Bedrock Computer Technologies, LLC v. Softlayer Technologies, Inc. et al Doc. 284 Att. 6

EXHIBIT S5

PART10OF6

Dockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/6:2009cv00269/116887/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2009cv00269/116887/284/6.html
http://dockets.justia.com/

1w 7197768

IO ALLTO WHOM THESE, PRESENDS, SHALL COME:S
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent aud Trademark Office

August 27, 2009

THIS IS TO CERTIFY THAT ANNEXED IS A TRUE COPY FROM THE
RECORDS OF THIS OFFICE OF THE FILE WRAPPER AND CONTENTS
OF:

APPLICATION NUMBER: 08/775,864
FILING DATE: January 02, 1997
PATENT NUMBER: 5,893,120

ISSUE DATE: April 06, 1999

By Authority of the
Under Secretary of Commerce for Intellectual Property
and Director of the United States Patent and Trademark Office

AN B W

Certifying Officer

[Tatlzl
N2 E
S 1a|s
\'(S o % :
tel [5892120
WEI |
NN R Mg
B 775864 |7 APR U6 998 [marent R
SERIAL NUMBER FILING DATE { CLASS SUBCLASS GROUP ART UNIT EXAMINER l

| Al

Foreign priority claimed [w] yfﬂ »

A STATE OR | SHEETS | TOTAL INDEP,
35 USC 119 conditions met 0 ye m F"S.ED COUNTRY | DRWGS. | CLAIMS CLAIMS g’é‘g“E?Vi:E%E SEE?(HEI;{EP}’('?
Verified and Acknowlodged ~Eraniiners s | === B, - ; ‘

uf /A-pﬁ-.f""?v'\f,r\;f‘“" f P

ISSTTE FEE IN FILE

PARTS OF APPLICATION

>

FILED SEPARATELY LADD! aylons Examlner
NOTICE OF ALLOWANCE. M'(ILED JCLAIMS ALLOWED
. / ’ HosAID T. ALAWM TotghClaims ™. EErlnt\,Cl,a‘m. o
G-R9- 24 o Assistant. Examiner)
ISSUE FEE)
Amount Due Date P THOMAS G. BU’\ Sheets Drwg
o Y5 1Oy Bupeny! ORY PATENT EXAMINER o
G60- ~ 18 GROUP 7
A_/__ ISSUE
- . BATCH- .
W4 7 Primary Examiner | NUMBER -
Label i F_'_REPAH_ED FoR'ls_suE. B -
Area 7 oL
WARNING: The information dlsclosed hereln may be restricted: Unaul sc':lasure may be prohlblted"
" by the United States Code Title 35, Sections 122; 18 d'368: Possesslon ouiside the' U.S:
nggm & Trademark Office 13 reg;tq_icted to authoriz, employees and contradors only

Form PTO-A836A
{Rav. 8/92)

(EACDY

BTEX0000175

BAR CODE LABEL

RRERREEIN

U.S. PATENT APPLICATION

SERIAL NUMBER

08/775,864

FILING DATE

01/02/97

CLASS

395

GROUP ART UNIT

2307

:

VERIFIED

VERIFIED

RICHARD M. NEMES, BROOKLYN, NY.

CONTINUING DATAXkhkhkkk Ak hhddkdehkhn

FOREIGN/PC‘I‘ APPLICATIONS*** kXX xxxx

FOREIGN FILING LICENSE GRANTED 03/01/97

kkx SMALI, ENTITY **%*%

STATE OR SHEETS TOTAL

NY 6

Fcoumﬂv DRAWING CLAIMS

INDEPENDENT
CLAIMS

4

FILING FEE
RECEIVED

$425.00

ATTORNEY DOCKET NO.

RICHARD MICHAEIL NEMES
1432 EAST 35TH STREET
BROOKLYN NY 11234-2604

ADDRESS

EXPIRED DATA

METHODS AND APPARATUS FOR INFORMATION STORAGE AND RETRIEVAL USING A
E HASHING TECHNIQUE WITH EXTERNAL CHAINING AND ON-THE-FLY REMOVAL OF

By authority of the
COMMISSIONER OF PATENTS AND TRADEMARKS

Date

Certifying Officer

This is to certify that annexed hereto is a true copy from the records of the United States
Patent and Trademark Office of the application which is identified above.

BTEX0000176

"ay o

TRADE)]
’FEE REC.RD SHEuEt v OFFICE

2
(]
pors

140 AA 02728797 08775844 425,00 CK

PTO.1556
(5/87)

BTEX0000177

"ludﬁv\- =

.) A OB 0851-0032
Pleaes type » phs sign (+) "'-'- Puter;_ (rmouu- u.s DERARTMENT OF COMMERCE
the Puperwork Reduction Act of 1995, no persons sre reauired to 10 m oollecton T int valid OMB controlL nurmoer.
Attomney Docket Number 08/775864
NEW UTILITY PATENT et Narmed trventor RICHARD y,
JPLICATION TRANSMITTAL NEMES
o éf’e"-"‘ﬁw 22 [a6Eh + A&sm.nc_-r
(10 be use for new appikcations anly) Total Pages in this 4+ & sheeds o[y2) .
APPLICATION ELEMENTS
Notice: Chackilst Rams toned unde Application El
WCHON CONSTUCt # New ULty patent application. Please reler fo ACCOMPANYING APPLICATION PARTS
MPEP Sections 506, 601, (J?CFR 1.77, 1.53, 35 USC 111, 112, 113).
ummmmmwmmum mgmupami
apprication. ¢
1. Fee Tu‘mmtml Form (prescribed filing fee(s)) § 6. [:] Assignment Papers
2 Specification : 7. D Certified Capy of Prionty Document(s)
m Titie of the Invention (f foreign priorty is claimed) ,
D Cross References to Related Applications 8. D Computer Pragram in Microfiche ‘
{Ir applicable)
Statement Regarding Federally-sponsorad " .
D Research/Development (f appicabie) 9. D English Translation Document (f l-ppll:lbll)
I Reference to Microfiche Appendix 10 Information Disclosure Copies of (DS
{ { appicable) " StatementPTO-1449 Citatiens
m Backgraund of the Invention 1. D Petition Checklist and Accompanying Petttion
E Brief Summary of the invention 12 D Preliminary Amenament
Brief Description of the Drawings D Proori ;
f crawings fieg) 13, roprietary Information
m Detailed Description 14, E] Return Receipt Ppstcard
m Claim or Claims 15. m Smail Entity Statement
Abstract of the Disclosure 16. E Additional Enclosures (please idently below):
| Drawing(s) (when necessary as prescnbed by
3 35 USC 113) : LIST OF REFERENCES
4 [E Executed Daclaration
5. Genetic SQQUEHCG Submission SIGNATURE oF APPL'CANT, AWORNEY. OR AGENT
(i applicable, &l must be included) . Fim i
[paper cony o | RICHARD M., NEMES
Individual name)
- Computer Readable Co .
[] e " swwnn | Dde d G Vorr
Statement Veritying Identical Paper and - 2
Computer Readable Copy Date DECEMBER 20 s 1996
v FOR OFFICIAL USE ONLY)
" 1 Application Number ' Class independent Claims
Date of Recaipt | Application Type ‘ GAU Total Claims
Filing Date Foreign Filing Licanze? Orawing Sheets
Small Entity Foreign Address? Specal Handiing?
___ 9 g J

Burden Hous Stalement: This form u entimaiad to lake 02 houu 1o compists. Time will vary depanding upon the needs of the individual casa. Any commants
the amount of time you are required to plete Iniz form should be sent 10 the Chisf information Officer. Patent and Trademark Office, Washingion, OC 202:
IO NOT REND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Astistant Commussianer far Patents, Washington, OC 20231.

