Bedrock Computer Technologies, LLC v. Softlayer Technologies, Inc. et al Doc. 284 Att. 11

EXHIBIT S5

PART 6 OF 6

Dockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/6:2009cv00269/116887/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2009cv00269/116887/284/11.html
http://dockets.justia.com/

5,287,499
17 18

recursive_delete (i, (i + 1) mod table_size)
end /* kouuth’ delete */

List Insert Algorithm

j procedure list_insert (vac p: {list_element_type; new_record: record_type);
/* Allocate list element, put new_record in it, and link to list pointed to by p */
var q: Ylist_element_type;
begin
new (q); /* allocate list element */
qlrecord_contents := new_record,

: qlnext := p,
E p:=q
end

Table Insert Adgorithm

procedure rable_insert (i: 0 .. table_size-1; new_record: record_type);
/™ Store new_record in table at or ahead of positioni */

-

begin
while table[i]status = occupied doi:= (i + 1) mod table_size;
table[i).record_contents := new_record,
tablefi].status : = occupied

end

What is claimed is: 45 when said collision count in said storage means is

1. An information storage and retrieval system for equal to or greater than said preselected threshold.
data records using a portion of each said data record for 2. The information storage and retrieval system ac-
generating a hashed storage address in said system, said cording to claim 3 further comprising
systern comprising means for storing one of said data records at said

storage means for storing a collision count for each 5g hashed storage address when said collision count is

set of said data records having identical hashed below said preselected threshold.

storage addresses, 3. The information storage and retrieval system ac-
first means responsive to said storage means for lo- cording 10 claim 1 further comprising

cally resolving collisions by open addressing when means for storing a pointer to one of said data records

said collision count in said storage means is below 55 at said at said hashed storage address when said

a preselected threshold, and collision count is equal 1o or greater than said pre-
second means responsive to said storage means for selected threshold.

locally resolving collisions by external chaining * 5 5 & 3

65

BTEX0000438

; ' f q\ UNITED STATES DEPARTMENT OF COMMERCE

) Patent and Trademark Office
K%

NOTICE OF ALLOWANCE AND ISSUE FEE DUE

Tz

[B S QR Ll
RKICHARD MICHAEL NEMES
1472 FAST 3I5TH STREET
BROOKL YN MY 11234-260
i
ﬁ—_ APPLUICATION NO. FILING DATE TOTAL CLAIMS EXAMINER AND GROUP ART UNIT 1 DATE MAILED
' BR/ 775, ned Ql/@zs 97 Qas AL, H 2771 B9/ 2%/ 9%
ﬁﬂNm" NEMES., RICHAERD ™.

° METHODS AND APPARATUS FGR INFORMATION STORAGE AND RETRIEVAL USING &
L i HASHING TECHMIQUE WITH EXTERNAL CHATRING AND OM-TRHE-FLY REMOVAL OF

EXPIREDR DATA

TIVSDOCKETNO. | CLASS-SUBCLASS | BATCHNO. | APPLN.TYPE sMALLENTITY. [FEEDUE . | DATE DUE
TA7 208 ARA J7a UTILITY YES SOEH. 00 12/729/9§

==

IPPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT,
JOSECUTION ON THE MERITS IS CLOSED.

ISSUE FEE MUST BE PAID WITHIN THREE MONTHS FROM THE MAILING DATE OF THIS NOTICE OR THIS

PALICATION SHALL BE REGARDED AS ABANDONED. THIS STATUTORY PERIOD CANNOT BE EXTENDED.

.TO RESPOND TO THIS NOTICE:
ewthe. SMALL ENTITY status shown above.
MALL ENTITY'is shown as YES, verify your If the SMALL ENTITY is shown as NO:

ALL ENTITY status:

statusis changed, pay twice the amount of the
wri-above and notify the Patent and
Ofﬁce of the: change'in status or

is the same, pay the FEE DUE shown.

 A. Pay FEE DUE shown above, o

B File verified statement of Small Entity Status before or with,
payment of 1/2 the FEE DUE shown above.

ce. Transmnttal should'be comp|eted and returned to the Patent and Trademark Office: (PTO) wuth your
en if the ISSUE FEE has already been paid by charge to deposit account; Part Blssue Fee Transmittal
e completed and returned. If you dre charging the ISSUE FEE ta your deposit account;:section “4b” of Part
ssug Fee' Transmiittal should be oompleted and an extra copy of the form should be submitted.

mmun_ccaﬂons.regardlng this application must give application number and batch number.
> direct all communications prior to issuance to Box ISSUE FEE unless advised to the contrary.

RTANT REMINDER: Utility patents issuing on applications filed on or after Dec. 12, 1980 may require payment of
maintenance fees, It is patentee s responsibility to ensure timely payment of maintenance
fees when due,

PATENT AND TRADEMARK OFFICE COpY

{REV. 10:96) Approved for use through 06/30/99. (0651-0033)

BTEX0000439

D #
\)9 7
KNS

PTO/SB21 (6-98)
Plaase typa a phus sign (+) inside this box —> Appraved for use through 09/30/2000. OMB 0651-0031 +
Patent and Trademark Office: U.5. DEPARTMENT OF COMMERCE
Undar the Paperwork Reduction Act of 1995, no persons are required {o respond to a collection of information unless it displays a
valid OMB control number,

(Application Number 08/775,864 \
TRANSMITTAL Filing Date 01/02/97
FORM First Named Inventor Richard Michael Nemes
(to be used for all correspondence after initial fling) Group Art Unit 2771
Examiner Name Hosain T. Alam
uotal Number of Pages in This Submission| - Attorney Docket Number 2)

ENCLOSURES (check all that apply)

Assignment Papers After Allowance Communication
(for an Application) to Group

D Appeal Communication to Board
of Appeals and Interferences

D Fee Transmittal Form

'} [] Fee attachea

J D Amendment / Response

Drawing(s)

Appeal Communication to Group

Licensing-related Papers , . ,
(Appeal Notics, Briaf, Reply Brief)

I:I After Final D :3“2&5&”;?,%%3%&?{8{,88]69) D Proprietary Information
Affidavits/declaration(s) D Petition to Convert to a D
D Provisional Application Status Letter
) D Power of Attorney, Revocation Additional Enclosure(s)
D Extension of Time Request ggg;ges of Cotrespondence (Please identify below):
I:l Express Abandonment Request D Terminal Disclaimer
: I___I . o Die st | D Small Entity Statement RECEIVED
nformation Disclosure Statemen _ i i
: D Request for Refund \Publ shing Djvision
Certified Copy of Priority
4 Document(s) Remarks
Response to Missing Parts/
Incomplete Application 1 6
six (6) sheets of formal drawings
: Response to Missing
Parts under 37 CFR
; 152 0r 1.53 Certified Mail Article Number:Z 431 173 533

SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT

Firm
or
Individual name

Signature 6 y/ /W ﬂ‘ﬁ»——/

Date

Richard Michael Nemes

December 1, 1998

~ CERTIFICATE OF MAILING)

| hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an
envelope addressed to: Assistant Commissioner for Patents, Washington, D.C. 20231 on this date: Eecember 10,19

Typed or printed name - Richard Michael Nemes

_Signature WMW | Date] December 1, 1998)

Burden Hour Statement: This form is estimated 1o take 0.2 hours to oomgde Time will vary nding upon the neads of the individual case.
Any comments on the amount of time you are required lo e this form should be send to the Chief Infornation Officer, Patent and
+ Trademark

, Washinglon, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant
Commissioner for | Patents, Washington, DC 20231.

BTEX0000440

5893129
15
RANDOM
ACCESS ™11
MEMORY
S 4
1'7 \ i
INPUT- | CENTRAL DISK
OUTPUT +—{PROCESSING+—={ CONTROL
CONTROLLER\ UNIT UNIT
Ty 14 L1O L12
PRINTER
6 FIG. 1
ACGESS
SOFTWARE\
20
OPERATING GENERAL
SYSTEM — UTILITY
SOFTWARE SOFTWARE| 22
A
21
------ 2
Y Ly r 5
APPLICATION} JAPPLICATION APPLICATION
SOFTWARE SOFT;NARE ------------ SOFWARE
1
Uy 24
FIG. 2

BTEX0000441

/&1{7 Lrafion Mombe l’/{"?’?’ ¥
cpud 4 ol 6

BTEX0000442

By CLASS Isur-scu.sf’s

|

{ DRATTSMAM

‘ I Amﬂovz? oG, F!(‘i, l
START 30

Y

HASH | g1
SEARCH
KEY

Y
GET HEAD |——-32

OF TARGET
LIST

36
' [
VES RETURN RETURN
SUCCESS | FAILURE
42 - |
t N N0 ¥)
SAVE REMOVE !
POINTER T0 REmove | (_STOP)37
LIST ELEMENT| RECORD
4 (FIG. 4)
ADVANCE TO| 41
NEXT |/
ELEMENT
FIG. 3

BTEX0000443

Avpricotion Nomba: og f7

N A ¥ &
“hee¥ Yood b

BTEX0000444

! [AD%OV&D 10.G. FiG. J }

By CLASS 13UBGLASE)

