

EXHIBIT 5
PART 3 OF 6

Bedrock Computer Technologies, LLC v. Softlayer Technologies, Inc. et al Doc. 284 Att. 8

Dockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/6:2009cv00269/116887/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2009cv00269/116887/284/8.html
http://dockets.justia.com/

functions have no such order If the index set has some natural order then sometimesthis order is reflected in the table but this is not
necessary aspect of using tablesHence informatiort retrieval from list

naturally involves search like the onesstudied in the previous chapter but information retrieval from table
requires differenmethods access methods that

go directly to the desired
entry The time requit edfor

searching list
generally depends on the number of items in the list and is at

least
Ig but the time for

accessing table does not usually depend on the numberof items in the table that is it is usually 0l For this reason in many applicationstable access is
significantly faster than list

searchingOn the other hand traversal is natural operation for list hut not for taleIt is generally easy to move through iist performing some operation with cberyitem in the list In general it may not be nearly so easy to perform an operationon every item in table particularly if some special order for the items is specifiedin advance

Finally we should clattfr the distinction between the terms table and
array

In general ave shall use table as we have defined it in this section and rc trict theterm
array to mean the

prograrsming feature available in Pascal and ntlst high-level languages and used for implementing both tables and contiguous lists

6.5.1 Sparse Tables

Index Functions

We can continue to exploit table
lookup even in situations where the key is no honytan index that can be used directly as in array indexing What we can do to Setup one-to-one correspondence between the keys by which we wehn

hash
Ji1

BTEX0000262

198 Tables and Information Retrieval

CHAPTER

Table

Ahst rid

data
type

or

Access

table

Array

access

lmp/emerisy/

rotc

Figure 6.9 Implementation of table

tablp.v ano across

6.5 HASHING

tOmetime5

ng tables

the ones

rsdifferent

tc required

ctnd is at

ha number

rppbcations

table

with every

tperation

i.specified

aid array

r$trict the

ôst high

tiO
longer

to set

Ylnforma_

Hashing 199

tion and indices that we can use to access an array The index function that we

produce will be somewhat more complicated than those of previous sections since

it may need to convert the key from say alphabetic information to an itt .er but

in principle it can still he dune

The only difficulty irises when the number of possible keys exceeds the amount

of space available for .1 table If for example our keys are alphabetical words of

eight letters then therc are 26 loll possible keys number much greater

than the number of poshions that \vill he available in high-speed memory In practice

however unIv small frction of these keys will actually occur That is the table

is sparse Conceptually we can regard it indexed by .cry large set but with

relatively few positions actually occupied In Pascal for xample we might think

in terms of conceptual declarations such as

type sparse table of item

Even though it may not he possible to implement declaration such as this

directly it often helpful in mnblem solving to begin with such picture arid

only slowly tie down the details of how it is puf into practice

Hash Tables

C/ax fir coon rot

ne-to-one

The idea of hash table such as the one shown in Figure 6.10 is to alluw many

of the different possible keys that might occur to be mapped to the same location

in an array under the action of the index function Then there will be possibility

that two records will want to he in the same place but if the number of records

that actually occur is small relative to the size of the array then this possibility

will cause little loss of time Even when most entries in the array are occupied

hash methods can be an effective means of information retrieval

oOt totted

below

tO ii 12 13 15 lB 18 t9 20 21 22 23 24

00 iv

25 28 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Figure 6.10 hash table

hash function
We begin with hash function that takes key and maps it to some index in

the array This function will generally map several different keys to the same index

BTEX0000263

lithe desired record is in the location given by the index then our problem is solved

otherwise we must use some method to resolve the collision that may have occurred

between two records wanting to go to the same location There are thus two questions

we must answer to use hashing First we must find good hash functions and second

we must determine how to resolve collisions

Before approaching these questions let us pause to outline informally the steps

needed to implement hashing

First an array must be declared that will hold the hash table With ordinary arrays

the keys used to locate entries are usually the indices so there is no need to keep

them within the array itself but for hash table several possible keys will correspond

to the same index so one field within each record in the array must be resen cd

for the key itself

Next all locations tn the rri must be triitialized to show that they arc emp1s

ri/no/I a//wi How thts is done depends on the applic mon often it is accomplished hs setti

the key fields to some value that is guaranteed never to occur is an actual ke
With alphanumeric keys for example key consisting of all blanks might represent

an empty position

To insert re ord into the hash table the hash function fo the is first

calculated If the corresponding location is empty then the record can be inserted

else if the keys are equal then insertion of the ne record would not he alto red

and in the remaining case record iith different key is in the location it become
Modu

necessary to resolve the collision

1/i ni/ To retrieve the record th
gis en kes is entirely similar First the hash functio

for the key is computed If the desired record is in iL corresponding location iht

the retrieval has succeeded otherwise while the location is nonempte and not a/

locations have been examined follos the same steps used for collision resolution

an enpt position is found or ill lo inons se been considered th no record

with the given key is in the table and the search is unsuccessful

52 Choosing Hash Function

The nso princip criteria in selecting hash function are that ii should be eass

and quick to compute and that it should achieve an even distribution of the keys

that actually occur across the range of indices If we know in advance exactly what

keys will occur then it is possible to construe1 hash functions that wilt sery

efficient but generall we do not knos in ads cc what keys is ill occur Theec
Pascal

thc usual is .ss is for thi hash function to tike the key chop it up ntis the piece

together in various ssas and thereb tatrt in mdc hat like tin pseadorandorn

numbers generated by compi is II be tniformI distributed over tl

range

indices

It is from this process thai the word host comes stncc the process eonscr

the key into something th be irs little resernhl ince \t ihc samc iie it is

that any patterns or regularities that occui iii ii kess will be destre

that the results will be randomls distr

BTEX0000264

200 Tables and Information Retrieval

col/rrioir

CHAPTER Et

Algorithm Outlines

keis fri ia/nc

Trw

Foldi

olved Even though the term hash is very descriptive in some books thc more technical

ôcurred terms .ccritler-srorage or key-transformation are used in its plac.

lestions We shall consider three methods that can be put together in various ways to

second
build hash function

trtication
Ic steps

Ignore part of the key and use the remaining part directly as the index considering

non-numeric fIelds as their nun1rical codes If the keys for example are eight-

digit integers and the hash table has 1000 locations then the first second and fifth

digits from he right might make the hash function so that 62538194 maps to 394

Truncation is very fast method but it often fails to distribute the keys evenly

thr.3ugh the table

Partition tie key into several parts and combine the parts in convenient way often

using addition or multiplicat to obtain the index For example an eight-digit

integer can be divided into gr2ups
of three three and two digits the groups added

ogether and truncated if essary to be in the proper range of indices Hence

o2538194 maps to 625 381 94 1100 which is truncated to 100 Since all

information in the key can affect the value of the function folding often achieves

better spread of indices than does truncation by itself

Convert the Icy to an integer using the above devices as desired divide by the

size of the index range and take the retnainder as the result This amounts to using

the Pascal operator mod The spread achieved by taking remainder depends very

much on the modulus in this case the stze of the hash array If the modulus is

power of small integer like or 10 then many keys tend to map to the same

index while other indices remain unused The best choice for modulus is prime

number which usually has the effect of spreading the keys quite uniformly We
shall see later that prime modulus also improves an important method for collision

resolution Hence rather than choosing hash table size of 1000 it is better to

choose either 997 or 1009 1024 would usually be poor choice Taking the

remainder is usually the best way to conclude calculating the hash function since

it can achieve good spread at the same time that it ensures that the result is in

the proper range About the only reservation is that on tiny machine with no

hardware division the calculation can be slow so other methods should be considered

.3 Hashing 201

iy arrays

4to keep

4respond

eserved

ttt empty

setting

4ual key

Present

first

ktiserted

t1lowed

ecomes

ltfunction

1in then

It1ot all

qjtion
If

record

Folding

Modular Arithmetic

P22 titicliiliis

easy

keys

what

very

efore

pieces

ndorn

of

Pascal Example

4H

so

That is we shall begin with the type

As simple example let us write hash function in Pascal for transforming key

consisting of eight alphanumeric characters into an integer in the range

hashsize

type keytype array1 of char

We can then write simple hash funcion as follows

BTEX0000265

202 Tables and Inlormation Retrieval

function Hashx keytype integer

var

integer

begin

for to do

ordx
Hash mod hashsizo

end

CHAPTER

We have simply added the integer codes corresponding to each of the eight

characters There is no reason to believe that this method will be better or worse

however than any number of others- We could for example subtract some of the

codes multiply them in pairs or ignore every other character Somettmes an applica

tion will suggest that one hash function is better than another sometimes it requires

experimentation to settle on good one

The simplest method to resolve collision is to start with the hash address t-

location where the collision occurred and do sequential search for the desi.

key or an empty location 1-Jetice this method searches in straight lii and

therefore called linear probing The array should be considered circular so

when the last location is reached the search proceeds to the first location of ne

array

The major drawback of linear probing is that as the table becomes about half full

there is tendency toward clustering that is records start to appear in long strings

of adjacent positions with gaps between the strings Thus the sequential searches

needed to find an empty position become longer and longer- For consider the example

in Figure 6.11 where thc occupied positions are shown in color Suppose that there

are locations in the array and that the hash function chooses any of them with

equal probability 1/n Begin with fairly uniform spread as shown in the top diagram

If new insertion hashes to location then it will go there but if it hashcs to

location which is full then it \-ill also go into Thus the probability that

will be filled has doubled to 2/n At the next stage an attempted insertion into

any of locations or will end up in ci sn the probability of filling is

4/n After this has probability 5/n of being filled and so as additional insertn

are made the most likely effect is to make the string of full positions beginninf

location longer and longer and hence thc performance of the hash table starts

degenerate toward that of sequential search

sample has/c function

instab

6.5.3 Collision Resolution with Open Addressing

Linear Probing

lnct

re/i as/c

Clustering

ste mph vi c/us erittg

Qua

nun-c/sc-

probes

BTEX0000266

SECT ON Hashing 203

LL LLI LI II LHT 11 LV
is c/

f1 11ff 1tF1L 1ff tL1t Ift

LCHt11 lilt ii lU1lil
ii

Figure 611 Clustering in hash table

instability The problem of clustering is essentially one of instability if few keys happen

randomly to be near each other then it becomes more and more likely that other

keys will join them and the distribution will become progressively more unbalanced

Increment Functions

If we are to avoid the problem of clustering then we must use some more sophisticated

way to select the sequence of locations to check when collision occurs There are

many ways to do so One called reltashittg uses second hash function to obtain

the second position to consider If this position is filled thcn sonic other method is

needed to get the third position and so on But if we have fairly good spread

from the lirst hash function then little is to be gained by an independent second

hash function We will do just as well to find more sophisticated way of determining

the distance to move from the first hash position and apply this method whatever

the first hash location is Hence we wish to design an increment function that catt

depend on the key or on the number of probes already made und that will avoid

clustering

If there is collision at hash address It this method probes the table at locations

It It It 9. that is at locations It i2 mod hashsize for

That is the increment function is

This method substantially reduces clustering but it is not obvious that it will

probe all locations in the table and in fact it does not If hashsize is power of

then relatively few positions are probed Suppose that hashsize is prime If we

reach the same location at probe and at probej then

so that

It i2 It j2 mod hashsize

Ji mod hashsize

Since hashsize is prime it must divide one factor It divides only when

differs from by multiple of hashsize so at least hashsizo probes have been made

Hashsize divides however when hashsize so the total number of

distinct positions that will be probed is exactly

the eight

worse

of the

applica

It requires

çfress the

the desired

and it is

so that

of the

ii half full

strings

ilsearches

example

Jhat there

with

oidiagram

f3ashes to

ijty that

5.tion into

Jiling is

Itinning at

jstarts tO

f/lashing

Quadratic Probing

ttunher oft itt/net

probe.c

hashsize dlv

BTEX0000267

It is customary to take overflow as occurring when this number of Positions

has been probed and the results are quite satisfactory

Note that quadratic probing can be accomplished without doing multiplications

colcu/atioti After the first probe at position the increment is sct to At each successive

probe the increment is increased by after it has been added to the previous location

