linked list of records. make is whether x is marked for deletion. If x is marked for deletion, then the
procedure removes this deletion tag. Id. at 6.

Second, if the sub table does not contain x and the position in which x is to be
placed is found empty, then x is stored in the position. Id.

Third, if the sub table does not contain x and the position in which x is to be
placed is not empty, then the procedure goes through and places all the
elements in the sub table that are not labeled “deleted” into a list Lj, and marks
all positions in the sub table as empty. Then, x is appended to the list Lj. By
marking all positions in the sub table as empty, the procedure effectively
deletes all those that are left in the sub table -- those that were labeled
“deleted.” Id.

Therefore, the procedure dynamically determines whether or not to delete the
records marked “deleted” if either of the following two conditions occur: (1) x
already exists in the sub table or (2) the position in which x is to be placed is
empty. Deletion takes place during a call to procedure Insert(x) only if the
above two conditions are not met.

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

Id. at Figure 1.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Dietzfelbinger to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Dietzfelbinger with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Dietzfelbinger can be burdensome
on the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete. Indeed,
part of the motivation for the system disclosed in Dietzfelbinger is avoiding
these problems. One of ordinary skill in the art would have known that
dynamically determining the maximum number to remove would limit the
burden on the system and bound the length of any real-time interruption to
prevent delays in processing. Indeed, Nemes concedes that such dynamic
determination was obvious when he states in the ‘120 patent that “[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one.” ‘120 at
7:10-15.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the

To the extent the preamble is a limitation, Dietzfelbinger discloses a method
for storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring. Dietzfelbinger also discloses a method for storing and retrieving
information records using a hashing technique to provide access to the records
and using an external chaining technique to store the records with same hash
address, at least some of the records automatically expiring.

For example, Dietzfelbinger discloses that “[t]he dynamic dictionary problem
is considered: provide an algorithm for storing a dynamic set, allowing the
operations insert, delete, and lookup. A dynamic perfect hashing strategy is

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

steps of: given: a randomized algorithm for the dynamic dictionary problem that takes
O(1) worst-case time for lookups and O(1) amortized expected time for
insertions and deletions” Deitzfelbinger at 1.

“A dictionary over a universe U = {0, 1, . . . , N - 1} is a partial function S
from U to some set I. The operations Lookup(x), Insert(x, i), and Delete(x) are
available on a dictionary S; Lookup(x) returns S(x), Insert (x, i) adds x to the
domain of S and sets S(x) to I, and Delete(x) removes x from the domain of S.”
Id. at 2.

Furthermore, Dietzfelbinger discloses that “[t]here are two major techniques
for implementing dictionaries: trees and hashing.” Id.

Dietzfelbinger discloses an extension of the Fredman, Komlós, and Szemerédi
scheme to the dynamic situation, wherein membership queries are processed in
constant worst-case time, insertions and deletions are processed in constant
expected amortized time, and the storage used at any time is proportional to the
number of elements currently stored in the dictionary. “[F]redman, Komlós,
and Szemerédi [FKS84] describe a hashing technique that achieves linear
storage (in n) and constant query time for all N and n, where n is the size of S.”
Id.

This FSK Scheme that Dietzfelbinger discloses “has two levels. At the top
level, a hash function partitions the elements being stored into s sets. The
second level consists of a perfect hash function for each of these sets.
Specifically, a function h chosen uniformly at random from Hs is used to
partition the set S into s blocks.” Id. at 3-4.

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

While Dietzfelbinger does not disclose whether or not the FKS scheme uses
hashing with chaining to handle the unavoidable key collisions problem,
Dietzfelbinger discloses other schemes that do use hashing with chaining.
“Carter and Wegman [CW79] proposed universal hashing as a way of
avoiding assumption on the distribution of input values. This approach works
particularly well in combination with the idea of “continuous rehashing”
introduced by Brassard and Kannan [BK88]. In this way an algorithm is
obtained that needs linear space and expected constant time for each single
instruction. However, for n keys being stored in the dictionary in a scheme of
this kind the best upper bound known on the expected worst case time for an
instruction (i.e., the length of the longest chain in the resulting hash table with
chaining) is O(log n / log log n)...” Id. at 2-3.Since Dietzfelbinger does not
specify which collision handling approach FKS uses (the focus of this paper is
not collision handling but a computation of the upper and lower bounds for the
time complexity of a class of deterministic algorithms for the dictionary
problem), it is inherent from the disclosure of other schemes, such as the CW
scheme, that FKS also uses hashing with chaining.

To the extent that Bedrock argues that Dietzefelbinger does not anticipate
Claims 1 – 8 because it is not inherent that the FKS scheme incorporates linked
lists to handling key collisions, it would have been obvious to one of ordinary
skill in the art to store table entries in a linked list. The admitted prior art in
the Introduction discloses that linked lists/external chaining were already
common place to resolve collisions within hash tables. Id. Thus,
Dietzefelbinger and the admitted prior art in the Introduction show that one of
ordinary skill in the art understood how to use linked lists/external chaining to

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

resolve collisions within hash tables, and would recognize that it would
improve similar systems and methods in the same way.

Furthermore, Dietzfelbinger discloses that “[d]eletions are performed by
attaching a tag “deleted” to the table entry to be erased; only when a new level-
1 hash function h or a new hash function hj for the sub table Tj is chosen, do we
drop the elements with a tag “deleted” from Tj.” Id. at 5.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Dietzfelbinger discloses accessing a linked list of records. Dietzfelbinger also
discloses accessing a linked list of records having same hash address.

For example, Dietzfelbinger discloses that “[t]he dynamic dictionary problem
is considered: provide an algorithm for storing a dynamic set, allowing the
operations insert, delete, and lookup. A dynamic perfect hashing strategy is
given: a randomized algorithm for the dynamic dictionary problem that takes
O(1) worst-case time for lookups and O(1) amortized expected time for
insertions and deletions” Id. at 1.

“A dictionary over a universe U = {0, 1, . . . , N - 1} is a partial function S
from U to some set I. The operations Lookup(x), Insert(x, i), and Delete(x) are
available on a dictionary S; Lookup(x) returns S(x), Insert (x, i) adds x to the
domain of S and sets S(x) to I, and Delete(x) removes x from the domain of S.”
Id. at 2.

Furthermore, Dietzfelbinger discloses that “[t]here are two major techniques
for implementing dictionaries: trees and hashing.” Id.

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

Dietzfelbinger discloses an extension of the Fredman, Komlós, and Szemerédi
scheme to the dynamic situation, wherein membership queries are processed in
constant worst-case time, insertions and deletions are processed in constant
expected amortized time, and the storage used at any time is proportional to the
number of elements currently stored in the dictionary. “[F]redman, Komlós,
and Szemerédi [FKS84] describe a hashing technique that achieves linear
storage (in n) and constant query time for all N and n, where n is the size of S.”
Id.

This FSK Scheme that Dietzfelbinger discloses “has two levels. At the top
level, a hash function partitions the elements being stored into s sets. The
second level consists of a perfect hash function for each of these sets.
Specifically, a function h chosen uniformly at random from Hs is used to
partition the set S into s blocks.” Id. at 3-4.

While Dietzfelbinger does not disclose whether or not the FKS scheme uses
hashing with chaining to handle the unavoidable key collisions problem,
Dietzfelbinger discloses other schemes that do use hashing with chaining.
“Carter and Wegman [CW79] proposed universal hashing as a way of
avoiding assumption on the distribution of input values. This approach works
particularly well in combination with the idea of “continuous rehashing”
introduced by Brassard and Kannan [BK88]. In this way an algorithm is
obtained that needs linear space and expected constant time for each single
instruction. However, for n keys being stored in the dictionary in a scheme of
this kind the best upper bound known on the expected worst case time for an
instruction (i.e., the length of the longest chain in the resulting hash table with
chaining) is O(log n / log log n)...” Id. at 2-3. Since Dietzfelbinger does not

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

specify which collision handling approach FKS uses (the focus of this paper is
not collision handling but a computation of the upper and lower bounds for the
time complexity of a class of deterministic algorithms for the dictionary
problem), it is inherent from the disclosure of other schemes, such as the CW
scheme, that FKS also uses hashing with chaining.

To the extent that Bedrock argues that Dietzefelbinger does not anticipate
Claims 1 – 8 because it is not inherent that the FKS scheme incorporates linked
lists to handling key collisions, it would have been obvious to one of ordinary
skill in the art to store table entries in a linked list. The admitted prior art in
the Introduction discloses that linked lists/external chaining were already
common place to resolve collisions within hash tables. Id. Thus,
Dietzefelbinger and the admitted prior art in the Introduction show that one of
ordinary skill in the art understood how to use linked lists/external chaining to
resolve collisions within hash tables, and would recognize that it would
improve similar systems and methods in the same way.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Dietzfelbinger discloses identifying at least some of the automatically expired
ones of the records.

For example, Dietzfelbinger discloses that “[t]he dynamic dictionary problem
is considered: provide an algorithm for storing a dynamic set, allowing the
operations insert, delete, and lookup. A dynamic perfect hashing strategy is
given: a randomized algorithm for the dynamic dictionary problem that takes
O(1) worst-case time for lookups and O(1) amortized expected time for
insertions and deletions” Id. at 1.

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

“A dictionary over a universe U = {0, 1, . . . , N - 1} is a partial function S
from U to some set I. The operations Lookup(x), Insert(x, i), and Delete(x) are
available on a dictionary S; Lookup(x) returns S(x), Insert (x, i) adds x to the
domain of S and sets S(x) to I, and Delete(x) removes x from the domain of S.”
Id. at 2.

Furthermore, Dietzfelbinger discloses that “[d]eletions are performed by
attaching a tag “deleted” to the table entry to be erased; only when a new level-
1 hash function h or a new hash function hj for the sub table Tj is chosen, do we
drop the elements with a tag “deleted” from Tj.” Id. at 5.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Dietzfelbinger discloses removing at least some of the automatically expired
records from the linked list when the linked list is accessed.

For example, Dietzfelbinger discloses that “[t]he dynamic dictionary problem
is considered: provide an algorithm for storing a dynamic set, allowing the
operations insert, delete, and lookup. A dynamic perfect hashing strategy is
given: a randomized algorithm for the dynamic dictionary problem that takes
O(1) worst-case time for lookups and O(1) amortized expected time for
insertions and deletions” Id. at 1.

“A dictionary over a universe U = {0, 1, . . . , N - 1} is a partial function S
from U to some set I. The operations Lookup(x), Insert(x, i), and Delete(x) are
available on a dictionary S; Lookup(x) returns S(x), Insert (x, i) adds x to the
domain of S and sets S(x) to I, and Delete(x) removes x from the domain of S.”
Id. at 2.

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

Furthermore, Dietzfelbinger discloses that “[t]here are two major techniques
for implementing dictionaries: trees and hashing.” Id.

Dietzfelbinger discloses an extension of the Fredman, Komlós, and Szemerédi
scheme to the dynamic situation, wherein membership queries are processed in
constant worst-case time, insertions and deletions are processed in constant
expected amortized time, and the storage used at any time is proportional to the
number of elements currently stored in the dictionary. “[F]redman, Komlós,
and Szemerédi [FKS84] describe a hashing technique that achieves linear
storage (in n) and constant query time for all N and n, where n is the size of S.”
Id.

This FSK Scheme that Dietzfelbinger discloses “has two levels. At the top
level, a hash function partitions the elements being stored into s sets. The
second level consists of a perfect hash function for each of these sets.
Specifically, a function h chosen uniformly at random from Hs is used to
partition the set S into s blocks.” Id. at 3-4.

While Dietzfelbinger does not disclose whether or not the FKS scheme uses
hashing with chaining to handle the unavoidable key collisions problem,
Dietzfelbinger discloses other schemes that do use hashing with chaining.
“Carter and Wegman [CW79] proposed universal hashing as a way of
avoiding assumption on the distribution of input values. This approach works
particularly well in combination with the idea of “continuous rehashing”
introduced by Brassard and Kannan [BK88]. In this way an algorithm is
obtained that needs linear space and expected constant time for each single
instruction. However, for n keys being stored in the dictionary in a scheme of

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

this kind the best upper bound known on the expected worst case time for an
instruction (i.e., the length of the longest chain in the resulting hash table with
chaining) is O(log n / log log n)....” Id. at 2-3. Since Dietzfelbinger does not
specify which collision handling approach FKS uses (the focus of this paper is
not collision handling but a computation of the upper and lower bounds for the
time complexity of a class of deterministic algorithms for the dictionary
problem), it is inherent from the disclosure of other schemes, such as the CW
scheme, that FKS also uses hashing with chaining.

To the extent that Bedrock argues that Dietzefelbinger does not anticipate
Claims 1 – 8 because it is not inherent that the FKS scheme incorporates linked
lists to handling key collisions, it would have been obvious to one of ordinary
skill in the art to store table entries in a linked list. The admitted prior art in
the Introduction discloses that linked lists/external chaining were already
common place to resolve collisions within hash tables. Id. Thus,
Dietzefelbinger and the admitted prior art in the Introduction show that one of
ordinary skill in the art understood how to use linked lists/external chaining to
resolve collisions within hash tables, and would recognize that it would
improve similar systems and methods in the same way.

Furthermore, Dietzfelbinger discloses that “[d]eletions are performed by
attaching a tag “deleted” to the table entry to be erased; only when a new level-
1 hash function h or a new hash function hj for the sub table Tj is chosen, do we
drop the elements with a tag “deleted” from Tj.” Id. at 5.

A call to the procedure Insert(x) conducts the following steps, as displayed by
the code in the figure below. The procedure hashes x to determine the proper

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

position for x, hj(x). If the position in which x is to be placed is empty, then x
is stored in the position. However, if the position is not empty, then the
procedure goes through and places all the elements in the sub table that are not
labeled “deleted” into a list Lj, and marks all positions in the sub table as
empty. Then, x is appended to the list Lj. By marking all positions in the sub
table as empty, the procedure effectively deletes all those that are left in the
sub table -- those that were labeled “deleted.” Id. at 6.

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

Id. at Figure 1.

 [7d] inserting, retrieving

or deleting one of the
records from the system
following the step of
removing.

Dietzfelbinger discloses inserting, retrieving or deleting one of the records
from the system following the step of removing.

For example, Dietzfelbinger discloses that “[t]he dynamic dictionary problem
is considered: provide an algorithm for storing a dynamic set, allowing the
operations insert, delete, and lookup. A dynamic perfect hashing strategy is
given: a randomized algorithm for the dynamic dictionary problem that takes
O(1) worst-case time for lookups and O(1) amortized expected time for
insertions and deletions” Id. at 1.

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

“A dictionary over a universe U = {0, 1, . . . , N - 1} is a partial function S
from U to some set I. The operations Lookup(x), Insert(x, i), and Delete(x) are
available on a dictionary S; Lookup(x) returns S(x), Insert (x, i) adds x to the
domain of S and sets S(x) to I, and Delete(x) removes x from the domain of S.”
Id. at 2.

Furthermore, Dietzfelbinger discloses that “[t]here are two major techniques
for implementing dictionaries: trees and hashing.” Id.

Dietzfelbinger discloses an extension of the Fredman, Komlós, and Szemerédi
scheme to the dynamic situation, wherein membership queries are processed in
constant worst-case time, insertions and deletions are processed in constant
expected amortized time, and the storage used at any time is proportional to the
number of elements currently stored in the dictionary. “[F]redman, Komlós,
and Szemerédi [FKS84] describe a hashing technique that achieves linear
storage (in n) and constant query time for all N and n, where n is the size of S.”
Id.

This FSK Scheme that Dietzfelbinger discloses “has two levels. At the top
level, a hash function partitions the elements being stored into s sets. The
second level consists of a perfect hash function for each of these sets.
Specifically, a function h chosen uniformly at random from Hs is used to
partition the set S into s blocks.” Id. at 3-4.

While Dietzfelbinger does not disclose whether or not the FKS scheme uses
hashing with chaining to handle the unavoidable key collisions problem,

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

Dietzfelbinger discloses other schemes that do use hashing with chaining.
“Carter and Wegman [CW79] proposed universal hashing as a way of
avoiding assumption on the distribution of input values. This approach works
particularly well in combination with the idea of “continuous rehashing”
introduced by Brassard and Kannan [BK88]. In this way an algorithm is
obtained that needs linear space and expected constant time for each single
instruction. However, for n keys being stored in the dictionary in a scheme of
this kind the best upper bound known on the expected worst case time for an
instruction (i.e., the length of the longest chain in the resulting hash table with
chaining) is O(log n / log log n)...” Id. at 2-3.Since Dietzfelbinger does not
specify which collision handling approach FKS uses (the focus of this paper is
not collision handling but a computation of the upper and lower bounds for the
time complexity of a class of deterministic algorithms for the dictionary
problem), it is inherent from the disclosure of other schemes, such as the CW
scheme, that FKS also uses hashing with chaining.

To the extent that Bedrock argues that Dietzefelbinger does not anticipate
Claims 1 – 8 because it is not inherent that the FKS scheme incorporates linked
lists to handling key collisions, it would have been obvious to one of ordinary
skill in the art to store table entries in a linked list. The admitted prior art in
the Introduction discloses that linked lists/external chaining were already
common place to resolve collisions within hash tables. Id. Thus,
Dietzefelbinger and the admitted prior art in the Introduction show that one of
ordinary skill in the art understood how to use linked lists/external chaining to
resolve collisions within hash tables, and would recognize that it would
improve similar systems and methods in the same way.

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

Furthermore, Dietzfelbinger discloses that “[d]eletions are performed by
attaching a tag “deleted” to the table entry to be erased; only when a new level-
1 hash function h or a new hash function hj for the sub table Tj is chosen, do we
drop the elements with a tag “deleted” from Tj.” Id. at 5.

A call to the procedure Insert(x) conducts the following steps, as displayed by
the code in the figure below. The procedure hashes x to determine the proper
position for x, hj(x). If the position in which x is to be placed is empty, then x
is stored in the position. However, if the position is not empty, then the
procedure goes through and places all the elements in the sub table that are not
labeled “deleted” into a list Lj, and marks all positions in the sub table as
empty. Then, x is appended to the list Lj. By marking all positions in the sub
table as empty, the procedure effectively deletes all those that are left in the
sub table -- those that were labeled “deleted.” Id. at 6.

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

Id. at Figure 1.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

Dietzfelbinger discloses dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed.

For example, a call to the procedure Insert(x) conducts the following steps, as
displayed by the code in the figure below. The procedure hashes x to
determine the proper position for x, hj(x). First, the procedure determines if x
already exists in the sub table. If x does exist, then the only determination to
make is whether x is marked for deletion. If x is marked for deletion, then the
procedure removes this deletion tag. Id. at 6.

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

Second, if the sub table does not contain x and the position in which x is to be
placed is found empty, then x is stored in the position. Id.

Third, if the sub table does not contain x and the position in which x is to be
placed is not empty, then the procedure goes through and places all the
elements in the sub table that are not labeled “deleted” into a list Lj, and marks
all positions in the sub table as empty. Then, x is appended to the list Lj. By
marking all positions in the sub table as empty, the procedure effectively
deletes all those that are left in the sub table -- those that were labeled
“deleted.” Id.

Therefore, the procedure dynamically determines whether or not to delete the
records marked “deleted” if either of the following two conditions occur: (1) x
already exists in the sub table or (2) the position in which x is to be placed is
empty. Deletion takes place during a call to procedure Insert(x) only if the
above two conditions are not met.

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

Id. at Figure 1.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Dietzfelbinger to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Dietzfelbinger with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed

EXHIBIT C-6

Plaintiff’s Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1290297.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Deide, Hans Rohnert, Robert E. Tarjan, Dynamic Perfect Hashing:

Upper and Lower Bounds, Revised Version January 7, 1990
(“Dietzfelbinger”).

linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Dietzfelbinger can be burdensome
on the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete. Indeed,
part of the motivation for the system disclosed in Dietzfelbinger is avoiding
these problems. One of ordinary skill in the art would have known that
dynamically determining the maximum number to remove would limit the
burden on the system and bound the length of any real-time interruption to
prevent delays in processing. Indeed, Nemes concedes that such dynamic
determination was obvious when he states in the ‘120 patent that “[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one.” ‘120 at
7:10-15.

EXHIBIT C-7

Plaintiff’s Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Griffioen discloses an information
storage and retrieval system.

For example, the Remote Memory Model described in Griffioen “consists of
multiple client machines, one or more memory server machines, various other
servers (e.g., time servers, name servers, or file servers), and a communication
channel interconnecting all the machines.” Griffioen at 21. The model
“centers around the use of remote memory servers for backing storage.” See
Griffioen at 91.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Griffioen describes the use of a hash table with a double hashing algorithm to
locate data. Griffioen at 101.

There are two well-known approaches to solving the problem of collisions
within a hash table, which occur whenever two entries “hash” or are assigned
to the same “bucket” within the hash table. The computer programmer may
store the records external to the hash table—that is, using memory separate
from the memory allocated to the hash table—or he may store the records
internal to the hash table—that is, using memory that is allocated to other
buckets within the hash table. Using external memory is termed “external
chaining,” while using internal memory is termed “open addressing.” See
“The Art of Computer Programming”, Sorting and Searching, D.E. Knuth,
Addison-Wesley Series in Computer Science and Information Processing, pp.
506-549, 1973. The applicant has conceded that both forms of collision
resolution are known to those of ordinary skill in the art. See, e.g., ‘120 patent
at 1:53-57 (describing linear probing—a type of open addressing—as being
“often used” for “collision resolution”); 1:58-2:6 (citing to several prior art

EXHIBIT C-7

Plaintiff’s Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

resources that describe external chaining as using linked lists). Indeed, Knuth
recognizes that “[p]erhaps the most obvious way to solve this problem [of
collision resolution] is to maintain M linked Lists, one for each possible hash
code [i.e. external chaining].” Knuth at 513. See also Mark A. Weiss, Data
Structures and Algorithm Analysis, p. 157, 1993 (“Closed hashing, also
known as open addressing, is an alternative to resolving collisions with linked
lists.”). Double hashing is another form of open addressing. See Knuth at
519-524.

It would have been obvious to one skilled in the art to apply the teachings in
Griffioen to a hash table which resolves collisions using external chaining with
linked lists. As detailed above, one of ordinary skill has a limited number of
ways of resolving hash collisions: he may either store the entries within the
hash table or outside the hash table, and both were well known to those of
ordinary skill.

The records in the system Griffioen discloses includes records, at least some of
which automatically expire.

For example, Griffioen describes a memory reclamation process through which
the remote memory server maintains a timestamp for each process in the
system in a separate process hash table. “When the memory server receives a
page store request for a process, the server saves the timestamp of the
requesting process in the virtual-page hash table entry. Consequently, all
pages belonging to a VS have the VS’s timestamp. When the memory server
receives a terminate request, it updates the current timestamp in the VS table,
thereby invalidating all the pages in the VS.” Griffioen at 106. “Updating a

EXHIBIT C-7

Plaintiff’s Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

timestamp invalidates all the data in a VS or LMS in a single operation.”
Griffioen at 108.

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

Griffioen discloses a record search means utilizing a search key to access the
chain of records. Griffioen also discloses a record search means utilizing a
search key to access a chain of records beginning at the same hash address.

For example, Griffioen explains that “[c]lient machines uniquely label each
page with an ordered triple containing the LMS ID, VS ID, and page number.
Given a paging request, the server can quickly verify whether a particular hash
table entry contains the requested page.” Griffioen at 100. “The memory
server efficiently locates a hash table entry by applying a double hashing
algorithm to the ordered triple that uniquely identifies the desired page.”
Griffioen at 101.

As discussed in [1a/5a], it would have been obvious to one of ordinary skill in
the art to use a hash table with external chaining instead of a hash table with
open addressing/double hashing. As such, the search means utilizing the
search key would be accessing a linked list of records beginning at the same
hash address.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when

Griffioen discloses the record search means including means for identifying
and removing at least some expired ones of the records from the chain of
records when the chain is accessed.

For example, the remote memory server “reclaims memory while processing
store and fetch requests. When a client issues a store or fetch request, the

EXHIBIT C-7

Plaintiff’s Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

when the linked list is
accessed, and

the linked list is accessed,
and

server applies the double hashing algorithm to locate an entry in the virtual-
page hash table. The double hashing algorithm requires the server to check for
a collision on each probe to the table. That is, the server must compare the
requested page’s information against the information found in the hash table
entry to see if the entry contains the desired page. If a collision occurs, the
server checks the timestamp found in the hash table entry against the owner’s
timestamp in the VS and LMS hash tables. If the timestamps differ, the server
reclaims the page. If the timestamps match, the hash table entry is still valid,
and the double hashing algorithm proceeds as normal. This modification to the
double hashing algorithm allows the server to reclaim invalid pages during its
normal processing.” Griffioen at 108. The remote memory server also
performs garbage collection in the background. Id.

As discussed in [1a/5a], it would have been obvious to one of ordinary skill in
the art to use a hash table with external chaining instead of a hash table with
open addressing/double hashing. In such a system, the probe that resulted
from a collision would occur on the linked list used to resolve the collision. As
such, the expired records from the linked list would be removed when the
algorithm processes the linked list in search of the desired record.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the

Griffioen discloses means, utilizing the record search means, for accessing the
chain of records and, at the same time, removing at least some of the expired
ones of the records in the chain. Griffioen also discloses means, utilizing the
record search means, for inserting, retrieving, and deleting records from the
system and, at the same time, removing at least some expired ones of the
records in the accessed chain of records.

EXHIBIT C-7

Plaintiff’s Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

records in the accessed
linked list of records.

For example, the remote memory server “reclaims memory while processing
store and fetch requests. When a client issues a store or fetch request, the
server applies the double hashing algorithm to locate an entry in the virtual-
page hash table. The double hashing algorithm requires the server to check for
a collision on each probe to the table. That is, the server must compare the
requested page’s information against the information found in the hash table
entry to see if the entry contains the desired page. If a collision occurs, the
server checks the timestamp found in the hash table entry against the owner’s
timestamp in the VS and LMS hash tables. If the timestamps differ, the server
reclaims the page. If the timestamps match, the hash table entry is still valid,
and the double hashing algorithm proceeds as normal. This modification to the
double hashing algorithm allows the server to reclaim invalid pages during its
normal processing.” Griffioen at 108. The remote memory server also
performs garbage collection in the background. Id. To the extent Griffioen
does not disclose removal of expired records during a deletion of records, it
would have been obvious to one of ordinary skill in the art that a deletion could
occur at such a time, since insertion, retrievals, and deletions are basic
operations that can be performed on all hash tables.

As discussed in [1a/5a], it would have been obvious to one of ordinary skill in
the art to use a hash table with external chaining instead of a hash table with
open addressing/double hashing. In such a system, the probe that resulted
from a collision would occur on the linked list used to resolve the collision. As
such, the expired records from the linked list would be removed when the
algorithm processes the linked list in search of the desired record.

2. The information storage 6. The information storage Griffioen combined with Dirks, Thatte, the ’663 patent and/or the

EXHIBIT C-7

Plaintiff’s Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

Opportunistic Garbage Collection Articles discloses an information storage
and retrieval system further including means for dynamically determining
maximum number for the record search means to remove in the accessed
linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).

EXHIBIT C-7

Plaintiff’s Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the

EXHIBIT C-7

Plaintiff’s Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Griffioen and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Griffioen. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Griffioen nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Griffioen and would
have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

EXHIBIT C-7

Plaintiff’s Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Griffioen with the means
for dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. Thatte,
discloses a system and method using hash tables and/or linked lists and further
discloses means for dynamically determining the maximum number for the
record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Griffioen with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine
Griffioen with Thatte and recognize the benefits of doing so. For example, the
removal of expired records described in Griffioen can be burdensome on the
system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
Griffioen with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired

EXHIBIT C-7

Plaintiff’s Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine Griffioen with
Thatte.

Alternatively, it would also be obvious to combine Griffioenwith the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

EXHIBIT C-7

Plaintiff’s Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-7

Plaintiff’s Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a

EXHIBIT C-7

Plaintiff’s Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.
As both Griffioen and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Griffioen. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Griffioen would
be nothing more than the predictable use of prior art elements according to
their established functions.

EXHIBIT C-7

Plaintiff’s Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Griffioen and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Griffioen with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more

EXHIBIT C-7

Plaintiff’s Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Griffioen and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Griffioen. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching

EXHIBIT C-7

Plaintiff’s Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Griffioen would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Griffioen and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Griffioen to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Griffioen with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Griffioencan be burdensome on the
system, adding to the system’s load and slowing down the system’s

EXHIBIT C-7

Plaintiff’s Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, Griffioen also discloses a method for
storing and retrieving information records using a hashing technique, at least
some of the records automatically expiring.

For example, the Remote Memory Model described in Griffioen “consists of
multiple client machines, one or more memory server machines, various other
servers (e.g., time servers, name servers, or file servers), and a communication
channel interconnecting all the machines.” Griffioen at 21. The model
“centers around the use of remote memory servers for backing storage.” See
Griffioen at 91.

Griffioen describes a method of using a hash table with a double hashing
algorithm to locate data. Griffioen at 101. As discussed in [1a/5a], it would
have been obvious to one of ordinary skill in the art that a hash table with

EXHIBIT C-7

Plaintiff’s Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

external chaining using linked lists could be used instead of a hash table with
double hashing.

The records in the system Griffioen discloses includes records, at least some of
which automatically expire.

For example, Griffioen describes a memory reclamation process through which
the remote memory server maintains a timestamp for each process in the
system in a separate process hash table. “When the memory server receives a
page store request for a process, the server saves the timestamp of the
requesting process in the virtual-page hash table entry. Consequently, all
pages belonging to a VS have the VS’s timestamp. When the memory server
receives a terminate request, it updates the current timestamp in the VS table,
thereby invalidating all the pages in the VS.” Griffioen at 106. “Updating a
timestamp invalidates all the data in a VS or LMS in a single operation.”
Griffioen at 108.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Griffioen discloses accessing the chain of records. Griffioen also discloses
accessing a chain of records beginning at the same hash address.

For example, Griffioen describes a method of using a hash table with a double
hashing algorithm to locate data. Griffioen at 101. As discussed in [1a/5a], it
would have been obvious to one of ordinary skill in the art to use a hash table
with external chaining instead of a hash table with open addressing/double
hashing. In such a system, the probe that resulted from a collision would occur
on the linked list used to resolve the collision. As such, the expired records
from the linked list would be removed when the algorithm processes the linked

EXHIBIT C-7

Plaintiff’s Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

list in search of the desired record.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Griffioen discloses identifying at least some of the automatically expired ones
of the records.

For example, the remote memory server “reclaims memory while processing
store and fetch requests. When a client issues a store or fetch request, the
server applies the double hashing algorithm to locate an entry in the virtual-
page hash table. The double hashing algorithm requires the server to check for
a collision on each probe to the table. That is, the server must compare the
requested page’s information against the information found in the hash table
entry to see if the entry contains the desired page. If a collision occurs, the
server checks the timestamp found in the hash table entry against the owner’s
timestamp in the VS and LMS hash tables. If the timestamps differ, the server
reclaims the page. If the timestamps match, the hash table entry is still valid,
and the double hashing algorithm proceeds as normal. This modification to the
double hashing algorithm allows the server to reclaim invalid pages during its
normal processing.” Griffioen at 108. The remote memory server also
performs garbage collection in the background. Id.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Griffioen discloses removing at least some of the automatically expired records
from the chain of records when the chain is accessed.

For example, the remote memory server “reclaims memory while processing
store and fetch requests. When a client issues a store or fetch request, the
server applies the double hashing algorithm to locate an entry in the virtual-
page hash table. The double hashing algorithm requires the server to check for

EXHIBIT C-7

Plaintiff’s Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

a collision on each probe to the table. That is, the server must compare the
requested page’s information against the information found in the hash table
entry to see if the entry contains the desired page. If a collision occurs, the
server checks the timestamp found in the hash table entry against the owner’s
timestamp in the VS and LMS hash tables. If the timestamps differ, the server
reclaims the page. If the timestamps match, the hash table entry is still valid,
and the double hashing algorithm proceeds as normal. This modification to the
double hashing algorithm allows the server to reclaim invalid pages during its
normal processing.” Griffioen at 108. The remote memory server also
performs garbage collection in the background. Id.

As discussed in [1a/5a], it would have been obvious to one of ordinary skill in
the art to use a hash table with external chaining instead of a hash table with
open addressing/double hashing. In such a system, the probe that resulted
from a collision would occur on the linked list used to resolve the collision. As
such, the expired records from the linked list would be removed when the
algorithm processes the linked list in search of the desired record.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

Griffioen discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

For example, Griffioen states that the memory server “reclaims memory while
processing store and fetch requests.” Griffioen at 108. These store and fetch
requests constitute insertions and retrievals from the hash table.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum

8. The method according
to claim 7 further including
the step of dynamically
determining maximum

Griffioen combined with Dirks, Thatte, the ’663 patent, and/or the
Opportunistic Garbage Collection Articles discloses dynamically determining
maximum number of expired ones of the records to remove when the linked
list is accessed.

EXHIBIT C-7

Plaintiff’s Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

number of expired ones of
the records to remove
when the linked list is
accessed.

number of expired ones of
the records to remove
when the linked list is
accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in the
chart of Dirks, which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than

EXHIBIT C-7

Plaintiff’s Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

EXHIBIT C-7

Plaintiff’s Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

As both Griffioen and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as that described Griffioen. Moreover, one of ordinary
skill in the art would recognize that it would improve similar systems and
methods in the same way. As the ’120 patent states “[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining Dirks’ deletion decision procedure with Griffioen would
be nothing more than the predictable use of prior art elements according to
their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Griffioen and would
have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Griffioen with the means
for dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. Thatte,

EXHIBIT C-7

Plaintiff’s Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

discloses a system and method using hash tables and/or linked lists and further
discloses means for dynamically determining the maximum number for the
record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Griffioen with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine
Griffioen with Thatte and recognized the benefits of doing so. For example,
the removal of expired records described in Griffioencan be burdensome on the
system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
Griffioen with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine Griffioen with

EXHIBIT C-7

Plaintiff’s Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

Thatte.

Alternatively, it would also be obvious to combine Griffioen with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.

EXHIBIT C-7

Plaintiff’s Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

Id. at Figure 5.

EXHIBIT C-7

Plaintiff’s Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Griffioen and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as Griffioen. Moreover, one of ordinary skill in the art would recognize
that it would improve similar systems and methods in the same way. As the
’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete

EXHIBIT C-7

Plaintiff’s Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663
patent’s deletion decision procedure with Griffioen would be nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Griffioen and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Griffioen with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the

EXHIBIT C-7

Plaintiff’s Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Griffioen and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision

EXHIBIT C-7

Plaintiff’s Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

on whether to perform a deletion based on a system load in other hash table
implementations such as Griffioen. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Griffioen would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Griffioen and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would only perform deletions when the system was not already
too overloaded, thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Griffioen to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of

EXHIBIT C-7

Plaintiff’s Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1290282.1

Asserted Claims From
U.S. Pat. No. 5,893,120

James Griffioen, Remote Memory Backing Storage for Distributed Virtual
Memory Operating Systems, PhD (1992), available at

http://protocols.netlab.uky.edu/~griff/papers/phd_thesis (“Griffioen”)
alone and in combination

ordinary skill in the art would have been motivated to combine the system
disclosed in Griffioen with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Griffioen can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

EXHIBIT C-8

Plaintiff’s Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Comer discloses an information
storage and retrieval system.

For example, the Remote Memory Model described in Comer “consists of
several client machines, various server machines, one or more dedicated
machines called remote memory servers, and a communication channel
interconnecting all the machines.” See p. 2. “[C]lient machines use the remote
memory server for backing storage.” See p. 3. The “remote memory server
transfers data to and from heterogeneous clients in an architecture-independent
manner.” See Comer at 9; see also Comer at 1.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Comer describes the use of a hash table with a double hashing algorithm to
locate data. P. 10.

There are two well-known approaches to solving the problem of collisions
within a hash table, which occur whenever two entries “hash” or are assigned
to the same “bucket” within the hash table. The computer programmer may
store the records external to the hash table—that is, using memory separate
from the memory allocated to the hash table—or he may store the records
internal to the hash table—that is, using memory that is allocated to other
buckets within the hash table. Using external memory is termed “external
chaining,” while using internal memory is termed “open addressing.” See
“The Art of Computer Programming”, Sorting and Searching, D.E. Knuth,
Addison-Wesley Series in Computer Science and Information Processing, pp.
506-549, 1973. The applicant has conceded that both forms of collision
resolution are known to those of ordinary skill in the art. See, e.g., ‘120 patent
at 1:53-57 (describing linear probing—a type of open addressing—as being

EXHIBIT C-8

Plaintiff’s Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

“often used” for “collision resolution”); 1:58-2:6 (citing to several prior art
resources that describe external chaining as using linked lists). Indeed, Knuth
recognizes that “[p]erhaps the most obvious way to solve this problem [of
collision resolution] is to maintain M linked Lists, one for each possible hash
code [i.e. external chaining].” Knuth at 513. See also Mark A. Weiss, Data
Structures and Algorithm Analysis, p. 157, 1993 (“Closed hashing, also
known as open addressing, is an alternative to resolving collisions with linked
lists.”). Double hashing is another form of open addressing. See Knuth at
519-524.

It would have been obvious to one skilled in the art to apply the teachings in
Comer to a hash table which resolves collisions using external chaining with
linked lists. As detailed above, one of ordinary skill has a limited number of
ways to resolve hash collisions: he may either store the entries within the hash
table or outside the hash table, and both were well known to those of ordinary
skill.

The records in the system Comer discloses includes records, at least some of
which automatically expire.

For example, Comer describes a memory reclamation process through which
the remote memory server maintains a timestamp for each process in the
system in a separate process hash table. “When the server receives a page
store request for a process, the server saves the process’s timestamp with the
page in the data hash table. Each time the server receives a terminate request,
the server updates the timestamp in the process hash table, thereby invalidating
all pages associated with the terminated process.” P. 10.

EXHIBIT C-8

Plaintiff’s Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

Comer discloses a record search means utilizing a search key to access the
chain of records. Comer also discloses a record search means utilizing a
search key to access a chain of records beginning at the same hash address.

For example, Comer explains that “[c]lient machines uniquely identify a page
with an ordered triple consisting of a unique machine identifier, a process
identifier, and a page identifier. The server applies a double hashing algorithm
to the triple to locate the hash table entry that contains pointers to the data.”

As discussed in [1a/5a], it would have been obvious to one of ordinary skill in
the art to use a hash table with external chaining instead of a hash table with
open addressing/double hashing. As such, the search means utilizing the
search key would be accessing a linked list of records beginning at the same
hash address.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

Comer discloses the record search means including means for identifying and
removing at least some expired ones of the records from the chain of records
when the chain is accessed.

For example, the remote memory server “reclaims obsolete pages during later
probes to the data hash table and with a garbage collection process that
executes in the background.” P. 10-11. “Each time a probe to the data hash
table results in a collision, the server checks the timestamp on the page against
the timestamp of the owner. If the timestamps differ, the server reclaims the
page. Together, the garbage collection process and the lazy reclamation
algorithm amortize the cost of reclaiming memory over time.” P. 11.

EXHIBIT C-8

Plaintiff’s Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

As discussed in [1a/5a], it would have been obvious to one of ordinary skill in
the art to use a hash table with external chaining instead of a hash table with
open addressing/double hashing. In such a system, the probe that resulted
from a collision would occur on the linked list used to resolve the collision. As
such, the expired records from the linked list would be removed when the
algorithm processes the linked list in search of the desired record.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

Comer discloses means, utilizing the record search means, for accessing the
chain of records and, at the same time, removing at least some of the expired
ones of the records in the chain. Comer also discloses means, utilizing the
record search means, for inserting, retrieving, and deleting records from the
system and, at the same time, removing at least some expired ones of the
records in the accessed chain of records.

For example, the remote memory server “reclaims obsolete pages during later
probes to the data hash table.” P. 10. “Each time a probe to the data hash table
results in a collision, the server checks the timestamp on the page against the
timestamp of the owner. If the timestamps differ, the server reclaims the
page.” P. 10.

As discussed in [1a/5a], it would have been obvious to one of ordinary skill in
the art to use a hash table with external chaining instead of a hash table with
open addressing/double hashing. In such a system, the probe that resulted
from a collision would occur on the linked list used to resolve the collision. As
such, the expired records from the linked list would be removed when the
algorithm processes the linked list in search of the desired record.

EXHIBIT C-8

Plaintiff’s Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

Comer combined with Dirks, Thatte, the ’663 patent and/or the Opportunistic
Garbage Collection Articles discloses an information storage and retrieval
system further including means for dynamically determining maximum
number for the record search means to remove in the accessed linked list of
records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

EXHIBIT C-8

Plaintiff’s Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion

EXHIBIT C-8

Plaintiff’s Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Comer and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Comer. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Comer nothing more than
the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Comer and would have
seen the benefits of doing so. One possible benefit, for example, is saving the

EXHIBIT C-8

Plaintiff’s Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Comer with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. Thatte,
discloses a system and method using hash tables and/or linked lists and further
discloses means for dynamically determining the maximum number for the
record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Comer with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Comer
with Thatte and recognize the benefits of doing so. For example, the removal
of expired records described in Comer can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Comer with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.

EXHIBIT C-8

Plaintiff’s Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Comer with Thatte.

Alternatively, it would also be obvious to combine Comerwith the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by

EXHIBIT C-8

Plaintiff’s Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-8

Plaintiff’s Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a

EXHIBIT C-8

Plaintiff’s Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.
As both Comer and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Comer. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Comer would be
nothing more than the predictable use of prior art elements according to their
established functions.

EXHIBIT C-8

Plaintiff’s Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Comer and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Comer with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more

EXHIBIT C-8

Plaintiff’s Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Comer and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Comer. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching

EXHIBIT C-8

Plaintiff’s Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Comer would be nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Comer and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Comer to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in
Comer with the fundamental concept of dynamically determining the
maximum number of expired records to remove in an accessed linked list of
records to solve a number of potential problems. For example, the removal of
expired records described in Comercan be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. Moreover, the

EXHIBIT C-8

Plaintiff’s Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, Comer also discloses method for
storing and retrieving information records using a hashing technique, at least
some of the records automatically expiring.

For example, the Remote Memory Model described in Comer “consists of
several client machines, various server machines, one or more dedicated
machines called remote memory servers, and a communication channel
interconnecting all the machines.” See Comer at 2. “[C]lient machines use the
remote memory server for backing storage.” See Comer at 3. The “remote
memory server transfers data to and from heterogeneous clients in an
architecture-independent manner.” See Comer at 9; see also Comer at 1.

Comer describes a method of using of a hash table with a double hashing
algorithm to locate data on the remote memory server. P. 10. There are two

EXHIBIT C-8

Plaintiff’s Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

well-known approaches to solving the problem of collisions within a hash
table, which occur whenever two entries “hash” or are assigned to the same
“bucket” within the hash table. The computer programmer may store the
records external to the hash table—that is, using memory separate from the
memory allocated to the hash table—or he may store the records internal to the
hash table—that is, using memory that is allocated to other buckets within the
hash table. Using external memory is termed “external chaining,” while using
internal memory is termed “open addressing.” See “The Art of Computer
Programming”, Sorting and Searching, D.E. Knuth, Addison-Wesley Series in
Computer Science and Information Processing, pp. 506-549, 1973. The
applicant has conceded that both forms of collision resolution are known to
those of ordinary skill in the art. See, e.g., ‘120 patent at 1:53-57 (describing
linear probing—a type of open addressing—as being “often used” for
“collision resolution”); 1:58-2:6 (citing to several prior art resources that
describe external chaining as using linked lists). Indeed, Knuth recognizes that
“[p]erhaps the most obvious way to solve this problem [of collision resolution]
is to maintain M linked Lists, one for each possible hash code [i.e. external
chaining].” Knuth at 513. See also Mark A. Weiss, Data Structures and
Algorithm Analysis, p. 157, 1993 (“Closed hashing, also known as open
addressing, is an alternative to resolving collisions with linked lists.”).
Double hashing is another form of open addressing. See Knuth at 519-524.

It would have been obvious to one skilled in the art to apply the teachings in
Comer to a hash table which resolves collisions using external chaining with
linked lists. As detailed above, one of ordinary skill has a limited number of
ways of resolving hash collisions: he may either store the entries within the
hash table or outside the hash table, and both were well known to those of

EXHIBIT C-8

Plaintiff’s Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

ordinary skill.

The records in the system Comer discloses includes records, at least some of
which automatically expire.

For example, Comer describes a memory reclamation process through which
the remote memory server maintains a timestamp for each process in the
system in a separate process hash table. “When the server receives a page
store request for a process, the server saves the process’s timestamp with the
page in the data hash table. Each time the server receives a terminate request,
the server updates the timestamp in the process hash table, thereby invalidating
all pages associated with the terminated process.” P. 10.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Comer discloses accessing the chain of records. Comer also discloses
accessing a chain of records beginning at the same hash address.

For example, Comer describes a method of using of a hash table with a double
hashing algorithm to locate data on the remote memory server. P. 10.

As discussed in [3/7], it would have been obvious to one of ordinary skill in
the art to use a hash table with external chaining instead of a hash table with
open addressing/double hashing. In such a system, the probe that resulted
from a collision would occur on the linked list used to resolve the collision. As
such, the expired records from the linked list would be removed when the
algorithm processes the linked list in search of the desired record.

EXHIBIT C-8

Plaintiff’s Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Comer discloses identifying at least some of the automatically expired ones of
the records.

For example, the remote memory server “reclaims obsolete pages during later
probes to the data hash table.” P. 10. “Each time a probe to the data hash table
results in a collision, the server checks the timestamp on the page against the
timestamp of the owner. If the timestamps differ, the server reclaims the
page.” P. 10.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Comer discloses the removing at least some of the automatically expired
records from the chain of records when the chain of records is accessed.

For example, the remote memory server “reclaims obsolete pages during later
probes to the data hash table and with a garbage collection process that
executes in the background.” P. 10-11. “Each time a probe to the data hash
table results in a collision, the server checks the timestamp on the page against
the timestamp of the owner. If the timestamps differ, the server reclaims the
page. Together, the garbage collection process and the lazy reclamation
algorithm amortize the cost of reclaiming memory over time.” P. 11.

As discussed in [3/7], it would have been obvious to one of ordinary skill in
the art to use a hash table with external chaining instead of a hash table with
open addressing/double hashing. In such a system, the probe that resulted
from a collision would occur on the linked list used to resolve the collision. As
such, the expired records from the linked list would be removed when the
algorithm processes the linked list in search of the desired record.

EXHIBIT C-8

Plaintiff’s Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

 [7d] inserting, retrieving

or deleting one of the
records from the system
following the step of
removing.

Comer discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

For example, Comer states that “[t]he server reclaims obsolete pages during
later probes to the data hash table” P. 10.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

Comer combined with Dirks, Thatte, the ’663 patent, and/or the Opportunistic
Garbage Collection Articles discloses dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in the
chart of Dirks, which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries

EXHIBIT C-8

Plaintiff’s Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

EXHIBIT C-8

Plaintiff’s Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Comer and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as that described Comer. Moreover, one of ordinary
skill in the art would recognize that it would improve similar systems and
methods in the same way. As the ’120 patent states “[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining Dirks’ deletion decision procedure with Comer would be
nothing more than the predictable use of prior art elements according to their
established functions.

EXHIBIT C-8

Plaintiff’s Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Comer and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Comer with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. Thatte,
discloses a system and method using hash tables and/or linked lists and further
discloses means for dynamically determining the maximum number for the
record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Comer with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Comer
with Thatte and recognized the benefits of doing so. For example, the removal

EXHIBIT C-8

Plaintiff’s Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

of expired records described in Comercan be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Comer with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Comer with Thatte.

Alternatively, it would also be obvious to combine Comer with the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and

EXHIBIT C-8

Plaintiff’s Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-8

Plaintiff’s Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a

EXHIBIT C-8

Plaintiff’s Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Comer and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as Comer. Moreover, one of ordinary skill in the art would recognize that
it would improve similar systems and methods in the same way. As the ’120
patent states “[a] person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be expanded to
include techniques whereby not necessarily all expired records are removed,
and that the decision regarding if and how many records to delete can be a
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary skill
in the art would recognize that the result of combining the ’663 patent’s
deletion decision procedure with Comer would be nothing more than the
predictable use of prior art elements according to their established functions.

EXHIBIT C-8

Plaintiff’s Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Comer and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Comer with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more

EXHIBIT C-8

Plaintiff’s Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Comer and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Comer. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching

EXHIBIT C-8

Plaintiff’s Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Comer would be nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Comer and would
have seen the benefits of doing so. One such benefit, for example, is that the
system would only perform deletions when the system was not already too
overloaded, thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Comer to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in
Comer with the fundamental concept of dynamically determining the
maximum number of expired records to remove in an accessed linked list of
records to solve a number of potential problems. For example, the removal of
expired records described in Comer can be burdensome on the system, adding

EXHIBIT C-8

Plaintiff’s Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1290283.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Douglas Comer and James Griffioen, A New Design for Distributed
Systems: The Remote Memory Model (1990), available at

http://protocols.netlab.uky.edu/~griff/papers/usenix90.pdf (“Comer”)
alone and in combination

to the system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

EXHIBIT C-9

Plaintiff’s Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Sessions discloses an information
storage and retrieval system.

For example, Sessions discloses that “[o]ur newly completed linked list
package can now form the basis for a cache.” (Sessions at 29). Thus, Sessions
inherently discloses an information storage and retrieval system. (See id.)

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Sessions discloses a linked list to store and provide access to records stored in
a memory of the system, at least some of the records automatically expiring.

To the extent that Bedrock argues that Sessions does not anticipate this claim
element, it would have been obvious to one of ordinary skill in the art to
combine Sessions with Lester. Lester discloses hash tables where “the hash
table entries could be pointer-type values, or array indexes, or some encoding
of array indexes.” (Lester at 153). Lester further discloses an external
chaining technique to store the records with same hash address by stating
“[e]ach hash-table element that doesn’t yet correspond to any data would
contain nil, otherwise it would point either

• to a keyed table or to a keyed linked-list of those data-items whose keys
all hash to that place in the table”

(See id.). Lester also states that “I usually use a keyed linked-list: it is simple
to program, and if any of the lists get long it means that I should have made the
hash-array bigger, to get more lists, and therefore shorter lists.” (Lester at
154). Thus, Sessions and Lester show that one of ordinary skill in the art
understood how to utilize a hashing means to provide access to records stored
in a memory of the system and using an external chaining technique to store
the records with same hash address, and would recognize that it would improve

EXHIBIT C-9

Plaintiff’s Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

similar systems and methods in the same way.

Sessions also discloses that a “function ca_add() assumes that an item is not
in the cache,” and that “this function has three variable states. … 2. The cache
is full and an item must be discarded. As already described, the tail item is
always discarded.” (Sessions at 29).

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

Sessions discloses a record search means utilizing a search key to access the
linked list.

For example, Sessions discloses that “[t]he next function, ca_check(),
searches the cache for a particular item, returning a value of true or false
depending on the search results. If the item is found, it becomes the most
recently reference item and is promoted to the head of the list.

EXHIBIT C-9

Plaintiff’s Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

(Sessions at 30).

To the extent that Bedrock argues that Sessions does not anticipate this claim
element, it would have been obvious to one of ordinary skill in the art to
combine Sessions with Lester. For example, Lester discloses that “[t]he
complier should include “garbage collection” in a program translated from a
Pascal source that uses any pointer-types: when the program runs low on spare

EXHIBIT C-9

Plaintiff’s Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

memory the garbage collection should search for any nodes that no longer have
pointers to them, and deallocate them, freeing up some spare.” (Lester at 69).
Therefore, Lester inherently discloses “accessing a linked list of records having
the same hash address.” (See id.) Thus, Sessions and Lester show that one of
ordinary skill in the art understood a record search means utilizing a search key
to access a linked list of records having the same hash address, and would
recognize that it would improve similar systems and methods in the same way.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

Sessions discloses the record search means including a means for identifying
and removing at least some of the expired ones of the records from the linked
list when the linked list is accessed. Sessions also discloses the record search
means including means for identifying and removing at least some expired
ones of the records from the linked list of records when the linked list is
accessed.

For example, Sessions discloses the standard function free(), which “receives
a pointer to one of the blocks in the dynamic memory pool previously allocated
by malloc(). The pool is first scanned to validate the pointer, and then the
block is released for use. (Sessions at 78).

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

Sessions discloses means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. Sessions also discloses utilizing the record search
means, for inserting, retrieving, and deleting records from the system and, at
the same time, removing at least some expired ones of the records in the
accessed linked list of records.

For example, Sessions discloses that the “functions mmget() and mmfree()

EXHIBIT C-9

Plaintiff’s Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

can solve this problem by dynamically collecting free memory into a single
contiguous chunk. … if a program uses mmget() to set a pointer p1 to a block
of memory, p1 will always point to the same values. Any dynamic memory
collection that results in relocating the memory block also results in an
automatic update of p1.” (Sessions at 78-79).

Also, Sessions discloses that “[t]he static functions setfree() and
consolidate() perform the work of freeing a used memory block. … This
rudimentary garbage collection could be accomplished by the standard C
library function free() as well. (Sessions at 83).

Further, Sessions discloses an exercise where the student must “[m]odify
mmfree() so that a full garbage collection is always performed with each call.
What are the advantages and disadvantages of this change?” (Sessions at 86).

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

Sessions discloses an information storage and retrieval system further
including means for dynamically determining maximum number for the record
search means to remove in the accessed linked list of records.

For example, Sessions discloses that “[h]owever many blocks we decide to
save, we would eventually read one block too many. Then we would have to
reuse the memory space occupied by one of the blocks. Which block should
be thrown away? The best block to discard is the block we would least likely
want again.” (Sessions at 89).

Sessions also discloses a routine ca_check() which “promote(s) any found
items to the head of the linked list, indicating their changed status to ‘Most

EXHIBIT C-9

Plaintiff’s Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

Recently Referenced.’” (Sessions at 91).

Sessions further discloses an exercise where the student must “[m]odify
mmfree() so that garbage is collected whenever the largest single chunk of
available memory is less than ¾ of the total available pool.” (Sessions at 86).
Thus, Sessions inherently discloses a means for dynamically determining
maximum number for the record search means to remove in the accessed
linked list of records. (See id.)

Sessions combined with Dirks, Thatte, the ’663 patent and/or the Opportunistic
Garbage Collection Articles discloses an information storage and retrieval
system further including means for dynamically determining maximum
number for the record search means to remove in the accessed linked list of
records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is

EXHIBIT C-9

Plaintiff’s Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

EXHIBIT C-9

Plaintiff’s Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Sessions and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Sessions. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of

EXHIBIT C-9

Plaintiff’s Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

combining Dirks’ deletion decision procedure with Sessions nothing more than
the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Sessions and would
have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Sessions with the means
for dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. Thatte,
discloses a system and method using hash tables and/or linked lists and further
discloses means for dynamically determining the maximum number for the
record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Sessions with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

EXHIBIT C-9

Plaintiff’s Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

Further, one of ordinary skill in the art would be motivated to combine
Sessions with Thatte and recognize the benefits of doing so. For example, the
removal of expired records described in Sessions can be burdensome on the
system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
Sessions with the teachings of Thatte would solve this problem by dynamically
determining how many records to delete based on, among other things, the
system load. Moreover, the '120 patent discloses that "[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus,
the '120 patent provides motivations to combine Sessions with Thatte.

Alternatively, it would also be obvious to combine Sessionswith the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent

EXHIBIT C-9

Plaintiff’s Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-9

Plaintiff’s Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a

EXHIBIT C-9

Plaintiff’s Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.
As both Sessions and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Sessions. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Sessions would
be nothing more than the predictable use of prior art elements according to
their established functions.

EXHIBIT C-9

Plaintiff’s Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Sessions and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Sessions with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more

EXHIBIT C-9

Plaintiff’s Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Sessions and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Sessions. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching

EXHIBIT C-9

Plaintiff’s Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Sessions would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Sessions and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Sessions to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Sessions with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Sessionscan be burdensome on the
system, adding to the system’s load and slowing down the system’s

EXHIBIT C-9

Plaintiff’s Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, Sessions discloses a method for
storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring.

To the extent that Bedrock argues that Sessions does not anticipate this claim
element, it would have been obvious to one of ordinary skill in the art to
combine Sessions with Lester. Lester discloses hash tables where “the hash
table entries could be pointer-type values, or array indexes, or some encoding
of array indexes.” (Lester at 153). Lester further discloses an external
chaining technique to store the records with same hash address by stating
“[e]ach hash-table element that doesn’t yet correspond to any data would
contain nil, otherwise it would point either

• to a keyed table or to a keyed linked-list of those data-items whose keys

EXHIBIT C-9

Plaintiff’s Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others
all hash to that place in the table”

(See id.). Lester also states that “I usually use a keyed linked-list: it is simple
to program, and if any of the lists get long it means that I should have made the
hash-array bigger, to get more lists, and therefore shorter lists.” (Lester at
154). Thus, Sessions and Lester show that one of ordinary skill in the art
understood how to utilize a hashing means to provide access to records stored
in a memory of the system and using an external chaining technique to store
the records with same hash address, and would recognize that it would improve
similar systems and methods in the same way.

For example, Sessions discloses that “[o]ur newly completed linked list
package can now form the basis for a cache.” (Sessions at 29). Thus, Sessions
inherently discloses a method for storing and retrieving information records
using a linked list to store and provide access to the records.

Sessions also discloses that a “function ca_add() assumes that an item is not
in the cache,” and that “this function has three variable states. … 2. The cache
is full and an item must be discarded. As already described, the tail item is
always discarded.” (Sessions at 29).

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Sessions discloses accessing a linked list of records.

For example, Sessions discloses that “[t]he next function, ca_check(),
searches the cache for a particular item, returning a value of true or false
depending on the search results. If the item is found, it becomes the most
recently reference item and is promoted to the head of the list.

EXHIBIT C-9

Plaintiff’s Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

(Sessions at 30).

To the extent that Bedrock argues that Sessions does not anticipate this claim
element, it would have been obvious to one of ordinary skill in the art to
combine Sessions with Lester. For example, Lester discloses that “[t]he
complier should include “garbage collection” in a program translated from a
Pascal source that uses any pointer-types: when the program runs low on spare

EXHIBIT C-9

Plaintiff’s Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

memory the garbage collection should search for any nodes that no longer have
pointers to them, and deallocate them, freeing up some spare.” (Lester at 69).
Thus, Lester inherently discloses “accessing a linked list of records having
same hash address.” (See id.) Together, Sessions and Lester show that one of
ordinary skill in the art understood how to access a linked list of records
having same hash address, and would recognize that it would improve similar
systems and methods in the same way.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Sessions discloses identifying at least some of the automatically expired ones
of the records. Sessions also discloses identifying at least some of the
automatically expired ones of the records.

For example, Sessions discloses the standard function free(), which “receives
a pointer to one of the blocks in the dynamic memory pool previously allocated
by malloc(). The pool is first scanned to validate the pointer, and then the
block is released for use. (Sessions at 78).

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Sessions discloses removing at least some of the automatically expired records
from the linked list when the linked list is accessed. Sessions also discloses
removing at least some of the automatically expired records from the linked
list when the linked list is accessed.

Also, Sessions discloses that “[t]he static functions setfree() and
consolidate() perform the work of freeing a used memory block. … This
rudimentary garbage collection could be accomplished by the standard C
library function free() as well. (Sessions at 83).

Further, Sessions discloses an exercise where the student must “[m]odify

EXHIBIT C-9

Plaintiff’s Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

mmfree() so that a full garbage collection is always performed with each call.
What are the advantages and disadvantages of this change?” (Sessions at 86).

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

Sessions discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

For example, Sessions discloses deleting one of the records from the system in
the consolidate() function following the step of removing.

EXHIBIT C-9

Plaintiff’s Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

(Sessions at 83).

4. The method according to 8. The method according Sessions discloses dynamically determining maximum number of expired ones

EXHIBIT C-9

Plaintiff’s Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

of the records to remove when the linked list is accessed.

For example, Sessions discloses that “[h]owever many blocks we decide to
save, we would eventually read one block too many. Then we would have to
reuse the memory space occupied by one of the blocks. Which block should
be thrown away? The best block to discard is the block we would least likely
want again.” (Sessions at 89).

Sessions also discloses a routine ca_check() which “promote(s) any found
items to the head of the linked list, indicating their changed status to ‘Most
Recently Referenced.’” (Sessions at 91).

Sessions further discloses an exercise where the student must “[m]odify
mmfree() so that garbage is collected whenever the largest single chunk of
available memory is less than ¾ of the total available pool.” (Sessions at 86).
Thus, Sessions inherently discloses a step of dynamically determining
maximum number of expired ones of the records to remove when the linked
list is accessed. (See id.)

Sessions combined with Dirks, Thatte, the ’663 patent, and/or the
Opportunistic Garbage Collection Articles discloses dynamically determining
maximum number of expired ones of the records to remove when the linked
list is accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each

EXHIBIT C-9

Plaintiff’s Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

allocation. Disclosure of these claim elements in Dirks is clearly shown in the
chart of Dirks, which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The

EXHIBIT C-9

Plaintiff’s Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Sessions and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining

EXHIBIT C-9

Plaintiff’s Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

the maximum number of records to sweep/remove in other hash tables
implementations such as that described Sessions. Moreover, one of ordinary
skill in the art would recognize that it would improve similar systems and
methods in the same way. As the ’120 patent states “[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining Dirks’ deletion decision procedure with Sessions would be
nothing more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Sessions and would
have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Sessions with the means
for dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. Thatte,
discloses a system and method using hash tables and/or linked lists and further
discloses means for dynamically determining the maximum number for the
record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of

EXHIBIT C-9

Plaintiff’s Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Sessions with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine
Sessions with Thatte and recognized the benefits of doing so. For example, the
removal of expired records described in Sessionscan be burdensome on the
system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
Sessions with the teachings of Thatte would solve this problem by dynamically
determining how many records to delete based on, among other things, the
system load. Moreover, the '120 patent discloses that "[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one." '120 at 7:10-15. Thus,
the '120 patent provides motivations to combine Sessions with Thatte.

Alternatively, it would also be obvious to combine Sessions with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its

EXHIBIT C-9

Plaintiff’s Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-9

Plaintiff’s Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a

EXHIBIT C-9

Plaintiff’s Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Sessions and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as Sessions. Moreover, one of ordinary skill in the art would recognize
that it would improve similar systems and methods in the same way. As the
’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663
patent’s deletion decision procedure with Sessions would be nothing more than
the predictable use of prior art elements according to their established

EXHIBIT C-9

Plaintiff’s Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Sessions and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Sessions with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide

EXHIBIT C-9

Plaintiff’s Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Sessions and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Sessions. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will

EXHIBIT C-9

Plaintiff’s Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Sessions would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Sessions and would
have seen the benefits of doing so. One such benefit, for example, is that the
system would only perform deletions when the system was not already too
overloaded, thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Sessions to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Sessions with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,

EXHIBIT C-9

Plaintiff’s Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1290284.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Roger Sessions, Reusable Data Structures for C (Prentice-Hall, Inc. 1989)
(“Sessions”) alone and in combination with Kit Lester, A Practical

Approach to Data Structures: Related Algorithms in Pascal with
Applications (Ellis Horwood Ltd. 1990) (“Lester”) and others

the removal of expired records described in Sessions can be burdensome on the
system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

EXHIBIT C-10

Plaintiff’s Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Van Wyk 2 discloses an information
storage and retrieval system.