BTEX0000178

Potert tval TIREENG e ——

'y p ar requined & 10 2 ool of Wit i unibs i Gimpiys & vaikl OME cabut manbar,
o Cu ‘,' te if Known
Number ¥R - :
mm. T
FEE TRANSMITTAL First Ramed Invertor | B FARD, T NET
|_Group Ant Unit l
v Examiner Name _ p
(8) 425 Attorney Docket Number :
METHOD OF PAYMENT (check one) . FEE CALCULATION (continued){i =
The C - i hareby puthorized 1o charge NAL FEES N ‘
‘ "-D indicaiad fens and credit amy over payments 5o: 3. ADDITIO F Yo _
o P Four. Fou Foa Fm
Account . : Coda (§) Cade (5) Fea Description :
r Do 106 130 205 85 Surcharpe - leke flling fee br osth
P P : L) ol Ml
Account , nésoznzs:.;'.m.— ;,mc..u
] Fos Bt 0 X7 . .
,_""‘"'M“";m m““‘",‘“ n';"m,“ 130 130 139 130 NonEnginh spacificetion
CFR AW ane 117 m:)'m mom 147: 2,450 147 2,480 Forfiling n request for resxamination i
. . 112 900" 112 900 Reguesting publication of SIR prior 1o
2. Payment Enclosad: it Examiner sction
&Ch&k " [Dorser [] ot 113 1,750 113 1,750° Requeating publication of SIR sfter
Exmrvviregr potion
FEE CALCULATION (fess effective 10/01/96) 15 110 215 55 Exiension for responss within first month
’ 117 530 217 455 Exterwion fof respones within third month
Large Entity Smail Entity .
Fee Fee Pew Fee Fee ption. Fee Paid 118 1,470 216 T35 Extermion kor responas within fourth month
Code (§) Codn (5} 119 300 219 150 Natios of Appel
101 770 201 185 Liiliy filing fes 120 200 220 150 FRing s bried in suppont of an appesl
~) 108 10 206 160 Duwwign filing fee 121 260 221 130 Requesl for orat haaring
) 107 530 207 265 Piant filing {ew 138 1,470 133 1,470 Patilion %0 institute & public uss procaeding
08 770 208 385 Relasus fling fee 140 110 240 S5 Pettion 40 revive unavoidably abandoned
114 150 214 75 Provisons! filing fee applicstion

sustoraL 1 [3g5 141 1200 241 645 Petition 1o revive uninteationslly

M2 1290 242 045 KDty imsus fee (O recssue)

Fee from
2. CLAIMS Extrs bejow Fee Paid 143 440 243 220 Dswign isve fen
TowiClaims | £ |-20s]) IX = 144 650 244 325 Plant s lee
Gl -3e] | Ix[40k 40 1| = 130 122 10 Petiions o the Commissioner
Muttipie Dependent Claims X' = 123 50 123 S0 Petitions relsted to provisional applications
126 230 12¢ 230 Submission of iormation Disciosire Stmi
Latge Entity Smail Emtity 581 40 53 40 Recording eech
Fee Fee Fes Res Fus Daser ™9 wach pe v bar
e S poen - Propery (imas mamber of prosaien)
103 22 203 19 Claims in excess of 20 146 TT0 245 385 [Filing = submizsion after final rejection
102 80 207 40 Wncependent claims in sxwes of 3 (7 CFR 1.129)
104 260 204 130 Mubtiple dependent ciaim 149 TT0 240 385 Kor msch sddiional imvention 1o be
109 80 200 40 Reimsus independent cisime ' amwined (37 CFR 1.129())
over Ot fow (spwcify)
10 22 210 11 Reimaus chetime in scmes of 20 (tpocs
and over onginal petant Cther foe (spacity)
susToTAL @) [(S) 4O l SUBTOTAL [3) E
. h * Raduoed by Basic Fiing Fee Paid
(" SUBMITTED B Complete (f spplicabley)
Typed or . ;
Printed Name RICHARD M. NEMES Reg. Number
Signature M‘ d [/% 4% Date |[DEC. EO,mAwoum
— i IRelely w
Burden Hour Stat : This form is sstimated 1o take 0.2 hours 1o compiele, Time will vary depanding upon the nesds of the individual)
ms on the —‘dﬁmwmmwmmmmumummmmw.mmen::m‘g

Washington, DC 20231, DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADORESS. SEND TO: Assistart Commissionsr for Putents,

BTEX0000179

10

15

20

25

30

~ w950 2ol H

)
-

- Q8/775864

Patent Application of

Richard M. Nemes
1432 East 35™ Street, Brooklyn, New York 11234-2604, U.S.A.
A Citizen of the United States of America

SPECIFICATION

TITLE OF INVENTION
METHODS AND _APPARATUS FOR INFORMATION STORAGE AND
RETRIEVAL USING A HASHING TECHNIQUE WITH EXTERNAI, CHAINING

AND ON-THE-FLY REM IRED DATA

CROSS-REFERENCE TO RELATED APPLICATIONS
Not Applicable

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR
DEVELOPMENT
Not Applicable -

REFERENCE TO A MICROFICHE APPENDIX
Not Applicable

BACKGROUND OF THE INVENTION

This invention relates to information storage‘ and retrieval systems, and, more
particularly, to the use of hashing techniques in such systems.

Information or data stored in a computer-controlled storage mechanism can be retrieved
by searching for a particular key value in the stored records. The stored record with a key
matching the search key value is then retrieved. Such searching techniques require repeated
access to records into the storage mechanism to perform key comparisons. In large storage and

retrieval systems, such searching, even if augmented by efficient search procedures such as the

BTEX0000180

N,

Richard M. Neimnes

binary search, often requires an excessive amount of time due to the large number o__f key
comparisons required. 'l
Another well-known and much faster way of storing and retrieving information from
computer storage, albeit at the expense of additional storage, is the so-called “hashing”
technique, also called scatter-storage or key-transformation method. In such a system, the key

is operated on by a hashing function to produce a storage address in the storage space, called

- the hash table, which is a large one-dimensional array of record locations. This storage address

10

15

20

25

30

is then accessed directly for the desired record. Hashing techniques are described in the classic
text by D. E. Knuth entitled The Art of Computer Programming, Volume 3, Sorting and
Searching, Addison-Wesley, Reading, Massachusetts, 1973, pp. 506-549.

Hashing functions are designed to translate the universe of keys into addresses uniformly
distributed throughout the hash table. Typical hashing functions include truncation, folding,
transposition, and modulo arithmetic. A disadvantage of hashing is that more than one key will
inevitably translate in the same storage address, causing “collisions” in storage. Some form of
collision resolution must therefore be provided. For example, the simple strategy called “linear
probing,” which consists of searching forward from the initial storage address to the first empty
storage location, is often used.

Another method for resolving collisions is called “external chaining.” In this technique,
each hash table location is a pointer to the head of a linked list of records, all of whose keys
translate under the hashing function to that very hash table address. The linked list is itself
searched sequentially when retrieving, inserting, or deleting a record. Insertion and deletion are
done by adjusting pointers in the linked list. External chaining is discussed in considerable detail
in the aforementioned text by D. E. Knuth, in Data Structures and Pfagram Design, Second
Edition, by R. L. Kruse, Prentice-Hall, Incorporated, Englewood Cliffs, New Jersey, 1987,
Section 6.5, “Hashing,” and Section 6.6, “Analysis of Hashing,” pp. 198-215, and in Data
Structures with Abstract Data Types and Pascal, by D. F. Stubbs and N. W. Webre,
Brooks/Cole Publishing Company, Monterey, California, 1985, Section 7.4, “Hashed
Implementations,” pp. 310-336,

Some forms of information are such that individual data items, after a limited period of

time, become obsolete, and their presence in the storage system is no longer needed or desired.

-

BTEX0000181

Richard M. Nemes

Scheduling activities, for example, involve data that become obsolete once the scheduled event
has occurred. An automatically-expiring data item, once it expires, needlessly occupies comf){xter
memory storage that could otherwise be put to use storing an unexpired item. Thus, expired
items must eventually be removed to reclaim the storage for subsequent data insertions. In
s addition, the presence of many expired items results in needlessly long search times since the
" linked lists associated with external chaining will be longer than they otherwise would be. The
goal is to remove these expired items to reclaim the storage and maintain fast access to the data.

The problem, then, is to provide the speed of access of hashing techniques for large,
heavily used information storage systems having expiring data and, at the same time, prevent the

10 performance degradation resulting from the accumulation of many expired records. Although
a hashing technique for dealing with expiring data is known and disclosed in U.S. Patent
Number 5,121,495, issued June 9, 1992, that technique is confined to linear probing and is
entirely inapplicable to external chaining. The procedure shown there traverses, in reverse order,
a consecutive sequence of records residing in the hash table array, continually relocating

15 unexpired records to fill gaps left by the removal of expired ones.

Unlike arrays, linked lists leave no gaps when items from it are removed, and
furthermore it is not possible to efficiently traverse a singly linked list in reverse order. There
are significant advantages to external chaining over linear probing that sometimes make it the
method of choice, as discussed in considerable detail in the aforementioned texts, and so hashing

20 techniques for dealing with expiring data that do not use external chaining prove wholly
inadequate for certain applications. For example, if the data records are large, considerable
memory can be saved using external chaining instead of linear probing. Accordingly, there is a
need to develop hashing techniques for external chaining with expiring data. The methods of the
above-mentioned patent are limited to arrays and cannot be used with linked lists due to the

25 significant difference in the organization of the computer’s memory.

