Bedrock Computer Technologies, LLC v. Softlayer Technologies, Inc. et al Doc. 284 Att. 8

EXHIBIT S5

PART 30OF 6

Dockets.Justia.com

http://dockets.justia.com/docket/texas/txedce/6:2009cv00269/116887/
http://docs.justia.com/cases/federal/district-courts/texas/txedce/6:2009cv00269/116887/284/8.html
http://dockets.justia.com/

198 Tables and Information Retrieval CH APTER ¢

Table

| Abstract
7 data type

{tuniction)

function
Array \

\ or
access

\ Access

table !

/
/

7
/ tmplementation

Figure 6.9. Lmplementation of a tabie

functions have no such order. (If the index set has some natural order, then sometimey
this order is reflected in the table, but this is not a necessary aspect of using tables.)
Hence informatjon retrieval from a lis naturally involves a search like the one

retrieval studied in the previous chapter, but information retrieval from a table requires differen:
methods, access methods that go directly to the desired entry. The time required
for searching a list generally depends on the number n of items in the list and is at
least Ig n, but the time for accessing a table does not usually depend on the number
of items in the table; that is, it is usually O(1). For this reason, in many applications
table access is significantly faster than list searching.

traversul On the other hand, traversal is a natural operation for a list but not for a 1atle.
It is generally easy to move through u ist performing some operation with every
item in the list. In general, it may not be nearly so easy to perform an operition
On every item in a table, particularly if some special order for the items ig specified
in advance.

tables and urrays Finally, we should clarfy the distinction between the terms table and array.

In general, we shall use 1able as we have defined it in this section and re.rict the

term array 10 mean the prograraming feature available in Pageal and muost high-

level languages and used for implementing both tables and contiguous liss.

6.5 HASHING

6.5.1 Sparse Tables

1. Index Functions

We can continue to exploit table lookup even in situations where the key is no long.:
an index that can be used directl_v. as in array indexing. What we can do ix 1o set
Up @ one-10-one correspondence between the keys by which we wich 1 voeoio - »

2. H

inde,
one-i

hash Ju

BTEX0000262

s ‘ SECTION 6 Hashing 199

tion and indices that we can use to access an array. The index function that we
produce will be somewhat more complicated than those of previous sections, since
it may need to convert the key from, say, alphabetic information to an intz er, but
in principle it can still be done.

The only difficuity 1rises when the number of possibie keys exceeds the wmount
of space available tfor ¢ .r tuble. If, for example, our keys are alphabetical words of
eight letters, then there ure 268 = 2 X 10! possible keys, 1 number much greater
than the number of positions that will be available in high-speed memory. In practice,
however, only a small fruction of these keys will actually occur. That is, the table
is sparse. Conceptually, we can regard it w; indexed by u .wry large set, but with
relatively few positions actually occupied. In Pascal, for :iample, we might think
in terms of conceptual declarations such as

type - - - = sparse table [keytype] of item.
& i ! \

7 L Even though it may not he possible to implement a declaration such as this
: directly, it s often helpful in problem solving to begin with such u picture, and
only slowly tie down the details of how it is put into practice.

2. Hash Tables

‘ The idea of a fash tahle (such as the one shown in Figure 6.10) is to allow many
' yétgmetimcs of the different possible keys that might occur to be mapped to the same location
‘ wex function not in an array under the action of the index function. Then there will be a possibility
We-10-one that two records will want to be in the same place, but if the number of records

that actually occur is small relative to the size of the array. then this possibility
will cause little loss of time. Even when most entries in the array are uccupied,
hash methods can be an cffective means of information retrieval.

vi{id|p miuic i 1{or Ptw | d Inte t|p t
ajo]|r oinlo ilnjt]e flilo]ifa yir o
r o dlti{n ! ¢ tlwl| 1] s plo
S c ils € <} hiln e elg
e T 4 t r continued
d d o a helow
u m
r
- e
: : 1 2 3 4 5 6 7 B 9 10 1112 13 14 1% 16 17 18 19 20 21 22 23 24
and array.
5 2]1]ola CRIE d s |g rlelprlt]n f]e|w
P rtalr]n el a i e]o e|ln{ajnhijo ull|h
£ rib d q - v t |t pldjcjelt nls|i
= ale i 0 e k| n clelt
¥ AR n a e t e
t d i
- o
- n
: 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 45 &7
§ Figure 6.10. A hash table
E
8110 longer i _ _
4035 to set . hash function We begin with a hash function that takes a key and maps it to some index in
Yeinforma- ¢ the array. This function will generally map several different keys to the same index.
-

BTEX0000263

200 Tables and Information Retrieval CHAPTER ¢

collision

3. Algorithm Qutlines

keys in table

initialization

inseriion

retrivval

If the desired record is in the location given by the index, then our problem is solved:
otherwise, we must use some method to resolve the collision that may have occurred
between two records wanting to go to the same location. There are thus two questions
we must answer to use hashing. First, we must find good hash functions, and, second.
we must determine how to resolve collisions,

Before approaching these questions, let us pause 10 outline informally the steps
needed to implement hashing.

First, an array must be declared that will hold the hash table. With ordinary arrays,
the keys used to locate entries are usually the indices, so there is no need to keep
them within the array itself, but for a hash table, several possible keys will correspong
to the same index, so one field within each record in the array must be reserved
for the key itself.

Next, all locations in the array must be initialized 1o show that they are empiv.
How this is done depends on the application: often it is accomplished by settic.,
the key fields to some value that is puaranteed never to occur as an actual key,
With alphbanumeric keys, for example, a key consisting of all blanks might represent
an empty position.

To insert a record into the hash table. the hash function fo: the Loy is first
calculated. If the corresponding location is »mpty, then the record can be inseried,
else if the keys are equal, then insertion of the new record would not be allowed,
and in the remaining case (a record with a different key is in the location), it become.
necessary 1o resolve the collision.

To retrieve the record with a given key is entirely similar. First, the hash functico:
for the key is computed. If the desired record is in 1t corresponding location, the
the retrieval has succeeded; otherwise, while the location is nonempty and not al.
locations have been examined, follow the same steps used for collision resolution. 17
an empty position is found, or all locations i ve been considered, thesi no record
with the given key iy in the tuble, and the search is unsuccessful.

6.5.2 Choosing a Hash Function

i

The two principa: criteria in selecting a hash function are that it should be easy
and quick to compute and that it should achieve an even distribution of the keys
that actually occur across the range of indices. If we know in advance exactly what
keys will occur, then it is possible to construet hash functions that will be very
efficient, but generally we do not know in adviice what keys will oceur. Therelore.
the usual way is for the hash function (o take the key, chop it up. mix the piece:
together in various way.. and thereby vimain an index that (like the pseudorandom
numbers generated by compuier) will be uniformly distributed over the range of
indices. .

It is from this process thai the word hash comes, since the process converi:
the key into something that bears little resemblance, At the same tme, it is hoie,
that any patterns or regularities that may occur in the kevs will be destreysc
that the results will be randomly distrit Lied.

SE (

1. Tru

2. Fold

3. Modu

prime r,

4, Pascal

BTEX0000264

%‘(f , S0 §

5ECTION

1. Truacation

2. Folding

3. Modular Arithmetic

setore sl

4. Pascal Example

6 .-

- : : Hashing 201

Even though the term hash is very descriptive, in some books the more technical
terms scruter-storage ot key-transformation are used in its plave.

We shall consider three methods that can be put together in various ways to
build a hash function.

[gnore part of the key, and use the remaining part directly as the index (considering
non-numeric fields as their numzrical codes). If the keys, for example, are eight-
digit integers and the hash table has 1000 locations, then the first, second, and fifth
digits from the right might make the hash function, so that 62538194 maps to 394.
Truncation is a very fast method, but it often fails to distribute the keys evenly
through the table.

Partition tre key iato several paris and combine the parts in a convenient way (often
using additon or multiplicat::n) to obtain the index. For example, an eight-digit
integer can be divided into gr.ups of three, three, and two digits, the groups added
ogether, and truncated if neessary to be in the proper range of indices. Hence
62538194 mups to 625 + 381 + 94 = 1100, which is truncated to 100. Since all
information in the key can affect the value of the function, folding often achieves a
better spread of indices than does truncation by itself.

Convert the "oy to an integer (using the above devices as desired), divide by the
size of the index range, and take the remainder as the result. This amounts to using
the Pascal operator mod. The spread achieved by taking a remainder depends very
much on the modulus (in this case, the size of the hash array). If the modulus is a
power of a small integer like 2 or 10, then many keys tend to map to the same
index, while other indices remain unused. The best choice for modulus is a prime
number, which usually has the effect of spreading the keys quite uniformly. (We
shall see later that a prime modulus also improves an important method for collision
resolution.) Hence, rather than choosing a hash table size of 1000, it is beiter to
choose either 997 or 1009; 1024 = 2'¢ would usually be a poor choice. Taking the
remainder is usually the best way to conclude calculating the hash function, since
it can achieve a good spread at the same time that it ensures that the result is in
the proper range. About the only reservation is that, on a tiny machine with no
hardware division, the calculation can be slow, so other methods should be considered.

As a simple example, let us write a hash function in Pascal for transforming a key
consisting of eight alphanumeric characters into an integer in the range

0 .. hashsize ~ 1,
That is, we shall begin with the type
type keytype = array(1 .. 8] of char;

We can then write a simple hash function as follows:

BTEX0000265

202 Tables and Information Retrieval CHAPTER ¢

sample hash function

function Hash{x: keytype): integer;
var

to1..8;

h: integer;
begin

h = Q;

fori:=1to 8 do

h = h + ord(xfi]);

Hash := h mod hashsize

end;

We have simply added the integer codes corresponding to each of the eight
characters. There is no reason to believe that this method will be better (or worse),
however, than any number of others. We could, for example, subtract some of the
codes, multiply them in pairs, or ignore every other character. Sometimes an applica-
tion will suggest that one hash function is better than another; sometimes it requires
experimentation to settle on a good one.

6.5.3 Collision Resolution with Open Addressing

1. Linear Probing

2. Clustering

exomple of clustering

The simplest method to resolve a collision is to start with the hash address (thc
location where the collision occurred) and do a sequential search for the desiv.
key or an empty location. Hence this method searches in a straight li:, and i
therefore called linear probing. The array should be considered circular, so ti:ut
when the last location is reached, the search proceeds to the first location of :ne
array.

The major drawback of lincar probing is that, as the table becomes about half full,

there is a tendency toward clustering; that is, records start to appear in long strings.

of adjacent positions with gaps between the strings. Thus the sequential searches
needed to find an empty position become longer and longer. For consider the example
in Figure 6.11, where the occupied positions are shown in color. Suppose that there
are n locations in the array and that the hash function chooses any of them with
equal probability 1/n. Begin with a fairly uniform spread, as shown in the top diagram.
If a new insertion hashes to location b, then it will go there, but if it hashes to
location @ (which is full), then it will also go inio b. Thus the probability that b
will be filled has doubled to 2/n. At the next stage, an attempted insertion into
any of locations a, b, ¢, or d will end up in d, so the probability of filling * is
4/n. After this, e has probability 5/n of being filled, and so as additional insertii.s
are made the most likely effect is to make the string of full positions beginning .
location ¢ longer and longer, and hence the performance of the hash table starts =
degenerate toward that of sequential search.

s E

instab.

3, Inct

rehash

4. Qua

numbe
probes

BTEX0000266

SECTION 6 . v Hashing 203

a b ¢ o e f

Figure 6,11, Clustering in a hash table

instability The problem of clustering is essentially one of instability; if u few keys happen
randomly to be near each other, then it becomes more and more likely that other
keys will join them, and the distribution will become progressively more unbalanced.

3. Increment Functions

[f we are to avoid the problem of clustering, then we must use some more sophisticated
way to select the sequence of locations to check when a collision occurs. There are

whashing many ways to do so. One, called rehashing, uses a second hash function to obrain
the second position to consider. If this position is filled, then some other method is
needed to get the third position, and so on. But if we have a fairly good spread
from the first hash function, then little is to be gained by an independent second
hash function. We will do just as well to find a more sophisticated way of determining
the distance to move from the first hash position and apply this method, whatever
the first hash location is. Hence we wish to design an increment function that can
depend on the key or on the number of probes already made and that will avoid
clustering.

i

4, Quadratic Probing

If there is a collision at hash address A, this method probes the table at locations
= h+1,h+4 h+9 ..., thatis, at locations h + {2 (mod hashsize) for [= 1,
) 2, That is, the increment function is i2

This method substantially reduces clustering, but it is not obvious that it will
probe all locations in the table, and in fact it does not. If hashsize is a power of 2,
then relatively few positions are probed. Suppose that hashsize is a prime. [f we

j reach the same location at probe [and at probe j, then
fleexample | §
: e&ha: there h + i* = h + j (mod hashsize)
: %’diagram. e so that
izhashes to = (i —j)i +j) =0 (mod hashsize).
ity that b = . . L . , . A ‘
ié)%gon nto - Since hashsize is a prime, it must divide one factor. It divides i —~ j only when j
fﬂlm d is differs from { by a multiple of hashsize, so at least hashsize probes have been made.
iid‘%hsegrtions i Hashsize divides i + j, however, when j = hashsize — {, s0 the total number of
‘émnning at § distinct positions that will be probed is exactly
starts 0 x number of distinct (hashsize + 1) div 2.
$ probes

BTEX0000267

Y

204 Tables and Information Retrieval CHAPTER ¢

calculution

It is customary to take overflow as occurring when this number of paositions
has been probed, and the results are quite satisfactory.