}

DRAETSMAN

3

START 50
Y | /‘—-@
ADVANCE PTR
TO ELEMENT

FOLLOWING
ONE TO REMOVE

TO REMOVE 1st

4 INLIST
5\ 1 ? DJLS?/SB
A
HEAS PO PREDECESSOR'S |
BYPSS SYPAGS L EMENT
ELEMENT -

il
-

wr/JSS

DE-ALLOCATE
LIST ELEMENT
TO BE REMOVED

BTEX0000445

,p heokion Mom be 37 (§e4

;'l

3 wl %ok b

BTEX0000446

YES

y
PUT RECORD
IN LIST ELEMENT

SEARCH-TABLE

RETURN
REPLACED

RETURNED BY S

START 70

/1

Y
SEARCH-TABLE

SEARCH FOR
RECORD AND
CLEAN TARGET
LIST

RECORD

78

'\

14 RETURN

FULL

ALLOCATE
NEW LIST
ELEMENT

P

COPY RECORD
INTO NEW
LIST ELEMENT

>

INSERT NEW
LIST ELEMENT
INTO TARGET
LIST

¢ S

'RETURN
INSERTED

BTEX0000447

Aﬁ’p{'{f‘”{' Yore Mom b~ | C‘«me 5, w6F
m r& 4 ”71 o

BTEX0000448

RPOROVED | 3 FIG,

BY CLABS

DYAFTSMAN

i «“ﬁmJ
-

\
SJBCI.ASS{)

S R T R E e e

i AR e A A SRR

g

1
SEARCH-TABLE

SEARCH FOR
RECORD AND
CLEAN TARGET

LIST

94 B YES
N
COPY

RECORD

\

RETURN
SUCCESS

e

Y JS

RETURN
FAILURE

1

Y

@\96

FIG. 6

BTEX0000449

y{iz‘(i«:ati-\ow Nowmba . f);i,fé ,io%
3 2}3"};_ 5 o1 5

BTEX0000450

——
APEROVED

(0.G. FIG. A
By CiASS 1SUBCLASS]
START 100
I 101
SEARCH-TABLE
SEARCH FOR
RECORD AND
CLEAN TARGET
LIST
104
Y 103
REMOVE Yy —
DELETE
ELEMENT EE'IHEE
(FIG. 4) 105
) /'/
RETURN
SUCCESS

\

(STOP)’\106

FIG. 7

BTEX0000451

BTEX0000452

complets and mail this form, together with app:. Lﬂe fees,to: Box ISSUE FEE

Assistant Commissiones for Patents
Washington, D.C. 20231

PART BISSUE FEE TRANSMITTAL -

- Rty 490’5%?
¥

{FAILING INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE. Blocks 1
aguough 4 should be completed where.appropriate. Alt further correspondence including the lssue Fee
“peceipt, the Patent, advance orders and notification of maintenance fees will be mailed to the current

.!mmaspondenoe address as indicated unless corrected below or directed otherwise in Block 1, by.(a)
ipocifying a new comespondence address; and/or (b) indicating a separate “FEE ADDRESS" for |

émintenance fee notifications.
pLALAR L.

Note: The certificate of mailing below can only be used for domestic
mailings of the Issue Fee Transmittal. This certificate cannot be used
for any other accompanying papers. Each additional paper, such as an
assignment or formal drawing, must have its own certificate of mailing.

Certifcate of Mailing

wﬂHENT CORRESPONDENCE ADDRESS (Note: Logibly mark-up mm any coractions or use Block 1)

1 hereby cetify that this Issue Fee Transmittal is being deposited with
the United States Postal Service with sufficient postage for first class

REQEI maltinan envelope addressed to the Bax Issue Fee address above on
i Pubii : the date indicated below.
1 . Shing Division
DEC 10 Kgs RICHARD MICHAEL NEMES (Dopastors name)
eg 6 Mﬂﬂ IW’A’.) (Sigreture)
I December 10, 1998 (Date)
" APPLICATION NO. FILING DATE ‘\)6m. CLAIMS l EXAMINER AND GROUP ART UNIT | oaremaneo

£ SO S B S

-ATTY'S DOCKET NO. I CLASS-SUBCLASS

| BatcHno. [PN TYPE

[smaLentiry DATE DUE

[FEEDUE [

TS

hange of comespordence address or.indication of * Fee Addrass” (37 CFR 1.363).
" Use of PTO for(s) and Customer Number ars recommended, but not required.

¢ @Change of correspondence address (or Change of Correspondence Addrass form
PTO/SB/122) attached,

X “Foe Address™ indication (or “Fee Address" Indication form PTO/SB/47) attached.

2. For printing on the patent front page, list
(1) the names of up 0 3 registered patent 4
aftorneys or agents OR, alternatively, (2)

the name of a single fiom (having as a

‘member a registered -attomey or agent) 2
and the names of up 1o 2 registered patent
attomeys or agents. i no name Is listed, no

name will be printed. 3

;3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type)
PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent.
Inclusion of assignee data is only approplate when an assigriment has been previously submitted to
the PTO or s being submittéd under separate cover. Completion of this form is NOT a wbsmm for
filing ; an assignment,

(A) NAME QF ASSIGNEE

L ~(8) RESIDENCE. (C(TY & STATE OR OOUNTFIY)

. Pleasa check the appmpdam asslgnee category Indicated below {will not be pdntad on the patent)
(] Indeual D cotporation or other private group entity] govemment

" 4. The followmg feas are enclosed (make check payable to Cnmmlssioner
of Patents and Trademarks):

- R Issue Fee
3 Advance Qrder - #c:fCoples

4b Thetouowingfeesordaﬂclencylnthesefeessmmmmargedm

DEPOSIT ACCOUNT NUMBER .
(ENCLOSE AN EXTRA COPY OF THIS FORM)

O Issue Feo .
£ Advance Order - # of Copies

j MlSSIONER OF PATENTS AND TRADEMARKS IS mquemd to apply thie lssue Fee to the application ldenﬂﬂed above.

(Date) -

)ec. 10, 199

—

Burden Hour smemen(- Thls fon'n is esﬂmated to take 02 hours to uomplete Time will vary
dependmg onthie nieeds of the individual case. Any comments on the amourit of time required-

to complete this:form shoiild be sent to the Chief Information Officer, Patent and Trademark

Ofﬁoe Washmg(cm D.C. 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS |
ADDRESS SEND FEES AND' THIS FORM TO: Box issus Fee, Assistant Commissmner for
- Patents, Washington D.C. 20231

5 Under the Papetwmk Reduction Act of 1995, no persons are required to respond to a collection

s of information unless it displays a valid OMB control number.

lF’le/ 1936 QIBKRHIN 000“00’78 08775864

_01 F{‘wjp 6 0

Befung Refs
%/1“ 95" ALERRHTY 090@%?45&. (‘,45\ _

- CMECK Refund Total: $55.00

. TRANSMIT THIS FORM WITH FEE
hoLess (REV.10-96) Approved for use through 06/30/99. OMB 0651-0033

Patent and Trademark Office; U.S. DEPARTMENT OF COMMER(

BTEX0000453

N PTO/SB/22 (11-96)
hi -
Ploass type a plus sign (+) inside this Appr., . tor use through 6/30/99. OMB 0651-0035
. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE ()

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

- N/

CHANGE OF Application Number 08/775,864
CORRESPONDENCE ADDRESS | ™" % 01/02/97
Application First Named Inventor | Richard Michael Nemes

Address to: Group Art Unit 2771

Assistant Commissioner for Patents
_ Washington, D.C. 20231

Examiner Name Hosain T. Alam

Attorney Docket Number 2 J

Please change the Correspondence Address for the above-identified application
to:

Place Customer

[:] Customer Number) Number Bar Code
Type Customer Number here Label here
OR
. Firm or
Individual Name Richard Michael Nemes
Address 2821 Kings Highway, Apartment 1M
Address
City Brooklyn State New York ZIP|11229-1835
Country U.S.A,
Telephone (718) 677-1748; (212) 346-1782|pax| (212) 346-1863

This form cannot be used to change the data associated with a Customer Number. To
change the data associated with an existing Customer Number use “Request for Customer
Number Data Change” (PTO/SB/124).

| am the :

L]
]

Applicant.

Assignee of record of the entire interest.
Certificate under 37 CFR 3.73(b) is enclosed.

Attorney or agent of record .

RECEIVED
Publighing Division

'DEC 1 01988
16

T
Pmoilame Richard Michael Nemes
Signature é ’ /WW“/\
Date Decembher 1, 1998

Burden Hour Statement: This form is estimated to take 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any
comments on the amount of time you are required 1o complete this form should be sent to the Chief Information Officer, Patent and Trademark Office,

Washington, DC 20231,
Washington, DC 20231.

BTEX0000454

DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents,

PTO UTILITY GRANT
' Paper Numbar,
The Commissioner of Patents
and Trademarks

Has received an application for a patent for a

new and useful invention. The title and de-

e seription of the invention are enclosed. The

requirements of law bave been complied with,

qx 't d and it bas been determined that a patent on

"[g the invention shall be granted under the lau.

Qtates s

United States Patent

0 Grants to the person(s) baving title to this

- patent the right to exclude others from mak-

mghlca ing, using, offering for sale, or selling the in-

vention throughout the United States of

America or importing the invention into the

United States of America for the term set forth

below, subject to the payment of maintenance
fees as provided by Las.

If this application was filed prior to June 8,
1995, the term of this patent is the longer of
seventeen years from the date of grant of this
patent or twenty years from the earliest effect-
ive U.S. filing date of the application, sub-
Ject to any statutory extension.

If this application was filed on or after June
8, 1995, the term of this patent is twenty years
from the U.S, filing date, subject to an statu-
tnﬂ' i I-f tb‘ 'y ki ti tai @
specific reference to an earlier filed applica-
tion or applications under 35 U.S.C. 120, 121
or 365(c), the term of the patent is twenty years
from the date on which the earliest applica-
tion was filed, subject to any statutory exten-
sion.