Since

l35.2ili2
for alt you can prove this fact by mathematical induction probe will look

in position

as desired

Key-Dependent Increments

Rather than having the increment depend on the number of probes already made
insertion

we can let it be some simple function of the key itself For example we could truncate

the key to single character and usc its code as the Increment In Pascal we might

write

increment ordk

good approach when the remainder after division is taken as the hash function

is to let the increment depend on the quotient of the same division An optimizins

compiler should specify the division only 00cc so the calculation will be fast and

the results generally satisfactory

In this method the increment once determined remains constant If hashsice

is prime it follows that the probes will step through alt the entries of the arras

before any repetitions Hence overflow will not be indicated until the array is com

pletely full

quadratic

Random Probing

final method is to use pseudorandom number generator to obtain the increme1it

The
generator used should be one that always generates the same sequence provided

it starts with the same seed The seed thet can be specified as some function of

the key This method is excellent in avoiding clustering but is likely to be slower

than the others

Pascal Algodthms

To conclude the discussion of open addressing we continue to study the Pascal

example already introduced which used alphanumeric keys of the type

type keytype arrayfi 81 of char

We set up the hash table with the declarations

204 Tables and Information Retrieval Ft

dec/a rat

BTEX0000268

ositions

JtcCeSSIVe

.ocation

will look

idy made

truncate

Ywe might

function

iptimizing

Last and

the array

at is corn

rement

jrovided

hction of

slower

le Pascal

Hashing 205

const

hashsize 997 Jft0aflCCi accrcc

hashmax 996 is ..aa-s.s

type

hashtable array hashmax of item

var

hashtable

The hash table must he initialized by diining ..cial key called blankword

that consists of eight blanks and set rig the key field of each item in to blankword

We shall use the hash function already written in Section 65 ran together

with quadratic probing for collision resolution We .hown that the maximum

number of probes that can be made this way is hashsze -- dlv and we keep

counter to check this upper bound

With these conventions let us write procedure to insert record with key

rkey into the hash table

procedure lnsertvar hashtabte item

var

ouucbutic pro/nui.ç

integer

begin

Hashr.key

while Htp.key btankword

and Hp.key r.key

and hashsize div do

begin

if hashmax then

mod hashsize

caur.ter ty 115 taa cIc

pcsic.n rrsntly 1150

010051 fl5flrt

IC to location emptv5

Has he argot key larsen bonn0

t.s ovrfiow occurrecOb

Prepare increment tor the next iteration

end
If Hp.key blankword then

else if HpI.key r.key then

Error

else

Overflow

end

Insert to .1kW tern

the same key cation 4p1n4 twice.t

Counter has reachco its hmit

prOCedure toserti

procedure to retrieve the record if any with given key will have similar

form and is left as an exercise

BTEX0000269

SEC

Deletions

Up to now we have said nothing about deleting items from hash table At first

glance it may appear to be an easy task requiring only marking the deleted location

with the special key indicating that it is empty This method will not work Thc

reason is that an empty location is used as the signal to stop the search for targc

key Suppose that before the deleuon there had been collision or two and tha

some item whose hash address is the now-deleted position is actually stored elsewhere

in the table If we now try to retrieve that item then the now-empty position will

stop the search and it is impossible to find the item even though it is still in the

table

special key One method to remedy this difficulty is to invent another special key to be

placed in any deleted position This special key would indicate that this position is

free to receive an insertion when desired but that it should not be used to terminate

the search for some other item in the table Using this second special key will however

make the algorithms somewhat more complicated and bit slower With the methods

we have so far studied for hash tables deletions are indeed awkward and should be

avoided as much as possible

6.5.4 Collision Resolution by Chaining

Up to now we have implicitly assumed that we are using only contiguous storag

while working with hash tables Contiguous storage for the hash table itself is

fact the natural choice since we wish to be able refe quickly to random positioc
overflow

in the table and linked storage is not suited to random access There is howeve.

iccked stoaagc no reason why linked storage should ttot be used for the records themselves

can take the hash table itself as an array of pointers to the records that is as an

array of list headers An example appears in Figure 6.12

It is traiitional to refer to the linked lists front the hash table as cltain.c and

call this method collision resolution by chaining deletion

Advantages of Linkr Storage

There are several advantages to this point of view The first and the most important Olsadva

.spac satin when the records themselves are quite large is that considerable space may be saved

Since the hash tahk is contiguous array enough space must be set aside at compilation

time to avoid overflow If the records themselves are in the hash table then if there
use of spa

are many empty positions as is desirable to help avoid the cost of collisions these

will consume considerable ssace that might he needed elsewhere If on the other

hand the hash table contains only pointers to the records pointers that require

ii- only one word each then the size of the hash table may he reduced bya large
sn-coil reco

factor essentially by factor equal to the size of the records and will become

small relative to the space available for the records or for other ases

The scond major advantage of keeping only pointers
in the hash table is ti

flciitIIuPI it allows simple and efficient collision handling We need only acid link field

cad record and organize all tlte records witl single hash adcires as link-

list With good hash function few keys will give the same hash .idress so

BTEX000027O

206 Tables and intormation Retrievat CHAPTER

At first

Slocation

tk The

va target

ind that

iŁlsewore

iition
will

till in the

ly to be

sition is

terminate

however

j1methods

should be

storage

itelf is in

ipositions

showever

Ives We

ais as an

Hashing 207

These advantages of chained hash tables are indeed powerful Lest you believe that

chaining is always superior to open addressing however let us point out one important

disadvantage All the links require space If the records are large then this
space is

negligible in comparison with that needed for the records themselves hut if the records

are small then it is not

Suppose for example that the links take one word each and that the items

themselves take only one word which is the key alone Such applications are quite

common where we use the hash table only to answer some yes-no question about

the key Suppose that we use chaining and make the hash table itself quite small

with the same number of entries as the number of items Then we shall use 3n

words of storage altogether for the hash table for the keys and for the

links to find the next node if any on each chain Since the hash table will be nearly

full there will be many collisions and some of the chains will have several items

CII ON .--

4-

Figure .\ chainett bash table

and

linked lists will be short and can be searched quickly Clustering is rio problem at

all because keys with distinct hash addresses alwt go to distinct lists

overflow third advantage is that it is no longer necessary that the size of the hash

table exceed the number of records If there are more records than entries in the

table it means only that some of the linked lists are now sure to contain more

than one record Even if there are -overal times more records than the size of the

table the average length of the linked lists will remain small and sequential search

on the appropriate list will rentain efficient

Finally deleton becomes quick and casy task in chained hash table Deletion

proceeds in exactly the same way as deletion from simple linked list

Disadvantage of Linked Storagetportant

saved

pilation

if there

these

other

require

large

become

space

/1 records

IL

is that

field to

linked

so the

BTEX000027I

208 Tables and Information Retrieval

Hence searching will be bit slow Suppose on the other hand that we use Open

addressing The same 3i words of storage put entirely into the hash table will mean

that it wilt be only one third full and therefore there will be relatively few collisions

and the search for any given item will be faster

Pascal Algorithms

chained hash table in Pascal takes declarations like

thcIii oiii
ii type

pointer mode

list record head pointer end
hashtable array 10. hashmax of list

The record type called node consists of an item called into and an additional field

called next that points to the next node on linked list

The code needed to initialize the hash table is

iliiiiii/iZiJ/rii for to hashmax do Hlil.head nil

We can even use previously written procedures to access the hash table The

hash function itself is no different from that used with open addressing for data

retrieval we can simply use the procedure SequentialSearch linked version from

Section 5.2 as follows

procedure Retrievevar hashtable target keytype
perfect lies

var found Boolean var location pointer

hinds the norta wth kecusroe USC 0050 table anc rcLirria v.ith Loatin

poinbnq to that rvsdc pro.rh ihe tooth iooomes hue

begin

SequentialSearchHlHashtarget target found location

end

Our procedure for inserting nec entry will assume that the key does not appcar

already otherwise only the most receni tscrti in with given key whl he retrievaH

45

iisiriii procedure lnsertvar hashtable pointer

inserts node fliD toe ohaned haai leule
ciS.eLOtflflq

ii oil r.da wth

Icey .nto.te is the

var

integer used for index fts hr table

begin

Hashpt .info.key 01ri ktr d.ex the linKed IS Dr

pI.next Hli.head incrr iso flea ls

Sat Iso i-.ao the to tie nec rn

end

As you can see both of these procedures are significantly simpler thou arc it-.

versions for open addressing since collision resolution is not problem

BTEX0000272

TC t4 Hashing 209

El Write Pascal procedure to insert an item into hash table with open addressing

and linear probing

E2 Write Pascal procedure to retrieve an item from hash table with open address

ing and ta linear probing th quadratic probing

F3 Devise simple easy-to-calculate hash function for mapping three-letter words

to integers between and it inclusive Find thc values of your function

on the words

PAL LAP PAM MAP PAT PET SET SAT TAT BAT

for II 13 17 19 Try for as few collisions as possible

iij\/t Juit cIiui

E4 Suppose that hash table contains hasttsize entries indcxed from through

12 and that the following keys are to be mapped ittto the table

10 100 32 45 58 126 29 200 400

Detcrmine the hash addresses and find how many collisions occur when

these keys are reduced mod hasheize

Determine the hash addresses and find how many collisions occur when

these keys are tirst folded by adding thcir digits together in ordinary decimal

rpresentation and then reducing mod hashsizo

Find hash function that will produce no collisions for these keys hash

function that has collisions for fixed set of keys is called perfect

Repeat the previous parts 01 this exercise for hashsize 11 hash function

that produces no collision for fixed set of keys that completely fill the

hash table is called Ininifizo perfeeL

ES Another method for resolving collisions with open addressing is to keep separate

array called the overflow table into which all items that collide with an occupied

location are put They can either be inserted with another hash function or

simply inserted in order with sequential search used for retrieval Discuss the

advantages and disadvantages of this method

E6 Write an algorithm for deleting node from chained hash table

E7 Write deletion algorithm for hash table with open addressing using second

special key to indicate deleted item see part of Section 6.5.3 Change the

retrieval and insertion algorithms accordingly

EL With linear probing it is possible to delete an item without using second

special key as follows Mark the deleted entry empty Search until another empty

position is found If the search finds key whose hash address is at or before

the first empty position then move it back there make its previous position

empty and continue from the new empty position Write an algorithm to imple

ment this method Do the retrieval and insertion algorithms need modification

Exercises

6.5

the

BTEX0000273

Devise an integer-valued function that will produce different values when

applied to .11 35 reserved words may find it helpful to write short

program to assist Your program could read the words from file appl

the function you devise and determine what collisions occur

Find the smallest integer hashsize such that when the values of your function

are reduced mod hashsize all 35 values remain distinct

Modify your function as necessary until you can achieve hashsize 35 in

the preceding part You will then have discovered minimal perfect hash

function for the 35 Pascal reserved words. tlWi

6.6 ANALYSIS OF HASHING

The Birthday Surprise

The likelihood of collisions in hashing relates to the well-known mathematical diver-
Si

sion How many rartdomly chosen people need to be itt room before it becomes

likely that two people will have the same birthday niottth and day Since apart

from leap years there are 365 possible birthdays most people guess that the answer

will be in the hundreds hut in fact the answer is ottly 24 people

We can determine the probabilities for this question by answering its opposite

With in randomly chosen people in room what is the probability that no two

have the same birthday Start with any person and check his birthday off Ott

calendar The probability that second person has different hirihd is 364/365

Check it off The probability that third person has different htrthday is now

363/365 Continuing this way we see that if the first people have different

birthdays then the probability that person in has different birthday is

365 in l/365

Sittce the birthdays of different people are independent the probabilities maltirJv

and we obtain that the probability that in people all have differcttt birthdays is

364 363 362 365 in

365 365 365 365

This expression becomes less than 0.5 whenever in 24

Itt regard to hashing the birthday surpise tells us that with any problem

cilhisuni J//r reasonable size we are almost certain to have some eollisiotts Our approach therefo

should not be only to try to mininlize the number of collisions but also to ltandc

those that occur as expeditiously as possible

Counting Probes

As with other methods of information retrieval we would like to know how many uhj.

comparisons of keys occur on average during both successful and unsuccessful attempts

to locate given target key We shall use the word probe for looking at onae

and comparing its key with the target

210 Tables and Information Retrieval

Programming

Project

6.5

CHAPTER

Fl Consider the 35 Pascal reserved words listed in Appendix C.2.l Consider these

words as strings of nine characters where words less than nine letters long are

filled with blanks on the right

SE

luau

At

BTEX0000274

Analysis of Hashing 211

The number of probes we need clearly depends on how full the table is Theretbrc

as for searching methods we let it be the number of items in the table and we

let which is the same as hashsize be the number of positions in the
array- The

load factor of the table is n/I Thus signifies an empty table 0.5

table that is half full For open addressing can never exceed but for chaining

there is no limit on the size of We consider chaining and open addressing separately