For example, Van Wyk 2 discloses external data structures, explaining that
“File systems are a familiar example of an external data structure.” (Van Wyk
2 at 142).

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Van Wyk 2 discloses a linked list to store and provide access to records stored
in a memory of the system, at least some of the records automatically expiring.
Van Wyk 2 also discloses a hashing means to provide access to records stored
in a memory of the system and using an external chaining technique to store
the records with same hash address, at least some of the records automatically
expiring.

For example, Van Wyk 2 discloses that “[i]f the header nodes can be linked
together, then no arbitrary limit on file size need be imposed.” (Van Wyk 2 at
142). Therefore, Van Wyk 2 inherently discloses a linked list to store and
provide access to records stored in a memory of the system. (See id.)

Van Wyk 2 further discloses that “[i]n the reference count scheme for garbage
collection, each node contains a value that tells how many pointers point to it.
When a node’s reference count becomes zero, the node is garbage and can be
collected. (Van Wyk 2 at 145). Thus, Van Wyk 2 inherently discloses that at
least some of the records are automatically expiring. (See id.)

Van Wyk 2 further discloses that “[h]ashing with linked lists is an excellent
solution to many searching problems. At the price of some space for pointers,
we obtain a table of potentially unlimited size that readily supports insertions
and deletions.” (Van Wyk 2 at 186).

EXHIBIT C-10

Plaintiff’s Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

Van Wyk 2 discloses a record search means utilizing a search key to access the
linked list. Van Wyk 2 also discloses a record search means utilizing a search
key to access a linked list of records having the same hash address.

For example, Van Wyk 2 discloses that “a successful search will examine only
slots that contain items with the same hash value as that of the sought item; we
need only examine other items when we seek space in which to store a new
item.” (Van Wyk 2 at 187).

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

Van Wyk 2 discloses the record search means including a means for
identifying and removing at least some of the expired ones of the records from
the linked list when the linked list is accessed. Van Wyk 2 also discloses the
record search means including means for identifying and removing at least
some expired ones of the records from the linked list of records when the
linked list is accessed.

For example, Van Wyk 2 discloses that “[i]n the reference count scheme for
garbage collection, each node contains a value that tells how many pointers
point to it. When a node’s reference count becomes zero, the node is garbage
and can be collected. (Van Wyk 2 at 145).

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

Van Wyk 2 discloses means, utilizing the record search means, for accessing
the linked list and, at the same time, removing at least some of the expired ones
of the records in the linked list. Van Wyk 2 also discloses utilizing the record
search means, for inserting, retrieving, and deleting records from the system
and, at the same time, removing at least some expired ones of the records in the
accessed linked list of records.

For example, Van Wyk 2 discloses “[t]he lazy approach to garbage collection
is to collect only in emergencies. Thus, when an allocation fails, we sweep

EXHIBIT C-10

Plaintiff’s Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
through memory hoping to pick up and de-allocate enough garbage to permit
the program to continue.” (Van Wyk 2 at 146).

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

Van Wyk 2 discloses an information storage and retrieval system further
including means for dynamically determining maximum number for the record
search means to remove in the accessed linked list of records.

For example, Van Wyk 2 discloses that “[o]ur programs have never used
free(). … [T]hey can leave dynamically allocated nodes unaccessibly lost in
space. If memory space were scarce, however, we could revise them to free
space explicitly when appropriate.” (Van Wyk 2 at 136).

Van Wyk 2 further states that “[a]ccess to the heap is through a single pointer,
rover, which always points to the last node allocated or de-allocated. … As
soon as rover points to a node with enough room, malloc() chops off a piece of
the appropriate size and marks it occupied, adds the remainder of the node to
the heap as a free node, and finally returns rover as a pointer to the newly
allocated space.” (Van Wyk 2 at 137). Thus, Van Wyk 2 inherently discloses
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records. (See id.)

Van Wyk 2 combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses an information storage
and retrieval system further including means for dynamically determining
maximum number for the record search means to remove in the accessed
linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,

EXHIBIT C-10

Plaintiff’s Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The

EXHIBIT C-10

Plaintiff’s Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Van Wyk 2 and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables

EXHIBIT C-10

Plaintiff’s Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
implementations such as Van Wyk 2. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Van Wyk 2 nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Van Wyk 2 and would
have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Van Wyk 2 with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte.
Thatte, discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

EXHIBIT C-10

Plaintiff’s Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Van Wyk 2 with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Van
Wyk 2 with Thatte and recognize the benefits of doing so. For example, the
removal of expired records described in Van Wyk 2 can be burdensome on the
system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
Van Wyk 2 with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine Van Wyk 2
with Thatte.

Alternatively, it would also be obvious to combine Van Wyk 2with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. As summarized in the ’663 patent:

EXHIBIT C-10

Plaintiff’s Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-10

Plaintiff’s Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT C-10

Plaintiff’s Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.
As both Van Wyk 2 and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Van Wyk 2. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Van Wyk 2
would be nothing more than the predictable use of prior art elements according
to their established functions.

By way of further example, one of ordinary skill in the art would have

EXHIBIT C-10

Plaintiff’s Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Van Wyk 2 and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Van Wyk 2 with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

EXHIBIT C-10

Plaintiff’s Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Van Wyk 2 and the Opportunistic Garbage Collection Articles relate
to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as Van Wyk 2. Moreover, one of ordinary skill in
the art would recognize that it would improve similar systems and methods in
the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of

EXHIBIT C-10

Plaintiff’s Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Van Wyk 2 would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Van Wyk 2 and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Van Wyk 2 to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Van Wyk 2 with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Van Wyk 2can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the

EXHIBIT C-10

Plaintiff’s Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15. Thus, the
’120 patent provides motivations to combine Van Wyk 2 with Thatte, Dirks,
the '663 patent, and/or the Opportunistic Garbage Collection Articles, in
addition to motivations within the text of Van Wyk 2, “[a]ccess to the heap is
through a single pointer, rover, which always points to the last node allocated
or de-allocated. … As soon as rover points to a node with enough room,
malloc() chops off a piece of the appropriate size and marks it occupied, adds
the remainder of the node to the heap as a free node, and finally returns rover
as a pointer to the newly allocated space.” (Van Wyk 2 at 137).

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, Van Wyk 2 discloses a method for
storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring. Van Wyk 2 also discloses a method for storing and retrieving
information records using a hashing technique to provide access to the records
and using an external chaining technique to store the records with same hash
address, at least some of the records automatically expiring.

For example, Van Wyk 2 discloses external data structures, explaining that
“File systems are a familiar example of an external data structure.” (Van Wyk
2 at 142).

EXHIBIT C-10

Plaintiff’s Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
Van Wyk 2 also discloses that “[i]f the header nodes can be linked together,
then no arbitrary limit on file size need be imposed.” (Van Wyk 2 at 142).
Therefore, Van Wyk 2 inherently discloses a linked list to store and provide
access to records.

Van Wyk 2 further discloses that “[i]n the reference count scheme for garbage
collection, each node contains a value that tells how many pointers point to it.
When a node’s reference count becomes zero, the node is garbage and can be
collected. (Van Wyk 2 at 145). Thus, Van Wyk 2 inherently discloses that at
least some of the records are automatically expiring. (See id.)

Van Wyk 2 further discloses that “[h]ashing with linked lists is an excellent
solution to many searching problems. At the price of some space for pointers,
we obtain a table of potentially unlimited size that readily supports insertions
and deletions.” (Van Wyk 2 at 186).

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Van Wyk 2 discloses accessing a linked list of records. Van Wyk 2 also
discloses accessing a linked list of records having same hash address.

For example, Van Wyk 2 states that “[a]ccess to the heap is through a single
pointer, rover, which always points to the last node allocated or de-allocated.
… As soon as rover points to a node with enough room, malloc() chops off a
piece of the appropriate size and marks it occupied, adds the remainder of the
node to the heap as a free node, and finally returns rover as a pointer to the
newly allocated space.” (Van Wyk 2 at 137).

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Van Wyk 2 discloses identifying at least some of the automatically expired
ones of the records. Van Wyk 2 also discloses identifying at least some of the
automatically expired ones of the records.

EXHIBIT C-10

Plaintiff’s Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
For example, Van Wyk 2 discloses that “[i]n the reference count scheme for
garbage collection, each node contains a value that tells how many pointers
point to it. When a node’s reference count becomes zero, the node is garbage
and can be collected. (Van Wyk 2 at 145).

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Van Wyk 2 discloses removing at least some of the automatically expired
records from the linked list when the linked list is accessed. Van Wyk 2 also
discloses removing at least some of the automatically expired records from the
linked list when the linked list is accessed.

For example, Van Wyk 2 discloses “[t]he lazy approach to garbage collection
is to collect only in emergencies. Thus, when an allocation fails, we sweep
through memory hoping to pick up and de-allocate enough garbage to permit
the program to continue.” (Van Wyk 2 at 146).

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

Van Wyk 2 discloses inserting, retrieving or deleting one of the records from
the system following the step of removing.

For example, Van Wyk 2 discloses that “we can delete an item from the
dictionary using the straightforward algorithm to remove a node from a linked
list.” (Van Wyk 2 at 186).

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

Van Wyk 2 discloses dynamically determining maximum number of expired
ones of the records to remove when the linked list is accessed.

For example, Van Wyk 2 discloses that “[o]ur programs have never used
free(). … [T]hey can leave dynamically allocated nodes unaccessibly lost in
space. If memory space were scarce, however, we could revise them to free
space explicitly when appropriate.” (Van Wyk 2 at 136).

Van Wyk 2 further states that “[a]ccess to the heap is through a single pointer,

EXHIBIT C-10

Plaintiff’s Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
rover, which always points to the last node allocated or de-allocated. … As
soon as rover points to a node with enough room, malloc() chops off a piece of
the appropriate size and marks it occupied, adds the remainder of the node to
the heap as a free node, and finally returns rover as a pointer to the newly
allocated space.” (Van Wyk 2 at 137). Thus, Van Wyk 2 inherently discloses
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records.

Van Wyk 2 combined with Dirks, Thatte, the ’663 patent, and/or the
Opportunistic Garbage Collection Articles discloses dynamically determining
maximum number of expired ones of the records to remove when the linked
list is accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in the
chart of Dirks, which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries

EXHIBIT C-10

Plaintiff’s Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

EXHIBIT C-10

Plaintiff’s Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Van Wyk 2 and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as that described Van Wyk 2. Moreover, one of
ordinary skill in the art would recognize that it would improve similar systems
and methods in the same way. As the ’120 patent states “[a] person skilled in
the art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining Dirks’ deletion decision procedure with Van Wyk 2 would
be nothing more than the predictable use of prior art elements according to
their established functions.

By way of further example, one of ordinary skill in the art would have

EXHIBIT C-10

Plaintiff’s Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Van Wyk 2 and would
have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Van Wyk 2 with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte.
Thatte, discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Van Wyk 2 with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Van
Wyk 2 with Thatte and recognized the benefits of doing so. For example, the
removal of expired records described in Van Wyk 2can be burdensome on the
system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining

EXHIBIT C-10

Plaintiff’s Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
Van Wyk 2 with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine Van Wyk 2
with Thatte.

Alternatively, it would also be obvious to combine Van Wyk 2 with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations

EXHIBIT C-10

Plaintiff’s Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-10

Plaintiff’s Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT C-10

Plaintiff’s Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Van Wyk 2 and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as Van Wyk 2. Moreover, one of ordinary skill in the art would recognize
that it would improve similar systems and methods in the same way. As the
’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663
patent’s deletion decision procedure with Van Wyk 2 would be nothing more
than the predictable use of prior art elements according to their established
functions.

EXHIBIT C-10

Plaintiff’s Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Van Wyk 2 and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Van Wyk 2 with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a

EXHIBIT C-10

Plaintiff’s Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Van Wyk 2 and the Opportunistic Garbage Collection Articles relate
to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as Van Wyk 2. Moreover, one of ordinary skill in
the art would recognize that it would improve similar systems and methods in
the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.

EXHIBIT C-10

Plaintiff’s Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Van Wyk 2 would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Van Wyk 2 and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would only perform deletions when the system was not already
too overloaded, thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Van Wyk 2 to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Van Wyk 2 with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Van Wyk 2 can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

EXHIBIT C-10

Plaintiff’s Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1290285.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Christopher J. Van Wyk, Data Structures and C Programs (Addison-
Wesley Publ’g Co. & Bell Telephone Laboratories, Inc. 1988)

(“Van Wyk 2”) alone and in combination
One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15. Thus, the
’120 patent provides motivations to combine Van Wyk 2 with Thatte, Dirks,
the '663 patent, and/or the Opportunistic Garbage Collection Articles in
addition to motivations within the text of Van Wyk 2, “[a]ccess to the heap is
through a single pointer, rover, which always points to the last node allocated
or de-allocated. … As soon as rover points to a node with enough room,
malloc() chops off a piece of the appropriate size and marks it occupied, adds
the remainder of the node to the heap as a free node, and finally returns rover
as a pointer to the newly allocated space.” (Van Wyk 2 at 137).

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Weiss discloses an information
storage and retrieval system.

For example, Weiss discloses that a “linked list consists of a series of
structures, which are not necessarily adjacent in memory. Each structure
contains the element and a pointer to a structure containing its successor.”
Weiss at 43. Thus, Weiss inherently discloses an information storage and
retrieval system. See id.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Weiss discloses a linked list to store and provide access to records stored in a
memory of the system, at least some of the records automatically expiring.
Weiss also discloses a hashing means to provide access to records stored in a
memory of the system and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring.

For example, Weiss discloses that a “linked list consists of a series of
structures, which are not necessarily adjacent in memory. Each structure
contains the element and a pointer to a structure containing its successor.”
Weiss at 43.

Weiss further discloses that “hashing is a technique used for performing
insertions, deletions and finds in constant average time.” Weiss at 149. Weiss
discloses a method of collision resolution called Open Hashing (Separate
Chaining) which “keeps a list of all elements that hash to the same value.”
Weiss at 152. “The hash table structure contains the actual size and an array of
linked lists, which are dynamically allocated when the table is initialized. The
HASH_TABLE type is just a pointer to this structure.” Weiss at 153-54.

[1b] a record search means
utilizing a search key to

[5b] a record search means
utilizing a search key to

Weiss discloses a record search means utilizing a search key to access the
linked list. Weiss also discloses a record search means utilizing a search key to

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

access the linked list, access a linked list of
records having the same
hash address,

access a linked list of records having the same hash address.

For example, Weiss discloses accessing by way of an insert command, “the
insert command requires obtaining a new cell from the system by using an
malloc call (more on this later) and then executing two pointer maneuvers.
The general idea is shown in Figure 3.4. The dashed line represents the old
pointer.” Weiss at 44.

Further, Weiss discloses, “[d]eciding what to do when two keys hash to the
same value (this is known as a collision).” Weiss at 150. Weiss also discloses
that “when inserting an element, it hashes to the same value as an already
inserted element, then we have a collision and need to resolve it.” Weiss at
152.

[1c] the record search
means including a means
for identifying and

[5c] the record search
means including means for
identifying and removing

Weiss discloses the record search means including a means for identifying and
removing at least some of the expired ones of the records from the linked list
when the linked list is accessed. Weiss also discloses the record search means

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

including means for identifying and removing at least some expired ones of the
records from the linked list of records when the linked list is accessed.

For example, Weiss discloses that “[w]hen things are no longer needed, you
can issue a free command to inform the system that it may reclaim the space.
A consequence of the free(p) command is that the address that p is pointing to
is unchanged, but the data that resides at that address is now undefined.”
Weiss at 50.

To the extent that Bedrock argues that Weiss does not anticipate this claim
element, it would have been obvious to one of ordinary skill in the art to
combine Weiss with Kruse. Kruse discloses “[t]he task of the procedure
Vivify is to traverse the list live, determine whether each cell on it satisfies
the conditions to become alive, and vivify it if so, else delete it from the list.
The usual way to facilitate deletion from a linked list is to keep two pointers in
lock step, one position apart, while traversing the list.” … “Let us take
advantage of the indirect linkage of our lists, and when we wish to delete an
entry form the list, let us leave the node in place, but set its entry field to nil.
In this way, the node will be flagged as empty when it is again encountered in
the procedure AddNeighbors.” Kruse at 219. Thus, Weiss and Kruse show
that one of ordinary skill in the art understood how to identify and remove at
least some expired ones of the records from the linked list of records when the
linked list is accessed, and would recognize that it would improve similar
systems and methods in the same way.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the

Weiss discloses means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. Weiss also discloses utilizing the record search
means, for inserting, retrieving, and deleting records from the system and, at

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

removing at least some of
the expired ones of the
records in the linked list.

system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

the same time, removing at least some expired ones of the records in the
accessed linked list of records.

For example, Weiss discloses method of retrieving records in a find routine as
shown in figure 3.10.

Weiss at 46.

Weiss also discloses a method of inserting a record in an insert routine as
shown in figure 3.12.

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

Weiss at 48.

Weiss further discloses that a “deletion routine is a straightforward
implementation of deletion in a linked list, so we will not bother with it here.”
Weiss at156. Weiss also discloses that “[a]fter a deletion in a linked list, it is
usually a good idea to free the cell, especially if there are lots of insertions and
deletions intermingled and memory might become a problem.”

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

Weiss at 50.

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

Weiss discloses an information storage and retrieval system further including
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records.

For example, Weiss discloses in Figure 5.8, an initialization routine for open
hash table, and in Figure 5.1, an insert routine for open hash table, that can
dynamically determine when there is a fatal error due to a lack of space. This
determination inherently discloses dynamically determining maximum number
of expired ones of the records to remove. Weiss at 154-56.

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

It would have been obvious to one of ordinary skill in the art to modify the
system disclosed in Weiss to dynamically determine the maximum number of
expired records to remove in the accessed linked list of records. It is a
fundamental concept in computer science and the relevant art that any variable
or parameter affecting any aspect of a system can be dynamically determined
based on information available to the system. One of ordinary skill in the art

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

would have been motivated to combine the system disclosed in Weiss with the
fundamental concept of dynamically determining the maximum number of
expired records to remove in an accessed linked list of records to solve a
number of potential problems. For example, the removal of expired records
described in Weiss can be burdensome on the system, adding to the system’s
load and slowing down the system’s processing. Moreover, the removal could
also force an interruption in real-time processing as the processing waits for
the removal to complete. Indeed, part of the motivation for the system
disclosed in Weiss is avoiding these problems. One of ordinary skill in the art
would have known that dynamically determining the maximum number to
remove would limit the burden on the system and bound the length of any real-
time interruption to prevent delays in processing. Indeed, Nemes concedes that
such dynamic determination was obvious when he states in the ‘120 patent that
“[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one.” ‘120 at 7:10-15.

Weiss combined with Dirks, Thatte, the ’663 patent and/or the Opportunistic
Garbage Collection Articles discloses an information storage and retrieval
system further including means for dynamically determining maximum
number for the record search means to remove in the accessed linked list of
records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

Exhibit B-2, which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Weiss and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Weiss. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Weiss nothing more than
the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Weiss and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Weiss with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. Thatte,
discloses a system and method using hash tables and/or linked lists and further
discloses means for dynamically determining the maximum number for the
record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Weiss with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Weiss
with Thatte and recognize the benefits of doing so. For example, the removal
of expired records described in Weiss can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Weiss with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Weiss with Thatte.

Alternatively, it would also be obvious to combine Weisswith the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.
As both Weiss and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Weiss. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Weiss would be
nothing more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Weiss and would

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

have seen the benefits of doing so. One such benefit, for example, is that the
system would avoid performing deletions when the system load exceeded a
threshold.

Alternatively, it would also be obvious to combine Weiss with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Weiss and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Weiss. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Weiss would be nothing more than the predictable use of prior
art elements according to their established functions.

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Weiss and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Weiss to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in Weiss
with the fundamental concept of dynamically determining the maximum
number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired
records described in Weisscan be burdensome on the system, adding to the
system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15. Thus, the
’120 patent provides motivations to combine Weiss with Thatte, Dirks, the
'663 patent, and/or the Opportunistic Garbage Collection Articles, in addition
to motivations within the text of Weiss, such as the initialization routine of
Figure 5.8, and the insert routine of Figure 5.1 that can dynamically determine
when there is a fatal error due to a lack of space. Weiss at 154-56.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, Weiss discloses a method for storing
and retrieving information records using a linked list to store and provide
access to the records, at least some of the records automatically expiring.
Weiss also discloses a method for storing and retrieving information records
using a hashing technique to provide access to the records and using an
external chaining technique to store the records with same hash address, at
least some of the records automatically expiring.

For example, Weiss discloses that a “linked list consists of a series of
structures, which are not necessarily adjacent in memory. Each structure
contains the element and a pointer to a structure containing its successor.”
Weiss at 43. Thus, Weiss inherently discloses a method for storing and
retrieving information records. See id.

Weiss further discloses that “hashing is a technique used for performing
insertions, deletions and finds in constant average time.” Weiss at 149. Weiss
discloses a method of collision resolution called Open Hashing (Separate
Chaining) which “keeps a list of all elements that hash to the same value.”
Weiss at 152. “The hash table structure contains the actual size and an array of
linked lists, which are dynamically allocated when the table is initialized. The
HASH_TABLE type is just a pointer to this structure.” Weiss at 153-54.

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Weiss discloses accessing a linked list of records. Weiss also discloses
accessing a linked list of records having same hash address.

For example, Weiss discloses accessing by way of an insert command, “the
insert command requires obtaining a new cell from the system by using an
malloc call (more on this later) and then executing two pointer maneuvers.
The general idea is shown in Figure 3.4. The dashed line represents the old
pointer.” Weiss at 44.

Further, Weiss discloses, “[d]eciding what to do when two keys hash to the
same value (this is known as a collision).” Weiss at 150. Weiss also discloses
that “when inserting an element, it hashes to the same value as an already
inserted element, then we have a collision and need to resolve it.” Weiss at
152.

[3b] identifying at least
some of the automatically

[7b] identifying at least
some of the automatically

Weiss discloses identifying at least some of the automatically expired ones of
the records.

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

expired ones of the records,
and

expired ones of the records,
For example, Weiss discloses that “[w]hen things are no longer needed, you
can issue a free command to inform the system that it may reclaim the space.
A consequence of the free(p) command is that the address that p is pointing to
is unchanged, but the data that resides at that address is now undefined.”
Weiss at 50.

To the extent that Bedrock argues that Weiss does not anticipate this claim
element, it would have been obvious to one of ordinary skill in the art to
combine Weiss with Kruse. Kruse discloses “[t]he task of the procedure
Vivify is to traverse the list live, determine whether each cell on it satisfies
the conditions to become alive, and vivify it if so, else delete it from the list.
The usual way to facilitate deletion from a linked list is to keep two pointers in
lock step, one position apart, while traversing the list.” … “Let us take
advantage of the indirect linkage of our lists, and when we wish to delete an
entry form the list, let us leave the node in place, but set its entry field to nil.
In this way, the node will be flagged as empty when it is again encountered in
the procedure AddNeighbors.” Kruse at 219. Thus, Weiss and Kruse show
that one of ordinary skill in the art understood how to identify at least some of
the automatically expired ones of the records, and would recognize that it
would improve similar systems and methods in the same way.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Weiss discloses removing at least some of the automatically expired records
from the linked list when the linked list is accessed.

For example, Weiss discloses that “[w]hen things are no longer needed, you
can issue a free command to inform the system that it may reclaim the space.
A consequence of the free(p) command is that the address that p is pointing to
is unchanged, but the data that resides at that address is now undefined.”

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

Weiss at 50.

To the extent that Bedrock argues that Weiss does not anticipate this claim
element, it would have been obvious to one of ordinary skill in the art to
combine Weiss with Kruse. Kruse discloses “[t]he task of the procedure
Vivify is to traverse the list live, determine whether each cell on it satisfies
the conditions to become alive, and vivify it if so, else delete it from the list.
The usual way to facilitate deletion from a linked list is to keep two pointers in
lock step, one position apart, while traversing the list.” … “Let us take
advantage of the indirect linkage of our lists, and when we wish to delete an
entry form the list, let us leave the node in place, but set its entry field to nil.
In this way, the node will be flagged as empty when it is again encountered in
the procedure AddNeighbors.” Kruse at 219. Thus, Weiss and Kruse show
that one of ordinary skill in the art understood how to remove at least some of
the automatically expired records from the linked list when the linked list is
accessed, and would recognize that it would improve similar systems and
methods in the same way.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

Weiss discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

For example, Weiss discloses method of retrieving records in a find routine as
shown in figure 3.10.

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

Weiss at 46.

Weiss also discloses a method of inserting a record in an insert routine as
shown in figure 3.12.

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

Weiss at 48.

Weiss further discloses that a “deletion routine is a straightforward
implementation of deletion in a linked list, so we will not bother with it here.”
Weiss at156. Weiss also discloses that “[a]fter a deletion in a linked list, it is
usually a good idea to free the cell, especially if there are lots of insertions and
deletions intermingled and memory might become a problem.”

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

Weiss at 50.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

Weiss discloses dynamically determining maximum number of expired ones of
the records to remove when the linked list is accessed.

For example, Weiss discloses in Figure 5.8, an initialization routine for open
hash table, and in Figure 5.1, an insert routine for open hash table, that can
dynamically determine when there is a fatal error due to a lack of space. This
determination inherently discloses dynamically determining maximum number
of expired ones of the records to remove. Weiss at 154-56.

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

It would have been obvious to one of ordinary skill in the art to modify the
system disclosed in Weiss to dynamically determine the maximum number of
expired records to remove in the accessed linked list of records. It is a
fundamental concept in computer science and the relevant art that any variable
or parameter affecting any aspect of a system can be dynamically determined
based on information available to the system. One of ordinary skill in the art

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

would have been motivated to combine the system disclosed in Weiss with the
fundamental concept of dynamically determining the maximum number of
expired records to remove in an accessed linked list of records to solve a
number of potential problems. For example, the removal of expired records
described in Weiss can be burdensome on the system, adding to the system’s
load and slowing down the system’s processing. Moreover, the removal could
also force an interruption in real-time processing as the processing waits for
the removal to complete. Indeed, part of the motivation for the system
disclosed in Weiss is avoiding these problems. One of ordinary skill in the art
would have known that dynamically determining the maximum number to
remove would limit the burden on the system and bound the length of any real-
time interruption to prevent delays in processing. Indeed, Nemes concedes that
such dynamic determination was obvious when he states in the ‘120 patent that
“[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one.” ‘120 at 7:10-15.

Weiss combined with Dirks, Thatte, the ’663 patent, and/or the Opportunistic
Garbage Collection Articles discloses dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in the
chart of Dirks, which is hereby incorporated by reference in its entirety.

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Weiss and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as that described Weiss. Moreover, one of ordinary skill
in the art would recognize that it would improve similar systems and methods
in the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Weiss would be nothing
more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Weiss and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Weiss with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. Thatte,
discloses a system and method using hash tables and/or linked lists and further
discloses means for dynamically determining the maximum number for the
record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Weiss with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Weiss
with Thatte and recognized the benefits of doing so. For example, the removal
of expired records described in Weisscan be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Weiss with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Weiss with Thatte.

Alternatively, it would also be obvious to combine Weiss with the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Weiss and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as Weiss. Moreover, one of ordinary skill in the art would recognize that
it would improve similar systems and methods in the same way. As the ’120
patent states “[a] person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be expanded to
include techniques whereby not necessarily all expired records are removed,
and that the decision regarding if and how many records to delete can be a
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary skill
in the art would recognize that the result of combining the ’663 patent’s
deletion decision procedure with Weiss would be nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Weiss and would

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

have seen the benefits of doing so. One such benefit, for example, is that the
system would avoid performing deletions when the system load exceeded a
threshold.

Alternatively, it would also be obvious to combine Weiss with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Weiss and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Weiss. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Weiss would be nothing more than the predictable use of prior
art elements according to their established functions.

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Weiss and would
have seen the benefits of doing so. One such benefit, for example, is that the
system would only perform deletions when the system was not already too
overloaded, thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Weiss to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in Weiss
with the fundamental concept of dynamically determining the maximum
number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired
records described in Weiss can be burdensome on the system, adding to the
system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching

EXHIBIT C-11

Plaintiff’s Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

US2008 1290286.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Mark Allen Weiss, Data Structures & Algorithm Analysis in C (The
Benjamin/Cummings Publ’g Co. 1993) alone and in combination

the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15. Thus, the
’120 patent provides motivations to combine Weiss with Thatte, Dirks, the
'663 patent, and/or the Opportunistic Garbage Collection Articles in addition to
motivations within the text of Weiss, such as the initialization routine of Figure
5.8, and the insert routine of Figure 5.1 that can dynamically determine when
there is a fatal error due to a lack of space. Weiss at 154-56.

EXHIBIT C-12

Plaintiff’s Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Frakes discloses an information
storage and retrieval system.

For example, Frakes discloses “hashing, an information storage and retrieval
technique useful for implementing many … other structures.” (Frakes at 293).

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Frakes discloses a linked list to store and provide access to records stored in a
memory of the system, at least some of the records automatically expiring.
Frakes also discloses a hashing means to provide access to records stored in a
memory of the system and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring.

For example, Frakes discloses “hashing, an information storage and retrieval
technique useful for implementing many … other structures.” (Frakes at 293).
Frakes discloses that hashing is “a ubiquitous information retrieval strategy for
providing efficient access to information based on a key.” Id. Frakes further
discloses “chained hashing. It is so named because each bucket stores a linked
list—that is, a chain—of key-information pairs, rather than a single one.”
(Frakes at 298).

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

Frakes discloses a record search means utilizing a search key to access the
linked list. Frakes also discloses a record search means utilizing a search key
to access a linked list of records having the same hash address.

For example, Frakes discloses that “[t]he goal (of hashing) is to avoid
collisions. A collision occurs when two or more keys map to the same
location. If no keys collide, then locating the information associated with a
key is simply the process of determining the key’s location. Whenever a

EXHIBIT C-12

Plaintiff’s Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
collision occurs, some extra computation is necessary to further determine a
unique location for a key.” (Frakes at 294).

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

Frakes discloses the record search means including a means for identifying and
removing at least some of the expired ones of the records from the linked list
when the linked list is accessed. Frakes also discloses the record search means
including means for identifying and removing at least some expired ones of the
records from the linked list of records when the linked list is accessed.

For example, Frakes discloses that a “hash table with m buckets may therefore
store more than m keys. However, performance will degrade as the number of
keys increases. Computing the bucket in which a key resides is still fast—a
matter of evaluating the hash function—but locating it within that bucket (or
simply determining its presence, which is necessary in all operations) requires
traversing the linked list.” (Frakes at 299).

Additionally, Frakes discloses that “performance will degrade as the number of
keys increases.” Id. Thus, Frakes suggests removing at least some of the
automatically expired records from the linked list when the linked list is
accessed. (See id.)

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

Frakes discloses means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. Frakes also discloses utilizing the record search
means, for inserting, retrieving, and deleting records from the system and, at
the same time, removing at least some expired ones of the records in the
accessed linked list of records.

For example, Frakes discloses several operations that are usually provided by
an implementation of hashing:

EXHIBIT C-12

Plaintiff’s Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
1. Initialization: indicate that the hash table contains no elements.
2. Insertion: insert information, indexed by a key k, into a hash table. If

the has table already contains k, then it cannot be inserted. (Some
implementations do allow such insertion, to permit replacing existing
information.)

3. Retrieval: given a key k, retrieve the information associated with it.
4. Deletion: remove the information associated with key k from a hash

table, if any exists. New information indexed by k may subsequently
be placed in the table.

(Frakes at 297).

Frakes further discloses that “[m]ost of the code from the routines Insert,
Delete, Clear (for Initialize), and Member (for Retrieve) can be
used directly.” (Frakes at 299).

Additionally, Frakes discloses that “performance will degrade as the number of
keys increases.” Id. Thus Frakes suggests removing at least some of the
automatically expired records from the linked list when the linked list is
accessed. (See id.)

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

It would have been obvious to one of ordinary skill in the art to modify the
system disclosed in Frakes to dynamically determine the maximum number of
expired records to remove in the accessed linked list of records. It is a
fundamental concept in computer science and the relevant art that any variable
or parameter affecting any aspect of a system can be dynamically determined
based on information available to the system. One of ordinary skill in the art
would have been motivated to combine the system disclosed in Frakes with the
fundamental concept of dynamically determining the maximum number of
expired records to remove in an accessed linked list of records to solve a

EXHIBIT C-12

Plaintiff’s Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
number of potential problems. For example, the removal of expired records
described in Frakes can be burdensome on the system, adding to the system’s
load and slowing down the system’s processing. Moreover, the removal could
also force an interruption in real-time processing as the processing waits for
the removal to complete. Indeed, part of the motivation for the system
disclosed in Frakes is avoiding these problems. One of ordinary skill in the art
would have known that dynamically determining the maximum number to
remove would limit the burden on the system and bound the length of any real-
time interruption to prevent delays in processing. Indeed, Nemes concedes that
such dynamic determination was obvious when he states in the ‘120 patent that
“[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one.” ‘120 at 7:10-15.

Frakes combined with Dirks, Thatte, the ’663 patent and/or the Opportunistic
Garbage Collection Articles discloses an information storage and retrieval
system further including means for dynamically determining maximum
number for the record search means to remove in the accessed linked list of
records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

EXHIBIT C-12

Plaintiff’s Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

EXHIBIT C-12

Plaintiff’s Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Frakes and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Frakes. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching

EXHIBIT C-12

Plaintiff’s Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Frakes nothing more than
the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Frakes and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Frakes with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. Thatte,
discloses a system and method using hash tables and/or linked lists and further
discloses means for dynamically determining the maximum number for the
record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Frakes with Thatte would be nothing more than the

EXHIBIT C-12

Plaintiff’s Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Frakes
with Thatte and recognize the benefits of doing so. For example, the removal
of expired records described in Frakes can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Frakes with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Frakes with Thatte.

Alternatively, it would also be obvious to combine Frakeswith the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record

EXHIBIT C-12

Plaintiff’s Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-12

Plaintiff’s Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT C-12

Plaintiff’s Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.
As both Frakes and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Frakes. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Frakes would be
nothing more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have

EXHIBIT C-12

Plaintiff’s Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Frakes and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Frakes with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

EXHIBIT C-12

Plaintiff’s Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Frakes and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Frakes. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of

EXHIBIT C-12

Plaintiff’s Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Frakes would be nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Frakes and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Frakes to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in
Frakes with the fundamental concept of dynamically determining the
maximum number of expired records to remove in an accessed linked list of
records to solve a number of potential problems. For example, the removal of
expired records described in Frakescan be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the

EXHIBIT C-12

Plaintiff’s Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, Frakes discloses a method for
storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring. Frakes also discloses a method for storing and retrieving information
records using a hashing technique to provide access to the records and using an
external chaining technique to store the records with same hash address, at
least some of the records automatically expiring.

For example, Frakes discloses “hashing, an information storage and retrieval
technique useful for implementing many … other structures.” (Frakes at 293).

Frakes also discloses “hashing, an information storage and retrieval technique
useful for implementing many … other structures.” (Frakes at 293). Frakes
discloses that hashing is “a ubiquitous information retrieval strategy for
providing efficient access to information based on a key.” Id. Frakes further
discloses “chained hashing. It is so named because each bucket stores a linked
list—that is, a chain—of key-information pairs, rather than a single one.”
(Frakes at 298).

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same

Frakes discloses accessing a linked list of records. Frakes also discloses
accessing a linked list of records having same hash address.

EXHIBIT C-12

Plaintiff’s Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
hash address,

For example, Frakes discloses that “[t]he goal (of hashing) is to avoid
collisions. A collision occurs when two or more keys map to the same
location. If no keys collide, then locating the information associated with a
key is simply the process of determining the key’s location. Whenever a
collision occurs, some extra computation is necessary to further determine a
unique location for a key.” (Frakes at 294).

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Frakes discloses identifying at least some of the automatically expired ones of
the records. Frakes also discloses identifying at least some of the
automatically expired ones of the records.

For example, Frakes discloses that a “hash table with m buckets may therefore
store more than m keys. However, performance will degrade as the number of
keys increases. Computing the bucket in which a key resides is still fast—a
matter of evaluating the hash function—but locating it within that bucket (or
simply determining its presence, which is necessary in all operations) requires
traversing the linked list.” (Frakes at 299).

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Frakes discloses removing at least some of the automatically expired records
from the linked list when the linked list is accessed. Frakes also discloses
removing at least some of the automatically expired records from the linked
list when the linked list is accessed.

For example, Frakes discloses that “performance will degrade as the number of
keys increases.” (Frakes at 299). Thus, Frakes suggests removing at least
some of the automatically expired records from the linked list when the linked
list is accessed. (See id.)

 [7d] inserting, retrieving
or deleting one of the

Frakes discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

EXHIBIT C-12

Plaintiff’s Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
records from the system
following the step of
removing.

For example, Frakes discloses several operations that “are usually provided by
an implementation of hashing:

1. Initialization: indicate that the hash table contains no elements.
2. Insertion: insert information, indexed by a key k, into a hash table. If

the has table already contains k, then it cannot be inserted. (Some
implementations do allow such insertion, to permit replacing existing
information.)

3. Retrieval: given a key k, retrieve the information associated with it.
4. Deletion: remove the information associated with key k from a hash

table, if any exists. New information indexed by k may subsequently
be placed in the table.”

(Frakes at 297).

Frakes further discloses that “[m]ost of the code from the routines Insert,
Delete, Clear (for Initialize), and Member (for Retrieve) can be
used directly.” (Frakes at 299).

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

It would have been obvious to one of ordinary skill in the art to modify the
system disclosed in Frakes to dynamically determine the maximum number of
expired records to remove in the accessed linked list of records. It is a
fundamental concept in computer science and the relevant art that any variable
or parameter affecting any aspect of a system can be dynamically determined
based on information available to the system. One of ordinary skill in the art
would have been motivated to combine the system disclosed in Frakes with the
fundamental concept of dynamically determining the maximum number of
expired records to remove in an accessed linked list of records to solve a
number of potential problems. For example, the removal of expired records
described in Frakes can be burdensome on the system, adding to the system’s

EXHIBIT C-12

Plaintiff’s Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
load and slowing down the system’s processing. Moreover, the removal could
also force an interruption in real-time processing as the processing waits for
the removal to complete. Indeed, part of the motivation for the system
disclosed in Frakes is avoiding these problems. One of ordinary skill in the art
would have known that dynamically determining the maximum number to
remove would limit the burden on the system and bound the length of any real-
time interruption to prevent delays in processing. Indeed, Nemes concedes that
such dynamic determination was obvious when he states in the ‘120 patent that
“[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one.” ‘120 at 7:10-15.

Frakes combined with Dirks, Thatte, the ’663 patent, and/or the Opportunistic
Garbage Collection Articles discloses dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in the
chart of Dirks, which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or

EXHIBIT C-12

Plaintiff’s Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

EXHIBIT C-12

Plaintiff’s Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Frakes and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as that described Frakes. Moreover, one of ordinary
skill in the art would recognize that it would improve similar systems and
methods in the same way. As the ’120 patent states “[a] person skilled in the
art will appreciate that the technique of removing all expired records while

EXHIBIT C-12

Plaintiff’s Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining Dirks’ deletion decision procedure with Frakes would be
nothing more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Frakes and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Frakes with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. Thatte,
discloses a system and method using hash tables and/or linked lists and further
discloses means for dynamically determining the maximum number for the
record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Frakes with Thatte would be nothing more than the

EXHIBIT C-12

Plaintiff’s Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Frakes
with Thatte and recognized the benefits of doing so. For example, the removal
of expired records described in Frakescan be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Frakes with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Frakes with Thatte.

Alternatively, it would also be obvious to combine Frakes with the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record

EXHIBIT C-12

Plaintiff’s Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-12

Plaintiff’s Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT C-12

Plaintiff’s Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Frakes and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as Frakes. Moreover, one of ordinary skill in the art would recognize that
it would improve similar systems and methods in the same way. As the ’120
patent states “[a] person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be expanded to
include techniques whereby not necessarily all expired records are removed,
and that the decision regarding if and how many records to delete can be a
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary skill
in the art would recognize that the result of combining the ’663 patent’s
deletion decision procedure with Frakes would be nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have

EXHIBIT C-12

Plaintiff’s Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Frakes and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Frakes with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

EXHIBIT C-12

Plaintiff’s Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Frakes and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Frakes. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of

EXHIBIT C-12

Plaintiff’s Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Frakes would be nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Frakes and would
have seen the benefits of doing so. One such benefit, for example, is that the
system would only perform deletions when the system was not already too
overloaded, thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Frakes to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in
Frakes with the fundamental concept of dynamically determining the
maximum number of expired records to remove in an accessed linked list of
records to solve a number of potential problems. For example, the removal of
expired records described in Frakes can be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically

EXHIBIT C-12

Plaintiff’s Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1290287.1

Asserted Claims From
U.S. Pat. No. 5,893,120

William B. Frakes & Ricardo Baeza-Yates, Information Retrieval: Data
Structures & Algorithms (Prentice-Hall, Inc. 1992) (“Frakes”) alone and in

combination
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

EXHIBIT C-13

Plaintiff’s Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Brown discloses an information
storage and retrieval system.

For example, Brown discloses an information storage and retrieval system
made up of a hash table of linked lists. See, e.g., Brown at 60-62, Fig. 3.5.

“We have implemented a Mneme-based hash table for our inverted File
Manager using the overall structure shown in Figure 3.5 Each slot points
to a linked list of buckets, which contain the key/value pairs for the keys that
hash to that slot.” See Brown at 60-62, Fig. 3.5.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Brown discloses a linked list to store and provide access to records stored in a
memory of the system, at least some of the records automatically expiring.
Brown also discloses a hashing means to provide access to records stored in a
memory of the system and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring. See, e.g., Brown at 33-34, 60-62, Fig. 3.5.

“We have implemented a Mneme-based hash table for our inverted File
Manager using the overall structure shown in Figure 3.5 Each slot points
to a linked list of buckets, which contain the key/value pairs for the keys that
hash to that slot.” See Brown at 60-62, Fig. 3.5.

“The ability to modify an existing document collection is a natural requirement
for any information retrieval system Additionally, old news articles will
eventually expire and must be deleted from the current events document
collection.” See Brown at 33-34.

[1b] a record search means
utilizing a search key to

[5b] a record search means
utilizing a search key to

Brown discloses a record search means utilizing a search key to access the
linked list. Brown also discloses a record search means utilizing a search key

EXHIBIT C-13

Plaintiff’s Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

access the linked list, access a linked list of

records having the same
hash address,

to access a linked list of records having the same hash address. See, e.g.,
Brown at 60-62, Fig. 3.5.

“We have implemented a Mneme-based hash table for our inverted File
Manager using the overall structure shown in Figure 3.5 Each slot points
to a linked list of buckets, which contain the key/value pairs for the keys that
hash to that slot.” See Brown at 60-62, Fig. 3.5.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

Brown discloses the record search means including a means for identifying and
removing at least some of the expired ones of the records from the linked list
when the linked list is accessed. Brown also discloses the record search means
including means for identifying and removing at least some expired ones of the
records from the linked list of records when the linked list is accessed. See,
e.g., Brown at 33, 60-62, 66-68, Fig. 3.5.

“We have implemented a Mneme-based hash table for our inverted File
Manager using the overall structure shown in Figure 3.5 Each slot points
to a linked list of buckets, which contain the key/value pairs for the keys that
hash to that slot.” See Brown at 60-62, Fig. 3.5.

“The value array and the key heap grow towards each other, such that the
maximum number of entries in a bucket is variable. The array and heap entries
are paired-up from inside out, eliminating the need for string heap offsets in the
value array entries and minimizing the amount of space required by the
key/value pairs (compression techniques excluded). The tradeoff is a more
complex bucket and search algorithm. To find a key/value pair in a bucket, we
must scan the bucket’s key heap from left to right” See Brown at 61.

EXHIBIT C-13

Plaintiff’s Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

“The ability to modify an existing document collection is a natural requirement
for any information retrieval system Additionally, old news articles will
eventually expire and must be deleted from the current events document
collection.” See Brown at 33-34.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

Brown discloses means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. Brown also discloses utilizing the record search
means, for inserting, retrieving, and deleting records from the system and, at
the same time, removing at least some expired ones of the records in the
accessed linked list of records. See, e.g., Brown at 33-34, 60-62, 66-68, Fig.
3.5.

“We have implemented a Mneme-based hash table for our inverted File
Manager using the overall structure shown in Figure 3.5 Each slot points
to a linked list of buckets, which contain the key/value pairs for the keys that
hash to that slot.” See Brown at 60-62, Fig. 3.5.

“The value array and the key heap grow towards each other, such that the
maximum number of entries in a bucket is variable. The array and heap entries
are paired-up from inside out, eliminating the need for string heap offsets in the
value array entries and minimizing the amount of space required by the
key/value pairs (compression techniques excluded). The tradeoff is a more
complex bucket and search algorithm. To find a key/value pair in a bucket, we
must scan the bucket’s key heap from left to right” See Brown at 61.

“The ability to modify an existing document collection is a natural requirement
for any information retrieval system Additionally, old news articles will

EXHIBIT C-13

Plaintiff’s Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

eventually expire and must be deleted from the current events document
collection. Articles may expire either because their content is relevant only for
a certain period of time, or because the size of the current events collection
must be held below some threshold due to performance requirements or
capacity limitations. Expired articles will either be discarded or archived in a
larger secondary document collection, leading to further document addition
operations.” See Brown at 33-34.

“In the third approach, all of the inverted lists in the inverted file are scanned
and entries for the deleted document are removed from inverted lists as they
are found The scan of the inverted file is driven at the object level and is
supported by Mneme’s object scanning facility. This facility allows an object
pool to iterate through its objects in order of object identifier.” See Brown at
67.

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

It would have been obvious to one of ordinary skill in the art to modify the
system disclosed in Brown to dynamically determine the maximum number of
expired records to remove in the accessed linked list of records. It is a
fundamental concept in computer science and the relevant art that any variable
or parameter affecting any aspect of a system can be dynamically determined
based on information available to the system. One of ordinary skill in the art
would have been motivated to combine the system disclosed in Brown with the
fundamental concept of dynamically determining the maximum number of
expired records to remove in an accessed linked list of records to solve a
number of potential problems. For example, the removal of expired records
described in Brown can be burdensome on the system, adding to the system’s
load and slowing down the system’s processing. Moreover, the removal could
also force an interruption in real-time processing as the processing waits for

EXHIBIT C-13

Plaintiff’s Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

the removal to complete. Indeed, part of the motivation for the system
disclosed in Brown is avoiding these problems. One of ordinary skill in the art
would have known that dynamically determining the maximum number to
remove would limit the burden on the system and bound the length of any real-
time interruption to prevent delays in processing. Indeed, Nemes concedes that
such dynamic determination was obvious when he states in the ‘120 patent that
“[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one.” ‘120 at 7:10-15.

Brown combined with Dirks, Thatte, the ’663 patent and/or the Opportunistic
Garbage Collection Articles discloses an information storage and retrieval
system further including means for dynamically determining maximum
number for the record search means to remove in the accessed linked list of
records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine

EXHIBIT C-13

Plaintiff’s Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

EXHIBIT C-13

Plaintiff’s Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Brown and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Brown. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Brown nothing more than

EXHIBIT C-13

Plaintiff’s Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Brown and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Brown with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. Thatte,
discloses a system and method using hash tables and/or linked lists and further
discloses means for dynamically determining the maximum number for the
record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Brown with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Brown

EXHIBIT C-13

Plaintiff’s Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

with Thatte and recognize the benefits of doing so. For example, the removal
of expired records described in Brown can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Brown with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Brown with Thatte.

Alternatively, it would also be obvious to combine Brownwith the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply

EXHIBIT C-13

Plaintiff’s Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-13

Plaintiff’s Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,

EXHIBIT C-13

Plaintiff’s Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.
As both Brown and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Brown. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Brown would be
nothing more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion

EXHIBIT C-13

Plaintiff’s Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

based on a systems load as taught by the ’663 patent and with Brown and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Brown with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

EXHIBIT C-13

Plaintiff’s Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Brown and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Brown. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision

EXHIBIT C-13

Plaintiff’s Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

procedure with Brown would be nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Brown and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Brown to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in
Brown with the fundamental concept of dynamically determining the
maximum number of expired records to remove in an accessed linked list of
records to solve a number of potential problems. For example, the removal of
expired records described in Browncan be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in

EXHIBIT C-13

Plaintiff’s Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, Brown discloses a method for
storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring. Brown also discloses a method for storing and retrieving information
records using a hashing technique to provide access to the records and using an
external chaining technique to store the records with same hash address, at
least some of the records automatically expiring. See, e.g., Brown at 33-34, 60-
62, 66-68, Fig. 3.5.

“We have implemented a Mneme-based hash table for our inverted File
Manager using the overall structure shown in Figure 3.5 Each slot points
to a linked list of buckets, which contain the key/value pairs for the keys that
hash to that slot.” See Brown at 60-62, Fig. 3.5.

“The value array and the key heap grow towards each other, such that the
maximum number of entries in a bucket is variable. The array and heap entries
are paired-up from inside out, eliminating the need for string heap offsets in the
value array entries and minimizing the amount of space required by the
key/value pairs (compression techniques excluded). The tradeoff is a more
complex bucket and search algorithm. To find a key/value pair in a bucket, we
must scan the bucket’s key heap from left to right” See Brown at 61.

EXHIBIT C-13

Plaintiff’s Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

“The ability to modify an existing document collection is a natural requirement
for any information retrieval system Additionally, old news articles will
eventually expire and must be deleted from the current events document
collection. Articles may expire either because their content is relevant only for
a certain period of time, or because the size of the current events collection
must be held below some threshold due to performance requirements or
capacity limitations. Expired articles will either be discarded or archived in a
larger secondary document collection, leading to further document addition
operations.” See Brown at 33-34.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Brown discloses accessing a linked list of records. Brown also discloses
accessing a linked list of records having same hash address. See, e.g., Brown
at 33-34, 60-62, 66-68, Fig. 3.5.

“We have implemented a Mneme-based hash table for our inverted File
Manager using the overall structure shown in Figure 3.5 Each slot points
to a linked list of buckets, which contain the key/value pairs for the keys that
hash to that slot.” See Brown at 60-62, Fig. 3.5.

“The value array and the key heap grow towards each other, such that the
maximum number of entries in a bucket is variable. The array and heap entries
are paired-up from inside out, eliminating the need for string heap offsets in the
value array entries and minimizing the amount of space required by the
key/value pairs (compression techniques excluded). The tradeoff is a more
complex bucket and search algorithm. To find a key/value pair in a bucket, we
must scan the bucket’s key heap from left to right”

EXHIBIT C-13

Plaintiff’s Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

“The ability to modify an existing document collection is a natural requirement
for any information retrieval system Additionally, old news articles will
eventually expire and must be deleted from the current events document
collection. Articles may expire either because their content is relevant only for
a certain period of time, or because the size of the current events collection
must be held below some threshold due to performance requirements or
capacity limitations. Expired articles will either be discarded or archived in a
larger secondary document collection, leading to further document addition
operations.” See Brown at 33-34.

“In the third approach, all of the inverted lists in the inverted file are scanned
and entries for the deleted document are removed from inverted lists as they
are found The scan of the inverted file is driven at the object level and is
supported by Mneme’s object scanning facility. This facility allows an object
pool to iterate through its objects in order of object identifier.” See Brown at
67.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Brown discloses identifying at least some of the automatically expired ones of
the records. See, e.g., Brown at 33-34, 60-62, 66-68, Fig. 3.5.

“The ability to modify an existing document collection is a natural requirement
for any information retrieval system Additionally, old news articles will
eventually expire and must be deleted from the current events document
collection. Articles may expire either because their content is relevant only for
a certain period of time, or because the size of the current events collection
must be held below some threshold due to performance requirements or
capacity limitations. Expired articles will either be discarded or archived in a
larger secondary document collection, leading to further document addition

EXHIBIT C-13

Plaintiff’s Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

operations.” See Brown at 33-34.

“In the third approach, all of the inverted lists in the inverted file are scanned
and entries for the deleted document are removed from inverted lists as they
are found The scan of the inverted file is driven at the object level and is
supported by Mneme’s object scanning facility. This facility allows an object
pool to iterate through its objects in order of object identifier.” See Brown at
67.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Brown discloses removing at least some of the automatically expired records
from the linked list when the linked list is accessed. See, e.g., Brown at 33-34,
60-62, 66-68, Fig. 3.5.

“The ability to modify an existing document collection is a natural requirement
for any information retrieval system Additionally, old news articles will
eventually expire and must be deleted from the current events document
collection. Articles may expire either because their content is relevant only for
a certain period of time, or because the size of the current events collection
must be held below some threshold due to performance requirements or
capacity limitations. Expired articles will either be discarded or archived in a
larger secondary document collection, leading to further document addition
operations.” See Brown at 33-34.

“In the third approach, all of the inverted lists in the inverted file are scanned
and entries for the deleted document are removed from inverted lists as they
are found The scan of the inverted file is driven at the object level and is
supported by Mneme’s object scanning facility. This facility allows an object
pool to iterate through its objects in order of object identifier.” See Brown at

EXHIBIT C-13

Plaintiff’s Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

67.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

Brown discloses inserting, retrieving or deleting one of the records from the
system following the step of removing. See, e.g., Brown at 33-34, 60-62, 66-
68, Fig. 3.5.

“The ability to modify an existing document collection is a natural requirement
for any information retrieval system Additionally, old news articles will
eventually expire and must be deleted from the current events document
collection. Articles may expire either because their content is relevant only for
a certain period of time, or because the size of the current events collection
must be held below some threshold due to performance requirements or
capacity limitations. Expired articles will either be discarded or archived in a
larger secondary document collection, leading to further document addition
operations.” See Brown at 33-34.

“In the third approach, all of the inverted lists in the inverted file are scanned
and entries for the deleted document are removed from inverted lists as they
are found The scan of the inverted file is driven at the object level and is
supported by Mneme’s object scanning facility. This facility allows an object
pool to iterate through its objects in order of object identifier.” See Brown at
67.

“Should all of the document entries be deleted from an inverted list, the list’s
object can be freed and the corresponding term can be deleted from the term
hash table The long inverted lists are processed next. The page-object
pool that contains the link list object is scanned, giving us the first object of
each long inverted list.” See Brown at 67-68.

EXHIBIT C-13

Plaintiff’s Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

It would have been obvious to one of ordinary skill in the art to modify the
system disclosed in Brown to dynamically determine the maximum number of
expired records to remove in the accessed linked list of records. It is a
fundamental concept in computer science and the relevant art that any variable
or parameter affecting any aspect of a system can be dynamically determined
based on information available to the system. One of ordinary skill in the art
would have been motivated to combine the system disclosed in Brown with the
fundamental concept of dynamically determining the maximum number of
expired records to remove in an accessed linked list of records to solve a
number of potential problems. For example, the removal of expired records
described in Brown can be burdensome on the system, adding to the system’s
load and slowing down the system’s processing. Moreover, the removal could
also force an interruption in real-time processing as the processing waits for
the removal to complete. Indeed, part of the motivation for the system
disclosed in Brown is avoiding these problems. One of ordinary skill in the art
would have known that dynamically determining the maximum number to
remove would limit the burden on the system and bound the length of any real-
time interruption to prevent delays in processing. Indeed, Nemes concedes that
such dynamic determination was obvious when he states in the ‘120 patent that
“[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one.” ‘120 at 7:10-15.

Brown combined with Dirks, Thatte, the ’663 patent, and/or the Opportunistic
Garbage Collection Articles discloses dynamically determining maximum

EXHIBIT C-13

Plaintiff’s Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

number of expired ones of the records to remove when the linked list is
accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in the
chart of Dirks, which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x

EXHIBIT C-13

Plaintiff’s Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

EXHIBIT C-13

Plaintiff’s Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

As both Brown and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as that described Brown. Moreover, one of ordinary
skill in the art would recognize that it would improve similar systems and
methods in the same way. As the ’120 patent states “[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining Dirks’ deletion decision procedure with Brown would be
nothing more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Brown and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Brown with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. Thatte,
discloses a system and method using hash tables and/or linked lists and further
discloses means for dynamically determining the maximum number for the

EXHIBIT C-13

Plaintiff’s Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Brown with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Brown
with Thatte and recognized the benefits of doing so. For example, the removal
of expired records described in Browncan be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Brown with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Brown with Thatte.

Alternatively, it would also be obvious to combine Brown with the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the

EXHIBIT C-13

Plaintiff’s Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-13

Plaintiff’s Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,

EXHIBIT C-13

Plaintiff’s Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Brown and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as Brown. Moreover, one of ordinary skill in the art would recognize that
it would improve similar systems and methods in the same way. As the ’120
patent states “[a] person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be expanded to
include techniques whereby not necessarily all expired records are removed,
and that the decision regarding if and how many records to delete can be a
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary skill
in the art would recognize that the result of combining the ’663 patent’s
deletion decision procedure with Brown would be nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion

EXHIBIT C-13

Plaintiff’s Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

based on a systems load as taught by the ’663 patent and with Brown and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Brown with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

EXHIBIT C-13

Plaintiff’s Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Brown and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Brown. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision

EXHIBIT C-13

Plaintiff’s Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

procedure with Brown would be nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Brown and would
have seen the benefits of doing so. One such benefit, for example, is that the
system would only perform deletions when the system was not already too
overloaded, thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Brown to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in
Brown with the fundamental concept of dynamically determining the
maximum number of expired records to remove in an accessed linked list of
records to solve a number of potential problems. For example, the removal of
expired records described in Brown can be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the

EXHIBIT C-13

Plaintiff’s Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Eric W. Brown, Execution Performance Issues in Full Text Information
Retrieval, University of Massachusetts Amherst (October 1995)

(hereinafter “Brown”) alone and in combination

system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

EXHIBIT C-14

Plaintiff’s Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Costello discloses an information
storage and retrieval system.

For example, Costello describes a method and system for storing and retrieving
callouts. See, e.g., Costello, page 3-4. See also, Costello Presentation, page 3,
15-18, and 26.

“Instead of a single sorted list of callout structures, we use a circular array of
unsorted lists. The array, called a callwheel (see Figure 2), contains
callwheelsize entries. All callouts scheduled to expire at time t appear in
the list callwheel[t% callwheelsize], and their c_time members
are set to t/callwheelsize.” See, Costello, page 3.

“We could try to find a way, given a function pointer and argument pointer, to
produce a pointer to the matching callout in constant time. A hash table is the
obvious mechanism.” See, Costello, page 4.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Costello discloses a linked list to store and provide access to records stored in a
memory of the system, at least some of the records automatically expiring.
Costello also discloses a hashing means to provide access to records stored in a
memory of the system and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring.

For example, Costello describes storing outstanding callouts in a linked list.
See, e.g., Costello, page 3, 7. The entries are removed when the callout is
expired. Id. See also, Costello Presentation, page 3, 15-18, and 26.

EXHIBIT C-14

Plaintiff’s Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

For example, Costello describes storing the callouts in both a circular array of
linked lists and a hash table of linked lists. See, e.g., Costello, page 3. Id. at 4.
See also, Costello Presentation, page 3, 15-18, and 26.

“Instead of a single sorted list of callout structures, we use a circular array of
unsorted lists. The array, called a callwheel (see Figure 2), contains
callwheelsize entries. All callouts scheduled to expire at time t appear in
the list callwheel[t% callwheelsize], and their c_time members
are set to t/callwheelsize.” See, Costello, page 3.

“We could try to find a way, given a function pointer and argument pointer, to
produce a pointer to the matching callout in constant time. A hash table is the
obvious mechanism.” See, Costello, page 4.

“At first, we used a closed-chaining hash table.” See, Costello, page 4.

“We wanted both sorts of calls to have equal costs in the new implementation as
well, so we switched to an open-chaining hash table, in which only one bucket
needs to be searched in any case.” See, Costello, page 7.

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

Costello discloses a record search means utilizing a search key to access the
linked list. Costello also discloses a record search means utilizing a search key
to access a linked list of records having the same hash address.

For example, Costello describes using both a circular array and a hash table.
See, e.g., Costello, page 3, 7. In either case, a search key is utilized to access
the linked list of callouts. Id. at 4. See also, Costello Presentation, page 3, 15-
18, and 26.

EXHIBIT C-14

Plaintiff’s Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

“Instead of a single sorted list of callout structures, we use a circular array of
unsorted lists. The array, called a callwheel (see Figure 2), contains
callwheelsize entries. All callouts scheduled to expire at time t appear in
the list callwheel[t% callwheelsize], and their c_time members
are set to t/callwheelsize.” See, Costello, page 3.

“We could try to find a way, given a function pointer and argument pointer, to
produce a pointer to the matching callout in constant time. A hash table is the
obvious mechanism.” See, Costello, page 4.

“At first, we used a closed-chaining hash table.” See, Costello, page 4.

“We wanted both sorts of calls to have equal costs in the new implementation as
well, so we switched to an open-chaining hash table, in which only one bucket
needs to be searched in any case.” See, Costello, page 7.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

Costello discloses the record search means including a means for identifying
and removing at least some of the expired ones of the records from the linked
list when the linked list is accessed. Costello also discloses the record search
means including means for identifying and removing at least some expired
ones of the records from the linked list of records when the linked list is
accessed.

For example, Costello describes identifying the expired callouts and removing
them from the linked list when it is accessed. See, e.g., Costello, page 3-4, 7.
See also, Costello Presentation, page 3, 15-18, and 26.

EXHIBIT C-14

Plaintiff’s Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

“Instead of a single sorted list of callout structures, we use a circular array of
unsorted lists. The array, called a callwheel (see Figure 2), contains
callwheelsize entries. All callouts scheduled to expire at time t appear in
the list callwheel[t% callwheelsize], and their c_time members
are set to t/callwheelsize.” See, Costello, page 3.

“If the first callout has expired, a software clock interrupt is generated. Its
handler, softclock(), repeatedly checks the callout at the head of the list,
and if it is expired (c_time member equal to zero), removes it and calls its
function.” See, Costello, page 3.

“We could try to find a way, given a function pointer and argument pointer, to
produce a pointer to the matching callout in constant time. A hash table is the
obvious mechanism.” See, Costello, page 4.

“At first, we used a closed-chaining hash table.” See, Costello, page 4.