Note that quadratic probing can be accomplished without doing multiplications:
After the first probe at position x, the increment is set to 1. At each successive

probe, the increment is increased by 2 after it has been added to the previous location.
Since

T4+345+4 0 +Qi~1) =i

for all i 2 1 (you can prove this fact by mathematical induction), probe i will look
in position

x+1+34 - +Qi—1)=x 42

as desired.

5. Key-Dependent Increments

6. Random Frobing

1. Pascél Algorithms

Rather than having the increment depend on the number of probes already made,
we can let it be some simple function of the key itself. For example, we could truncate

the key to a single character and use its code as the increment. In Pascal, we might
write

increment == ord(k{1}). *

A good approach, when the remainder after division is taken as the hash function,
is to let the increment depend on the quotient of the same division. An optimizing
compiler should specify the division only once, so the calculation will be fast, and
the results generally satisfactory. _

1n this method, the increment, once determined, remains constant. IT hashsizz
is a prime, it follows that the probes will step through all the entries of the arruy
before any repetitions. Hence overflow will not be indicated until the array is com-
pletely full.

A final method is 1o use a pseudorandom number generator to obtain the increment.
The generator used should be one that always generates the same sequence provided
it starts with the same seed. The seed, thet:. can be specified as some function of
the key. This method is excellent in avoiding clustering, but is likely to be slower
than the others.

To conclude the discussion of open addressing, we continue to study the Pascal
example already introduced, which used alphanumeric keys of the type

type keytype = array[1 .. 8] of char.

We set up the hash table with the declarations

s EC?

declaratic

inftializat:

insertion

quadratic

BTEX0000268

swill look

ady made,
i truncate
“we might

i
s

ﬁ“function,
§optimizing
e fast, and

l@“hashsize
ithe array
41iy.1s com-

%ﬁ;ﬁr(?vided
§liction of

‘be slower

e

\ ﬂ}}e Pascal

[

s

k4
&
“v
i
™
%

SECT!ION

Loradions

cittelizadion

quadratic probing

6 . o Hasning 205
const
hashsize = 997; a o
hashmax = 996;
type
hashtable = array[0 .. hashmax] of item;
var
H: hashtable;

The hash table must be initialized by duiining 2 -rovial key called blankword
that consists of eight blanks und setring the key field of vuch item in H to blankword,

We shall use the hash function already written in Section 6.3 2, part 4, together
with quadratic probing for collision resotution. We hu = shown that the maximum
number of probes that can be made this way is (hashsize ~ 1) div 2. and we keep a
counter ¢ to check this upper bound.

With these conventions, let us write a procedure to insert a record r, with key
r.key, into the hash table H.

procedure Insert(var H: hashtable; r: item);
var
¢, 0L
Iy
p: integer;

Surrently ¢

begin Troe
p = Hash(r.key);
ci=0;
i=1;
while (H{p}.key <> blankword) i3 the iocation amety?
and (H(p).key <> r.key) Has the iarget kay been found™
and (¢ <= hashsize div 2) do ‘Has overflow 2ocurrad?!
hegin
ci=c4+ 1
p=pti
=i+ 2 ‘Prepare increment for the next ieration.|

if p > hashmax then
p = p mod hashsize

end;
if H{p].key = blankword then
Hlp]:=r iInsert the aew itern 1.
else if H{pl.key == r.key then
Error ‘The same key cannot appesr wice.)
else '
Overflow iCounter has reachea its imit.;
end; |procedure Insert|

A procedure to retrieve the record (if any) with a given key will have a similar
form and is left as an exercise.

BTEX0000269

206 Tables and Information Retrieval CHAPTER ¢

8. Deletions

Up to now we have said nothing about deleting items from a hash table. At first
glance, it may appear to be an easy task, requiring only marking the deleted location
with the special key indicating that it is empty. This method will not work. Thg
reason is that an empty location is used as the signal to stop the search for a targe:
key. Suppose that, before the deleiion, there had been a collision or two and tha:
some item whose hash address is the now-deleted position is actually stored elsewhere
i the table. If we now try to retrieve that item, then the now-empty position will
stop the search, and it is impossible to find the item, even though it is still in the
table.

special key One method to remedy this difficulty is to invent another special key, to be
placed in any dcleted position. This special key would indicate that this position is
free to receive an insertion when desired but that it should not be used to terminate
the search for some other item in the table. Using this second special key will, however,
make the algorithms somewhat more complicated and a bit slower. With the methods
we have so far studied for hash tables, deletions are indeed awkward and should be
avoided as much as possible.

6.5.4 Collision Resolution by Chaining

Up to now we have implicitly assumed that we are using only contiguous storag:
while working with hash tables. Contiguous storage for the hash table itself is, i
fact, the natural choice, since we wish to be able o refe quickly to random positior
in the table, and linked storage is not suited to random access. There is, howevs,,
fruked storage no reason why linked storage should not be used for the records themselves. Wi
can take the hash table itsell as an array of pointers to the records, that is, as an
array of list headers. An example appears in Figure 6.12.
It s trazitional to refer (o the linked lists from the hash table as chains and
call this method collision resolution by chaining.

1. Advantages of Linker Storage

There are several advantages to this point of view. The first, and the most important

space saving when the records themselves are quite large, is that considerable space may be saved.
Since the hash tabic is a contiguous array, enough space must be set aside at compilation
time to avoid overflow. If the records themselves are in the hash table, then if there
are many empty positions (as is desirable to help avoid the cost of collisions), these
will consume considerable space that might be needed elsewhere. If, on the other
hand, the hash table conteing only pointers to the records, pointers that require
only one word each, then the size of the hash table may be reduced by a large
factor (essentially by a factor equal to the size of the records), and will become
small relative to the space available for the records, or for other tses,

The second major advantage of keeping only pointers in the hash table is th::
collision resoiution it allows simple and efficient collision handling. We need only add a link field :-
‘ eacl record, and organize all the records with a single hash address as a linkes

list. With a good hash function, few keys will give the same hash sddress, so ilc

SEC’

overflow

deletion

2, Disadva

use of spa.

small reco:

BTEX0000270

l:glsw*!'sre
wition will
il in the

i
¥

] ‘lg"cy, to be

storage

l;nportant
A .be saved
":‘33' ®mpilation
8 if there
#ons), these
iithe other

,E .
iy 9 large
‘become

bl B B F oo -

SECTION 6 : Hashing 207

-

=i

|||»~

e

-l
|ti—-J

= -

i

- g

=

Figure 6.12. A chained hash table

linked lists will be short and can be seurched quickly. Clustering is no problem at
all, because keys with distinct hash addresses alwiyvs go to distinet lists,

mverflow A third advantage is that it 18 no longer necessary that the size of the hash
table exceed the number of records. If there are more records than entries in the
table, it means only that some of the linked lists are now sure to contain more
than one record. Even if there are ~:veral times more records than the size of the
table, the average length of the linked lists will remain small, and sequential search
on the appropriate fist will remain efficient.

deletion Finally, deletion becomes a quick and casy task in a chained hash table. Deletion
proceeds in exactly the same way as deletion from a simple linked list.

2. Disadvantage of Linked Storage

These advantages of chained hash tables are indeed powerful. Lest you believe that
chaining is always superior to open addressing, however, let us point out one important
“uf space disadvantage: All the links require space. If the records are large, then this space is
negligible in comparison with that needed for the records themselves; but if the records
are small, then it is not.
Suppose, for example, that the links take one word each and that the items
il records themselves take only one word (which is the key alone). Such applications are quire
common, where we use the hash table only to answer some yes-no question about
the key. Suppose that we use chaining and make the hash table itself quite small,
with the same number n of e¢ntries as the number of items. Then we shall use 3n
words of storage altogether: n for the hash table, n for the keys, and n for the
links to find the next node (if any) on each chain. Since the hash table will be nearly
full, there will be many collisions, and some of the chains will have several items,

BTEX0000271

208 Tables and Information Retrieval

3. Pascal Algorithms

declurations

initialization

retrieva!

mseriion

CHAPTER ¢

Hence searching will be a bit slow. Suppose, on the other hand, that we use open
addressing. The same 3n words of storage put entirely into the hash table will mean
that it will be only one third full, and therefore there will be relatively few collisions
and the search for any given item will be faster.

A chained hash table in Pascal takes declarations like

type
pointer = 1node:
list = record head: pointer end;
hashtable = array [0 .. hashmax] of list;

The record type called node consists of an itemn, called info, and an additional field,
called next, that points to the next node on a linked list.
The code needed to initialize the hash table is

for i ;== 0 to hashmax do M{i).head := nil;

We can even use previously written procedures to access the hash tabie. The
hash function itself is no different from that vsed with open addressing; for dats
retrieval we can simply use the procedure SequentialSearch (linked version) from
Section 5.2, as follows:

procedure Retrieve(var H: hashtable; target: keytype;
var found: Boolean; var location; pointer);
finds the node with key arast iz M. andg rowims withy 1nsatine
poiniing to thal node prow
begin
SequentialSearch({Hash(larget)], target, found, location)
end; -

Our procedure Tor inserting a new entry will assuine that the key does not appear
already: otherwise, only the most recent insertion with a given key will be retrievabiz.

procedure Insert{var H: hashtable; p: poinier);
iinserts node 7 onie the chamed hasi &2de Hooassuming no other mode with

key piantokay iz 1 the table

var
it integer; iused tor indey i haon tehble
begin
i == Mash(pl.info.key); incd the owdey of the hakad tie for pry
pl.next := H[i}.head; dreart p0oay tne heean of ihe s
Hli}.head := p Sat the hiesd of the list 1o tiz new =
end;

As you can see, both of these procedures are significantly simpler thun are th.
versions for open addressing, since collision resolution is not a problem.

perfect has

BTEX0000272

FTCTION 6. u Hashing 209

¥xercises El. Write a Pascal procedure 1o insert an item into a hash table with open addressing
6.5 and linear probing.

E2. Write a Pascal procedure to retrieve an item from a hash table with open address-
ing and (a) linear probing; (b) quadratic probing.

E3. Devise u simple. casy-to-calculate hash function for mapping three-letter words
to integers between 0 und o — 1, inclusive. Find the values of your function
on the words

PAL LAP PAM MAP PAT PET SET SAT TAT BAT
for n = 11, 13, 17, 19. Try for as few collisions as possible.
fal field, E4, Suppose that a hash table contuins hastisize == 13 entries indexed from O through
: 12 and that the following keys are to be mapped into the table:

_10 100 32 45 5% 126 3 29 200 400 O.

. (a) Determine the hash addresses and find how many collisions occur when
ile. The these keys are reduced mod hashsize.

for data (by Determine the hash addresses and find how many collisions occur when
i) from these keys are first folded by adding their digits together (in ordinary decimal

representation) and then reducing mod hashsize.
{(¢) Find a hash function that will produce no collisions for these keys. (A hash
ol hash funciions function that has + collisions for a fixed set of keys is called perfect,)
(d) Repeut the previous parts of this exercise for hashsize = 11, (A hash function

on that produces no collision for a fixed set of keys that completely fill the
hash table iy called minimal perfect.)
ES. Another method for resolving collisions with open addressing s to keep a separate
array called the overflow table, into which all items that collide with an occupied
f"ao ar location are put. They can either be inserted with another hash tfunction or
, ri?v:lfle simpiy inserted in order, with sequential search used for retrieval, Discuss the
i) advantages and disadvantages of this method.
, ﬁith E6. Write an algorithm for deleting a node from a chained hash table.
¥

E7. Write a deletion algorithm for a hash table with open addressing, using a second
(hley special key 1o indicate a deleted item (see part 8 of Section 6.5.3). Change the
3 retrieval and insertion algorithms accordingly.

p1)

list.| E8. With linear probing, it is possible to delete an item without using a second
'%'ﬁ‘l special key, as follows. Mark the deleted entry empty. Search until another empty
. position is found. If the search finds a key whose hash address is at or before
wre th the first empty position, then move it back there, make its previous position
‘ate the

empty, and continue from the new empty position. Write an algorithm to imple-
ment this method. Do the retrieval and insertion algorithms need modification?

BTEX0000273

Programming
Project
6.5

probability

collisiony likely

2. Counting Probes

210 Tables and Information Retrieval CHAPTER &8

P1. Consider the 35 Pascal reserved words listed in Appendix C.2.1. Consider these
words as strings of nine characters, where words less than nine letters long are
filled with blanks on the right.

(a) Devise an integer-valued function that will produce different vatlues when
applied to 1l 35 reserved words. [You may find it helpful to write a short
program 10 assist. Your program could read the words from a file, apply
the function you devise, and determine what collisions occur.]

(b) Find the smallest integer hashsize such that, when the values of your function
are reduced mod hashsize, all 35 values remain distinct.

(¢) Modify your function as necessary until you can achieve hashsize = 35 in
the preceding part. (You will then have discovered a minimal perfect hush
function for the 35 Pascal reserved words.)

6.6 ANALYSIS OF HASHING

1. The Birthday Surprise

The likelihood of collisions in hashing relates to the well-known mathematical diver-
sion: How many randomly chosen people need to be in a room before it becomes
likely that two people will have the same birthday (month and day)? Since (apan
from leap years) there are 365 possible birthdays, most people guess that the answer
will be in the hundreds, but in fact, the answer is only 24 people.