Commissioner of Pavents and Trademarks

el

Form PTO-1684 (Rav. 2/37)

[OUT INCINEY

Ffl-LOM

BTEX0000455

1
US005893120A

United States Patent g 1] Patent Number: 5,893,120
Nemes 45s] Date of Patent: Apr. 6, 1999
{54] METHODS AND APPARATUS FOR R.1.. Kruse. Data Structures and Program Design, Second
INFORMATION STORAGE AND RETRIEVAIL Edition. Prentice-Hall, Englewood Cliffs, New Jersey. 1987.
USING A HASHING TECHNIQUE WITH Section 6.5. “Hashing.” and Section 6.6. Analysis of Hash-
EXTERNAL CHAINING AND ON-THE-FLY ing. pp. 198-215.
REMOVAL OF EXPIRED DATA D. F. Stubbs and N.W. Webre, Data Structure with Abstract

, . Data Types and Pascal, Brooks/Cole Publishing Company.,
[76] Imventor: Richard Michael Nemes, 1432 E. 35th Montercy, California, 1985, Section 7.4, “Hased Implemen-

St.. Brooklyn. N.Y. 11234-2604 tations.” pp. 310-336.
Primary Examiner-Thomas (5. Black
{211 Appl. No.: 775,864 Assistant Examiner—Hosain T. Alam
[22] Filed: Jan. 2, 1997 {571 ABSTRACT
[511 It CL° GO6F 17/30 A method and apparatus for performing storage and retrieval
[[O 5 61 N — 707/206; 707/1; 707/100, in an information storage system is disclosed that uses the
707/101; 7071202 hashing technique with the external chaining method for
[58] Field of Search ..o 707/1. 200-206, collision resolution. In order to prevent performance dete-

70772, 100-103 rioration duc to the presence of automatically expiring data
items, a garbage collection technique is used that removes

(56) References Cited all expired records stored in the system in the external chain
targeted by a probe into the data storage system. More
U.S. PATENT DOCUMENTS particularly, each insertion, retrieval, or deletion of a record

is an occasion to search an entire linked-list chain of records

for expired items and then remove them. Because an expired

data item will not remain in the system long term if the

system is frequently probed. it is useful for large information
OTHER PUBLICATIONS storage systems that are heavily used, require the fast access

provided by hashing. and capnot be taken off-line for

D.E. Knuth, The Art of Computer Programming, vol. 3. removal of expired data.

Sorting and Searching, Addison—-Wesley, Reading, Massa-

chusetts. 1973, pp. 506-549. 8 Claims, 6 Drawing Sheets

o

HASH L. 494
SEARCH
KEY

!

GET HEAD (——32
OF TARGET
LIST

5,121,495 6/1992 Nemes
5202981 4/1993 Shackelford
5287499 2/1994 Nemes ...

36

{

RETURN

YES SUCCESS FAILURE

40 /42 7
SAVE REMOVE
POINTER TO REMOVE @v 2

LIST ELEMENT] RECORD
(FIG. 4)

ADVANCE TO; 41
XT

BTEX0000456

U.S. Patent Apr. 6, 1999 Sheet 1 of 6 5,893,120
A5
RANDOM
ACCESS [™~11
MEMORY
0 'y
R Y 3
INPUT- | CENTRAL DISK DISK
OUTPUT +—{PROCESSING+—={ CONTROL STORAGE
CONTROLLEH\ UNIT UNIT UNIT
R 14 10 Ui 13

\

PRINTER
. FIG.1
AGCESS
SOFTWARE \20
i
OPERATING GENERAL
SYSTEM [+— UTILITY
SOFTWARE SOFTWARE| —22
| A 25
{ { v
APPLICATION| |APPLICATION APPLICATION
SOFT ¥VAHE SOFT:\ZNARE """""" SOF.IRINARE
LQS 24
FIG. 2

BTEX0000457

U.S. Patent Apr. 6, 1999 Sheet 2 of 6 5,893,120

L
\

HASH | 134
SEARCH
KEY

GET HEAD 32
OF TARGET
LIST

36
V[
L35
YES RETURN RETURN
SUCCESS FAILURE
42 . [
\ I NO v~)
SAVE REMOVE I 57
POINTER TO REMOVE STOP
LIST ELEMENT RECORD
] (FIG. 4)
4
ADVANCE TO| 41
NEXT |/
ELEMENT
Y
FIG. 3

BTEX0000458

U.S. Patent

Apr. 6, 1999 Sheet 3 of 6
START 50
[51
ADVANCE PTR
TO ELEMENT
FOLLOWING
ONE TO REMOVE
)
ELEMENT
YES 79 FEOVE NO
54 |
- ? —
ADJUST
ADJUST PREDECESSOR'S
HEAD PTRTO
BYPASS BYPAggF[{E[gMENT
ELEMENT
55
| /'/
DE-ALLOCATE
LIST ELEMENT
TO BE REMOVED

Y

(S0P g

FIG. 4

5,893,120

BTEX0000459

U.S. Patent Apr. 6, 1999 Sheet 4 of 6 5,893,120

START 70

/1
f_./

Y
SEARCH-TABLE
SEARCH FOR
RECORD AND
CLEAN TARGET
LIST

|

PUT RECORD

INLIST ELEMENT
RETURNED BY /_/73
oFARCH-TABLE

78

AN

' ALLOCATE
A RETURN NEW LIST
RETURN FULL ELEMENT

REPLACED

17

Y f“/79
COPY RECORD
INTO NEW
LIST ELEMENT

Y ,—ﬁ 0
INSERT NEW
LIST ELEMENT
INTO TARGET
LIST

,7)1

RETURN
INSERTED

BTEX0000460

U.S. Patent Apr. 6, 1999 Sheet 5 of 6 5,893,120

("staRT y—

’ 91

A
SEARCH-TABLE
SEARCH FOR
RECORD AND
CLEAN TARGET
LIST

95
Y /"/ /__93
RETURN RETURN
SUCCESS FAILURE
|

-y
-

Y

FIG. 6

BTEX0000461

U.S. Patent Apr. 6, 1999 Sheet 6 of 6 5,893,120
("staRT 100
| 101
SEARCH-TABLE
SEARCH FOR
RECORD AND
CLEAN TARGET
LIST
104
Y 103
REMOVE Y —
DELETE
ELEMENT PALURE
(FIG. 4) 105
Y f/
RETURN
SUCCESS

_—

L 4
(STOP ™06

FIG. 7

BTEX0000462

5,893,120

1

METHODS AND APPARATUS FOR
INFORMATION STORAGE AND RETRIEVAL
USING A HASHING TECHNIQUE WITH
EXTERNAL CHAINING AND ON-THE-FLY
REMOVAL OF EXPIRED DATA

CROSS-REFERENCE TO RELATED
APPLICATIONS

Not Applicable

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable
REFERENCE TO A MICROFICHE APPENDIX
Not Applicable

BACKGROUND OF THE INVENTION

This invention relates to information storage and retrieval
systems. and, more particularly, to the use of hashing
techniques in such systems.

Information or data stored in a computer-controlled stor-
age mechanism can be retrieved by searching for a particular
key value in the stored records. The stored record with a key
matching the search key value is then retrieved. Such
searching techniques require repeated access to records into
the storage mechanism to perform key comparisons. In large
storage and retrieval systems, such searching, even if aug-
mented by efficient search procedures such as the binary
search, often requires an excessive amount of time due to the
large number of key comparisons required.

Another well-known and much faster way of storing and
retrieving information from computer storage. albeit at the
expense of additional storage. is the so-called “hashing”
technique, also called scatter-storage or key-transformation
method. In such a system, the key is operated on by a
hashing function to produce a storage address in the storage
space, called the hash table, which is a large one-
dimensional array of record Jocations. This storage address
is then accessed directly for the desired record. Hashing
techniques are described in the classic text by D. E. Knuth
entitled The Art of Computer Programming, Volume 3,
Sorting and Searching, Addison-Wesley, Reading, Mass.,
1973, pp. 506-549.

Hashing functions are designed to translate the universe
of keys into addresses uniformly distributed throughout the
hash table. Typical hashing functions include truncation,
folding, transposition, and modulo arithmetic. A disadvan-
tage of hashing is that more than one key will inevitably
translate in the same storage address. causing “collisions” in
storage. Some form of collision resolution must therefore be
provided. For example, the simple strategy called “linear
probing.” which consists of searching forward from the
initial storage address to the first empty storage location, is
often used.

Another method for resolving collisions is called “exter-
nal chaining.” In this technique, each hash table location is
a pointer to the head of a linked list of records, all of whose
keys translate under the hashing function to that very hash
table address. The linked list is itself searched sequentially
when retrieving, inserting, or deleting a record. Insertion and
deletion are done by adjusting pointers in the linked list.
External chaining is discussed in considerable detail in the
aforementioned text by D. E. Knuth, in Data Structures and
Program Design, Second Edition, by R. L. Kruse, Prentice-

10

20

25

30

335

45

50

55

65

2

Hall. Incorporated. Englewood Cliffs. N.J.. 1987. Section
6.5. “Hashing.” and Section 6.6. “Analysis of Hashing " PP
198-215. and in Data Structures with Abstract Data Types
and Pascal, by D. F. Stubbs and N. W. Webre, Brooks/Cole
Publishing Company. Monterey, Calif., 1985, Section 74,
“Hashed Implementations,” pp. 310-336.