“We wanted both sorts of calls to have equal costs in the new implementation as
well, so we switched to an open-chaining hash table, in which only one bucket
needs to be searched in any case.” See, Costello, page 7.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the

Costello discloses means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. Costello also discloses utilizing the record search
means, for inserting, retrieving, and deleting records from the system and, at
the same time, removing at least some expired ones of the records in the
accessed linked list of records.

EXHIBIT C-14

Plaintiff’s Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

records in the accessed
linked list of records.

For example, Costello describes using the record search means to access the
linked list and retrieving and removing expired callouts from the linked list at
the same time. See, e.g., Costello, page 3-4. See also, Costello Presentation,
page 3, 15-18, and 26.

“Instead of a single sorted list of callout structures, we use a circular array of
unsorted lists. The array, called a callwheel (see Figure 2), contains
callwheelsize entries. All callouts scheduled to expire at time t appear in
the list callwheel[t% callwheelsize], and their c_time members
are set to t/callwheelsize.” See, Costello, page 3.

“If the first callout has expired, a software clock interrupt is generated. Its
handler, softclock(), repeatedly checks the callout at the head of the list,
and if it is expired (c_time member equal to zero), removes it and calls its
function.” See, Costello, page 3.

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

Costello discloses an information storage and retrieval system further including
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records.

For example, Costello describes limiting the number of records removed from
the linked list during a particular sequence using a max_softclock_steps
variable. See, e.g., Costello, page 8.

“softclock() keeps track of the number of steps it has taken since it last
enabled interrupts, and whenever the count reaches
MAX_SOFTCLOCK_STEPS, it briefly enables them. Therefore,
softclock() never disables interrupts for more than a constant amount of

EXHIBIT C-14

Plaintiff’s Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

time.” See, e.g., Costello, page 8.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Costello to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Costello with the fundamental concept of dynamically determining
the maximum number of expired records to remove in an accessed linked list
of records to solve a number of potential problems. For example, the removal
of expired records described in Costello can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing.
Moreover, the removal could also force an interruption in real-time processing
as the processing waits for the removal to complete. Indeed, part of the
motivation for the system disclosed in Costello is avoiding these problems.
One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

3. A method for storing
and retrieving information

7. A method for storing
and retrieving information

To the extent the preamble is a limitation, Costello discloses a method for
storing and retrieving information records using a linked list to store and

EXHIBIT C-14

Plaintiff’s Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

provide access to the records, at least some of the records automatically
expiring. Costello also discloses a method for storing and retrieving
information records using a hashing technique to provide access to the records
and using an external chaining technique to store the records with same hash
address, at least some of the records automatically expiring.

For example, Costello describes a method and system for storing and retrieving
callouts which expire automatically based on timers. See, e.g., Costello, page 3-
4. See also, Costello Presentation, page 3, 15-18, and 26.

“Instead of a single sorted list of callout structures, we use a circular array of
unsorted lists. The array, called a callwheel (see Figure 2), contains
callwheelsize entries. All callouts scheduled to expire at time t appear in
the list callwheel[t% callwheelsize], and their c_time members
are set to t/callwheelsize.” See, Costello, page 3.

“We could try to find a way, given a function pointer and argument pointer, to
produce a pointer to the matching callout in constant time. A hash table is the
obvious mechanism.” See, Costello, page 4.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Costello discloses accessing a linked list of records. Costello also discloses
accessing a linked list of records having same hash address.

For example, Costello describes using both a circular array and a hash table.
See, e.g., Costello, page 3-4, 7. In either case, a search key is utilized to access
the linked list of callouts. Id. at 4. See also, Costello Presentation, page 3, 15-
18, and 26.

EXHIBIT C-14

Plaintiff’s Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

“Instead of a single sorted list of callout structures, we use a circular array of
unsorted lists. The array, called a callwheel (see Figure 2), contains
callwheelsize entries. All callouts scheduled to expire at time t appear in
the list callwheel[t% callwheelsize], and their c_time members
are set to t/callwheelsize.” See, Costello, page 3.

“We could try to find a way, given a function pointer and argument pointer, to
produce a pointer to the matching callout in constant time. A hash table is the
obvious mechanism.” See, Costello, page 4.

“At first, we used a closed-chaining hash table.” See, Costello, page 4.

“We wanted both sorts of calls to have equal costs in the new implementation as
well, so we switched to an open-chaining hash table, in which only one bucket
needs to be searched in any case.” See, Costello, page 7.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Costello discloses identifying at least some of the automatically expired ones
of the records.

For example, the entries are removed when the callout is expired. See, e.g.,
Costello, page 3-4, 7. See also, Costello Presentation, page 3, 15-18, and 26.

“All callouts scheduled to expire at time t appear in the list callwheel[t%
callwheelsize], and their c_time members are set to
t/callwheelsize.” See, Costello, page 3.

“If the first callout has expired, a software clock interrupt is generated. Its
handler, softclock(), repeatedly checks the callout at the head of the list,

EXHIBIT C-14

Plaintiff’s Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

and if it is expired (c_time member equal to zero), removes it and calls its
function.” See, Costello, page 3.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Costello discloses removing at least some of the automatically expired records
from the linked list when the linked list is accessed.

For example, Costello describes identifying the expired callouts and removing
them from the linked list when it is accessed. See, e.g., Costello, page 3-4. See
also, Costello Presentation, page 3, 15-18, and 26.

“All callouts scheduled to expire at time t appear in the list callwheel[t%
callwheelsize], and their c_time members are set to
t/callwheelsize.” See, Costello, page 3.

“If the first callout has expired, a software clock interrupt is generated. Its
handler, softclock(), repeatedly checks the callout at the head of the list,
and if it is expired (c_time member equal to zero), removes it and calls its
function.” See, Costello, page 3.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

Costello discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

For example, Costello describes using the record search means to access the
linked list and insert, retrieving, or delete expired callouts from the linked list
following the step of removing expired callouts See, e.g., Costello, page 3-4,
7. See also, Costello Presentation, page 3, 15-18, and 26.

“Instead of a single sorted list of callout structures, we use a circular array of
unsorted lists. The array, called a callwheel (see Figure 2), contains
callwheelsize entries. All callouts scheduled to expire at time t appear in

EXHIBIT C-14

Plaintiff’s Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

the list callwheel[t% callwheelsize], and their c_time members
are set to t/callwheelsize.” See, Costello, page 3.

“If the first callout has expired, a software clock interrupt is generated. Its
handler, softclock(), repeatedly checks the callout at the head of the list,
and if it is expired (c_time member equal to zero), removes it and calls its
function.” See, Costell, page 3.

“We could try to find a way, given a function pointer and argument pointer, to
produce a pointer to the matching callout in constant time. A hash table is the
obvious mechanism.” See, Costello, page 4.

“At first, we used a closed-chaining hash table.” See, Costello, page 4.

“We wanted both sorts of calls to have equal costs in the new implementation as
well, so we switched to an open-chaining hash table, in which only one bucket
needs to be searched in any case.” See, Costello, page 7.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

Costello discloses dynamically determining maximum number of expired ones
of the records to remove when the linked list is accessed.

For example, Costello describes limiting the number of records removed from
the linked list during a particular sequence using a max_softclock_steps
variable. See, e.g., Costello, page 8.

“softclock() keeps track of the number of steps it has taken since it last
enabled interrupts, and whenever the count reaches
MAX_SOFTCLOCK_STEPS, it briefly enables them. Therefore,
softclock() never disables interrupts for more than a constant amount of

EXHIBIT C-14

Plaintiff’s Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Costello, Adam, et al., Redesigning the BSD - Callout and Time Facilities,
WUSC 95-23, November 2, 1995 (“Costello”). See also, Costello, Adam,

et al., Presentation - Redesigning the BSD Unix Callout and Time
Facilities, January 10, 1996 (“Costello Presentation”).

time.” See, Costello, page 8.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Costello to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Costello with the fundamental concept of dynamically determining
the maximum number of expired records to remove in an accessed linked list
of records to solve a number of potential problems. For example, the removal
of expired records described in Costello can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing.
Moreover, the removal could also force an interruption in real-time processing
as the processing waits for the removal to complete. Indeed, part of the
motivation for the system disclosed in Costello is avoiding these problems.
One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

EXHIBIT C-15

Plaintiff’s Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Foster discloses an information
storage and retrieval system. See, e.g., Foster at 4-12, 24-26, 33-40.

“A very important use of the vector of lists is in one of the methods for doing
‘hash coding’. The problem is to find something which has been associated
with an object, on being presented with the object itself.” See Foster at 25.

“When a name is read, the appropriate list is selected and searched. If 26 is a
suitable value for n and the unevenness of distribution of initial letters is not
thought to matter, then these could serve as the index for the lists.” See Foster
at 25.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Foster discloses a linked list to store and provide access to records stored in a
memory of the system, at least some of the records automatically expiring.
Foster also discloses a hashing means to provide access to records stored in a
memory of the system and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring. See, e.g., Foster at 4-12, 33-40.

“A very important use of the vector of lists is in one of the methods for doing
‘hash coding’. The problem is to find something which has been associated
with an object, on being presented with the object itself.” See Foster at 25.

“When a name is read, the appropriate list is selected and searched. If 26 is a
suitable value for n and the unevenness of distribution of initial letters is not
thought to matter, then these could serve as the index for the lists.” See Foster
at 25.

“But most list processing problems will require more store than can be made
available in this straightforward manner, and something has to be done to

EXHIBIT C-15

Plaintiff’s Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

enable the re-use of stores of which the contents are no longer needed. . . . All
list processing languages provide, either explicitly in the language or implicitly
in the system, some method of reclaiming the store.” See Foster at 33.

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

Foster discloses a record search means utilizing a search key to access the
linked list. Foster also discloses a record search means utilizing a search key
to access a linked list of records having the same hash address. See, e.g.,
Foster at 24-26, 33-38.

“A very important use of the vector of lists is in one of the methods for doing
‘hash coding’. The problem is to find something which has been associated
with an object, on being presented with the object itself.” See Foster at 25.

“When a name is read, the appropriate list is selected and searched. If 26 is a
suitable value for n and the unevenness of distribution of initial letters is not
thought to matter, then these could serve as the index for the lists.” See Foster
at 25.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

Foster discloses the record search means including a means for identifying and
removing at least some of the expired ones of the records from the linked list
when the linked list is accessed. Foster also discloses the record search means
including means for identifying and removing at least some expired ones of the
records from the linked list of records when the linked list is accessed. See,
e.g., Foster at 35-38.

“A very important use of the vector of lists is in one of the methods for doing
‘hash coding’. The problem is to find something which has been associated
with an object, on being presented with the object itself.” See Foster at 25.

“When a name is read, the appropriate list is selected and searched. If 26 is a

EXHIBIT C-15

Plaintiff’s Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

suitable value for n and the unevenness of distribution of initial letters is not
thought to matter, then these could serve as the index for the lists.” See Foster
at 25.

“But most list processing problems will require more store than can be made
available in this straightforward manner, and something has to be done to
enable the re-use of stores of which the contents are no longer needed. . . . All
list processing languages provide, either explicitly in the language or implicitly
in the system, some method of reclaiming the store.” See Foster at 33.

“A convention, which has been adopted in order to make the memory of the
wanted cells easier to the user, is to say that a list is owned in one place only.
If it appears in other places it is being borrowed. The list that is the owner is
responsible for declaring that the cells are not wanted.” See Foster at 35.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

Foster discloses means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. Foster also discloses utilizing the record search
means, for inserting, retrieving, and deleting records from the system and, at
the same time, removing at least some expired ones of the records in the
accessed linked list of records. See, e.g., Foster at 33-40.

“But most list processing problems will require more store than can be made
available in this straightforward manner, and something has to be done to
enable the re-use of stores of which the contents are no longer needed. . . . All
list processing languages provide, either explicitly in the language or implicitly
in the system, some method of reclaiming the store.” See Foster at 33.

“A convention, which has been adopted in order to make the memory of the

EXHIBIT C-15

Plaintiff’s Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

wanted cells easier to the user, is to say that a list is owned in one place only.
If it appears in other places it is being borrowed. The list that is the owner is
responsible for declaring that the cells are not wanted.” See Foster at 35.

“Hence the process of garbage collection has to proceed in two stages, the first
of which goes through all of the lists dependent on the list heads and marks
them as wanted. The second then scans the whole area allotted to lists and
returns the unmarked cells to the free list, simultaneously unmarking the
marked cells ready for next time.” See Foster at 35.

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

It would have been obvious to one of ordinary skill in the art to modify the
system disclosed in Foster to dynamically determine the maximum number of
expired records to remove in the accessed linked list of records. It is a
fundamental concept in computer science and the relevant art that any variable
or parameter affecting any aspect of a system can be dynamically determined
based on information available to the system. One of ordinary skill in the art
would have been motivated to combine the system disclosed in Foster with the
fundamental concept of dynamically determining the maximum number of
expired records to remove in an accessed linked list of records to solve a
number of potential problems. For example, the removal of expired records
described in Foster can be burdensome on the system, adding to the system’s
load and slowing down the system’s processing. Moreover, the removal could
also force an interruption in real-time processing as the processing waits for
the removal to complete. Indeed, part of the motivation for the system
disclosed in Foster is avoiding these problems. One of ordinary skill in the art
would have known that dynamically determining the maximum number to
remove would limit the burden on the system and bound the length of any real-
time interruption to prevent delays in processing. Indeed, Nemes concedes that
such dynamic determination was obvious when he states in the ‘120 patent that

EXHIBIT C-15

Plaintiff’s Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

“[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one.” ‘120 at 7:10-15.

Foster combined with Dirks, Thatte, the ’663 patent and/or the Opportunistic
Garbage Collection Articles discloses an information storage and retrieval
system further including means for dynamically determining maximum
number for the record search means to remove in the accessed linked list of
records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list

EXHIBIT C-15

Plaintiff’s Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion

EXHIBIT C-15

Plaintiff’s Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Foster and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Foster. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Foster nothing more than
the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Foster and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.`

EXHIBIT C-15

Plaintiff’s Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Foster with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. Thatte,
discloses a system and method using hash tables and/or linked lists and further
discloses means for dynamically determining the maximum number for the
record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Foster with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Foster
with Thatte and recognize the benefits of doing so. For example, the removal
of expired records described in Foster can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Foster with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how

EXHIBIT C-15

Plaintiff’s Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Foster with Thatte.

Alternatively, it would also be obvious to combine Fosterwith the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

EXHIBIT C-15

Plaintiff’s Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

This hybrid deletion is shown in Figure 5.

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT C-15

Plaintiff’s Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.
As both Foster and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Foster. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Foster would be
nothing more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion

EXHIBIT C-15

Plaintiff’s Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

based on a systems load as taught by the ’663 patent and with Foster and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Foster with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume

EXHIBIT C-15

Plaintiff’s Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Foster and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Foster. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Foster would be nothing more than the predictable use of prior
art elements according to their established functions.

EXHIBIT C-15

Plaintiff’s Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Foster and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Foster to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in Foster
with the fundamental concept of dynamically determining the maximum
number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired
records described in Fostercan be burdensome on the system, adding to the
system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching

EXHIBIT C-15

Plaintiff’s Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, Foster discloses a method for storing
and retrieving information records using a linked list to store and provide
access to the records, at least some of the records automatically expiring.
Foster also discloses a method for storing and retrieving information records
using a hashing technique to provide access to the records and using an
external chaining technique to store the records with same hash address, at
least some of the records automatically expiring. See, e.g., Foster at 4-12, 24-
26, and 33-40.

“A very important use of the vector of lists is in one of the methods for doing
‘hash coding’. The problem is to find something which has been associated
with an object, on being presented with the object itself.” See Foster at 25.

“When a name is read, the appropriate list is selected and searched. If 26 is a
suitable value for n and the unevenness of distribution of initial letters is not
thought to matter, then these could serve as the index for the lists.” See Foster
at 25.

But most list processing problems will require more store than can be made
available in this straightforward manner, and something has to be done to
enable the re-use of stores of which the contents are no longer needed. . . . All
list processing languages provide, either explicitly in the language or implicitly
in the system, some method of reclaiming the store.” See Foster at 33.

“A convention, which has been adopted in order to make the memory of the
wanted cells easier to the user, is to say that a list is owned in one place only.

EXHIBIT C-15

Plaintiff’s Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

If it appears in other places it is being borrowed. The list that is the owner is
responsible for declaring that the cells are not wanted.” See Foster at 35.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Foster discloses accessing a linked list of records. Foster also discloses
accessing a linked list of records having same hash address. See, e.g., Foster at
4-12, 24-26.

“A very important use of the vector of lists is in one of the methods for doing
‘hash coding’. The problem is to find something which has been associated
with an object, on being presented with the object itself.” See Foster at 25.

“When a name is read, the appropriate list is selected and searched. If 26 is a
suitable value for n and the unevenness of distribution of initial letters is not
thought to matter, then these could serve as the index for the lists.” See Foster
at 25.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Foster discloses identifying at least some of the automatically expired ones of
the records. See Foster at 35-38.

“But most list processing problems will require more store than can be made
available in this straightforward manner, and something has to be done to
enable the re-use of stores of which the contents are no longer needed. . . . All
list processing languages provide, either explicitly in the language or implicitly
in the system, some method of reclaiming the store.” See Foster at 33.

“A convention, which has been adopted in order to make the memory of the
wanted cells easier to the user, is to say that a list is owned in one place only.
If it appears in other places it is being borrowed. The list that is the owner is

EXHIBIT C-15

Plaintiff’s Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

responsible for declaring that the cells are not wanted.” See Foster at 35.

“Hence the process of garbage collection has to proceed in two stages, the first
of which goes through all of the lists dependent on the list heads and marks
them as wanted. The second then scans the whole area allotted to lists and
returns the unmarked cells to the free list, simultaneously unmarking the
marked cells ready for next time.” See Foster at 35.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Foster discloses removing at least some of the automatically expired records
from the linked list when the linked list is accessed. See Foster at 35-38.

“Hence the process of garbage collection has to proceed in two stages, the first
of which goes through all of the lists dependent on the list heads and marks
them as wanted. The second then scans the whole area allotted to lists and
returns the unmarked cells to the free list, simultaneously unmarking the
marked cells ready for next time.” See Foster at 35.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

Foster discloses inserting, retrieving or deleting one of the records from the
system following the step of removing. See Foster at 4-12, 22-29, 33-40.

“Hence the process of garbage collection has to proceed in two stages, the first
of which goes through all of the lists dependent on the list heads and marks
them as wanted. The second then scans the whole area allotted to lists and
returns the unmarked cells to the free list, simultaneously unmarking the
marked cells ready for next time.” See Foster at 35.

It would be obvious to a person of skill in the art to perform known functions
such as an insertion, deletion, or retrieval on the linked list after the step of

EXHIBIT C-15

Plaintiff’s Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

removing is performed.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Foster to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in Foster
with the fundamental concept of dynamically determining the maximum
number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired
records described in Foster can be burdensome on the system, adding to the
system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete. Indeed, part of the motivation
for the system disclosed in Foster is avoiding these problems. One of ordinary
skill in the art would have known that dynamically determining the maximum
number to remove would limit the burden on the system and bound the length
of any real-time interruption to prevent delays in processing. Indeed, Nemes
concedes that such dynamic determination was obvious when he states in the
‘120 patent that “[a] person skilled in the art will appreciate that the technique
of removing all expired records while searching the linked list can be expanded
to include techniques whereby not necessarily all expired records are removed,
and that the decision regarding if and how many records to delete can be a
dynamic one.” ‘120 at 7:10-15.

Foster combined with Dirks, Thatte, the ’663 patent, and/or the Opportunistic
Garbage Collection Articles discloses dynamically determining maximum

EXHIBIT C-15

Plaintiff’s Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

number of expired ones of the records to remove when the linked list is
accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in the
chart of Dirks, which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than

EXHIBIT C-15

Plaintiff’s Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Foster and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have

EXHIBIT C-15

Plaintiff’s Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as that described Foster. Moreover, one of ordinary skill
in the art would recognize that it would improve similar systems and methods
in the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Foster would be nothing
more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Foster and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Foster with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. Thatte,
discloses a system and method using hash tables and/or linked lists and further
discloses means for dynamically determining the maximum number for the
record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

EXHIBIT C-15

Plaintiff’s Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Foster with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Foster
with Thatte and recognized the benefits of doing so. For example, the removal
of expired records described in Fostercan be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Foster with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Foster with Thatte.

Alternatively, it would also be obvious to combine Foster with the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not

EXHIBIT C-15

Plaintiff’s Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-15

Plaintiff’s Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-

EXHIBIT C-15

Plaintiff’s Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Foster and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as Foster. Moreover, one of ordinary skill in the art would recognize that
it would improve similar systems and methods in the same way. As the ’120
patent states “[a] person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be expanded to
include techniques whereby not necessarily all expired records are removed,
and that the decision regarding if and how many records to delete can be a
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary skill
in the art would recognize that the result of combining the ’663 patent’s
deletion decision procedure with Foster would be nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Foster and
would have seen the benefits of doing so. One such benefit, for example, is

EXHIBIT C-15

Plaintiff’s Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Foster with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack

EXHIBIT C-15

Plaintiff’s Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Foster and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Foster. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Foster would be nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have

EXHIBIT C-15

Plaintiff’s Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Foster and would
have seen the benefits of doing so. One such benefit, for example, is that the
system would only perform deletions when the system was not already too
overloaded, thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Foster to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in Foster
with the fundamental concept of dynamically determining the maximum
number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired
records described in Foster can be burdensome on the system, adding to the
system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT C-15

Plaintiff’s Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

J.M. FOSTER, LIST PROCESSING (Macdonald & Co. 1967) (hereinafter
“Foster”) alone and in combination

all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

EXHIBIT C-16

Plaintiff’s Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation Keshav discloses an information
storage and retrieval system.

For example,

“The algorithm is implemented at the server that schedules packets on the
output trunk of a router or switch in a store-and-forward network.” Srinivasan
Keshav, On the Efficient Implementation of Fair Queuing (hereinafter
“Keshav”) at 2.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Keshav discloses a linked list to store and provide access to records stored in a
memory of the system, at least some of the records automatically expiring.
Keshav also discloses a hashing means to provide access to records stored in a
memory of the system and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring.

For example,

“Buffering Alternatives
We considered four buffering schemes: an ordered linked list (LINK), a binary
tree (TREE), a double heap (HEAP), and a combination of per-conversation
queuing and heaps (PERC). We expect that the reader is familiar with details
of the list, tree and heap data structures. They are also described in standard
texts such as References [10, 11].

Ordered List
Tag values usually increase with time, since bid numbers are strictly
monotonic within each conversation. This suggests that packets should be

EXHIBIT C-16

Plaintiff’s Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
buffered in a ordered linked list, inserting incoming packets by linearly
scanning from the largest tag value.” Keshav at 8.

“If all the buffers are full, the server drops the packet with the largest bid
number (unlike the algorithm in Reference [1], this buffer allocation policy
accounts for differences in packet lengths). The abstract data structure
required for packet buffering is a bounded heap. A bounded heap is named by
its root, and contains a set of packets that are tagged by their bid number.”
Keshav at 7.

“The conversation ID is used to access a data structure for storing state. Since
IDs could span large address spaces, the standard solution is to hash the ID
onto a index, and the technology for this is well known [9]. Recently, a simple
and efficient hashing scheme that ignores hash collections has been proposed
[5]. In this approach, some conversations could share the same state, leading
to unfair service, since these conversations are served first-come-first-served.
However, this is attenuated by occasionally perturbing the hash function.”
Keshav at 5.

“Assume for the moment that data from each source destination pair (a
conversation) can be distinguished, and is stored in a logically distinct per-
conversation queue.” Keshav at 2.

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

Keshav discloses a record search means utilizing a search key to access the
linked list. Keshav also discloses a record search means utilizing a search key
to access a linked list of records having the same hash address.

For example,

EXHIBIT C-16

Plaintiff’s Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
“Assume for the moment that data from each source destination pair (a
conversation) can be distinguished, and is stored in a logically distinct per-
conversation queue.” Keshav at 2.

The paper discloses in detail how to generate this key in a unique and coherent
manner. See page 4:

“The choice of the conversation ID depends on the entity to whom fair service
is granted (see the discussion in Reference [1]), and the naming space of the
network. For example, if the unit is a transport connection in the IP Internet,
one such unique identifier is the tuple (source address, destination address,
source port number, destination port number, protocol type).” Keshav at 4.

“The conversation ID is used to access a data structure for storing state. Since
IDs could span large address spaces, the standard solution is to hash the ID
onto a index, and the technology for this is well known [9]. Recently, a simple
and efficient hashing scheme that ignores hash collections has been proposed
[5]. In this approach, some conversations could share the same state, leading
to unfair service, since these conversations are served first-come-first-served.
However, this is attenuated by occasionally perturbing the hash function.”
Keshav at 5.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

Keshav discloses the record search means including a means for identifying
and removing at least some of the expired ones of the records from the linked
list when the linked list is accessed. Keshav also discloses the record search
means including means for identifying and removing at least some expired
ones of the records from the linked list of records when the linked list is
accessed.

For example,

EXHIBIT C-16

Plaintiff’s Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination

“Assume for the moment that data from each source destination pair (a
conversation) can be distinguished, and is stored in a logically distinct per-
conversation queue.” Keshav at 2.

“The choice of the conversation ID depends on the entity to whom fair service
is granted (see the discussion in Reference [1]), and the naming space of the
network. For example, if the unit is a transport connection in the IP Internet,
one such unique identifier is the tuple (source address, destination address,
source port number, destination port number, protocol type).” Keshav at 4.

“The conversation ID is used to access a data structure for storing state.”
Keshav at 5.

“insert () first places an item in the bounded heap. While the heap size exceeds
MAX, it repeatedly discards the item with the largest tag value. We insert an
item before removing the largest item since the inserted packet itself may be
deleted, and it is easier to handle this case if the item is already in the heap. To
allow this, we always keep enough free apace in the buffer to accommodate a
maximum sized packet.” Keshav at 7.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

Keshav discloses means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. Keshav also discloses utilizing the record search
means, for inserting, retrieving, and deleting records from the system and, at
the same time, removing at least some expired ones of the records in the
accessed linked list of records.

For example,

EXHIBIT C-16

Plaintiff’s Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
“insert () first places an item in the bounded heap. While the heap size exceeds
MAX, it repeatedly discards the item with the largest tag value. We insert an
item before removing the largest item since the inserted packet itself may be
deleted, and it is easier to handle this case if the item is already in the heap. To
allow this, we always keep enough free [s]pace in the buffer to accommodate a
maximum sized packet.” Keshav at 7.

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

Keshav discloses an information storage and retrieval system further including
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records.

For example,

“insert () first places an item in the bounded heap. While the heap size exceeds
MAX, it repeatedly discards the item with the largest tag value. We insert an
item before removing the largest item since the inserted packet itself may be
deleted, and it is easier to hand this case if the item is already in the heap. To
allow this, we always keep enough free [s]pace in the buffer to accommodate a
maximum sized packet, get_min () returns a pointer to the item with the
smallest tag value and deletes it.” Keshav at 7.

It would have been obvious to one of ordinary skill in the art to modify the
system disclosed in Keshav to dynamically determine the maximum number of
expired records to remove in the accessed linked list of records. It is a
fundamental concept in computer science and the relevant art that any variable
or parameter affecting any aspect of a system can be dynamically determined
based on information available to the system. One of ordinary skill in the art
would have been motivated to combine the system disclosed in Keshav with
the fundamental concept of dynamically determining the maximum number of

EXHIBIT C-16

Plaintiff’s Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
expired records to remove in an accessed linked list of records to solve a
number of potential problems. For example, the removal of expired records
described in Keshav can be burdensome on the system, adding to the system’s
load and slowing down the system’s processing. Moreover, the removal could
also force an interruption in real-time processing as the processing waits for
the removal to complete. Indeed, part of the motivation for the system
disclosed in Keshav is avoiding these problems. One of ordinary skill in the
art would have known that dynamically determining the maximum number to
remove would limit the burden on the system and bound the length of any real-
time interruption to prevent delays in processing. Indeed, Nemes concedes that
such dynamic determination was obvious when he states in the ‘120 patent that
“[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one.” ‘120 at 7:10-15.

Keshav combined with Dirks, Thatte, the ’663 patent and/or the Opportunistic
Garbage Collection Articles discloses an information storage and retrieval
system further including means for dynamically determining maximum
number for the record search means to remove in the accessed linked list of
records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

EXHIBIT C-16

Plaintiff’s Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

EXHIBIT C-16

Plaintiff’s Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Keshav and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Keshav. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT C-16

Plaintiff’s Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Keshav nothing more than
the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Keshav and would
have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Keshav with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. Thatte,
discloses a system and method using hash tables and/or linked lists and further
discloses means for dynamically determining the maximum number for the
record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Keshav with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the

EXHIBIT C-16

Plaintiff’s Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Keshav
with Thatte and recognize the benefits of doing so. For example, the removal
of expired records described in Keshav can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Keshav with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Keshav with Thatte.

Alternatively, it would also be obvious to combine Keshavwith the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent

EXHIBIT C-16

Plaintiff’s Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-16

Plaintiff’s Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,

EXHIBIT C-16

Plaintiff’s Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.
As both Keshav and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Keshav. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Keshav would be
nothing more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Keshav and

EXHIBIT C-16

Plaintiff’s Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Keshav with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the

EXHIBIT C-16

Plaintiff’s Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Keshav and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Keshav. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Keshav would be nothing more than the predictable use of
prior art elements according to their established functions.

EXHIBIT C-16

Plaintiff’s Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Keshav and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Keshav to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Keshav with the fundamental concept of dynamically determining
the maximum number of expired records to remove in an accessed linked list
of records to solve a number of potential problems. For example, the removal
of expired records described in Keshavcan be burdensome on the system,
adding to the system’s load and slowing down the system’s processing.
Moreover, the removal could also force an interruption in real-time processing
as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT C-16

Plaintiff’s Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, Keshav discloses a method for
storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring. Keshav also discloses a method for storing and retrieving
information records using a hashing technique to provide access to the records
and using an external chaining technique to store the records with same hash
address, at least some of the records automatically expiring.

For example,

“The algorithm is implemented at the server that schedules packets on the
output trunk of a router or switch in a store-and-forward network.” Keshav at
2.

“Buffering Alternatives
We considered four buffering schemes: an ordered linked list (LINK), a binary
tree (TREE), a double heap (HEAP), and a combination of per-conversation
queuing and heaps (PERC). We expect that the reader is familiar with details
of the list, tree and heap data structures. They are also described in standard
texts such as References [10, 11].

Ordered List
Tag values usually increase with time, since bid numbers are strictly
monotonic within each conversation. This suggests that packets should be
buffered in a ordered linked list, inserting incoming packets by linearly
scanning from the largest tag value.” Keshav at 8.

EXHIBIT C-16

Plaintiff’s Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
“If all the buffers are full, the server drops the packet with the largest bid
number (unlike the algorithm in Reference [1], this buffer allocation policy
accounts for differences in packet lengths). The abstract data structure
required for packet buffering is a bounded heap. A bounded heap is named by
its root, and contains a set of packets that are tagged by their bid number.”
Keshav at 7.

“The conversation ID is used to access a data structure for storing state. Since
IDs could span large address spaces, the standard solution is to hash the ID
onto a index, and the technology for this is well known [9]. Recently, a simple
and efficient hashing scheme that ignores hash collections has been proposed
[5]. In this approach, some conversations could share the same state, leading
to unfair service, since these conversations are served first-come-first-served.
However, this is attenuated by occasionally perturbing the hash function.”
Keshav at 5.

“Assume for the moment that data from each source destination pair (a
conversation) can be distinguished, and is stored in a logically distinct per-
conversation queue.” Keshav at 2.

“The choice of the conversation ID depends on the entity to whom fair service
is granted (see the discussion in Reference [1]), and the naming space of the
network. For example, if the unit is a transport connection in the IP Internet,
one such unique identifier is the tuple (source address, destination address,
source port number, destination port number, protocol type).” Keshav at 4.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Keshav discloses accessing a linked list of records. Keshav also discloses
accessing a linked list of records having same hash address.

EXHIBIT C-16

Plaintiff’s Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
For example,

“Assume for the moment that data from each source destination pair (a
conversation) can be distinguished, and is stored in a logically distinct per-
conversation queue.” Keshav at 2.

“The choice of the conversation ID depends on the entity to whom fair service
is granted (see the discussion in Reference [1]), and the naming space of the
network. For example, if the unit is a transport connection in the IP Internet,
one such unique identifier is the tuple (source address, destination address,
source port number, destination port number, protocol type).” Keshav at 4.

The conversation ID is used as hash key to get to the conversation data records
(i.e. having the same hash address). See page 5, line 9:

“The conversation ID is used to access a data structure for storing state. Since
IDs could span large address spaces, the standard solution is to hash the ID
onto a index, and the technology for this is well known [9]. Recently, a simple
and efficient hashing scheme that ignores hash collections has been proposed
[5]. In this approach, some conversations could share the same state, leading
to unfair service, since these conversations are served first-come-first-served.
However, this is attenuated by occasionally perturbing the hash function.”
Keshav at 5.

“Buffering Alternatives
We considered four buffering schemes: an ordered linked list (LINK), a binary
tree (TREE), a double heap (HEAP), and a combination of per-conversation
queuing and heaps (PERC). We expect that the reader is familiar with details
of the list, tree and heap data structures. They are also described in standard

EXHIBIT C-16

Plaintiff’s Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
texts such as References [10, 11].

Ordered List
Tag values usually increase with time, since bid numbers are strictly
monotonic within each conversation. This suggests that packets should be
buffered in a ordered linked list, inserting incoming packets by linearly
scanning from the largest tag value.” Keshav at 8.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Keshav discloses identifying at least some of the automatically expired ones of
the records. Keshav also discloses identifying at least some of the
automatically expired ones of the records.

For example,

“insert () first places an item in the bounded heap. While the heap size exceeds
MAX, it repeatedly discards the item with the largest tag value. We insert an
item before removing the largest item since the inserted packet itself may be
deleted, and it is easier to handle this case if the item is already in the heap. To
allow this, we always keep enough free [s]pace in the buffer to accommodate a
maximum sized packet.” Keshav at 7.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Keshav discloses removing at least some of the automatically expired records
from the linked list when the linked list is accessed. Keshav also discloses
removing at least some of the automatically expired records from the linked
list when the linked list is accessed.

For example,

“The abstract data structure required for packet buffering is a bounded heap. A
bounded heap is named by its root, and contains a set of packets that are tagged
by their bid number. It is associated with two operations, insert (root, item,

EXHIBIT C-16

Plaintiff’s Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
conversation_ID) and get_min(root), and a parameter, MAX, which is the
maximum size of the heap.

“insert () first places an item in the bounded heap. While the heap size exceeds
MAX, it repeatedly discards the item with the largest tag value. We insert an
item before removing the largest item since the inserted packet itself may be
deleted, and it is easier to handle this case if the item is already in the heap. To
allow this, we always keep enough free space in the buffer to accommodate a
maximum sized packet.” Keshav at 7.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

Keshav discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

“insert () first places an item in the bounded heap. While the heap size exceeds
MAX, it repeatedly discards the item with the largest tag value. We insert an
item before removing the largest item since the inserted packet itself may be
deleted, and it is easier to handle this case if the item is already in the heap. To
allow this, we always keep enough free apace in the buffer to accommodate a
maximum sized packet get_min () returns a pointer to the item with the
smallest tag value and deletes.” Keshav at 7.

EXHIBIT C-16

Plaintiff’s Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

Keshav discloses dynamically determining maximum number of expired ones
of the records to remove when the linked list is accessed.

For example,

“insert () first places an item in the bounded heap. While the heap size exceeds
MAX, it repeatedly discards the item with the largest tag value. We insert an
item before removing the largest item since the inserted packet itself may be
deleted, and it is easier to hand this case if the item is already in the heap. To
allow this, we always keep enough free [s]pace in the buffer to accommodate a
maximum sized packet, get_min () returns a pointer to the item with the
smallest tag value and deletes it.” Keshav at 7.

It would have been obvious to one of ordinary skill in the art to modify the
system disclosed in Keshav to dynamically determine the maximum number of
expired records to remove in the accessed linked list of records. It is a
fundamental concept in computer science and the relevant art that any variable
or parameter affecting any aspect of a system can be dynamically determined
based on information available to the system. One of ordinary skill in the art
would have been motivated to combine the system disclosed in Keshav with
the fundamental concept of dynamically determining the maximum number of
expired records to remove in an accessed linked list of records to solve a
number of potential problems. For example, the removal of expired records
described in Keshav can be burdensome on the system, adding to the system’s
load and slowing down the system’s processing. Moreover, the removal could
also force an interruption in real-time processing as the processing waits for
the removal to complete. Indeed, part of the motivation for the system
disclosed in Keshav is avoiding these problems. One of ordinary skill in the
art would have known that dynamically determining the maximum number to

EXHIBIT C-16

Plaintiff’s Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
remove would limit the burden on the system and bound the length of any real-
time interruption to prevent delays in processing. Indeed, Nemes concedes that
such dynamic determination was obvious when he states in the ‘120 patent that
“[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one.” ‘120 at 7:10-15.

Keshav combined with Dirks, Thatte, the ’663 patent, and/or the Opportunistic
Garbage Collection Articles discloses dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in the
chart of Dirks, which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries

EXHIBIT C-16

Plaintiff’s Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of

EXHIBIT C-16

Plaintiff’s Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Keshav and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as that described Keshav. Moreover, one of ordinary
skill in the art would recognize that it would improve similar systems and
methods in the same way. As the ’120 patent states “[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining Dirks’ deletion decision procedure with Keshav would be
nothing more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Keshav and would

EXHIBIT C-16

Plaintiff’s Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Keshav with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. Thatte,
discloses a system and method using hash tables and/or linked lists and further
discloses means for dynamically determining the maximum number for the
record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Keshav with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Keshav
with Thatte and recognized the benefits of doing so. For example, the removal
of expired records described in Keshavcan be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Keshav with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will

EXHIBIT C-16

Plaintiff’s Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Keshav with Thatte.

Alternatively, it would also be obvious to combine Keshav with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-

EXHIBIT C-16

Plaintiff’s Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

Id. at Figure 5.

EXHIBIT C-16

Plaintiff’s Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Keshav and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as Keshav. Moreover, one of ordinary skill in the art would recognize
that it would improve similar systems and methods in the same way. As the
’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663

EXHIBIT C-16

Plaintiff’s Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
patent’s deletion decision procedure with Keshav would be nothing more than
the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Keshav and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Keshav with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide

EXHIBIT C-16

Plaintiff’s Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Keshav and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Keshav. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT C-16

Plaintiff’s Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Keshav would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Keshav and would
have seen the benefits of doing so. One such benefit, for example, is that the
system would only perform deletions when the system was not already too
overloaded, thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Keshav to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Keshav with the fundamental concept of dynamically determining
the maximum number of expired records to remove in an accessed linked list
of records to solve a number of potential problems. For example, the removal
of expired records described in Keshav can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing.
Moreover, the removal could also force an interruption in real-time processing
as the processing waits for the removal to complete.

EXHIBIT C-16

Plaintiff’s Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

Sirinivasan Keshav, On the Efficient Implementation of Fair Queueing,
Journal of Internetworking: Research and Experience, 1991 (“Keshav”)

alone and in combination

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

EXHIBIT C-16

Plaintiff’s Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

EXHIBIT C-17

Plaintiff’s Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Varghese and Lauck discloses an
information storage and retrieval system. See, e.g., George Varghese and Tony
Lauck, Hashed and Hierarchical Timing Wheels: Data Structures for the
Efficient Implementation of a Timer Facility, ACM SIGOPS OPERATING
SYSTEMS REVIEW, Vol. 21, Issue 5, p. 25-38 (November 1987) (hereinafter
“Varghese and Lauck”) at p. 25-27, 29-31, and Figs. 8-9.

“The previous scheme has an obvious analogy to inserting an element in an
array using the element value as an index. If there is insufficient memory we
can hash the element value to yield an index.” See Varghese and Lauck at p.
30.

“For example, if the table size is a power of 2, an arbitrary size timer can easily
be divided by the table size; the remainder (low order bits) is added to the
current time pointer to yield the index within the array. The result of the
division (high order bits) is stored in a list pointed to by the index.” See
Varghese and Lauck at p. 30.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Varghese and Lauck discloses a linked list to store and provide access to
records stored in a memory of the system, at least some of the records
automatically expiring.
Varghese and Lauck also discloses a hashing means to provide access to
records stored in a memory of the system and using an external chaining
technique to store the records with same hash address, at least some of the
records automatically expiring. See, e.g., Varghese and Lauck at p. 25-27,
29-31, and Figs. 8-9.

“6.1.1 Scheme 5: Hash Table with Sorted Lists in each Bucket” See Varghese
and Lauck at p. 30.

EXHIBIT C-17

Plaintiff’s Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

“6.1.2 Scheme 6: Hash Table with Unsorted Lists in each Bucket” See
Varghese and Lauck at p. 30.

“For example, if the table size is a power of 2, an arbitrary size timer can easily
be divided by the table size; the remainder (low order bits) is added to the
current time pointer to yield the index within the array. The result of the
division (high order bits) is stored in a list pointed to by the index.” See
Varghese and Lauck at p. 30.

“The previous scheme has an obvious analogy to inserting an element in an
array using the element value as an index. If there is insufficient memory we
can hash the element value to yield an index.” See Varghese and Lauck at p.
30.

“PER_TICK_BOOKKEEPING increments the current time pointer. If the
value stored in the array element being pointed to is zero, there is no more
work. Otherwise, as in Scheme 2, the top of the list is decremented. If it
expires, EXPIRY_PROCESSING is called and the top list element is deleted.”
See Varghese and Lauck at p. 30.

“Thus the hash distribution in Scheme 6 only controls the “burstiness”
(variance) of the latency of PER_TICK_BOOKEEPING, and not the average
latency. Since the worst-case latency of PER_TICK_BOOKEEPING is
always O(n) (all timers expire at the same time), we believe that the choice of
hash function for Scheme 6 is insignificant.” See Varghese and Lauck at p. 31.

EXHIBIT C-17

Plaintiff’s Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

Varghese and Lauck discloses a record search means utilizing a search key to
access the linked list. Varghese and Lauck also discloses a record search
means utilizing a search key to access a linked list of records having the same
hash address. See, e.g., Varghese and Lauck at p. 25-27, 29-31, and Figs. 8-9.

“6.1.1 Scheme 5: Hash Table with Sorted Lists in each Bucket” See Varghese
and Lauck at p. 30.

“6.1.2 Scheme 6: Hash Table with Unsorted Lists in each Bucket” See
Varghese and Lauck at p. 30.

“For example, if the table size is a power of 2, an arbitrary size timer can easily
be divided by the table size; the remainder (low order bits) is added to the
current time pointer to yield the index within the array. The result of the
division (high order bits) is stored in a list pointed to by the index.” See
Varghese and Lauck at p. 30.

“The previous scheme has an obvious analogy to inserting an element in an
array using the element value as an index. If there is insufficient memory we
can hash the element value to yield an index.” See Varghese and Lauck at p.
30.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when

Varghese and Lauck discloses the record search means including a means
for identifying and removing at least some of the expired ones of the records
from the linked list when the linked list is accessed. Varghese and Lauck
also discloses the record search means including means for identifying and
removing at least some expired ones of the records from the linked list of
records when the linked list is accessed. See, e.g., Varghese and Lauck at p.

EXHIBIT C-17

Plaintiff’s Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

when the linked list is
accessed, and

the linked list is accessed,
and

25-27, 29-31, and Figs. 8-9.

“6.1.1 Scheme 5: Hash Table with Sorted Lists in each Bucket” See Varghese
and Lauck at p. 30.

“6.1.2 Scheme 6: Hash Table with Unsorted Lists in each Bucket” See
Varghese and Lauck at p. 30.

“For example, if the table size is a power of 2, an arbitrary size timer can easily
be divided by the table size; the remainder (low order bits) is added to the
current time pointer to yield the index within the array. The result of the
division (high order bits) is stored in a list pointed to by the index.” See
Varghese and Lauck at p. 30.

“The previous scheme has an obvious analogy to inserting an element in an
array using the element value as an index. If there is insufficient memory we
can hash the element value to yield an index.” See Varghese and Lauck at p.
30.

“PER_TICK_BOOKKEEPING increments the current time pointer. If the
value stored in the array element being pointed to is zero, there is no more
work. Otherwise, as in Scheme 2, the top of the list is decremented. If it
expires, EXPIRY_PROCESSING is called and the top list element is deleted.”
See Varghese and Lauck at p. 30.

“Thus the hash distribution in Scheme 6 only controls the “burstiness”
(variance) of the latency of PER_TICK_BOOKEEPING, and not the average
latency. Since the worst-case latency of PER_TICK_BOOKEEPING is

EXHIBIT C-17

Plaintiff’s Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

always O(n) (all timers expire at the same time), we believe that the choice of
hash function for Scheme 6 is insignificant.” See Varghese and Lauck at p. 31.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

Varghese and Lauck discloses means, utilizing the record search means, for
accessing the linked list and, at the same time, removing at least some of the
expired ones of the records in the linked list. Varghese and Lauck also
discloses utilizing the record search means, for inserting, retrieving, and
deleting records from the system and, at the same time, removing at least
some expired ones of the records in the accessed linked list of records. See,
e.g., Varghese and Lauck at p. 25-27, 29-31, and Figs. 8-9.

“6.1.1 Scheme 5: Hash Table with Sorted Lists in each Bucket” See Varghese
and Lauck at p. 30.

“6.1.2 Scheme 6: Hash Table with Unsorted Lists in each Bucket” See
Varghese and Lauck at p. 30.

“For example, if the table size is a power of 2, an arbitrary size timer can easily
be divided by the table size; the remainder (low order bits) is added to the
current time pointer to yield the index within the array. The result of the
division (high order bits) is stored in a list pointed to by the index.” See
Varghese and Lauck at p. 30.

“The previous scheme has an obvious analogy to inserting an element in an
array using the element value as an index. If there is insufficient memory we
can hash the element value to yield an index.” See Varghese and Lauck at p.
30.

EXHIBIT C-17

Plaintiff’s Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

“PER_TICK_BOOKKEEPING increments the current time pointer. If the
value stored in the array element being pointed to is zero, there is no more
work. Otherwise, as in Scheme 2, the top of the list is decremented. If it
expires, EXPIRY_PROCESSING is called and the top list element is deleted.”
See Varghese and Lauck at p. 30.

“Thus the hash distribution in Scheme 6 only controls the “burstiness”
(variance) of the latency of PER_TICK_BOOKEEPING, and not the average
latency. Since the worst-case latency of PER_TICK_BOOKEEPING is
always O(n) (all timers expire at the same time), we believe that the choice of
hash function for Scheme 6 is insignificant.” See Varghese and Lauck at p. 31.

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

Varghese and Lauck discloses an information storage and retrieval system
further including means for dynamically determining maximum number for
the record search means to remove in the accessed linked list of records.
See, e.g., Varghese and Lauck at p. 28.

“The simulation proceeds by processing the earliest event, which in turn may
schedule further events. The simulation continues until the event list is empty
or some condition (e.g. clock > MAX-SIMULATION-TIME} holds.” See,
Varghese and Lauck at p. 28.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Varghese and Lauck to dynamically determine
the maximum number of expired records to remove in the accessed linked list
of records. It is a fundamental concept in computer science and the relevant
art that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system

EXHIBIT C-17

Plaintiff’s Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

disclosed in Varghese and Lauck with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Varghese and Lauck can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. Moreover, the removal could also force an interruption in
real-time processing as the processing waits for the removal to complete.
Indeed, part of the motivation for the system disclosed in Varghese and Lauck
is avoiding these problems. One of ordinary skill in the art would have known
that dynamically determining the maximum number to remove would limit the
burden on the system and bound the length of any real-time interruption to
prevent delays in processing. Indeed, Nemes concedes that such dynamic
determination was obvious when he states in the ‘120 patent that “[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one.” ‘120 at
7:10-15.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records

To the extent the preamble is a limitation, Varghese and Lauck discloses a
method for storing and retrieving information records using a linked list to
store and provide access to the records, at least some of the records
automatically expiring. Varghese and Lauck also discloses a method for
storing and retrieving information records using a hashing technique to
provide access to the records and using an external chaining technique to
store the records with same hash address, at least some of the records
automatically expiring. See, e.g., Varghese and Lauck at p. 25-27, 29-31,
and Figs. 8-9.

EXHIBIT C-17

Plaintiff’s Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

automatically expiring, the
method comprising the
steps of:

“6.1.1 Scheme 5: Hash Table with Sorted Lists in each Bucket” See Varghese
and Lauck at p. 30.

“6.1.2 Scheme 6: Hash Table with Unsorted Lists in each Bucket” See
Varghese and Lauck at p. 30.

“For example, if the table size is a power of 2, an arbitrary size timer can easily
be divided by the table size; the remainder (low order bits) is added to the
current time pointer to yield the index within the array. The result of the
division (high order bits) is stored in a list pointed to by the index.” See
Varghese and Lauck at p. 30.

“The previous scheme has an obvious analogy to inserting an element in an
array using the element value as an index. If there is insufficient memory we
can hash the element value to yield an index.” See Varghese and Lauck at p.
30.

“PER_TICK_BOOKKEEPING increments the current time pointer. If the
value stored in the array element being pointed to is zero, there is no more
work. Otherwise, as in Scheme 2, the top of the list is decremented. If it
expires, EXPIRY_PROCESSING is called and the top list element is deleted.”
See Varghese and Lauck at p. 30.

“Thus the hash distribution in Scheme 6 only controls the “burstiness”
(variance) of the latency of PER_TICK_BOOKEEPING, and not the average
latency. Since the worst-case latency of PER_TICK_BOOKEEPING is
always O(n) (all timers expire at the same time), we believe that the choice of

EXHIBIT C-17

Plaintiff’s Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

hash function for Scheme 6 is insignificant.” See Varghese and Lauck at p. 31.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Varghese and Lauck discloses accessing a linked list of records. Varghese and
Lauck also discloses accessing a linked list of records having same hash
address. See, e.g., Varghese and Lauck at p. 29-31, and Figs. 8-9.

“6.1.1 Scheme 5: Hash Table with Sorted Lists in each Bucket” See Varghese
and Lauck at p. 30.

“6.1.2 Scheme 6: Hash Table with Unsorted Lists in each Bucket” See
Varghese and Lauck at p. 30.

“For example, if the table size is a power of 2, an arbitrary size timer can easily
be divided by the table size; the remainder (low order bits) is added to the
current time pointer to yield the index within the array. The result of the
division (high order bits) is stored in a list pointed to by the index.” See
Varghese and Lauck at p. 30.

“The previous scheme has an obvious analogy to inserting an element in an
array using the element value as an index. If there is insufficient memory we
can hash the element value to yield an index.” See Varghese and Lauck at p.
30.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Varghese and Lauck discloses identifying at least some of the automatically
expired ones of the records. See, e.g., Varghese and Lauck at p. 25-27, 29-
31, and Figs. 8-9.

“PER_TICK_BOOKKEEPING increments the current time pointer. If the
value stored in the array element being pointed to is zero, there is no more

EXHIBIT C-17

Plaintiff’s Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

work. Otherwise, as in Scheme 2, the top of the list is decremented. If it
expires, EXPIRY_PROCESSING is called and the top list element is deleted.”
See Varghese and Lauck at p. 30.

“Thus the hash distribution in Scheme 6 only controls the “burstiness”
(variance) of the latency of PER_TICK_BOOKEEPING, and not the average
latency. Since the worst-case latency of PER_TICK_BOOKEEPING is
always O(n) (all timers expire at the same time), we believe that the choice of
hash function for Scheme 6 is insignificant.” See Varghese and Lauck at p. 31.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Varghese and Lauck discloses removing at least some of the automatically
expired records from the linked list when the linked list is accessed. See,
e.g., Varghese and Lauck at p. 25-27, 29-31, and Figs. 8-9.

“PER_TICK_BOOKKEEPING increments the current time pointer. If the
value stored in the array element being pointed to is zero, there is no more
work. Otherwise, as in Scheme 2, the top of the list is decremented. If it
expires, EXPIRY_PROCESSING is called and the top list element is deleted.”
See Varghese and Lauck at p. 30.

“Thus the hash distribution in Scheme 6 only controls the “burstiness”
(variance) of the latency of PER_TICK_BOOKEEPING, and not the average
latency. Since the worst-case latency of PER_TICK_BOOKEEPING is
always O(n) (all timers expire at the same time), we believe that the choice of
hash function for Scheme 6 is insignificant. ” See Varghese and Lauck at p.
31.

 [7d] inserting, retrieving
or deleting one of the

Varghese and Lauck discloses inserting, retrieving or deleting one of the
records from the system following the step of removing. See, e.g., Varghese

EXHIBIT C-17

Plaintiff’s Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

records from the system
following the step of
removing.

and Lauck at p. 25-27, 29-31, and Figs. 8-9.

“PER_TICK_BOOKKEEPING increments the current time pointer. If the
value stored in the array element being pointed to is zero, there is no more
work. Otherwise, as in Scheme 2, the top of the list is decremented. If it
expires, EXPIRY_PROCESSING is called and the top list element is deleted.”
See Varghese and Lauck at p. 30.

“Thus the hash distribution in Scheme 6 only controls the “burstiness”
(variance) of the latency of PER_TICK_BOOKEEPING, and not the average
latency. Since the worst-case latency of PER_TICK_BOOKEEPING is
always O(n) (all timers expire at the same time), we believe that the choice of
hash function for Scheme 6 is insignificant. ” See Varghese and Lauck at p.
31.

It would be obvious to one of skill in the art to perform a known function such
as inserteing, retrieving, or deleting, following the step of calling
EXPIRY_PROCESSING to remove an element from the list.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

Varghese and Lauck discloses dynamically determining maximum number
of expired ones of the records to remove when the linked list is accessed.
See, e.g., Varghese and Lauck at p. 28.

“The simulation proceeds by processing the earliest event, which in turn may
schedule further events. The simulation continues until the event list is empty
or some condition (e.g. clock > MAX-SIMULATION-TIME} holds.” See,
Varghese and Lauck at p. 28.

Additionally, it would have been obvious to one of ordinary skill in the art to

EXHIBIT C-17

Plaintiff’s Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

George Varghese and Tony Lauck, Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer

Facility, ACM SIGOPS OPERATING SYSTEMS REVIEW, Vol. 21, Issue 5,
p. 25-38 (November 1987) (hereinafter “Varghese and Lauck”)

modify the system disclosed in Varghese and Lauck to dynamically determine
the maximum number of expired records to remove in the accessed linked list
of records. It is a fundamental concept in computer science and the relevant
art that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Varghese and Lauck with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Varghese and Lauck can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. Moreover, the removal could also force an interruption in
real-time processing as the processing waits for the removal to complete.
Indeed, part of the motivation for the system disclosed in Varghese and Lauck
is avoiding these problems. One of ordinary skill in the art would have known
that dynamically determining the maximum number to remove would limit the
burden on the system and bound the length of any real-time interruption to
prevent delays in processing. Indeed, Nemes concedes that such dynamic
determination was obvious when he states in the ‘120 patent that “[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one.” ‘120 at
7:10-15.

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Kruse discloses an information
storage and retrieval system.

For example, Kruse discloses “[w]hen writing a program, we have had to
decide on the maximum amount of memory that would be needed for our
arrays and set this aside in the declarations.” Kruse at 105.

Kruse also discloses “First, and array must be declared that will hold the hash
table. … To insert a record into the hash table, the hash function for the key is
first calculated. … To retrieve the record with a given key is entirely similar.”
Kruse at 200.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Kruse discloses a linked list to store and provide access to records stored in a
memory of the system, at least some of the records automatically expiring.
Kruse also discloses a hashing means to provide access to records stored in a
memory of the system and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring.

For example, Kruse discloses that “[t]he idea we use is that of a pointer. A
pointer, also called a link or a reference, is defined to be a variable that gives
the location of some other variable, typically of a record containing data that
we wish to use. If we use pointers to locate all the records in which we are
interested, then we need not be concerned about where the records themselves
are actually stored, since by using a pointer, we can let the computer system
itself locate the record when required.” Kruse at 105. Kruse also discloses
that the “idea of a linked list is, for every record in the list, to put a pointer into
the record giving the location of the next record in the list.” Kruse at 106.

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

Additionally, Kruse states that “when an item is no longer needed, its space
can be returned to the system, which can then assign it to another user.” Kruse
at 107. “If our program is one that continually sets up new nodes and disposes
of others, then we shall often find it necessary to set up our own procedures to
keep track of nodes that are no longer needed, and to reuse the space when new
nodes are later required.” Kruse at 117.

Moreover, Kruse discloses “[w]e have already decided to represent our sparse
array of cells as a hash table, but we have not yet decided between open
addressing and chaining. … Do we need to make deletions, and, if so, when?
We could keep track of all cells until the memory is full, and then delete those
that are not needed. But this would require rehashing the full array, which
would be slow and painful. With chaining we can easily dispose of cells as
soon as they are not needed, and thereby reduce the number of cells in the hash
table as much as possible.” Kruse at 216. Kruse also discloses, “[i]f we use
chaining, then we can add a cell to a list either by inserting the cell itself or a
pointer to it, rather than by inserting its coordinates as before. In this way we
can locate the cell directly with no need for any search.” … “For reasons both
of flexibility and time saving, therefore, let us decide to use dynamic memory
allocation, a chained hash table, and linked lists.” Kruse at 217.

Finally, Kruse discloses that “[i]n using a hash table, let the nature of the data
and the required operations help you decide between chaining and open
addressing. Chaining is generally preferable if deletions are required, if the
records are relatively large, or if overflow might be a problem.” Kruse at 223.

[1b] a record search means
utilizing a search key to

[5b] a record search means
utilizing a search key to

Kruse discloses a record search means utilizing a search key to access the
linked list. Kruse also discloses a record search means utilizing a search key to

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

access the linked list, access a linked list of
records having the same
hash address,

access a linked list of records having the same hash address.

For example, Kruse discloses “[t]he idea of a hash table (such as the one
shown in Figure 6.10) is to allow many of the different possible keys that
might occur to be mapped to the same location in an array under the action of
the index function.” Kruse at 199.

Kruse also discloses “[t]he task of the procedure is first to look in the hash
table for the cell with the given coordinates. If the search is successful, then
the procedure returns a pointer to the cell; otherwise, it must create a new cell,
assign it the given coordinates, initialize its other fields to the default values,
and put it in the hash table as well as return a pointer to it.” Kruse at 220-21.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

Kruse discloses the record search means including a means for identifying and
removing at least some of the expired ones of the records from the linked list
when the linked list is accessed. Kruse also discloses the record search means
including means for identifying and removing at least some expired ones of the
records from the linked list of records when the linked list is accessed.

For example, Kruse discloses “[t]he task of the procedure Vivify is to traverse
the list live, determine whether each cell on it satisfies the conditions to
become alive, and vivify it if so, else delete it from the list. The usual way to
facilitate deletion from a linked list is to keep two pointers in lock step, one
position apart, while traversing the list.” … “Let us take advantage of the
indirect linkage of our lists, and when we wish to delete an entry form the list,
let us leave the node in place, but set its entry field to nil. In this way, the node
will be flagged as empty when it is again encountered in the procedure
AddNeighbors.” Kruse at 219.

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

Kruse also discloses an exercise where the reader “rewrite(s) the procedure
Vivify to use two pointers in traversing the list live, and dispose of redundant
nodes when they are encountered. Also make the accompanying
simplifications in the procedures AddNeighbors and SubtractNeighbors.”
Kruse at 222.

By way of further example, one of ordinary skill in the art would have
combined linked lists as taught by this reference and one of ordinary skill in
the art to the system disclosed in the admitted prior and would have seen the
benefits of doing so. One such benefit, for example, is hash table collision
resolution.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

Kruse discloses means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. Kruse also discloses utilizing the record search
means, for inserting, retrieving, and deleting records from the system and, at
the same time, removing at least some expired ones of the records in the
accessed linked list of records.

For example, Kruse discloses “[t]he task of the procedure Vivify is to traverse
the list live, determine whether each cell on it satisfies the conditions to
become alive, and vivify it if so, else delete it from the list. The usual way to
facilitate deletion from a linked list is to keep two pointers in lock step, one
position apart, while traversing the list.” … “Let us take advantage of the
indirect linkage of our lists, and when we wish to delete an entry form the list,
let us leave the node in place, but set its entry field to nil. In this way, the node
will be flagged as empty when it is again encountered in the procedure

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

AddNeighbors.” Kruse at 219.

Kruse also discloses an exercise where the reader “rewrite(s) the procedure
Vivify to use two pointers in traversing the list live, and dispose of redundant
nodes when they are encountered. Also make the accompanying
simplifications in the procedures AddNeighbors and SubtractNeighbors.”
Kruse at 222.

Finally, Kruse discloses inserting and retrieving records from the system:

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

Kruse at 208.

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

By way of further example, one of ordinary skill in the art would have
combined linked lists as taught by this reference and one of ordinary skill in
the art to the system disclosed in the admitted prior and would have seen the
benefits of doing so. One such benefit, for example, is hash table collision
resolution.

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

Kruse discloses an information storage and retrieval system further including
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Kruse to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in Kruse
with the fundamental concept of dynamically determining the maximum
number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired
records described in Kruse can be burdensome on the system, adding to the
system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete. Indeed, part of the motivation
for the system disclosed in Kruse is avoiding these problems. One of ordinary
skill in the art would have known that dynamically determining the maximum
number to remove would limit the burden on the system and bound the length
of any real-time interruption to prevent delays in processing. Indeed, Nemes

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

concedes that such dynamic determination was obvious when he states in the
‘120 patent that “[a] person skilled in the art will appreciate that the technique
of removing all expired records while searching the linked list can be expanded
to include techniques whereby not necessarily all expired records are removed,
and that the decision regarding if and how many records to delete can be a
dynamic one.” ‘120 at 7:10-15.

Kruse combined with Dirks, Thatte, the ’663 patent and/or the Opportunistic
Garbage Collection Articles discloses an information storage and retrieval
system further including means for dynamically determining maximum
number for the record search means to remove in the accessed linked list of
records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Kruse and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as Kruse. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Kruse nothing more than
the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Kruse and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Kruse with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. Thatte,
discloses a system and method using hash tables and/or linked lists and further
discloses means for dynamically determining the maximum number for the
record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Kruse with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Kruse
with Thatte and recognize the benefits of doing so. For example, the removal
of expired records described in Kruse can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Kruse with the

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Kruse with Thatte.

Alternatively, it would also be obvious to combine Krusewith the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.
As both Kruse and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Kruse. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Kruse would be
nothing more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Kruse and would
have seen the benefits of doing so. One such benefit, for example, is that the
system would avoid performing deletions when the system load exceeded a
threshold.