We can determine the probabilities for this question by answering its opposite:
With m randomly chosen people in a room. what is the probability that no two
have the same birthday? Start with any person, and check his birthday off on a
calendar. The probability that a second person has a different birthdz: s 364/365.
Check it off. The probability that a third person has a different birthday is now
363/365. Continuing this way, we sec that if the first m — 1 people have different
birthdays, then the probability that person m has a different birthday is

(365 — m + 1)/365.

Since the hirthdays of different people are independent, the probabilities multiply.
and ‘we obtain that the probability that m people all have different birthdays is

364 363 362 365 —m + 1
e e
365 365 365 365

This expression becomes less than 0.3 whenever m 2 24

In regard to hashing, the birthday surprise tells us thut with any problem of
reasonable size, we are almost certain to have some collisions. Qur approach, therefore,
should not be only to try to minimize the number of collisions. but also to handic
those that occur as expeditiously as possible.

As with other methods of information retrieval, we would hke to know how many
comparisons of keys occur on average during both successful and unsuccessful attempts
10 locate « given target key. We shali use the word probe for looking at onc itens
and comparing its key with the target.

loud

3 An

unst

Sl

4, A

1 ru i

HEIATH

BTEX0000274

icfunction
»jx
‘{e;;'-'- 35 n

;?ifgct hash

SECTION 63 . - Analysis of Hashing 211

The number of probes we need clearly depends on how full the table is. Therefore

(as for searching methods), we let n be the number of items in the table, and we

let ¢ (which is the same as hashsize) be the number of positions in the array. The

e fuctor load factor of the table is A = n/t. Thus A = 0 signifies an empty table; A = 0.5 a
table that s half full. For open addressing, A can never exceed 1, but for chaining,

there is no limit on the size of A. We consider chaining and open addressing separately.

3. Analysis of Chaining

With a chained hash table we go directly to one of the linked lists before doing
any probes. Suppose that the chain that will contain the target (if it is present) has
k items.

unsuccessful retrieval If the search is unsuccessful, then the target will be compared with all k of
the corresponding keys. Since the item.: are distributed uniformly over all ¢ lists
(equal probability of appearing on any list), the expected number of items on the
one being searched is A = n/t. Hence the average number of probes for an unsuccessful
search is A.

specessful retrivval Now suppose that the search is successful. From the analysis of sequential search,
we know that the average number of comparisons is ¥4 (k + 1), where k is the
length of the chain containing the target. Bur the expected length of this chain is
no longer A, stnce we know in advance that it must contain at least one node (the
target). The n — 1 nodes other than the target are distributed uniformly over all ¢
chains; hence the expected number on the chain with the target is | + (n — 1)/1.
Except for tables of trivially small size, we may approximate (n — 1)/t by n/t = A.
Hence the average number of probes for a successful search is very nearly

Vatk + 1) = L+ A+ 1) = | + 1A\,

4, Analysis of Open Addressing

For our analysis of the number of probes done in open addressing, let us first ignore
the problem of clustering, by assuming that not only are the first probes random,

random probes but after a collision, the next probe will be random over all remaining positions of
the table. In fact, let us assume that the table is so large that all the probes can be
regarded as independent events.

Let us first study an unsuccessful search. The probability that the first probe
hits an occupied cell is A, the load factor. The probability that a probe hits an empty
cell is | — A. The probability that the unsuccessful search terminates in exactly
two probes is therefore A(1 — A), and, similarly, the probability that exactly k probes
are made in an unsuccessful search is Ak='(1 — A). The expected number U(N) of
probes in an unsuccessful search is therefore

Uy = 2 KAE=1(1 =).

k=1

unsuccessful retrieval This sum is evaluated in Appendix A.l; we obtain thereby

1 S
U(M—m(l A)=

I—A

BTEX0000275

212 Tables and Information Retrieval CHAPTER 6 $E

To count the probes needed for a successful search, we note that the number
needed will be exactly one more than the number of probes in the unsuccessful search
made before inserting the item. Now let us consider the table as beginning empty,
with each item inserted one at a time. As these items are inserted, the load factor
grows slowly from 0 to its final value, A. It is reasonable for us to approximate this
step-by-step growth by continuous growth and replace a sum with an integral. We
conclude that the average number of probes in a successful search is approximately

suceessful rerricval

1> 1
™) Afouww ~in——

Similar calculations may be done for open addressing with linear probing, where

it is no longer reasonable to assume that successive probes are independent. The

lincar probing details, however, are rather more complicated, so we present only the results. For
the complete derivation, consult the references at the end of the chapter. For linear 6. Em

probing the average number of probes for an unsuccessful search increases to

1
i —
’é[”u—x)ﬂ]

and for a successful search the number becomes

: [] :I
a4 ——
1—-al:

5. Theoretical Comparisons

Figure 6.13 gives the values of the foregoing expressions for different values of the
load factor.

Load facior 010 0.50 0.80 0.90 0.99 2.00 H

Successful search '
Chuining 1.05 1.25 " 1.40 1.45 1.50 2.00
Open, Random probes 1.05 1.4 2.0 2.6 4.6 —

Linear probes 1.06 1.5 3.0 5.5 50.5 —

Unsuccessful search ;)
Chaining 0.10 0.50 0.80 0.90 099 2.00 ; cond
Open, Randaom probes 1.1 2.0 5.0 10.0 100. —

Linear probes 1125 13,50 5000. o
Figure 6.13. Theoretical comparison of hashing methods
PR AT We can draw several conclusions from this table. First, it is clear that chaining

consistently requires fewer probes than does open addressing. On the other hand,
traversal of the linked lists is usually slower than array access, which can reduce
the advaniage, especially if key comparisons can be done quickly. Chaining comes

BTEX0000276

SECTION 6 ... Analysis of Hashing 213

into its own when the records are large, and comparison of keys takes significant
time. Chaining is also especially advantageous when unsuccessful searches are com-
mon, since with chaining, an empty list or very short list may be found, so that
often no key comparisons at all need be ione to show that a search is unsuccessful.

With open addressing and successful searches, the simpler method of linear prob-
ing 15 not significantly slower than more sophisticated methods, at least until the
table is almost completely full. For unsuccessful searches, however, clustering quickly
causes linear probing to degenerate mto a long sequential search. We might conclude,
therefore, that if searches are quite likely to be successful, and the load factor is
moderate, then linear probing is quite satisfactory, but in other circumstances another
method should be used.

8, Empirical Comparisons

[t is important to remember that the computations giving Figure 6.13 are only approxi-

. mate, and also that in practice nothing is completely random, so that we can always
expect some differences between the theoretical results and actual computations. For
sake of comparison, therefore, Figure 6.14 gives the results of one empirical study,
using 900 keys that are pseudorandom numbers between 0 and 1.

v Load factor 0.1 0.5 0.3 0.9 099 20

Successful search '
Chaining 1.04 1.2 1.4 1.4 1.5 2.0
% of the Open. Quudratic probes 1.04 1.5 2.1 27 5.2 —
i Linear probes 1.05 16 34 6.2 213 —-
5 Unsuccessful search
e 1 Chaining 0.11 0.53 0.78 0.90 0.99 2.04
i Open, Quadratic probes 113 2.2 5.2 1.9 126. —
Linear probes .13 2.7 15.4 59.8 430.
Figure 6.14. Empirical comparison of hashing methods
1%0 sonclusions In comparison with other methods of information retrieval. the important thing
% to note about all these numbers is that they depend only on the load factor, not on
: L the absolute number of items in the table. Retrieval from a hash table with 20,000
@ items in 40,000 possible position$ is no slower, on average, than is retrieval from a

table with 20 items in 40 possible positions. With sequential search, a list 1000 times
the size will take 1000 times as long to search. With binary search, this ratio is
S . reduced to 10 (more precisely, to Ig 1000), but still the time needed increases with
Chaining the size, which it does not with hashing.

ler hand, Finally, we should emphasize the importance of devising a good hash function,
§ 1 reduce one that executes quickly and maximizes the spread of keys. If the hash function is

'8 comes poor, the performance of hashing can degenerate to that of sequential search,

BTEX0000277

214 Tables and Information Retrieval CHAPTER 6

Exercises
6.6

ordered hosh bl

El.

E2.

E4.

Suppose that each item (record) in a hash table occupies s words of storage
(exclusive of the pointer field needed if chaining s used), and suppose that there
are n items in the hash table.

(a) If the load factor is A and open addressing is used, determine how many
words of storage will be required for the hash table.

(b) If chaining is used, then each node will require 5 + 1 words, including the
pointer field. How many words will be used altogether for the n nodes?

(¢) If the load factor is A and chaining is used, how many words will be used
for the hash table itself? (Recall that with chaining, the hash table itself
contains only pointers requiring one word each.)

(d) Add your answers to the two previous parts to find the total storage require-
ment for load factor A and chaining.

(e) If 5 is small, then open addressing requires less total memory for a given
A, but for large 5, chaining requires less space altogether. Find the break-
even value for s, at which both methods use the same total storage. Your
answer will depend on the load factor A.

Figures 6.13 and 6.14 are somewhat distorted in favor of chaining, because no

account is taken of the space needed for links (see part 2 of Section 6.5.4).

Produce tables like Figure 6.13, where the load factors are calculated for the

case of chaining, and for open addressing the space required by links is added

to the hash table, thereby reducing the load factor.

(a) Given n nodes in hinked storage connected to a chained hash table, with s
words per item (plus | more for the link), and with load factor A, find the
total amount of storage that will be used, including links.

(b) If this same amount of storage is used in a hash table with open addressing
and n items of s words cach, find the resulting load factor. This is the
load factor to use for open addressing in computing the revised tables.

(¢) Produce a table for the case s = 1.

(d) Produce another table for the case x = 5,

(e) What will the table look like when each item takes 100 words?

. One reason why the answer to the birthday problem is surprising is that it

differs from the answers 1o apparently related questions. For the following, sup-
pose that there are n people in the room, and disregard leap years.

(a) What is the probability that someone in the room will have a birthday on
a random date drawn from a hat?

(b) What is the probability that at least two people in the room will have that
same random birthday?

(¢) If we choose one person and find his birthday, what is the probability thut
someone else in the room will share the birthday?

In a chained hash table. suppose that it makes sense to speak of an order fo-

the keys, and suppose that the nodes in each chain are kept in order by key.

Then a search can be terminated as soon as it passes the place where the key

should be, if present. How many fewer probes will be done, on average, in an

S E

6.7

choic
struc:

1ablc

other

hear 1+

BTEX0000278

ble itself

U

ld ressing
fisis the
Ples.

Ry that it
qine, sup-
I

TS R

A

SECTION

6 .

Cot ion: Comparison 2f Mai~ads 215

unsuccessful search? In a successtul search? How many probes are needed, on
average, 1o insert a new node in the right place? Compare your answers with
the corresponding numbers derived in the text for the case of unordered chains.

ES5. In our discussion of chaining, the hash table itself contained only pointers, list
headers for each of the chains. One variant method is to place the first actual
item of each chain in the hash table itself. (An empty position is indicated by
an impossible key, as with open addressinz.) With a given load factor, calculate
the effect on space of this method, as a function of the number of words (except
links) in each item. (A link takes one word.)

Programming P1l. Produce 1 table like Figure 6.14 for your computer. by writing and running

Project
6.6

test programs to implement the various kinds of hash tables and load factors,

3.7 CONCLUSIONS: COMPARISON OF METHODS

e of data
SLrHetres

table lookup

other methods

HEUr s

This chapter and the previous one have together explored four quite different methods
of information retrieval: sequential search. binary search, table lookup, and hashing.
If we are to ask which of these is best, we must first select the criteria by which to
answer, and these criteria will include both the requirements imposed by the application
and other considerations that affect our choice of data structures, since the first two
methods are applicable only to lists and the second two to tables. In many applications,
however, we are free to choose either lists or tables for our data structures.

In regard both to speed and convenience, ordinary lookup in contiguous tables
is certainly superior, but there are many applications to which it is inapplicable,
such as when a list is preferred or the set of keys is sparse. It is also inappropriate
whenever insertions or deletions are frzquent, since such actions in contiguous storage |
may require moving large amounts of information.

Which of the other three miethods is best depends on other criteria, such as
the form of the data.

Sequential search is certainly the most flexible of our methods. The data may
be stored in any order, with either contiguous or linked representation. Binary search
is much more demanding. The keys must be in order, and the data must be in
random-access representation (contiguous storage). Hashing requires even more, a
peculiar ordering of the keys well suited to retrieval from the hash table, but generally
useless for any other purpose. If the data are to be available immediately for human
inspection, then some kind of order is essential, and a hash table is inappropriate.

Finally, there is the question of the unsuccessful search. Sequential search and
hashing, by themselves, say nothing except that the search was unsuccessful. Binary
search can determine which data have keys closest to the target, and perhaps thereby
can provide useful information.

BTEX0000279

Broouks/Cole Publishing Company
A Division of Wadsworth, In

© 1985 by Wadsworth, Inc., Belmont, California 94002, All riglhts reserved. No pancof this
hook may be reproduced, stored insrerrieval svstem, or reanseribed, inany form or
vy meana-—¢lectronic, mechunicd, photocopnang, recording, or otherwise—without
e prior writen permission of the publisher, BrooksCole Publishing Company,
Monterey, Californin 93940, division of Wadswaorth, Inc.

Prined in the United States of America

W v 8 7 6 3 4 3 21

Library of Congress Cataloging in Puh:rcation Data -

stubbs DF than Fo, e
Drati structures with abstract dita tpes s Pascal.