Some forms of information are such that individual daga
items, after a limited period of time, become obsolete, and
their presence in the storage system is no longer needed or
desired. Scheduling activities, for example. involve data that
become obsolete once the scheduled event has occurred. An
automatically-expiring data item. once it expires, needlessly
occupies computer memory storage that could otherwise be
put to use storing an unexpired item. Thus, expired items
must eventually be removed to reclaim the storage for
subsequent data insertions. In addition. the presence of many
expired items results in needlessly long search times since
the linked lists associated with external chaining will be
longer than they otherwise would be. The goal is to remove
these expired items to reclaim the storage and maintain fast
access to the data.

The problem, then. is to provide the speed of access of
hashing techniques for large, heavily used information stor-
age systems having expiring data and. at the same time,
prevent the performance degradation resulting from the
accumulation of many expired records. Although a hashing
technique for dealing with expiring data is known and
disclosed in U.S. Pat. No. 5,121.495, issued Jun. 9, 1992,
that technique is confined to linear probing and is entirely
inapplicable to external chaining. The procedure shown
there traverses, in reverse order, a consecutive sequence of
records residing in the hash table amray. continually relocat-
ing unexpired records to fill gaps left by the removal of
expired ones.

Unlike arrays, linked lists leave no gaps when items from
it are removed, and furthermore it is not possible to effi-
ciently traverse a singly linked list in reverse order. There are
significant advantages to external chaining over linear prob-
ing that sometimes make it the method of choice, as dis-
cussed in considerable detail in the aforementioned texts,
and so hashing techniques for dealing with expiring data that
do not use external chaining prove wholly inadequate for
certain applications. For example. if the data records are
large. considerable memory can be saved using external
chaining instead of linear probing. Accordingly. there is a
need to develop hashing techniques for external chaining
with expiting data. The methods of the above-mentioned
patent are limited to arrays and cannot be used with linked
lists due to the significant difference in the organization of
the computer’s memory.

BRIEF SUMMARY OF THE INVENTION

In accordance with the illustrative embodiment of the
invention, these and other problems are overcome by using
a garbage collection procedure “on-the-fly” while other
types of access to the storage space are taking place. In
particular, during normal data insertion or retrieval probes
into the data store, the expired, obsolete records are identi-
fied and removed from the external chain linked list.
Specifically, expired or obsolete records in the linked list
including the record to be accessed are removed as part of
the normal search procedure.

This incremental garbage collection technique has the
decided advantage of automatically eliminating unnceded
records without requiring that the information storage sys-
tem be taken off-line for such garbage collection. This 15

W

]

BTEX0000463

5,893,120

3
particularly important for information storage systems
requiring rapid access and continuous availability to the user
population.

More specifically, a method for storing and retrieving
information records using a linked list to store and provide
access to the records, at least some of the records automati-
cally expiring, is disclosed. The method accesses the linked
list of records and identifics at least some automatically
expired ones of the records. It also removes at least some
autornatically expired ones of the records from the Linked list
when the linked list is accessed. Furthermore, the method
provides for dynamically determining maximum number of
expired ones of the records to be removed when the linked
list is accessed,

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING

A complete understanding of the present invention may be
gained by considering the folowing detailed description in
conjunction with the accompanying drawing, in which:

FIG. 1 shows a general block diagram of a computer
system hardware arrangement in which the information
storage and retricval system of the present invention might
be implemented;

FIG. 2 shows a general block diagram of a computer

system software arrangement in which the information stor--

age and retrieval system of the present invention might find
use;

FIG. 3 shows a general flow chart for a table searching
. operation that might be used in a hashed storage system in
accordance with the present invention;

FIG. 4 shows a general flow chart for a linked-list element
remove procedure that forms part of the table searching
operation of FIG. 3;

FIG. 5 shows a general flow chart for a record insertion
operation that might be used in a hashed storage system in
accordance with the present invention;

FIG. 6 shows a general flow chart for a record retrieval
operation for use in a hashed storage system in accordance
with the present invention; and

FIG. 7 shows a general flow chart for a record deletion
operation that might be used in a hashed storage system in
accordance with the present invention.

To facilitate reader understanding, identical reference
numerals are used to designate elements common to the

figures.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1 of the drawings shows a general block diagram of
a computer hardware system comprising a Central Process-
ing Unit (CPU) 10 and a Random Access Memory (RAM)
unit 11. Computer programs stored in the RAM 11 are
accessed by CPU 10 and executed, one instruction at a time,
by CPU 10. Data, stored in other portions of RAM 11, are
operated on by the program instructions accessed by CPU 10
from RAM 11, all in accordance with well-known data
processing techniques.

Central Processing Unit (CPU) 10 also controls and
accesses a disk controller unit 12 that, in turn, accesses a
digital data stored on one or more disk storage units such as
disk storage unit 13 until required by CPU 10. At this time,
such programs and data are retrieved from disk storage unit
13 in blocks and stored in RAM 11 for rapid access.

10

i5

20

25

30

35

45

55

65

4

Central Processing Unit (CPU) 10 also controls an Input/
Qutput (1/0) controller 14 that, in turn, provides access to a
plurality of input devices such as CRT (cathode ray tube)
terminal 15, as well as a plurality of output devices such as
printcr 16. Terminal 15 provides a mechanism for a com-
puter user to introduce instructions and cormands into the
computer system of FIG. 1. and may be supplemented with
other input devices such as magnetic tape readers, remotely
located terminals, optical readers. and other types of input
devices. Similarly. printer 16 provides a rmuechanism for
displaying the results of the operation of the computer
system of FIG. 1 for the computer user. Printer 16 may
similarly be supplemented by line printers, cathode ray tube
displays. phototypesetters. laser printers, graphical plotters,
and other types of output devices.

The constituents of the computer system of FIG. 1 and
their cooperative operation are well-known in the art and are
typical of all computer systems, from small personal com-
puters to large mainframe systems. The architecture and
operation of such systems are well-known and will not be
further described here.

FIG. 2 shows a graphical representation of a typical
software architecture for a computer system such as that
shown in FIG. 1. The software of FIG. 2 comprises a user
access mechanism that, for simple personal computers. may
consist of nothing more than turning the system on. In larger
systems. providing service to many users. login and pass-
word procedures would typically be implemented in user
access mechanism 20. Once user access mechanism 20 has
completed the login procedure, the user is placed in the
operating system environment 21. QOperating system 21
coordinates the activities of all of the hardware components
of the computer system (shown in FIG. 1) and provides a
number of utility programs 22 of general use to the computer
user. Utilities 22 might, for ¢xample, comprise basic file
access and manipulation programs. system maintenance
facilitics, and programming language compilers.

The computer software system of FIG. 2 typically also
includes application programs such as application software
25. Application softwarc 23 through 25 might,
for example, comprise a text editor, docurnent formatting
software. a spreadsheet program, a database management
system. a game program. and so forth.

The present invention is concerned with information
storage and retricval. It can be application software packages
23-25, or used by other parts of the system. such as user
access software 20 or operating system 21 software. The
information storage and retrieval techunique provided by the
present invention are herein disclosed as flowcharts in FIGS.
3 through 7. and shown as PASCAL-like pseudocode in the
APPENDIX to this specification.

Before proceeding to a description of one ¢mbodiment of
the present invention, it is first useful fo.discuss hashing
techniques in general. Many fast techniques for storing and
retrieving data are known in the prior art. In situations where
storage space is considered cheap compared with retrieval
time. a technique called hashing is often used. In classic
hashing, each record in the information storage system
includes a distinguished field unique in value to each record,
called the key. which is used as the basis for storing and
retrieving the associated record. Taken as a whole, a hash
table is a large, one-dimensional amray of logically
contiguous, consecutively numbered, fixed-size storage
units, Such a table of records is typically stored in RAM 11
of FIG. 1, where each record is an identifiable and addres-
sable location in physical memory. A hashing function

BTEX0000464

5.893.120

5

translates the key into a hash table array subscript, which is
used as an index into the array where scarches for the data
reeord begin. The hashing function can be any operation on
the key that results in subscripts mostly uniformly distrib-
uted across the table. Known hashing functions include
truncation, folding, transposition. modulo arithmetic, and
combinations of these operations. Unfortunately, hashing
functions generally do not produce unique locations in the
hash table, in that many distinct keys map to the same
location, producing what are called collisions. Some form of
collision resolution is required in all hashing systems. In
every occurrence of collision. finding an alternate location
for a collided record is necessary. Moreover, the alternate
location must be readily reachable during future searches for
the displaced record.

A common collision resolution strategy, with which the
present invention is concerned, is called external chaining
Under external chaining, each hash table entry stores all of
the records that collided at that location by storing not the
records themselves, but instead a pointer to the head of a
linked list of those same records. Such linked lists are
formed by storing the records individually in dynamically
allocated storage and maintaining with each record a pointer
to the location of the next record in the chain of collided
records. When a search key is hashed to a hash table entry.
the pointer found there is used to locate the first record. If the
scarch key does not match the key found there, the pointer
there is used to locate the second record. In this way, the
“chain™ of records is raversed sequentially until the desired
record is found or until the end of the chain is reached.
Deletion of records involves merely adjusting the pointers to
bypass the deleted record and returning the storage it occu-
pied to the available storage pool maintained by the system.

Hashing techniques have been used classically for very
fast access to static, short term data such as a compiler
symbol table. Typically. in such storage systems, delctions
are infrequent and the need for the storage system disappears
quickly. In some common types of data storage systems,
however, the storage system is long lived and records can
become obsolete merely by the passage of time or by the
occurrence of some event. If such expired. lapsed, or obso-
lete records are not removed from the system, they will, in
time, seriously degrade the performance of the retrieval
system. Degradation shows up in two ways. First, the
presence of expired records lengthens search times since
they cause the external chains to be longer than they
otherwise would be. Second, expired records occupy
dynamically allocated memory storage that could be
returned to the system memory pool for useful allocation.
Thus, when the system memory pool is depleted, a new data
item can be inserted into the storage system only if the
memory occtipied by an expired one is reclaimed.