BRIEF SUMMARY OF THE INVENTION
In accordance with the illustrative embodiment of the invention, these and other
problems are overcome by using a garbage collection procedure “on-the-fly” while other types

30 of access to the storage space are taking place. In particular, during normal data insertion or

-3-

BTEX0000182

Richard M. Nemes

storage system in accordance with the present invention; and :

FIG. 7 shows a general flow chart for a record deletion operation that might be us&l in
a hashed storage system in accordance with the present invention.

To facilitate reader understanding, identical reference numerals are used to designate

elements common to the figures.

. DETAILED DESCRIPTION OF THE INVENTION

10

15

20

25

30

FIG. 1 of the drawings shows a general block diagram of a computer hardware system
comprising a Central Processing Unit (CPU) 10 and a Random Access Memory (RAM) unit 11,
Computer programs stored in the RAM 11 are accessed by CPU 10 and executed, one
instruction at a time, by CPU 10, Data, stored in other portions of RAM 11, are operated on by
the program instructions accessed by CPU 10 from RAM 11, all in accordance with well-known
data processing techniques.

Central Processing Unit (CPU) 10 also controls and accesses a disk controller unit 12
that, in turn, accesses a digital data stored on one or more disk storage units such as disk storage
unit 13 until required by CPU 10. At this time, such programs and data are retrieved from disk
storage unit 13 in blocks and stored in RAM 11 for rapid access.

Central Processing Unit (CPU) 10 also controls an Input/Output (I/0) controller 14 that,
in turn, provides access to a plurality of input devices such as CRT (cathode ray tube) terminal
15, as well as a plurality of output devices such as printer 16. Terminal 15 provides a mechanism
for a computer user to introduce instructions and commands into the computer system of FIG.
1, and may be supplemented with other input devices such as magnetic tape readers, remotely
located terminals, optical readers, and other types of input devices, Similarly, printer 16 provides
a mechanism for displaying the.results of the operation of the computer system of FIG. 1 for the
computer user. Printer 16 may similarly be supplemented by line printers, cathode ray tube
displays, phototypesetters, laser printers, graphical plotters, and other types of output devices.

The constituents of the computer system of FIG. 1 and their cooperative operation are
well-known in the art and are typical of all computer systems, from small personal computers
to large mainframe systems. The architecture and operation of such systems are well-known and
will not be further described here.

BTEX0000183

Richard M. Nemes

10

20

25

30

FIG. 2 shows a graphical representation of a typical software architecture for a computer
system such as that shown in FIG. 1. The sofiware of FIG. 2 comprises a user access mechéﬁism
20 that, for simple personal computers, may consist of nothing more than turning the system on.
In larger systems, providing service to many users, login and password procedures would
typically be implemented in user access mechanism 20. Once user access mechanism 20 has
completed the login procedure, the user is placed in the operating system environment 21,
Operating system 21 coordinates the activities of all of the hardware components of the
computer system (shown in FIG. 1) and provides a number of utility programs 22 of general use
to the computer user. Utilities 22 might, for example, comprise basic file access and
manipulation programs, system maintenance facilities, and programming language compilers.

The computer software system of FIG. 2 typically also includes application programs
such as application software 23, 24, . . ., 25. Application software 23 through 25 might, for
example, comprise a text editor, document formatting software, a spreadsheet program, a
database management system, a game program, and so forth.

The present invention is concerned with information storage and retrieval. It can be
application software packages 23-25, or used by other parts of the system, such as user access
software 20 or operating system 21 software. The information storage and retrieval technique
provided by the present invention are herein disclosed as flowcharts in FIGS. 3 through 7, and
shown as PASCAL-like pseudocode in the APPENDIX to this specification.

Before proceeding to a description of one embodiment of the present invention, it is first
useful to discuss hashing techniques in general. Many fast techniques for storing and retrieving
data are known in the prior art. In situations where storage space is considered cheap compared
with retrieval time, a technique called hashing is often used. In classic hashing, each record in
the information storage system includes a distinguished field unique in value to each record,
called the key, which is used as the basis for storing and retrieving the associated record. Taken
as a whole, a hash table is a large, one-dimensional array of logically contiguous, consecutively
numbered, fixed-size storage units. Such a table of records is typically stored in RAM 11 of FIG.
1, where each record is an identifiable and addressable location in physical memory. A hashing
function translates the key into a hash table array subscript, which is used as an index into the

array where searches for the data record begin. The hashing function can be any operation on

—6-

BTEX0000184

Richard M. Nemes

the key that results in subscripts mostly uniformly distributed across the table. Known hashing
functions include truncation, folding, transposition, modulo arithmetic, and combinatio"rfg of
these operations. Unfortunately, hashing functions generally do not produce unique locations
in the hash table, in that many distinct keys map to the same location, producing what are called
s collisions. Some form of collision resolution is required in all hashing systems. In every
* occurrence of collision, finding an alternate location for a collided record is necessary.
Moreover, the alternate location must be readily reachable during future searches for the

displaced record.
A common collision resolution strategy, with which the present invention is concerned,
10 is called external chaining. Under external chaining, each hash table entry stores all of the
records that collided at that location by storing not the records themselves, but instead a pointer
to the head of a linked list of those same records. Such linked lists are formed by storing the
records individually in dynamically allocated storage and maintaining with each record a pointer
to the location of the next record in the chain of collided records. When a search key is hashed
15 to a hash table entry, the pointer found there is used to locate the first record. If the search key
does not match the key found there, the pointer there is used to locate the second record. In this
way, the “chain” of records is traversed sequentially until the desired record is found or until the
end of the chain is reached. Deletion of records involves merely adjusting the pointers to bypass
the deleted record and returning the storage it occupied to the available storage pool maintained

20 by the system.

Hashing techniques have been used classically for very fast access to static, short term
data such as a compiler symbol table. Typically, in such storage systems, deletions are infrequent
and the need for the storage system disappears quickly. In some common types of data storage
systems, however, the storage system is long lived and records can become obsolete merely by

25 the passage of time or by the occurrence of some event. If such expired, lapsed, or obsolete
records are not removed from the system, they will, in time, seriously degrade the performance
of the retrieval system. Degradation shows up in two ways. First, the presence of expired
records lengthens search times since they cause the external chains to be longer than they
otherwise would be. Second, expired records occupy dynamically allocated memory storage that

30 could be returned to the system memory pool for useful allocation. Thus, when the system

-7

BTEX0000185

Richard M. Nemes

15

20

25

30

memory pool is depleted, a new data item can be inserted into the storage system only.if the
memory occupied by an expired one is reclaimed. o

Referring then to FIG. 3, there is shown a flowchart of a search table procedure for
searching the hash table preparatory to inserting, retrieving, or deleting a record, in accordance
with the present invention, and involving the dynamic removal of expired records in a targeted
linked list. Starting in box 30 of the search table procedure of FIG. 3, the search key of the
record being searched for is hashed in box 31 to provide the subscript of an array element. In
box 32, the hash table array location indicated by the subscript generated in box 31 is accessed
to provide the pointer to the target linked list. Decision box 33 examines the pointer value to
determine whether the end of the linked list has been reached. If the end has been reached,
decision box 34 is entered to determine if a key match was previously found in decision box 39
(as will be described below). If so, the search is successful and returns success in box 35,
followed by the procedure’s termination in terminal box 37. If not, box 36 is entered where
failure is returned and the procedure again terminates in box 37.

If the end of the list has not been reached as determined by decision box 33, decision box
38 is entered to determine if the record pointed to has expired. This is determined by comparing
some portion of the contents of the record to some external condition. A timestamp in the
record, for example, could be compared with the current time-of-day value maintained by all
computers. Alternatively, the occurrence of an event can be compared with a field identifying
that event in the record. In any case, if the record has not expired, decision box 39 is entered to
determine if the key in this record matches the search key. If it does, the address of the record
is saved in box 40 and box 41 is entered. If the record does not match the search key, the
procedure bypasses box 40 and proceeds directly to box 41. In box 41, the procedure advances
forward to the next record in the linked list and the procedure returns to box 33.

If decision box 38 determines that the record under question has expired, box 42 is
entered to perform the on-the-fly removal of the expired record from the linked list and the
return of the storage it occupies to the system storage pool, as will be described in connection
with FIG. 4. In general, the remove procedure of box 42 (FIG. 4) operates to remove an element
from the linked list by adjusting its predecessor’s pointer to bypass that element. (However, if

the element to be removed is the first element of the list, then there is no predecessor and the

-8

BTEX0000186

Richard M. Nemes

10

15

20

25

30

hash table array entry is adjusted instead.) On completion of procedure remove invoked from
box 42, the search table procedure retumns to box 33. .