Includes indes

L Dty siructures (Computer scivie 23 20 Abstruet
it vpes CComputer scienoe) L Webre, NOWENeil W),
{edate | I Titde
QATOLNIASSTE 19847~ 00 O’ Ra-149.25 -
ISBN 0-534-03619-0

sponsoring, Editora: Michee! Necelban, Neil Crarly

Editoriad Assistants: Lovvetinee Moctond. Gaby Boerd

Murketing Represenuitive: Crahio Berg

Production Editor: Ceazedyee Cameron

Nanseript Editor: Heemier sevenkein

Permissions Editor: Cealine Hage

Cover and Interior Design: Joantie Sue HBrooks

Art Coordinators: Rebecca et Michele Jrdge

tnterior Hustration: Yim Keerci, Reese Thovnton, Carl Brow David Agrero
Typesering: Grephic Typesening Service, Los Angeles, Califorid

Printing and Binding: & K. Daonelley & Sons o Crawtiordseidle, Indiaria

Apple is o registered trademark of Apple Computer. Inc

DEG is i registered teademark of Digid Fouipment Corporation.
I3M i 0 registered tradennok of o
Pascal ' MT+ ™ §y a trudemark of Digitd Research. tne

pational Business Machines. ing,

BTEX0000280

o

310

4. We have novincluded the secoperations wrion, intersection, and difference in
setspecibicmion 7,20 Could they be included? If so. how would the specilications
hive 1o be modificd 1o do so?

7.4 Hashed Implementations

We have studied several methods for the storage and later rerrieval of keve
reconds. Arrays, linked lists, and several kinds of trees provide structures thy;
allow these operations. I cach of these structures, the find operation is nec.
essarilv implemented by some torm of search. The key values of records in
the structure are compared with the desired, or arget, key until either o mach-
ing value is found or the dat structure is exhausied, The patern of probes is
dependent upon the methods of organizing and relating the records of the
structure. A sorted linear List implemented as an areay can be probed by g
binary scarch. The same list in linked form can only be searched sequentially.

We mightask ilitis possible o ereate adata structure that does not require
ascarch o implement the find operaton. 1s it possible, for example. o com.
pute the location of the record that has a given kev value,

memory address of record = fikey)

where fis i function that maps cach distinet kev value into the memony address
ol the record identitied Py that keyv? We shall see tut the answer is g gualilied
yes. Such functions can be found, but thev are difficult to determine and ¢
onfy be construcied it all of the kevs in the data set are known in advan:
They wre lled perfect bashing functions and are further examined
section TALA

Naormaliy, there has to be o compromise from a stricty caleulated aced- -
scheme to uhvbrid scheme thatinvolves a caleulation followed by some limitey
searching, The function does not necessarily give the exact memon address
of the trget record but onby gives a bome address thar mav conwin the
desired record:

home address = fitkey;)

Functions such as 77 are known as bashing functions. In contrast o perfect
hashing functions, these are usually casy to determine and can give excellen
performance. The home address may not contain the record being sought. in
that case, 2 search of other addresses is required, and this is known s rebash-
ing. In scction "1 we introduce a number of hashing functions, and in
section 4.2 we examine severid rehashing, strategies. In Section 7.5 we sum-
matrize the performanee of hashed implementatons, and in Section 7.6 we
compare its operadon and performance with that of lists and wrees tfor the
frequency analyvsis of digraphs,

The tundamenial idea behind basbing is the aatithesis of sortivy A son
arranges the records inou regalar patern thar makes the relatively eficien:
binary seareh possible. Hashing tkes the diametrically opposite approach. 77
Pasic idew is to scatter the records completeiy randomly throughour s

memon o
be thought ¢
the kevasas
that key,
One of
ments. There
analogous. T
among cleme
among consti
thi= chaper
discussion of
One ol
probes. The
on N oin ever
for a tinked
a sored fist.
fewest praobe
effective s
hash tabic it
All of these
technique fuo
not changed
HECRITE
o bt the hoe
thun to Gl
is compuied.
an actual i
Figure =42,

const (b}
npe o

var tible
Figure 7
Supprose

var table:

and that the !
Hikev)

Notice thar tl
0 and 6, whic

BTEX0000281

fiference in
Nacifications

of keved

ures that
ion is nec-
1 «';';:remrds in

b2
N

I.
1 it a march-

trequire
Lk, o com-

by address
yualified
+and can
ddvance.

b

{ Aimined in

i \ﬂ‘ed access
1 yme limited
Jony address
dntin the

i

§

t10 perfect
Aexcellent
fsought, In
wrebash-
¥ 'fiij.ﬁ, and in

Sectia T s {ashed Lnpleneniations 311

memorny or storage space—ihe so-called bash table, The hash function can
he thought of as a pseudo-random-number generator that uses the value of
the kev as a seed and that outputs the home address of the element containing
that key.

One of the drawbacks of hashing is the random locations of stored ele-
mens. There is no noton of Arst, next, root, parent, or child or anvthing
analogous, Thus. hashing is appropriate foc implementing a set relationship
among elements but not for implementing structures that involve relationships
among constituent clements. [Cis for that reason that hashing is discussed in
this chapter on sets. There are, however, other appropriate contexts for a
discussion of hashing,

One of the virtues of hushing is that it allows us to find records with O(1)
probes. The fiidkey operation has required a number of probes that depend
on sz in every implementation of every data structure discussed so fur: O(n)
for a linked implementation of 4 list, Otlog,») for an array implementation of
i <orted hst, and Otlogan) for a binary search tree. Since hashing requires the
fewest probes to find something, it is frequentdy considered to be a particufarly
effective search echnique. Also, since hashing stores elements in o table, the
hash ble, itis sometimes considered to be a technique for operating on tbles.
All of these views of hashing are correct. We choose to view hashing as a
rechnique for implementing sets. Tts other advantages and disadvantages are
not changed by this point of view.

It is convenient to consider the hash table to bean array of records and
w0 let the hash function calculate the index value of the home address rather
than to caleulate its memory address dicectly. Once the appropriate index value
is compured, the urray mapping function can complete the transformation into
an actual memory address. The hash wable is then represented as shown in
Figure 7.12.

const tablesize = {(ser supplied }
type position = O.(tablesize - 1) {Nor Steviderd Pesead)

I

var tble: array] position] of sidelement; {7he hewsh table.}

Figure 7.12 Array represenution of a hash able.

Suppose that we have a hash tble defined by

var table: array{0.6] of record
key: integer,;
data: arravf1..10] of char
end;

and that the hash function & is

H(key) = key mod 7

Notice that the value produced by this function is always an integer between
0 and 6, which is within the range of indexes of the table,

BTEX0000282

e

L

312 Chapter 7 Sets

Table Table

address contents
{0} ety
(1] cnpty
{2 empty
13} cpry
{4i] cmpty
5] emnpy
16} empn

Figure 7:13
Empv table.

Table Table
address contents

to empn

i oy

|21 cmpy

141 A7 diwn

{-1i cnpty

151 cmpry

[cmpty
Figure 7.14

First record stored an by 3

Table Table
address contents
[[¢H enpn
[t empey
{2 cmpy
13} 374, da
[+ cmpty
[%} L‘ﬂ'\}"[}'
{6}

1001, ... duta

Figure 7.15
Second record stored wt ablel 6]

Tabte Table
address contents
fu! I cripty
R t 917, data
2 ' Lmpty
13: 370 dwa
BN empny
154 empty
{o! 1091, .. data

Figure 7.16
Third record stored a bl 1],

Operation create will produce the empry able shown in Figure 7.13. if
the first record we store has a key value of 374, then the hash function

HA4) = 3Timod 7 = 3

places the record at able{ 3] This is shown in Figure 714 1€ the next record
has a key value of 1091, we get

HO1091) = 1091 mod 7 = 6

and the table becomes that shown in Figure 7.15. A third record with key =
911 gives

HO) =911 mod 7 =1

and the resulting wble is shown in Figure 7.16.

Rewrieval of any of the records already in the wble is a simple mater, The
rget key s presented o the hash function that reproduces the same able
position as it did when the record was stored. If the tarpet key were 740, a
value not in the table, the hashing function would produce

H(740) = 740mod 7 = 5

Interrogating wble] 3] we find that ivis empry, and we conclude that o record
with key = 740 is not in the table,

The example thar we have just seen wis constructed to conceal o serious
problem. So far, kevs with different values have hashed o different locations
in the tble. That is not generathy so and is only the case in our current example
because the ke values were carefully chosen. Suppose that insertion of

record with a kev value of 227 is auempted. Then,

227y = 227 mad 7 = 3

hut able] 3] is already filled with another record. This is called o collision—
mwo different key vadues hashing o the same focation. Why this happens and
what 10 do about it are important because collisions are a face of life when
hashing,

suppose that emplovee records are hashed based on Social Securitny num-
ber 1f a firm has 300 emplovees it will not want 1o reserve a hash able with 1
billion entries (the number of possible Social Security numbers) w guarantee
that each of its emplovee records hashes to a unique location. Even if the firm
allocates 1000 slots in ity hash wble and uses a hash function that is a “perfect”
rundomizer, the probability that there will be no collisions is essentially zero.
This is the birthday paradox (Feller 1950), which savs that hash functions
with no collisions are so rare tat it is worth looking for them only in verv
special chircumstances. These special circumstances are discussed in Section
743 In the meantime. we need w consider what to do when a collision does
oceur.

With careful design, strategies for handling collisions are simple. Thev are
commonhy called rebashing or rollision-resolution strategies, and .-
will discuss them in Section 7.4.2.

gt B ﬁ

B

" We s
b
bt H(key

in the exa
T thing to de

e 7 4.1 H¢
‘ There is a
T proposed -

straightfon

since the s
their use. |
exotic one

Guod

1. Th
2. Th

[T

We will no

+ Digit sc

The drst b
kevs of the
Social Sect

key =

If the pop
the last thr
possible in

var tubh

where pers
keep. Notig

ke

which simy
Care -
with which
digits, el-clu
are probab
single state
aumber are
inally issue
and cluster
state; 507,

BTEX0000283

i

“uiter. The
‘yme table
e 740, a

it record

S serious
*‘?_:lucations
Fexample
ftion of 2

Mliston—
apens and
ilife when
G
,:}'rity num-
L ble with 1
i_ighurantee
Jatthe firm
1 iperfect”
1 ally zero.
“functions
] % in very
i Section
sion does

Thev are
$und we

We xclected the hashing function
H(kev) = kev mod n

n the example we just completed. We will now see why that was a reasonable
thing to do and will also fook at a number of other hashing functions.

7.4.1 Hashing Functions

There is u large and diverse group ot bashing functions that have been

proposed since the advent of the hashing technique. Some are simple and

straightforward; others are complex. Almost all are computationally simple

since the speed of the computation of such functions is an important factor in

their nse. Lum (1971) has a good review of many, including some of the more

exotic ones. We will confine our attention to simple but effective methods.
Good hushing functions have two Jesitable properties:

1. Thev compute rapidly.
2. Thev produce a nearly random distribution of index values.

We will now consider several hashing functions.

* Digit selection

The first hashing function we will discuss is digit selection. Suppose that the
xevs of the set of data that we are dealing with are strings of digits such as
social Security numbers (nine-digit numbers):

key = dydydyd dsded-dady

If the population comprising the daw is randomly chosen, then the choice of
the last three digits, d-dyds, will give a good random distribution of values. A
possible implementation is the following:

var table: array({0..999] of person;

where person is a record type for the key and information that we wish to
keep. Notice that the hashing function in this case is

H(key) = key mod 1000

which simply strips off the last three digits of the key.

Care must be taken in deciding which digits to select. If the population
with which we are dealing is students at a university, for example, the last three
digits, clodyely, are probably a good choice, whereas the first three digits, ddadds,
are probably not. State universities tend to draw their student bodies from a
single state or geographical region. The first three digits of the Social Security
number are based on the geographical region in which the number was orig-
inally issued. Most students from California, for example, have a first digit of 5
and clustered second and third digits, indicating various subregions of the
ste; 567, for example, is very common. If the data were for a California

o _ Section v Hashed Implementatio:: 313

BTEX0000284

314

Chapter =+ Nets

university, almost all of the students” records would map into the 500599
range of the hash wble, and o large subgroup would map ino position 56
The output of the function would not be uniform and random but would he
foaded on certain positions of the twble causing an inordinately high number
ol collisions, 1 wouald notbe a goad hashing function for that reason,

I the key popualaion is known in advance, it is possible o anabvee the
distribution of values tiken by each digit of the key. The digits participating in
the hash acddress are then casy o select. Such ananalysis is called digit analy.
sis. Instend of choosing the last three digits, we would choose the three digis
of the key whose digit wnadyses showed the maost uniform distribution. If 4,
-, and o, gave the fanest distributions, the hashing function might strip o
those digits from a kev and put them together to form a number in the runge
(0-999:

L \dsel @l fdselgl-duedy) = d i,y

Caution is advised, since although the digits are apparemty random and
uniform in value, they might have dependencies among themselves. For exam-
ple. certain comhbinations of d- and dy, might tend 10 oceur together. Then if
oy were abways 8 when - is 3, o, 38 would be the only tble position mapped
1w in the runge o 30-d 39, cffectively fowering the wble size and increasing
the chances of collision. Anatysis for interdigit correlations might be necessan
1o bring such a sitwaion o light,

* Division
One of the most effecive hashing methods is division, which works s follows

[ikey) = kev mod = Hl=h<=m -}

The bit putern of the key, regardless of s data vpe, is rreated as anineger,
divided in the integer sense by s and the remainder of the division is used
as the tble address, D iy the range from Groome = 1 Such a function is fus
on computer systems that luve aninteger divide, since most generate the
quotient in one hardware register and the remainder in another. The conteng
of the renuinder regisier nieed only be copied o the variable 4, and the hush
is completed.