Referring then to FIG. 3, there is shown a flowchart of a
search table procedure for searching the hash table prepa-
ratory to inserting, retrieving, or deleting a record, in accor-
dance with the present invention, and involving the dynamic
removal of expired records in a targeted linked list. Starting
in box 30 of the search table procedure of FIG. 3. the search
key of the record being searched for is hashed in box 31 to
provide the subscript of an array element. In box 32, the hash
table array location indicated by the subscript generated in
box 31 is accessed to provide the pointer to the target linked
list. Decision box 33 examines the pointer value to deter-
mine whether the end of the linked list has been reached. If
the end has been reached, decision box 34 is entered to
determine if a key match was previously found in decision
box 39 (as will be desaibed below). If so, the search is

13

20

25

30

43

55

65

6
successful and returns success in box 35, followed by the
procedure’s termination in terminal box 37. If not, box 36 is
entered where failure is returned and the procedure again
terminates in box 37.

If the end of the list has not been reached as determined
by decision box 33, decision box 38 is entered to determine
if the record pointed to has expired. This is determined by
comparing some portion of the contents of the record to
some external condition. A timestamp in the record, for
example. could be compared with the current time-of-day
value maintained by all computers. Alternatively, the occur-
rence of an event can be compared with a field identifying
that event in the record. In any case, if the record has not
expired. decision box 39 is entered to determine if the key
in this record matches the search key. If it does, the address
of the record is saved in box 40 and box 41 is entered. If the
record does not match the search key, the procedure
bypasses box 40 and proceeds directly to box 41. In box 41,
the procedure advances forward to the next record in the
linked list and the procedure returns to box 33,

If decision box 38 determines that the record under
question has expired, box 42 is entered to perform the
on-the-fly removal of the expired record from the linked list
and the return of the storage it occupies to the system storage
pool. as will be described in connection with FIG. 4. In
general, the remove procedure of box 42 (FIG. 4) operates
to remove an element from the linked list by adjusting its
predecessor’s pointer to bypass that element. (However, if
the element to be removed is the first element of the list, then
there is no predecessor and the hash table aray entry is
adjusted instead.) On completion of procedure remove
invoked from box 42, the search table procedure returns to
box 33.

It can be seen that the search table procedure of FIG. 3
operates to examine the eatire linked list of records of which
the searched-for record is a part. and to remove expired
records, returning storage to the storage pool with each
remnoval. I the storage pool is depleted and many expired
records remain despite such automatic garbage collection,
then the insertion of new records is inhibited (boxes 76 and
77 of FIG. 5) unti} a deletion is made by the delete procedure
(FIG. 7) or until the search table procedure has had a chance
to replenish the storage pool through its on-the-fly garbage
collection.

Though the search table procedure as shown in FIG. 3.
implemented in the APPENDIX as PASCAL-like
pseudocode, and described above appears in comnection
with an information storage and retrieval system using the
hashing technique with external chaining. its on-the-fly
removal technique while traversing a linked list can be used
anywhere a linked list of records with expiring data appears.
even in contexts unrelated to hashing. A person skilled in the
art will appreciate that this technique can be readily applied
to manipulate linked lists not necessarily used with hashing.

The search table procedure shown in FIG. 3, implemented
as pseudocode in the APPENDIX, and described above
traverses the entire linked list removing all expired records
as it searches for a key match. The procedure can be readily
adapted to remove some but not all of the expired records.
thereby shortening the linked list traversal time and speeding
up the search at the expense of perhaps leaving some expired
records in the list. For example, the procedure can be
modified to terminate when a key match occurs. (PASCAL~
like pseudocode for this alternate version of scarch table
appears in the APPENDIX.) The implementor even has the
prerogative of choosing among these strategies dynamically

BTEX0000465

5.893.120

7

at the time search table is invoked by the caller, thus
sometimes removing all expired records, at other times
removing some but not all of them. and yet at other times
choosing to remove none of them. Such a dynamic runtime
decision might be based on factors such as, for example,
how much memory is available in the system storage pool,
general system load. time of day, the number of records
currently residing in the information system, and other
factors both internal and external to the information storage
and retrieval system itself A person skilled in the art will
appreciate that the technique of removing all expired records
while searching the linked list can be expanded to include
techniques whereby not necessarily all expired records are
removed. and that the decision regarding if and how many
rceords to deletc can be a dynamic one.

In FIG. 4 there is shown a flowchart of a remove proce-
dure that removes a record from the retrieval system, either
an unexpired record through the delete procedure as will be
poted in comnmection with FIG. 7, or an expired record
through the search table procedure as noted in connection
with FIG. 3. In general. this is accomplished by the invoking
procedure, being either the delete procedure (FIG. 7) or the
search table procedure (FIG. 3), passing to the remove
procedure a pointer to a linked list element to remove, a
pointer to that element’s predecessor element in the same
linked list, and the subscript of the hash table array location
containing the pointer to the head of the linked list from
which the element is to be removed. In the case that the
element to be removed is the first element of the linked list,
the predecessor pointer passed to the remove procedure by
the invoking procedure has the NIL (sometimes called
NULL., or EMPTY) value, indicating to the remove proce-
dure that the element to be removed has no predecessor in
the list. The invoking procedure expects the remove
procedure, on completion. to have advanced the passed
pointer that originally pointed to the now-removed element
so that it points to the successor element in that linked list,
or NIL if the removed element was the final element. (The
search table procedure of FIG. 3. in particular, makes use of
the remove procedure’s advancing this passed pointer in the
described way; it is made use of in that box 33 of FIG. 3 is
entered directly following completion of box 42, as was
described above in connection with FIG. 3.)

The remove procedure causes actual removal of the
designated elernent by adjusting the predecessor pointer so
that it bypasses the element to be removed. In the case that
the predecessor pointer has the NIL value, the hash table
array entry indicated by the passed subscript plays the role
of the predecessor pointer and is adjusted the same way in
its stead. Following pointer adjustments. the storage occu-
pied by the removed clement is returned to the system
storage pool for future alocation.

Beginning, then, at starting box 50 of FIG. 4. the pointer
to the list element to remove is advanced in box 51 so that
it points to its successor in the linked list. Next, decision box
52 determines if the element to remove is the first element
in the containing linked list by testing the predecessor
pointer for the NIL value, as described above. If 50, box 54
is entered to adjust the linked list head pointer in the hash
table amray to bypass the first element, after which the
procedure continues on to box 55. If not, box 53 is entered
where the predecessor pointer is adjusted to bypass the
clement to remove, after which the procedure proceeds. once
again, to box 55. Finally, in box 55 the storage occupied by
the bypassed element is returned to the system storage pool
and the procedure terminates in terminal box 56.

FIG. 5 shows a detailed flowchart of an insert procedure
suitable for use in the information storage and retrieval
system of the present invention. The insert procedure of FIG.

10

20

25

30

35

45

50

65

8

5 begins at staring box 70 from which box 71 is entered. In
box 71, the search table procedure of FIG. 3 is invoked with
the search key of the record to be inserted. As noted in
connection with FIG. 3. the search table procedure finds the
linked list element whose key value of the record contained
therein matches the search key and. at the same time.
removes expired records on-the-fly from that linked list.
Decision box 72 is then entered where it is determined
whether the search table procedure found a record with
matching key value. If so, box 73 is entered where the record
to be inserted is put into the linked list element in the
position of the old record with matching key value. In box
74. the insert procedure reports that the old record has been
replaced by the new record and the procedure terminates in
terminal box 75,

Returning to decision box 72. if a matching record is not
found, decision box 76 is entered to determine if there is
sufficient storage in the system storage pool to accommodate
a new linked list element. If not. box 77 is entered to report
that the storage system is full and the record cannot be
inserted. Following that, the procedure terminates in termi-
nal box 75.

If decision box 76 determines that sufficient storage can
be allocated from the system storage pool for a new linked
list element. then box 78 is entered where the actual memory
allocation is made. In box 79, the record to be inserted is
copied into the storage allocated in box 78. and box 80 is
entered. In box 80, the linked list element containing the
record copied into it in box 79 is inserted into the linked kst
to which the contained record hashed. The procedure then
reports that the record was inserted into the information
storage and retrieval systern in box 81 and the procedure
terminates in box 75.

FIG. 6 shows a detailed flowchart of a retrieve procedure
used to retrieve a record from the information storage and
retrieval system. Starting in box 90, the search table proce-
dure of FIG. 3 is invoked in box 91. using the key of the
record to be retrieved as the search key. In decision box 92
it is determined if a record with a matching key was found
by the search table procedure. If not, box 93 is entered to
report failure of the retrieve procedure, and the procedure
terminates in ferminal box 96. If a matching record was
found. box 94 is entered to copy the matching record into a
record store for processing by the calling program. box 95
is entered to refurn an indication of successful retrieval, and
the procedure terminates in terminal box 96.

FIG.7 shows a detailed flowchart of a delete procedure
useful for actively removing records from the information
storage and retrieval system. Starting at box 100, the pro-
cedure of FIG. 7 invokes the search table procedure of FIG.
3in box 101, using the key of the record to be delcted as the
search key. In decision box 102, it is determined if the search
table procedure was able to find a record with matching key.
If not, box 103 is entered to report failure of the deletion
procedure, and the procedure terminates in terminal box
106. If a matching record was found, as- determined by
decision box 102. the remove procedure of FIG. 4 is invoked
in box 104. As noted in connection with FIG. 4, the remove
procedure causes removal of a designated linked list element
from its containing linked list. Box 105 is then entered to
report successful deletion to the calling program. and the
procedure terminates in terminal box 106.