It can be seen that the search table procedure of FIG. 3 operates to examine the entire
linked list of records of which the searched-for record is a part, and to remove expired records,
returning storage to the storage pool with each removal. If the storage pool is depleted and
many expired records remain despite such automatic garbage collection, then the insertion of
new records is inhibited (boxes 76 and 77 of FIG. 5) until a deletion is made by the delete
procedure (FIG. 7) or until the search table procedure has had a chance to replenish the storage
pool through its on-the-fly garbage collection.

Though the search table procedure as shown in FIG. 3, implemented in the APPENDIX
as PASCAL-like pseudocode, and described above appears in connection with an information
storage and retrieval system using the hashing technique with external chaining, its on-the-fly
removal technique while traversing a linked list can be used anywhere a linked list of records
with expiring data appears, even in contexts unrelated to hashing. A person skilled in the art will
appreciate that this technique can be readily applied to manipulate linked lists not necessarily
used with hashing.

The search table procedure shown in FIG. 3, implemented as pseudocode in the
APPENDIX, and described above traverses the entire linked list removing all expired records
as it searches for a key match. The procedure can be readily adapted to remove some but not
all of the expired records, thereby shortening the linked list traversal time and speeding up the
search at the expense of perhaps leaving some expired records in the list. For example, the
procedure can be modified to terminate when a key match occurs, (PASCAL-like pseudocode
for this alternate version of search table appears in the APPENDIX) The implementor even has
the prerogative of choosing among these strategies dynamically at the time search table is
invoked by the caller, thus sometimes removing all expired records, at other times removing
some but not all of them, and yet at other times choosing to remove none of them. Such a
dynamic runtime decision might be based on factors such as, for example, how much memory
is available in the system storage pool, general system load, time of day, the number of records
currently residing in the information system, and other factors both internal and external to the

information storage and retrieval system itself. A person skilled in the art will appreciate that the

-9-

BTEX0000187

Richard M. Nemes

10

15

20

23

30

technique of removing all expired records while searching the linked list can be expanded to
include techniques whereby not necessarily all expired records are removed, and that'f the
decision regarding if and how many records to delete can be a dynamic one,

In FIG. 4 there is shown a flowchart of a remove procedure that removes a record from
the retrieval system, either an unexpired record through the delete procedure as will be noted
in connection with FIG.7, or an expired record through the search table procedure as noted in
connection with FIG. 3. In general, this is accomplished by the invoking procedure, being either
the delete procedure (FIG. 7) or the search table procedure (FIG. 3), passing to the remove
procedure a pointer to a linked list element to remove, a pointer to that element’s predecessor
element in the same linked list, and the subscript of the hash table array location containing the
pointer to the head of the linked list from which the element is to be removed. In the case that
the element to be removed is the first element of the linked list, the predecessor pointer passed
to the remove procedure By the invoking procedure has the NIL (sometimes called NULL, or
EMPTY) value, indicating to the remove procedure that the element to be removed has no
predecessor in the list. The invoking procedure expects the remove procedure, on completion,
to have advanced the passed pointer that originally pointed to the now-removed element so that
it points to the successor element in that linked list, or NIL if the removed element was the final
element. (The search table procedure of FIG. 3, in particular, makes use of the remove
procedure’s advancing this passed pointer in the described way; it is made use of in that box 33
of FIG. 3 is entered directly following completion of box 42, as was described above in
connection with FIG. 3.) _

The remove procedure causes actual removal of the designated element by adjusting the
predecessor pointer so that it bypasses the element to be removed. In the case that the
predecessor pointer has the NIL value, the hash table array entry indicated by the passed
subscript plays the role of the predecessor pointer and is adjusted the same way in its stead.
Following pointer adjustments, the storage occupied by the removed element is returned to the
system storage pool for future allocation.

Beginning, then, at starting box 50 of FIG. 4, the pointer to the list element to remove
is advanced in box 51 so that it points to its successor in the linked list. Next, decision box 52

determines if the element to remove is the first element in the containing linked list by testing

-10-

BTEX0000188

1.

Richard M. Nemes

10

15

20

25

30

the predecessor pointer for the NIL value, as described above. If so, box 54 is entered to adjust
the linked list head pointer in the hash table array to bypass the first element, after whic;h'f the
procedure continues on to box 55. If not, box 53 is entered where the predecessor pointer is
adjusted to bypass the element to remove, after which the procedure proceeds, once again, to
box 55. Finally, in box §5 the storage occupied by the bypassed element is returned to the
system storage pool and the procedure terminates in terminal box 56.

Fig. 5 shows a detailed flowchart of an insert procedure suitable for use in the
information storage and retrieval system of the present invention. The insert procedure of FIG.
5 begins at starting box 70 from which box 71 is entered. In box 71, the search table procedure
of FIG. 3 is invoked with the search key of the record to be inserted. As noted in connection
with FIG. 3, the search table procedure finds the linked list element whose key value of the
record contained therein matches the search key and, at the same time, removes expired records
on-the-fly from that linked list. Decision box 72 is then entered where it is determined whether
the search table procedure found a record with matching key value. If so, box 73 is entered
where the record to be inserted is put into the linked list element in the position of the old record
with matching key value. In box 74, the insert procedure reports that the old record has been
replaced by the new record and the procedure terminates in terminal box 75.

Returning to decision box 72, if a matching record is not found, decision box 76 is
entered to determine if there is sufficient storage in the system storage pool to accommodate a
new linked list element, If not, box 77 is entered to report that the storage system is full and the
record cannot be inserted. Following that, the procedure terminates in terminal box 78.

If decision box 76 determines that sufficient storage can be allocated from the system
storage pool for a new linked list element, then box 78 is entered where the actual memory
allocation is made. In box 79, the record to be inserted is copied into the storage allocated in
box 78, and box 80 is entered. In box 80, the linked list element containing the record copied
into it in box 79 is inserted into the linked list to which the contained record hashed. The
procedure then reports that the record was inserted into the information storage and retrieval
system in box 81 and the procedure terminates in box 75.

FIG. 6 shows a detailed flowchart of a retrieve procedure used to retrieve a record from

the information storage and retrieval system. Starting in box 90, the search table procedure of

-11-

BTEX0000189

Richard M. Nemes

FIG. 3 is invoked in box 91, using the key of the record to be retrieved as the search key. In

decision box 92 it is determined if a record with a matching key was found by the search table

procedure. If not, box 93 is entered to report failure of the retrieve procedure, and the

procedure terminates in terminal box 96. If a matching record was found, box 94 is entered to

s copy the matching record into a record store for processing by the calling program, box 95 is

entered to return an indication of successful retrieval, and the procedure terminates in terminal
box 96.

FIG.7 shows a detailed flowchart of a delete procedure useful for actively removing

records from the information storage and retrieval system. Starting at box 100, the procedure

10 of FIG. 7 invokes the search table procedure of FIG. 3 in box 101, using the key of the record
to be deleted as the search key. In decision box 102, it is determined if the search table
procedure was able to find a record with matching key. If not, box 103 is entered to report
failure of the deletion procedure, and the procedure terminates in terminal box 106. If a
matching record was found, as determined by decision box 102, the remove procedure of FIG.

15 4 is invoked in box 104. As noted in connection with FIG. 4, the remove procedure causes
removal of a designated linked list element from its containing linked list. Box 105 is then
entered to report successful deletion to the calling program, and the procedure terminates in
terminal box 106.

The attached APPENDIX contains PASCAL-like pseudocode listings for all of the

20 programmed components necessary to implement an information storage and retrieval system
operating in accordance with the present invention. Any person of ordinary skill in the art will
have no difficulty implementing the disclosed system and procedures shown in the APPENDIX,
including programs for all common hardware and system software arrangements, on the basis
of this description, including flowcharts and information shown in the APPENDIX.

25 It should also be clear to those skilled in the art that other embodiments of the present
invention may be made by those skilled in the art without departing from the teachings of the
present invention. It is also clear to those skilled in the art that the invention can be used in
diverse computer applications, and that it is not limited to the use of hash tables, but is
applicable to other techniques requiring linked lists with expiring records.

30

-12-

"""""

BTEX0000190

Richard M. Nemes
e

: g.'\/:,.-’ /(
. Appendix

Functions Provided

s The following functions are made available to the application program:

1. insert (record. record_type)

10 Returns replaced if a record associated with record.key was found and
subsequently replaced.

Returns inserted if a record associated with record key was not found and the
passed record was subsequently inserted.