With chained hash table we go directly to one of the linked lists before doing

any probes Suppose that the chain that will contain the target if it is present has

items

If the search is unsuccessful then the target will be compared with all of

the corresponding keys Since the iten are distributed unifomly over all lists

equal probability of appearing on any list the expected number of items on the

one being searched is n/i Hence the average number of probes for an unsuccessful

search is

Now suppose that the search is successful From the analysis of sequential search

we know that the average number of comparisons is where is the

length of the chain containing the target But the expected length of this chain is

no longer since we know in advance that it must contain at least one node thc

target The nodes other than the target are distributed uniformly over all

chains hence the expected number on the chain with the target is 1/i

Except for tables of trivially mall size we may approximate 1/i by n/i

Hence the average number of probes for successful search is very nearly

6.pER

er these

long are

fvs
when

short

Me apply

function

35 in

rfeer
hash

cal diver-

becomes

see apart

he answer

oPp05ite

at no two

ybff on

364/365

is now

Iitferent

.ntd factor

Analysis of Chaining

in cttcccssf it rut vol

cucajit retrieval

Analysis of Open Addressing

1c

random pro/w.v

For our analysis of the number of probes done in open addressing let us first ignore

the problem of clustering by assuming that not only are the first probes randoni

but after collision the next probe will be random over all remaining positions of

the table In fact let us assume that the table is so large that all the probes can be

regarded as independent events

Let us first study an unsuccessful search The probability that the first probe

hits an occupied cell is the load factor The probability that probe hits an empty

cell is The probability that the unsuccessful search terminates in exactly

two probes is therefore Al and similarly the probability that exactly Ic probes

are made in an unsuccessful search is Atl -- The expected number UA of

probes in an unsuccessful search is therefore

..a of

trefore

handle

many

item

UA

ttiIxuc-ctosJim/ retrieval This sum is evaluated in Appendix we obtain thereby

LJA1 _A2 Aj----

BTEX0000275

212 Tables and Information Retrieval CHAPTER

To count the probes needed for successful search we note that the number

needed will be exactly one more than the number of probes in the unsuccessful search

made before inserting the item Now let us consider the table as beginning empty

with each item inserted one at time As these items are inserted the load factor

grows slowly from lo its final value It is reasonable for us to approximate this

step-by-step growth by continuous growth and replace sum with an integral We
conclude that the

average
number of probes in successful search is approximately

SA IAJo

Similar calculations may be done for open addressing with linear probing where

it is no longer reasonable to assume that successive probes are independent The

details however are rather more complicated so we present only the results For

the cotnplete derivatioti consult the references at the end of the chapter For linear

probing the average number of probes for an unsuccessful search increases to

and for successful search the number becomes

II

1A

Figure 6.13 gives the values of the foregoing expressions for different values of the

load factor

Sucee.rsjii sea rc/i

Chaining 1.05 1.25 1.40 1.45 .50 2.00

Open Random probes 1.05 1.4 2.0 2.6 4.6

Linear probes 1.06 1.5 3.0 5.5 505

UnsaecessJii Sea re/i

Chaining 0.10 0.50 0.80 0.90

Open Random probes 1.1 2.0 5.0 10.0

Linear probes 1.12 2.5 13 50 5000

1igurc 6.13 Theoretical comparison or hashing methods

act es sJ iicc rid

SE

lit Ca probing

Err

Theoretical Comparisons

Load factor 010 0.50 0.80
--

0.90 099 2.00

099 2.00

too

We can draw several conclusions from this table First it is clear that chaining

consistently requires fewer probes than does open addressing On the other hand

traversal of the linked lists is usually slower than array access which can reduce

the advantage especially if key comparisons can be done quickly Chaining comes

BTEX0000276

Analysis of Hashing 213

into its own when the record are large and comparison of keys takes significant

time Chaining is also especially advantageoLts when uthuccessful searches are com

inon since with chaining an empty list or cry short list may be found so that

often no key comparisons at all need be ione to show that search is unsuccessful

With open addressing and successful searches the simpler mcthod of linear prob

ing is not significantly slower than more sophisticated methods at least until the

table is almost completely full For unsuccessful searches however clustering quickly

causes linear probing to degenerate into long sequential search We might conclude

therefore that if searches are quite likely to he successful and the load factor is

moderate then linear probing is quite satisfactory but in other circumstances another

method should be used

It is important to remember that the computations giving Figure 6.13 are only approxi

mate and also that in practice oothing is completely random so that we can always

expect some differences between the theoretical results and actual computations For

sake of comparison therefore Figure 6.14 gives the results of one empirical study

using 900 keys that are pseudorandom numbers between and

0.1 0.5 0.8 0.9 0.99 2.0

SuccessJii sea re/i

Chaining 1.04 1.2 1.4 1.4 .5

Open Quadratic probes 1.04 t.5 2.1 2.7 5.2

Linear probes 1.05 1.6 3.4 6.2 21.3

2.0

2.04

Unsuccessful search

Chaining 0.11 0.53 0.78 0.90 0.99

Open Quadratic probes 1.13 2.2 5.2 11.9 12b

Linear probes 1.13 2.7 15.4 59.3 430

Figure 6.14 Empirical comparison of hashing methods

In comparison with other methods of information retrieval the important thing

to note about all these numbers is that they depend only on the load factor not on

the absolute number of items in the table Retrieval from hash table with 20.000

items in 40000 possible positions is no slower on average than is retrieval from

table with 20 items in 40 possible positions With sequential search list 1000 times

the size will take 1000 times as long to search With binary search this ratio is

reduced to 10 more precisely to Ig 1000 but still the time needed increases with

the size which it does not with hashing

Finally we should emphasize the importance of devising good hash function

one that executes quickly and maximizes the spread of keys If the hash function is

poor the performance of hashing can degenerate to that of sequential search

SECTION

Omber

earch

mpty

raetor

ke this

.41 We

jimately

where

bit The

dts For

Wr linear Empirical Comparisons

Load factor

of the

o0

Chaining

tt hand

reduce

comes

onclusions

BTEX0000277

If the load factor is and open addressing is used determine how many

words of storage will be required for the hash table

If chaining is used then each node will require words including the

pointer field How many words will be used altogether for the nodes

If the load factor is and chaining is used how many words will be used

for the hash table itself Recall that with chaining the hash table itself

contains only pointers requiring one word each
Add your answers to the two previous parts to find the total storage require

ment for load factor and chaining

if
.c is small then open addressing requires less total memory for given

but for large chaining requires less space altogether Find the break-

even value for at which both methods use the same total storage Your

answer will depend on the load factor

El Figures 6.13 and 6.14 are somewhat distorted in favor of chaining because no

account is taken of the space needed for links see part of Section 65.4 6.7

Produce tables like Figure 6.13 where the load factors are calculated for thc

case of chaining and for open addressing the space required by links is added

to the hash table thereby reducing the load factor

Givcn
it

nodes in linked storage connected to chained hash table with

words per item plus more for the link and with load factor find the c/talc

total amount of storage that will be used ittcluding links strap

If this same anlount of storage is used in hash table with open addressing

and it items of words each find the resulting loth factor This is the

load factor to use for opeit addressing in computing the revised tables tab/i

Produce table for the case

Produce another table for the case .s

What will the table look like when each item takes IOU words

123 One reason why the answer to the birthday prohlem is surprising is that it

differs from the answers to apparently related questions For the following sup

pose that there are people in the room and disregard leap years
ether

What is the probability that someone in the room will have birthday on

random date drawn from hat

fb What is the probability that at least two people in the room will have that

same random birthday

If we cltoose one person and find his birthday what is the probability thut

someone else in the room will share the birthday

124 In chained hash table suppose that it makes sense to speak of an order fc

the keys and suppose that the nodes in each chain are kept in order by ker liaal

arc/pied dcii /th Then search can be terminated as soon as it passes the place where the key

should be if present I-low many fewer probes will be done on average in an

214 Tables and Information Retrieval

Exercises

6.6

PIER

El Suppose that each item record in hash table occupies words of storage

exclusive of the pointer field needed if chaining is usedt and suppose that there

are items in the hash table

SE

BTEX0000278

Cot ion Comparison M.vods 215

jorage
unsuccessful search In successful search How many probes are nceded on

there average to insert new node iii the right place Compare your Lnswrs with

the curresponding numbers derived in the text for the case of unordered chains

many ES In our discussion of chaining the hash table itself contained only pointers list

headers for each of the chains One variant method is to place the first actual

4lng the item of each chain in the hash table usd1 An empty position is indicated by

des an impossible key as with open addrcssino With given load factor calculate

be used the effect on space of this method as function uf the number of words except

bk itself links in each item link takes one word

require- Programming Pt Produce table like Figure 6.14 for your computer by writing and running

Project test programs to implement the various kinds of hash tables and load factors

it4 given 6.6

Your

iuse no

.7 CONCLUSIONS COMPARISON OF METHODS
for the

added This chapter and the previous one have together explored thur qutte different methods

of information retrieval sequential search binary search table lookup nid hashing

4with
If we are to ask which of these is best we must first select the criteria by which to

ftnd the Hues 0/
1111 answer and these criteria will include both the requirements imposed by the application

orucrurc and other considerations that affect our choice of data structures since the first two

ldressing
methods are applicable only to lists and the second two to tables In many applications

is is the however we are free to choose either lists or tables for our data structures

ubte ton/sup
In regard both to speed and convenience ordinary lookup in contiguous tables

is certainly superior but there are many applications to which it is inapplicable

such as when list is preferred or the set of keys is sparse It is also inappropriate

whenever insertions or deletions are frequent since such actions in contiguous storAge

th may require moving large amounts of information
at it

Which of the other three methods is best depends on other criteria such as

pg sup-
the form of the data

Sequential search is certainly the most flexible of our methods The data may

4ay on be stored in any order with either contiguous or linked representation Binary search

is much more demanding The keys must be in order and the data must be in

tye that
random-access representation contiguous storage Hashing requires even more

peculiar ordering of the keys well suited to retrieval from the hash table but generally

that
useless for any other purpose If the data are to be available immediately for human

inspection then some kind of order is essential and hash table is inappropriate

ker for Finally there is the question of the unsuccessful search Sequential search and

key hashing by themselves say nothing except that the search was unsuccessful Binary

Ac key
search can determine which data have keys closest to the target and perhaps thereby

fe in an can provide useful information

ni/icr methods

near miss

BTEX0000279

13n tok.s/aie P11151 isP nlpIfl\

ivkic to of WacIswl wtl

I98i he \adsvorth Inc Ileintont Caliktrtiia 9-in All rights reseFvetl No pan of ilto

hook nets repntcluced stored in retrieval svsent or transerilseci ill AOl loint or

he AIIV nteans electronic mecltantcal plIll/lo tpvll ig re FCiltg 03 otltcnvise- vule tot

tilt prior Written permission 01 tIt_ ilislic Iir k.sUolc iOihIislliilg .ompanv

Ioittetts diltirnia 939it division of \\atlsosirtli Inc

Prittied in the ititeti States ol Aiticiict

ii

Library of Congrcss Cataloging in Puhcation Data

SIttistla Ii tat tiate

ala strticttires welt altstrict clar
Ivise

tic iilstiii

tititdcS ititlex

tata structures Conspuier sciOn Ahstrict

data ivtcs Lottiiettffr science \\ehte .N \\ Neil \X

kkiIcI II ide

cAo.Q.it3Ss llS.i of S-i-UtO2S

ISBN O534-03Œ19-Q

Spi ins lime Iiiit its .ltic/tctil \tsdll.sittt .\ci/ On
idtt nat Assistants /1 71/i/i .IJcc 001/ did- /1
Alat-keting lepteseiltalive tail/on /llii