I practice. functions of this type give very good results, Lum (1971) has
an empirict] studv showing this to be the case. Division can, however, perform
poorly in a number of cases. For example. it were 25, then all kevs that were
divisible by 5 would map into positions 0. 3. 10, 15, and 20 of the wble. 4
subset of the kevs miaps intoasubset of the thle, something that we in general
wish 1o avoid. OF course, using the function # = key mod m maps all kevs for
which keyv maod e = 0 into wblef0), all kevs for which key mod m = 1 into
wble] 1], eren but that bias is unavoidable, What we do not want to do s o
introduce iy further ones.

The problem underiving the choice of 25 as the tble size is that it has 2
factor of 5. All kevs with 5 as a factor will map into 4 table position thae also
b thant factor. The cure is to make sure that the key and m have no common

T

factors, and

factors other
time that the
However, Lu
than 20, is st

« Multiplic

Asimple met
that the kevs

kev = o

The key is s¢

X

r,r_.r‘y_'_
The result @
selection on
example, ry

his iny
ing the right
comes onhv !
right mostny
the same wl
introducing.
involving the
in the key is
the kevis an

* Folding

The next hasl
digit kev us v

kev = ¢

and the prog
hardware div
form a hush

Hikev)
The result w
(V<= D

and could b
(there were
the numbers

BTEX0000285

e 500-399
sition 567.

Fanalyze the
dicipating in
]igit analy-
Gihree digits
Aution. I dj,
~ght strip out
“in the range

“randon and
~. For exam-
ther. Then i
Hon mapped
d increasing
e necessary

*s as follows:

8 an integer,
ision is used
inction is fast
stenerate the
“The content
“nd the hash

m(1971) has
ver, perform
\eys that were
fthe table. A
We in general
s all keys for
dm = 1 int0
it 1o do s 10

is that it has a
ition that also
1Mo common

Sectieo

Sictors, and the easiest wav o ensure that s o choose mso that it has no
actors other than 1 and iself—a prine number, For this reason, most of the
dme thut the division tunction is used the wble size will be a prime number,
However, Lum (1971) shows that any divisor with a0 small tactoes, say less
than 20, is suitable.

« Multiplication

Asimple method that is based on mudtiplication is sometimes used. Suppose
that the kevs in question are five digits in lengih:

key = dyelal el il
The kev ts squared by

oyel ol ol s,
K elyd dd ol il
T Y S VAV TS

The result is a 10-digit product. The funcion s completed by doing digit
selection on the product. In most cases, the middle digit are chosen, for
cxample, s An example is shown in Figure 717,

It is important to choose the middle digis. Consider, for example. choos-
g the right most owo digits of the product in the exumple—+1. That value
comes only from the product of 1 X 21 and 2 x 21 that is, ondy from the
right most two digits of the original key vidue. Albkevs ending in 21 will produce
the samie wble locution—-i1. This i+ the kind of bins that we trv w avoid
introducing, The middle digits, on the other hund, are formed from products
involving the lett, middle, and right porticns of the key, Changing any one digit
in the kev is likely to change the hash result. Information trom all portions of
the key is amalgamated in the caleulation of the hush table subscript,

+ Folding

The next hash function we will discuss is folding. Suppose e we have o tive-
digit key us we had in the multiplication method:

kL’y = dldgd_:,d;.da

and the programs are running on a simple microcomputer system that has no
hardware divide or multiply but that does have an arithmetic add, One way to
form a hash function is simply to add the individual digits of the key:

Hikey) = d) + oy + dy + d, + ds
The result would be in the range

N<=h<=45

and could be used as the index in the hash ble. (f a larger table were needed
{there were more than 46 records), the result could be enlurged by adding
the numbers as pairs of digits:

s Fiashed haplenienations 315

wey = 54321

Figure .17

b Rt Results of soaring
the Koy vadues to) Digit ssicction
ot the andedle digiis gives the
tbie positi: ot the record,

BTEX0000286

£
’ 316 Cliegper ™ = Sets
HEkeyy = Ud, + daddy + dds ; the bit p
i The resudt would then e between 000 and 207 (09 + 99 + 99). Folding is : 110
; the nanie given to s class of methads that involves combining portions of the The con
. e . . . 2ol
kevi o dorm o smaller resalt. The methods for combining are usually either
arithmatic addition or exclusive or's, ord
Folding is often used in conjunction with other methods. If the kev were Since 10
o Socid Security sumber of ninge digits and the program were implemented - hmh]
- on ominicomputer that has 1o it registers and consequenty has a maximum ' tlhc rhrL-c
pasitive imeger size of 05335, then the key s intractable as it stands, 1t must
somehow be reduced o an integer less than 63535 before it can be used. ordt
Folding can be used o do this. suppose the kev in question has a value o
’ 16384 is
kev = 98765321 bevond 1l
. ‘ . - and micer.
We can break the kev imto four-digit groups and then add then: of 3
(LK)
H05 type »
4321
foldikey) = 130035 funct:
This result would be bhetween 0 and 20007 Now apply i second hashing fune- var i:
tion, sy division, 1o produce a table position within the range O 0 = 1) begin
W the hash wble has 2 positions, the composite function s i
. ; fold
Hekeyvy = foldikevy mad m o
' ' repx
for
* Character-valued keys
All of the examples inour discussion of hashing functions assumed tha the ‘
Kevs were some form ol integer. Quite often, however, the kevs are character L
} § L unti
strings. or character-valued keys, 11ow are these handled? . end:
Remember that all data stored in o computer memorny are simiply strings ’
of Dits. The ASCH code tor the charascter v for example, is 4 - Algon
IR
‘ i Algon
which can also beimerprated as the ineger value 1210 The ord function of the simplc
Pascal reinterprets Characters as inegers in this fashion: : fold.
ordiy) = 121,
This provides one basis for u-ing ciaracters in hashing functions, It the key 742 Co
D vidues are single characters. division can be applied as folfows:
! A collisic
Htkey)y = avdekevi mad m
: : . when o
Inthe case key = Vand o = 7 will begin
. , - strategics.
ey = ordCy) mod T =2 . é’
' : We w
I the ke is o claracter string of lengthy 20 such as nine-digit
kev =iy K=

BTEX0000287

lemented
maximum:

Section - ., « Hashed Implementations 317

the bit pattern for the string would be
1010101111001,

The corresponding integer is
ord('jy * 128 4 ord('y') = 13689

Siace 128 = 27, the multiplication by 128 effectively shifts the bit pattern for

i" 7 bits to the lefi. The addition eftectively concatenates the 2-bit strings. For
the three-charucter string “djy’, we get

ord(d") 16384 + ord(j) =128 + ord('v') = 1,652,089

16384 is 2'*, providing a left shift of 14 bits for 'd’. Notice that the result is
hevond the capacine of u 16-bic register, the size register available on most mini-
anud microcomputer systems, Algorithm 7.1 folds a 21-character string in groups
of 3.

type string2l = areay] 1..21] of char;

function fold : = (s: string21): integer; {Folds a character string}

{of 21 characters i growps of 3.}

vari: 1.22; (A1 least 24 bit integers are)
begin {requared for the resulr)
1 = 1 i
fold 1= 0
repeat

fold 1= fold + ord(sfi]) * 16384
+ oordsli + 1))+ 128
+ ord(s{1 + 2));
=i+ 3
until i > 2]
end;

Algorithm 7.1 Folding a character string.

Algorithm 7.1 could be written more generally, but doing so would obscure
the simple process. Division hashing can be applied to the result of function
fold.

7.4.2 Collision-Resolution Strategies

A collision-resolution strategy, or rehashing, determines what happens
when two or more elements have a collision, or hash to the same address. We
will begin by defining some parameters that will be used to help describe these
Strategies.

We will call the number of different values that a key can assume R. A
nine-digit integer (for example, a Social Security number) has

R = 1,000,000,000

BTEX0000288

Section'-, .+ « Hashed Implementations

the bit pattern for the string would be

11010101111001,
The corresponding integer is

ordCy * 128 + ord('y') = 13689
Siace 128 = 27, the mukiplication by 128 effectively shifts the bit pattern for
77 bits to the lefi. The additon effectively concatenates the 2-bit strings. For
the three-charucter string “djy’, we get

ord("d") * 16384 + ord(j) * 128 + ord('v'} = 1,652,089
10384 is 2", providing a left shift of 14 bits for ‘d’. Notice that the result is
bevond the capricity of u 16-bit register, the size register available on most mini-

aind microcomputer systems. Algorithm 7.1 folds a 21-character string in groups
of 3.

type string21 = array(1.21] of char;

function fold : = (s string21): integer; {Folds a chavacter string)
{of 21 characters it growps of 3.}
vari: 1..22; (Al least 24 bit integers are}
begin {regtared for the resudt.}
i S 1;
fold 1= 0,
repeat

fold = fold + ord(s{i]) « 16384
+ ord(s{i + 1))+ 128
+ ord(sf1 + 2));
it=1+3
until | > 2]
cnd;

Algorithm 7.1 Folding a character string.

Algorithm 7.1 could be written more generally, but doing so would obscure
the simple process. Division hashing can be applied to the result of function
fold.

7.4.2 Collision-Resolution Strategies

A collision-resolution strategy, or rehashing, determines what happens
when two or more elements have a collision, or hash to the same address. We
will begin by defining some parameters that will be used to help describe these
Strategies.

We will call the number of different values that a key can assume R. A
nine-digit integer (for example, a Social Security number) has

R = 1,000,000,000

317

BTEX0000289

318 Chapter 7 =+ Sets

const bucketsize = {User supplied.} The size of the hash table, tablesize, is a second important parameter.,
tablesize = {User suppled.} [t must be large enough to hold the number of elements we wish to store.
The number of records that is actually stored in the table varies with time
type buckel = array . . .) . - : .
(1. bucketsize] of and is denoted 71 = n(t). One of the most important parameters is the fraction
stdelement: of the table that contains records at any time. This is called the load factor
and is written
var table = array
[0..(tablesize ~ 1)] a = aff) = n/ablesize
of bucket;
In Figure 7.16, ¢ = 3/7.

In summary, the keys of our data elements are chosen from R different
values, and »7 elements are stored in the hash 1able that is of size tablesize and
is o X 100% full.

A more general form of hash table is obtained by allowing each hash table
position 1o hold more than 4 single record. Each of these multirecord cells is
called a bucket and can hold b records. An array representation of such a hash

r W table is shown in Figure 7.18.

The concept of hash tables as collections of buckets is important for tables
that are stored on direct access devices such a3 magnetic disks. For those
devices, each bucket can be tied to a physical cell of the device, such as a track
or sector. The hashing function produces a bucket number that results in the
transfer of the physically related block into the random access memaory (RAM).
Once there, the bucket can be searched or modihed at high speed.

Buckets of size greater than one are of limited use in hash tables stored
in RAM. They tend to slow the average access time to records when searching,
We will only discuss buckets of size one in this chapter. Bear in mind, however,
that the hash wble we discuss is a table of buckets of size one.

The strategies for resolving collisions will be grouped into three approuaches.
The first approach, open address methods, attempts to place a second and
subsequent keys that hash to the one table location into some other position

bucket

rec,l wee ‘ TCCh e ketnizar

rec i soe | TECH ki

rec, | =e¢ | FEChuckewsioe

__ ' J/J inthe wble that is unoccupied (open). The second approach, external chain-
ing, has linked list agsociated with each hash wble address. Each element is
Figure 7.18 added to the linked list at its home address. The third approach uses pointers

Hush wble of buckets. .) . .
ash wble of buckets to link wogether different buckets in the hash table. We will discuss coalesced

chaining, since it is one of the better strategies that uses this wechnique.

Table 'ral-)le * Open address methods

addf?ss conm® For ull of the open address methods and their algorithms we will use the
il(l){': ;'lnlpn Cdaa . hashtable represented in Figure 7.12. There are several open address methods
[2] empty using varving degrees of sophistication and a variety of techniques. All seek o
[3] 374....daa ... findan open table position after a collision. Let us return to Figure 7.16, which
}g% zglg: is repeated for reference as Figure 7.19, and attempt 10 add the key whose
] 1091, ... daw .. value is 227, Recall that the example hashing function applied o 227 gives

Figure 7.19 H(227) =227mod 7 = 3

Three records stored at table[1],

tablel 31, and table{6). so that 227 collides with 374.

Lin

- rebash.

B ar whicl

is found

address,

A reque

used to

We

7.3, The
7.3.

proce
var Ju:
begir:

els
end;

Algc
func

proct
var st.
begin
star
rep

Iy

unt

3 To
= emphy i
5 an elenu
added a
requirec

it is easy
The inse
We

and dele
deleted.

BTEX0000290

parameter.
{0 store.

e fraction

§ iash table

yeha hash

dis in the

{es stored

However,

slchain-
lement is
spointers

tique.

imethods

"gives

ad factor

sarching. .

proaches. .
{ond and 2
1 position 38

wlesced .

#yse the

swith time .

pdifferent i
Yolasize and .

ad cells is #

{1for tables
for those &
Fiasaceack.

v (RAM). - ’

Useek t0 5
16; which 3
y:whose

33k

Section 7.4« Heashed Implementeitions 319

Linear rebashing. A simple resolution o the collision called linear
rebashing is to start a sequential search through the hash able at the position
at which the collision occurred. The search continues until an open position
is found or undl the wble is exhausted. A probe at position 4 reveals an open
address, and the new record is stored there, The result is shown in Figure 7.20.
A request w find the record with key = 227 generates the same search path
used 1o store it.