15
Returns full if a record associated with record. key was not found and the passed
record could not be inserted because no memory is available.

20 2. retrieve (record: record_type)

Returns success if record associated with record key was found and assigned to
record.

23 Returns failure if search was unsuccessful.

3. delete (record_key: record key type)

30 Returns success if record associated with record_key was found and subse-
quently deleted.

Returns failure if not found,

as
Definitions

The following formal definitions are required for specifying the insertion, retrieval, and deletion
procedures. They are global to all procedures and functions shown below.
40

//‘

BTEX0000191

/

§

Richard M. Nemes

1. const table_size

2. type list_element_pointer = 1list_element

s 3. type list_element =

record

record_contents: record_type;
next: list_element_pointer

/* Size of hash tgble. */
/* Pointer to elements of linked list. */

/* Each element of linked list, */

/* Singly-linked list. */

10 end
4. var table: array [0 .. table_size - 1] of list_element_pointer /* Hash table. */
' /* Each array entry is pointer to head of list. */
13 Initial state of table: table[i] = nil Vi 0 £ i<table_size /* Initially empty. */

20

Insert Procedure

function insert (record: record_type). (replaced, inserted, full),

var position: list_element pointer,

25 dummy _pointer: list_element_pointer,

index: 0 .. table_size - 1,

begin
30

/* Pointer into list of found record, %/
/* or new element if not found, */
/* Don’t need position’s predecessor. */

/* Table index mapped to by hash function. */

if search_table (record.key, position, dummy _pointer, index) /* Record already exist? */

then begin

35 position\ record_contents .= record,

return (replaced)

end
40

else

—14-

/* Yes, update it with passed record. */

/* No, insert new record at head of list, */

BTEX0000192

Richard M. Nemes

10

15

20

25

30

35

40

if no memory available then return (full) /* if memory available to d? so. ¥/
else begin /* Memory is available for a n(.x.;lc. */
new(position), /* Dynamically allocate new node. */
position! record_contents := record, 7* Hook it in. */

position? .next = table[index]},
table[index] : = position,
return (inserted)
end /* else begin */

end /* insert ¥/

Retrieve Procedure

function retrieve (var record: record_type): (success, failure),

var position: list_element_pointer, /* Pointer into list of found record. */
dummy _pointer: list_element_pointer, /* Don’t need pasition’s predecessor. */
dummy _index: 0 .. table_size - 1, /* Don’t need table index mapped to by hash function. */
begin

if search_table (record key, position, dummy_pointer, dummy index) (* Record exist? */
then begin ‘ /* Yes, return it to caller. */
record ;= positiont .record_contents,
return (success)

end

—-15-

BTEX0000193

/7

Richard M. Nemes

else return (failure)

end

/* retrieve %/

Delete Procedure

function delete (record_key. record key type). (success, failure),

10

var position; list_element pointer;
previous_position: list_element_pointer,

15 index: 0 .. table_size - 1,

begin

/* No, report failure. */

/* Pointer into list of found record. */

/* Points to position’s predecessor. ¥/

/* Table index mapped to by hash function. */

if search_table (record_key, position, previous_position, index)

20
then begin

remove (position, previous_position, index),

25 return (success)
end

else return (failure)

30
end I* delete */
35 Search Table Procedure
function search_table (record_key: record key type;
var position: list_element_pointer,
var previous_position: list_element pointer,
a0 var index: 0 .. table_size - 1). boolean,

—16-—

/* Record exist? */

/* Yes, remove it. ¥/

/* No, report failure, */

BTEX0000194

Richard M. Nemes

15

20

25

30

3s

40

/* Search table for record_key and delete expired records in target list; if found, position is made to
point to located record and previous_position to its predecessor, and TRUE is returned; otherwise
FALSE is returned. index is set to table subscript that is mapped to by hash function in either

case.¥/
var p: list_element_pointer, _ /* Used for traversing chain. */
previous_p: list_element_pointer, /* Points to p’s predecessor. */

begin

index = hash (record_key), /* hash returns value in the range 0 .. table_size - 1. */
p = table[index], /* Initialization before loop, */
previous p = nil; /* Ditto */'
position := nil; : /* Ditto */
previous_position .= nil, /* Ditto */
Whil¢ p # nil /* HEART OF THE TECHNIQUE: Traverse entire list, deleting */
. /* expired records as we search, */

begin

if p1.record contents is expired
then remove (p, previous p, index) (* QN-THE-FLY VAL OFE RECORD! ¥/
else begin
if position = nil then if p1.record_contents.key = record_key
/* If this is record wanted,*/

then begin position := p; previous position := previous p end,
/* save its position, */

previous_p = p, /* Advance to */
p :=pl.next /* next record. */
end ' /* else begin */
end;
-17-

BTEX0000195

Richard M. Nemes

10

20

5

30

40

return (position + nil) /* Return TRUE if record located, otherwise FALSE. */

end [* search_table */

Alternate Version of Search Table Procedure

function search_table (record key. record key type;
var position: list_element pointer,
var previous_position: list_element_pointer,
var index: 0 .. table_size - 1). boolean;,

/* SAME AS VERSION §HQWN ABOVE EXCEPT THAT THE SEARCH TERMINATES IF
RECORD IS FOUND, INSTEAD OF ALWAYS TRAVERSING THE ENTIRE CHAIN, */

var p. list_element_pointer, /* Used for traversing chain, */
previous p: list_element_pointer, /* Points to p’s predecessor. */
begin
index := hash (record key), /* hash returns value in the range 0 .. table_size ~ 1. */
p .= table[index], /* Initialization before loop. */
previous_p := nil, 1* Ditto */
position = nil, {* Ditto */
previous_position ;= nil, /* Ditto */
while p + nil /* HEART OF THE TECHNIQUE: Traverse list, deleting */

/* expired records as we search. */
begin

if p1.record_contents is expired
then remove (p, previous p, index) /* ON-THE-FLY REMOVAL O ORD! */
else begin

—18-

BTEX0000196

Richard M. Nemes
if p1.record_contents.key = record_key /* If this is record wanted,*/
then begin /* save its position. */
$ position ;= p,
previous_position .= previous_p,
A return (true) 1* We found the record, so terminate search. */
10
end;
previous_p ;= p, /* Advance to */
15 p = pl.next /* next record. */
end /* else begin */
end;
20
return (false) /* Record not found. */
end ' /* search_table */
25

Remove Procedure

procedure remove (var elem _to del. list_element_pointer,
30 previous_elem: list_element pointer,
index: 0 .. table_size - 1),

/¥ Delete elem_to_delt from list, advancing elem_to_del to next element. previous_elem points to

elem_to del’s predecessor, or nil if elem_to_delt is 1* element in list.*/

3s
var p: list_element_pointer, /* Save pointer to elem_to_del for disposal. ¥/
begin
40 p: =elem _to del, /* Save so we can dispose when finished adjusting pointers. */
—19-

BTEX0000197

2N

Richard M. Nemes

elem_to del : = elem_to _del! .next,

if previous_elem = nil /* Deleting 1* element requires changing */
5 then table[index] .= elem to del /* head pointer, as opposed to */
else previous_elem! .next := elem_to del, /% predecessor’s next pointer. */
dispose (p) /* Dynamically de-allocate node. */
10
end /* remove */
-20-

BTEX0000198

Richard M. Nemes

CLAIMS
I claim:
1. An information storage and retrieval system, the system comprising;
a linked list to store and provide access to records stored in a memory of the system, at
5 least some of the records automatically expiring,
a record search means utilizing a search key to access the linked list,
the record search means including a means for identifying and removing at least some
of the expired ones of the records from the linked list when the linked list is accessed, and
means, utilizing the record search means, for accessing the linked list and, at the same
10 time, removing at least some of the expired ones of the records in the linked list.
2. The information storage and retrieval system according to claim 1 further including
means for dynamically determining maximum number for the record search means to

remove in the accessed linked list of records.

15 3. A method for storing and retrieving information records using a linked list to store and
provide access to the records, at least some of the records automatically expiring, the method
comprising the steps of:

accessing the linked list of records,
identifying at least some of the automatically expired ones of the records, and

20 removing at least some of the automatically expired records from the linked list when
the linked list is accessed.

4. The method according to claim 3 further including the step of dynamically determining
maximum number of expired ones of the records to remove when the linked list is
accessed.