Alternatively, it would also be obvious to combine Kruse with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Kruse and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Kruse. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Kruse would be nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Kruse and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Kruse to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in Kruse
with the fundamental concept of dynamically determining the maximum
number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired
records described in Krusecan be burdensome on the system, adding to the
system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

 Thus, the ’120 patent provides motivations to combine Kruse with Thatte,
Dirks, the '663 patent, and/or the Opportunistic Garbage Collection Articles in
addition to motivations within the text of Kruse, such as “[s]imilarly, when an
item is no longer needed, its space can be returned to the system, which can
then assign it to another user. In this way a program can start small and grow
only as necessary, so that when it is small, it can run more efficiently, and
when necessary, it can grow to the limits of the computer system.” Kruse at
107. Kruse further provides motivations within the text by posing the question
“[d]o we need to make deletions, and, if so, when? We could keep track of all
cells until the memory is full, and then delete those that are not needed.”
Kruse at 216.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records

To the extent the preamble is a limitation, Kruse discloses a method for storing
and retrieving information records using a linked list to store and provide
access to the records, at least some of the records automatically expiring.
Kruse also discloses a method for storing and retrieving information records
using a hashing technique to provide access to the records and using an
external chaining technique to store the records with same hash address, at
least some of the records automatically expiring.

For example, Kruse discloses “[w]hen writing a program, we have had to

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

automatically expiring, the
method comprising the
steps of:

decide on the maximum amount of memory that would be needed for our
arrays and set this aside in the declarations.” Kruse at 105.

Kruse also discloses “First, and array must be declared that will hold the hash
table. … To insert a record into the hash table, the hash function for the key is
first calculated. … To retrieve the record with a given key is entirely similar.”
Kruse at 200.

Furthermore, Kruse discloses that “[t]he idea we use is that of a pointer. A
pointer, also called a link or a reference, is defined to be a variable that gives
the location of some other variable, typically of a record containing data that
we wish to use. If we use pointers to locate all the records in which we are
interested, then we need not be concerned about where the records themselves
are actually stored, since by using a pointer, we can let the computer system
itself locate the record when required.” Kruse at 105. Kruse also discloses
that the “idea of a linked list is, for every record in the list, to put a pointer into
the record giving the location of the next record in the list.” Kruse at 106.

Additionally, Kruse states that “when an item is no longer needed, its space
can be returned to the system, which can then assign it to another user.” Kruse
at 107. “If our program is one that continually sets up new nodes and disposes
of others, then we shall often find it necessary to set up our own procedures to
keep track of nodes that are no longer needed, and to reuse the space when new
nodes are later required.” Kruse at 117.

Moreover, Kruse discloses “[w]e have already decided to represent our sparse
array of cells as a hash table, but we have not yet decided between open
addressing and chaining. … Do we need to make deletions, and, if so, when?

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

We could keep track of all cells until the memory is full, and then delete those
that are not needed. But this would require rehashing the full array, which
would be slow and painful. With chaining we can easily dispose of cells as
soon as they are not needed, and thereby reduce the number of cells in the hash
table as much as possible.” Kruse at 216. Kruse also discloses, “[i]f we use
chaining, then we can add a cell to a list either by inserting the cell itself or a
pointer to it, rather than by inserting its coordinates as before. In this way we
can locate the cell directly with no need for any search.” … “For reasons both
of flexibility and time saving, therefore, let us decide to use dynamic memory
allocation, a chained hash table, and linked lists.” Kruse at 217.

Finally, Kruse discloses that “[i]n using a hash table, let the nature of the data
and the required operations help you decide between chaining and open
addressing. Chaining is generally preferable if deletions are required, if the
records are relatively large, or if overflow might be a problem.” Kruse at 223.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Kruse discloses accessing a linked list of records. Kruse also discloses
accessing a linked list of records having same hash address.

For example, Kruse discloses “[t]he idea of a hash table (such as the one
shown in Figure 6.10) is to allow many of the different possible keys that
might occur to be mapped to the same location in an array under the action of
the index function.” Kruse at 199.

Kruse also discloses “[t]he task of the procedure is first to look in the hash
table for the cell with the given coordinates. If the search is successful, then
the procedure returns a pointer to the cell; otherwise, it must create a new cell,
assign it the given coordinates, initialize its other fields to the default values,
and put it in the hash table as well as return a pointer to it.” Kruse at 220-21.

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Kruse discloses identifying at least some of the automatically expired ones of
the records. Kruse also discloses identifying at least some of the automatically
expired ones of the records.

For example, Kruse discloses “[t]he task of the procedure Vivify is to traverse
the list live, determine whether each cell on it satisfies the conditions to
become alive, and vivify it if so, else delete it from the list. The usual way to
facilitate deletion from a linked list is to keep two pointers in lock step, one
position apart, while traversing the list.” … “Let us take advantage of the
indirect linkage of our lists, and when we wish to delete an entry form the list,
let us leave the node in place, but set its entry field to nil. In this way, the node
will be flagged as empty when it is again encountered in the procedure
AddNeighbors.” Kruse at 219.

Kruse also discloses an exercise where the reader “rewrite(s) the procedure
Vivify to use two pointers in traversing the list live, and dispose of redundant
nodes when they are encountered. Also make the accompanying
simplifications in the procedures AddNeighbors and SubtractNeighbors.”
Kruse at 222.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Kruse discloses removing at least some of the automatically expired records
from the linked list when the linked list is accessed. Kruse also discloses
removing at least some of the automatically expired records from the linked
list when the linked list is accessed.

For example, Kruse discloses “[t]he task of the procedure Vivify is to traverse
the list live, determine whether each cell on it satisfies the conditions to
become alive, and vivify it if so, else delete it from the list. The usual way to

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

facilitate deletion from a linked list is to keep two pointers in lock step, one
position apart, while traversing the list.” … “Let us take advantage of the
indirect linkage of our lists, and when we wish to delete an entry form the list,
let us leave the node in place, but set its entry field to nil. In this way, the node
will be flagged as empty when it is again encountered in the procedure
AddNeighbors.” Kruse at 219.

Kruse also discloses an exercise where the reader “rewrite(s) the procedure
Vivify to use two pointers in traversing the list live, and dispose of redundant
nodes when they are encountered. Also make the accompanying
simplifications in the procedures AddNeighbors and SubtractNeighbors.”
Kruse at 222.

By way of further example, one of ordinary skill in the art would have
combined linked lists as taught by this reference and one of ordinary skill in
the art to the system disclosed in the admitted prior and would have seen the
benefits of doing so. One such benefit, for example, is hash table collision
resolution.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

Kruse discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

For example, Kruse discloses “[t]he task of the procedure Vivify is to traverse
the list live, determine whether each cell on it satisfies the conditions to
become alive, and vivify it if so, else delete it from the list. The usual way to
facilitate deletion from a linked list is to keep two pointers in lock step, one

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

position apart, while traversing the list.” … “Let us take advantage of the
indirect linkage of our lists, and when we wish to delete an entry form the list,
let us leave the node in place, but set its entry field to nil. In this way, the node
will be flagged as empty when it is again encountered in the procedure
AddNeighbors.” Kruse at 219.

Kruse also discloses an exercise where the reader “rewrite(s) the procedure
Vivify to use two pointers in traversing the list live, and dispose of redundant
nodes when they are encountered. Also make the accompanying
simplifications in the procedures AddNeighbors and SubtractNeighbors.”
Kruse at 222.

Finally, Kruse discloses inserting and retrieving records from the system:

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

Kruse at 208.

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

By way of further example, one of ordinary skill in the art would have
combined linked lists as taught by this reference and one of ordinary skill in
the art to the system disclosed in the admitted prior and would have seen the
benefits of doing so. One such benefit, for example, is hash table collision
resolution.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

Kruse discloses dynamically determining maximum number of expired ones of
the records to remove when the linked list is accessed.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Kruse to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in Kruse
with the fundamental concept of dynamically determining the maximum
number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired
records described in Kruse can be burdensome on the system, adding to the
system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete. Indeed, part of the motivation
for the system disclosed in Kruse is avoiding these problems. One of ordinary
skill in the art would have known that dynamically determining the maximum
number to remove would limit the burden on the system and bound the length
of any real-time interruption to prevent delays in processing. Indeed, Nemes
concedes that such dynamic determination was obvious when he states in the

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

‘120 patent that “[a] person skilled in the art will appreciate that the technique
of removing all expired records while searching the linked list can be expanded
to include techniques whereby not necessarily all expired records are removed,
and that the decision regarding if and how many records to delete can be a
dynamic one.” ‘120 at 7:10-15.

Kruse combined with Dirks, Thatte, the ’663 patent, and/or the Opportunistic
Garbage Collection Articles discloses dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in the
chart of Dirks, which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Kruse and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as that described Kruse. Moreover, one of ordinary skill
in the art would recognize that it would improve similar systems and methods
in the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Kruse would be nothing
more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Kruse and would have

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Kruse with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. Thatte,
discloses a system and method using hash tables and/or linked lists and further
discloses means for dynamically determining the maximum number for the
record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Kruse with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Kruse
with Thatte and recognized the benefits of doing so. For example, the removal
of expired records described in Krusecan be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Kruse with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Kruse with Thatte.

Alternatively, it would also be obvious to combine Kruse with the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Kruse and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as Kruse. Moreover, one of ordinary skill in the art would recognize that
it would improve similar systems and methods in the same way. As the ’120
patent states “[a] person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be expanded to
include techniques whereby not necessarily all expired records are removed,
and that the decision regarding if and how many records to delete can be a
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary skill
in the art would recognize that the result of combining the ’663 patent’s
deletion decision procedure with Kruse would be nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Kruse and would
have seen the benefits of doing so. One such benefit, for example, is that the
system would avoid performing deletions when the system load exceeded a
threshold.

Alternatively, it would also be obvious to combine Kruse with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Kruse and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Kruse. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Kruse would be nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Kruse and would
have seen the benefits of doing so. One such benefit, for example, is that the
system would only perform deletions when the system was not already too
overloaded, thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Kruse to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in Kruse
with the fundamental concept of dynamically determining the maximum
number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired
records described in Kruse can be burdensome on the system, adding to the
system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically

EXHIBIT C-18

Plaintiff’s Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1290296.1

Asserted Claims From
U.S. Pat. No. 5,893,120

Robert L. Kruse, Data Structures and Program Design, Prentice-Hall, Inc.
1984 and 1987 (“Kruse”) alone and in combination

determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

Thus, the ’120 patent provides motivations to combine Kruse with Thatte,
Dirks, the '663 patent, and/or the Opportunistic Garbage Collection Articles in
addition to motivations within the text of Kruse, such as “[s]imilarly, when an
item is no longer needed, its space can be returned to the system, which can
then assign it to another user. In this way a program can start small and grow
only as necessary, so that when it is small, it can run more efficiently, and
when necessary, it can grow to the limits of the computer system.” Kruse at
107. Kruse further provides motivations within the text by posing the question
“[d]o we need to make deletions, and, if so, when? We could keep track of all
cells until the memory is full, and then delete those that are not needed.”
Kruse at 216.

EXHIBIT C-19

Plaintiff’s Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1290023.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, Dixon and Calvert disclose an
information storage and retrieval system.

For example, Dixon and Calvert disclose a system for demultiplexing using a
hash table of linked lists:

“McKenney and Dove first introduced a demultiplexing algorithm that
combines software caching and multiple hash chains. The algorithm maintains
a linear list of PCBs for each of several hash chains. Each hash chain has an
associated cache that points to the last PCB found on that chain.” See Calvert
and Dixon at 6.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

Dixon and Calvert disclose a linked list to store and provide access to records
stored in a memory of the system, at least some of the records automatically
expiring.

Dixon and Calvert also disclose a hashing means to provide access to records
stored in a memory of the system and using an external chaining technique to
store the records with same hash address, at least some of the records
automatically expiring.

For example, Dixon and Calvert disclose a system for demultiplexing using a
hash table of linked lists:

“McKenney and Dove first introduced a demultiplexing algorithm that
combines software caching and multiple hash chains. The algorithm maintains
a linear list of PCBs for each of several hash chains. Each hash chain has an

EXHIBIT C-19

Plaintiff’s Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1290023.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

associated cache that points to the last PCB found on that chain.” See Calvert
and Dixon at 6.

“The next logical step in our investigation was to characterize the performance
gains obtained by dividing the conventional single TCP PCB list into multiple
shorter lists (hash chains) and use a single cache per hash chain to avoid
lookups.” See Calvert and Dixon at 13.

In addition, Dixon and Calvert disclose some of the records automatically

EXHIBIT C-19

Plaintiff’s Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1290023.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

expiring:

See, e.g., Dixon and Calvert at 8: “In addition, the TCP implementation of all
four servers had a maximum segment lifetime value of 60 seconds. We used
this same value in our simulations. This value is important because a TCP
connection remains in the PCB list for twice this length of time after it is
closed.”

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

Dixon and Calvert disclose a record search means utilizing a search key to
access the linked list. Dixon and Calvert also disclose a record search means
utilizing a search key to access a linked list of records having the same hash
address.

For example, Dixon and Calvert disclose using a hash key comprising
connection information is used in conjunction with a hash function to access
the appropriate hash chain:

“When the connection is first created, a hash function uses some part of the
connection’s information (e. g., IP address) to generate a hash value. The PCB
is then added to the hash chain that corresponds to the generated hash value.
Subsequently, the hash function will route any incoming packets destined for
that PCB to the appropriate hash chain. Note that the same hash key (i. e., same
connection information) must be present in the arriving packet in order to
assure proper routing.” See Dixon and Calvert at 6.

[1c] the record search
means including a means
for identifying and

[5c] the record search
means including means for
identifying and removing

Dixon and Calvert directly or inherently disclose the record search means
including a means for identifying and removing at least some of the expired
ones of the records from the linked list when the linked list is accessed. Dixon

EXHIBIT C-19

Plaintiff’s Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1290023.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

and Calvert also directly or inherently disclose the record search means
including means for identifying and removing at least some expired ones of the
records from the linked list of records when the linked list is accessed.

For example, Dixon and Calvert disclose a time a limit for a record remaining
in the list of PCBs:

“In addition, the TCP implementation of all four servers had a maximum
segment lifetime value of 60 seconds. We used this same value in our
simulations. This value is important because a TCP connection remains in the
PCB list for twice this length of time after it is closed.” See Dixon and Calvert
at 7.

The existence of a limit on the time a record remains in the list requires
removal at some point. Removal inherently requires the step of identification.
Furthermore, because removal of a record from a linked list requires updating
the links of other entries in the list, it inherently includes accessing the linked
list of records.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least

Dixon and Calvert directly or inherently disclose means, utilizing the record
search means, for accessing the linked list and, at the same time, removing at
least some of the expired ones of the records in the linked list. Dixon and
Calvert also directly or inherently disclose utilizing the record search means,
for inserting, retrieving, and deleting records from the system and, at the same
time, removing at least some expired ones of the records in the accessed linked

EXHIBIT C-19

Plaintiff’s Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1290023.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

records in the linked list. some expired ones of the
records in the accessed
linked list of records.

list of records.

For example, Dixon and Calvert disclose a system for demultiplexing using a
hash table of linked lists:

“McKenney and Dove first introduced a demultiplexing algorithm that
combines software caching and multiple hash chains. The algorithm maintains
a linear list of PCBs for each of several hash chains. Each hash chain has an
associated cache that points to the last PCB found on that chain. When the
connection is first created, a hash function uses some part of the connection’s
information (e. g., IP address) to generate a hash value. The PCB is then added
to the hash chain that corresponds to the generated hash value. Subsequently,
the hash function will route any incoming packets destined for that PCB to the
appropriate hash chain. Note that the same hash key (i. e., same connection
information) must be present in the arriving packet in order to assure proper
routing. The packet is assigned to its PCB via a BSD 4.3-Reno type search of
the list.” See Calvert and Dixon at 6.

As described in the citation above, Calvert and Dixon disclose a search
means—the combination of using a hash key and hash function to select a hash
bucket and a “BSD 4.3-Reno type search” of the linked list chained to the hash
bucket. As further disclosed in the citation above, insertion and retrieval when
a new packet incoming packets arrive utilize the search means.

In addition, Dixon and Calvert disclose some of the records automatically
expiring:

EXHIBIT C-19

Plaintiff’s Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1290023.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

See, e.g., Dixon and Calvert at 8: “In addition, the TCP implementation of all
four servers had a maximum segment lifetime value of 60 seconds. We used
this same value in our simulations. This value is important because a TCP
connection remains in the PCB list for twice this length of time after it is
closed.”

The existence of a limit on the time a record remains in the list requires
removal at some point. Furthermore, because removal of a record from a
linked list requires updating the links of other entries in the list, it inherently
includes accessing the linked list of records. Where the linked list is chained to
a hash table, accessing the item to remove inherently requires use of the search
means discussed above. Consequently, where a system maintains a list of
PCBs using a hash table with external chaining and where said system inserts,
retrieves and deletes using a record search means, then such a system is a
means for inserting, retrieving, and deleting records, that utilizes a record
search means and at the same time removes an expired entry from the system.

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed

Dixon and Calvert combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses an information storage
and retrieval system further including means for dynamically determining
maximum number for the record search means to remove in the accessed
linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,

EXHIBIT C-19

Plaintiff’s Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1290023.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

linked list of records. linked list of records. which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are

EXHIBIT C-19

Plaintiff’s Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1290023.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Dixon and Calvert and Dirks relate to deletion of aged records , one
of ordinary skill in the art would have understood how to use Dirks’ dynamic

EXHIBIT C-19

Plaintiff’s Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1290023.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

decision making process of determining the maximum number of records to
sweep/remove in other hash tables implementations such as Dixon and Calvert
. Moreover, one of ordinary skill in the art would recognize that it would
improve similar systems and methods in the same way. As the ’120 patent
states “[a] person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be expanded to
include techniques whereby not necessarily all expired records are removed,
and that the decision regarding if and how many records to delete can be a
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary skill
in the art would recognize that the result of combining Dirks’ deletion decision
procedure with Dixon and Calvert nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Dixon and Calvert and
would have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Dixon and Calvert with
the means for dynamically determining maximum number for the record
search means to remove in the accessed linked list of records disclosed by
Thatte. Thatte, discloses a system and method using hash tables and/or linked
lists and further discloses means for dynamically determining the maximum
number for the record search means to remove in the accessed linked list of
records. The disclosure of these claim elements in Thatte is clearly shown in

EXHIBIT C-19

Plaintiff’s Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1290023.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

the chart of Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Dixon and Calvert with Thatte would be nothing more
than the predictable use of prior art elements according to their established
functions. The resulting combination would include the capability to
determine the maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Dixon
and Calvert with Thatte and recognize the benefits of doing so. For example,
the removal of expired records described in Dixon and Calvert can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. One of ordinary skill in the art would recognize that
combining Dixon and Calvert with the teachings of Thatte would solve this
problem by dynamically determining how many records to delete based on,
among other things, the system load. Moreover, the '120 patent discloses that
"[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine
Dixon and Calvert with Thatte.

Alternatively, it would also be obvious to combine Dixon and Calvert with the
’663 patent. Disclosure of these claim elements in the ’663 patent is clearly

EXHIBIT C-19

Plaintiff’s Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1290023.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

shown in the chart of the ‘663 patent, which is hereby incorporated by
reference in its entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-19

Plaintiff’s Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1290023.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a

EXHIBIT C-19

Plaintiff’s Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1290023.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.
As both Dixon and Calvert and the ’663 patent relate to deletion of records
from hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in Dixon and Calvert. Moreover, one of ordinary skill in
the art would recognize that it would improve similar systems and methods in
the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Dixon and
Calvert would be nothing more than the predictable use of prior art elements
according to their established functions.

EXHIBIT C-19

Plaintiff’s Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1290023.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Dixon and
Calvert and would have seen the benefits of doing so. One such benefit, for
example, is that the system would avoid performing deletions when the system
load exceeded a threshold.

Alternatively, it would also be obvious to combine Dixon and Calvert with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more

EXHIBIT C-19

Plaintiff’s Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1290023.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Dixon and Calvert and the Opportunistic Garbage Collection Articles
relate to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as Dixon and Calvert. Moreover, one of ordinary
skill in the art would recognize that it would improve similar systems and
methods in the same way. As the ’120 patent states “[a] person skilled in the
art will appreciate that the technique of removing all expired records while

EXHIBIT C-19

Plaintiff’s Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1290023.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining the Opportunistic Garbage Collection Articles’ deletion
decision procedure with Dixon and Calvert would be nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Dixon and Calvert
and would have seen the benefits of doing so. One such benefit, for example,
is preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Dixon and Calvert to dynamically determine
the maximum number of expired records to remove in the accessed linked list
of records. It is a fundamental concept in computer science and the relevant
art that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Dixon and Calvert with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Dixon and Calvert can be
burdensome on the system, adding to the system’s load and slowing down the

EXHIBIT C-19

Plaintiff’s Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1290023.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

system’s processing. Moreover, the removal could also force an interruption in
real-time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, Dixon and Calvert disclose a method
for storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring. Dixon and Calvert also disclose a method for storing and retrieving
information records using a hashing technique to provide access to the records
and using an external chaining technique to store the records with same hash
address, at least some of the records automatically expiring.

For example, Dixon and Calvert disclose a system for demultiplexing using a
hash table of linked lists:

“McKenney and Dove first introduced a demultiplexing algorithm that
combines software caching and multiple hash chains. The algorithm maintains
a linear list of PCBs for each of several hash chains. Each hash chain has an

EXHIBIT C-19

Plaintiff’s Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1290023.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

associated cache that points to the last PCB found on that chain.” See Calvert
and Dixon at 6.

“The next logical step in our investigation was to characterize the performance
gains obtained by dividing the conventional single TCP PCB list into multiple
shorter lists (hash chains) and use a single cache per hash chain to avoid
lookups.” See Calvert and Dixon at 13.

In addition, Dixon and Calvert disclose some of the records automatically

EXHIBIT C-19

Plaintiff’s Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1290023.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

expiring:

See, e.g., Dixon and Calvert at 8: “In addition, the TCP implementation of all
four servers had a maximum segment lifetime value of 60 seconds. We used
this same value in our simulations. This value is important because a TCP
connection remains in the PCB list for twice this length of time after it is
closed.”

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

Dixon and Calvert disclose accessing a linked list of records. Dixon and
Calvert also disclose accessing a linked list of records having same hash
address.

For example, Dixon and Calvert disclose using a hash key comprising
connection information in conjunction with a hash function to access the
appropriate hash chain:

“When the connection is first created, a hash function uses some part of the
connection’s information (e. g., IP address) to generate a hash value. The PCB
is then added to the hash chain that corresponds to the generated hash value.
Subsequently, the hash function will route any incoming packets destined for
that PCB to the appropriate hash chain. Note that the same hash key (i. e., same
connection information) must be present in the arriving packet in order to
assure proper routing.” See Dixon and Calvert at 6.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

Dixon and Calvert directly or inherently disclose identifying at least some of
the automatically expired ones of the records.

For example, Dixon and Calvert disclose a time a limit for a record remaining

EXHIBIT C-19

Plaintiff’s Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1290023.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

in the list of PCBs:

“In addition, the TCP implementation of all four servers had a maximum
segment lifetime value of 60 seconds. We used this same value in our
simulations. This value is important because a TCP connection remains in the
PCB list for twice this length of time after it is closed.” See Dixon and Calvert
at 7.

The existence of a limit on the time a record remains in the list requires
removal at some point. Removal inherently requires the step of identifying
records to be removed.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

Dixon and Calvert directly or inherently disclose removing at least some of the
automatically expired records from the linked list when the linked list is
accessed.

For example, Dixon and Calvert disclose a time a limit for a record remaining
in the list of PCBs:

“In addition, the TCP implementation of all four servers had a maximum
segment lifetime value of 60 seconds. We used this same value in our
simulations. This value is important because a TCP connection remains in the
PCB list for twice this length of time after it is closed.” See Dixon and Calvert
at 7.

The existence of a limit on the time a record remains in the list requires
removal at some point. Removal inherently requires the step of identification.

EXHIBIT C-19

Plaintiff’s Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1290023.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

Furthermore, because removal of a record from a linked list requires updating
the links of other entries in the list, it inherently includes accessing the linked
list of records.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

Dixon and Calvert directly or inherently disclose inserting, retrieving or
deleting one of the records from the system following the step of removing.

For example, Dixon and Calvert disclose a system for demultiplexing using a
hash table of linked lists:

“McKenney and Dove first introduced a demultiplexing algorithm that
combines software caching and multiple hash chains. The algorithm maintains
a linear list of PCBs for each of several hash chains. Each hash chain has an
associated cache that points to the last PCB found on that chain. When the
connection is first created, a hash function uses some part of the connection’s
information (e. g., IP address) to generate a hash value. The PCB is then added
to the hash chain that corresponds to the generated hash value. Subsequently,
the hash function will route any incoming packets destined for that PCB to the
appropriate hash chain. Note that the same hash key (i. e., same connection
information) must be present in the arriving packet in order to assure proper
routing. The packet is assigned to its PCB via a BSD 4.3-Reno type search of
the list.” See Calvert and Dixon at 6.

As disclosed in the citation above, insertion and retrieval when a new packet
incoming packets arrive utilize the search means.

In addition, Dixon and Calvert disclose some of the records automatically

EXHIBIT C-19

Plaintiff’s Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1290023.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

expiring:

See, e.g., Dixon and Calvert at 8: “In addition, the TCP implementation of all
four servers had a maximum segment lifetime value of 60 seconds. We used
this same value in our simulations. This value is important because a TCP
connection remains in the PCB list for twice this length of time after it is
closed.”

The existence of a limit on the time a record remains in the list requires
removal. Furthermore, as mentioned above, Calvert and Dixon disclose using
a chained hash table in the context of demultiplexing. Demultiplexing is “the
process of decomposing” a packet stream, such as a TCP/IP packet stream, to
provide delivery to destination processes. See Calvert and Dixon at 2. A server
employing a system for demultiplexing, such as the system disclosed by
Calvert and Dixon, typically would receive a significant number of packets.
For example, in an experiment Calvert and Dixon observed millions of
incoming packets on four servers in under two hours. See Calvert and Dixon at
3-4, Table 3.1. As such, even with the use of a caching mechanism to avoid
having to perform a lookup into a PCB list for each incoming packet, it is
inherent that the disclosed system, after removing an expired entry from the
PCB list, will insert a new entry or retrieve an entry in response to subsequent
incoming packets.

4. The method according to
claim 3 further including

8. The method according
to claim 7 further including

Dixon and Calvert combined with Dirks, Thatte, the ’663 patent, and/or the
Opportunistic Garbage Collection Articles discloses dynamically determining

EXHIBIT C-19

Plaintiff’s Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1290023.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

maximum number of expired ones of the records to remove when the linked
list is accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in the
chart of Dirks, which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done

EXHIBIT C-19

Plaintiff’s Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1290023.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

EXHIBIT C-19

Plaintiff’s Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1290023.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Dixon and Calvert and Dirks relate to deletion of aged records, one of
ordinary skill in the art would have understood how to use Dirks’ dynamic
decision making process of determining the maximum number of records to
sweep/remove in other hash tables implementations such as that described
Dixon and Calvert. Moreover, one of ordinary skill in the art would recognize
that it would improve similar systems and methods in the same way. As the
’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining Dirks’
deletion decision procedure with Dixon and Calvert would be nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Dixon and Calvert and
would have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Dixon and Calvert with

EXHIBIT C-19

Plaintiff’s Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1290023.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

the means for dynamically determining maximum number for the record
search means to remove in the accessed linked list of records disclosed by
Thatte. Thatte, discloses a system and method using hash tables and/or linked
lists and further discloses means for dynamically determining the maximum
number for the record search means to remove in the accessed linked list of
records. The disclosure of these claim elements in Thatte is clearly shown in
the chart of Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Dixon and Calvert with Thatte would be nothing more
than the predictable use of prior art elements according to their established
functions. The resulting combination would include the capability to
determine the maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Dixon
and Calvert with Thatte and recognized the benefits of doing so. For example,
the removal of expired records described in Dixon and Calvertcan be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. One of ordinary skill in the art would recognize that
combining Dixon and Calvert with the teachings of Thatte would solve this
problem by dynamically determining how many records to delete based on,
among other things, the system load. Moreover, the '120 patent discloses that
"[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that

EXHIBIT C-19

Plaintiff’s Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1290023.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

the decision regarding if and how many records to delete can be a dynamic
one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine
Dixon and Calvert with Thatte.

Alternatively, it would also be obvious to combine Dixon and Calvert with the
’663 patent. Disclosure of these claim elements in the ’663 patent is clearly
shown in the chart of the ‘663 patent, which is hereby incorporated by
reference in its entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-

EXHIBIT C-19

Plaintiff’s Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1290023.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT C-19

Plaintiff’s Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1290023.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Dixon and Calvert and the ’663 patent relate to deletion of records
from hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as Dixon and Calvert. Moreover, one of ordinary skill in the art would
recognize that it would improve similar systems and methods in the same way.
As the ’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can

EXHIBIT C-19

Plaintiff’s Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1290023.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663
patent’s deletion decision procedure with Dixon and Calvert would be nothing
more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Dixon and
Calvert and would have seen the benefits of doing so. One such benefit, for
example, is that the system would avoid performing deletions when the system
load exceeded a threshold.

Alternatively, it would also be obvious to combine Dixon and Calvert with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to

EXHIBIT C-19

Plaintiff’s Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1290023.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Dixon and Calvert and the Opportunistic Garbage Collection Articles

EXHIBIT C-19

Plaintiff’s Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1290023.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

relate to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as Dixon and Calvert. Moreover, one of ordinary
skill in the art would recognize that it would improve similar systems and
methods in the same way. As the ’120 patent states “[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining the Opportunistic Garbage Collection Articles’ deletion
decision procedure with Dixon and Calvert would be nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Dixon and Calvert
and would have seen the benefits of doing so. One such benefit, for example,
is that the system would only perform deletions when the system was not
already too overloaded, thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Dixon and Calvert to dynamically determine
the maximum number of expired records to remove in the accessed linked list
of records. It is a fundamental concept in computer science and the relevant

EXHIBIT C-19

Plaintiff’s Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1290023.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Joseph T. Dixon and Kenneth Calvert, Increasing Demultiplexing
Efficiency in TCP/IP Network Servers (1996) (hereinafter “Dixon and

Calvert”)

art that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Dixon and Calvert with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Dixon and Calvert can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. Moreover, the removal could also force an interruption in
real-time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

EXHIBIT D-1

Plaintiff’s Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1292279.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, LINUX 1.3.52 discloses an
information storage and retrieval system.

For example, LINUX 1.3.52 includes the ip_rt_hash_table global variable,
which is an information storage and retrieval system.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

LINUX 1.3.52 discloses a linked list to store and provide access to records
stored in a memory of the system, at least some of the records automatically
expiring. LINUX 1.3.52 also discloses a hashing means to provide access to
records stored in a memory of the system and using an external chaining
technique to store the records with same hash address, at least some of the
records automatically expiring.

For example, LINUX 1.3.52 includes the ip_rt_hash_table global variable,
which is composed of an array of pointers to struct rtables. See line 144.
Each struct rtable contains an rt_next field, which is a pointer to another
struct rtable. See /include/net/route.h, line 124. Accordingly, struct
rtable defines (among other things) a linked list. As suggested by its name,
the ip_rt_hash_table global variable uses a hashing means to provide access
to its stored linked lists. The access is described below; the hash address itself
is computed at lines 1109 and 1467, which call the function
ip_rt_hash_code.

The records in the system LINUX 1.3.52 discloses includes records, at least
some of which automatically expire.

struct rtable also includes the rt_lastuse field, which is used to
determine whether the record has automatically expired. See

EXHIBIT D-1

Plaintiff’s Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1292279.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
/include/net/route.h, line 131 and analysis below.

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

LINUX 1.3.52 discloses a record search means utilizing a search key to access
the linked list. LINUX 1.3.52 also discloses a record search means utilizing a
search key to access a linked list of records having the same hash address.

For example, as detailed in part [1a/5a], the ip_rt_hash_table global
variable contains an array of linked lists of type struct rtable.

As suggested by its name, the ip_rt_hash_table global variable is accessed
using a search key. Specifically, the function rt_cache_add uses the search
key hash to access the linked list at the “hash” index of the
ip_rt_hash_table array. See lines 1415 and 1426.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

LINUX 1.3.52 discloses the record search means including a means for
identifying and removing at least some of the expired ones of the records from
the linked list when the linked list is accessed.

For example, as detailed in step [1b/5b], the function rt_cache_add accesses a
linked list within the ip_rt_hash_table global variable at line 1415, and
appends a new record to the front of the linked list at line 1426. As detailed in
the comment at line 1432, rt_cache_add then iterates through the same
linked list to remove aged off or “automatically expired” entries. Specifically,
line 1439 determines whether the record has expired, line 1442 removes the
expired record from the linked list, and line 1448 deletes the expired record

EXHIBIT D-1

Plaintiff’s Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1292279.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
from memory.

Thus, the linked list at ip_rt_hash_table[hash] is accessed at lines 1415
through 1427, when the rt_cache_add method adds the new record to the
front of the linked list, and from lines 1435 through 1453, when the
rt_cache_add method iterates through the linked list looking for duplicate and
expired entries.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

LINUX 1.3.52 discloses means, utilizing the record search means, for accessing
the linked list and, at the same time, removing at least some of the expired ones
of the records in the linked list. LINUX 1.3.52 also discloses means, utilizing
the record search means, for inserting, retrieving, and deleting records from the
system and, at the same time, removing at least some expired ones of the
records in the accessed linked list of records.

For example, rt_cache_add discloses a means for inserting a record into the
linked list stored at ip_rt_hash_table[hash] and, at the same time,
removing at least some of the records in that accessed linked list.

rt_cache_add also discloses a means for retrieving records from the linked
list. See, e.g., lines 1415, 1435.

rt_cache_add also discloses a means for deleting records from the linked list.
See, e.g., lines 1442, 1448. Further, the while loop of lines 1435 to 1453 is
checking for duplicate entries (deleting entries) at the same time that it is
checking for automatically expired entries. See lines 1439 and 1440.

EXHIBIT D-1

Plaintiff’s Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1292279.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

LINUX 1.3.52 combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses an information storage
and retrieval system further including means for dynamically determining
maximum number for the record search means to remove in the accessed
linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).

EXHIBIT D-1

Plaintiff’s Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1292279.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

EXHIBIT D-1

Plaintiff’s Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1292279.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both LINUX 1.3.52 and Dirks relate to deletion of aged records, one of
ordinary skill in the art would have understood how to use Dirks’ dynamic
decision making process of determining the maximum number of records to
sweep/remove in other hash tables implementations such as LINUX 1.3.52.
Moreover, one of ordinary skill in the art would recognize that it would
improve similar systems and methods in the same way. As the ’120 patent
states “[a] person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be expanded to
include techniques whereby not necessarily all expired records are removed,
and that the decision regarding if and how many records to delete can be a
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary skill
in the art would recognize that the result of combining Dirks’ deletion decision
procedure with LINUX 1.3.52 nothing more than the predictable use of prior art
elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with LINUX 1.3.52 and
would have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in LINUX 1.3.52 with the
means for dynamically determining maximum number for the record search

EXHIBIT D-1

Plaintiff’s Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1292279.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
means to remove in the accessed linked list of records disclosed by Thatte.
Thatte, discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining LINUX 1.3.52 with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine LINUX
1.3.52 with Thatte and recognize the benefits of doing so. For example, the
removal of expired records described in LINUX 1.3.52 can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
LINUX 1.3.52 with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine LINUX 1.3.52

EXHIBIT D-1

Plaintiff’s Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1292279.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
with Thatte.

Alternatively, it would also be obvious to combine LINUX 1.3.52 with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.

EXHIBIT D-1

Plaintiff’s Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1292279.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load

EXHIBIT D-1

Plaintiff’s Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1292279.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both LINUX 1.3.52 and the ’663 patent relate to deletion of records from
hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in LINUX 1.3.52. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of

EXHIBIT D-1

Plaintiff’s Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1292279.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
combining the ’663 patent’s deletion decision procedure with LINUX 1.3.52
would be nothing more than the predictable use of prior art elements according
to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with LINUX 1.3.52
and would have seen the benefits of doing so. One such benefit, for example,
is that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine LINUX 1.3.52 with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

EXHIBIT D-1

Plaintiff’s Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1292279.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both LINUX 1.3.52 and the Opportunistic Garbage Collection Articles relate
to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as LINUX 1.3.52. Moreover, one of ordinary skill
in the art would recognize that it would improve similar systems and methods
in the same way. As the ’120 patent states “[a] person skilled in the art will

EXHIBIT D-1

Plaintiff’s Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1292279.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with LINUX 1.3.52 would be nothing more than the predictable use
of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with LINUX 1.3.52 and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in LINUX 1.3.52 to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in LINUX 1.3.52 with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in LINUX 1.3.52 can be burdensome
on the system, adding to the system’s load and slowing down the system’s

EXHIBIT D-1

Plaintiff’s Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1292279.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, LINUX 1.3.52 discloses a method for
storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring. LINUX 1.3.52 also discloses a method for storing and retrieving
information records using a hashing technique to provide access to the records
and using an external chaining technique to store the records with same hash
address, at least some of the records automatically expiring.

For example, LINUX 1.3.52 includes the ip_rt_hash_table global variable,
which is composed of an array of pointers to struct rtables. See line 144.
Each struct rtable contains an rt_next field, which is a pointer to another
struct rtable. See /include/net/route.h, line 124. Accordingly, struct
rtable defines (among other things) a linked list.

EXHIBIT D-1

Plaintiff’s Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1292279.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
struct rtable also includes the rt_lastuse field, which is used to
determine whether the record has automatically expired. See
/include/net/route.h, line 131 and analysis below.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

LINUX 1.3.52 discloses accessing a linked list of records. Linux 1.3.52 also
discloses accessing a linked list of records having same hash address.

For example, the function rt_cache_add accesses the linked list at the “hash”
index of the ip_rt_hash_table array. See lines 1415 and 1426. In addition,
the linked list at ip_rt_hash_table[hash] is accessed from lines 1435
through 1453, when the rt_cache_add method iterates through the linked list.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

LINUX 1.3.52 discloses identifying at least some of the automatically expired
ones of the records.

For example, the function rt_cache_add accesses a linked list within the
ip_rt_hash_table global variable at line 1415, and appends a new record to
the front of the linked list at line 1426. As detailed in the comment at line
1432, rt_cache_add then iterates through the same linked list to remove aged
off or “automatically expired” entries. Specifically, the loop beginning at line
1435 iterates through the records in the previously-accessed linked list, and
line 1439 identifies whether a particular record has expired.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked

LINUX 1.3.52 discloses removing at least some of the automatically expired
records from the linked list when the linked list is accessed.

For example, the loop beginning at line 1435 iterates through the records in the

EXHIBIT D-1

Plaintiff’s Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1292279.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
list is accessed. list is accessed, and previously-accessed linked list, and line 1439 identifies whether a particular

record has expired. Line 1442 removes the expired record from the linked list,
and line 1448 deletes the expired record from memory.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

LINUX 1.3.52 discloses inserting, retrieving or deleting one of the records from
the system following the step of removing.

For example, the loop beginning at line 1435 iterates through the records in the
previously-accessed linked list, and line 1439 identifies whether a particular
record has expired. Line 1442 removes the expired record from the linked list,
and line 1448 deletes the expired record from memory. Further, the while
loop of lines 1435 to 1453 is checking for duplicate entries (deleting entries) at
the same time that it is checking for automatically expired entries. See lines
1439 and 1440. A duplicate entry may be deleted following the removal of at
least some of the automatically expired records from the linked list.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

LINUX 1.3.52 combined with Dirks, Thatte, the ’663 patent, and/or the
Opportunistic Garbage Collection Articles discloses dynamically determining
maximum number of expired ones of the records to remove when the linked
list is accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in the
chart of Dirks, which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

EXHIBIT D-1

Plaintiff’s Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1292279.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

EXHIBIT D-1

Plaintiff’s Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1292279.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both LINUX 1.3.52 and Dirks relate to deletion of aged records, one of
ordinary skill in the art would have understood how to use Dirks’ dynamic
decision making process of determining the maximum number of records to
sweep/remove in other hash tables implementations such as that described
LINUX 1.3.52. Moreover, one of ordinary skill in the art would recognize that
it would improve similar systems and methods in the same way. As the ’120
patent states “[a] person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be expanded to

EXHIBIT D-1

Plaintiff’s Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1292279.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
include techniques whereby not necessarily all expired records are removed,
and that the decision regarding if and how many records to delete can be a
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary skill
in the art would recognize that the result of combining Dirks’ deletion decision
procedure with LINUX 1.3.52 would be nothing more than the predictable use
of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with LINUX 1.3.52 and
would have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in LINUX 1.3.52 with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte.
Thatte, discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining LINUX 1.3.52 with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.

EXHIBIT D-1

Plaintiff’s Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1292279.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine LINUX
1.3.52 with Thatte and recognized the benefits of doing so. For example, the
removal of expired records described in LINUX 1.3.52 can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
LINUX 1.3.52 with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine LINUX 1.3.52
with Thatte.

Alternatively, it would also be obvious to combine LINUX 1.3.52 with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record

EXHIBIT D-1

Plaintiff’s Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1292279.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-1

Plaintiff’s Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1292279.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does

EXHIBIT D-1

Plaintiff’s Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1292279.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both LINUX 1.3.52 and the ’663 patent relate to deletion of records from
hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as LINUX 1.3.52. Moreover, one of ordinary skill in the art would
recognize that it would improve similar systems and methods in the same way.
As the ’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663
patent’s deletion decision procedure with LINUX 1.3.52 would be nothing more
than the predictable use of prior art elements according to their established
functions.

EXHIBIT D-1

Plaintiff’s Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1292279.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with LINUX 1.3.52
and would have seen the benefits of doing so. One such benefit, for example,
is that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine LINUX 1.3.52 with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a

EXHIBIT D-1

Plaintiff’s Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1292279.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both LINUX 1.3.52 and the Opportunistic Garbage Collection Articles relate
to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as LINUX 1.3.52. Moreover, one of ordinary skill
in the art would recognize that it would improve similar systems and methods
in the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.

EXHIBIT D-1

Plaintiff’s Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1292279.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with LINUX 1.3.52 would be nothing more than the predictable use
of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with LINUX 1.3.52 and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would only perform deletions when the system was not already
too overloaded, thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in LINUX 1.3.52 to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in LINUX 1.3.52 with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in LINUX 1.3.52 can be burdensome
on the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

EXHIBIT D-1

Plaintiff’s Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1292279.1

Asserted Claims From
U.S. Pat. No. 5,893,120

LINUX 1.3.52 net\ipv4\route.c, available at
http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.52.tar.gz (“LINUX

1.3.52”) alone and in combination
One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

EXHIBIT D-2

Plaintiff’s Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, if_ether.c discloses an
information storage and retrieval system.

For example, the implementation of the Address Resolution Protocol in
if_ether.c in BSD 4.2 includes an information storage and retrieval
system that stores and retrieves records used by the protocol.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

if_ether.c discloses a hash table (arptab) which resolves collisions
through arrays. See, e.g., lines 42-49. It would have been obvious to one of
ordinary skill in the art that arptab could resolve collisions with linked lists
rather than arrays, as both linked lists and arrays are fundamental data
structures used to store multiple data items. See below.

if_ether.c also discloses a hashing means to provide access to records
stored in a memory of the system and using an external chaining technique to
store the records with same hash address, at least some of the records
automatically expiring.

For example, the structure if_ether.c describes the use of a hash table,
arptab, with external chaining to resolve collisions. See, e.g., lines 42-49.
Though the external chaining involves the use of an array rather than a linked
list, it would have been obvious to a person skilled in the art that a linked list
could be used instead of an array. The use of linked lists for external chaining
in hash tables was well known in the art. Indeed, according to Knuth, “the
most obvious way to solve this problem [of collisions] is to maintain M linked
lists, one for each possible hash code.” See “The Art of Computer
Programming”, Sorting and Searching, D.E. Knuth, Addison-Wesley Series in
Computer Science and Information Processing, pp. 513, 1973. See also Mark
A. Weiss, Data Structures and Algorithm Analysis, p. 152-157, 1993 (using
linked lists to resolve collisions in external chaining but noting that any

EXHIBIT D-2

Plaintiff’s Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
scheme besides linked lists could be used). One of ordinary skill in the art
would have been motivated to try using “the most obvious” solution to external
chaining, linked lists, instead of the array taught in if_ether.c.

The records in the system if_ether.c discloses includes records, at least
some of which automatically expire.

For example, the arptab table in if_ether.c includes within each entry
an at_timer variable which keeps track of the minutes since the last
reference. That at_time variable is used to expire the entry when the time
since the last reference exceeds a given amount. See function arptimer(),
lines 126-130.

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

if_ether.c discloses a record search means utilizing a search key to access
an array. Similarly, if_ether.c discloses a record search means utilizing a
search key to access an array of records having the same hash address.

For example, the arptab structure in if_ether.c can be accessed with a
search key. That search key provides access to a series of entries within the
arptab structure that have the same hash address. See, e.g., function
arptnew(), lines 376-384. As discussed in [1a/5a], it would have been
obvious to one of ordinary skill in the art that a linked list could be used
instead of an array to resolve the collisions in arptab, in which case the
access in this element would occur on a linked list.

[1c] the record search
means including a means
for identifying and
removing at least some of

[5c] the record search
means including means for
identifying and removing
at least some expired ones

if_ether.c discloses the record search means including a means for
identifying and removing at least some of the expired ones of the records from
the linked list when the linked list is accessed.

EXHIBIT D-2

Plaintiff’s Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
the expired ones of the
records from the linked list
when the linked list is
accessed, and

of the records from the
linked list of records when
the linked list is accessed,
and

For example, the function arptimer() accesses the arptab structure and
removes all entries that have expired when that access occurs. The function
arptnew() also accesses the arptab structure in order to add an entry, and
if the structure is full, arptnew() removes the oldest entry in the table and
inserts the new entry in its place. Though this removal of expired records
occurs in an array, as discussed above in [1a/5a], it would have been obvious
to one of ordinary skill in the art that a linked list could be used to resolve
collisions in the hash table, in which case the removal taught in this element
would occur in the linked list.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

if_ether.c discloses means, utilizing the record search means, for
accessing an array and, at the same time, removing at least some of the expired
ones of the records in the array. if_ether.c also discloses means, utilizing
the record search means, for inserting, retrieving, and deleting records from the
system and, at the same time, removing at least some expired ones of the
records in the accessed array of records. As discussed in [1a/5a], it would have
been obvious to one of ordinary skill in the art that a linked list could be used
instead of an array.

For example, arptfree() utilizes the record search means to insert a new
entry in the arptab structure and, at the same time, remove one of the
expired records from the structure when the structure is full. It would have
been obvious to one skilled in the art that retrieval or deletion could have been
done as well as the insert, since these are all basic functions that can be
performed on a hash table. See, e.g., “The Art of Computer Programming”,
Sorting and Searching, D.E. Knuth, Addison-Wesley Series in Computer
Science and Information Processing, pp. 506-549; “Data Structures and
Program Design”, R.L. Kruse, Prentice-Hall, Inc. 1984, pp. 104-148.

Though these actions occur in an array, as discussed above in [1a/5a], it would

EXHIBIT D-2

Plaintiff’s Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
have been obvious to one of ordinary skill in the art that a linked list could be
used to resolve collisions in the hash table, in which case the actions taught in
this element would occur in the linked list.

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

if_ether.c discloses dynamically determining maximum number of
expired ones of the records to remove when the array is accessed.

For example, the function arptfree() only removes an expired element
when the arptab structure is full. In this way, the function dynamically
determines the maximum number of elements to remove by computing
whether to remove some or none of the expired elements.
Though these removals of expired records occur in an array, as discussed
above in [1a/5a], it would have been obvious to one of ordinary skill in the art
that a linked list could be used to resolve collisions in the hash table, in which
case the removals taught in this claim would occur in the linked list.

To the extent if_ether.c does not disclose this element, it would have
been obvious to one of ordinary skill in the art.

if_ether.c combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses an information storage
and retrieval system further including means for dynamically determining
maximum number for the record search means to remove in the accessed
linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

EXHIBIT D-2

Plaintiff’s Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

EXHIBIT D-2

Plaintiff’s Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both if_ether.c and Dirks relate to deletion of aged records, one of
ordinary skill in the art would have understood how to use Dirks’ dynamic
decision making process of determining the maximum number of records to
sweep/remove in other hash tables implementations such as if_ether.c.
Moreover, one of ordinary skill in the art would recognize that it would
improve similar systems and methods in the same way. As the ’120 patent
states “[a] person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be expanded to
include techniques whereby not necessarily all expired records are removed,
and that the decision regarding if and how many records to delete can be a

EXHIBIT D-2

Plaintiff’s Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary skill
in the art would recognize that the result of combining Dirks’ deletion decision
procedure with if_ether.c nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with if_ether.c and
would have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in if_ether.c with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte.
Thatte, discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining if_ether.c with Thatte would be nothing more than
the predictable use of prior art elements according to their established
functions. The resulting combination would include the capability to
determine the maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine

EXHIBIT D-2

Plaintiff’s Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
if_ether.c with Thatte and recognize the benefits of doing so. For
example, the removal of expired records described in if_ether.c can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. One of ordinary skill in the art would recognize that
combining if_ether.c with the teachings of Thatte would solve this
problem by dynamically determining how many records to delete based on,
among other things, the system load. Moreover, the '120 patent discloses that
"[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine
if_ether.c with Thatte.

Alternatively, it would also be obvious to combine if_ether.cwith the
’663 patent. Disclosure of these claim elements in the ’663 patent is clearly
shown in the chart of the ‘663 patent, which is hereby incorporated by
reference in its entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply

EXHIBIT D-2

Plaintiff’s Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-2

Plaintiff’s Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

EXHIBIT D-2

Plaintiff’s Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both if_ether.c and the ’663 patent relate to deletion of records from
hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in if_ether.c. Moreover, one of ordinary skill in
the art would recognize that it would improve similar systems and methods in
the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with if_ether.c
would be nothing more than the predictable use of prior art elements according
to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with if_ether.c
and would have seen the benefits of doing so. One such benefit, for example,
is that the system would avoid performing deletions when the system load

EXHIBIT D-2

Plaintiff’s Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
exceeded a threshold.

Alternatively, it would also be obvious to combine if_ether.c with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the

EXHIBIT D-2

Plaintiff’s Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both if_ether.c and the Opportunistic Garbage Collection Articles
relate to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as if_ether.c. Moreover, one of ordinary skill
in the art would recognize that it would improve similar systems and methods
in the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with if_ether.c would be nothing more than the predictable use
of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with if_ether.c and

EXHIBIT D-2

Plaintiff’s Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in if_ether.c to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in if_ether.c with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in if_ether.c can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. Moreover, the removal could also force an interruption in
real-time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

3. A method for storing 7. A method for storing To the extent the preamble is a limitation, if_ether.c discloses a method

EXHIBIT D-2

Plaintiff’s Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

for storing and retrieving information records using a chain of records to store
and provide access to the records, at least some of the records automatically
expiring. if_ether.c also discloses a method for storing and retrieving
information records using a hashing technique to provide access to the records
and using an external chaining technique to store the records with same hash
address, at least some of the records automatically expiring.

For example, the arptab structure defined in if_ether.c is a hash table
that uses external chaining with arrays to resolve collisions between entries
with the same hash address. As discussed in [1a/5a], it would have been
obvious to one of ordinary skill in the art that a linked list could have been
utilized instead of an array to resolve collisions.

The records in the system if_ether.c discloses includes records, at least
some of which automatically expire.

For example, the arptab table in if_ether.c includes within each entry
an at_timer variable which keeps track of the minutes since the last
reference. That at_time variable is used to expire the entry when the time
since the last reference exceeds a given amount. See function arptimer(),
lines 126-130.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

if_ether.c discloses accessing an array of records. Similarly,
if_ether.c discloses accessing an array of records having the same hash
address. As discussed in [1b/5b], it would have been obvious to one or
ordinary skill in the art that the access could occur in a linked list rather than
an array.

For example, both the arptimer() and arptnew() functions in

EXHIBIT D-2

Plaintiff’s Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
if_ether.c access the array that stores records having the same hash
address. See lines 123-32, 376-84.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

if_ether.c discloses identifying at least some of the automatically expired
ones of the records.

For example, arptimer() identifies whether any of the entries in arptab
have expired on lines 126-29. The function arptnew() identifies
automatically expired records on lines 380-83.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

if_ether.c discloses removing at least some of the automatically expired
records from the array when the array is accessed. As discussed in [1c/5c], it
would have been obvious to one of ordinary skill in the art that the same step
could be performed on a linked list where the records were stored in a linked
list.

For example, the function arptimer() accesses the arptab structure and
removes all entries that have expired when that access occurs. The function
arptnew() also accesses the arptab structure in order to add an entry, and
if the structure is full, arptnew() identifies an expired entry in the table and
removes the entry by calling the function arptfree(). Lines 385-86.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

if_ether.c discloses inserting, retrieving or deleting one of the records
from the system following the step of removing.

For example, function arptnew() inserts a new entry into the arptab
structure after the expired element is removed. Lines 388-89.

4. The method according to
claim 3 further including
the step of dynamically

8. The method according
to claim 7 further including
the step of dynamically

if_ether.c discloses dynamically determining maximum number of
expired ones of the records to remove when the array is accessed.

EXHIBIT D-2

Plaintiff’s Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

For example, the function arptfree() only removes an expired element
when the arptab structure is full. In this way, the function dynamically
determines the maximum number of elements to remove by computing
whether to remove some or none of the expired elements.
Though these removals of expired records occur in an array, as discussed
above in [1a/5a], it would have been obvious to one of ordinary skill in the art
that a linked list could be used to resolve collisions in the hash table, in which
case the removals taught in this claim would occur in the linked list.

To the extent if_ether.c does not disclose this element, it would have
been obvious to one of ordinary skill in the art.

if_ether.c combined with Dirks, Thatte, the ’663 patent, and/or the
Opportunistic Garbage Collection Articles discloses dynamically determining
maximum number of expired ones of the records to remove when the linked
list is accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in the
chart of Dirks, which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have

EXHIBIT D-2

Plaintiff’s Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

EXHIBIT D-2

Plaintiff’s Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both if_ether.c and Dirks relate to deletion of aged records, one of
ordinary skill in the art would have understood how to use Dirks’ dynamic
decision making process of determining the maximum number of records to
sweep/remove in other hash tables implementations such as that described
if_ether.c. Moreover, one of ordinary skill in the art would recognize that
it would improve similar systems and methods in the same way. As the ’120
patent states “[a] person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be expanded to
include techniques whereby not necessarily all expired records are removed,
and that the decision regarding if and how many records to delete can be a
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary skill
in the art would recognize that the result of combining Dirks’ deletion decision
procedure with if_ether.c would be nothing more than the predictable use
of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with if_ether.c and
would have seen the benefits of doing so. One possible benefit, for example, is

EXHIBIT D-2

Plaintiff’s Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
saving the system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in if_ether.c with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte.
Thatte, discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining if_ether.c with Thatte would be nothing more than
the predictable use of prior art elements according to their established
functions. The resulting combination would include the capability to
determine the maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine
if_ether.c with Thatte and recognized the benefits of doing so. For
example, the removal of expired records described in if_ether.c can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. One of ordinary skill in the art would recognize that
combining if_ether.c with the teachings of Thatte would solve this
problem by dynamically determining how many records to delete based on,
among other things, the system load. Moreover, the '120 patent discloses that
"[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include

EXHIBIT D-2

Plaintiff’s Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine
if_ether.c with Thatte.

Alternatively, it would also be obvious to combine if_ether.c with the
’663 patent. Disclosure of these claim elements in the ’663 patent is clearly
shown in the chart of the ‘663 patent, which is hereby incorporated by
reference in its entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.

EXHIBIT D-2

Plaintiff’s Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a

EXHIBIT D-2

Plaintiff’s Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both if_ether.c and the ’663 patent relate to deletion of records from
hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as if_ether.c. Moreover, one of ordinary skill in the art would
recognize that it would improve similar systems and methods in the same way.
As the ’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663
patent’s deletion decision procedure with if_ether.c would be nothing
more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have

EXHIBIT D-2

Plaintiff’s Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with if_ether.c
and would have seen the benefits of doing so. One such benefit, for example,
is that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine if_ether.c with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume

EXHIBIT D-2

Plaintiff’s Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both if_ether.c and the Opportunistic Garbage Collection Articles
relate to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as if_ether.c. Moreover, one of ordinary skill
in the art would recognize that it would improve similar systems and methods
in the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with if_ether.c would be nothing more than the predictable use
of prior art elements according to their established functions.

EXHIBIT D-2

Plaintiff’s Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with if_ether.c and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would only perform deletions when the system was not already
too overloaded, thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in if_ether.c to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in if_ether.c with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in if_ether.c can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. Moreover, the removal could also force an interruption in
real-time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT D-2

Plaintiff’s Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

BSD 4.2 netinet/if_ether.c, available at
http://ftp.math.utah.edu/pub/mirrors/minnie.tuhs.org/4BSD/Distributions

/4.2BSD/srcsys.tar.gz (“if_ether.c”) alone and in combination
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

EXHIBIT D-3

Plaintiff’s Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, vfs_cache.c discloses an
information storage and retrieval system.

For example, the implementation of the name cache in vfs_cache.c in
FreeBSD includes an information storage and retrieval system that stores and
retrieves names found by directory scans.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

vfs_cache.c discloses a linked list to store and provide access to records
stored in a memory of the system, at least some of the records automatically
expiring. vfs_cache.c also discloses a hashing means to provide access to
records stored in a memory of the system and using an external chaining
technique to store the records with same hash address, at least some of the
records automatically expiring.

For example, vfs_cache.c describes the use of a hash table, nchashtbl,
with external chaining using linked lists to resolve collisions. See lines 75-84.

The records in the system vfs_cache.c discloses includes records, at least
some of which automatically expire. See, e.g., lines 51-69, 214-226.

For example, vfs_cache.c maintains a list of least recently used entries in
the hash table in the structure nclruhead. Line 76. An entry automatically
expires when (1) it is the least recently used entry, (2) the function
cache_enter() tries to insert another entry into nchashtbl and (3)
nchashtbl is already full. See lines 51-69, 214-226.

[1b] a record search means
utilizing a search key to

[5b] a record search means
utilizing a search key to

vfs_cache.c discloses a record search means utilizing a search key to
access the linked list. vfs_cache.c also discloses a record search means

EXHIBIT D-3

Plaintiff’s Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
access the linked list, access a linked list of

records having the same
hash address,

utilizing a search key to access a linked list of records having the same hash
address.

For example, the function cache_enter() utilizes a search key to access a
linked list of records having the same hash address. See lines 193-246.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

vfs_cache.c discloses the record search means including a means for
identifying and removing at least some of the expired ones of the records from
the linked list when the linked list is accessed.

For example, the function cache_enter() accesses the nchashtbl
structure and identifies an expired entry, which it removes from the linked list
of records when it adds another entry to the hash table. See lines 214-245.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

vfs_cache.c discloses means, utilizing the record search means, for
accessing the linked list and, at the same time, removing at least some of the
expired ones of the records in the linked list. vfs_cache.c also discloses
means, utilizing the record search means, for inserting records from the system
and, at the same time, removing at least some expired ones of the records in the
accessed linked list of records.

For example, the function cache_enter() accesses the nchashtbl
structure and identifies an expired entry, which it removes from the linked list
of records when it adds another entry to the hash table. See lines 193-245.

To the extent cache_enter() does not include means for retrieving and
deleting records utilizing the record search means, it would have been obvious
to one skilled in the art that retrieval or deletion could have been done as well
as the insert, since these are all basic functions that can be performed on a hash

EXHIBIT D-3

Plaintiff’s Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
table or a linked list in similar ways. See, e.g., “The Art of Computer
Programming”, Sorting and Searching, D.E. Knuth, Addison-Wesley Series in
Computer Science and Information Processing, pp. 506-549; “Data Structures
and Program Design”, R.L. Kruse, Prentice-Hall, Inc. 1984, pp. 104-148.

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

vfs_cache.c discloses dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed.

For example, the function cache_enter() only removes an expired
element when the arptab structure is full. In this way, the function
dynamically determines the maximum number of elements to remove by
computing whether to remove some or none of the expired elements. See lines
193-245.

To the extent vfs_cache.c does not disclose this element, it would have
been obvious to one of ordinary skill in the art.

vfs_cache.c combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses an information storage
and retrieval system further including means for dynamically determining
maximum number for the record search means to remove in the accessed
linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

EXHIBIT D-3

Plaintiff’s Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

EXHIBIT D-3

Plaintiff’s Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both vfs_cache.c and Dirks relate to deletion of aged records, one of
ordinary skill in the art would have understood how to use Dirks’ dynamic
decision making process of determining the maximum number of records to
sweep/remove in other hash tables implementations such as vfs_cache.c.
Moreover, one of ordinary skill in the art would recognize that it would
improve similar systems and methods in the same way. As the ’120 patent
states “[a] person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be expanded to
include techniques whereby not necessarily all expired records are removed,

EXHIBIT D-3

Plaintiff’s Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
and that the decision regarding if and how many records to delete can be a
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary skill
in the art would recognize that the result of combining Dirks’ deletion decision
procedure with vfs_cache.c nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with vfs_cache.c and
would have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in vfs_cache.c with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte.
Thatte, discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining vfs_cache.c with Thatte would be nothing more than
the predictable use of prior art elements according to their established
functions. The resulting combination would include the capability to
determine the maximum number for the record search means to remove.

EXHIBIT D-3

Plaintiff’s Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination

Further, one of ordinary skill in the art would be motivated to combine
vfs_cache.c with Thatte and recognize the benefits of doing so. For
example, the removal of expired records described in vfs_cache.c can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. One of ordinary skill in the art would recognize that
combining vfs_cache.c with the teachings of Thatte would solve this
problem by dynamically determining how many records to delete based on,
among other things, the system load. Moreover, the '120 patent discloses that
"[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine
vfs_cache.c with Thatte.

Alternatively, it would also be obvious to combine vfs_cache.cwith the
’663 patent. Disclosure of these claim elements in the ’663 patent is clearly
shown in the chart of the ‘663 patent, which is hereby incorporated by
reference in its entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent

EXHIBIT D-3

Plaintiff’s Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-3

Plaintiff’s Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-

EXHIBIT D-3

Plaintiff’s Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both vfs_cache.c and the ’663 patent relate to deletion of records from
hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in vfs_cache.c. Moreover, one of ordinary skill in
the art would recognize that it would improve similar systems and methods in
the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with vfs_cache.c
would be nothing more than the predictable use of prior art elements according
to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with vfs_cache.c

EXHIBIT D-3

Plaintiff’s Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
and would have seen the benefits of doing so. One such benefit, for example,
is that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine vfs_cache.c with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the

EXHIBIT D-3

Plaintiff’s Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both vfs_cache.c and the Opportunistic Garbage Collection Articles
relate to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as vfs_cache.c. Moreover, one of ordinary
skill in the art would recognize that it would improve similar systems and
methods in the same way. As the ’120 patent states “[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining the Opportunistic Garbage Collection Articles’ deletion
decision procedure with vfs_cache.c would be nothing more than the
predictable use of prior art elements according to their established functions.