11111111111 Ftl
ill

IF nii/t sA aiitcla ill

Manuscript Filet IF Ih-ec .siinLtii

Perntissii ins latin Ir u/lOu ago

icr intl Intctiot /ouis/i Sin //neb

Art ii
uitlitlAti iFs ReAct hi .IOic/.ii/i/tIi/gi

Interior Illustrittioti mu AuiuiuOC /Cisai //IolSt/Li/t lw /ltotu /ultill-\çueeun

ivpcscri Ing ut-up/tic /t/kSAUifli .ctas-c Ins .-Otgi/c.s li/i/ouuuui

Iriniitg Itst toiling /1 /i i-Si/na/lit So/LI .0 c.tsiitjo/.ctai/i //ic/taunt

Apple isaregmsterts_l
it-adentark uI Apple cuuniantei Inc

SEC is -egisiet-etl
trademark OF liio_il Oquipnieiu uutpot-tnn

Iiill i_s rel.icietetI trademark til ititctiiiiiuttal Ictsiriess Ntaclti tea Tic

Itiseal Nli is irailcinark of Digital kcscancli Inc

BTEX000028O

310 /to/fliT Sets

We have nit mci tided the set Opvrtt tti on/nit tPZtPrcectinpi and c/i/fert-tcc in

set Shiecit cat ii Th2 Ci told they he included tfso how wou Id the sjieci iauons

ttve to tie mi lililicil itt cli sc

7.4 Hashed Implementations

/e have studied several niethod.s for the storage and later retriessd of kvvvu

reec rds Arracs linked lists and several kinds if trees provide structures tlia

Ic cw liese
tperatic Ins In each cit these stru Li res the Ii id peration is ncc

essarilv implemented he st tow fbrni of search The key values of recc rds in

the struct nrc are ci toipared with the desired tr target key until either match

ing value is ficitnd itr the data structure is exhausted The pattern of prohcs is

dependent apt to the met lii td.s of
trgati

izi
rig

and
relatirtg

the records of the

structure si tied linear list implemented as an array can he prohed hy

lsinarv sett-ch The same list ti linked ftcrm can only he searched sequentially

\Te might ask if it is
pi

tssihlc ti create data st rLtctu re that does ni reclu ire

search ci ittiplement the hod operation Is
it pissihle for example to ccitii

pute he Ii teat it in oft he reet nd that has given key sal ue

tietut rs dd ress of reet si key

svlie ref is teuc in that maps each distit tet key value inti the mertti cry address

oh the record idetititieci liv that key \\e sittil see thtt the artswer is qualified

yes Such futietiotis can lie hcund lint they are difficult Itt determitie and eati

ml lie cc instruct cd if all of the keys ti the data set are kni c\vti it tdvjn

Ihev ate called pet fect hashing functions and ate further exatniocti

Section Tht.3

Ni irma lv there has he ci mprotii cc fri im strictly calculated aecv-

selietite to hvhrid scheme that iti dyes ealcu lath in folk rcved ks some him itcc

searching The function di ces tiot necessarily give the exact tiietiion addres

if the tart.et reet ird tot only gives home address thtt tnt ci tnlai the

desired reci itLl

hi woe acid tess lit kei

Futieth iris such is Ii are kttiiwrt as bashing functions Iti cotirt-ast to perfect

hashitg funetit os these tre usitallv etsv to detertititie atid can give exeellern

perk trtnauee The hi uric address may tic it ci itittiti the record being si otght In

that case search oft cther tddresses is reqit ired and this is ktiosen as rehash

ing In Secthtti .t we inttoduce nunihier of hashing futictiotis and in

Section -t2 we exantine several rehLshttg strategies Its Section 7.5 we sitni

tarize the pertc irnianee if hashed implemerttath tos and in Section .6 we

tmpate its opertt in ttkl perforniatice with diat itt isis and trees ft tr the

freihcteticvttialssis if ci graphs

The lu ndameotai idea hiehitid hashing is the tuthesis tf sotiit

arranges tI te reci irds in regular pittterti
that tiiakes the relat itch tidcivr

hitiarv setrelt possihile ltshitig takes the diametrically opposite apprc itch

basic idea is tic scatter the records ci imphetei rattdomn Iv through it tot sc

nieti iii ri ir

he
thiccuglit

the key as

that key

Otie if

nietits Then

atiahc
tgc ins It

anit mg ehentii

amc cog ecu tst

thii cltapter

dtscctssiott of

rte oft

prc
uses liii

Oti It in ever

for Iitiked

sorted list

fewest chic

effect ivc i.tt

hash taut

AJI cit these

teiittiilhitc Ii

nc cha ngi

It ts cc
tca let ii ii

than
ti ealcik

is ii tii
pci it

an tctitat is

Figitre

COnS tahil

type hills

tar tahlc

Figure

Sctppi 151

vat tthle

Si

aticl thtt tite

I/i kec

Nottce that

tttiil \\hiti

BTEX000028I

.Secnn hashed ltiephsiiteitnituus 351

nleiiiorv or stor spacerhe so-called ba-sb table he LtL5Il ftinctii ni can

he thought of as pseudo-random-number generator that uses the valt.ie of

the key as seed and that outputs the home address of the element containing

that key

One of the drawbacks of hashing is the random locations of stored dc
metes There is no nouon of first next root parent or child or annhing

analt gous Thus hashing is appropriate for implementing set relationship

si of keyed among elements but not for implementing structures that itvolve relationsltips

ctuie5
that

anutntg constituent elements it is for that reason that hashing is discussed in

iott is nec-
this chapter 11 sets There are hi tweceo ther

appropriate ci mtexts or

tecOrds in disc1tssion of hashing

ei match- One of the virtues of hashing is that it allows us to find records with 01
probes is

probes The /iitclkei operation has required nuniher of probes that depend

içds
of the

on in even implementation of even data structure discussed so far 011

cjihed
by for linked implementation of list 01 log2n hr an array inplementath in of

uentially rted list and 01 logn for hinan search tree Since hashing requires the

tt require fewest probes to find something it is frequently considered to be particularly

to com-
effective search technique Also since bashing stores elements in table the

hash table it is sometimes considered to he technique for operating on tahkss

All of these views of hashing are correct We choose to view lashing as

technique for impletiienting sets its other advantages and disadvantages are

address
not changed by this point of view

hi qualified
It is convenient consider the hash table to he in array of rect irds and

.ie
and can

let the hash function calculate the index value of the home address rather

advance than to calculate its memon address directly Once the appropriate index value

htniined in
is computed the arras mapping function can complete the transtbmatiitn into

an actual memory address The hash table is then represented as shown iii

gued access Figure 7.12

1rne limited

in address coast tablesize lJsersopplieci

cOntain the type position 0.1 tahlesize lNor VtaiiIcircI /ascoi

var table arraylposition of sidelement 17/ic bash iahk.l

Ftgure 712 Array representation of hash table

iko perfect

excellent Suppose that we have hash table defined by

iuught In

rebasb var table arraylO..6l of record

ti.k and in key integer

twe sum data arrav1..lOl of char

7.6 we end

for the

and that the hash function is

tIi8 sort
I-Il key key mod

efficient

pach The

iOut some

Notice that the value produced by this frmnction is always an integer between

and which is within the range of indexes of the table

BTEX0000282

Figure 7.14

16_st -c si ned at table

Table Table

address Contents

III etlipty

etiiJtt\

etltpte

I_1 c_Iziti

hi cntptv

entpn

lit data

Table Table

address conttnts

eiltptv

It Ott... data

empty

IA 4Th .. data

Ii etttpiy

empty
1191 data

I1L7i 3m nuid

places the record at tahlel3 This is showtt in Figure .14 If the next record

has key value of 191 we get

/111191 1091 mod

and tite tahie becomes that shown in Figure 7.15 third record with key

911 gives

11911 911 mod

and the resulting tahle shown iii Figure 7.16

Retrieval itf any of the records already in the table is simple matter The

target key is presented to the hash unction that reproduces the same table

position as it did when the record was stored If the target key were 740

value not iti the table the hashing functic in would produce

Ji7q0 7iO mod

Interrogating tahIt we find that it is entptv
atici we conel tide tI tat record

with Icey ThO is not in the tahle

The example that we have
just seen was constructed to conceal serious

prohieni St fbi keys with different sal ues have hashed different ccations

in tile table 1liztt is generall so and is tnlv the case in tair current example

because the key values were carefully chosen Suppose that inserthm of

record with key value of 22 is attempted Then

//t 2rt mod

hut tablel 31 is iireici hi led with anc nher reeord This is cal led collision

two different key values ltashittg to the same locatioti Why this happens and

what dli th iut it are mp trtant because et di isions are fact of life wIten

hashing

Sctppose that employee t-eeords are hashed based ttn Social Security num

ber If firm has 310 employees it will tiot want to resene bash table with

billion entries tthe number tO pscssible Social Secorirv numbers to guarantee

that each its emph vee records hashes to niclcte
It ccatioti Even if the firm

allocates 100 slots in its hLsb table and uses hash function that is perfect

rtnck tm izer the ptt cbabi lits- that there will be it tI isiorts is essential lv zero

This is the birthday paradox Feller 1930 which says that hasb functions

with no collisions are so rare that it is stortli lookitig for them only in vet

special citcunistaoces These specitl circumsutnces are disccissecl in Section

7.t.3 Iti the nteantime we need to Insider what to It when colhsicttc does

occu

With careful design strategies for handling collisions are simple The arc

ci cnrnc ink called rehashing or collision-resolution strategies and

will distttss them in Secthm 7.-i.2

Digit Sc

The hrst ltt

keys ol tltt

Social Sect

ke

If the pops

the last thu

possible in

var tahtt

where
pet-s

keep Ntctic

l1 key

cvhicb
sitit1

Gate

with which

digits c/c/i

are prc tbtb

single state

number art

inally iSsues

and cluster

state 56

BTEX0000283

312 /to/ner see

Table

contents

Table

address

ti

it

141

ll

etupit

etnpn

entpty

cit isrv

empty

etttpn

empty

Operation cc-ca/c will produce the empty table shttwn in FigLlrc 7.13 If

the litst tec-ord we store has key value of 374 then the bash function

Figure 7J3

umpic table

We st

1/kes

in the exac

thing to dt

Table

address

ic

Si

St

-fr

Table

contents

entpn

enipn

eiittty

tIi1i

t11t

cii tp
tilt

74.1

There is

proposed

straightfsttt

since the si

their use

exotic Inc

Coos

TIt

TIc

We will nc

Figure .lS

Seeccud tett ti-ct suited at tahteo

Figure 7.16

lltitdt tee nj si ted at table

Section flashed Implernentotzo 313

7.13 11

We salected the hashing function

I-Il key key ii

in the example we just completed We will now see why that was reasonable

record thing to do and will also look at numher of other hashing functions

TA Hashing Functions

There is large and diverse group ol hashing functions that have been

key
pr posed since the advent of the hashing technique Some are simple and

straightforward others are comple Almost all are computationallv simple

since the speed of the computation of such functions is an important factor in

their use Lum l9l hasa good review of many including some of the more

exotic ones We will confine our attention to simple hut effective methods
latter The Good hashing finctions have two desirable properties

ne table

ie 740 They compute rapidly

They produce nearly random distribution of index values

Wc will now consider several hashing functions

record

Digit selection

serious
The first hashing function we will discuss is digit selection Suppose that the

keys of the set of data that we are dealing with are strings of digits such as

example
ocial Security tiumbers nine-digit

of
key

If the population comprising the data is randomly chosen then the choice of

the last three digits d449 will give good random distribution of values

Jilsion possible implementation is the following

spens and

1lfe when var table arrayf 09991 of person

fity num-
where person is record type for the key and information that we wish to

ile with keep Notice that the hashing function in this case is

Marantee 1/C key key mod 1000

Vthe
firm

perfect

Ually zero

functions

ity in very

ih Section

5km does

They are

and we

which simply strips off the last three digits of the key

Care must he taken in deciding which digits to select If the population

with which we are dealing is students at university for example the last three

digits CI7dMds are probably good choice whereas the first three digits d1c/41

are probably not State universities tend to draw their student bodies from

single state or geographical region The first three digits of the Social Security

number are based on the geographical region in which the number was orig

ittally issued Most students from California for example have first digit of

and clustered second and third digits indicating various subregions of the

state 567 for example is very common Lithe data were for California

BTEX0000284

uttiversitv almost all of the students rcxorcis would map riRi the 500sg

rittge ii the licsii tthk tnd large subgroup would
tllitJt into position 5fi

The if the unction would not he ctniform and rand tm hut wi uld he

Ii iadecl Ii certain positu ins of the table causing an inordinately high number

oF citlhsiotis It would not he good hashing function for that reason

if ic key
pi pci

at in is kin twti ti advance it is possible analyze

clist rihctt it in iii vat ues taken hi each digit of the key The digits participating in

ttte ltaslt tclclrnss ate tlten ease to select Such an analysis is called digit analj
six Instead ii elu tsitig

tue last three digits we would choose the three digits

tf the key wlti eie digit attalvses showed the most uniform distrihctthin If

if tttcl gave lie hit test clistribcttit ins the hashing fcm nctioti might strip out