The attached APPENDIX contains PASCAL-like
pseudocode listings for all of the programmed components
necessary to implement an information storage and retrieval
system operating in accordance with the present invention.
Any person of ordinary skill in the art will have no difficulty
implementing the disclosed system and procedures shown in
the APPENDIX, including programs for all common hard-
ware and system software arrangements, on the basis of this

BTEX0000466

5.893,120

9

description. including flowcharts and information shown in
the APPENDIX.

It should also be clear to those skilled in the art that other
embodiments of the present invention may be made by those
skilled in the art without departing from the teachings of the

10

present invention. It is also clear to those skilled in the art
that the invention can be used in diverse computer
applications. and that it is not limited to the use of hash
tables. but 1s applicable 1o other techniques requiring linked
lists with expiring records.

Appendix

Functions Provided

The following functions are made available to the application program:

1. imsert (record: record _type)

Returns replaced if a record associated with record.key was found and

subsequently replaced.

Fetums inserted if 2 record associated with record key was not found and the
passed record was subsequently inserted.
Returns full if a record associated with record key was not found and the passed
record could not be inseried because no memory is available.

2. retrieve (tecord: record_ type)
Returns success if record associated with record key was found and assigned to

record.

Returns failure if search was unsuccessful.
3. delete (record__key: record_key_ type)
Returnis success if record associated with record_key was found and subsc-

quently deleted,

Returns failure if not found,

Definitions

The following formal definitions are reqquired for specifying the msertion, refricval, and deletion
procedures. They are global to all procedures and functions shown below.

L. const table_size

2. type list_elcment_pointer = T list_element

3. type list_element =
record

/* Size of hash table. ¥
/* Pointer to elements of linked hist. */
/* Each element of linked list, +/

record__contents: record_type;

next: list_clement__pointer
end

4. var table: array [0 . . . table _size — 1] of list__element__pointer

Initial state of table: table{i] = nil V 10 = i < table_size

function insert (record: record type):
var position: list_element_ pointer;

dummy__pointer: list_clement__pointer,

index: O .. . table_size — I;
begin

if search table (record key, position, dummy ... pointer, index)

then begin
positionT record__contents
return (replaced)

else

if po memory available then retum (full)

else begin
new(position);
positionT record_contents

/* Singly-linked list. */

/* Haush table. */
/* Each array enfry is pointer to head of list, */
7* Initially empty. */

Insert Pracedure

(replaced, inserted, full),
/* Pointer mto list of found record, ¥/
/* or pew element if not found. ¥
/* Don’t need position’s predecessor. *
/* Table index mapped to by hash function, */

/* Record already cxist? */
/* Yes, update it with passed record. ¥/
= record;

/* No, insert new record at head of list, ¥/
1* if memory available to do so. ¥

/* Memory is available for 2 node. */

/* Drynamically allocate new node. */

= recond,; /* Hook it in. */

positionT next := table[index];

tablefindex] := position;
return (inserted)
end
end

.. -* else began ¥/
/* insert ¥/ T
Retrieve Procedure

function retrieve (var record: record__type): (success, failure);

var position: list_element_pointer;
dummy__pointer: list_element__pointer;
dunmy__index: O . . . table_ size — 1;

if search_ table (record key, position, dummy_ pointer, dummy__index)

then begin

/* Pointer into list of found record. */
/* Don’t need position’s predecessor, */
/* Don’t need table index mapped to by hash function. */

/* Record exist? ¥
/* Yes, retum it to caller. */

record ;= position T record_contents;

return (success)
end

else retum (faiture)
end

/* No, report failure. */
1* retrieve ¥/

BTEX0000467

5.893.120
11
-continued
Appendix
Delete Procedure
function delete (record _key: record__key_ type): (success,failure);
var position; list_element_pointer; /* Pointer into List of found record, */
previous__position: list_element__pointer; /* Points to position's predecessor. */
index: O . . . table_size — 1; /* Table index mapped to by hash function. #/
begin
if search table (record_key, position, previous__position, index) /* Record exist? %/
then begin 1* Yes, remove it. %/

remove (position, previous__position, index),
relurn (Success)
end
else return {failure) /* No, report failure, */
end /* delcte ¥/
Scarch Table Procedure

function search__table (record_key: record, key_ type;
var position: list_clement_pointer;
var previous__position: list_element_ pointer;
var index: O . . . table_size — 1): boolean;
/* Search table for rweord_key and delete expired records in target list; if found, position is made w©
point to located record and previous , position to its predecessor, and TRUE is returned; otherwise
FALSE is retumed. index is sct to table subscript that is mapped to by hash function in either

case., */
var p: list__clement_ pointer; /* Used for taversing chain, */
previous_ p: list_element_ pointer;, /* Points to p’s predecessor. */
begin
index := hash (record_key), /* hash renurns value i the range 0 . . . table_size — 1. %/
p = table{index]; /* Initialization before loop. */
previous__p = nil; /* Ditto */
position = nil; /* Ditto */
previous__position = nil; /* Ditto */
while p # nil /* HEART OF THE TECHNIQUE: Traverse entire list, deleting */
/* expired records as we scarch, */
begin
if pT record_contents is expired
then remove (p, previons__p, index) /* ON-THE-FLY REMOVAL OF EXPIRED RECORD! #/
¢lse begin

if position = nil then if pT record__contents key = record_key
/* If this is record wanted,*/
then begin position = p; previous position := previous_p end;
/™ save its position. */

previous. _p :=p; 1* Advance to */
p = pT next 1% pext record. */
end . 1* clsc begm */
end;
return (position # nil) /* Retum TRUE if record located, otherwise FALSE. */
end /* search_table */

Alternate Version of Search Table Procedure

function search_ table (record_key: recordkey_ type;
var position: List_eclement pointer;
var previous _position: list_element_ pointer;
var index: O . . . table_ size — 1): boolean;
/* SAME A5 VERSION SHOWN ABOVE EXCEPT THAT THE SEARCH TERMINATES IF
RECORD IS FOUND, INSTEAD OF ALWAYS TRAVERSING THE ENTIRE CHAIN. */

var p: fist,.clement_ pointer; /* Used for traversing chain. */
previous, _p: list_element__pointer; /* Points © p's predecessor. #/
begin
index := hash (record_key); /* hash returns value in the range 0 . . _ table_ size — 1. %/
p = table[index}; /* Initialization before loop. */
previous p = nil; * Ditto */
position = nil; /* Ditto */
previous__position = nil; /* Ditto ¥/
while p = mil /* HEART OF THE TECHNIQUE: Traverse list, deleting *
1* expired reords as we scarch. */
begin
if pT rocord__contents is expired
then remove (p, previous, p, index) /* ON-THE-FLY REMOVAL OF EXPIRED RECORD! */
else begin
if pT record_contents key = record_key /* X this is record wanted,*/
then begin /* save its position. */
posion = p:

previous_ position = previous__p;

returm (fruc) 1* We found the record, so terminate search. */
end;

previous_p 1= p; /* Advance to */
p = pT next 1* pext record. */

12

BTEX0000468

5,893,120
13 14
-continued
Appendix

end /* else begin */
end;
return (false) 1* Record not found. */

end /* scarch_table */
Remove Procedure

procedure remove (var elem,_to_del: list_e¢lement__pointer,
previous_elem: list_element pointer;
index: 0 . . . table_gize — 1);

/* Delete clem_to_delT from list, advancing elem_to_del to next clament. previous__elem poiuts to
elem_to_ del's predecessor, or nil if elem_to_delT is 1™ clement in List,*/

var p: list_clement__pointer;
begin
p:=clkm_to_del;
elem_to__del : = elem_to_ delT next;
if previous__clem = nil
then tablefindex} = ¢lem_to__del
else previous_ elem| aext = clem_to del,
dispose (p)

end /* remove*/

/* Save pounter to ¢lam_to_del for disposal, */
/* Save so we can dispose when finished adjusting pointers. */

/* Deleting 1" element requires changing */

/* head pointer, as opposed to ¥/
f* predecessor's next pointer. */

/* Dynamically de-allocate node., ¥/

I claim:

1. An information storage and retricval system, the system
comprising:

a linked list to store and provide access to records stored
in a memory of the system, at least some of the records
automatically expiring,

arecord search means utilizing a search key to access the
linked list,

the record search means including a means for identifying
and removing at least some of the expired ones of the
records from the linked list when the linked list is
accessed, and

means. utilizing the record search means, for accessing
the linked list and, at the same time, removing at least
some of the expired ones of the records in the linked
list,

2. The information storage and retrieval system according
to claim 1 further including means for dynamically deter-
mining maximum number for the record search means to
remove in the accessed linked list of records.

3. A method for storing and retrieving information records
using a linked list to store and provide access to the records.
at least some of the records automatically expiring, the
method comprising the steps of:

accessing the linked list of records,

identifying at least some of the automatically expired ones

of the records, and

removing at least some of the automatically expired

records from the linked list when the linked list is
accessed.

4. The method according to claim 3 further including the
step of dynamically determining maximum number of
expired ones of the records to remove when the linked list
is accessed.

5. Aninformation storage and retrieval system. the system
comprising:

a hashing means to provide access to records stored in a

memory of the system and using an external chaining

technique to store the records with same hash address.
at least some of the records automatically expiring,.