EXHIBIT D-3

Plaintiff’s Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with vfs_cache.c
and would have seen the benefits of doing so. One such benefit, for example,
is preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in vfs_cache.c to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in vfs_cache.c with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in vfs_cache.c can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. Moreover, the removal could also force an interruption in
real-time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT D-3

Plaintiff’s Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, vfs_cache.c discloses a method
for storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring. vfs_cache.c also discloses a method for storing and retrieving
information records using a hashing technique to provide access to the records
and using an external chaining technique to store the records with same hash
address, at least some of the records automatically expiring.

For example, vfs_cache.c describes the use of a hash table, nchashtbl,
with external chaining using linked lists to resolve collisions. See lines 75-84.

The records in the system vfs_cache.c discloses includes records, at least
some of which automatically expire. See, e.g., lines 51-69, 214-226.

For example, vfs_cache.c maintains a list of least recently used entries in
the hash table in the structure nclruhead. Line 76. An entry automatically
expires when (1) it is the least recently used entry, (2) the function
cache_enter() tries to insert another entry into nchashtbl and (3)
nchashtbl is already full. See, lines 51-69, 214-226.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

vfs_cache.c discloses accessing the linked list of records. vfs_cache.c
also discloses accessing a linked list of records having same hash address

For example, the cache_enter()function in vfs_cache.c accesses the
linked list that stores records having the same hash address. See lines 193-245.

EXHIBIT D-3

Plaintiff’s Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

vfs_cache.c discloses identifying at least some of the automatically
expired ones of the records.

For example, the function cache_enter() accesses the nchashtbl
structure and identifies an expired entry. See lines 193-245.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

vfs_cache.c discloses removing at least some of the automatically expired
records from the linked list when the linked list is accessed.

For example, the function cache_enter()removes the previously identified
expired record from the linked list of records when it adds another entry to the
hash table. See lines 193-245.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

vfs_cache.c discloses inserting, retrieving or deleting one of the records
from the system following the step of removing.

For example, function cache_enter() inserts a new entry into the
nchashtbl structure after the expired element is removed. See lines 236-45.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

vfs_cache.c discloses dynamically determining maximum number of
expired ones of the records to remove when the linked list is accessed.

For example, the function cache_enter() only removes an expired
element when the arptab structure is full. In this way, the function
dynamically determines the maximum number of elements to remove. See
lines 193-245.

To the extent vfs_cache.c does not disclose this element, it would have
been obvious to one of ordinary skill in the art.

EXHIBIT D-3

Plaintiff’s Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination

vfs_cache.c combined with Dirks, Thatte, the ’663 patent, and/or the
Opportunistic Garbage Collection Articles discloses dynamically determining
maximum number of expired ones of the records to remove when the linked
list is accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in the
chart of Dirks, which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a

EXHIBIT D-3

Plaintiff’s Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of

EXHIBIT D-3

Plaintiff’s Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both vfs_cache.c and Dirks relate to deletion of aged records, one of
ordinary skill in the art would have understood how to use Dirks’ dynamic
decision making process of determining the maximum number of records to
sweep/remove in other hash tables implementations such as that described
vfs_cache.c. Moreover, one of ordinary skill in the art would recognize
that it would improve similar systems and methods in the same way. As the
’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining Dirks’
deletion decision procedure with vfs_cache.c would be nothing more than
the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with vfs_cache.c and
would have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in vfs_cache.c with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte.
Thatte, discloses a system and method using hash tables and/or linked lists and

EXHIBIT D-3

Plaintiff’s Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining vfs_cache.c with Thatte would be nothing more than
the predictable use of prior art elements according to their established
functions. The resulting combination would include the capability to
determine the maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine
vfs_cache.c with Thatte and recognized the benefits of doing so. For
example, the removal of expired records described in vfs_cache.c can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. One of ordinary skill in the art would recognize that
combining vfs_cache.c with the teachings of Thatte would solve this
problem by dynamically determining how many records to delete based on,
among other things, the system load. Moreover, the '120 patent discloses that
"[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine
vfs_cache.c with Thatte.

Alternatively, it would also be obvious to combine vfs_cache.c with the

EXHIBIT D-3

Plaintiff’s Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
’663 patent. Disclosure of these claim elements in the ’663 patent is clearly
shown in the chart of the ‘663 patent, which is hereby incorporated by
reference in its entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-3

Plaintiff’s Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-

EXHIBIT D-3

Plaintiff’s Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both vfs_cache.c and the ’663 patent relate to deletion of records from
hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as vfs_cache.c. Moreover, one of ordinary skill in the art would
recognize that it would improve similar systems and methods in the same way.
As the ’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663
patent’s deletion decision procedure with vfs_cache.c would be nothing
more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with vfs_cache.c

EXHIBIT D-3

Plaintiff’s Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
and would have seen the benefits of doing so. One such benefit, for example,
is that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine vfs_cache.c with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the

EXHIBIT D-3

Plaintiff’s Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both vfs_cache.c and the Opportunistic Garbage Collection Articles
relate to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as vfs_cache.c. Moreover, one of ordinary
skill in the art would recognize that it would improve similar systems and
methods in the same way. As the ’120 patent states “[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining the Opportunistic Garbage Collection Articles’ deletion
decision procedure with vfs_cache.c would be nothing more than the
predictable use of prior art elements according to their established functions.

EXHIBIT D-3

Plaintiff’s Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with vfs_cache.c
and would have seen the benefits of doing so. One such benefit, for example,
is that the system would only perform deletions when the system was not
already too overloaded, thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in vfs_cache.c to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in vfs_cache.c with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in vfs_cache.c can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. Moreover, the removal could also force an interruption in
real-time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching

EXHIBIT D-3

Plaintiff’s Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD sys/kernel/vfs_cache.c v. 1.17, available at
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/sys/kern/vfs_cache.
c?rev=1.18;content-type=text%2Fplain (“vfs_cache.c”) alone and in

combination
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

EXHIBIT D-4

Plaintiff’s Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, arp.c discloses an information
storage and retrieval system.

For example, in arp.c, discloses a hash table of linked lists of automatically
expiring data. See, arp.c from FreeBSD (1994) (hereinafter “arp.c”) at Lines
360-448.

In arp.c, the “entry” data structure is a linked list *pentry = entry->next; /*
delete from linked list */
See arp.c at line 416.

See also, arp.c at Lines 360-448. See also, arp.c from Linux 1.1.20 (1994).

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

arp.c discloses a linked list to store and provide access to records stored in a
memory of the system, at least some of the records automatically expiring.
arp.c also discloses a hashing means to provide access to records stored in a
memory of the system and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring.

In arp.c, the “entry” data structure is a linked list *pentry = entry->next; /*
delete from linked list */
See arp.c at line 416.

arp.c includes a function that uses a hash to determine which linked to

traverse:
hash = HASH(entry >ip);
pentry = &arp_tables[hash];
while (_pentry != NULL){

EXHIBIT D-4

Plaintiff’s Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

if (_pentry == entry){
entry = entry >next; / delete from linked list */
del_timer(&entry >timer);
restore_flags(flags);
arp_release_entry(entry);
return;
420 }
pentry = &(_pentry) >next;
}

See, arp.c at Lines 195-210.

If the entry is not resolved within a specific amount of time, the entry (which is
a linked list element) is automatically freed (expired).

/*
 * This function is called, if an entry is not
resolved in ARP_RES_TIME.
 * Either resend a request, or give it up and
free the entry.
 */
See, arp.c at lines 361-362.

See also, arp.c at Lines 360-448. See also, arp.c from Linux 1.1.20 (1994).

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

arp.c discloses a record search means utilizing a search key to access the linked
list. arp.c also discloses a record search means utilizing a search key to access
a linked list of records having the same hash address.

arp.c includes a function that uses a hash to determine which linked to

traverse:

EXHIBIT D-4

Plaintiff’s Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

hash = HASH(entry >ip);
pentry = &arp_tables[hash];
while (_pentry != NULL){
if (_pentry == entry){
entry = entry >next; / delete from linked list */
del_timer(&entry >timer);
restore_flags(flags);
arp_release_entry(entry);
return;
420 }
pentry = &(_pentry) >next;
}

See, arp.c at Lines 195-210.

See also, arp.c at Lines 360-448. See also, arp.c from Linux 1.1.20 (1994).
[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

arp.c discloses the record search means including a means for identifying and
removing at least some of the expired ones of the records from the linked list
when the linked list is accessed. arp.c also discloses the record search means
including means for identifying and removing at least some expired ones of the
records from the linked list of records when the linked list is accessed

For example, arp.c deletes an entry that meets specified criteria:

while (*pentry != NULL)
 {
 if (*pentry == entry)
 {
 pentry = entry->next; /
delete from linked list */

EXHIBIT D-4

Plaintiff’s Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

 del_timer(&entry->timer);
 restore_flags(flags);
 arp_release_entry(entry);
 arp_cache_stamp++;
 return;
 }
 pentry = &(*pentry)->next;

 }
See, arp.c at Lines 195-210.

See also, arp.c at Lines 360-448. See also, arp.c from Linux 1.1.20 (1994).
[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

arp.c discloses means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. arp.c also discloses utilizing the record search
means, for inserting, retrieving, and deleting records from the system and, at
the same time, removing at least some expired ones of the records in the
accessed linked list of records.

For example, arp.c includes a function that uses a hash to determine which
linked to traverse:
hash = HASH(entry >ip);
pentry = &arp_tables[hash];
while (_pentry != NULL){
if (_pentry == entry){
entry = entry >next; / delete from linked list */
del_timer(&entry >timer);
restore_flags(flags);
arp_release_entry(entry);
return;
420 }

EXHIBIT D-4

Plaintiff’s Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

pentry = &(_pentry) >next;
}

See, arp.c at Lines 195-210.

arp.c also includes a function that deletes an entry that meets specified

criteria:

while (*pentry != NULL)
 {
 if (*pentry == entry)
 {
 pentry = entry->next; /
delete from linked list */
 del_timer(&entry->timer);
 restore_flags(flags);
 arp_release_entry(entry);
 arp_cache_stamp++;
 return;
 }
 pentry = &(*pentry)->next;

 }
See, arp.c at Lines 195-210.

Any code that calls this function would meet this limitation because it is
“utilizing the record search mean . . .”i.e., this function.

See also, arp.c at Lines 360-448. See also, arp.c from Linux 1.1.20 (1994).

2. The information storage 6. The information storage arp.c combined with Dirks, Thatte, the ’663 patent and/or the Opportunistic

EXHIBIT D-4

Plaintiff’s Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

Garbage Collection Articles discloses an information storage and retrieval
system further including means for dynamically determining maximum
number for the record search means to remove in the accessed linked list of
records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done

EXHIBIT D-4

Plaintiff’s Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

EXHIBIT D-4

Plaintiff’s Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

As both arp.c and Dirks relate to deletion of aged records, one of ordinary skill
in the art would have understood how to use Dirks’ dynamic decision making
process of determining the maximum number of records to sweep/remove in
other hash tables implementations such as arp.c. Moreover, one of ordinary
skill in the art would recognize that it would improve similar systems and
methods in the same way. As the ’120 patent states “[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining Dirks’ deletion decision procedure with arp.c nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with arp.c and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in arp.c with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. Thatte,
discloses a system and method using hash tables and/or linked lists and further
discloses means for dynamically determining the maximum number for the
record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of

EXHIBIT D-4

Plaintiff’s Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining arp.c with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine arp.c
with Thatte and recognize the benefits of doing so. For example, the removal
of expired records described in arp.c can be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining arp.c with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine arp.c with Thatte.

Alternatively, it would also be obvious to combine arp.cwith the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. As summarized in the ’663 patent:

EXHIBIT D-4

Plaintiff’s Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-4

Plaintiff’s Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-

EXHIBIT D-4

Plaintiff’s Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both arp.c and the ’663 patent relate to deletion of records from hash tables
using external chaining, one of ordinary skill in the art would understood how
to use the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load in other hash table implementations such as that
described in arp.c. Moreover, one of ordinary skill in the art would recognize
that it would improve similar systems and methods in the same way. As the
’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663
patent’s deletion decision procedure with arp.c would be nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with arp.c and would
have seen the benefits of doing so. One such benefit, for example, is that the

EXHIBIT D-4

Plaintiff’s Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

system would avoid performing deletions when the system load exceeded a
threshold.

Alternatively, it would also be obvious to combine arp.c with the Opportunistic
Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack

EXHIBIT D-4

Plaintiff’s Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both arp.c and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as arp.c. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with arp.c would be nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have

EXHIBIT D-4

Plaintiff’s Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with arp.c and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in arp.c to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in arp.c
with the fundamental concept of dynamically determining the maximum
number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired
records described in arp.ccan be burdensome on the system, adding to the
system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how

EXHIBIT D-4

Plaintiff’s Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

many records to delete can be a dynamic one.” ‘120 at 7:10-15.

See e.g., arp.c at Lines 360-448. See also, arp.c from Linux 1.1.20 (1994).

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, arp.c discloses a method for storing
and retrieving information records using a linked list to store and provide
access to the records, at least some of the records automatically expiring. arp.c
also discloses a method for storing and retrieving information records using a
hashing technique to provide access to the records and using an external
chaining technique to store the records with same hash address, at least some
of the records automatically expiring.

In arp.c, the “entry” data structure is a linked list *pentry = entry->next; /*
delete from linked list */
See arp.c at line 416.

arp.c includes a function that uses a hash to determine which linked to traverse:
hash = HASH(entry >ip);
pentry = &arp_tables[hash];
while (_pentry != NULL){
if (_pentry == entry){
entry = entry >next; / delete from linked list */
del_timer(&entry >timer);
restore_flags(flags);
arp_release_entry(entry);
return;
420 }
pentry = &(_pentry) >next;
}

EXHIBIT D-4

Plaintiff’s Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

If the entry is not resolved within a specific amount of time, the entry (which is
a linked list element) is automatically freed (expired).

/*
 * This function is called, if an entry is not
resolved in ARP_RES_TIME.
 * Either resend a request, or give it up and
free the entry.
 */
See, arp.c at lines 361-362.

See also, arp.c at Lines 360-448. See also, arp.c from Linux 1.1.20 (1994).

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

arp.c discloses accessing a linked list of records. arp.c also discloses accessing
a linked list of records having same hash address.

In arp.c, the “entry” data structure is a linked list *pentry = entry->next; /*
delete from linked list */
See arp.c at line 416.

See also, arp.c at Lines 360-448. See also, arp.c at Lines 360-448. See also,
arp.c from Linux 1.1.20 (1994).

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

arp.c discloses identifying at least some of the automatically expired ones of
the records.

For example, arp.c includes a function that uses a hash to determine which
linked to traverse:
hash = HASH(entry >ip);
pentry = &arp_tables[hash];
while (_pentry != NULL){

EXHIBIT D-4

Plaintiff’s Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

if (_pentry == entry){
entry = entry >next; / delete from linked list */
del_timer(&entry >timer);
restore_flags(flags);
arp_release_entry(entry);
return;
420 }
pentry = &(_pentry) >next;
}

See, arp.c at Lines 195-210.

See also, arp.c at Lines 360-448. See also, arp.c at Lines 360-448. See also,
arp.c from Linux 1.1.20 (1994).

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

arp.c discloses removing at least some of the automatically expired records
from the linked list when the linked list is accessed.

For example, arp. deletes an entry that meets specified criteria:

while (*pentry != NULL)
 {
 if (*pentry == entry)
 {
 pentry = entry->next; /
delete from linked list */
 del_timer(&entry->timer);
 restore_flags(flags);
 arp_release_entry(entry);
 arp_cache_stamp++;
 return;

EXHIBIT D-4

Plaintiff’s Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

 }
 pentry = &(*pentry)->next;

 }
See, arp.c at Lines 195-210.

See also, arp.c at Lines 360-448. See also, arp.c from Linux 1.1.20 (1994).
 [7d] inserting, retrieving

or deleting one of the
records from the system
following the step of
removing.

arp.c discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

For example, arp.c deletes an entry that meets specified criteria after arp.c
traverses the linked list searching for the record of that criteria:

while (*pentry != NULL)
 {
 if (*pentry == entry)
 {
 pentry = entry->next; /
delete from linked list */
 del_timer(&entry->timer);
 restore_flags(flags);
 arp_release_entry(entry);
 arp_cache_stamp++;
 return;
 }
 pentry = &(*pentry)->next;

 }
See, arp.c at Lines 195-210.

See also, arp.c at Lines 360-448. See also, arp.c from Linux 1.1.20 (1994).

EXHIBIT D-4

Plaintiff’s Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

arp.c combined with Dirks, Thatte, the ’663 patent, and/or the Opportunistic
Garbage Collection Articles discloses dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in the
chart of Dirks, which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done

EXHIBIT D-4

Plaintiff’s Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

EXHIBIT D-4

Plaintiff’s Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

As both arp.c and Dirks relate to deletion of aged records, one of ordinary skill
in the art would have understood how to use Dirks’ dynamic decision making
process of determining the maximum number of records to sweep/remove in
other hash tables implementations such as that described arp.c. Moreover, one
of ordinary skill in the art would recognize that it would improve similar
systems and methods in the same way. As the ’120 patent states “[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one.” The ’120
patent at 7:10-15. Additionally, one of ordinary skill in the art would
recognize that the result of combining Dirks’ deletion decision procedure with
arp.c would be nothing more than the predictable use of prior art elements
according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with arp.c and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in arp.c with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. Thatte,
discloses a system and method using hash tables and/or linked lists and further
discloses means for dynamically determining the maximum number for the
record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of

EXHIBIT D-4

Plaintiff’s Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining arp.c with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine arp.c
with Thatte and recognized the benefits of doing so. For example, the removal
of expired records described in arp.ccan be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining arp.c with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine arp.c with Thatte.

Alternatively, it would also be obvious to combine arp.c with the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. As summarized in the ’663 patent:

EXHIBIT D-4

Plaintiff’s Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-4

Plaintiff’s Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-

EXHIBIT D-4

Plaintiff’s Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both arp.c and the ’663 patent relate to deletion of records from hash tables
using external chaining, one of ordinary skill in the art would understood how
to use the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load in other hash table implementations such as arp.c.
Moreover, one of ordinary skill in the art would recognize that it would
improve similar systems and methods in the same way. As the ’120 patent
states “[a] person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be expanded to
include techniques whereby not necessarily all expired records are removed,
and that the decision regarding if and how many records to delete can be a
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary skill
in the art would recognize that the result of combining the ’663 patent’s
deletion decision procedure with arp.c would be nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with arp.c and would
have seen the benefits of doing so. One such benefit, for example, is that the

EXHIBIT D-4

Plaintiff’s Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

system would avoid performing deletions when the system load exceeded a
threshold.

Alternatively, it would also be obvious to combine arp.c with the Opportunistic
Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack

EXHIBIT D-4

Plaintiff’s Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both arp.c and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as arp.c. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with arp.c would be nothing more than the predictable use of prior
art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have

EXHIBIT D-4

Plaintiff’s Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with arp.c and would
have seen the benefits of doing so. One such benefit, for example, is that the
system would only perform deletions when the system was not already too
overloaded, thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in arp.c to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in arp.c
with the fundamental concept of dynamically determining the maximum
number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired
records described in arp.c can be burdensome on the system, adding to the
system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT D-4

Plaintiff’s Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

arp.c from FreeBSD (1994) (hereinafter “arp.c”), See also, arp.c from
Linux 1.1.20 (1994) alone and in combination

all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

See e.g., arp.c at Lines 360-448. See also, arp.c from Linux 1.1.20 (1994).

EXHIBIT D-5

Plaintiff’s Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, wavelan_cs.c discloses an
information storage and retrieval system.

For example, an information storage and retrieval system disclosed by
wavelan_cs.c is a linked list:
 /* Remove the interface data from the linked list
*/
 if(dev_list == link)
 dev_list = link->next;

See, wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) at
Lines 4630-4635. See also, wavelan_cs.c from Linux 2.4.26.

See also, wavelan_cs.c at Lines 4596-4678. See also, wavelan_cs.c from
Linux 2.4.26.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

wavelan_cs.c discloses a linked list to store and provide access to records
stored in a memory of the system, at least some of the records
automatically expiring. wavelan_cs.c also discloses a hashing means to
provide access to records stored in a memory of the system and using an
external chaining technique to store the records with same hash address, at
least some of the records automatically expiring.

For example, wavelan_cs.c includes a function that deletes an instance of a
driver from the linked list if the device is released. Thus, releasing the
device causes the device to automatically expire.

/*
 * This deletes a driver "instance". The device is

EXHIBIT D-5

Plaintiff’s Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

de-registered with
 * Card Services. If it has been released, all
local data structures
 * are freed. Otherwise, the structures will be
freed when the device
 * is released.
 */
See wavelan_cs.c at Lines 4595-4600.

The data structure is a linked list:
 /* Remove the interface data from the linked list
*/
 if(dev_list == link)
 dev_list = link->next;
See wavelan_cs.c at Lines 4630-4635.

See also, wavelan_cs.c at Lines 4596-4678. See also, wavelan_cs.c from
Linux 2.4.26.

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

wavelan_cs.c discloses a record search means utilizing a search key to access
the linked list. wavelan_cs.c also discloses a record search means utilizing a
search key to access a linked list of records having the same hash address.

For example, wavelan_cs.c includes functionality to use a pointer to traverse a
linked list.
/* Remove the interface data from the linked list */
 if(dev_list == link)
 dev_list = link->next;
 else
 {
 dev_link_t * prev = dev_list;

EXHIBIT D-5

Plaintiff’s Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

 while((prev != (dev_link_t *) NULL) && (prev-
>next != link))
 prev = prev->next;

 if(prev == (dev_link_t *) NULL)
 {
#ifdef DEBUG_CONFIG_ERRORS
 printk(KERN_WARNING "wavelan_detach :
Attempting to remove a nonexistent device.\n");
#endif
 return;
 }

 prev->next = link->next
See wavelan_cs.c at Lines 4632-4644.

See also, wavelan_cs.c at Lines 4596-4678. See also, wavelan_cs.c from
Linux 2.4.26.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

wavelan_cs.c discloses the record search means including a means for
identifying and removing at least some of the expired ones of the records from
the linked list when the linked list is accessed. wavelan_cs.c also discloses the
record search means including means for identifying and removing at least
some expired ones of the records from the linked list of records when the
linked list is accessed.

For example, wavelan_cs.c includes the functionality to remove expired
records from the linked list:
/* Remove the interface data from the linked list */
 if(dev_list == link)

EXHIBIT D-5

Plaintiff’s Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

 dev_list = link->next;

See wavelan_cs.c at Lines 4632-4644.

See also, wavelan_cs.c at Lines 4596-4678. See also, wavelan_cs.c from
Linux 2.4.26.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

wavelan_cs.c discloses means, utilizing the record search means, for accessing
the linked list and, at the same time, removing at least some of the expired ones
of the records in the linked list. wavelan_cs.c also discloses utilizing the
record search means, for inserting, retrieving, and deleting records from the
system and, at the same time, removing at least some expired ones of the
records in the accessed linked list of records.

For example, wavelan_cs.c includes functionality to use a pointer to traverse a
linked list. Further, wavelan_cs.c will remove records from the linked list as it
traverses the linked list. Any code that calls this function would “utilize the
record search means.”

/* Remove the interface data from the linked list */
 if(dev_list == link)
 dev_list = link->next;
 else
 {
 dev_link_t * prev = dev_list;

 while((prev != (dev_link_t *) NULL) && (prev-
>next != link))
 prev = prev->next;

 if(prev == (dev_link_t *) NULL)

EXHIBIT D-5

Plaintiff’s Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

 {
#ifdef DEBUG_CONFIG_ERRORS
 printk(KERN_WARNING "wavelan_detach :
Attempting to remove a nonexistent device.\n");
#endif
 return;
 }

 prev->next = link->next
See wavelan_cs.c at Lines 4632-4644.

See, e.g., wavelan_cs.c at Lines 4596-4678.

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

wavelan_cs.c combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses an information storage
and retrieval system further including means for dynamically determining
maximum number for the record search means to remove in the accessed
linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is

EXHIBIT D-5

Plaintiff’s Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

EXHIBIT D-5

Plaintiff’s Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both wavelan_cs.c and Dirks relate to deletion of aged records, one of
ordinary skill in the art would have understood how to use Dirks’ dynamic
decision making process of determining the maximum number of records to
sweep/remove in other hash tables implementations such as wavelan_cs.c.
Moreover, one of ordinary skill in the art would recognize that it would
improve similar systems and methods in the same way. As the ’120 patent
states “[a] person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be expanded to
include techniques whereby not necessarily all expired records are removed,
and that the decision regarding if and how many records to delete can be a
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary skill
in the art would recognize that the result of combining Dirks’ deletion decision
procedure with wavelan_cs.c nothing more than the predictable use of prior art
elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to

EXHIBIT D-5

Plaintiff’s Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

examine during each step of the sweeping process with wavelan_cs.c and
would have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in wavelan_cs.c with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte.
Thatte, discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining wavelan_cs.c with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine
wavelan_cs.c with Thatte and recognize the benefits of doing so. For example,
the removal of expired records described in wavelan_cs.c can be burdensome
on the system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
wavelan_cs.c with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other

EXHIBIT D-5

Plaintiff’s Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine wavelan_cs.c
with Thatte.

Alternatively, it would also be obvious to combine wavelan_cs.cwith the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of

EXHIBIT D-5

Plaintiff’s Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

Id. at Figure 5.

EXHIBIT D-5

Plaintiff’s Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both wavelan_cs.c and the ’663 patent relate to deletion of records from
hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in wavelan_cs.c. Moreover, one of ordinary skill in the
art would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of

EXHIBIT D-5

Plaintiff’s Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

combining the ’663 patent’s deletion decision procedure with wavelan_cs.c
would be nothing more than the predictable use of prior art elements according
to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with wavelan_cs.c
and would have seen the benefits of doing so. One such benefit, for example,
is that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine wavelan_cs.c with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide

EXHIBIT D-5

Plaintiff’s Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both wavelan_cs.c and the Opportunistic Garbage Collection Articles relate
to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as wavelan_cs.c. Moreover, one of ordinary skill
in the art would recognize that it would improve similar systems and methods
in the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily

EXHIBIT D-5

Plaintiff’s Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with wavelan_cs.c would be nothing more than the predictable use
of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with wavelan_cs.c and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in wavelan_cs.c to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in wavelan_cs.c with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in wavelan_cs.ccan be burdensome
on the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

EXHIBIT D-5

Plaintiff’s Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, wavelan_cs.c discloses a method for
storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring. wavelan_cs.c also discloses a method for storing and retrieving
information records using a hashing technique to provide access to the records
and using an external chaining technique to store the records with same hash
address, at least some of the records automatically expiring.

For example, wavelan_cs.c includes a function that deletes an instance of a
driver from the linked list if the device is released. Thus, releasing the
device causes the record to automatically expire.

/*
 * This deletes a driver "instance". The device is
de-registered with
 * Card Services. If it has been released, all
local data structures
 * are freed. Otherwise, the structures will be
freed when the device
 * is released.

EXHIBIT D-5

Plaintiff’s Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

 */
See wavelan_cs.c at Lines 4595-4600.

The data structure is a linked list:
 /* Remove the interface data from the linked list
*/
 if(dev_list == link)
 dev_list = link->next;
See wavelan_cs.c at Lines 4630-4635.

See also, wavelan_cs.c at Lines 4596-4678. See also, wavelan_cs.c from
Linux 2.4.26.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

wavelan_cs.c discloses accessing a linked list of records. wavelan_cs.c also
discloses accessing a linked list of records having same hash address.

For example, wavelan_cs.c includes functionality to use a pointer to traverse a
linked list.
/* Remove the interface data from the linked list */
 if(dev_list == link)
 dev_list = link->next;
 else
 {
 dev_link_t * prev = dev_list;

 while((prev != (dev_link_t *) NULL) && (prev-
>next != link))
 prev = prev->next;

 if(prev == (dev_link_t *) NULL)
 {

EXHIBIT D-5

Plaintiff’s Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

#ifdef DEBUG_CONFIG_ERRORS
 printk(KERN_WARNING "wavelan_detach :
Attempting to remove a nonexistent device.\n");
#endif
 return;
 }

 prev->next = link->next
See wavelan_cs.c at Lines 4632-4644.

See also, wavelan_cs.c at Lines 4596-4678. See also, wavelan_cs.c from
Linux 2.4.26.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

wavelan_cs.c discloses identifying at least some of the automatically expired
ones of the records.

For example, wavelan_cs.c includes functionality to use a pointer to traverse a
linked list.
/* Remove the interface data from the linked list */
 if(dev_list == link)
 dev_list = link->next;
 else
 {
 dev_link_t * prev = dev_list;

 while((prev != (dev_link_t *) NULL) && (prev-
>next != link))
 prev = prev->next;

 if(prev == (dev_link_t *) NULL)

EXHIBIT D-5

Plaintiff’s Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

 {
#ifdef DEBUG_CONFIG_ERRORS
 printk(KERN_WARNING "wavelan_detach :
Attempting to remove a nonexistent device.\n");
#endif
 return;
 }

 prev->next = link->next
See wavelan_cs.c at Lines 4632-4644.

For example, wavelan_cs.c includes a function that deletes an instance of a
driver from the linked list if the device is released. Thus, releasing the
device causes the record to automatically expire.

/*
 * This deletes a driver "instance". The device is
de-registered with
 * Card Services. If it has been released, all
local data structures
 * are freed. Otherwise, the structures will be
freed when the device
 * is released.
 */
See wavelan_cs.c at Lines 4595-4600.

See also, wavelan_cs.c at Lines 4596-4678. See also, wavelan_cs.c from
Linux 2.4.26.

[3c] removing at least
some of the automatically

[7c] removing at least
some of the automatically

wavelan_cs.c discloses removing at least some of the automatically expired
records from the linked list when the linked list is accessed.

EXHIBIT D-5

Plaintiff’s Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

expired records from the
linked list when the linked
list is accessed.

expired records from the
linked list when the linked
list is accessed, and

For example, wavelan_cs.c includes functionality to use a pointer to traverse a
linked list. Further, wavelan_cs.c will remove records from the linked list as it
traverses the linked list.

/* Remove the interface data from the linked list */
 if(dev_list == link)
 dev_list = link->next;
 else
 {
 dev_link_t * prev = dev_list;

 while((prev != (dev_link_t *) NULL) && (prev-
>next != link))
 prev = prev->next;

 if(prev == (dev_link_t *) NULL)
 {
#ifdef DEBUG_CONFIG_ERRORS
 printk(KERN_WARNING "wavelan_detach :
Attempting to remove a nonexistent device.\n");
#endif
 return;
 }

 prev->next = link->next
See wavelan_cs.c at Lines 4632-4644.

See also, wavelan_cs.c at Lines 4596-4678. See also, wavelan_cs.c from
Linux 2.4.26.

EXHIBIT D-5

Plaintiff’s Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

 [7d] inserting, retrieving

or deleting one of the
records from the system
following the step of
removing.

wavelan_cs.c discloses inserting, retrieving or deleting one of the records from
the system following the step of removing.

For example, wavelan_cs.c includes functionality to use a pointer to traverse a
linked list. Further, wavelan_cs.c will remove records from the linked list as it
traverses the linked list. The deletion will occur after wavelan_cs.c traverses
through the element.

/* Remove the interface data from the linked list */
 if(dev_list == link)
 dev_list = link->next;
 else
 {
 dev_link_t * prev = dev_list;

 while((prev != (dev_link_t *) NULL) && (prev-
>next != link))
 prev = prev->next;

 if(prev == (dev_link_t *) NULL)
 {
#ifdef DEBUG_CONFIG_ERRORS
 printk(KERN_WARNING "wavelan_detach :
Attempting to remove a nonexistent device.\n");
#endif
 return;
 }

 prev->next = link->next
See wavelan_cs.c at Lines 4632-4644.

EXHIBIT D-5

Plaintiff’s Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

See also, wavelan_cs.c at Lines 4596-4678. See also, wavelan_cs.c from
Linux 2.4.26

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

wavelan_cs.c combined with Dirks, Thatte, the ’663 patent, and/or the
Opportunistic Garbage Collection Articles discloses dynamically determining
maximum number of expired ones of the records to remove when the linked
list is accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in the
chart of Dirks, which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG

EXHIBIT D-5

Plaintiff’s Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

EXHIBIT D-5

Plaintiff’s Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both wavelan_cs.c and Dirks relate to deletion of aged records, one of
ordinary skill in the art would have understood how to use Dirks’ dynamic
decision making process of determining the maximum number of records to
sweep/remove in other hash tables implementations such as that described
wavelan_cs.c. Moreover, one of ordinary skill in the art would recognize that
it would improve similar systems and methods in the same way. As the ’120
patent states “[a] person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be expanded to
include techniques whereby not necessarily all expired records are removed,
and that the decision regarding if and how many records to delete can be a
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary skill
in the art would recognize that the result of combining Dirks’ deletion decision
procedure with wavelan_cs.c would be nothing more than the predictable use
of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with wavelan_cs.c and
would have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in wavelan_cs.c with the
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records disclosed by Thatte.
Thatte, discloses a system and method using hash tables and/or linked lists and

EXHIBIT D-5

Plaintiff’s Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining wavelan_cs.c with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine
wavelan_cs.c with Thatte and recognized the benefits of doing so. For
example, the removal of expired records described in wavelan_cs.ccan be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. One of ordinary skill in the art would recognize that
combining wavelan_cs.c with the teachings of Thatte would solve this problem
by dynamically determining how many records to delete based on, among
other things, the system load. Moreover, the '120 patent discloses that "[a]
person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic
one." '120 at 7:10-15. Thus, the '120 patent provides motivations to combine
wavelan_cs.c with Thatte.

Alternatively, it would also be obvious to combine wavelan_cs.c with the ’663

EXHIBIT D-5

Plaintiff’s Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-5

Plaintiff’s Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-

EXHIBIT D-5

Plaintiff’s Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both wavelan_cs.c and the ’663 patent relate to deletion of records from
hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as wavelan_cs.c. Moreover, one of ordinary skill in the art would
recognize that it would improve similar systems and methods in the same way.
As the ’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663
patent’s deletion decision procedure with wavelan_cs.c would be nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with wavelan_cs.c

EXHIBIT D-5

Plaintiff’s Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

and would have seen the benefits of doing so. One such benefit, for example,
is that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine wavelan_cs.c with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the

EXHIBIT D-5

Plaintiff’s Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both wavelan_cs.c and the Opportunistic Garbage Collection Articles relate
to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as wavelan_cs.c. Moreover, one of ordinary skill
in the art would recognize that it would improve similar systems and methods
in the same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with wavelan_cs.c would be nothing more than the predictable use
of prior art elements according to their established functions.

EXHIBIT D-5

Plaintiff’s Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with wavelan_cs.c and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would only perform deletions when the system was not already
too overloaded, thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in wavelan_cs.c to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in wavelan_cs.c with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in wavelan_cs.c can be burdensome
on the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching

EXHIBIT D-5

Plaintiff’s Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

wavelan_cs.c from FreeBSD (1995) (hereinafter “wavelan_cs.c”) alone
and in combination

the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

EXHIBIT D-6

Plaintiff’s Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, LISP discloses an information
storage and retrieval system.

For example,

“This paper should be useful to readers interested in data structures and their
applications in compiler construction, language design, and database
management.” Jacques Cohen, Garbage Collection of Linked Data Structures,
Computing Surveys, 341, 342 (hereinafter “Cohen”).

“This model consists of a memory, i.e. a one-dimensional array of words, each
of which is large enough to hold (at least) the representation of a nonnegative
integer which is an index into that array.” Henry G. Baker, List Processing in
Real Time on a Serial Computer, Communications of the ACM 21, 280,
second page, (April 1978) (hereinafter “Baker”).

“There are two fundamental kinds of data in LISP: list cells and atoms . . .
CAR(x) and CDR(x) return the car and cdr components of the list cell x,
respectively.” Baker at 2.

“If the method is used for the management of a large database residing on
secondary storage.” Baker at 6.

“We conceive of a huge database having millions of records, which may
contain pointers to other records, being managed by our algorithm.” Baker at
12.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an

LISP discloses a linked list to store and provide access to records stored in a
memory of the system, at least some of the records automatically expiring.
LISP also discloses a hashing means to provide access to records stored in a
memory of the system and using an external chaining technique to store the

EXHIBIT D-6

Plaintiff’s Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

of the records
automatically expiring,

external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

records with same hash address, at least some of the records automatically
expiring.

For example,

“Of the hundreds of thousands of computer languages which have been
invented, there is one particular family of languages whose common ancestor
was the original LISP, developed by McCarthy and others in the late 1950's.
[LISP History] These languages are generally characterized by a simple, fully
parenthesized ("Cambridge Polish") syntax; the ability to manipulate general,
linked-list data structures; a standard representation for programs of the
language in terms of these structures; and an interactive programming system
based on an interpreter for the standard representation. Examples of such
languages are LISP 1.5 [LISP 1.5M], MacLISP [Moon], InterLISP
[Teiteiman], CONNIVER UIcDermott and Sussman], QM [Rul1fson],
PLASNA [Smith and Hewitt] [Hewitt and Smith], and SCHUIE [SCHEME]
[Revised Report]. We will call this family the LISP-like languages.” Guy
Lewis Steele, Jr., The Art of the Interpreter or The Modularity Complex (Parts
Zero, One, and Two), Massachusetts Institute of Technology AI Memo No.
453 at 2 (May 1978). (Hereinafter “Steele”).
“A concise and unified view of the numerous existing algorithms for
performing garbage collection of linked data structures is presented.” Cohen
Abstract.

“The primary list processing language in use today is LISP.” Baker at 2.

“We conceive of a huge database having millions of records, which may
contain pointers to other records, being managed by our algorithm.” Baker at
12.
”A cell becomes unused, or garbage, when it can no longer be accessed

EXHIBIT D-6

Plaintiff’s Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

through any pointer fields of any reachable cell.” Cohen at 342.

“the property list can be found by looking in a hash table, using the address of
the list cell as the key.” Baker at 10.

“Our copying scheme gives each semispace its own hash table, and when a cell
is copied over into to space, its property list pointer is entered in the "to" table
under the cell's new address. Then when the copied cell is encountered by the
"scan" pointer, its property list pointer is updated along with its normal
components.” Baker at 10.

There are two well-known approaches to solving the problem of collisions
within a hash table, which occur whenever two entries “hash” or are assigned
to the same “bucket” within the hash table. The computer programmer may
store the records external to the hash table—that is, using memory separate
from the memory allocated to the hash table—or he may store the records
internal to the hash table—that is, using memory that is allocated to other
buckets within the hash table. Using external memory is termed “external
chaining,” while using internal memory is termed “open addressing.” The
applicant has conceded that both forms of collision resolution are known to
those of ordinary skill in the art. See, e.g., ‘120 patent at 1:53-57 (describing
linear probing—a type of open addressing—as being “often used” for
“collision resolution”); 1:58-2:6 (citing to several prior art resources that
describe external chaining as using linked lists). Double hashing is another
form of open addressing.

It would have been obvious to one skilled in the art to apply the teachings in
LISP to a hash table which resolves collisions using external chaining with
linked lists. The method of LISP is a method for processing and garbage
collecting on linked structures generally, which includes externally chained

EXHIBIT D-6

Plaintiff’s Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

records. Externally chained records would still need a method of memory
management, so it would be obvious to use LISP as a method of memory
management and list processing on externally chained records with the same
hash address.

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

LISP discloses a record search means utilizing a search key to access the
linked list. LISP also discloses a record search means utilizing a search key to
access a linked list of records having the same hash address.

For example,

“This model consists of a memory, i.e. a one-dimensional array of words, each
of which is large enough to hold (at least) the representation of a nonnegative
integer which is an index into that array.” Baker at 2.

“the property list can be found by looking in a hash table, using the address of
the list cell as the key.” Baker at 10.

As discussed in [1a/5a], it would have been obvious to one of ordinary skill in
the art to use LISP for list processing and memory management on externally
chained structures. As such, the search means utilizing the search key would
be accessing a linked list of records beginning at the same hash address.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

LISP discloses the record search means including a means for identifying and
removing at least some of the expired ones of the records from the linked list
when the linked list is accessed. LISP also discloses the record search means
including means for identifying and removing at least some expired ones of the
records from the linked list of records when the linked list is accessed.

For example,

EXHIBIT D-6

Plaintiff’s Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

“For example, in LISP, the function cons also calls the garbage collector.”
Cohen at 342.

“Baker’s modification is such that each time a cell is requested (i.e., a cons is
requested), a fixed number of cells, k, are moved from one semispace to the
other.” Cohen at 355.

“The amount of storage and time used by a real-time list processing system can
be compared with that used by a classical list processing system using garbage
collection on tasks not requiring bounded response times.” Baker at 11.

As discussed in [1a/5a], it would have been obvious to one of ordinary skill in
the art to use LISP for list processing and memory management on externally
chained structures. In such a system, the probe that resulted from a collision
would occur on the linked list used to resolve the collision. As such, the
expired records from the linked list would be removed when the linked list is
accessed.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

LISP discloses means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. LISP also discloses utilizing the record search
means, for inserting, retrieving, and deleting records from the system and, at
the same time, removing at least some expired ones of the records in the
accessed linked list of records.

For example,

“The moving of k cells during a cons corresponds to the tracing of that many
cells in classical garbage collection. By distributing some of the garbage
collection tasks during list processing, Baker’s method provides a guarantee

EXHIBIT D-6

Plaintiff’s Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

that actual garbage collection cannot last more than a fixed (tolerable) amount
of time.” Cohen at 355.

“A real-time list processing system is presented which continuously reclaims
garbage.” Baker Abstract.

“In order to convert MFYCA into a real-time algorithm, we force the mark
ratio m to be constant by changing CONS so that it does k iterations of garbage
collection before performing each allocation.” Baker at 4.

“There is another problem caused by interleaving garbage collection with
normal list processing.” Baker at 4.

“garbage collection in our real-time system is almost identical to that in the
MFYCA system, except that it is done incrementally during calls to CONS. In
other words, the user program pays for the cost of cell’s reclamation at the time
the cell is created by tracing some other cell.” Baker at 11.

“We have exhibited a method for doing list-processing on a serial computer in
a real-time environment . . . Our real time scheme is strikingly similar to the
incremental garbage collector proposed independently by Barbacci.” Baker at
13.

As discussed in [1a/5a], it would have been obvious to one of ordinary skill in
the art to use LISP for list processing and memory management on externally
chained structures. In such a system, the probe that resulted from a collision
would occur on the linked list used to resolve the collision. As such, the
expired records from the linked list would be removed when the linked list is
accessed.

2. The information storage 6. The information storage LISP discloses an information storage and retrieval system further including

EXHIBIT D-6

Plaintiff’s Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records.

For example,

“Baker’s modification is such that each time a cell is requested (i.e., a cons is
requested), a fixed number of cells, k, are moved from one semispace to the
other.” Cohen at 355.

“With a little more effort, k can even be made variable in our method, thus
allowing the program to dynamically optimize its space-time tradeoff.” Baker
at 6.

Lisp combined with Dirks, Thatte, the ’663 patent and/or the Opportunistic
Garbage Collection Articles discloses an information storage and retrieval
system further including means for dynamically determining maximum
number for the record search means to remove in the accessed linked list of
records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs

EXHIBIT D-6

Plaintiff’s Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-

EXHIBIT D-6

Plaintiff’s Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Lisp and Dirks relate to deletion of aged records, one of ordinary skill
in the art would have understood how to use Dirks’ dynamic decision making
process of determining the maximum number of records to sweep/remove in
other hash tables implementations such as Lisp. Moreover, one of ordinary
skill in the art would recognize that it would improve similar systems and
methods in the same way. As the ’120 patent states “[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining Dirks’ deletion decision procedure with Lisp nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to

EXHIBIT D-6

Plaintiff’s Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

examine during each step of the sweeping process with Lisp and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Lisp with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. Thatte,
discloses a system and method using hash tables and/or linked lists and further
discloses means for dynamically determining the maximum number for the
record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Lisp with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Lisp
with Thatte and recognize the benefits of doing so. For example, the removal
of expired records described in Lisp can be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Lisp with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will

EXHIBIT D-6

Plaintiff’s Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Lisp with Thatte.

Alternatively, it would also be obvious to combine Lispwith the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.

EXHIBIT D-6

Plaintiff’s Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a

EXHIBIT D-6

Plaintiff’s Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Lisp and the ’663 patent relate to deletion of records from hash tables
using external chaining, one of ordinary skill in the art would understood how
to use the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load in other hash table implementations such as that
described in Lisp. Moreover, one of ordinary skill in the art would recognize
that it would improve similar systems and methods in the same way. As the
’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663
patent’s deletion decision procedure with Lisp would be nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion

EXHIBIT D-6

Plaintiff’s Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

based on a systems load as taught by the ’663 patent and with Lisp and would
have seen the benefits of doing so. One such benefit, for example, is that the
system would avoid performing deletions when the system load exceeded a
threshold.

Alternatively, it would also be obvious to combine Lisp with the Opportunistic
Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the

EXHIBIT D-6

Plaintiff’s Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Lisp and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Lisp. Moreover, one of ordinary skill in the art would
recognize that it would improve similar systems and methods in the same way.
As the ’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the
Opportunistic Garbage Collection Articles’ deletion decision procedure with
Lisp would be nothing more than the predictable use of prior art elements
according to their established functions.

By way of further example, one of ordinary skill in the art would have

EXHIBIT D-6

Plaintiff’s Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Lisp and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Lisp to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in Lisp
with the fundamental concept of dynamically determining the maximum
number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired
records described in Lispcan be burdensome on the system, adding to the
system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

EXHIBIT D-6

Plaintiff’s Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

Thus, the ’120 patent provides motivations to combine LISP (e.g. the system
disclosed in Baker or Cohen) with Thatte, Dirks, the '663 patent, and/or the
Opportunistic Garbage Collection Articles, in addition to motivations within
the text of Baker or Cohen. Baker at 1 (“Third, processing had to be halted
periodically to reclaim storage by a long process know as garbage collection,
which laboriously traced every accessible cell so that those inaccessible cells
could be recycled. . . . This paper presents a solution to the third problem . . .
and removes the roadblock to their more general use.”); Cohen at 342 (“A
most vexing aspect of garbage collection is that program execution comes to a
halt while the collector attempts to reclaim storage space.”).

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

To the extent the preamble is a limitation, LISP discloses a method for storing
and retrieving information records using a linked list to store and provide
access to the records, at least some of the records automatically expiring. LISP
also discloses a method for storing and retrieving information records using a
hashing technique to provide access to the records and using an external
chaining technique to store the records with same hash address, at least some
of the records automatically expiring.

For example,

“This paper should be useful to readers interested in data structures and their
applications in compiler construction, language design, and database
management.” Cohen at 342.

“This model consists of a memory, i.e. a one-dimensional array of words, each
of which is large enough to hold (at least) the representation of a nonnegative
integer which is an index into that array.” Baker at 2.

“There are two fundamental kinds of data in LISP: list cells and atoms

EXHIBIT D-6

Plaintiff’s Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

CAR(x) and CDR(x) return the car and cdr components of the list cell x,
respectively.” Baker at 2.

“If the method is used for the management of a large database residing on
secondary storage.” Baker at 6.

“We conceive of a huge database having millions of records, which may
contain pointers to other records, being managed by our algorithm.” Baker at
12.

“the property list can be found by looking in a hash table, using the address of
the list cell as the key.” Baker at 10.

“Our copying scheme gives each semispace its own hash table, and when a cell
is copied over into to space, its property list pointer is entered in the "to" table
under the cell's new address. Then when the copied cell is encountered by the
"scan" pointer, its property list pointer is updated along with its normal
components.” Baker at 10.

“Of the hundreds of thousands of computer languages which have been
invented, there is one particular family of languages whose common ancestor
was the original LISP, developed by McCarthy and others in the late 1950's.
[LISP History] These languages are generally characterized by a simple, fully
parenthesized ("Cambridge Polish") syntax; the ability to manipulate general,
linked-list data structures; a standard representation for programs of the
language in terms of these structures; and an interactive programming system
based on an interpreter for the standard representation. Examples of such
languages are LISP 1.5 [LISP 1.5M], MacLISP [Moon], InterLISP
[Teiteiman], CONNIVER McDermott and Sussman], QM [Rulfson], PLASNA
[Smith and Hewitt] [Hewitt and Smith], and SCHUIE [SCHEME] [Revised

EXHIBIT D-6

Plaintiff’s Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

Report]. We will call this family the LISP-like languages.” Steele at 2.

“A cell becomes unused, or garbage, when it can no longer be accessed
through any pointer fields of any reachable cell.” Cohen at 342.

It would have been obvious to one skilled in the art to apply the teachings in
LISP to a hash table which resolves collisions using external chaining with
linked lists. The method of LISP is a method for processing and garbage
collecting on linked structures generally, which includes externally chained
records. Externally chained records would still need a method of memory
management, so it would be obvious to use LISP as a method of memory
management and list processing on externally chained records with the same
hash address.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

LISP discloses accessing a linked list of records. LISP also discloses accessing
a linked list of records having same hash address.

For example,

“For example, in LISP, the function cons also calls the garbage collector.”
Cohen at 342.

“The amount of storage and time used by a real-time list processing system can
be compared with that used by a classical list processing system using garbage
collection on tasks not requiring bounded response times.” Baker at 11.

“the property list can be found by looking in a hash table, using the address of
the list cell as the key.” Baker at 10.

“This model consists of a memory, i.e. a one-dimensional array of words, each
of which is large enough to hold (at least) the representation of a nonnegative

EXHIBIT D-6

Plaintiff’s Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

integer which is an index into that array.” Baker at 2.

As discussed in [3/7], it would have been obvious to one of ordinary skill in
the art to use LISP for list processing and memory management on externally
chained structures having the same hash address.

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

LISP discloses identifying at least some of the automatically expired ones of
the records. LISP also discloses identifying at least some of the automatically
expired ones of the records.

For example,

“For example, in LISP, the function cons also calls the garbage collector.”
Cohen at 342.

“Baker’s modification is such that each time a cell is requested (i.e., a cons is
requested), a fixed number of cells, k, are moved from one semispace to the
other.” Cohen at 355.

“The amount of storage and time used by a real-time list processing system can
be compared with that used by a classical list processing system using garbage
collection on tasks not requiring bounded response times.” Baker at 11.

“A cell becomes unused, or garbage, when it can no longer be accessed
through any pointer fields of any reachable cell.” Cohen at 342.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked

LISP discloses removing at least some of the automatically expired records
from the linked list when the linked list is accessed. LISP also discloses
removing at least some of the automatically expired records from the linked
list when the linked list is accessed.

EXHIBIT D-6

Plaintiff’s Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

list is accessed. list is accessed, and
For example,

“For example, in LISP, the function cons also calls the garbage collector.”
Cohen at 342.

“In order to convert MFYCA into a real-time algorithm, we force the mark
ratio m to be constant by changing CONS so that it does k iterations of garbage
collection before performing each allocation.” Baker at 4.

“There is another problem caused by interleaving garbage collection with
normal list processing.” Baker at 4.

“garbage collection in our real-time system is almost identical to that in the
MFYCA system, except that it is done incrementally during calls to CONS. In
other words, the user program pays for the cost of cell’s reclamation at the time
the cell is created by tracing some other cell.” Baker at 11.

“We have exhibited a method for doing list-processing on a serial computer in
a real-time environment Our real time scheme is strikingly similar to the
incremental garbage collector proposed independently by Barbacci.” Baker at
13.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

LISP discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

For example,

“For example, in LISP, the function cons also calls the garbage collector.”
Cohen at 342.

EXHIBIT D-6

Plaintiff’s Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

“In order to convert MFYCA into a real-time algorithm, we force the mark
ratio m to be constant by changing CONS so that it does k iterations of garbage
collection before performing each allocation.” Baker at 4.

“There is another problem caused by interleaving garbage collection with
normal list processing.” Baker at 4.

“garbage collection in our real-time system is almost identical to that in the
MFYCA system, except that it is done incrementally during calls to CONS. In
other words, the user program pays for the cost of cell’s reclamation at the time
the cell is created by tracing some other cell.” Baker at 11.

“We have exhibited a method for doing list-processing on a serial computer in
a real-time environment Our real time scheme is strikingly similar to the
incremental garbage collector proposed independently by Barbacci.” Baker at
13.

4. The method according
to claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

LISP discloses dynamically determining maximum number of expired ones of
the records to remove when the linked list is accessed.

For example,

“Baker’s modification is such that each time a cell is requested (i.e., a cons is
requested), a fixed number of cells, k, are moved from one semispace to the
other.” Cohen at 355.

“With a little more effort, k can even be made variable in our method, thus
allowing the program to dynamically optimize its space-time tradeoff.” Baker
at 6.

Lisp combined with Dirks, Thatte, the ’663 patent, and/or the Opportunistic

EXHIBIT D-6

Plaintiff’s Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

Garbage Collection Articles discloses dynamically determining maximum
number of expired ones of the records to remove when the linked list is
accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in the
chart of Dirks, which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than

EXHIBIT D-6

Plaintiff’s Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Lisp and Dirks relate to deletion of aged records, one of ordinary skill
in the art would have understood how to use Dirks’ dynamic decision making

EXHIBIT D-6

Plaintiff’s Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

process of determining the maximum number of records to sweep/remove in
other hash tables implementations such as that described Lisp. Moreover, one
of ordinary skill in the art would recognize that it would improve similar
systems and methods in the same way. As the ’120 patent states “[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one.” The ’120
patent at 7:10-15. Additionally, one of ordinary skill in the art would
recognize that the result of combining Dirks’ deletion decision procedure with
Lisp would be nothing more than the predictable use of prior art elements
according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Lisp and would have
seen the benefits of doing so. One possible benefit, for example, is saving the
system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Lisp with the means for
dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. Thatte,
discloses a system and method using hash tables and/or linked lists and further
discloses means for dynamically determining the maximum number for the
record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these

EXHIBIT D-6

Plaintiff’s Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Lisp with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Lisp
with Thatte and recognized the benefits of doing so. For example, the removal
of expired records described in Lispcan be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining Lisp with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine Lisp with Thatte.

Alternatively, it would also be obvious to combine Lisp with the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record

EXHIBIT D-6

Plaintiff’s Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-6

Plaintiff’s Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

EXHIBIT D-6

Plaintiff’s Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Lisp and the ’663 patent relate to deletion of records from hash tables
using external chaining, one of ordinary skill in the art would understood how
to use the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load in other hash table implementations such as Lisp.
Moreover, one of ordinary skill in the art would recognize that it would
improve similar systems and methods in the same way. As the ’120 patent
states “[a] person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be expanded to
include techniques whereby not necessarily all expired records are removed,
and that the decision regarding if and how many records to delete can be a
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary skill
in the art would recognize that the result of combining the ’663 patent’s
deletion decision procedure with Lisp would be nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Lisp and would
have seen the benefits of doing so. One such benefit, for example, is that the
system would avoid performing deletions when the system load exceeded a
threshold.

EXHIBIT D-6

Plaintiff’s Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

Alternatively, it would also be obvious to combine Lisp with the Opportunistic
Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-

EXHIBIT D-6

Plaintiff’s Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Lisp and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as Lisp. Moreover, one of ordinary skill in the art would
recognize that it would improve similar systems and methods in the same way.
As the ’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the
Opportunistic Garbage Collection Articles’ deletion decision procedure with
Lisp would be nothing more than the predictable use of prior art elements
according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Lisp and would
have seen the benefits of doing so. One such benefit, for example, is that the

EXHIBIT D-6

Plaintiff’s Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

system would only perform deletions when the system was not already too
overloaded, thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Lisp to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It
is a fundamental concept in computer science and the relevant art that any
variable or parameter affecting any aspect of a system can be dynamically
determined based on information available to the system. One of ordinary skill
in the art would have been motivated to combine the system disclosed in Lisp
with the fundamental concept of dynamically determining the maximum
number of expired records to remove in an accessed linked list of records to
solve a number of potential problems. For example, the removal of expired
records described in Lisp can be burdensome on the system, adding to the
system’s load and slowing down the system’s processing. Moreover, the
removal could also force an interruption in real-time processing as the
processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays
in processing. Indeed, Nemes concedes that such dynamic determination
was obvious when he states in the ‘120 patent that “[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding
if and how many records to delete can be a dynamic one.” ‘120 at 7:10-
15.

Thus, the ’120 patent provides motivations to combine LISP (e.g. Baker or

EXHIBIT D-6

Plaintiff’s Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

Asserted Claims From
U.S. Pat. No. 5,893,120

LISP alone and in combination

Cohen) with Thatte, Dirks, the '663 patent, and/or the Opportunistic Garbage
Collection Articles, in addition to motivations within the text of Baker or
Cohen. Baker at 1 (“Third, processing had to be halted periodically to reclaim
storage by a long process know as garbage collection, which laboriously traced
every accessible cell so that those inaccessible cells could be recycled. . . . This
paper presents a solution to the third problem . . . and removes the roadblock to
their more general use.”); Cohen at 342 (“A most vexing aspect of garbage
collection is that program execution comes to a halt while the collector
attempts to reclaim storage space.”).

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

1. An information storage and
retrieval system, the system
comprising:

5. An information storage and
retrieval system, the system
comprising:

To the extent the preamble is a limitation, FreeBSD 2.0.5 discloses an information
storage and retrieval system.

For example, in kern_proc.c and proc.h, FreeBSD 2.0.5 discloses a hash table of
linked lists of automatically expiring data. See, e.g., struct pgrp defined at lines 61-70
of proc.h and struct proc defined at lines 72-172 of proc.h. Excerpts are below:

61 /*
62 * One structure allocated per process group.
63 */
64 struct pgrp {
65 struct pgrp *pg_hforw; /* Forward link in hash bucket. */
66 struct proc *pg_mem; /* Pointer to pgrp members. */
67 struct session *pg_session; /* Pointer to session. */
68 pid_t pg_id; /* Pgrp id. */
69 int pg_jobc; /* # procs qualifying pgrp for job control */
70 };

72 /*
73 * Description of a process.
74 *
75 * This structure contains the information needed to manage a thread of
76 * control, known in UN*X as a process; it has references to substructures
77 * containing descriptions of things that the process uses, but may share
78 * with related processes. The process structure and the substructures
79 * are always addressible except for those marked "(PROC ONLY)" below,
80 * which might be addressible only on a processor on which the process

1 Publicly available as of June 10, 1995; available at ftp://ftp-archive.freebsd.org/pub/FreeBSD-Archive/old-releases/i386/2.0.5-RELEASE/src/.

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

81 * is running.
82 */
83 struct proc {
84 struct proc *p_forw; /* Doubly-linked run/sleep queue. */
85 struct proc *p_back;
86 struct proc *p_next; /* Linked list of active procs */
87 struct proc **p_prev; /* and zombies. */

[1a] a linked list to store and
provide access to records
stored in a memory of the
system, at least some of the
records automatically
expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an external
chaining technique to store
the records with same hash
address, at least some of the
records automatically
expiring,

FreeBSD discloses “a linked list to store and provide access to records stored in a
memory of the system, at least some of the records automatically expiring” and “a
hashing means to provide access to records stored in a memory of the system and
using an external chaining technique to store the records with same hash address, at
least some of the records automatically expiring.” For example, the pidhash[] and
pgrphash[] structures defined in param.c meet the “hashing means” limitation.

206 struct proc *pidhash[PIDHSZ];
207 struct pgrp *pgrphash[PIDHSZ];

Also, FreeBSD defines the pgrp structure as including a forward link in the hash
bucket as well as a pointer to a linked list of proc structures. This is an example of
how FreeBSD meets the “linked list” and “external chaining” limitations, as shown in
the excerpts from proc.h below.

64 struct pgrp {
65 struct pgrp *pg_hforw; /* Forward link in hash bucket. */
66 struct proc *pg_mem; /* Pointer to pgrp members. */
67 struct session *pg_session; /* Pointer to session. */
68 pid_t pg_id; /* Pgrp id. */
69 int pg_jobc; /* # procs qualifying pgrp for job control */
70 };

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

83 struct proc {
84 struct proc *p_forw; /* Doubly-linked run/sleep queue. */
85 struct proc *p_back;
86 struct proc *p_next; /* Linked list of active procs */
87 struct proc **p_prev; /* and zombies. */

Examples of how FreeBSD uses the hashing technique with external chaining can be
found in the enterpgrp() function in kern_proc.c, such as the following:

230 pgrp->pg_hforw = pgrphash[n = PIDHASH(pgid)];
231 pgrphash[n] = pgrp;

The function that calls enterpgrp() passes in a proc structure, as shown in lines 175-
79.

175 int
176 enterpgrp(p, pgid, mksess)
177 register struct proc *p;
178 pid_t pgid;
179 int mksess;

Code within the enterpgrp() structure unlinks the proc from its old process group, as
shown below in lines 248-53 of kern_proc.c. Also, enterpgrp() calls pgdelete() if the
process group is empty, as shown in lines 261-62. Depending on claim construction,
these are two examples of automatic expiration.

245 /*
246 * unlink p from old process group
247 */

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

248 for (pp = &p->p_pgrp->pg_mem; *pp; pp = &(*pp)->p_pgrpnxt) {
249 if (*pp == p) {
250 *pp = p->p_pgrpnxt;
251 break;
252 }
253 }

258 /*
259 * delete old if empty
260 */
261 if (p->p_pgrp->pg_mem == 0)
262 pgdelete(p->p_pgrp);

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of records
having the same hash address,

FreeBSD discloses “a record search means utilizing a search key to access the linked
list” and “a record search means utilizing a search key to access a linked list of
records having the same hash address.”

The following code from the enterpgrp() function in kern_proc.c is an example of
accessing a linked list of records having the same hash address and using a search key
to access a linked list. The [n] index is an example of a search key. The enterpgrp()
function is an example of a “record search means” as claimed.

230 pgrp->pg_hforw = pgrphash[n = PIDHASH(pgid)];
231 pgrphash[n] = pgrp;

[1c] the record search means
including a means for
identifying and removing at
least some of the expired ones
of the records from the linked

[5c] the record search means
including means for
identifying and removing at
least some expired ones of the
records from the linked list of

FreeBSD discloses “the record search means including a means for identifying and
removing at least some of the expired ones of the records from the linked list when
the linked list is accessed” and “the record search means including means for
identifying and removing at least some expired ones of the records from the linked
list of records when the linked list is accessed,” as claimed.