tlti ise digits from key and put them together to form number in tile range

999

fit rf1d/ri fsf//C44 tIc

tactthtti is advised sitice although the digits are apparently random and

tinift trio in value thee might have dependencies amotig thetnselves For exam

ple certai ti et tmhi nat it ins of and mu ight tend to tccct tgether Then if

were alwtvs wlteti is rI38 would he the only table position rttitpped

to ut the range J3ttd39 effectivelv loweritig the table size and itlereasing

tltc- cltattces if ci tlhsion Antlvsis fir intercligit ctitrelati tns might he tleccssarv

to ht-ing such situtti itt to light

Division

ttc ttlt ic- tilt st elleci Re ucsltit
tg

tuctht icis is division which works as It tilt os

lit keel ke tttod ttt /t tt /t itt

llte liii pattern of tltc key regtrclltLss ttf its data t\iDe is treated asatt integer

ci ivtdecl in lie titeger sense liv itt ilttcl lie rentaiticler of the clivi.sh tn ctserl

ts tltc- tthlc tcldress /t is itt the range front it ti itt Such futiction is last

tin con
tpctter

systems that ltitvc an integer ci ivide since most getserate the

rico ieitt ut ste lttrclwtre tegister aticl tlte tetmtiticlet in another The ctttttent

oldie rettttittclei register iicccl ottlv be copied anti the variable/i and tile irish

is ci itti p1 ct ccl

in practice icitictitins of this type give yen good resctits Lctm dYt has

tn cmlii rictI study sI ti twing Os tc he the case iivisictti can however perform

pi it in itt ti urtther of cases Ft in example if iii were 25 then keos itt fl-crc

divisible liv wi ict Id ntap intt csit it itis tI itt 15 and 20 of the table

sctl iset ttf the keys nttps itt scthset cii the table st inncthi ng that we in getieral

wisl ti lvi tic1 If ci ci rse ctstt
tg

lic- fu ticts tti ii kec mctcl itt maps all keys for

iviuclt kc\ tin ci itt into tahielhl all keys hir which key mid itt itittt

tithlel II etc httt that bias is ctntvtiiclahle \Vhat we clii not want to clii is to

itt ts idu cc at iv fu it her titles

The pttthlctti uticleriving die chttice iii 25 as the table size is that it Itas

laett ir of 5..-\l kcv.s with as htctor ivi II map intt table position thtt alsct

has that htctttr The crime is tci make scire thtt the key and in have nct common

BTEX0000285

314 ./si/eii it-is

it

factors and

factors other

time that the

However lit

than 21 is St

Multiplic

simple met

that tlte keys

kev

The ket is St

iit list

The rcsttlt

select hat ott

example t-.j

Ii is

intl

ing the rigl tt

cotiies only

right tlttcst fly

the sattte tt

introducitig

invctlvittg the

in the key is

the ket is ati

Folding

The next hasi

digit key as

kevr

and the pritg

hardware cliv

form hash

lit key

The result ivi

I/t
and codtld hc

there were

the tiunibets

411
-0099

isitiOt1 567

ut
ouId be

jgh
nLimber

111

inalsze the

licipating in

1/gil analy

three rhgits

iutiOn- If d4

ht strip out

in the range

and

FOr exam

ther Then if

lion mapped

ii increasing

necessarY

7ks as follows

is au integer

ision is used

nction is fast

icnerate the

The content

tid the hash

lt 1971 has

Lver perform

.y5 that were

the table

We in general

is all keys for

flu intO

iii to do is tO

is that it has

ticn that also

no commofl

actors and the easiest way to ensure that is to chotse to 50 that it itas nil

.tctors other than and itselfa inte itumher Fi ir this reason nit sr

time that the division function is used the tahle sc_c ill he tome ttunthei

nvever Luni 19 slttavs thtt uiv divisi it \vitlt ti small lack irs sat less

than 20 is su dab Ic

Multiplication

simple method that is based ott multiplication is sometime.s used Suppi se

that the Lees in question are live digits in length

Lee

The Lee is squared itt

ri/./tf

2.O Sti i2i

The result is I-digit prcluct hltc function is utittitleted he doiitg digit

selection ott the prodLict In most Lses the ittiddle digits are chosen for

.xantple r.4r5i1 Art example is shu nvn in Figure

It is important to cia tose the middle digits Consider for exantple clioos

itg
the right most twit digits of the product itt tile extntplet That value

comes only from the product ttf 21 and 21 that is otilt front the

right most two digits of tile original see value All kcvscndiitg it 21 svihl produce

the same tahie location-it This is the kind of hias titat we tn to tvoid

intri iducing The middle digits in the slier hand are ft trnted fri tiit pri tducts

ittvc ilving tIle left middle aitd right pi
irt is of the key Chattging iitv ite ci

igit

in the key is ikelv ti change the hash result nh trntatit in fri ml ii

pm itt it los if

the key is amalgamated in tile calculatit tn if tile hash talile subscript

Folding

The text hash function we will discLtss is folding Suppose that we have five-

digit key as we had ill the multiplication method

key dd44c4

and the programs are running on simple micrticornputer system tltat has no

hardware divide or multiple hut that does have an arithmetic add one was to

form hash function is simply to add the individual digits uI the key

Ii key d1 cl -I- cL ci cls

The result would he in the runge

Li 4S

and could be used as the index in the hash table If larger tahle were needed

lthere were tnore than 46 records the result could he enlarged he adding

tile numbers as pairs of digits

Sec/in N/ed /iitpfeiiiciiio/ioiic 315

cy 5432t

5432t

54321

54321

08642

32963

27284

27605

295077 04

91

Ii 077

Figure .t7

kit tc-iuli
ii Ilcil

tic Lt liv iai ITO ii

1i- initItItciligugiii- div

N/tIc
it

liv iv. i.t

BTEX0000286

4c

Tie result \uuld lien he heR ecu Ott ntd 20 09 99 99 lblding is

tIlt ilitlite givett to tttss 01 nittItois tat ttivcilves conthi nng porn ms of the
The coo

Rev to butt stitaller result lie nietliotbs or
oflhihtntrt.4 ire nsuaIl either

arithmetic addition or exdnstve ors ordi

Foltlmg olteti used in conjunction With other methods lithe Rev were
Since

Sc end ecti liv numhe ci inc digits and p0 tgt-anl were implemented

cm ittutiel iniputer that has In hit registers and consetlnentlv has maximum
the thtee

istt tie tieger size tss3 ii cii the Rev is im raetahlc as it stands It must

sctntelttte he reduced to an integer less than M535 hefore can he used otdi

Fttlditig cati he used to do this Snppitsc the Rev in question has value

lu3Rs is

Rei 9KOSa 321 beyond

\\ can htcah die Rev tint 1ottrc1it.it groups and then add diem

tIUt9

type
i321

Ii iltl Rev 3Oh ftinet

Ntis result would he hctween it antI 20tT Now apply second hashing func-
var

thin sn divisnin In produce tahie iosinoti within the range It.. Un

It lie hash taltle ltts in tosttic ctis the composite uncut cit is

Ill Rev olth Reel ta ccc

bold

rep

Character-valued keys
II

All ccl the exatttples itt our diseussic in ccl Itashing funethtns assunied that die

Res \vcre sc tile cciii ccl tiueger dune cltetu however the Revs are character

Unti
strutlgs or kers bce tre these litntlled

end
Rencetither that all dct.i sU ic5 ic eonlputter tltetnor\ tie stmph strtng

ol hits lie ASCII code or lie chttraeter or c.saniple is Algot

..-- ..-.-..
\\lttt Ii tati .tlscc ht ccctetpttttd cs tltt inurget caIn 21 Flit nit futittcon of

the sttiiplc

Uaseal tchuerprets dtaraetets as integers in tIns Iashi cu

cnzlt 121

his procides one h.sis tc-ug cittractet-s in Itashing functions the Rev 7.4.2 Ct

salnes ate single eltaraeters dts tHu cut he applied as htlhcws

coLlisic

Ill Rev ci rdl Rev mc tb cn

when nyc

In the ease Re and in will hegiti

strategies
I/cs cctdc nod

ies

Ii the Rer is character stritig cO length such as nmedigit

Rev

316 riccc/clcs sets

IIRcvh IC/I Ilj r/r4 the hit

10

BTEX0000287

the hit pattern for the string would he

110101011110012

The corresponding integer is

ordj 128 ordv 13689

Si ce 128 the multiplication by 128 effectivel shifts the hit pattern for

hits to the left The addition effectively concatenates the 2-hit strings- For

the three-character string djv we get

ordd 16384 ordj 128 ordCv 1652089

1h384 is providing left shift of 14 hits for Notice that the result is

hecond the capacirv of 16-hit register the size register available on most mini

ani microci miputer systems Algorithm 7.1 folds 21-character string in groups

o13

type stringl array I.21 of char

fi-inction fold string2 integer

var 1.22

begin

IbId

repeat

fold fokl oniUli 16384

ords 128

ords1

until

end

Algorithm 7.1 Folding character string

Algorithm 7.1 could he written more generally hut doing so would ohscure

the
simple process Division hashing can be applied to the result of frmnction

fold

7-42 Collision -Resolution Strategies

collision-resolution strategy or rehashing determines what happens

when two or more elements have collision or hash to the same address We
will hegin by defining some parameters that will be used to help describe these

Strategies

We will call the number of different values that key can assume

nine-digit integer for example Social Security number has

1000000000

key were

Section -. Flashed Imp letnentations 317

l-oldv cIxnackr striiç

of ciaractcis çnnqsc of

ti IctLct .14 hit hnqcn art

rcqiiirectJbr the recoil

BTEX0000288

the hit pattern or the string would he

110101011110012

The corresponding integer is

ord 128 ord 13689

Siwe 28 the multiplication he 128 effectively shifts the hit pattern for

hits to the left The addition effectivev concatenates the 2-hit strings For

the three-character string djv we get

ordd 16384 ordf 128 ordv 1652089

1o384 is 2i4 providing left shift of 14 hits for Notice that the result is

heo lttd the capacity ofa 16-hit register the size register available on most mini-

and microo tmputer systems Algorithm 7.1 folds 21 -character string in groups

113

type string2l arraj 1.211 of char

Algorithm 7.1 could he written more generally hut doing so would obscure

the simple process Division hashing can he applied to the result of hinction

fold

7.42 Collision -Resolution Strategies

collision-resoLution strategy or rehashing determines what happens

when two or more elements have collision or hash to the same address We
will begin by defining some parameters that will he used to help describe these

Strategies

We will call the number of different values that key can assume

nine-digit integer for example Social Security numher has

1000000000

Folding

Ipons of the

ally either1

Ic
key were

1tttplementecl

4a
maximum

.hds It must

be used

Ivalue

Section Flashed fotpletneittarzorts 317

jhing func

IT

inctlon fold string2t integer

van 1.22

begin

loldc clxuactcr .ctrotg

of 2/ cicracters to tcnefe of

At h-act 24 hit ituctrs aw
rctjztirtclfttr the nttl

hild

repeat

Id fold ordi 16384

trdsi 12H

ordUll 28

until 21

end

Algorithm 7.1 Folding character string

BTEX0000289

318 c/tapir Sets

conat bucketsize User supplied

tablesize User supplied

type bucket array

bucketsize of

stdelement

var table array

.tablesize

of bucket

The size of the hash table tablesize is second important parameter

It must he large enough to hold the number of elements we wish to store

The number of records that is actually stored in the table varies with time

and is dent ted ii One of the most important parameters is the fraction

of the table that contains records at any time This is called the load factor

and is written

at tablesize

Li

rehash

at svhicl

is found

address

reque

used to

We

7.3 The

7.3

pro
var

begir

if

the

bucket

tee1

tee1 rec

rec1

Figure 7.18

Hash table of buckets

if

the

cia

end

A1g

func

In Figure 7.16 3/7

In summary the keys of our data elements are chosen from different

values and elements are stored in the hash table that is of size tab/rize and

is 100% full

more general form of hash table is ohtained by allowing each hash table

position to hold more than single record Each of these multirecord cells is

called bucket and can hold records An
array representation of such hash

table is shown in Figure 718

The concept of hash tables as collections of buckets is important for tables

that are stored on direct access devices such as magnetic disks For those

devices each bucket can be tied to physical cell of the device such as track

or sector The hashing function produces bucket number that results in the

transfer of the physically related block into the random access memory RAM
Once there the bucket can be searched or modified at high speed

Iluckets of size greater than one are of limited use in hash tables stored

in RAM The tend to slow the average access time to records when searching

We will only discuss buckets of size one in this chapter Bear in mind however

that the bash table we discuss is table of buckets of size one

the strategies for resolving collisions will be grouped into three approaches

The first approach open address methods1 attempts to place second and

subsequent keys that basb to tbe one table location into some other
positit

in

in the table that is unoccupied open The second approach extenial chat
big has linked list associated with each hash table address Each eknient is

added to the linked list at its home address The third approach uses pointers

to link together different buckets in the bash table We will discuss coalesced

chaining since it is one of the better strategies that uses this technique

Open address methods

Fur all of the open address methods and their algorithms we will use the

hash table represented in Figure 7.12 There are several open address methods

using varying degrees of sophistication and variety of techniques AJI seek to

find an open table position after collision Let us return to Figure 7.16 which

is repeated for reference as Figure 7.19 and attempt to add the key whose

value is 227 Recall that the example bashing function applied to 227 gives

11227 227 mod7

so that 227 collides with 374

Table

address

ml

lii

121

131

141

151

161

proct

var st

begin

star

rtj

ft

Un

ens

Mgi
Tabte

contents

empty

9t1...data..

empty

37i data

empty

empty

109t .. data.