25

5. An information storage and retrieval system, the system comprising:
a hashing means to provide access to records stored in a memory of the system and using
an external chaining technique to store the records with same hash address, at least some of
the records automatically expiring,-

30 a record search means utilizing a search key to access a linked list of records having the

-21-

R

BTEX0000199

Richard M. Nemes

same hash address,
the record search means including means for identifying and removing at least Sé)me
expired ones of the records from the linked list of records when the linked list is accessed,
and
s means, utilizing the record search means, for inserting, retrieving, and deleting records
from the system and, at the same time, removing at least some expired ones of the records
in the accessed linked list of records.
6. The information storage and retrieval system according to claim 5 further including
means for dynamically determining maximum number for the record search means to

10 remove in the accessed linked list of records.

7. A method for storing and retrieving information records using a hashing technique to provide
access to the records and using an external chaining technique to store the records with same
hash address, at least some of the records automatically expiring, the method comprising the

15 steps of:
accessing a linked list of records having same hash address,
identifying at least some of the automatically expired ones of the records,
removing at least some of the automatically expired records from the linked list when
the linked list is accessed, and
20 inserting, retrieving or deleting one of the records from the system following the step of
removing,
8. The method according to claim 7 further including the step of dynamically determining
maximum number of expired ones of the records to remove when the linked list is

accessed.

-2

BTEX0000200

Richard M. Nemes

ABSTRACT OF THE DISCLOSURE ,

A method and apparatus for performing storage and retrieval in an information stéfage
system is disclosed that uses the hashing technique with the external chaining method for
collision resolution. In order to prevent performance deterioration due to the presence of

s automatically expiring data items, a garbage collection technique is used that removes all expired
records stored in the system in the external chain targeted by a probe into the data storage
system. More particularly, each insertion, retrieval, or deletion of a record is an occasion to
search an entire linked-list chain of records for expired items and then remove them, Because
an expired data item will not remain in the system long term if the system is frequently probed,

10 it is useful for large information storage systems that are heavily used, require the fast access

provided by hashing, and cannot be taken off-line for removal of expired data.

-23~

BTEX0000201

IN THE UNITED STATES
PATENT AND TRADEMARK OFFICE

Declaration

As the below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my
name,

I believe I am the original, first and sole inventor of the subject matter which is
claimed and for which a patent is sought on the invention entitted METHODS AND
APPARATUS FOR INFORMATION STORAGE AND RETRIEVAL USING A
HASHING TECHNIQUE WITH EXTERNAL CHAINING AND ON-THE-FLY
REMOVAL OF EXPIRED DATA the specification of which is attached hereto.

I hereby state that I have reviewed and understand the contents of the above
identified specification, including the claims and any amendments filed therewith.

I acknowledge the duty to disclose information which is material to the examination
of this application in accordance with Title 37 Code of Federal Regulations, § 1.56.

I hereby claim foreign priority benefits under Title 35, United States Code § 119
(a)-(d) or § 365 (b) of any foreign application(s) for patent or inventor’s certificate, or §
365 (a) of any PCT international application which designated at least one country other
than the United States of America, listed below and have also identified below any foreign
application for patent or inventor’s certificate, or of any PCT international application
having a filing date before that of the application on which priority is claimed:

None

L hereby claim the benefit under Title 35, United States Code, § 120 of any United
States application(s), or § 365 (c) of any PCT international application designating the
United States of America, listed below and, insofar as the subject matter of each of the
claims of this application is not disclosed in the prior United States or PCT international
application in the manner provided by the first paragraph of Title 35, United States Code
§ 112, T acknowledge the duty to disclose information which is material to patentability as
defined in Title 37, Code of Federal Regulations § 1.56 which became available between

BTEX0000202

i,

the filing date of the prior application and the national or PCT ‘i'z:_nltemational filing date of
this application:
None

Direct all correspondence to:

Richard Michael Nemes

1432 East 35® Street
Brooklyn, New Yark 11234-2604
USA

Telephone: (718) 377-5438

I hereby declare that all statements made herein of my own knowledge are true and
that all statements made on information and belief are believed to be true; and further that
these statements were made with the knowledge that willful false statements and the like
so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18
of the United States Code and that such willful false statements may jeopardize the validity
of the application or any patent issued thereon.

LoD
Full name of sole inventor: Richard Michael Nemes

Inventor’s signature: /34/*"/ W‘f‘ﬂa W‘W“ Date: D"l'ff 20} /%é

Residence: Brooklyn, Kings County, New York). /

Citizenship: United States of America
Post Office Address: 1432 East 35" Street

Brooklyn, New York 11234-2604
US.A.

BTEX0000203

W
sl

BTEX0000204

i % g™ Y3 UR%. U ORs1-081
c nwmhd1m.mmmmdhmntWJmm%m-wﬂngw.
"N |SJERIFIED STATEMENT CLAIMING SMALL ENTITY STATUS Docket Number (Optional)
Ry 37 CFR 1.9(f) & 1.27(b))~INDEPENDENT INVENTOR

& e TRSA RICHARD M. NEMES

Applicant or Patentee:

Applicationor PatentNa..

Filed orissued: ‘
_IV[E]THQDS AND APPARATUS POR INFPORMATION STORAGE.AI\TD RETRIEVAL

“USING X HASHING TECHNIQUE WITH EXTERNAL CHAINING AND ON~THH-
1

PLY REN !
As a bel%v? na}rinEeléﬂl%x%{ér. E;ra@mmaatp t%y as an independent inventor as defined in 37 CFR
1.8(c) for purposes of paying reduced fees tothe Patent and Trademark Office described in:

(X] the specification filed herewith with title as listed above.

[J the appiication identified above.
(] the patent identified above.

I have not assigned, granted, conveyed, or licensed, and am under no obligation under contract or lawto assign,
grant, convey, of license, any rights in theinvention to any personwho would not qualify as an independent inventor
under 37 CFR 1.9(c) if that person had made the invention, or to any concern which would not qualify as s small
business concern under 37 CFR 1.9(d) ora nonprofit organization under 37 CFR 1.9(e).

Each person, concern, or organization to which | have assigned, granted, conveyed, or licensed or amunderan
abligation under contract or law to assign, grant, convey, or license any rights in the invention is listed below:

E] No such person, concern, or organization exists.

D Each such person, concern, or organization is listed baiow.

Separate verified statements are required from each named person, concem, or organization having rightstothe
invention averring to their status as small entities. (37 CFR 1.27) :

lacknowledge the duty ta file, in this application or patent, notification of any change in status resulting in lass of
entitiement to small entity status prior to paying, or at the time of paying, the sarliest of the issue fee or any
maintenance fee due after the date on which status as a small entity is no longer appropriate. (37 CFR 1.28(b))

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on
information and belief are believedto betrue; and furtherthat these statements wene made with the knowledge that
willful false statements and the like 50 made are punishable by fine orimprisonment, or both, under section 1001
of Title 18 of the United States Code, and that such willful faise statements may jeopardize the validity of the
application, any patent issuing thereon, or any patent to which this verified statement is directed,

RICHARD M, NEMES

NAME OF INVENTOR NAME OF INVENTOR NAME OF INVENTOR
(st 1 Morrrs

Signature of inventor Signature of inventor Signature of inventor
DEC, 20, 1996

Date Date Date

Buraen Hour Sutement: This 1orm 1 espmated 1o take 0.9 hours 1o complats. Tane wel VaIy depenchng upon the needs of. the NdmMdual case. Ary
commants gn the amount ©f M you &re equited fo compiele this KM shouk be st 1o the Chisl krformatuon. Officer. Paseat ond Tracemark Office
Wasringion, DC 20231, DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADORESS. SEND. TO: Assstant. Commussoner tor Patents,)

Wasningion, DC 20231,

BTEX0000205

PRINT OF DRAW INGS
AS ORIGINALLY FILED _

- ~ 08/775864

Richard M. Nemes Sheet 1 of 6
FIG. 1
15
ﬁ RANDOM
ACCESS
MEMORY
~11
INPUT- CENTRAL DISK DISK
OUTPUT PROCESSING leed CONTROL | STORAGE
CONTROLLER UNIT UNIT UNIT
AT —<37% <32
R ! 13
PRINTER
N16
FIG. 2
USER
ACCESS
SOFTWARE
] ‘20
. OPERATING GENERAL
SYSTEM UTILITY
SOFTWARE SOFTWARE
PNy 22
{23 I o2 boe2s
APPLICATION APPLICATION APPLICATION
SOFTWARE SOFTWARE R SOFTWARE
1 2 N