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

list when the linked list is
accessed, and

records when the linked list is
accessed, and

For example, code within the enterpgrp() structure unlinks the proc from its old
process group, as shown below in lines 248-53 of kern_proc.c. Also, enterpgrp() calls
pgdelete() if the process group is empty, as shown in lines 261-62. These are two
examples of automatic expiration.

245 /*
246 * unlink p from old process group
247 */
248 for (pp = &p->p_pgrp->pg_mem; *pp; pp = &(*pp)->p_pgrpnxt) {
249 if (*pp == p) {
250 *pp = p->p_pgrpnxt;
251 break;
252 }
253 }

258 /*
259 * delete old if empty
260 */
261 if (p->p_pgrp->pg_mem == 0)
262 pgdelete(p->p_pgrp);

[1d] means, utilizing the
record search means, for
accessing the linked list and,
at the same time, removing at
least some of the expired ones
of the records in the linked
list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same time,
removing at least some
expired ones of the records in
the accessed linked list of

FreeBSD discloses “means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of the
records in the linked list “ and “meals [sic “means”], utilizing the record search
means, for inserting, retrieving, and deleting records from the system and, at the
same time, removing at least some expired ones of the records in the accessed linked
list of records,” as claimed. An example of a “means utilizing the record search
means” can be found in kern_prot.c. For example, the setsid() function calls
enterpgrp(), as shown below at line 196.

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

records.

186 int
187 setsid(p, uap, retval)
188 register struct proc *p;
189 struct args *uap;
190 int *retval;
191 {
192
193 if (p->p_pgid == p->p_pid || pgfind(p->p_pid)) {
194 return (EPERM);
195 } else {
196 (void)enterpgrp(p, p->p_pid, 1);
197 *retval = p->p_pid;
198 return (0);
199 }
200 }

An example of “retrieving” can be found in enterpgrp(), in the for loop found at lines
248-53. Depending on claim construction, an example of “removing” and “deleting”
can be found in the call to pgdelete() at line 262, and the operation of pgdelete() at
lines 300-22. An example of “inserting” can be found at lines 266-68. Each of these
steps is performed within enterpgrp() and “at the same time,” as recited in the claims.

245 /*
246 * unlink p from old process group
247 */
248 for (pp = &p->p_pgrp->pg_mem; *pp; pp = &(*pp)->p_pgrpnxt) {
249 if (*pp == p) {
250 *pp = p->p_pgrpnxt;
251 break;

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

252 }
253 }

258 /*
259 * delete old if empty
260 */
261 if (p->p_pgrp->pg_mem == 0)
262 pgdelete(p->p_pgrp);
263 /*
264 * link into new one
265 */
266 p->p_pgrp = pgrp;
267 p->p_pgrpnxt = pgrp->pg_mem;
268 pgrp->pg_mem = p;
269 return (0);

297 /*
298 * delete a process group
299 */
300 void
301 pgdelete(pgrp)
302 register struct pgrp *pgrp;
303 {
304 register struct pgrp **pgp = &pgrphash[PIDHASH(pgrp->pg_id)];
305
306 if (pgrp->pg_session->s_ttyp != NULL &&
307 pgrp->pg_session->s_ttyp->t_pgrp == pgrp)
308 pgrp->pg_session->s_ttyp->t_pgrp = NULL;
309 for (; *pgp; pgp = &(*pgp)->pg_hforw) {
310 if (*pgp == pgrp) {

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

311 *pgp = pgrp->pg_hforw;
312 break;
313 }
314 }
315 #ifdef DIAGNOSTIC
316 if (pgp == NULL)
317 panic("pgdelete: can't find pgrp on hash chain");
318 #endif
319 if (--pgrp->pg_session->s_count == 0)
320 FREE(pgrp->pg_session, M_SESSION);
321 FREE(pgrp, M_PGRP);
322 }

FreeBSD 2.0.5 defines FREE() as used in lines 320-21 of kern_proc.c in malloc.h, as
shown below. Depending on whether KMEMSTATS or DIAGNOSTIC is defined,
FREE() is either set to free() in line 288 or defined as in lines 304-20.

283 /*
284 * Macro versions for the usual cases of malloc/free
285 */
286 #if defined(KMEMSTATS) || defined(DIAGNOSTIC)
287 #define MALLOC(space, cast, size, type, flags) \
288 (space) = (cast)malloc((u_long)(size), type, flags)
289 #define FREE(addr, type) free((caddr_t)(addr), type)
290
291 #else /* do not collect statistics */
292 #define MALLOC(space, cast, size, type, flags) { \
293 register struct kmembuckets *kbp = &bucket[BUCKETINDX(size)]; \
294 long s = splimp(); \
295 if (kbp->kb_next == NULL) { \

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

296 (space) = (cast)malloc((u_long)(size), type, flags); \
297 } else { \
298 (space) = (cast)kbp->kb_next; \
299 kbp->kb_next = *(caddr_t *)(space); \
300 } \
301 splx(s); \
302 }
303
304 #define FREE(addr, type) { \
305 register struct kmembuckets *kbp; \
306 register struct kmemusage *kup = btokup(addr); \
307 long s = splimp(); \
308 if (1 << kup->ku_indx > MAXALLOCSAVE) { \
309 free((caddr_t)(addr), type); \
310 } else { \
311 kbp = &bucket[kup->ku_indx]; \
312 if (kbp->kb_next == NULL) \
313 kbp->kb_next = (caddr_t)(addr); \
314 else \
315 *(caddr_t *)(kbp->kb_last) = (caddr_t)(addr); \
316 *(caddr_t *)(addr) = NULL; \
317 kbp->kb_last = (caddr_t)(addr); \
318 } \
319 splx(s); \
320 }
321 #endif /* do not collect statistics */

The free() function, as defined in kern_malloc.c, is as follows.

248 void

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

249 free(addr, type)
250 void *addr;
251 int type;
252 {
253 register struct kmembuckets *kbp;
254 register struct kmemusage *kup;
255 register struct freelist *freep;
256 long size;
257 int s;
258 #ifdef DIAGNOSTIC
259 caddr_t cp;
260 long *end, *lp, alloc, copysize;
261 #endif
262 #ifdef KMEMSTATS
263 register struct kmemstats *ksp = &kmemstats[type];
264 #endif
265
266 #ifdef DIAGNOSTIC
267 if ((char *)addr < kmembase || (char *)addr >= kmemlimit) {
268 panic("free: address 0x%x out of range", addr);
269 }
270 if ((u_long)type > M_LAST) {
271 panic("free: type %d out of range", type);
272 }
273 #endif
274 kup = btokup(addr);
275 size = 1 << kup->ku_indx;
276 kbp = &bucket[kup->ku_indx];
277 s = splhigh();
278 #ifdef DIAGNOSTIC

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

279 /*
280 * Check for returns of data that do not point to the
281 * beginning of the allocation.
282 */
283 if (size > NBPG * CLSIZE)
284 alloc = addrmask[BUCKETINDX(NBPG * CLSIZE)];
285 else
286 alloc = addrmask[kup->ku_indx];
287 if (((u_long)addr & alloc) != 0)
288 panic("free: unaligned addr 0x%x, size %d, type %s, mask %d",
289 addr, size, memname[type], alloc);
290 #endif /* DIAGNOSTIC */
291 if (size > MAXALLOCSAVE) {
292 kmem_free(kmem_map, (vm_offset_t)addr, ctob(kup-
>ku_pagecnt));
293 #ifdef KMEMSTATS
294 size = kup->ku_pagecnt << PGSHIFT;
295 ksp->ks_memuse -= size;
296 kup->ku_indx = 0;
297 kup->ku_pagecnt = 0;
298 if (ksp->ks_memuse + size >= ksp->ks_limit &&
299 ksp->ks_memuse < ksp->ks_limit)
300 wakeup((caddr_t)ksp);
301 ksp->ks_inuse--;
302 kbp->kb_total -= 1;
303 #endif
304 splx(s);
305 return;
306 }

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

2. The information storage
and retrieval system
according to claim 1 further
including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed linked
list of records.

6. The information storage
and retrieval system
according to claim 5 further
including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed linked
list of records.

FreeBSD includes code that meets the “dynamically determining maximum number
for the record search means to remove in the accessed linked list of records” claim
limitation.

For example, in lines 248-53 of kern_proc.c this first piece of code, the if and for
statements dynamically determine whether the maximum number to remove is 0 or 1.
If the if statement evaluates TRUE, then the maximum number to remove 1. If the if
statement is FALSE and the for loop is not reached the last record, then the maximum
number to remove is 1. If the for loop has reached the last record, and the if is
FALSE, then it’s 0.

245 /*
246 * unlink p from old process group
247 */
248 for (pp = &p->p_pgrp->pg_mem; *pp; pp = &(*pp)->p_pgrpnxt) {
249 if (*pp == p) {
250 *pp = p->p_pgrpnxt;
251 break;
252 }
253 }

Another example of the “dynamically determining” limitation can be found at lines
261-62 of kern_proc.c. The if statement dynamically determines the maximum
number to remove. If the if statement evaluates TRUE, then the maximum number to
remove is 1; if the if statement evaluates FALSE, then the maximum number to
remove is 0.

258 /*
259 * delete old if empty

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

260 */
261 if (p->p_pgrp->pg_mem == 0)
262 pgdelete(p->p_pgrp);

Further, FreeBSD 2.0.5 combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses an information storage and
retrieval system further including means for dynamically determining maximum
number for the record search means to remove in the accessed linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system, which
dynamically determines how many records to sweep/remove upon each allocation.
Disclosure of these claim elements in Dirks is clearly shown in Exhibit B-2, which is
hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or thread, a fixed
number of entries in the page table are scanned to determine whether they have
become inactive, by checking them against the VSIDs on the recycle list. Each entry
which is identified as being inactive is removed from the page table. After all of the
entries in the page table have been examined in this manner, the VSIDs in the recycle
list can be transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a predetermined
number of VSIDs are always available in the free list without requiring a time-
consuming scan of the complete page table at once. U.S. Patent No. 6,119,214 to
Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG to determine
whether a recycle sweep is currently in progress (Step 20). If there is no sweep in
progress, i.e. RFLG is not equal to one, a determination is made whether a sweep

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

should be initiated. This is done by checking whether the inactive list is full, i.e.
whether it contains x entries (Step 22). If the number of entries I on the inactive list is
less than x, no further action is taken, and processing control returns to the operating
system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set
(Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an
index n is reset to 1 (Step 28). The system then sweeps a predetermined number of
page table entries PTi on the page table, to detect whether any of them are inactive, i.e.
their associated VSID is on the recycle list (Step 30). The predetermined number of
entries that are swept is identified as k, where:

Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of entries
to be examined during each step of the sweeping process. Id. at 7:37-40. As stated in
Dirks:

Any other suitable approach can be employed to determine the number of entries to be
examined during each step of the sweeping process. In this regard, it is not necessary
that the number of examined entries be fixed for each step. Rather, it might vary from
one step to the next. The only criterion is that the number of entries examined on each
step be such that all entries in the page table are examined in a determinable amount
of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs
is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of records
to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

As both FreeBSD 2.0.5 and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining the
maximum number of records to sweep/remove in other hash tables implementations
such as FreeBSD 2.0.5. Moreover, one of ordinary skill in the art would recognize
that it would improve similar systems and methods in the same way. As the ’120
patent states “[a] person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be expanded to
include techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic one.” The
’120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize
that the result of combining Dirks’ deletion decision procedure with FreeBSD 2.0.5
nothing more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have combined
Dirks’ dynamic determination of the suitable number of entries to examine during
each step of the sweeping process with FreeBSD 2.0.5 and would have seen the
benefits of doing so. One possible benefit, for example, is saving the system from
performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in FreeBSD 2.0.5 with the means
for dynamically determining maximum number for the record search means to remove
in the accessed linked list of records disclosed by Thatte. Thatte, discloses a system
and method using hash tables and/or linked lists and further discloses means for
dynamically determining the maximum number for the record search means to remove
in the accessed linked list of records. The disclosure of these claim elements in Thatte
is clearly shown in the chart of Thatte, which is hereby incorporated by reference in
its entirety.

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

Moreover, one of ordinary skill in the art would recognize that these combinations
would improve the similar systems and methods in the same way. Additionally, one
of ordinary skill in the art would recognize that the result of combining FreeBSD 2.0.5
with Thatte would be nothing more than the predictable use of prior art elements
according to their established functions. The resulting combination would include the
capability to determine the maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine FreeBSD 2.0.5
with Thatte and recognize the benefits of doing so. For example, the removal of
expired records described in FreeBSD 2.0.5 can be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. One of ordinary skill
in the art would recognize that combining FreeBSD 2.0.5 with the teachings of Thatte
would solve this problem by dynamically determining how many records to delete
based on, among other things, the system load. Moreover, the '120 patent discloses
that "[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15.
Thus, the '120 patent provides motivations to combine FreeBSD 2.0.5 with Thatte.

Alternatively, it would also be obvious to combine FreeBSD 2.0.5with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its entirety. As
summarized in the ’663 patent:

during normal times when the load on the storage system is not excessive, a non-
contaminating but slow deletion of records is used. This slow, non-contaminating
deletion involves closing the collision-resolution chain of locations by moving a
record from a later position in the chain into the position of the record to be deleted.
This leaves no deleted record locations in the storage space to slow down future
searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

In times of heavy use, when deletions must be done rapidly and no time is available
for decontamination, the record is simply marked as “deleted” and left in place. Later
non-contaminating probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by moving records in the
chain as described above. Id. at 2:35-41.
This hybrid hashing technique has the decided advantage of automatically eliminating
contamination caused by the fast-secure deletion procedure when the slower, non-
contaminating deletion is used when the load on the system is at lower levels. Id. at
2:42-46.
This hybrid deletion is shown in Figure 5.

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load to
determine if the system load is greater than a threshold. If the system load is greater
than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64, Figure 5. On
the other hand, if the system load is less than the threshold, then a slow-non-
contaminating delete 53 is used. Id. The fast-secure delete 52 does not actually delete
records, rather it marks records as deleted. Id. at 8:1-33, Figure 7. These records are

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

then actually deleted by a subsequent slow-non-contaminating delete 53. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines a
maximum number of records to remove. See id. at 6:40-64, Figure 5. If the fast-secure
delete 52 is used, then maximum number of records is zero because records are not
deleted they are only marked. Id. at 8:1-33, Figure 7. If the slow-non-contaminating
delete 53 is used, then the maximum number of records to remove is all of the
contaminated records in the bucket. Id. at 6:65-7:68, Figures 6, 6A, 6B.

As both FreeBSD 2.0.5 and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would understood how
to use the ’663 patent’s dynamic decision on whether to perform a deletion based on a
systems load in other hash table implementations such as that described in FreeBSD
2.0.5. Moreover, one of ordinary skill in the art would recognize that it would
improve similar systems and methods in the same way. As the ’120 patent states “[a]
person skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques whereby
not necessarily all expired records are removed, and that the decision regarding if and
how many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with FreeBSD 2.0.5 would
be nothing more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have combined the
’663 patent’s dynamic decision on whether to perform a deletion based on a systems
load as taught by the ’663 patent and with FreeBSD 2.0.5 and would have seen the
benefits of doing so. One such benefit, for example, is that the system would avoid

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

performing deletions when the system load exceeded a threshold.

Alternatively, it would also be obvious to combine FreeBSD 2.0.5 with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based garbage
collection which dynamically determines how much garbage to collect. See generally,
Paul R. Wilson and Thomas G. Moher, Design of the Opportunistic Garbage
Collector, OOPSLA ’89 Proceedings, October 1-6, 1989; Paul R. Wilson,
Opportunistic Garbage Collection, ACM SIGPLAN Notices, Vol. 23, No. 12,
December 1988.

When a significant pause has been detected, a decision procedure is invoked to decide
whether to garbage collect, and how many generations to scavenge. The fuller a
generation is, the more likely it is to be scavenged; also, the longer the pause that has
been detected, the larger the scope of the garbage collection is likely to be. Design of
the Opportunistic Garbage Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide whether to
garbage collect. As long as the decision routine takes no more than a few milliseconds
to execute, it should not interfere with responsiveness. Since it is only invoked at
these times, it does not incur a continual run-time overhead. Opportunistic Garbage
Collection at 100.

This decision routine should take several things into account: 1) the volume of data
allocated since the last scavenge, 2) how long it has been since the user has had an
opportunity to interact, and 3) the height of the stack relative to its average height at
reads since the last scavenge. If the product of the allocation and the compute time is
high, and if the stack is low, the scavenge favorability measure is high. If it is
especially high, a multi-generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a generation’s

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

space, it is likely to happen during a significant compute-bound pause--the one that
has just allocated the data that forced the collection. When the opportunistic
mechanism fails to find the end of a pause, it may still succeed by default, embedding
a scavenge pause within a larger pause. Design of the Opportunistic Garbage
Collector at 32.

As both FreeBSD 2.0.5 and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood how to
use the Opportunistic Garbage Collection Articles’ dynamic decision on whether to
perform a deletion based on a system load in other hash table implementations such as
FreeBSD 2.0.5. Moreover, one of ordinary skill in the art would recognize that it
would improve similar systems and methods in the same way. As the ’120 patent
states “[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one.” The ’120 patent
at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with FreeBSD 2.0.5 would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have combined the
Opportunistic Garbage Collection Articles’ dynamic decision on whether to perform a
deletion and how many generations to scavenge as taught by the Opportunistic
Garbage Collection Articles and with FreeBSD 2.0.5 and would have seen the benefits
of doing so. One such benefit, for example, is preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to modify
the system disclosed in FreeBSD 2.0.5 to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It is a
fundamental concept in computer science and the relevant art that any variable or

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

parameter affecting any aspect of a system can be dynamically determined based on
information available to the system. One of ordinary skill in the art would have been
motivated to combine the system disclosed in FreeBSD 2.0.5 with the fundamental
concept of dynamically determining the maximum number of expired records to
remove in an accessed linked list of records to solve a number of potential problems.
For example, the removal of expired records described in FreeBSD 2.0.5can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.
One of ordinary skill in the art would have known that dynamically determining the
maximum number to remove would limit the burden on the system and bound the
length of any real-time interruption to prevent delays in processing. Indeed, Nemes
concedes that such dynamic determination was obvious when he states in the ‘120
patent that “[a] person skilled in the art will appreciate that the technique of removing
all expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that the
decision regarding if and how many records to delete can be a dynamic one.” ‘120 at
7:10-15.

3. A method for storing and
retrieving information records
using a linked list to store and
provide access to the records,
at least some of the records
automatically expiring, the
method comprising the steps
of:

7. A method for storing and
retrieving information records
using a hashing technique to
provide access to the records
and using an external
chaining technique to store
the records with same hash
address, at least some of the
records automatically
expiring, the method
comprising the steps of:

To the extent the preamble is a limitation, FreeBSD 2.0.5 discloses a “method for
storing and retrieving information records using a linked list to store and provide
access to the records, at least some of the records automatically expiring” and a
“method for storing and retrieving information records using a hashing technique to
provide access to the records and using an external chaining technique to store the
records with same hash address, at least some of the records automatically expiring,”
as claimed.

For example, in kern_proc.c and proc.h, FreeBSD 2.0.5 discloses a hash table of
linked lists of automatically expiring data. See, e.g., struct pgrp defined at lines 61-70
of proc.h and struct proc defined at lines 72-172 of proc.h. Excerpts are below:

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

61 /*
62 * One structure allocated per process group.
63 */
64 struct pgrp {
65 struct pgrp *pg_hforw; /* Forward link in hash bucket. */
66 struct proc *pg_mem; /* Pointer to pgrp members. */
67 struct session *pg_session; /* Pointer to session. */
68 pid_t pg_id; /* Pgrp id. */
69 int pg_jobc; /* # procs qualifying pgrp for job control */
70 };

72 /*
73 * Description of a process.
74 *
75 * This structure contains the information needed to manage a thread of
76 * control, known in UN*X as a process; it has references to substructures
77 * containing descriptions of things that the process uses, but may share
78 * with related processes. The process structure and the substructures
79 * are always addressible except for those marked "(PROC ONLY)" below,
80 * which might be addressible only on a processor on which the process
81 * is running.
82 */
83 struct proc {
84 struct proc *p_forw; /* Doubly-linked run/sleep queue. */
85 struct proc *p_back;
86 struct proc *p_next; /* Linked list of active procs */
87 struct proc **p_prev; /* and zombies. */

FreeBSD discloses a hashing means in connection with a linked list using an external

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

chaining technique to store records with the same hash address. For example, the
pidhash[] and pgrphash[] structures defined in param.c meet the “hashing means”
limitation.

206 struct proc *pidhash[PIDHSZ];
207 struct pgrp *pgrphash[PIDHSZ];

As shown in lines 61-70 and 72-172 of proc.h (portions of which are excerpted
above), FreeBSD defines the pgrp structure as including a forward link in the hash
bucket as well as a pointer to a linked list of proc structures. This is an example of
how FreeBSD meets the “linked list” and “external chaining” limitations.

Examples of how FreeBSD uses the hashing technique with external chaining can be
found in the enterpgrp() function in kern_proc.c, such as the following:

230 pgrp->pg_hforw = pgrphash[n = PIDHASH(pgid)];
231 pgrphash[n] = pgrp;

The function that calls enterpgrp() passes in a proc structure, as shown in lines 175-
79.

175 int
176 enterpgrp(p, pgid, mksess)
177 register struct proc *p;
178 pid_t pgid;
179 int mksess;

Code within the enterpgrp() structure unlinks the proc from its old process group, as
shown below in lines 248-53 of kern_proc.c. Also, enterpgrp() calls pgdelete() if the
process group is empty, as shown in lines 261-62. Depending on claim construction,

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

these are two examples of automatic expiration.

245 /*
246 * unlink p from old process group
247 */
248 for (pp = &p->p_pgrp->pg_mem; *pp; pp = &(*pp)->p_pgrpnxt) {
249 if (*pp == p) {
250 *pp = p->p_pgrpnxt;
251 break;
252 }
253 }

258 /*
259 * delete old if empty
260 */
261 if (p->p_pgrp->pg_mem == 0)
262 pgdelete(p->p_pgrp);

[3a] accessing the linked list
of records,

[7a] accessing a linked list of
records having same hash
address,

FreeBSD discloses “accessing the linked list of records” and “accessing a linked list
of records having same hash address,” as claimed. For example, the following code
from the enterpgrp() function in kern_proc.c is an example of accessing a linked list of
records having the same hash address. The [n] index is an example of a search key.
The enterpgrp() function is an example of a “record search means” as claimed.

230 pgrp->pg_hforw = pgrphash[n = PIDHASH(pgid)];
231 pgrphash[n] = pgrp;

[3b] identifying at least some
of the automatically expired

[7b] identifying at least some
of the automatically expired

FreeBSD includes the step of “identifying at least some of the automatically expired
ones of the records,” as claimed. For example, code from enterpgrp() in kern_proc.c

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

ones of the records, and ones of the records, discloses these limitations. One such example is the if statement at line 249 which

identifies an automatically-expired record. Another example is the if statement at line
261 which identifies an empty record, which is an automatically-expired record.

245 /*
246 * unlink p from old process group
247 */
248 for (pp = &p->p_pgrp->pg_mem; *pp; pp = &(*pp)->p_pgrpnxt) {
249 if (*pp == p) {
250 *pp = p->p_pgrpnxt;
251 break;
252 }
253 }

258 /*
259 * delete old if empty
260 */
261 if (p->p_pgrp->pg_mem == 0)
262 pgdelete(p->p_pgrp);

[3c] removing at least some
of the automatically expired
records from the linked list
when the linked list is
accessed.

[7c] removing at least some
of the automatically expired
records from the linked list
when the linked list is
accessed, and

FreeBSD includes the step of “removing at least some of the automatically expired
records from the linked list when the linked list is accessed,” as claimed. For
example, code from enterpgrp() in kern_proc.c discloses these limitations. One such
example is the call to pgdelete() at line 262. The operation of pgdelete() is discussed
in more detail herein at the discussion of elements 1d and 5d, herein.

Depending on claim construction, the code at line 250 also meets the “removing”
limitation.

245 /*

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

246 * unlink p from old process group
247 */
248 for (pp = &p->p_pgrp->pg_mem; *pp; pp = &(*pp)->p_pgrpnxt) {
249 if (*pp == p) {
250 *pp = p->p_pgrpnxt;
251 break;
252 }
253 }

258 /*
259 * delete old if empty
260 */
261 if (p->p_pgrp->pg_mem == 0)
262 pgdelete(p->p_pgrp);

 [7d] inserting, retrieving or
deleting one of the records
from the system following the
step of removing.

FreeBSD includes the step of “inserting, retrieving or deleting one of the records
from the system following the step of removing,” as claimed. For example, the code
at lines 266-68 of kern_proc.c inserts records into the system, immediately following
the call to pgdelete() at line 262, which is an example of FreeBSD code that meets
the “deleting” limitation.

263 /*
264 * link into new one
265 */
266 p->p_pgrp = pgrp;
267 p->p_pgrpnxt = pgrp->pg_mem;
268 pgrp->pg_mem = p;
269 return (0);

4. The method according to 8. The method according to FreeBSD includes code that meets the “dynamically determining maximum number

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

claim 3 further including the
step of dynamically
determining maximum
number of expired ones of the
records to remove when the
linked list is accessed.

claim 7 further including the
step of dynamically
determining maximum
number of expired ones of the
records to remove when the
linked list is accessed.

for the record search means to remove in the accessed linked list of records” claim
limitation.

For example, in lines 248-53 of kern_proc.c this first piece of code, the if and for
statements dynamically determine whether the maximum number to remove is 0 or 1.
If the if statement evaluates TRUE, then the maximum number to remove 1. If the if
statement is FALSE and the for loop is not reached the last record, then the maximum
number to remove is 1. If the for loop has reached the last record, and the if is
FALSE, then it’s 0.

245 /*
246 * unlink p from old process group
247 */
248 for (pp = &p->p_pgrp->pg_mem; *pp; pp = &(*pp)->p_pgrpnxt) {
249 if (*pp == p) {
250 *pp = p->p_pgrpnxt;
251 break;
252 }
253 }

Another example of the “dynamically determining” limitation can be found at lines
261-62 of kern_proc.c. The if statement dynamically determines the maximum
number to remove. If the if statement evaluates TRUE, then the maximum number to
remove is 1; if the if statement evaluates FALSE, then the maximum number to
remove is 0.

258 /*
259 * delete old if empty
260 */
261 if (p->p_pgrp->pg_mem == 0)

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

262 pgdelete(p->p_pgrp);

Further, FreeBSD 2.0.5 combined with Dirks, Thatte, the ’663 patent, and/or the
Opportunistic Garbage Collection Articles discloses dynamically determining
maximum number of expired ones of the records to remove when the linked list is
accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system, which
dynamically determines how many records to sweep/remove upon each allocation.
Disclosure of these claim elements in Dirks is clearly shown in the chart of Dirks,
which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or thread, a
fixed number of entries in the page table are scanned to determine whether they
have become inactive, by checking them against the VSIDs on the recycle list.
Each entry which is identified as being inactive is removed from the page table.
After all of the entries in the page table have been examined in this manner, the
VSIDs in the recycle list can be transferred to the free list, since all of their
associated page table entries will have been removed. This approach thereby
guarantees that a predetermined number of VSIDs are always available in the free
list without requiring a time-consuming scan of the complete page table at once.
U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG to
determine whether a recycle sweep is currently in progress (Step 20). If there is
no sweep in progress, i.e. RFLG is not equal to one, a determination is made
whether a sweep should be initiated. This is done by checking whether the

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

inactive list is full, i.e. whether it contains x entries (Step 22). If the number of
entries I on the inactive list is less than x, no further action is taken, and
processing control returns to the operating system (Step 24). If, however, the
inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the
inactive list are transferred to the recycle list, and an index n is reset to 1 (Step
28). The system then sweeps a predetermined number of page table entries PTi
on the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined number of
entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of entries
to be examined during each step of the sweeping process. Id. at 7:37-40. As stated in
Dirks:

Any other suitable approach can be employed to determine the number of entries to
be examined during each step of the sweeping process. In this regard, it is not
necessary that the number of examined entries be fixed for each step. Rather, it
might vary from one step to the next. The only criterion is that the number of entries
examined on each step be such that all entries in the page table are examined in a
determinable amount of time or by the occurrence of a certain event, e.g. by the
time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of records
to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both FreeBSD 2.0.5 and Dirks relate to deletion of aged records upon the

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining the
maximum number of records to sweep/remove in other hash tables implementations
such as that described FreeBSD 2.0.5. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the same way.
As the ’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can be
expanded to include techniques whereby not necessarily all expired records are
removed, and that the decision regarding if and how many records to delete can be a
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary skill in the
art would recognize that the result of combining Dirks’ deletion decision procedure
with FreeBSD 2.0.5 would be nothing more than the predictable use of prior art
elements according to their established functions.

By way of further example, one of ordinary skill in the art would have combined
Dirks’ dynamic determination of the suitable number of entries to examine during
each step of the sweeping process with FreeBSD 2.0.5 and would have seen the
benefits of doing so. One possible benefit, for example, is saving the system from
performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in FreeBSD 2.0.5 with the means
for dynamically determining maximum number for the record search means to remove
in the accessed linked list of records disclosed by Thatte. Thatte, discloses a system
and method using hash tables and/or linked lists and further discloses means for
dynamically determining the maximum number for the record search means to remove
in the accessed linked list of records. The disclosure of these claim elements in Thatte
is clearly shown in the chart of Thatte, which is hereby incorporated by reference in
its entirety.

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

Moreover, one of ordinary skill in the art would recognize that these combinations
would improve the similar systems and methods in the same way. Additionally, one
of ordinary skill in the art would recognize that the result of combining FreeBSD 2.0.5
with Thatte would be nothing more than the predictable use of prior art elements
according to their established functions. The resulting combination would include the
capability to determine the maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine FreeBSD 2.0.5
with Thatte and recognized the benefits of doing so. For example, the removal of
expired records described in FreeBSD 2.0.5can be burdensome on the system, adding
to the system’s load and slowing down the system’s processing. One of ordinary skill
in the art would recognize that combining FreeBSD 2.0.5 with the teachings of Thatte
would solve this problem by dynamically determining how many records to delete
based on, among other things, the system load. Moreover, the '120 patent discloses
that "[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15.
Thus, the '120 patent provides motivations to combine FreeBSD 2.0.5 with Thatte.

Alternatively, it would also be obvious to combine FreeBSD 2.0.5 with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown in the
chart of the ‘663 patent, which is hereby incorporated by reference in its entirety. As
summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is used.
This slow, non-contaminating deletion involves closing the collision-
resolution chain of locations by moving a record from a later position
in the chain into the position of the record to be deleted. This leaves

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

no deleted record locations in the storage space to slow down future
searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 (“The ’663
patent”).

In times of heavy use, when deletions must be done rapidly and no
time is available for decontamination, the record is simply marked as
“deleted” and left in place. Later non-contaminating probes in the
vicinity of such deleted record locations automatically remove the
contaminating deleted records by moving records in the chain as
described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-secure
deletion procedure when the slower, non-contaminating deletion is
used when the load on the system is at lower levels. Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load to
determine if the system load is greater than a threshold. If the system load is greater
than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64, Figure 5. On
the other hand, if the system load is less than the threshold, then a slow-non-
contaminating delete 53 is used. Id. The fast-secure delete 52 does not actually delete
records, rather it marks records as deleted. Id. at 8:1-33, Figure 7. These records are

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

then actually deleted by a subsequent slow-non-contaminating delete 53. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines a
maximum number of records to remove. See id. at 6:40-64, Figure 5. If the fast-secure
delete 52 is used, then maximum number of records is zero because records are not
deleted they are only marked. Id. at 8:1-33, Figure 7. If the slow-non-contaminating
delete 53 is used, then the maximum number of records to remove is all of the
contaminated records in the bucket. Id. at 6:65-7:68, Figures 6, 6A, 6B.

As both FreeBSD 2.0.5 and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would understood how
to use the ’663 patent’s dynamic decision on whether to perform a deletion based on a
systems load in other hash table implementations such as FreeBSD 2.0.5. Moreover,
one of ordinary skill in the art would recognize that it would improve similar systems
and methods in the same way. As the ’120 patent states “[a] person skilled in the art
will appreciate that the technique of removing all expired records while searching the
linked list can be expanded to include techniques whereby not necessarily all expired
records are removed, and that the decision regarding if and how many records to
delete can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663 patent’s
deletion decision procedure with FreeBSD 2.0.5 would be nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have combined the
’663 patent’s dynamic decision on whether to perform a deletion based on a systems
load as taught by the ’663 patent and with FreeBSD 2.0.5 and would have seen the
benefits of doing so. One such benefit, for example, is that the system would avoid
performing deletions when the system load exceeded a threshold.

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

Alternatively, it would also be obvious to combine FreeBSD 2.0.5 with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based garbage
collection which dynamically determines how much garbage to collect. See generally,
Paul R. Wilson and Thomas G. Moher, Design of the Opportunistic Garbage
Collector, OOPSLA ’89 Proceedings, October 1-6, 1989; Paul R. Wilson,
Opportunistic Garbage Collection, ACM SIGPLAN Notices, Vol. 23, No. 12,
December 1988.

When a significant pause has been detected, a decision procedure is invoked to
decide whether to garbage collect, and how many generations to scavenge. The
fuller a generation is, the more likely it is to be scavenged; also, the longer the
pause that has been detected, the larger the scope of the garbage collection is
likely to be. Design of the Opportunistic Garbage Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide whether
to garbage collect. As long as the decision routine takes no more than a few
milliseconds to execute, it should not interfere with responsiveness. Since it is
only invoked at these times, it does not incur a continual run-time overhead.
Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume of
data allocated since the last scavenge, 2) how long it has been since the user has
had an opportunity to interact, and 3) the height of the stack relative to its average
height at reads since the last scavenge. If the product of the allocation and the
compute time is high, and if the stack is low, the scavenge favorability measure is
high. If it is especially high, a multi-generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

generation’s space, it is likely to happen during a significant compute-bound
pause--the one that has just allocated the data that forced the collection. When the
opportunistic mechanism fails to find the end of a pause, it may still succeed by
default, embedding a scavenge pause within a larger pause. Design of the
Opportunistic Garbage Collector at 32.

As both FreeBSD 2.0.5 and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood how to
use the Opportunistic Garbage Collection Articles’ dynamic decision on whether to
perform a deletion based on a system load in other hash table implementations such as
FreeBSD 2.0.5. Moreover, one of ordinary skill in the art would recognize that it
would improve similar systems and methods in the same way. As the ’120 patent
states “[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one.” The ’120 patent
at 7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with FreeBSD 2.0.5 would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have combined the
Opportunistic Garbage Collection Articles’ dynamic decision on whether to perform a
deletion and how many generations to scavenge as taught by the Opportunistic
Garbage Collection Articles and with FreeBSD 2.0.5 and would have seen the benefits
of doing so. One such benefit, for example, is that the system would only perform
deletions when the system was not already too overloaded, thus preventing slowdown
of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to modify

EXHIBIT D-7

Plaintiff’s Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1286937.3

Asserted Claims From
U.S. Pat. No. 5,893,120

FreeBSD 2.0.51

the system disclosed in FreeBSD 2.0.5 to dynamically determine the maximum
number of expired records to remove in the accessed linked list of records. It is a
fundamental concept in computer science and the relevant art that any variable or
parameter affecting any aspect of a system can be dynamically determined based on
information available to the system. One of ordinary skill in the art would have been
motivated to combine the system disclosed in FreeBSD 2.0.5 with the fundamental
concept of dynamically determining the maximum number of expired records to
remove in an accessed linked list of records to solve a number of potential problems.
For example, the removal of expired records described in FreeBSD 2.0.5 can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically determining the
maximum number to remove would limit the burden on the system and bound the
length of any real-time interruption to prevent delays in processing. Indeed, Nemes
concedes that such dynamic determination was obvious when he states in the ‘120
patent that “[a] person skilled in the art will appreciate that the technique of removing
all expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that the
decision regarding if and how many records to delete can be a dynamic one.” ‘120 at
7:10-15.

EXHIBIT D-8

Plaintiff’s Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1283558.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

1. An information storage and
retrieval system, the system
comprising:

5. An information storage and
retrieval system, the system
comprising:

To the extent the preamble is a limitation, Linux 1.2.13 discloses an “information
storage and retrieval system,” as claimed.

For example, in arp.c, discloses a hash table of linked lists of automatically expiring
data. See, e.g., struct arp_table defined at lines 79-98.

[1a] a linked list to store and
provide access to records
stored in a memory of the
system, at least some of the
records automatically
expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an external
chaining technique to store
the records with same hash
address, at least some of the
records automatically
expiring,

Linux 1.2.13 discloses “a linked list to store and provide access to records stored in a
memory of the system, at least some of the records automatically expiring” and “a
hashing means to provide access to records stored in a memory of the system and
using an external chaining technique to store the records with same hash address, at
least some of the records automatically expiring.”

For example, the arp_table structure is a linked list, as shown in the code below.

 72/*
 73 * This structure defines the ARP mapping cache. As long as we make changes
 74 * in this structure, we keep interrupts of. But normally we can copy the
 75 * hardware address and the device pointer in a local variable and then make
 76 * any "long calls" to send a packet out.
 77 */
 78
 79 struct arp_table
 80 {
 81 struct arp_table *next; /* Linked entry list */
 82 unsigned long last_used; /* For expiry */
 83 unsigned int flags; /* Control status */
 84 unsigned long ip; /* ip address of entry */
 85 unsigned long mask; /* netmask - used for generalised proxy arps (tridge) */

1 Publicly available as of August 2, 1995; available at http://www.kernel.org/pub/linux/kernel/v1.2/linux-1.2.13.tar.gz.

EXHIBIT D-8

Plaintiff’s Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1283558.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

 86 unsigned char ha[MAX_ADDR_LEN];/* Hardware address */
 87 unsigned char hlen; /* Length of hardware address */
 88 unsigned short htype; /* Type of hardware in use */
 89 struct device *dev; /* Device the entry is tied to */
 90
 91 /*
 92 * The following entries are only used for unresolved hw addresses.
 93 */
 94
 95 struct timer_list timer; /* expire timer */
 96 int retries; /* remaining retries */
 97 struct sk_buff_head skb; /* list of queued packets */

The arp_table structure is also used in the context of hashing and external chaining.
An example of this is shown in the following code from arp.c.

 156/*
 157 * The size of the hash table. Must be a power of two.
 158 * Maybe we should remove hashing in the future for arp and concentrate
 159 * on Patrick Schaaf's Host-Cache-Lookup...
 160 */
 161
 162
 163 #define ARP_TABLE_SIZE 16
 164
 165 /* The ugly +1 here is to cater for proxy entries. They are put in their
 166 own list for efficiency of lookup. If you don't want to find a proxy
 167 entry then don't look in the last entry, otherwise do
 168 */
 169

EXHIBIT D-8

Plaintiff’s Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1283558.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

 170 #define FULL_ARP_TABLE_SIZE (ARP_TABLE_SIZE+1)
 171
 172 struct arp_table *arp_tables[FULL_ARP_TABLE_SIZE] =
 173 {
 174 NULL,
 175 };

Also, functions such as arp_expire_request() deals with automatically-expiring
records in the linked list.

 367 /*
 368 * This function is called, if an entry is not resolved in ARP_RES_TIME.
 369 * Either resend a request, or give it up and free the entry.
 370 */
 371
 372 static void arp_expire_request (unsigned long arg)

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of records
having the same hash address,

Linux 1.2.13 discloses “a record search means utilizing a search key to access the
linked list” and “a record search means utilizing a search key to access a linked list
of records having the same hash address.” For example, the following code from
arp_expire_request() in arp.c meets the “record search means” limitation. An
example of using a search key to access a linked list of records having the same hash
address is the hash value set at line 416 and used as at line 424. As discussed herein,
the arp_tables [] structure is a hash table that uses linked lists to perform external
chaining.

 409 /*
 410 * Arp request timed out. Delete entry and all waiting packets.
 411 * If we give each entry a pointer to itself, we don't have to

EXHIBIT D-8

Plaintiff’s Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1283558.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

 412 * loop through everything again. Maybe hash is good enough, but
 413 * I will look at it later.
 414 */
 415
 416 hash = HASH(entry->ip);
 417
 418 /* proxy entries shouldn't really time out so this is really
 419 only here for completeness
 420 */
 421 if (entry->flags & ATF_PUBL)
 422 pentry = &arp_tables[PROXY_HASH];
 423 else
 424 pentry = &arp_tables[hash];

[1c] the record search means
including a means for
identifying and removing at
least some of the expired ones
of the records from the linked
list when the linked list is
accessed, and

[5c] the record search means
including means for
identifying and removing at
least some expired ones of the
records from the linked list of
records when the linked list is
accessed, and

Linux 1.2.13 discloses “the record search means including a means for identifying
and removing at least some of the expired ones of the records from the linked list
when the linked list is accessed” and “the record search means including means for
identifying and removing at least some expired ones of the records from the linked
list of records when the linked list is accessed,” as claimed.

For example, in arp_expire_request() in arp.c, the while loop beginning at line 425
accesses the linked list as claimed. The if statement at line 427 identifies an expired
record. Depending on claim construction, the “removing” limitation is met at, for
example, line 429 and/or 432.

 425 while (*pentry != NULL)
 426 {
 427 if (*pentry == entry)
 428 {
 429 *pentry = entry->next; /* delete from linked list */

EXHIBIT D-8

Plaintiff’s Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1283558.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

 430 del_timer(&entry->timer);
 431 restore_flags(flags);
 432 arp_release_entry(entry);
 433 return;
 434 }
 435 pentry = &(*pentry)->next;
 436 }

[1d] means, utilizing the
record search means, for
accessing the linked list and,
at the same time, removing at
least some of the expired ones
of the records in the linked
list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same time,
removing at least some
expired ones of the records in
the accessed linked list of
records.

Linux 1.2.13 discloses “means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of the
records in the linked list “ and “meals [sic “means”], utilizing the record search
means, for inserting, retrieving, and deleting records from the system and, at the
same time, removing at least some expired ones of the records in the accessed
linked list of records,” as claimed.

The “means, utilizing the record search means” limitation is met, for example, by a
function that calls arp_expire_request(). As shown in the comments below, other
code calls arp_expire_request().

 367/ *
 368 * This function is called, if an entry is not resolved in ARP_RES_TIME.
 369 * Either resend a request, or give it up and free the entry.
 370 */
 371
 372 static void arp_expire_request (unsigned long arg)

For example, depending on claim construction, lines 429 and 432 in
arp_expire_request() meet the “deleting” and “removing” limitations. An example of
the “retrieving” step is line 435. Also, line 435 provides an example of “inserting.”
These operations take place within a single while loop and “at the same time,” as
claimed.

EXHIBIT D-8

Plaintiff’s Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1283558.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

 425 while (*pentry != NULL)
 426 {
 427 if (*pentry == entry)
 428 {
 429 *pentry = entry->next; /* delete from linked list */
 430 del_timer(&entry->timer);
 431 restore_flags(flags);
 432 arp_release_entry(entry);
 433 return;
 434 }
 435 pentry = &(*pentry)->next;

 436 }
2. The information storage
and retrieval system
according to claim 1 further
including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed linked
list of records.

6. The information storage
and retrieval system
according to claim 5 further
including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed linked
list of records.

Linux 1.2.13 includes code that meets the “dynamically determining maximum
number for the record search means to remove in the accessed linked list of
records” claim limitation.

For example, lines each time the if statement at line 427 in arp_expire_request() is
executed, it dynamically determines the maximum number of records to remove—it
is either 1 or 0. If the if statement evaluates TRUE, then it’s 1; if FALSE, then it’s
0.

 425 while (*pentry != NULL)
 426 {
 427 if (*pentry == entry)
 428 {
 429 *pentry = entry->next; /* delete from linked list */
 430 del_timer(&entry->timer);
 431 restore_flags(flags);
 432 arp_release_entry(entry);

EXHIBIT D-8

Plaintiff’s Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1283558.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

 433 return;
 434 }
 435 pentry = &(*pentry)->next;

 436 }

Further, Linux 1.2.13 combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses an information storage and
retrieval system further including means for dynamically determining maximum
number for the record search means to remove in the accessed linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system, which
dynamically determines how many records to sweep/remove upon each allocation.
Disclosure of these claim elements in Dirks is clearly shown in Exhibit B-2, which is
hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or thread, a
fixed number of entries in the page table are scanned to determine whether they
have become inactive, by checking them against the VSIDs on the recycle list.
Each entry which is identified as being inactive is removed from the page table.
After all of the entries in the page table have been examined in this manner, the
VSIDs in the recycle list can be transferred to the free list, since all of their
associated page table entries will have been removed. This approach thereby
guarantees that a predetermined number of VSIDs are always available in the free
list without requiring a time-consuming scan of the complete page table at once.
U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG to

EXHIBIT D-8

Plaintiff’s Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1283558.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

determine whether a recycle sweep is currently in progress (Step 20). If there is
no sweep in progress, i.e. RFLG is not equal to one, a determination is made
whether a sweep should be initiated. This is done by checking whether the
inactive list is full, i.e. whether it contains x entries (Step 22). If the number of
entries I on the inactive list is less than x, no further action is taken, and
processing control returns to the operating system (Step 24). If, however, the
inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the
inactive list are transferred to the recycle list, and an index n is reset to 1 (Step
28). The system then sweeps a predetermined number of page table entries PTi
on the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined number of
entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of entries
to be examined during each step of the sweeping process. Id. at 7:37-40. As stated in
Dirks:

Any other suitable approach can be employed to determine the number of entries to
be examined during each step of the sweeping process. In this regard, it is not
necessary that the number of examined entries be fixed for each step. Rather, it
might vary from one step to the next. The only criterion is that the number of entries
examined on each step be such that all entries in the page table are examined in a
determinable amount of time or by the occurrence of a certain event, e.g. by the
time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of records

EXHIBIT D-8

Plaintiff’s Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1283558.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Linux 1.2.13 and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have understood how
to use Dirks’ dynamic decision making process of determining the maximum number
of records to sweep/remove in other hash tables implementations such as Linux
1.2.13. Moreover, one of ordinary skill in the art would recognize that it would
improve similar systems and methods in the same way. As the ’120 patent states “[a]
person skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques whereby
not necessarily all expired records are removed, and that the decision regarding if and
how many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Linux 1.2.13 nothing more than
the predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have combined
Dirks’ dynamic determination of the suitable number of entries to examine during
each step of the sweeping process with Linux 1.2.13 and would have seen the benefits
of doing so. One possible benefit, for example, is saving the system from performing
sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Linux 1.2.13 with the means for
dynamically determining maximum number for the record search means to remove in
the accessed linked list of records disclosed by Thatte. Thatte, discloses a system and
method using hash tables and/or linked lists and further discloses means for
dynamically determining the maximum number for the record search means to remove
in the accessed linked list of records. The disclosure of these claim elements in Thatte
is clearly shown in the chart of Thatte, which is hereby incorporated by reference in

EXHIBIT D-8

Plaintiff’s Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1283558.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

its entirety.

Moreover, one of ordinary skill in the art would recognize that these combinations
would improve the similar systems and methods in the same way. Additionally, one
of ordinary skill in the art would recognize that the result of combining Linux 1.2.13
with Thatte would be nothing more than the predictable use of prior art elements
according to their established functions. The resulting combination would include the
capability to determine the maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Linux 1.2.13
with Thatte and recognize the benefits of doing so. For example, the removal of
expired records described in Linux 1.2.13 can be burdensome on the system, adding to
the system’s load and slowing down the system’s processing. One of ordinary skill in
the art would recognize that combining Linux 1.2.13 with the teachings of Thatte
would solve this problem by dynamically determining how many records to delete
based on, among other things, the system load. Moreover, the '120 patent discloses
that "[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15.
Thus, the '120 patent provides motivations to combine Linux 1.2.13 with Thatte.

Alternatively, it would also be obvious to combine Linux 1.2.13with the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the chart of
the ‘663 patent, which is hereby incorporated by reference in its entirety. As
summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is used.
This slow, non-contaminating deletion involves closing the collision-

EXHIBIT D-8

Plaintiff’s Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1283558.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

resolution chain of locations by moving a record from a later position
in the chain into the position of the record to be deleted. This leaves
no deleted record locations in the storage space to slow down future
searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 (“The ’663
patent”).

In times of heavy use, when deletions must be done rapidly and no
time is available for decontamination, the record is simply marked as
“deleted” and left in place. Later non-contaminating probes in the
vicinity of such deleted record locations automatically remove the
contaminating deleted records by moving records in the chain as
described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-secure
deletion procedure when the slower, non-contaminating deletion is
used when the load on the system is at lower levels. Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-8

Plaintiff’s Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1283558.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load to
determine if the system load is greater than a threshold. If the system load is greater
than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64, Figure 5. On
the other hand, if the system load is less than the threshold, then a slow-non-
contaminating delete 53 is used. Id. The fast-secure delete 52 does not actually delete
records, rather it marks records as deleted. Id. at 8:1-33, Figure 7. These records are

EXHIBIT D-8

Plaintiff’s Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1283558.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

then actually deleted by a subsequent slow-non-contaminating delete 53. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines a
maximum number of records to remove. See id. at 6:40-64, Figure 5. If the fast-secure
delete 52 is used, then maximum number of records is zero because records are not
deleted they are only marked. Id. at 8:1-33, Figure 7. If the slow-non-contaminating
delete 53 is used, then the maximum number of records to remove is all of the
contaminated records in the bucket. Id. at 6:65-7:68, Figures 6, 6A, 6B.
As both Linux 1.2.13 and the ’663 patent relate to deletion of records from hash tables
using external chaining, one of ordinary skill in the art would understood how to use
the ’663 patent’s dynamic decision on whether to perform a deletion based on a
systems load in other hash table implementations such as that described in Linux
1.2.13. Moreover, one of ordinary skill in the art would recognize that it would
improve similar systems and methods in the same way. As the ’120 patent states “[a]
person skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques whereby
not necessarily all expired records are removed, and that the decision regarding if and
how many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Linux 1.2.13 would be
nothing more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have combined the
’663 patent’s dynamic decision on whether to perform a deletion based on a systems
load as taught by the ’663 patent and with Linux 1.2.13 and would have seen the
benefits of doing so. One such benefit, for example, is that the system would avoid
performing deletions when the system load exceeded a threshold.

EXHIBIT D-8

Plaintiff’s Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1283558.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

Alternatively, it would also be obvious to combine Linux 1.2.13 with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based garbage
collection which dynamically determines how much garbage to collect. See generally,
Paul R. Wilson and Thomas G. Moher, Design of the Opportunistic Garbage
Collector, OOPSLA ’89 Proceedings, October 1-6, 1989; Paul R. Wilson,
Opportunistic Garbage Collection, ACM SIGPLAN Notices, Vol. 23, No. 12,
December 1988.

When a significant pause has been detected, a decision procedure is invoked to
decide whether to garbage collect, and how many generations to scavenge. The
fuller a generation is, the more likely it is to be scavenged; also, the longer the
pause that has been detected, the larger the scope of the garbage collection is
likely to be. Design of the Opportunistic Garbage Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide whether
to garbage collect. As long as the decision routine takes no more than a few
milliseconds to execute, it should not interfere with responsiveness. Since it is
only invoked at these times, it does not incur a continual run-time overhead.
Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume of
data allocated since the last scavenge, 2) how long it has been since the user has
had an opportunity to interact, and 3) the height of the stack relative to its average
height at reads since the last scavenge. If the product of the allocation and the
compute time is high, and if the stack is low, the scavenge favorability measure is
high. If it is especially high, a multi-generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a

EXHIBIT D-8

Plaintiff’s Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1283558.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

generation’s space, it is likely to happen during a significant compute-bound
pause--the one that has just allocated the data that forced the collection. When the
opportunistic mechanism fails to find the end of a pause, it may still succeed by
default, embedding a scavenge pause within a larger pause. Design of the
Opportunistic Garbage Collector at 32.

As both Linux 1.2.13 and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood how to
use the Opportunistic Garbage Collection Articles’ dynamic decision on whether to
perform a deletion based on a system load in other hash table implementations such as
Linux 1.2.13. Moreover, one of ordinary skill in the art would recognize that it would
improve similar systems and methods in the same way. As the ’120 patent states “[a]
person skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques whereby
not necessarily all expired records are removed, and that the decision regarding if and
how many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision procedure
with Linux 1.2.13 would be nothing more than the predictable use of prior art
elements according to their established functions.

By way of further example, one of ordinary skill in the art would have combined the
Opportunistic Garbage Collection Articles’ dynamic decision on whether to perform a
deletion and how many generations to scavenge as taught by the Opportunistic
Garbage Collection Articles and with Linux 1.2.13 and would have seen the benefits
of doing so. One such benefit, for example, is preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to modify
the system disclosed in Linux 1.2.13 to dynamically determine the maximum number
of expired records to remove in the accessed linked list of records. It is a

EXHIBIT D-8

Plaintiff’s Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1283558.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

fundamental concept in computer science and the relevant art that any variable or
parameter affecting any aspect of a system can be dynamically determined based on
information available to the system. One of ordinary skill in the art would have been
motivated to combine the system disclosed in Linux 1.2.13 with the fundamental
concept of dynamically determining the maximum number of expired records to
remove in an accessed linked list of records to solve a number of potential problems.
For example, the removal of expired records described in Linux 1.2.13can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically determining the
maximum number to remove would limit the burden on the system and bound the
length of any real-time interruption to prevent delays in processing. Indeed, Nemes
concedes that such dynamic determination was obvious when he states in the ‘120
patent that “[a] person skilled in the art will appreciate that the technique of removing
all expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that the
decision regarding if and how many records to delete can be a dynamic one.” ‘120 at
7:10-15.

3. A method for storing and
retrieving information records
using a linked list to store and
provide access to the records,
at least some of the records
automatically expiring, the
method comprising the steps
of:

7. A method for storing and
retrieving information records
using a hashing technique to
provide access to the records
and using an external
chaining technique to store
the records with same hash
address, at least some of the
records automatically

To the extent the preamble is a limitation, Linux 1.2.13 discloses a “method for
storing and retrieving information records using a linked list to store and provide
access to the records, at least some of the records automatically expiring” and a
“method for storing and retrieving information records using a hashing technique to
provide access to the records and using an external chaining technique to store the
records with same hash address, at least some of the records automatically expiring,”
as claimed.

For exmaple, the arp_table structure defined in arp.c is an example of a linked list

EXHIBIT D-8

Plaintiff’s Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1283558.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

expiring, the method
comprising the steps of:

used to store and provide access to records, some of which are automatically expiring.

 72 /*
 73 * This structure defines the ARP mapping cache. As long as we make changes
 74 * in this structure, we keep interrupts of. But normally we can copy the
 75 * hardware address and the device pointer in a local variable and then make
 76 * any "long calls" to send a packet out.
 77 */
 78
 79 struct arp_table
 80 {
 81 struct arp_table *next; /* Linked entry list */
 82 unsigned long last_used; /* For expiry */
 83 unsigned int flags; /* Control status */
 84 unsigned long ip; /* ip address of entry */
 85 unsigned long mask; /* netmask - used for generalised proxy arps (tridge) */
 86 unsigned char ha[MAX_ADDR_LEN];/* Hardware address */
 87 unsigned char hlen; /* Length of hardware address */
 88 unsigned short htype; /* Type of hardware in use */
 89 struct device *dev; /* Device the entry is tied to */
 90
 91 /*
 92 * The following entries are only used for unresolved hw addresses.
 93 */
 94
 95 struct timer_list timer; /* expire timer */
 96 int retries; /* remaining retries */
 97 struct sk_buff_head skb; /* list of queued packets */
 98 };

EXHIBIT D-8

Plaintiff’s Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1283558.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

The arp_table structure is also used in the context of hashing and external chaining.
An example of this is shown in the following code from arp.c.

 156 /*
 157 * The size of the hash table. Must be a power of two.
 158 * Maybe we should remove hashing in the future for arp and concentrate
 159 * on Patrick Schaaf's Host-Cache-Lookup...
 160 */
 161
 162
 163 #define ARP_TABLE_SIZE 16
 164
 165 /* The ugly +1 here is to cater for proxy entries. They are put in their
 166 own list for efficiency of lookup. If you don't want to find a proxy
 167 entry then don't look in the last entry, otherwise do
 168 */
 169
 170 #define FULL_ARP_TABLE_SIZE (ARP_TABLE_SIZE+1)
 171
 172 struct arp_table *arp_tables[FULL_ARP_TABLE_SIZE] =
 173 {
 174 NULL,
 175 };

Also, functions such as arp_check_expire() deal with automatically-expiring records
in the linked list. For example, the comments at lines 187-91 discuss records that
automatically expire.

 186/*
 187 * Check if there are too old entries and remove them. If the ATF_PERM

EXHIBIT D-8

Plaintiff’s Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1283558.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

 188 * flag is set, they are always left in the arp cache (permanent entry).
 189 * Note: Only fully resolved entries, which don't have any packets in
 190 * the queue, can be deleted, since ARP_TIMEOUT is much greater than
 191 * ARP_MAX_TRIES*ARP_RES_TIME.
 192 */
 193
 194 static void arp_check_expire(unsigned long dummy)
 195 {
 196 int i;
 197 unsigned long now = jiffies;
 198 unsigned long flags;
 199 save_flags(flags);
 200 cli();
 201
 202 for (i = 0; i < FULL_ARP_TABLE_SIZE; i++)
 203 {
 204 struct arp_table *entry;
 205 struct arp_table **pentry = &arp_tables[i];
 206
 207 while ((entry = *pentry) != NULL)
 208 {
 209 if ((now - entry->last_used) > ARP_TIMEOUT
 210 && !(entry->flags & ATF_PERM))
 211 {
 212 *pentry = entry->next; /* remove from list */
 213 del_timer(&entry->timer); /* Paranoia */
 214 kfree_s(entry, sizeof(struct arp_table));
 215 }
 216 else
 217 pentry = &entry->next; /* go to next entry */

EXHIBIT D-8

Plaintiff’s Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1283558.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

 218 }
 219 }
 220 restore_flags(flags);
 221
 222 /*
 223 * Set the timer again.
 224 */
 225
 226 del_timer(&arp_timer);
 227 arp_timer.expires = ARP_CHECK_INTERVAL;
 228 add_timer(&arp_timer);
 229 }

[3a] accessing the linked list
of records,

[7a] accessing a linked list of
records having same hash
address,

Linux 1.2.13 discloses “accessing the linked list of records” and “accessing a linked
list of records having same hash address,” as claimed. For example, as discussed
herein, the arp_tables[] structure is a hash table, and each linked list to which it points
contains records having the same hash address. For example, the for loop at line 202
iterates through each hash value, and the while loop at line 207 iterates through the
linked list associated with each has value. Thus, the while loop accesses the linked list
of records having the same hash address, as claimed.

 202 for (i = 0; i < FULL_ARP_TABLE_SIZE; i++)
 203 {
 204 struct arp_table *entry;
 205 struct arp_table **pentry = &arp_tables[i];
 206
 207 while ((entry = *pentry) != NULL)
 208 {
 209 if ((now - entry->last_used) > ARP_TIMEOUT
 210 && !(entry->flags & ATF_PERM))

EXHIBIT D-8

Plaintiff’s Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1283558.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

 211 {
 212 *pentry = entry->next; /* remove from list */
 213 del_timer(&entry->timer); /* Paranoia */
 214 kfree_s(entry, sizeof(struct arp_table));
 215 }
 216 else
 217 pentry = &entry->next; /* go to next entry */
 218 }
 219 }

[3b] identifying at least some
of the automatically expired
ones of the records, and

[7b] identifying at least some
of the automatically expired
ones of the records,

Linux 1.2.13 includes the step of “identifying at least some of the automatically
expired ones of the records,” as claimed. For example, the if statement at line 209-10
identifies expired records by comparing the last_used element to ARP_TIMEOUT. If
last_used is greater than ARP_TIMEOUT, then that entry has expired.

 207 while ((entry = *pentry) != NULL)
 208 {
 209 if ((now - entry->last_used) > ARP_TIMEOUT
 210 && !(entry->flags & ATF_PERM))
 211 {
 212 *pentry = entry->next; /* remove from list */
 213 del_timer(&entry->timer); /* Paranoia */
 214 kfree_s(entry, sizeof(struct arp_table));
 215 }
 216 else
 217 pentry = &entry->next; /* go to next entry */
 218 }

[3c] removing at least some
of the automatically expired

[7c] removing at least some
of the automatically expired

Linux 1.2.13 includes the step of “removing at least some of the automatically
expired records from the linked list when the linked list is accessed,” as claimed. For

EXHIBIT D-8

Plaintiff’s Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1283558.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

records from the linked list
when the linked list is
accessed.

records from the linked list
when the linked list is
accessed, and

example, line 212 moves the pointer so that the entry is no longer in the linked list.
Also, line 214 calls the kfree_s() function (found in kmalloc.c), which removes the
expired element by marking the memory that it occupied as free. Depending on claim
construction, at least one of these actions is an example of “removing,” as claimed.

 209 if ((now - entry->last_used) > ARP_TIMEOUT
 210 && !(entry->flags & ATF_PERM))
 211 {
 212 *pentry = entry->next; /* remove from list */
 213 del_timer(&entry->timer); /* Paranoia */
 214 kfree_s(entry, sizeof(struct arp_table));
 215 }

 [7d] inserting, retrieving or
deleting one of the records
from the system following the
step of removing.

Linux 1.2.13 includes the step of “inserting, retrieving or deleting one of the records
from the system following the step of removing,” as claimed. For example, the
function arp_check_expire() from arp.c is an example of code from Linux 1.2.13 that
meets this element. Note that the code at line 212 moves the pointer so that the
element is no longer in the linked list, then at line 214, kfree_s() is called which frees
the memory associated with the element.

After kfree_s() is called, control passes back to the while loop at line 207 and the next
record is retrieved. If that record is NULL, control passes back to the for loop at line
202 and, unless the end of the hash table has been reached, the linked list associated
with the next hash entry is retrieved.

Thus, this is an example of inserting, retrieving, or deleing one of the records from the
system following the step of removing.

 202 for (i = 0; i < FULL_ARP_TABLE_SIZE; i++)
 203 {

EXHIBIT D-8

Plaintiff’s Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1283558.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

 204 struct arp_table *entry;
 205 struct arp_table **pentry = &arp_tables[i];
 206
 207 while ((entry = *pentry) != NULL)
 208 {
 209 if ((now - entry->last_used) > ARP_TIMEOUT
 210 && !(entry->flags & ATF_PERM))
 211 {
 212 *pentry = entry->next; /* remove from list */
 213 del_timer(&entry->timer); /* Paranoia */
 214 kfree_s(entry, sizeof(struct arp_table));
 215 }
 216 else
 217 pentry = &entry->next; /* go to next entry */
 218 }
 219 }

4. The method according to
claim 3 further including the
step of dynamically
determining maximum
number of expired ones of the
records to remove when the
linked list is accessed.