.11

FIgure 7.19

Three records stored at tablel Il

tablel3l and tabIeIól

empty

an elemm

added

requircc

it is easy

The inse

and dc/c

deleted

BTEX000029O

Linear rehashing simple resolution to the collision called linear

rehashing is tu start sequential search through the hash table at the position

at which the collision occurred The search continues until an open position

is found or until the table is exhausted probe at position reveals an open

address and tile new record is stored there The result is shown in Figure 7.20

request to find the record with key 227 generates tile same search path

used to store it

We are now in position to implement the operations specihed in Section

7.3 The first operation isfindkei which is implemented by Algorithms 7.2 and

7.3

procedure findke ttke kevtpe boolean

vat 11 positiOn

begin

Fltkey

if tablehj.key -C they and table empty

then Iinearrehashtkey

If they tahlehf key

then uindkev true

else hndkev false

end

Algorithm 7.2 Implementation ofoperationjinc/key using the hash

function

procedure linearrehashtkey kevtvpe var it position

war start position

begin

start

repeat

mod tablesize

until tablefh.key they

or tablelh.key empty

or start

end

Algorithm 7.3 linear rehashing

To insert an element we search beginning at the home address until an

empty address is found or until the table is exhausted For example inserting

an element whose key is 421 in Figure 7.20 leads to the Figure 7.21 We have

added column to our illustration of hash tablesthe number of probes

required to find each element stored therein In the case of linear rehashing

it is easy to determine an elements home address from this added information

The insen operation can be implemented as shown in Algorithm 7.4

We will assume two user-supplied values for the key of an element
empty

and deleted The use of empty is obvious Let us see why we need the value

deleted

parameter

to store

with time

fraction

a4factor

.cectioi i-Ictshect
Iiizp

kince unflons 319

Table

address

lu

It

13

-i

15

Table

contents

empty

911

empty

374

71

eniptv

1091

Figure 7.20

Linear rehashing

Apply bath funrtion

g4ifferent

Wesize and

hashtable

tI cells is

hash

for tables

for those

2$
track

is in the

tyRAM

stored

.isrching

however

oaches

xtnd and

05ltlOfl

iilthajn

is

iointers

oiesced

tiiue

II use the

methods

61seekto

16 which

whose

fleer Jhttncl

Open IoLanrnl

Entire tthk .osarcbed

Table Table

address contents Probes

II

12

13

..i

IS

empty

911

421

374

77

empty

1091

Figure 7.21

i-lash table and the number of

probes required to find an ele

ment in the table

BTEX000029I

320 Chapter Sets

begin

He.key
while tablehj.key empty and tableh.key deleted do

mcd tablesize

tableh.elt

end

Algorithm 7.4 Implementation of operation insert using linear

rehashing

Figure 7.22 shows the result of adding 624 whose home address is to

the hash table in Figure 7.21 The probes needed to find an empty space for

624 are also shown subsequent search using linear rehashing to find 624

will retrace that same path- If any of the three elements 421 374 or 227 were

deleted and replaced by the value empty subsequent searches for 624 would

not work Upon encountering location marked empty the search would ter

minate unsuccessfully solution to this problem is to mark positions from

which elements have been deleted with special value The deletion operation

can he then implemented as shown in Algorithm 7.5

procedure deletetkev keyrype

VZt position

begin

l1tkey Apply hash function

if table tkev and tableh.key empty
then iinearrehashtkey

table deleted

end

Algorithm 7.5 Implementation of operation delete using the hash

function

The drawback to the use of the value deleted is that it can clutter up the

hash table thereby increasing the number of probes required to find an ele

ment partial solution is to reenter all legitimate elements periodically and

to mark the remaining locations empty

The performance of combined hashing/rehashing strategy is measured

by the number of probes it makes in searching for target key values We will

examine the perfurmance of linear rehashing in more detail in Section 7.5 but

we can get feel for the fact that it may not perform very well by looking at

the probe sequence that results when search of Figure 7.22 is undertaken

fur key value of 624 Since 624 mod the search begins at position

in the table The subsequent search is shown Five probes are required to find

624 There are two problems underlying the linear probe method

procedure inserte stdelement

vat position

Insert an element using

linear rehashing

Table Table

address contents Probes

101 empty

III 911

12 421

131 374

227

151 624

61 1091

Figure 7.22

The probe sequence when

searching for 624 or any other

key value whose home address

is

Prohlen

rehashing pa

in Figure

any key that

hashed to

call this phei

Prohltm

pOsitiOn

two rehash

clustering

Cons idt

difference in

Only new kc

position

tioo

The CX

can he calcu

Original

position

Figure

hash tabt

leteze an eten2entfron the hczcb gable

The exç

and unsucc

of pcrtbrmat

general way

that the pert

notedprin

You ma

other than

7.3 would

kt

where

tablesize are

tern will coy

BTEX0000292

men ucing

ybasbing

so is to

space
for

find 624

227 were

would

would ter

ions fromi

operation

bath table.l

fanczioa

hash

tet

up
th

04 an ele

c4ly and

measuret

We wE

Or75 but

Sng at

mqçtmlcen

Position

red
to finc

Sect/au 7.4 Hashed unp/ementat/oiws 321

near

Problem Any key that hashes to position say will follow the same

rehashing pattern as all other keys that hash to Any key that hashes to position

in Figure 7.22 will follow the probe sequence shown This guarantees that

any key that hashes to will have to collide with all of the keys that previously

hashed to before it is found or before an empty position is foun We will

call this phenomenon prlmaiy clustering

Problem Note in Figure 7.22 that the probe pattern for rehash from

position merged with the probe pattern for rehash from position The

two rehash patterns have merged together phenomenon called secondaty

clustering

Consider Figure 7.23 which is copy of Figure 7.21 There is substantial

difference in the probabilities of positions and receiving the next new key

Only new keys hashing into positions and will rehash if necessary to

position Keys hashing into any other position will eventually arrive at posi

tion

The expected number of probes for any random key not yet in the table

can be calculated as shown in Figure 7.24

Table Table

address contents Probes

101 tnprv

tj 911

121 i2t

131

ll 227

cmprV

CI 109t

Figure 7.23

OrigInal hssh Empty position

posItion Number of probes found at

Total 18

Figure 7.24 Expected number of probes for an unsuccessful search in the

hash table shown in Figure 7.23 Expected number of probes tS/7 2.57

The expected number of probes for both successful target key in table

and unsuccessful target key not in table searches will be our measures

of performance of rehashing strategies and we will examine them in more

general way in Section 7.5 We will confine our attention here simply to noting

that the performance can be improved by eliminating the problems that we

notedprimary and secondary clustering

You may be tempted to resolve the difficulties by introducing step size

other than For linear rehash Stepping to new table position in Algorithm

7.3 would become

cmodm
where tablesize If tablesize is prime or at least if and

lablesize are relatively prime have no common factors then the search pat

tern will cover the entire table probing at each position exactly once without

BTEX0000293

322 Chapter Sets

repetition This kind of coverage nonrepetitlous complete coverage

highly desirable Obviously if table position that was previously probed were

again prohed during the same rehashing sequence the duplicate prcihe would

he wasted and would affect performance If the probe pattern did not cover

the entire table empty spaces that are not included in the pattern would not

he discovered

Although value of that is relatively prime to the table size does give

rehash technique that has these properties of nonrepetition and complete

coverage it does not solve or in fact even improve the problems of primary

and secondary clustering An approach that does solve one of these problems

is described next

Quadratic rehashing One method of improving the performance of

rehashing is to probe at

home address i2 mod tahlesize

wheref takes on the values until either the target key or an empty

position is found or until the table is completely searched This method called

quadratic rehashing is better than linear rehashing because it solves the

p1ohleni of secondary clustering it does nut solve the problem of primary

clustering Details of this method are given in Radke 1970 where it is shown

that rehashing visits all table locations without repetition provided tab/esize is

prime number of the form 4k

Random rehashitzg Envision rehashing strategy that when collision

occurs simply jumps randomly to new table position This method is called

random rehashing and the rehash can be considered to he jump of

random distance from the original hash position or to be second hash fianc

tion applied to the same key if second and subsequent collisions occur the

process is repeated until the target key or an empty position is found or until

the table is determined to he full and not to contain the target key Since each

key would have its own random pattern there would be no fixed rehashing

patterns The random sequence
would have to he determined by the key

value since subsequent acces.ses with the same key value must follow the same

pattern as the original Since there would be no common patterns there

would be no primary or secondan clustering Although this approach is the

oretically appealing it appears difficult to implement Thus we turn to schemes

that are simpler and whose performances are almost as good

Douhlc /xi.s/nig Several methods exist that attempt to approximate the

tndom rtbashing str Itegs
without the large overhead of calculation required

hs it One of thcse double hashing is computattonally efhcient and simpk

.4 to apply

We ha

where is

The fact that

since it causi

be random

such an appi

One so

collided at

key value so

values of

Hkev

we define

ckey

Suppose thai

position

c421

so the table

12
12

If 624 had

However its

c62q

and the prol

The reh

position orig

that hash to tJ

of such an

izing step sia

of the
expect

is quite clos

BTEX0000294

coverage is

probed
were.1

probe
woul_

jid not cover

rn
would not

He does give

nd r-
of pt

.ese prol

Secno -/ Ilasbeci nipletuenrctriuits 323

We have seen that the general pattern for linear probing is to probe at

mod tablesize

mod tablesize

Ci mod tablesize

tformance

or an empr

ethod called

it solves the

of primary

.te it is shown

ed cahiesize

Table

address

It

III

21

SI

Table

COzItCIAtS

empty

911

empty

empty

1091

Figure 7.25

where is constant Cc in our original discussion of linear rehashing

The fact that is constant is at the root of the inefficiency of linear rehashing

since it causes fixed probe patterns and clustering Ideally we would like to

be random but subject to constraints on repetition Although this is possible

such an approach leads to computational overhead that is too high

One solution is to compute random jump size for each key that has

collided at position and needs rehashing Thus would be function of the

key value so that different keys hashing to the same location are given different