We dre now in a position 1o impltement the operations specihied in Section
7.3. The first operation is findkey, which is implemented by Algorithms 7.2 and
7.3.

procedure findkev(tkey: keyvtype): boolean;
var h: position;
begin

to= H(key): {Apply bash function.}

if (1ablelh]key <> 1key) and (table(h]key <> empty)
then linearrehash(tkey, h);

if tkey = tablelhlkey

then findkey := true

else hndkey : = false
end;

Algorithm 7.2 lmplementation of operation firdkey using the hash
tunction.

procedure linearrehash(tkey: keyviype: var h: position),
var stirt: pasition;
begin
start ;= h;
repeat
h:= (h + 1) mod tablesize
until (tablefhlkey = tkey) {theer: forariet }
or (tablelhlkey = empty) {Opert location}
or (k = start) {Entire tuble searched)
end;

Algorithm 7.3 Linear rehashing.

To insert an element we search, beginning at the home address, until an
empty address is found or until the table is exhausted. For example, inserting
an element whose key is 421 in Figure 7.20 leads to the Figure 7.21. We have
added 4 column 10 our illustration of hash tables—the number of probes
required to find each element stored therein. In the case of linear rehashing,
it is eusy to determine an element's home address from this added information.
The insert operation can be implemented as shown in Algorithm 7.4.

We will assume two user-supplied values for the key of an element: empty

and delered. The use of empty is obvious. Let us see why we need the value
deleted.

Table Table
address contents
{0) empty
1] 911
12] empry
(3 374
f+4) 227
(51 empty
6] 1091
Figure 7.20
Linear rehashing.
Table Table
address contents Probes)
{0} empty
By 911 1 !
12) 421 2 !
131 374 1
4] 227 2 :
{5] empiy :
{o} 1091 1 i
{
Figure 7.21

Hash table and the number of

probes required to find an ele-

ment in the table.

BTEX0000291

320 Chapter 7 « Sets

Table Table
address contents Probes
{0] empty
{1} 211 1
12) 421 2
13] 374 1
4] 227 2
151 624 5
{6] 1091 1
Figure 7.22

The probe sequence when
searching for 624 (or any other
kev value whose home address
is 1).

procedure insert(e: stdelement);
var h: position;
begin
h := H(ekey),
while (table[h] key <> empty) and (1able(h]key <> deleted) do
h:= (h + 1) mod tablesize,
wblelhleh:= e
end;

Algorithm 7.4
rehashing.

{insert an element using)
{linear rebashing

™~

Implememation of operation insert using linear

Figure 7.22 shows the result of adding 624, whose home address is 1, to
the hash table in Figure 7.21. The probes needed to find an empty space for
624 are also shown. A subsequent search using linear rehashing to find 624
will retrace that same path. If any of the three elements, 421, 374, or 227, were
deleted and replaced by the value empty, subsequent searches for 624 would
not work. Upon encountering a location marked empty the search would ter-
minate unsuccessfully. A solution to this problem is 1o mark positions from
which elements have been deleted with a special value. The deletion operation
can be then implemented as shown in Algorithm 7.5.

procedure deleie(tkey: keytype);
var h: position;
begin
h:= H(tkey);, {Apply bash function }
if (1able[h]lkey <> key) and (table[h]key <> empty)
then linearrehash(tkey, h);
table{h]key : = deleted
end;

{Delete an elemeny from the bash table.}

Algorithm 7.5
function.

Implementation of operation delete using the hash

The drawback to the use of the value deleted is that it can clutter up the
hash table thereby increasing the number of probes required to find an ele-
ment. A partial solution is to reenter all legitimate elements periodically and
10 mark the remaining locations empty.

The performance of a combined hashing/rehashing strategy is measured
by the number of probes it makes in searching for target key values. We will
examine the performance of linear rehashing in more detail in Section 7.5, but
we can get a feel for the fact that it may not perform very well by looking at
the probe sequence that results when a search of Figure 7.22 is undertaken
for a key value of 624. Since 624 mod 7 = 1, the search begins at position 1
in the table. The subsequent search is shown. Five probes are required to find
624. There are two problems underlying the linear probe method.

B T TR P R TR IS R TN B e

e

Problen

E rehashing pa
¥ 1 in Figure
¥ any key that |
t hashed to 1

g call this pher

Problen

g position 1 m
& two rehash o
g clustering.

Considtc

E difference in

Only new k«

" position 0. K
B tion 5.

The ex)

¥ can be calcu

Original
position

Figure 7
hash tabl

The exy
and unsucc
of performai
general way
that the perf
noted—prin

You mu
other than 1
7.3 would b

k-= (k

where 1 <=

tablesize are
tern will cov

BTEX0000292

Section 7.4 « Hashed Implementations 32

L,,,;,m using} : Problem 1. Any key that hashes to a position, say b, will follow the same Table Tobie
Yirebashing.} rehashing pattern as all other keys that hash to A, Any key that hashes to position address contents Probes
: j 1 in Figure 7.22 will follow the probe sequence shown. This guarantees that 0l —
:] any key that hashes o 1 will have to collide with all of the keys that previously (1] 91] - 1
o hashed to 1 before it is found or before an empty position is found. We will {2} 421 2
call this phenomenon primary clustering. ;? } ;;i é
e Problem 2. Note in Figure 7.22 that the probe pattern for a rehash from 5] empry
position 1 merged with the probe pauern for a rehash from position 3. The 6] 1091 !
linear] wo rehash patterns have merged together, a phenomenon called secondary
’ clustering. Figure 7.23

Consider Figure 7.23 (which is a copy of Figure 7.21). There is a substantial
Jsis 1,0 difference in the probabilities of positions 0 and 5 receiving the next new key.
space for , Only new keys hashing into positions 6 and 0 will rehash (if necessary) o
Jfind 624 . position 0. Keys hashing into any other position will eventually arrive at posi-
17, were S tion 5.

24 would ;38 The expected number of probes for any random key not yet in the table
Fould te : can be caleulated as shown in Figure 7.24.

Joveration 58 Original hash Empty position
: o position Number of probes found at
0 1 0
1 5 5
i 2 4 5
sk table.}. 3 3 5
; 4 2 5
K ‘ 5 ! 5
E Ofynctfon.}. ¢ Total Ttgi °
’ Figure 7.24 Expected number of probes for an unsuccessful search in the
i hash table shown in Figure 7.23. Expected number of probes = 18/7 = 2,57,
Jehash
] . The expected number of probes for both successful (target key in table)
1 and unsuccessful (target key not in able) searches will be our measures
ket up th of performance of rehashing strategies, and we will examine them in a more
i an el general way in Section 7.5. We will confine our attention here simply to noting
L Céll and o that the performance can be improved by eliminating the problems that we
Y i noted—primary and secondary clustering.
easured I You may be tempted to resolve the difficulties by introducing a step size
We will other than 1 for linear rehash. Stepping to a new table position in Algorithm
7.
7,5, but 3 would become
§oking at)
m%mke ‘ ‘ k:=(k + ¢) modm
{ Psition 138 where 1 <= ¢ <= (tablesize — 1). If tablesize is prime, or at least if ¢ and
(e 0 find S tablesize are relatively prime (have no common factors), then the search pat-

b

tern will cover the entire table probing at each position exactly once without

BTEX0000293

322 Chapter 7 = Sets

repetition. This kind of coverage, nonrepetitious complete coverage, is
highly desirable. Obviously, if a table position that was previously probed were
again probed during the same rehashing sequence, the duplicate probe would
be wasted and would affect performance. If the probe pattern did not cover
the entire table, empty spaces that are not included in the pattern would not
be discovered.

Although a value of ¢ that is relatively prime to the table size does give a
rehash technique that has these properties of nonrepetition and complete
coverage, it does not solve or, in fact, even improve the problems of primary
and secondary clustering. An approach that does solve one of these problems
is described next.

Quadratic rebashing. One method of improving the performance of
rehashing is to probe at

k ;= (home address £ j+2) mod tablesize

where / takes on the values 1, 2, 3,... until either the target key or an empty
position is found or until the table is completely searched. This method, called
quadratic rebashing, is beuer than linear rehashing because it solves the
problem of secondary clustering (it does not solve the problem of primary
clustering). Detatils of this method are given in Radke (1970), where it is shown
that rehashing visits all table locations without repetition provided tablesize is
a prime number of the form 4k + 3.

Randon rebashing. Envision a rehashing strategy that, when a collision
occurs, simply jumps randomly to a new table position. This method is called
random rebashing, and the rehash can be considered to be a jump of a
random distance from the original hash position or to be a second hash func-
tion applied to the same key. If second and subsequent collisions oceur, the
process is repeated until the target key or an empty position is found or until
the table is determined 1o be full and not to coneain the target kev. Since each
key would have its own random pattern, there would be no fixed rehashing
patterns. (The random sequence would have o be determined by the key
value since subsequent accesses with the same key value must follow the same
patern as the original) Since there would be no common pauerns, there
would be no primany or secondary clustering. Although this approach is the-
aretically appealing, it appears difficult to implement. Thus we tirn to schemes
that are simpler and whose performances are almost as good.

Double bashing. Several methods exist that attempt to approximate the
random rehashing strategy without the large overhead of calculation required
by it. One of these, double bashing, is computationally effcient and simple
to apply.

S

TR T R S T AR PR T ar O R P b S S e AT

oM

BN

¥ We hu
(i +¢)
(i+ 2«

3 G+ 3=

where ¢ is
: The fact that
B since it caus:
. be random |
such an app:

One 50
collided at p
- key value so
g values of ¢. |

H(kev)

we define a

g c(key)

Suppose tha
position 1. W

¢(421)
50 the table

(1 + 2)
(1 +2

If 624 had b
However, its

c(624)
and the prol-

(1 + 5
(1+2
(1 +3

The rch
position orig
that hash to t
of such an e\
izing step siz
of the expect
is quite close

BTEX0000294

coverage, i

: probed were:
probe would
Jid not cover:
m would not:

e does give a
nd complete

m of prima
e it is shov
ol tablesize

ena collision
ea jump of

nd hash func

{ 4. Since ea

Jeitand simp

thod is called 44

{5 occur, thei
found or until g

iproximate the]
{ttion requiredt

Sectich, 4+ [Hashed Implementations 323

We have seen that the general patern for linear probing is o probe at

(i + ¢} mod tablesize
(i + 2+¢) mod tablesize
(i + 3+ c¢) mod wblesize

where ¢ is a constant (¢ = 1 in our original discussion of linear rehashing).
The fact that ¢ is a constant is at the root of the inefficiency of linear rehashing,
since it causes fixed probe paterns and clustering. Ideally we would like ¢ o
be random but subject to constraints on repetition, Although this is possible,
such an approach leads to a computational overhead that is too high.

One solution is to compute a random jump size, ¢, for each kev that has
collided at position b and needs rehashing. Thus, ¢ would be a function of the
key value so that different keys hashing to the same location are given different
values of ¢. For example, starting with the hashing function

Hkey) = key mod tablesize
we define a related step size function
c(key) = [key mod (tablesize ~ 2)] + 1

Suppose that 421 is to be stored in Figure 7.25. Then, 421 collides with 911 at
position 1. When the collision occurs, ¢ is computed as

c(421) = 21 mod5 + 1 = 2
50 the wable is probed at

1+ 2) mod7 =3 {collision.)
(1+2+«2mod7 =5 {Empoy.}

If 624 had been the key, it would have also collided with 911 at position 1.
However, its rehash pattern would have been different, that i,

c(624) = 62dmodS5 + 1 =5

and the probes would have been at

1+ 59 mod7 = 6 {Collision.}
(1+2+5)mod7 =4 {Collision.}
(1 +3*5)mod7 =2 {Empev.}

The rehash pattern for the two keys, both of which hashed to the same
position originally, is different. Although we can find pairs (or groups) of keys
that hash to the same position and produce the same step size ¢, the probability
of such an event is low for hash tables of reasonable size and a good random-
izing step size generator. In fact, the performance of double hashing in terms
of the expected number of probes for both successful and unsuccessful accesses
is quite close to that of random rehashing. Since it has essentially the same

Table
address

Table
contenis

(ol
i
121
(3]
{4}
(5]
6]

empry

911

empry T
374

227

emprty

1091

Figure 7.25

BTEX0000295

324 Chapter 7 + Sets

const tablesize = {User supplied.}
type pointer = ‘node;
node = record
el: stdelement;
next: pointer
end;
position: 0. (tablesize — 1);

var table: array|position] of pointer;

Figure 7.26
Representation of a hash table
for external chaining.

Table Table
address contents
{0} nil
{11 nil
{2) nil
{3} nil
(4] nil
{5} nil
6] _ _ . nil

Figure 7.27

Initialized hash table for external
chaining,.

Table Table
address contents
0] nil
HEEE - 911
2y - nil
(3] ' — 374
14} nil
{5} nil
{6} — 1091
Figure 7.28

Hash table afier insention of keys
374, 1091, 911.

performance in numbers of probes and a lower overhead in computation per
probe, it has a greater overall efficiency. A rehashing algorithm for double
hashing is given as Algorithm 7.6. It is comparable to Algorithm 7.3.

procedure doublerehash(tkey: keytype; var h: position);
var start: position;

¢ integer;
begin
start 1= h;
¢ = tkey mod (tablesize ~ 2) + I,
repeat

h:= (h + ¢) mod tablesize

until (1able[h] key = key) {tkey found)
or (table[hjkey = empty) {Open location.}
or (h = start) {Enuire table searched)

end;

Algorithm 7.6 Rehashing algorithm for double hashing.