8. The method according to
claim 7 further including the
step of dynamically
determining maximum
number of expired ones of the
records to remove when the
linked list is accessed.

Linux 1.2.13 includes code that meets the “dynamically determining maximum
number for the record search means to remove in the accessed linked list of records”
claim limitation. For example, the following code from arp_check_expire() in arp.c
is an example of dynamically determining maximum number of expired ones of the
records to remove when the linked list is accessed.

This code meets this limitation in at least two ways. First, when the list is first
accessed by the while loop beginning at line 207, the maximum number of records to
remove is equal to the number of records in the list. But each time the while loop
iterates and the if statement evaluates FALSE, that number decreases by one. Hence,
it is dynamic.

Second, each time the if statement at line 209-10 is called, the maximum number of

EXHIBIT D-8

Plaintiff’s Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1283558.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

records to remove is either 1 or 0, depending on whether the if statement evaluates to
TRUE or FALSE. If the if statement evaluates TRUE, then the maximum number to
remove is 1; if the if statement evaluates FALSE, the maximum number to remove is
0.

 207 while ((entry = *pentry) != NULL)
 208 {
 209 if ((now - entry->last_used) > ARP_TIMEOUT
 210 && !(entry->flags & ATF_PERM))
 211 {
 212 *pentry = entry->next; /* remove from list */
 213 del_timer(&entry->timer); /* Paranoia */
 214 kfree_s(entry, sizeof(struct arp_table));
 215 }
 216 else
 217 pentry = &entry->next; /* go to next entry */
 218 }

Further, Linux 1.2.13 combined with Dirks, Thatte, the ’663 patent, and/or the
Opportunistic Garbage Collection Articles discloses dynamically determining
maximum number of expired ones of the records to remove when the linked list is
accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system, which
dynamically determines how many records to sweep/remove upon each allocation.
Disclosure of these claim elements in Dirks is clearly shown in the chart of Dirks,
which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

EXHIBIT D-8

Plaintiff’s Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1283558.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

each time a VSID is assigned from the free list to a new application or thread, a
fixed number of entries in the page table are scanned to determine whether they
have become inactive, by checking them against the VSIDs on the recycle list.
Each entry which is identified as being inactive is removed from the page table.
After all of the entries in the page table have been examined in this manner, the
VSIDs in the recycle list can be transferred to the free list, since all of their
associated page table entries will have been removed. This approach thereby
guarantees that a predetermined number of VSIDs are always available in the free
list without requiring a time-consuming scan of the complete page table at once.
U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG to
determine whether a recycle sweep is currently in progress (Step 20). If there is
no sweep in progress, i.e. RFLG is not equal to one, a determination is made
whether a sweep should be initiated. This is done by checking whether the
inactive list is full, i.e. whether it contains x entries (Step 22). If the number of
entries I on the inactive list is less than x, no further action is taken, and
processing control returns to the operating system (Step 24). If, however, the
inactive list is full at this time, the flag RFLG is set (Step 26), the VSIDs on the
inactive list are transferred to the recycle list, and an index n is reset to 1 (Step
28). The system then sweeps a predetermined number of page table entries PTi
on the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined number of
entries that are swept is identified as k, where:

 Id. at 8:12-30.

EXHIBIT D-8

Plaintiff’s Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1283558.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

Dirks discloses that any approach can be employed to determine the number of entries
to be examined during each step of the sweeping process. Id. at 7:37-40. As stated in
Dirks:

Any other suitable approach can be employed to determine the number of entries to
be examined during each step of the sweeping process. In this regard, it is not
necessary that the number of examined entries be fixed for each step. Rather, it
might vary from one step to the next. The only criterion is that the number of entries
examined on each step be such that all entries in the page table are examined in a
determinable amount of time or by the occurrence of a certain event, e.g. by the
time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of records
to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Linux 1.2.13 and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have understood how
to use Dirks’ dynamic decision making process of determining the maximum number
of records to sweep/remove in other hash tables implementations such as that
described Linux 1.2.13. Moreover, one of ordinary skill in the art would recognize
that it would improve similar systems and methods in the same way. As the ’120
patent states “[a] person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be expanded to
include techniques whereby not necessarily all expired records are removed, and that
the decision regarding if and how many records to delete can be a dynamic one.” The
’120 patent at 7:10-15. Additionally, one of ordinary skill in the art would recognize
that the result of combining Dirks’ deletion decision procedure with Linux 1.2.13
would be nothing more than the predictable use of prior art elements according to
their established functions.

EXHIBIT D-8

Plaintiff’s Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1283558.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

By way of further example, one of ordinary skill in the art would have combined
Dirks’ dynamic determination of the suitable number of entries to examine during
each step of the sweeping process with Linux 1.2.13 and would have seen the benefits
of doing so. One possible benefit, for example, is saving the system from performing
sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Linux 1.2.13 with the means for
dynamically determining maximum number for the record search means to remove in
the accessed linked list of records disclosed by Thatte. Thatte, discloses a system and
method using hash tables and/or linked lists and further discloses means for
dynamically determining the maximum number for the record search means to remove
in the accessed linked list of records. The disclosure of these claim elements in Thatte
is clearly shown in the chart of Thatte, which is hereby incorporated by reference in
its entirety.

Moreover, one of ordinary skill in the art would recognize that these combinations
would improve the similar systems and methods in the same way. Additionally, one
of ordinary skill in the art would recognize that the result of combining Linux 1.2.13
with Thatte would be nothing more than the predictable use of prior art elements
according to their established functions. The resulting combination would include the
capability to determine the maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Linux 1.2.13
with Thatte and recognized the benefits of doing so. For example, the removal of
expired records described in Linux 1.2.13can be burdensome on the system, adding to
the system’s load and slowing down the system’s processing. One of ordinary skill in
the art would recognize that combining Linux 1.2.13 with the teachings of Thatte
would solve this problem by dynamically determining how many records to delete
based on, among other things, the system load. Moreover, the '120 patent discloses

EXHIBIT D-8

Plaintiff’s Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1283558.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

that "[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15.
Thus, the '120 patent provides motivations to combine Linux 1.2.13 with Thatte.

Alternatively, it would also be obvious to combine Linux 1.2.13 with the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the chart of
the ‘663 patent, which is hereby incorporated by reference in its entirety. As
summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is used.
This slow, non-contaminating deletion involves closing the collision-
resolution chain of locations by moving a record from a later position
in the chain into the position of the record to be deleted. This leaves
no deleted record locations in the storage space to slow down future
searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 (“The ’663
patent”).

In times of heavy use, when deletions must be done rapidly and no
time is available for decontamination, the record is simply marked as
“deleted” and left in place. Later non-contaminating probes in the
vicinity of such deleted record locations automatically remove the
contaminating deleted records by moving records in the chain as
described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-secure
deletion procedure when the slower, non-contaminating deletion is

EXHIBIT D-8

Plaintiff’s Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1283558.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

used when the load on the system is at lower levels. Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load to
determine if the system load is greater than a threshold. If the system load is greater

EXHIBIT D-8

Plaintiff’s Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1283558.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64, Figure 5. On
the other hand, if the system load is less than the threshold, then a slow-non-
contaminating delete 53 is used. Id. The fast-secure delete 52 does not actually delete
records, rather it marks records as deleted. Id. at 8:1-33, Figure 7. These records are
then actually deleted by a subsequent slow-non-contaminating delete 53. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines a
maximum number of records to remove. See id. at 6:40-64, Figure 5. If the fast-secure
delete 52 is used, then maximum number of records is zero because records are not
deleted they are only marked. Id. at 8:1-33, Figure 7. If the slow-non-contaminating
delete 53 is used, then the maximum number of records to remove is all of the
contaminated records in the bucket. Id. at 6:65-7:68, Figures 6, 6A, 6B.

As both Linux 1.2.13 and the ’663 patent relate to deletion of records from hash tables
using external chaining, one of ordinary skill in the art would understood how to use
the ’663 patent’s dynamic decision on whether to perform a deletion based on a
systems load in other hash table implementations such as Linux 1.2.13. Moreover,
one of ordinary skill in the art would recognize that it would improve similar systems
and methods in the same way. As the ’120 patent states “[a] person skilled in the art
will appreciate that the technique of removing all expired records while searching the
linked list can be expanded to include techniques whereby not necessarily all expired
records are removed, and that the decision regarding if and how many records to
delete can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663 patent’s
deletion decision procedure with Linux 1.2.13 would be nothing more than the
predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have combined the
’663 patent’s dynamic decision on whether to perform a deletion based on a systems

EXHIBIT D-8

Plaintiff’s Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1283558.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

load as taught by the ’663 patent and with Linux 1.2.13 and would have seen the
benefits of doing so. One such benefit, for example, is that the system would avoid
performing deletions when the system load exceeded a threshold.

Alternatively, it would also be obvious to combine Linux 1.2.13 with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based garbage
collection which dynamically determines how much garbage to collect. See generally,
Paul R. Wilson and Thomas G. Moher, Design of the Opportunistic Garbage
Collector, OOPSLA ’89 Proceedings, October 1-6, 1989; Paul R. Wilson,
Opportunistic Garbage Collection, ACM SIGPLAN Notices, Vol. 23, No. 12,
December 1988.

When a significant pause has been detected, a decision procedure is invoked to
decide whether to garbage collect, and how many generations to scavenge. The
fuller a generation is, the more likely it is to be scavenged; also, the longer the
pause that has been detected, the larger the scope of the garbage collection is
likely to be. Design of the Opportunistic Garbage Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide whether
to garbage collect. As long as the decision routine takes no more than a few
milliseconds to execute, it should not interfere with responsiveness. Since it is
only invoked at these times, it does not incur a continual run-time overhead.
Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume of
data allocated since the last scavenge, 2) how long it has been since the user has
had an opportunity to interact, and 3) the height of the stack relative to its average
height at reads since the last scavenge. If the product of the allocation and the

EXHIBIT D-8

Plaintiff’s Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1283558.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

compute time is high, and if the stack is low, the scavenge favorability measure is
high. If it is especially high, a multi-generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-bound
pause--the one that has just allocated the data that forced the collection. When the
opportunistic mechanism fails to find the end of a pause, it may still succeed by
default, embedding a scavenge pause within a larger pause. Design of the
Opportunistic Garbage Collector at 32.

As both Linux 1.2.13 and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood how to
use the Opportunistic Garbage Collection Articles’ dynamic decision on whether to
perform a deletion based on a system load in other hash table implementations such as
Linux 1.2.13. Moreover, one of ordinary skill in the art would recognize that it would
improve similar systems and methods in the same way. As the ’120 patent states “[a]
person skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques whereby
not necessarily all expired records are removed, and that the decision regarding if and
how many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision procedure
with Linux 1.2.13 would be nothing more than the predictable use of prior art
elements according to their established functions.

By way of further example, one of ordinary skill in the art would have combined the
Opportunistic Garbage Collection Articles’ dynamic decision on whether to perform a
deletion and how many generations to scavenge as taught by the Opportunistic
Garbage Collection Articles and with Linux 1.2.13 and would have seen the benefits
of doing so. One such benefit, for example, is that the system would only perform

EXHIBIT D-8

Plaintiff’s Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1283558.3

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.2.131

deletions when the system was not already too overloaded, thus preventing slowdown
of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to modify
the system disclosed in Linux 1.2.13 to dynamically determine the maximum number
of expired records to remove in the accessed linked list of records. It is a
fundamental concept in computer science and the relevant art that any variable or
parameter affecting any aspect of a system can be dynamically determined based on
information available to the system. One of ordinary skill in the art would have been
motivated to combine the system disclosed in Linux 1.2.13 with the fundamental
concept of dynamically determining the maximum number of expired records to
remove in an accessed linked list of records to solve a number of potential problems.
For example, the removal of expired records described in Linux 1.2.13 can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically determining the
maximum number to remove would limit the burden on the system and bound the
length of any real-time interruption to prevent delays in processing. Indeed, Nemes
concedes that such dynamic determination was obvious when he states in the ‘120
patent that “[a] person skilled in the art will appreciate that the technique of removing
all expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that the
decision regarding if and how many records to delete can be a dynamic one.” ‘120 at
7:10-15.

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

1. An information storage and
retrieval system, the system
comprising:

5. An information storage and
retrieval system, the system
comprising:

To the extent the preamble is limiting, Linux 1.3.51 discloses an “information storage
and retrieval system,” as claimed.

For example, route.c in Linux 1.3.51 includes fib_node and fib_zone structures that
are used to provide hashing with external chaining using one or more linked lists.
These structures are defined at lines 77-85, 104-112, and 114-117.

73 /*
74 * Forwarding Information Base definitions.
75 */
76
77 struct fib_node
78 {
79 struct fib_node *fib_next;
80 __u32 fib_dst;
81 unsigned long fib_use;
82 struct fib_info *fib_info;
83 short fib_metric;
84 unsigned char fib_tos;
85 };
86
87 /*
88 * This structure contains data shared by many of routes.
89 */
90
91 struct fib_info
92 {
93 struct fib_info *fib_next;

1 Publicly available as of December 27, 1995; available at http://www.kernel.org/pub/linux/kernel/v1.3/linux-1.3.51.tar.gz.

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

94 struct fib_info *fib_prev;
95 __u32 fib_gateway;
96 struct device *fib_dev;
97 int fib_refcnt;
98 unsigned long fib_window;
99 unsigned short fib_flags;
100 unsigned short fib_mtu;
101 unsigned short fib_irtt;
102 };
103
104 struct fib_zone
105 {
106 struct fib_zone *fz_next;
107 struct fib_node **fz_hash_table;
108 struct fib_node *fz_list;
109 int fz_nent;
110 int fz_logmask;
111 __u32 fz_mask;
112 };
113
114 static struct fib_zone *fib_zones[33];
115 static struct fib_zone *fib_zone_list;
116 static struct fib_node *fib_loopback = NULL;
117 static struct fib_info *fib_info_list;

[1a] a linked list to store and
provide access to records
stored in a memory of the
system, at least some of the
records automatically

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an external
chaining technique to store

Linux 1.3.51 discloses “a linked list to store and provide access to records stored in a
memory of the system, at least some of the records automatically expiring” and “a
hashing means to provide access to records stored in a memory of the system and
using an external chaining technique to store the records with same hash address, at
least some of the records automatically expiring.” For example, the fib_node

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

expiring, the records with same hash

address, at least some of the
records automatically
expiring,

structure defined at lines 77-85 of route.c includes a pointer to the next fib_node
structure in a linked list (see line 79), which is used in the context of hashing with
external chaining.

The fib_zone structure can contain a pointer to a hash table (see line 107), which uses
external chaining.

An example of how these structures operate can be seen in the fib_add_1() function in
route.c, which creates a hash table. The fz variable (e.g., at line 624) represents a
fib_zone structure, which, as described above, includes a hash table, which is a pointer
to a pointer to a fig_node element. The fib_node structure is a linked list, as shown by
the fact that each element contains a pointer to the next element in the list (i.e.,
fib_next).

620 /*
621 * If zone overgrows RTZ_HASHING_LIMIT, create hash table.
622 */
623
624 if (fz->fz_nent >= RTZ_HASHING_LIMIT && !fz->fz_hash_table &&
logmask<32)
625 {
626 struct fib_node ** ht;
627 #if RT_CACHE_DEBUG
628 printk("fib_add_1: hashing for zone %d started\n", logmask);
629 #endif
630 ht = kmalloc(RTZ_HASH_DIVISOR*sizeof(struct rtable*), GFP_KERNEL);
631
632 if (ht)
633 {
634 memset(ht, 0, RTZ_HASH_DIVISOR*sizeof(struct fib_node*));

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

635 cli();
636 f1 = fz->fz_list;
637 while (f1)
638 {
639 struct fib_node * next;
640 unsigned hash = fz_hash_code(f1->fib_dst, logmask);
641 next = f1->fib_next;
642 f1->fib_next = ht[hash];
643 ht[hash] = f1;
644 f1 = next;
645 }
646 fz->fz_list = NULL;
647 fz->fz_hash_table = ht;
648 sti();
649 }
650 }
651
652 if (fz->fz_hash_table)
653 fp = &fz->fz_hash_table[fz_hash_code(dst, logmask)];
654 else
655 fp = &fz->fz_list;
656
657 /*
658 * Scan list to find the first route with the same destination
659 */
660 while ((f1 = *fp) != NULL)
661 {
662 if (f1->fib_dst == dst)
663 break;
664 fp = &f1->fib_next;

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

665 }
666

An example of code that meets the “automatically expiring” limitation can be found at
lines 670-82. For example, a route with the same destination and less than or equal
metric value has automatically expired, and, according to the comment at lines 675-
77, is purged.

667 /*
668 * Find route with the same destination and less (or equal) metric.
669 */
670 while ((f1 = *fp) != NULL && f1->fib_dst == dst)
671 {
672 if (f1->fib_metric >= metric)
673 break;
674 /*
675 * Record route with the same destination and gateway,
676 * but less metric. We'll delete it
677 * after instantiation of new route.
678 */
679 if (f1->fib_info->fib_gateway == gw)
680 dup_fp = fp;
681 fp = &f1->fib_next;
682 }

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of records
having the same hash address,

Linux 1.3.51 discloses “a record search means utilizing a search key to access the
linked list” and “a record search means utilizing a search key to access a linked list
of records having the same hash address.”

For example, the fib_add_1() function is an example of a record search means, as

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

claimed. An example of how this uses a “search key” can be found at lines 652-53.
This code uses a hash value to find the address of the first element of a linked list
associated with a particular hash value.

652 if (fz->fz_hash_table)
653 fp = &fz->fz_hash_table[fz_hash_code(dst, logmask)];

[1c] the record search means
including a means for
identifying and removing at
least some of the expired ones
of the records from the linked
list when the linked list is
accessed, and

[5c] the record search means
including means for
identifying and removing at
least some expired ones of the
records from the linked list of
records when the linked list is
accessed, and

Linux 1.3.51 discloses “the record search means including a means for identifying
and removing at least some of the expired ones of the records from the linked list
when the linked list is accessed” and “the record search means including means for
identifying and removing at least some expired ones of the records from the linked
list of records when the linked list is accessed,” as claimed.

For example, the code at lines 670-82 of route.c identifies a record in the linked list
corresponding to a route with the same destination and less or equal metric. Thus,
it accesses the linked list and identifies automatically expiring records.

667 /*
668 * Find route with the same destination and less (or equal) metric.
669 */
670 while ((f1 = *fp) != NULL && f1->fib_dst == dst)
671 {
672 if (f1->fib_metric >= metric)
673 break;
674 /*
675 * Record route with the same destination and gateway,
676 * but less metric. We'll delete it
677 * after instantiation of new route.
678 */
679 if (f1->fib_info->fib_gateway == gw)

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

680 dup_fp = fp;
681 fp = &f1->fib_next;
682 }

Code within Linux 1.3.51 also performs the “removing” step when the list is accessed.
An example of this can be found at lines 707-732 of route.c. For example, the if
statement at line 718 identifies expired records, and if an expired record is found then
line 721 moves the pointer so that record is no longer in the list. Depending on claim
construction, this is the “removing” step. Also, the call to fib_free_node() at line 727
frees the memory used by the record. Depending on claim construction, this is the
“removing” step. Both steps “identifying and removing” are performed within the
while loop that starts at line 716 which accesses the list.

707 /*
708 * Delete route with the same destination and gateway.
709 * Note that we should have at most one such route.
710 */
711 if (dup_fp)
712 fp = dup_fp;
713 else
714 fp = &f->fib_next;
715
716 while ((f1 = *fp) != NULL && f1->fib_dst == dst)
717 {
718 if (f1->fib_info->fib_gateway == gw)
719 {
720 cli();
721 *fp = f1->fib_next;
722 if (fib_loopback == f1)
723 fib_loopback = NULL;

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

724 sti();
725 ip_netlink_msg(RTMSG_DELROUTE, dst, gw, mask, flags,
726 metric, f1->fib_info->fib_dev->name);
727 fib_free_node(f1);
728 fz->fz_nent--;
729 break;
730 }
731 fp = &f1->fib_next;
732 }

The fib_free_node() function is found at lines 185-203 in route.c. As shown below,
fib_free_node() moves pointers (lines 193-98) and calls kfree_s() to mark the memory
as available (line 200).

181 /*
182 * Free FIB node.
183 */
184
185 static void fib_free_node(struct fib_node * f)
186 {
187 struct fib_info * fi = f->fib_info;
188 if (!--fi->fib_refcnt)
189 {
190 #if RT_CACHE_DEBUG >= 2
191 printk("fib_free_node: fi %08x/%s is free\n", fi-
>fib_gateway, fi->fib_dev->name);
192 #endif
193 if (fi->fib_next)
194 fi->fib_next->fib_prev = fi->fib_prev;
195 if (fi->fib_prev)

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

196 fi->fib_prev->fib_next = fi->fib_next;
197 if (fi == fib_info_list)
198 fib_info_list = fi->fib_next;
199 }
200 kfree_s(f, sizeof(struct fib_node));
201 }

The malloc.h file in Linux 1.3.51 defines kfree_s() as follows:

9 #define kfree_s(a,b) kfree(a)

The kmalloc.c file in Linux 1.3.51 defines kfree() as follows:

276 void kfree(void *ptr)
277 {
278 int size;
279 unsigned long flags;
280 int order;
281 register struct block_header *p;
282 struct page_descriptor *page, **pg;
283
284 if (!ptr)
285 return;
286 p = ((struct block_header *) ptr) - 1;
287 page = PAGE_DESC(p);
288 order = page->order;
289 pg = &sizes[order].firstfree;
290 if (p->bh_flags == MF_DMA) {
291 p->bh_flags = MF_USED;
292 pg = &sizes[order].dmafree;

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

293 }
294
295 if ((order < 0) ||
296 (order >= sizeof(sizes) / sizeof(sizes[0])) ||
297 (((long) (page->next)) & ~PAGE_MASK) ||
298 (p->bh_flags != MF_USED)) {
299 printk("kfree of non-kmalloced memory: %p, next= %p,
order=%d\n",
300 p, page->next, page->order);
301 return;
302 }
303 size = p->bh_length;
304 p->bh_flags = MF_FREE; /* As of now this block is officially free */
305 save_flags(flags);
306 cli();
307 p->bh_next = page->firstfree;
308 page->firstfree = p;
309 page->nfree++;
310
311 if (page->nfree == 1) {
312 /* Page went from full to one free block: put it on the freelist. */
313 page->next = *pg;
314 *pg = page;
315 }
316 /* If page is completely free, free it */
317 if (page->nfree == NBLOCKS(order)) {
318 for (;;) {
319 struct page_descriptor *tmp = *pg;
320 if (!tmp) {
321 printk("Ooops. page %p doesn't show on freelist.\n",

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

page);
322 break;
323 }
324 if (tmp == page) {
325 *pg = page->next;
326 break;
327 }
328 pg = &tmp->next;
329 }
330 sizes[order].npages--;
331 free_pages((long) page, sizes[order].gfporder);
332 }
333 sizes[order].nfrees++;
334 sizes[order].nbytesmalloced -= size;
335 restore_flags(flags);
336 }

[1d] means, utilizing the
record search means, for
accessing the linked list and,
at the same time, removing at
least some of the expired ones
of the records in the linked
list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same time,
removing at least some
expired ones of the records in
the accessed linked list of
records.

Linux 1.3.51 discloses “means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of the
records in the linked list “ and “meals [sic “means”], utilizing the record search
means, for inserting, retrieving, and deleting records from the system and, at the
same time, removing at least some expired ones of the records in the accessed linked
list of records,” as claimed.

For example, functions such as rt_add() call fib_add_1()—e.g., at line 1310 of
route.c below. Such functions are examples of “means utilizing the record search
means,” as claimed.

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

1303 static void rt_add(short flags, __u32 dst, __u32 mask,
1304 __u32 gw, struct device *dev, unsigned short mss,
1305 unsigned long window, unsigned short irtt, short metric)
1306 {
1307 while (ip_rt_lock)
1308 sleep_on(&rt_wait);
1309 ip_rt_fast_lock();
1310 fib_add_1(flags, dst, mask, gw, dev, mss, window, irtt, metric);
1311 ip_rt_unlock();
1312 wake_up(&rt_wait);
1313 }

The fib_add_1() function is an example of code that meets the “inserting” limitations.
For example, see the code below from route.c.

694 /*
695 * Insert new entry to the list.
696 */
697
698 cli();
699 f->fib_next = f1;
700 *fp = f;
701 if (!fib_loopback && (fi->fib_dev->flags & IFF_LOOPBACK))
702 fib_loopback = f;
703 sti();
704 fz->fz_nent++;
705 ip_netlink_msg(RTMSG_NEWROUTE, dst, gw, mask, flags, metric, fi-
>fib_dev->name);

The fib_add_l() function also is an example of code that meets the “accessing,”

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

“retrieving” and “deleting” limitations at the same time as “removing.” The while
loop beginning at line 716 is an example of code that meets the “retrieving” and
“accessing” claim limitations. In order to iterate through the linked list, the while loop
must retrieve and access each element of the list.

Examples of code meeting the “removing” and “deleting” limitations can be found at
lines 721 and 727. Line 721 moves the pointer to the next element. Depending on
claim construction, this is the “removing” step. Alternatively, depending on claim
construction, this is the “deleting” step, and the call to fib_free_node() is the
“removing” step. The if statement at line 718 is an example of identifying expired
records.

Both of these steps (identifying and removing) take place when the list is accessed.
For example, the while loops above iterate through the elements of the list in order to
test each element to determine whether it should be removed. In order to identify the
elements, the list must be accessed

707 /*
708 * Delete route with the same destination and gateway.
709 * Note that we should have at most one such route.
710 */
711 if (dup_fp)
712 fp = dup_fp;
713 else
714 fp = &f->fib_next;
715
716 while ((f1 = *fp) != NULL && f1->fib_dst == dst)
717 {
718 if (f1->fib_info->fib_gateway == gw)

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

719 {
720 cli();
721 *fp = f1->fib_next;
722 if (fib_loopback == f1)
723 fib_loopback = NULL;
724 sti();
725 ip_netlink_msg(RTMSG_DELROUTE, dst, gw, mask, flags,
726 metric, f1->fib_info->fib_dev->name);
727 fib_free_node(f1);
728 fz->fz_nent--;
729 break;
730 }
731 fp = &f1->fib_next;
732 }

2. The information storage
and retrieval system
according to claim 1 further
including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed linked
list of records.

6. The information storage
and retrieval system
according to claim 5 further
including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed linked
list of records.

Linux 1.3.51 includes code that meets the “dynamically determining maximum
number for the record search means to remove in the accessed linked list of records”
claim limitation.

For example, code in the fib_add_1() function in route.c determines the maximum
number of records to remove. As the comment at lines 708-09 states, there should be
no more than one route removed. Thus, the maximum number to remove is either 0 or
1. The if statement at line 718 dynamically determines whether that number is 0 or 1.
707 /*
708 * Delete route with the same destination and gateway.
709 * Note that we should have at most one such route.
710 */
711 if (dup_fp)
712 fp = dup_fp;
713 else

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

714 fp = &f->fib_next;
715
716 while ((f1 = *fp) != NULL && f1->fib_dst == dst)
717 {
718 if (f1->fib_info->fib_gateway == gw)
719 {
720 cli();
721 *fp = f1->fib_next;
722 if (fib_loopback == f1)
723 fib_loopback = NULL;
724 sti();
725 ip_netlink_msg(RTMSG_DELROUTE, dst, gw, mask, flags,
726 metric, f1->fib_info->fib_dev->name);
727 fib_free_node(f1);
728 fz->fz_nent--;
729 break;
730 }
731 fp = &f1->fib_next;
732 }

Further, Linux 1.3.51 combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses an information storage and
retrieval system further including means for dynamically determining maximum
number for the record search means to remove in the accessed linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system, which
dynamically determines how many records to sweep/remove upon each allocation.
Disclosure of these claim elements in Dirks is clearly shown in Exhibit B-2, which is
hereby incorporated by reference in its entirety.

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

As summarized in Dirks, each time a VSID is assigned from the free list to a new
application or thread, a fixed number of entries in the page table are scanned to
determine whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is removed from
the page table. After all of the entries in the page table have been examined in this
manner, the VSIDs in the recycle list can be transferred to the free list, since all of
their associated page table entries will have been removed. This approach thereby
guarantees that a predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at once. U.S.
Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG to determine
whether a recycle sweep is currently in progress (Step 20). If there is no sweep in
progress, i.e. RFLG is not equal to one, a determination is made whether a sweep
should be initiated. This is done by checking whether the inactive list is full, i.e.
whether it contains x entries (Step 22). If the number of entries I on the inactive list is
less than x, no further action is taken, and processing control returns to the operating
system (Step 24). If, however, the inactive list is full at this time, the flag RFLG is set
(Step 26), the VSIDs on the inactive list are transferred to the recycle list, and an
index n is reset to 1 (Step 28). The system then sweeps a predetermined number of
page table entries PTi on the page table, to detect whether any of them are inactive, i.e.
their associated VSID is on the recycle list (Step 30). The predetermined number of
entries that are swept is identified as k, where:

 Id. at 8:12-30.

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

Dirks discloses that any approach can be employed to determine the number of entries
to be examined during each step of the sweeping process. Id. at 7:37-40. As stated in
Dirks:

Any other suitable approach can be employed to determine the number of entries to be
examined during each step of the sweeping process. In this regard, it is not necessary
that the number of examined entries be fixed for each step. Rather, it might vary from
one step to the next. The only criterion is that the number of entries examined on each
step be such that all entries in the page table are examined in a determinable amount
of time or by the occurrence of a certain event, e.g. by the time the list of free VSIDs
is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of records
to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Linux 1.3.51 and Dirks relate to deletion of aged records upon the allocation
of a new incoming record, one of ordinary skill in the art would have understood how
to use Dirks’ dynamic decision making process of determining the maximum number
of records to sweep/remove in other hash tables implementations such as Linux
1.3.51. Moreover, one of ordinary skill in the art would recognize that it would
improve similar systems and methods in the same way. As the ’120 patent states “[a]
person skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques whereby
not necessarily all expired records are removed, and that the decision regarding if and
how many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with Linux 1.3.51 nothing more than
the predictable use of prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have combined
Dirks’ dynamic determination of the suitable number of entries to examine during

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

each step of the sweeping process with Linux 1.3.51 and would have seen the benefits
of doing so. One possible benefit, for example, is saving the system from performing
sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Linux 1.3.51 with the means for
dynamically determining maximum number for the record search means to remove in
the accessed linked list of records disclosed by Thatte. Thatte, discloses a system and
method using hash tables and/or linked lists and further discloses means for
dynamically determining the maximum number for the record search means to remove
in the accessed linked list of records. The disclosure of these claim elements in Thatte
is clearly shown in the chart of Thatte, which is hereby incorporated by reference in
its entirety.

Moreover, one of ordinary skill in the art would recognize that these combinations
would improve the similar systems and methods in the same way. Additionally, one
of ordinary skill in the art would recognize that the result of combining Linux 1.3.51
with Thatte would be nothing more than the predictable use of prior art elements
according to their established functions. The resulting combination would include the
capability to determine the maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Linux 1.3.51
with Thatte and recognize the benefits of doing so. For example, the removal of
expired records described in Linux 1.3.51 can be burdensome on the system, adding to
the system’s load and slowing down the system’s processing. One of ordinary skill in
the art would recognize that combining Linux 1.3.51 with the teachings of Thatte
would solve this problem by dynamically determining how many records to delete
based on, among other things, the system load. Moreover, the '120 patent discloses
that "[a] person skilled in the art will appreciate that the technique of removing all
expired records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

regarding if and how many records to delete can be a dynamic one." '120 at 7:10-15.
Thus, the '120 patent provides motivations to combine Linux 1.3.51 with Thatte.

Alternatively, it would also be obvious to combine Linux 1.3.51with the ’663 patent.
Disclosure of these claim elements in the ’663 patent is clearly shown in the chart of
the ‘663 patent, which is hereby incorporated by reference in its entirety. As
summarized in the ’663 patent:

during normal times when the load on the storage system is not excessive, a non-
contaminating but slow deletion of records is used. This slow, non-contaminating
deletion involves closing the collision-resolution chain of locations by moving a
record from a later position in the chain into the position of the record to be deleted.
This leaves no deleted record locations in the storage space to slow down future
searches. U.S. Patent 4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).
In times of heavy use, when deletions must be done rapidly and no time is available
for decontamination, the record is simply marked as “deleted” and left in place. Later
non-contaminating probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by moving records in the
chain as described above. Id. at 2:35-41.
This hybrid hashing technique has the decided advantage of automatically eliminating
contamination caused by the fast-secure deletion procedure when the slower, non-
contaminating deletion is used when the load on the system is at lower levels. Id. at
2:42-46.
This hybrid deletion is shown in Figure 5.

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load to
determine if the system load is greater than a threshold. If the system load is greater
than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64, Figure 5. On
the other hand, if the system load is less than the threshold, then a slow-non-
contaminating delete 53 is used. Id. The fast-secure delete 52 does not actually delete
records, rather it marks records as deleted. Id. at 8:1-33, Figure 7. These records are

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

then actually deleted by a subsequent slow-non-contaminating delete 53. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines a
maximum number of records to remove. See id. at 6:40-64, Figure 5. If the fast-secure
delete 52 is used, then maximum number of records is zero because records are not
deleted they are only marked. Id. at 8:1-33, Figure 7. If the slow-non-contaminating
delete 53 is used, then the maximum number of records to remove is all of the
contaminated records in the bucket. Id. at 6:65-7:68, Figures 6, 6A, 6B.

As both Linux 1.3.51 and the ’663 patent relate to deletion of records from hash tables
using external chaining, one of ordinary skill in the art would understood how to use
the ’663 patent’s dynamic decision on whether to perform a deletion based on a
systems load in other hash table implementations such as that described in Linux
1.3.51. Moreover, one of ordinary skill in the art would recognize that it would
improve similar systems and methods in the same way. As the ’120 patent states “[a]
person skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques whereby
not necessarily all expired records are removed, and that the decision regarding if and
how many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with Linux 1.3.51 would be
nothing more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have combined the
’663 patent’s dynamic decision on whether to perform a deletion based on a systems
load as taught by the ’663 patent and with Linux 1.3.51 and would have seen the
benefits of doing so. One such benefit, for example, is that the system would avoid
performing deletions when the system load exceeded a threshold.

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

Alternatively, it would also be obvious to combine Linux 1.3.51 with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based garbage
collection which dynamically determines how much garbage to collect. See generally,
Paul R. Wilson and Thomas G. Moher, Design of the Opportunistic Garbage
Collector, OOPSLA ’89 Proceedings, October 1-6, 1989; Paul R. Wilson,
Opportunistic Garbage Collection, ACM SIGPLAN Notices, Vol. 23, No. 12,
December 1988.

When a significant pause has been detected, a decision procedure is invoked to decide
whether to garbage collect, and how many generations to scavenge. The fuller a
generation is, the more likely it is to be scavenged; also, the longer the pause that has
been detected, the larger the scope of the garbage collection is likely to be. Design of
the Opportunistic Garbage Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide whether to
garbage collect. As long as the decision routine takes no more than a few milliseconds
to execute, it should not interfere with responsiveness. Since it is only invoked at
these times, it does not incur a continual run-time overhead. Opportunistic Garbage
Collection at 100.

This decision routine should take several things into account: 1) the volume of data
allocated since the last scavenge, 2) how long it has been since the user has had an
opportunity to interact, and 3) the height of the stack relative to its average height at
reads since the last scavenge. If the product of the allocation and the compute time is
high, and if the stack is low, the scavenge favorability measure is high. If it is
especially high, a multi-generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a generation’s
space, it is likely to happen during a significant compute-bound pause--the one that

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

has just allocated the data that forced the collection. When the opportunistic
mechanism fails to find the end of a pause, it may still succeed by default, embedding
a scavenge pause within a larger pause. Design of the Opportunistic Garbage
Collector at 32.

As both Linux 1.3.51 and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood how to
use the Opportunistic Garbage Collection Articles’ dynamic decision on whether to
perform a deletion based on a system load in other hash table implementations such as
Linux 1.3.51. Moreover, one of ordinary skill in the art would recognize that it would
improve similar systems and methods in the same way. As the ’120 patent states “[a]
person skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques whereby
not necessarily all expired records are removed, and that the decision regarding if and
how many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision procedure
with Linux 1.3.51 would be nothing more than the predictable use of prior art
elements according to their established functions.

By way of further example, one of ordinary skill in the art would have combined the
Opportunistic Garbage Collection Articles’ dynamic decision on whether to perform a
deletion and how many generations to scavenge as taught by the Opportunistic
Garbage Collection Articles and with Linux 1.3.51 and would have seen the benefits
of doing so. One such benefit, for example, is preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to modify
the system disclosed in Linux 1.3.51 to dynamically determine the maximum number
of expired records to remove in the accessed linked list of records. It is a
fundamental concept in computer science and the relevant art that any variable or
parameter affecting any aspect of a system can be dynamically determined based on

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

information available to the system. One of ordinary skill in the art would have been
motivated to combine the system disclosed in Linux 1.3.51 with the fundamental
concept of dynamically determining the maximum number of expired records to
remove in an accessed linked list of records to solve a number of potential problems.
For example, the removal of expired records described in Linux 1.3.51can be
burdensome on the system, adding to the system’s load and slowing down the
system’s processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically determining the
maximum number to remove would limit the burden on the system and bound the
length of any real-time interruption to prevent delays in processing. Indeed, Nemes
concedes that such dynamic determination was obvious when he states in the ‘120
patent that “[a] person skilled in the art will appreciate that the technique of removing
all expired records while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are removed, and that the
decision regarding if and how many records to delete can be a dynamic one.” ‘120 at
7:10-15.

3. A method for storing and
retrieving information records
using a linked list to store and
provide access to the records,
at least some of the records
automatically expiring, the
method comprising the steps
of:

7. A method for storing and
retrieving information records
using a hashing technique to
provide access to the records
and using an external
chaining technique to store
the records with same hash
address, at least some of the
records automatically
expiring, the method
comprising the steps of:

To the extent the preamble is a limitation, Linux 1.3.51 discloses a “method for
storing and retrieving information records using a linked list to store and provide
access to the records, at least some of the records automatically expiring” and a
“method for storing and retrieving information records using a hashing technique to
provide access to the records and using an external chaining technique to store the
records with same hash address, at least some of the records automatically expiring,”
as claimed.

For example, route.c in Linux 1.3.51 includes fib_node and fib_zone structures that
are used to provide hashing with external chaining using one or more linked lists.
These structures are defined at lines 77-85, 104-112, and 114-117.

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

73 /*
74 * Forwarding Information Base definitions.
75 */
76
77 struct fib_node
78 {
79 struct fib_node *fib_next;
80 __u32 fib_dst;
81 unsigned long fib_use;
82 struct fib_info *fib_info;
83 short fib_metric;
84 unsigned char fib_tos;
85 };
86
87 /*
88 * This structure contains data shared by many of routes.
89 */
90
91 struct fib_info
92 {
93 struct fib_info *fib_next;
94 struct fib_info *fib_prev;
95 __u32 fib_gateway;
96 struct device *fib_dev;
97 int fib_refcnt;
98 unsigned long fib_window;
99 unsigned short fib_flags;
100 unsigned short fib_mtu;
101 unsigned short fib_irtt;

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

102 };
103
104 struct fib_zone
105 {
106 struct fib_zone *fz_next;
107 struct fib_node **fz_hash_table;
108 struct fib_node *fz_list;
109 int fz_nent;
110 int fz_logmask;
111 __u32 fz_mask;
112 };
113
114 static struct fib_zone *fib_zones[33];
115 static struct fib_zone *fib_zone_list;
116 static struct fib_node *fib_loopback = NULL;
117 static struct fib_info *fib_info_list;

An example of code disclosing a hashing technique as claimed can be found in
fib_del_1() in route.c, such as at lines 415 and 429. As shown in the discussion of the
fib_node and fib_zone structures, this hashing technique uses external chaining,
wherein a linked list is associated with elements having the same hash value.

409 if (!mask)
410 {
411 for (fz=fib_zone_list; fz; fz = fz->fz_next)
412 {
413 int tmp;
414 if (fz->fz_hash_table)
415 fp = &fz->fz_hash_table[fz_hash_code(dst, fz-
>fz_logmask)];

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

416 else
417 fp = &fz->fz_list;
418
419 tmp = fib_del_list(fp, dst, dev, gtw, flags, metric, mask);
420 fz->fz_nent -= tmp;
421 found += tmp;
422 }
423 }
424 else
425 {
426 if ((fz = fib_zones[rt_logmask(mask)]) != NULL)
427 {
428 if (fz->fz_hash_table)
429 fp = &fz->fz_hash_table[fz_hash_code(dst, fz-
>fz_logmask)];
430 else
431 fp = &fz->fz_list;
432
433 found = fib_del_list(fp, dst, dev, gtw, flags, metric, mask);
434 fz->fz_nent -= found;
435 }
436 }

Linux 1.3.51 also includes examples of automatically expiring records. For example,
as shown in the comments at line 1286, rt_del() is only called by user processes. The
condition that triggers the user process to call rt_del is an external condition. Note
that in line 1297, rt_del() calls fib_del_1() to delete the expired records passed to it by
the user program that called rt_del().

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

1286 * rt_{del|add|flush} called only from USER process. Waiting is OK.
1287 */
1288
1289 static int rt_del(__u32 dst, __u32 mask,
1290 struct device * dev, __u32 gtw, short rt_flags, short metric)
1291 {
1292 int retval;
1293
1294 while (ip_rt_lock)
1295 sleep_on(&rt_wait);
1296 ip_rt_fast_lock();
1297 retval = fib_del_1(dst, mask, dev, gtw, rt_flags, metric);
1298 ip_rt_unlock();
1299 wake_up(&rt_wait);
1300 return retval;
1301 }

[3a] accessing the linked list
of records,

[7a] accessing a linked list of
records having same hash
address,

Linux 1.3.51 discloses “accessing the linked list of records” and “accessing a linked
list of records having same hash address,” as claimed. For example, line 415 and
429 each identify the location of a linked list of records pointed to by the hash table
by calling the fz_hash_code() function.

409 if (!mask)
410 {
411 for (fz=fib_zone_list; fz; fz = fz->fz_next)
412 {
413 int tmp;

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

414 if (fz->fz_hash_table)
415 fp = &fz->fz_hash_table[fz_hash_code(dst, fz-
>fz_logmask)];
416 else
417 fp = &fz->fz_list;
418
419 tmp = fib_del_list(fp, dst, dev, gtw, flags, metric, mask);
420 fz->fz_nent -= tmp;
421 found += tmp;
422 }
423 }
424 else
425 {
426 if ((fz = fib_zones[rt_logmask(mask)]) != NULL)
427 {
428 if (fz->fz_hash_table)
429 fp = &fz->fz_hash_table[fz_hash_code(dst, fz-
>fz_logmask)];
430 else
431 fp = &fz->fz_list;
432
433 found = fib_del_list(fp, dst, dev, gtw, flags, metric, mask);
434 fz->fz_nent -= found;
435 }
436 }

[3b] identifying at least some
of the automatically expired

[7b] identifying at least some
of the automatically expired

Linux 1.3.51 includes the step of “identifying at least some of the automatically
expired ones of the records,” as claimed. For example, fib_del_1() function calls

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

ones of the records, and ones of the records, fib_del_list() at lines 419 and 433 to perform the identifying, removing, retrieving,

and deleting functions.

409 if (!mask)
410 {
411 for (fz=fib_zone_list; fz; fz = fz->fz_next)
412 {
413 int tmp;
414 if (fz->fz_hash_table)
415 fp = &fz->fz_hash_table[fz_hash_code(dst, fz-
>fz_logmask)];
416 else
417 fp = &fz->fz_list;
418
419 tmp = fib_del_list(fp, dst, dev, gtw, flags, metric, mask);
420 fz->fz_nent -= tmp;
421 found += tmp;
422 }
423 }
424 else
425 {
426 if ((fz = fib_zones[rt_logmask(mask)]) != NULL)
427 {
428 if (fz->fz_hash_table)
429 fp = &fz->fz_hash_table[fz_hash_code(dst, fz-
>fz_logmask)];
430 else
431 fp = &fz->fz_list;

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

432
433 found = fib_del_list(fp, dst, dev, gtw, flags, metric, mask);
434 fz->fz_nent -= found;
435 }
436 }

The fib_del_list() function is also found in route.c in Linux 1.3.51. The while loop
beginning at line 373 in fib_del_list() iterates through the linked list and identifies the
elements. The elements are “automatically expired” because, for example, the user
program that called rt_del() determined that the elements needed to be removed.
Then, rt_del() called fib_del_1(), which in turn called fib_del_list() to remove the
automatically expired records.

367 static int fib_del_list(struct fib_node **fp, __u32 dst,
368 struct device * dev, __u32 gtw, short flags, short metric, __u32 mask)
369 {
370 struct fib_node *f;
371 int found=0;
372
373 while((f = *fp) != NULL)
374 {
375 struct fib_info * fi = f->fib_info;
376
377 /*
378 * Make sure the destination and netmask match.
379 * metric, gateway and device are also checked
380 * if they were specified.
381 */

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

382 if (f->fib_dst != dst ||
383 (gtw && fi->fib_gateway != gtw) ||
384 (metric >= 0 && f->fib_metric != metric) ||
385 (dev && fi->fib_dev != dev))
386 {
387 fp = &f->fib_next;
388 continue;
389 }
390 cli();
391 *fp = f->fib_next;
392 if (fib_loopback == f)
393 fib_loopback = NULL;
394 sti();
395 ip_netlink_msg(RTMSG_DELROUTE, dst, gtw, mask, flags, metric,
fi->fib_dev->name);
396 fib_free_node(f);
397 found++;
398 }
399 return found;
400 }

[3c] removing at least some
of the automatically expired
records from the linked list
when the linked list is
accessed.

[7c] removing at least some
of the automatically expired
records from the linked list
when the linked list is
accessed, and

Linux 1.3.51 includes the step of “removing at least some of the automatically
expired records from the linked list when the linked list is accessed,” as claimed. For
example, the while loop beginning at line 373 access the linked list. The if statement
at lines 382-89 causes the loop to move to the next element if there is no match. If
there is a match, lines 391 and/or 396 meet the “removing” limitation, depending on
claim construction. The “removing” takes place when the linked list is accessed. For
example, the commands are executed within a while loop in the fib_del_list()
function.

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

367 static int fib_del_list(struct fib_node **fp, __u32 dst,
368 struct device * dev, __u32 gtw, short flags, short metric, __u32 mask)
369 {
370 struct fib_node *f;
371 int found=0;
372
373 while((f = *fp) != NULL)
374 {
375 struct fib_info * fi = f->fib_info;
376
377 /*
378 * Make sure the destination and netmask match.
379 * metric, gateway and device are also checked
380 * if they were specified.
381 */
382 if (f->fib_dst != dst ||
383 (gtw && fi->fib_gateway != gtw) ||
384 (metric >= 0 && f->fib_metric != metric) ||
385 (dev && fi->fib_dev != dev))
386 {
387 fp = &f->fib_next;
388 continue;
389 }
390 cli();
391 *fp = f->fib_next;
392 if (fib_loopback == f)
393 fib_loopback = NULL;

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

394 sti();
395 ip_netlink_msg(RTMSG_DELROUTE, dst, gtw, mask, flags, metric,
fi->fib_dev->name);
396 fib_free_node(f);
397 found++;
398 }
399 return found;
400 }

 [7d] inserting, retrieving or
deleting one of the records
from the system following the
step of removing.

Linux 1.3.51 includes the step of “inserting, retrieving or deleting one of the records
from the system following the step of removing,” as claimed.

For example, depending on claim construction, the code at line 391 meets the
“removing” limitation, and the code at 396 meets the “deleting” limitation. And
because line 396 follows line 391, the deleting takes place “following the step of
removing” as claimed.

As another example, depending on claim construction, line 396 constitutes
“removing,” then when control passes back to the while loop at line 373, that code
performs the “retrieving” step. Because this takes place after line 396 is executed, the
“retrieving” step takes place “following the step of removing,” as claimed.

367 static int fib_del_list(struct fib_node **fp, __u32 dst,
368 struct device * dev, __u32 gtw, short flags, short metric, __u32 mask)
369 {
370 struct fib_node *f;
371 int found=0;
372
373 while((f = *fp) != NULL)

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

374 {
375 struct fib_info * fi = f->fib_info;
376
377 /*
378 * Make sure the destination and netmask match.
379 * metric, gateway and device are also checked
380 * if they were specified.
381 */
382 if (f->fib_dst != dst ||
383 (gtw && fi->fib_gateway != gtw) ||
384 (metric >= 0 && f->fib_metric != metric) ||
385 (dev && fi->fib_dev != dev))
386 {
387 fp = &f->fib_next;
388 continue;
389 }
390 cli();
391 *fp = f->fib_next;
392 if (fib_loopback == f)
393 fib_loopback = NULL;
394 sti();
395 ip_netlink_msg(RTMSG_DELROUTE, dst, gtw, mask, flags, metric,
fi->fib_dev->name);
396 fib_free_node(f);
397 found++;
398 }
399 return found;
400 }

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

The fib_free_node() function called by fib_del_list() is found at lines 185-203 in
route.c. As shown below, fib_free_node() moves pointers (lines 193-98) and calls
kfree_s() to mark the memory as available (line 200). For example, depending on
claim construction, code in fib_free_node() meets the “removing” limitation and the
code in kfree() meets the “deleting” limitation.

181 /*
182 * Free FIB node.
183 */
184
185 static void fib_free_node(struct fib_node * f)
186 {
187 struct fib_info * fi = f->fib_info;
188 if (!--fi->fib_refcnt)
189 {
190 #if RT_CACHE_DEBUG >= 2
191 printk("fib_free_node: fi %08x/%s is free\n", fi-
>fib_gateway, fi->fib_dev->name);
192 #endif
193 if (fi->fib_next)
194 fi->fib_next->fib_prev = fi->fib_prev;
195 if (fi->fib_prev)
196 fi->fib_prev->fib_next = fi->fib_next;
197 if (fi == fib_info_list)
198 fib_info_list = fi->fib_next;
199 }
200 kfree_s(f, sizeof(struct fib_node));
201 }

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

The malloc.h file in Linux 1.3.51 defines kfree_s() as follows:

9 #define kfree_s(a,b) kfree(a)

The kmalloc.c file in Linux 1.3.51 defines kfree() as follows:

276 void kfree(void *ptr)
277 {
278 int size;
279 unsigned long flags;
280 int order;
281 register struct block_header *p;
282 struct page_descriptor *page, **pg;
283
284 if (!ptr)
285 return;
286 p = ((struct block_header *) ptr) - 1;
287 page = PAGE_DESC(p);
288 order = page->order;
289 pg = &sizes[order].firstfree;
290 if (p->bh_flags == MF_DMA) {
291 p->bh_flags = MF_USED;
292 pg = &sizes[order].dmafree;
293 }
294
295 if ((order < 0) ||
296 (order >= sizeof(sizes) / sizeof(sizes[0])) ||
297 (((long) (page->next)) & ~PAGE_MASK) ||
298 (p->bh_flags != MF_USED)) {
299 printk("kfree of non-kmalloced memory: %p, next= %p,

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

order=%d\n",
300 p, page->next, page->order);
301 return;
302 }
303 size = p->bh_length;
304 p->bh_flags = MF_FREE; /* As of now this block is officially free */
305 save_flags(flags);
306 cli();
307 p->bh_next = page->firstfree;
308 page->firstfree = p;
309 page->nfree++;
310
311 if (page->nfree == 1) {
312 /* Page went from full to one free block: put it on the freelist. */
313 page->next = *pg;
314 *pg = page;
315 }
316 /* If page is completely free, free it */
317 if (page->nfree == NBLOCKS(order)) {
318 for (;;) {
319 struct page_descriptor *tmp = *pg;
320 if (!tmp) {
321 printk("Ooops. page %p doesn't show on freelist.\n",
page);
322 break;
323 }
324 if (tmp == page) {
325 *pg = page->next;
326 break;
327 }

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

328 pg = &tmp->next;
329 }
330 sizes[order].npages--;
331 free_pages((long) page, sizes[order].gfporder);
332 }
333 sizes[order].nfrees++;
334 sizes[order].nbytesmalloced -= size;
335 restore_flags(flags);
336 }

4. The method according to
claim 3 further including the
step of dynamically
determining maximum
number of expired ones of the
records to remove when the
linked list is accessed.

8. The method according to
claim 7 further including the
step of dynamically
determining maximum
number of expired ones of the
records to remove when the
linked list is accessed.

Linux 1.3.51 includes code that meets the “dynamically determining maximum
number for the record search means to remove in the accessed linked list of records”
claim limitation.

For example, the while loop beginning at line 373 of route.c iterates through the
linked list passed in as **fp at line 367. Thus, when the fib_del_list() function is
called, the maximum number of expired records to remove is the length of the **fp
linked list. This number is dynamic because, if the if statement
beginning at line 382 evaluates TRUE for an element, the maximum number to delete
decreases by one.

367 static int fib_del_list(struct fib_node **fp, __u32 dst,
368 struct device * dev, __u32 gtw, short flags, short metric, __u32 mask)
369 {
370 struct fib_node *f;
371 int found=0;
372
373 while((f = *fp) != NULL)
374 {

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

375 struct fib_info * fi = f->fib_info;
376
377 /*
378 * Make sure the destination and netmask match.
379 * metric, gateway and device are also checked
380 * if they were specified.
381 */
382 if (f->fib_dst != dst ||
383 (gtw && fi->fib_gateway != gtw) ||
384 (metric >= 0 && f->fib_metric != metric) ||
385 (dev && fi->fib_dev != dev))
386 {
387 fp = &f->fib_next;
388 continue;
389 }
390 cli();
391 *fp = f->fib_next;
392 if (fib_loopback == f)
393 fib_loopback = NULL;
394 sti();
395 ip_netlink_msg(RTMSG_DELROUTE, dst, gtw, mask, flags, metric,
fi->fib_dev->name);
396 fib_free_node(f);
397 found++;
398 }
399 return found;
400 }

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

Further, Linux 1.3.51 combined with Dirks, Thatte, the ’663 patent, and/or the
Opportunistic Garbage Collection Articles discloses dynamically determining
maximum number of expired ones of the records to remove when the linked
list is accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in the
chart of Dirks, which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

42 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

43 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both Linux 1.3.51 and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as that described Linux 1.3.51. Moreover, one of
ordinary skill in the art would recognize that it would improve similar systems
and methods in the same way. As the ’120 patent states “[a] person skilled in
the art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining Dirks’ deletion decision procedure with Linux 1.3.51
would be nothing more than the predictable use of prior art elements according
to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with Linux 1.3.51 and
would have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in Linux 1.3.51 with the
means for dynamically determining maximum number for the record search

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

44 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

means to remove in the accessed linked list of records disclosed by Thatte.
Thatte, discloses a system and method using hash tables and/or linked lists and
further discloses means for dynamically determining the maximum number for
the record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining Linux 1.3.51 with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine Linux
1.3.51 with Thatte and recognized the benefits of doing so. For example, the
removal of expired records described in Linux 1.3.51can be burdensome on the
system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
Linux 1.3.51 with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine Linux 1.3.51

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

45 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

with Thatte.

Alternatively, it would also be obvious to combine Linux 1.3.51 with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

46 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

47 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both Linux 1.3.51 and the ’663 patent relate to deletion of records from
hash tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as Linux 1.3.51. Moreover, one of ordinary skill in the art would
recognize that it would improve similar systems and methods in the same way.
As the ’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

48 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

patent’s deletion decision procedure with Linux 1.3.51 would be nothing more
than the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with Linux 1.3.51 and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine Linux 1.3.51 with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

49 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both Linux 1.3.51 and the Opportunistic Garbage Collection Articles relate
to deletion of aged records, one of ordinary skill in the art would have
understood how to use the Opportunistic Garbage Collection Articles’ dynamic
decision on whether to perform a deletion based on a system load in other hash
table implementations such as Linux 1.3.51. Moreover, one of ordinary skill in
the art would recognize that it would improve similar systems and methods in
the same way. As the ’120 patent states “[a] person skilled in the art will

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

50 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with Linux 1.3.51 would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with Linux 1.3.51 and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would only perform deletions when the system was not already
too overloaded, thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in Linux 1.3.51 to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in Linux 1.3.51 with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in Linux 1.3.51 can be burdensome

EXHIBIT D-9

Plaintiff’s Invalidity Contentions & Production of
Documents

51 Case No. 6:09-CV-549-LED

US2008 1288496.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Linux 1.3.511

on the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, GCache discloses an information
storage and retrieval system.

For example, Comer discloses an information storage and retrieval system
using hash tables of linked lists. See, e.g., Comer at 2-11, Fig. 1.

“This section describes our implementation of a generalized caching system.”
See Comer at 2.

See also, gcache.c which implements the generalized caching mechanism as
described in Comer.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

GCache discloses a linked list to store and provide access to records stored in a
memory of the system, at least some of the records automatically expiring.
GCache also discloses a hashing means to provide access to records stored in a
memory of the system and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring.

For example, Comer discloses using linked lists to store records, the linked
lists chained to a hash table using an external chaining technique:

“GCache implements each cache as a separate hash table of buckets. Buckets
are implemented as doubly linked lists of cache entry headers for easy
insertion and deletion.” See Comer at 3.

“GCache keeps all cacheentry structures for an active cache either on the free

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

list or, when they are in use, on a doubly linked list attached to a hash table
slot. GCache computes a hash value as a function of the sum of bytes in the
key buffer. GCache then computes the hash table slot as the hash value modulo
the size of the hash table” See Comer at 5.

“GCache implements the hash table as an array of structures representing
buckets, each containing the head of a (possibly empty) doubly linked cache
entry chain.” See Comer at 6.

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

See also, gcache.c at lines 53-64, defining cacheentry as a linked list, as shown
in the code below:

53 struct cacheentry {
54 ce_status ce_status; /* INUSE or FREE */
55 char *ce_keyptr; /* pointer to the key */
56 tcelen ce_keylen; /* length of the key */
57 char *ce_resptr; /* pointer to the result */
58 tcelen ce_reslen; /* length of the result */

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

59 thval ce hash; /* value that was hashed in */
60 ttstamp ce_tsinsert; /* timestamp - time inserted */
61 ttstamp ce_tsaccess; /* timestamp - last access */
62 tceix ce_prev; /* next entry on list */
63 tceix ce_next; /* prev entry on list */
64 };

Comer discloses storing records in a linked list, for example:

“Cainsert() inserts a new mapping, key => res, into the cache.” See Comer at
4.

See also, gache.c at lines 241-304, defining cainsert().

Comer discloses providing access to records stored in a linked list, for
example:

“Calookup() searches for a cached entry matching the key passed as an
argument.” See Comer at 4.

See also, gcache.c at lines 307-347 and 637-678, defining calookup() and
cagetindex().

Comer discloses at least some of the records automatically expiring, for
example:

“In a simpler and cleaner design chosen for GCache, each cached entry

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

contains a timestamp encoding the insertion time. If a lookup matches an entry
with an expired timestamp, that entry is removed rather than being returned.”
See Comer at 10.

See also, gcache.c at lines 617-634, defining caisold() which determines if the
record has expired:

617 /*
618 *
===
=====
619 * caisold - return TRUE if the given entry is "too old"
620 *
===
=====
621 */
622 LOCAL int caisold(pcb,pce)
623 struct cacheblk *pcb;
624 struct cacheentry *pce;
625 {
626 unsigned now;
627
628 if (pcb->cb_maxlife == 0)
629 return(FALSE);
630
631 gettime(&now);
632
633 return ((now - pce->ce_tsaccess) > pcb->cb_maxlife);
634 }

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of

GCache discloses a record search means utilizing a search key to access the
linked list. GCache also discloses a record search means utilizing a search key
to access a linked list of records having the same hash address.

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

records having the same
hash address,

For example, Comer discloses utilizing a search key to access a linked list of
records having the same hash address. In the quoted text below, the use of
hash value to determine a hash table with an attached linked list of records
having the same hash address is an example of “utilizing a search key to access
a linked list.”

“GCache implements each cache as a separate hash table of buckets. Buckets
are implemented as doubly linked lists of cache entry headers for easy
insertion and deletion.” See Comer at 3.

“GCache keeps all cacheentry structures for an active cache either on the free
list or, when they are in use, on a doubly linked list attached to a hash table
slot. GCache computes a hash value as a function of the sum of bytes in the
key buffer. GCache then computes the hash table slot as the hash value modulo
the size of the hash table” See Comer at 5.

“GCache implements the hash table as an array of structures representing
buckets, each containing the head of a (possibly empty) doubly linked cache
entry chain.” See Comer at 6.

See also, gcache.c at lines 637-677, defining cagetindex(), which contains code
constituting a “record search means” that uses a hash value to access and
traverse a linked list of records having the same hash address:

637 /*
638 *
===

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

=====
639 * cagetindex - return the index of a matching entry, or
SYSERR
640 * N.B. assumes MUTEX is already held
641 *
===
=====
642 */
643 LOCAL tceix cagetindex(pcb,pkey,keylen,hash)
644 struct cacheblk *pcb;
645 char *pkey;
646 tcelen keylen;
647 thval hash;
648 {
649 struct cacheentry *pce;
650 tceix ix;
651 tceix nextix;
652
653 ++pcb->cb_lookups;
654
655 ix = pcb->cb_hash[HASHTOIX(hash,pcb)].he_ix;
656
657 while (ix != NULL_IX) {
658 pce = &pcb->cb_cache[ix];
659 nextix = pce->ce_next;
660
661 if ((pce->ce_hash == hash) &&
662 (pce->ce_keylen == keylen) &&
663 (blkequ(pkey,pce->ce_keyptr,keylen))) {
664 /* this is a match */
665 ++pcb->cb_hits;
666 if (caisold(pcb,pce)) {
667 ++pcb->cb_tos;
668 caunlink(pcb,ix);
669 return(NULL_IX);
670 } else {
671 return(ix);

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

672 }
673 }
674 ix = nextix;
675 }
676
677 return(NULL_IX);
678 }

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

GCache discloses the record search means including a means for identifying
and removing at least some of the expired ones of the records from the linked
list when the linked list is accessed. GCache also discloses the record search
means including means for identifying and removing at least some expired
ones of the records from the linked list of records when the linked list is
accessed.

For example, Comer discloses that “Calookup() searches for a cached entry
matching the key passed as an argument.” See Comer at 4.