values oic For example starting with the hashing function

I1key key rood tablesize

we define related step size function

ckey mod tablesize 2J

Suppose that 421 is to he stored in Figure 7.25 Then 421 collides with 911 at

position When the collision occurs is computed as

c421 421 mod

so the table is probed at

mod frJoII/stort

22mod7 Empty

If 624 had been the key it would have also collided with 911 at position

However its rehash pattern
would have been different that is

c624 624 mod

and the probes would have been at

mod coittsioaj

mod jcoI/isiottl

35mod7 Enqwy

The rehash pattern for the two keys both of which hashed to the same

position originally is different Although we can find pairs or groups of keys

that hash to the same position and produce the same step size the probability

of such an event is low for hash tables of reasonable size and good random

izing step size generator
In fact the performance of double hashing in terms

of the expected number of probes for both successful and unsuccessful accesses

is quite close to that of random rehashing Since it has essentially the same

en

thod is called

ca jump of

ad hash tine

n$ occur thc

bund or unt

cy
Since eac

ted rehashing

ed by the Ice

419w the sant

patterns then

.tproach is the

am to scheme

proximate th

tion uAJ
etit and simpl

BTEX0000295

324 Chapter Sets

performance in numbers of probes and lower overhead in computation per

probe it has greater overall efficiency rehashing algorithm for double

hashing is given as Algorithm 7.6 It is comparable to Algorithm 7.3

procedure douhlerehashtkey keytype var it position

var start position

integer

begin

start

tkey mod tablesize

repeat

Ii mod tahiesize

until tahleh.key tkey

or tahlehj.key empty

or start

end

Algorithm 7.6 Rehashing algorithm for double hashing

Algorithm 7.6 shows only one method for computing random step size

Any randomizing function that produces step size that is less than and is

not hascd on the position of the original collision will do However the division

algorithm that is shown is efficient and simple In order to avoid introducing

biases tab esize should be prime number If we use this method of
computing

in conjunction with the division method for the original hash the choice of

in and as tuin primes assures an exhaustive search of the table without

repetition If ahesize is prime and tableszze is also prime then in

and are rwin primes

External chaining

second approach to the problem of collisions called external chaining

is to let the table position absorb all of the records that hash to it Since we

do not usually know how many keys will hash into an table position linked

list is good data structure to collect the records representation based on

an array of pointers is shown in Figure 7.26

As an example let tablesize and suppose that operation create has

initialized the hash table as shown in Figure 7.27

If division hash function is chosen say

I-It key key mod

then insertion of the keys

produces the hash table shown in Figure 7.28 Insertion of 227 and 421 pro

duces two collisions the collisions are not shown in the text

conat lablesize User supplied

type pointer node

node record

el stdelement

next pointer

end

position .tablesize

var table arrayl position of pointer

Figure 7.26

Representation of hash table

for external chaining

tkey found

Open location

Entire table SearJfld

Table Table

address contents

101 nil

111 nil

121 nil

131 nil

14 nil

151 nil

16 nil

Figure 7.27

Initialized hash table for external

chaining

key

key

and resu

key

produce

Eacl

acteristic

or doubi

quencie

may be

Obs

cussed in

of one an

function

Extc

at

In tb

ing by act

is in how

Coales

To illustrzi

shown in

region

address rt

The

cellar is

home add

Hle

assuming

After

next it co

address Ii

result is

position \s

If ket

Tabte Table

address contents

101 nil

911

nil

131 374

nil

51 nil

16 1091

FIgure 7.28

Hash table after insenion of keys

i4 1091 911

key 374

key 1091

key 911

374 mod

1091 mod

911 mod

BTEX0000296

and results in Figure 729 Subsequent insertion of 624

key 624

produces the result shown in Figure 7.30

Each list is linked list The designer has all of the choices of list char

acteristics as he or she has for any listmethod of terminauon single

or double linkage other access pointers and ordering of the list If the fre

quencies with which the various records are accessed are quite different it

may he effective to make each list self-organizing

Observe that the operations in this case are similar to those on lists dis

cussed in Chapter The only differences are that there are many lists instead

of one and that the list in which we are interested is determined by the hash

function

External chaining has three advantages over open address methods

Deletions are possible with no resulting problems

The number of elements in the table can be greater than the table size

can be greater than 1.0 Storage for the elements is dynamically

allocated as the lists grow larger

We shall see in Section 7.5 that the performance of external chaining

in executing afindkev operation is better than that of open address

methods and continues to be excellent as grows beyond 1.0

In the next technique collisions are resolved as they are in external chain

ing by adding the element to he inserted to the end of list The difference

is in how the list is constructed

Coalesced chaining

To illtitrate coalesced chaining consider the hash table with seven buckets

shown in Figure 7.31 The hash table is divided into two parts the address

region and the cellar In our example the first five addresses make up the

address region and the last two make up the cellar

The hash function must map each record into the address region The

cellar is only used to store records that collided with another record at their

home addresses For our example we will use the division hash function

Hkey key mod

assuming that each key is an integer

After inserting key values 27 and 29 we have Figure 7.32 If 32 is inserted

next it collides with 27 and is stored in the empty position with the largest

address In addition it is added to list that begins at its home address The

result is shown in Figure 7.33 To assist in visualizing the process the empty

position with the Largest address epla is shown in the figures

If key value 34 is added it collides with 29 and is placed in address the

key 227

key 421

227 mod

421 mod

Section 7.4 Hasl.ec/ Inrplementatiozs 325

624mod7

Table Table

address contents

nil

911s21
nil

131 374 227

11 nil

151 nil

61 1091

Figure 729

I-lash table after insertion of keys

227 and 421

Table Table

address contents

nil

9tl421E-
624

121 nil

13 374 227

nil

nit

1091

Figure 7.30

Itash tahle after insertion of key

62-i

II

Li

Il

ii

II

Ii

iii

.1

II

Table Table

address contents

empty

Ii empty addreys
12 empty

region
empty

emptY

empty
cellar

empts

FIgure 7.31

Hash table with seven buckets

initialized for coalesced

chaining

BTEX0000297

326 CT/ta/wee
Sets

Table

address

Table Table

address Contents

Itt empty

Ill empty

empty

Il

IS enipty

epla

Table

contents

Tablc

address

Table

contents

In empty

II empty

27

131 empty

lil

IS epla

11 32

Ill

121

131

SI

Figure 7.32

Flash table after inserting keys 27

and 29

empty

empty

epla

Figure 7.33

Results after inserting key 32

Table Table

address contents

Figure 7.34

Result.s after inserting key 34

It

121

131

Ii

151

161

empty

epla

Figure 7.35

Results after insening key 37

Table Table

address contents

101

Ill

IS

lii

161

epla

4-

29

7.43 Perj

perfect Lu

perfect basi

hash table ha

collisions we

that has gis

that such fun

Perfect

One such cot

applications

programmin

procedure

programs st

word Suppo

perfect hashi

resened WOI

of the specili

same rese

not resent

Atit ithet

cerns the ant

which cut he

increases cxl

possihle fun

into hash

functions th

1973h TIiw

the number

perfect hash

There at

has
propose

suggested 50

the times to

fect functions

Let us It

are for keys ti

of Pascal set

1-11ev

where

Llen

The function

is the intege

integer asso

ation betwee

cntptv position with the largest address and is added to list beginning at

location The result is shown in Figure 7.34

tip to this point coalesced chainitig has behaved exactly like external

chainingeach new record is added to the end of list that begins at its home

address The next insertion illustrates how collision is resolved after the cellar

is full

If 37 is added it collides with 27 so it is placed in location and added

to the end of the list that begins at address The result is shown in Figure

7.35 1he point to he made here is that once again the record being inserted

was since its home address Was already occupied placed in the empty position

with the largest address Adding 47 produces the result shown in Figure 7.36

The term coalesced is used to describe this technique because for

example if 53 were added to the hash table in Figure 7.36 it would cause the

list that begins at 21 to coalesce with the list that begins at 131 Note however

that lists cannot cottlesce until after the cellar is kill

The effectivencss of coalesced chaining depends on the choice of cellar

size Selection of cellar size is discussed in Vitter1982 1983 where it ts shown

that cellar that contains 14% of the hash table works well under varierv of

circumstances

Because overliow records fortn lists the deletion problems of open

addressing schemes can he solved without resorting to marking records deleted

Any such approach is however more complicated than for the external chain

ing approach since the lists can coalesce Details of such deletion scheme

which essentially relinks elements in list past the element to be deleted are

given in \itter 1982
This concludes our introduction to collision-resolution techniques In

Sections 7.5 and 7.6 we will compare these techniques from the point of view

of performance Before we do so however in Section 7.4.3 we will introduce

hash functions that guarantee that collisions will not occurperfect hashing

functions

34

Figure .36

Results after inserting key 47

BTEX0000298

Section 7.4 .asl.tecl Itnpfenzet ocelot is 327

BTEX0000299

Z4.3 Perfect Hashing Functions Pascal Reserved Words

and

array

begin

case

const

dlv

do

downto

else

end

file

for

forward

function

goto

If

in

label

mod

nil

not

of

or

packed

procedure

program
record

repeat

set

then

to

type

until

var

while

with

perfect bashing function is one that causes no cot lisions minimal

perfect bashing function is periect hashing function that operates on

hash table having load factor of 10 Since perfect hashing functions cause no

cllisions se are assured that exactly one probe is needed to locate an element

that has given key value This is of course very desirable The problem is

that such functions are not easy to construct

Ierkct hashing functions max onk he found under certain conditions

One such ct.ndition is that all of the ke1 values are known in advance Certain

applications have this quality for example the reserved or key words of

programming language In Pascal there are 36 reserved words begin end

procedure When compiler is translating program as it scans the

programs statements it must determine whether it has encountered reserved

word Suppose the reserved words are stored in hash table accessible by

perfect hashing function Determining if word encountered in the scan is

reserved word-requires only one prohc The word is hashed and the content

of the specified table is compared with the word from the scan If they are the

saie reserved word was found If not we can he certain that the word is

tot reserved word

Another condition for perfect hashing functions is practical one It con

cerns the amount of computation necessary to find perfect hashing function

which cmi he enormous The total an-tount of computation and therefore time

increases esponennally with the number of keys in the data The number of

asihle funcitions that map the 31 most frequently occurring English words

into hash table of size 41 is approximately whereas the number of such

functions that give unique perfect mappings is approximately l0 Knuth

1973h Thus only one of each 10 million functions is suitable In practice if

the number of keys is greater than few dozen the amount of time to find

perfect hashing function is unacceptably long on most computers

There are several proposals for perfect hashing functions Sprugnoli 1977
has proposed functions that are perfect but not minimal Cichelli 1980 has

suggested some simple minimal perfect functions and has given examples and

the times to compute them Jaeschke 1981 has proposed other minimal per

fect functions that avoid some problems that might arise with Cichellis method

Let us look ft idly at Cichellis method The functions that he proposed

are for keys that are character strings Take for example the 36 reserved words

of Pascal see the list in the margin The hashing function is

where

gkeyfl gkeyjLj

length of the key

11

15

15

14

15

15The function gx associates an integer with each character thus gkevl lj

is the integer associated with the first letter of the key and gkey is the

integer associated with the last letter of the key Figure 7.37 shows an associ

ation between letters and integers found by Cichelli

to

15

15

14

13

13

13

Elgure 7.37

cichellis associated integer table

for Pascals resened words

328 ha/i/er .Set.s

As an example suppose that the word begin were encountered he

conipi icr The hashing function result would he

//Cbegin IS 13 33

16

11
12
13

16

do

end

else

case

downto

goto

to

otherwise

type

while

const

div

and

set

or

of

mod

tile

24

26

28
29
30

33
34
351

36

record

packed

not

then

procedure

with

repeat

var

in

array

nil

for

begin

until

label

function

program

The hashing function is simple as it should he

There are several problems however The first is that of looking up the

integer associated with the two or more letters hut that can he di irte With

reasonable etliciencv second and more serious problem is that of determin

ing which integer should he associated with each character The integers are

found by trial and error using backiraching a1oritbm Of course the

associated integer table see Figure 7.38 need he huilt only once Cicbej

1981 has good discussion of the backtracking algorithm used for this problem

In summan perfect hashing functiitnsare feasible when the keys are

km \vn in advance and the number of records is stiiall In that case perfect

hashing function is detertnitied iti advatrce of the use of the hash table Although

its determinttion mae be costl it rteed only he done once The resulting access

ti the veer itds iif the hash tahie
rei4ui

res rn lv one pri
ibe

Figure 7.38

tire hash iitile ir Pascal

reserved wi rd

Exercises 7.4

Fxplain the
tcillosving ternis ii our iiwir words

trash tuiictii ii

ci illisiiin

Ii iaij lacti ir

external ehnning

tunic address

ci ill isP in rew ii utii in

linear rt_liash

ci iilesceit ci tabring

perfect hashing In net ii in

double hashing

its cxc

pare tI

Impici

its exe

Use th

in tIre

ar

Is

tisi

tki

ci

values

tii

lii

lii

tnrpte

to Spi

Lii

Li ti

tsi

ci Ci

11

and

cliaini

produ

fu net

inrcgc

7.5 1-k

For this

groups

basil tth

Operatioi

Operatio

Otahlesi

BTEX0000300

ilie divisi in trash ttnrctii in

i/I key key iii id ot

is usually goi iii hasir function if iii has nn sniahi divisors spliin svhv tins

iest rio ii in is placed in iii

eveii
ip

hash tunctii in ti iiivert ninedigit integers Social Seen rity irwnihcr

iilti integers in tire range It .. 999 test vi iu hash functii iii ire applying ti

stttt randonrlv generated keys Deterirrinc rosy trains of the addresses rcccivv

if te hasheij keys

Ci innpare vi iur experimental results with tire results that nvi iuld he ihiai ned

using perfect rairdi iirrizer tire number of addresses receiving exacilv

mashed values if the hash uinet ii in is perfect randonnizer is approxiniated by

syheie is tIne Ii ad facti ii

eceli us rash funet ii in tu ci invert keys iii tire type

kevtvpe array .15 of char

mu integers in the range 1999 trnpleioent your htsin funcbi in and deiernrtt

its execution time Do the stme fur the Flash function in Exercise and com
pare their execution times