25 arecord search means utilizing a search key to access a
linked list of records having the same hash address,

the record search means including means for identifying

and removing at least some expired ones of the records

10 from the linked List of records when the linked list is
accessed, and

meals. utilizing the record search means, for inserting,
retrieving, and deleting records from the system and. at
the same time, removing at least some expired ones of
the records in the accessed linked list of records.

6. The information storage and retrieval system according
to claim 5 further including means for dynamically deter-
mining maximum number for the record search means to
4 Temove in the accessed linked list of records.

7. A method for storing and retrieving information records
using a hashing technique to provide access to the records
and using an external chaining technique to store the records
with same hash address. at least some of the records auto-

45 matically expiring, the method comprising the steps of:
accessing a linked list of records having same hash
address,

identifying at least some of the automatically expired ones

of the records,

removing at least some of the automatically expired

records from the linked list when the linked list is
accessed, and R
inserting, retrieving or deleting one of thie records from
55 the system following the step of removing.

8. The method according to claim 7 fucther including the
step of dynamically determining maximum number of
expired ones of the records to remove when the linked list
is accessed.

35

BTEX0000469

PATENT APPLICATION FEE DETERMINATION RECORD

Application or Docket Number

If the “Highest Number Previously Paid For” IN THIS SPACE is less than 3, enter “3.”
The “Highest Number Previously Paid For” (Total or Independent) is the highest number found in the appropriate box in column 1,

Effective October 1, 1996 o) T 75 8ES
CLAIMS AS FILED - PART | OTHER THAN
(Column 1) (Column 2) SMALL ENTITY OR SMALL ENTITY
FOR NUMBER FILED NUMBER EXTRA RATE FEE RATE | FEE
BASIC FEE
TOTAL CLAIMS { minus 20 X$11= on | xg22-
INDEPENDENT CLAIMS f mins 3= | "] xa0= |11, on | xe0-
MULTIPLE DEPENDENT CLAIM PRESENT
+130= OR +260=
* |f the difference in column 1 is less than zera, enter “0" in column 2
o |25 OR TOTAL
CLAIMS AS AMENDED - PART Il OTHER THAN
(Column 1) (Column 2) {(Column 3) SMALL ENTITY OR SMALL ENTITY
CLAIMS HIGHEST
= ¢ NUMBER PRESENT ADDI- ADDI-
= PREVIOUSLY EXTRA RATE TIONAL RATE | TIONAL
5 PAID FOR FEE FEE
E * 4 *k
% Total Minus = X$11 — OR X$22—_—
g Flndependent * Minus o - x40= OR x80=
<
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM +130= or | +260=
TOTAL OR TOTAL
(Column 1) (Column 2) (Columng) ALDIT FEE ADDIT. FEE
] CLAIMS HIGHEST
m { REMAINING NUMBER PRESENT ADDI- ADDI-
| AFTER PREVIOUSLY EXTRA RATE | TIONAL RATE | TIONAL
E MENDMENT PAID FOR FEE FEE
E " . * &
ra) Total Minus — x$11= OR | x$22=
-
l:'lé" independent| * Minus " - x40= OR | x80=
<
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM +130= OR | +260=
TOTAL OR TOTAL
(Column 1) {Column 2) {Column 3) ADDIT. FEE ADDIT. FEE
: HIGHEST
o I NUMBER PRESENT ADDI- ADDi-
- : PREVIOUSLY EXTRA RATE TIONAL RATE TIONAL
z PAID FOR FEE FEE
g Total Minus * - x$11= OR | x$22=
=
lé" Independent| * Minus b - x40= OR | x80=
<(
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM +130= OR | +260=
" |f the entry in column 1 is less than the eniry in column 2, write “0" in column 3.
::' if the “Hig%est Number Previously Paid Fop'/ IN THIS SPACE is less than 20, enter “20." ADDI?,OFTEA E OR AD DlTrof-TétlE-

FORM PTO-875
(Rev. 10/96)

"U.S. Government Printing Office; 1996 - 413-288/49191

Patent and Trademark Office, U.S. DEPARTMENT OF COMMERCE

BTEX0000470

[Form PTO 1130 U.S. DEPARTMENT OF COMMERCE |,) . o
iREY 2341 Datent and Trademark Office | 19T EXAMINER Sy < DATE 2 -24_
PACE DATA ENTRY CODING SHEET atent and Tragemark Sffice L e s 27

2ND EXAMINER DATE y

. TYPE FILING DATE SPECIAL GROUP SHEETS OF 1

APPLICATION NUMBER APEL MONTH DAY YEAR HANDLING ART UNIT CLASS DRAWING !

08/775864 ([[[317] lalglz] [sPols] [=lgl

TOTAL INDEPENDENT _ SMALL FOREIGN ¢

CLAINS CLAIMS ENTITY? FILING FEE LICENSE ATTORNEY DOCKET NUMBER

19 A) Cldas

=1y A U ~| % 245 VoLt bl

7 i

CONTINUITY DATA %

PARENT FILING

CONT STATUS PARENT APPLICATION PARENT PATENT DATE .
CODE CODE SERIAL NUMBER PCT APPLICATION SERIAL NUMBER NUMBER MONTH DAY YEAR g
] ple|Tl/| | /

Pic|{T|/ / £

plctiT! ¢ / b

PlC| Tt/ /]

| plci{T]|/ ;
N J

PCT/FOREIGN APPLICATION DATA :
FOREIGN FOREIGN ,1
PRIORITY COUNTRY , FILING DATE g

CLAIMED CODE PCT/FOREIGN APPLICATION SERIAL NUMBER MONTH DAY YEAR ;
. : ;
B i
L f 1 ..
§

7 U.S GPO: 1995401429

BTEX0000471

TYRR IEE T I T

TITLE OF INVENTION

ATTORNEY REGISTRATION NUMBERS

|

|

Ll T T JET]

L L

CCRRESPONDENCE NAME AND ADDRESS

1

AUTHORITY CODE

APPLICANT/INVENTOR DATA

FAMILY NAME

NAME SUFFIX

GIVEN NAME

STATE/CTRY CODE

CITY

AUTHORITY CODE

FAMILY NAME

NAME SUFFIX

GIVEN NAME

STATE/CTRY CODE

CITY

MORE D ’

il

BTEX0000472

Search Options:
Search for both singular and plurals: YES

Search for spelling variants : YES
Display intermediate result sets : NO

Num Search

#1 collision? W/2 (resol? OR avoid?)

#2 #1 AND chain?

#3 hash? AND chain?

#4 (linked OR pointer) W/2 list?

#5 #4 AND chain?

#6 #4 AND hash?

#7 collision? W/2 (resolution? OR resolv?)

#8 #7 AND (hash? OR chain?)

#9 #7 AND (linked OR pointer?)

#10 collision? AND (linked OR pointer?)

IEEE/IEE Publications Ondisc Jan 1990 - Nov 1996

Page

Hits
415

BTEX0000473

© INSPEC 4358851 C9304-6120-017

Doc Type: Conference Paper
Title: Hash table in massively parallel systems
Authors: Yen, I.-L.; Bastani, F.

Affiliation: Dept. of Comput. Sci., Houston Univ., TX, USA
Conf. Title: Proceedings. Sixth International Parallel Processing
Symposium (Cat. No.92TH0419-2)

p. 660-4
Editors: Prasanna, V.K.; Canter, L.H.
Publisher: IEEE Comput. Soc. Presgs

Los Alamitos, CA, USA

Date: 1992 xviii+693 pp.
Country of Publication: USA
ISBEN: 0 8186 2672 0

CCC: 0 8186 2672 0/92303.00

- Language: English

Conf. Date: 23-26 March 1992
Conf. Loc: Beverly Hills, CA, USA
Conf. Sponsor: IEEE; ACM

' Treatment : Practical
- Abstract: The authors look at the performance and new collision

resolution strategies for hash tables in massively parallel systems.
The results show that using a hash table with linear probing yields
O(logN) time performance for handling M accesses by N processors when
the load factor of the table is 50%, where N is the size of the hash
table. This is better than the performance of using sorted arrays.
Two phase hashing gives an average time complexity O(logN) for M
simultaneous accesses to a hash table of size N even when the table
has 100% load. Simulation results also show that hypercube hashing
significantly outperforms linear probing and double hashing.

(6 Refs.)

" Classification: C6120 (File organisation); C5440 (Multiprocessing

systems); C4240 (Programming and algorithm theory); C5470
(Performance evaluation and testing)

. Thesaurus: Computational complexity; File organisation; Parallel

processing; Performance evaluation

Free Terms: Hash table; Simulation results; Massively parallel systems;
Performance; Collision resolution; Linear probing; Time complexity;
Hypercube hashing; Double hashing
Item Availability: Image.

Copyright (c) [1991-1996] Instn. Electrical Engineers. All rights reserved.

BTEX0000474

> d his

I‘l

Lz
L3
L4
L5
L6
L7
L8
L3

L10
L1l
L1z
13
L14
115
Llé

(FILE 'USPAT' ENTERED AT 08:24:39 ON 14 RAPR 1398)
DEL HIS
1 S EXTERNAL (W) CHAINING

E NEMES, RICHARD? /IN
3 5 E2
520 S GARBAGE (W) COLLECT?
28 8 L3 AND COLLISION#
12 8§ L3 AND COLLISION# AND HASH?
44 8 707/206/CCLS
3 5 L6 AND COLLISION#
13 5 L6 AND CHAIN?
39 § JPO

FILE 'JPO' ENTERED AT 08:43:51 ON 14 APR 1598

05 L1
316 s L3
2 5 L11 AND COLLISION#
172 S COLLISION# AND CHAIN?
3 8 COLLISION# AND CHAIN? AND HASH?
73 $ (COLLISION#) (A) (REDUC? OR RESOLV? OR RESOLUTION#)
3 8 L15 AND ((LINKED OR POINTER) (W)LIST# OR CHAIN?)