Algorithm 7.6 shows only one method for computing a random step size.
Any randomizing function that produces a step size that is less than » and is
not based on the position of the original collision will do. However, the division
algorithm that is shown is efficient and simple. In order to avoid introducing
biases, 1ablesize should be a prime number. If we use this method of computing
¢ in conjunction with the division method for the original hash, the choice of
m and & as twin primes assures an exhaustive search of the table without
repetition. If tablesize is prime, and k = tablesize — 2 is also prime, then m
and & are twin primes.

» External chaining

A second approach to the problem of collisions, called external chaining,

is to let the table position “absorb™ all of the records that hash to it. Since we
do not usually know how many keys will hash into any table position, a linked
list is a good daa structure 10 collect the records. A representation based on
an array of pointers is shown in Figure 7.26.

As an example, let tablesize = 7 and suppose that operation create has
initialized the hash wable as shown in Figure 7.27.

If a division hash funcrion is chosen, say,

Hikey) = kev mod 7

then insertion of the keys

key = 374 374mod7 =3
key = 1091 1091 mod 7 = 6
key = 911 911 mod 7 = 1

produces the hash table shown in Figure 7.28. Insertion of 227 and 421 pro-
duces two collisions (the collisions are not shown in the text):

N R T T e U S TR U B T I S YT 1

B e T

key
key

and resu’
key

' produces
4 Eacl
ACterisics
~or doubl
quencies
may be ¢
Obse

. cussed in
¢ of one an
‘; function.
Exte

11
2T

Int the
. ing, by ad
is in how

* Coales

To illustra
shown in
region 2.
address r¢
The
cellar is ©
home add

H(ke

assuming

After
next, it co
address. I
result is s
position w

Ifkey

BTEX0000296

Section 7.4+ Hashed Implementations

227
421

227 mod 7
421 mod 7

i

key =

key = 1

I

and resulis in Figure 7.29. Subsequent insertion of 624

key = 624 624 mod7 = 1

producus the result shown in Figure 7.30.

Each list is a linked list. The designer has all of the choices of list char-
acteristics as he or she has for any linked list—method of termination, single
or double linkage, other access pointers, and ordering of the list. If the fre-
quencies with which the various records are accessed are quite different, it
may be effective to make each list self-organizing.

Observe that the operations in this case are similar to those on lists dis-
cussed in Chapter 4. The only differences are that there are maay lists instead
of one and that the list in which we are interested is determined by the hash
function. T T

External chaining has three advantages over open address methods:

1. Deletions are possible with no resulting problems.

2. The number of elements in the table can be greater than the wble size;
a can be greater than 1.0, Storage for the elements is dynamically
allocated as the lists grow larger.

3. We shall see in Section 7.5 that the performance of external chaining
in executing a findkey operation is better than that of open address
methods and continues to be excellent as o grows bevond 1.0,

In the next technique collisions are resolved, as they are in external chain-
ing, by adding the element to be inserted 1o the end of a list. The diffecence
is in how the list is constructed.

* Coalesced chaining

To illustrate coalesced chaining consider the hash table with seven buckets
shown in Figure 7.31. The hash table is divided into two parts: the address
region and the cellar. in our example, the first five addresses make up the
address region, and the last two make up the cellar.

The hash function must map each record into the address region. The
cellar is only used to store records that collided with another record at their
home addresses. For our example, we will use the division hash function

H(key) = key mod 5

assuming that each key is an integer.

After inserting key values 27 and 29 we have Figure 7.32. If 32 i5 inserted
next,.it collides with 27 and is stored in the empty position with the largest
address. In addition, it is added to a list that begins at its home address. The
result is shown in Figure 7.33, To assist in visualizing the process, the empty
position with the largest address, epla, is shown in the figures.

If key value 34 is added, it collides with 29 and is placed in address 5 (the

325 i
Table Table i
address contents :
[0} il '
(1] - 911 — 42}
{2} il .
i3] — 374 — 227 b
(-4 il
[5) nil
[6} — 1091
Figure 7.29

Hash table after insertion of kevs

227 and 421,

Table Table
_ g@dress contents
{0} nil
(1] - 911 — 42] —
624
[2] nil
13} — 374 — 227
(4] nil
{5} il
{6] — 1091
Figure 7.30
Hush table afier insertion of key
(24,
Table Table
address contents
(0] empry T
W empy g
(2] empty i,
(3 empty region
(4] empty l
4
s empry cellar
Y empty
Figure 7.31
Hash wble with seven buckets
initialized for coalesced
chaining.

BTEX0000297

326 Chapier 7 *+ Sels

Table Table
address contents
10} cmpry
i1 empry
{21 27
13] enipry
14 29
5] empty
T o) epla
Figure 7.32

Hash wble after inserung keys 27
and 29.

Table Table
address contents

LH] empty

{1 epla

121 »

13 b

i) 29

i5] 34

[0} . 32
Figure 7.35

Results after inserting key 37,

Table Table
address contents
0} epla

{4 47

{2 -

13] 3"

{1l 29

15 34

fol 32
Figure 7.36

Results after inserting key 47.

Tablc

Table Table Table
address conients address contents
10} cmpey 10} empty
[} empry (1] empty
12 27 {2 L
{31 empty i3] epla
(i} 29 (4] 29 3
3] epla 5] 49
ol 32 fol 32

Figure 7.34
Results afier inserting key 34.

Figure 7.33
Results afier inseniing key 32

empty position with the largest address) and is added to a list beginning at
locdtion 4. The result is shown in Figure 7.34.

Up to this point coalesced chaining has behaved exactly like external
chaining—each new record is added to the end of a list that begins at its hume
address. The next insertion illustrates how a collision is resolved after the cellar
is full.

If 37 is added it collides with 27, so it is placed in location (3] and added
10 the end of the list that begins at address [2]. The result is shown in Figure
7.35. The point 1o be made here is that once again the record being inserted
was, since its home address was already occupied, placed in the empty position
with the largest address. Adding 47 produces the result shown in Figure 7.36.

The term “coalesced” is used to describe this technique because, for
example, if 53 were added 10 the hash 1able in Figure 7.36, it would cause the
list that begins at {2} 10 coalesce with the list that begins at (3] Note, however.
that lists cannot coalesce until after the cellar is full.

The effectiveness of coalesced chaining depends on the choice of cellar
size. Selection of cellar size is discussed in Vitter (1982, 1983) where it is shown
that a cellar that comains 14% of the hash table works well under 2 variety of
circumstances.

Because overflow records form lists, the deletion problems of open
addressing schemes can be solved without resorting to marking records dcleted.
Any such approach is, however, more complicated than for the external chain-
ing approach since the lists can coalesce. Details of such a deletion scheme,
which essentially relinks elements in a list past the element to be deleted, are
given in Viner (1982).

This concludes our introduction to collision-resotution techniques, In
Sections 7.5 and 7.6 we will compare these techniques from the point of view
of performance. Before we do so, however, in Section 7.4.3 we will introduce
hash functions that guarantee that collisions will not occur—perfect hashing
functions.

7.4.3 Per/

. A perfect b¢
& perfect basi
& hash table ha
. collisions, we
that has a giv
that such fun
Perfect |
One such con
applications !
programmin
procedure,
program’s st
word. Suppo
perfect hashi
reserved wol
of the specifi.
. same, a rese:
not 4 Tesen
Another
cerns the am
 which can he
increases ex;
possible fun.
into u hash w
functions th:
1973b). Thu:
the number -
perfect hashi
There w
has propose
suggested so
the times to «
fect functions
Let us [
are for keys i
of Pascal (se

TP T B 1 TR T T g 8 ¥

H(key)
where
L = len

- The function
: is the intege:
integer assoc
 ation betwec

BTEX0000298

y:
3 . &
g - : Section 7.4+ ..ashed [mplementations 327 b
. 7.4.3 Perfect Hashing Functions Pascal Reserved Words .
A perfect bashing function is one that causes no collisions. A minimal and mod .
perfect bashing function is a pertect hashing function that operates on g array nil |
hash table having a load factor of 1.0. Since perfect hashing functions cause no 2:2;" 2?‘ :
: collisions, we are assured that exactly one probe is needed to locate an element const or
‘: that has a given key value. This is, of course, very desirable. The problem is div packed
: that such functions are not easy to construct, do procedure
Pertect hushing functions may only be found under certain conditions. downto program 4
2) LT . o . . else record e
One such zendition is that all of the key values are known in advance. Certain end repeat I
applications have this quality; for example, the reserved, or key, words of a file set i
programming lainguage. In Puscal there are 36 reserved words: begin, end, for then
procedure, When a compiler iy translating a program, as it scans the forward to
program's staiermients it must determine whether it hus encountered a reserved function type
‘ Jning a word. Suppose the reserved words are stored in a hash table accessible by a igfom sgrm
perfect hashing function. Determining if 4 word encountered in the scanis a4y while
feernal reserved word-requires only one probe: The word is hashed, and the content label with
home 4 5 of the specitied table is compared with the word from the scan. If they are the
:cellar L saine, a4 reserved word was found. IF not, we can be certain that the word is
; not a reserved word.
dded SR Another condition for pertect hashing functions is a practical one. It con-
figure } ; cerns the amount of computation necessary to find a perfect hashing function,
Juerted : / which vt be enormous. The total amount of computation (and therefore time)
sition ‘ increases exponentially with the number of keys in the data, The number of
£7.36. 3 pussible functions that map the 31 most frequently occurring English words
e, for : into 2 hash tuble of size 41 is approximately 10%, whereas the number of such
e the - functions that give unique (perfect) mappings is approximately 10* (Knuth
: HEver : 1973b). Thus, vnly one of each 10 million functions is suitable. In practice, if
| & the number of keys is greater than a few dozen, the amount of time to find a
('cgllar perfect hashing function is unacceptably long on most computers.
Yown ; There are several proposals for perfect hashing functions. Sprugnoli (1977)
ety of - has proposed functions that are perfect but not minimal. Cichelli (1980) has
t suggested some simple minimal perfect functions and has given examples and
: l'@pen ; the times to compute them. Jaeschke (1981) has proposed other minimal per-
Eeted. fect functions that avoid some problems that might arise with Cichelli's method.
‘ lctlam) Let us look biiefly at Cichelli's method. The functions that he proposed
‘ ‘“me,v are for kevs that are character strings. Take, for example, the 36 reserved words a =11 q=0 n =13
are of Pascal (see the list in the margin). The hashing function is f =15 v =10 s = 6
i X = ¢ = 1 x = 0
L. ¥ Hikey) = L + glkey{1]) + glkey) b1 ho1s oo
. u=14 m=15 | 0
evz ; where 2 -0 -1 6-o0
?ﬁg' L = length of the key g - ‘;’ ‘é" - g ; - 12
o The function g(x) associates an integer with each character x; thus, g(key{1}) =1 i =13

is the integer associated with the first leter of the key, and g(key(L]) is the Figure 7.37
integer associated with the last letter of the key. Figure 7.37 shows an associ- Cichelli's associated integer table :
ation between letters and integers found by Cichelli. for Pascal’s reserved words. i

BTEX0000299

l 4
! 328 Chapter 7+ Sets E
i 3
I 2} do [20] record As an example, suppose that the word “begin™ were encountered by - 3 its exc
E (3] end [21) packed compiler. The hashing function result would be b pare tl
i (4] else {22] not _ _ g - 5. Imple
g [5] case [23] then Hibegin®y = 5 + 15 + 13 = 33 c 0. Impla
i [6] downto [24) procedure o ~ , 15 exe
1 S 7] goto (25] with The hashing function is simple, as it should be, ‘ ‘ g 6. Use h
8l to [26] repeat There are several problems, however. The first is that of looking up the Q
[9] otherwise [27] var integer associated with the two or more letters, but that can be done with '
[1?} tyrrﬁ [gg] n reasonable efficiency. A second and more serious problem is that of determin. in the
white arra
%12] const {30% i y ing which integer shouwd be associated with cach character. The imegers are
. Vi
[13) div [31] ni found by trial and crror using o backtracking algorithm. (Of course, the ar
{14] and [32) for associed integer table, see Figure 7.38, need be built only once.) Cichellj a, Lls
[15] set {33) begin 1980 s 1 good discussion of the backtracking algorithm used for this problem. b. lisc
[16] or [34) until In summary, perfect hashing functions are feasible when the keys are c. Ui
[17] of (35) labe! . " R T St s g |
(18] mod (36] function known in advance and the number of records is smadl. In that case, a perfect d. Us
[19) fie [37) program hashing function is determined inadvance of the use of the hash table. Although /
its determination may be costly, it need only be done once. The resulting access
Figure 7.38 to the records of the hash able requires onty one probe. r
The hash tble for Bascal values
reserved words. e. Th
H f. Tl
Exercises 7.4 o
g T
1. Explain the following werms in vour own words: 7. Imple
R . . . 10 Spx
hash function home address perfect hashing function a. Li
- Ml
collision collision resolution double hashing b. 1
P |8 load factor lincar rehash C‘ i
4 exterial chaining colesced chaining d. (‘f
. A2
2, The division hash funcion b
Hikevy = kev mod tl-
is uswadly 2 good hash function if e has no snall divisers. Sxplain why this and al
restriction iy placed on chaini
3. Developa hash function o convert nine-digil integers (Social Security numbers produ
ino integers in the range 0,999, Test vour hash tuncion by applving it .. functi
500 randomby generated kevs, Determing how many of the addresses received intege
0. 1. 2., . of the hashed kevs.
Compare your experimenta] results with the resulbts that would be abunned
using o “perfect randomizer.” The number of addresses receiving exacdy »
hashied values if the hash function is o perfect randomizer is approximated by
. (Xb
. o 7.5 Ho
: Ao
For this
where a s the load fuctor. groups.
4. Develop a hash function o convert keys of the type hash tab
kevipe = array|1..15) of char; Operition
Operatio:
into integers in e range 0,999, implement your hash function and determine Oltablos:

BTEX0000300

Section 7.5 « Hashing Performance 329

its execution time. Do the sume for the hash function in Exercise 3 and com-
pare their execution times.