Implement the perf ct hashing function described in Section 7.4.3 Determine

its execution time and compare it with the results obtained in Exercise

Use the hash function key key tm.d 11 to store the sequence of integers

32 31 23 27 35

in the hash table

var tahle array0. 11 of integer

Use lincar rehashing

Use douhle hashing

Use external chaining

Use coalesced chaining with cellar size of four and the hash function

I-tke key mod

Ft ir each if the ahi n-c 011 isbn-handling strategies determine after all

values have been placed in the table the following

lite cid lactor

The average number of prohes necded to hnd value that is in the tahle

11w tverage nutnher of prohes needed to find value that is not in the tahle

Implement collection of procedures that forms hashitig package accordittg

to Specihcation se

Linear rehashing

iuhle hashing

External chaining

Coalesced chaining with cellar size of 70

let htslt table he given

tahlc array0..500 of integer

and hash function by/il key ke mod 501 The hash function for coalesced

chaining will he fikeyl key mod 431 Use random nunther generator to

produce sequence of integers to store in the hash table Determine as

futleth ttl of the load Ftctor the average tlumher of probes needed to find at

itlteger
in the table

7.5 Hashing Performance

j- this discussion the operations in Specification 72 are divided into two

groups The First group iticludes operations that do not involve searching the

hash table fill size create clear and traverse The effort to execute these

operations does not depend on which collision-resolution strategy is used

OperationsJiill and size require 01 effort Operations crane ancl.clear require

Oiahlesize effort since each table position must he initialized to the value

Section uiashi
tg Peiforinance 329

4tered
by

it

itpkulg up the

tie done with

at of determin-

integers are

Of course tL

itre
Iichelli

rthis problem

1.he keys are

1e perfect

k.Although

tijting.accesS7

nçntn

pRin why

ny numbers

plnng it

t%s receivc

ohtainec

t4g exactly

ifrimated

Ideterm

BTEX00003OI

330 Civiptci- Sets

empty Operation traverse requires probing OOabiesize table positions and

processing 0n elements

Each operation in the second group requires searching the hash table for

the key value of an element These associative searches are either successfttl

an element for which the target key value is found or unsuccessful The

operations in this group are findkey insert retrieve update and delete The

performance of all of these operations is primarily determined by the associ

ated search We will therefore discuss the number of compares required for

successful and unsuccessful searches We will single out the delete operation

for discussion later

7.5.1 Performance

Explicit expressions that give the expected number of compares required for

successful and unsuccessful searches can he developed Results for three dif

ferent collision-resolution policies are shown in Figures 7.39 and 7.40 Figure

7.39 shows the algebraic expressions see Knuth 1973h for their develop

memj and Figure 7.40 shcws the results of graphing the algebraic expressions

Observe that any random rehashing technique will give results vers close to

those fur double hashing

Expressions for coalesced chaining are given in Vitter 1982 Note that if

the cellar is not full the result for coalesced chaining is the same as for external

chaining In general the search effort of coalesced chaining is approximately

the same as that of external chaining See Vitter 1982 in which the per

formance of coalesced chaining is compared with all the hashing techniques

discussed in this chapter CoaLesced chaining is shown to give the best

performance for the circumstances we considered

Cotlisionl

resolution

strategy Unsuccessful Successful

It t/-ll -lI------
linear rilusting uY/

ISnihic hashing
lug

Fxteriial cloi ning cx xx

factor

value of

hashing

Linear

rehashing

oubte

ha shing

aba

0.5

Load Factor

7.52 it

In additi

ments ol

hash tahi

element

table cor

Tx

Tx

The

in hasl

lesced ci

position

position

will now

If ti

itself th

Figure

table is

as extern

the perfo

provides

If

External

less of

rules of

elements

and saves

ing provit

ments are

or nearly

Thes

elements

example

user-defin

both large

It may be

than 1.0.

Figure 739 Algxtaaic cxpressi 115 hi IF ii Ic nxinilcr it

pri
ihcs expected

III successful md imiisticccssful scan_lies iii Nuhi table

Notice in Figures 7.39 and 7.40 that the performance curves for hashing

Figure 7.40 methods are monotonicallv increasing functions of the load factor The

Number of probes required for

performance cones for lists and trees are monotunically increasing functions
successful and unsuccessful

searches in hash table suc-
of the number of elements in the data structure The number of elements

cessful unsuccessful is not under the implementors control 1-lowever for hasihng the load

BTEX00003O2

factor may be made arbitrarily small by increasing the table size For given

value of we can reduce the load factor and improve the performance of

hashing The price is more memory

7.5.2 Memory Requirements

In addition to performance it is important to compare the memory require

ments of various hashing techniques Let be the numher of buckets in the

hash table assume that pointer occupies one word of memory and that an

element occupies words of memory The memory requirements for hash

table containing elements is then

for any open addressing method

for coalesced chaining

nw for external chaining

These expressions are based on the following assumptions Each position

in hash table for open addressing contains room for one element For coa

lesced chaining the hash table contains one pointer and one element in each

position For external chaining the hash table contains one pointer in each

position and one pointer and one element for each element in the table We
will now use the expressions to consider two cases

If is perhaps we store pointer to an element rather than the element

itself then the memory required as function of load factor is that shown in

Figure 7.41 Open addressing always requires the least memory When the

table is nearly hill open addressing requires only one-third as much memory

as external chaining Of course when the table is nearly hill see Figure 7.40

the performance of open addressing is poor In this case coalesced chaining

provides good performance witha substantial saving in memory requirements

If is 10 then the memory requirements are as shown in Figure 7.42

External chaining is attractive over wider range of load factors and extracts

less of penalty when the table is nearly full This analysis leads to the following

rules of thumb for constructing hash tables to be stored in RAM For small

elements and load factors open addressing provides competitive performance

and saves memory For small elements and large load factors coalesced chain

ing provides good performance with reasonable memory requirements If ele

ments are large external chaining provides good performance with minimum
or nearly minimum memory requirements

These rules are based on the assumption that the maximum number of

elements in the table can be estimated Often that is not the case Take for

example the symbol table of compiler that is used to store data about the

user-defined identifiers in programs The compiler must be able to process

both large and small programs with wide
range in the numbers of identifiers

It may be possible for the table to overfill that is have load factor greater

than 1.0 The compiler should continue to operate smoothly Such situations

Jkons
and

for

iccessfuI

tSful The

adele The

the associ

required
for

re operation

SediOn 7.5 I-/cashing Peiforrnance 331

required fort

orthree dif-.

1.40 Figure

tir develop

exressions

ejy
close to

Note that if

for external

roximately

ch the per-

techniques

ye the best

3T

27

External

chaining

coalescedchaining

Open addressing

0.5

Load Factor

Figure 7.41

Memory requirements when an

element uccupies same

amount of memon as pointer

II

I- cx

led

for hashing

actor The
fig ftinctionsi

of elements

leg the load

FIgure 7.42

Memory requirements when an

element occupies 10 times the

amount of memory as pointer

BTEX00003O3

\Xe will conclude this section with few comments about deletion As discusseci

earlier hash tables that are constructed using open addressing techniques pose

prohlem.s when suhjected frequent deletions The space preen tuslv occupied

by deleted record canno simply be marked empty but must be marked

c/c/c/ed This clutters up the hash tahle and hurts performance NC such prf
lent arises if external chainint is Lised for Ct ill isbn resolution Ieletion is

handled just as it is for any linked list For coalesced chaining deletion
IL

prohlettt as long as the cellar has never been full since deletion can he handled

essentially as it is for external chaining Citce the cellar is full and the possihilip

of coalesced lists exists then deletion must he handled carefully An algorithm

is given in \itter 1982 It is slightl\ niore complicated and would extract

small perfurnitnce penalp When designing hashing strategy the frequency

tf deletit It must be considered along with performance and memory

req Li ren tents

lit 5ect tn Th tee svi II appl several hashing nteth tLl5 the frequency

atitl\-sis if cligraplis \\e will see In nv the theot-etical t-csults apply in specific

ease

7.6 Frequency Analysis of Digraphs

\\e ftne discussed fret luence analysis of cligraphs hetcire In Section .jt \\

used lists ii analysts anti in Sect on ST we Lised bitta search trees ttd

NI trees lit this section we will cantptre tour Itasiting sirttegies..-\ll
ttitr use

division ftasltittg function hut tltev differ in the cttllisictn-tesctlotion strategy

linear reltasltiitg double hashing coalesced chaining and external chaining

\\e will conclude tvith .sutuntan of results involving all if tite data stttctui-e

we ave used tt ini ltxe LI

igrapl ts

7.6 flash hinctwn

Ihe Itasi ttl dc svi II ftc of the irni showtt in Figu -c .43 The hash function

most map each digraph pair if lettets tin id te integers between and table

s/ce \\e at-ct ttitplishi this as ktlknvs Let cI and be the fit-st and second

LItittctets of ditgttplt it

332 C/wines- sets

7.5.3 Deletion

are then handled 1w the use of external chaining which continues to fLtnction

for load factors greater than .0

where

by

Itt cit

where eel

The irequ

3tttt f-i

front i-tttt

IigLI

egics and

predicted

Dignptt

1/

Figure 7-

\tlLiLs ot

Reet

values to

and the

Figure

Figut

four basin

for conip.

addressi

Direct ad

addt-ess

plihes Ott-

is ore Ilt

ing shoLif

elentents

digraphs

tiashtabte array

he .tdblesize of euckel

Figure 7.43

Htslt tatilv ci cl1cL

I.t.t ic cc nit Li ted its It tI lows

lp oidld1 tttdl it

irdi c/i ctrd

BTEX00003O4

Sect/ri Ttecjttcict luo/txi.c ojiorapl.ia 33$

ttA discussed

crhtuques pose

ou5l occupied

at he marked

Mu such prob

Deletion is

deletton is no

an he handled

hue possihiliw

ii tlt0fltht

atiuld extract

the treqLtency

tid nietnory

the frequency

in specific

Wctiittt 4.9 we

itch trees and

is All tour use

bution strategy

tuxtl chaining

data structures

hash fi.tnction

it and table

and second

1d 2h

svhee liii has values hetsveen and hi .sutiple values of are shi sn in

Figure 14
hash function htr digraph is

IF di lid mod tahlesii

where irthle ie is to he s_lectt_d so that ii tb/tsszze lets ii st nail dv sirs

The Irequenea anahsis resuhs
repi irted in this sect ii in are hased tilt cII3lcce

300 tigure .shi 555 die values it I/i digriphi 101 the list tuss choraphs

htntt ii tn Neuuxtnn tO

Figure ItO shows the expected search leti4ths Ow the lnLtr htasltitia strtt

egies and Ott ci inparist hinan setrch of sorted arcs the results tie as

predicted in Sectit tti

Recall see Figure 4.-itt that processing 1110 digraphs causes SI distinct

values tu he entered into die hash rahle The relationship herween etd Ihett tr

and the numher of digraphs processed with iah/estze 3110 is shown itt

Figure 7.47

Figure 148 sht tws the average titute required to process digraph htr the

four hashing techniques and or comparison binary search tree ALsit included

for
comparison

is the time required fur direct addressing sehente Direct

addressing is implemented just like hashing with in this ease t11 lId

Direct addressing is possible in this case hecause ye can assign distitict

address to each of the 670 posslle digraplis This eliminates collisions sim

plifies the algorithms and ensures that the tturnher at pri ihes Ii al digttplt

is one The price for this is the requirement for more memtn Direct address

irtg should not he cunfused with hashing hash functit in ratdonaizes the

elentent.s stored in the hash tahle Our direct addressing scheme pltces the

digraphs in the tthle in alphthetieal order

aU5 to fttnction where and ate integers hersveen and 25 Finally let fir he computed

Oigraph

tic

IC

Iigraph Iidigraph

ct its

iii

Figure 7.44

\atues if ft ir digrtpli ittssis

Figure 7.45

ti ittit adilitss if Its tnt few

tlittiuplts
0i tiit vi iTt

xciii iii

It 9in ihte ethic si/v $ta

Figure hG
tiecttciti ii ri cis it diurtphis

tsptiiect circli ic.tl1ih

t000 2000

Number of Digrapha

Processed

Figure 7.47

lrixttieitc\inthssis
ol chigttphs

iii ttsii it

BTEX00003O5

	Exh 5_3
	BTEX0000174_Part3