BTEX0000475

R T e ‘?%‘fﬁ‘m

SREER

e e

=> d his full

L1
L2
L3
L4
L5
L5

(FILE

DEL

1 SEA EXTERNAL (W) CHAINING

1932 SEA LINKED (W)LIST#
SEA L1 AND L2

SEA L1 (P) L2

5 5278499/UREF, BI
SEA 5287499/UREF, BI

Wb e

FILE USPAT

L3
*

*
*

* k& Kk K * K * *

w

uUu. s.
* ok ok Kk Kk Kk Kk ok

* My Bo#*
O o#*
1 o*
MO o#
22 o+
E Y

M

* IO *
* P

*

* H O *

ool
o

'USPAT' ENTERED AT 07:59:20 ON 13 APR 1998)

* ok k ok k *k K * &

I LE
* x ok

*

* *® * K Kk

* %

BTEX0000476

i

e

=> d his

Ll
LZ
L3
L4
L3
L6
L7
S0L

(FILE

'USPAT'

1
1932
1

1

3

29

9

]

b3
S
S
S
S
3

ENTERED AT 07:59:20 ON 13 APR 1998)
EXTERNAL (W) CHAINING

LINKED (W)LIST#

L1 AND L2

L1 (P) L2

5287499/UREF, BI

L2 (P) COLLISION#

L2 (P) COLLISION# (P) (AVOID? OR REDUC? OR MINIMIZ? OR RE

BTEX0000477

S

=> d his full

L1
#)

L2
#4#)

L3
L4
L5
Lé

L7
L8
L9

(FILE 'USPAT' ENTERED AT 10:35:16 ON 13 APR 1998)
4257 SEA (MEMORY OR STORAGE) (A) (FULL OR SUFFICIENT## OR FILLH##

15571 SEA (MEMORY OR STORAGE) (2R) (FULL OR SUFFICIENT## OR FILL##

2008 SEA (LINKED OR POINTER) (W) LIST#

4 SER L2 (20A)L3
22 SEA L2 (P) L3

1 SEA L2 (P) L3 (P) COLLISION#

E NEMES, RICHARD? /IN

3 SEA "NEMES, RICHARD M"/IN

12 SEA (5287499 OR 5121495 OR 4996663) /UREF, BI
5 SEA L2 AND L8

FILE USPAT

*

*

*
*

WELCOME TO THE
U. s. PATENT TEXT FILE
**********************'k**

k ok Kk K ok

* k K* * Kk

L

BTEX0000478

e |

et e man e

S

> d his full

Ll
L2
RY
L3
L4

=2

9.

boundless data stream in an object oriented programming system;
707/1; 364/245, 246, 260, 260.2, 282.1, 283.1, 283.3, 284,
DIG.1 [IMAGE AVAILABLE]

Shackelford,
284.3,

(FILE

d 14 5

'‘USPAT' ENTERED AT 10:35:16 ON 13 APR 19958)

2008
58

21578
le

DEL HIS
SEA (LINKED OR POINTER) (W)LIST#

SEA L1 (P) (MBAX OR MAXIMUM OR OPTIMAL? OR OPTIMUM) (P} (MEMO

OR STORAGE)
SEA (MAX OR MAXIMUM) (W) NUMBER#
SEA L1 (P) L3 (P) (MEMORY OR STORAGE)

5,202,981, Apr. 13, 1993, Process and apparaﬁus for manipulating a

Floyd W.

BTEX0000479

e

B T T e

=> d his full

Ll
L2
L3
L4
L5
L6
L7
L8
L9
L10
L1l
Li2
L13
L1l4
L15

Ll6
L17
18

(FILE 'USPAT'

2226
695
14

0

2

49

1
366
30
15
142
9177
6

16
1509

30

14
0

FILE USPAT

* k Kk Kk Kk * Kk Kk %

*
*

SEA
SEA
SEA
SEA
SEA,
SEA
SEA
SEA
SEA
SEA
SEA
SEA
SEA
SEA
SEA

SEA
SEA
SEA

U. 5.
* Kk ok Kk % * Kk Kk *

ENTERED AT 07:46:52 ON 28 SEP 1998)

LINKED (W) LIST#

(DELETH####) (A) (ITEM# OR ENTR### OR RECORD#)
Ll (P) L2

Ll (P) L2 (P) EXPIR#####

L3 PBND EXPIR#H##4##4#

EXTERNAL (W) CHAIN?

Ll AND L6

I,1 AND HASH##i##

L1 AND HASH#### AND L2

L1 AND HASH#### AND L2 AND EXPIR#H#H#H#EH##
(LINKED (W) LIST#)/TI,AB

707/20?2/CCLS

111 AND L12

L1 (P) (EXPIR######)

(REMOV### OR DELET####) (A) (ITEM#f OR ENTR### OR RECORD#

L1 (P) L15
L15 (P) EXPIR#####
L16 AND L17

4 H

* MO ¥
L I I
+H %
* MO =*
* 2% o+
* 3 A+
L B I
* 80O %
R
* oo o

ILE
* k%

*

 k kX ok * Kk K * *

* * K*k K * &

* o+ * ¥

BTEX0000480

e

PATENT NUMBER & o ORIGINAL CLASSIFICATION' T
\, ‘[clAss SUBCLASS
. 7077 Q0L
FP—U’:AT!ON SERIAL NUMBER CROSS REFERENCE(S)
. 775

O%/ 75 ,% 69 CLASS {ONE suasc‘ﬁacsLsA PER BLOCK)

APPLICANT'S NAME (PLEASE PRINT) P
707 | (0o 7 1ol [zea
NEME <

F REISSUE, ORIGINAL PATENT NUMBER

INTERNATIONAL CLASSIFICATION

GOl 6| F 17/30

i
A / GROUP

&
ASSISTANT EXAMINER (PLEASE STAMP OR PRINT FULL NAME)

HOSApu T - AL AR

- ART UNIT
e Ve 2774

/

PRM\L?MNER (PLEASE STAMP OR PR?LL NAME]
A 7t KM & C/é

1.5 DEPARTMENT OF COMMERCE

(REV. 5.91)

PY0 270 ISSUE CLASSIFICATION SUIP

PATENT ANO TRADEMARK OFFICE

BTEX0000481

SEARCHED
Class Sub. Date Exmr.
oy o6 |AIBIE | i

I _

205 S
7071380 \apagfg | /]
07)y jslafew
u?‘m Seaved
200 |ieo l|afanfcd

176, 1ol g| A

INTERFERENCE SEARCHED
Class Sub. Date j&mr.
7077 1,100 9350 /o

JOJ

Ao 0| oL

SEARCH NOTES
o ' ' Date’ | Exmr.
hes ‘-///3/5’8 A
iy (el L Nufigfo |
CEG ety |l | e
I G closeal AN
JPo VAR T e EE
A0S vpdatd 9 3glog| e
Con oflted | 8L

(RIGHT OUTSIDE)

BTEX0000482

Staple tssue Slip Here

POSITION 1D NO.” DATE

CLASSIFIER
EXAMINER Ay 227 —F7

TYPIST @ 4 ~{-q7
VERIFIER 7 A4

CORPS CORR. ;
SPEC. HAND i
FILE MAINT.
DRAFTING
INDEX OF CLAIMS
Claim | Date Claim Date
3|l E
Ele '% - AR
(4 s)
NYVTE 57
2l2{vi= 52
> vz 53
4 |v'i= ‘4
5 vz 55
L6 | V= 58
FAWIEE 57
€8] . 56
9 [59
10 80
T mn o1
12 62
13 83
14 64
15 65
16 66
17 67
18 68
19 69
20 70
21 . 71
22 72
23 73
24 74 |,
25 75
26 78
27 77
28 78
29 79
30 SYMBOLS a0
31 81
a2 a2
33 a3
34 Appeal 84
130 NN A R N A N N RS SN ¢ SO Objected 85
36 . 86
37 87
38 88
39 89
40 a0
41 g1
42 92
43 a3
44 94
45 95
46 . 96
47 L 97
48 ; _ 8
' 48 | 99
50 100
(LEFT INSIDE)

AT) e e e i, S

BTEX0000483

She

Al
i
i

e
i
"\-*71:?'.

i
‘a

it

Rk
e

BTEX0000484

et R A

087775864 Ly ienr appLication

COINITIALS LLEEB 2 A

ARSI

08775864
E D‘ate d .
ot CONTENTS

| R~

~ \L Application ({ CZ@&E papers.

S . .u/’i/ff)

i, SRRl . .
AR e it

APPROVED FOR LICEMSE D

¢
~ L

Date
Received

or
Mailed

%ﬂ/%7

o~ Ko 3 zm‘y

.. Vo,q L Sk Lonon

4//2/0 28924

/'18’1'2&

\\\45. Consi

Q‘t\m Moy ce ot /-\\&Qu—-) .

OK —11-25
Q588 (o

1 \ .Ql] (17 7. Eorrmdi DraL'r'f'&(({) shis) sek |

190/ 28

(2-0-9% ,

8. < ?‘:””;'c‘»b% g@g

I2-/0-9%

DT GRANT At 084

(FRONT)

BTEX0000485

	Exh 5_6
	BTEX0000174_Part6
	BTEX0000174_Part7
	BTEX0000174_Part8