BTEX0000206

PRINT OF DRAWINGS g

_ ASORIGINALLYFILED - 08/7%58¢64

. Richard M. Nemes Sheet 2 of 6

f1e.3

wasy @
<EARC M
KEy
i
GET Head |32
OF TARGET.| -]
UsT

30

BTEX0000207

PRINT OF DRAWINGS

AS ORIGINALLY FILED
RS e PSR g =

Richard M. Nemes

Sheet 3 of 6

Fl6 4

LYo,

&=D

Asvalce PTR. 51
™ ELAMENT
FOLLOW MGy
OME, TORE-

1
i
i
i
i
t

08/7¢5864

55

PE-~ALLOATE
LIST ELEMEW R

o \?S.EE-'

BTEX0000208

PRINT OF DRAWINGS
AS ORIGINALLY FILED
o T e e L M T L

= Richard M. Nemes

4
vig
i
5
A
b
i
if '
i :
1 \‘l .
E :
A
e :
i .
P |
v i
5 4 4
\: (
1 |
i

peTuRy -t

ReTuRy
FoLL

17

08/775864

18

[~

ALLOATE
NEW LisT
BLEMENT

PRl

COP| RELoeD
INTO' NEW
LIST
ELEMEMT

Py
EERT UEw
LIST BLEMENT

INTO TaRSRr|
LST R

BETWURY
INSERPTED

BTEX0000209

TN
PRINT OF DRAWINGS 4

| ASQRIGINALLYFILED | 08/775864
FIG. 6

50
(START)

)-91

SEARCH-TABLE
SEARCH FOR
RECORD
AND CLEAN
TARGET LisT

COPY
RECORD

r95 o I 83
RETURN | - o ' T RETURN
SUCCESS FAILURE

]

-96
(stoP)

BTEX0000210

PRINT OGF DRAWINGS =~ .
AS ORIGINALLY FILED . :
L . 08/775864
; " Richard M. Nemes Sheet 6 of 6

FIG. 7

100

(START)

Ul

SEARCH-TABLE
SEARCH FOR
RECORD

AND CLEAN
TARGET LIST

RETURN

05&%}% ng" FATLURE
105 N
RETURN
SUCCESS
106
STOP

BTEX0000211

T

)
A

r L
,,_,,/;7:’3;
Y
Ly
e i

7

Approvi: use through

Patant and Trademark

.U.8, DEPARTMENT OF COMMERCE

rapey N

PTCQ/SB/0BA (6-95) I

9/30/98, OMB.0651-0031

BV

ROE

I

us. Oepahmonl of Commaerce
Patent and Trademark Oftice

T OF PRIOR ART CITED BY

éqm_p‘l'ete If. Known

~~\

" Applicstion:Number

.

-~ Filing Date

Rqr-hard M. Nemes 1

ﬁ ‘First:Named Inventor
] 5%1 APPLICANT A
-~ 4 {use as many sheels as nacessary) Examinel Name _
Sheet 2 of 2 Altorney Docket Number "-__)
U.S. PATENT DOCUMENTS
U.S. Patent Documenj Dats of Publication of Pages, Golumns, Lines,

Name of Pataniea or Applicant

Whate Relevart
Patsages of Relevant

Examiner] Cite
Initiats’ | No.! Number c.?,?f of Citad Document Cp,’q‘:ad[?c;’.cm“ s
1.4..15,121,495.). . | Richard M.. Nemes . |..06~0901092 . l07)

Ahm..,.‘.,,...,.,_,..,,,,,.,

....................

1 AN 5 N PN,

......

e e s il
FOREIGN PATENT DOCUMENTS
Examiner] Cite Foreign Patent Document Name of Patentes or Date of Publication of P19y s, e
il | No* |omice: Nambert g Sosatl " Appicant of Cled Document ‘-;‘::“_’c?gf’“.““, enil Pussagus o oot | 74

.......................

Examiner
Signature

Mlaw,

Date
Considered

TEC

EXAMINER: Inkial ¥ reterence considersd, whether or not.citation Is in conlomance with MPEP 609. Draw lina through citation Hf not in conformance and not
considered. Include copy of this form with next communication to applicant. .

' Unlque cltation designation number, 2 See attached Kinds of U.S. Patent Documents. ? Enter Office that Issued the document, by the two-letter
code (WIPO Standard ST.3). *For Japanesa patent documents, the indication of the year of the reign of the Emperor must precede the seral
number of the patent documaent, * Kind of documant by the appropriate symbols as Indicated on the document under WIPQ Standard ST.14
possble. 6 Applicant is to place a check mark hare ¥ Engliah language Transtation is attached,

Burden Hour Stalement: This torm is estimated to take 2 hours 1o complete. Time will vary.depending upon the needs of the individual cass. Any comments on the
amount of time you are required to complete this 16m should be sent 10 the Chisf Information Officer, Patent and Tradeimark Office. Washington, DC 20231 Under
the Paperwork Reduction Act of 1995, 00 persons are required to respond to 4 colisclion of Information uniwss i displays a valid OMB control aumber, DO NOT
SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, OC 20231,

BTEX0000212

rager 7o
Y . PTO/SB/08B (8-95)
ihise through 07/31/96, OMB 0651-0031

!

T o . 4o Approvel; 51-0C
Pleass type a pius sign (+) Insida thisg, . \ . Patent and Tradamark Q3#%:.1).5. DEPARTMENT OF COMMERCE
| BPTO U.S. Department of Commerce_] - : -
;::?m/gs Patent and Trademark Oftice " §.. Complete if Known)
h\\' R 0 “Application Number
\ 4" “'Filing.- D
I 2\ IST OF PRIOR ART CITED BY }j——3=-
s) -~ First:Named Inventor Rirhard M. Nemes
APPLICANT [Group At uni N 1A
(use as many sheets as necessary) " Examinec Narme WIVY
VYV
1 of 2 | Attorney Docket Number N n ,
7

OTHER PRIOR ART — NON PATENT LITERATURE DOCUMENTS

Include name ol the aythor (in CAPITAL LETTERS), titie of the aricle (when appropriate), title of the {/
Examiner C“"‘ ilem (book, magazine, journal, sertal, symposium, catalog; etc.), date, page(s), volume-issue number(s), T
Initials No, publisher. country.where published. source,

. A4
Y D.E. KNUTH, The Art Of Computer Programming, Volume“B,
1| Sorting and Searching, Addison-Wesley, Reading, Massa-

A8

1 e e 3G F el O
chusettsy I 73ypprry0twIedy

2 Edition, Prentice-Hall, Englewood Cliffs, New Jersey,
1987..8ection. 6.5 "Hashing.". and. Section. 6.6,
"Analysis of Hashing," pp. 198-215.

D.F. STUBBS and N.W. WEBRE, Data Structures with
iy 3 Abstract Data Types and Pascal, Brooks/Cole Publishing
Conpany...Monterey..Lalifornia.. k85 Lection. dad.
"Hashed Implementations," pp. 310-336.

Exami Date 1 1%
Examiner HAL g Y[15]92

Considared-

EXAMINER: Inkial K reference considered, whather or not citation s in conformance with MPEP 609. Draw line through citation if not in conformance and not
considered. Include copy of this lom with next communication to applicant.

1 Unique chtation designation numbaer. 2 Applicant I3 to place a check mark hare if Engilsh language Translalion Is attached.

) Burden Hour Statement: This form Is estimated to take .2 hours 1o complete. Time will vary depending upon the nesds of {he individual case. Any comments on the
amount of lime you are required 1o complete this form should be sent 1o the Chiet Information Officer, Patent and Trademark Otfice, Washingtan, 0C 20231 0o
NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Cominissionsr lor Patents, Washington, DOC 20231.

BTEX0000213

et
o

199 /48

VW

&P e 3/ Sorting and Searching

~

THE ART OF
COMPUTER PROGRAMMING

Reading, Massachusetts
Menlo Park, California - London - Amsterdam - Don Mills, Ontario - Sydney

BTEX0000214

Thix hook is in the
ADDISON-WESLEY SERIES IN
COMPUTER SCIENCE AND INFORMATION PROCESSING

Consulting Editors
RICHARD S, “VAKGA ANTPMICTIARL A, TIARRISON

Copyright ® 1973 by Addison-Wesley Publishing Company, Int.
Iy Addisan-Wesley Publishing Company, Ine.

No part of this publieation may he
hs, eleetron
wmission of the publisher.
Library of Congress Cats

reprodue

Al rights reserved.
or transmitied, in any form or by any mea

or otherwise, without the prior written perims
cously in Canada,

States of America. Published simultan
No. 67-26020.