At line 333 of gcache.c, calookup() calls the function cagetindex():

333 if ((ix = cagetindex(pcb,pkey,keylen,hash)) != NULL_IX) {

In addition Comer discloses a means for identifying and removing expired
records from the linked list of records:

“In a simpler and cleaner design chosen for GCache, each cached entry
contains a timestamp encoding the insertion time. If a lookup matches an entry
with an expired timestamp, that entry is removed rather than being returned.”
See Comer at 10.

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

At lines 655-670 of gcache.c, cagetindex() executes a while loop to traverse a
linked list attached to a bucket of the hash table, accessing records stored
therein. In the subset of that code listed below, cagetindex() utilizes caisold()
to identify if a matching record is expired and removes the expired record from
the linked list:

666 if (caisold(pcb,pce)) {
667 ++pcb->cb_tos;
668 caunlink(pcb,ix);
669 return(NULL_IX);
670 } else {

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

GCache discloses means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. GCache also discloses utilizing the record search
means, for inserting, retrieving, and deleting records from the system and, at
the same time, removing at least some expired ones of the records in the
accessed linked list of records.

For example, Comer discloses means for inserting, retrieving, and deleting
records:

“Cainsert() inserts a new mapping, key => res, into the cache.” See Comer at
4.

See also, gcache.c at lines 246-304, defining cainsert().

“Calookup() searches for a cached entry matching the key passed as an
argument.” See Comer at 4.

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

See also, gcache.c at lines 312-347 and 643-678, defining calookup() and
cagetindex().

“Caremove() removes the cached entry whose key is given, if one exists.” See
Comer at 4.

See also, gcache.c at lines 355-376, defining caremove().

Each of the means for inserting, retrieving, and deleting, utilizes a record
search means, the function cagetindex(), which removes an expired record
from the list as described below. The individual calls of cagetindex() are listed
here:

In cainsert():
275 if ((ixnew = cagetindex(pcb,pkey,keylen,hash)) != NULL_IX)
{

In calookup():
333 if ((ix = cagetindex(pcb,pkey,keylen,hash)) != NULL_IX) {

In caremove():
370 if ((ix = cagetindex(pcb,pkey,keylen,hash)) != NULL_IX) {

“In a simpler and cleaner design chosen for GCache, each cached entry
contains a timestamp encoding the insertion time. If a lookup matches an entry
with an expired timestamp, that entry is removed rather than being returned.”
See Comer at 10.

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

At lines 655-670 of gcache.c, cagetindex() executes a while loop to traverse a
linked list attached to a bucket of the hash table, accessing records stored
therein. In the subset of that code listed below, cagetindex() utilizes caisold()
to identify if a matching record is expired and removes the expired record from
the linked list using caunlink():

666 if (caisold(pcb,pce)) {
667 ++pcb->cb_tos;
668 caunlink(pcb,ix);
669 return(NULL_IX);
670 } else {

2. The information storage
and retrieval system
according to claim 1
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

6. The information storage
and retrieval system
according to claim 5
further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

GCache discloses an information storage and retrieval system further including
means for dynamically determining maximum number for the record search
means to remove in the accessed linked list of records.

For example, Comer discloses dynamically determining whether to delete one
record or zero records from the accessed linked list of records:

“In a simpler and cleaner design chosen for GCache, each cached entry
contains a timestamp encoding the insertion time. If a lookup matches an entry
with an expired timestamp, that entry is removed rather than being returned.”
See Comer at 10.

At lines 655-670 of gcache.c, cagetindex() executes a while loop to traverse a
linked list attached to a bucket of the hash table, accessing records stored

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

therein. In the subset of that code listed below, cagetindex() utilizes caisold()
to identify if a matching record is expired and removes the expired record from
the linked list using caunlink() and returns. If the matching record is not
expired, the code returns the index of the matched record:

666 if (caisold(pcb,pce)) {
667 ++pcb->cb_tos;
668 caunlink(pcb,ix);
669 return(NULL_IX);
670 } else {
671 return(ix);
672 }

In a second example, Comer discloses dynamically determining whether to
delete one record or zero records from an accessed list of records:

“Insertion of a new entry into a full cache forces the deletion of the entry that
was looked up the least recently.” See Comer at 3.

At line 275 of gcache.c, cainsert() calls cagetindex() to access a linked list of
records and see if a matching entry already exists. If a matching entry does not
exist, cainset() calls cagetfree() at line 281 to get a free entry. In cagetfree(),
the following code dynamically determines whether to delete one record or
zero records:

719 /* if the free list is empty, delete the oldest entry */
720 if (pcb->cb_freelist == NULL_IX) {
721 cadeleteold(pcb);
722 ++pcb->cb_fulls;
723 }

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

In addition, GCache combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses an information storage
and retrieval system further including means for dynamically determining
maximum number for the record search means to remove in the accessed
linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both GCache and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as GCache. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining Dirks’ deletion decision procedure with GCache nothing more than
the predictable use of prior art elements according to their established
functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with GCache and would

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in GCache with the means
for dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. Thatte,
discloses a system and method using hash tables and/or linked lists and further
discloses means for dynamically determining the maximum number for the
record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining GCache with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine GCache
with Thatte and recognize the benefits of doing so. For example, the removal
of expired records described in GCache can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining GCache with the
teachings of Thatte would solve this problem by dynamically determining how

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine GCache with Thatte.

Alternatively, it would also be obvious to combine GCachewith the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.
As both GCache and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as that described in GCache. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the ’663 patent’s deletion decision procedure with GCache would
be nothing more than the predictable use of prior art elements according to
their established functions.

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with GCache and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine GCache with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both GCache and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as GCache. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with GCache would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with GCache and would
have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in GCache to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in GCache with the fundamental concept of dynamically determining
the maximum number of expired records to remove in an accessed linked list
of records to solve a number of potential problems. For example, the removal
of expired records described in GCachecan be burdensome on the system,
adding to the system’s load and slowing down the system’s processing.

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

Moreover, the removal could also force an interruption in real-time processing
as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

3. A method for storing
and retrieving information
records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

7. A method for storing
and retrieving information
records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the

To the extent the preamble is a limitation, GCache discloses a method for
storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically
expiring. GCache also discloses a method for storing and retrieving
information records using a hashing technique to provide access to the records
and using an external chaining technique to store the records with same hash
address, at least some of the records automatically expiring.

For example, Comer discloses using linked lists to store records, the linked
lists chained to a hash table using an external chaining technique:

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

method comprising the
steps of:

“GCache implements each cache as a separate hash table of buckets. Buckets
are implemented as doubly linked lists of cache entry headers for easy
insertion and deletion.” See Comer at 3.

“GCache keeps all cacheentry structures for an active cache either on the free
list or, when they are in use, on a doubly linked list attached to a hash table
slot. GCache computes a hash value as a function of the sum of bytes in the
key buffer. GCache then computes the hash table slot as the hash value modulo
the size of the hash table” See Comer at 5.

“GCache implements the hash table as an array of structures representing
buckets, each containing the head of a (possibly empty) doubly linked cache
entry chain.” See Comer at 6.

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

See also, gcache.c at lines 53-64, defining cacheentry as a linked list, as shown
in the code below:

53 struct cacheentry {
54 ce_status ce_status; /* INUSE or FREE */
55 char *ce_keyptr; /* pointer to the key */
56 tcelen ce_keylen; /* length of the key */
57 char *ce_resptr; /* pointer to the result */
58 tcelen ce_reslen; /* length of the result */

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

59 thval ce hash; /* value that was hashed in */
60 ttstamp ce_tsinsert; /* timestamp - time inserted */
61 ttstamp ce_tsaccess; /* timestamp - last access */
62 tceix ce_prev; /* next entry on list */
63 tceix ce_next; /* prev entry on list */
64 };

Comer discloses storing records in a linked list, for example:

“Cainsert() inserts a new mapping, key => res, into the cache.” See Comer at
4.

See also, gache.c at lines 241-304, defining cainsert().

Comer discloses providing access to records stored in a linked list, for
example:

“Calookup() searches for a cached entry matching the key passed as an
argument.” See Comer at 4.

See also, gcache.c at lines 307-347 and 637-678, defining calookup() and
cagetindex().

Comer discloses at least some of the records automatically expiring, for
example:

“In a simpler and cleaner design chosen for GCache, each cached entry

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

contains a timestamp encoding the insertion time. If a lookup matches an entry
with an expired timestamp, that entry is removed rather than being returned.”
See Comer at 10.

See also, gcache.c at lines 617-634, defining caisold() which determines if the
record has expired:

617 /*
618 *
===
=====
619 * caisold - return TRUE if the given entry is "too old"
620 *
===
=====
621 */
622 LOCAL int caisold(pcb,pce)
623 struct cacheblk *pcb;
624 struct cacheentry *pce;
625 {
626 unsigned now;
627
628 if (pcb->cb_maxlife == 0)
629 return(FALSE);
630
631 gettime(&now);
632
633 return ((now - pce->ce_tsaccess) > pcb->cb_maxlife);
634 }

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

GCache discloses accessing a linked list of records. GCache also discloses
accessing a linked list of records having same hash address.

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

For example, Comer discloses accessing a linked list of records having the
same hash address:

“GCache implements each cache as a separate hash table of buckets. Buckets
are implemented as doubly linked lists of cache entry headers for easy
insertion and deletion.” See Comer at 3.

“GCache keeps all cacheentry structures for an active cache either on the free
list or, when they are in use, on a doubly linked list attached to a hash table
slot. GCache computes a hash value as a function of the sum of bytes in the
key buffer. GCache then computes the hash table slot as the hash value modulo
the size of the hash table” See Comer at 5.

“GCache implements the hash table as an array of structures representing
buckets, each containing the head of a (possibly empty) doubly linked cache
entry chain.” See Comer at 6.

See also, gcache.c at lines 637-677, defining cagetindex(), which contains code
constituting a “record search means” that uses a hash value to access and
traverse a linked list of records having the same hash address:

637 /*
638 *
===
=====
639 * cagetindex - return the index of a matching entry, or
SYSERR
640 * N.B. assumes MUTEX is already held
641 *

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

===
=====
642 */
643 LOCAL tceix cagetindex(pcb,pkey,keylen,hash)
644 struct cacheblk *pcb;
645 char *pkey;
646 tcelen keylen;
647 thval hash;
648 {
649 struct cacheentry *pce;
650 tceix ix;
651 tceix nextix;
652
653 ++pcb->cb_lookups;
654
655 ix = pcb->cb_hash[HASHTOIX(hash,pcb)].he_ix;
656
657 while (ix != NULL_IX) {
658 pce = &pcb->cb_cache[ix];
659 nextix = pce->ce_next;
660
661 if ((pce->ce_hash == hash) &&
662 (pce->ce_keylen == keylen) &&
663 (blkequ(pkey,pce->ce_keyptr,keylen))) {
664 /* this is a match */
665 ++pcb->cb_hits;
666 if (caisold(pcb,pce)) {
667 ++pcb->cb_tos;
668 caunlink(pcb,ix);
669 return(NULL_IX);
670 } else {
671 return(ix);
672 }
673 }
674 ix = nextix;
675 }
676

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

677 return(NULL_IX);
678 }

[3b] identifying at least
some of the automatically
expired ones of the records,
and

[7b] identifying at least
some of the automatically
expired ones of the records,

GCache discloses identifying at least some of the automatically expired ones of
the records.

For example, Comer discloses a means for identifying and removing expired
records from the linked list of records:

“In a simpler and cleaner design chosen for GCache, each cached entry
contains a timestamp encoding the insertion time. If a lookup matches an entry
with an expired timestamp, that entry is removed rather than being returned.”
See Comer at 10.

At lines 655-670 of gcache.c, cagetindex() executes a while loop to traverse a
linked list attached to a bucket of the hash table, accessing records stored
therein. In the subset of that code listed below, cagetindex() utilizes caisold()
to identify if a matching record is expired and removes the expired record from
the linked list:

666 if (caisold(pcb,pce)) {
667 ++pcb->cb_tos;
668 caunlink(pcb,ix);
669 return(NULL_IX);
670 } else {

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

GCache discloses removing at least some of the automatically expired records
from the linked list when the linked list is accessed.

For example:

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

“In a simpler and cleaner design chosen for GCache, each cached entry
contains a timestamp encoding the insertion time. If a lookup matches an entry
with an expired timestamp, that entry is removed rather than being returned.”
See Comer at 10.

At lines 655-670 of gcache.c, cagetindex() executes a while loop to traverse a
linked list attached to a bucket of the hash table, accessing records stored
therein. In the subset of that code listed below, cagetindex() utilizes caisold()
to identify if a matching record is expired and removes the expired record from
the linked list:

666 if (caisold(pcb,pce)) {
667 ++pcb->cb_tos;
668 caunlink(pcb,ix);
669 return(NULL_IX);
670 } else {

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

GCache discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

For example, Comer discloses means for inserting records:

“Cainsert() inserts a new mapping, key => res, into the cache.” See Comer at
4.

At line 275 of gcache.c, cainsert() utilizes a record search means, the function
cagetindex(), which removes an expired record from the list as described
below.

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

“In a simpler and cleaner design chosen for GCache, each cached entry
contains a timestamp encoding the insertion time. If a lookup matches an entry
with an expired timestamp, that entry is removed rather than being returned.”
See Comer at 10.

At lines 655-670 of gcache.c, cagetindex() executes a while loop to traverse a
linked list attached to a bucket of the hash table, accessing records stored
therein. In the subset of that code listed below, cagetindex() utilizes caisold()
to identify if a matching record is expired and if so, removes the expired record
from the linked list using caunlink():

666 if (caisold(pcb,pce)) {
667 ++pcb->cb_tos;
668 caunlink(pcb,ix);
669 return(NULL_IX);
670 } else {

After the call to cagetindex() returns, through which the expired entry was
removed, cainsert() proceeds to insert a new entry at the head of the list and
populates the fields of the structure, as shown in the code below:

275 if ((ixnew = cagetindex(pcb,pkey,keylen,hash)) != NULL_IX)
{
276 /* use the old one */
277 caclear(pcb,ixnew);
278 pce = &pcb->cb_cache[ixnew];
279 } else {
280 /* get a free cacheentry */
281 ixnew = cagetfree(pcb);
282 pce = &pcb->cb_cache[ixnew];
283

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

284 /* ... and put it at the head of the list */
285 pce->ce_prev = 0;
286 pce->ce_next = phe->he_ix;
287 pcb->cb_cache[phe->he_ix].ce_prev = ixnew;
288 phe->he_ix = ixnew;
289 }
290
291 pce->ce_status = CE_INUSE;
292 pce->ce_hash = hash;
293 pce->ce_keyptr = cagetmem(keylen);
294 pce->ce_keylen = keylen;
295 blkcopy(pce->ce_keyptr,pkey,keylen);
296 pce->ce_resptr = cagetmem(reslen);
297 pce->ce_reslen = reslen;
298 blkcopy(pce->ce_resptr,pres,reslen);
299 gettime(&pce->ce_tsinsert);
300 pce->ce_tsaccess = pce->ce_tsinsert;

In a second example, caunlink(), which is called by other functions including
caremove() and cagetindex(), removes a record from the linked list by
modifying the values of ce_next and ce_prev in the records to which it was
linked and then deletes the data stored in a record and frees memory by calling
caclear(), as shown in the code below:

750 pce = &pcb->cb_cache[ix];
751 hash = pce->ce_hash;
752 phe = &pcb->cb_hash[HASHTOIX(hash,pcb)];
753
754 if (pce->ce_prev == NULL_IX)
755 phe->he_ix = pce->ce_next;
756 else
757 pcb->cb_cache[pce->ce_prev].ce_next = pce->ce_next;
758
759 pcb->cb_cache[pce->ce_next].ce_prev = pce->ce_prev;
760

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

761 caclear(pcb,ix);

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

GCache discloses dynamically determining maximum number of expired ones
of the records to remove when the linked list is accessed.

For example, Comer discloses dynamically determining whether to delete one
record or zero records from the accessed linked list of records:

“In a simpler and cleaner design chosen for GCache, each cached entry
contains a timestamp encoding the insertion time. If a lookup matches an entry
with an expired timestamp, that entry is removed rather than being returned.”
See Comer at 10.

At lines 655-670 of gcache.c, cagetindex() executes a while loop to traverse a
linked list attached to a bucket of the hash table, accessing records stored
therein. In the subset of that code listed below, cagetindex() utilizes caisold()
to identify if a matching record is expired and removes the expired record from
the linked list using caunlink() and returns. If the matching record is not
expired, the code returns the index of the matched record:

666 if (caisold(pcb,pce)) {
667 ++pcb->cb_tos;
668 caunlink(pcb,ix);
669 return(NULL_IX);
670 } else {
671 return(ix);
672 }

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

In a second example, Comer discloses dynamically determining whether to
delete one record or zero records from an accessed linked list of records:

“Insertion of a new entry into a full cache forces the deletion of the entry that
was looked up the least recently.” See Comer at 3.

At line 275 of gcache.c, cainsert() calls cagetindex() to access a linked list of
records and see if a matching entry already exists. If a matching entry does not
exist, cainset() calls cagetfree() at line 281 to get a free entry. In cagetfree(),
the following code dynamically determines whether to delete one record or
zero records:

719 /* if the free list is empty, delete the oldest entry */
720 if (pcb->cb_freelist == NULL_IX) {
721 cadeleteold(pcb);
722 ++pcb->cb_fulls;
723 }

In addition, GCache combined with Dirks, Thatte, the ’663 patent, and/or the
Opportunistic Garbage Collection Articles discloses dynamically determining
maximum number of expired ones of the records to remove when the linked
list is accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in the
chart of Dirks, which is hereby incorporated by reference in its entirety.

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both GCache and Dirks relate to deletion of aged records upon the
allocation of a new incoming record, one of ordinary skill in the art would have
understood how to use Dirks’ dynamic decision making process of determining
the maximum number of records to sweep/remove in other hash tables
implementations such as that described GCache. Moreover, one of ordinary

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

skill in the art would recognize that it would improve similar systems and
methods in the same way. As the ’120 patent states “[a] person skilled in the
art will appreciate that the technique of removing all expired records while
searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining Dirks’ deletion decision procedure with GCache would be
nothing more than the predictable use of prior art elements according to their
established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with GCache and would
have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in GCache with the means
for dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. Thatte,
discloses a system and method using hash tables and/or linked lists and further
discloses means for dynamically determining the maximum number for the
record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining GCache with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine GCache
with Thatte and recognized the benefits of doing so. For example, the removal
of expired records described in GCachecan be burdensome on the system,
adding to the system’s load and slowing down the system’s processing. One of
ordinary skill in the art would recognize that combining GCache with the
teachings of Thatte would solve this problem by dynamically determining how
many records to delete based on, among other things, the system load.
Moreover, the '120 patent discloses that "[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one." '120 at 7:10-15. Thus, the '120
patent provides motivations to combine GCache with Thatte.

Alternatively, it would also be obvious to combine GCache with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. As summarized in the ’663 patent:

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

42 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

43 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both GCache and the ’663 patent relate to deletion of records from hash
tables using external chaining, one of ordinary skill in the art would
understood how to use the ’663 patent’s dynamic decision on whether to
perform a deletion based on a systems load in other hash table implementations
such as GCache. Moreover, one of ordinary skill in the art would recognize
that it would improve similar systems and methods in the same way. As the
’120 patent states “[a] person skilled in the art will appreciate that the
technique of removing all expired records while searching the linked list can
be expanded to include techniques whereby not necessarily all expired records
are removed, and that the decision regarding if and how many records to delete
can be a dynamic one.” The ’120 patent at 7:10-15. Additionally, one of
ordinary skill in the art would recognize that the result of combining the ’663
patent’s deletion decision procedure with GCache would be nothing more than
the predictable use of prior art elements according to their established

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

44 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with GCache and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine GCache with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

45 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both GCache and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as GCache. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

46 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with GCache would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with GCache and would
have seen the benefits of doing so. One such benefit, for example, is that the
system would only perform deletions when the system was not already too
overloaded, thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in GCache to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in GCache with the fundamental concept of dynamically determining
the maximum number of expired records to remove in an accessed linked list
of records to solve a number of potential problems. For example, the removal

EXHIBIT D-10

Plaintiff’s Invalidity Contentions & Production of
Documents

47 Case No. 6:09-CV-549-LED

US2008 1288717.1

Asserted Claims From
U.S. Pat. No. 5,893,120

gcache.c from Xinu Operating System for Sparc (1991) (hereinafter
“gcache.c”) and Douglas Comer and Shawn Ostermann, GCache: A

Generalized Caching Mechanism, Purdue University (Revised March 1992)
(hereinafter “Comer”) (collectively hereinafter “GCache”)

of expired records described in GCache can be burdensome on the system,
adding to the system’s load and slowing down the system’s processing.
Moreover, the removal could also force an interruption in real-time processing
as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

1 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

1. An information storage
and retrieval system, the
system comprising:

5. An information storage
and retrieval system, the
system comprising:

To the extent the preamble is a limitation, NRL IPv6 discloses an information
storage and retrieval system.

For example, NRL IPv6 discloses a linked list of automatically expiring data.
See, e.g., struct_keyacquirelist defined in key.h at lines 188-194.

See also, key.c at lines 1396-1563, 1768-1845; key.h at lines 188-194.

[1a] a linked list to store
and provide access to
records stored in a memory
of the system, at least some
of the records
automatically expiring,

[5a] a hashing means to
provide access to records
stored in a memory of the
system and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring,

NRL IPv6 discloses a linked list to store and provide access to records stored
in a memory of the system, at least some of the records automatically expiring.

NRL IPv6 in combination with Robert L. Kruse, Data Structures & Program
Design (Prentice Hall 1987) (hereinafter “Kruse”) discloses a hashing means to
provide access to records stored in a memory of the system and using an
external chaining technique to store the records with same hash address, at
least some of the records automatically expiring.

One of ordinary skill in the art would be motivated to, and would understand how to,
combine the system disclosed in NRL IPv6 with the hashing means to provide
access to records stored in a memory of the system and using an external
chaining technique to store the records with same hash address disclosed by
Kruse. See, e.g., Kruse at 206-208. For example, since NRL IPv6, as discussed
below, utilizes a linked list for storing records and Kruse discloses attaching or
chaining linked lists to a hash table for storing records, one of ordinary skill in the art
would be motivated to combine the linked list of NRL IPv6 with the hash table using

1 Available as of August 1995.

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

2 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

external chaining of linked lists disclosed by Kruse. The disclosure of these claim
elements in Kruse is clearly shown in the chart of Kruse, which is hereby incorporated
by reference in its entirety.
Moreover, one of ordinary skill in the art would recognize that these combinations
would improve the similar systems and methods in the same way. Additionally, one
of ordinary skill in the art would recognize that the result of combining NRL IPv6
with Kruse would be nothing more than the predictable use of prior art elements
according to their established functions.

For example, as defined in key.h and shown in the code below, the
key_acquirelist structure is a linked list:

188 struct key_acquirelist {
189 u_int8 type; /* secassoc type to acquire */
190 struct sockaddr_in6 target; /* destination address of
secassoc */
191 u_int32 count; /* number of acquire messages sent */
192 u_long expiretime; /* expiration time for acquire message
*/
193 struct key_acquirelist *next;
194 };

In addition, key.c discloses traversing key_acquirelist and accessing entries
stored therein. See, e.g., key.c at lines 1411, 1430-1459.

Also, key.c and key.h disclose automatically expiring records. For example,
the key_acquirelist structure defined in key.h contains the following code:

192 u_long expiretime; /* expiration time for acquire message
*/

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

3 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

For example, key.c checks to see if a record has expired using the above-
described field in key_acquirelist, as shown in the code below:

1445 } else if (ap->expiretime < time.tv_sec) {
1446 /*
1447 * Since we're already looking at the list, we may as
1448 * well delete expired entries as we scan through the list.
1449 * This should really be done by a function like
key_reaper()
1450 * but until we code key_reaper(), this is a quick and
dirty
1451 * hack.
1452 */
1453 DPRINTF(IDL_MAJOR_EVENT,("found an expired
entry...deleting
it!\n"));
1454 prevap->next = ap->next;
1455 KFree(ap);
1456 ap = prevap;
1457 }

Further, Kruse discloses hash tables with external chaining. See, e.g., Kruse at
206-208. One of ordinary skill in the art would be motivated to, and would
understand how to, combine the systems and methods of NRL IPv6 with the
systems and methods of using hash tables with external chaining disclosed by
Kruse.

See also, key.c at lines 1396-1563, 1768-1845; key.h at lines 188-194.

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

4 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

[1b] a record search means
utilizing a search key to
access the linked list,

[5b] a record search means
utilizing a search key to
access a linked list of
records having the same
hash address,

The combination of NRL IPv6 and Kruse discloses a record search means
utilizing a search key to access the linked list. The combination NRL IPv6 and
Kruse also discloses a record search means utilizing a search key to access a
linked list of records having the same hash address.

For example, as defined in key.h and shown in the code below, the
key_acquirelist structure is a linked list:

188 struct key_acquirelist {
189 u_int8 type; /* secassoc type to acquire */
190 struct sockaddr_in6 target; /* destination address of
secassoc */
191 u_int32 count; /* number of acquire messages sent */
192 u_long expiretime; /* expiration time for acquire message
*/
193 struct key_acquirelist *next;
194 };

In addition, key.c discloses traversing key_acquirelist—accessing records
stored therein--to search for matching record., as shown in the code below:

1411 struct key_acquirelist *ap, *prevap;
.
.
.
1430 prevap = key_acquirelist;
1431 for(ap = key_acquirelist->next; ap; ap = ap->next) {
1432 if (addrpart_equal(dst, (struct sockaddr *)&(ap->target))
&&
1433 (etype == ap->type)) {
1434 DPRINTF(IDL_MAJOR_EVENT,("acquire message previously
sent!\n"));

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

5 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

1435 if (ap->expiretime < time.tv_sec) {
1436 DPRINTF(IDL_MAJOR_EVENT,("acquire message has
expired!\n"));
1437 ap->count = 0;
1438 break;
1439 }

Further, Kruse discloses hash tables and hash tables with external chaining.
See, e.g., Kruse at 198-208. One of ordinary skill in the art would be
motivated to, and would understand how to, combine the systems and methods
of NRL IPv6 with the systems and methods of using hash tables with external
chaining disclosed by Kruse. In such a combination, one of ordinary skill in
the art would recognize that a hash key is used to access a list of records
having the same hash address (a linked list chained to a hash bucket).

See also, key.c at lines 1396-1563, 1768-1845; key.h at lines 188-194.

[1c] the record search
means including a means
for identifying and
removing at least some of
the expired ones of the
records from the linked list
when the linked list is
accessed, and

[5c] the record search
means including means for
identifying and removing
at least some expired ones
of the records from the
linked list of records when
the linked list is accessed,
and

NRL IPv6 discloses the record search means including a means for identifying
and removing at least some of the expired ones of the records from the linked
list when the linked list is accessed. NRL IPv6 also discloses the record search
means including means for identifying and removing at least some expired
ones of the records from the linked list of records when the linked list is
accessed.

For example, as defined in key.h and shown in the code below, the
key_acquirelist structure is a linked list:

188 struct key_acquirelist {
189 u_int8 type; /* secassoc type to acquire */

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

6 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

190 struct sockaddr_in6 target; /* destination address of
secassoc */
191 u_int32 count; /* number of acquire messages sent */
192 u_long expiretime; /* expiration time for acquire message
*/
193 struct key_acquirelist *next;
194 };

In addition, key.c, within the function key_acquire(), discloses traversing
key_acquirelist and accessing entries stored therein. See, e.g., key.c at lines
1411, 1430-1459.

Also, key.c and key.h disclose automatically expiring records. For example,
the key_acquirelist structure defined in key.h contains the following code:

192 u_long expiretime; /* expiration time for acquire message
*/

Furthermore, key.c discloses a means for identifying and removing at
least some of the expired ones of the records from the linked list when the
linked list is accessed, as shown in the code below:

1445 } else if (ap->expiretime < time.tv_sec) {
1446 /*
1447 * Since we're already looking at the list, we may as
1448 * well delete expired entries as we scan through the list.
1449 * This should really be done by a function like
key_reaper()
1450 * but until we code key_reaper(), this is a quick and
dirty
1451 * hack.
1452 */

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

7 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

1453 DPRINTF(IDL_MAJOR_EVENT,("found an expired
entry...deleting
it!\n"));
1454 prevap->next = ap->next;
1455 KFree(ap);
1456 ap = prevap;
1457 }

See also, key.c at lines 1396-1563, 1768-1845; key.h at lines 188-194.

[1d] means, utilizing the
record search means, for
accessing the linked list
and, at the same time,
removing at least some of
the expired ones of the
records in the linked list.

[5d] mea[n]s, utilizing the
record search means, for
inserting, retrieving, and
deleting records from the
system and, at the same
time, removing at least
some expired ones of the
records in the accessed
linked list of records.

NRL IPv6 discloses means, utilizing the record search means, for accessing the
linked list and, at the same time, removing at least some of the expired ones of
the records in the linked list. NRL IPv6 also discloses utilizing the record
search means, for inserting, retrieving, and deleting records from the system
and, at the same time, removing at least some expired ones of the records in the
accessed linked list of records.

The “means, utilizing the record search means” limitation is met, for example,
by a function that calls key_acquire(). At line 1835 of key.c, for example,
key_acquire() is called by the function getassocbysocket().

In addition, the function key_acquire() in key.c contains a for loop beginning
at line 1431. Within the for loop, the code starting at the elseif at line 1445 and
ending at line 1457, modifies a pointer in an element of the linked list such that
it removes the expired item from the linked list and then calls KFree(). After
KFree() is called, control returns to the for loop which, unless it has reached
the end of the linked list, will access the next record in the list. If the record has
not been previously sent and has expired, it will be removed and deleted in the
code starting at the elseif at line 1445 and ending at line 1457. Finally, after the

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

8 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

loop described above completes, key_acquire() contains the following code to
insert an entry into key_acquirelist:

1542 /*
1543 * Update the acquirelist
1544 */
1545 if (success) {
1546 if (!ap) {
1547 DPRINTF(IDL_MAJOR_EVENT,("Adding new entry in
acquirelist\n"));
1548 K_Malloc(ap, struct key_acquirelist *, sizeof(struct
key_acquirelist));
1549 if (ap == 0)
1550 return(success ? 0 : -1);
1551 bzero((char *)ap, sizeof(struct key_acquirelist));
1552 bcopy((char *)dst, (char *)&(ap->target), dst->sa_len);
1553 ap->type = etype;
1554 ap->next = key_acquirelist->next;
1555 key_acquirelist->next = ap;
1556 }
1557 DPRINTF(IDL_EVENT,("Updating acquire counter and
expiration
time\n"));
1558 ap->count++;
1559 ap->expiretime = time.tv_sec + maxacquiretime;
1560 }

See also, key.c at lines 1396-1563, 1768-1845; key.h at lines 188-194.

2. The information storage
and retrieval system
according to claim 1

6. The information storage
and retrieval system
according to claim 5

NRL IPv6 discloses an information storage and retrieval system further
including means for dynamically determining maximum number for the record
search means to remove in the accessed linked list of records.

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

9 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

further including means for
dynamically determining
maximum number for the
record search means to
remove in the accessed
linked list of records.

For example, in key.c each time the else if statement at line 1445 is executed, it
dynamically determines the maximum number of records to remove—one or
zero—based on whether the record has expired.

1445 } else if (ap->expiretime < time.tv_sec) {
1446 /*
1447 * Since we're already looking at the list, we may as
1448 * well delete expired entries as we scan through the list.
1449 * This should really be done by a function like
key_reaper()
1450 * but until we code key_reaper(), this is a quick and
dirty
1451 * hack.
1452 */
1453 DPRINTF(IDL_MAJOR_EVENT,("found an expired
entry...deleting
it!\n"));
1454 prevap->next = ap->next;
1455 KFree(ap);
1456 ap = prevap;
1457 }

Further, NRL IPv6 combined with Dirks, Thatte, the ’663 patent and/or the
Opportunistic Garbage Collection Articles discloses an information storage
and retrieval system further including means for dynamically determining
maximum number for the record search means to remove in the accessed
linked list of records.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

10 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in
Exhibit B-2, which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

11 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this
regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

12 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

As both NRL IPv6 and Dirks relate to deletion of aged records, one of ordinary
skill in the art would have understood how to use Dirks’ dynamic decision
making process of determining the maximum number of records to
sweep/remove in other hash tables implementations such as NRL IPv6.
Moreover, one of ordinary skill in the art would recognize that it would
improve similar systems and methods in the same way. As the ’120 patent
states “[a] person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be expanded to
include techniques whereby not necessarily all expired records are removed,
and that the decision regarding if and how many records to delete can be a
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary skill
in the art would recognize that the result of combining Dirks’ deletion decision
procedure with NRL IPv6 nothing more than the predictable use of prior art
elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to
examine during each step of the sweeping process with NRL IPv6 and would
have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.`

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in NRL IPv6 with the means
for dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. Thatte,
discloses a system and method using hash tables and/or linked lists and further

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

13 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

discloses means for dynamically determining the maximum number for the
record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining NRL IPv6 with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine NRL
IPv6 with Thatte and recognize the benefits of doing so. For example, the
removal of expired records described in NRL IPv6 can be burdensome on the
system, adding to the system’s load and slowing down the system’s
processing. One of ordinary skill in the art would recognize that combining
NRL IPv6 with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine NRL IPv6

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

14 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

with Thatte.

Alternatively, it would also be obvious to combine NRL IPv6 with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and
no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

15 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

16 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,
Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.
As both NRL IPv6 and the ’663 patent relate to deletion of records from an
information storage system, one of ordinary skill in the art would understood
how to use the ’663 patent’s dynamic decision on whether to perform a
deletion based on a systems load in other information storage system
implementations such as that described by NRL IPv6. Moreover, one of
ordinary skill in the art would recognize that it would improve similar systems
and methods in the same way. As the ’120 patent states “[a] person skilled in
the art will appreciate that the technique of removing all expired records while

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

17 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

searching the linked list can be expanded to include techniques whereby not
necessarily all expired records are removed, and that the decision regarding if
and how many records to delete can be a dynamic one.” The ’120 patent at
7:10-15. Additionally, one of ordinary skill in the art would recognize that the
result of combining the ’663 patent’s deletion decision procedure with NRL
IPv6 would be nothing more than the predictable use of prior art elements
according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with NRL IPv6 and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine NRL IPv6 with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

18 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage
Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

19 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

As both NRL IPv6 and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision
on whether to perform a deletion based on a system load in other hash table
implementations such as NRL IPv6. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with NRL IPv6 would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with NRL IPv6 and
would have seen the benefits of doing so. One such benefit, for example, is
preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in NRL IPv6 to dynamically determine the

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

20 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be
dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in NRL IPv6 with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in NRL IPv6can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

See also, key.c at lines 1396-1563, 1768-1845; key.h at lines 188-194.

3. A method for storing
and retrieving information

7. A method for storing
and retrieving information

To the extent the preamble is a limitation, NRL IPv6 discloses a method for
storing and retrieving information records using a linked list to store and

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

21 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

records using a linked list
to store and provide access
to the records, at least
some of the records
automatically expiring, the
method comprising the
steps of:

records using a hashing
technique to provide access
to the records and using an
external chaining technique
to store the records with
same hash address, at least
some of the records
automatically expiring, the
method comprising the
steps of:

provide access to the records, at least some of the records automatically
expiring. The combination of NRL IPv6 and Kruse discloses a method for
storing and retrieving information records using a hashing technique to provide
access to the records and using an external chaining technique to store the
records with same hash address, at least some of the records automatically
expiring.

One of ordinary skill in the art would be motivated to, and would understand how to,
combine the system disclosed in NRL IPv6 with hashing technique to provide
access to the records and using an external chaining technique to store the
records with same hash address as disclosed by Kruse. See, e.g., Kruse at 206-
208. For example, since NRL IPv6, as discussed below, utilizes a linked list for
storing records and Kruse discloses attaching or chaining linked lists to a hash table
for storing records, one of ordinary skill in the art would be motivated to combine the
linked list of NRL IPv6 with the hash table using external chaining of linked lists
disclosed by Kruse. The disclosure of these claim elements in Kruse is clearly shown
in the chart of Kruse, which is hereby incorporated by reference in its entirety.
Moreover, one of ordinary skill in the art would recognize that these combinations
would improve the similar systems and methods in the same way. Additionally, one
of ordinary skill in the art would recognize that the result of combining NRL IPv6
with Kruse would be nothing more than the predictable use of prior art elements
according to their established functions.

For example, as defined in key.h and shown in the code below, the
key_acquirelist structure is a linked list:

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

22 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

188 struct key acquirelist {
189 u_int8 type; /* secassoc type to acquire */
190 struct sockaddr_in6 target; /* destination address of
secassoc */
191 u_int32 count; /* number of acquire messages sent */
192 u_long expiretime; /* expiration time for acquire message
*/
193 struct key_acquirelist *next;
194 };

In addition, key.c discloses traversing key_acquirelist and accessing entries
stored therein. See, e.g., key.c at lines 1411, 1430-1459.

Also, key.c and key.h disclose automatically expiring records. For example,
the key_acquirelist structure defined in key.h contains the following code:

192 u_long expiretime; /* expiration time for acquire message
*/

For example, key.c checks to see if a record has expired using
the above-described field in key_acquirelist, as shown in the
code below:

1445 } else if (ap->expiretime < time.tv_sec) {
1446 /*
1447 * Since we're already looking at the list, we may as
1448 * well delete expired entries as we scan through the list.
1449 * This should really be done by a function like
key_reaper()
1450 * but until we code key_reaper(), this is a quick and
dirty
1451 * hack.
1452 */
1453 DPRINTF(IDL_MAJOR_EVENT,("found an expired

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

23 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

entry...deleting
it!\n"));
1454 prevap->next = ap->next;
1455 KFree(ap);
1456 ap = prevap;
1457 }

Further, Kruse discloses hash tables with external chaining. See, e.g., Kruse at
206-208. One of ordinary skill in the art would be motivated to, and would
understand how to, combine the systems and methods of NRL IPv6 with the
systems and methods of using hash tables with external chaining disclosed by
Kruse.

See also, key.c at lines 1396-1563, 1768-1845; key.h at lines 188-194.

[3a] accessing the linked
list of records,

[7a] accessing a linked list
of records having same
hash address,

NRL IPv6 discloses accessing a linked list of records. The combination of
NRL IPv6 and Kruse discloses accessing a linked list of records having same
hash address.

For example, as defined in key.h and shown in the code below, the
key_acquirelist structure is a linked list:

188 struct key_acquirelist {
189 u_int8 type; /* secassoc type to acquire */
190 struct sockaddr_in6 target; /* destination address of
secassoc */
191 u_int32 count; /* number of acquire messages sent */
192 u_long expiretime; /* expiration time for acquire message
*/
193 struct key_acquirelist *next;
194 };

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

24 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

In addition, key.c discloses traversing key_acquirelist—accessing records
stored therein--to search for matching record, as shown in the code below:

1411 struct key_acquirelist *ap, *prevap;
.
.
.
1430 prevap = key_acquirelist;
1431 for(ap = key_acquirelist->next; ap; ap = ap->next) {
1432 if (addrpart_equal(dst, (struct sockaddr *)&(ap->target))
&&
1433 (etype == ap->type)) {
1434 DPRINTF(IDL_MAJOR_EVENT,("acquire message previously
sent!\n"));
1435 if (ap->expiretime < time.tv_sec) {
1436 DPRINTF(IDL_MAJOR_EVENT,("acquire message has
expired!\n"));
1437 ap->count = 0;
1438 break;
1439 }

Further, Kruse discloses hash tables and hash tables with external chaining.
See, e.g., Kruse at 198-208. One of ordinary skill in the art would be
motivated to, and would understand how to, combine the systems and methods
of NRL IPv6 with the systems and methods of using hash tables with external
chaining disclosed by Kruse. In such a combination, one of ordinary skill in
the art would recognize that a hash key is used to access a list of records
having the same hash address (a linked list chained to a hash bucket).

See also, key.c at lines 1396-1563, 1768-1845; key.h at lines 188-194.

[3b] identifying at least [7b] identifying at least NRL IPv6 discloses identifying at least some of the automatically expired ones

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

25 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

some of the automatically
expired ones of the records,
and

some of the automatically
expired ones of the records,

of the records.

For example, as defined in key.h and shown in the code below, the
key_acquirelist structure is a linked list:

188 struct key_acquirelist {
189 u_int8 type; /* secassoc type to acquire */
190 struct sockaddr_in6 target; /* destination address of
secassoc */
191 u_int32 count; /* number of acquire messages sent */
192 u_long expiretime; /* expiration time for acquire message
*/
193 struct key_acquirelist *next;
194 };

In addition, key.c, within the function key_acquire(), discloses traversing
key_acquirelist and accessing entries stored therein. See, e.g., key.c at lines
1411, 1430-1459.

Also, key.c and key.h disclose automatically expiring records. For example,
the key_acquirelist structure defined in key.h contains the following code:

192 u_long expiretime; /* expiration time for acquire message
*/

Furthermore, key.c discloses a means for identifying and removing at
least some of the expired ones of the records from the linked list when the
linked list is accessed, as shown in the code below:

1445 } else if (ap->expiretime < time.tv_sec) {

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

26 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

1446 /*
1447 * Since we're already looking at the list, we may as
1448 * well delete expired entries as we scan through the list.
1449 * This should really be done by a function like
key_reaper()
1450 * but until we code key_reaper(), this is a quick and
dirty
1451 * hack.
1452 */
1453 DPRINTF(IDL_MAJOR_EVENT,("found an expired
entry...deleting
it!\n"));
1454 prevap->next = ap->next;
1455 KFree(ap);
1456 ap = prevap;
1457 }

See also, key.c at lines 1396-1563, 1768-1845; key.h at lines 188-194.

[3c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed.

[7c] removing at least
some of the automatically
expired records from the
linked list when the linked
list is accessed, and

NRL IPv6 discloses removing at least some of the automatically expired
records from the linked list when the linked list is accessed.

For example, as defined in key.h and shown in the code below, the
key_acquirelist structure is a linked list:

188 struct key_acquirelist {
189 u_int8 type; /* secassoc type to acquire */
190 struct sockaddr_in6 target; /* destination address of
secassoc */
191 u_int32 count; /* number of acquire messages sent */
192 u_long expiretime; /* expiration time for acquire message
*/
193 struct key_acquirelist *next;
194 };

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

27 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

In addition, key.c, within the function key_acquire(), discloses traversing
key_acquirelist and accessing entries stored therein. See, e.g., key.c at lines
1411, 1430-1459.

Also, key.c and key.h disclose automatically expiring records. For example,
the key_acquirelist structure defined in key.h contains the following code:

192 u_long expiretime; /* expiration time for acquire message
*/

Furthermore, key.c discloses a means for identifying and removing at
least some of the expired ones of the records from the linked list when the
linked list is accessed, as shown in the code below:

1445 } else if (ap->expiretime < time.tv_sec) {
1446 /*
1447 * Since we're already looking at the list, we may as
1448 * well delete expired entries as we scan through the list.
1449 * This should really be done by a function like
key_reaper()
1450 * but until we code key_reaper(), this is a quick and
dirty
1451 * hack.
1452 */
1453 DPRINTF(IDL_MAJOR_EVENT,("found an expired
entry...deleting
it!\n"));
1454 prevap->next = ap->next;
1455 KFree(ap);
1456 ap = prevap;
1457 }

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

28 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

See also, key.c at lines 1396-1563, 1768-1845; key.h at lines 188-194.

 [7d] inserting, retrieving
or deleting one of the
records from the system
following the step of
removing.

NRL IPv6 discloses inserting, retrieving or deleting one of the records from the
system following the step of removing.

For example, the function key_acquire() in key.c contains a for loop beginning
at line 1431. Within the for loop, the code starting at the elseif at line 1445 and
ending at line 1457, modifies a pointer in an element of the linked list such that
it removes the expired item from the linked list and then calls KFree(). After
KFree() is called, control returns to the for loop which, unless it has reached
the end of the linked list, will retrieve the next record in the list. If the record
has not been previously sent and has expired, it will be removed and deleted in
the code starting at the elseif at line 1445 and ending at line 1457. Finally, after
the loop described above completes, key_acquire() contains the following code
to insert an entry into key_acquirelist:

1542 /*
1543 * Update the acquirelist
1544 */
1545 if (success) {
1546 if (!ap) {
1547 DPRINTF(IDL_MAJOR_EVENT,("Adding new entry in
acquirelist\n"));
1548 K_Malloc(ap, struct key_acquirelist *, sizeof(struct
key_acquirelist));
1549 if (ap == 0)
1550 return(success ? 0 : -1);
1551 bzero((char *)ap, sizeof(struct key_acquirelist));
1552 bcopy((char *)dst, (char *)&(ap->target), dst->sa_len);
1553 ap->type = etype;

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

29 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

1554 ap->next = key_acquirelist->next;
1555 key_acquirelist->next = ap;
1556 }
1557 DPRINTF(IDL_EVENT,("Updating acquire counter and
expiration
time\n"));
1558 ap->count++;
1559 ap->expiretime = time.tv_sec + maxacquiretime;
1560 }

See also, key.c at lines 1396-1563, 1768-1845; key.h at lines 188-194.

4. The method according to
claim 3 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

8. The method according
to claim 7 further including
the step of dynamically
determining maximum
number of expired ones of
the records to remove
when the linked list is
accessed.

NRL IPv6 discloses dynamically determining maximum number of expired
ones of the records to remove when the linked list is accessed.

For example, in key.c each time the else if statement at line 1445 is executed, it
dynamically determines the maximum number of records to remove—one or
zero—based on whether the record has expired.

1445 } else if (ap->expiretime < time.tv_sec) {
1446 /*
1447 * Since we're already looking at the list, we may as
1448 * well delete expired entries as we scan through the list.
1449 * This should really be done by a function like
key_reaper()
1450 * but until we code key_reaper(), this is a quick and
dirty
1451 * hack.
1452 */
1453 DPRINTF(IDL_MAJOR_EVENT,("found an expired
entry...deleting
it!\n"));
1454 prevap->next = ap->next;
1455 KFree(ap);

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

30 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

1456 ap = prevap;
1457 }

In addition, NRL IPv6 combined with Dirks, Thatte, the ’663 patent, and/or the
Opportunistic Garbage Collection Articles discloses dynamically determining
maximum number of expired ones of the records to remove when the linked
list is accessed.

Dirks discloses the management of memory in a computer system and more
particularly to the allocation of address space in a virtual memory system,
which dynamically determines how many records to sweep/remove upon each
allocation. Disclosure of these claim elements in Dirks is clearly shown in the
chart of Dirks, which is hereby incorporated by reference in its entirety.

As summarized in Dirks,

each time a VSID is assigned from the free list to a new application or
thread, a fixed number of entries in the page table are scanned to determine
whether they have become inactive, by checking them against the VSIDs
on the recycle list. Each entry which is identified as being inactive is
removed from the page table. After all of the entries in the page table have
been examined in this manner, the VSIDs in the recycle list can be
transferred to the free list, since all of their associated page table entries
will have been removed. This approach thereby guarantees that a
predetermined number of VSIDs are always available in the free list
without requiring a time-consuming scan of the complete page table at
once. U.S. Patent No. 6,119,214 to Dirks at 7:2-14.

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

31 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

After [a] new VSID has been allocated, the system checks a flag RFLG
to determine whether a recycle sweep is currently in progress (Step 20).
If there is no sweep in progress, i.e. RFLG is not equal to one, a
determination is made whether a sweep should be initiated. This is done
by checking whether the inactive list is full, i.e. whether it contains x
entries (Step 22). If the number of entries I on the inactive list is less than
x, no further action is taken, and processing control returns to the
operating system (Step 24). If, however, the inactive list is full at this
time, the flag RFLG is set (Step 26), the VSIDs on the inactive list are
transferred to the recycle list, and an index n is reset to 1 (Step 28). The
system then sweeps a predetermined number of page table entries PTi on
the page table, to detect whether any of them are inactive, i.e. their
associated VSID is on the recycle list (Step 30). The predetermined
number of entries that are swept is identified as k, where:

 Id. at 8:12-30.

Dirks discloses that any approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. Id. at 7:37-
40. As stated in Dirks:

Any other suitable approach can be employed to determine the number of
entries to be examined during each step of the sweeping process. In this

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

32 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

regard, it is not necessary that the number of examined entries be fixed for
each step. Rather, it might vary from one step to the next. The only criterion
is that the number of entries examined on each step be such that all entries in
the page table are examined in a determinable amount of time or by the
occurrence of a certain event, e.g. by the time the list of free VSIDs is empty.

Id. at 7:38-46. Thus, Dirks dynamically determines the maximum number of
records to sweep/remove by calculating a value k. Id. at 7:15-46, 7:66-8:56.

As both NRL IPv6 and Dirks relate to deletion of aged records, one of ordinary
skill in the art would have understood how to use Dirks’ dynamic decision
making process of determining the maximum number of records to
sweep/remove in other hash tables implementations such as that described
NRL IPv6. Moreover, one of ordinary skill in the art would recognize that it
would improve similar systems and methods in the same way. As the ’120
patent states “[a] person skilled in the art will appreciate that the technique of
removing all expired records while searching the linked list can be expanded to
include techniques whereby not necessarily all expired records are removed,
and that the decision regarding if and how many records to delete can be a
dynamic one.” The ’120 patent at 7:10-15. Additionally, one of ordinary skill
in the art would recognize that the result of combining Dirks’ deletion decision
procedure with NRL IPv6 would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined Dirks’ dynamic determination of the suitable number of entries to

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

33 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

examine during each step of the sweeping process with NRL IPv6 and would
have seen the benefits of doing so. One possible benefit, for example, is
saving the system from performing sometimes time-consuming sweeps.

Alternatively, one of ordinary skill in the art would be motivated to, and would
understand how to, combine the system disclosed in NRL IPv6 with the means
for dynamically determining maximum number for the record search means to
remove in the accessed linked list of records disclosed by Thatte. Thatte,
discloses a system and method using hash tables and/or linked lists and further
discloses means for dynamically determining the maximum number for the
record search means to remove in the accessed linked list of records. The
disclosure of these claim elements in Thatte is clearly shown in the chart of
Thatte, which is hereby incorporated by reference in its entirety.

Moreover, one of ordinary skill in the art would recognize that these
combinations would improve the similar systems and methods in the same
way. Additionally, one of ordinary skill in the art would recognize that the
result of combining NRL IPv6 with Thatte would be nothing more than the
predictable use of prior art elements according to their established functions.
The resulting combination would include the capability to determine the
maximum number for the record search means to remove.

Further, one of ordinary skill in the art would be motivated to combine NRL
IPv6 with Thatte and recognized the benefits of doing so. For example, the
removal of expired records described in NRL IPv6 can be burdensome on the
system, adding to the system’s load and slowing down the system’s

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

34 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

processing. One of ordinary skill in the art would recognize that combining
NRL IPv6 with the teachings of Thatte would solve this problem by
dynamically determining how many records to delete based on, among other
things, the system load. Moreover, the '120 patent discloses that "[a] person
skilled in the art will appreciate that the technique of removing all expired
records while searching the linked list can be expanded to include techniques
whereby not necessarily all expired records are removed, and that the decision
regarding if and how many records to delete can be a dynamic one." '120 at
7:10-15. Thus, the '120 patent provides motivations to combine NRL IPv6
with Thatte.

Alternatively, it would also be obvious to combine NRL IPv6 with the ’663
patent. Disclosure of these claim elements in the ’663 patent is clearly shown
in the chart of the ‘663 patent, which is hereby incorporated by reference in its
entirety. As summarized in the ’663 patent:

during normal times when the load on the storage system is not
excessive, a non-contaminating but slow deletion of records is
used. This slow, non-contaminating deletion involves closing
the collision-resolution chain of locations by moving a record
from a later position in the chain into the position of the record
to be deleted. This leaves no deleted record locations in the
storage space to slow down future searches. U.S. Patent
4,996,663 to Nemes at 2:24-34 (“The ’663 patent”).

In times of heavy use, when deletions must be done rapidly and

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

35 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

no time is available for decontamination, the record is simply
marked as “deleted” and left in place. Later non-contaminating
probes in the vicinity of such deleted record locations
automatically remove the contaminating deleted records by
moving records in the chain as described above. Id. at 2:35-41.

This hybrid hashing technique has the decided advantage of
automatically eliminating contamination caused by the fast-
secure deletion procedure when the slower, non-contaminating
deletion is used when the load on the system is at lower levels.
Id. at 2:42-46.

This hybrid deletion is shown in Figure 5.

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

36 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

Id. at Figure 5.

During the hybrid deletion procedure decision block 51 checks the system load
to determine if the system load is greater than a threshold. If the system load is
greater than the threshold, then a fast-secure delete 52 is used. Id. at 6:40-64,

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

37 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

Figure 5. On the other hand, if the system load is less than the threshold, then a
slow-non-contaminating delete 53 is used. Id. The fast-secure delete 52 does
not actually delete records, rather it marks records as deleted. Id. at 8:1-33,
Figure 7. These records are then actually deleted by a subsequent slow-non-
contaminating delete 53. Id. at 6:65-7:68, Figures 6, 6A, 6B.

Thus, the hybrid deletion procedure in the ’663 patent dynamically determines
a maximum number of records to remove. See id. at 6:40-64, Figure 5. If the
fast-secure delete 52 is used, then maximum number of records is zero because
records are not deleted they are only marked. Id. at 8:1-33, Figure 7. If the
slow-non-contaminating delete 53 is used, then the maximum number of
records to remove is all of the contaminated records in the bucket. Id. at 6:65-
7:68, Figures 6, 6A, 6B.

As both NRL IPv6 and the ’663 patent relate to deletion of records from an
information storage system, one of ordinary skill in the art would understood
how to use the ’663 patent’s dynamic decision on whether to perform a
deletion based on a systems load in other information storage system
implementations such as NRL IPv6. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

38 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

combining the ’663 patent’s deletion decision procedure with NRL IPv6 would
be nothing more than the predictable use of prior art elements according to
their established functions.

By way of further example, one of ordinary skill in the art would have
combined the ’663 patent’s dynamic decision on whether to perform a deletion
based on a systems load as taught by the ’663 patent and with NRL IPv6 and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would avoid performing deletions when the system load
exceeded a threshold.

Alternatively, it would also be obvious to combine NRL IPv6 with the
Opportunistic Garbage Collection Articles.

The Opportunistic Garbage Collection Articles disclose a generational based
garbage collection which dynamically determines how much garbage to
collect. See generally, Paul R. Wilson and Thomas G. Moher, Design of the
Opportunistic Garbage Collector, OOPSLA ’89 Proceedings, October 1-6,
1989; Paul R. Wilson, Opportunistic Garbage Collection, ACM SIGPLAN
Notices, Vol. 23, No. 12, December 1988.

When a significant pause has been detected, a decision procedure is
invoked to decide whether to garbage collect, and how many generations to
scavenge. The fuller a generation is, the more likely it is to be scavenged;
also, the longer the pause that has been detected, the larger the scope of the
garbage collection is likely to be. Design of the Opportunistic Garbage

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

39 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

Collector at 32.

Every time a user-input routine is invoked, a decision routine can decide
whether to garbage collect. As long as the decision routine takes no more
than a few milliseconds to execute, it should not interfere with
responsiveness. Since it is only invoked at these times, it does not incur a
continual run-time overhead. Opportunistic Garbage Collection at 100.

This decision routine should take several things into account: 1) the volume
of data allocated since the last scavenge, 2) how long it has been since the
user has had an opportunity to interact, and 3) the height of the stack
relative to its average height at reads since the last scavenge. If the product
of the allocation and the compute time is high, and if the stack is low, the
scavenge favorability measure is high. If it is especially high, a multi-
generation scavenge is in order. Id.

If these heuristics fail and a scavenge is forced instead by the filling of a
generation’s space, it is likely to happen during a significant compute-
bound pause--the one that has just allocated the data that forced the
collection. When the opportunistic mechanism fails to find the end of a
pause, it may still succeed by default, embedding a scavenge pause within
a larger pause. Design of the Opportunistic Garbage Collector at 32.

As both NRL IPv6 and the Opportunistic Garbage Collection Articles relate to
deletion of aged records, one of ordinary skill in the art would have understood
how to use the Opportunistic Garbage Collection Articles’ dynamic decision

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

40 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

on whether to perform a deletion based on a system load in other hash table
implementations such as NRL IPv6. Moreover, one of ordinary skill in the art
would recognize that it would improve similar systems and methods in the
same way. As the ’120 patent states “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” The ’120 patent at 7:10-15.
Additionally, one of ordinary skill in the art would recognize that the result of
combining the Opportunistic Garbage Collection Articles’ deletion decision
procedure with NRL IPv6 would be nothing more than the predictable use of
prior art elements according to their established functions.

By way of further example, one of ordinary skill in the art would have
combined the Opportunistic Garbage Collection Articles’ dynamic decision on
whether to perform a deletion and how many generations to scavenge as taught
by the Opportunistic Garbage Collection Articles and with NRL IPv6 and
would have seen the benefits of doing so. One such benefit, for example, is
that the system would only perform deletions when the system was not already
too overloaded, thus preventing slowdown of the system.

Additionally, it would have been obvious to one of ordinary skill in the art to
modify the system disclosed in NRL IPv6 to dynamically determine the
maximum number of expired records to remove in the accessed linked list of
records. It is a fundamental concept in computer science and the relevant art
that any variable or parameter affecting any aspect of a system can be

EXHIBIT D-11

Plaintiff’s Invalidity Contentions & Production of
Documents

41 Case No. 6:09-CV-549-LED

US2008 1287028.2

Asserted Claims From
U.S. Pat. No. 5,893,120

Naval Research Laboratories ipv6-dist-
domestic\sys.common\netinet6\key.c and key.h (hereinafter “NRL

IPv6”)1

dynamically determined based on information available to the system. One of
ordinary skill in the art would have been motivated to combine the system
disclosed in NRL IPv6 with the fundamental concept of dynamically
determining the maximum number of expired records to remove in an accessed
linked list of records to solve a number of potential problems. For example,
the removal of expired records described in NRL IPv6 can be burdensome on
the system, adding to the system’s load and slowing down the system’s
processing. Moreover, the removal could also force an interruption in real-
time processing as the processing waits for the removal to complete.

One of ordinary skill in the art would have known that dynamically
determining the maximum number to remove would limit the burden on the
system and bound the length of any real-time interruption to prevent delays in
processing. Indeed, Nemes concedes that such dynamic determination was
obvious when he states in the ‘120 patent that “[a] person skilled in the art will
appreciate that the technique of removing all expired records while searching
the linked list can be expanded to include techniques whereby not necessarily
all expired records are removed, and that the decision regarding if and how
many records to delete can be a dynamic one.” ‘120 at 7:10-15.

See also, key.c at lines 1396-1563, 1768-1845; key.h at lines 188-194.

EXHIBIT E

Plaintiff’s Invalidity Contentions &
Production of Documents

1 Case No. 6:09-CV-549-LED

US2008 1292201.1

ADDITIONAL PRIOR ART

I. ADDITIONAL PRIOR ART PUBLICATIONS

Author, Title, Publisher, (Publication Information, Date of Publication).

Moshe Augenstein and Aaron Tennebaum, Data Structures and pl/I Programming 536-542, 550-
555, 585-604 (Prentice-Hall 1979) (QA76.9.D35 A93)

Robert J. Baron and Linda G. Shapiro, Data Structures and their Implementation 239-253, 303-
314 (Von Nostrand Reinhold 1980) (QA76.9.D35 B37)

A.T. Berztiss, Data Structures Theory and Practice 316-319, 329-339 (Academic Press 1971)
(QA76.6.B745)

A.T. Berztiss, Data Structures Theory and Practice 416-420, 431-460 (Academic Press 2d Edition
1975) (QA 76.6.B475 1975)

David Clark, Van Jacobson, John Romkey, and Howard Salwen, An Analysis of TCP Processing
Overhead, IEEE COMMUNICATIONS MAGAZINE, June 1989, at p. 23-29

Luc Devroye, Lecture Notes on Bucket Algorithms 10-16 (Birkhauser Boston 1986)
(QA76.9.D35 D48)

I. Ganapathy and R.F. Hobson, GPMS, A general Purpose Memory Management System ---
User’s Memory --- That is, Proceedings of the Eighth International Conference on APL, 155-165
(1976)

C.C. Gotlieb and L.R. Gotlieb, Data Types and Structures 341-346 (Prentice-Hall 1978)
(QA76.9.D35 G67)

Patrick A.V. Hal, Computational Structures an Introduction to Non-numerical Computing 119-
134 (Macdonald & Co. 1975) (QA76.9.D35 H34)

Ellis Horowitz and Sartaj Sahni, Fundamentals of Data Structures 456-471 (Computer Science
Press 1983) (QA76.9.D35 H67 1983)

A Klinger, K.S. Fu, T.L. Kunii, Data Structures, Computer Graphics, and Pattern recognition 109-
114 (Academic Press 1977) (QA 76.9.D35 D37)

Robert L. Kruse, Programming with Data Structures, Pascal Version 499-523 (Prentice-Hall
1989) (QA76.6.K774 1989)

James Richard Low, Automatic Coding: Choice of Data Structures 24,25,32(Birkhauser Verlag

EXHIBIT E

Plaintiff’s Invalidity Contentions &
Production of Documents

2 Case No. 6:09-CV-549-LED

US2008 1292201.1

Author, Title, Publisher, (Publication Information, Date of Publication).

Basel 1976) (QA76.9.D35 L68)

Udi Manber, Introduction to Algorithms a Creative Approach 78-83 (Addison-Wesley 1989) (QA
76.9+.D35 M36 1989)

William G. McArthur and J. Winston Crawley, Structuring Data with PASCAL 604-608
(Prentice Hall 1992) (QA76.9.D35 M39 1992)

Edward M. Reingold and Wilfred J. Hansen, Data Structures in Pascal 268-277, 376-414 (Little,
Brown 1986) (QA76.9.D35 R443 1986)

Edward M. Reingold and Wilfred J. Hansen, Data Structures 246-253, 332-364 (Little, Brown
1983) (QA76.9.D35 R44 1983)

M.J.R. Shave, Data Structures 94-116 (McGraw Hill 1975) (QA 76.9.D35 S47)

Jean-Paul Tremblay and Paul G. Sorenson, An Introduction to data Structures with Applications
518-524, 563-568, 611-623 (McGraw-Hill 2d Edition 1984) (QA76.9.D35 T73 1984)

Steven Wartik, Boolean Operations p.282-292 and Steven Wartik, Edward Fox, Lenwood Heath,
and Qi-fan Chen, Hashing Algorithms p.293-318; both published in Information Retireval Data
Structures & Algorithms, edited by William B. Frakes and Ricardo Baeza-Yates (Prentice Hall
1992) (QA76.9.D35 I543 1992)