5. Implement the perfect hashing, funciion described in Section 7.4.3, Determine
its execution tme wwd compure it with the results obtained in Exercise 4.
6. Use the hash tunciion Ackev) = key mod 11 1o store the sequence of integers

8231, 28, 4,45, 27,39, 79, 35

n the hash wble

var table: array{0.10] of integer:

a. Use linear rehashing

b. Use double hashing

c. Use external chaining

d. Use coulesced chaining with a cellar size of four and the hash function

H(kev) = kev mod 7

For cach of the above collision-handling strategies determine (after all
values have heen placed in the able) the tollowing:
e. The load Etor
f. The averuge number of probes needed 1o tind a value that is in the tble
g. The average number of probes needed to fnd a value that is notin the able

7. Implement w collection of procedures that forms o hashing packuge according

to Specification 7.2, Use
a. Lineur rehashing
b. Double hashing
¢, Externul chaining \
d. Coalesced chaining with a cellar size of 70.

Leta hash tuble be given by

table: array0.500] of integer;

and a hash function by £i(key) = key mod 501, {The hash function for coalesced
chaining will be Z(key) = key mod 431.] Use a random number generator o
produce a sequence of integers 1 store in the hash wble. Determine, as a
tfunction of the load fuctor, the average number of probes needed o find an
integer in the wble.

7.5 Hashing Performance

For this. discussion, the operations in Specification 7.2 are divided into two
groups. The first group includes operations that do not involve searching the
hash table: fill, size, create, clear, and traverse. The effort to execute these
operations does not depend on which collision-resolution strategy is used.
Operations fudl and size require O(1) effort. Operations creaee and. clear require
O(tablesize) effort since each table position must be initialized to the value

BTEX0000301

330 Chapter 7 + Sets

AT RS pE *

empty. Operation traverse requires probing O(tablesize) table positions and G- factor, o.
processing O(17) clements. - value of
Each operation in the second group requires searching the hash table for (g hashing.

the key value of an element. These associative searches are either successfu|

(an element for which the target key value is found) or unsuccessful. The 7.5.2 A
operations in this group are findkey, insert, retrieve, update, and delete. The
performance of all of these operations is primarily determined by the associ- In additi
- ated search. We will therefore discuss the number of compares required for ments of
successful and unsuccessful searches. We will single out the delete operation hash tah!
for discussion later. element
table cor
7.5.1 Performance Tx
Explicit expressions that give the expected number of compares required for T %
successful and unsuccessful searches can be developed. Results for three dif.
ferent collision-resolution policies are shown in Figures 7.39 and 7.40. Figure T +
7.39 shows the algebraic expressions {see Knuth (1973b) for their develop-
ment}, and Figure 7.40 shows the results of graphing the algebraic expressions. The
Observe that any random rehashing technique will give results very close o in a hash
those for double hashing, Jesced df
Expressions for coalesced chaining are given in Viter (1982). Note that if position.
’ the cellar is not full, the resul for coalesced chaining is the same as for external position
i chaining, In general, the search effort of coalesced chaining is approximately will now
: the sume as that of external chaining. See Vinter (1982) in which the per- Ifu
formance of coalesced chaining is compared with all the hashing techniques itself), th
E discussed in this chapter. Coalesced chaining is shown to give the best Figure 7.
52 performance for the circumstances we considered, table is n
Lo - as extern.
‘ w the perfo
‘: ‘g L Linear ! Collision/ provides :
! ; ©5 resolution If w
[T i strategy Unsuccessful Successful
i 3 4F External «
E3'— 1(]+) l(l+ 1) lessofap
§ Linear rehushing 2 (1-ay 2 (1~ a) rules of
o 2F . _(l> (| ~ elements
g . e e Double hashing 1 -« o) <ot ~a) and saves
& Eme.ma] Chainin? External chuining o+t b+ l’u ing provit
05 N : mernts are
; . Load Factor Figure 7.39 Algebhraic expressions for the number of probes expected or nearly
for suceesstul and unsuccesstul searches in o hash able. Thes
elements
N _/
Notice in Figures 7.39 and 7.40 that the performance curves for hashing example,
Figure 7.40 methods are monotonically increasing functions of a, the load factor. The user-defin
Number of probes required for performance curves for lists and trees are monotonically increasing functions both large
successful and unsuccessful . . , it may be
searches in a hash table. —, suc- of 1, the number of elements in the data structure. The number of elements, Yy be
cessful, ------- . unsuccessful, n, is not under the implementor’s control. However, for hashing, the load than 1.0."

BTEX0000302

delete. The
the associ-
equired for
e.operation :

ey close to

i Note tha if -
ifor external
Foroximately
fch the per-
frechniques
e the best -

4o functions
§olelements

factor, a, may be made arbitrarily small by increasing the table size. For a given
value of n, we can reduce the load factor and improve the performance of
hashing, The price is more memory.

7.5.2 Memory Requirements

In addition to performance, it is important to compare the memorv require-
ments of various hashing techniques. Let 7 be the number of buckets in the
hash table; assume that a pointer occupies one word of memory and that an
element occupies w words of memory. The memory requirements for a hash
table containing » elements is then

T x w for any open addressing method
T X (w + 1) for coalesced chaining

T + n(w + 1) for external chaining

These expressions are based on the following assumptions. Each position
in a hash table for open addressing contains room for one element, For coa-
lesced chaining the hash table contains one pointer and one element in each

Section 7.5 + Hashing Performance 331
4 ~
37 | External
chaining
g 2T+ X
g Coalesced chaining
= T 7
Open addressing
1 i
0 0.5 1
Load Factor
\. J
Figure 7.41

position. For external chaining the hash table contains one pointer in each
position and one pointer and one element for each element in the table. We
will now use the expressions to consider two cases.

Ifw is 1 (perhaps we store a pointer to an element rather than the elemnent
itself), then the memory required as a function of load factor is that shown in
Figure 7.41. Open addressing always requires the least memory. When the
table is nearly full, open addressing requires only one-third as much memory
as external chaining. Of course, when the table is nearly full (see Figure 7.40),
the performance of open addressing is poor. In this case, coalesced chaining
provides good performance with a substantial saving in memory requirements.

If w is 10, then the memory requirements are as shown in Figure 7.42,
External chaining is attractive over a wider range of load factors and extracts
less of a penalty when the table is nearly full. This analysis leads to the following
rules of thumb for constructing hash tables to be stored in RAM: For small
elements and load factors, open addressing provides competitive performance
and saves memory. For small elements and large load factors, coalesced chain-
ing provides good performance with ceasonable memory requirements. If ele-
ments are large, external chaining provides good performance with minimum,
or nearly minimum, memory requirements.

These rules are based on the assumption that the maximum number of
elements in the tble can be estimated. Often that is not the case. Take, for
example, the symbol table of a compiler that is used to store data about the
user-defined identifiers in programs. The compiler must be able to process
both large and small programs with a wide range in the numbers of identifiers.
It may be possible for the table to overfill; that is, have a load factor greater
than 1.0. The compiler should continue to operate smoothly. Such situations

Memory requirements when an
element occupies the same
amount of memory as a pointer.

r N\
15T +
Coalesced
chaining
= 10T ¢
<]
£
K]
= .
sTE Ex(erf\al
chaining
1 i
0 05 1
Load Factor
e J
Figure 7.42

Memory requirements when an
element occupies 10 times the

amount of memory as a pointer.

BTEX0000303

332 Cheapter =« Sets

are often handled by the use of external chaining, which continues 1o function = where d)
for Joud factors greater than 1.0, © by

. , {(d)
7.5.3 Deletion

where [
Figure 7.4
The |

We will conelude this section with o few comments about deletion. As discussed
carlier. hash 1ables that are constructed using open addressing techniques pose
problems when subjected o frequent deletions. The space previously occupied
by o delewed record cannot simply be marked empre but must he marked
deleted. This clutters up the hash table and hurts performance. No such prob.
lem arises if external chaining is used for collision resolution. Deletion s
handled just as it is for any linked list. For coalesced chaining deletion is no
probleny as Jong us the cellar has never been full, since deletion can be handled

Hedy =

where (o
The frequ

essentially as ivis for external chaining. Once the cellar is full and the possibilin f:o::)t)”:]l
of conlesced Jists exists, then deletion must be handled carefully. An alporithm Figu
is given in Vitter (1982). It s (slightly) more complicated and would extract a s
smalt performance penalty. When designing a hashing strategy, the frequency eg;}n; ‘_mfl
ol deletion must be considered along with performunce and mcmor:\- prediciet
requirements.
I Section 7.6 we will apply several hushing methods w the frequency

amilvsis of digraphs. We will see how the theoreticad results apply in o specific Digraph
Clne, . il

by

Hi%
7.6 Frequency Analysis of Digraphs -
We have discussed frequency analvsis of digraphs before, In Section 4.9 we .
used Hsts for the anudvsis, und in Section 3.7 we used binury search trees and Figure 7.~

') Najues o'
AVE trees, Inthis secton we will compare four hashing surategios. Al four use

adivision hashing function, but they diffec in the collision-resolution strategy:
lincar rehashing, double hashing, coalesced chaining. and esternal chaining,
We will conclude with i sumnuy of results involving all of the dati struciures

. Rewa

we e used tosohvze digraphs.)

.) values o !

; and the

7.6.1 Hash Function § . Figure "

. . - . L - - . . Figus
The hush tible will be of the form shown in Figure "3, The hash function s

four hushi

hashiable = array must map each digraph (pair of letersy into the integers between 0 and fable- for comp
[0. tablesize] of bucket; size, We accomplish this as follows, Let o) and ¢, he the it and second addr iln
o Usy
: characiers of digriph of: .
Figure 7.43 Direct ad
Hush wble. od = dyds ' address

plifies the

Lotz und 75 e computed s follows: ! .
E s one. Th

i) = ordtd)) — ordca’) 1. ing shoul
: elements
iv = ordidy) — ordCa) T digraphs

BTEX0000304

Jiés o function

Jois discussed
ahoiques pose

sty occupied
Jmst be murked
No such prob:
. Deletion is
Jdeletion is no
an be inndled
Rithe possibility
A algorithm
wuld extract a
the frequency
md memory

the trequency

Section -9 we
ach trees and
o, Al four use
fuon strategy:
Feal chaining.
it structures

fash function
Im 0and table-
Cind second

Iy in aspecific

- ——— A

Necticn -

where ¢ and 7, are integers benween O and 25, Fimally, let /() be compured
by

) = 264, + i,

where fef) has vadues beowveen O and 6730 sumple values of 7 are shown i

Figure “or4,
The hash function for digraph analvsis is

Hed) = [0 mod (tablusize + 1)

where iblesize is 1o he selected so that fablesize + 1 has no simall divisors,
The frequency analisis results reported in this section are hased on rablesize
= 300, Figure 7o shows the values of Hedigraph) tor the tirst tew digraphs
from von Newmann ¢1940).

Figure 740 shows the expected search tengehs tor the four hushing sorut-
egies and, for comparison, o binan search of asorted arrav, The cesules e us
predicred in Section 73,

Digraph { Digraph {(digraph)
KA] . pr U i
ab ! e tis
aw 2 ol 115
H 204
i 20
o [T n 14

Figure 7.44
Vidues of 7 tor digraph anndvsis.

Figure 7.45%

Home sddress of the lest few
digraphs from von Neamann
{1940, The mble sive = 300

Recall (see Figure «4.-40) that processing 2000 digraphs ciuses 270 distinet

vilues to be entered into the hash whle. The reladonship beaveen load factor

and the number of digruphs processed. with teblesize = 300, is shown in
Figure 7.47.

Figure 7.48 shows the average time required o process a digraph tor the
four hashing technicques and, for comparison, i binary search tree, Also included
tor comparison is the time reqguired for s direct addressing scheme. Direct
addressing is implemented just like hushing with, in this case, [itd) = Itdd).
Direct addressing s possible in this case because we can assign a distinct
address w each of the 670 possible digraphs. This eliminates collisions, sim-
plities the wlgorithms, and easures thae the number of probes o hind @ digraph
is une, The price for this is the requirement for more memory. Direct address-
ing should not be confused with hashing. A hash function randomizes the
elements stored in the hash ble. Our direct addressing scheme places the
digraphs in the wble in alphabetical order.

-

w0 Preguenay Ancdvsis of Digraphs 333

T

v
3

Exprevied sewreh Lengib

to
o

1 -
100 2000
Number of Digraphs
Processed

* Binwy search

x Linear rebashing

<

Double hashing

Couleseed chuining

>

External chaining
u _J

Figure 7.40
Frequenay analvsis of digraphs.
Expected search length

(R
l b
3
= 0.5}
i L
1000 2000
Number of Digraphs
Processed
. J

Figure 7.47
Fregueney analsis of digraphs.
Losd Fctor,

BTEX0000305

	Exh 5_3
	BTEX0000174_Part3