18BN G-201-03503-X
DEFGHIJ-MA-7987

Philippines copyright 1973

od, stared i n retrieval svsten,
ie, mechaniend, phatocopying, recording,
Printed in the United

This book forms a natu
Chapter 2, because it :
basic structural ideas.

book is only for those s\
tion of general-purpose
But in fact the area of
discussing a wid~ variot

How are good algm
How can given alg:
How can the efficie
How can a person
same application?
In what senses can
How does the thec
How can external
_with large datu bus

Indeed, I believe that

somewhere in the conts
This volume comp:
is concerned with sort
been divided chiefly int
also are supplementar,
tations (Section 5.1)
Chapter 6 deals with -
files; this is subdivided
of keys, or by digital
problem of secondsry |

BTEX0000215

506 SEARCHING B.4 $= 04
J 6.4 HASHING $ & will have the same month an

§ -~ dom function which maps 23
? 5 no two keys map into the s

So far we have considered search methods based on comparing the given arpy. .
N Skeptics who doubt this resul

ment A to the keys in the table, or using its digits to govern a branching process,

A third possibility is to avoid all this rummaging around by doing some arith.- 1 lerge parties they attend. [
metical ealeulation on K, computing a function f(K) whieh is the location of & J - ynpublished work of H. Dav.
and the associated data in the table, | Essays (1939), 45. See also]

For example, let’s consider again the set of 31 Tnglish words which we have ; o Mecmuasi 4 (1939), 145-163

Theory (New York: Wiley, 19.
. On the other hand, the ap’
niewski and W, Turski, CACH
k a suitable function ecan be fou
amusing to solve a puzzle lik
Of course this method he
must be known in advanee; ac

subjected to various search strategies in Seetion 6.2.2 and 0.3. Table I shows
a short MIX program which transforms each of the 31 keys into a unique number
JUK) between —10 and 30, If we compare this method to the MIX programs for
the other methods we have considered (e.g., binary search, optimal tree search.
tric memory, digital tree search), we find that it is superior from the standpoint
of both space und speed, except that binary scarch uses slightly less space. In
fact, the average time for a successful search, using the program of Table 1

with the frequency duta of Fig. 12, is only about 17.8w, and only 41 table loca- : S making it necessary to 'st:‘xrt ¢
tions are needed to store the 31 keys. : more vors_atile method if we g
Unfortunately it isnw’t very easy to discover such functions f(K). ‘There 1 keys to yield the same vadue
are 41%" = 10%° possible funetions from a 31-clement set into a 41-element set, 2 ambiguity ﬂftCT:f(I\')'hﬂ»‘i been
and only 4140+ -+ 11 = 411/100 = 10*? of them will give distinet values : These considerations fead
for each argument; thus only about one of evere=TOM ST Finctions will be N known as hashing or scaller sf
suitable. l chop something up or to mak
Functions which avoid duplicate values are surprisingly rure, even with o 4. off some aspects of the key ar
fairly large table. For oxample, the famous “birthday paradox” asserts that i J searching. We compute a has

where the search begins.

4 The birthday paradox tel
Table 1 2 0 Ky K which hash to the s

TRANSFORMING A SKET OF KEYS INTO UNIQUE ADDRESSES

23 or more people arc present in o room, chaneces are good that two of them

o £ w2 g2 o ¥ . P
« X % 2 5 B 8 B E & 3 g 8 '#§ n =
— = w = [m] Lz

jh*li‘u('(i\-\\ = H - o = = e

. Conte
LDIN K(1:1) | [! I L K LI I e T .
b2 K(2:2) -1 | X BTN B R i ti N =N =K =N —8 = —0 =0 -0 —1F 10
INC1 -8,2 4 G TR O Hoo14 X 2 A4 =15 15 =11 —11 E B —8 —4 —4H -9 —0 —15 —I6
JIP 42 4 [0 Woor S I8 205 15 TS | R —7 =17 =2 5 6 =7 —I8
INCY 16,2 7 . . . BTG 2 2 10 1] =7 =17 =2 5 6 -7 —I8
LE2 K(3:3) i G [C U S S T VTR P R P 25 2 2 00 . 1% . —1 29 . . 25 4
J2z 9F h 8 | KU BTN I B YR P B 4 2 By 2 2 3] i) 18 —1 29 5 6 25 4
INC1 28,2 BTN K] . . , u =TT 2 |) ! 18—t 29 o6 25 4
JIP 9F B I & . . . 4 w7 =T - | } E 12 . . 20
INc1 11,2 . 4 3 eI 7 55 12 20
LD K(4:4) . 3 3 25 M 7 3
JKZ OF LB 4 om0 -7 35
DEC1 -5,2 . . .) 1] 13
N oF , . . 4 . 15 . . .
INCL 10 ' ‘ . S T o . . | B
CA K PR T S KO T I N F R S R 25 10 ! ! . . - .
CMPA TABLE,1 T -3 30010 w6 4 82 o =7 25 10 ! R B 1?2 —1 20 506 20 4
JNE FAILURE T 3 31 O Ak L2 W =7 s 10 1 & <12 =129 b [20 4

; ¥o—1 20 5 6 2 4

BTEX0000216

tlll‘ ajven argu-
qnchuw process.
ping some arith-
e location of K

i

ciwhich we have
Table 1 shows
wuiiique number
Rurprograms for
inal tree search,
m"h(\ standpoint
i 1\ loss space. In

gmm of Table 1
5 jv 41 tuble loca-

ll)w J(K). There
‘ '} {1-element set,
& listinet values
hlllc\t}im\h' will be
U .uc even with a
*wsorts that if

w two of them

HER

6.4 HASHING M7

will have the same month and day of birth! In other words, if we select o ran-
dom function which maps 23 keys into a table of size 365, the probability that
no two kevs map into the same location is only 0.4027 (less than one-half).
Skeptics who doubt this result should try to find the birthdav mates at the next
large partics they attend. [The birthday paradox apparently originated in
unpublished work of H, Davenport; cf, W. W. R. Ball, Math. Recreations and
Essays (1939), 45. See also R. von Mises, [stanbul Universitesi Fen Fukiilles:
Meemuast 4 (1939), 145-163, and W. TFeller, An Introduction to Probability
Theory (New York: Wiley, 1950), Section 2.3.]

On the other hand, the anproach used in Table 1is fuirly flexible [ef, M. Gro-
niewski and W, Turski, CACM 6 (1963), 322-323], and for a.medium-sized table
a suitable function ean be found after about a day’s work, In fact it is vuther
amusing to solve a puzzle like this.

Of course this method has o serious flaw, sinee the contents of the table
must be known in advanee; adding one more key will probably ruin everything,
making it necessary to start over almost from scratch. We can obtain o much
mare versatile method if we give up the idea of uniqueness, permitting different
kevs to yield the same value f(R), and using 2 specin) method to resolve any
ambiguity after f(K) has been computed.

These considerations lead to a popular class of search methods commonly
known as hashing or scaller storage tochnu]um The verb “to hash” means to
chop something tip or 6 MARE W mess out of it; the idea in hi ashing s to chop
off some aspecets of the key and to use this partinl information as the basis for
searching, We compute o hash function h(K) and use this value as the address
where the search begins. '

The birthday paradox tells us that there will probably be distinet keys
A = K; which hash to the same value H{K;) = #{IK;). Such an oceurrence ix

X
[2] o]
& =] = g e = 23 E % g:‘ Q Z!! E E a
o
= [2 =] H 5 o (=] [=] e e B e ¥ = £ -

Contents of 11 after executing the instruction, giveh o particulur key K

=% =9 =% =9 -0 15 =16 —i6 —if -~-23 23 —23 23 -2 —26 ~26 -~38

=) e <0 =0 =15 —16 —16 — 16 23 2% =23 =23 —26 --2B ~26 2%
~7 -7 =2 5 6§ =7 —I8 =9 5 2% -2 -2 —15 —33 —2W —25 -0
-7 =T =2 b b =T —I&. —0 5 —2 —23 -2 —ih U3 —2W =25)
1R =12 . . 25 4 %2 30 l 1 1 T o6 =2 0 2
W - 2 5 6 25 4 22 30 t 1 i V7o~ —2 noote
-t 25 6 2 4 2 % L 3 t 17 —16 =2 02
12 S . . 20 . . L= 22 —iX L2 -2l —h &
12 . . . 20 . . Co—26 —92 1N Loo=22 =21 =5 8

=y R e 29

e L 2 . n -t

—14 —6 2 . 1=t 29

-0 . =2 . e L

—10 .2 . =51
12— 20 5 6 20 42 W =10 -8 =2 17 1 =52l 8
2 12 5 6 20 402w -1 -6 =2)7 11 —=h 2 8
12 o2 5 600 20 4w B =1 =6 —2 17 0 =5 @ 8

ptikadTanes

bl it

fras

FERTeTn

T

BTEX0000217

	Exh 5_1
	BTEX0000174_Part1

